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Abstract

This dissertation addresses two issues that arise in the field of Nonlinear Model Predictive
Control (NMPC): computational delay and stability of economically oriented NMPC.

NMPC has gained wide attention through the application of dynamic optimization. It has
the ability to handle variable bounds and multi-input-multi-output systems. However, com-
putational delay caused by large size of nonlinear programming (NLP) problems may lead
to deterioration of controller performance and system stability. In this thesis we propose
an advanced-multi-step formulation of NMPC (amsNMPC) based on NLP sensitivity. The
basic idea of amsNMPC is to solve a background NLP problem in advance to get predic-
tions of future manipulated variables. These are then updated online using NLP sensitivity
when the actual states are obtained. This method could be applied to optimization problems
whose solutions require multiple sampling times. We then analyze the nominal and robust
stabilities of the two approaches. Two examples are studiedto evaluate the performance of
amsNMPC.

The ultimate goal of any operation strategy for a process plant is to make profit. Tradi-
tionally this goal could be achieved by a two-layer Real-time Optimization (RTO) system,
where the upper layer solves a steady state problem aiming atoptimizing economic per-
formance to get the optimal setpoints for the controlled variables in the layer below. The
lower layer then keeps the controlled variables at their given setpoints using MPC/NMPC.
However, there are some problems with this two-layer structure. One of the solutions is to
combine these two layers and include the economic criteriondirectly into the cost function
of the lower layer controller when an optimization-based controller such as MPC is used.
This approach is often referred to as Economic MPC. The issuewith Economic NMPC is
that the controller may not be stable. In this dissertation we analyze its Lyapunov stability
property and propose to stabilize it by adding quadratic regularization terms to the objec-
tive function, and we also provide a method to calculate the most appropriate weights on
regularization terms to ensure the stability of Economic NMPC while achieving the best
possible economic performance. Several challenging case studies are used to demonstrate
these concepts.
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Chapter 1

Introduction

In this chapter, we discuss the background of the research problems in this dissertation.

The hierarchy of plant operations will be introduced with anemphasise on the two-layer

structure of Real-time Optimization (RTO). Then the research problem is defined and the

thesis outline is listed.

1.1 Hierarchy Structure

The typical operation of a chemical process involves several layers structured as a pyra-

mid. As shown in Fig. 1.1, it is composed of the following layers: planning, scheduling,

Figure 1.1: Optimization hierarchy
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1.1 HIERARCHY STRUCTURE

RTO, advanced control, and basic regulatory control. As we move from top to bottom, the

decisions are generated at increased frequency. The planning layer makes decisions about

production goals. For example, what products to produce andhow much to produce, what

raw materials to buy and how much to buy. The time scale of planning is in terms of months

or weeks. The scheduling layer then makes decisions about how to arrange the manufac-

turing sequence and when to start a process given the decision made by the planning layer.

This is usually determined by availability of equipments. The time scale of scheduling is in

terms of weeks or days. The two layers also provide parameters of economic objective, e.g.,

prices of products and raw material, cost; and economic constraints, e.g., amount of raw

material. Given such information, the RTO layer then generates setpoints of the advanced

control layer aiming at optimizing economic performance inthe presence of changes and

long term disturbances. The time scale of RTO is in terms of hours. The advanced control

layer then makes control decisions to drive the system to itssetpoint in the presence of

short-term disturbances. The time scale of advanced control is in terms of minutes. Then

the control decision is sent to the regulatory control layer, whose time scale is in terms of

seconds.

1.1.1 Real-time Optimization (RTO)and Advanced Control

The RTO layer solves a steady state problem aiming at maximizing profit or minimizing

cost to generate setpoint of the advanced control layer. Thetwo-layer RTO and advanced

control structure is shown in Fig.1.2.

The RTO problem is usually a nonlinear programming (NLP) problem with an economic

objective function. The process model included in the NLP isa steady state model. This

NLP is solved online on a scale of hours in order to generate the real-time set point consid-

ering the change in economic parameters and models, long-term disturbances, etc.

CHAPTER 1. INTRODUCTION
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1.1 HIERARCHY STRUCTURE

Figure 1.2: Two-layer RTO and advanced control structure

The advanced control layer generates control actions to be sent to the lower layer of reg-

ulatory control. The most commonly used advanced controller in industry is the Model

Predictive Controller (MPC). It utilizes a linear model of the controlled system to generate

control decisions. Normally, in the areas such as refining and petrochemicals, the process

is slightly nonlinear, and a linearized model is used by MPC.However, in areas such as

chemicals, polymers, gas plants and pulp & paper, processesare strongly nonlinear. In

this case MPC has not been applied yet. However, if we have thedynamic model of the

nonlinear processes, Nonlinear MPC (NMPC) could be used instead.

MPC uses a dynamic model of the process to predict future behavior of the process over

a time horizon. It then solves an NLP to generate the control actions within this horizon

that leads to the shortest transition time or minimal control effort. Besides the dynamic

model, current state is also required as the initial condition of the NLP. However in reality,

current state is not measured directly. The output of the plant is measurement, then state is

estimated by a state estimator using the output measurementand the dynamic model. The

estimated state is then sent to the advanced controller as the actual state. Some commonly

CHAPTER 1. INTRODUCTION
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1.2 RESEARCHPROBLEM STATEMENT

used state estimators are Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF),

and Moving Horizon Estimation (MHE). There are a lot of interesting research topics in

the field of state estimation, but in this dissertation we focus on NMPC and assume that all

the actual states are already obtained by state estimation.

Due to the formulation of the NLP, MPC has a lot of advantages compared to classical con-

trollers, such as PID controllers. MPC could control multi-input-multi-output systems with

no decoupling needed; and it could handle bounds on states, outputs and inputs. Therefore

MPC has become the current dominant practice in the process industry.

There are several problems with the current two-layer RTO and advanced control structure.

First, the RTO layer has no information on real-time disturbances in the plant. As a result,

the steady state it generates may not be economically optimal in the presence of real-time

disturbance. Second, the RTO layer and control layer have different time scales. Therefore,

delay on the RTO layer is inevitable. Finally, model inconsistency between the two layers

and unresolved transient behavior may lead to unreachable setpoints. Therefore the com-

bination of these two parts has ignited people’s interests in the recent decades, which is the

idea of Economic NMPC (eNMPC). Due to its formulation, it could optimize economic

profit while driving the system to its steady state in the presence of dynamic disturbances.

We will discuss more about eNMPC in Chapter 7.

1.2 Research Problem Statement

Normally, the solution time of NLP problems are not negligible. If the scale of the system

is very large, solution time of the NLP is usually comparableto, or even longer than the

sampling time. As a result, there is time delay between the time that the input is imple-

mented and the time that the plant state is obtained. This delay will lead to incorrect control

CHAPTER 1. INTRODUCTION
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1.3 THESIS OUTLINE

actions which will deteriorate the controller performanceand even system stability.

There are a lot of fast NMPC methods to handle computational delay, which will be dis-

cussed in Chapter 4. And we also propose a fast NMPC method which takes advantage of

the existing fast NMPC methods and allows the NLP to be solvedbeyond one sampling

time.

Economic NMPC aims at maximizing economic profit directly. Since the setpoint is not

known in advance, there are no setpoints or terminal regionsformulated in the NLP. Sta-

bility analysis of setpoint tracking NMPC has been well established because its objective

function, which is composed of quadratic tracking terms, satisfies some certain criteria that

will be introduced in Chapter 4. However, the stability analysis of setpoint tracing NMPC

cannot be directly applied to Economic NMPC because since the objective function is com-

posed of economic terms, those criteria may not be satisfied.In this dissertation we propose

a scheme to analyze the stability of an Economic NMPC controller. Moreover, if the con-

troller is unstable, we propose a method to stabilize it while obtaining optimal economic

performance.

1.3 Thesis Outline

This dissertation is organized as follows:

Chapter 2 provides literature review of MPC and NMPC. The original work and variations

of MPC and NMPC are discussed. The commonly used notations, basic formulation of

process model and NMPC are also introduced.

Chapter 3 provides numerical methods we use to solve differential algebraic equations

(DAEs) and NLPs. In particular, orthogonal collocation on finite elements is used to dis-

cretize the time-continuous DAE models and the interior point method is used to solve

CHAPTER 1. INTRODUCTION

5



1.3 THESIS OUTLINE

NLPs. These methods are discussed in detail in this chapter.Then we discuss NLP sensi-

tivity, which is a very important concept that is utilized inadvanced-step NMPC (asNMPC),

Chapter 4 and advanced-multi-step NMPC (amsNMPC), Chapter5. IPOPT, an NLP solver

that uses interior point method, and sIPOPT, an IPOPT version that utilizes NLP sensitivity,

are also introduced.

Chapter 4 discusses fast NMPC strategies and Lyapunov stability analysis. To avoid de-

lay that occurs due to non-negligible computational time, several fast NMPC methods are

proposed by different research groups all over the world andthree of them are discussed

in this chapter. Then reformulation of NLPs using soft constraints is introduced. We also

present the formulation and implementation of asNMPC, a fast NMPC method proposed

by Zavala, a previous member in the Biegler group, which laysthe foundation of the work

in this dissertation. Then we introduce the concept of Lyapunov stability and analyze nom-

inal and robust stabilities of ideal NMPC and asNMPC. When wediscuss robust stability

of ideal NMPC we study three toy examples to show that robustness could be obtained by

using a longer NLP horizon or reformulating the NLP with softconstraints andℓ1 penalty

terms.

Chapter 5 presents the two approaches of advanced-multi-step NMPC, the serial approach

and the parallel approach. amsNMPC avoids computational delay by solving NLPs in

advance with predictions of future states as initial conditions. In order to transit smoothly

from asNMPC to amsNMPC, we start with blocked amsNMPC, whichis asNMPC but with

longer sampling time. Stability of the blocked amsNMPC is discussed first, which will be

used as a reference when stability of the two approaches are analyzed. Implementations

and stability analysis of the two different approaches are discussed.

Chapter 6 compares the performance of ideal NMPC, asNNPC, the parallel approach and

the serial approach. Two nonlinear cases, a continuous stirred tank reactor (CSTR) and

CHAPTER 1. INTRODUCTION
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1.3 THESIS OUTLINE

a large-scale propane-propylene distillation column (C3 splitter), are studied. Both the

serial and the parallel approaches are applied to the CSTR example to show the pros and

cons of amsNMPC. The C3 splitter, which has 79750 variables and 79700 constraints and

whose NLP solution time exceeds one sampling time, is used toshow the capability of the

parallel approach on large-scale systems. Moreover, we also apply asNMPC/amsNMPC to

the three toy examples studied in Chapter 4 and show that robustness is preserved when

asNMPC or amsNMPC is applied.

Chapter 7 presents Economic NMPC. Economic NMPC has advantages over traditional

two-layer RTO advanced control structure because it drivesthe controller directly with

economic stage costs. However, a critical issue of EconomicNMPC is that stability cannot

be guaranteed if there are only economic costs in the objective. We propose a strategy to

stabilize an Economic NMPC controller. Moreover, we also provide a method to obtain

the balance between optimizing economic profit and maintaining the stability of the con-

trolled system. Two case studies, a small CSTR and two distillation columns in sequence,

which has 136154 variables and 77754 constraints, are used to demonstrate our stabilizing

strategy.

Chapter 8 concludes the dissertation by stating the concluding remarks of each chapter.

Then we discuss the contribution of our work and point out possible directions for future

work.
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Chapter 2

Literature Review

Model predictive control (MPC) is a widely used feedback control strategy. Compared

with classical controllers, it has the advantage of handling variable bounds and dealing

directly with multi-input-multi-output systems. Often used to track setpoints, it solves an

optimization problem derived from dynamics of a real system. If the system is nonlinear,

then a nonlinear programming (NLP) problem must be solved, leading to nonlinear model

predictive control (NMPC) considered in our work.

2.1 Background

Before dynamic matrix control (DMC) was proposed in the 1970s ([11, 10]), the dominant

advanced control method in industry was proportional-integral-derivative (PID) control.

The PID controller attempts to minimize the error between the measurement of the process

state and a setpoint. They are applicable to many control problems. However, they do

not have information about the exact process model and usually do not provide “optimal”

control and have difficulties in some situations, for example, when the process is strongly

nonlinear, or there are large disturbances, etc. Also for a multi-input-multi-output system,

decoupling is needed since PID controller works better for asingle-input-single-output

system. So the dominant advanced control method has become DMC which was proposed

in 1979 by Cutler and Ramaker [11].
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DMC is a model predictive controller. It generates control decisions by solving an opti-

mization problem to minimize the deviation between the states and their setpoint within

the shortest time or with the minimum control effort. It usesa linear finite impulse or

step response model to represent the process and the optimization problem is solved by the

computer. The calculation of DMC decisions does not requiredecoupling and inequality

constraints are also considered when the optimization problem is solved. DMC has had a

significant impact on process industry. Up till now, DMC is the dominant advanced pro-

cess controller that is widely applied in oil industry and chemical industry. DMC is the first

generation of industrial MPC technology. Qin and Badgwell [49] reviewed many MPC

technologies, and features of products that used these technologies developed by various

companies.

Model predictive control (MPC), on the other hand, is the generalization of DMC. Morari

and Lee summarized the past MPC development, currently existing variations of MPC, and

future directions in [42]. The MPC formulation in [42] is listed as the following:

JN(x0) := min
u(·)

xT(N)PNx(N)+
N−1

∑
i=0

xT(i)Qx(i)+
m−1

∑
i=0

uT(i)Ru(i)

s.t.x(k+1) = Ax(k)+Bu(k), k= 0, . . . ,N−1

x(0) = x0

Ex(k)+Fu(k) ≤ ψ(k). (2.1)

whereN is the length of the prediction horizon andm is the length of the control horizon.

WhenN = ∞, this problem is referred to as an infinite horizon problem. For an infinite

horizon problem, stability is more likely to be guaranteed;however, it is not practical to

solve Problem (2.1) withN = ∞ numerically. Therefore the infinite horizon problem needs

to be reformulated to a finite horizon problem. The common wayis to setm= N and use a

terminal costxT(N)PNx(N) to replace the summation∑∞
i=N xT(i)Qx(i)+uT(i)Ru(i) where

PN could be obtained by solving the Riccati equation.
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More recently, MPC has been extended to Nonlinear Model Predictive Control (NMPC)

in order to realize high-performance control of highly nonlinear processes. The objective

function of NMPC problems has the same formulation as in (2.1). However, for NMPC, the

weight of terminal cost cannot be obtained by solving the Riccati equation. Different ap-

proaches have been proposed to reformulate the infinite horizon problem to the finite hori-

zon problem for NMPC. For example, Keerthi and Gilbert [35] proposed to add a terminal

constraint or terminal region to force the state to the setpoint or terminal region. Michalska

and Mayne [41] proposed to set the horizon length as a variable. Chen and Allgöwer [8, 9]

proposed to replace the terminal cost with an upper bound of∑∞
i=N xT(i)Qx(i)+uT(i)Ru(i).

More recently, Pannocchia et al. [47] showed that when thereare no state constraints,

terminal constraint could be replaced by an appropriate terminal penalty without loss of

robustness. Another commonly used approach in industry to generate MPC decisions for

nonlinear processes is to linearize the process model and solve an MPC problem. However

when the process is strongly nonlinear this approach does not always lead to satisfactory

results. For the rest of this chapter we introduce the general formulation of NMPC prob-

lems.

2.2 Nonlinear Programming (NLP) Formulation

The basic concepts and development of NMPC can be found in Rawlings and Mayne [53].

The current plant state and the plant model are used to predict future plant states. Based

on these states, an NLP problem is solved to get the corresponding manipulated variables,

among which the first is injected into the plant. Here we assume that the dynamics of the

plant can be described by

x(k+1) = f (x(k),u(k)) (2.2)
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wherex(k) ∈ ℜnx is the plant state at timetk andu(k) ∈ ℜnu is the manipulated variable at

tk. The mappingf : ℜnx+nu 7→ ℜnx is continuous andf (0,0) = 0. In a realistic scenario

the evolution of the system could be described by the following discrete-time nonlinear

dynamic model:

x(k+1) = f̃ (x(k),u(k),w(k))

= f (x(k),u(k))+g(x(k),u(k),w(k)) (2.3)

wherew(k) ∈ W ⊂ ℜnw is disturbance,g : ℜnx+nu+nw 7→ ℜnx is continuous and used to

describe modeling errors, estimation errors and disturbances. We usezl andvl to denote

predicted values ofx(k+ l) andu(k+ l) respectively. The NLP problem for NMPC at time

tk is formulated as

JN(x(k)) := min
zl ,vl

Ψ(zN)+
N−1

∑
l=0

ψ(zl ,vl )

s.t.zl+1 = f (zl ,vl ) l = 0, . . .N−1

z0 = x(k)

zl ∈ X,vl ∈ U,zN ∈ X f . (2.4)

We assume that the stateszl and controlsvl are restricted to the domainsX andU, re-

spectively.X f is the terminal set andX f ⊂ X. We assume that the horizon lengthN is

sufficiently large such thatzN ∈ X f is always true for the solution of (2.4). The setU is

compact and contains the origin; the setsX andX f are closed and contain the origin in

their interiors.

The stage cost is given byψ(·, ·) : ℜnx+nu → ℜ, while the terminal cost is denoted by

Ψ(·) : ℜnx+nu → ℜ. For tracking problems, we can assume that the states and control

variables can be defined with respect to setpoint and reference values, and that the nominal

model has the property,f (0,0) = 0. The optimal solution{z∗0, ...,z
∗
N,v

∗
0, ...,v

∗
N−1} leads to
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the optimal objective function valueJN(x(k)), andv∗0 is injected into the plant asu(k). Once

x(k+1) is known, the horizon moves one step forward and the next NMPCproblem (2.4)

is solved foru(k+1). This recursive strategy gives rise to the feedback law,

u(k) = κ(x(k)) (2.5)

with κ(·) : ℜnx 7→ ℜnu. With the feedback law (2.5) system (2.3) becomes

x(k+1) = f̃ (x(k),κ(x(k)),w(k))

= f (x(k),κ(x(k)))+g(x(k),κ(x(k)),w(k))

= f (x(k),κ(x(k)))+g(x(k),w(k)) (2.6)

Hence, we replaceg(x(k),u(k),w(k)) with g(x(k),w(k)) sinceu(k) = κ(x(k)). As stated

above, the input to the NMPC controller is the current plant state, while its output is the

manipulated variable to be injected into the plant which is achieved by solving an NLP

problem. Ideally it is expected that the input is injected tothe plant right after the mea-

surement is obtained. We refer to this strategy asideal NMPC(iNMPC), where the on-line

calculation time is neglected. However, in reality the NLP solution always requires non-

negligible on-line computational time, which leads to computational delay between obtain-

ing the state and injecting the control. This delay could lead to deterioration of controller

performance and system stability. To prevent computational delay, researchers have come

up with a number of fast NMPC strategies. We will discuss several fast NMPC strategies

in Chapter 4.

2.3 Concluding Remarks

In this chapter we start from the history of MPC and then move on to NMPC and discuss

the reformulation of infinite horizon problems to finite horizon problems. We introduce
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the commonly used notations and the basic formulation of NMPC. At each timetk, NMPC

generates control decisions by solving optimization Problem (2.4) repeatedly with the ac-

tual statex(k) as initial condition. In the next chapter we discuss how Problem (2.4) is

solved; we then discuss reformulation of Problem (2.4) in Chapter 4.
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Chapter 3

Numerical Solutions of DAE and NLP

In this chapter, we discuss the numerical methods we use to solve process models composed

of differential and algebraic equations (DAEs). We also discuss numerical methods to solve

nonlinear programming (NLP) problems.

3.1 DAE-constrained Optimization

Based on how the process model is built, there are two kinds ofmodels: data-driven models

and first principle models. Data-driven models are built using on computational intelligence

and machine learning methods based on outputs and inputs. First principle models are built

based on the dynamic properties of the process. In this dissertation we study first principle

models.

First principle models are usually composed of continuous-time DAEs. However, there are

no easy ways to solve NLPs that contain DAEs directly. Therefore we need to discretize

the continuous equations first. There are different approaches to handle the DAEs for dy-

namic optimization, such as single shooting, multiple shooting, and collocation method

[6]. Typically collocation is performed by using orthogonal collocation on finite elements.

It represents states and controls in each element with piecewise polynomials. The dis-

cretization utilizes sparsity and structure, avoids convergence difficulties that appear with

the shooting methods, and sensitivity calculations for theDAEs are replaced by direct gra-

CHAPTER 3. NUMERICAL SOLUTIONS OFDAE AND NLP

14



3.1 DAE-CONSTRAINED OPTIMIZATION

dient and Hessian evaluations within the NLP formulation. However, discretization of the

DAE model increases size of the NLP problem, so efficient large-scale NLP solvers are re-

quired. In this dissertation orthogonal collocation is used to discretize the continuous-time

process models.

We consider the following DAE:

dz
dt

= f̂ (z(t),y(t),u(t)), z(0) = z0

0 = ĝ(z(t),y(t),u(t)) (3.1)

wherez,y are the differential and algebraic variables of the system respectively. If (3.1) is

index 1, we can representy(t) asyimp(t), an implicit function ofz(t) andu(t), and we can

rewrite (3.1) as

z(ti) = z(ti−1)+
∫ ti

ti−1

f̂ (z(t),yimp(t),u(t))dt

= z(ti−1)+hi

∫ 1

0
f̂ (z(ti−1+ τhi),y

imp(ti−1+ τhi),u(ti−1+ τhi))dτ, (3.2)

wherehi = ti − ti−1 andτ ∈ [0,1]. We would like to discretize System (3.1) to the following

formulation:

z(k+1) = f (z(k),u(k)) (3.3)

where we setti−1 = k andti = k+1. We use orthogonal collocation on finite elements to

discretize system (3.1) to (3.3). We partition the time domain [0, t f ] into N stages where the

domain inside each elementi is given byt ∈ [ti−1, ti] with i = 1, . . . ,N, t0 = 0 andtN+1 = t f .

Using this representation we could reformulate System (3.1) as

dzi

dt
= f̂ (zi(t),yi(t),ui(t)), z(0) = z0

0 = ĝ(zi(t),yi(t),ui(t))

i = 1, . . . ,N (3.4)
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Then over each single finite element, we use a polynomial of orderK to approximate the

continuous functionf̂ in the above integral (3.2), and therefore there areK interpolation

points in each elementi. If the length of elementi is hi , we can represent any timet ∈

[ti−1, ti] ast = ti−1+hiτ,τ ∈ [0,1] and the state in elementi is presented as

zK
i (t) =

K

∑
j=0

l j(τ)zi j (3.5)

wherel j(τ) = ∏K
k=0, 6= j

τ−τk
τ j−τk

,τ0 = 0,τ j ≤ τ j+1, j = 0, . . . ,K. Similarly we could represent

the algebraic variabley as

yK
i (t) =

K

∑
j=1

l̄ j(τ)yi j (3.6)

where l̄ j(τ) = ∏K
k=1, 6= j

τ−τk
τ j−τk

. ui(t) can be represented as in (3.6), or as a lower order

polynomial. In this dissertation we use piece-wise linear control given asui(t) = ui−1

which is constant within each finite element.

Since the statezK
i (t) is represented as a polynomial of orderK+1, its time derivative could

be represented as a polynomial of orderK with K interpolation points. From (3.4)-(3.6) we

have

zK
i (ti) = zK

i (ti−1)+hi

∫ 1

0
f̂ (z(τ),y(τ),u(τ))dτ

= zK
i (ti−1)+hi

∫ 1

0

K

∑
j=1

żi j l j(τ)dτ

= zK
i (ti−1)+hi

K

∑
j=1

żi j

∫ 1

0
l j(τ)dτ

= zK
i (ti−1)+hi

K

∑
j=1

Ω j(1)żi j (3.7)

whereΩ j(τ) =
∫ τ

0 l j(τ ′)dτ ′, τ ∈ [0,1], żi j = f̂ (zi j ,yi j ,ui−1, ti j ). zi j could be represented in
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a similar formulation. They are represented as

zK
i (t) = zK

i (ti−1)+hi

K

∑
j=1

Ω j(τ)żi j (3.8a)

zi j = zK
i (ti−1)+hi

K

∑
k=1

Ωk(τ j)żik (3.8b)

wherezK
i (ti−1) = zi,0.

Eventually we replace (3.1) with the following two equations:

żi j = f̂ (zi j ,yi j ,ui−1, ti j ), j = 1, . . . ,K (3.9a)

0 = ĝ(zi j ,yi j ,ui−1, ti j ) (3.9b)

zi,0 = zi−1,0+hi

K

∑
j=1

Ω j(1)żi j (3.9c)

Assuming that the DAE system is index 1, we can eliminatezi j ,yi j andżi j implicitly using

(3.8b), (3.9a),(3.9b) so that (3.9c) leads to the dynamic model (3.3). In this dissertation we

use Radau collocation and 3 collocation points within each finite element.

3.2 IPOPT Algorithm

IPOPT(InteriorPoint OPTimizer) is a large-scale NLP solver that is designed to find local

solution of NLPs. It uses the interior point method to solve NLPs. IPOPT is used for all

the case studies in this dissertation.

3.2.1 Interior Point Method

To explore continuity and sensitivity properties of Problem (2.4), we represent this problem

as:

minx F(x, p), s.t. c(x, p) = 0, x≥ 0 (3.10)
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wherex ∈ ℜn is the variable vector containing the states and controls, and p is afixeddata

vector used to represent uncertain external parameters such as disturbances. The equality

constraints arec(x, p) : ℜn → ℜm. In interior-point solvers, the inequality constraints of

problem (3.10) are handledimplicitly by adding barrier terms to the objective function,

minx F(x, p)−µ
nx

∑
j=1

ln(x( j)), (3.11)

s.t. c(x, p) = 0

wherex( j) denotes thejth component of vectorx. Solving (3.11) for the sequence of

µ l → 0, with l = 0,1,2, . . . ,∞ leads to solution of the original NLP (3.10).

We define the primal-dual Lagrange functionL(x,λ ,ν, p)= F(x, p)+c(x, p)Tλ −xTν and

the solution vectors= [xT ,λ T ,νT ]T , whereλ ,ν are multipliers of equality constraints and

bound constraints respectively,ν = limµ→0 µX−1e. For a given barrier parameter valueµ,

IPOPT [55] solves the primal-dual optimality conditions ofbarrier problems (3.11) directly,

∇xL(x,λ ,ν, p) = 0, (3.12a)

c(x, p) = 0, (3.12b)

XV e = µe, (3.12c)

whereX = diag(x),V = diag(ν), e∈ ℜn is a vector of ones, andλ ∈ ℜm andν ∈ ℜn are

Lagrange multipliers. To solve this system of nonlinear equations, IPOPT uses an exact

Newton method and starts the iteration sequence at pointsT
o := [xT

o λ T
o νT

o ]. At the ith

Newton iteration, the search direction∆si = si+1− si is computed by linearization of the

KKT conditions (3.12),










∇xxL(si(p)) ∇x(si(p)) −I

∇x(si(p))
T 0 0

V i 0 X i





















∆xi

∆λi

∆νi











=−











∇xL(si , p)

c(xi , p)

X iV ie−µe











(3.13)
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whereX = diag(x),V = diag(ν). After solving a sequence of barrier problems forµ → 0,

the solver returns the solution triples∗,T(η) = [x∗,T λ ∗,T ν∗,T ] for Problem (3.10).

Having introduced Lagrange function and KKT conditions, weintroduce the concepts of

SC, LICQ, and SSOSC. We first reformulate Problem (3.10) as:

minx F(x, p) (3.14)

s.t. c(x, p) = 0

g(x, p)≤ 0

Definition 1 (Strict Complementarity[44]). Given a vector p, a local solutionx∗ of (3.14)

and vectors(λ ,ν), we say that the strict complementarity condition (SC) holds for λ ,ν

only if ν j −g j(x∗, p)> 0 for each j= 1, . . . ,ng.

A constraint qualification is required for a local minimizerof (3.14) to be a KKT point [44].

Definition 2 (Linear Independence Constraint Qualification). Given a vector p and a point

x∗, the linear independence constraint qualification (LICQ) holds at x∗ if the gradient

vectors

∇ci(x∗, p); i = 1, . . . ,nc,

∇g j(x∗, p); j ∈ J where J= { j|g j(x∗, p) = 0}
(3.15)

are linearly independent.

The LICQ implies that the multipliersλ ,ν are unique. Sufficient conditions forx∗ to be a

minimum are given by the following second order conditions:

Definition 3 (Second Order Sufficient Conditions). [6] Suppose thatx∗ and the multipliers

λ ∗, ν∗ satisfy the KKT conditions (3.12) and

qT∇xxL(x∗,λ ,ν, p)q> 0 for all q 6= 0 (3.16)
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such that

∇xci(x∗, p)Tq= 0, i = 1, ..,nc

∇xg j(x∗, p)Tq= 0, f or ν j > 0,

∇xg j(x∗, p)Tq≤ 0, f or ν j = 0

(3.17)

then x∗ is a strict local solution of (3.14).

Definition 4 (Strong Second Order Sufficient Conditions [31]). The strong second order

sufficient conditions (SSOSC) hold atx∗ with multipliersλ , andν if

qT∇xxL(x∗,λ ,ν, p)q> 0 for all q 6= 0 (3.18)

such that

∇xci(x∗, p)Tq= 0, i = 1, ..,nc

∇xg j(x∗, p)Tq= 0, ν j > 0.
(3.19)

Theorem 1 (Implicit function theorem applied to optimality conditions). Let x∗(p) be a

KKT point that satisfies(3.12), and assume that SC, LICQ and SSOSC hold atx∗. Further

let the functions F,c,g be at least k+1 times differentiable inx and k times differentiable

in p. Then

• x∗ is an isolated minimizer, and the associated multipliersλ andη are unique.

• for p in a neighborhood of p0 the set of active constraints remains unchanged,

• for p in a neighborhood of p0 there exists a k times differentiable function s(p) =
[

x∗(p)T , λ (p)T , ν(p)T
]

, that corresponds to a locally unique minimum for(3.10).

Proof. See Fiacco [18].
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3.2.2 NLP Sensitivity

In the solution of an NLP, solving (3.13) is the most computationally demanding step during

each iteration. However, the KKT matrix is always very sparse and structured. Efficient

sparse linear solvers are applied to factorize the KKT matrix, e.g., HSL library with the

METIS option [16]. Moreover, the structure of the KKT matrixdoes not change between

iterations, so the linear solver needs to analyze the sparsity pattern only once.

Having the optimal solutions∗(p0) (superscript ‘*’ indicates optimal solution), the KKT

conditions of (3.11) are listed as the following equations:

Φ(s∗(p0)) =











∇xL(s∗(p0))

c(x∗(p0))

X∗ν −µe











= 0 (3.20)

whereX∗ = diag(x∗), e= [1,1, ...,1]T. Expanding the KKT conditions at the optimal

solution with parameterp 6= p0 leads to the following:

0= ∇sΦ(s∗(p)) = ∇sΦ(s∗(p0))+
d

dp
(∇sΦ(s∗(p0)))∆p+O(|∆p|2) (3.21)

where∇sΦ(s∗(p0)) = 0 and∆p= p− p0. Consequently,

d
dp

(∇sΦ(s∗(p0)))∆p= (M
ds∗,T

dp
+Np)∆p= 0 (3.22)

whereM =











∇xxL(s∗(p0)) ∇xc(x∗(p0)) −I

∇xc(x∗(p0))
T 0 0

V(p0) 0 X∗(p0)











is the KKT matrix,V = diag(ν), and

Np = ∇pΦ =











∇xpL(s∗(p0))

∇pc(x∗(p0))
T

0











. From the right hand side of (3.22) with∆s= s∗(p)−
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s∗(p0) =
ds∗,T
dp ∆p+O(|∆p|2) andN = ∇sΦ(s∗(p))−∇sΦ(s∗(p0)) = Np∆p+O(|∆ p|2), we

have:

M∆s(p)≈−N. (3.23)

Thus, for every perturbation∆p, the solution of the perturbed problem can be approximated

by (3.23). If we use ˜s(p) to denote the estimate, then from (3.23) we have

s̃(p) = s∗(p0)+
ds∗

dp
(p− p0) (3.24)

And applying Taylor expansion tos∗(p) aroundp0 we have

s∗(p) = s∗(p0)+
ds∗

dp
(p− p0)+O(|p− p0|

2) (3.25)

Subtracting (3.24) from (3.25), we have

|s∗(p)− s̃(p)|= O(|p− p0|
2) (3.26)

From continuity and differentiability of the optimal solution vectors, there exits a positive

Lipschitz constantLq such that

|s∗(p)− s̃(p)| ≤ Lq|p− p0|
2. (3.27)

Definition 5 (Mangasarian-Fromovitz Constraint Qualification). For Problem (3.10), the

Mangasarian-Fromovitz constraint qualification (MFCQ) holds at the optimal pointx∗(p)

if and only if

a) the vectors∇xci(x∗, p) are linearly independent for all i= 1, . . . ,nc

b) there exists a vector w such that

∇xci(x∗, p)Tw= 0 for i = 1, . . . ,nc

∇xg j(x∗, p)Tw< 0 for g j(x∗, p) = 0.
(3.28)
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The MFCQ implies that the set of KKT multipliers is a closed convex polytope [23]. If we

reformulateg(x, p) = 0 as soft constraints by using slack variables:g(x, p)≤ ε and adding

ℓ1 penalty to the objective function, then the reformulated NLP satisfies MFCQ.

Another constraint qualification we need is the constant rank constraint qualification.

Definition 6 (CRCQ [30]). For Problem (3.10), the constant rank constraint qualification

holds at(x∗, p0), if for any subset S⊂ J,J = { j|g j(x∗, p) = 0} of active constraints the

family
{

∇xg j(x, p) j ∈ S, ∇xci(x, p) i = 1, ..,nc
}

(3.29)

remains of constant rank near the point(x∗, p0).

Note that the CRCQ is neither stronger nor weaker than MFCQ inthe sense that one implies

the other [30]. For the formulated (3.14), the inequalitiesare linear, e.g. constraints onx

are simple bounds, andg j(x, p)≤ ε is linear inx, then CRCQ holds. If MFCQ and CRCQ

hold, then the objective function is Lipschitz continuous in p. Moreover, if we use barrier

terms to eliminate the inequality constraints onx, then LICQ, MFCQ and CRCQ hold, and

in this case the objective function is differentiable inp.

Definition 7 (GSSOSC). The general strong second order sufficient condition (GSSOSC)

is said to hold atx∗ if the SSOSC holds for all multipliersλ ,ν in the set of KKT multipliers.

It has been shown by Kojima [36] that the conditions KKT-point, MFCQ, and GSSOSC

are the weakest ones under which the perturbed solution of the (3.14) is locally unique.

Under these general conditions we cannot expect the solution x∗(p) to be differentiable any

longer (because of active set changes). However, it can be shown that the solutionx∗(p)

is directionally differentiable, and for obtaining sensitivity updates in an NMPC context,

directional differentiability is sufficient.
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sIPOPT

As mentioned previously in this chapter, the KKT matrix is already factorized and available

when the NLP problem is solved. When one or more parameters inthe NLP formulation

change, this matrix could be directly used to generate fast approximations to optimal solu-

tions. In order to take advantage of NLP sensitivity more efficiently, Pirnay et.al. developed

an NLP sensitivity extension for IPOPT namedsIPOPT in [48]. The parameterp is de-

fined as a variable in the AMPL interface, although its old andnew values are determined

separately. The optimal solution is calculated with the oldvalues of the parameters, and

an update is done when the new values of parameters are determined, thus leading to an

approximation of the optimal solution at the new value. sIPOPT is applied later in our case

studies.

3.3 Concluding Remarks

In this chapter we introduce numerical methods to discretize DAE systems and solve NLP

problems. We use orthogonal collocation on finite elements to discretize DAEs and use

interior point method to solve NLP problems. These two methods are discussed in detail

in this chapter. IPOPT, an NLP solver that solves NLP using the interior point method, is

introduced here. We also introduce the concept and calculation of NLP sensitivity. NLP

sensitivity will be used in Chapters 4 and 5 for control update. sIPOPT, an IPOPT ver-

sion that provides fast suboptimal solution based on NLP sensitivity, is also discussed. In

this dissertation all the NLPs are solved with IPOPT or sIPOPT. We also introduce some

commonly used notations and concepts for Lyapunov stability analysis.
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Chapter 4

Fast NMPC Strategies

As we mentioned in Chapter 2, solving the NLP (2.4) takes a non-negligible amount of

time, especially when the scale of the system is large. As a result computational delay

occurs, and may deteriorate controller performance and system stability. To avoid com-

putational delay has been an interesting topic studied by people from different research

groups all over the world. In this chapter, we first briefly introduce some fast MPC/NMPC

methods, and then focus on advanced-step NMPC (asNMPC), proposed by Zavala in [60].

asNMPC lays the foundation of the fast NMPC method proposed in this dissertation. Then

we talk about Lyapunov stability analysis of NMPC and prove stability of both ideal NMPC

and asNMPC.

4.1 Background

The past decade has seen the development of modifications to (N)MPC that address com-

putational delay. First, to solve the (NP-hard) quadratic programming (QP) problem for

linear MPC, a partial enumeration of active constraints wasproposed for the QP calcula-

tion [46]. Here the most frequent active sets are stored in a list, and searched whenever the

actual state is received. If the corresponding active set ispresent, the optimal solution is

obtained directly. Otherwise a suboptimal MPC problem is determined quickly, while the

full QP problem is solved in background with a solution that updates the list. For nonlinear
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MPC, Findeisen and Allgöwer [19] extended the NMPC formulation as well as its stability

properties to account for computational delay. In addition, a number of fast NMPC strate-

gies have been developed including [38, 1, 14, 45, 43, 21, 5] .As early as in 1989, Li and

Biegler [38] proposed the Newton-type strategy for constrained nonlinear processes, where

the nonlinear model is linearized around a nominal trajectory, and a QP is solved every

sampling time to get deviation from set point. Alamir [1] developed a strategy that updates

the sampling time in nonlinear model-predictive control online and adjusts the number of

iterations in the optimization problem. In addition, recent NMPC strategies have been de-

veloped that separate the NMPC strategy into a) an off-line NLP step, using a predicted

state, and b) a fast on-line calculation for the actual state. Based on this concept, Diehl

et al. proposed a suboptimal NMPC strategy [15], where an NLPproblem is solved with

undetermined initial condition and parameter, and manipulated variables are updated with

SQP upon achievement of actual initial condition and parameter value. Then a real-time

iteration NMPC was proposed by Diehl et al. [14] where only one Newton or QP itera-

tion of the NLP is executed on-line at every sampling time, instead of solving the NLP

completely. In contrast, a neighboring extremal update (NEU) approach was proposed in

[57], where an optimal control problem is solved over all sampling intervals. Then, during

each sampling time a fast update, determined by a QP, is performed for the manipulated

variable. Feasibility and optimality criteria are then checked to estimate the performance of

each update. If they are not satisfied, additional QP iterations are triggered. Wolf et al. [56]

extended NEU by adding an a-priori estimate of deviation between the NEU and optimal

solution and using this estimate to decide whether additional QP iterations will improve the

controller performance; the optimal number of QP iterations is also determined on-line.

In addition to QP iterations,NLP sensitivityis also used to update optimal solutions of

NMPC. Ganesh and Biegler developed an optimal sensitivity analysis for NLPs in pro-

cess flowsheets [22]. Kadam and Marquardt applied this sensitivity on dynamic real time
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optimization to update reference trajectories [33, 34]. Related to these approaches is the

advanced-step NMPC(asNMPC) strategy [61, 60], where an NLP problem is solved off-

line one step in advance with prediction of the next state as initial condition, andNLP

sensitivityis used to update manipulated variable on-line when the real-time measurement

of the state is achieved. Since the update is a single backsolve for a linear system, it re-

quires negligible computation time. Hence, the correct manipulated variable is available

almost immediately after the state is estimated. The asNMPCstrategy also enjoys nominal

and robust stability properties [60]. We will discuss this in more detail in Section 4.4.4.

4.2 Ideal NMPC

4.2.1 NMPC Problem Reformulation

One advantage of NMPC is its ability to deal with constrainedproblems directly. However,

due to disturbances, some states might violate their bounds, thus leading to infeasibility of

the problem. Even if the problem is feasible, dependent active sets could also make the

system unstable under perturbations. Sometimes the instability could be avoided by in-

creasing predictive horizon length, sometimes not. In order to tackle this situation, Oliveira

and Biegler considered “soft constraints” and exact penalty terms in [12]. When viola-

tion of some constraints could be tolerated, we can impose soft constraints, such as for

constraints on outputs, while some constraints cannot be violated, which are called hard

constraints, such as for constraints on inputs and safety constraints. In the soft constraint

strategy, constraint violations are penalized in the objective using exact (ℓ1) penalty func-

tions.

We defineX andX f in Problem (2.4) by the inequalitiesh(zl) ≤ 0. These regions are
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closed and contain the origin in their interior. To develop arobust problem formulation

we replaceX andX f by ℓ1 penalty terms and assume, without loss of generality, thatU

can be represented by simple upper and lower bounds onvl . We add slack variables to the

constraintsh(zl) ≤ 0, and addℓ1 penalty functions to the objective. We also assume that

N is sufficiently long such thatzN ∈ X f can always be satisfied. In our case studies, we

have used a sufficiently long optimization horizon such thatthis condition always holds.

This horizon length is determined through repeated off-line simulations. As a result, the

terminal constraints can be reformulated as terminal cost with penalties in our problem

formulation and state constraints appear as penalty terms in the stage costs. Analogously,

robust stability of this formulation is also shown in [47] with sufficiently large terminal

cost.

To maintain differential objective and constraint functions, we reformulate Problem (2.4)

to take the following form:

min
zl ,vl ,εl

Ψ(zN)+ρεT
N1+

N−1

∑
l=0

(ψ(zl ,vl)+ρεT
l 1) (4.1)

s.t. zl+1 = f (zl ,vl), l = 0, ...,N−1

z0 = x(k)

h(zl)≤ εl ,εl ≥ 0, l = 0, ...,N

vl ∈ U, l = 0, ...,N−1.

whereεl is a slack variable and1 = [1,1, ...,1]T. If a solution to Problem (4.1) exists,

then it is easy to see that the gradients of the equality constraints contain a nonsingu-

lar basis matrix, and are therefore linearly independent. Moreover, at the solutionx∗ of

(4.1) wherexT = [z0
T . . . ,zN

T ,v0
T , . . . ,vN−1

T ,ε1
T . . . ,εN

T ] and with active equality and in-

equality constraints represented byc(x) = 0,cI (x)≤ 0, it is straightforward to find a vector
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dT = [dT
z0
, . . . ,dT

zN
,dT

v0
, . . . ,dT

vN−1
,dT

ε1
. . . ,dT

εN
] that satisfies

∇c(x∗)Td = 0,∇cI(x∗)Td < 0.

Consequently, the Mangasarian-Fromovitz constraint qualification (MFCQ, see Definition

5) always holds for Problem (4.1), as shown in [31]. If generalized second order sufficient

conditions (GSOSC) are also satisfied, then selectingρ larger than a finite threshold,ρ > ρ̄ ,

will drive εl to zero, wherēρ is the dual norm of the multipliers at the solution of Problem

(2.4). If εl = 0, then the solution of (4.1) is identical to the solution of Problem (2.4).

Therefore, stability properties of the soft constrained problem (4.1) are identical to the hard

constrained problem (2.4). Since a solution withεl > 0 for arbitrarily large values ofρ

implies that Problem (2.4) is locally infeasible, we assumethat a finiteρ̄ can be found

as long as Problem (2.4) is well-posed. This corresponds to the common assumption that

there exists a feasible input sequence, which steers the system to the terminal set. Among

other considerations, this requires that the horizonN be long enough to satisfy the terminal

conditions.

Definition 8. A setΓ ⊂ X is a robust positively invariant (RPI) set for system (2.3) if

f (x,u,w) ∈ Γ,∀x∈ Γand∀w∈ W .

With the reformulation,ℜnx is always a robust positively invariant (RPI) set. Moreover, if

we apply barrier terms to the inequalities in (4.1), we obtain an arbitrarily close approxi-
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mation to the solution of (4.1) by setting a sufficiently small positive value ofµ, as follows:

min
zl ,vl ,εl

(Ψ(zN)+ρεT
N1−µ ∑

j
ln(ε( j)

N −h( j)(zN)))

+
N−1

∑
l=0

(ψ(zl ,vl )+ρεT
l 1−µ ∑

j
ln(ε( j)

l −h( j)(zl ))) (4.2)

s.t. zl+1 = f (zl ,vl), z0 = x(k)

εl ≥ 0;vl ∈ U, l = 0, ...,N−1,

εN ≥ 0.

Through the redefinitions:vl := [vT
l ,ε

T
l ]

T , ψ(zl ,vl ) := ψ(zl ,vl) + ρεT
l 1− µ ∑ j ln(ε

( j)
l −

h( j)(zl)) andΨ(zN) := Ψ(zN)+ρεT
N1−µ ∑ j ln(ε

( j)
N −h( j)(zN)), Problem (4.2) can be sim-

plified to

JN(x(k)) = min
vl ,zl

Ψ(zN)+
N−1

∑
l=0

ψ(zl ,vl ) (4.3)

s. t. zl+1 = f (zl ,vl), z0 = x(k), vl ∈ U l = 0, . . .N−1.

and this replaces Problem (2.4). In the subsequent development we refer to Problem (4.3)

asPN(x(k)). Since the equality constraint gradients are linearly independent and the ac-

tive bounds forvl andεN are independent, it is clear that that the solution ofPN(x(k))

satisfies LICQ. Along with the presence of bounds as the only inequalities, this property

implies the weaker Constant Rank and Mangasarian-Fromovitz Constraint Qualifications

(CRCQ, Definition 6, and MFCQ, Definition 5), and leads to unique, bounded multipliers.

Moreover, if the solutions of (4.3) also satisfy General Strong Second Order Sufficient Con-

ditions (GSSOSC, Definition 7) then the solution vector,u(k) = κ(x(k)) and the optimal

objective function are continuous inx(k).

In the development and analysis of the robust controllers inSection 4.4.2 and beyond,

we will assume slightly stronger assumptions: LICQ, SOSC and strict complementarityat

the solutions ofPN(x(k)). These conditions guarantee thedifferentiabilityof the solution
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vectorx∗(p) as well. Based on our experience, these stronger assumptions hold as long

as the active set is unique at the solution with nonzero multipliers for the control bounds.

Therefore, this leads to continuity and differentiabilityof the solution ofPN(x(k)) with

respect to disturbances.

4.3 Advanced-step NMPC

In this chapter we introduce the advanced-step NMPC (asNMPC) strategy. asNMPC is pro-

posed by Zavala in [60]. The idea of asNMPC is to use the prediction of the future state to

solve the NLP problem within the current sampling time. Oncethe actual state is obtained

(or estimated),NLP sensitivityis used to update the manipulated variable online. Since

the update is only a single backsolve, it requires negligible computation time. Hence, the

manipulated variable is available right after the actual state is obtained and computational

delay is avoided.

4.3.1 Formulation and Implementation

Givenx̄(k) to denote the prediction of state attk, at timetk−1, the NLP solved by asNMPC

has the following formulation:

JN(x̄(k)) := min
vl ,zl

Ψ(zN)+
N−1

∑
l=0

ψ(zl ,vl) (4.4)

s. t. zl+1 = f (zl ,vl ), z0 = x̄(k) ;vl ∈ U l = 0, . . .N−1.

Note that the only difference fromPN(x(k))(4.3) is that the initial conditionx(k) is re-

placed by ¯x(k).

In the NLP formulation of asNMPC, the state prediction ¯x = p0 in (3.10) and the actual

statex is the perturbed parameterp. Applying NLP sensitivity, asNMPC is implemented
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as follows:

• Online: at tk, havingx(k), updatev0 using(s∗(p0)+∆s(p)) from (3.23), wherep0 =

x̄(k), p= x(k). Implement the updatedv0 asu(k) to the plant. Predictx(k+1) using

x(k) andu(k): x̄(k+1) = f (x(k),u(k)).

• Background: move the horizon one step forward, take ¯x(k+1) as initial condition

(z0 = p0) and solve NLP problemPN(x̄(k+1)) (4.4).

• Setk= k+1 and repeat.

The above steps and positions ofx, u, x̄ andv are shown in Fig. 4.1, where optimal solutions

are shown in dashed line, with optimal control shown in lightblue and optimal state shown

in red; actual state trajectory is shown in dark blue solid line and actual control is shown in

red solid line. The state prediction is shown in point-dashed line.

Figure 4.1: Implementation of asNMPC

To compute approximate neighboring solutions around an already available nominal solu-

tion s∗(p0), we invoke the following classical results.
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Theorem 2. (NLP sensitivity [18])If f(·, ·), ψ(·, ·) andΨ(·) of the mixed constrained prob-

lem are twice continuously differentiable in a neighborhood of the nominal solution s∗(p0)

and this solution satisfies the linear independence constraint qualifications (LICQ) and

sufficient second-order conditions (SSOC) then,

1. there exists a positive Lipschitz constantα such that|s∗(p)−s∗(p0)| ≤ α|p− p0|;

2. there exists a positive Lipschitz constant Lz such that the optimal cost values JN(p)

and JN(p0) satisfy|JN(p)−JN(p0)| ≤ Lz|p− p0|.

3. if s̃(p) is an approximate solution of s∗(p) based on sensitivity, from continuity and

differentiability of the optimal solution vector, there exists a positive Lipschitz con-

stant Ls such that,|s̃(p)−s∗(p)| ≤ Ls|p− p0|
2.

Thus, for every perturbation∆p, the solution of the neighboring problem can be approxi-

mated by (3.23). Note that the KKT matrixM is directly available and already factorized

after the NLP problem is solved. Since in (3.23) only a backsolve is done, the update takes

much less time than solving the NLP problem to get new solutions.

4.3.2 Active Set Changes

When the perturbationp− p0 is large enough to induce a change in the active constraint set

at the solution of (3.10), tracking the KKT conditions becomes nonsmooth, the linearization

(3.23) is no longer valid and the approximate solution ˜s(p) may not even be feasible toX

andU. Since Theorem 2 no longer holds at the point where the transition in active sets

occurs,s∗(p) is no longer differentiable (and may not even be continuous)with respect

to p. However, under Generalized Second Order Sufficient Conditions (GSOSC) and a

relaxed set of constraint qualifications (CRCQ and MFCQ) (satisfied byPN(x)), one can
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still obtain continuity ofs∗(p) and the value function with respect top as well as the

directional derivativeof x∗(p) for p− p0.

As developed in [50], this directional derivative is determined by solving a specialized QP

that can be viewed as an extension of (3.23), with linearizedinequality constraints included

and strongly active inequalities (with positive multipliers) expressed as equality constraints.

Because multipliers at the active set transition are nonunique, a linear program (LP) in dual

space must first be solved to maximize the linearized prediction of the Lagrange function.

In [31] we apply this formulation to develop a path-following algorithm to trackx∗(p) with

respect top. Detailed presentation of this path-following approach and general underlying

concepts that govern NLP sensitivity are also included in [31]. While this approach leads to

a rigorous treatment of NLP sensitivity, it is more expensive than the simple update (3.23).

Instead of path-following approach, we can also apply a cheaper strategy called “clipping

in the first interval,” where we perturb the solution only up to the active set change so

that Theorem 1 still holds. Here, feasibility of the soft constrained formulation (4.3) only

requiresvl ∈U, and clipping ensures that the perturbed control variable value,u(k) remains

within its bounds:

vL
0 ≤ v0+ τ∆v0 ≤ vU

0 ,τ ∈ [0,1] (4.5)

Onceτ and the updated variables are determined, the manipulated variableu(τ) = v0+

τ∆v0 is implemented to the plant. Because the clipping strategy requires no additional

computational cost beyond (3.23), we incorporate this approach within the asNMPC and

amsNMPC and use this approach for the case studies. Moreover, in [31] a comparison of

the simple clipping approach with the path-following approach shows very good perfor-

mance in the presence of active set changes.
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4.4 Lyapunov Stability Analysis

One of the key issues of NMPC is stability. The stability of system without uncertainty

is callednominal stability, while the stability of system with uncertainty is calledrobust

stability. The uncertainty could be uncertain parameters, plant-model mismatch, additive

disturbance or measurement noise, etc. In this section we study the stability properties of

setpoint tracking NMPC.

We start with introducing some basic notations and definitions that are used for stability

analysis.

Definition 9. [40] A continuous functionα(·) : ℜ≥0 7→ ℜ≥0 is a K function if α(0) =

0,α(s)> 0,∀s> 0 and it is strictly increasing.

A continuous functionα(·) : ℜ≥0 7→ℜ≥0 is aK∞ function if it is aK function andα(s)→

+∞ as s→+∞. A continuous functionα(·, ·) : is aK L function ifα(s,k) : ℜ2
≥0 7→ ℜ≥0

is aK function in s for any k> 0 and for each s> 0, α(s, ·) is decreasing andα(s,k)→ 0

as k→ ∞.

Definition 10. [6] A function f(x) : ℜn 7→ ℜ is continuous inℜn if for every pair of points,

x,x and allε > 0 there is a valueδ > 0 such that

‖ x−x′ ‖< δ =⇒ ‖ f (x)− f (x′) ‖< ε (4.6)

and thereforelimx→x̄ f (x)→ f (x̄).

A continuous function f(x) : ℜn 7→ ℜ is Lipschitz continuous inℜn if for any two points

x,y∈ ℜn there exists a finite L> 0 such that

‖ f (x)− f (y) ‖ < L ‖ x−y ‖ (4.7)

Definition 11. A setA ⊂ X is a positively invariant set for system (2.2) if x∈ A implies

f (x,u) ∈ A .
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We useLyapunov functionto prove the stability of the system. It is a function that takes

positive values everywhere except at the equilibrium of thesystem, and is non-increasing

along every trajectory. Lyapunov function could be viewed as an energy function of a

system. The system is stable if we could construct a Lyapunovfunction for it.

4.4.1 Nominal Stability

When there is no uncertainty, the system evolves as (2.2). Weuseφ(k;x(0)) to denote the

solution of (2.2) at timetk with initial conditionx(0). For nominal stability analysis we use

the concept of asymptotic stability [53].

Definition 12. The (closed positive invariant) setA is locally stable for (2.2) if, for all

ε > 0, there exists aδ > 0 such that|x|A < δ implies|φ(k;x(0))|A < ε,k∈ I≥0.

Definition 13. The (closed positive invariant) setA is locally attractive if there exists

η > 0 such that|x|A < η implies|φ(k;x(0))|A → 0 as k→ ∞.

Definition 14. The closed positive invariant setA is locally asymptotically stable if it is

locally stable and locally attractive.

The definition of nominal stability is stated as follows:

Definition 15. System (2.2) is said to be locally nominally stable inX if there exists aK L

functionβ (·, ·) such that

|x(k)| ≤ β (|x(0)|,k), ∀k≥ 0, ∀x(0) ∈ X (4.8)

A functionV(·) is called a Lyapunov function for system (2.2) if there exista setX, K∞

functionsα1, α2, α3 such that∀x∈ X, we have:

α1(|x|) ≤ V(x)≤ α2(|x|)

∆V(x) = V( f (x,u))−V(x)≤−α3(|x|) (4.9)
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4.4.2 Robust Stability

In the presence of uncertainty, the system evolves as (2.6).Moreover, if attk, besides

disturbancew(k), there is also uncertainty due to old error, we introduce thefollowing

formulation of the system:

x(k+1) = f (x(k),u(k),d(k))+w(k) = f̃ (x(k),u(k),d(k),w(k)), (4.10)

whered(k) = φ(w(k− j), j = 1, . . . ,N),d(k)∈D ⊂ℜnd is bounded. We use Input-to-State

Stability (ISS) theory to prove the stability of (2.6) and Input-to-State Practical Stability

(ISpS) theory to prove the stability of (4.10).

Input-to-State Stability

Definition 16. System (2.6) is said to be locally Input-to-State Stable (ISS) inX if there

exists aK L functionβ , and aK functionγ1 such that for all w in the bounded setW ,

|x(k)| ≤ β (|x(0)|,k)+ γ1(|w|), ∀k≥ 0, ∀x(0) ∈ X (4.11)

A functionV(·) is called an ISS-Lyapunov function for system (2.6) if thereexist a setX,

K∞ functionsα4,α5,α6 andK functionσ1 such that,∀x∈ X and∀w∈ W , we have:

α4(|x|) ≤ V(x)≤ α5(|x|)

V( f̃ (x,u,w))−V(x) ≤ −α6(|x|)+σ1(|w|) (4.12)

Moreover, ifX is a robustly invariant set for system (2.6) andV(·) is an ISS-Lyapunov

function for this system, then the resulting system is ISS inX [9, 40].

Notice that asymptotic stability is stronger than ISS. If|w|→ 0 then ISS implies asymptotic

stability. Also,|x(k)| is asymptotically bounded byγ1(|w|).
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To prove the robust stability of iNMPC, we prove that the objective function ofPN(x(k))

is an ISS-Lyapunov function. We make the following assumptions:

Assumption 1. (Robust Stability Assumptions)

(i) g(x,w) is Lipschitz with respect to all its arguments with Lipschitz constant Lg :

|g(x,w)| ≤ |g(x,0)|+Lg|w|.

(ii) |g(x,w)| satisfies

|g(x,0)|<
ρ
ζ

αp(|x|), and|g(x,0)| ≤ gmax (4.13)

whereρ ∈ (0,1) is an arbitrary real number andζ > 0 is a prespecified constant.

Theorem 4 will be proved in Chapter 3 after NLP sensitivity isintroduced.

Input-to-State Practical Stability

The concept of Input-to-State Practical Stability (ISpS) is introduced in [39].

Definition 17. A system (4.10) is said to be locally Input-to-State Practical Stable (ISpS)

in X if X is a robust positively invariant set for system (4.10) and ifthere exist aK L

functionβ , and aK functionγ2 and a constant c≥ 0 such that for all w in the bounded

setW and d in the bounded setD ,

|x(k)| ≤ β (|x(0)|,k)+ γ2(|w|)+c, ∀k≥ 0, ∀x(0) ∈ X (4.14)

Definition 18. A function V(·) is called an ISpS-Lyapunov function for system (4.10) with

respect to w, if there exist setsX,W ,D andK∞ functionsα7,α8,α9, a K functionσ2 and

a couple of constants c1,c2 ∈ ℜ≥0 such that∀x∈ X, ∀d ∈ D and∀w∈ W , we have:

α7(|x|) ≤ V(x)≤ α8(|x|)+c1

V( f̃ (x,u,w,d))−V(x) ≤ −α9(|x|)+σ2(|w|)+c2 (4.15)
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ISpS will be used to prove the robust stability of advanced-multi-step NMPC proposed in

Chapter 5.

4.4.3 Ideal Setpoint Tracking NMPC

Nominal Stability

To prove the nominal stability of iNMPC we need to prove that the Lyapunov function is

strictly decreasing except at equilibrium. We make the following assumptions:

Assumption 2. (Nominal Stability Assumptions for ideal NMPC)

(i) The terminal costΨ(·) in (4.3) satisfiesΨ(x)> 0.

(ii) There exits a local control law u= κ f (x) for all x ∈ X f , some unspecified terminal

region, whereΨ( f (x,κ f (x)))−Ψ(x)≤−ψ(x,κ f (x)).

(iii) ψ(x,u) satisfiesαp(|x|)≤ ψ(x,u)≤ αq(|x|) whereαp(·) andαq(·) areK functions.

Theorem 3. (Nominal Stability of ideal NMPC) Consider the moving horizon Problem

(4.3) and associated control law u= κ f (x) that satisfies Assumption 2. Then, JN(x(k)) is a

Lyapunov function for system (2.2) and the closed-loop system is asymptotically stable.

Proof. We compare the optimal cost function of the two neighboring ideal NMPC problems
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(4.3).

JN(x(k+1))−JN(x(k))

≤ Ψ( f (zN,κ f (zN)))+
N−1

∑
l=1

ψ(zl ,vl )+ψ(zN,κ f (zN))− [Ψ(zN)+
N−1

∑
l=0

ψ(zl ,vl )]

= Ψ( f (zN,κ f (zN)))−Ψ(zN)+ψ(zN,κ f (zN))−ψ(z0,v0)

≤ −ψ(z0,v0)

= −ψ(x(k),u(k)) (4.16)

where the first inequality comes from the fact that the solution ofPN(x(k)) is feasible for

PN(x(k+1)). This leads to:

JN(x(0))≥ JN(x(0))−JN(x(∞)) =
∞

∑
k=0

(JN(x(k))−JN(x(k+1)))≥
∞

∑
k=0

ψ(x(k),u(k))

(4.17)

and limk→∞ ψ(x(k),u(k)) = 0. Also, by Assumption 2(iii), limk→∞ x(k) = 0. Hence,

JN(x(k)) satisfies the conditions of Lyapunov function and nominal stability property of

ideal NMPC in the Lyapunov sense is proved[60].

Robust Stability

Robust stability of the iNMPC controller can be establishedfrom the following theorem.

Theorem 4. Robust ISS Stability of iNMPC (Theorem 2 in [40], see also [32, 60]) Under

Assumptions 1 and 2 withζ = LJ, the cost function JN(x) obtained from the solution of

PN(x) (4.3) is an ISS-Lyapunov function and the resulting closed-loop system is ISS stable.

Proof of Theorem 4 could be found is ([60]). We compare the costs of the neighboring

problemsPN(x(k)) andPN(x(k+1)). Without uncertainty the system evolves as ¯x(k+

1) = f (x(k),u(k)) while with uncertainty the system evolves asx(k+1) = f (x(k),u(k))+
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g(x(k),u(k)). We defineε(x(k+1)) := JN(x(k+1))− JN(x̄(k+1)). Under Theorem 2,

there exits a local positive Lipschitz constantLJ such that∀x∈ X,

|ε(x(k+1))| ≤ LJ|g(x(k),w(k))| (4.18)

JN(x(k+1))−JN(x(k))

= JN(x̄(k+1))−JN(x(k))+JN(x(k+1))−JN(x̄(k+1)) (4.19)

Since the solution ofPN(x(k)) is feasible forPN(x̄(k+1)), from the proof of Nominal

Stability of iNMPC in Chapter 2, we haveJN(x̄(k+1))−JN(x(k))≤−ψ(x(k),u(k)). And

from (4.18) we haveJN(x(k+1))−JN(x̄(k+1))≤ LJ|g(x(k),w(k))|. Therefore we have

JN(x(k+1))−JN(x(k))

≤ −ψ(x(k),u(k))+LJ|g(x(k),w(k))|

≤ −αp(|x(k)|)+LJ
ρ
ζ

αp(|x(k)|)+LJLg|w(k)|

≤ (ρ −1)αp(|x(k)|)+σ |w(k)| (4.20)

where the second inequality results from Assumption 1 and the last inequality follows

from ζ = LJ andσ |w(k)|= LJLg|w(k)|. Robust stability of ideal setpoint tracking NMPC

(Theorem 4) is proved.

Stabilizing a Non-robust MPC

As developed in Section 4.2.1, we reformulate the NLP (2.4) by replacing state constraints

with soft constraints and addingℓ1 penalties to the stage costs. It is pointed out in [47]

that when there are no state constraints, the terminal constraint could be replaced by an

appropriate terminal penalty without loss of robustness. Also, we need to specify a suffi-

ciently large prediction horizon (determined through off-line simulation) such thatx∈ X f
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is satisfied and is not active. This satisfies the assumptionsfor Theorems 2 and 4, so the re-

sults still hold here. Moreover, if we assume that SOSC, LICQand strict complementarity

hold at the optimal solution ofPN(x(k)) (problems (4.3), (3.10)), the value function and

feedback law are continuous and differentiable. As a result, robustness will not be lost.

In [24], Grimm et al. presented three NMPC examples that lackrobustness because of state

constraints, terminal region or a short horizon. In this section we study those three examples

and show that robustness can be obtained by a long enough horizon or reformulation of the

NLPs.

Example 1: Artstein’s circles with state constraints This example is the discretization

of the following continuous system:

ẋ1 = (x2
1−x2

2)u

ẋ2 = 2x2
1x2

2u (4.21)

One peculiarity of system (4.21) is that if the system is initially on the circlex2
1+(x2−r)2=

r2, wherer ∈ ℜ, then the trajectory stays on the same circle regardless of control. Zero-

order hold is used to discretize the system with a sampling time of 1. The discretized

systemx(k+1) = f(x(k),u(k)) evolves as

x1(k+1) =
−(x2

1(k)+x2
2(k))u(k)+x1(k)

1+(x2
1(k)+x2

2(k))u
2(k)−2x1(k)u(k)

x2(k+1) =
x2(k)

1+(x2
1(k)+x2

2(k))u
2(k)−2x1(k)u(k)

(4.22)

Then they introduce the MPC controller with input and state constraintsu∈ [−1,1] =: U

andx ∈ {x ∈ ℜ2 : x1 ≤ c, c∈ (0,1)}=: X. The terminal cost is the length of the shorter

arc between the state and the origin:

g(x) = |x|cos−1 (x2−|x|)(−|x|)

|x|
√

x2
1+(x2−|x|)2

. (4.23)
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The stage cost is the length of the shorter arc betweenx and the closest reachable point

from x to the origin in one step:

l(x,u) = |x|cos−1 x1 f1(x,−1)+(x2−|x|)( f2(x,−1)−|x|)
√

x2
1+(x2−|x|)2

√

f1(x,−1)2+( f2(x,−1)−|x|)2
. (4.24)

The terminal region isX f = εB2 whereB2 is the unit circle. Moreover, the control law

κ f (x) satisfiesκ f (x) =−x1/|x1| if x1 6= 0 andκ f (x) =−1 if x1 = 0.

This NMPC algorithm is nominally stable but not robustly stable. The analysis could be

found in [24]. In general, if the trajectory starts from a point in the first quadrant and

moves clockwise, when it hitsx1 = c, it reverses its direction and moves counter-clockwise.

Then at the next step it moves clockwise and hitsx1 = c again. As a result, it will move

back and forth between the current state andx1 = c and will not converge to the origin.

We reformulate the NMPC by adding soft constraints to the state constraints and terminal

region. As a result, for the terminal region we have

|xN| ≤ ε +sN (4.25)

whereN is the horizon length,sN is a slack variable andsN ≥ 0. And the state constraint

becomes

xi,1 ≤ c+si , i = 0, . . . ,N−1 (4.26)

wheresl is the slack variable andsl ≥ 0. And we addℓ1 penalty to the objective function:

N−1

∑
i=0

l(xi ,ui)+g(xN)+ρl

N−1

∑
i=0

si +ρgsN (4.27)

As a result, when the state reaches the vertical linex1 = c on its way to converge to the

origin, instead of going counter clockwise, it goes beyondxl = c and keeps moving clock-

wise, and then crossesxl = c and becomes feasible again and eventually converges to the

origin.
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We introduce additive disturbance which is Gaussian noise with zero mean and standard

deviation of 0.05. Horizon length isN = 10 and simulation time is 30. We choosec =

0.25, ε = 0.1 and weight on slack variables areρl = ρg = 105. The system starts from

(0.055,0.51) such that it hitsx1 = 0.25 on its trajectory to the origin.

We first solve the original NLP problem with no soft constraints. The state trajectory and

control trajectory are plotted in Fig. 4.2. It could be observed from Fig. 4.2(a) that before

soft constraints are added, the states evolve back and forth, but are stopped byx1 = c and

never converge to the origin; the control in Fig. 4.2(b) changes its direction every now and

then. After soft constraints are applied using NLP (4.1), the state goes beyondx1 = c in

one step and then converges to the origin.
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(a) Trajectory ofx
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Figure 4.2: Trajectory ofx andu. The original MPC is shown in blue; the soft-constrained

MPC is shown in red.

Example 2: origin as terminal constraint For the second example, the discrete system

x(k+1) = f (x(k),u(k)) evolves as

x1(k+1) = x1(k)(1−u(k))

x2(k+1) = |x(k)|u(k) (4.28)
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whereu∈ [0,1] =: U andx := (x1,x2) ∈ ℜ2 =: X. Then they introduce the MPC controller

with input constraintu∈ U. The terminal cost isg(x) = 0. The state costl(x,u) satisfies

l(x,u) ≤ α(|x|) whereα(·) is aK∞ function. We choosel(x,u) = x2
1+ x2

2. The terminal

constraint isX f = {0}. Horizon length isN = 2.

With this MPC algorithm the origin is nominally stable but not robustly stable with mea-

surement error or additive disturbance. This analysis can be found in [24]. We reformulate

the MPC by adding soft constraints to the terminal constraint to yield (4.1). As a result, for

the terminal constraint we have

x2
N,1+ x2

N,2 = s (4.29)

whereN is the horizon length,s is the slack variable ands∈ ℜ≥0. And we addℓ1 penalty

to the objective function:
N−1

∑
i=0

l(xi ,ui)+g(xN)+ρs (4.30)

We introduce additive disturbance which is Gaussian noise with zero mean and standard

deviation of 0.05. Horizon length isN = 2 and simulation time is 100. We chooseρ = 103.

The system starts from(0.5,0).

We first solve the original NLP problem withN = 2 and without soft constraints. We plot

the trajectory ofx within the simulation period. As we could see from Fig. 4.3(a), although

we use a long simulation time (100),x still does not converge to(0,0). If we look at the

corresponding control profile in Fig. 4.3(b) we could see that u stays close to 1, and as a

result according to (4.28),x2(k+1) = |x(k)| will not decade to 0. We then increaseN to

10 and observe thatx converges to the origin within only a few steps. KeepingN = 2 but

adding soft constraint (4.29), we observe thatx converges within the first few steps from

a slightly different trajectory. Also from Fig. 4.3(b) we could see thatu(k) ∈ [0,1] with a

longer horizonN = 10 or with a soft state constraint, bothx1 andx2 could decrease to 0.

The reformulation schemes also work well when we increase the noise standard deviation
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to 0.5.
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Figure 4.3: Trajectory ofx andu. N = 2 without soft constraint is shown in blue;N = 10

without soft constraint is shown in red;N = 2 with soft constraint is shown in green.

Example 3: unit disk as terminal constraint For the third example, the discrete system

x(k+1) = f (x(k),u(k)) evolves as

x1(k+1) = (1+ |x1(k)|)sin(u1(k))sin(u2(k))+ γ(θx(k))x π
8
(k)cos(u2(k))(4.31a)

x2(k+1) = (1+ |x1(k)|)cos(u1(k))sin(u2(k))+ γ(θx(k))xπ
8
(k)cos(u2(k))(4.31b)

whereu= [u1;u2]∈ [0, π
4 ]× [0, π

2 ] =:U andx := [x1;x2]∈ℜ2 =:X. θx is the angle between

the state and the positive vertical axis andx π
8

is the statex rotatedπ
8 counter clockwise.γ

is a piecewise linear function ofθ :

γ(θ) =



















2− 2×θ
π i f π

2 ≤ θ < π

−2+ 2×θ
π i f π ≤ θ < 3π

2

1 otherwise

(4.32)

Then they introduce the MPC controller with input constraint u ∈ U. The terminal cost

is g(x) = ∑∞
k=0 |x(k)| with x(k+1) = f (x(k),0). The state costl(x,u) satisfiesl(x,u) ≤

CHAPTER 4. FAST NMPC STRATEGIES

46



4.4 LYAPUNOV STABILITY ANALYSIS

α(|x|) whereα(·) is aK∞ function. We choosel(x,u) = x2
1+x2

2+u2
1+u2

2. The terminal

constraint is the unit circleX f = B2. Horizon length isN = 2.

With this MPC algorithm the origin is nominally stable but not robustly stable. The analysis

can be found in [24]. We reformulate the MPC by adding soft constraints to the terminal

constraint. As a result, for the terminal constraint we have

|xN| ≤ 1+sN (4.33)

whereN is the horizon length,sN is a slack variable,sN ≥ 0. And we addℓ1 penalty to the

objective function:
N−1

∑
i=0

l(xi ,ui)+g(x)+ρsN (4.34)

We introduce additive disturbance which is Gaussian noise with zero mean and standard

deviation of 0.01. Horizon length isN = 2 and simulation time is 30. We chooseρ = 1.

The system starts from(1,1.5).

We first solve the original NLP problem withN = 2 and without soft constraints. We plot

the trajectories of|x| andx within the simulation period. As we could see from Fig. 4.4(a),

|x| stalls at|x| = 1 and we can see from Fig. 4.4(b) thatx oscillates within a very small

region around(0,1). We then increaseN to 10 and observe that|x| eventually converges

to 0 andx converges to the origin. KeepingN = 2 but adding soft constraint (4.33), we

observe that|x| decreases to 0 from a different trajectory. The convergencerate is slower

than withN= 10 becauseN=10 allows more degrees of freedom for the controller to move

around. We then increase the noise standard deviation to 0.25, and observe convergence to

the origin, but with a slower rate and larger values of|x|.
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Figure 4.4: Trajectory of|x| andx. N = 2 without soft constraint is shown in blue;N = 3

without soft constraint is shown in red;N = 2 with soft constraint is shown in green;

asNMPC withN = 2 and with soft constraint is shown in magenta.

4.4.4 asNMPC

Nominal Stability

In the nominal case, there is no uncertainty, sop = p0 and∆v= 0 in the NLP (3.10), the

controls do not need update. Therefore asNMPC leads to the same solution as iNMPC. As

a result, asNMPC has the same nominal stability as iNMPC.

Robust stability

To analyze the robustness of the asNMPC controller, we need to consider the effect of

NLP sensitivity errors. Also we recognize that with ¯x(k+1) = f (x(k),u(k)), there exists a

future mismatchx(k+1)− x̄(k+1) = g(x(k),w(k)) at the next time step, and the plant will

evolve with uncertain dynamics generatingx(k+1), giving rise to two different problems

(4.3)PN(x̄(k+1)) andPN(x(k+1)), with optimal costsJN(x̄(k+1)) andJN(x(k+1)),
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respectively. Moreover, we need to distinguish between iNMPC usinguid(k) and asNMPC,

which generatesuas(k) = κas(x(k)). To interpret this difference we consider an extended

problemPN+1(x(k), û(k)):

Ĵ(x(k), û(k)) := min
zl ,vl

Ψ(zN)+ψ(x(k), û(k))+
N−1

∑
l=0

ψ(zl ,vl ) (4.35a)

s.t.zl+1 = f (zl ,vl) l = 1, . . .N−1 (4.35b)

z0 = f (x(k), û(k)) (4.35c)

vl ∈ U (4.35d)

This problem has an equivalent solution to problemPN(z0) and we consider̂J(x, û) as

our candidate ISS Lyapunov function. We defineJas(x(k)) := Ĵ(x(k),uas(k)), Jid(x(k)) :=

Ĵ(x(k),uid(k)), and alsoJid(x̄(k)) := Ĵ(x̄(k), ūid(k)), whereuid(k) and ūid(k) are deter-

mined as variables, ˆu(k) ∈ U, in PN+1. For the next time step, we define the following

residuals as:

εs(x(k+1)) := Jid(x(k+1))−Jid(x̄(k+1)) (4.36a)

εas(x(k+1)) := Jas(x(k+1))−Jid(x(k+1)) (4.36b)

whereεs accounts for the model mismatch as inx(k+1) while εas for approximation errors

introduced by NLP sensitivity. If clipping is applied in case of active set change, (3.24)

becomes

s̃(p) = s∗(p0)+
ds∗

dp
τ(p− p0) (4.37)

And as a result(3.25)− (4.37) becomes

s∗(p)− s̃(p) = (1− τ)
ds∗

dp
(p− p0)+O(|p− p0|

2) (4.38)

Therefore we have

|s̃(p)−s∗(p)| ≤ (1− τ)
ds∗

dp
|p− p0|+Lq|p− p0|

2 (4.39)
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From (4.39) and Theorem 2 we have positive Lipschitz constants LJ,Lu,Lsv andLsq such

that∀x∈ X,

εs(x(k+1)) ≤ LJ(|x(k+1)− x̄(k+1)| ≤ LJ|g(x(k),w(k))| (4.40a)

εas(x(k+1)) ≤ Lu(|u
as(k+1)−uid(k+1)|)

≤ LJ((1− τ)Lsv+Lsq|g(x(k),w(k))|) · |g(x(k),w(k))| (4.40b)

By comparing the successive costsJas(x(k)) andJas(x(k+1)), we arrive at a similar ISS

property as in Theorem 4.

Theorem 5 (Robust Stability of asNMPC). Under Assumptions 2 and 1 withζ = LJ(1+

Lsv+ Lsqgmax) in (4.13), the cost function Jas(x) obtained from the solution of Problem

(4.35) with u= uas is an ISS-Lyapunov function and the resulting closed-loop system is ISS

stable.

Proof : We compare the costsJas(x(k)), Jas(x(k+ 1)) and use the mismatch terms in

(4.40a)-(4.40b) to obtain,

Jas(x(k+1))−Jas(x(k))

= Jid(x̄(k+1))−Jas(x(k))+Jid(x(k+1))−Jid(x̄(k+1))

+Jas(x(k+1))−Jid(x(k+1))

≤ −ψ(x(k),uas(k))+ εs(x(k+1))+ εas(x(k+1))

≤ −αp(|x(k)|)+ εs(x(k+1))+ εas(x(k+1)). (4.41)

The last two inequalities follow by noting that the solutionof Problem (4.35) atk provides

a feasible solution to Problem (4.35) atk+1, and from Assumption 2. Substituting the
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bounds (4.40a)-(4.40b) for the error terms leads to:

εs(x(k+1))+ εas(x(k+1))

≤ LJ(1+(1− τ)Lsv+Lsq(|g(x(k),0)|+Lg|w(k)|))(|g(x(k),0)|+Lg|w(k)|)

≤ LJ(1+Lsv+Lsqgmax)(ρ/ζ )αp(|x|)

+LJ(Lg(1+Lsv+(1+Lsq)gmax)|w(k)|+(Lg)
2|w(k)|2)

≤ ραp(|x(k)|)+σ |w(k)|

where the first two inequalities follow from Assumption 5 andfrom τ ≥ 0, and the last

inequality follows fromζ = LJ(1+ Lsv+ Lsqgmax) and σ(|w|) = LJ(Lg(1+ Lsv+ (1+

Lsq)gmax)|w(k)|+ (Lg)
2|w(k)|2). The theorem is proved by substituting this result into

(4.41) to yield:

Jas(x(k+1))−Jas(x(k))≤ (ρ −1)αp(|x(k)|)+σ |w(k)|. 2

Note thatζ determines the bound ong(x,0) in the ISS condition (4.13) and we can identify

the following performance levels.

• If clipping (τ < 1) is applied at frequent intervals ask → ∞, we have the largestζ

and the smallest values of|g(x,0)| allowed for robustness due to (4.13) .

• If τ = 1 for all k ≥ k1 > 0 then we have the robust performance of unconstrained

asNMPC derived in [60], whose additional loss is due to a termproportional to

|g(x(k),w(k))|2.

• If g(x(k),w(k)) = 0, thenx(k+ 1) = x̄(k+ 1) and asNMPC recovers the nominal

stability and performance of iNMPC, and clipping is not needed.
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4.5 Concluding Remarks

In this chapter we start with some fast NMPC algorithms and then discuss the formulation

and implementation of asNMPC. By applying NLP sensitivity,computational cost could

be reduced by 2 or 3 orders of magnitude [60]. To handle activeset change, “clipping in

first interval” is proposed. We then prove nominal stabilityand robust stability for ideal

NMPC and asNMPC. This chapter lays a basis for the amsNMPC method which we are

going to discuss in the next chapter. The implementation of amsNMPC as well as stability

analysis are based on the corresponding theories of asNMPC.We also study three MPC

examples that lack robustness and show that robustness could be obtained with a long

enough horizon or reformulation of NLP. The case studies of asNMPC will be shown in

Chapter 6 in comparison with the performance of amsNMPC.
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Chapter 5

Advanced-multi-step Nonlinear Model

Predictive Control

In Chapter 4 we discussed the asNMPC strategy. It applies to the situation where the NLP

solution time is less than one sampling time. In this chapterwe propose the advanced-

multi-step NMPC strategy, which could be used to avoid computational delay when the

NLP solution time exceeds one sample time.

5.1 Motivation

Due to NLP sensitivity update which takes a negligible amount of time, asNMPC is able

to reduce the computational time by 2 to 3 orders of magnitudeand thus avoid compu-

tational delay. Moreover, in Chapter 4, it is proved to be nominally stable and robustly

stable. However, asNMPC requires the NLP problem to be solved within one sampling

time. This condition can be satisfied for many applications,but there are exceptions if the

problem scale is very large or if faster updates are needed. If NLP solution takes longer,

neither iNMPC or asNMPC will work properly. On the other hand, there are several fast

MPC or NMPC methods that deal with this case. They have been discussed in Chapter 2.

For the case where the NLP computation requires more than onesampling time, we first

study the the alternative of simply slowing down the sampling rate. For instance, consider
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the continuous stirred tank reactor (CSTR) example (6.1) inin [25]. The reaction is a third

order reactionA→ B. The model is composed of two ordinary differential equations that

describe mass balance and energy balance. The states are concentration of A and temper-

ature in the CSTR. The goal is to drive the system to its steadystate from a state far from

the steady state. More details of the model is presented in Chapter 6. In our simulation we

assume that there is no noise in the system, and we set the sampling time as 1min, 2 mins

and 3minsand compare the state profiles generated using those sampling times. The simu-

lation horizon is 60mins. The results are shown in Fig. 5.1. We useTsampto denote length
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Figure 5.1: Effects of different sampling time lengths on a CSTR.

of sampling time. From Fig. 5.1 we could observe that when thesampling time is 1min, as

the blue line shows, the state converges to the steady state within the first 5 steps. When

Tsamp= 2, the state converges to the steady state within the first 10 steps. WithTsamp= 3,

the state converges to the steady state within the first 15 steps. The convergence rate is

slower with increased sampling time. Therefore, slowing down sampling is a less suitable

option, as it will deteriorate the performance of the NMPC controller.
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Based on asNMPC, we propose the amsNMPC method. We first defineNs= ⌈NLP solution time
sampling time ⌉.

The idea of amsNMPC is simple: if it takesNs sampling times to solve the NLP, then we

predict the stateNs steps ahead and this prediction is used as initial conditionto solve an

NLP Ns sampling times ahead of time.

We develop two variants of this strategy: the parallel approach and the serial approach.

The parallel approach applies multiple processors to solvea new NLP problem at every

sampling time. When the controller receives the actual state, the solution of a previous NLP

problem is updated to obtain the corresponding manipulatedvariable, and a free processor

is applied to a new NLP problem. Each time an NLP problem is solved, the processor

is then freed to solve other NLP problems. Each NLP solution and corresponding NLP

sensitivity is used for updateonly once. On the other hand the serial approach uses only

one processor. It updates the manipulated variable every sampling time but solves the

NLP problem at a lower frequency. Each NLP solution and corresponding NLP sensitivity

matrix is updatedevery Ns sampling times.

Before presenting the details of the parallel and serial approaches, we start with a direct

extension of asNMPC, called blocked amsNMPC.

5.2 Blocked amsNMPC

For the following discussions we useNs to indicate the number of sampling times it takes

to solve the NLP. The positions ofx, u, z, v and x̄ are shown in Fig. 5.2. Attk, we have

the solution of thepreviousNLP problem, which was started attk−Ns with predictionx̄(k)

based on information atx(k−Ns) andu(k−Ns+ i), i = 0, . . . ,Ns−1. At tk−Ns, the NLP
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Figure 5.2: Positions ofx, u, x̄ andv for blocked amsNMPC

formulation is shown by (5.1):

min
vl ,zl

JN := Ψ(zN)+
N−1

∑
l=0

ψ(zl ,vl) (5.1)

s. t. zl+1 = f (zl ,vl), z0 = x̄(k) = z0|k−Ns
;vl ∈ U l = 0, . . .N−1.

We denote the optimal state and control variables of this problem as (zl |k−Ns
, zN|k−Ns

,

vl |k−Ns
), l = 0,1, ...,N−1, which are predicted states and controls in a horizon givenstate

information at timetk−Ns. Also we define the error between actual statex(k) and state

predictionx̄(k) asek = x(k)− x̄(k).

The blocked amsNMPC is a direct extension of asNMPC. The NLP (5.1) is solved every

Ns sampling times. At timetk, whenx(k) is obtained, instead of updating the first control

u(k), as asNMPC does, the firstNs controls are updated based onek = x(k)− x̄(k) and the

same NLP sensitivity. Then ¯x(k+Ns) is predicted and a new NLP is started. The blocked

amsNMPC is implemented as follows:

• On-line: at tk, havingx(k), updatevn|k−Ns
, n = 0, ...,Ns− 1 from NLP sensitivity

andek = x(k)− x̄(k) = p− p0 = ∆p to get∆vn = Mvn
z0

ek. At tk+n, inject the updated
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u(k+n) = vn|k−Ns
+τ∆vn ∈U asu(k+n) to the plant. Hereτ ∈ [0,1] is the step size

when clipping is applied.

• Background: at tk, havingx(k) and updated controlsu(k+n), predictx̄(k+Ns) from

(5.4) as the initial value and solve the NLP problem (5.1).

• Setk= k+Ns and repeat the cycle.

In blocked amsNMPC,u(k+n),n= 0, ...,Ns−1 are updated by the sensitivity matrix eval-

uated aroundzn|k−Ns
. Herezn|k−Ns

are assigned as predictions andu(k+ n) = vn|k−Ns
+

τMvn
z0

ek, n = 0, ...,Ns− 1 are the updated controls, matrixMvn
z0

is part of the inverse of

KKT matrix M, reflecting the perturbation invn|k−Ns
due to the perturbation in∆p =

x(k)− z0|k−Ns
. From (3.23) we have∆s= −M−1N∆p, where−M−1N could be decom-

posed as[Mz
z Mv

z Mλ
z Mν

z ].

We must make it clear that whenu(k+ i), i = 0, ...,Ns−1 are updated, the sensitivity matrix

is evaluated aroundzi|k−Ns
, sozi|k−Ns

are assigned as predictions ¯x(k+ i):

x̄(k+ i) = zi|k−Ns
(5.2)

If we defineF as the general form of evolution of states while the NLP is solved,F should

contain the initial state, all the controls during this period, and disturbance:x(k+N) =

F(x(k),u(k), ,u(w(k)k+ 1),w(k+ 1), . . . ,u(k+N− 1),w(k+N− 1)). The optimal pre-

dicted trajectory from (5.1) evolves as

zi|k−Ns
= F(x̄(k),v0|k−Ns

,0,v1|k−Ns
,0...,vi−1|k−Ns

,0), i = 1, ...,Ns (5.3)

The wayx̄(k+Ns) is predicted is that whenx(k) is obtained,u(k+ i), i = 0, ...,Ns−1 are

updated, then:

x̄(k+Ns) = F(x(k),v0|k−Ns
+ τMv0

z0
ek,0,v1|k−Ns

+ τMv1
z0

ek,0, ...,

vNs−1|k−Ns
+ τM

vNs−1
z0 ek,0) (5.4)
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Forx(k+Ns), u(k+Ns) is updated based onx(k+Ns)− x̄(k+Ns) = x(k+Ns)−z0|k using

a new NLP solution obtained with ¯x(k+Ns) as initial condition.

For the new NLP problem (5.1)z0|k = x̄(k+Ns). The predictions ¯x(k), x̄(k+1) andx̄(k+

Ns) are shown in Fig.5.2.

5.2.1 Nominal Stability Analysis

For nominal stability, we havex(k) = x̄(k) and we assume that all the states are measured.

Problem (5.1) can be formulated as

min
vl ,zl

JN(x̄(k+Ns)) := Ψ(zN)+
N−1

∑
l=0

ψ(zl ,vl )

s.t. zl+1 = f (zl ,vl ), z0 = x(k+Ns), l = 0, ...,N−1

vl ∈ U (5.5)

For the nominal case, Problem (5.5) is solved instead, and both ∆p= 0 and∆s= 0 at alltk.

To start, we refer to assumptions due to Magni and Scattolini[40]:

Definition 19. A continuous functionα(·) : ℜ → ℜ is a K function ifα(0) = 0,α(s) >

0,∀s> 0 and it is strictly increasing.

Assumption 3. (Nominal Stability Assumptions of amsNMPC)

(i) The terminal costΨ(·) satisfiesΨ(x) > 0.

(ii) There exits a local control law u= κams
f (x) ∈ U for all x ∈ X f , some unspecified

terminal region, whereΨ( f (x,κams
f (x)))−Ψ(x)≤−ψ(x,κams

f (x)).

(iii) ψ(x,u) satisfiesαp(|x|)≤ ψ(x,u)≤ αq(|x|) whereαp(·) andαq(·) areK functions.
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According to the implementation of the blocked amsNMPC, theNLP problem is solved

everyNs sampling times, and solution of each NLP problem is used repeatedly until the

next solution is obtained. We note thatx(k+Ns) = z0|k, and that (zNs+i|k−Ns
,vNs+i|k−Ns

), i =

0, . . . ,N−1 from JN(x(k)) are feasible values for (zi ,vi), i = 0, . . . ,N−1 in JN(x(k+Ns)).

This allows us to compare the objective function values of these two NLP problems:

JN(x(k))−JN(x(k+Ns))

≥ Ψ(zN)+
N−1

∑
l=0

ψl (zl ,vl )−Ψ(zN+Ns)−
Ns+N−1

∑
l=Ns

ψl (zl ,vl)

= Ψ(zN)−Ψ(zN+Ns)+
Ns−1

∑
l=0

ψl (zl ,vl )−
Ns+N−1

∑
l=N

ψl (zl ,vl ) (5.6)

Using Assumption (3)(ii), we can show

Ψ(zN)−Ψ(zN+Ns) =
Ns

∑
i=1

(Ψ(zN+i−1)−Ψ(zN+i))

≥
Ns

∑
i=1

ψN+i−1(zN+i−1,vN+i−1) (5.7)

Combining (5.6) and (5.7) leads to

JN(x(k))−JN(x(k+Ns))≥
Ns−1

∑
l=0

ψl (zl ,vl) =
Ns−1

∑
l=0

ψl (x(k+ l),u(k+ l)) (5.8)

Summing overk= 0, . . . ,∞ leads to

Ns−1

∑
k=0

JN(x(k)) ≥
∞

∑
k=0

JN(x(k))−JN(x(k+Ns))

≥
Ns−1

∑
k=0

(k+1)ψ(x(k),u(k))+Ns

∞

∑
k=Ns

ψ(x(k),u(k)) (5.9)

which implies limk→∞ ψ(x(k),u(k)) = 0, which leads to the following result.

Theorem 6. (Nominal Stability of blocked amsNMPC) Consider the movinghorizon prob-

lem (5.5) and associated control law u= κams(x) that satisfies Assumption 3. Then, JN(x(k))

is a Lyapunov function and the closed-loop system is asymptotically stable.
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5.2.2 Robust Stability Analysis

For amsNMPC approach we consider the following system:

x(k+1) = f (x(k),u(k))+w(k) (5.10)

wherew(k) is additive disturbance. In order for the system to be robustly stable, we have

the following assumptions:

Assumption 4. (Robust Stability Assumption of Blocked amsNMPC)

1. w(k) is bounded,|w(k)| ≤ wmax.

From timetk to tk+Ns, the actual state trajectory evolves as below:

x(k+1) = f (x(k),u(k))+w(k) = f (x(k),v0|k−Ns
+ τMv0

z0
ek)+w(k)

x(k+2) = f (x(k+1),u(k+1))+w(k+1)

= f ( f (x(k),v0|k−Ns
+ τMv0

z0
ek)+w(k),v1|k−Ns

+ τMv1
z0

ek)+w(k+1)

x(k+n) = F(x(k),v0|k−Ns
+ τMv0

z0
ek,w(k),v1|k−Ns

+ τMv1
z0

ek,w(k+1), ...,

vn−1|k−Ns
+ τMvn−1

z0 ek,w(k+n−1))

...

x(k+Ns) = F(x(k),v0|k−Ns
τMv0

z0
ek,w(k),v1|k−Ns

+ τMv1
z0

ek,w(k+1), ...,

vNs−1|k−Ns
+ τM

vNs−1
z0 ek,w(k+Ns−1)) (5.11)

Next we start fromx(k) and show how error accumulates fromtk to tk+Ns. At tk we have

x(k+1) = f (x(k),u(k))+w(k) (5.12)

and

ek = x(k)− x̄(k) (5.13)
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Applying Taylor expansion around(z0|k−Ns
,v0|k−Ns

) from (5.3), we get

x(k+1) = z1|k−Ns
+ f̂z0(z0|k−Ns

,v0|k−Ns
)T(x(k)−z0|k−Ns

)

+ f̂v0(z0|k−Ns
,v0|k−Ns

)T(u(k)−v0|k−Ns
)+w(k)

= z1|k−Ns
+ f̂z0(z0|k−Ns

,v0|k−Ns
)Tek

+ f̂v0(z0|k−Ns
,v0|k−Ns

)TτMv0
z0

ek+w(k) (5.14)

where

f̂ξ =

∫ 1

0

d f(z,v)
dξ

[p(k)+ t(q(k)− p(k))]T(q(k)− p(k))dt (5.15)

q(k) = [x(k) u(k)]T (5.16)

p(k) = [z0|k−Ns
v0|k−Ns

]T (5.17)

Thus we have

êk+1 = x(k+1)−z1|k−Ns

= f̂z0(z0|k−Ns
,v0|k−Ns

)Tek+ f̂v0(z0|k−Ns
,v0|k−Ns

)TτMv0
z0

ek+w(k) (5.18)

Similarly

x(k+2) = f (z1|k−Ns
+ êk+1,v1|k−Ns

+ τMv1
z0

ek)+w(k+1) (5.19)

êk+2 = x(k+2)−z2|k−Ns

= f̂z1êk+1+ f̂v1τMv1
z0

ek+w(k+1)

= f̂z1( f̂z0ek+ f̂v0τMv0
z0

ek+w(k))+ f̂v1τMv1
z0

ek+w(k+1)

= [ f̂z1 f̂z0 + f̂z1 f̂v0τMv0
z0
+ f̂v1τMv1

z0
]ek+ f̂z1w(k)+w(k+1) (5.20)

êk+3 = f̂z2êk+2+ f̂v2τMv2
z0

ek+w(k+2)

= f̂z2[( f̂z1 f̂z0 + f̂z1 f̂v0τMv0
z0
+ f̂v1τMv1

z0
)ek+ f̂z1w(k)+w(k+1)]+ f̂v2τMv2

z0
ek+w(k+2)

= ( f̂z2 f̂z1 f̂z0 + f̂z2 f̂z1 f̂v0τMv0
z0
+ f̂z2 f̂v1τMv1

z0
+ f̂v2τMv2

z0
)ek

+ f̂z2 f̂z1w(k)+ f̂z2w(k+1)+w(k+2) (5.21)
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...

êk+n = (
n−1

∏
i=0

f̂zi +
n−1

∑
i=0

(
n−1

∏
j=i+1

f̂zj ) f̂vi τMvi
z0
)ek+

n−1

∑
i=0

(
n−1

∏
j=i+1

f̂zj )w(k+ i) (5.22)

wheren = 1,2, ...,Ns− 1. If we compare (5.4) with (5.11), we could see that the only

difference is that (5.4) does not includew(k+ i). Soek andek+Ns should evolve as

x(k)− x̄(k) = ek =
Ns−1

∑
i=0

(
Ns−1

∏
j=i+1

f̂zj−Ns
)w(k+ i −Ns), (5.23)

x(k+Ns)− x̄(k+Ns) = ek+Ns =
Ns−1

∑
i=0

(
Ns−1

∏
j=i+1

f̂zj )w(k+ i) (5.24)

respectively. Note that the notations ofek, ek+Ns and the errors in the states betweenx(k)

andx(k+Ns) (e.g.,êk+n, n= 1,2, ...,Ns−1) are different. This is because ¯x(k) andx̄(k+Ns)

are predicted differently fromzn|k−Ns
,n= 1, ...,Ns−1; x̄(k+n) are the optimal predicted

states taken from the optimal solution directly; while ¯x(k) and x̄(k+Ns) are the integral

from the current state withupdatedcontrols from the most recently solved NLPNs steps

ago, as stated in (5.4). Correspondingly,z0|k−Ns
= x̄(k) andz0|k = x̄(k+Ns) are the initial

conditions of two subsequent NLPs. At timetk, the optimal solution of the NLP with ¯x(k)

as initial condition is obtained, the sensitivity update isdone around theoptimal solutionto

getu(k+n),n= 1, ...,Ns−1. Therefore the predictions forx(k+n),n= 1, ...,Ns−1 are the

optimal stateszn|k−Ns
; whereasu(k+Ns) is not obtained in this iteration. Instead,x(k+Ns)

is predicted to start a new NLP problem attk, andu(k+Ns) is obtained by updating the

control in the first interval of the new NLP solution.

By Lipschitz continuity of (5.22), we have

|êk+n| ≤ Le|ek|+
n−1

∑
i=0

(
n−1

∏
j=i+1

f̂zj )w(k+ i) (5.25)

whereLe satisfies

|(
n−1

∏
i=0

f̂zi +
n−1

∑
i=0

(
n−1

∏
j=i+1

f̂zj ) f̂vi τMvi
z0
)≤ Le (5.26)
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Similarly we could find an upper boundLgi for |∏n−1
j=i+1 f̂zj | such that

|êk+n| ≤ Le|ek|+
n−1

∑
i=0

Lgi|w(k+ i)| (5.27)

wheren= 1, ...,Ns−1 and

|ek+Ns| ≤
Ns−1

∑
i=0

Lgi|w(k+ i)| (5.28)

For the analysis of robust stability of the blocked ideal NMPC, it is necessary to include

the effect of NLP sensitivity errors. In the nominal case,w(k+n) = 0,n = 0, ...,Ns−1,

the forward simulation ¯x(k+Ns) = F(x(k),u(k),0,u(k+1),0, ...,u(k+Ns−1),0) would

lead to the control action ¯uid(k+Ns+n) = κ id(x̄(k+Ns+n)) = κams(x̄(k+Ns+n)),n=

0, ...,Ns−1, whereu(k+Ns+n) = κams(x̄(k+Ns+n)) is the control action of amsNMPC

with x̄(k+Ns) as initial condition.κ id(x̄(k+Ns+ i)) would then be used to start Problem

(5.1). As shown in Figure 5.2 we can write:

Jid(x̄(k+Ns)) := JN(x̄(k+Ns),κ id(x̄(k+Ns)),κ id(x̄(k+Ns+1)), ...,κ id(x̄(k+2Ns−1)))

= Ψ(zN|k)+
N−1

∑
l=0

ψ(zl |k,vl |k) (5.29)

while x(k) andκams(x(k+n)) would then be used to start Problem (5.1) for the prediction

of x̄(k+Ns) with the cost

Jams(x(k)) = Ψ(zN−Ns|k)+ψ(x(k),uams(k))+
Ns−1

∑
l=1

ψ(x̄(k+ l),uams(k+ l))+
N−Ns−1

∑
l=0

ψ(zl |k,vl |k)

(5.30)

In the first step of the blocked amsNMPC algorithm, ¯x(k+n),n = 1, . . . ,Ns is generated

according to the following predicted states, controls and errors:

x̄(k+n) = F(x(k),v0|k−Ns
+ τMv0

z0
ek,0,v1|k−Ns

+ τMv1
z0

ek,0, ...,vn−1|k−Ns
+ τMvn−1

z0 ek,0)

uams(k+n) = v0|k−Ns
+ τMvn

z0
ek

ek+n = x(k+n)− x̄(k+n) =
n−1

∑
i=0

(
Ns−1

∏
j=i+1

f̂zj )w(k+ i), n= 1, . . .Ns. (5.31)
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At tk+Ns, the plant further evolves with disturbances generating statex(k+Ns). With ideal

NMPC,x(k+Ns) would lead to the control actionκ id(x(k+Ns+n)),n= 0, ...,Ns−1 which

is used to start Problem (5.1) with cost

Jid(x(k+Ns)) := JN(x(k+Ns),κ id(x(k+Ns)),κ id(x(k+Ns+1)), ...,κ id(x(k+2Ns−1))).

With amsNMPC,x(k+Ns) would lead to the control actionκams(x(k+Ns+n)) and thus

the new Problem (5.1) with cost

Jams(x(k+Ns)) := JN(x(k+Ns),κams(x(k+Ns)),κams(x(k+Ns+1)), ...,κams(x(k+2Ns−1))).

The error of blocked amsNMPC is composed of two parts: prediction error, which comes

from the difference between actual states and their predictions, and sensitivity error, which

is due to discarding higher order termsO(|p− p0|
2). We define these two kinds of errors

at tk as:

εs(k+Ns) := Jid(x(k+Ns))−Jid(x̄(k+Ns))

and

εams(k+Ns) := Jams(x(k+Ns))−Jid(x(k+Ns)).

Lemma 1. There exist positive Lipschitz constants Lz and Lκ such that∀x∈ X,

|εs(x(k+Ns))| ≤ Lz(|x(k+Ns)− x̄(k+Ns)|+ |κ id(x(k+Ns))−κ id(x̄(k+Ns)|)

≤ Lz(1+Lκ)|x(k+Ns)− x̄(k+Ns)|= Lz(1+Lκ)|ek+Ns| (5.32)

Proof. According to the implementation of blocked ideal NMPC,κ id(x(k+Ns)) is achieved

from s∗(x(k+Ns)), whileκ id(x̄(k+Ns)) is achieved froms∗(x̄(k+Ns)). According to The-

orem 2(1), there existsLκ such that|κ id(x(k+Ns))− κ id(x̄(k+Ns))| ≤ Lκ |(x(k+Ns)−

x̄(k+Ns))|. Using Theorem 2 (2) leads to the result for Lemma 1.

Using Theorem 2(3), the following lemma follows:
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Lemma 2. There exist positive Lipschitz constants Lz and Lams
κ such that∀x∈ X,

|εams(x(k+Ns))| ≤ Lz(|x(k+Ns)−x(k+Ns)|+ |κams(x(k+Ns))−κ id(x(k+Ns))|)

≤ LzL
ams
κ |x(k+Ns)− x̄(k+Ns)|

2 = LzL
ams
κ |ek+Ns|

2 (5.33)

Proof. If we useŝ(p) to denote the estimate of perturbed optimal solution with parameter

p, due to sensitivity, we have

ŝ(p) = s∗(p0)+
∂s∗

∂ p
(p− p0) (5.34)

while the accurate optimal solution satisfies

s∗(p) = s∗(p0)+
∂s∗

∂ p
(p− p0)+O(|p− p0|

2) (5.35)

Subtracting (5.35) from (5.34), we have

|ŝ(p)−s∗(p)|= O(|p− p0|
2) (5.36)

In the NLP formulation of the blocked amsNMPC,p= (x(k+Ns),κams(x(k+Ns))), p0 =

(x(k+Ns),κ id(x(k+Ns))), κams(x(k+Ns)) is a subvector of ˆs(x(k+Ns)) andκ id(x(k+

Ns)) is a subvector ofs∗(x(k+Ns)). So there exists a constantLams
κ such that

|κams(x(k+Ns))−κ id(x(k+Ns))| ≤ Lams
κ |x(k+Ns)− x̄(k+Ns)|

2 = Lams
κ |ek+Ns|

2 (5.37)

Due to the implementation of the blocked amsNMPC, betweent = k andt = k+Ns, only

two NLPs need be considered.

Jams(x(k+Ns))−Jams(x(k)) = Jid(x̄(k+Ns))−Jams(x(k))+Jid(x(k+Ns))−Jid(x̄(k+Ns))

+Jams(x(k+Ns))−Jid(x(k+Ns))

= Jid(x̄(k+Ns))−Jams(x(k))+ εs(x(k+Ns))+ εams(x(k+Ns))

(5.38)
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From Figure 5.2 we see the solution ofJams(x(k)) is feasible forJid(x̄(k+Ns)) and we

compare the objective functions (5.30) and (5.29) as follows:

Jid(x̄(k+Ns))−Jams(x(k)) ≤ (Ψ(zN|k)−Ψ(zN−Ns|k)+
Ns−1

∑
l=0

ψ(zN−Ns+l |k,vN−Ns+l |k))

−ψ(x(k),uams(k))−
Ns−1

∑
l=1

ψ(x̄(k+ l),uams(k+ l))

≤
Ns−1

∑
l=0

[Ψ(zN−Ns+l+1|k)−Ψ(zN−Ns+l |k)+ψ(zN−Ns+l |k,vN−Ns+l |k)]

−ψ(x(k),uams(k))−
Ns−1

∑
l=1

ψ(x̄(k+ l),uams(k+ l))

From Assumption 1,Ψ(zl+1)−Ψ(zl)+ψ(zl ,vl )≤ 0 for zl ∈ X f and we have:

Jid(x̄(k+Ns))−Jams(x(k)) = −ψ(x(k),uams(k))−
Ns−1

∑
l=1

ψ(x̄(k+ l),uams(k+ l)) (5.39)

= −ψ(x(k),uams(k))−
Ns−1

∑
l=1

ψ(x(k+ l)−ek+l ,u
ams(k+ l))

≤ −ψ(x(k),uams(k))−
Ns−1

∑
l=1

(ψ(x(k+ l),uams(k+ l))−Lzek+l )

≤
Ns−1

∑
l=0

−ψ(x(k+ l),uams(k+ l))+
l−1

∑
i=0

LzL f |w(k+ i)| (5.40)

where the last inequality follows from (5.28) and (5.31). Combining (5.40) with Lemma 1

and Lemma 2, (5.38) becomes

Jams(x(k+Ns))−Jams(x(k))

=
Ns−1

∑
l=0

−ψ(x(k+ l),uams(k+ l))+Lz(1+Lκ +Lams
κ |ek+Ns|)|ek+Ns|+

Ns−1

∑
l=1

Lzek+l

(5.41)
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Combining with (5.28), we have

Jams(x(k+Ns))−Jams(x(k))

≤
Ns−1

∑
l=0

−ψ(x(k+ l),uams(k+ l))+L f (
Ns−1

∑
n=0

|w(k+n)|)[Lz(1+Lκ)+LzL
ams
κ (

Ns−1

∑
n=0

L f |w(k+n)|)]

+
Ns−1

∑
l=0

l−1

∑
n=0

L f Lz|w(k+n)|)

=
Ns−1

∑
l=0

{−ψ(x(k+ l),uams(k+ l))+LzL f (Lκ +Ns− l))|w(k+ l)|}

+LzL
ams
κ (L f

Ns−1

∑
i=0

|w(k+ i)|)2. (5.42)

This constitutes a blocked form of the ISS property, where the stage costs and noise are

written in terms of blocks, instead of individual sampling times. Using (5.42) and Defini-

tion 16 leads to the following result.

Theorem 7. (Robust stability of the blocked amsNMPC approach) For the moving hori-

zon problem (5.1) and associated control law u= κams(x) that satisfies Assumption 3 and

Assumption 4 is an ISS-Lyapunov function and the closed-loop system is robustly stable.

5.3 Serial approach

The serial approach is an extension of asNMPC. Instead of predicting thenextstate, solving

an NLP problemonestep in advance and updating only thefirst input within each horizon,

it predicts the stateNs sampling times ahead, solves an NLP problemNs sampling times in

advance, and updates thefirst Ns inputs within each horizon. It should be noticed that in

the formulation of the NLP problem, the initial constraintz0|k−Ns
= x̄(k) is included, and

x̄(k) is considered a parameter. In the KKT matrix, the row relatedto this initial constraint

is a unit vector, whose elements corresponding toz0|k−Ns
have the value ofI .
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The positions ofx, u, x̄, z andv of the serial approach are shown in Fig. 5.3. Solid lines

are for the actual control profiles, while dashed lines are for predicted state and control

profiles. Dot-dashed lines indicate solutions of differentNLP problems (5.1).

Figure 5.3: Positions ofx, u, x̄, zandv for the serial approach

When the measurement is obtained,z0 changes from ¯x(k) to x(k), the KKT matrixM is

directly applied to update the first input. This is not the case when it comes to the other

states within the same horizon, because they are not considered as parameters in the NLP

formulation; thus there are no corresponding unit elementsin the KKT matrix. As a result,

when the other inputs are updated, besides current NLP sensitivity, additional constraints

need to be added. Those constraints are reflected as additional columns and rows of the

KKT matrix. In other words, when the inputs other than the first are updated, the KKT

matrix needs to be updated.

5.3.1 Updating NLP Sensitivity

When theith input is updated (i 6= 1), p0+∆p = x(k) is determined implicitly by an ad-

ditional constraintvi|k−Ns
+∆vi = x(k+ i). This constraint is treated through adding unit

elements to the rows and columns of the KKT matrix, and through adding additional con-
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ditions to the right hand side. The system (3.23) is reformulated as:





M E1i

E2i 0









∆s

∆p



=−





0

r i



 (5.43)

wherer i = x(k+ i)− zi, E2i is matrix whose element corresponding tozi has the value

of i while other elements are 0, andE1i = ET
2i . System (5.43) is solved using the Schur

complement method developed in [48]:

M∆s=−E1i(E2iM
−1E1i)

−1r i (5.44)

Thus we can calculate the approximation of the perturbed solution using

s̃(x(k+ i)) = s∗(zi)+∆s(x(k+ i)) (5.45)

and the updated manipulated variable is contained in the perturbed solution vector ˜s(x(k+

i)).

5.3.2 Implementation

Suppose the optimal solution of the last NLP problem is knownattk. Knowingx(k), v0|k−Ns

is updated using (3.23) and injected into the plant asu(k), andx̄(k+Ns) is predicted using

(5.4). Then betweentk andtk+Ns, Problem (5.1) is solved in background using ¯x(k+Ns) as

the initial value. In the meantime, the current manipulatedvariablesvi|k−Ns
, i = 1,2, ...,Ns−

1 are updated online using the sensitivity(s∗(zi|k−Ns
)+∆s(x(k+ i))) based on solution of

the previous NLP problem and (5.43). The serial approach works as follows:

• Background: At tk, havingx(k) and u(k), updatev0|k−Ns
and zn|k−Ns

,n = 1, ...,Ns

usingek = x(k)− x̄(k). Evaluate ¯x(k+Ns) by (5.4) and solve Problem (5.1) between

tk andtk+Ns with x̄(k+Ns) as the initial value.
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• On-line: for n= 1 :Ns−1, At tk+n, havingx(k+n), update the augmented sensitivity

system in (5.43) and updatevn|k−Ns
usingêk+n= x(k+n)−zn|k−Ns

. Inject the updated

u(k+n) = vn|k−Ns
+Mvn

zn
(x(k+n)−zn|k−Ns

) to the plant.

• Setk= k+Ns and repeat the cycle.

5.3.3 Nominal Stability Analysis

For the nominal case, Problem (5.5) is solved instead, and both ∆p= 0 and∆s= 0 at alltk.

According to the implementation of the serial approach, theNLP problem is solved every

Ns sampling times, and solution of each NLP problem is used repeatedly until the next

solution is obtained. In addition to the objective functionJN(x(k)), we define a modified

objective function given by:

ĴN− j(x(k)) = JN(x(k))−
j−1

∑
l=0

ψ(zl ,vl ) (5.46)

ĴN− j(x(k)) is obtained from solution of (5.5) with the optimal costJN(x(k)) and subtracting

the first j stage costs from it. When theith manipulated variablevi is injected to the plant,

ĴN+1−i(x(k)) is the objective function corresponding to the states and manipulated variables

within a shrinking horizon starting fromk+ i −1.

It is obvious that

JN(x(k))− ĴN−1(x(k)) = ψ(z0,v0)

ĴN− j(x(k))− ĴN− j−1(x(k)) = ψ(zj ,v j), j = 1, ...,Ns−2 (5.47)

Next we comparêJN−Ns+1(x(k)) andJN(x(k+Ns)).

ĴN−Ns+1(x(k))−JN(x(k+Ns))

= JN(x(k))−
Ns−2

∑
l=0

ψ(zl ,vl )−JN(x(k+Ns)) (5.48)
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As in the parallel approach, (zNs+i(x(k)),vNs+i(x(k))), i = 0, . . . ,N−Ns−1 from JN(x(k))

are feasible values for (zi(x(k+Ns)),vi(x(k+Ns))), i = 0, . . . ,N−Ns−1 in JN(x(k+Ns)).

Hence, from (5.8) we have

JN(x(k))−JN(x(k+Ns))≥
Ns−1

∑
l=0

ψ(zl ,vl)

Substituting into (5.48) we get

ĴN−Ns+1(x(k))−JN(x(k+Ns))

≥
Ns−1

∑
l=0

ψ(zl ,vl)−
Ns−2

∑
l=0

ψ(zl ,vl )

= ψ(zNs−1,vNs−1) (5.49)

Therefore bothJN(x(k)) and ĴN− j(x(k)) satisfy the conditions of a Lyapunov function,

Assumption 3(ii) leads to limk→∞ x(k) = 0 and the following nominal stability property

follows for the serial approach.

Theorem 8. (Nominal Stability of the Serial Approach) Consider the moving horizon prob-

lem (5.86) and associated control law u= κams(x) that satisfies Assumption 3. Then,

JN(x(k)) and ĴN− j(x(k)) are Lyapunov functions and the closed-loop system is asymp-

totically stable.

5.3.4 Robust Stability Analysis

We start with the case where clipping is not needed. Comparedwith blocked amsNMPC,

the optimal NLP trajectory (5.3) does not change, neither dothe predictions ofzn|k−Ns
,n=

1, ...,Ns. The only difference from (5.11) lies in the evolution of actual trajectory:

x(k+n) = F(x(k),v0|k−Ns
+Mv0

z0
ek,w(k),v1|k−Ns

+Mv1
z1

êk+1,w(k+1), ...,

vn−1|k−Ns
+Mvn−1

zn−1 êk+n−1,w(k+n−1)) (5.50)
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Starting fromêk+1, we have

êk+1 = f̂z0(z(k),v(k))ek+ f̂v0(z(k),v(k))M
v0
z0

ek+w(k) = ( f̂z0 + f̂v0M
v0
z0
)ek+w(k)

êk+2 = f̂z1êk+1+ f̂v1M
v1
z1

êk+1+w(k+1)

= ( f̂z1 + f̂v1M
v1
z1
)[( f̂z0 + f̂v0M

v0
z0
)ek+w(k)]+w(k+1)

= ( f̂z1 + f̂v1M
v1
z1
)( f̂z0 + f̂v0M

v0
z0
)ek+( f̂z1 + f̂v1M

v1
z1
)w(k)+w(k+1)

êk+3 = f̂z2êk+2+ f̂v2M
v2
z2

êk+2+w(k+2)

= ( f̂z2 + f̂v2M
v2
z2
){( f̂z1 + f̂v1M

v1
z1
)[( f̂z0 + f̂v0M

v0
z0
)ek+w(k)]+w(k+1)}+w(k+2)

=
2

∏
i=0

( f̂zi + f̂vi M
vi
zi
)ek+

2

∏
i=1

( f̂zi + f̂vi M
vi
zi
)w(k)+( f̂z2 + f̂v2M

v2
z2
)w(k+1)+w(k+2)

...

êk+n =
n−1

∏
i=0

( f̂zi + f̂vi M
vi
zi
)ek+

n−1

∑
i=0

n−1

∏
j=i+1

( f̂zj + f̂v j M
v j
zj )w(k+ i) (5.51)

wheren= 1, ...,Ns−1.

Comparing (5.4) and (5.50), we get

ek+Ns =
Ns−1

∑
i=0

Ns−1

∏
j=i+1

( f̂zj + f̂v j M
v j
zj )w(k+ i)−

Ns−1

∑
i=1

f̂vi M
vi
z0

Ns−1

∏
j=i+1

( f̂zj + f̂v j M
v j
zj )ek(5.52)

Similarly as with the blocked amsNMPC approach, we could findLS
e andLS

ê such that

|
n−1

∏
n=0

( f̂zi + f̂vi M
vi
zi
)ek| ≤ LS

e|ek| (5.53)

|
Ns−1

∑
n=1

f̂vi M
vi
z0

Ns−1

∏
j=i+1

( f̂zj + f̂v j M
v j
zj )ek| ≤ LS

ê|ek| (5.54)

And we could find an upper boundLS
w for ∑n−1

n=0 ∏n−1
j=i+1( f̂zj + f̂v j M

v j
zj ) such that

|êk+n| ≤ LS
e|ek|+

n−1

∑
n=0

LS
w|w(k+n)| (5.55)

whenn= 1, ...,Ns−1 and

|ek+Ns| ≤ LS
ê|ek|+

Ns−1

∑
n=0

LS
w|w(k+n)| (5.56)
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Applying recursion on (5.56) we obtain form= 0,1, . . . andk= mNs:

|e(m+1)Ns
| ≤ (LS

ê)
m+1|e0|+

m

∑
l=0

[(LS
ê)

l
Ns−1

∑
i=0

LS
w|w((m− l)Ns+ i)|] (5.57)

since the NLP problems are only solved atk = mNs. Becausek → ∞ a memory effect

persists in the accumulation of errorsek and it is not clear that this accumulation remains

bounded. This implies that robust stability may not hold forserial amsNMPC.

Simplifying Assumptions for the Serial Approach

From the sensitivity equations, we will introduce the following approximation:

Mvn
zn

êk+n = Mvn
z0

ek+
n−1

∑
i=0

Mvn
zi

w(k+ i) (5.58)

Justification for Approximation (5.58): To see this, we first consider the nominal case

with w(k+ i) = 0, i = 1, . . . ,Ns−1. From the sensitivity system we define,

u(k)−v0|k+Ns
= ∆v0 = Mv0

z0
ek = Mv0

z0
(x(k)− x̄(k))

as with the blocked approach. From the evolution of thelinear sensitivity equationswe can

write:

x(k+1)−z1|k−Ns
= ∆z̄1 = fz0ek+ fv0M

v0
z0

ek = ( fz0 + fv0M
v0
z0
)ek (5.59)

where the Jacobiansfzi , fvi are elements of the KKT matrix evaluated atx(k−Ns). By

induction, assume that

∆z̄i+1 = [( fzi + fvi M
vi
zi
), . . . ,( fz1 + fv1M

v1
z1
)( fz0 + fv0M

v0
z0
)]ek (5.60)

and

∆vi+1 = Mvi+1
zi+1 ∆z̄i+1 = Mvi+1

zi+1 [( fzi + fvi M
vi
zi
), . . . ,( fz1 + fv1M

v1
z1
)( fz0 + fv0M

v0
z0
)]ek

= Mvi+1
z0 ek. (5.61)
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Then

∆vi+2 = Mvi+2
zi+2 ∆z̄i+2 = Mvi+2

zi+2 [ fzi+1∆z̄i+1+ fvi+1∆v̄i+1]

= Mvi+2
zi+2 [( fzi+1 + fvi+1M

vi+1
zi+1 ), . . . ,( fz1 + fv1M

v1
z1
)( fz0 + fv0M

v0
z0
)]ek

= Mvi+2
z0 ek. (5.62)

Hence, withw(k+ i) = 0, i = 1, . . . ,Ns−1, we have∆vi = Mvi
zi ∆z̄i = Mvi

z0ek.

We now consider the case wherew(k+ i) 6= 0 andw(k+ j) 6= 0, j = 1, . . . , i −1 and state

the following assumption.

Assumption 5. (Robust Stability Assumptions of the Serial Approach) The errors due to

differences in the Jacobians fzi , fvi and f̂zi , f̂vi can always be bounded by the uncertainty

term |w′(k+ i −1)−w(k+ i −1)| as follows:

|( f̂zi+1 + f̂vi+1M
vi+1
zi+1 ), . . . ,( f̂z0 + f̂v0M

v0
z0
)ek− ( fzi+1 + fvi+1Mvi+1

zi+1 ) . . . ,( fz0 + fv0M
v0
z0
)ek|

≤ |w′(k+ i −1)−w(k+ i −1)|, (5.63)

where w′(k+ i −1),w(k+ i −1) ∈ W , i = 1, . . .Ns−1

This assumption allows the evolution of the errors to be rewritten as:

e(k+ i) = x(k+ i)−zi|k−Ns

= ( f̂zi+1 + f̂vi+1M
vi+1
zi+1 ), . . . ,( f̂z1 + f̂v1M

v1
z1
)( f̂z0 + f̂v0M

v0
z0
)ek+w(k+ i −1)

= ( fzi+1 + fvi+1M
vi+1
zi+1 ), . . . ,( fz1 + fv1M

v1
z1
)( fz0 + fv0M

v0
z0
)ek+w′(k+ i −1).

(5.64)

From the Schur complement extension of the sensitivity equations ([58]), we havex(k+

i)− x̄(k+ i) (i.e., w(k+ i)) specified in the right hand sides andp− p0 is back-calculated.
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Forw(k+ i) 6= 0, i = 1, . . . ,Ns−1 we have:

êk+1 = ( fz0 + fv0M
v0
z0
)ek+w(k)

êk+2 = ( fz1 + fv1M
v1
z1
)( fz0 + fv0M

v0
z0
)ek+( fz1 + fv1M

v1
z1
)w(k)+w(k+1)

êk+n =
n−1

∏
i=0

( fzi + fvi M
vi
zi
)ek+

n−1

∑
i=0

n−1

∏
j=i

( fzj + fv j M
v j
zj )w(k+ i). (5.65)

Similarly, we can write:

Mvn
zn

êk+n = Mvn
zn
[
n−1

∏
i=0

( fzi + fvi M
vi
zi
)ek+

n−1

∑
i=0

n−1

∏
j=i

( fzj + fv j M
v j
zj )w(k+ i)]

Mvn
zn

êk+n = Mvn
z0

ek+
n−1

∑
i=0

Mvn
zi

w(k+ i). (5.66)

As a result of this approximation, the evolution (5.50) can be rewritten as (5.67). Note that

this has strong similarities to (5.11) from the blocked amsNMPC approach.

x(k+n) = F(x(k),v0|k−Ns
+Mv0

z0
ek,w(k),v1|k−Ns

+Mv1
z0
(ek+w(k)),w(k+1), . . . ,

vn−1|k−Ns
+Mvn−1

z0 ek+
n−2

∑
i=0

Mvn
zi

w(k+ i),w(k+n−1)). (5.67)

In a similar manner as with blocked amsNMPC, we again compare(5.4) with (5.67), and

deriveek andek+Ns expressions analogous to (5.23), (5.24):

x(k)− x̄(k) = ek =
Ns−1

∑
i=0

[
Ns−1

∏
j=i+1

f̂zj−Ns
+

Ns−1

∑
j=i+1

(
Ns−1

∏
p= j+1

f̂zp−Ns
) f̂v j−Ns

M
v j
zi ]w(k+ i −Ns)

(5.68)

x(k+Ns)− x̄(k+Ns) = ek+Ns =
Ns−1

∑
i=0

[
Ns−1

∏
j=i+1

f̂zj +
Ns−1

∑
j=i+1

(
Ns−1

∏
p= j+1

f̂zp) f̂v j M
v j
zi ]w(k+ i)

(5.69)

Defining an upper boundLS
f for ∏Ns−1

j=i+1 f̂zj +∑Ns−1
j=i+1(∏

Ns−1
p= j+1 f̂zp) f̂v j M

v j
zi we then have:

|ek| ≤
Ns−1

∑
i=0

LS
f |w(k−Ns+ i)| and|ek+Ns| ≤

Ns−1

∑
i=0

LS
f |w(k+ i)| (5.70)
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Plugging (5.70) into (5.65) we get

|êk+n| ≤
n−1

∏
i=0

( f̂zi + f̂vi M
vi
zi
)

Ns−1

∑
i=0

LS
f |w(k−Ns+ i)|+

n−1

∑
i=0

n−1

∏
j=i

( f̂zj + f̂v j M
v j
zj )|w(k+ i)|

≤ LS
e

Ns−1

∑
i=0

LS
f |w(k−Ns+ i)|+

n−1

∑
i=0

LS
w|w(k+ i)| (5.71)

whereLS
e andLS

w satisfy

|
n−1

∏
i=0

( f̂zi + f̂vi M
vi
zi
)| ≤ LS

e (5.72)

n−1

∏
j=i

( f̂zj + f̂v j M
v j
zj ) ≤ LS

w (5.73)

For the serial approach, (5.38), Lemma 1 and Lemma 2 are stilltrue. However, we also

observe the following changes:

Jid(x̄(k+Ns))−Jams(x(k))

≤ −ψ(x(k),uams(k))−
Ns−1

∑
l=1

ψ(zl |k−Ns
,uams(k+ l))

= −ψ(x(k),uams(k))−
Ns−1

∑
l=1

ψ(x(k+ l)− êk+l ,u
ams(k+ l))

≤ −ψ(x(k),uams(k))+
Ns−1

∑
l=1

(−ψ(x(k+ l),uams(k+ l))+Lzêk+l )

≤
Ns−1

∑
l=0

−ψ(x(k+ l),uams(k+ l))+
Ns−1

∑
l=1

(Lz(
Ns−1

∑
i=0

LS
eLS

f |w(k+ i −Ns)|+
l−1

∑
i=0

LS
w|w(k+ i)|)

(5.74)

Therefore

Jams(x(k+Ns))−Jams(x(k))

=
Ns−1

∑
l=0

−ψ(x(k+ l),uams(k+ l))+Lz(1+Lh+Lams
h |ek+Ns|)|ek+Ns|+

Ns−1

∑
l=1

(Lzêk+l )

(5.75)
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Combining with (5.70) and (5.71) we have

Jams(x(k+Ns))−Jams(x(k))

≤
Ns−1

∑
l=0

−ψ(x(k+ l),uams(k+ l))+LS
f (

Ns−1

∑
n=0

|w(k+n)|)[Lz(1+Lh)+LzL
ams
h (

Ns−1

∑
n=0

LS
f |w(k+n)|)]

+
Ns−1

∑
l=1

Lz(
Ns−1

∑
n=0

LS
eLS

f |w(k+n−Ns)|+
l−1

∑
n=0

LS
w|w(k+n)|)

=
Ns−1

∑
l=0

{−ψ(x(k+ l),uams(k+ l))+Lz[(L
S
f (1+Lh)+LS

w(Ns−1− l))|w(k+ l)|]}

+LzL
ams
h (LS

f

Ns−1

∑
i=0

|w(k+ i)|)2+c2. (5.76)

where the old error is represented byc2 = ∑Ns−1
l=1 Lz(∑Ns−1

i=0 LS
eLS

f |w(k−Ns+ i)|).

Due to the implementation of the serial approach,Jams(x(k+ i)), i = 1,2, ...,Ns−1 can be

calculated as follows:

Jams(x(k+ i)) = Jid(x̄(k))−
i−1

∑
l=0

ψ(zl |k−Ns
,vl |k−Ns

)+ Ĵi,z(x(k))[x(k+ i)−zi|k−Ns
]

(5.77)

where

Ji(x̄(k)) = Jid(x̄(k))−
i−1

∑
l=0

ψ(zl |k−Ns
,vl |k−Ns

) (5.78)

Ĵi,z(x(k)) =

∫ 1

0

dJi(x̄(k))
dzi

[zi|k−Ns
+ t(x(k+ i)−zi|k−Ns

)]T(x(k+ i)−zi|k−Ns
)dt

(5.79)

and we assume that for allx |Ĵi,z(x)| ≤Lz, a Lipschitz constant. Next we compareJams(x(k+
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i +1)) andJams(x(k+ i)), i = 0, ...,Ns−2:

Jams(x(k+ i +1))−Jams(x(k+ i))

= Jid(x̄(k))−
i

∑
l=0

ψ(zl |k−Ns
,vl |k−Ns

)+ Ĵi+1,z(x(k))êk+i+1

−[Jid(x̄(k))−
i−1

∑
l=0

ψ(zl |k−Ns
,vl |k−Ns

)+ Ĵi,z(x(k))êk+i]

= −ψ(zi|k−Ns
,vi|k−Ns

)+ Ĵi+1,z(x(k))êk+i+1− Ĵi,z(x(k)))êk+i

≤ −ψ(x(k+ i)− êk+i ,u
ams(k+ i)−Mvi

zi
êk+i)+ |Ĵi+1,z(x(k))|(L

S
e|ek|+

i

∑
l=0

LS
w|w(k+ l)|)

+|Ĵi,z(x(k))|(L
S
e|ek|+

i−1

∑
l=0

LS
w|w(k+ l)|))

≤ −ψ(x(k+ i),uams(k+ i))+(2Lz+Lv){LS
e

Ns−1

∑
l=0

LS
f |w(k−Ns+ l)|+

i−1

∑
l=0

LS
w|w(k+ l)|}

+Lz{LS
e

Ns−1

∑
l=0

LS
f |w(k−Ns+ l)|)+

i

∑
l=0

LS
w|w(k+ l)|}

= −ψ(x(k+ i),uams(k+ i))+Lz(x(k))L
S
w|w(k+ i)|+c3 (5.80)

wherec3 = (3Lz+Lv){LS
e ∑Ns−1

l=0 LS
f |w(k−Ns+ l)|+∑i−1

l=0LS
w|w(k+ l)|}.
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Jams(x(k+Ns))−Jams(x(k+Ns−1))

= Jid(x̄(k+Ns))+ Ĵ0,z(x(k+Ns))ek+Ns

−[Jid(x̄(k))−
Ns−2

∑
l=0

ψ(zl |k−Ns
,vl |k−Ns

)+ ĴNs−1,z(x(k))êk+Ns−1]

≤ −
Ns−1

∑
l=0

ψ(zl |k−Ns
,vl |k−Ns

)+
Ns−2

∑
l=0

ψ(zl |k−Ns
,vl |k−Ns

)

+|Ĵ0,z(x(k+Ns))||ek+Ns|+ |ĴNs−1,z(x(k))||êk+Ns−1|

≤ −ψ(zNs−1|k−Ns
,vNs−1|k−Ns

)+Lz

Ns−1

∑
l=0

LS
f |w(k+ l)|)

+Lz{LS
e

Ns−1

∑
l=0

LS
f |w(k−Ns+ l)|)+

Ns−2

∑
l=0

LS
w|w(k+ l)|)}

≤ −ψ(x(k+Ns−1)− êk+Ns−1,u
ams(k+Ns−1)−M

vNs−1
zNs−1 êk+Ns−1)+Lz

Ns−1

∑
l=0

LS
f |w(k+ l)|)

Lz{LS
e

Ns−1

∑
l=0

LS
f |w(k−Ns+ l)|)+

Ns−2

∑
l=0

LS
w|w(k+ l)|)}

≤ −ψ(x(k+Ns−1),uams(k+Ns−1))+Lz

Ns−1

∑
l=0

LS
f |w(k+ l)|)

+(2Lz+Lv){LS
e

Ns−1

∑
l=0

LS
f |w(k−Ns+ l)|)+

Ns−2

∑
l=0

LS
w|w(k+ l)|}

= −ψ(x(k+Ns−1),uams(k+Ns−1))+LzL
S
f |w(k+Ns−1)|+c4 (5.81)

wherec4= Lz∑Ns−2
l=0 LS

f |w(k+ l)|+(2Lz+Lv){LS
e ∑Ns−1

l=0 LS
f |w(k−Ns+ l)|+∑Ns−2

l=0 LS
w|w(k+

l)|}. From (5.81) and Definition 17, we obtain the following result.

Theorem 9. (Robust stability of the serial approach) For the moving horizon problem (5.1)

and associated control law u= hams(x) that satisfies Assumption 3, Assumption 4 and 5 with

c3 and c4 is ISpS Lyapunov function and the closed-loop system is robustly stable.
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If clipping is applied, we obtainu(k)−v0|k+Ns
= ∆v0 = τ0Mv0

z0 ek. Then (5.59) becomes

∆z1 = fz0ek+ fv0τ0Mv0
z0

ek = ( fz0 + fv0τ0Mv0
z0
)ek (5.82)

and (5.60) becomes

∆z̄i+1 = [( fzi + fvi τiM
vi
zi
), . . . ,( fz1 + fv1τ1Mv1

z1
)( fz0 + fv0τ0Mv0

z0
)]ek (5.83)

HoweverMvi+1
zi+i [( fzi + fvi τiM

vi
zi ), . . . ,( fz1 + fv1τ1Mv1

z1 )( fz0 + fv0τ0Mv0
z0 )] 6= Mvi+1

z0 . Therefore

(5.58), (5.61) and (5.62) are not true any more. As a result Assumption 5 and the ISpS

property do not hold with clipping.

5.4 Parallel Approach

Among the two approaches, the parallel approach is more direct and easier to implement

because it is a combination of multiple asNMPC iterations, each executed by one proces-

sor. The amsNMPC approach handles NLP problems whose solutions require multiple

sampling times to compute. SupposeNs ≥ 1 sampling times are needed to solve the NLP

problem. Here we would like to solve the predicted NLP problem Ns sampling times in

advance to get the predicted manipulated variable for the current state.

We define ¯x(k) as thepredictionof the state at timetk. Fig. 5.4 shows the positions ofx, u,

x̄ andv. Solid lines are for the actual control profiles, while dashed lines are for predicted

state and control profiles. Also, different dashed line styles indicate solutions of different

NLP problems (5.85).

At tk, it is assumed that the solution of the NLP problem is calculated based on the in-

formation from timetk−Ns, and the solution is{z0|k−Ns
, . . . ,zN|k−Ns

,v0|k−Ns
, . . . ,vN−1|k−Ns

}.

Oncex(k) is obtained,v j |k−Ns
, j = 0, . . . ,Ns−1 are updated from (3.23), with ¯x(k)= p0 and
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Figure 5.4: Positions ofx, u, x̄ andv for the parallel approach

x(k) = p: We then predict ¯x(k+Ns) with x(k),v j |k−Ns
, j = 0, . . . ,Ns−1, which becomes the

initial value and parameterp0 of the next NLP problem solved by the same processor:

x̄(k+Ns) = F(x(k),v0|k−Ns
+M0

v0
ek,0,v1|k−Ns

+M0
v1

ek,0, ...,vNs−1|k−Ns
+M0

vk−Ns
ek,0)

(5.84)

We use the superscript ofM to show which processor generated the current matrix that is

being used. Similarly, the superscript off̂ shows which processor generates the solution

that is used to evaluate the derivative.

Note that the manipulated variables are updated using (3.23) only. At each sampling time

the solution of an NLP problem and a new linearized KKT systemare obtained, and the

first manipulated variable of each solution is updated with respect to the current state mea-

surement. Since it takesNs sampling times to solve one NLP,Ns processors are applied at

each sampling time in a staggered manner.
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5.4.1 Implementation

The parallel approach is implemented onNs processors as follows: Fori = 0 : Ns−1,

• Online: attk+i, havingx(k+ i) , givenx̄(k+ i)= p0 andx(k+ i)= p, updatev j |k−Ns+i , j =

0, . . . ,Ns−1 andzNs|k−Ns+i using(s∗(p0)+∆s(p)) from (3.23). Inject the updated

v0|k−Ns+i +∆v0 ∈ U asu(k+ i) to the plant.

• Background: predictx(k+Ns+ i) by (5.84) as the initial value and solve the NLP

problem (5.85) using theith processor.

min
vl ,zl

JN(x̄(k+ i +Ns)) := Ψ(zN)+
N−1

∑
l=0

ψl (zl ,vl )

s.t. zl+1 = f (zl ,vl), z0 = x̄(k+ i +Ns), l = 0, ...,N−1

vl ∈ U (5.85)

Setk= k+Ns and repeat the cycle.

5.4.2 Nominal Stability Analysis

For the stability proof we need to assume thatN → ∞ so that all solutions withx(k+ i+Ns)

correspond to each other. For nominal stability we havex(k) = x̄(k) and all the states are

measured. Problem (5.85) can be formulated as

min
vl ,zl

JN(x(k+ i +Ns)) := Ψ(zN)+
N−1

∑
l=0

ψl (zl ,vl )

s.t. zl+1 = f (zl ,vl), z0 = x(k+ i +Ns), l = 0, ...,N−1

vl ∈ U (5.86)

wherei = 0, ...,Ns−1. The subscript ofJ indicates the length of the horizon.
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From (5.8) we have

JN(x(k))−JN(x(k+Ns))≥
Ns−1

∑
l=0

ψl (zl |k−Ns
,vl |k−Ns

) =
Ns−1

∑
l=0

ψl (x(k+ l),u(k+ l))

Since

∞

∑
j=0

Ns−1

∑
i=0

(JN(x(k+ jNs+ i)))−JN(x(k+( j +1)Ns+ i))

=
Ns−1

∑
i=0

JN(x(k+ i))−JN(x(∞))

≤
Ns−1

∑
i=0

JN(x(k+ i)),

we can combine with (5.8) to yield

Ns−1

∑
i=0

JN(x(k+ i))≥
∞

∑
j=0

Ns−1

∑
l=0

ψk+l (zk+l+ jNs,vk+l+ jNs) =
∞

∑
m=0

ψm(x(k+m),u(k+m)) (5.87)

which leads to

lim
k→∞

ψl (x(k),u(k)) = 0 (5.88)

SoJN(x(k)) satisfies the conditions of Lyapunov function, and the process on the processor

being analyzed is nominally stable. We note that this analysis is similar to the average

performance proposed by Angeli et al. [3], where the averagecost function ofNs adjacent

NLP problems satisfies the conditions of Lyapunov function.

J̄N, j =
∑Ns−1

i=0 JN(x(k+ i + jNs))

Ns
(5.89)

where j = 0, ...,∞. From (5.8) we get

J̄N, j − J̄N, j+1 ≥
( j+1)∗Ns−1

∑
l= j∗Ns

(ψl(zl ,vl)/Ns (5.90)

SinceJ̄N, j satisfies the conditions of Lyapunov function, the following nominal stability

property is proved.
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Theorem 10.(Nominal Stability of the Parallel Approach) For the movinghorizon problem

(5.86) with N→ ∞ and associated control law u= κams(x) that satisfies Assumption 3,̄JN, j

is a Lyapunov function and the closed-loop system is asymptotically stable.

5.4.3 Robust Stability Analysis

For the parallel approach, all the states are predicted identically; therefore we do not add

a bar above the error to show the difference. Since inputs arecalculated by different pro-

cessors, it is difficult to figure out how error accumulates from ek to ek+Ns if N is finite.

Therefore for robust stability proof we assume infinite horizon length. Havingx(k), with

the first processor we have (5.84):

x̄(k+Ns) = F(x(k),v0|k−Ns
+Mv0

z0,0
ek,0,v1|k−Ns

+Mv1
z0,0

ek,0, ...,vNs−1|k−Ns
+M

vNs−1
z0,0

ek,0)

(5.91)

We use the second subscript ofM to show which processor generated the current matrix

that is being used. Similarly, the superscript off̂ shows which processor generates the

solution that is used to evaluate the derivative.

For the actual trajectory we have

x(k+Ns) = F(x(k),v0|k−Ns
+Mv0

z0,0
ek,w(k),v0|k−Ns+1+Mv0

z0,1
ek+1,w(k+1), ...,

v0|k−1+Mv0
z0,Ns−1ek+Ns−1,w(k+Ns−1)) (5.92)
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For the parallel approach all processors are executed equivalently, so for processorn,n=

0, . . . ,Ns−1 we have

x̄(k+Ns+n) = F(x(k+n),v0|k−Ns+n+Mv0
z0,nek+n,0,v1|k−Ns+n+Mv1

z0,nek+n,0, ...,

vNs−1|k−Ns+n+M
vNs−1
z0,n ek+n,0) (5.93)

x(k+Ns+n) = F(x(k+n),v0|k−Ns+n+Mv0
z0,nek+n,w(k+n),v0|k−Ns+1+n+Mv0

z0,n+1ek+n+1,

w(k+n+1), ...,v0|k−1+n+Mv0
z0,n+Ns−1ek+n+Ns−1,w(k+n+Ns−1))

(5.94)

From (5.93) we could see thatz0|k+n = x̄(k+Ns+ n) contains the information ofx(k+

n),ek+n,w(k+ n), . . . ,w(k+ n+ Ns− 1). Therefore memory effect also exists with the

parallel approach. Moreover,vi|k−Ns+n, i = 0, . . . ,Ns−1 contains the information ofx(k−

Ns+n), thereforeMv
z,n(x(k+Ns+n)) contains the information ofx(k−Ns+n),w(k−Ns+

n), . . . ,w(k−Ns+n−1)). Similarly,Mv
z,n(x(k+n)) contains the information ofx(k−2Ns+

n),w(k−2Ns+n), . . . ,w(k−2Ns+n−1)).

For the parallel approach, since the controls are calculated by different processors, it is

difficult to study the error accumulation. Therefore we needto make assumptions to link

solutions of processorn,n= 1, . . . ,Ns−1 to processor 0:

Assumption 6. (Robust Stability Assumptions of the Parallel Approach)

1. N→ ∞ such that when there is no uncertainty in the system, we have Mv0
z0,n = Mvn

zn,0
.

2. We assume the error qk+n = (Mv0
z0,n−Mvn

zn,0
)ek+n can always be bounded by an un-

certainty term LM ∑n−1
i=0 |w(k+ i)|+ |w(k+ i −Ns)|, i.e.,

|qk+n|= |(Mv0
z0,n−Mvn

zn,0
)ek+n| ≤ LM

n−1

∑
i=0

|w(k+ i)|+ |w(k+ i −Ns)| (5.95)

where LM is a Lipschitz constant for Mvz.

CHAPTER 5. ADVANCED-MULTI -STEP NONLINEAR MODEL PREDICTIVE CONTROL

85



5.4 PARALLEL APPROACH

Therefore we could reformulate (5.92) as

x(k+Ns) = F(x(k),v0|k−Ns
+Mv0

z0,0
ek,w(k),v1|k−Ns

+Mv1
z1,0

ek+1+qk+1,

w(k+1), ...,vNs−1|k−Ns
+M

vNs−1
zNs−1,0

ek+Ns−1+qk+Ns−1,w(k+Ns−1))

(5.96)

Notice that this is similar to the evolution of the serial approach (5.50). So we could use

Assumption 5 and replaceMvn
zn,0

ek+n with Mvn
z0,0

ek+∑n−1
i=0 Mvn

zi,0
w(k+ i) (5.58) and end up

with

x(k+Ns)

= F(x(k),v0|k−Ns
+Mv0

z0,0
ek,w(k),v1|k−Ns

+Mv1
z0,0

(ek+w(k))+qk+1,w(k+1), ...,

vNs−1|k−Ns
+M

vNs−1
z0,0

ek+
n−2

∑
i=0

Mvn
zi ,0

w(k+ i)+qk+Ns−1,w(k+Ns−1))

(5.97)

Comparing (5.97) and (5.84), we have

x(k+Ns)− x̄(k+Ns) = ek+Ns

=
Ns−1

∑
i=0

[
Ns−1

∏
j=i+1

f̂zj +
Ns−1

∑
j=i+1

(
Ns−1

∏
p= j+1

f̂zp) f̂v j M
v j
zm,0

]w(k+ i)

+
Ns−1

∑
i=0

[
Ns−1

∑
j=i+1

(
Ns−1

∏
p= j+1

f̂zp) f̂v j qk+ j ]

≤
Ns−1

∑
i=0

{
Ns−1

∏
j=i+1

f̂zj +
Ns−1

∑
j=i+1

(
Ns−1

∏
p= j+1

f̂zp) f̂v j M
v j
zi ,0

+LM

Ns−1

∑
m=i

[
Ns−1

∑
j=m+1

(
Ns−1

∏
p= j+1

f̂zp) f̂v j ]}|w(k+ i)|

+
Ns−1

∑
i=0

{LM

Ns−1

∑
m=i

[
Ns−1

∑
j=m+1

(
Ns−1

∏
p= j+1

f̂zp) f̂v j ]}|w(k−Ns+ i)| (5.98)

Defining an upper boundLP
f 1 for {∏Ns−1

j=i+1 f̂zj +∑Ns−1
j=i+1(∏

Ns−1
p= j+1 f̂zp) f̂v j M

v j
zi ,0

+LM ∑Ns−1
m=i [∑

Ns−1
j=m+1

(∏Ns−1
p= j+1 f̂zp) f̂v j ]} and an upper boundLP

f 2 for {LM ∑Ns−1
m=i [∑

Ns−1
j=m+1(∏

Ns−1
p= j+1 f̂zp) f̂v j ]} we
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then have:

|ek+Ns| ≤
Ns−1

∑
i=0

[LP
f 1|w(k+ i)|+LP

f 2|w(k+ i −Ns)|] (5.99a)

|ek| ≤
Ns−1

∑
i=0

[LP
f 1|w(k+ i −Ns)|+LP

f 2|w(k+ i −2Ns)|] (5.99b)

Similarly as (5.65), for processor 0, we have

|êk+n|

= |
n−1

∏
i=0

( fzi + fvi M
vi
zi ,0

)ek+
n−1

∑
i=0

n−1

∏
j=i

( fzj + fv j M
v j
zj ,0

)w(k+ i)+
n−1

∑
i=1

n−1

∏
j=i

( fzj + fv j M
v j
zj ,0

) f̂vi qk+i |

≤
n−1

∏
i=0

( fzi + fvi M
vi
zi ,0

)|ek|+
n−1

∑
i=0

n−1

∏
j=i

( fzj + fv j M
v j
zj ,0

)|w(k+ i)|

+LM

n−1

∑
i=1

n−1

∑
m=i

n−1

∏
j=m

( fzj + fv j M
v j
zj ,0

) f̂vi(|w(k+ i)|+ |w(k−Ns+ i)|) (5.100)

From (5.99b) and defining suitable upper bounds leads to:

|êk+n| ≤ LP
1

Ns−1

∑
i=0

|w(k−Ns+ i)|+LP
2

Ns−1

∑
i=0

|w(k−2Ns+ i)|+LP
w1

n−1

∑
i=0

|w(k+ i)|

(5.101)

For the parallel approach, (5.38), Lemma 1 and Lemma 2 are still true. However, we also
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observe the following changes:

Jid(x̄(k+Ns))−Jams(x(k))

≤ −ψ(x(k),uams(k))−
Ns−1

∑
l=1

ψ(zl |k−Ns
,uams(k+ l))

= −ψ(x(k),uams(k))−
Ns−1

∑
l=1

ψ(x(k+ l)− êk+l ,u
ams(k+ l))

≤ −ψ(x(k),uams(k))+
Ns−1

∑
l=1

(−ψ(x(k+ l),uams(k+ l))+Lzêk+l )

≤
Ns−1

∑
l=0

−ψ(x(k+ l),uams(k+ l))

+
Ns−1

∑
l=1

[Lz(L
P
1

Ns−1

∑
i=0

|w(k−Ns+ i)|+LP
2

Ns−1

∑
i=0

|w(k−2Ns+ i)|+LP
w1

l−1

∑
i=0

|w(k+ i)|]

(5.102)

Therefore

Jams(x(k+Ns))−Jams(x(k))

=
Ns−1

∑
l=0

−ψ(x(k+ l),uams(k+ l))+Lz(1+Lκ +Lams
κ |ek+Ns|)|ek+Ns|+

Ns−1

∑
l=1

(Lzêk+l )

(5.103)
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Combining with (5.70) and (5.71) we have

Ns(J
ams(x(k+Ns))−Jams(x(k)))

≤
Ns−1

∑
l=0

−ψ(x(k+ l),uams(k+ l))

+
Ns−1

∑
i=0

[LP
f 1|w(k+ i)|

+LP
f 2|w(k+ i −Ns)|][Lz(1+Lκ)+LzL

ams
κ (

Ns−1

∑
i=0

[LP
f 1|w(k+ i)|+LP

f 2|w(k+ i −Ns)|])]

+
Ns−1

∑
l=1

[Lz(L
P
1

Ns−1

∑
i=0

|w(k−Ns+ i)|+LP
2

Ns−1

∑
i=0

|w(k−2Ns+ i)|+LP
w1

l−1

∑
i=0

|w(k+ i)|]

=
Ns−1

∑
l=0

{−ψ(x(k+ l),uams(k+ l))+Lz[(L
P
f 1(1+Lκ)+LP

w1(Ns−1− l))|w(k+ l)|]}

+LzL
ams
κ (LP

f 1

Ns−1

∑
i=0

|w(k+ i)|)2+c5. (5.104)

where the old error is represented byc5 = ∑Ns−1
l=0 {Lz[(LP

f 1(1+Lκ)+LP
w1(Ns−1− l))|w(k+

l −Ns)|]}+LzLams
κ (LP

f 1∑Ns−1
i=0 |w(k+ i −Ns)|)

2+∑Ns−1
l=1 [Lz(LP

1 ∑Ns−1
i=0 |w(k−Ns+ i)|

+LP
2 ∑Ns−1

i=0 |w(k−2Ns+ i)|].

SoJams(x(k)) satisfies the conditions of Lyapunov function, and the process on the proces-

sor 0 is nominally stable. We note that this analysis is similar to the average performance

proposed by Angeli et al. [3], where the average cost function of Ns adjacent NLP problems

satisfies the conditions of Lyapunov function.

J̄ams
j =

∑Ns−1
i=0 Jams(x(k+ i + jNs))

Ns
(5.105)
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where j = 0, ...,∞. From (5.104) we get

Ns(J̄
ams
j+1− J̄ams

j )

≤
( j+i)Ns−1

∑
l= jNs

{
Ns−1

∑
i=0

−ψ(x(k+ l + i),uams(k+ l + i))

+Lz[(L
P
f 1(1+Lκ)+LP

w1(Ns−1− l))|w(k+ l + i)|]

+LzL
ams
κ (LP

f 1

Ns−1

∑
i=0

|w(k+ l + i)|)2}+3c5 (5.106)

which satisfies the conditions of ISpS Lyapunov function. SinceNsJ̄N, j satisfies the con-

ditions of Lyapunov function,J̄N, j could be used as the ISpS Lyapunov function and the

following nominal stability property is proved.

Theorem 11. (Robust stability of the parallel approach) For the moving horizon problem

(5.1) and associated control law u= κams(x) that satisfies Assumption 3, Assumption 4

and Assumption 6 with c5, Jams
j is an ISpS Lyapunov function and the closed-loop system is

robustly stable.

5.5 Concluding Remarks

In this chapter we propose the advanced-multi-step NMPC scheme to handle NLP prob-

lems whose solution takes multiple sampling times while avoiding computational delay.

Two approaches, parallel and serial, are developed. For theparallel approach multiple

processors are applied and an NLP problem is solved every sampling time. For the serial

approach only one processor is applied and an NLP problem is solved everyNs sampling

times. Nominal stability and robust stability of amsNMPC are also analyzed in this chapter.

Without uncertainty in the system, amsNMPC is nominally stable; with uncertainty there is

memory effect due to error accumulation and inaccurate NLP sensitivity. However robust
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stability could also be obtained with certain reasonable assumptions to bound this effect.

We will evaluate the performance of both amsNMPC approacheson a CSTR model as well

as a distillation column model. The results and analysis will be shown in Chapter 6.
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Chapter 6

Case Studies

In this chapter we apply iNMPC, asNMPC and amsNMPC to two examples. The first

example is a CSTR in which reactionA → B takes place. We set the order of reaction to

1 and 3. Setting order of reaction to 1 gives us a bilinear system while setting order of

reaction to 3 gives us a more nonlinear system. We would like to use this example to show

the influence that system nonlinearity has on the performance of amsNMPC. The second

example is a large-scale propane-propylene distillation column. When we discretize the

model and formulate it into an NLP, the solution time exceedssampling time. We use this

example to show the importance of amsNMPC for large-scale systems.

We compare the performance of iNMPC, asNMPC and amsNMPC through simulation and

show how they support the results in the previous chapter.

Moreover, in this chapter, we also study the three MPC examples in [24] that lack ro-

bustness. We will show that both using a longer horizon or reformulating the NLP with

soft constraints will lead to robustness. And robustness will not be lost when asNMPC or

amsNMPC is applied.

6.1 Comparisons of iNMPC, asNMPC and amsNMPC

iNMPC is the ideal case where NLP solution time is negligible. In this case, there is

no delay between obtaining the actual state and implementing the corresponding control.
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Therefore the control is calculated with the exact state andno error exists. iNMPC should

be the NMPC strategy that has the best performance.

asNMPC avoids computational delay by using prediction as initial condition to solve the

NLP one step in advance and using NLP sensitivity to update the first control within the

solution. If with uncertainty in the process, prediction error and sensitivity error will exist,

and prediction error attk comes fromg(x(k−1),w(k−1)) at tk−1. When there is no uncer-

tainty, asNMPC has the same performance as iNMPC; however with uncertainty asNMPC

will not perform as well as iNMPC with additional error as described in (4.36b).

amsNMPC predicts the stateNs sampling times ahead of time. From (5.57) we can see

that prediction error ˆek+n at tk+n depends on prediction errorek at tk and additive distur-

bancew from tk to tk+n−1, andek is the accumulation of the error at the first stepe0 and

the additive disturbancew from time t0 to tk−1. This memory effect will have significant

influence on the performance of amsNMPC as well as its stability, and the largerNs is, the

greater the influence will be. Besides prediction error, NLPsensitivity error also exists with

amsNMPC.

The serial approach and the parallel approach have strong similarities. They both solve

the NLP problemsNs steps in advance using the predicted states atk+Ns from the current

optimal solution. The difference is that the serial approach uses only one processor, so the

NLP problem is solved everyNs sampling times, and the firstNs manipulated variables in

the horizon are updated by (3.23) and (5.43). The same KKT matrix is used repeatedly with

update before the next KKT system is obtained. The parallel approach uses multiple pro-

cessors, so the NLP problem is solved every sampling time, but only the first manipulated

variable is updated using (3.23), and different KKT systemsare used at every sampling

time. With either approach, amsNMPC is expected to reduce the on-line computational

cost by two to three orders of magnitude, because backsolvestake much less time than
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solving the NLP problem.

6.2 Demonstrations

6.2.1 Continuous stirred tank reactor

A dynamic CSTR example is used to demonstrate both amsNMPC approaches [58].

The reactionA→ B is exothermic and model proposed by [25] is listed as follows:

dc
dt

=
F
V
(cf −c)−ke(−E/RT)c (6.1a)

dT
dt

=
F
V
(Tf −T)+

−∆H
ρCp

ke−E/RTc−
AU

VρCp
(T −Tc) (6.1b)

cL ≤ c≤ cU , TL ≤ T ≤ TU (6.1c)

FL ≤ F ≤ FU , UL ≤U ≤UU (6.1d)

wherec andT are the concentration ofA and temperature in the CSTR respectively,F is

the flow rate of feed,V is the CSTR volume which is assumed to be a constant,β is the

order of the reaction. The dimensionless model takes the form

dz1

dt
=

F
V
(1−z1)−k′exp(−E′/z2)z

β
1 (6.2a)

dz2

dt
=

F
V
(zf −z2)+k′exp(−E′/z2)z

β
1 −αν(z2−zc) (6.2b)

wherez1 andz2 are the dimensionless concentration ofA and temperature in the CSTR

respectively,zf = 0.395 andzc = 0.382 are the dimensionless concentration and temper-

ature of feed respectively,k′ = 300×7.6β−1 is the dimensionless rate constant,E′ = 5 is

the dimensionless ratio of the activation energy and gas constant,α = 1.95×10−4 is di-

mensionless heat transfer area andν is the reactor jacket heat-transfer coefficient which is

influenced by the coolant flow rate. For the order of reaction we haveβ = 1,3. Forβ = 1
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we useF
V , and forβ = 3 we useV

F andν as manipulated variables. After using orthogonal

collocation to discretize the problem with∆t = tk+1− tk = 1, the objective function takes

the form

JN :=min
N

∑
l=0

106[(z1l −z1des)
2+(z2l −z2des)

2]+
N−1

∑
l=0

2×10−3[(u1l −u1des)
2+(u2l −u2des)

2]

(6.3)

whereN = 50, z1des= 0.1768,z2des= 0.7083,u1des= 800, u2des= 10, andz andu are

bounded by 0≤ z1 ≤ 1, 0≤ z2 ≤ 1, 0≤ u1 ≤ 2500, 1≤ u2 ≤ 40.

We now compare the performance of ideal NMPC and amsNMPC. Forideal NMPC, we

assume that the NLP solution time is negligible; thus there is no computational delay. We

useNs = 0 to indicate ideal NMPC. For amsNMPC we include the casesNs = 1, 2 and 3.

Note that the asNMPC approach corresponds toNs = 1, where the parallel approach and

the serial approach are the same and only one processor is applied.

For the order of the reaction in (6.2a) and (6.2b) we considercases whereβ = 1 andβ = 3.

We first consider the case whereβ = 1, as in [25] with a set point change and measurement

noise. Next we make the problem artificially more nonlinear by settingβ = 3 and by using

ν andV
F , instead ofFV , as manipulated variables. We begin with no measurement noise or

plant-model mismatch and show that amsNMPC can track set point changes immediately,

if the change is known in advance. The results show that idealNMPC and amsNMPC

have virtually identical performance with any differencesdue to numerical precision and

truncation errors. This also indicates the nominal stability of ideal NMPC and amsNMPC.

Next we introduce different levels of measurement noise or plant-model mismatch and

look for the trend of amsNMPC performance as noise, mismatchlevel andNs increase.

Measurement noise has the form of Gaussian noise with standard deviation of a certain

percentage of set point, and is added to the output. Plant-model mismatch is added by

changing the parameterk′ in (6.2a) and (6.2b) in the simulation model. The comparisonof
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QP and clipping is also shown. All NLP problems are solved using IPOPT, and the update

of NLP sensitivity and Schur complement are done manually using MATLAB.

β = 1, with measurement noise With β = 1, as in [25],z2 andν are fixed, and only

F/V is used as the manipulated variable. This leads to a nearly linear model and is the

simplest case we consider. Fig. 6.1 shows the state profile solved by the serial approach

with 10% set point change and 5% measurement noise. It could be seen that amsNMPC

(with Ns = 2,3) behaves identically as ideal NMPC and asNMPC, with the difference at

the beginning due to different start-up strategies. Note that in this case since the system is

almost linear, sensitivity error due to discarding higher order termsO(|p− p0|
2) could be

neglected, and Assumptions 5 and 6 hold from Chapter 5.
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Figure 6.1: Performance with 10% set point change and 5% measurement noise

β = 3, with set point change Assuming there is no measurement noise or plant-model

mismatch, we first change the set points of the two states by 10% at time= 25 and then

reverse the set point change attime= 60. The state profiles are shown in Fig. 6.2. The

parallel approach behaves exactly the same as the serial approach and ideal NMPC, asN-

MPC and amsNMPC (withNs≤ 3) all have identical performance in tracking the set point
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with small overshoots. In this case, since there is no uncertainty in the process, the memory

effect does not exist.
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Figure 6.2: Performance with 10% set point change

β = 3, with measurement noise In addition to the set point change, Gaussian measure-

ment noise is added to the plant with a standard deviation of 3% of the set point, which

is relatively small. In this case the parallel approach still behaves identically as the serial

approach, so only the performance of the latter is shown here. Since there is measurement

noise, an on-line update of the state is introduced, and clipping is applied to deal with active

set changes. From the state profiles shown in Fig. 6.3, the performance of amsNMPC is

very similar to ideal NMPC and asNMPC. Also it could be noticed that differentNs leads to

no difference among the states. this is because the noise level is not large enough to cause

large sensitivity error and strong memory effect.

When the noise level is increased to 5%, the results in Fig. 6.4 are observed. Through

the comparison of Fig. 6.4(a) and Fig. 6.4(b), a performancedifference can be observed

between the parallel and serial approaches. First, withNs = 3, the serial approach has

larger offset from set point than the parallel approach betweentime= 50 and 60 due to
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Figure 6.3: Performance with 10% set point change and 3% measurement noise

the use of previous, inaccurate KKT linearizations. Second, we observe the influence of

memory effect whenNs gets large. asNMPC (Ns = 1) generally performs worse than ideal

NMPC, and performance of amsNMPC deteriorates asNs increases, as offsets from the set

point grow.
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(a) Parallel approach
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(b) Serial approach

Figure 6.4: Performance with 10% set point change and 5% measurement noise

If we compare Fig. 6.4(b) with Fig. 6.1, we observe that although the same set point change

and measurement noise are used, amsNMPC works much better with the less nonlinear
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model,β = 1.

β = 3, with plant-model mismatch Instead of measurement noise, plant-model mis-

match is added by changing the parameterk′ in (6.2a) and (6.2b) in the simulation model.

Again the performance of the parallel approach and the serial approach is identical, so only

the serial approach is shown. In Fig. 6.5(a)k′ is first increased by 10% then decreased by

the same amount, while in Fig. 6.5(b)k′ is changed by 30%. Through comparison of these

two subfigures, it could be seen that when the plant-model mismatch level is relatively

small, amsNMPC performs identically as ideal NMPC and asNMPC. If the mismatch level

is large, amsNMPC produces a larger offset than ideal NMPC and asNMPC. However, no

matter what kind of NMPC controller is used, offset is unavoidable. The offset could be

eliminated by adding an integrator to the controller or by adding a state observer.
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(a) 10% plant-model mismatch
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(b) 30% plant-model mismatch

Figure 6.5: Performance of the serial approach with plant-model mismatch
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6.2.2 Distillation Column

Our second example is a large-scale distillation column. Distillation columns are used

to separate feed streams and to refine final products. The model we study is a propane-

propylene distillation column, also known as a C3 splitter.It is used to separate propane and

propylene, which are the two products, and the feed has 2 compounds. The top stream of

the C3 column consists of propylene while the bottom productcontains propane. Modeled

on an actual refinery unit [20], the binary distillation column consists ofN = 158 trays

with feed on the 43rd tray, a total condenser, and a thermosyphon reboiler. Generally

the distillation model are nonlinear functions of temperature, pressure and composition,

and consists of dynamic mass balance, equilibrium, summation and heat balance (MESH

equations) for each tray along with vapor-liquid equilibrium, and tray hydraulics as listed

in (6.4) - (6.7b). The overall mass balance on each tray is given by:

dM1

dt
= L2−L1−V1 (6.4a)

dMi

dt
= Fi +Li−1−Li +Vi+1−Vi (6.4b)

dMN

dt
= VN−1−D−LN −VN (6.4c)

i = 1, . . . ,N

whereN is the number of trays;Mi,Fi are the liquid holdup and feed flowrate on theith

tray respectively;Li ,Vi are the liquid and vapor leaving theith tray respectively.

If we consider only liquid holdup, the model can be simplifiedby eliminating variation

of pressure on each tray. This formulation allows the density, holdup, pressure defining

equations to be eliminated. As a result the simplified component balances on each tray are:
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M1dx1, j

dt
= L2(x2, j −x1, j)−V1(y1, j −xi, j) (6.5a)

Midxi, j

dt
= Fi(xi, j −xF

i, j)+Li+1(xi+1, j −xi, j)+Vi−1(yi−1, j −xi, j)−Vi(yi, j −xi, j)

(6.5b)

MNdxN, j

dt
= VN−1(yN−1, j −xN, j)−VN(yN, j −xN, j) (6.5c)

i = 1, . . . ,N

j ∈ COMP

whereCOMP is the set of components;xi, j ,yi, j ,xF
i, j are the liquid composition and vapor

composition and feed composition of the componentj on theith tray respectively.

The energy balance on each tray is given by:

M1dhL
1

dt
= L2(h

L
2−hL

1)−V1(h
V
1 −hL

1)+Qr (6.6a)

MidhL
i

dt
= Fi(h

L
i −κL

f )+Li+1(h
L
i+1−hL

i )+Vi−1(h
V
i−1−hL

i )−Vi(H
V
i −hL

i ) (6.6b)

MNdhL
N

dt
= VN−1(h

V
N−1−hL

N)−VN(h
V
N −hL

N)−Qc (6.6c)

i = 1, . . . ,N

j ∈ COMP

wherehL
i ,h

V
i ,κ f are the liquid, vapor and feed enthalpy respectively;Qr andQc are the

reboiler and condenser loads. Finally, the equilibrium andsummation equations on each

tray are:

yi, j = Ki, j(Ti,Pi,xi)xi, j (6.7a)

0 = ∑
j∈COMP

yi, j − ∑
j∈COMP

xi, j (6.7b)

i = 1, ...,N

j ∈ COMP
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whereTi ,Pi are the temperature and pressure on each tray respectively.For the propane-

propylene system, equilibrium constants are determined from DePriester nomographs. A

detailed description of these equations, their reformulation from index 2 to index 1, along

with model of the thermosyphon reboiler, can be found in [20]. It is assumed that the

pressure in the column is controlled, and pressure drop is constant from tray to tray.

To obtain plantwide optimization requirements the compositions of the top and bottom

products must be controlled. In this study the controlled states are the concentrations of

propylene of the first and last trays, while the manipulated variables are the steam pressure

in the reboiler and bottoms flow rate. The objective is to keepthe states at their setpoints,

so the objective function is composed of quadratic trackingterms.

For this case study we compare the performance of ideal NMPC,asNMPC and the parallel

approach of amsNMPC. The cases we consider here are pure setpoint change and setpoint

change with measurement noise. We tried different horizon lengths to assure that the so-

lution u = κ(z) exists and converges to the optimum. The horizon length we use is 25.

After discretizing the ordinary differential equations with orthogonal collocation, the NLP

problem has 79750 variables and 79700 constraints. Solution of Problem (4.3) requires

90 CPU seconds, but with a sampling time of only 60 s; practical implementation requires

Ns > 1, and amsNMPC must be used. On the other hand, the on-line computation (solv-

ing (3.23)) requires less than 1 CPU second. To shown the difference between different

NMPC formulations, we assume that we can chooseNs = 0 (iNMPC), Ns = 1 (asNMPC)

andNs= 2,3.

Because the size of the corresponding KKT matrix exceeds thecapabilities of MATLAB,

and the Schur complement decomposition (5.43) is not yet implemented in sIPOPT, only

the parallel approach with sIPOPT is shown here.
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Performance with setpoint change For this case we change the set point attime= 30

and the change is known in advance. From Fig. 6.6 we could see that both iNMPC and
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Figure 6.6: Performance of the parallel approach with setpoint change

the parallel approach are able to catch the set point change,and they behave identically.

Moreover, since there is no uncertainty, the memory effect does not exist, andNs does not

make any difference.

Performance with setpoint change and measurement noiseFor this case, we change

the setpoint att = 30 and introduce Gaussian noise with a standard deviation of1% of the

setpoint on all outputs butx[Ntray]. If this level of noise is added tox[Ntray], its upper

bound will be violated, so only 0.1% noise is added tox[Ntray]. The performance of ideal

NMPC and the parallel approach withNs = 1,2,3 are compared. The noise level is then

increased to 3% and 5%. For each level, the noise is generatedrandomly only once and

then the same noise sequence is used by iNMPC, asNMPC and the parallel approach, so

that all results are consistent. Fig.6.7 shows that with 1% of noise, set points are tracked

very well, and there is not much difference among different cases, in the state profile as well
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as the control profile. Increasing the noise level to 3% in Fig.6.8, shows that the difference

in state and control profiles becomes larger as noise level increases. With 5% additive

noise, Fig.6.9 shows that the difference is even more significant. For large noise levels,

we would expect the performance of amsNMPC to deteriorate asNs increases, because the

linearization used for the sensitivity update becomes lessaccurate. On the other hand, if the

model responses to noise are not highly nonlinear, then performance loss with increasing

Ns does not occur. We observe this effect in this case study; thestate profiles generated

with differentNs remain similar in all noise cases.

For the serial approach, we also worked on the nominal case with pure setpoint change

and its performance is identical to the parallel approach. In case of measurement noise

or plant-model mismatch, ifNs ≥ 1, the NLP sensitivity needs to be updated. Because

general implementation of the Schur complement sensitivity modification is part of our

future work, the serial case with noise is not presented here.

6.2.3 asNMPC/amsNMPC on Grimm Examples

As shown in [24], ISS may be lost if there are state constraints, or terminal constraints

coupled with short optimization horizons. This necessarily leads to a discontinuous feed-

back law and cost function. However, with reformulation, robustness could be obtained.

One way is to use a horizon long enough such that an optimal solution is obtained. This

gives the controller more degrees of freedom to move around.The other way is to apply

soft constraints on states or outputs and add penalties to the objective function, as stated in

Chapter 4.

In [24], Grimm et al. demonstrated three NMPC examples that lack robustness because of

state constraints, terminal region or a short horizon. In Chapter 4 we study those examples

and show that robustness could be obtained by applying a longer horizon or reformulating
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Figure 6.7: 1% additive noise. The results of ideal NMPC are shown in gray; the results of

the parallel amsNMPC are shown in blue, red and green withNs= 1,2,3.
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Figure 6.8: 3% additive noise. The results of ideal NMPC are shown in gray; the results of

the parallel amsNMPC are shown in blue, red and green withNs= 1,2,3.
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Figure 6.9: 5% additive noise. The results of ideal NMPC are shown in gray; the results of

the parallel amsNMPC are shown in blue, red and green withNs= 1,2,3.
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the NLP with soft constraints. In this chapter we are going toshow that robustness will not

be lost if asNMPC or amsNMPC are applied.

Example 1: Artstein’s circles with state constraints

In Chapter 4 we have shown that by reformulating the MPC problem with soft constraints

robustness is obtained. Here we show that applying amsNMPC will not deteriorate robust-

ness.

Again we introduce additive disturbance, which is Gaussiannoise with zero mean and stan-

dard deviation of 0.05. Horizon length isN = 10 and simulation time is 30. We choose

Ns = 1,2,3. The MPC is reformulated with soft constraints. The results are plotted in

Fig. 6.10. From Fig. 6.10(a) we could see that amsNMPC with differentNs lead to the sim-

ilar results as iNMPC, so robustness is preserved; and it could be observed in Fig. 6.10(b)

that the control profiles generated withNs= 1,Ns= 2,Ns= 3 are very close.
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Figure 6.10: Trajectory ofx andu with soft constraints. iNMPC is shown in blue;Ns = 1

(asNMPC) is shown in red;Ns= 2 is shown in green;Ns = 3 is shown in magenta.
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Example 2: origin as terminal constraint

In order to show that applying the advanced step strategy will not deteriorate robustness,

we study the following cases:

1. Apply amsNMPC withNs = 1,3 to the problem with only hard constraints and with

N = 10;

2. Apply asNMPC to the soft constrained problem withN = 2.

N = 10, amsNMPC with Ns = 1,3, no soft constraints In this case the robustness is

obtained by using a long enough horizon withN = 10. The noise is additive disturbance,

which is zero mean Gaussian noise with standard deviation of0.05. We then increase the

standard deviation to 0.5 and observe that the states still converge to the origin, shown

in Fig. 6.11(a). Then we apply asNMPC and amsNMPC withN = 3 and observe that

robustness is not lost when the advanced-step strategy is applied. However we could see

that the state converges the fastest without the advanced-step strategies.

N = 2, asNMPC, with soft constraints In this case the horizon lengthN = 2 and ro-

bustness is obtained by use of soft constraints. We increasethe standard deviation of

the noise from 0.05 to 0.5 and observe that the states still converge to the origin, shown

in Fig. 6.11(b). Then we apply asNMPC and observe that robustness is not lost when

the advanced-step strategy is applied. And again the state converges faster without the

advanced-step strategy.
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Figure 6.11: Trajectory ofx. N = 2 without soft constraint is shown in blue; noise standard

deviation=0.05 is shown in green; noise standard deviation=0.25 is shown in red.

Example 3: unit disk as terminal constraint

In order to show that applying the advanced step strategy will not deteriorate robustness,

we study the following cases:

1. Apply amsNMPC withNs = 1,2,3 to the problem with only hard constraints and

with N = 10;

2. Apply asNMPC to the soft constrained problem withN = 2.

N = 10, amsNMPC with Ns = 1,2,3, no soft constraints In this case the robustness

is obtained by using a long enough horizonN = 10. The noise is additive disturbance,

which is zero mean Gaussian noise with standard deviation of0.01. We then increase the

standard deviation to 0.25 and observe that|x| decreases to 0 and the states converge to

the origin, shown in Fig. 6.12. It is worth pointing out that with a larger level of noise|x|

decreases to 0 at a lower rate and may grow before it eventually decreases to 0. Then we
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apply asNMPC and amsNMPC withN = 2,3 and observe that robustness is not lost when

the advanced-step strategy is applied.
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Figure 6.12:N = 10, amsNMPC, no soft constraints, noise=0.01 or 0.25.

N = 2, asNMPC, with soft constraints In this case the horizon lengthN = 2 and ro-

bustness is obtained by use of soft constraints. We increasethe standard deviation of the

noise from 0.01 to 0.25 and observe that the states still converges to the origin,shown

in Fig. 6.13. Then we apply asNMPC and observe that robustness is not lost when the

advanced-step strategy is applied. It is worth pointing outthat with a larger level of noise,

the convergence rate is smaller. Moreover, if we compare Fig. 6.13(a) with Fig. 6.12(a), we

could see that when the standard deviation of noise is 0.25, case 2 converges more slowly

than case 1, but there are fewer oscillations when|x| gets small.

6.3 Concluding Remarks

In this chapter we show the performance of iNMPC, asNMPC and amsNMPC with a CSTR

model and a large-scale distillation column model. By applying different levels of measure-
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Figure 6.13:N = 2, asNMPC, with soft constraints, noise=0.01 or 0.25.

ment noise and different values ofNs to models with different nonlinearity, we observe that

when there is no uncertainty in the system, the performance of iNMPC, asNMPC and am-

sNMPC are identical. Moreover, amsNMPC behaves similarly as iNMPC and asNMPC

when the model nonlinearity is not strong or with small measurement noise orNs value.

However, with large measurement noise and a strongly nonlinear system, the memory effect

becomes more significant with increasingNs. As a result the performance of amsNMPC

deteriorates.

We also show that for MPC formulations that lack robustness,robustness could be obtained

by using a longer horizon or reformulating the NLP with soft constraints andℓ1 penalties.

Moreover, robustness will not be lost when the advanced-(multi-)step strategy is applied.
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Chapter 7

Economic Nonlinear Model Predictive

Control

In this chapter we discuss the formulation of Economic NMPC.It is formulated by com-

bining the two-layer RTO advanced control approach that we discussed in Chapter 1. First,

real-time optimization (RTO) optimizes an economic objective with steady state models,

leading to a setpoint handled by the lower-level control layer. The advanced control layer

(using, e.g., NMPC) then tracks the setpoint to achieve a newsteady state. However, this

two-layer approach assumes that model disturbances and transients are neglected in the

RTO layer [17]. Moreover, model inconsistency between layers and unresolved transient

behavior may lead to unreachable setpoints [54]. Also, since the control layer has no infor-

mation on dynamic economic performance, it may generate trajectories that simply track

suboptimal setpoints to steady state [51, 31].

Recent studies on dynamic real-time optimization (D-RTO) have reported significant per-

formance improvements with economically-oriented NMPC formulations [59, 51, 17, 2].

It uses economic stage costs to drive the controller directly. As a result, Economic NMPC

usually leads to better economic performance. However, unlike setpoint tracking NMPC,

there are no tracking terms in the objective function and no terminal constraints. Therefore,

the system may not converge to a steady state, and instability occurs. Therefore, stability

theory supporting economically-oriented NMPC requires development beyond the mature
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results for setpoint tracking based on a discrete Lyapunov analysis. This problem formu-

lation and stability analysis must be modified to ensure a stable and robust D-RTO imple-

mentation, especially if optimum steady state operation isexpected. In this chapter, we

propose a strategy to guarantee stability of Economic NMPC,and apply two case studies

to evaluate the stabilizing strategy.

7.1 Formulation and Lyapunov Stability Analysis

The Economic NMPC problems have the same general formulation as (2.4). It usually

shares the same model and constraints as NMPC, but the tracking terms in the objective

function are replaced by economic stage cost, such as net profit. Additional variable bounds

might also be added to make the problem formulation more practical. Such a controller for-

mulation maximizes an economic objective while accounts for disturbances simultaneously

using a well-tuned dynamic process model. As explored in [7], this formulation may lead

to significant improvements in process performance. In particular,artificial setpointsused

in (4.3) and determined from a steady state optimization areno longer needed. This sin-

gle stage D-RTO thus has advantages over conventional RTO because the NMPC profile

is driven by economic stage costs instead of mere tracking terms. As a result, this usually

leads to better economic performance. In fact, significant differences between tracking to

optimal steady set points and economic NMPC were observed inthe case studies in [2],

even for nominal cases.

However, Economic NMPC is not as simple as replacing the stage costs in (2.4). Un-

like setpoint tracking NMPC, the stability analysis of the Economic NMPC is difficult,

mostly because the objective functions would not satisfy the conditions of Lyapunov func-

tions (Assumption 2 in Chapter 4), and cannot be used as the Lyapunov function directly.
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Therefore, we need to define an appropriate Lyapunov function such that stability can be

guaranteed. Stability properties of different formulations of economically oriented NMPC

have been studied in [13] with the assumption of strong duality of steady-state problem. In

[4] and [28], the assumption of strong duality is replaced bydissipativity and strong sec-

ond order conditions, respectively, and it is proved that the best feasible equilibrium state

is asymptotically stable with terminal region. Rawlings etal. proposed a setpoint track-

ing controller in [52], which handles unreachable setpoints better than traditional setpoint

tracking controllers, and discuss its nominal stability. However the cost function is not

strictly decreasing, so the Lyapunov stability theories for stability analysis no longer apply.

Huang and Biegler proposed a Economic NMPC controller for a cyclic process by adding

a periodic constraint and proved its nominal stability in [27]. Huang et al [29] studied both

nominal and robust stability properties of an Economic NMPCwith infinite horizon for

cyclic processes.

We assume that Economic NMPC drives the process to a steady state. There are several

reasons for making this assumption. In particular, production planning with economic

models over long time scales is based on steady state models,and consistency with these

models must be ensured. Also, plant stability and robustness are easier to analyze under

steady state assumptions. Finally, steady state (or cyclicsteady state) operation is easier to

monitor, analyze and manage.

To ensure that Economic NMPC converges to steady state we revisit NMPC stability anal-

ysis through the following constructions from [13]. We firstdefine the steady state problem

and establish a suitable Lyapunov function by subtracting the optimal steady state from the

original system and adding arotatedterm. Here, the original system is asymptotically sta-

ble at the optimum if the rotated system is asymptotically stable at the origin. In addition,

we observe that the rotated Lyapunov function is strictly decreasing.
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To define implicit reference values for the states and controls, we consider the steady state

optimization problem given by:

minψ(z,v), s.t.z= f (z,v),z∈ X,v∈ U (7.1)

with the solution given by(z∗,v∗). We then define the rotated stateszl and controlsvl by

subtracting the optimum steady state from the predicted values of Problem (2.4):

z̄l = zl −z∗, v̄l = vl −v∗ (7.2)

and the transformed state evolves according to

z̄l+1 = f̄ (z̄l , v̄l ) = f (z̄l +z∗, v̄l +v∗)−z∗ (7.3)

and z̄l ∈ X̄ and ūl ∈ Ū, whereX̄ and Ū are the corresponding sets for the transformed

system. Similarly we define the transformed stage cost and terminal cost as:

ψ̄(z̄l , v̄l ) = ψ(z̄l +z∗, v̄l +v∗)−ψ(z∗,v∗) (7.4)

Ψ̄(z̄N) = Ψ(z̄N +z∗)−Ψ(z∗) (7.5)

At the optimal steady state of (7.1),zl = z∗, vl = v∗, therefore ¯zl = 0, v̄l = 0, z̄l+1 =

f (z∗,v∗)− z∗ = z∗− z∗ = 0; (0,0) is the optimal steady state for the transformed system.

Moreover we have

ψ̄(0,0) = ψ(z∗,v∗)−ψ(z∗,v∗) = 0

Ψ̄(0) = Ψ(z∗)−Ψ(z∗) = 0

The transformed iNMPC NLP is now given by:

min Ψ̄(z̄N)+
N

∑
l=0

ψ̄(z̄l , v̄l ) (7.6)

s.t. z̄l+1 = f̄ (z̄l , v̄l ), l = 0, . . . ,N

z̄0 = x(k)−x∗(k), z̄l ∈ X̄, v̄l ∈ Ū, z̄N ∈ X̄ f ,
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And we reformulate Problem (7.6) to the formulation of Problem (4.3) by using soft con-

straints and adding penalty terms to the objective function. ThereforeX̄= ℜn.

Being the transformed stage costs and terminal cost,ψ̄ andΨ̄ may not hold for Assumption

2. As shown in [13, 31], we introduce the rotated stage costs and terminal cost:

L(z̄l , v̄l ) = ψ̄(z̄l , v̄l)+λ ∗,T(z̄l − f̄ (z̄l , v̄l)) (7.7)

L f (z̄) = Ψ̄(z̄)+λ ∗,T z̄. (7.8)

whereλ ∗ is the Lagrange multiplier of the equality constraint in (7.1). It is shown in [13,

31] that substitution ofL(z̄l , v̄l ) andL f (z̄N) does not change the optimal solution of (7.6).

Therefore, we could analyze the stability property of (7.6)while substitutingψ̄(z̄l , v̄l ) and

Ψ̄(z̄N) with L(z̄l , v̄l ) andL f (z̄N). If L(z̄l , v̄l ) andL f (z̄N) are strongly convex, Assumption 2

is satisfied. Therefore Problem (7.6) is asymptotically stable.

On the other hand, ifL(z̄l , v̄l) andL f (z̄N) are not strongly convex, regularization terms must

be added to the original stage cost:

ϕ(zl ,vl ) := ψ(zl ,vl)+1/2‖zl −z∗,vl −v∗‖2
Q (7.9)

Q has to be large enough forL(z̄l , v̄l ) andL f (z̄N) to be strongly convex. However, ifQ is

too large, economic performance might deteriorate. We use the Gershgorin theorem to find

the ‘minimal’ Q to makeL strongly convex.

As stated by the Gershgorin theorem, the eigenvaluesσi of a matrixA= ∇2L(z̄l , v̄l) satisfy

the following inequalities:

ai,i −∑
i 6= j

|ai, j | ≤ σi ≤ ai,i +∑
i 6= j

|ai, j |. (7.10)

whereai,i are diagonal elements ofA andai, j are non-diagonal elements. If we addQ, a

diagonal matrix withqi on its diagonal, the eigenvalues ofA+Q, which areσi +qi , have
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to satisfy

0< qi +ai,i −∑
i 6= j

|ai, j | ≤ σi +qi , (7.11)

In order for the newL to be strongly convex,A+Q has to be positive definite, therefore

σi +qi has to be positive, i.e.,qi > ∑i 6= j |ai, j |−ai,i . And (7.11) has to be satisfied for every

z andv. Next we evaluate the effect of regularization terms with two case studies.

7.2 Case Studies

7.2.1 CSTR

We illustrate some of the above concepts on a case study of a CSTR from [13] with a first

order reactionA→ B. From a mass balance, we derive the following dynamic model

dcA

dt
=

ṁ
V
(cA f −cA)−kcA

dcB

dt
=

ṁ
V
(−cB)+kcA.

(7.12)

HerecA andcB denote the concentrations of components A and B, respectively. The reactor

volume isV = 10 l, and the rate constantk = 1.2 l/(mol·min). Further,ṁ denotes the

manipulated input in l/min, andcA f = 1mol/l denotes the feed concentration. Using state

feedback NMPC, the economic stage cost in (7.1) is selected as

ψ(cA,cB,ṁ) =−ṁ

(

2cB−
1
2

)

. (7.13)

Different from [13], we set the variable bounds as:

10≤ ṁ≤ 20 (7.14)

0.45≤ cB ≤ 1, (7.15)
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When large disturbances occur, variable bounds might be violated. Due to physical reasons,

bounds on manipulated variables cannot be violated (hard constraints); the violation of state

variable bounds may be tolerated when necessary. Thereforewe treat the bounds ofcB as

soft constraints. As described in Chapter 2 and [12], we add anon-negative slack variable

ε to the lower and upper bounds ofcB,

0.45− ε ≤ cB ≤ 1+ ε, (7.16)

and we add an exactℓ1 penalty function that contains the slack variable to the stage cost:

ψ(cA,cB,ṁ) =−ṁ

(

2cB−
1
2

)

+ρε (7.17)

whereρ is a number large enough to driveε to zero. In our case we setρ = 1000. Also, we

note that the optimal steady states (from Problem (7.1)), arec∗A = 0.5,c∗B = 0.5,ṁ∗ = 12.

Regularization of the Stage Cost

To ensure that the rotated stage cost is strongly convex, regularization terms1
2[qA(cA −

c∗A)
2+qB(cB−c∗B)

2+qṁ(ṁ− ṁ∗)2] are added to the stage cost.

It can be shown that the Hessian matrix of the steady state optimization problem with

regularized stage cost is

∇2V = A+Q=











qA 0 1

0 qB 0

1 0 qṁ











(7.18)

and we find the following Gershgorin bounds:

qA > 1,qB > 0,qṁ> 1 (7.19)

Moreover, through an eigenvalue calculation, we can find smallest positive weights so that

qA+qB+Qṁ is minimized, while ensuring thatA+Q is positive definite. These weights

correspond exactly to the bounds determined in (7.19).
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Simulation Results

Our simulation results are organized such that we first demonstrate the effect of regular-

ization on the CSTR with ideal NMPC with different levels of measurement noise and

regularization weights. Then we proceed to show results forasNMPC where measurement

noise causes the active set to change.

Effect of Regularization From the Gershgorin bounds, we setqA = 1+δ , qṁ = 1+δ ,

qB = δ . Forδ > 0 we have strong convexity. The prediction horizon is chosenasN = 30

and we simulate for 50 sample times.

Perfect case, no measurement noise

We assume that all the states are known exactly, and start with the scenario where the

model is known completely and there is no measurement noise.We consider different

regularizations, starting with the limit, where we set the value ofδ = 0, and compare it

with δ = 5× 10−4 and with the original weighting factorsqi=A,B,ṁ = 1.1 used in [13].

Finally, we consider the case without any regularization, i.e. qi=A,B,ṁ= 0.

Figure 7.1 shows the state profiles and control profiles obtained by simulating the CSTR in

closed loop with different weights on regularization terms.

From Figure 7.1 it can be seen that when we regularize, whereδ > 0, the Gershgorin

weights are large enough so that their effects are the same aswith the weights in [13]; i.e.,

the system is stable.

Note that when we haveδ = 0, Equation (7.19) is “almost satisfied”; thus the state profile

is identical as withqi = 1.1, but a few oscillations are observed in the control profile.These

oscillations disappear as we increase time horizon.
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Figure 7.1: Ideal NMPC, no measurement noise. The results with qi=A,B,ṁ= 1.1 are shown

in blue; with qA = qṁ = 0.5+5×10−4,qB = 5×10−4 is shown in red; withqA = qṁ =

0.5,qB = 0 is shown in green; and withqi=A,B,ṁ= 0 is shown in magenta.
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Table 7.1: Cost of ideal NMPC with different noise levels

Cost with No noise 1% noise 5% noise

No regularization qi=A,B,ṁ= 0 -147.35 -146.90 -144.95

Marginal regularization δ = 0 -147.35 -146.90 -145.20

Small regularization δ = 0.0005 -147.35 -146.90 -145.20

Large regularization qi=A,B,ṁ= 1.1 -147.35 -146.90 -145.20

In the case without any regularization at all,qi=A,B,ṁ = 0 we have an oscillatory control

action at the beginning, and it takes time for the manipulated variable to converge to their

steady state optimal values. Note that convergence to the steady state optimal values is

not a general property of unregularized Economic NMPC. As Angeli et al. [4] have shown,

there may also be cases, where a lower cost can be observed by not converging to the steady

state optimal values.

The third column in Table 7.1 shows the accumulated stage cost ∑50
k=1[−ṁk(2cB,k−

1
2)]. It

can be observed that the costs of all the cases are identical.Without noise, slack variables

ε of all cases are zero, and the state and control profiles with all weighting factors except

qi = 0 are the same, so the stage costs should be the same. Without any regularization

qi = 0, the state profiles are identical to the other cases, while the control profile above

ṁ∗ = 12 cancels with the profile below ˙m∗ = 12 in order to yield the same accumulated

cost.

Cases with measurement noise at different levels

For the two states we add measurement noise with standard deviations at 1% of their equi-

librium points. Figure 7.2 shows the state profiles and control profiles. From Figure 7.2
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Figure 7.2: Ideal NMPC, 1% of measurement noise. The resultswith qi=A,B,ṁ = 1.1 are

shown in blue; withqA = qṁ = 0.5+5×10−4,qB = 5×10−4 is shown in red; withqA =

qṁ = 0.5,qB = 0 is shown in green; and withqi=A,B,ṁ= 0 is shown in magenta.
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we observe that because of the measurement noise, control profiles differ with different

weights. But the difference is very small when (7.19) is satisfied. Without any regulariza-

tion terms,qi=A,B,ṁ = 0, there are oscillations in the control profile, which leadsto small

oscillations in the state profiles. Table 7.1 shows the accumulated stage costs. It can be seen

that all of the accumulated stage costs are essentially the same for all weighting factors.

However, even with a small level of measurement noise (1%), the lack of regularization

(qi=A,B,ṁ= 0) leads to significant oscillations in its control profile, which is unacceptable.

We then increase noise level to 5% of the equilibrium points.Figure 7.3 shows the state

and control profiles. As the noise level increases, oscillations are larger in the control

profile, which lead to larger oscillations in the state profiles compared with Figure 7.2.

Table 7.1 shows the accumulated stage costs for this case, too. One would expect that these
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Figure 7.3: Ideal NMPC, 5% of measurement noise. The resultswith qi=A,B,ṁ = 1.1 are

shown in blue; withqA = qṁ = 0.5+5×10−4,qB = 5×10−4 is shown in red; withqA =

qṁ = 0.5,qB = 0 is shown in green; and withqi=A,B,ṁ= 0 is shown in magenta.

costs would decrease with decreasing weights on regularization terms. However, it seems
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that regularization makes a positive contribution in the presence of measurement noise.

Without regularization, i.e.qi=A,B,ṁ = 0, the controller is not stabilizing, and we observe

that its accumulated stage cost is the highest.

Moreover, from Table 7.1 we observe that accumulated stage costs tend to increase with

increased noise levels. This is because the controller is optimizing based on incorrect

information (without knowledge of the noise), so performance deteriorates with increased

noise.

Advanced-step NMPC with Economic Stage Costs In this section we study the perfor-

mance of asNMPC, where the noise level of 5 % is chosen so that the active sets differ for

the predicted problem and the actual problem, for which a sensitivity based approximated

solution is found. We setqi=A,B,ṁ = 1.1 so that the controller is stable if optimal manip-

ulated variables are injected. To better demonstrate the effect, we zoom into the first 12

sample times of closed loop simulations, and apply the advanced-step NMPC strategy to

the CSTR example. We show results for three cases:

Case 1 Ideal NMPC, as a benchmark.

Case 2 asNMPC, using the sensitivity calculation using sIPOPT [48], based on the implicit

function theorem (3.23). (Since this controller may violate bounds on manipulated

variables, it should not be implemented in practice.)

Case 3 asNMPC, as in Case 2, but with the manipulated variables v0 outside the bounds

“clipped” to remain within bounds[58].

Figure 7.4 shows the state and input trajectories of the different cases. In particular, the

lower bound ofṁ becomes active attime= 2, and it is violated for Case 2 when (3.23)

is applied directly. This follows because the lower bound isinactiveat time= 1 and the
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sensitivity prediction from (3.23) leads to a large (and inaccurate) step that does not include

the lower bound, and consequently violates it. This violation is corrected by clipping (Case

3). The heuristic clipping approach gives good results in this case-study, and has been

shown to perform well also in other contexts with input constraints [58].
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Figure 7.4: Comparison of the four cases, 5% of measurement noise. Case 1 is plotted in

blue; Case 2 is plotted in red; Case 3 is plotted in green.

Table 7.2 shows accumulated stage costs of Cases 1 and 3. The cost of Case 2 is not given

as it is infeasible. Interestingly, the ideal NMPC has the highest cost. Here the noise is

not predictable, and its effect on the cost may be positive ornegative. For this example it

turns out that the effect of noise makes Ideal NMPC peform slightly worse. Note however,

that the absolute difference in costs is very small. Finally, when these simulations are

performed without measurement noise (no active set changes), we observe no differences

between Cases 1 to 3.
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Table 7.2: Cost of Economic asNMPC with 5% measurement noiseandqi=A,B,ṁ= 1.1

Controller Cost

Ideal NMPC -33.00

Clipping asNMPC -33.15

7.2.2 Distillation Column Case Study for Economic NMPC

We illustrate stability concepts for Economic NMPC on a distillation column case study

described in [37]. The model is composed of two distillationcolumns in sequence with a

ternary component system. The three components are A, B and C, where A is the lightest

component, B is the middle one and C is the heaviest component. B is the most valuable

product. For our example the three components are benzene (A), toluene (B) and p-xylene

(C). Each column has 41 trays including the total condenser and the partial reboiler; the feed

enters column 1 at stage 21, and the bottom product from column 1 enters column 2 at stage

21. Component A leaves the first column from the top; the bottom flow of the first column

becomes the feed of the second column; component B leaves thesecond column from the

top and component C leaves the second column from the bottom.The molar holdups in the

condenser drums and reboilers are assumed to be controlled by the distillate and bottom

flow rates, respectively. Therefore manipulated variablesare u = [LT1,VB1,LT2,VB2]

which are reflux and boilup for each column. The structure of the two columns in sequence

is shown in Fig. 7.5. The columns are modeled with ideal thermodynamics, assuming

constant relative volatility and vapor flow rate for all stages. The problem formulation is
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Figure 7.5: Structure of two distillation columns in sequence

given by:

min
u

J(u) = pFF + pV(VB1+VB2)− pAD1− pBD2− pCB2 (7.20)

s.t. Mass balance, Equilibrium

xA ≥ xA,min, xB ≥ xB,min, xC ≥ xC,min

0≤ LT1,LT2≤ LTmax, 0≤VB1,VB2≤VBmax

whereD andB are the distillate and bottom flow rate of each column;pF , pV , pA, pB, pC

are prices for the feed, vapor, component A, component B and component C; their values

and additional details of the model could be found in [37].

The Hessian matrix of the Lagrange function of the above steady state problem is not

positive definite withσmin=−1.414. Therefore if the current objective function is applied

by eNMPC, the optimum steady state cannot be reached, and thesystem is not Lyapunov

stable. Instead, the objective function must be modified to includeregularizedeconomic

stage costs. This ensures that the first and third items of Assumption 3 in Chapter 5 are
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satisfied. Moreover, through offline trials, we determined thatN = 20 is a sufficiently long

horizon so that the second item of Assumption 2 in Chapter 4 issatisfied as well.

In order to regularize the stage costs, we add quadratic terms to the objective function to

make the Hessian matrix positive definite. The regularization terms have the form of (7.9)

whereQ is a diagonal matrix and could be calculated by (7.11) for allvalues over a grid of

(z,v) over the entire domain. The objective function then becomes:

min
u

J(u) = pFF + pV(VB1+VB2)− pAD1− pBD2− pCB2

+
1
2
‖ z−z∗,v−v∗ ‖2

Q (7.21)

Since the size of the steady state problem is large (979 variables, 975 constraints), and

the Hessian matrix of the Lagrange function of the regularized steady state problem is not

constant but changes with different variable values, Gershgorin weights could not be cal-

culated directly. Therefore MATLAB was used along with AMPLto search for Gershgorin

weights. To ensure that the rotated stage cost is strongly convex, the Hessian has to be

positive definite with all possible values of variables. We divide the feasible value of each

variable into 40 grid points and calculate value of each element of the Hessian matrix at

each grid point. Finally, we have the following inequality:

qi ≥ ∑
i 6= j

max
z,y,v

|ai, j |−min
z,y,v

ai,i (7.22)

whereqi = Qii . To minimally regularize the economic stage costs we apply exact Gersh-

gorin weights calculated by

qi = ∑
i 6= j

max
z,y,v

|ai, j |−min
z,y,v

ai,i (7.23)

Q is calculated offline. We useQ∗ to indicate theQ matrix calculated using (7.23). Fig. 7.6

shows the logarithm of the diagonal elementsq∗i in ascending order. In Fig. 7.6, the line

does not start fromindex= 0. This is because someqi are 0 and as a result their logarithms
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Figure 7.6: Gershgorin weights in ascending order
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do not exist. We could see that about 300 of theseq∗i are greater than 1, among which there

are only about 50 that are greater than 100, and the rest of theqi are smaller than 1.

Next we show the effect of Gershgorin weights by comparing the state profiles generated

without and with regularization, and without and with disturbances.

This case study considers two cases: no disturbance, and 5% disturbance; in the second

case disturbances are introduced as additive noise. The disturbances are Gaussian noises

with zero mean, and their standard deviations are 5% of the optimum steady state value of

each state. For each case the objective function has three formulations: economic cost only,

economic cost plus regularization terms calculated by Gershgorin Theorem, and tracking

terms only. We start from a state that is not the optimum steady state and continue un-

til time= 100. Here, each of the 100 NMPC problems has 136154 variablesand 77754

constraints.

Fig.7.7 is generated without disturbance. From Fig.7.7(a)we could see that when the ob-

jective function is composed of only economic cost, as shownin blue, xA, which is the

composition of component A, drifts away from its optimum steady state, andxC, the com-

position of component C, diverges. If the objective only includes tracking terms, as shown

in green,xA, xB andxC converge from the starting point to the optimum steady statevery

fast, and as Fig.7.7(b) shows, the corresponding control profiles converge to their set points

very fast. If the objective includes both economic cost and regularization terms whose

weights are calculated using the Gershgorin Theorem,xA, xB andxC converge to the opti-

mum steady state very fast as well.

Next, instead of using the full value of Gershgorin weightsQ∗, we useα ×Q∗ instead,

whereα = 0.01,0.1,0.5, in order to show how the performance of Economic NMPC im-

proves with increasing regularization weights. The results are shown in Fig. 7.8.

From Fig. 7.8(b) we could see that the control profiles get much closer to the optimal
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Table 7.3: Cost of NMPC with different noise levels and regularization weights

Cost with No regularization 0.01×Q∗ 0.1×Q∗ 0.5×Q∗ Q∗ Tracking

No noise 2.476 -20.4 -22.09 -22.26 -22.27 -22.27

5% noise -19.97 -21.77 -22.97 -20.1 -22.03 -22.03

after regularization terms are added, even if the weights are small (α = 0.01). Then as

α increases the state profiles and control profiles get closer and closer to the economic

optimal steady state. Whenα = 0.5, the results are already very close to the results with

α = 1. In these casesσmin is not necessarily positive: withα = 0.01, σmin = −1.3992;

with α = 0.1, σmin = −1.2651; with α = 0.5, σmin = −0.6861; however the state and

control still converge to the steady state. This follows as positive definiteness ofL(z̄l , v̄l)

andL f (z̄N) are just sufficient conditions for stability of Economic NMPC. We could also

notice that the states and controls converge faster and closer with a larger value ofσmin.

In Table 7.3 we compare the time-accumulated economic cost,which is the objective func-

tion in (7.20), fromtime= 1 to time= 100. Here we observe that without regularization

terms, the state does not approach the optimum steady state,and the cost is the highest.

With regularization terms the cost is reduced significantly, and we can see how the cost

decreases with increasing regularization weights.

Fig.7.9 and Fig. 7.10 are generated with 5% additive noise. It could be observed in Fig.7.4(a)

that without regularization terms, the system is not Lyapunov stable; while regularization

terms are able to keep the state within a small region around the optimum steady state.

From Fig. 7.10(a) it could be seen that larger regularization weights keep the states closer

to the setpoints, although this is not as obvious as the nominal case. Again, in terms of

accumulated economic cost, the cost is reduced with regularization terms. However the
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Figure 7.7: No disturbance. The results without regularization terms are shown in blue; the

results with regularization terms calculated with Gershgorin Theorem are shown in red; the

results with only tracking terms are shown in green.
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Figure 7.8: No disturbance. Results with different partialvalues of Gershgorin weights.
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cost does not strictly decrease with increasing regularization weights because uncertainty

exists in the system.

Hence, without regularization, the controller is not Lyapunov stable. However, by adding

regularization terms to make the Hessian matrix of the Lagrange function of the steady

state problem positive definite, the controller could be stabilized at the optimum steady

state. Another observation worth mentioning is the significant improvement in CPU time.

Without regularization, it takes around 6 CPU mins to solve each NLP, while with reg-

ularization it only takes about 55 CPU seconds to solve each NLP. So CPU time drops

significantly with regularization terms. This is largely due to fewer inertia corrections of

the KKT matrix in IPOPT.

7.3 Concluding Remarks

In this chapter we analyze the nominal stability of EconomicNMPC. If the rotated stage

costL(z̄l , v̄l ) and rotated terminal costL f (z̄N) are strongly convex, the Economic NMPC

controller is stable. Otherwise regularization terms mustbe added to the original stage

costs and terminal cost. Moreover, we have presented a constructive way of calculating

a ’minimal’ stabilizing regularization and showed the effects of regularization terms and

different regularization weights.

On the other hand, unknown inputs and model parameters have astrong influence on the

steady state values(z∗,v∗) in the Economic NMPC regularization. In future, we plan to

handle these through on-line state and parameter estimation, where(z∗,v∗) are also updated

for each NMPC problem. For this, new state and parameter estimates will be used for

solution of the steady state optimization problem, in orderto update the regularized stage

costs. An alternative strategy is to come up with better regularization terms that do not
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Figure 7.9: 5% additive noise. The results without regularization terms are shown in blue;

the results with regularization terms calculated with Gershgorin Theorem are shown in red;

the results with only tracking terms are shown in green.
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Figure 7.10: 5% disturbance. Results with different partial values of Gershgorin weights.
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need(z∗,v∗). Also we plan to apply the advanced-multi-step approach to Eonomic NMPC

to solve large-scale Economic NMPC problems.
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Chapter 8

Conclusions

MPC has been widely applied in industry. For processes that are strongly nonlinear and

dynamic models are available, we could use NMPC instead. However, solution time of

NMPC problem is usually comparable to the sampling time of the process or even longer

due to the large size of the system. In this dissertation we propose the amsNMPC strategy

to handle this situation, analyze its stability propertiesand use case studies to evaluate its

performance.

It has been shown in [7], Economic NMPC may lead to significantimprovements in process

performance compared to the two-layer RTO approach. However, stability of Economic

NMPC remains a problem. We analyze nominal stability of Economic NMPC and propose

a strategy to stabilize unstable Economic NMPC.

In this chapter we summarize the results in each chapter and propose some future directions

that would be of interest.

8.1 Thesis Summary

Chapter 1 briefly introduces the hierarchy planning and operations structure of the oper-

ation of a chemical process. The combination of RTO and advanced control leads to the

discussion of Economic NMPC in Chapter 7. Our research problems are stated in this

chapter.
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Chapter 2 serves as literature review and introduces the background, applications, varia-

tions, general methodology, pros and cons of setpoint tracking NMPC.

Chapter 3 discusses methodologies to solve NLPs that contain DAEs. In this dissertation,

orthogonal collocation on finite elements is used to discretize DAEs and IPOPT, a solver

that uses interior point method, is used to to solve NLPs. Interior point method and NLP

sensitivity are also discussed in this chapter.

Chapter 4 briefly discusses some fast NMPC methods and then studies the reformulation of

NLPs with state constraints and terminal constraints. The reformulated NLP is then used

throughout this dissertation. The formulation, implementation and stability of asNMPC

are then discussed. Clipping is introduced and could be usedto prevent the bounds from

being violated. asNMPC lays the theoretical foundation foramsNMPC. The concepts,

assumptions and proofs of nominal and robust stabilities ofsetpoint tracking NMPC are

then presented and Lyapunov stability analysis of ideal NMPC and asNMPC is conducted.

Chapter 5 proposes the amsNMPC scheme to avoid computational delay for NLP problems

whose solutions require multiple sampling times. Two variants of amsNMPC, the parallel

and the serial, are developed. For the parallel approach multiple processors are applied and

an NLP problem is solved at every sampling time. For the serial approach only one pro-

cessor is applied and an NLP problem is solved everyNs sampling times. Both approaches

predict the initial condition of the moving horizon NLPNs sampling times in advance, and

update the manipulated variables at every sampling time using NLP sensitivity information.

We also prove nominal stability of both approaches. Moreover, in practice, disturbances

such as measurement noise and plant-model mismatch will affect the robustness of amsN-

MPC. We also prove robust stability when the uncertainty is give by additive disturbance.

Chapter 6 demonstrate the performance of amsNMPC compared to ideal NMPC and as-

NMPC with examples of a CSTR and a distillation column. Both examples illustrate that
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in the nominal case, or with small level of measurement noiseor plant-model mismatch,

amsNMPC withNs ≤ 3 behaves identically to ideal NMPC and asNMPC for all valuesof

Ns. However, performance deteriorates with increasing measurement noise, plant-model

mismatch andNs caused by memory effect, and large measurement noise and plant-model

mismatch will lead both approaches to fail. We also apply amsNMPC to a less nonlin-

ear case, and show that nonlinearity strongly affects the performance of amsNMPC. This

conclusion is observed from the distillation column example. Moreover, since the scale of

the distillation model is very large, the importance of amsNMPC is emphasized, and its

performance is also illustrated on such problems. In this chapter we also analyze the three

nonrobust MPC examples in [24]. We show that robustness could be obtained by either

using a longer horizon or reformulating the NLP with soft constraints andℓ1 penalty terms

in the objective function. Moreover, robustness is preserved when we apply the advanced

step or advanced multi step strategy.

Chapter 7 studies Economic NMPC. For Economic NMPC, economic stage costs are used

to drive the controller in the presence of disturbances. Economic NMPC has been applied

on energy intensive applications with volatile electricity price [28], cyclic processes [29]

and other areas [13, 4]. However, since stage costs are not quadratic terms, the objec-

tive function no longer satisfies Assumption 2 in Chapter 4 and conditions for Lyapunov

functions and the stability analysis becomes more difficult.

We revisit the NMPC stability analysis through the constructions from [13] and state that

if the rotated stage costs and rotated terminal costs of the transformed system, whose opti-

mal steady state is at the origin, are strongly convex, then the transformed system satisfies

Assumption 2 and thus is nominally stable. Therefore the original system, which has the

same stability property as the transformed system, is nominally stable as well. If the ro-

tated transformed stage costs and terminal costs are not convex, they should be regularized
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by adding setpoint tracking terms, whereas the setpoints are the optimal solution of the

original steady state problem. We also propose to use the Gershgorin Theorem to find the

“minimum” regulating weights that are sufficient for Lyapunov stability.

For case studies we include a CSTR example and a double-column example. Starting with

no regularization terms, we increase the regularization weights and show that the states

converge faster and the cost becomes lower as weights increase.

8.2 Contributions

The major contributions of this dissertation is listed as follows:

1. In Chapter 4 we show that for non-robust (N)MPC controllers, their robustness could

be obtained by selecting a long enough horizon or reformulating the NLP, replacing

state constraints or terminal constraints by soft constraints, and addingℓ1 penalty

terms to the stage costs or terminal costs. We study the threeexamples in [24] and

show that their robustness could be obtained using the abovestrategy. Moreover, in

Chapter 6 we show that when the advanced-step strategy is applied to those examples,

robustness is preserved.

2. In Chapter 4 we introduce the “clipping in first interval” method to prevent bounds

on manipulated variables from begin violated after sensitivity update. In Chapter 7

we use a toy CSTR example to show that with clipping the control bounds are not

violated. Moreover, since clipping is easy and fast, it is used in all the case studies in

this dissertation. Moreover, we also prove robust stability for asNMPC with clipping.

3. In Chapter 5 and Chapter 6 we propose the serial approach and the parallel approach

of amsNMPC and use case studies to evaluate its performance.When the solution
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time of the NLP (4.3) exceeds one sampling time, amsNMPC is used to avoid com-

putation delay and get real-time suboptimal result. We showthat for a less nonlinear

system, with small level of uncertainty, amsNMPC behaves almost identically to

ideal NMPC and asNMPC. For the serial approach this is a greatadvantage because

NLPs are solved less frequently and computational cost is reduced. When the sys-

tem is strongly nonlinear and uncertainty level is large, memory effect leads to worse

performance than ideal NMPC and asNMPC.

4. In Chapter 5 we prove the nominal stability for amsNMPC, including the serial ap-

proach and the parallel approach withN → ∞. We prove the robust stability for

amsNMPC under assumptions that limit memory effect.

5. In Chapter 7 we analyze criteria for Economic NMPC to be stable based on Lyapunov

stability analysis. If the Economic NMPC is unstable, we propose to add regulariza-

tion terms to objective function to stabilize it. Moreover,we use the Gershgorin

theorem to calculate the weights on regularization terms that leads to the optimal

economic performance while stability is guaranteed. We also prove the nominal and

robust stability for Economic NMPC therefore follows from Huang et al [29].

8.3 Recommendations for Future Work

In this dissertation we propose the amsNMPC algorithm to avoid computational delay when

the solution time isNs sampling times. We apply the parallel approach to a large-scale C3

splitter and use sIPOPT as the solver to get fast updated NLP solutions. We propose to

stabilize Economic NMPC by adding tracking terms to the objective where the setpoint is

obtained by solving an economic optimal steady state problem. There are more interesting

topics worth looking into in the future.
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1. Due to the size of the distillation column problem, instead of updating manipulated

variables manually using MATLAB, sIPOPT, the sensitivity extension to IPOPT, is

applied [48], and only the parallel approach is considered here. In future the serial

approach will be realized using the distillation column model with a Schur comple-

ment extension added to sIPOPT.

2. So farNs is chosen as the upper bound of the solution time and the NLP problems are

solved at a fixed frequency. However, amsNMPC could be extended to the case where

actual solution time can vary, so that the frequency to solvethe NLP problems could

be adjusted automatically. However, the predicted state should still beNs sampling

times ahead. Otherwise it can not be assured that the optimalsolution is always

available when the current actual state is obtained.

3. Economic NMPC has been shown to lead to better economic performance than the

two-layer RTO advanced control strategy. It will be interesting to study whether the

fast NMPC methods could be applied to Economic NNPC as well. Applying the

advanced-multi-step algorithm to Economic NMPC is not necessarily the same as

applying it to setpoint tracking NMPC because of stability issues. It is possible that

the bound onw in Assumption 4, Chapter 4 is tighter.

4. With our case studies it is assumed that the plant states are immediately available

at the beginning of each sampling time, and every state couldbe measured. This is

rarely true in practice, and a state observer is needed. Furthermore, a state observer

could also eliminate set point offsets in the presence of plant-model mismatch. More-

over, we would like to use state and parameter estimators to update(z∗,v∗) for each

NMPC problem to account for the influence that unknown inputsand parameters

have on the steady state values in regularization terms. Specifically we would like

to use moving horizon estimation (MHE) as the estimator and combine MHE with
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amsNMPC and Economic NMPC.

Moving Horizon Estimation ([53]) Since the initial condition of NMPC is the

state estimate, state estimation is required for NMPC. State estimation uses limited

input and output information as well as the process model to infer the state of the

process. MHE is an optimization based state estimation and has the advantage to

handle variable bounds. It is very similar to NMPC, but instead of predicting states

in the future, it uses outputs in history.

For MHE, other than the plant model, we introduce the output mapping into the plant

dynamics as the following:

x(k+1) = f (x(k),u(k)),x(k) ∈ X,u(k) ∈ U

y(k) = h(x)(k) (8.1)

wherey(k) is the output at timetk andh(·) : ℜnx 7→ ℜny is a nonlinear function that

maps states to outputs. Attk the following NLP is solved to get the state estimate:

min
x̂k−Ne+l

Ne

∑
l=0

[(yk−Ne+l − ŷk−Ne+l )
TΠy(yk−Ne+l − ŷk−Ne+l )]

+(x̂k−Ne − x̄k−Ne)
TΠ0(x̂k−Ne− x̄k−Ne) (8.2)

s.t. x̂k−Ne+l+1 = f (x̂k−Ne+l ,uk−Ne+l ))

ŷk−Ne+l = h(x̂k−Ne+l )

x̂k−Ne+l ∈ X, l = 0, ...,Ne.

whereNe is the estimation horizon length, ˆxk−Ne+ j , j = 0, . . . ,Ne is the estimation of

the state within the estimation horizon,Πy,Π0 are symmetric positive definite tuning

parameters.Π0 is called arrival cost and it corresponds to the terminal cost in the

formulation of NMPC problems. ¯xk−Ne is the most likely prior value ofxk−Ne and we
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choose ˆxk−Ne+1 from the previous MHE problem as ¯xk−Ne of the current MHE. By

solving this NLP (8.2) with the current measured output, thecurrent state estimate is

obtained.

Moreover, MHE has computational delay as well. So advanced-step strategy has

been applied to MHE in [26]. Moreover, we could apply the advanced-multi-step

approach to MHE in case the solution time of (8.2) exceeds onesampling time. Fi-

nally, it will be interesting to combine amsMHE with amsNMPCto solve Economic

NMPC problems and see if the application of advanced-multi-step strategy on both

MHE and NMPC will deteriorate stability of Economic NMPC.
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[15] Diehl, M., Bock, H., Schlöder, J. P., Findeisen, R., Nagy, Z. and Allgöwer, F. [2002],
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[52] Rawlings, J. B., Bonné, D., B.Jørgensen, J., Venkat, A. N. and Jørgensen, S. B.
[2008], ‘Unreachable setpoints in model predictive control’, IEEE Transactions on
Automatic Control53, 2209–2215.

[53] Rawlings, J. B. and Mayne, D. Q. [2009],Model predictive control: theory and de-
sign, Nob Hill Publishing, Madison.
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