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Abstract

This dissertation addresses two issues that arise in tldedfidéNonlinear Model Predictive
Control (NMPC): computational delay and stability of ecomeally oriented NMPC.

NMPC has gained wide attention through the application ofaglyic optimization. It has
the ability to handle variable bounds and multi-input-malitput systems. However, com-
putational delay caused by large size of nonlinear prograngiNLP) problems may lead
to deterioration of controller performance and systemiltyabln this thesis we propose
an advanced-multi-step formulation of NMPC (amsNMPC) bdaseNLP sensitivity. The
basic idea of amsNMPC is to solve a background NLP problendvamace to get predic-
tions of future manipulated variables. These are then @odatline using NLP sensitivity
when the actual states are obtained. This method could biedppoptimization problems
whose solutions require multiple sampling times. We theadyare the nominal and robust
stabilities of the two approaches. Two examples are studiedaluate the performance of
amsNMPC.

The ultimate goal of any operation strategy for a processtptato make profit. Tradi-
tionally this goal could be achieved by a two-layer Realei@ptimization (RTO) system,
where the upper layer solves a steady state problem aimiogtimizing economic per-
formance to get the optimal setpoints for the controlledaldes in the layer below. The
lower layer then keeps the controlled variables at theiegisetpoints using MPC/NMPC.
However, there are some problems with this two-layer stinectOne of the solutions is to
combine these two layers and include the economic critefii@ctly into the cost function
of the lower layer controller when an optimization-basedtoaler such as MPC is used.
This approach is often referred to as Economic MPC. The igstireEconomic NMPC is
that the controller may not be stable. In this dissertatierawalyze its Lyapunov stability
property and propose to stabilize it by adding quadraticlagzation terms to the objec-
tive function, and we also provide a method to calculate tlstrappropriate weights on
regularization terms to ensure the stability of Economic RB/while achieving the best
possible economic performance. Several challenging ¢adees are used to demonstrate
these concepts.
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Chapter 1

Introduction

In this chapter, we discuss the background of the reseaxblgmms in this dissertation.
The hierarchy of plant operations will be introduced witheanphasise on the two-layer
structure of Real-time Optimization (RTO). Then the reskaroblem is defined and the

thesis outline is listed.

1.1 Hierarchy Structure

The typical operation of a chemical process involves sévayars structured as a pyra-

mid. As shown in Fig. 1.1, it is composed of the following lesteplanning, scheduling,

Planning

/ Scheduling\
Aeal-time optimizaticA
/ Advanced control \
/ Basic regulatory control \

Figure 1.1: Optimization hierarchy
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1.1 HIERARCHY STRUCTURE

RTO, advanced control, and basic regulatory control. As wearirom top to bottom, the
decisions are generated at increased frequency. The ptalayier makes decisions about
production goals. For example, what products to producenamdmuch to produce, what
raw materials to buy and how much to buy. The time scale ofrphayis in terms of months
or weeks. The scheduling layer then makes decisions abeutdarrange the manufac-
turing sequence and when to start a process given the dearside by the planning layer.
This is usually determined by availability of equipmentbeTime scale of schedulingisin
terms of weeks or days. The two layers also provide parasete@conomic objective, e.g.,
prices of products and raw material, cost; and economictainss, e.g., amount of raw
material. Given such information, the RTO layer then getesraetpoints of the advanced
control layer aiming at optimizing economic performancehea presence of changes and
long term disturbances. The time scale of RTO is in terms af$ioThe advanced control
layer then makes control decisions to drive the system tedtpoint in the presence of
short-term disturbances. The time scale of advanced dastimterms of minutes. Then
the control decision is sent to the regulatory control laydrose time scale is in terms of

seconds.

1.1.1 Real-time Optimization (RTO)and Advanced Control

The RTO layer solves a steady state problem aiming at maxighrofit or minimizing
cost to generate setpoint of the advanced control layer.tWibdayer RTO and advanced

control structure is shown in Fig.1.2.

The RTO problem is usually a nonlinear programming (NLP)opgm with an economic
objective function. The process model included in the NLR s&eady state model. This
NLP is solved online on a scale of hours in order to generaedal-time set point consid-

ering the change in economic parameters and models, longeisturbances, etc.
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1.1 HIERARCHY STRUCTURE

Scheduling scheme

4

L . . P
Real-time |  Parameter Parameter
Optimization ) estimation

Set point

( Advanced ) L State [ . .
i - State estimation
control

| J \

H

Control

Disturbance [ | Measurement
) Plant

~—

Figure 1.2: Two-layer RTO and advanced control structure

The advanced control layer generates control actions tebets the lower layer of reg-
ulatory control. The most commonly used advanced contrallendustry is the Model
Predictive Controller (MPC). It utilizes a linear model bEtcontrolled system to generate
control decisions. Normally, in the areas such as refinirgm@trochemicals, the process
is slightly nonlinear, and a linearized model is used by MHAGwever, in areas such as
chemicals, polymers, gas plants and pulp & paper, procesgestrongly nonlinear. In
this case MPC has not been applied yet. However, if we havdythamic model of the

nonlinear processes, Nonlinear MPC (NMPC) could be usddads

MPC uses a dynamic model of the process to predict futureviimhaf the process over
a time horizon. It then solves an NLP to generate the contibbras within this horizon
that leads to the shortest transition time or minimal cdreffort. Besides the dynamic
model, current state is also required as the initial cooditif the NLP. However in reality,
current state is not measured directly. The output of thetpéameasurement, then state is
estimated by a state estimator using the output measuremedrnhe dynamic model. The

estimated state is then sent to the advanced controlleeascthal state. Some commonly
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1.2 RESEARCHPROBLEM STATEMENT

used state estimators are Extended Kalman Filter (EKF)¢céhted Kalman Filter (UKF),
and Moving Horizon Estimation (MHE). There are a lot of irgting research topics in
the field of state estimation, but in this dissertation waiaen NMPC and assume that all

the actual states are already obtained by state estimation.

Due to the formulation of the NLP, MPC has a lot of advantagespared to classical con-
trollers, such as PID controllers. MPC could control muiput-multi-output systems with
no decoupling needed; and it could handle bounds on statgsjts and inputs. Therefore

MPC has become the current dominant practice in the proodsstiry.

There are several problems with the current two-layer RT@aatvanced control structure.
First, the RTO layer has no information on real-time distumtes in the plant. As a result,
the steady state it generates may not be economically ogtirtfze presence of real-time
disturbance. Second, the RTO layer and control layer hdfezelnt time scales. Therefore,
delay on the RTO layer is inevitable. Finally, model incatesncy between the two layers
and unresolved transient behavior may lead to unreachetpeiats. Therefore the com-
bination of these two parts has ignited people’s interestise recent decades, which is the
idea of Economic NMPC (eNMPC). Due to its formulation, it boptimize economic
profit while driving the system to its steady state in the pneg of dynamic disturbances.

We will discuss more about eNMPC in Chapter 7.

1.2 Research Problem Statement

Normally, the solution time of NLP problems are not negligildf the scale of the system
is very large, solution time of the NLP is usually comparaileor even longer than the
sampling time. As a result, there is time delay between thne that the input is imple-

mented and the time that the plant state is obtained. Thaydell lead to incorrect control
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1.3 THESISOUTLINE

actions which will deteriorate the controller performamrel even system stability.

There are a lot of fast NMPC methods to handle computatioglalydwhich will be dis-
cussed in Chapter 4. And we also propose a fast NMPC methazhwdikes advantage of
the existing fast NMPC methods and allows the NLP to be sobaand one sampling

time.

Economic NMPC aims at maximizing economic profit directlync® the setpoint is not
known in advance, there are no setpoints or terminal regamnsulated in the NLP. Sta-
bility analysis of setpoint tracking NMPC has been well bBthed because its objective
function, which is composed of quadratic tracking termtsfias some certain criteria that
will be introduced in Chapter 4. However, the stability asse of setpoint tracing NMPC
cannot be directly applied to Economic NMPC because sireelfective function is com-
posed of economic terms, those criteria may not be satidfigtis dissertation we propose
a scheme to analyze the stability of an Economic NMPC cdetrd\loreover, if the con-
troller is unstable, we propose a method to stabilize it g/bibtaining optimal economic

performance.

1.3 Thesis Outline

This dissertation is organized as follows:

Chapter 2 provides literature review of MPC and NMPC. Thgiagl work and variations
of MPC and NMPC are discussed. The commonly used notati@ss¢ iormulation of

process model and NMPC are also introduced.

Chapter 3 provides numerical methods we use to solve diffialealgebraic equations
(DAEs) and NLPs. In particular, orthogonal collocation armité elements is used to dis-

cretize the time-continuous DAE models and the interionpaiethod is used to solve
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1.3 THESISOUTLINE

NLPs. These methods are discussed in detail in this chaptten we discuss NLP sensi-
tivity, which is a very important concept that is utilizedadvanced-step NMPC (asNMPC),
Chapter 4 and advanced-multi-step NMPC (amsNMPC), Ch&apt&OPT, an NLP solver
that uses interior point method, and sIPOPT, an IPOPT uetkat utilizes NLP sensitivity,

are also introduced.

Chapter 4 discusses fast NMPC strategies and Lyapunovistanalysis. To avoid de-
lay that occurs due to non-negligible computational tinevesal fast NMPC methods are
proposed by different research groups all over the worldtanek of them are discussed
in this chapter. Then reformulation of NLPs using soft caaists is introduced. We also
present the formulation and implementation of asNMPC, aN&8PC method proposed
by Zavala, a previous member in the Biegler group, which tagsoundation of the work
in this dissertation. Then we introduce the concept of Lyewstability and analyze nom-
inal and robust stabilities of ideal NMPC and asNMPC. Whertigeuss robust stability
of ideal NMPC we study three toy examples to show that rolmssticould be obtained by
using a longer NLP horizon or reformulating the NLP with sainstraints and, penalty

terms.

Chapter 5 presents the two approaches of advanced-nmethNSVIPC, the serial approach
and the parallel approach. amsNMPC avoids computatioraly d®/ solving NLPs in
advance with predictions of future states as initial candg. In order to transit smoothly
from asNMPC to amsNMPC, we start with blocked amsNMPC, wiiasNMPC but with
longer sampling time. Stability of the blocked amsNMPC scdissed first, which will be
used as a reference when stability of the two approachesnaigzad. Implementations

and stability analysis of the two different approaches #&seussed.

Chapter 6 compares the performance of ideal NMPC, asNNR(dtallel approach and

the serial approach. Two nonlinear cases, a continuousdtiank reactor (CSTR) and
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1.3 THESISOUTLINE

a large-scale propane-propylene distillation column (@l&ter), are studied. Both the
serial and the parallel approaches are applied to the CSaR@e to show the pros and
cons of amsNMPC. The C3 splitter, which has 79750 variabiels/®700 constraints and
whose NLP solution time exceeds one sampling time, is ussddw the capability of the
parallel approach on large-scale systems. Moreover, weagigly asNMPC/amsNMPC to
the three toy examples studied in Chapter 4 and show thastnodss is preserved when

asNMPC or amsNMPC is applied.

Chapter 7 presents Economic NMPC. Economic NMPC has adyestaver traditional
two-layer RTO advanced control structure because it drikiescontroller directly with
economic stage costs. However, a critical issue of EcondiWPC is that stability cannot
be guaranteed if there are only economic costs in the otsgeciVe propose a strategy to
stabilize an Economic NMPC controller. Moreover, we alsovide a method to obtain
the balance between optimizing economic profit and maimgithe stability of the con-
trolled system. Two case studies, a small CSTR and two ldistih columns in sequence,
which has 136154 variables and 77754 constraints, are askhtonstrate our stabilizing

strategy.

Chapter 8 concludes the dissertation by stating the comgu@marks of each chapter.
Then we discuss the contribution of our work and point outsfids directions for future

work.
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Chapter 2

Literature Review

Model predictive control (MPC) is a widely used feedback teoinstrategy. Compared
with classical controllers, it has the advantage of hagdliariable bounds and dealing
directly with multi-input-multi-output systems. Oftenadsto track setpoints, it solves an
optimization problem derived from dynamics of a real systéinthe system is nonlinear,
then a nonlinear programming (NLP) problem must be soheatjihg to nonlinear model

predictive control (NMPC) considered in our work.

2.1 Background

Before dynamic matrix control (DMC) was proposed in the 19{@1, 10]), the dominant
advanced control method in industry was proportionalgraederivative (PID) control.
The PID controller attempts to minimize the error betweenrtteasurement of the process
state and a setpoint. They are applicable to many contrddi@ms. However, they do
not have information about the exact process model andlysi@hot provide “optimal”
control and have difficulties in some situations, for examplhen the process is strongly
nonlinear, or there are large disturbances, etc. Also foulifimput-multi-output system,
decoupling is needed since PID controller works better faingle-input-single-output
system. So the dominant advanced control method has becM@avihich was proposed

in 1979 by Cutler and Ramaker [11].
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2.1 BACKGROUND

DMC is a model predictive controller. It generates contretidions by solving an opti-
mization problem to minimize the deviation between theestand their setpoint within
the shortest time or with the minimum control effort. It usesnear finite impulse or

step response model to represent the process and the @itoniproblem is solved by the
computer. The calculation of DMC decisions does not regdéeoupling and inequality
constraints are also considered when the optimizationi@nols solved. DMC has had a
significant impact on process industry. Up till now, DMC i thominant advanced pro-
cess controller that is widely applied in oil industry anewgtical industry. DMC is the first

generation of industrial MPC technology. Qin and Badgw&8][reviewed many MPC

technologies, and features of products that used thesedkeches developed by various

companies.

Model predictive control (MPC), on the other hand, is theagatization of DMC. Morari
and Lee summarized the past MPC development, currentlyirxigariations of MPC, and

future directions in [42]. The MPC formulation in [42] istex] as the following:

IN(X0) :rp(l)n Z) QX( +Z) HRW(i)
stx(k+1) = AxKk)+Bu(k), k=0,...,N—1
x0) = X
Ex(k)+Fukk) < (k). (2.2)

whereN is the length of the prediction horizon andis the length of the control horizon.
WhenN = oo, this problem is referred to as an infinite horizon problenor & infinite
horizon problem, stability is more likely to be guarantebdyever, it is not practical to
solve Problem (2.1) witiN = o numerically. Therefore the infinite horizon problem needs
to be reformulated to a finite horizon problem. The common isayg setm= N and use a
terminal cosk™ (N)Pyx(N) to replace the summatigFr® \ x" (i)Qx(i) +u' (i)Ru(i) where

P\ could be obtained by solving the Riccati equation.
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2.2 NONLINEAR PROGRAMMING (NLP) FORMULATION

More recently, MPC has been extended to Nonlinear Modelié&reel Control (NMPC)
in order to realize high-performance control of highly rinaar processes. The objective
function of NMPC problems has the same formulation as in)(Hbwever, for NMPC, the
weight of terminal cost cannot be obtained by solving thec&icequation. Different ap-
proaches have been proposed to reformulate the infinitedroproblem to the finite hori-
zon problem for NMPC. For example, Keerthi and Gilbert [3&jgnsed to add a terminal
constraint or terminal region to force the state to the setmy terminal region. Michalska
and Mayne [41] proposed to set the horizon length as a vari&ilen and Allgower [8, 9]
proposed to replace the terminal cost with an upper bous@qfx" (i)Qx(i) +u' (i)Ru(i).
More recently, Pannocchia et al. [47] showed that when theeeno state constraints,
terminal constraint could be replaced by an appropriataiteal penalty without loss of
robustness. Another commonly used approach in industretemte MPC decisions for
nonlinear processes is to linearize the process model dvel@o MPC problem. However
when the process is strongly nonlinear this approach doealways lead to satisfactory
results. For the rest of this chapter we introduce the géf@maulation of NMPC prob-

lems.

2.2 Nonlinear Programming (NLP) Formulation

The basic concepts and development of NMPC can be found iifRgaand Mayne [53].
The current plant state and the plant model are used to predice plant states. Based
on these states, an NLP problem is solved to get the corrdsppmanipulated variables,
among which the first is injected into the plant. Here we asstimat the dynamics of the
plant can be described by

X(k+1) = f(x(k),u(k)) (2.2)
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wherex(k) € O™ is the plant state at timig andu(k) € 0™ is the manipulated variable at
tx. The mappingf : O™ — 0™ js continuous and (0,0) = 0. In a realistic scenario
the evolution of the system could be described by the folgwdiscrete-time nonlinear

dynamic model:

x(k+1) = f(x(k),u(k),w(k))
= F(x(k),u(k)) +g(x(k),u(k),w(k)) (2.3)

wherew(k) € # ¢ O™ is disturbanceg : O™t ™ — O™ js continuous and used to
describe modeling errors, estimation errors and distudmnWe use; andv, to denote
predicted values of(k+1) andu(k+ 1) respectively. The NLP problem for NMPC at time

tx is formulated as

NOK)i=min W)+ INZ:W w)
stz = f(z,v) 1=0,...N—-1
o = x(K)
2 € X vel,z eX;s. (2.4)

We assume that the statgsand controlsy; are restricted to the domains and U, re-
spectively. X is the terminal set an&; C X. We assume that the horizon lendthis
sufficiently large such thaty € X is always true for the solution of (2.4). The détis
compact and contains the origin; the sBtandX; are closed and contain the origin in

their interiors.

The stage cost is given by(-,-) : O™ — [, while the terminal cost is denoted by
W(.) : O™ ™ — 0. For tracking problems, we can assume that the states artbkcon
variables can be defined with respect to setpoint and referegiues, and that the nominal

model has the property,(0,0) = 0. The optimal solutio{Z, ..., Zy, Vg, ---, V{_1 } leads to
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the optimal objective function valuly (x(k)), andvj is injected into the plant agk). Once
x(k+ 1) is known, the horizon moves one step forward and the next NidieGlem (2.4)

is solved foru(k+ 1). This recursive strategy gives rise to the feedback law,
u(k) = k(x(k)) (2.5)
with k(+) : O™ — O™, With the feedback law (2.5) system (2.3) becomes

x(k+1) = f(x(k),k(x(k)),w(k))
= F(x(K), k(x(K))) +9(x(k), k (x(k)), w(k))
= F(x(k), k(x(k))) +g(x(k),w(k)) (2.6)

Hence, we replacg(x(k),u(k),w(k)) with g(x(k),w(k)) sinceu(k) = k(x(k)). As stated
above, the input to the NMPC controller is the current plaates while its output is the
manipulated variable to be injected into the plant whichdkieved by solving an NLP
problem. Ideally it is expected that the input is injectedhe plant right after the mea-
surement is obtained. We refer to this strategidaal NMPC(INMPC), where the on-line
calculation time is neglected. However, in reality the Nldfuson always requires non-
negligible on-line computational time, which leads to cangtional delay between obtain-
ing the state and injecting the control. This delay could leEadeterioration of controller
performance and system stability. To prevent computatidelay, researchers have come
up with a number of fast NMPC strategies. We will discuss s#vfast NMPC strategies
in Chapter 4.

2.3 Concluding Remarks

In this chapter we start from the history of MPC and then mavécoNMPC and discuss

the reformulation of infinite horizon problems to finite hn problems. We introduce
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the commonly used notations and the basic formulation of KM& each timdy, NMPC
generates control decisions by solving optimization Rrob(2.4) repeatedly with the ac-
tual statex(k) as initial condition. In the next chapter we discuss how Rnob(2.4) is

solved; we then discuss reformulation of Problem (2.4) iajitar 4.
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Chapter 3

Numerical Solutions of DAE and NLP

In this chapter, we discuss the numerical methods we usév® gmcess models composed
of differential and algebraic equations (DAES). We als@dss numerical methods to solve

nonlinear programming (NLP) problems.

3.1 DAE-constrained Optimization

Based on how the process model is built, there are two kindsolels: data-driven models
and first principle models. Data-driven models are builhggin computational intelligence
and machine learning methods based on outputs and inptgspFRnciple models are built
based on the dynamic properties of the process. In thisrth$iesm we study first principle

models.

First principle models are usually composed of continubme DAES. However, there are
no easy ways to solve NLPs that contain DAEs directly. Ttueeefve need to discretize
the continuous equations first. There are different apfpresto handle the DAEs for dy-
namic optimization, such as single shooting, multiple simgp and collocation method
[6]. Typically collocation is performed by using orthogdrallocation on finite elements.
It represents states and controls in each element with wisegoolynomials. The dis-
cretization utilizes sparsity and structure, avoids cogwrce difficulties that appear with

the shooting methods, and sensitivity calculations foldAE&s are replaced by direct gra-
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3.1 DAE-CONSTRAINED OPTIMIZATION

dient and Hessian evaluations within the NLP formulatioowdver, discretization of the
DAE model increases size of the NLP problem, so efficieneacale NLP solvers are re-
quired. In this dissertation orthogonal collocation isdusediscretize the continuous-time

process models.

We consider the following DAE:

Z—f = f(z(t),y(t),u(t), z(0) =2z
0 = g§(z(t),y(t),u(t)) (3.1)

wherez y are the differential and algebraic variables of the systespectively. If (3.1) is
index 1, we can represent) asy™P(t), an implicit function ofz(t) andu(t), and we can
rewrite (3.1) as
ti . .
Z2(t) = zti—g)+ [ f(Z(t),y"P(), u(t))dt

ti-1

= 2Z(ti_1)+h; /01 f(z(ti_g+Th),Y™P(ti1 + Thi),u(ti_1 + thi))dt,  (3.2)

whereh; =t —tj_; andt € [0, 1]. We would like to discretize System (3.1) to the following

formulation:
zk+1) = f(z(k),u(k)) (3.3)

where we set,_; = k andt; = k+ 1. We use orthogonal collocation on finite elements to
discretize system (3.1) to (3.3). We partition the time domi@ t¢] into N stages where the
domain inside each elemeris given byt € [tji_1,t] withi=1,...,N,tp = 0 andty1 = ts.
Using this representation we could reformulate System) &1

(jj_f = f(z(t),yi(t),u(t)), z0) =2

0 = §(z(t),yi(t),uit))
1,...,N (3.4)
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Then over each single finite element, we use a polynomial adérd¢ to approximate the
continuous functiorf in the above integral (3.2), and therefore therekanaterpolation
points in each element If the length of element is h;, we can represent any timec

ti_1,ti] ast =ti_1+hiT, T € [0,1] and the state in elemenis presented as
K
.%h'(T)Zij (3.5)
=
T—T,

wherel;(T) = |‘|k_07,éj = T'T(, =0,7j < Tj41,] =0,...,K. Similarly we could represent

the algebraic variablgas

Wt =

1 (T)yij (3.6)

M~

]

where I_,-(r) = |‘|{§:177éj % ui(t) can be represented as in (3.6), or as a lower order
polynomial. In this dissertation we use piece-wise lineamtml given asu;(t) = uj_1

which is constant within each finite element.

Since the stata‘(t) is represented as a polynomial of ordéfe- 1, its time derivative could
be represented as a polynomial of orlewith K interpolation points. From (3.4)-(3.6) we

have
1,
20) = &0+ [ fem.y@,.um)d

= Z| t|1'i‘h|/ ZZU]

_ ZiK(ti_l)-l—hijle}j/o |j(1)dT
K

= ) +h T Qi1 (3.7)
=1

whereQ;(1) = [y 1;(7)dT’, T €[0,1],7j = f(zij,yij,ui,l,tij). z; could be represented in
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a similar formulation. They are represented as

K

(M) = 7 () +hi Y Qi) (3.8a)
i=1
K

zj = 2t +h Y Qu(T))zK (3.8b)
k=1

wherez{(t_1) = z 0.

Eventually we replace (3.1) with the following two equason

zj = flzyju-st)),j=1...K (3.92)

0 = §(zj,Yij,Ui-1,tj) (3.9b)
K

Zo = Z-ot+h ) Qj(1)z (3.9¢)
=

Assuming that the DAE system is index 1, we can elimizgtgij andz; implicitly using
(3.8b), (3.9a),(3.9b) so that (3.9¢) leads to the dynamideh(8.3). In this dissertation we

use Radau collocation and 3 collocation points within eaukefielement.

3.2 |IPOPT Algorithm

IPOPT( nteriorPoint OPTimizer) is a large-scale NLP solver that is designed to fimallo
solution of NLPs. It uses the interior point method to solMePN. IPOPT is used for all

the case studies in this dissertation.

3.2.1 Interior Point Method

To explore continuity and sensitivity properties of Prablg2.4), we represent this problem
as:

min F (X, p), st.c(x,p) =0, x>0 (3.10)

CHAPTER 3. NUMERICAL SOLUTIONS OFDAE AND NLP
17



3.2 IPOPT AGORITHM

wherex € 0" is the variable vector containing the states and contral$ pas afixeddata
vector used to represent uncertain external parametensasudisturbances. The equality
constraints are(x, p) : 0" — O™, In interior-point solvers, the inequality constraints of

problem (3.10) are handledhplicitly by adding barrier terms to the objective function,

Ny .
mine F(x,p)—p Y In(x1), (3.11)
=1
st. c(x,p)=0

wherex()) denotes thejt" component of vectok. Solving (3.11) for the sequence of

u' — 0, withl =0,1,2, ..., leads to solution of the original NLP (3.10).

We define the primal-dual Lagrange functiofx, A, v, p) = F(x, p) +¢(x,p)TA —x" v and
the solution vectos= [xT,AT,vT]T, whereA, v are multipliers of equality constraints and
bound constraints respectively= lim,_,o uX~te. For a given barrier parameter value

IPOPT [55] solves the primal-dual optimality conditionsafrrier problems (3.11) directly,

OxL(x,A,v,p) = O, (3.12a)
c(x,p) = 0, (3.12b)
XVe = ue (3.12¢)

whereX = diagx),V = diag(v), e € 0" is a vector of ones, andl € ™ andv € 0" are
Lagrange multipliers. To solve this system of nonlinearagguns, IPOPT uses an exact
Newton method and starts the iteration sequence at int [x] AJ vl]. At the ith
Newton iteration, the search directidyg; = 5.1 — S is computed by linearization of the
KKT conditions (3.12),

OxxL(si(p)) Ox(si(p) —I Ax OxL(s; p)
Ox(si(p))" 0 o || axn |=-| cxi,p) (3.13)
Vi 0 Xi Av; XiVie—ue
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whereX = diag(x),V = diag(v). After solving a sequence of barrier problems for 0,

the solver returns the solution tripge ™ (n) = [x*T A*T v*T] for Problem (3.10).

Having introduced Lagrange function and KKT conditions, meoduce the concepts of
SC, LICQ, and SSOSC. We first reformulate Problem (3.10) as:

mink ~ F(X,p) (3.14)
st. ¢c(x,p)=0
g(x,p) <0

Definition 1 (Strict Complementarity[44])Given a vector p, a local solutiox of (3.14)
and vectors(A,v), we say that the strict complementarity condition (SC) &dtaf A, v

only if vj —gj(x*, p) > O for each j=1,...,ng.

A constraint qualification is required for a local minimizdi(3.14) to be a KKT point [44].

Definition 2 (Linear Independence Constraint QualificatioBjven a vector p and a point
x*, the linear independence constraint qualification (LICQJds atx* if the gradient

vectors
Oci(x*,p); i=1,...,n,
' ‘ (3.15)
Ogj(x*,p); | €J where J= {j[g;j(x", p) = 0}

are linearly independent.

The LICQ implies that the multipliera, v are unique. Sufficient conditions faf to be a

minimum are given by the following second order conditions:

Definition 3 (Second Order Sufficient Conditiongp] Suppose thax* and the multipliers
A%, v* satisfy the KKT conditions (3.12) and

q' OxL(x*,A,v,p)g>0 forallq+#0 (3.16)
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such that
OxGi(X*,p)Tq=0, i=1,..,nc
Oxgj(X*,p)"q=0, forv;>0, (3.17)
Oxgj(X*,p)'q<0, forv;=0

then X is a strict local solution of (3.14).

Definition 4 (Strong Second Order Sufficient Conditions [31The strong second order

sufficient conditions (SSOSC) holdxdtwith multipliersA, andv if
q' OxL(x*,A,v,p)g>0 forallq+#0 (3.18)

such that
OxGi(X*,p)Tq=0, i=1,..,n
X' ’ (3.19)
Oxgj(x*,p)Tq=0, vj>0.

Theorem 1 (Implicit function theorem applied to optimality conditis) Let x*(p) be a
KKT point that satisfie§3.12) and assume that SC, LICQ and SSOSC hokd aFurther
let the functions Fc, g be at least k- 1 times differentiable ix and k times differentiable

in p. Then

* X* is an isolated minimizer, and the associated multiplie@ndn are unique.
« for p in a neighborhood of gthe set of active constraints remains unchanged,

« for p in a neighborhood of pthere exists a k times differentiable functidips=

[x*(p)T, A(p)T, v(p)T], that corresponds to a locally unique minimum 8r10)

Proof. See Fiacco [18]. O
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3.2.2 NLP Sensitivity

In the solution of an NLP, solving (3.13) is the most compotally demanding step during
each iteration. However, the KKT matrix is always very spaagad structured. Efficient
sparse linear solvers are applied to factorize the KKT maérig., HSL library with the

METIS option [16]. Moreover, the structure of the KKT matdees not change between

iterations, so the linear solver needs to analyze the $pgaitern only once.
Having the optimal solutios*(pp) (superscript *’ indicates optimal solution), the KKT

conditions of (3.11) are listed as the following equations:

DXL(S*(p0)>
®(s*(po)) = | c(x*(po)) | =0 (3.20)
X*v — ue
where X* = diag(x*), e = [1,1,...,1]T. Expanding the KKT conditions at the optimal

solution with parametep +# pg leads to the following:

0= Us®(s*(p)) = Us®(s"(po)) + dip(DSGD(S*(IfJo)))AlfhL o(|ap/?) (3.21)

whereds®(s*(po)) = 0 andAp = p— pp. Consequently,

d . ds-T
d—p(DsCD(S (Po)))Ap = (Md—p+Np)Ap:0 (3.22)
DxxL(S*(pO» DXC(X*(pO)> -l
whereM = | O,c(x*(po)) T 0 0 is the KKT matrix,V = diag(v), and
V(po) 0 X*(po)
DXDL(S*(DO»
Np = Up® = | Opc(x*(po))T |- From the right hand side of (3.22) withs = s*(p) —
0
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s*(po) = 5. Ap+O(|Ap|?) andN = Dsd(s*(p)) — Ds®(s*(po)) = NpAp-+O(|A p[?), we
have:
MAs(p) ~ —N. (3.23)

Thus, for every perturbatiohp, the solution of the perturbed problem can be approximated
by (3.23). If we uses(p) to denote the estimate, then from (3.23) we have

~ . ds’

S(p)=s (po)+d—p(p—|00) (3.24)

And applying Taylor expansion & (p) aroundpp we have

S*(p)ZS*(DO)+z—i(p—po)+0(|p—po|2) (3.25)

Subtracting (3.24) from (3.25), we have

Is"(p) —&(p)| = O(|p— po|?) (3.26)

From continuity and differentiability of the optimal solom vectors, there exits a positive

Lipschitz constanktq such that

IS"(p) — §(p)| < Lg|p— pol* (3.27)

Definition 5 (Mangasarian-Fromovitz Constraint QualificatioRpr Problem (3.10), the
Mangasarian-Fromovitz constraint qualification (MFCQ)lts at the optimal poinx*(p)

if and only if

a) the vectordlyci(x*, p) are linearly independent for all& 1,...,nc

b) there exists a vector w such that

OxGi(x*,p)Tw=0 fori=1,...,nc
(3.28)

Oxgj(x*,p)'w< 0 for gj(x*, p) =0.
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The MFCQ implies that the set of KKT multipliers is a closedheex polytope [23]. If we
reformulateg(x, p) = 0 as soft constraints by using slack variablg(, p) < € and adding

/1 penalty to the objective function, then the reformulatedP\atisfies MFCQ.

Another constraint qualification we need is the constark camstraint qualification.

Definition 6 (CRCQ [30]) For Problem (3.10), the constant rank constraint qualificat
holds at(x*, po), if for any subset 8 J,J = {j|gj(x*, p) = 0} of active constraints the
family

{Oxgj(x,p) j €S Oxci(x,p)i=1,..,nc} (3.29)

remains of constant rank near the poimt, po).

Note that the CRCQ is neither stronger nor weaker than MFGReisense that one implies
the other [30]. For the formulated (3.14), the inequalites linear, e.g. constraints an
are simple bounds, argj(x, p) < € is linear inx, then CRCQ holds. If MFCQ and CRCQ
hold, then the objective function is Lipschitz continuoni Moreover, if we use barrier
terms to eliminate the inequality constraintsxgithen LICQ, MFCQ and CRCQ hold, and

in this case the objective function is differentiablepin

Definition 7 (GSSOSC) The general strong second order sufficient condition (GS50S
is said to hold ak* if the SSOSC holds for all multiplies v in the set of KKT multipliers.

It has been shown by Kojima [36] that the conditions KKT-pgpoMFCQ, and GSSOSC
are the weakest ones under which the perturbed solutioneofi4) is locally unique.
Under these general conditions we cannot expect the sokit{@) to be differentiable any
longer (because of active set changes). However, it can dersthat the solutiorx*(p)

is directionally differentiable, and for obtaining sensty updates in an NMPC context,

directional differentiability is sufficient.
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sIPOPT

As mentioned previously in this chapter, the KKT matrix isealdy factorized and available
when the NLP problem is solved. When one or more parametdhgeihLP formulation
change, this matrix could be directly used to generate fgstoximations to optimal solu-
tions. In order to take advantage of NLP sensitivity moregdfitly, Pirnay et.al. developed
an NLP sensitivity extension for IPOPT namgidPOPT in [48]. The parametep is de-
fined as a variable in the AMPL interface, although its old aga/ values are determined
separately. The optimal solution is calculated with the@tlies of the parameters, and
an update is done when the new values of parameters are detdrrthus leading to an
approximation of the optimal solution at the new value. 9HGs applied later in our case

studies.

3.3 Concluding Remarks

In this chapter we introduce numerical methods to dis@dDAE systems and solve NLP
problems. We use orthogonal collocation on finite elementdigcretize DAEs and use
interior point method to solve NLP problems. These two méshare discussed in detail
in this chapter. IPOPT, an NLP solver that solves NLP usimginiterior point method, is
introduced here. We also introduce the concept and caicalat NLP sensitivity. NLP

sensitivity will be used in Chapters 4 and 5 for control updasIPOPT, an IPOPT ver-
sion that provides fast suboptimal solution based on NLRisetty, is also discussed. In
this dissertation all the NLPs are solved with IPOPT or sIPORNe also introduce some

commonly used notations and concepts for Lyapunov stalitialysis.
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Chapter 4

Fast NMPC Strategies

As we mentioned in Chapter 2, solving the NLP (2.4) takes amemgligible amount of
time, especially when the scale of the system is large. Asaltreomputational delay
occurs, and may deteriorate controller performance angbisystability. To avoid com-
putational delay has been an interesting topic studied loplpefrom different research
groups all over the world. In this chapter, we first brieflyattuce some fast MPC/NMPC
methods, and then focus on advanced-step NMPC (asNMP@pged by Zavala in [60].
asNMPC lays the foundation of the fast NMPC method propasélis dissertation. Then
we talk about Lyapunov stability analysis of NMPC and praabaity of both ideal NMPC
and asNMPC.

4.1 Background

The past decade has seen the development of modificatioNgNGPC that address com-
putational delay. First, to solve the (NP-hard) quadratagpamming (QP) problem for
linear MPC, a partial enumeration of active constraints praposed for the QP calcula-
tion [46]. Here the most frequent active sets are storedist,aand searched whenever the
actual state is received. If the corresponding active sptasent, the optimal solution is
obtained directly. Otherwise a suboptimal MPC problem igarined quickly, while the

full QP problem is solved in background with a solution thadlates the list. For nonlinear
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MPC, Findeisen and Allgower [19] extended the NMPC forrtinlaas well as its stability
properties to account for computational delay. In addjteonumber of fast NMPC strate-
gies have been developed including [38, 1, 14, 45, 43, 21AS]early as in 1989, Li and
Biegler [38] proposed the Newton-type strategy for cornisé@ nonlinear processes, where
the nonlinear model is linearized around a nominal trajgctand a QP is solved every
sampling time to get deviation from set point. Alamir [1] ééyped a strategy that updates
the sampling time in nonlinear model-predictive contrdlime and adjusts the number of
iterations in the optimization problem. In addition, recBiMPC strategies have been de-
veloped that separate the NMPC strategy into a) an off-lih® Ntep, using a predicted
state, and b) a fast on-line calculation for the actual st&&sed on this concept, Diehl
et al. proposed a suboptimal NMPC strategy [15], where an plloBlem is solved with
undetermined initial condition and parameter, and maatgadl variables are updated with
SQP upon achievement of actual initial condition and patamelue. Then a real-time
iteration NMPC was proposed by Diehl et al. [14] where onlg ddewton or QP itera-
tion of the NLP is executed on-line at every sampling timeteéad of solving the NLP
completely. In contrast, a neighboring extremal updatelN&pproach was proposed in
[57], where an optimal control problem is solved over all péing intervals. Then, during
each sampling time a fast update, determined by a QP, isrpetbfor the manipulated
variable. Feasibility and optimality criteria are then cked to estimate the performance of
each update. If they are not satisfied, additional QP iwmatare triggered. Wolf et al. [56]
extended NEU by adding an a-priori estimate of deviationveenh the NEU and optimal
solution and using this estimate to decide whether additiQ® iterations will improve the

controller performance; the optimal number of QP iteraimnalso determined on-line.

In addition to QP iterationdNLP sensitivityis also used to update optimal solutions of
NMPC. Ganesh and Biegler developed an optimal sensitiviglyasis for NLPs in pro-

cess flowsheets [22]. Kadam and Marquardt applied this atyson dynamic real time
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optimization to update reference trajectories [33, 34]laRel to these approaches is the
advanced-step NMP(@sNMPC) strategy [61, 60], where an NLP problem is solvéd of
line one step in advance with prediction of the next statenaml condition, andNLP
sensitivityis used to update manipulated variable on-line when thetirea measurement
of the state is achieved. Since the update is a single baekémi a linear system, it re-
quires negligible computation time. Hence, the correctipdated variable is available
almost immediately after the state is estimated. The asNBtR{fegy also enjoys nominal

and robust stability properties [60]. We will discuss thiisnore detail in Section 4.4.4.

4.2 |deal NMPC

4.2.1 NMPC Problem Reformulation

One advantage of NMPC is its ability to deal with constraipeablems directly. However,
due to disturbances, some states might violate their botimas leading to infeasibility of
the problem. Even if the problem is feasible, dependenvacets could also make the
system unstable under perturbations. Sometimes the ilistaiould be avoided by in-
creasing predictive horizon length, sometimes not. Inoi@&ackle this situation, Oliveira
and Biegler considered “soft constraints” and exact pgraitms in [12]. When viola-
tion of some constraints could be tolerated, we can impo#eceastraints, such as for
constraints on outputs, while some constraints cannot dlateid, which are called hard
constraints, such as for constraints on inputs and safetgtiGnts. In the soft constraint
strategy, constraint violations are penalized in the dbjewsing exactd;) penalty func-

tions.

We defineX and X; in Problem (2.4) by the inequalitidgz) < 0. These regions are

CHAPTER 4. FAST NMPC STRATEGIES
27



4.2 IDEAL NMPC

closed and contain the origin in their interior. To develophust problem formulation
we replaceX andX; by /1 penalty terms and assume, without loss of generality, that
can be represented by simple upper and lower bounds. &ie add slack variables to the
constrainth(z) < 0, and add’; penalty functions to the objective. We also assume that
N is sufficiently long such thaty € X can always be satisfied. In our case studies, we
have used a sufficiently long optimization horizon such tha condition always holds.
This horizon length is determined through repeated o#-Bimulations. As a result, the
terminal constraints can be reformulated as terminal caibt penalties in our problem
formulation and state constraints appear as penalty teriieistage costs. Analogously,
robust stability of this formulation is also shown in [47]tWvisufficiently large terminal

cost.

To maintain differential objective and constraint funaso we reformulate Problem (2.4)
to take the following form:

N-1

min - W) +peyl+ I;(W(ZI,VI)"‘ngT 1) (4.1)
st. zy,1="1(z,v), 1=0,.,N-1
20 = X(K)
h(z)<g,5>0 1=0,..,N
vel, 1=0,.,N—1

whereg is a slack variable and = [1,1,...,1]". If a solution to Problem (4.1) exists,
then it is easy to see that the gradients of the equality caing$ contain a nonsingu-
lar basis matrix, and are therefore linearly independentredver, at the solutior* of

(4.1)wherex" =[zo"...,zy",V0',...,Vn_1",&1" ..., & ] and with active equality and in-

equality constraints representeddfy) = 0, ¢, (X) < 0, itis straightforward to find a vector
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dT =[d},....dj,dy,....dy ,.di ...,df ] that satisfies

Oe(x*)Td = 0,0¢ (x*)Td < 0.

Consequently, the Mangasarian-Fromovitz constraintificetion (MFCQ, see Definition
5) always holds for Problem (4.1), as shown in [31]. If gehieeal second order sufficient
conditions (GSOSC) are also satisfied, then selegtilagger than a finite thresholg,> p,
will drive g to zero, wherep is the dual norm of the multipliers at the solution of Problem
(2.4). If § = 0, then the solution of (4.1) is identical to the solution ablflem (2.4).
Therefore, stability properties of the soft constraineabem (4.1) are identical to the hard
constrained problem (2.4). Since a solution wath> O for arbitrarily large values op
implies that Problem (2.4) is locally infeasible, we assuim a finitep can be found
as long as Problem (2.4) is well-posed. This correspondsg@dmmon assumption that
there exists a feasible input sequence, which steers thensye the terminal set. Among
other considerations, this requires that the horiXdre long enough to satisfy the terminal

conditions.

Definition 8. A setl’ C X is a robust positively invariant (RPI) set for system (213) i

f(x,u,w) elr,vxerandvwe 7 .

With the reformulation[I™ is always a robust positively invariant (RPI) set. Moregifer

we apply barrier terms to the inequalities in (4.1), we abtan arbitrarily close approxi-
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mation to the solution of (4.1) by setting a sufficiently shpalsitive value ofu, as follows:

min (LIJ(ZN)ereﬁl—Hz'n(S&D—h(j)(ZN)))
]

Z4,M1,8
i T () _p(i
3 (W@w)+pe 1-uy In(g? —hl(z))) (4.2)
= ]
st. zu1="1(z,v), 2=xK)
g>0velU, 1=0,.,N—1,
en > 0.

Through the redefinitionsv := [/, &™), ¢(z.vi) = Y(z,v) +pg'1l— Uy In(el(j) —

h()(z)) andW(zy) == W(z) + pef1— p 3 In(l)) — D (2y)), Problem (4.2) can be sim-
plified to

N—-1

In(x(k))=min )+ > ¥(@,v) (4.3)
b =0

s.t. z.1="Ff(a,v),n=xKk),veU |=0,..N—-1

and this replaces Problem (2.4). In the subsequent develapne refer to Problem (4.3)
as Zn(x(k)). Since the equality constraint gradients are linearly prechelent and the ac-
tive bounds foryy and gy are independent, it is clear that that the solutionzégf(x(k))
satisfies LICQ. Along with the presence of bounds as the ardygualities, this property
implies the weaker Constant Rank and Mangasarian-From@anstraint Qualifications
(CRCQ, Definition 6, and MFCQ, Definition 5), and leads to wreigbounded multipliers.
Moreover, if the solutions of (4.3) also satisfy Generab8ty Second Order Sufficient Con-
ditions (GSSOSC, Definition 7) then the solution vectdk) = k(x(k)) and the optimal

objective function are continuous xfk).

In the development and analysis of the robust controllerSention 4.4.2 and beyond,
we will assume slightly stronger assumptions: LICQ, SOSE€sirict complementaritgt

the solutions of?y(x(k)). These conditions guarantee tiéerentiability of the solution
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vectorx*(p) as well. Based on our experience, these stronger assumtadd as long
as the active set is unique at the solution with nonzero plidts for the control bounds.
Therefore, this leads to continuity and differentiabildfythe solution of22y(x(k)) with

respect to disturbances.

4.3 Advanced-step NMPC

In this chapter we introduce the advanced-step NMPC (asNMBP&ategy. asNMPC is pro-
posed by Zavala in [60]. The idea of asNMPC is to use the ptiediof the future state to
solve the NLP problem within the current sampling time. Otieeactual state is obtained
(or estimated)NLP sensitivityis used to update the manipulated variable online. Since
the update is only a single backsolve, it requires negkgdamputation time. Hence, the
manipulated variable is available right after the actualests obtained and computational

delay is avoided.

4.3.1 Formulation and Implementation

Givenx(k) to denote the prediction of statetgtat timet_1, the NLP solved by asNMPC

has the following formulation:

N—1
k)= min Wzn)+ 3 w(@,w) (4.4)
b 1=0
s.t. zp=1(a,v),=xk);veclU |=0,..N-1

Note that the only difference from#”y(x(k))(4.3) is that the initial conditiorx(k) is re-

placed byx(k).

In the NLP formulation of asNMPC, the state predictioa: pg in (3.10) and the actual
statex is the perturbed parametpr Applying NLP sensitivity, asNMPC is implemented
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as follows:

 Online atty, havingx(k), updatevy using(s*(po) +As(p)) from (3.23), whergy =
x(k), p=x(k). Implement the updateg asu(k) to the plant. Predict(k+ 1) using
x(k) andu(k): x(k+ 1) = f(x(k),u(k)).

» Background move the horizon one step forward, takig+ 1) as initial condition

(2o = po) and solve NLP problen#?y (x(k+ 1)) (4.4).

» Setk=k+1 and repeat.

The above steps and positionsfl, x andv are shown in Fig. 4.1, where optimal solutions
are shown in dashed line, with optimal control shown in lighte and optimal state shown
in red; actual state trajectory is shown in dark blue sofié land actual control is shown in

red solid line. The state prediction is shown in point-daidivee.

et Jf(k+1) = 0.0)

_____-

aee t

e =, ——————_l-_ _________

Figure 4.1: Implementation of asNMPC

To compute approximate neighboring solutions around agadir available nominal solu-

tion s*(po), we invoke the following classical results.
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Theorem 2. (NLP sensitivity [18])If f(-,-), ¢(-,-) and¥(-) of the mixed constrained prob-
lem are twice continuously differentiable in a neighborti@d the nominal solution*$po)
and this solution satisfies the linear independence comgtcpualifications (LICQ) and
sufficient second-order conditions (SSOC) then,

1. there exists a positive Lipschitz constanguch thats*(p) —s*(po)| < o |p— po

2. there exists a positive Lipschitz constapslch that the optimal cost valueg(p)

and J(po) satisfy|In(p) — In(Po)| < Lz|p— po.

3. if §(p) is an approximate solution of §) based on sensitivity, from continuity and
differentiability of the optimal solution vector, thereigs a positive Lipschitz con-

stant Ls such that|§(p) — s*(p)| < Ls|p— po|?.

Thus, for every perturbatiofip, the solution of the neighboring problem can be approxi-
mated by (3.23). Note that the KKT matrM is directly available and already factorized
after the NLP problem is solved. Since in (3.23) only a babksis done, the update takes

much less time than solving the NLP problem to get new sahstio

4.3.2 Active Set Changes

When the perturbatiop— pg is large enough to induce a change in the active constraint se
at the solution of (3.10), tracking the KKT conditions be@smonsmooth, the linearization
(3.23) is no longer valid and the approximate solutop) Tay not even be feasible &
andU. Since Theorem 2 no longer holds at the point where the tiansn active sets
occurs,s'(p) is no longer differentiable (and may not even be continueut) respect

to p. However, under Generalized Second Order Sufficient Camdit(GSOSC) and a
relaxed set of constraint qualifications (CRCQ and MFCQligBad by %\ (x)), one can
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still obtain continuity ofs*(p) and the value function with respect mas well as the

directional derivativeof x*(p) for p— po.

As developed in [50], this directional derivative is detered by solving a specialized QP
that can be viewed as an extension of (3.23), with lineaiizeduality constraints included
and strongly active inequalities (with positive multipgexpressed as equality constraints.
Because multipliers at the active set transition are naju&ia linear program (LP) in dual
space must first be solved to maximize the linearized priedicif the Lagrange function.
In [31] we apply this formulation to develop a path-followialgorithm to track*(p) with
respect tqp. Detailed presentation of this path-following approact ganeral underlying
concepts that govern NLP sensitivity are also included i}.[8Vhile this approach leads to

a rigorous treatment of NLP sensitivity, it is more expeaghan the simple update (3.23).

Instead of path-following approach, we can also apply apbestrategy called “clipping
in the first interval,” where we perturb the solution only upthe active set change so
that Theorem 1 still holds. Here, feasibility of the soft strained formulation (4.3) only
requiresy € U, and clipping ensures that the perturbed control variadieeju(k) remains
within its bounds:

V5 <Vo+TAVp <V, T €[0,1] (4.5)

Oncet and the updated variables are determined, the manipularéableu(t) = vp +

TAvp is implemented to the plant. Because the clipping strateguires no additional
computational cost beyond (3.23), we incorporate this @gghr within the asNMPC and
amsNMPC and use this approach for the case studies. MoreoVy8i] a comparison of
the simple clipping approach with the path-following apgmib shows very good perfor-

mance in the presence of active set changes.
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4.4 Lyapunov Stability Analysis

One of the key issues of NMPC is stability. The stability ostgym without uncertainty
is callednominal stability while the stability of system with uncertainty is callezbust

stability. The uncertainty could be uncertain parameters, plantetimmgsmatch, additive
disturbance or measurement noise, etc. In this sectionwdy she stability properties of

setpoint tracking NMPC.

We start with introducing some basic notations and defingtithat are used for stability

analysis.

Definition 9. [40] A continuous functiora (-) : 0> — O is a . # function if a(0) =
0,a(s) > 0,¥s> 0and itis strictly increasing.

A continuous function (-) : 0> — O>gis a.%5 function if it is a.#” function anda (s) —
+o0 as s— +o0. A continuous function (-, -) : is a.#.Z function ifa(s,k) : DZZO — O>0
isa.# function in s for any k> 0 and for each s> 0, a(s, ) is decreasing and (s,k) — 0

as k— .

Definition 10. [6] A function f(x) : 0"+ O is continuous iriJ" if for every pair of points,

x,x and alle > O there is a value > 0 such that
[x—X[<d = [[f(x)—f(X)]|<¢€ (4.6)

and therefordimy_.x f (X) — f(X).
A continuous function (k) : 0" — O is Lipschitz continuous ifl" if for any two points

x,y € 0" there exists a finite &> 0 such that

[T -ty I < Lix=yl (4.7)

Definition 11. A sete/ C X is a positively invariant set for system (2.2) iExeZ implies
f(x,u) € o7.
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We uselLyapunov functionio prove the stability of the system. It is a function thatesk
positive values everywhere except at the equilibrium ofsyem, and is non-increasing
along every trajectory. Lyapunov function could be viewedaa energy function of a

system. The system is stable if we could construct a Lyaptunmstion for it.

4.4.1 Nominal Stability

When there is no uncertainty, the system evolves as (2.2)ud&@(k; x(0)) to denote the
solution of (2.2) at timéy with initial conditionx(0). For nominal stability analysis we use

the concept of asymptotic stability [53].

Definition 12. The (closed positive invariant) set is locally stable for (2.2) if, for all

€ > 0, there exists @& > 0 such thatx| ., < & implies|@(k;x(0))|.s < €,k € I>o.

Definition 13. The (closed positive invariant) sef is locally attractive if there exists

n > 0 such thatx| ., < n implies|@(k;x(0))| — 0as k— oo,

Definition 14. The closed positive invariant set is locally asymptotically stable if it is
locally stable and locally attractive.

The definition of nominal stability is stated as follows:

Definition 15. System (2.2) is said to be locally nominally stabl&iii there exists a%#”.¥
functionf(-,-) such that

X(K)| < B(IX(0)],k), Vk >0, ¥x(0) € X (4.8)
A functionV(-) is called a Lyapunov function for system (2.2) if there existetX, %
functionsay, ao, as such that'x € X, we have:

a([x]) < V(x) < az(fx))

AV(x) = V(f(xu))-V(x) < -as(|x]) (4.9)
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4.4.2 Robust Stability

In the presence of uncertainty, the system evolves as (Mg)yeover, if atty, besides
disturbancew(k), there is also uncertainty due to old error, we introduceftiiewing

formulation of the system:
x(k+1) = f(x(k),u(k),d(k)) +w(k) = f(x(k),u(k),d(k),w(k)), (4.10)

whered(k) = @(w(k—j),j=1,...,N),d(k) € 2 c O™ is bounded. We use Input-to-State
Stability (ISS) theory to prove the stability of (2.6) andin-to-State Practical Stability
(ISpS) theory to prove the stability of (4.10).

Input-to-State Stability

Definition 16. System (2.6) is said to be locally Input-to-State Stabl€)Ii8 X if there
exists a# .Z functionf, and a.#” functiony; such that for all w in the bounded s#t,

X(K)| < B(Ix(0)],K) + ya(lw]), Yk = 0, ¥x(0) € X (4.11)

A functionV (-) is called an ISS-Lyapunov function for system (2.6) if thexést a seiX,

e functionsay, as, ag and.#” function o1 such thatyx € X andvw € #/, we have:

ag(lx]) < V(x) <as(|x])

V(fxuw) =V < —ag(|x])+ ow(|w]) (4.12)

Moreover, ifX is a robustly invariant set for system (2.6) a¥i¢t) is an ISS-Lyapunov

function for this system, then the resulting system is IS [0, 40].

Notice that asymptotic stability is stronger than ISSwif— 0 then ISS implies asymptotic
stability. Also,

X(K)| is asymptotically bounded by (|w]).
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To prove the robust stability of INMPC, we prove that the ahbjee function of 2y (x(K))

is an ISS-Lyapunov function. We make the following assuonsi
Assumption 1. (Robust Stability Assumptions)
(i) g(x,w) is Lipschitz with respect to all its arguments with Lipszhionstant | :
[9(xW)| < |9(x,0)[ + Lg|w.
(i) |g(x,w)| satisfies
9040)| < Zatp((x). and|g(x.0)| < gmax (4.13)

wherep € (0,1) is an arbitrary real number and > 0 is a prespecified constant.

Theorem 4 will be proved in Chapter 3 after NLP sensitivitintsoduced.

Input-to-State Practical Stability

The concept of Input-to-State Practical Stability (ISpSintroduced in [39].

Definition 17. A system (4.10) is said to be locally Input-to-State Prattitable (ISpS)
in X if X is a robust positively invariant set for system (4.10) anthére exist a# ¥
function3, and a_#" functiony, and a constant ¢ 0 such that for all w in the bounded
set? and d in the bounded sét,

IX(K)| < B(IX(0)|,k) + ya(lw]) + ¢, Yk > 0, ¥x(0) € X (4.14)

Definition 18. A function \(-) is called an ISpS-Lyapunov function for system (4.10) with
respect to w, if there exist seXs 7', ¥ and %, functionsaz, ag, ag, a .# functiong, and

a couple of constants oc, € [~ such thatvx € X, Vd € Z andvw € #', we have:

az(]x)) < V(x) <as(|x) +c1

V(fxuwd)—V(X) < —ag(|X)+oa(|w])+co (4.15)
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ISpS will be used to prove the robust stability of advancadtirstep NMPC proposed in
Chapter 5.

4.4.3 ldeal Setpoint Tracking NMPC
Nominal Stability

To prove the nominal stability of INMPC we need to prove tle Lyapunov function is

strictly decreasing except at equilibrium. We make theofeihg assumptions:

Assumption 2. (Nominal Stability Assumptions for ideal NMPC)

(i) The terminal cost(-) in (4.3) satisfiesV(x) > O.

(i) There exits a local control law & K¢ (x) for all x € X, some unspecified terminal

region, where¥(f(x,ks(x))) —W(X) < —(X,Ks(X)).

(i) @(x,u) satisfiesap(|x|) < P(x,u) < aq(|x|) whereap(-) andag(-) are % functions.

Theorem 3. (Nominal Stability of ideal NMPC) Consider the moving honzProblem
(4.3) and associated control law=t K (x) that satisfies Assumption 2. Thep(dk)) is a

Lyapunov function for system (2.2) and the closed-loopays asymptotically stable.

Proof. We compare the optimal cost function of the two neighbordegai NMPC problems
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(4.3).
In(X(k+ 1)) = In(x(k))
< W(f(zn,Ks(2n 21 W(z,v)+ Y(n, Ke(2n)) — [LP(ZN)+':]§¢(ZI,VI>]
= W(f(zn, k() — W) + W(zn, K (zn)) — Y(20, Vo)
< —y(20,V)
= —P(x(k),u(k) (4.16)

where the first inequality comes from the fact that the sotutif 2\ (x(k)) is feasible for
PN(X(k+1)). This leads to:

[ee] 00

> 3 wx(K), u(k))
k=0 =0
(4.17)

IN(X(0)) = IN(X(0)) — In(X(0))

I
—
[
=z
—~
pas
~
=
N
N—
N
—~
=~
+
[N
~—
N—
~—

and lime e Y(x(k),u(k)) = 0. Also, by Assumption 2(iii), lim_.x(k) = 0. Hence,
In(x(k)) satisfies the conditions of Lyapunov function and nominab#ity property of

ideal NMPC in the Lyapunov sense is proved[60]. O

Robust Stability

Robust stability of the INMPC controller can be establisfrech the following theorem.

Theorem 4. Robust ISS Stability of INMPC (Theorem 2 in [40], see alsq Z3) Under
Assumptions 1 and 2 with = L;, the cost functiony(x) obtained from the solution of

2N (X) (4.3) is an ISS-Lyapunov function and the resulting cldseg-system is ISS stable.

Proof of Theorem 4 could be found is ([60]). We compare thdéscosthe neighboring
problemsZn(x(k)) and Zn(x(k+ 1)). Without uncertainty the system evolvesxdk +
1) = f(x(k),u(k)) while with uncertainty the system evolvesx&+ 1) = f(x(k),u(k)) +
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g(x(k),u(k)). We defineg(x(k+ 1)) := In(X(K+ 1)) —In(X(k+1)). Under Theorem 2,

there exits a local positive Lipschitz constagtsuch that'x € X,

e(x(k+1))[ < Lalg(x(k), w(k))] (4.18)

In(X(k+1)) — In(x(k))
= INKK+ 1)) — INnX(K)) + In(x(K+ 1)) — In(X(k+ 1)) (4.19)

Since the solution of?n(x(k)) is feasible forZy(x(k+ 1)), from the proof of Nominal
Stability of INMPC in Chapter 2, we havdy (x(k+ 1)) — In(x(k)) < —g(x(k),u(k)). And
from (4.18) we havay(x(k+1)) —In(x(k+ 1)) < Lj|g(x(k),w(k))|. Therefore we have

In(x(k+1)) = In(x(K))

< —g(x(k),u(k)) + Lslg(x(k), w(k))]
< _ap(|x(k>|)+|—J§ap(|x(k>|)+LJL9|W(k)|
< (p=Dap(x(k)|) + olw(k)] (4.20)

where the second inequality results from Assumption 1 aedldbt inequality follows
from { =L, ando|w(k)| = LjLg|w(k)|. Robust stability of ideal setpoint tracking NMPC

(Theorem 4) is proved.

Stabilizing a Non-robust MPC

As developed in Section 4.2.1, we reformulate the NLP (2y4eplacing state constraints
with soft constraints and adding penalties to the stage costs. It is pointed out in [47]
that when there are no state constraints, the terminal inistould be replaced by an
appropriate terminal penalty without loss of robustnesisoAwe need to specify a suffi-

ciently large prediction horizon (determined throughlofe simulation) such that € X;
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is satisfied and is not active. This satisfies the assumpfiiori$heorems 2 and 4, so the re-
sults still hold here. Moreover, if we assume that SOSC, LEDQ strict complementarity
hold at the optimal solution af?y(x(k)) (problems (4.3), (3.10)), the value function and

feedback law are continuous and differentiable. As a resalfustness will not be lost.

In [24], Grimm et al. presented three NMPC examples thattabkstness because of state
constraints, terminal region or a short horizon. In thigiseove study those three examples
and show that robustness can be obtained by a long enougiohar reformulation of the

NLPs.

Example 1: Artstein’s circles with state constraints This example is the discretization

of the following continuous system:

X1 = (G—x3)u
X = 2Xax5u (4.21)

One peculiarity of system (4.21) is that if the system igatii on the circlexf—i— (Xo—r)%=
r?, wherer € [, then the trajectory stays on the same circle regardleserdfal. Zero-
order hold is used to discretize the system with a samplimg f 1. The discretized
systemx(k+ 1) = f(x(k), u(k)) evolves as

—(x&(K) +x3(K))u(k) +xa(K)
1+ (X4 (k) +3(k) )u?(K) — 2x1 (K)u(k)
X2(K)

ek = T 18000 — 2a(ku(k) (#.22)

Then they introduce the MPC controller with input and statestraintsu € [—1,1] =: U

X1(k+ 1) =

andx € {xc 0%:x; <c, ce€ (0,1)} =: X. The terminal cost is the length of the shorter

arc between the state and the origin:

(x2 = [X])(=[x]) (4.23)

g(x) = |x|cos™? .
X1/ + (%2 — [x])?
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The stage cost is the length of the shorter arc betweend the closest reachable point

from x to the origin in one step:
X1 f1(x, —1) 4 (x2 — |x[) (f2(x, —1) — [])
V3B + (ke — [X))2y/Fal D2+ (Fox,— 1) — [x])2

The terminal region iX; = €%, where%, is the unit circle. Moreover, the control law

l(x,u) = |x|cost (4.24)

Kt (X) satisfiext (X) = —xq/|x1| if xg # 0 andk(x) = —1if x; = 0.

This NMPC algorithm is nominally stable but not robustlyldéa The analysis could be
found in [24]. In general, if the trajectory starts from a mioin the first quadrant and
moves clockwise, when it hitg = ¢, it reverses its direction and moves counter-clockwise.
Then at the next step it moves clockwise and Rits- ¢ again. As a result, it will move
back and forth between the current state ane- ¢ and will not converge to the origin.
We reformulate the NMPC by adding soft constraints to theestanstraints and terminal

region. As a result, for the terminal region we have
IXN| < €+ SN (4.25)

whereN is the horizon lengthsy is a slack variable angy > 0. And the state constraint
becomes

Xi1<c+s,i=0,....N-1 (4.26)

wheres is the slack variable angl > 0. And we add’; penalty to the objective function:

N—1 N—1

; (i, ui) +9(xn) +pi Z} S + PgSN (4.27)

i= =
As a result, when the state reaches the vertical)ine c on its way to converge to the
origin, instead of going counter clockwise, it goes beymng ¢ and keeps moving clock-
wise, and then crosses= c and becomes feasible again and eventually converges to the

origin.
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We introduce additive disturbance which is Gaussian noisie zero mean and standard
deviation of 005. Horizon length iN = 10 and simulation time is 30. We choose-
0.25, £ = 0.1 and weight on slack variables apg= pg = 10°. The system starts from

(0.055,0.51) such that it hitsc; = 0.25 on its trajectory to the origin.

We first solve the original NLP problem with no soft consttainThe state trajectory and
control trajectory are plotted in Fig. 4.2. It could be olvsel from Fig. 4.2(a) that before
soft constraints are added, the states evolve back and buttare stopped by, = ¢ and
never converge to the origin; the control in Fig. 4.2(b) demits direction every now and
then. After soft constraints are applied using NLP (4.1¢, state goes beyond = cin

one step and then converges to the origin.

0.7

06F

05F

04t

x 3

03r d -0.2-

021

0.1r 1
-0.81-
0 L L L L L 1 L

0 005 01 015 _ 02 025 03 03 0 5 10 15 20 2 30
X time step

(a) Trajectory ofx (b) Trajectory of u

Figure 4.2: Trajectory ok andu. The original MPC is shown in blue; the soft-constrained

MPC is shown in red.

Example 2: origin as terminal constraint For the second example, the discrete system
X(k+1) = f(x(k),u(k)) evolves as

xi(k+1) = xu(K)(1-u(k))

X2(k+1) = |x(k)|u(k) (4.28)
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whereu € [0,1] =: U andx := (x1,X2) € 0% =: X. Then they introduce the MPC controller
with input constrainu € U. The terminal cost ig(x) = 0. The state codtx,u) satisfies
l(x,u) < a(|x|) wherea(-) is a. %% function. We choosé(x,u) = x2 +x2. The terminal

constraint isXs = {0}. Horizon length idN = 2.

With this MPC algorithm the origin is nominally stable buttmobustly stable with mea-
surement error or additive disturbance. This analysis egfiotnd in [24]. We reformulate
the MPC by adding soft constraints to the terminal consttaigield (4.1). As a result, for
the terminal constraint we have

Xﬁlvl + X,2\172 =S (429)

whereN is the horizon lengths is the slack variable ansle [1-o. And we add/; penalty

to the objective function:
N-1

i; 1(xi,ui) +9(xn) + ps (4.30)
We introduce additive disturbance which is Gaussian noifle zero mean and standard
deviation of 005. Horizon length i = 2 and simulation time is 100. We chogse= 10°.
The system starts froif®.5, 0).

We first solve the original NLP problem witd = 2 and without soft constraints. We plot
the trajectory ok within the simulation period. As we could see from Fig. 4)3&though
we use a long simulation time (100} still does not converge t(,0). If we look at the
corresponding control profile in Fig. 4.3(b) we could sed thstays close to 1, and as a
result according to (4.28xz(k+ 1) = |x(k)| will not decade to 0. We then increaleto
10 and observe thatconverges to the origin within only a few steps. Keephhg- 2 but
adding soft constraint (4.29), we observe thatonverges within the first few steps from
a slightly different trajectory. Also from Fig. 4.3(b) weuwd see that(k) € [0, 1] with a
longer horizonN = 10 or with a soft state constraint, bath andx, could decrease to 0.

The reformulation schemes also work well when we increasantlise standard deviation
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to 0.5.
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(a) Trajectory ofx, noise=0.05 or 0.5 (b) Trajectory of u, noise=0.05

Figure 4.3: Trajectory ok andu. N = 2 without soft constraint is shown in blul;= 10

without soft constraint is shown in rebl; = 2 with soft constraint is shown in green.

Example 3: unit disk as terminal constraint For the third example, the discrete system

X(k+1) = f(x(k),u(k)) evolves as

xa(k+1) = (L+xa(k)])sin(us(k) sin(uz(k) + y(B)x g (k) coguz(K)) (4.31a)
xe(k+1) = (1+[xa(K)])cogua(k))sin(uz(k)) + y(Bya)xz (k) coguz(k))4.31b)

whereu = [ug; U] € [0, F] x [0, 5] =: U andx := [x; %] € 0% =: X. 6is the angle between
the state and the positive vertical axis aaédis the statex rotatedg counter clockwisey

is a piecewise linear function &

2x6
2-=2 if f<f<m
V) =4 —2+28 if r<g< 3 (4.32)
1 otherwise
Then they introduce the MPC controller with input constraire U. The terminal cost

iS g(X) = Sp_o|X(K)| with x(k+ 1) = f(x(k),0). The state codi(x,u) satisfied (x,u) <
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a(|x|) wherea (+) is a % function. We choosé(x,u) = X2 + X3 + U2 + u3. The terminal

constraint is the unit circl&¢ = %4». Horizon length isN = 2.

With this MPC algorithm the origin is nominally stable butmobustly stable. The analysis
can be found in [24]. We reformulate the MPC by adding softsti@ints to the terminal

constraint. As a result, for the terminal constraint we have
IXn| < 14y (4.33)

whereN is the horizon lengthsy is a slack variablesy > 0. And we add’; penalty to the
objective function:

TZ:' (Xi,Ui) +9(X) + psn (4.34)
We introduce additive disturbance which is Gaussian noigie zero mean and standard

deviation of 001. Horizon length iN = 2 and simulation time is 30. We choope= 1.

The system starts froifi, 1.5).

We first solve the original NLP problem witd = 2 and without soft constraints. We plot
the trajectories ofx| andx within the simulation period. As we could see from Fig. 4)4(a
|X| stalls at|x| = 1 and we can see from Fig. 4.4(b) thabscillates within a very small
region around0,1). We then increashl to 10 and observe that| eventually converges
to 0 andx converges to the origin. Keeping = 2 but adding soft constraint (4.33), we
observe thafx| decreases to 0 from a different trajectory. The convergeateeis slower
than withN = 10 becaus®l = 10 allows more degrees of freedom for the controller to move
around. We then increase the noise standard deviatior2%) &nd observe convergence to

the origin, but with a slower rate and larger value$xf
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Figure 4.4: Trajectory ofx| andx. N = 2 without soft constraint is shown in blul;= 3
without soft constraint is shown in redy = 2 with soft constraint is shown in green;

asNMPC withN = 2 and with soft constraint is shown in magenta.

4.4.4 asNMPC
Nominal Stability

In the nominal case, there is no uncertaintypse pg andAv = 0 in the NLP (3.10), the
controls do not need update. Therefore asNMPC leads to the salution as INMPC. As

a result, asNMPC has the same nominal stability as iINMPC.

Robust stability

To analyze the robustness of the asNMPC controller, we neemrisider the effect of
NLP sensitivity errors. Also we recognize that wittk+ 1) = f (x(k), u(k)), there exists a
future mismatchx(k+ 1) —x(k+ 1) = g(x(k), w(k)) at the next time step, and the plant will
evolve with uncertain dynamics generatix(¢x+ 1), giving rise to two different problems

(4.3) Zn(x(k+1)) and Pn(x(k+ 1)), with optimal costsly (X(k+ 1)) andIn(x(k+ 1)),
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respectively. Moreover, we need to distinguish between RMisingu¥ (k) and asNMPC,
which generates®(k) = k23(x(k)). To interpret this difference we consider an extended
problemZn.1(X(K),0(K)):

I, 00k) = min - W)+ Ok, 6(K) + lNg: W@zv)  (4359)
stz = f(z,v) 1=1,...N-1 (4.35b)

o = f(x(k),ak)) (4.35c)

vi € U (4.35d)

A

This problem has an equivalent solution to probléfy(z) and we consided(x, ) as
our candidate ISS Lyapunov function. We defiR&x(k)) := J(x(k),ud(k)), J9(x(k)) :=
J(x(k),ud(k)), and alsoJ9(x(k)) := J(x(k),ud(k)), whereu(k) and u®(k) are deter-
mined as variablesj(k) € U, in #n.1. For the next time step, we define the following

residuals as:
gs(x(k+1)) = J9x(k+1))—J9x(k+1)) (4.36a)

Eas(X(k+1)) = I¥(x(k+1))—J9(x(k+1)) (4.36b)

wheregs accounts for the model mismatch as{ik+ 1) while g5 for approximation errors
introduced by NLP sensitivity. If clipping is applied in @sf active set change, (3.24)

becomes
~ . dsf
8(p) =s"(po) + ap T(p— po) (4.37)

And as a result3.25) — (4.37) becomes
* & ds’ 2
S'(p) =8(P) = (1= 1) g5 (P= Po) + O([P— Pol*) (4.38)
Therefore we have

i . ds
\S(p)—s(p)|S(l—f)d—p\p—po\+Lq\p—po|2 (4.39)
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From (4.39) and Theorem 2 we have positive Lipschitz cortstayLy, Lsy andLsq such
thatVx € X,

gs(x(k+1)) < Ly(Ix(k+1) —x(k+1)| < La|g(x(k), w(k))] (4.40a)
Eas(X(k+1)) < Ly(Jud(k+1) —u(k+1)|)

L3((1—T)Lsv+ Lsglg(X(K), w(k))]) - [9(x(k), w(k))| ~ (4.40b)

IA

By comparing the successive cod®(x(k)) andJ?S(x(k+ 1)), we arrive at a similar ISS

property as in Theorem 4.

Theorem 5 (Robust Stability of asNMPCYJnder Assumptions 2 and 1 with=Lj(1+
Lsv+ LsqOmax) in (4.13), the cost function®3(x) obtained from the solution of Problem
(4.35) with u= u®is an ISS-Lyapunov function and the resulting closed-lgsgpem is ISS

stable.

Proof : We compare the cost¥S(x(k)), J®5(x(k+ 1)) and use the mismatch terms in

(4.40a)-(4.40b) to obtain,

JB(x(k+1)) — I%(x(k))
= J9Xk+1)) — I(x(K)) + I (x(k+1)) — I (x(k+ 1))

+0%(x(k+ 1)) — 39 (x(k+1)

IN

—(x(K),u?3(K)) + &s(X(k+ 1)) + €as(x(k+ 1))

< —ap(|x(k)]) + &s(x(k+ 1)) + €as(x(k+1)). (4.41)

The last two inequalities follow by noting that the solutimiProblem (4.35) ak provides
a feasible solution to Problem (4.35) kat- 1, and from Assumption 2. Substituting the
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bounds (4.40a)-(4.40b) for the error terms leads to:

Es(X(k+1)) + €as(X(k+ 1))

L3(1+ (1= T)Lsv+ Lsq(|9(x(k), 0)[ + Lg/w(k)|)) (|g(x(k), 0)] + Lglw(K)])

IN

IN

Ly(1+4 Lev+ Lsg@max) (/) ap(|X])

+L3(Lg(1+ Lsy+ (1 + Lsg)Gmax) [W(K)| + (Lg)?|w(K)[?)

IA

pap(|x(k)|) + olw(k)|

where the first two inequalities follow from Assumption 5 aindm 1 > 0, and the last
inequality follows from{ = Lj(1+ Lsy+ Lsg@max) and o(|w|) = Ly(Lg(1+ Lsy+ (1 +
Lsg)Imax)|[W(K)| + (Lg)?|w(k)|?). The theorem is proved by substituting this result into
(4.41) to yield:

IB(x(k+1)) = I%¥(x(k)) < (p — Dyap(|x(k)|) + a|w(k)|. O

Note that{ determines the bound @ix, 0) in the ISS condition (4.13) and we can identify

the following performance levels.

* If clipping (T < 1) is applied at frequent intervals &s— o, we have the largest

and the smallest values (@f(x, 0)| allowed for robustness due to (4.13) .

e If T =1 for all k > k; > 0 then we have the robust performance of unconstrained

asNMPC derived in [60], whose additional loss is due to a tproportional to
|9(x(k), w(k))|>.

o If g(x(k),w(k)) = 0, thenx(k+ 1) = x(k+ 1) and asNMPC recovers the nominal
stability and performance of INMPC, and clipping is not neg.d
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4.5 Concluding Remarks

In this chapter we start with some fast NMPC algorithms amah tiliscuss the formulation
and implementation of asNMPC. By applying NLP sensitividgmputational cost could
be reduced by 2 or 3 orders of magnitude [60]. To handle asgtehange, “clipping in
first interval” is proposed. We then prove nominal stabiéityd robust stability for ideal
NMPC and asNMPC. This chapter lays a basis for the amsNMP@Gadethich we are

going to discuss in the next chapter. The implementatiomENMPC as well as stability
analysis are based on the corresponding theories of asNMRGlso study three MPC
examples that lack robustness and show that robustness beubbtained with a long
enough horizon or reformulation of NLP. The case studiessdfMPC will be shown in

Chapter 6 in comparison with the performance of amsNMPC.
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Chapter 5

Advanced-multi-step Nonlinear Model

Predictive Control

In Chapter 4 we discussed the asNMPC strategy. It applidgetsituation where the NLP
solution time is less than one sampling time. In this chaptempropose the advanced-
multi-step NMPC strategy, which could be used to avoid cowmpenal delay when the

NLP solution time exceeds one sample time.

5.1 Motivation

Due to NLP sensitivity update which takes a negligible antairiime, asNMPC is able
to reduce the computational time by 2 to 3 orders of magnifamtk thus avoid compu-
tational delay. Moreover, in Chapter 4, it is proved to be maity stable and robustly
stable. However, asNMPC requires the NLP problem to be dohi¢hin one sampling
time. This condition can be satisfied for many applicatidng,there are exceptions if the
problem scale is very large or if faster updates are neededLR solution takes longer,
neither INMPC or asNMPC will work properly. On the other hatitere are several fast
MPC or NMPC methods that deal with this case. They have besusied in Chapter 2.
For the case where the NLP computation requires more thasameling time, we first

study the the alternative of simply slowing down the sangpliate. For instance, consider
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the continuous stirred tank reactor (CSTR) example (6.1) jA5]. The reaction is a third
order reactiorA — B. The model is composed of two ordinary differential equadithat

describe mass balance and energy balance. The states aemttation of A and temper-
ature in the CSTR. The goal is to drive the system to its stesaty from a state far from
the steady state. More details of the model is presentedapt€h6. In our simulation we
assume that there is no noise in the system, and we set thdirsguthpe as 1min, 2 mins

and 3minsand compare the state profiles generated using those sagrtipigs. The simu-

lation horizon is 6(nins The results are shown in Fig. 5.1. We Uggmpto denote length

= T =
samp samp

T =1
samp

0.2f \ .
0.18% \ >

TV
0.16F :
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T
set point

0.241 ‘ 3‘—
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o
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[42] ~

|

Q
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time step

Figure 5.1: Effects of different sampling time lengths on&R.

of sampling time. From Fig. 5.1 we could observe that wherstirapling time is in, as
the blue line shows, the state converges to the steady stidtie the first 5 steps. When
Tsamp= 2, the state converges to the steady state within the firstep® sWithTsamp= 3,
the state converges to the steady state within the first 1#s.st€he convergence rate is
slower with increased sampling time. Therefore, slowingnlgampling is a less suitable

option, as it will deteriorate the performance of the NMP@tcoller.
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Based on asNMPC, we propose the amsNMPC method. We first dgfingN - SSution (e,
The idea of amsNMPC is simple: if it takég sampling times to solve the NLP, then we
predict the stat®&s steps ahead and this prediction is used as initial conditiaolve an

NLP Ns sampling times ahead of time.

We develop two variants of this strategy: the parallel apphoand the serial approach.
The parallel approach applies multiple processors to saliew NLP problem at every
sampling time. When the controller receives the actua¢ stae solution of a previous NLP
problem is updated to obtain the corresponding manipuleedble, and a free processor
is applied to a new NLP problem. Each time an NLP problem igeshlthe processor

is then freed to solve other NLP problems. Each NLP solutimh @orresponding NLP
sensitivity is used for updatenly once On the other hand the serial approach uses only
one processor. It updates the manipulated variable evenpls®y time but solves the
NLP problem at a lower frequency. Each NLP solution and spoading NLP sensitivity

matrix is updateavery N sampling times

Before presenting the details of the parallel and seriat@aghes, we start with a direct

extension of asNMPC, called blocked amsNMPC.

5.2 Blocked amsNMPC

For the following discussions we udg to indicate the number of sampling times it takes
to solve the NLP. The positions af u, z, v andx are shown in Fig. 5.2. Afi, we have
the solution of thereviousNLP problem, which was started @t n, with predictionx(k)

based on information at(k — Ns) andu(k—Ns+i),i =0,...,Ns—1. Attc_p,, the NLP
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Figure 5.2: Positions of, u, x andv for blocked amsNMPC

formulation is shown by (5.1):

min 3 5.1
mir Z} (5.1)
st z21="1(2z,v), 0=xK =2zKn:ueU 1=0,...N-L1L

We denote the optimal state and control variables of thiblpro as £ k- Znjk—ns
Vik-no)s | = 0,1,...,N—1, which are predicted states and controls in a horizon gitete
information at timety_n,. Also we define the error between actual stefie) and state

predictionx(k) asex = x(k) — x(k).

The blocked amsNMPC is a direct extension of asNMPC. The NLP) s solved every
Ns sampling times. At timéy, whenx(k) is obtained, instead of updating the first control
u(k), as asNMPC does, the fifst controls are updated based @n= x(k) — x(k) and the
same NLP sensitivity. Thex(k+ Ns) is predicted and a new NLP is started. The blocked

amsNMPC is implemented as follows:

* On-line atty, havingx(k), updatevpk_n,, N =0,...,Ns— 1 from NLP sensitivity

ande, = X(k) —X(k) = p— po = Ap to getAv, = Myhe,. Atty,p, inject the updated
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U(K+n) = Vyk—ng + TAVn € U asu(k+n) to the plant. Here € [0, 1] is the step size
when clipping is applied.

 Background atty, havingx(k) and updated controlg k+ n), predictx(k+ Ns) from
(5.4) as the initial value and solve the NLP problem (5.1).

» Setk =k+ Ns and repeat the cycle.

In blocked amsNMPQuy(k+n),n=0,...,Ns— 1 are updated by the sensitivity matrix eval-
uated aroundy_n,. Herez,_n, are assigned as predictions amdk + n) = Vyj_n, +
rM}’gq, n=0,....Ns— 1 are the updated controls, matM}’g is part of the inverse of
KKT matrix M, reflecting the perturbation im,,_n, due to the perturbation ip =
X(K) — Zok—ns- From (3.23) we havés = —M~*NAp, where—M~*N could be decom-
posed asMZ MY M2 MY].

We must make it clear that whertk+i),i =0,...,Ns— 1 are updated, the sensitivity matrix
is evaluated aroung_n,, SOZk_n, are assigned as prediction& +i):

X(K+1) =z N, (5.2)

If we defineF as the general form of evolution of states while the NLP ise®]F should
contain the initial state, all the controls during this peliand disturbancetk + N) =
F(x(k),u(k),,u(w(k)k+ 1),w(k+1),...,u(k+N—1),w(k+N —1)). The optimal pre-

dicted trajectory from (5.1) evolves as

Zi|k—Ns = F()qk%VO\k—Nyov V1|k—N37O'-'7Vi—1|k—N370>7i = 17 sy NS (53)
The wayx(k+ Ns) is predicted is that wher(k) is obtainedu(k+i),i =0,...,Ns— 1 are
updated, then:

X(k4+Ns) = F(x(K),Vok-ns + TM0&, 0, Vi N, + TMLE, O, ...,

Vi 1jk_Ne + TMz "6, 0) (5.4)
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Forx(k+Ns), u(k+ Ns) is updated based otk + Ns) — X(K+ Ns) = X(k+ Ns) — Zg using

a new NLP solution obtained witk(k+ Ns) as initial condition.

For the new NLP problem (5.1, = x(k+ Ns). The predictionx(k), x(k+1) andx(k+
Ns) are shown in Fig.5.2.
5.2.1 Nominal Stability Analysis

For nominal stability, we have(k) = x(k) and we assume that all the states are measured.

Problem (5.1) can be formulated as

Vg
st z51=1(z,4), 2=x(k+Ns), | =0,..,N—1

N—-1
min - kNG = W)+ 5 piEw)
|=

Vel (5.5)

For the nominal case, Problem (5.5) is solved instead, atitdAfm= 0 andAs= 0 at allty.

To start, we refer to assumptions due to Magni and Scattdldji

Definition 19. A continuous functiom (-) : 0 — O is a.# function ifa(0) = 0,a(s) >

0,¥s> 0 and it is strictly increasing.

Assumption 3. (Nominal Stability Assumptions of amsNMPC)

(i) The terminal cost¥(-) satisfies¥(x) > 0.

(i) There exits a local control law &= k¥MYx) € U for all x € X¢, some unspecified

terminal region, wherdV(f(x, k&Mx))) —W(x) < —(x, kFMYX)).

(i) @(x u) satisfiesap(|x|) < Y(x,u) < aqg(|x|) whereap(-) andagq(-) are %" functions.
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According to the implementation of the blocked amsNMPC, ki problem is solved

everyNs sampling times, and solution of each NLP problem is usedategdy until the

next solution is obtained. We note thak + Ns) = Zg), and that & i jk—Ng, YNg+i[k—Ng)» | =

0,...,N—1 fromJy(x(k)) are feasible values fog(Vv;),i =0,...,N—21in Iny(X(k+ Ns)).

This allows us to compare the objective function values eséhtwo NLP problems:

In(X(K)) = In(x(k+Ns))
Ns+N-1

N—-1
Z l'IJ(ZN)+ Z)LM(ZHW)_LP(ZN-FNs)_ Z l|U|(Z|7V|>
|=

|:N3
Ns—1 Ns+N—-1
I

= W) — W) + S;LM(ZI,W)— |Zw Wi (z,w)

Using Assumption (3)(ii), we can show

Ns
W) —W(znin) = Z\(LP(ZNﬁfl)—qJ(ZN—H))

i=
Ns

> ZWN+i—1(ZN+i—1,VN+i—1)
i£

Combining (5.6) and (5.7) leads to

Ns—1 Ns—1
INX(K) = In(x(k+Ns)) = > dn(z,vi) = 5 dh(x(k+1),u(k+1))
=0 1=0

Summing ovek =0,..., leads to

Ns—1 00
> IxK) > S Inx(K) = In(x(k+Ns))
k=0 k=0

Ns—1

> % (k4 1) p(x(k),u(k)) + Nskisw(xw), u(k))

k=

which implies lim Y(X(K),u(k)) = 0, which leads to the following result.

(5.6)

(5.7)

(5.8)

(5.9)

Theorem 6. (Nominal Stability of blocked amsNMPC) Consider the mobiogzon prob-

lem (5.5) and associated control law-uk 2™ x) that satisfies Assumption 3. Theg(¥(k))

is a Lyapunov function and the closed-loop system is asyioally stable.
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5.2.2 Robust Stability Analysis

For amsNMPC approach we consider the following system:
X(k4+1) = f(x(k),u(k)) +w(k) (5.10)

wherew(k) is additive disturbance. In order for the system to be rdjpssable, we have

the following assumptions:

Assumption 4. (Robust Stability Assumption of Blocked amsNMPC)

1. w(k) is bounded|w(k)| < Wmax-

From timety to ty, ., the actual state trajectory evolves as below:

x(k+1) = f(x(K),u(k)) +w(k) = f(x(k), Vor-ns + TMzgex) +W(K)
X(k+2) = f(x(k+1),u(k+1))+w(k+1)

= T(F(X(K), Vojk-ns + TMP&) +W(K), Vi N + TMzEe) +-W(K+ 1)
x(k+n) = F(x(k),Vok- N3+TMZOQ<7 (k),vl‘k_NS-i—TM;’()la(,w(k-i—l),...,
vn,1|k,Ns+TMZO”*1a<,W(k+n—1))

X(k+ NS) = F (X(k)7V0\k—N3TM¥8a(7W(k>7V1|k—Ns + TM;IOlQ(,W(k-i- 1)7 e
Ve 1k_Ne + TMz® "e, W(k +Ns — 1)) (5.11)
Next we start fromx(k) and show how error accumulates fragto ty, .. At ty we have
X(k+1) = f(x(k),u(k)) +w(k) (5.12)

and
& = X(k) —x(k) (5.13)
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Applying Taylor expansion aroun@yx—n, Vojk—n,) from (5.3), we get
x(K+1) = zypne+ Fa(Zok-ne Vorng) T (X(K) — Zo-ny)
+ fug (Zojk—Ng> Vork—ne) T (U(K) — Vo) +W(K)

= Zyjkns + T2 (Zojeng: Voo ns) T &

+va(20|kas,V0|kas)TTM¥SQ<+W(k) (5.14)
where
o= [ 2000 100 - p) (@R - I (.29
Ak =[x u” (5.16)
p(K) = [Zok-ns Vok-ng " (5.17)

Thus we have

&1 = XKk+1) -2z
= T2 (ZokNe: Vo) " &+ To (Zojne Vo) TMPey +w(k)  (5.18)
Similarly

x(k+2) = f(zl|k—Ns + é<+1,V1|k_NS + TM;’OIQ() +w(k+1) (5.19)

&z = XKk+2) -z
= fy8+ fAvlTM;/Ol@‘i‘W(k‘i‘ 1)
= fu(fx8c+ fioTMPe+w(K)) + fi, TMY e+ w(k + 1)

= [fafr+ 2 fueTMP + fy, M + T W(K) +w(k+ 1) (5.20)

&3 = szé<+2 + fsz TM;/()ZQ( +w(k+2)
= ful(fafr+ fr fue M + fi, M) e+ T, W(K) +W(k+ 1)) + fi, TM}26 + (K + 2)
- ( fZZ f\zl f\ZO + f\ZZ f\zl f\VOTM;IOO + f\ZZ f\V]_TM;/Ol + f\VQTM;/OZ)a(

+ fz, fow(k) + f,w(k+ 1) + w(k+2) (5.21)
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n-1 n 1 n—-1 n 1
&n = fz.+ fz fv. MV' )&+ fz (k+1i) (5.22)
I_L Z) j=i+1 J Z) j=i+1 X

wheren =1,2,...,Ns— 1. If we compare (5.4) with (5.11), we could see that the only

difference is that (5.4) does not includek +i). Soe anden, should evolve as

Ns—1 Ne—1 _
X(k) —x(k) = &= Z}( [1 fzon)W(k+i—Ns), (5.23)
=0 j=i+1
Ns—1 Ne—1 _
(N =Sk = @ = 3 ([ ke (5.24)
i=0 j=i+

respectively. Note that the notationse&f e..n, and the errors in the states betwegk)
andx(k+Ns) (e.9.,&.n, N=1,2,...,Ns— 1) are different. This is becaug&k) andx(k+ Ns)
are predicted differently frorg,_n,,n=1,...,Ns—1; x(k+n) are the optimal predicted
states taken from the optimal solution directly; whiig) andx(k+ Ns) are the integral
from the current state witbpdatedcontrols from the most recently solved NINR steps
ago, as stated in (5.4). Correspondingly_n, = X(k) andzy, = x(k+ Ns) are the initial
conditions of two subsequent NLPs. At tigethe optimal solution of the NLP witk(k)
as initial condition is obtained, the sensitivity updatdase around theptimal solutiorto
getu(k+n),n=1,...,Ns— 1. Therefore the predictions fatk+n),n=1,...,Ns— 1 are the
optimal stateg,._n,; whereasi(k+ Ns) is not obtained in this iteration. Insteadk+ Ns)

is predicted to start a new NLP problemtgtandu(k + Ns) is obtained by updating the

control in the first interval of the new NLP solution.

By Lipschitz continuity of (5.22), we have

n-1 n-1
\éx+n\§Le\eK|+% [ 7, )w (5.25)
i j=i+1
wherel satisfies
n-1 n-1 n-1
I(J]fa+ D ( fz) fuTM3) < Le (5.26)
[t 2, L], s
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Similarly we could find an upper bourlgj; for | |‘|J |+1 fZJ| such that

n—1
|&in| < Lela| + Z) Lgilw(k+1), (5.27)
1=
wheren=1,...,Ns— 1 and
Ns—1
|&ctNg| < % Lgilw(k+1)] (5.28)
1=

For the analysis of robust stability of the blocked ideal NBJR is necessary to include

the effect of NLP sensitivity errors. In the nominal caggk+n) =0,n=0,...,Ns— 1,

the forward simulatio(k+ Ns) = F(x(k), u(k),0,u(k+1),0,...,u(k+Ns—1),0) would

lead to the control action™(k + Ns+n) = k'¥(x(k+ Ns+n)) = k¥™YX(k+ Ns+n)),n =

0,...,Ns—1, whereu(k+ Ns+n) = k®™{x(k+ Ns+n)) is the control action of amsNMPC

with x(k+ Ns) as initial condition.k'd(X(k+ Ns+i)) would then be used to start Problem

(5.1). As shown in Figure 5.2 we can write:

JUX(k+Ns)) = In(X(K+Ns), K9 (X(k+Ns)), k9 (X(k+Ns+1)), ..., K9 (X(k+2Ns — 1)))
= Wz +N2:llf(2|k,v||k) (5.29)

=
while x(k) andk2™x(k + n)) would then be used to start Problem (5.1) for the prediction

of X(k+ Ns) with the cost

Ne—1 N—Ns—l
P = W) + GO + 5 PR ETRED) + 5 (@

- (5.30)

In the first step of the blocked amsNMPC algorithxtik+n),n=1,... Ns is generated

according to the following predicted states, controls amadrs:

X(k+n) = F(x(K),Vok-ns + T8, 0, Vi N, + TMe 0, ..., Vi1 n + TMzy "8, 0)

WCTk+n) = Vokon, + M e
n—1 Ns-1
&in = x(k+n)—>?(k+n):%( |_| fz)w(k+i), n=1,...Ns. (5.31)
i=0 j=i+1
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At ti;n,, the plant further evolves with disturbances generatiategtk + Ns). With ideal
NMPC,x(k+Ns) would lead to the control actioki (x(k+Ns+n)),n=0, ..., Ns— 1 which

is used to start Problem (5.1) with cost
J9(x(k+Ns)) := In(X(K+Ns), K'9(x(k+Ns)), ' (X(k+Ns+1)), ..., K4 (x(k+ 2Ns — 1))).

With amsNMPC x(k+ Ns) would lead to the control action®™x(k+ Ns+n)) and thus

the new Problem (5.1) with cost
JAMX(K+Ns)) 1= In(X(K+Ns), KT (X(k+Ns)), K X(K+Ns+1)), ..., KT X(k+2Ns — 1)) ).

The error of blocked amsNMPC is composed of two parts: ptedierror, which comes
from the difference between actual states and their piedigtand sensitivity error, which
is due to discarding higher order ter@$|p — po|?). We define these two kinds of errors

atty as:
gs(k+Ns) 1= J9 (x(k+ Ns)) — 39 (X(k+ Ns))
and
gamg K+ Ns) := J2M(x(k+ Ns)) — 39 (x(k+ Ns)).

Lemma 1. There exist positive Lipschitz constansalnd L, such thatvx € X,

les(X(K+Ns))| < La(|x(k+ Ns) —X(k+ Ns)| + |k (x(k4Ns)) — k'4(x(k+ Ng)|)

< Lz(1+Lk) [X(k+Ns) = X(K+Ns) | = Lz(1+ L) | €t | (5.32)

Proof. According to the implementation of blocked ideal NMR(E (x(k+Ns)) is achieved
from s*(x(k+Ns)), while k'd(X(k+ Ns)) is achieved frons* (x(k+Ns)). According to The-
orem 2(1), there existis, such that/k'd (x(k+ Ns)) — k' (X(k+ Ns))| < Lk|(X(kK+ Ns) —
X(k+Ns))|. Using Theorem 2 (2) leads to the result for Lemma 1. O

Using Theorem 2(3), the following lemma follows:
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Lemma 2. There exist positive Lipschitz constantsaind Ll2MSsuch thatvx € X,

|EamdX(k+Ns))| < La(|x(k+Ng) = X(k+No) |+ [K¥™x(k+Ns)) — k' (x(k+Ns)) )

< LL3Mx(k+ Ns) — X(k+ Ns) |2 = LL2MS ey |2 (5.33)

Proof. If we uses(p) to denote the estimate of perturbed optimal solution wittapeeter

p, due to sensitivity, we have

K

8(p) =s"(po) + ap (P—po) (5.34)
while the accurate optimal solution satisfies
. . s’ 2
S(IO):S(po)+a—p(p—po)+o(\p—po\ ) (5.35)
Subtracting (5.35) from (5.34), we have
8(p) —s*(p)| = O(|p— Pol?) (5.36)

In the NLP formulation of the blocked amsNMPE= (x(k+ Ns), K¥"{x(k+Ns))), po =
(X(k+ Ns), k"9 (x(k+ Ns))), k2™x(k+ Ns)) is a subvector o§(X(k+ Ns)) and k' (x(k +
Ns)) is a subvector o§*(X(k+ Ns)). So there exists a constdf"* such that

|K2™Sx(K+ Ns)) — K" (x(k+Ns))| < LE™IX(K+Ns) = X(k+Ns)|* = LE™ e ngl > (5.37)

O

Due to the implementation of the blocked amsNMPC, betweerk andt = k+ Ns, only

two NLPs need be considered.
J2Mx(k+Ns)) = I2Mx(K) = 39 (X(k+Ns)) — I¥™x(K)) + I (x(k+ Ns)) — 3 (X(k+Ns))
+32M(x(k+ Ns)) — J'9(x(k 4 Ns))
= Jud (X(k+ Ns)) — J3Mx(K)) + €5(X(k+ Ns)) + €amg X(K+ Ns))
(5.38)
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From Figure 5.2 we see the solution BMx(k)) is feasible forJ¥(x(k + Ns)) and we
compare the objective functions (5.30) and (5.29) as fatow

. N—1
J9(xk+Ns)) = *Mx(K) < (W) — W(Zn-ngi) + |Z) W(ZN-Ng+1 ko VN-Ng 1K)

Ne—1
—(x(k), ¥ ™K)) — lz Y(X(k+1), U™k +1))
=]
Ne—1
> [W(@N-Ner1K) = W 2NN ) + PN N K IN- N1

=0

Ns—1
—(x(k), "™ k)) - l; Yx(k+1), ™ k+1))

IA

From Assumption 1¥(z.,1) —W(z)+ @(z,v) <0 forz € Xt and we have:
. Ns—1
JIk+Ng)) = 2™x(K) = —@(x(k),uW™K) = § WKk+1), Mk +1)  (5.39)
=1

Ns—1
= 00T — 5 WO — e D)
=1

Ns—1
—WO(R), ™) =S (xR 1), PSR 1)) — L)
=1
< stl—w<x<k+l>,uam8<k+l>>+§L2Lf\w<k+i>| (5.40)
=0 i=

IA

where the last inequality follows from (5.28) and (5.31).n@mning (5.40) with Lemma 1

and Lemma 2, (5.38) becomes

JAM(x(k+ Ns)) — J2M(x(K))
Ns—1 Ns—1

= % —WX(K+1), 0" K+1)) + Lz(1+ Lie + Lg™ o)) g + Y Lot
|= =1

(5.41)
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Combining with (5.28), we have

JEMX(k+Ns)) — I x(k))

Ns—1 Ns—1 Ns—1
< Y XK+, uTKA+1)) + L % w(k+n)[)[Lz(1+ L) + LALR™ % Lt |w(k+n)|)]
=0 n= n—=
Ns—11-1
£33 Lildwiktn))
=0 n=0
Ns—1

= % {=@X(k+1), U™k +1)) + Lol (Lc +Ns— 1)) w(k+1)[}
|=
Ns—1
+L L 3MS(L ¢ % Iw(k+i)|)2. (5.42)
i=
This constitutes a blocked form of the ISS property, wheeedtage costs and noise are
written in terms of blocks, instead of individual samplimgés. Using (5.42) and Defini-

tion 16 leads to the following result.

Theorem 7. (Robust stability of the blocked amsNMPC approach) For tloeing hori-
zon problem (5.1) and associated control law-w @™ x) that satisfies Assumption 3 and

Assumption 4 is an ISS-Lyapunov function and the closealdgstem is robustly stable.

5.3 Serial approach

The serial approach is an extension of asNMPC. Instead digtiieg thenextstate, solving
an NLP problenonestep in advance and updating only fivet input within each horizon,
it predicts the statBls sampling times ahead, solves an NLP probMNgyisampling times in
advance, and updates thiest Ns inputs within each horizon. It should be noticed that in
the formulation of the NLP problem, the initial constraigf_n, = X(k) is included, and
x(K) is considered a parameter. In the KKT matrix, the row reladetthis initial constraint

is a unit vector, whose elements correspondingyto n, have the value of.
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The positions ok, u, X, zandv of the serial approach are shown in Fig. 5.3. Solid lines
are for the actual control profiles, while dashed lines arepfedicted state and control

profiles. Dot-dashed lines indicate solutions of diffefdh® problems (5.1).

7\ i“?(k—"_ ]vsampi) = ZNJMP +AEZNEW
——/l———\—\>———7—/——:}—\\—'A—i—‘;-;j-——:-=———,———-—=i‘—'—"—'_—a—_— ————————————————— s
/ i~ b
xk)w vos !
X(k)| (k) =v, +av,
— i :
@_._._._._.:

e+ =y

tk tk+1 ee tk+Nm tk+N ~Neamp tk+N tk+N¥,,,p +N

Figure 5.3: Positions of, u, X, zandyv for the serial approach

When the measurement is obtaineglchanges fronx(k) to x(k), the KKT matrixM is
directly applied to update the first input. This is not theecaden it comes to the other
states within the same horizon, because they are not coedids parameters in the NLP
formulation; thus there are no corresponding unit elemiarttse KKT matrix. As a result,
when the other inputs are updated, besides current NLPtisigsadditional constraints
need to be added. Those constraints are reflected as adtlitmomns and rows of the
KKT matrix. In other words, when the inputs other than thet fne updated, the KKT

matrix needs to be updated.

5.3.1 Updating NLP Sensitivity

When theit" input is updatedi(z 1), po+ Ap = x(k) is determined implicitly by an ad-
ditional constraint/;x_n, +Avi = Xx(k+1i). This constraint is treated through adding unit

elements to the rows and columns of the KKT matrix, and thincadding additional con-
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ditions to the right hand side. The system (3.23) is refoatad as:

m e [as] o 643

LEZi ‘ OJ {APJ ri
wherer; = x(k+1) — z, Ep is matrix whose element correspondingzcdas the value
of i while other elements are 0, afd; = Eg. System (5.43) is solved using the Schur

complement method developed in [48]:
MAS = —Eyj (ExiM 1Eqj) i (5.44)
Thus we can calculate the approximation of the perturbadisol using
S(X(k+1i)) =s"(z) +As(x(k+1)) (5.45)

and the updated manipulated variable is contained in thenbed solution vectos(X(k +

i)).

5.3.2 Implementation

Suppose the optimal solution of the last NLP problem is knattn Knowingx(k), Vojk—ng
is updated using (3.23) and injected into the plani@&s$, andx(k+ Ns) is predicted using
(5.4). Then betweety andty \,, Problem (5.1) is solved in background uskig+ Ns) as
the initial value. In the meantime, the current manipulat@uablesy_n,,i =1,2,...,Ns—
1 are updated online using the sensitivi§j(zk_n,) +As(X(k+1i))) based on solution of

the previous NLP problem and (5.43). The serial approaclksvas follows:

« Background At ty, havingx(k) andu(k), updatevg_n, and zyx_n,N = 1,...,Ns
usingex = x(k) — x(k). Evaluatex(k+ Ns) by (5.4) and solve Problem (5.1) between

ty andtyn, With x(k+ Ns) as the initial value.
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* On-line forn=1:Ns—1, Atty,n, havingx(k+n), update the augmented sensitivity
systemin (5.43) and updaigy_n, USiNg€c;n = X(K+N) —Z,k_n,- Inject the updated
u(k+n) = Vy_ng + Mz (X(K+N) — Zy ) to the plant.

» Setk = k+ Ns and repeat the cycle.

5.3.3 Nominal Stability Analysis

For the nominal case, Problem (5.5) is solved instead, atitdAfm= 0 andAs= 0 at allty.

According to the implementation of the serial approach,Nh® problem is solved every
Ns sampling times, and solution of each NLP problem is usedatepiy until the next
solution is obtained. In addition to the objective functifx{x(k)), we define a modified

objective function given by:
. i1
IN-j (X(K)) = In(x(K)) — %‘-U(ZI,VO (5.46)
|=

JN-j(x(k)) is obtained from solution of (5.5) with the optimal cdg(x(k)) and subtracting
the firstj stage costs from it. When tfi® manipulated variableg is injected to the plant,
Jng1-i(x(k)) is the objective function corresponding to the states anupuéated variables

within a shrinking horizon starting frork+i — 1.
It is obvious that
IN(X(K) —In-1(x(K) = W(z0,v0)
INCj(xX(K) = In- 1K) = W(Z,V),j=1,...,Ns—2 (5.47)
Next we compardy_n 1 1(x(K)) andJIy(x(k+ Ns)).

In-Ne+1(X(K)) = In(X(k+Ns))
Ns—2

= XK= Y () - RN (5.48)
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As in the parallel approachzy.+i(X(K)), VNg+i(X(K))), i = 0,...,N —Ns— 1 from Iy (x(K))
are feasible values fog(x(k+ Ns)),Vi(X(k+Ns))),i =0,...,N—=Ns— 1 in IN(X(k+ Ns)).
Hence, from (5.8) we have

Ns—1
IN(X(K) = IN(X(k+Ns)) = 5 d(z,m)
=

Substituting into (5.48) we get

IN- N2 (X(K)) = In(X(K+Ns))
Ns—1 Ns—2
2 W(Z|7V|)_ LAU(Z|7V|)
2, 2
= Y(Zn-1,VNe-1) (5.49)
Therefore bothly(x(k)) and JAN_j(X(k)> satisfy the conditions of a Lyapunov function,

Assumption 3(ii) leads to lifp,. x(k) = 0 and the following nominal stability property

follows for the serial approach.

Theorem 8. (Nominal Stability of the Serial Approach) Consider the mgwhorizon prob-
lem (5.86) and associated control law=tik®™Yx) that satisfies Assumption 3. Then,
In(x(K)) and Jy-—j(x(k)) are Lyapunov functions and the closed-loop system is asymp-

totically stable.

5.3.4 Robust Stability Analysis

We start with the case where clipping is not needed. Compaiticblocked amsNMPC,
the optimal NLP trajectory (5.3) does not change, neithethdgredictions ofx_n,, " =

1,...,Ns. The only difference from (5.11) lies in the evolution of @alttrajectory:

X(k+n) = F(X(K),Vok_ns +Mzec, W(K), Vik_ng + M7 i1, W(k+1), ...,

Vn—1|k—Ns+M;/,?fllék+n—1,W(k+n— 1)) (5.50)
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Starting fromey, 1, we have

&1 = (20K, V(K))a+ fug (2(K), V(K) ) Myex + (k) = (fz+ fuoM3) e +w(k)
&2 = f\zlé(+1+f\V1M¥fé(+l+W(k+ 1)

= (fu + fu M) [(f5 + fuuMy2) e+ w(K)] +w(k+ 1)

= (T + M) (fr + fioMy) e+ (fz + fu My W(K) +w(k+ 1)
&z = 80+ f,M26& 2 +W(k+2)

= (fz+ f,M2){(fz + f, M) [(T + fueMy2) e+ W(K)] +w(k+ 1)} +w(k+2)
2 2

= |‘L(fa + Ty My e + rl(fa + Ty MZHW(K) 4 (T2, + fu,MZ)W(k+ 1) +w(k+2)
i= i=

n-1 n-1 n-1 ,

Bin = rL(fa+fv.Mv' &+ Z} [T (fy + fuyMzwik+i) (5.51)
i= j=i+1

wheren=1,...,Ns— 1.

Comparing (5.4) and (5.50), we get

Ns—1 Ns—1 Ns—1 Ns—1

Gn, = % I—l (fzj + fvj M;/jj)w(k-l— Zi fleVI I_l (fzJ + fvjl\/l ) e(5.52)
i=0 j=i+1 j=i+1
Similarly as with the blocked amsNMPC approach, we could fipdnd Lg such that
n-1 R ‘ s
| |'L(fa + fuMy)ed < Lgled] (5.53)
n=
Ns—1 -
| Z fVuMVI |_| ij + ijMZj])a(‘ <Lg Q<| (5.54)
j =i+1
And we could find an upper bourd, for y7—3 (%=1, 1 (5 + fy;Mz)) such that
|&cin| < Lolex] + %LWM k+n)] (5.55)
whenn=1,....Ns— 1 and
Ne—1
|€ing| < Le|a<‘ + % LW|W k+n)] (5.56)
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Applying recursion on (5.56) we obtain for=0,1,... andk = mNs:

lemang| < (L ”‘+1|eo|+% [(%} % Lo w((m—1)Ns+i)]] (5.57)

since the NLP problems are only solvedkat mN;. Becausek — o a memory effect
persists in the accumulation of erragsand it is not clear that this accumulation remains

bounded. This implies that robust stability may not holdderial amsNMPC.

Simplifying Assumptions for the Serial Approach

From the sensitivity equations, we will introduce the fallng approximation:
n—1
M"&n = Me+ %MZ.”W(k—f—i) (5.58)
i=

Justification for Approximation (5.58): To see this, we first consider the nominal case

withw(k—+i)=0,i =1,...,Ns— 1. From the sensitivity system we define,
U(K) — Vojiein = AVo = Mzde = Mz (x(k) — X(K))

as with the blocked approach. From the evolution oflitear sensitivity equationse can

write:
X(k+1) — Z1|k—Ns = A7y = fhec+ fvoM;/gQ( = (fx+ fvoM;/g)Q( (5.59)

where the Jacobiank,, fy, are elements of the KKT matrix evaluatedx@k — Ns). By

induction, assume that

D71 = [(fa+ TuMY), . (o + fy M) (g + T M) e (5.60)
and
AVipr = Mz AZL g = Mg [(F+ MY, (Fy + Fuy M) (o + fipM30) e

MY-ta (5.61)
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Then

Diyz = MZ20Z =My ({5, 07 11+ Ty, AV 1]
= MZ:LZZ[( fzi+1 + fVi+1 leill% ceey ( fZl + fV1 M;/ll)(fz() =+ fVOM;/g)]a(

Mz 2. (5.62)

Hence, withw(k+i) =0,i = 1,...,Ns— 1, we havely; = My Az = M} &

We now consider the case whest¢k +i) # 0 andw(k+ j) #0,j = 1,...,i — 1 and state

the following assumption.

Assumption 5. (Robust Stability Assumptions of the Serial Approach) Thasdue to
differences in the Jacobians ,ff, and f,, f,, can always be bounded by the uncertainty

term|w (k+i—1) —w(k+i—1)| as follows:

|(fAZi+1 + fAVi+1|\/|;|/'i++1l>v : ”7(1320_’_ vaM}'S)@— (f2i+1+ fVi+1MZ'i++11) : --7(f20+ fV0M¥8>Q<|
< W(k+i—1)—wk+i—1)], (5.63)

where i(k+i—1),wk+i—1)e#, i=1...Ns—1
This assumption allows the evolution of the errors to be itésvr as:
E(k-i‘l) = X(k+|) _Zi|k—Ns
= (fAZi+1+ fAVi+1|\/I;|/'i++1l)7~-~7(fA21 + fAVlMgll)(fAZo"" fVoM;/g)eK""W(k"'i - 1)

(fz1+ fu M2l (Fy + i ME) (fp + fugMy) e+ W (k41— 1).
(5.64)

From the Schur complement extension of the sensitivity ggus ([58]), we havex(k +

i)—X(k+1) (i.e.,w(k+1i)) specified in the right hand sides apd- pg is back-calculated.
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Forw(k+i)#0,i=1,...,Ns— 1 we have:

&1 = (fzo+fv0M¥8>Q<+W(k)
&z = (fz+ fuMz)(fz + fyoMZ) e+ (fz + fv, Mz )w(k) +w(k+1)

n-1 n-1n-1 )
&ein = rL(fzi—i—fViM‘a’.i)a(—i- Z}H(fzj-l—fvaZj‘)w(k-l—i). (5.65)
i= i=0 |=

Similarly, we can write:

n-1 n—1n-1 )
M¥&n = M}’g[rl(fzi—l-fviM}.’.‘)a(-l—_% [ (f + fv,Mz) )w(k+1)]
I= =0 |=I

n—1
MP&in = Mpec+ %MZ“W(k—f—i). (5.66)
i=

As a result of this approximation, the evolution (5.50) carr@written as (5.67). Note that

this has strong similarities to (5.11) from the blocked am$MC approach.
X(k+n) = F(x(K),Vok-n, +Mze,W(K), Vi, + Mz (&c+w(k)),w(k+1),...,
n—2
Vi 1k-Ne + Mz e+ % Myw(k+i),w(k+n—1)). (5.67)
i=

In a similar manner as with blocked amsNMPC, we again com{ta#e with (5.67), and

derivee, andeg, \, expressions analogous to (5.23), (5.24):

—1 Ns— Ns—1 Ns—1 R ~ )
x(K) —x(k) = Z) |-| 7wt Y (] f2 ne) i Mz JW(K+i — Ng)
j=i+1 j=1+1 p=j+1
(5.68)
Ns—1 Ns—1  Ns—1 Ns—1
X(k+Ns) =X(k+Ns) = &cn = %[ N fat+ Y (] )Mz wk+i)
i=0 j=i+1 j=1+1 p=j+1
(5.69)
Defining an upper bounti?forﬂ;-\';_jl le+z] I+1(|‘|IO i1 fzp)flez. we then have:
Ns—1 Ns—1
o < ;L?\wk Nooti) andlacn| < 5 Low(ke1) (5.70)
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Plugging (5.70) into (5.65) we get
n—-1 -1 s n—1n-1
A V
|&n| < Il_L(fz+fV.M %l—f‘Wk Ns+1) |+%|_I le+fVJMZ])|W(k+ )l
< LS % L?|w(k—Ns—+i)|+ %LW|W (k+1) (5.71)

whereL$ andLs, satisfy

I
[

n

[(fa+ M < LS (5.72)

'Z',:I

l .
(fy +fyMz) < Ly (5.73)

n

For the serial approach, (5.38), Lemma 1 and Lemma 2 ardrsiél However, we also

observe the following changes:

J9(x(k+Ng)) — 32Mx(k))

Ns—1
< —p(x(k),u*™K)) — Z Y (Z kg, K1)
= —(x(k),u?"™k)) — Z YX(K+1) — &pr, U™k +1))
< —P(x(K), 1K) + z(—w<x<k+|>,uam5<k+l>>+Lza<+|>
< % —P(x(k+1), ¥k +1)) +Z (Ly( Z}LSLf|wk+|—Ns|+Z)LW|wk+
(5.74)
Therefore
P MSx(k+ Ne)) — I ™x(K))
Ns—1 Ns—1
> WO, D) L+ b LMl + T (L)
= =1
(5.75)
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Combining with (5.70) and (5.71) we have

JamS(x K-+Ns)) — JAMx(K))
Ns—1 Ns—1

< Z —@(X(K41),u™Kk+1)) + L3 %\Wk+n)|)[LZ(1+Lh)+LZLamS( %Lf\wkm)m

+ Z L( Z LSLf|w k+n—Ns) \+Z|_ Iw(k+n)|)
= ;{ PX(kA1), W™K+ 1) + Lo[(LP(L+Lp) + La(Ns— 1= 1)) w(k+ 1) ]}
FLAESLY Z) w(k+1)[)?+cp.

where the old error is representeddy= 3=, 1 L,(3 2, LELSw(k — Ns+i)]).

Due to the implementation of the serial approa{x(k+1)),i =1,2,...,Ns— 1 can be
calculated as follows:

, = )
JEMx(k+1)) = J'd(f(k))—Z}W(&k—N37V||k—NS)+Ji,z(X(k))[X(k+i)—Zi|k—Ns]

|=
(5.77)
where
i—1

J(xk) = J9xk))— l;w(ZHK—NsaVHk—Ns) (5.78)

Gaxt) = [P i)~z )T )~ 7)ot
(5.79)

and we assume that for al|J; 2(x)| < L,, a Lipschitz constant. Next we compaf@(x(k+
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i+1)) andJ@x(k+i)),i =0,...,Ns— 2:

(K4 i +1 Sk 1))

= J9xk)) Zjll! 2 kN> Vi k) F Ji+1,2(X(K) ) B4 1

—[39(x( Z}lﬂ kN> Vi k) i 2(X(K) ) 8]
= _w(zﬂk—NS?VI\k—NS)+‘]l+1,2( (k))a(+l+l_‘]l,2<x(k)))é<+l

~POX(KAT) = i, TSR — M &) + (i 1,2(x(K) LSIQ<I+%LW\W (k+11)

IA

+13 2(x( ))I(LS|Q<I+ZL w(k+D1))

IA

—P(X(K+1), U™k +i)) + (2L, + Ly) {LS % L?|w(k—Ns+1)| + %LW\W (k+1)

-l-Lz{LS % LPIw(k— Ns+1) %L SIw(k+1)]

= —P(X(K+1), "™k +1)) + L(x(K)) Ly w(k+1i)| +C3 (5.80)

wherecz = (3L, + Ly){LES o5 LEIw(k — Ns+ )| + TIZA LS jw(k+1)|}.
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IN

IN

IA

VAN

JAMYX(k+ Ns)) — I¥M™(x(k+Ns— 1))

J9(X(K + Ns)) + Jo 2(X(K+ Ns)) €N,
_ Ne—2 )
—[39(x(k)) — ; W(Z k-Ng» Vi k—Ns) + INg—1,2(X(K) ) N 1]

Ns—1 Ns—2

- % W(Zijk—Ng> Vi [k—Ng) + Z} W(Zik—Ngs VI [k—Ns)
+[Jo.20X(K+ Ns)) |8t ng| + [Ing-1.2(X(K)) | € N1

Ne—1
— W (Zng—1k—Ng> VNs—1k—Ng) + Lz Z) LPIw(k+1)|)

-1
+LZ{|_S Z LPIw(k—Ns+1)]) + Z L3|w(k+1)

—P(X(K+Ns—1) — & ng1, UK+ Ns— 1) = Mz /&g 1) + Lz % LeIw(k+1)
LZ{LS Zz L?Iw(k—Ns+1)|) + Zz L3 |w(k+1)|
—(X(K+Ns—1),u®Yk+Ns—1)) + L, Z) L?|w(k+1)

Ns—1
+(2L 4 Ly){LS Z L?|w(k—Ns+1)]) + Z L3Iw(k+1)

—P(x(k+Ns—1), ams(kﬂLNs—l))Jrl—sz\W(kJFNs— 1)|+ca (5.81)

wherecs = L ¥ {0 2 LEIw(k+1)] + (2o + L) {LE 3 o T LEIw(k— Ns+1)| + 3 552 LS wik+
1)|}. From (5.81) and Definition 17, we obtain the following resul

Theorem 9. (Robust stability of the serial approach) For the movingikon problem (5.1)

and associated control law=1 h2MYx) that satisfies Assumption 3, Assumption 4 and 5 with

c3z and ¢ is ISpS Lyapunov function and the closed-loop system isthystable.
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If clipping is applied, we obtain(k) — Vo n, = Avo = ToMy0ec. Then (5.59) becomes
Az1 = T8¢+ Ty ToM2ex = (2 + Ty ToM}0) & (5.82)
and (5.60) becomes
Az 1 = [(f+ M), ., (T + fy TIME) (T + Ty ToM?) Jex (5.83)

HoweverMy'H2[(f5 + fy MY, ..., (T2, + fu TIMAD) (7 + fu, ToMYQ)] # My, Therefore
(5.58), (5.61) and (5.62) are not true any more. As a reswuAgption 5 and the ISpS
property do not hold with clipping.

5.4 Parallel Approach

Among the two approaches, the parallel approach is moretdired easier to implement
because it is a combination of multiple asNMPC iteratiomasheexecuted by one proces-
sor. The amsNMPC approach handles NLP problems whose awutequire multiple
sampling times to compute. Suppddse> 1 sampling times are needed to solve the NLP
problem. Here we would like to solve the predicted NLP probMs sampling times in

advance to get the predicted manipulated variable for thegtstate.

We definex(k) as thepredictionof the state at timé. Fig. 5.4 shows the positions gfu,
x andv. Solid lines are for the actual control profiles, while dakhees are for predicted
state and control profiles. Also, different dashed lineestyhdicate solutions of different

NLP problems (5.85).

At ty, it is assumed that the solution of the NLP problem is cated@dased on the in-
formation from timety ,, and the solution i$Zp—ng, - - - » ZN|k—Ns> VO[k—Ns» - - - » VN—1|k—Ns } -

Oncex(k) is obtainedy;jk_n,, j =0, ...,Ns—1 are updated from (3.23), witt{k) = po and
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SN TN . !
] G ¥ - el Bt Ittt S
] R T N i NLP 1
u(k) ! LV"EA(_kt]YW)) i : ! Processor 1
F———= _ __| T e B T -
v, (k) | o)
! k L tk+Nw Ikmwa Liw tk+Nm,P+N
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Processor Nmp

Figure 5.4: Positions of, u, x andv for the parallel approach

X(k) = p: We then predick(k+Ns) with X(k), Vjj—ns, ] = 0, ..., Ns— 1, which becomes the

initial value and parameteqy of the next NLP problem solved by the same processor:

)?(k-i— Ns> =F (X(k>7V0|k—Ns + M\(/)OQ(’ O7V1\k—N3 + M\(/)la(’ O, "'7VNS—1“(—NS + M\(/)kasa(’ O)
(5.84)

We use the superscript M to show which processor generated the current matrix that is
being used. Similarly, the superscript bshows which processor generates the solution

that is used to evaluate the derivative.

Note that the manipulated variables are updated using)8rd@. At each sampling time
the solution of an NLP problem and a new linearized KKT systamobtained, and the
first manipulated variable of each solution is updated wag8pect to the current state mea-
surement. Since it takéd; sampling times to solve one NLRg processors are applied at

each sampling time in a staggered manner.
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5.4.1 Implementation

The parallel approach is implementedMgprocessors as follows: FoE= 0 : Ns—1,

* Online atty,, havingx(k+i) , givenx(k+i) = po andx(k+i) = p, updatevjx_ny4i, j =
0,...,Ns—1 andzygk_n.+i Using (s*(po) +As(p)) from (3.23). Inject the updated
Volk—Ns+i +4Vo € U asu(k+1) to the plant.

» Background predictx(k+ Ns+1i) by (5.84) as the initial value and solve the NLP
problem (5.85) using th#& processor.

(/niZIn IN(X(K+i+Ns)) )+ %LM zZ,v)
I?
st. z.1="F(z,v), zz=x(k+i+Ns), | =0,....N—1

el (5.85)

Setk = k+ Ns and repeat the cycle.

5.4.2 Nominal Stability Analysis

For the stability proof we need to assume tRat> o so that all solutions witl(k+i+ Ns)
correspond to each other. For nominal stability we heke = x(k) and all the states are

measured. Problem (5.85) can be formulated as

(/nizln IN(X(K+1+Ns)) +%LII|Z|V|
I?
st. zy1=1(z,v), 0=%XK+i+Ns), 1 =0,....N—1
vielU (5.86)

wherei =0,...,Ns— 1. The subscript od indicates the length of the horizon.
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From (5.8) we have
Ns—1

Ns—1
In(x(k)) = In(x(k+Ns)) > l; A (2 kN> Vi k—Ns) = é B (x(k+1), u(k+1))

Since
oo Ns—

; % (In(X(k+ [Ns+1))) = In(x(k+ (j +1)Ns+1))

— ; IN(X(K+1)) — In(X(e0))

Ns—1
< Z) IN(X(K+1))

we can combine with (5.8) to yield

oo Ns—1 00

Z) IN(X(K+1)) > Z) Z} Y1 (Zer1+Nss Vier+jNs) = ) Wm(X(k+m), u(k+m)) (5.87)

=)
which leads to

lim ¢x(x(k),u(k)) =0 (5.88)

k—o0

SoJn(x(k)) satisfies the conditions of Lyapunov function, and the pge@ the processor
being analyzed is nominally stable. We note that this amaigssimilar to the average
performance proposed by Angeli et al. [3], where the avecagéfunction ofNs adjacent

NLP problems satisfies the conditions of Lyapunov function.

o FIn(x(k+i+ jNs))

I,j = 5.89
NvJ NS ( )
wherej =0,...,0. From (5.8) we get
JN,j—JN7j+1> Z (¢ (2,%)/Ns (5.90)
I=7%Ns

SinceJ_NJ satisfies the conditions of Lyapunov function, the follogvinominal stability

property is proved.
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Theorem 10. (Nominal Stability of the Parallel Approach) For the movimgrizon problem
(5.86) with N— o and associated control law+ k2M¥x) that satisfies Assumption & |

is a Lyapunov function and the closed-loop system is asyioally stable.

5.4.3 Robust Stability Analysis

For the parallel approach, all the states are predictediaigly; therefore we do not add
a bar above the error to show the difference. Since inputsacoeilated by different pro-
cessors, it is difficult to figure out how error accumulatesfre, to e if N is finite.
Therefore for robust stability proof we assume infinite honi length. Having(k), with

the first processor we have (5.84):

XK+ Ns) = F (X(K), Vo + My 08k 0, Vi ng + My 08k, 0, . Vi1 + Mo "6, 0)
(5.91)

We use the second subscriptMfto show which processor generated the current matrix
that is being used. Similarly, the superscriptfoshows which processor generates the
solution that is used to evaluate the derivative.

For the actual trajectory we have

X(k+Ns) = F(x(K), Vons + My 08k, W(K), Vok_ng+1 +M;0 18 1, W(K+ 1), ...,

Vok—1+ M:g,stlaril,W(kJr Ns—1)) (5.92)
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For the parallel approach all processors are executedaguily, so for processar,n =

0,...,Ns— 1 we have

X(k+Ns+n) = F(X(k+n),VoNetn + Mz n€n, 0, Vijk-Ngin + Mzt n€kin, 0, ...,
Vhe— 1k—Netn+ Mz ‘6in, 0) (5.93)
X(k+Ns+n) = F(X(K+N), Vo-Ng+n+ My n, WK+ N), Vo N 160 + My 18t 1
W(K+n+1), ..., Vo100 + My0 N 18 ning -1, WK+ N+ Ns— 1))

(5.94)

From (5.93) we could see thaj., = X(k+ Ns+ n) contains the information of(k +
N),&-n,W(k+n),...,w(k+n+Ns—1). Therefore memory effect also exists with the
parallel approach. Moreovef,x_nn,i =0,...,Ns— 1 contains the information of(k —
Ns+n), thereforeMy ,(x(k+Ns+n)) contains the information of(k — Ns+n), w(k — Ns+
n),...,w(k—Ns+n—1)). Similarly, M7 ,(x(k+n)) contains the information offk — 2Ns +
n),w(k—2Ns+n),...,w(k—2Ns+n—1)).

For the parallel approach, since the controls are calallayedifferent processors, it is
difficult to study the error accumulation. Therefore we needake assumptions to link

solutions of processar,n=1,...,Ns— 1 to processor 0:

Assumption 6. (Robust Stability Assumptions of the Parallel Approach)

1. N— oo such that when there is no uncertainty in the system, we h%?(,eMM;’;WO.

2. We assume the errog g, = (M, — M;’:’O)aﬁn can always be bounded by an un-
certainty term by Y1t [w(k+-i)| + [w(k+i—Ng)|, i.€e.,
n—1

[Ghen] = [ (Mz20 — M, )€kl < L Z) wW(k+1)[ 4+ |w(k+i—=Ng)|  (5.95)
i=

where Ly is a Lipschitz constant for M
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Therefore we could reformulate (5.92) as

X(k+Ns) = F(x(K), Voj-ns + Mz 08k W(K), Vg + My 081+ Ok 1,
W(K+1), ..., VNg—1)k—Ns T M;/,L\ISS:llyoaﬁstl + Ok Ng—1, W(K+Ns — 1))
(5.96)

Notice that this is similar to the evolution of the serial eggch (5.50). So we could use
Assumption 5 and repladd,’ ,exn with M, jex + 3 1M"”Ow(k+ i) (5.58) and end up
with

X(k+ Ns)

= F(X(K), Vok-n, + Mg g, W(k) Vi + My o(8+W(K)) + G, WK+ 1), ...,

VNg—1Jk—Ns T B &+ %MV”OW (K41) + Ok Ng—1, W(K+Ns— 1))
(5.97)

Comparing (5.97) and (5.84), we have

X(k+Ne) — XK+ N) = ey

Ns—1 Ns—1  Ne=1 Ng-1 A

i; jli_-lu J j:|Z+1 p—|:|+1 P Zmo
Ns—1 Ns—1 Ns—1

£, ) fu Qs
+i; [j—Zﬁ-l(p_ljl_HL o) Ty G+ i

Ns—1 Ne—1 Ne-1 N1 Ns—1 Ns—1 Ne-1
< S far 3 (] flfuMiortm 505 ([ fa)ful}wkei)
=0 j=i+1 j=T+1 p=j+1 m=i j=m+l p=j+1
Ns—1 Ns—1 Ns—1 Ns—1

2t L (] fz0) fuy 1} W(k— No+-1) (5.98)

=i j=m+1 p=j+1

Defining an upperbourioﬁ’lfor{|‘|'j\'ii’+ll fzj—i—zJ ,+1(ﬂ'gsjil fzp)fv,- ‘ot+Lm e [Z, sl

(Mpi51 f2) ]} and an upper bount?, for {Lm y et [5}® m+1(|‘|p i1 fo) fl} we
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then have:

Ns—1
[SNEVA IS Z) LT w(k+ )] + LEolw(k+i — Ns)]]
i=

Ns—1
& < % [LFy (ki = No) | + Lo/ w(k +i — 2N)]]

Similarly as (5.65), for processor 0, we have

\éﬁn\
n—1n-1 n—1n-1

- \rL fa+fv,MZ'Oe,<+Z)|_| o+ My w(k+i) + 3 [ (f+ fy, M,

i=1 |=I
n—1n-1

|_L(fz + fy My o) lex| + Z} |'| fz + fy,M, )IW(k+ )]
1=

n—1in-1n-1 o - .
+Lm Z > 1tz + ijM:,-],o) fu (Jw(k+1)| + |w(k—Ns+1i)])
i=1m=i j=m

IN

From (5.99b) and defining suitable upper bounds leads to:

Ns—1 Ns—1

Bein|] < LPZ;Mk Ns+i)|+L5 Zj|wk 2Ns+1)| +Liy Zj|wk+

(5.101)

(5.99a)

(5.99b)

0) 1?Vi qk+i|

(5.100)

For the parallel approach, (5.38), Lemma 1 and Lemma 2 drérgd. However, we also
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observe the following changes:

J9(x(k+Ns)) — I3 ™x(K))
Ns—1

—(x(k), u*™(K)) - IZ Y(Z kg UKD
=1

IN

Ns—1
= —W(x(k),u"™k)) — IZ WX(k+1) = &, Tk +)
=1
Ns—1
< =Pk, uTK)) + Y (XKD, UK+ 1)) 4 L)
I=1

< stl—tp(x(kJrl),uamS(kJrl))

Nsl Ns—1 Ns—1

+Z LY S Wk=Ns+i)|+LY § Wk—2Ns+i)|+Lb; S [w(k+i)]
Z) Z) Z) (5.102)
Therefore
JAx(k+Ns)) — I*™x(k))
z —P(X(K+ 1), MK +1)) + La(1+ Lic + LE™ e ng|) 8] +TZ(LZ@+|)
(5.103)
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Combining with (5.70) and (5.71) we have

Ns(J¥™x(k+Ns)) — 3™ x(K)))

Ns—1
<Y (k) k)
10
Ns—1
+ 3 Lk
Ns—1
+LE (k41— Ng) ] [Lz(1 + Lic) + LAZ™ % [LFyw(k+1)| + L w(k+i —Ns)[])]
-1 -1 -1
+ Z (Lo (LY Z)|wk Ns+i)|+L5 Z}\wk 2Ns+i)| + L7 Z>|Wk+
%{ YOK(k+1), UMK+ 1) + Lo (LF1 (14 Lie) + Ligg (Ns— L= 1)) jw(k+ 1]}
+LL3MLR, Z) w(k+i)])2+ cs. (5.104)
where the old error is representeddgy: S HL(L? (14 L) + LB (Ns— 1= 1)) [w(k+
| = No) I} + Ll &mS(LRy 350" Wk i = Ne) )+ 577 [La(L] 51" [w(k—Ns-+-1)

+LE N |W(k—2Ns-l—|)|].

So0J3MYx(k)) satisfies the conditions of Lyapunov function, and the pse@ the proces-
sor 0 is nominally stable. We note that this analysis is sintib the average performance
proposed by Angeli et al. [3], where the average cost funaifdNs adjacent NLP problems

satisfies the conditions of Lyapunov function.

sams_ 3150 Pk + i+ Ng))
ams _

N (5.105)
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wherej =0,...,00. From (5.104) we get

Ns(J2I— Jams)
(j+)Ns—1 Ng—1

< — K+14+0), MK+ +i

< I_%S {i;) WX(K+141), @™k +1 +i))
HL(LF (14 L) + Lig (Ns— 1= 1)) w(k+1 +1i)]]

Ns—1
+LLAMS(LE, % w(k—+1+1)[)?} +3cs (5.106)
i=

which satisfies the conditions of ISpS Lyapunov functiomcﬁiNsJ_ij satisfies the con-
ditions of Lyapunov functionJ_Nyj could be used as the ISpS Lyapunov function and the

following nominal stability property is proved.

Theorem 11. (Robust stability of the parallel approach) For the movirayizon problem
(5.1) and associated control law =t k2MYx) that satisfies Assumption 3, Assumption 4
and Assumption 6 with:,chamSis an ISpS Lyapunov function and the closed-loop system is

robustly stable.

5.5 Concluding Remarks

In this chapter we propose the advanced-multi-step NMP@raehto handle NLP prob-
lems whose solution takes multiple sampling times whileiding computational delay.
Two approaches, parallel and serial, are developed. Fopdhalel approach multiple
processors are applied and an NLP problem is solved everglsantime. For the serial
approach only one processor is applied and an NLP problewived everyNs sampling
times. Nominal stability and robust stability of amsNMP@ atso analyzed in this chapter.
Without uncertainty in the system, amsNMPC is nominallypkawith uncertainty there is

memory effect due to error accumulation and inaccurate Ndri3isivity. However robust
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stability could also be obtained with certain reasonabseiaptions to bound this effect.
We will evaluate the performance of both amsNMPC approachesCSTR model as well

as a distillation column model. The results and analysikhvilshown in Chapter 6.
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Chapter 6

Case Studies

In this chapter we apply INMPC, asNMPC and amsNMPC to two etasa The first
example is a CSTR in which reactigh— B takes place. We set the order of reaction to
1 and 3. Setting order of reaction to 1 gives us a bilinearesyswhile setting order of
reaction to 3 gives us a more nonlinear system. We would t¢ikest this example to show
the influence that system nonlinearity has on the performan@msNMPC. The second
example is a large-scale propane-propylene distillatmoman. When we discretize the
model and formulate it into an NLP, the solution time excesatapling time. We use this

example to show the importance of amsNMPC for large-scaltenys.

We compare the performance of INMPC, asNMPC and amsNMP@gtrsimulation and

show how they support the results in the previous chapter.

Moreover, in this chapter, we also study the three MPC exampl [24] that lack ro-
bustness. We will show that both using a longer horizon asrretilating the NLP with
soft constraints will lead to robustness. And robustnedlswt be lost when asNMPC or

amsNMPC is applied.

6.1 Comparisons of INMPC, asNMPC and amsNMPC

INMPC is the ideal case where NLP solution time is negligible this case, there is

no delay between obtaining the actual state and implengettigm corresponding control.
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Therefore the control is calculated with the exact stateramdrror exists. INMPC should

be the NMPC strategy that has the best performance.

asNMPC avoids computational delay by using prediction d@mlrtondition to solve the
NLP one step in advance and using NLP sensitivity to updaditst control within the
solution. If with uncertainty in the process, predictioroerand sensitivity error will exist,
and prediction error gk comes fromg(x(k—1),w(k—1)) atty_1. When there is no uncer-
tainty, asNMPC has the same performance as iINMPC; howevemuncertainty asNMPC

will not perform as well as INMPC with additional error as deked in (4.36b).

amsNMPC predicts the stady sampling times ahead of time. From (5.57) we can see
that prediction errog , atty,, depends on prediction erre attx and additive distur-
bancew from ty to tx, ,_1, ande is the accumulation of the error at the first segpand

the additive disturbance from timetg to tx_1. This memory effect will have significant
influence on the performance of amsNMPC as well as its stlalnd the largeNs is, the
greater the influence will be. Besides prediction error, NERsitivity error also exists with

amsNMPC.

The serial approach and the parallel approach have stromtasties. They both solve
the NLP problem#\s steps in advance using the predicted statéstaltls from the current
optimal solution. The difference is that the serial apphoases only one processor, so the
NLP problem is solved everyis sampling times, and the firbls manipulated variables in
the horizon are updated by (3.23) and (5.43). The same KKTixnaused repeatedly with
update before the next KKT system is obtained. The pargtipi@ach uses multiple pro-
cessors, so the NLP problem is solved every sampling timegrdy the first manipulated
variable is updated using (3.23), and different KKT systemesused at every sampling
time. With either approach, amsNMPC is expected to redueeothline computational

cost by two to three orders of magnitude, because backstdkesmuch less time than

CHAPTER 6. CASE STUDIES
93



6.2 DEMONSTRATIONS

solving the NLP problem.

6.2 Demonstrations

6.2.1 Continuous stirred tank reactor

A dynamic CSTR example is used to demonstrate both amsNMpfaghes [58].

The reactiomA — B is exothermic and model proposed by [25] is listed as foltows

F
3—,[0 = \—/(cf—c)—ke(‘E/RT)c (6.1a)
daT  F —MH, _egrr. AU
q = g T e ke ST e (T Ty (6.1b)
c. < c<oy, L<T<Ty (6.1c)
FL < F<R,UL<U<Uy (6.1d)

wherec andT are the concentration & and temperature in the CSTR respectivélyis
the flow rate of feedy is the CSTR volume which is assumed to be a consfai,the

order of the reaction. The dimensionless model takes time for

n

% = \7(1—21)—k’eX|d—E’/zz)z/13 (6.2a)
C(I:I_Zt2 - \E/(Zf—22)+k’ex;i—E’/zz)zll3—av(22—zc) (6.2b)

wherez; andz, are the dimensionless concentrationfoénd temperature in the CSTR
respectivelyz; = 0.395 andz, = 0.382 are the dimensionless concentration and temper-
ature of feed respectiveli = 300x 7.6°~1 is the dimensionless rate constat—=5 is

the dimensionless ratio of the activation energy and gastaota = 1.95x 104 is di-
mensionless heat transfer area and the reactor jacket heat-transfer coefficient which is

influenced by the coolant flow rate. For the order of reactierhave = 1,3. For =1
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we use\E,, and for3 = 3 we use\Fi andv as manipulated variables. After using orthogonal
collocation to discretize the problem wittt =t 1 —tx = 1, the objective function takes

the form

N N—-1
Jn 7= min Z)loe[(zll —Z1de9* + (22 — Zoged)?] + Z) 2% 1073[(Uy — Uzdes)*+ (U — Upges)?]
I= =
(6.3)

bounded by Xz <1,0<2 <1,0<u; <2500, 1< up < 40.

We now compare the performance of ideal NMPC and amsNMPCideat NMPC, we
assume that the NLP solution time is negligible; thus themoi computational delay. We
useNg = 0 to indicate ideal NMPC. For amsNMPC we include the cades 1, 2 and 3.
Note that the asNMPC approach correspondde- 1, where the parallel approach and

the serial approach are the same and only one processofisdapp

For the order of the reaction in (6.2a) and (6.2b) we considses wher@ = 1 and = 3.
We first consider the case whefe= 1, as in [25] with a set point change and measurement
noise. Next we make the problem artificially more nonlineasétting3 = 3 and by using
v and\f’, instead of\E,, as manipulated variables. We begin with no measuremese rovi
plant-model mismatch and show that amsNMPC can track sat pbanges immediately,
if the change is known in advance. The results show that iN&#PC and amsNMPC
have virtually identical performance with any differenckge to numerical precision and
truncation errors. This also indicates the nominal stk ideal NMPC and amsNMPC.
Next we introduce different levels of measurement noiselantpmodel mismatch and
look for the trend of amsNMPC performance as noise, mismigadl andNs increase.
Measurement noise has the form of Gaussian noise with sthuoidaiation of a certain
percentage of set point, and is added to the output. Pladehmismatch is added by

changing the parametktin (6.2a) and (6.2b) in the simulation model. The comparizon
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QP and clipping is also shown. All NLP problems are solvedgi$POPT, and the update
of NLP sensitivity and Schur complement are done manuallygus!ATLAB.

B = 1, with measurement noise With f =1, as in [25],zc andv are fixed, and only
F/V is used as the manipulated variable. This leads to a neadwaidimodel and is the
simplest case we consider. Fig. 6.1 shows the state profiteddy the serial approach
with 10% set point change and 5% measurement noise. It cautsbén that amsNMPC
(with Ns = 2,3) behaves identically as ideal NMPC and asNMPC, with thieiihce at
the beginning due to different start-up strategies. Nod¢ itihthis case since the system is
almost linear, sensitivity error due to discarding highettes termsO(|p — po|?) could be

neglected, and Assumptions 5 and 6 hold from Chapter 5.

© ©
PR
S [

concentration
o
%

L L L L L L L L L
10 20 30 40 50 60 70 80 90 100
time step

Figure 6.1: Performance with 10% set point change and 5% une@a&nt noise

B = 3, with set point change Assuming there is no measurement noise or plant-model
mismatch, we first change the set points of the two states by di@ime = 25 and then
reverse the set point changetahe= 60. The state profiles are shown in Fig. 6.2. The
parallel approach behaves exactly the same as the seriaambpand ideal NMPC, asN-

MPC and amsNMPC (withNs < 3) all have identical performance in tracking the set point
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with small overshoots. In this case, since there is no uairgytin the process, the memory

effect does not exist.

0.25 p = =
‘ ‘ — set point w— N=0 —N=1 N3

o.z—mf:mnl

0.15f ‘ 3

concentration

I I I I I I I I I
10 20 30 40 50 60 70 80 90 100

temperature

0 10 20 30 4 5 60 70 8 9 100
time step

Figure 6.2: Performance with 10% set point change

B = 3, with measurement noise In addition to the set point change, Gaussian measure-
ment noise is added to the plant with a standard deviatior@b8the set point, which

is relatively small. In this case the parallel approach Bghaves identically as the serial
approach, so only the performance of the latter is shown I8nee there is measurement
noise, an on-line update of the state is introduced, angidlipis applied to deal with active
set changes. From the state profiles shown in Fig. 6.3, tHerpgnce of amsNMPC is
very similar to ideal NMPC and asNMPC. Also it could be natitkeat differeniNg leads to

no difference among the states. this is because the noislddawt large enough to cause

large sensitivity error and strong memory effect.

When the noise level is increased to 5%, the results in Fyabe observed. Through
the comparison of Fig. 6.4(a) and Fig. 6.4(b), a performahfference can be observed
between the parallel and serial approaches. First, Witk 3, the serial approach has

larger offset from set point than the parallel approach betwime= 50 and 60 due to
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Figure 6.3: Performance with 10% set point change and 3%une@a&nt noise

the use of previous, inaccurate KKT linearizations. Secavel observe the influence of
memory effect wheiNs gets large. asNMPQ\; = 1) generally performs worse than ideal
NMPC, and performance of amsNMPC deteriorateNgaacreases, as offsets from the set

point grow.
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Figure 6.4: Performance with 10% set point change and 5% une@a&nt noise

If we compare Fig. 6.4(b) with Fig. 6.1, we observe that altjitothe same set point change

and measurement noise are used, amsNMPC works much betetheiless nonlinear

CHAPTER 6. CASE STUDIES
98



6.2 DEMONSTRATIONS

model,3 = 1.

B = 3, with plant-model mismatch Instead of measurement noise, plant-model mis-
match is added by changing the paraméten (6.2a) and (6.2b) in the simulation model.
Again the performance of the parallel approach and thelsgpoach is identical, so only
the serial approach is shown. In Fig. 6.5kaj)s first increased by 10% then decreased by
the same amount, while in Fig. 6.5@)is changed by 30%. Through comparison of these
two subfigures, it could be seen that when the plant-modematish level is relatively
small, amsNMPC performs identically as ideal NMPC and asiIMPthe mismatch level

is large, amsNMPC produces a larger offset than ideal NMRCaahNMPC. However, no
matter what kind of NMPC controller is used, offset is unaadile. The offset could be

eliminated by adding an integrator to the controller or bgling a state observer.
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Figure 6.5: Performance of the serial approach with plantiehmismatch
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6.2.2 Distillation Column

Our second example is a large-scale distillation columnstilldtion columns are used
to separate feed streams and to refine final products. Thelmedstudy is a propane-
propylene distillation column, also known as a C3 splittids used to separate propane and
propylene, which are the two products, and the feed has 2 congs. The top stream of
the C3 column consists of propylene while the bottom prodaotains propane. Modeled
on an actual refinery unit [20], the binary distillation cwin consists oN = 158 trays
with feed on the 43rd tray, a total condenser, and a therntmsypeboiler. Generally
the distillation model are nonlinear functions of temperaf pressure and composition,
and consists of dynamic mass balance, equilibrium, sunomaind heat balance (MESH
equations) for each tray along with vapor-liquid equilin, and tray hydraulics as listed

in (6.4) - (6.7b). The overall mass balance on each tray isrgby:

% = Ly—Li—-V; (6.4a)

% = F+L-a—-Li+Viqa—M (6.4b)

dd% = Wn.1-D—Ln—W (6.4c)
i = 1,...,N

whereN is the number of traysyl;, i are the liquid holdup and feed flowrate on fitie

tray respectivelyt;,V; are the liquid and vapor leaving tid tray respectively.

If we consider only liquid holdup, the model can be simplifted eliminating variation
of pressure on each tray. This formulation allows the dgnbibldup, pressure defining

equations to be eliminated. As a result the simplified corepbbalances on each tray are:
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M]_dXLj
dt
MidX
dt

MNOXN,
dt

| =
] €

whereCOMP s

La(X2,j —Xa,j) —Vayrj —i,j) (6.5a)

R(X,j =X )+ Lisa(Xirnj — %)) +Vica(Yiegj — %)) = Vi(Yi,] —%i.j)

(6.5b)
WN-1(YN-1,j — XN, ) — UN(YN, —XNj) (6.5¢)
1,....N
COMP

the set of componentx;;j,yivj,xfj are the liquid composition and vapor

composition and feed composition of the componjenih theith tray respectively.

The energy balance on each tray is given by:

Madh}
dt
Md&
dt
Mndhk,
dt

i
j

whereht, hY ki

= La(h5—hE) —Va(h —h) +Q (6.6a)
= R(ht —«§) +Lipa(hi g —hb) +Vioa (W —hf) —=Vi(HY —hf) (6.6b)

= Vn-1(h{_1 —hy) =W (i —hy) — Qc (6.6¢)
- 1,....N

€ COMP

are the liquid, vapor and feed enthalpy respectiv€ly;and Q. are the

reboiler and condenser loads. Finally, the equilibrium anchmation equations on each

tray are:

Yij = Kij(Ti,R,%)X,] (6.7a)
0 = Yij— X, j (6.7b)
jeomP je(%MP
i — 1,...N
j € COMP
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whereT;, P, are the temperature and pressure on each tray respectialyhe propane-
propylene system, equilibrium constants are determinaa fDePriester nomographs. A
detailed description of these equations, their refornmafrom index 2 to index 1, along
with model of the thermosyphon reboiler, can be found in [20]is assumed that the

pressure in the column is controlled, and pressure dropristaat from tray to tray.

To obtain plantwide optimization requirements the comipass of the top and bottom
products must be controlled. In this study the controlledest are the concentrations of
propylene of the first and last trays, while the manipulatatables are the steam pressure
in the reboiler and bottoms flow rate. The objective is to kiepstates at their setpoints,

so the objective function is composed of quadratic trackenms.

For this case study we compare the performance of ideal NMBEMPC and the parallel
approach of amsNMPC. The cases we consider here are puoensetpange and setpoint
change with measurement noise. We tried different horieogths to assure that the so-
lution u = k(z) exists and converges to the optimum. The horizon length weeisi25.
After discretizing the ordinary differential equationstivorthogonal collocation, the NLP
problem has 79750 variables and 79700 constraints. Solofi¢’roblem (4.3) requires
90 CPU seconds, but with a sampling time of only 60 s; pralitecplementation requires
Ns > 1, and amsNMPC must be used. On the other hand, the on-linputation (solv-
ing (3.23)) requires less than 1 CPU second. To shown therdiite between different
NMPC formulations, we assume that we can chddse- 0 (iNMPC), Ns = 1 (asNMPC)
andNs = 2,3.

Because the size of the corresponding KKT matrix exceedsdpabilities of MATLAB,
and the Schur complement decomposition (5.43) is not yeteimented in sSIPOPT, only

the parallel approach with sIPOPT is shown here.
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Performance with setpoint change For this case we change the set pointiate = 30

and the change is known in advance. From Fig. 6.6 we couldrhsgdbth INMPC and

No noise, ideal NMPC Vs parallel approach No noise, ideal NMPC Vs parallel approach

T = 450 T =
‘—setpomt e el NMPC = = = Ng 123 s o2l NMPC = = = Ng=123
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(a) States profile (b) Control profile

Figure 6.6: Performance of the parallel approach with setphange

the parallel approach are able to catch the set point chamgkthey behave identically.
Moreover, since there is no uncertainty, the memory effeescot exist, antlls does not

make any difference.

Performance with setpoint change and measurement noiseFor this case, we change
the setpoint at = 30 and introduce Gaussian noise with a standard deviati@foodf the
setpoint on all outputs buNtray]. If this level of noise is added te[Ntray], its upper
bound will be violated, so only.Q% noise is added tgNtray]. The performance of ideal
NMPC and the parallel approach wiy = 1,2, 3 are compared. The noise level is then
increased to 3% and 5%. For each level, the noise is genei@tddmly only once and
then the same noise sequence is used by INMPC, asNMPC andrtddéepapproach, so
that all results are consistent. Fig.6.7 shows that with $%ogse, set points are tracked

very well, and there is not much difference among differases, in the state profile as well
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as the control profile. Increasing the noise level to 3% inG=&) shows that the difference
in state and control profiles becomes larger as noise lecetases. With 5% additive
noise, Fig.6.9 shows that the difference is even more sggmfi For large noise levels,
we would expect the performance of amsNMPC to deteriorald ascreases, because the
linearization used for the sensitivity update becomesdesarate. On the other hand, if the
model responses to noise are not highly nonlinear, therpeance loss with increasing
Ns does not occur. We observe this effect in this case studysttite profiles generated

with differentNs remain similar in all noise cases.

For the serial approach, we also worked on the nominal cadepure setpoint change
and its performance is identical to the parallel approachcdse of measurement noise
or plant-model mismatch, s > 1, the NLP sensitivity needs to be updated. Because
general implementation of the Schur complement sensitiibdification is part of our

future work, the serial case with noise is not presented. here

6.2.3 asNMPC/amsNMPC on Grimm Examples

As shown in [24], ISS may be lost if there are state constaiot terminal constraints
coupled with short optimization horizons. This necesgdeibds to a discontinuous feed-
back law and cost function. However, with reformulationhustness could be obtained.
One way is to use a horizon long enough such that an optimaligolis obtained. This
gives the controller more degrees of freedom to move aroiiihe. other way is to apply
soft constraints on states or outputs and add penaltieg toljective function, as stated in

Chapter 4.

In [24], Grimm et al. demonstrated three NMPC examples thek tobustness because of
state constraints, terminal region or a short horizon. lapér 4 we study those examples

and show that robustness could be obtained by applying @tdraizon or reformulating
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Figure 6.7: 1% additive noise. The results of ideal NMPC ams in gray; the results of

the parallel amsNMPC are shown in blue, red and greenMgth 1,2, 3.
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Figure 6.8: 3% additive noise. The results of ideal NMPC ams in gray; the results of

the parallel amsNMPC are shown in blue, red and greenMgth 1,2, 3.
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Figure 6.9: 5% additive noise. The results of ideal NMPC ams in gray; the results of

the parallel amsNMPC are shown in blue, red and greenMgth 1,2, 3.
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the NLP with soft constraints. In this chapter we are goingttow that robustness will not

be lost if asNMPC or amsNMPC are applied.

Example 1: Artstein’s circles with state constraints

In Chapter 4 we have shown that by reformulating the MPC moblvith soft constraints
robustness is obtained. Here we show that applying amsNMR@ot/deteriorate robust-

ness.

Again we introduce additive disturbance, which is Gauss@se with zero mean and stan-
dard deviation of M5. Horizon length iN = 10 and simulation time is 30. We choose
Ns = 1,2,3. The MPC is reformulated with soft constraints. The resale plotted in
Fig. 6.10. From Fig. 6.10(a) we could see that amsNMPC witkmintNs lead to the sim-
ilar results as INMPC, so robustness is preserved; and itldmiobserved in Fig. 6.10(b)

that the control profiles generated with= 1, Ns = 2, Ns = 3 are very close.

0.7 T T T T T T -0,

——N= N_=1 N=2 N=3
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X time step

(a) Trajectory ofx,noise=0.05 (b) Trajectory of u, noise=0.05

Figure 6.10: Trajectory of andu with soft constraints. INMPC is shown in blul; = 1

(asNMPC) is shown in redys = 2 is shown in green\s = 3 is shown in magenta.
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Example 2: origin as terminal constraint

In order to show that applying the advanced step stratedynwildeteriorate robustness,

we study the following cases:

1. Apply amsNMPC withNs = 1, 3 to the problem with only hard constraints and with
N = 10;

2. Apply asNMPC to the soft constrained problem with= 2.

N = 10, amsNMPC with Ns = 1, 3, no soft constraints In this case the robustness is
obtained by using a long enough horizon wNh= 10. The noise is additive disturbance,
which is zero mean Gaussian noise with standard deviati@0&f We then increase the
standard deviation t0.B and observe that the states still converge to the origiowsh
in Fig. 6.11(a). Then we apply asNMPC and amsNMPC with- 3 and observe that
robustness is not lost when the advanced-step strategyplie@pHowever we could see

that the state converges the fastest without the advaniepdssategies.

N = 2, asNMPC, with soft constraints In this case the horizon length = 2 and ro-

bustness is obtained by use of soft constraints. We incriesstandard deviation of
the noise from M5 to Q5 and observe that the states still converge to the origiowsh
in Fig. 6.11(b). Then we apply asNMPC and observe that rolegstis not lost when
the advanced-step strategy is applied. And again the stemeeyes faster without the

advanced-step strategy.
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Figure 6.11: Trajectory of. N = 2 without soft constraint is shown in blue; noise standard

deviation=0.05 is shown in green; noise standard devia@ldb is shown in red.

Example 3: unit disk as terminal constraint

In order to show that applying the advanced step stratedynwildeteriorate robustness,

we study the following cases:

1. Apply amsNMPC withNs = 1,2, 3 to the problem with only hard constraints and
with N = 10;

2. Apply asNMPC to the soft constrained problem with= 2.

N = 10, amsNMPC with Ns = 1,2,3, no soft constraints In this case the robustness
is obtained by using a long enough horizdn= 10. The noise is additive disturbance,
which is zero mean Gaussian noise with standard deviati@0af We then increase the
standard deviation to.25 and observe thak| decreases to 0 and the states converge to
the origin, shown in Fig. 6.12. It is worth pointing out thaitlva larger level of noiséx|

decreases to 0 at a lower rate and may grow before it eveytletreases to 0. Then we
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apply asNMPC and amsNMPC witth = 2,3 and observe that robustness is not lost when

the advanced-step strategy is applied.

T T
—— N=2,noise=0.01
N=10,noise=0.01
— N=10,noise=0.25 2k
— N=10,asNMPC,noise=0.25|
2F - _N=10N_=2,n0ise=0.25 |
P N:lO.NS:S‘nclse:O.ZS
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b =sa A N > L L L L L L
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0 5 10 15 20 25 30 -05 0 05 1 15 2 25 3
time step X

(a) Trajectory of/x| (b) Trajectory ofx

Figure 6.12:N = 10, amsNMPC, no soft constraints, noise=0.01 or 0.25.

N = 2, asNMPC, with soft constraints In this case the horizon length = 2 and ro-
bustness is obtained by use of soft constraints. We inctéasstandard deviation of the
noise from 001 to Q25 and observe that the states still converges to the orsgoywn
in Fig. 6.13. Then we apply asNMPC and observe that robustisesot lost when the
advanced-step strategy is applied. It is worth pointingtbat with a larger level of noise,
the convergence rate is smaller. Moreover, if we compareg=ig(a) with Fig. 6.12(a), we
could see that when the standard deviation of noise is O#&® 2 converges more slowly

than case 1, but there are fewer oscillations wix¢gets small.

6.3 Concluding Remarks

In this chapter we show the performance of INMPC, asNMPC ameNMPC with a CSTR

model and a large-scale distillation column model. By apgylifferent levels of measure-
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Figure 6.13:N = 2, asNMPC, with soft constraints, noise=0.01 or 0.25.

ment noise and different valuesdf to models with different nonlinearity, we observe that
when there is no uncertainty in the system, the performahid¢\dPC, asNMPC and am-
sNMPC are identical. Moreover, amsNMPC behaves similalyNVIPC and asNMPC
when the model nonlinearity is not strong or with small measwent noise oNs value.
However, with large measurement noise and a strongly nealisystem, the memory effect
becomes more significant with increasiNg As a result the performance of amsNMPC

deteriorates.

We also show that for MPC formulations that lack robustnessjstness could be obtained
by using a longer horizon or reformulating the NLP with safhstraints and; penalties.

Moreover, robustness will not be lost when the advancedti{#)yatep strategy is applied.
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Chapter 7

Economic Nonlinear Model Predictive

Control

In this chapter we discuss the formulation of Economic NMRG@ formulated by com-

bining the two-layer RTO advanced control approach thatiseudsed in Chapter 1. First,
real-time optimization (RTO) optimizes an economic ohjecivith steady state models,
leading to a setpoint handled by the lower-level controétayl he advanced control layer
(using, e.g., NMPC) then tracks the setpoint to achieve asteady state. However, this
two-layer approach assumes that model disturbances amslends are neglected in the
RTO layer [17]. Moreover, model inconsistency between dsyad unresolved transient
behavior may lead to unreachable setpoints [54]. Alsogsihe control layer has no infor-
mation on dynamic economic performance, it may generagectaies that simply track

suboptimal setpoints to steady state [51, 31].

Recent studies on dynamic real-time optimization (D-RT@éreported significant per-
formance improvements with economically-oriented NMP@folations [59, 51, 17, 2].
It uses economic stage costs to drive the controller direds a result, Economic NMPC
usually leads to better economic performance. Howeveikeisktpoint tracking NMPC,
there are no tracking terms in the objective function ancenminal constraints. Therefore,
the system may not converge to a steady state, and insaimtitirs. Therefore, stability

theory supporting economically-oriented NMPC requiregettpment beyond the mature
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results for setpoint tracking based on a discrete Lyapunalyais. This problem formu-
lation and stability analysis must be modified to ensure lst@nd robust D-RTO imple-
mentation, especially if optimum steady state operatioexjgected. In this chapter, we
propose a strategy to guarantee stability of Economic NV#@,apply two case studies

to evaluate the stabilizing strategy.

7.1 Formulation and Lyapunov Stability Analysis

The Economic NMPC problems have the same general formaolao(2.4). It usually
shares the same model and constraints as NMPC, but thengatekims in the objective
function are replaced by economic stage cost, such as rfét praditional variable bounds
might also be added to make the problem formulation moreipgedcSuch a controller for-
mulation maximizes an economic objective while accountsdligturbances simultaneously
using a well-tuned dynamic process model. As explored intf$ formulation may lead
to significant improvements in process performance. Inqadr, artificial setpointsused
in (4.3) and determined from a steady state optimizatiomarnger needed. This sin-
gle stage D-RTO thus has advantages over conventional Rtaube the NMPC profile
is driven by economic stage costs instead of mere trackingsteAs a result, this usually
leads to better economic performance. In fact, signific#fgrénces between tracking to
optimal steady set points and economic NMPC were observétkilcase studies in [2],

even for nominal cases.

However, Economic NMPC is not as simple as replacing theestagts in (2.4). Un-
like setpoint tracking NMPC, the stability analysis of theoBomic NMPC is difficult,
mostly because the objective functions would not satiséycitnditions of Lyapunov func-

tions (Assumption 2 in Chapter 4), and cannot be used as thpunov function directly.
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Therefore, we need to define an appropriate Lyapunov fumstiwh that stability can be
guaranteed. Stability properties of different formulasaf economically oriented NMPC
have been studied in [13] with the assumption of strong tuafisteady-state problem. In
[4] and [28], the assumption of strong duality is replaceddissipativity and strong sec-
ond order conditions, respectively, and it is proved thathibst feasible equilibrium state
is asymptotically stable with terminal region. Rawlingsakt proposed a setpoint track-
ing controller in [52], which handles unreachable setobstter than traditional setpoint
tracking controllers, and discuss its hominal stabilityowéver the cost function is not
strictly decreasing, so the Lyapunov stability theorigsstability analysis no longer apply.
Huang and Biegler proposed a Economic NMPC controller fordic process by adding
a periodic constraint and proved its nominal stability ii][2Huang et al [29] studied both
nominal and robust stability properties of an Economic NMRKI@ infinite horizon for

cyclic processes.

We assume that Economic NMPC drives the process to a steatdy Jthere are several
reasons for making this assumption. In particular, pradacplanning with economic
models over long time scales is based on steady state madelgonsistency with these
models must be ensured. Also, plant stability and robustaes easier to analyze under
steady state assumptions. Finally, steady state (or cstelaxly state) operation is easier to

monitor, analyze and manage.

To ensure that Economic NMPC converges to steady state gt fiPC stability anal-
ysis through the following constructions from [13]. We fidgtfine the steady state problem
and establish a suitable Lyapunov function by subtractiegiptimal steady state from the
original system and addingratatedterm. Here, the original system is asymptotically sta-
ble at the optimum if the rotated system is asymptoticabypk at the origin. In addition,

we observe that the rotated Lyapunov function is strictlgrdasing.
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To define implicit reference values for the states and cts)tvee consider the steady state

optimization problem given by:
miny(z,v), s.t.z= f(zv),ze X,ve U (7.1)

with the solution given byz*,v*). We then define the rotated sta#gsnd controlsy by

subtracting the optimum steady state from the predictegegabf Problem (2.4):
2=2-7, Wi=v-V (7.2)

and the transformed state evolves according to

211 = t@w=Ff@2+zZw+v)-7 (7.3)

andz € X anduf € U, whereX and U are the corresponding sets for the transformed

system. Similarly we define the transformed stage cost andrial cost as:

U(Ez.v) = Y@+ vi+Vv)—y(z,v) (7.4)
Yz) = WIn+7Z)—W(Z) (7.5)
At the optimal steady state of (7.1, = z*, v; = Vv, thereforez =0, vy = 0,71 =

f(z,v") -z =z"—z" = 0; (0,0) is the optimal steady state for the transformed system.

Moreover we have

N
min W)+ ) ¢(z,w) (7.6)
=0
|
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And we reformulate Problem (7.6) to the formulation of Pesbl(4.3) by using soft con-

straints and adding penalty terms to the objective functidrereforeX = 0",

Being the transformed stage costs and terminal aﬁandtl_J may not hold for Assumption

2. As shown in [13, 31], we introduce the rotated stage coxiderminal cost:

L(Z,) = §@0)+AT (3 - 1(Z,W9)) (7.7)
Li(Z) = W@ +A"Tz (7.8)

whereA * is the Lagrange multiplier of the equality constraint inl{7.It is shown in [13,
31] that substitution ok(z,v) andL¢(zy) does not change the optimal solution of (7.6).
Therefore, we could analyze the stability property of (W8)le substitutingp(z,v) and

W(zy) with L(z,v)) andL¢(zy). If L(z,v) andL(zy) are strongly convex, Assumption 2
is satisfied. Therefore Problem (7.6) is asymptoticallplsta

On the other hand, If(z,Vv) andL+(zy) are not strongly convex, regularization terms must

be added to the original stage cost:

Q has to be large enough fbfz,vy) andL¢(zy) to be strongly convex. However, @ is
too large, economic performance might deteriorate. Wehis&ershgorin theorem to find

the ‘minimal’ Q to makeL strongly convex.

As stated by the Gershgorin theorem, the eigenvatie$a matrixA = (%L (z, V) satisfy

the following inequalities:
ai,i—;|ai,j|§0i§ai,i+;‘ai,j|~ (7.10)
i#) 7]

wherea; j are diagonal elements éfanda; j are non-diagonal elements. If we aQda

diagonal matrix withg; on its diagonal, the eigenvalues Aft Q, which areg; + ¢, have
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to satisfy

0<Wﬁm—;ﬁﬂ§m+% (7.11)
i#]

In order for the newL to be strongly convexA+ Q has to be positive definite, therefore
0i + ¢ has to be positive, i.eq; > ¥ij|ai j| —ai. And (7.11) has to be satisfied for every

zandv. Next we evaluate the effect of regularization terms witb tase studies.

7.2 Case Studies

7.21 CSTR

We illustrate some of the above concepts on a case study oT& @8m [13] with a first

order reactiorA — B. From a mass balance, we derive the following dynamic model

dg m
—d? = \—/(CAf — CA) — kCA
. (7.12)
deg m K
CAR AR

Hereca andcg denote the concentrations of components A and B, respictiMee reactor
volume isV = 10 [, and the rate constakt= 1.2 I/(mol-min). Further,m denotes the
manipulated input in I/min, andas = 1mol/l denotes the feed concentration. Using state

feedback NMPC, the economic stage costin (7.1) is selested a

y(ca,c,mM) = —m <ZCB — %) : (7.13)

Different from [13], we set the variable bounds as:

10< m< 20 (7.14)

0.45< cg < 1, (7.15)
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When large disturbances occur, variable bounds might Batei. Due to physical reasons,
bounds on manipulated variables cannot be violated (harst@ints); the violation of state
variable bounds may be tolerated when necessary. Thenstoteeat the bounds ag as

soft constraints. As described in Chapter 2 and [12], we adlohanegative slack variable

¢ to the lower and upper bounds @,
045—e<cg<1l+¢, (7.16)
and we add an exaét penalty function that contains the slack variable to thgestzaost:
Y(ca,Ca,m) = —r'n<2c5—%) +pe€ (7.17)

wherep is a number large enough to drig¢o zero. In our case we set=1000. Also, we

note that the optimal steady states (from Problem (7.1¢)cae 0.5,c5 = 0.5,m" = 12

Regularization of the Stage Cost

To ensure that the rotated stage cost is strongly convex)argation term%[qA(cA —

ci)2 4 0a(Cs — €)% + gm(— 1*)?] are added to the stage cost.

It can be shown that the Hessian matrix of the steady staienigation problem with

regularized stage cost is

da 0 1
0V=A+Q=| 0 gg O (7.18)
1 0 agm

and we find the following Gershgorin bounds:
ga> 1,08 > 0,0 > 1 (7.129)

Moreover, through an eigenvalue calculation, we can findlsstgositive weights so that
ga + 0s + Qm is minimized, while ensuring tha& + Q is positive definite. These weights

correspond exactly to the bounds determined in (7.19).
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Simulation Results

Our simulation results are organized such that we first detnate the effect of regular-
ization on the CSTR with ideal NMPC with different levels okasurement noise and
regularization weights. Then we proceed to show resultasbiMPC where measurement

noise causes the active set to change.

Effect of Regularization From the Gershgorin bounds, we sgt= 1+ 9, gy = 1+ 9,
gs = o. Ford > 0 we have strong convexity. The prediction horizon is chassd = 30

and we simulate for 50 sample times.

Perfect case, no measurement noise

We assume that all the states are known exactly, and stdrttiagt scenario where the
model is known completely and there is no measurement ndige.consider different
regularizations, starting with the limit, where we set ttadue of & = 0, and compare it
with 6 = 5 x 10~ and with the original weighting factorg_apgm = 1.1 used in [13].

Finally, we consider the case without any regularizati® gi—a g.m = 0.

Figure 7.1 shows the state profiles and control profiles nbthby simulating the CSTR in

closed loop with different weights on regularization terms

From Figure 7.1 it can be seen that when we regularize, wbere0, the Gershgorin
weights are large enough so that their effects are the sam#hathe weights in [13]; i.e.,

the system is stable.

Note that when we havé = 0, Equation (7.19) is “almost satisfied”; thus the state f@ofi
is identical as withg; = 1.1, but a few oscillations are observed in the control profileese

oscillations disappear as we increase time horizon.
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Figure 7.1: Ideal NMPC, no measurement noise. The resullsgyvia g = 1.1 are shown
in blue; withga = g = 0.5+5x 107%, gg = 5x 10~* is shown in red; withga = o =

0.5,0s = 0 is shown in green; and witl)_a g ,m = O is shown in magenta.
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Table 7.1: Cost of ideal NMPC with different noise levels

Cost with No noise 1% noise 5% noise
No regularization Oi—ABm=0 -147.35 -146.90 -144.95
Marginal regularization 6 =0 -147.35 -146.90 -145.20

Small regularization 0 = 0.0005 -147.35 -146.90 -145.20
Large regularization  Oi—_apm=11 -147.35 -146.90 -145.20

In the case without any regularization at &fl-gm = 0 we have an oscillatory control
action at the beginning, and it takes time for the manipdlatgiable to converge to their
steady state optimal values. Note that convergence to daglgtstate optimal values is
not a general property of unregularized Economic NMPC. Agéliret al. [4] have shown,

there may also be cases, where a lower cost can be observetidpnmerging to the steady

state optimal values.

The third column in Table 7.1 shows the accumulated stageyeds [~k (2cs x — %)]. It
can be observed that the costs of all the cases are identighiout noise, slack variables
¢ of all cases are zero, and the state and control profiles Wittegghting factors except
g = 0 are the same, so the stage costs should be the same. Witlyorggaularization

g = 0, the state profiles are identical to the other cases, whédecontrol profile above
m* = 12 cancels with the profile belom* = 12 in order to yield the same accumulated

cost.

Cases with measurement noise at different levels

For the two states we add measurement noise with standaiatides at 1% of their equi-

librium points. Figure 7.2 shows the state profiles and abmtrofiles. From Figure 7.2
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Figure 7.2: Ideal NMPC, 1% of measurement noise. The resillsg_agm= 1.1 are
shown in blue; withga = gm = 0.5+ 5x 1074, gg = 5 x 10~% is shown in red; withga =

gm = 0.5,0s = 0 is shown in green; and wit)_a g i» = O is shown in magenta.
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we observe that because of the measurement noise, corfidéprdiffer with different
weights. But the difference is very small when (7.19) issfed. Without any regulariza-
tion terms,gi—agm = O, there are oscillations in the control profile, which lesmsmall
oscillations in the state profiles. Table 7.1 shows the actait®d stage costs. It can be seen
that all of the accumulated stage costs are essentiallyatime $or all weighting factors.
However, even with a small level of measurement noise (1P®)dack of regularization

(gi=aB,m = 0) leads to significant oscillations in its control profilehieh is unacceptable.

We then increase noise level to 5% of the equilibrium poiftigure 7.3 shows the state
and control profiles. As the noise level increases, osmtatare larger in the control
profile, which lead to larger oscillations in the state pesficompared with Figure 7.2.

Table 7.1 shows the accumulated stage costs for this casé) e would expect that these
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Figure 7.3: Ideal NMPC, 5% of measurement noise. The resillsg_agm= 1.1 are
shown in blue; withga = gm = 0.5+ 5x 1074, gg = 5 x 10~% is shown in red; withga =

gm = 0.5,0s = 0 is shown in green; and with)_a g i» = O is shown in magenta.

costs would decrease with decreasing weights on regulieamzeerms. However, it seems
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that regularization makes a positive contribution in thesence of measurement noise.
Without regularization, i.egi—a g m = 0, the controller is not stabilizing, and we observe

that its accumulated stage cost is the highest.

Moreover, from Table 7.1 we observe that accumulated stages ¢end to increase with
increased noise levels. This is because the controller tisnging based on incorrect
information (without knowledge of the noise), so perforrmawuleteriorates with increased

noise.

Advanced-step NMPC with Economic Stage Costs In this section we study the perfor-
mance of asNMPC, where the noise level of 5 % is chosen sohtbaidtive sets differ for
the predicted problem and the actual problem, for which aitieity based approximated
solution is found. We seali_agm = 1.1 so that the controller is stable if optimal manip-
ulated variables are injected. To better demonstrate fieetefve zoom into the first 12
sample times of closed loop simulations, and apply the amb@istep NMPC strategy to

the CSTR example. We show results for three cases:

Case 1 Ideal NMPC, as a benchmark.

Case 2 asNMPC, using the sensitivity calculation using BIP(28], based on the implicit
function theorem (3.23). (Since this controller may vielabunds on manipulated

variables, it should not be implemented in practice.)

Case 3 asNMPC, as in Case 2, but with the manipulated vasiapleutside the bounds

“clipped” to remain within bounds[58].

Figure 7.4 shows the state and input trajectories of themifft cases. In particular, the
lower bound ofm becomes active atme= 2, and it is violated for Case 2 when (3.23)

is applied directly. This follows because the lower bounah&tiveattime= 1 and the
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sensitivity prediction from (3.23) leads to a large (anctmaate) step that does not include
the lower bound, and consequently violates it. This violats corrected by clipping (Case
3). The heuristic clipping approach gives good results ia tdase-study, and has been

shown to perform well also in other contexts with input coaisits [58].

T T T T 15 T T T T T
‘ — set point ——iNMPC —— asNMPC clipping ‘ ‘ — setpoint ——iNMPC —— asNMPC clipping

Soaf /\/”\/’ | . —_—
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time step time step
(a) State profiles (b) Control profiles

Figure 7.4: Comparison of the four cases, 5% of measurenuese.nCase 1 is plotted in

blue; Case 2 is plotted in red; Case 3 is plotted in green.

Table 7.2 shows accumulated stage costs of Cases 1 and 3o3thedf €ase 2 is not given
as it is infeasible. Interestingly, the ideal NMPC has thghkst cost. Here the noise is
not predictable, and its effect on the cost may be positiveegiative. For this example it
turns out that the effect of noise makes Ideal NMPC peforghdlly worse. Note however,
that the absolute difference in costs is very small. Finadliien these simulations are
performed without measurement noise (no active set chagngesobserve no differences

between Cases 1 to 3.

CHAPTER 7. ECONOMIC NONLINEAR MODEL PREDICTIVE CONTROL
126



7.2 CASE STUDIES

Table 7.2: Cost of Economic asNMPC with 5% measurement reoidg_apgm= 1.1

Controller Cost

Ideal NMPC -33.00
Clipping asNMPC -33.15

7.2.2 Distillation Column Case Study for Economic NMPC

We illustrate stability concepts for Economic NMPC on aidaion column case study
described in [37]. The model is composed of two distillattmiumns in sequence with a
ternary component system. The three components are A, B anti€le A is the lightest
component, B is the middle one and C is the heaviest compoBeistthe most valuable
product. For our example the three components are benzgnwl#ene (B) and p-xylene
(C). Each column has 41 trays including the total condensetlee partial reboiler; the feed
enters column 1 at stage 21, and the bottom product from goluemters column 2 at stage
21. Component A leaves the first column from the top; the Inoflow of the first column
becomes the feed of the second column; component B leavegtbad column from the
top and component C leaves the second column from the boftbenmolar holdups in the
condenser drums and reboilers are assumed to be contrgilde Wistillate and bottom
flow rates, respectively. Therefore manipulated variablesu = [LT1,VB1,LT2,VB2]
which are reflux and boilup for each column. The structurdefttvo columns in sequence
is shown in Fig. 7.5. The columns are modeled with ideal tloelynamics, assuming

constant relative volatility and vapor flow rate for all stag The problem formulation is
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F, gF

=

LTH

VB1

D1, XA

Figure 7.5: Structure of two distillation columns in seqcen

given by:

min  J(u) = prF + pv(VB1+VB2) — paAD1— pgD2 — pcB2

s.t.  Mass balanceEquilibrium

=

LT2 D2,XB

VB2

XA = XA min, XB = XB,min, XC = XC,min

g
L

B2, XC

O<LTI1,LTZ2 <LTmax 0<VB1,VB2 <V Bnax

(7.20)

whereD andB are the distillate and bottom flow rate of each columpn; pv, pa, Ps, Pc

are prices for the feed, vapor, component A, component B antgponent C; their values

and additional details of the model could be found in [37].

The Hessian matrix of the Lagrange function of the abovedstestate problem is not

positive definite withomin = —1.414. Therefore if the current objective function is applied

by eNMPC, the optimum steady state cannot be reached, arsys$tem is not Lyapunov

stable. Instead, the objective function must be modifiechétuderegularizedeconomic

stage costs. This ensures that the first and third items airAggon 3 in Chapter 5 are
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satisfied. Moreover, through offline trials, we determineatN = 20 is a sufficiently long

horizon so that the second item of Assumption 2 in Chaptesdtisfied as well.

In order to regularize the stage costs, we add quadraticstesrthe objective function to
make the Hessian matrix positive definite. The regulaazetierms have the form of (7.9)
whereQ is a diagonal matrix and could be calculated by (7.11) fovallies over a grid of

(z,v) over the entire domain. The objective function then becomes

muin J(u) = peF+pv(VB1+VB2) — paD1— pgD2— pcB2

1 2
+§ | z—Z",v—Vv" 3 (7.21)

Since the size of the steady state problem is large (979hlasa975 constraints), and
the Hessian matrix of the Lagrange function of the regudarigteady state problem is not
constant but changes with different variable values, Ggrsh weights could not be cal-
culated directly. Therefore MATLAB was used along with AMRiLsearch for Gershgorin
weights. To ensure that the rotated stage cost is strongiyeso the Hessian has to be
positive definite with all possible values of variables. Viigdk the feasible value of each
variable into 40 grid points and calculate value of each elenof the Hessian matrix at

each grid point. Finally, we have the following inequality:
q > ;maX|a. il — mln a, (7.22)

whereq; = Qj;i. To minimally regularize the economic stage costs we appicieGersh-

gorin weights calculated by
= ;maX|a. Jl —mln a | (7.23)

Qs calculated offline. We ug@* to indicate theQ matrix calculated using (7.23). Fig. 7.6
shows the logarithm of the diagonal elemegtsn ascending order. In Fig. 7.6, the line

does not start frormdex= 0. This is because songeare 0 and as a result their logarithms
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Figure 7.6: Gershgorin weights in ascending order
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do not exist. We could see that about 300 of thgisare greater than 1, among which there

are only about 50 that are greater than 100, and the rest of #re smaller than 1.

Next we show the effect of Gershgorin weights by compariregstate profiles generated

without and with regularization, and without and with di&tances.

This case study considers two cases: no disturbance, andsiétbéince; in the second
case disturbances are introduced as additive noise. Thelthsces are Gaussian noises
with zero mean, and their standard deviations are 5% of tienam steady state value of
each state. For each case the objective function has threeltttions: economic cost only,
economic cost plus regularization terms calculated by i@&gnsn Theorem, and tracking
terms only. We start from a state that is not the optimum stetate and continue un-
til time= 100. Here, each of the 100 NMPC problems has 136154 variablgés 7754

constraints.

Fig.7.7 is generated without disturbance. From Fig.7.®@ould see that when the ob-
jective function is composed of only economic cost, as showiolue, xa, which is the
composition of component A, drifts away from its optimumestg state, andc, the com-
position of component C, diverges. If the objective onlyluies tracking terms, as shown
in green,xa, Xxg andxc converge from the starting point to the optimum steady statg
fast, and as Fig.7.7(b) shows, the corresponding contodilgs converge to their set points
very fast. If the objective includes both economic cost aeglutarization terms whose
weights are calculated using the Gershgorin Theoreyxg andxc converge to the opti-

mum steady state very fast as well.

Next, instead of using the full value of Gershgorin weigQts we usea x Q* instead,
wherea = 0.01,0.1,0.5, in order to show how the performance of Economic NMPC im-

proves with increasing regularization weights. The resaite shown in Fig. 7.8.

From Fig. 7.8(b) we could see that the control profiles gethmeloser to the optimal
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Table 7.3: Cost of NMPC with different noise levels and regziation weights

Costwith Noregularization .01xQ* 0.1xQ* 05xQ* Q*  Tracking

No noise 2.476 -20.4 -22.09 -22.26  -22.27 -22.27
5% noise  -19.97 -21.77 -22.97 -20.1  -22.03 -22.03

after regularization terms are added, even if the weighdssarall @ = 0.01). Then as

a increases the state profiles and control profiles get clasgrckser to the economic
optimal steady state. Whem= 0.5, the results are already very close to the results with
o = 1. In these casegnmin is not necessarily positive: with = 0.01, omin = —1.3992;
with a = 0.1, Omin = —1.2651; witha = 0.5, omin = —0.6861; however the state and
control still converge to the steady state. This follows asitive definiteness df(z,Vv)
andL¢(zy) are just sufficient conditions for stability of Economic NKPWe could also

notice that the states and controls converge faster andraloth a larger value ofimin.

In Table 7.3 we compare the time-accumulated economicwbéth is the objective func-
tion in (7.20), fromtime= 1 totime= 100. Here we observe that without regularization
terms, the state does not approach the optimum steady atettehe cost is the highest.
With regularization terms the cost is reduced significardatyd we can see how the cost

decreases with increasing regularization weights.

Fig.7.9 and Fig. 7.10 are generated with 5% additive notsmuld be observed in Fig.7.4(a)
that without regularization terms, the system is not Lyajpwstable; while regularization
terms are able to keep the state within a small region aroh@dptimum steady state.
From Fig. 7.10(a) it could be seen that larger regulariratveights keep the states closer
to the setpoints, although this is not as obvious as the ralmase. Again, in terms of

accumulated economic cost, the cost is reduced with ragateon terms. However the
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Figure 7.7: No disturbance. The results without reguléioreterms are shown in blue; the

results with regularization terms calculated with Gershgdheorem are shown in red; the

results with only tracking terms are shown in green.
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Figure 7.8: No disturbance. Results with different pastales of Gershgorin weights.
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cost does not strictly decrease with increasing regulaoizaveights because uncertainty

exists in the system.

Hence, without regularization, the controller is not Lyapu stable. However, by adding
regularization terms to make the Hessian matrix of the Laggafunction of the steady
state problem positive definite, the controller could béiitaed at the optimum steady
state. Another observation worth mentioning is the sigaiftamprovement in CPU time.
Without regularization, it takes around 6 CPU mins to solaehreNLP, while with reg-

ularization it only takes about 55 CPU seconds to solve eddh [So CPU time drops
significantly with regularization terms. This is largelyedto fewer inertia corrections of

the KKT matrix in IPOPT.

7.3 Concluding Remarks

In this chapter we analyze the nominal stability of EconoMMPC. If the rotated stage
costL(z,v) and rotated terminal cost;(zy) are strongly convex, the Economic NMPC
controller is stable. Otherwise regularization terms nhestadded to the original stage
costs and terminal cost. Moreover, we have presented araotige way of calculating
a 'minimal’ stabilizing regularization and showed the etfeof regularization terms and

different regularization weights.

On the other hand, unknown inputs and model parameters hsiveray influence on the
steady state valugg*,v*) in the Economic NMPC regularization. In future, we plan to
handle these through on-line state and parameter estimatieere(z*, v*) are also updated
for each NMPC problem. For this, new state and parametematds will be used for
solution of the steady state optimization problem, in otdenpdate the regularized stage

costs. An alternative strategy is to come up with better leggation terms that do not

CHAPTER 7. ECONOMIC NONLINEAR MODEL PREDICTIVE CONTROL
135



7.3 CONCLUDING REMARKS

0.98 7—@@4&’:\—\;\7
< 0.96 —'ﬁ B
0.9a4H i
‘ Set point No regularization Gershgorin weights Tracking
092 Il T T T T T T T T
o] 10 20 30 40 50 60 70 80 90 100
0.98

LT2

VB2

40 50 60 70 80 90 100
time step

(a) State profiles

Set point

Gershgorin weights Tracking

No regularization

time step

(b) Control profiles

Figure 7.9: 5% additive noise. The results without regakgion terms are shown in blue;
the results with regularization terms calculated with Ggosin Theorem are shown in red,;

the results with only tracking terms are shown in green.
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Figure 7.10: 5% disturbance. Results with different pavadues of Gershgorin weights.
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need(z*,v*). Also we plan to apply the advanced-multi-step approachotwoihic NMPC

to solve large-scale Economic NMPC problems.
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Chapter 8

Conclusions

MPC has been widely applied in industry. For processes tieastaongly nonlinear and
dynamic models are available, we could use NMPC instead. edery solution time of
NMPC problem is usually comparable to the sampling time effifocess or even longer
due to the large size of the system. In this dissertation wpgse the amsNMPC strategy
to handle this situation, analyze its stability properaesl use case studies to evaluate its

performance.

It has been shown in [7], Economic NMPC may lead to significaptovements in process
performance compared to the two-layer RTO approach. Howstability of Economic
NMPC remains a problem. We analyze nominal stability of Ecoit NMPC and propose

a strategy to stabilize unstable Economic NMPC.

In this chapter we summarize the results in each chapterrapdge some future directions

that would be of interest.

8.1 Thesis Summary

Chapter 1 briefly introduces the hierarchy planning and aitpens structure of the oper-
ation of a chemical process. The combination of RTO and ambéuontrol leads to the
discussion of Economic NMPC in Chapter 7. Our research problare stated in this

chapter.
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Chapter 2 serves as literature review and introduces thiegbaand, applications, varia-

tions, general methodology, pros and cons of setpointingddkMPC.

Chapter 3 discusses methodologies to solve NLPs that cob#siEs. In this dissertation,
orthogonal collocation on finite elements is used to dissedDAEs and IPOPT, a solver
that uses interior point method, is used to to solve NLP<eriot point method and NLP

sensitivity are also discussed in this chapter.

Chapter 4 briefly discusses some fast NMPC methods and theiesthe reformulation of
NLPs with state constraints and terminal constraints. Bf@ermulated NLP is then used
throughout this dissertation. The formulation, implenagioin and stability of asNMPC
are then discussed. Clipping is introduced and could be tesptevent the bounds from
being violated. asNMPC lays the theoretical foundationaorsNMPC. The concepts,
assumptions and proofs of nominal and robust stabilitiesetfpoint tracking NMPC are

then presented and Lyapunov stability analysis of ideal ®MiRd asNMPC is conducted.

Chapter 5 proposes the amsNMPC scheme to avoid computadelag for NLP problems
whose solutions require multiple sampling times. Two vasaf amsNMPC, the parallel
and the serial, are developed. For the parallel approactipteybrocessors are applied and
an NLP problem is solved at every sampling time. For the bagproach only one pro-
cessor is applied and an NLP problem is solved edgryampling times. Both approaches
predict the initial condition of the moving horizon NN sampling times in advance, and
update the manipulated variables at every sampling tinmgyu¢LP sensitivity information.
We also prove nominal stability of both approaches. Moreawvepractice, disturbances
such as measurement noise and plant-model mismatch vattafie robustness of amsN-

MPC. We also prove robust stability when the uncertaintyve §y additive disturbance.

Chapter 6 demonstrate the performance of amsNMPC compaiideédal NMPC and as-

NMPC with examples of a CSTR and a distillation column. Bothraples illustrate that
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in the nominal case, or with small level of measurement noisglant-model mismatch,
amsNMPC withNs < 3 behaves identically to ideal NMPC and asNMPC for all valofes
Ns. However, performance deteriorates with increasing nreasent noise, plant-model
mismatch andNs caused by memory effect, and large measurement noise amednptaiel
mismatch will lead both approaches to fail. We also apply MIMBC to a less nonlin-
ear case, and show that nonlinearity strongly affects tifopeance of amsNMPC. This
conclusion is observed from the distillation column exagplloreover, since the scale of
the distillation model is very large, the importance of alvHPC is emphasized, and its
performance is also illustrated on such problems. In thegptdr we also analyze the three
nonrobust MPC examples in [24]. We show that robustnessidoeilobtained by either
using a longer horizon or reformulating the NLP with soft swaints and/; penalty terms
in the objective function. Moreover, robustness is presgémwhen we apply the advanced

step or advanced multi step strategy.

Chapter 7 studies Economic NMPC. For Economic NMPC, ecoaataige costs are used
to drive the controller in the presence of disturbances.nBooc NMPC has been applied
on energy intensive applications with volatile electgigirice [28], cyclic processes [29]
and other areas [13, 4]. However, since stage costs are agtrafic terms, the objec-
tive function no longer satisfies Assumption 2 in Chapter ¢ eonditions for Lyapunov

functions and the stability analysis becomes more difficult

We revisit the NMPC stability analysis through the condinrs from [13] and state that
if the rotated stage costs and rotated terminal costs oféimsformed system, whose opti-
mal steady state is at the origin, are strongly convex, therransformed system satisfies
Assumption 2 and thus is nominally stable. Therefore thgimal system, which has the
same stability property as the transformed system, is nallgistable as well. If the ro-

tated transformed stage costs and terminal costs are natx;dhey should be regularized
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by adding setpoint tracking terms, whereas the setpoietshe optimal solution of the
original steady state problem. We also propose to use theh@erin Theorem to find the

“minimum” regulating weights that are sufficient for Lyapuwnstability.

For case studies we include a CSTR example and a double-o@xample. Starting with
no regularization terms, we increase the regularizatioighte and show that the states

converge faster and the cost becomes lower as weights gecrea

8.2 Contributions

The major contributions of this dissertation is listed dkfes:

1. In Chapter 4 we show that for non-robust (N)MPC contrslléneir robustness could
be obtained by selecting a long enough horizon or reforrmgdhe NLP, replacing
state constraints or terminal constraints by soft consisaiand adding1 penalty
terms to the stage costs or terminal costs. We study the éxaaples in [24] and
show that their robustness could be obtained using the atitategy. Moreover, in
Chapter 6 we show that when the advanced-step strategylis@ppthose examples,

robustness is preserved.

2. In Chapter 4 we introduce the “clipping in first interval’ethod to prevent bounds
on manipulated variables from begin violated after sengitupdate. In Chapter 7
we use a toy CSTR example to show that with clipping the céhibands are not
violated. Moreover, since clipping is easy and fast, it iscLis all the case studies in

this dissertation. Moreover, we also prove robust staftit asNMPC with clipping.

3. In Chapter 5 and Chapter 6 we propose the serial approadhemparallel approach

of amsNMPC and use case studies to evaluate its perform&ihben the solution
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time of the NLP (4.3) exceeds one sampling time, amsNMPCasd ts avoid com-
putation delay and get real-time suboptimal result. We stiat/for a less nonlinear
system, with small level of uncertainty, amsNMPC behavesoat identically to
ideal NMPC and asNMPC. For the serial approach this is a gubatntage because
NLPs are solved less frequently and computational costdisaed. When the sys-
tem is strongly nonlinear and uncertainty level is largemuogy effect leads to worse

performance than ideal NMPC and asNMPC.

. In Chapter 5 we prove the nominal stability for amsNMPJuding the serial ap-
proach and the parallel approach wkh— c. We prove the robust stability for

amsNMPC under assumptions that limit memory effect.

. In Chapter 7 we analyze criteria for Economic NMPC to bblsthased on Lyapunov
stability analysis. If the Economic NMPC is unstable, wegmee to add regulariza-
tion terms to objective function to stabilize it. Moreovere use the Gershgorin
theorem to calculate the weights on regularization terras lads to the optimal
economic performance while stability is guaranteed. We pisve the nominal and

robust stability for Economic NMPC therefore follows fronuéhg et al [29].

8.3 Recommendations for Future Work

In this dissertation we propose the amsNMPC algorithm tides@mputational delay when

the solution time isNs sampling times. We apply the parallel approach to a largée<C3

splitter and use sIPOPT as the solver to get fast updated MlLBans. We propose to

stabilize Economic NMPC by adding tracking terms to the ciiye where the setpoint is

obtained by solving an economic optimal steady state pnobléhere are more interesting

topics worth looking into in the future.
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1. Due to the size of the distillation column problem, instedupdating manipulated
variables manually using MATLAB, sIPOPT, the sensitivigtension to IPOPT, is
applied [48], and only the parallel approach is considere hin future the serial
approach will be realized using the distillation column rebdith a Schur comple-

ment extension added to sIPOPT.

2. So farNsis chosen as the upper bound of the solution time and the Nalslgms are
solved at a fixed frequency. However, amsNMPC could be egtaithe case where
actual solution time can vary, so that the frequency to sthigeNLP problems could
be adjusted automatically. However, the predicted stateldrstill be Ns sampling
times ahead. Otherwise it can not be assured that the opsiohation is always

available when the current actual state is obtained.

3. Economic NMPC has been shown to lead to better economficrpeance than the
two-layer RTO advanced control strategy. It will be intéires to study whether the
fast NMPC methods could be applied to Economic NNPC as weflplying the
advanced-multi-step algorithm to Economic NMPC is not seadly the same as
applying it to setpoint tracking NMPC because of stabilggues. It is possible that

the bound orw in Assumption 4, Chapter 4 is tighter.

4. With our case studies it is assumed that the plant staéeBranediately available
at the beginning of each sampling time, and every state deeilcheasured. This is
rarely true in practice, and a state observer is neededhétanbre, a state observer
could also eliminate set point offsets in the presence oftpiaodel mismatch. More-
over, we would like to use state and parameter estimatorpdate(z*,v*) for each
NMPC problem to account for the influence that unknown in@urtd parameters
have on the steady state values in regularization termscifigadly we would like

to use moving horizon estimation (MHE) as the estimator asrdline MHE with
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amsNMPC and Economic NMPC.

Moving Horizon Estimation ([53]) Since the initial condition of NMPC is the
state estimate, state estimation is required for NMPCeStstimation uses limited
input and output information as well as the process modetfir ithe state of the
process. MHE is an optimization based state estimation asdhe advantage to
handle variable bounds. It is very similar to NMPC, but iastef predicting states

in the future, it uses outputs in history.

For MHE, other than the plant model, we introduce the outpapmng into the plant

dynamics as the following:

x(k+1) = f(x(k),u(k)),x(k) € X,u(k) e U

y(k) = h((k) (8.1)

wherey(k) is the output at tim& andh(-) : 0™ — 0" is a nonlinear function that

maps states to outputs. #tthe following NLP is solved to get the state estimate:

Ne
_min Z)[(ykaeH — VNt 1) Ty (YNt — TkoNet)]
Rk—Ne-+l 1=
+(ReNe — Xk-Ne) T TTo(ReNe — Xk Ne) (8.2)

St XNett+1= F(Rk-Netl> Uk—Net1))
YiNet! = N(R-Net1)

)zk—Ne'H € X, I = O, ceey Ne.

whereNe is the estimation horizon length_N.+j, ] = 0,...,Ne is the estimation of
the state within the estimation horizdny, [N are symmetric positive definite tuning
parametersIlg is called arrival cost and it corresponds to the terminat aoshe

formulation of NMPC problems_p, is the most likely prior value ofy_n, and we
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choosexg_n,1 from the previous MHE problem ag_p, of the current MHE. By
solving this NLP (8.2) with the current measured output,dimeent state estimate is

obtained.

Moreover, MHE has computational delay as well. So advarstep-strategy has
been applied to MHE in [26]. Moreover, we could apply the aubed-multi-step

approach to MHE in case the solution time of (8.2) exceedssangpling time. Fi-

nally, it will be interesting to combine amsMHE with amsNMRECsolve Economic
NMPC problems and see if the application of advanced-nstéfp strategy on both
MHE and NMPC will deteriorate stability of Economic NMPC.
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