
CARNEGIE MELLON UNIVERSITY

Advances in Newton-based Barrier Methods

for Nonlinear Programming

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree of

DOCTOR OF PHILOSOPHY

in

CHEMICAL ENGINEERING

by

WEI WAN

MASTER OF COMPUTATIONAL DATA SCIENCE, CARNEGIE MELLON UNIVERSITY

B.S., CONTROL SCIENCE AND ENGINEERING, ZHEJIANG UNIVERSITY

Pittsburgh, Pennsylvania

Aug, 2017

Copyright c© 2017, Wei Wan

All rights reserved

Acknowledgments

I would first like to thank my adviser Larry Biegler for everything he done for me in the
past five years. I feel so lucky I had the chance to work with Larry. He is patient, knowl-
edgeable and full of ideas. Thanks for being such a wonderful adviser and thanks for being
supportive and letting me explore and learn many things I am curious about.

I would also like to thank the members of my committee, Professors Ignacio Grossmann,
Nick Sahinidis, and Javier Peña for all of their help, guidance, and encouragement during
my PhD studies. I’d also like to thank all the members of Prof. Biegler’s research group
for all the discussions, conversation and encouragement. Lastly, I would like to thank my
undergraduate adviser Xi Chen from Zhejiang University for leading me into PSE and en-
couraging and preparing me for graduate school.

I would like to gratefully acknowledge funding from the CAPD which supported this
work. Additionally, I would like to thank the Masters of Computational Data Science pro-
gram in the Language Technology Institute for providing me a strong master’s education
in Computer Science, which is indispensable for this work and my future career.

I would like to thanks all of my friends for the fun time we had in the these five years.
Bethany Nicholson for all puzzle parties, Nick Austin, Clara Heuberger and Jens Bremer
for taking me to a bar for my first time. Yash Puranik and Jess Cheng for teaching me
how to make India Chai. Markus and Svenja Drouven for suggesting us to get married.
Xue Yang for helping me settle down in Pittsburgh. Jun Shi and Mingzhao Yu for all the
conversation and personal encouragement. Zhi Qian and Haoshui Yu for helping create a
Chinese language environment for John. Yajun Wang and Zixi Zhao for staying in Pitts-
burgh with me for the whole five years. I would also like to thank all friends from the
Master and PhD programs in ChemE and MCDS. All of you have made Pittsburgh such a
wonderful place to live.

I’d like to thank my parents for their unconditional love and support for any of my
choices. Finally, I would like to thank my husband John for his input for this work in
discussions and proofreading, but most of all for his support, love, and constant encour-
agement. This work would not have been possible without you. Thanks for being the best
friend, lab-mate and partner for the past five years and all the years to come.

Wei Wan
Pittsburgh, PA

Aug 2017

ACKNOWLEDGMENTS

i

Abstract

Nonlinear programming is a very important tool for optimizing many systems in science
and engineering. The interior point solver IPOPT has become one of the most popular
solvers for NLP because of its high performance. However, certain types of problems are
still challenging for IPOPT. This dissertation considers three improvements or extensions
to IPOPT to improve performance on several practical classes of problems.

Compared to active set solvers that treat inequalities by identifying active constraints
and transforming to equalities, the interior point method is less robust in the presence of
degenerate constraints. Interior point methods require certain regularity conditions on the
constraint set for the solution path to exist. Dependent constraints commonly appear in
applications such as chemical process models and violate the regularity conditions. The
interior point solver IPOPT introduces regularization terms to attempt to correct this, but
in some cases the required regularization terms either too large or too small and the solver
will fail. To deal with these challenges, we present a new structured regularization algo-
rithm, which is able to numerically delete dependent equalities in the KKT matrix. Nu-
merical experiments on hundreds of modified example problems show the effectiveness
of this approach with average reduction of more than 50% of the iterations.

In some contexts such as online optimization, very fast solutions of an NLP are very
important. To improve the performance of IPOPT, it is best to take advantage of problem
structure. Dynamic optimization problems are often called online in a control or state-
estimation. These problems are very large and have a particular sparse structure. This
work investigates the use of parallelization to speed up the NLP solution. Because the
KKT factorization is the most expensive step in IPOPT, this is the most important step
to parallelize. Several cyclic reduction algorithms are compared for their performance
on generic test matrices as well as matrices of the form found in dynamic optimization.
The results show that for very large problems, the KKT matrix factorization time can be
improved by a factor of four when using eight processors.

Mathematical programs with complementarity constraints (MPCCs) are another chal-
lenging class of problems for IPOPT. Several algorithmic modifications are examined to
specially handle the difficult complementarity constraints. First, two automatic penalty
adjustment approaches are implemented and compared. Next, the use of our structured
regularization is tested in combination with the equality reformulation of MPCCs. Then,
we propose an altered equality reformulation of MPCCs which effectively removes the
degenerate equality or inequality constraints. Using the MacMPEC test library and two
applications, we compare the efficiency of our approaches to previous NLP reformulation
strategies.

ii
ABSTRACT

Contents

Acknowledgments i

Abstract ii

Contents iii

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Background of optimization . 1
1.2 Problem challenges . 3
1.3 Research Statement and Dissertation Overview 5

2 NLP Background 8
2.1 Optimality Conditions . 8

2.1.1 First Order KKT Conditions . 9
2.1.2 Constraint Qualifications (CQs) . 9
2.1.3 Second Order Conditions . 11

2.2 NLP Solution Methods . 11
2.2.1 Older Methods . 12
2.2.2 Sequential Quadratic Programming (SQP) 13
2.2.3 Interior Point Methods . 14

2.3 Popular Solvers . 15
2.3.1 SQP solvers . 15
2.3.2 Interior Point . 16
2.3.3 Nested and Gradient Projection . 16

3 Review of IPOPT Algorithm 18
3.1 Background of IPOPT . 18

3.1.1 Primal-dual barrier approach . 18
3.1.2 Solution of the barrier problem . 19
3.1.3 A Line search filter method . 20
3.1.4 IPOPT algorithm . 22
3.1.5 Restoration phase . 24

3.2 NLP format in IPOPT . 25

CONTENTS

iii

3.3 Convergence properties . 26

4 Structured Regularization for Equality Constraints 27
4.1 Introduction . 27
4.2 IPOPT regularization . 29
4.3 Structured Regularization . 31

4.3.1 Big-M regularization . 33
4.3.2 Constraint elimination regularization 34
4.3.3 On the fly regularization . 35

4.4 Modified IPOPT Regularization . 36
4.4.1 IPOPT algorithm with Structured Regularization 36
4.4.2 Convergence properties of IPOPT . 39
4.4.3 Implementation . 43

4.5 Numerical results . 44
4.5.1 Toy example . 45
4.5.2 Nonlinear blending problems . 46
4.5.3 CUTEr test set . 48

4.6 Conclusion . 51

5 Parallel Cyclic Reduction Decomposition for Dynamic Optimization Problems 56
5.1 Introduction . 56
5.2 Dynamic Optimization . 59

5.2.1 Interior Point Methods . 61
5.2.2 Exploiting Structure in KKT System 62

5.3 Block Cyclic Reduction . 64
5.3.1 Traditional Cyclic Reduction . 65
5.3.2 Yalamov Cyclic Reduction . 67
5.3.3 Time complexity analysis . 69
5.3.4 Symmetry . 71
5.3.5 Singular Diagonal Blocks . 71

5.4 Implementation . 73
5.5 Testing Results for Randomly Generated Linear KKT Systems 74

5.5.1 Rhs Error and CPU time variation . 75
5.5.2 Increasing Number of Blocks . 76
5.5.3 Increasing Block Size . 77

5.6 Linear System Testing With Dynamic Structure 78
5.6.1 Increasing Number of Connection Variables 80
5.6.2 Ratio of variables and constraints with fixed block size 81
5.6.3 Density of block diagonal matrices . 82
5.6.4 Parallel performance . 82

5.7 Dynamic Process Optimization Examples . 83
5.7.1 Auto permutation tool . 84
5.7.2 MHE-CSTR . 85

iv
CONTENTS

5.7.3 NMPC-CSTR . 87
5.7.4 Polymer grade transition FBR . 89
5.7.5 NMPC BFB . 94

5.8 Conclusions . 97

6 IPOPT for Mathematical Programs with Complementarity Constraints (MPCCs) 99
6.1 Introduction . 99
6.2 MPCC Background . 101

6.2.1 MPCC optimality conditions . 103
6.2.2 MPCC constraint qualification . 105
6.2.3 Solving methods . 106

6.3 Auto-adjusting penalty methods . 108
6.3.1 ρ(µ) algorithm . 110
6.3.2 µ(ρ) algorithm . 110

6.4 Constraint elimination methods . 112
6.4.1 Removing inequality constraints . 113
6.4.2 Algorithm . 114

6.5 Implementation . 116
6.6 Results . 117

6.6.1 Auto-adjusting penalty methods . 118
6.6.2 Constraint elimination methods . 120

6.7 Applications . 121
6.7.1 Differential inclusion . 121
6.7.2 Distillation Optimization . 124

6.8 Conclusion . 128

7 Conclusions 130
7.1 Summary and Contributions . 130
7.2 Recommendations for Future Work . 133

7.2.1 Dependent Constraints . 133
7.2.2 Cyclic Reduction for Dynamic Optimization 134
7.2.3 Mathematical Programming with Complementarity Constraints . . 134

Bibliography 136

CONTENTS

v

List of Tables

4.1 Result comparison on toy example and blending problems 54

5.1 MHE CSTR results . 87
5.2 Parameter values of the NMPC CSTR . 88
5.3 State variables of the NMPC CSTR . 89
5.4 Control variables of the NMPC CSTR . 89
5.5 NMPC CSTR results . 90
5.6 Polymer grade transition FBR reactions . 91
5.7 Polymer grade transition FBR moments model 92
5.8 Mass balance and energy balance . 93
5.9 Grade transition FBR results . 94
5.10 BFB results . 98

6.1 MacMPEC results (# iter) for constraint elimination method 122
6.2 Distillation test results (# iter) . 128

vi
LIST OF TABLES

List of Figures

4.1 Flowsheet for toy example . 46
4.2 Iteration Count Performance of MA57 . 49
4.3 Iteration Count Performance of MA97 . 51
4.4 Iteration Count Performance of MUMPS . 52
4.5 CPU Time Comparison between IPOPT, KNITRO and CONOPT 53
4.6 Iteration Comparison between IPOPT, KNITRO and CONOPT 55

5.1 rhs error log scale . 75
5.2 cpu time linear scale . 75
5.3 rhs error log scale . 76
5.4 cpu time linear scale . 76
5.5 rhs error log scale . 78
5.6 CPU time linear scale . 78
5.7 CPU time versus nz . 80
5.8 CPU time versus variable ratio . 81
5.9 CPU time versus density . 81
5.10 MA57 calls on each processor . 83
5.11 KKT sparsity patterns for MHE-CSTR . 86
5.12 KKT sparsity patterns for NMPC CSTR . 90
5.13 KKT sparsity patterns for polymer grade transition FBR 94
5.14 BFB adsorber . 96
5.15 Mass and energy relations . 96
5.16 KKT sparsity patterns for NMPC BFB . 97

6.1 performance profile ρ(µ) . 118
6.2 performance profile µ(ρ) . 119
6.3 performance profile comparison . 120
6.4 performance profile comparison . 124
6.5 Distillation Column . 126

LIST OF FIGURES

vii

viii
LIST OF FIGURES

Chapter 1

Introduction

In this chapter we describe the background and motivation for this dissertation. The fo-

cus of the thesis is on solving problems in nonlinear programming with the solver IPOPT.

Through solving these problems, several modifications to IPOPT are proposed. This chap-

ter begins with an overview of the definition and applications of nonlinear programming.

Then, we discuss the research challenges that motivated this work, and the structure of the

thesis is outlined in detail.

1.1 Background of optimization

Mathematical modeling is an essential tool in engineering. Chemical processes are now

described very effectively by mathematical expressions, including differential and alge-

braic equations. Computational simulations that solve these models are very important to

predict the behavior of a new plant design, analyze a modification to an existing plant, or

to develop a new control or operating policy. Good mathematical models offer cheap and

safe ways to innovate and improve efficiency and profitability.

Once engineers have a way to predict outcomes of a model, it becomes natural to ask

how to get the best outcome. By changing parameters such as the operating conditions

(flowrates, temperature) or by considering alternative equipment sizing, one can try to op-

timize several objectives. These could include maximizing the net present value of a new

project, finding operating specifications to maximize the efficiency of an existing plant,

CHAPTER 1. INTRODUCTION

1

1.1 BACKGROUND OF OPTIMIZATION

or finding a control strategy to minimize the deviation from the those desired operating

specifications. In these problems, there are often many degrees of freedom and the com-

plex relationships between variables can make the optimal decisions non-intuitive. By

using optimization algorithms in combination with mathematical process models, one can

find practical solutions to engineering problems and often gain a better understanding of

the underlying process.

Optimization problems are categorized by the type of objective under consideration and

the mathematical characteristics of the model. Many process variables are continuous,

such as temperature, flowrates, and pressures. If any of the variables are discrete, such

as whether a certain piece of equipment will be built or not, then the problem is consid-

ered using mixed integer programming techniques. In this thesis, we will only consider

optimization using continuous variables. Another important categorization is whether the

model equations are linear or nonlinear. Chemical process models are usually nonlinear

to consider the detailed thermodynamic and chemical behavior in the system. In addition,

many variables naturally have bounds, for example pressure must be positive, but below

a certain safety threshold.

The category of optimization problem considered in this dissertation is called nonlinear

programming (NLP). These problems are nonlinear, usually nonconvex, with continuous

variables and smooth constraints. This covers many important applications in chemical

engineering including process optimization and optimal control. An NLP can be written

mathematically as

min
x∈Rn

f(x)

s.t. c(x) = 0

xL ≤ x ≤ xU

(1.1)

The objective function is f : Rn → R and equality constraints are c : Rn → Rm with

2
CHAPTER 1. INTRODUCTION

1.2 PROBLEM CHALLENGES

m < n. These functions are assumed to be sufficiently smooth. The upper and lower

bounds xL and xU may be infinite for certain components, meaning that not every variable

is required to have bounds. Note that form (1.1) is not unique, many NLP formulations

include general nonlinear inequality constraints g(x) ≤ 0. This can be easily transformed

into form (1.1) through the addition of slack variables, for example g(x)+s = 0, with s ≥ 0.

Many algorithms exist for solving nonlinear programs of form (1.1). Most attention in

modern NLP solvers is given to solving large problems, possibly with hundreds of thou-

sands of variables and constraints. Problems get larger as the detail and accuracy of the

model increases. However, most NLPs in chemical engineering applications are highly

sparse, meaning that efficient linear algebra routines can be used.

The NLP solver IPOPT (Interior Point OPTimizer) was originally developed by Andreas

Wäcther and Lorenz T. Biegler at Carnegie Mellon for the solution of large-scale nonlinear

programs. The solver uses a filter line search combined with the interior point strategy.

Linear algebra is handled with interfaces to several popular linear solvers. The original

algorithm was written in Fortran and released open-source through COIN-OR. In 2005,

IPOPT was updated with a new C++ implementation by Andreas Wächter and Carl Laird.

This dissertation will consider further updates to the C++ version of IPOPT.

1.2 Problem challenges

IPOPT is widely used in many application areas including chemical industry, robotics, and

economics. It is especially suitable for problems with many degrees of freedom. Compared

to the active methods, the interior point approach avoids the combinatorial complexity

of active set methods. In addition, interior point methods allow for the use of highly

efficient sparse linear algebra routines. The IPOPT algorithm uses a filter line search, which

CHAPTER 1. INTRODUCTION

3

1.2 PROBLEM CHALLENGES

offers more lenient step acceptance criteria and often faster convergence compared to merit

function methods.

Despite how efficient IPOPT is, there are still challenges which are listed as follows,

• Dependent equality constraints violate regularity conditions and may cause IPOPT

to fail. However, these are common in chemical process models, for example in ma-

terial flow equations for multicomponent streams. When composition is unknown,

the mass balance equations involve bilinear terms, which may lead to degenerate

equality constraints. In addition, synthesis or design MINLP problems derive NLP

relaxation subproblems with the input flow rate vanishing when the correspond-

ing unit is deselected. In that case, bilinear terms lead to local dependence in the

equations at optima, which violate the Linear Independence Constraints Qualifica-

tion (LICQ). Although IPOPT already has a regularization feature to try to deal with

these problems, performance for dependent problems is still behind competing ac-

tive set methods.

• Dynamic optimization includes detailed dynamic models within an optimization

framework. Model predictive control, state estimation, and parameter estimation

are all common applications of dynamic optimization, which can lead to significant

improvements in process efficiency, reliability, safety, and profitability. After dis-

cretization, dynamic optimization problems can form large-scale, sparse nonlinear

programs, often with many degrees of freedom. So IPOPT is a very suitable choice

of solver. However, for use in online control, very fast solutions are required. With

ever increasing system size, discretization level, and model complexity, fast solutions

to dynamic optimization remains a challenge.

• Mathematical programming with complementarity constraints (MPECs) can be used

to model certain classes of discrete events, including disappearance of phases, flow

4
CHAPTER 1. INTRODUCTION

1.3 RESEARCH STATEMENT AND DISSERTATION OVERVIEW

reversal, and safety valve operation. MPCCs can be reformulated to NLP and solved

by NLP solvers. For large process models, this approach can be more efficient than

mixed integer optimization. However, the regularity conditions do not hold for the

NLP reformulation of an MPCC at any feasible point, which is a challenge for all

NLP solvers.

1.3 Research Statement and Dissertation Overview

This thesis addresses three categories of challenging models. First, we proposed the struc-

tured regularization algorithms which can eliminate the dependent constraints locally. The

elimination maintains the high performance of IPOPT though Newton steps and helps the

convergence for models with globally and locally dependent constraints. The convergence

of IPOPT with structured regularization is proved as well. The second challenge is related

to dynamic optimization problems. Taking advantage of the special KKT linear system

structure created by dynamic optimization problems after discretization, we apply two

parallel cyclic reduction methods instead of the standard linear solver. Finally, for MPCCs,

we test two auto adjustment penalty methods, based on the penalty reformulation that can

adjust the penalty term automatically. We also propose a constraint elimination method to

eliminate the dependent constraints for MPCCs.

This dissertation is organized as follows:

Chapter 2 starts with the basic concepts of nonlinear programming including the first

and second order KKT conditions and constraint qualifications. These concepts give theo-

retical foundation for the numerical solution of NLPs. Then, we discuss the development

of practical algorithms to solve NLPs. Finally, popular state-of-art solvers are introduced

with the comparison of the strengths and weaknesses.

CHAPTER 1. INTRODUCTION

5

1.3 RESEARCH STATEMENT AND DISSERTATION OVERVIEW

Chapter 3 provides an overview of the state-of-art NLP solver IPOPT, which implements

a primal-dual interior-point algorithm with a filter line-search method for nonlinear pro-

gramming. In this chapter, first we discuss the primal-dual barrier approach, then apply

Newton steps to get the solution of the barrier problem. A line search filter method is

used to guarantee the quality of the step and then a restoration phase is defined for the

filter method. When introducing the algorithm, we use a simple format of NLP with only

equalities and lower bounds to simplify the notation. However, we also discuss the prac-

tical issue of how IPOPT deals with inequality constraints and upper and lower bounds.

Finally, we discuss both the global and local convergence proofs for IPOPT.

Chapter 4 introduces a new structured regularization strategy; within the Newton step

it identifies an independent subset of equality constraints and removes the remaining con-

straints without modifying the KKT matrix structure. This approach leads to more accu-

rate Newton steps and faster convergence, while maintaining global convergence proper-

ties. Implemented in IPOPT with linear solvers HSL MA57, HSL MA97 and MUMPS, we

present numerical experiments on hundreds of examples from the CUTEr test set, modi-

fied for dependency. These results show an average reduction in iterations of more than

50% over the current version of IPOPT. In addition, several nonlinear blending problems

are solved with the proposed algorithm, and improvements over existing regularization

strategies are further demonstrated.

Chapter 5 explores a parallel decomposition strategy for block tridiagonal systems that

is based on the cyclic reduction (CR) method applied to the KKT linear system of dynamic

optimization problems. The classical CR method has good observed performance, but

its numerical stability properties need further study for our KKT system. An alternative

method proposed by Yalamov and Pavlov has better theoretical stability guarantees. We

compare traditional CR to the Yalamov variant and discuss modifications to the CR de-

6
CHAPTER 1. INTRODUCTION

1.3 RESEARCH STATEMENT AND DISSERTATION OVERVIEW

composition that improve performance our KKT systems. Finally we apply the approach

to four industrially relevant dynamic optimization case studies. On the largest problem, a

parallel speedup of a factor of four is observed when using eight processors.

Chapter 6 discusses our experiences in extending IPOPT to deal with the solution of

MPCCs. First, we propose two automatic penalty adjustment approaches in IPOPT. The

first approach is similar to that from [1], in which the complementary error is checked and

the penalty parameter is potentially adjusted after each barrier problem is converged. The

second approach only adjusts the penalty term after the penalty NLP converges. Next, we

propose an improvement to the equality reformulation of MPCCs. When a complementary

constraint is biactive, the equality constraint leads to a singular row in the Jacobian. We

address this using the structured regularization strategy proposed in Chapter 4. In addi-

tion, we propose an altered equality reformulation of MPCCs that extends this concept to

numerically remove the degenerate equality or inequality constraints. The MacMPEC test

library is used to compare MPCC solution methods. We also demonstrate performance on

two applications.

Chapter 7 concludes this dissertation, lists the major contributions and discusses recom-

mendations for future work.

CHAPTER 1. INTRODUCTION

7

Chapter 2

NLP Background

This chapter will briefly review the basics of nonlinear programming theory and computa-

tion. First, the first-order KKT necessary conditions are reviewed, followed by a discussion

of constraint qualifications. Then we present the second order necessary and sufficient op-

timality conditions. In the second part of this chapter, we give an overview of algorithms

for nonlinear programming, from sequential unconstrained methods to SQP and interior

point methods. Finally we compare several of the most popular modern NLP solvers.

2.1 Optimality Conditions

In this thesis, we will focus on gradient-based solution methods that guarantee conver-

gence to a local optimum of a general NLP. For this section, we formulate the NLP in the

following form for simplicity of notation, where bounds and inequalities are represented

as gi(x) ≤ 0. This gives the following formulation:

min f(x)

s.t. c(x) = 0

g(x) ≤ 0

(2.1)

where we define decision variables x ∈ Rn, objective function f : Rn → R, equality con-

straints c : Rn → Rne , and inequality constraints g : Rn → Rni .

Sometimes it is useful to have a quick way to refer to the feasible set of (2.1). We define

the set X as the set x ∈ Rn such that c(x) = 0 and g(x) ≤ 0.

8
CHAPTER 2. NLP BACKGROUND

2.1 OPTIMALITY CONDITIONS

We use the definition of the feasible set X to define a local minimum of (2.1). A point x∗

is a local minimum of (2.1) if x∗ ∈ X and there exists ε > 0 such that:

f(x) ≥ f(x∗) ∀ x ∈ X ∩ {‖x− x∗‖ ≤ ε}. (2.2)

2.1.1 First Order KKT Conditions

The first order Karush-Kuhn-Tucker (KKT) conditions provide necessary conditions to

characterize a local minimum x∗. The only additional requirement to use the KKT con-

ditions is that some constraint qualification holds at the local solution x∗. Constraint qual-

ifications are discussed in the following section.

To make the presentation of optimality conditions more clear, we first define the La-

grangian function as follows:

L(x, λ, η) = f(x) + c(x)Tλ+ g(x)T η (2.3)

The KKT necessary conditions are the result of the following theorem:

Theorem 1. If x∗ is a local minimum of (2.1) and a constraint qualification holds at x∗, then there

exist multipliers λ∗ and η∗ such that

∇xL(x∗, λ∗, η∗) = ∇f(x∗) +∇c(x∗)λ∗ +∇gj(x∗)η∗ = 0

c(x∗) = 0

g(x∗) ≤ 0

η∗ ≥ 0

g(x∗)T η∗ = 0

(2.4)

2.1.2 Constraint Qualifications (CQs)

Constraint qualifications (or regularity conditions) contain information about the relation-

ship between the feasible set and the set that results from local linearizations of the con-

CHAPTER 2. NLP BACKGROUND

9

2.1 OPTIMALITY CONDITIONS

straints. Without a constraint qualification, the optimal solution may or may not be a KKT

point. Here, we consider two constraint qualifications most often used in nonlinear opti-

mization.

For notation in this section, define I = {1, . . . , ne} and J = {1, . . . , ni} as the index sets

for equality and inequality constraints respectively. The jth inequality constraint is written

gj(x).

Given a point x, we define the notion of an active set of inequalitiesA(x) ⊆ J as follows:

A(x) = {j | gj(x) = 0} (2.5)

Now we define the linear independence constraint qualification (LICQ) and Mangasarian-

Fromovitz constraint qualification (MFCQ) as follows:

Definition (LICQ). Given a point x and corresponding active set A(x), LICQ is defined

by linear independence of the constraint gradients {∇ci(x),∇gj(x)} for all i ∈ I and j ∈

A(x∗)}.

Definition (MFCQ). Given a point x and corresponding active set A(x), MFCQ is defined

by linear independence of the equality constraint gradients and the existence of a search

direction p such that∇ci(x)T p = 0 for i ∈ I and∇gj(x)T p < 0 for all j ∈ A(x).

From the definitions, it is easy to show LICQ implies MFCQ, thus MFCQ is the weaker

condition. If LICQ holds at a local optimal solution, the multipliers can be solved uniquely.

However, if there are dependent constraints in the active set but MFCQ holds, all multipli-

ers are bounded in a polytope [2].

There are other constraint qualifications that are valid for the KKT theorem, but most

are not easily verified in practice. We will address a problem specific extension of CQs in

Chapter 6.

10
CHAPTER 2. NLP BACKGROUND

2.2 NLP SOLUTION METHODS

2.1.3 Second Order Conditions

In addition to the first-order conditions, local minimizers may be further characterized us-

ing second order information. There are both second order necessary optimality conditions

and second order sufficient optimality conditions. First define the following cone:

d ∈ C(x, λ, η) ⇐⇒

∇c(x)Td = 0,

∇gj(x)Td = 0, j ∈ {i | gi(x) = 0, λi > 0}

∇gj(x)Td ≤ 0, j ∈ {i | gi(x) = 0, λi = 0}

(2.6)

Theorem 2. If x∗ is a local minimum of (2.1), LICQ holds at x∗, and λ∗, η∗ are the multipliers

that satisfy the KKT conditions (2.4), then:

dT∇xxL(x∗, λ∗, η∗)d ≥ 0 ∀ d ∈ C (2.7)

The second order sufficient conditions are given by the following theorem:

Theorem 3. Suppose that x∗ and multipliers λ∗, η∗ satisfy the KKT conditions (2.4) and

dT∇xxL(x∗, λ∗, η∗)d > 0 for all nonzero d ∈ C (2.8)

then x∗ is a strict local solution of (2.1)

For proofs of these theorems, see for example [3].

2.2 NLP Solution Methods

In this section we briefly review the history of numerical methods for solving nonlinear

programming problems. The focus is on nonlinear, nonconvex problems with general con-

straints as shown in (2.1).

CHAPTER 2. NLP BACKGROUND

11

2.2 NLP SOLUTION METHODS

2.2.1 Older Methods

The earliest algorithms for nonlinear programming were usually based on the sequential

unconstrained minimization technique. These methods took advantage of well-established

unconstrained minimization techniques (usually employing Newton’s method) to solve a

sequence of subproblems. The constraints can be handled in one of two ways. The first

method, known as penalty functions, creates a new objective function where constraint

violation is penalized with a scalar ρ ∈ R+

fpen(x, ρ) = f(x) + ρ‖c(x)‖+ ρ‖max(0, g(x))‖ (2.9)

It can be shown that there exists a sufficiently large penalty parameter ρ such that a local

minimum x∗ of (2.1) is also a local minimum of (2.9). Thus, by solving a sequence of uncon-

strained subproblems minx fpen(x, ρk) for an increasing sequence {ρk}, we can converge to

a solution of (2.1).

By typically starting with a low penalty parameter ρ, the subproblem solutions will usu-

ally begin outside the feasible set, only reaching feasibility once a sufficiently large ρ has

been found. An alternative approach is the barrier method, where iterates stay in the strict

interior with respect to the inequality constraints during the optimization process. If the

problem does not have equality constraints, the barrier problem is formed as follows:

fbar(x, µ) = f(x)− µ
∑
j∈J

log(−gj(x)) (2.10)

Handling equality constraints with barrier methods would require other modifications.

Barrier methods have regained popularity more recently with the development of interior

point methods, discussed below.

More recent nested minimization algorithms are often based on the augmented La-

grangian function. Consider for now an equality constrained NLP. The augmented La-

12
CHAPTER 2. NLP BACKGROUND

2.2 NLP SOLUTION METHODS

grangian is defined as:

LA(x, λ, ρ) = f(x) + c(x)Tλ+ (ρ/2)c(x)T c(x) (2.11)

If λ∗ corresponds to the equality constraint multipliers at the solution, then LA(x, λ∗, ρ) is

an exact penalty function for sufficiently large ρ. Compared to (2.9), this penalty function is

smooth, so it leads to easier subproblem solutions. The multiplier estimates λ are normally

generated in an outer loop, for example using the least squares estimate:

λ(x) = −[∇c(x)T∇c(x)]−1∇c(x)T∇f(x) (2.12)

The penalty parameter ρ also has to be updated iteratively in the outer iteration, and a suit-

able value is not easy to determine. Too large values may cause ill-conditioning, while too

small do not guarantee finding a solution. In augmented Lagrangian methods, inequality

constraints g(x) ≤ 0 can be handled in several ways, for example by slacking and treating

bounds explicitly in subproblem solutions or through use of a barrier term.

2.2.2 Sequential Quadratic Programming (SQP)

As the name implies, sequential quadratic programming SQP solves an NLP through a

sequence of quadratic programming approximations. The motivation for this approach

comes from the following observation. Assume that there are no inequality constraints in

an NLP. Then the KKT conditions are

∇f(x∗) +A(x∗)λ∗ = 0

c(x∗) = 0

(2.13)

where A(x) = ∇c(x). If we solve this system of equations using Newton’s method, then

we will generate a sequence of points {xk, λk} converging to {x∗, λ∗}. Define the step from

iteration to iteration as dxk and dλk such that xk+1 = xk + dxk and λk+1 = λk + dλk . This

CHAPTER 2. NLP BACKGROUND

13

2.2 NLP SOLUTION METHODS

Newton step is generated by solving the following linear system:Wk Ak

ATk 0

dxk
dλk

 = −

∇f(xk) +Akλk

c(xk)

 (2.14)

whereWk = ∇xxL(xk, λk) andAk = ∇c(xk) The interesting point is that solving this linear

system is equivalent to finding a critical point of the quadratic program

min ∇f(xk)
Td+ 1

2d
TWkd

s.t. ATk d = 0
(2.15)

If Wk is positive definite on the null space of ATk , then dxk is the solution of QP (2.15). This

observation forms the basis of SQP methods. The inequality constraints can be handled

by an active set strategy in the QP, where active constraints are guessed and treated as

equalities. It can be shown that under mild assumptions the linearized QP can identify the

correct active set. See [4, 5, 6, 7] for more details on SQP and related active set methods.

2.2.3 Interior Point Methods

An alternative approach to handling inequality constraints is interior point methods. In

interior point methods, the inequality constraints are handled with a barrier term, while

the step generation still utilizes linearized constraints. It is useful to consider the NLP in

the form

min
x∈Rn

f(x) s.t. c(x) = 0, x ≥ 0 (2.16)

After moving bound constraints to the objective function, the barrier subproblem is formed

as follows:

min
x∈Rn

ϕµ(x) = f(x)− µ
n∑
i=1

ln(x(i)) s.t. c(x) = 0, (2.17)

where µ ≥ 0 is the barrier parameter and ϕµ(x) is called the barrier function. The solutions

of (2.17) converge to the solution of (2.16) as µ→ 0 under certain conditions, see [2] or [8].

14
CHAPTER 2. NLP BACKGROUND

2.3 POPULAR SOLVERS

After introducing dual variables

v(i) =
µ

x(i)

the KKT conditions of (2.17) are equivalent to the primal-dual equations:

∇f(x) +A(x)λ− v = 0

c(x) = 0

XV e− µe = 0

(2.18)

Interior point methods solve the primal dual equations in inner iterations, and control µ in

an outer iteration. IPOPT is an interior point method, the detailed algorithm is introduced

in Chapter 3.

2.3 Popular Solvers

In this section, popular NLP solvers are briefly reviewed. The solvers are divided into

active set approaches and interior point approaches.

2.3.1 SQP solvers

1. filterSQP [9]: Filter SQP is a trust region SQP method, using the filter method for

globalization. It uses the bqpd package to solve QPs. In the case of indefinite Hes-

sians, a local QP solution is returned.

2. KNITRO [10]: The KNITRO package includes several solvers. Although better

known for its interior point methods, KNITRO also implements an SLQP algorithm.

An LP approximation of the `1 penalty function estimates an active set, then an equal-

ity constrained QP is solved. The search direction includes information from both

subproblems.

CHAPTER 2. NLP BACKGROUND

15

2.3 POPULAR SOLVERS

3. NLPQLP An extension of the SQP solver NLPQL [11], NLPQLP implements a non-

monotone line search. The Hessian is updated by the modified BFGS formula. Dense

linear algebra is used, so it is more suitable for smaller problems.

4. NPSOL [12] is an SQP algorithm using a linear search on the augmented Lagrangian

merit function. The Hessian is approximated with a dense BFGS update. Since linear

algebra is dense, it is more suitable to smaller problems.

5. SNOPT [13]: Also developed by Gill, Murray, and Wright [14], SNOPT implements

sparse linear algebra routines so it is suitable for larger problems. A full-space,

limited-memory BFGS update is used for the Hessian matrix.

2.3.2 Interior Point

1. IPOPT [15]: IPOPT uses a filter line search method to solve the primal dual equa-

tions. It is available through the open-source COIN-OR project. The full algorithm

of IPOPT is given in Chapter 3.

2. KNITRO [10]: KNITRO includes the interior point method described in [16]. It can

switch between merit function line search and a trust region approach depending on

the problem features. The KKT matrix can be solved with either a direct factorization

or indirect conjugate gradient method.

3. LOQO [17]: LOQO uses a line search method combined with elements of a filter

method, with recourse to a merit function in certain circumstances.

2.3.3 Nested and Gradient Projection

1. CONOPT [18]: CONOPT includes several active set NLP solvers. These solvers are

chosen automatically and sometimes nested. These include a gradient projection

16
CHAPTER 2. NLP BACKGROUND

2.3 POPULAR SOLVERS

method, a sequential linear programming method, and an SQP-type method. Effi-

cient sparse linear algebra is used.

2. MINOS [19]: MINOS is a reduced space augmented Lagrangian method. The aug-

mented Lagrangian subproblem is solved with linearized constraints. A reduced

gradient method with quasi-Newton updates is then used to solve the subproblem.

3. LANCELOT [20]: LANCELOT is an augmented Lagrangian method using a trust

region approach. After moving equalities to the objective with the augmented La-

grangian function, the bound constrained trust region subproblem is solved with

conjugate gradient steps.

4. PENNON [21]: PENNON first moves the constraints to the objective using a penal-

ty/barrier function. The unconstrained augmented Lagrangian subproblems are

solved with a Newton-type solver. The solver also supports semidefinite constraints

on matrices.

CHAPTER 2. NLP BACKGROUND

17

Chapter 3

Review of IPOPT Algorithm

In the previous chapter, we introduced nonlinear programming through optimality condi-

tions, algorithmic concepts, and an overview of software packages. In this chapter, we will

focus on an interior point approach (IPOPT) and discuss the detailed implementation and

convergence proof.

3.1 Background of IPOPT

3.1.1 Primal-dual barrier approach

We consider an NLP problem of the form,

min
x∈Rn

f(x) s.t. c(x) = 0, x ≥ 0 (3.1)

and assume that f(x) : Rn → R and c(x) : Rn → Rm, with m < n ∈ N, have continuous

first and second derivatives. In IPOPT, the inequality constraints are substituted by a bar-

rier function with barrier parameter µ ∈ R+. Thus, we compute approximate solutions to

problem (3.1) by solving a sequence of problems of the form

min
x∈Rn

ϕµ(x) = f(x)− µ
n∑
i=1

ln(x(i)) s.t. c(x) = 0, (3.2)

18
CHAPTER 3. REVIEW OF IPOPT ALGORITHM

3.1 BACKGROUND OF IPOPT

where x(i) denotes the i-th component of a vector x ∈ Rn. By defining v = µX−1e, a KKT

point of problem (3.2) satisfies the primal dual equations:

∇f(x) +A(x)λ− v = 0

c(x) = 0

XV e− µe = 0

(3.3)

where e = (1, ..., 1) ∈ Rn and A(x) = ∇c(x) ∈ Rn×m. Here λ ∈ Rm and v ∈ Rn correspond

to Lagrange multipliers for equality constraints and bound constraints, respectively. X

and V are diagonal matrices where X = diag(x) and V = diag(v).

The primal dual equations are solved repeatedly with decreasing values of µ. For each

fixed µ, we define the optimality error to check for convergence for the barrier problem as

Eµ(x, λ, v) := max

{
‖∇f(x) +Aλ− v‖∞

sd
, ‖c(x)‖∞,

‖XV e− µe‖∞
sc

}
(3.4)

with scaling parameters sd, sc ≥ 0 defined as follows (smax ≥ 1 is a scaling threshold),

sd = max

{
smax,

‖λ‖1 + ‖v‖1
m+ n

}
/smax sc = max

{
smax,

‖v‖1
n

}
/smax (3.5)

When the optimality error is below a certain tolerance, the barrier parameter is decreased.

When the optimality error of equation (3.4) with µ = 0 is below a tolerance εtol, the overall

algorithm terminates and the optimal solution is found.

3.1.2 Solution of the barrier problem

Following the notation in [15], j denotes the iteration counter for the “outer loop” repre-

senting the sequence µj , and k denotes the iteration counter for the “inner loop” used to

solve the primal dual equations (3.3) at fixed µj . In the inner loop we solve the primal-

dual equations using Newton‘s method. The Newton step
(
dxk, d

λ
k , d

v
k

)
in the kth iteration

CHAPTER 3. REVIEW OF IPOPT ALGORITHM

19

3.1 BACKGROUND OF IPOPT

is calculated by,
Wk Ak −I

(Ak)
T 0 0

Vk 0 Xk

dxk

dλk

dvk

 = −

∇f(xk) +Akλk − vk

c(xk)

XkVke− µje

 (3.6)

where Wk denotes the Hessian ∇2
xx(f(x) + c(x)Tλk) at xk and Ak = A(xk). Because of the

barrier terms, xk > 0 for all k and we can define Σk = X−1
k Vk. Eliminating dvk in (3.6) leads

to the symmetric matrix shown in the following linear system:Wk + Σk Ak

(Ak)
T 0

dxk
dλk

 = −

∇ϕµj (xk) +Akλk

c(xk)

 (3.7)

Note that dvk is required in the iterations and is calculated through dvk = µX−1
k e−vk−Σkd

x
k ,

explicitly.

To obtain well-defined Newton steps, we need to ensure the inertia of the KKT matrix in

(3.7) is (n, m, 0), namely, n positive, m negative, and no zero eigenvalues. The satisfaction

of the inertia condition implies that Ak is full column rank and the projection of Wk + Σk

onto the null space of the Jacobian matrix ATk is positive definite. Thus the Newton step

can be solved uniquely. However, the inertia is not always correct during the iteration.

IPOPT regularizes the KKT matrix with δx and δc, and solves the linear systemWk + Σk + δxI Ak

(Ak)
T −δcI

dxk
dλk

 = −

∇ϕµj (xk) +Akλk

c(xk)

 (3.8)

instead. The algorithm to obtain δx and δc is introduced in section 3.1.4.

3.1.3 A Line search filter method

After obtaining a search direction dk from equation (3.8), IPOPT applies a line-search filter

method to obtain the step. The line search is started from αk,l := min(αmaxk , 1) to define

20
CHAPTER 3. REVIEW OF IPOPT ALGORITHM

3.1 BACKGROUND OF IPOPT

trial iterates xk(αk,l) := xk+αk,ldk where αmaxk is the largest value so that xk(αmaxk) is inside

the bounds. The step size is decreased with the sequence αk,l = 2−lαmaxk (with l = 0, 1, 2...)

to try to meet the following acceptance criteria.

A two dimensional filter [9] of the form Fk := {θ(x), ϕ(x)} with θ(x) = ‖c(x)‖ defines

a prohibited region for ordered pairs (θ, ϕ). If a trial point xk(α) is acceptable by the filter

(i.e. (θ(xk(αk,l), ϕµj (xk(αk,l)))) /∈ Fk), the following conditions are considered to check

whether a trial iterate should be accepted.

• Switching Condition (SC): −mk(αk,l) > 0 and [−mk(αk,l)]
sϕ [αk,l]

1−sϕ > κθ[θ(xk)]
sθ

• Armijo Condition (AC): ϕµj (xk(αk,l)) ≤ ϕµj (xk) + ηϕmk(αk,l)

• Sufficient Decrease Condition (SDC): θ(xk(αk,l)) ≤ (1 − γθ)θ(xk) or ϕµj (xk(αk,l)) ≤

ϕµj (xk)− γϕθ(xk)

Here κθ > 0, sθ > 1, sϕ ≥ 1 and γϕ, γθ, ηϕ ∈ (0, 1) are given constants and mk(α) :=

α∇ϕµj (xk)Tdk is a linear model for the improvement of the barrier objective function.

There are two possible cases to accept the step. First, if SC and AC hold, we accept

the step because it is a descent direction and has sufficient improvement of the objective

function. This trial step size αk,l is defined as an f-step-size. However, if SC doesn’t hold,

SDC is checked instead of AC as a standard for the progress in either the barrier objective

function or the primal infeasibility θ(x). If SDC holds, we accept the trial point as well.

If a trial iterate is accepted as an f -step-iteration, the filter remains unchanged (Fk+1 =

Fk). Otherwise, the filter is augmented for the next iteration using the formula

Fk+1 := Fk ∪ {(θ, ϕ)|θ ≥ (1− γθ)θ(xk), ϕ ≥ ϕ(xk)− γϕθ(xk)} (3.9)

Finally, for some cases it is not possible to find a trial step size αk,l that is acceptable. We

approximate a minimum desired step size using linear models of the involved functions

CHAPTER 3. REVIEW OF IPOPT ALGORITHM

21

3.1 BACKGROUND OF IPOPT

defined as,

αmin
k := γα ·

min

{
γθ,

γϕθ(xk)
−∇ϕµj (xk)T dk

, κθ[θ(xk)]sθ

[−∇ϕµj (xk)T dk]sϕ

}
if ∇ϕµj (xk)Tdk < 0

γθ otherwise

(3.10)

with a safety-factor γα ∈ (0, 1] and switch the algorithm to the feasibility restoration phase

when αk,l becomes smaller than αmin
k .

3.1.4 IPOPT algorithm

The overall algorithm for solving the equality constrained NLP (3.1) is stated in Algorithm

I.

Algorithm I

Given: Starting point (x0, λ0, v0) with x0, v0 > 0; initial value for the barrier parameter

µ0 > 0 and δlastw ← 0; Constants εtol, κθ, κε > 0, sθ > 1, sϕ ≥ 1, γα ∈ (0, 1], γϕ, γθ ∈ (0, 1),

ηϕ ∈ (0, 1
2) and 0 < δ̄minx < δ̄maxx , δ̄c > 0, 0 < κ−x < 1 < κ+

x < κ̄+
x , κc ≥ 0.

1. Initialize. Initialize the filter F0 := {(θ, f) ∈ R2 : θ ≥ θmax} and the iteration counter

k ← 0.

2. Check convergence for the overall problem. If E0(xk, λk, vk) ≤ εtol (with the error estimate

E0 defined in (3.4)), then STOP [CONVERGED].

3. Check convergence for the barrier problem. If Eµj (xk, λk, vk) ≤ κεµj , then

3.1. Update µj+1 = max
{
εtol/10,min

{
κµµj , µ

θµ
j

}}
, and set j ← j + 1

3.2. Re-initialize the filter F0 := {(θ, f) ∈ R2 : θ ≥ θmax}

3.3. If k = 0 repeat step 3, otherwise continue at step 4.

4. Compute search direction with regularization.

22
CHAPTER 3. REVIEW OF IPOPT ALGORITHM

3.1 BACKGROUND OF IPOPT

4.1. Factorize the KKT matrix in (3.8) with δx = δc = 0. If the inertia is (n, m, 0), then

calculate dk and go to step 5. Otherwise, continue with step 4.2.

4.2. If the matrix has zero eigenvalues, set δc = δ̄cµ
κc
j Otherwise, set δc = 0

4.3. If δlastx = 0, set δx = δ̄0
x, otherwise set δx = max (δ̄x

min
, κ−x δ

last
x)

4.4. Attempt to factorize the KKT matrix in (3.8) with δx and δc. If inertia is correct then

set δlastx = δx and calculate dk and go to step 5. Otherwise continue with step 4.5

4.5. If δlastx = 0, set δx = κ̄+
x δx, otherwise set δx = κ+

x δx.

4.6. If δx > δ̄maxx , abort the current step and directly go to step 9. Otherwise, go to step

4.4.

5. Backtracking line search.

5.1. Initialize line search. Calculate αmaxk , set αk,0 = min(αmaxk , 1) and l← 0.

5.2. Compute new trial point. If the trial step size becomes too small, i.e. αk,l < αmin
k with

αmin
k defined by (3.10), go to the feasibility restoration phase in step 9. Otherwise,

compute the new trial point xk(αk,l) = xk + αk,ldk.

5.3. Check acceptability to the filter. If xk(αk,l) ∈ Fk, reject the trial step size and go to

step 5.5.

5.4. Check sufficient decrease with respect to current iterate.

5.4.1. Case I: αk,l is an f -step-size (i.e. SC holds): If the AC for the objective function

holds, accept the trial step and go to step 6. Otherwise, go to step 5.5.

5.4.2. Case II: αk,l is not an f -step-size (i.e. SC is not satisfied): If SDC holds, accept the

trial step and go to step 6. Otherwise, go to step 5.5.

5.5. Choose new trial step size. Set αk,l+1 = 1
2αk,l, l← l + 1, and go back to step 5.2.

6. Accept trial point. Set αk := αk,l and xk+1 := xk(αk).

CHAPTER 3. REVIEW OF IPOPT ALGORITHM

23

3.1 BACKGROUND OF IPOPT

7. Augment filter if necessary. If k is not an f -type iteration, augment the filter using (3.9);

otherwise leave the filter unchanged, i.e. set Fk+1 := Fk.

8. Continue with next iteration. Increase the iteration counter k ← k + 1 and go back to

step 2.

9. Feasibility restoration phase. Compute a new iterate xk+1 by decreasing the primal infea-

sibility, so that xk+1 satisfies SDC and is acceptable to the filter. Augment the filter using

(3.9) (for xk) and continue with the regular iteration in step 8.

3.1.5 Restoration phase

Restoration phase (step 9 in Algorithm I) is called in IPOPT to obtain a new iterate xk+1 > 0

with xk+1 /∈ Fk+1 when the line search fails. Sometimes, it is also used as a final attempt to

get a new start pointing when an internal error occurs in the normal phase. The restoration

phase algorithm applies the normal phase outlined in the previous sections to a smooth

reformulation of the optimization problem

min
x∈Rn

ρ‖c(x̄)‖1 +
ζ

2
‖DR(x̄− x̄R)‖22 s.t. x̄ ≥ 0. (3.11)

Here, we try to minimize the primal feasibility of problems (3.1) and avoid a large devia-

tion from xR where the restoration phase is called. The weight parameter ζ in the reference

point penalty term is set as ζ :=
√
µ which is driven to zero by the barrier parameter µ, the

scaling matrix DR is defined by

DR = diag(min{1, 1/|x̄(1)
R |}, ...,min{1, 1/|x̄(n)

R |}). (3.12)

and the scaling parameter ρ = 1000 seems to work well in practice.

Introducing non-negative slack variables p̄, n̄ ∈ Rm, we obtain the smooth reformulation

24
CHAPTER 3. REVIEW OF IPOPT ALGORITHM

3.2 NLP FORMAT IN IPOPT

of (3.11) shown as follows,

min
x∈Rn,p̄,n̄∈Rm

ρ
∑n

i=1 (p̄(i) + n̄(i)) + ζ
2‖DR(x̄− x̄R)‖22

s.t. c(x̄)− p̄+ n̄ = 0

x̄, p̄, n̄ ≥ 0

(3.13)

While solving the optimization problem (3.13), we obtain either a point xk+1 /∈ Fk+1

and return to normal phase or fully converge (3.13) to a local minimum. Due to the SC and

AC, no feasible point can be present in the filter (see [22] Lemma 4). Therefore, all feasible

points should be acceptable to the filter. If the restoration problem (3.13) converges without

finding a point acceptable to the filter, then it has not found a feasible point. The point that

it converges to is therefore a local minimum of infeasibility close to the reference point xR.

In this case, IPOPT stops in restoration without converging to a KKT point of the original

NLP.

3.2 NLP format in IPOPT

Although all NLPs can be reformulated to the standard form (3.1), IPOPT deals with a

more complicated form directly for efficiency, which is shown as follows,

min
x∈Rn

f(x)

s.t. c(x) = 0

dL ≤ (ELd)Td(x) (EUd)Td(x) ≤ dU

xL ≤ (ELx)Tx (EUx)Tx ≤ xU

(3.14)

where matrices ELd , ELx , EUd and EUx expand the space of the bounds into the full space of

the variables or inequalities and dL, xL, dU and xU are bounds of variables and inequali-

ties. As we mentioned in section 3.1, IPOPT requires all inequalities to be feasible in each

CHAPTER 3. REVIEW OF IPOPT ALGORITHM

25

3.3 CONVERGENCE PROPERTIES

iteration. In that case, an initial point is hard to obtain based on the form (3.14). By intro-

ducing the slack varibles s, all inequality constraints become equalities, and it is easy to

find an interior point for all inequality constraints. The slacked NLP problem is shown as

follows,

min
x∈Rn

f(x)

s.t. c(x) = 0 d(x)− s = 0

dL ≤ (ELd)T s (EUd)T s ≤ dU

xL ≤ (ELx)Tx (EUx)Tx ≤ xU

(3.15)

3.3 Convergence properties

The global convergence proof of IPOPT shows that every limit point of the sequence of iter-

ates generated by the algorithm is feasible and that there exists at least one limit point that

is a stationary point for the problem [22]. The local convergence proof of IPOPT shows

a superlinear convergence rate [23]. However, certain assumptions including Linear In-

dependence Constraint Qualification (LICQ), Second-Order Sufficient Conditions (SOSC),

and a successful restoration phase are required to prove both properties. However, these

assumptions are not always true in real world problems. In particular, IPOPT might have

difficulties to solve problems that violate the regularity conditions.

26
CHAPTER 3. REVIEW OF IPOPT ALGORITHM

Chapter 4

Structured Regularization for Equality

Constraints

One challenging type of problem for IPOPT is solving problems with locally dependent

equality constraints. In this chapter, we will propose a structured regularization method to

replace the general regularization method we discussed in Chapter 3. Structured elimina-

tion can effectively eliminate the dependent equality constraints locally while maintaining

the high performance of IPOPT. We applied this method to a modified benchmark NLP

library and two blending problems.

4.1 Introduction

Degenerate optimization models (e.g., with dependent equality constraints) arise in many

nonlinear programming (NLP) applications. These constraints do not change the optimal

solution but may cause NLP solvers to fail because constraint qualifications are violated

and the resulting NLP subproblems become ill-conditioned. Degenerate or dependent

equality constraints appear in two ways. Globally dependent equalities are redundant at all

feasible points. These constraints result from naive modeling and may often be deleted

directly. Locally dependent equalities are defined as constraints that are only redundant at

a subset of iterates. In a model with locally dependent constraints, equality constraint

gradients are linearly dependent at particular points as a result of non-linearity of the

CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

27

4.1 INTRODUCTION

constraints.

Whereas globally dependent constraints can (and ideally should) be removed when

building a model, local degeneracy appears in a number of optimization applications and

is harder to avoid. Locally dependent constraints arise often in the following engineering

models. First, in water network synthesis and blending problems [24], local degeneracies

occur in the continuous relaxation of the mixed-integer nonlinear program (MINLP) [25].

For instance, when a process unit or warehouse is deselected, the total flow rate through

the unit vanishes and flow balance constraints are locally degenerate. Moreover, comple-

mentarity constraints, which model switching behaviors such as fluid phase disappear-

ance and flow reversal, are dependent at all feasible points and many reformulations of

these complementarity constraints still retain locally dependent constraints [26]. Finally,

discretized dynamic problems with (high index) path constraints become locally depen-

dent as the finite element mesh is refined [27].

NLP solvers that are based on subproblems that require constraint linearizations often

struggle with ill-conditioning that results from dependent constraints. Consequently, these

NLP solvers mitigate the effects of dependent constraints in a number of ways. Active set

methods [13, 18, 19] formulate and solve subproblems that identify constraints that are

predicted to be active at the solution. Dependent constraints may be identified and re-

moved by extending the algorithm’s inherent constraint selection mechanism. Sequential

quadratic programming (SQP) methods such as SNOPT [13] are observed to have local su-

perlinear convergence without the Linear Independence Constraint Qualification (LICQ)

[28], and reduced gradient methods such as CONOPT [18] handle dependent constraints

efficiently as a part of the active set selection. However, inefficiency results as the number

of constraints and degrees of freedom increase, and the active set choices increase expo-

nentially.

28
CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

4.2 IPOPT REGULARIZATION

In contrast, interior point methods demonstrate advantages in solving large-scale NLP

problems with many degrees of freedom [29], and they remove the need for combinatorial

active set selection. However, without a constraint selection mechanism degenerate con-

straints cannot be removed and convergence difficulties arise, as well as unbounded mul-

tiplier estimates [2]. In primal-dual interior point methods [10, 15, 17] dependent equal-

ity constraints lead to ill-conditioned KKT systems, which are often treated with general-

purpose regularization strategies. However, with regularization the convergence rate de-

teriorates, and much slower performance and more frequent premature terminations are

observed.

This work develops an improved regularization approach for interior point methods for

dealing with degenerate models. The remainder of the chapter is structured as follows.

Section 2 introduces the primal-dual barrier approach and discusses existing regulariza-

tion strategies. In Section 3, we propose three structured regularization methods to iden-

tify and effectively eliminate degenerate constraints. In Section 4, the IPOPT algorithm is

presented with modifications to use structured regularization. The three structured regu-

larization methods are implemented and compared to the current versions of IPOPT [15],

KNITRO [10], and CONOPT [18] on a suite of test problems, with results given in Section

5. The last section concludes the chapter and suggests areas for future work.

4.2 IPOPT regularization

As we mentioned in Chapter 3, IPOPT regularization modifies the KKT matrix as follows,Wk + Σk + δxI Ak

(Ak)
T −δcI

 . (4.1)

CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

29

4.2 IPOPT REGULARIZATION

By introducing the small pivot element δc, the degeneracy in the equality constraints is

revised in the KKT matrix. Meanwhile δx is used to maintain the inertia in Wk. In every it-

eration, the LBLT factorization of matrix (4.1) with δx = δc = 0 is attempted. If it succeeds,

we use the resulting search direction from Equation (3.8) as the Newton step. Otherwise, δc

is set to δ̄cµκcj in (4.1) where δ̄c is a parameter defaulted at 10−8 and κc is a positive floating

point value defaulted at 0.25.

After δc is fixed, δx increases step by step until the inertia is correct or δx exceeds its

upper bound δ̄maxx (defaulted at 1020). δc decreases and is forced to zero with µj during

the solving process. It has been proved that for any δc > 0, there exist suitable values of δx

such that the matrix (4.1) has the correct inertia (n, m, 0) [7].

Although the inertia can be corrected, setting the parameter δ̄c must be done carefully

in practice. If δ̄c is chosen too small for pivoting, the inertia is not corrected; hence δx is

increased repeatedly and may become very large, leading to failure in the Newton step.

As a result, the solver switches to feasibility restoration phase immediately. On the other

hand, a larger δ̄c may have a large influence on all the equality constraints and distorts the

Newton step. As a result, the best choice for δ̄c is problem dependent.

The IPOPT regularization is based on the assumption that equality constraints are lin-

early independent at the optimal point, which is not always the case. One possible sce-

nario is the case of globally dependent constraints, i.e. constraints that are redundant for

all feasible points. Two strategies are embedded in IPOPT to deal with global dependence.

One is an option which turns on the global dependency detector as a part of the presolve

phase. The detector generates several random initial points within variable bounds and

calculates the Jacobian matrix at these points. If a constraint is dependent at all points, it

is treated as a globally dependent constraint and removed before the solving phase. The

other heuristic is a structured degeneracy switch, which is active if δc is needed in several

30
CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

4.3 STRUCTURED REGULARIZATION

consecutive iterations. In that situation, δc is always added before the factorization of KKT

matrix without testing the degeneracy of the original KKT matrix. This method can save

a factorization step in each iteration and reduce the effect of failure in detecting singular

KKT matrices. But meanwhile, because of the small regularization term, the Newton step

does not lie perfectly in the null space of Jacobian matrix, which delays the convergence

rate. Finally, both methods aim at reducing the influence of global dependence and may

not help local dependence. Instead, we propose three efficient structured regularization

methods to eliminate dependent constraints, both locally and globally.

4.3 Structured Regularization

To solve the linear system (3.8), an LBLT factorization is applied to the KKT matrix. Dur-

ing the IPOPT regularization, only inertia information is retained and all partial factor-

ization results are discarded. However, from the indices of the unpivoted columns in

the LBLT factorization, the indices of the dependent constraints can be determined. In

structured regularization, we use this information in alternative modifications to the KKT

matrix.

The multifrontal method, a direct method for LBLT factorization of sparse linear sys-

tems, was proposed by Duff and Reid [30] in 1983 and attracted great interest due to its

low memory utilization and high efficiency. Popular sparse linear system solvers includ-

ing HSL MA57 [31], HSL MA97 [32], MUMPS [33] and WSMP [34] are all based on this

method. Other linear solvers (e.g, PARDISO [35]) that use a direct method for LBLT fac-

torization can also retrieve the required structural information.

There are three phases in multifrontal method linear solvers. First, in the analysis phase,

the solver accepts the sparsity pattern of the KKT matrix in compressed sparse column

CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

31

4.3 STRUCTURED REGULARIZATION

format or coordinate format. Then the solver determines the elimination sequence, ana-

lyzes the sparsity pattern of the matrix, and prepares the data structures for the next step.

Note that the analysis phase is generally applied only once for each NLP problem since the

structure of KKT matrix remains unchanged throughout the optimization, and because the

preprocessing time is significant.

Second, the factorization phase exploits the data structures set up by the analysis phase

to compute a sparse LBLT factorization of the KKT matrix where L is a lower triangular

matrix and B is a block diagonal matrix with blocks of order 1 or 2 on its diagonal. A user

specialized threshold ξ ∈ R+ is used to maintain the stability of the factorization. For each

pivot al1,l1 , we check the 1× 1 stability test which is defined as follows,

|al1,l1 | > ξ ×maxl̄≥l1+1

∣∣al1,l̄∣∣. (4.2)

If test (4.2) holds, al1,l1 is used as a pivot. Otherwise, the 2× 2 stability test∣∣∣∣∣∣∣
 al1,l1 al1,l2

al2,l1 al2,l2

−1∣∣∣∣∣∣∣
 maxl̄≥l1+2

∣∣al1,l̄∣∣
maxl̄≥l1+2

∣∣al2,l̄∣∣
 ≤

 ξ−1

ξ−1

 (4.3)

is applied, where | · | indicates the (component-wise) absolute value. If the test (4.3) also

fails, the pivot al1,l1 is delayed by permuting the matrix to attempt a different pivot. It has

been proved that for any pivot threshold ξ ∈ (0, 0.5], a pivot sequence of 1 × 1 or 2 × 2

pivots can always be obtained if the matrix is non-singular [36]. If all the remaining pivot

candidates are delayed pivots that fail the stability test, the solver reports that the matrix

is singular, with the unfinished factorization results in its working array. The structure of

the unfinished working array is exploited in Section 4.3.3. The factorization phase is the

most time consuming step per IPOPT iteration. It is applied only once in each iteration if

there is no regularization. When regularization is applied, a new factorization is required

whenever the terms (δx, δc) change. This dramatically slows down the optimization pro-

32
CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

4.3 STRUCTURED REGULARIZATION

cess.

Third, the solution phase is the simplest phase in the linear solver. It calculates the so-

lution using backsolves, according to the factorization results and the user provided right

hand sides. In IPOPT, the factorization may be reused several times per iteration, since

second order correction and refinement steps will only change the right hand side.

In IPOPT, the analysis phase is only called once per NLP solution since the sparsity

pattern of the KKT matrix is assumed to remain the same. In structured regularization, we

focus on the case where the factorization results can attribute the incorrect inertia to the

presence of degenerate constraints. Ideally, the degenerate constraints should be removed

from the KKT matrix, but this would require a new analysis phase for the linear solver.

Instead, we compare modifications to the existing KKT matrix structure that can effectively

(numerically) eliminate degenerate constraints.

Moreover, based on the factorization information from the linear solver, we can deter-

mine if an incorrect inertia is due to the Jacobian or the Hessian. This allows us to fix the

degeneracy in the Jacobian first. Then, if the incorrect inertia is not attributed to degener-

ate constraints (e.g. due to an indefinite reduced Hessian), the δx term in (3.8) is used for

regularization.

4.3.1 Big-M regularization

A preliminary version of a structured regularization method was proposed in [37], which

introduces big-M terms instead of the regularization with δc. Assuming Ak has column

rank m − r, the Jacobian matrix Ak can be separated as [(Ak)I |(Ak)D] with dependent

(or even nearly dependent) columns in (Ak)D based on the index of dependent rows, so

[cI(xk)|cD(xk)] and [(dλk)I |(dλk)D] may also be separated accordingly in the linear system.

CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

33

4.3 STRUCTURED REGULARIZATION

Here we modify KKT matrix in (3.7) as follows,
Wk + Σk (Ak)I (Ak)D

(Ak)
T
I 0 0

(Ak)
T
D 0 −M

dxk

(dλk)I

(dλk)D

 = −

∇ϕµ(xk) +Akλk

cI(xk)

cD(xk)

 (4.4)

where M = δDI is an r × r diagonal matrix with δD a large constant.

The linearized equations are divided in two parts,

(Ak)
T
I d

x
k = −cI(xk)

(Ak)
T
Dd

x
k − δD(dλk)D = −cD(xk)

(4.5)

Note there is no change in the equations corresponding to independent constraints, but

a new entity δD is added to the dependent constraints. By assigning δD >> (Ak)
T
D dxk +

cD(xk), (dλk)D approaches zero, which eliminates the effect of dependent constraints in

(4.4). Thus, the linear system of the Newton step (3.7) is nearly equivalent toWk + Σk (Ak)I

(Ak)
T
I 0

 dxk

(dλk)I

 = −

∇ϕµ(xk) +Akλk

cI(xk)

 . (4.6)

This concept was tested on a FORTRAN IPOPT implementation in [37] using the MUMPS

linear solver.

4.3.2 Constraint elimination regularization

Similar to the idea of big-M regularization, a constraint elimination regularization is pro-

posed by replacing (Ak)
T
D and cD(xk) by zeroes and adding the negative identity matrix

at the diagonal corresponding to dependent constraints. Then the modified KKT matrix is

shown as follows,
Wk + Σk (Ak)I 0

(Ak)
T
I 0 0

0 0 −I

dxk

(dλk)I

(dλk)D

 = −

∇ϕµ(xk) +Akλk

cI(xk)

0

 . (4.7)

34
CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

4.3 STRUCTURED REGULARIZATION

In the limit as M → +∞, the linear system solution of big-M regularization (4.4) is equiva-

lent to the solution of (4.7). Moreover, constraint elimination regularization avoids numer-

ical difficulties associated with introducing very large terms in the factorization, but it also

loses the flexibility of adjusting δD to include linear constraints that are nearly dependent.

4.3.3 On the fly regularization

In the two previously presented structured regularization methods, we regularize the KKT

matrix and re-factorize it again. However, after the modification, the pivot sequence may

be changed in the new matrix, and it is possible that there are new null pivots reported in

the second factorization. Also as we mentioned before, the factorization is a very expensive

step. In that case, we propose the “on the fly” regularization. This method changes the

working arrays of the unfinished factorization directly, which makes them identical to the

factorization results of the constraint elimination regularization, and therefore allows these

working arrays to be used directly in the solving phase.

Assume the LBLT factorization of the KKT matrix with dependent constraints is shown

as follows,

P

L 0

X I

BI 0

0 0

L 0

X I

T

P T (4.8)

where P is the permutation matrix and L is the lower triangular matrix with the order

n+m− r. X corresponds to the dependent constraints that are the unfinished part of the

factorization, as a result of the delayed null pivot steps. To regularize the KKT matrix, we

simply modify the results of LBLT factorization (4.8) to the form,

P

L 0

0 I

BI 0

0 −I

L 0

0 I

T

P T . (4.9)

In (4.9), we deleteX and add a negative identity matrix with order r to the diagonal matrix.

CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

35

4.4 MODIFIED IPOPT REGULARIZATION

This modified factorization results in the same factorization as for the KKT matrix in con-

straint elimination regularization, i.e. Equation (4.7). In the linear solver, the factorization

results are compressed in a working array, detailed in Section 4.4.3. This working array is

modified on the fly by regularization, and this leads to structural changes corresponding

to (4.9). While the previous two approaches require a separate factorization for structured

regularization, on-the-fly regularization factorizes and regularizes the KKT matrix in a sin-

gle step, which leads to fewer overall factorizations. Nevertheless, this method depends

on the selection of dependent constraints from the LBLT factorization. If the pivot thresh-

old is too small for the matrix or the matrix is badly scaled, very small pivots may remain

in the BI matrix. In the previous two regularization methods, a dependent threshold εD

is set by users, and all the pivots in B are scanned and compared to εD, with all pivots

less than εD taken as the null pivots. However, as the factorization is applied only once

in the “on the fly” elimination, sequential pivoting and application of stability test may

still introduce very small pivots in the BI matrix, which may lead to unstable steps in the

solving process.

4.4 Modified IPOPT Regularization

In this section, we introduce the full IPOPT algorithm with the proposed modifications.

4.4.1 IPOPT algorithm with Structured Regularization

Algorithm II

Given: Starting point (x0, λ0, v0) with x0, v0 > 0; initial value for the barrier parameter

µ0 > 0 and δlastx ← 0; Constants εtol, κε > 0, smax ≥ 1, sθ > 1, κθ > 0, κµ ∈ (0, 1),

θµ ∈ (1, 2), sϕ ≥ 1, γϕ, γθ ∈ (0, 1), ηϕ ∈ (0, 1
2) and 0 < δ̄minx < δ̄maxx , 0 < κ−x < 1 < κ+

x < κ̄+
x ,

36
CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

4.4 MODIFIED IPOPT REGULARIZATION

θmax > 0, αmin ∈ (0, 1).

1. Initialize. Initialize the filter F0 := {(θ, f) ∈ R2 : θ ≥ θmax} and the iteration counter

k ← 0.

2. Check convergence for the overall problem. If E0(xk, λk, vk) ≤ εtol (with the error estimate

E0 defined in (3.4)), then STOP [CONVERGED].

3. Check convergence for the barrier problem. If Eµj (xk, λk, vk) ≤ κεµj , then

3.1. Update µj+1 = max
{
εtol/10,min

{
κµµj , µ

θµ
j

}}
, and set j ← j + 1

3.2. Re-initialize the filter F0 := {(θ, f) ∈ R2 : θ ≥ θmax}

3.3. If k = 0 repeat Step 3, otherwise continue at Step 4.

4. Compute search direction with regularization.

4.1. Factorize the KKT matrix in (3.8) with δx = 0. If the inertia is (n, m, 0), then calculate

dk and go to Step 5. If the matrix has at least one zero eigenvalue, then continue

with Step 4.2. Otherwise, go to Step 4.5

4.2. Choose the structured regularization method:

4.2.1. For big-M and constraint elimination regularizations: Apply the regulariza-

tion term following either equation (4.4) or (4.7). Continue with Step 4.3.

4.2.2. For on-the-fly regularization: modify the results of LBLT factorization re-

sults and inertia of the matrix, go to Step 4.4.

4.3. Factorize the KKT matrix with structured regularization term.

4.4. If the inertia is (n, m, 0), then calculate dk and go to Step 5. Otherwise continue

with Step 4.5.

4.5. If δlastx = 0, set δx = δ̄0
x, otherwise set δx = max (δ̄x

min
, κ−x δ

last
x)

CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

37

4.4 MODIFIED IPOPT REGULARIZATION

4.6. Attempt to factorize the KKT matrix with δx and the regularization modification.

If inertia is correct then set δlastx = δx, calculate dk and go to Step 5. Otherwise

continue with Step 4.7

4.7. If δlastx = 0, set δx = κ̄+
x δx, otherwise set δx = κ+

x δx.

4.8. If δx > δ̄maxx , abort the current step and directly go to Step 9 of Algorithm II. Other-

wise, go to Step 4.6.

5. Backtracking line search.

5.1. Initialize line search. Calculate αmaxk , set αk,0 = min(αmaxk , 1) and l← 0.

5.2. Compute new trial point. If the trial step size becomes too small, i.e. αk,l < αmin,

go to the feasibility restoration phase in Step 9. Otherwise, compute the new trial

point xk(αk,l) = xk + αk,ldk.

5.3. Check acceptability to the filter. If xk(αk,l) ∈ Fk, reject the trial step size and go to

Step 5.5.

5.4. Check sufficient decrease with respect to current iterate.

5.4.1. Case I: αk,l is an f -type step-size (i.e. SC holds): If AC holds, go to Step 6.

Otherwise, go to Step 5.5.

5.4.2. Case II: αk,l is not an f -type step-size (i.e. SC is not satisfied): If SDC holds, go to

Step 6. Otherwise, go to Step 5.5.

5.5. Choose new trial step size. Set αk,l+1 = 1
2αk,l, l← l + 1, and go back to Step 5.2.

6. Accept trial point. Set αk := αk,l and xk+1 := xk(αk).

7. Augment filter if necessary. If k is not an f -type iteration, augment the filter using (3.9);

otherwise leave the filter unchanged, i.e. set Fk+1 := Fk.

38
CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

4.4 MODIFIED IPOPT REGULARIZATION

8. Continue with next iteration. Increase the iteration counter k ← k + 1 and go back to

Step 2.

9. Feasibility restoration phase. Compute a new iterate xk+1, so that xk+1 satisfies SDC and

is acceptable to the filter. Augment the filter using (3.9) (for xk) and continue with the

regular iteration in Step 8.

While all the structured regularization methods eliminate the degenerate columns ofAk,

adjustment of δx in Step 4 of Algorithm II is still necessary to maintain the correct inertia

and guarantee a descent direction. Also, in Step 4.4 of Algorithm II, there should be no zero

eigenvalues attributed to the Jacobian part of the KKT matrix. However, it is numerically

possible that nearly dependent constraints are reported after structured regularization,

even if they were not detected before. For this reason, in the implementation a small value

of δc can still be applied in Step 4.4 even if degenerate constraints are detected.

4.4.2 Convergence properties of IPOPT

The global convergence proof of IPOPT shows that every limit point of the sequence of

iterates generated by the algorithm is feasible and that there exists at least one limit point

that is a stationary point for the problem [22]. The local convergence proof of IPOPT shows

a superlinear convergence rate [23] under Second-Order Sufficiency Conditions (SOSC).

Certain assumptions including LICQ and the successful restoration phase are required to

prove both properties. However, these assumptions do not always hold on real world

problems. In particular, IPOPT might have difficulties solving problems that violate the

regularity conditions.

The global convergence proofs for IPOPT in [22] may be extended to prove convergence

when LICQ holds after structured regularization. Note that in this section the Lemmas

reference the global convergence paper [22].

CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

39

4.4 MODIFIED IPOPT REGULARIZATION

For column rank ofAk equal tom−r, we determine them−r independent columns inAk

and form a new matrix ARk . Also, a column selection matrix is denoted as ηk ∈ Rm×(m−r)

to map independent columns in Ak to the full column rank matrix ARk . Then cRk can be

defined correspondingly:

ARk = Akηk (4.10a)

cRk = ηTk c(xk). (4.10b)

Based on our structured regularization method, Equation (3) in [22] can be written anal-

ogously to (3.7) as follows, Hk ARk

ARk
T

0

 dk

λR+
k

 = −

gk
cRk

 . (4.11)

where Hk = Wk + Σk and gk = ∇ϕµj (xk).

Although linear system (3.7) may have multiple solutions if Ak is degenerate, we know

that the KKT conditions are still consistent. In that case, λR+
k can be extended by adding

0 to the corresponding unselected r columns and the extended vector should be one of

the solutions for λk in Equation (3) in [22], i.e. λR+
k := ηTk λk. Note also that if Ak has full

column rank, then ARk = Ak and r = 0, so (4.11) above is equivalent to (3) in [22].

Now we list the assumptions for proving global convergence adapted from [22] with

slight modifications.

Assumptions G. Let {xk} be the sequence generated by Algorithm II, where we assume that the

feasibility restoration phase in Step 9 always terminates successfully and that the algorithm does

not stop in Step 2 at a KKT point. We denote Rinc as the set of iteration counters, in which the

restoration phase is invoked from Step 4.6 of Algorithm II.

40
CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

4.4 MODIFIED IPOPT REGULARIZATION

(G1) There exists an open set C ⊆ Rn with [xk, xk + dk] ⊆ C for all k 6∈ Rinc, so that f and c are

differentiable on C, and their function values, as well as their first derivatives, are bounded

and Lipschitz-continuous over C.

(G2) The matrices Hk approximating the Hessian of the Lagrangian in (3) (from [22]) and ηk are

uniformly bounded for all k 6∈ Rinc.

(G3) The Hessian approximations Hk are uniformly positive definite on the null space of the Jaco-

bian ATk . In other words, there exists a constant MH > 0, so that for all k 6∈ Rinc

eigmin

(
ZTk HkZk

)
≥MH , (4.12)

where the columns of Zk ∈ Rn×(n−m+r) form an orthonormal basis matrix of the null space

of ATk . Similarly, we denote Yk ∈ Rn×(m−r) as an orthonormal basis matrix for the range

space of ATk .

(G4) There exists a constant MA > 0, so that for all k 6∈ Rinc we have

σmin(ARk) ≥MA, (4.13)

where σmin(ARk) represents the smallest singular value of ARk .

(G5) The iterates, for which the restoration phase is invoked from Step 4 (for example, when (4.12)

or (4.13) are violated), are not arbitrarily close to the feasible region. In other words, there

exists a constant θinc > 0, so that k 6∈ Rinc whenever θ(xk) ≤ θinc.

(G6) The linear system (3.7) has at least one solution for all k 6∈ Rinc.

The decomposition of the overall search direction can be defined as,

q̄k := −
[
ARk

T
Yk

]−1
cRk (4.14a)

p̄k := −
[
ZTk HkZk

]−1
ZTk (gk +HkYkq̄k) (4.14b)

dk = Zkp̄k + Ykq̄k (4.14c)

CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

41

4.4 MODIFIED IPOPT REGULARIZATION

and we define two criticality measures for convergence, χ(xk) = ‖p̄k‖ and θ(xk) = ‖c(xk)‖.

The first two lemmas of the global convergence proof are presented below, with modifi-

cations to accommodate structured regularization.

Lemma 1. Suppose Assumptions G hold. Then there exist constants Md, Mλ, Mm > 0, such that

‖dk‖ ≤Md, ‖λR+
k ‖ =‖λ+

k ‖ ≤Mλ, |mk(α)| ≤Mmα (4.15)

for all k 6∈ Rinc and α ∈ (0, 1].

Proof. From (G1) we have that the right hand side of (4.11) is uniformly bounded. Ad-

ditionally, Assumptions (G2), (G3), and (G4) guarantee that the inverse of the matrix in

(4.11) exists and is uniformly bounded for all k 6∈ Rinc. Consequently, the solution of

(4.11), (dk, λ
R+
k), is uniformly bounded, and therefore also mk(α)/α = gTk dk. Since λ+

k is an

extension of λR+
k , the solution of (3) in [22] is also uniformly bounded.

The following result shows that the search direction is a direction of sufficient descent

for the objective function at points that are sufficiently close to feasibility but still not suf-

ficiently optimal.

Lemma 2. Suppose Assumptions G hold. If {xki} is a subsequence of iterates for which χ(xki) ≥ ε

with a constant ε > 0 independent of i then there exist constants ε1, ε2 > 0, such that

θ(xki) ≤ ε1 =⇒ mki(α) ≤ −ε2α.

for all i and α ∈ (0, 1].

Proof. Consider a subset {xki} of iterates with χ(xki) = ‖p̄ki‖2 ≥ ε. Then, by Assump-

tion (G5), for all xki with θ(xki) ≤ θinc we have ki 6∈ Rinc. Furthermore, with q̄ki =

O(‖cR(xki)‖) (from (4.14a) and Assumption (G4)) and ‖cR(xki)‖ = O(‖c(xki)‖) (from (4.10b)

42
CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

4.4 MODIFIED IPOPT REGULARIZATION

and Assumption (G2)) it follows that for ki 6∈ Rinc

mki(α)/α = gTkidki
(4.14c)

= gTkiZki p̄ki + gTkiYki q̄ki (4.16a)

(4.14b)
= −p̄Tki

[
ZTkiHkiZki

]
p̄ki − p̄

T
ki
ZTkiHkiYki q̄ki + gTkiYki q̄ki (4.16b)

(G2),(G3)

≤ −c1 ‖p̄ki‖
2
2 + c2 ‖p̄ki‖2 ‖c

R(xki)‖+ c3‖cR(xki)‖ (4.16c)

≤ χ(xki)
(
−ε c1 + c2θ(xki) +

c3

ε
θ(xki)

)
(4.16d)

for some constants c1, c2, c3 > 0, where we used χ(xki) ≥ ε in the last inequality. If we now

define

ε1 := min

{
θinc,

ε2 c1

2(c2 ε+ c3)

}
,

it follows for all xki with θ(xki) ≤ ε1 that

mki(α) ≤ −αε c1

2
χ(xki) ≤ −α

ε2 c1

2
.

The claim follows after defining ε2 := ε2 c1
2 .

Lemmas 3 - 10 from [22] hold without modification, so the convergence theorem follows,

Theorem 4. Suppose Assumptions G hold. Then

lim
k→∞

θ(xk) = 0 (4.17a)

and lim inf
k→∞

χ(xk) = 0. (4.17b)

In other words, all limit points are feasible, and if {xk} is bounded, then there exists a limit point

x∗ of {xk}, which is a first order optimal point for the equality constrained NLP (1) in [22].

4.4.3 Implementation

The main part of the structured regularization implementation is to determine the indices

of the dependent constraints from the linear solvers and (for on-the-fly regularization)

modify the results of factorization directly as described in Section 4.3.3.

CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

43

4.5 NUMERICAL RESULTS

MUMPS [33] provides a very user friendly interface for the indices of dependent column-

s/rows. By setting a dependent threshold thres, MUMPS returns a list of “null pivots”

which are smaller than thres by a vector PIVNTL LIST. The default thres is set as thres =

ε × 10−5 × ‖Apre‖∞, where ε is the machine precision (2.22 × 10−16 for the test computer)

and ‖Apre‖∞ is the permuted and scaled matrix to be factorized. In addition, thres can be

set to either an absolute value or a relative value proportional to ‖Apre‖∞. We used the

absolute threshold with our methods.

MA97 [32] provides a function ma97 enquire indef to obtain the information on the pivot

sequence and the matrix B−1 in a LBLT factorization. Since the stability test [36] prevents

small pivots in 2 × 2 blocks, we can set thres and compare it with the pivots in all 1 × 1

blocks. If a pivot is smaller than thres, we look for the pivot sequence and add the index

to the null pivot indices list.

MA57 [31] has no interface for the factorization information. After calling the factor-

ization phase, all the information is organized by frontal matrices and compressed in the

working area array. We wrote a routine to uncompress the frontal matrices one by one and

extract the B matrices in (4.8). Then we can analyse the matrix in the same way as we did

with MA97. Another routine is implemented for on-the-fly regularization to change the

working array directly and send it back to the solve phase.

4.5 Numerical results

We implemented the structured regularization methods as an option in IPOPT 3.12.6 and

ran the test cases on an Intel(R) Xeon(R) CPU E5-2440 @ 2.40GHz×12 with 64 GiB mem-

ory. KNITRO 10.1.1 and CONOPT 3.17A are used as the comparison solvers. IPOPT is

compiled with GNU Fortran 4.8.4 and GCC 4.8.4 with the suggested BLAS library. HSL

44
CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

4.5 NUMERICAL RESULTS

for IPOPT and MUMPS 4.10.0 are used as linear solvers. For structured regularization,

δD = 1030 in (4.4) and thres = 10−10 are default options. Also, the tolerance options tol

is set as 10−5 and the rest of the options are all at default value. All the test problems are

formulated in AMPL and compiled without the presolve step.

For comparing solvers, we set rtredg in CONOPT and opttol in KNITRO to 10−5, corre-

sponding to the choice of tol in IPOPT. To provide stable timings, we solved all problems

multiple times so that the total CPU time exceeds 2 CPU seconds for each problem; then

an average CPU time was computed and used as the solution time for each problem.

4.5.1 Toy example

We motivate the structured regularization for IPOPT with familiar mass balance equations

[38]. Many chemical process models can be scaled up by increasing the number of units or

adding reaction equations as constraints inside the units. Defining streams s ∈ S, compo-

nents c ∈ C and units u ∈ U , leads to the following mass balance constraints

Fs =
∑
c∈C

fs,c s ∈ S

fs,c = xs,cFs c ∈ C, s ∈ S∑
s∈Inu

fs,c =
∑

s∈Outu

fs,c c ∈ C,

(4.18)

where Fs, fs,c, and xs,c are total flow rate, component flow rate, and mole fraction, respec-

tively. Inu and Outu are the input and output stream sets for unit u. We deliberately add

the fraction summation equations, ∑
c∈C

xs,c = 1, (4.19)

which are dependent with constraints (4.18).

Figure 4.1 shows a test example with two process units in series, five process streams,

and three components in each stream. Each unit has one inlet and two outlets. One of the

CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

45

4.5 NUMERICAL RESULTS

output flows in the first unit is the second unit’s input flow. We maximize the component

flow rate of s2, subject to (4.18) and (4.19).

Figure 4.1: Flowsheet for toy example

Using the IPOPT regularization with the MUMPS linear solver [33], IPOPT fails on the

second iteration due to the failure in factorizing the KKT matrix. This situation is men-

tioned in Section 4.2, where δc is set too small (10−8) and δx increases until it reaches its

upper bound, 1020. The solver then switches to the feasibility restoration phase. Since

the initial point is a feasible point and the purpose of restoration is to reduce infeasibility,

calling the restoration phase at a feasible point terminates the optimization.

However with the big-M structured regularization, the five dependent constraints are

correctly detected and eliminated in each iteration. Therefore, the Newton steps are well-

defined and the algorithm converges to an optimal solution. Note that in structured reg-

ularization, IPOPT with MUMPS and MA57 share the same convergence path, which is

identical to the convergence path without the globally dependent constraints (4.19). The

results are shown in Table 4.1, along with a comparison to CONOPT and KNITRO.

4.5.2 Nonlinear blending problems

Blending problems are an example of the type of model exhibiting local degeneracy. The

blending problem is common in refinery processes and always occurs when the product

requirement cannot be met by a single source. Thus it is very important to know the best

way to mix different feeds from the refinery with maximum profit, subject to the quality

46
CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

4.5 NUMERICAL RESULTS

or property requirements of the different final products.

The general gasoline blending formulation is defined for products p ∈ P , feed sources

i ∈ I , and intermediate tanks q ∈ Q over a time horizon with Nt time periods, t ∈

{1, . . . , Nt}, as follows [7],

max
∑
t∈T

∑
p∈P

costpst,p −
∑
i∈I

costist,i

s.t.

∑
p∈P

st,qp −
∑
i∈I

st,iq + νt+1,q = νt,q, t ∈ {1, . . . , Nt}, q ∈ Q∑
i∈I

ωt,ist,iq −
∑
p∈P

ωt,qst,qp + ωt,qνt,q = ωt+1,qνt+1,q, t ∈ {1, . . . , Nt − 1}, q ∈ Q

ωt,pst,p −
∑
q∈Q

ωt,qpst,qp = 0, t ∈ 1, . . . , Nt, p ∈ P

ωt,ist,i −
∑
q∈Q

ωt,iqst,iq = 0, t ∈ 1, . . . , Nt, i ∈ I,

(4.20)

where the indexed variables st,lm represent a stream flow between tank indices l and m,

and ωt,l and νt,l are qualities (i.e. blend stream properties) and inventories for index l,

respectively at time t.

Although the nonlinear blending models have proprietary data, the key characteristic

lies in the bilinear, nonconvex terms. When particular flows in the blending network are

set to zero during the solution steps, the blending equations become degenerate and de-

pendent linearized constraints are formed.

Two industrial examples from [37] are considered. CONOPT and KNITRO can solve

blend1 easily, but for blend2, CONOPT fails to find a feasible point and KNITRO makes

poor progress for many iterations before terminating with an optimal solution. Mean-

while, for the current IPOPT, both blending problems exceed the maximum iterations be-

cause the regularization terms distort Newton steps too much and slow down the rate

of convergence. If this maximum iteration limit is increased, these problems may even-

CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

47

4.5 NUMERICAL RESULTS

tually be solved. On the other hand, all of the structured methods detect and eliminate

the dependent constraints efficiently and easily solve both cases. On the larger problem

blend2, IPOPT with structured regularization is the fastest solver. Further characteristics

and numerical results are presented in Table 4.1.

4.5.3 CUTEr test set

The CUTEr test set [39] is a well known collection of NLP problems from various academic

sources, used as a benchmark NLP library. To test our structured regularization methods,

we select 227 problems, which have both equality constraints and enough degrees of free-

dom to add a new redundant constraint. The selected model set is called the original prob-

lem set. Then for all the selected models, a new nonlinear constraint c1(x) − c2
1(x) = 0 is

added as the last constraint, which is globally dependent with the first constraint c1(x) = 0.

Experience reported with this additional constraint is also reported in [40].

The results are represented by performance plots proposed by Dolan and More [41].

Define tpr,m as a performance characteristic (iteration count here) of a structured regular-

ization method m in solving the problem pr. Then the performance scaled by the best

method is defined as follows,

rpr,m =
tpr,m

min
m′

tpr,m′
(4.21)

with the performance profile for each method defined as,

πm(τ) =
of problems with rpr,m ≤ τ

total # of problems
, τ ≥ 1. (4.22)

With MA57, iteration counts are compared for the current version of IPOPT for original

and modified problem sets, and also for the structured regularization methods for modi-

fied problem results are shown in Figure 4.2.

From Figure 4.2, we can see that the current version of IPOPT works very well with the

48
CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

4.5 NUMERICAL RESULTS

1 2 4 8 16 32 64 128 256
0

10

20

30

40

50

60

70

80

90

100

τ

%
 P

ro
b

le
m

s
 s

o
lv

e
d

 w
it
h

in
 τ

*m
in

(#
it
e

r)

Original problems with IPOPT Reg

Dependent Cons with IPOPT Reg

Big M Reg with fixed parameters

Big M Reg with tuned parameters

On the fly Reg

Cons Elimination Reg

Figure 4.2: Iteration Count Performance of MA57

original problem set. However, if the new dependent constraint is added, there is a huge

drop in performance, which illustrates the limitations of current IPOPT regularization in

solving problems with dependent constraints.

Here, the “on the fly” regularization method performs well for the small problems. But

as the size of problem increases, more errors in detecting dependent rows are made by the

linear solver, which dramatically affects the performance of the “on the fly” regularization.

Nevertheless, because the on-the-fly method performs the factorization and structured reg-

ularization at the same time, it requires the fewest regularizations for the problems it can

solve.

The performance profiles of constraint elimination regularization (4.7) and big M regu-

larization (4.4) with fixed parameters are very close. As we mentioned before, a problem

CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

49

4.5 NUMERICAL RESULTS

dependent threshold is introduced to both of the methods, which is used to correct the

unstable factorization results. The default of this parameter (thres) is 10−6. If this parame-

ter is tuned well for a specific problem in big-M regularization, the performance is much

better. Interestingly, it is even better than the current version of IPOPT for the original

problems. This is because there is still local dependence in several problems such as steen-

brc, steenbrd, steenbre, and steenbrf, even though all problems in the original problem set

are well posed. The current version of IPOPT fails on all of them, while the structured

regularization methods can handle this local dependence.

Similar performance profiles are shown in the Figures 4.3 and 4.4 with linear solver

MA97 and MUMPS. Only the results of big M regularization are presented here since it

is the most robust among the three structured regularization methods. We observe from

Figures 4.2, 4.3, and 4.4 that the structured method is relatively sensitive to the dependent

threshold parameter, which should be tuned carefully for different problems.

The performances of current IPOPT, IPOPT with big-M regularization (tuning param-

eters), KNITRO and CONOPT have been compared on the CUTEr test set. Performance

profiles are shown in Figure 4.5 and Figure 4.6. The performance metric is CPU time in

Figure 4.5 and iteration count in Figure 4.6.

CONOPT reports 47 problems as locally infeasible, which are counted as failures in

our tests. However, it is very fast on the smaller problems in the test set. KNITRO is

slightly faster than the current version of IPOPT, although the proportions of problems fi-

nally solved are similar. However, IPOPT with structured regularization is the fastest and

most stable of the considered solvers.

50
CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

4.6 CONCLUSION

1 2 4 8 16 32 64 128 256
0

10

20

30

40

50

60

70

80

90

100

τ

%
 P

ro
b

le
m

s
 s

o
lv

e
d

 w
it
h

in
 τ

*m
in

(#
it
e

r)

Original problems with IPOPT Reg

Dependent Cons with IPOPT Reg

Big M Reg with fixed parameters

Big M Reg with tuned parameters

Figure 4.3: Iteration Count Performance of MA97

4.6 Conclusion

In this chapter we have proposed three structured regularization methods for IPOPT to

deal with dependent equality constraints. In general, big-M regularization is the most ro-

bust and is recommended first for problems for which degeneracy is a suspected difficulty.

The performance may be improved by tuning the thres parameter to adjust to the spe-

cific problem scaling. In contrast, on-the-fly regularization is not as robust but requires the

fewest factorizations for small problems with dependencies.

Future work will focus on dependent inequality constraints, since structured regulariza-

tion can only help with dependent equality constraints. With dependent active inequality

constraints, the barrier NLP solvers may still have trouble solving the problem. NLP re-

formulations of Mathematical Programs with Complementarity Constraints (MPCCs) are

CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

51

4.6 CONCLUSION

1 2 4 8 16 32 64 128 256
0

10

20

30

40

50

60

70

80

90

100

τ

%
 P

ro
b

le
m

s
 s

o
lv

e
d

 w
it
h

in
 τ

*m
in

(#
it
e

r)

Original problems with IPOPT Reg

Dependent Cons with IPOPT Reg

Big M Reg with fixed parameters

Big M Reg with tuned parameters

Figure 4.4: Iteration Count Performance of MUMPS

a common example of this challenge. For MPCC, MFCQ is violated at any feasible point

and inequalities are involved in the degenerate active set. This problem will be addressed

further in Chapter 6

52
CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

4.6 CONCLUSION

τ

1 4 16 64 256 1024

%
 P

ro
b
le

m
s
 s

o
lv

e
d
 w

it
h
in

τ
*m

in
(C

P
U

T
im

e
)

0

10

20

30

40

50

60

70

80

90

100

Ipopt

Ipopt with structured reg

Knitro

Conopt

Figure 4.5: CPU Time Comparison between IPOPT, KNITRO and CONOPT

CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

53

4.6 CONCLUSION

Table 4.1: Result comparison on toy example and blending problems

Toy example Blend1 Blend2

#var 32 827 5142

#con 31 772 4702

CONOPT Optimal solution found Optimal solution found Locally infeasible

#iter=26 #iter=47 #iter=1939

CPU time=0.009s CPU time=0.061s

KNITRO Optimal solution found Optimal solution found Optimal solution found

#iter=4 #iter=18 #iter=1101

CPU time=0.013s CPU time=0.162s CPU time=259.864s

IPOPT-MUMPS Restoration failed Maximum iterations Maximum iterations

#iter=2 #iter≥3000 #iter≥3000

IPOPT-MA57 Optimal solution found Maximum iterations Maximum iterations

#iter=14 #iter≥3000 #iter≥3000

CPU time=0.020s

IPOPT-MUMPS Optimal solution found Optimal solution found Optimal solution found

Big-M #iter=12 #iter=48 #iter=714

CPU time=0.018s CPU time=0.754s CPU time=171.650s

IPOPT-MA57 Optimal solution found Optimal solution found Optimal solution found

Big-M #iter=12 #iter=31 #iter=501

CPU time=0.012s CPU time=0.304s CPU time=118.230s

54
CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

4.6 CONCLUSION

τ

1 2 4 8 16 32 64

%
 P

ro
b

le
m

s
 s

o
lv

e
d

 w
it
h

in

τ
*m

in
(#

it
e

r)

0

10

20

30

40

50

60

70

80

90

100

Ipopt

Ipopt with structured reg

Knitro

Conopt

Figure 4.6: Iteration Comparison between IPOPT, KNITRO and CONOPT

CHAPTER 4. STRUCTURED REGULARIZATION FOR EQUALITY CONSTRAINTS

55

Chapter 5

Parallel Cyclic Reduction Decomposition for

Dynamic Optimization Problems

In this chapter, we focus on improving the speed of IPOPT for solving dynamic optimiza-

tion problems. We take advantage of the special problem structure in dynamic optimiza-

tion and apply cyclic reduction to calculate the KKT linear system in parallel. Several

variants of the cyclic reduction are compared, and the best method shows significant par-

allel speed up. The method is further applied to four applications to demonstrate the

convergence of the NLPs.

5.1 Introduction

Optimization of dynamic systems has been shown to be very useful in many areas of sci-

ence and engineering. Common examples include state estimation, parameter estimation,

and optimal control. These problems are often applied in real-time, in a rolling horizon

framework [42]. Therefore, we need fast and robust numerical algorithms for solving these

problems.

Methods to solve dynamic optimization problems can be divided into two groups: in-

direct or variational methods derived from Pontryagin’s Maximum principle [43, 44], and

direct methods that make use of nonlinear programming (NLP) solvers. Indirect methods

use the calculus of variations to write the necessary optimality conditions as a boundary

56
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.1 INTRODUCTION

value problem. By directly using optimality conditions, indirect methods can produce

highly accurate solutions, but the boundary problems can be difficult to solve and effi-

ciently handling state constraints remains a challenge.

Direct methods may be further divided into sequential and simultaneous methods. Se-

quential methods discretize only the control variables and then use an NLP solver to op-

timize the parameterized control variables [45, 46]. Sensitivity information from the dy-

namic system is obtained by integrating the direct sensitivity equations or the adjoint equa-

tions [47]. In sequential methods, the entire time horizon is integrated with a fixed set of

control parameters along with senstivity profiles. In general, sequential methods have the

advantage of using reliable solvers for differential algebraic systems (DAEs). However,

the repeated solution of these systems can become very time consuming and they may fail

for unstable dynamic systems.

Multiple shooting is a hybrid of simultaneous and sequential methods, in which the time

domain is divided into several smaller segments and constraints are added to the NLP to

enforce continuity between the time segments. Sensitivity information is then calculated

with respect to both the control parameters and the initial conditions within each time

segment.

Simultaneous methods discretize the entire problem and embed the discretized states

and controls in a large-scale nonlinear program. The typical discretization uses collocation,

which is a fully implicit Runge-Kutta method. These methods have high order accuracy

and good stability properties. However, improving accuracy corresponds to adding more

discretization points, which can quickly grow to form very large NLPs. Nevertheless, the

NLPs remain very sparse and have additional structure that we will explore in this work.

One method to improve the computational efficiency of dynamic optimization is to re-

duce the model size through model order reduction [48, 49]. By reducing the dimension-

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 57

5.1 INTRODUCTION

ality of the dynamic system before optimization, the computational effort should be re-

duced. However, accuracy of the reduced models remains a problem. In addition, the

reduced models may lose advantageous features such as sparsity that make the original

system more amenable to optimization [49].

Several strategies to reduce the computational cost of dynamic optimization look to par-

allelization. In the category of sequential methods, researchers look for ways to parallelize

the sensitivity calculation from the dynamic system [50]. For multiple shooting meth-

ods, the integration and sensitivity calculation in each time interval is easily parallelizable

[51, 52, 53].

By contrast, efforts to use parallelization in the simultaneous approach must focus on

parallelizing the nonlinear programming solver. In existing nonlinear programming soft-

ware, sparse linear solvers are able to take advantage of slight parallelism in the basic

floating point operations when factoring or backsolving. However, the overall nonlinear

programming algorithm remains serial. To achieve significant benefit from parallelism, we

need to parallelize the linear solver algorithm. Parallel linear algebra methods normally fo-

cus on specific matrix structures. It has been observed that the KKT matrix in simultaneous

dynamic optimization can be permuted to a block tridiagonal structure. This has been ex-

ploited by several researchers using Schur complement decomposition [54, 55, 56, 57, 58].

In our previous work [59], we compared the Schur complement decomposition and cyclic

reduction, and found that cyclic reduction was a more promising method for general dy-

namic optimization problems. In this work, we will further investigate cyclic reduction for

dynamic optimization and demonstrate the performance on several case studies.

Cyclic reduction (CR) was proposed by Hockney and Golub in 1965 [60] in the context

of numerical solutions of partial differential equations. The review paper by Gander and

Golub [61] covers several developments and applications of the method. Although CR is

58
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.2 DYNAMIC OPTIMIZATION

observed to be fast, issues with numerical stability were also observed. An algorithmic

variant with stability guarantees was proposed by Yalamov and Pavlov [62]. In this chap-

ter, we examine this method in detail and compare to traditional cyclic reduction on the

KKT matrix structure found in simultaneous methods for dynamic optimization.

In this work, we first review the basic form of dynamic optimization problems and the

simultaneous method for solving them in section 5.2. Then, a description of traditional

CR and Yalamov’s variant is given in section 5.3 with implementation details in section

5.4. In sections 5.5 and 5.6, these methods are applied to generic tridiagonal matrices and

tridiagonal systems of the structure found in dynamic optimization. In section 5.7, the best

parallel method is applied within an NLP solver for four case studies and the results are

compared to the same solver using serial linear algebra routines. Conclusions are given in

section 5.8 with discussion of directions for future work.

5.2 Dynamic Optimization

We start with a general dynamic optimization problem stated in the following form:

min

∫ tF

t0

Φ̂(z, y, u)dt+ Ψ̂(z(tF))

s.t.
dz

dt
= g(z, y, u)

h(z, y, u) = 0

z(t0) = z̄0

zL ≤ z ≤ zU

yL ≤ y ≤ yU

uL ≤ u ≤ uU

(5.1)

where unknowns z, y, u are all functions of time t ∈ [t0, tF]. z is a vector of differential

state variables, y is a vector of algebraic variables, and u is a vector of control, or input,

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 59

5.2 DYNAMIC OPTIMIZATION

variables. Φ̂ is the integrand for the objective function, such as set point tracking in control

problems. Ψ̂ is the terminal cost at the end of the process. The semi-explicit differential-

algebraic equation model is assumed to be index 1. g gives the right hand side of the

differential equations, and h are algebraic equation constraints. All these constraints are

required to hold for all time t ∈ [t0, tF].

To solve problem (5.1) with a simultaneous approach (also known as direct transcrip-

tion) we fully discretize the state and control variables. This can lead to large-scale NLP

problems. We will focus attention of collocation methods, where the time horizon is dis-

cretized to N finite elements with K collocation points in each finite element. Define the

index set of collocation points within a finite element C = {1 . . .K} and the finite element

set F = {1 . . . N}. The discretized version of problem (5.1) is given by:

min

N−1∑
i=1

Φ̂(zi, yi, ui) + Ψ̂(zN)

s.t. z1 = z̄0

zi+1 = zi,K , i = 1, . . . , N − 1

żi,j = g(zi,j , yi,j , ui,j),

zi,j = zi +
K∑
k=1

wk,j żi,k

h(zi,j , yi,j , ui,j) = 0

zL ≤ zi, zi,j ≤ zU

yL ≤ yi,j ≤ yU

uL ≤ ui,j ≤ uU

i = 1, . . . , N j = 1, . . . ,K

(5.2)

we define variables żi,j representing the derivative of the states, and zi,j representing the

value of the states. These are indexed over i ∈ F and j ∈ C. The collocation equations

use parameters w, which are derived from the orthogonal polynomial representation of

60
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.2 DYNAMIC OPTIMIZATION

the states [7]. These parameters are related to both the choice of orthogonal polynomials

and the length of the finite elements.

The size of problem (5.2) (numbers of variables and constraints) is directly proportional

to N × K. This means that higher accuracy requires larger optimization problems. This

leads to a significant challenge for NLP solvers to solve these problems in a reasonable

computation time.

In this section we first present some background material on interior point methods for

solving NLPs. These methods are well suited for large-scale NLP problems that we face

in dynamic optimization. We then discuss how to take advantage of the special structure

of discretized dynamic optimization problems (5.2) to improve the performance of interior

point methods.

5.2.1 Interior Point Methods

In Chapter 3, we reviewed the IPOPT algorithm. To solve the linear system (3.7), IPOPT

applies a symmetric linear solver, such as HSL MA57 [31], HSL MA97 [32], MUMPS [33],

PARDISO [35] or WSMP [34]. It first applies a LBLT factorization to the KKT matrix on

the left side of (3.7), followed by backsolves to obtain the solution. These solvers are well-

known to be stable and fast. However, solving this linear system (3.7) is the most time

consuming step in IPOPT. To speed up the performance of IPOPT on very large problems,

we can look to speed up the linear solver through parallelization.

We refer to linear system (3.7) as the KKT system, and the matrix on the left hand side as

the ‘KKT Matrix’. The solution vector of the linear system is simply referred to as variables,

and the right hand side of this linear system is referred to as ‘rhs’. For the rest of this

chapter, we focus only on the linear solve within a single iteration. Moreover we assume

the KKT matrix is well-posed, and the inertia is (n,m, 0). (Recall that inertia is a triple

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 61

5.2 DYNAMIC OPTIMIZATION

consisting of the number of positive eigenvalues, the number of negative eigenvalues, and

the number of zero eigenvalues.) Regularization of the KKT matrix can be applied to make

this condition hold, and several procedures are described in [7, 15].

5.2.2 Exploiting Structure in KKT System

For the discretized dynamic optimization problem (5.2), we recall that i is the index of finite

elements and we define wTi = [żTi,j , z
T
i,j , y

T
i,j , u

T
i,j]. Now (5.2) can be simplified as follows,

min

N−1∑
i=1

Φ̂(zi, wi) + Ψ̂(zN)

s.t. G(zi+1, wi) = Gi(wi)− zi+1 = 0 i = 1, . . . , N − 1

Hi(zi, wi) = 0, i = 1, . . . , N

(5.3)

Comparing (5.3) to (5.2), we group all constraints related only to one finite element i to

Hi(zi, wi) including the ODEs, algebraic equations, and collocation equations. Then we

group all continuity equations between adjacent finite elements. Note that the variable

bounds have been added as barrier terms and do not affect the structural analysis in this

section. In addition, the initial condition for z1 is substituted directly into the problem, so

the first constraint of (5.2) is eliminated implicitly.

If IPOPT is applied to solve the simplified discretized dynamic optimization problem

(5.3), the KKT linear system (3.7) is shown as follows,

Wzz Wzw ∇zH ∇zG

Wwz Www ∇wH ∇wG

∇zHT ∇wHT 0 0

∇zGT ∇wGT 0 0

∆z

∆w

∆λH

∆λG

= −

rz

rw

rH

rG

(5.4)

where HT = [HT
1 , H

T
2 , . . . ,H

T
N] and GT = [GT1 − zT2 , GT2 − zT3 , . . . , GTN−1 − zTN]. The rhs

(rz, rw, rH , rG) corresponding to different variables can be derived from (3.7). ∆λH and

62
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.2 DYNAMIC OPTIMIZATION

∆λG are steps for the multipliers corresponding to constraints H and G. These can be

partitioned by the corresponding finite elements as λHi and λGi , giving the overall variable

ordering

[∆zT2 , . . . ,∆z
T
N ,∆w

T
1 , . . . ,∆w

T
N ,∆λ

H
1
T
, . . . ,∆λHN

T
,∆λG1

T
, . . . ,∆λGN

T
] (5.5)

However, if we reorder the variable vector by grouping together all primal and dual

variables corresponding to the same finite elements, we get

[∆wT1 ,∆λ
H
1
T
,∆λG1

T
,∆zT2 ,∆w

T
2 ,∆λ

H
2
T
,∆λG2

T
, . . . ,∆zTN ,∆w

T
N ,∆λ

H
N
T
,∆λGN

T
] (5.6)

The KKT matrix corresponding with this rearranged variable vector has the following

structure,

Ww1w1 ∇w1H1 ∇w1G1

∇w1H
T
1 0 0

∇w1G
T
1 0 0 −I

−I Wz2z2 Wz2w2 ∇z2H2 ∇z2G2

Ww2z2 Ww2w2 ∇w2H2 ∇w2G2

∇z2HT
2 ∇w2H

T
2 0 0

∇z2G2 ∇w2G
T
2 0 0

. . . −I

−I WzNzN WzNwN ∇zNHN

WwNzN WwNwN ∇wNHN

∇zNHT
N ∇wNHT

N 0

(5.7)

where I is the identity matrix. We outline the block pattern for emphasis. Matrix (5.7) is

almost block diagonal except for the off-diagonal identity matrices. These come from the

continuity constraints that couple the dynamic profile from one time finite element to the

next.

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 63

5.3 BLOCK CYCLIC REDUCTION

Because z1 is fixed and zN+1 is absent, the first and last diagonal blocks are smaller than

the rest. The first diagonal block has more constraints than variables and is rank deficient;

other block diagonal matrices might be singular as well. Treatment of these cases will be

discussed in section 5.3.5.

5.3 Block Cyclic Reduction

Cyclic Reduction has been shown to be a powerful algorithm for solving block tridiagonal

linear systems. The basic idea of the algorithm is to eliminate half the unknowns, regroup

the equations, and again eliminate half of the unknowns. The process is applied recur-

sively and can be easily parallelized by a large variety of architectures [63]. The general

form of a block tridiagonal linear system is shown as follows,

D1 U1

L2 D2 U2

L3 D3 U3

.

LN−1 DN−1 UN−1

LN DN

x1

x2

x3

...

xN−1

xN

=

r1

r2

r3

...

rN−1

rN

(5.8)

If we compare (5.8) to (5.7), the matricesDi are the KKT matrices for the individual finite

elements, while Ui and Li only have one identity block on lower left/upper right corner.

Note that Di is always square and symmetric.

When introducing the algorithm, we will assume Di are nonsingular and defer further

discussion about singularity of Di to section 5.3.5. We also assume that the number of

blocks (number of finite elements) N is a power of 2 and not less than 4. This allows us to

greatly simplify the derivation and notation. However, the basic algorithm as well as the

64
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.3 BLOCK CYCLIC REDUCTION

time complexity analysis are easily extended to handle arbitrary N .

5.3.1 Traditional Cyclic Reduction

Traditional Cyclic Reduction(TCR) reorders both variables and rhs of the linear system

(5.8) in order of odd indices and even indices. The whole matrix is permuted as follows,

D1 U1

D3 L3 U3

.

DN−1 LN−1 UN−1

L2 U2 D2

.

LN−2 UN−2 DN−2

LN DN

x1

x3

...

xN−1

x2

...

xN−2

xN

=

r1

r3

...

rN−1

r2

...

rN−2

rN

(5.9)

Now the matrix is separated to four parts where the upper-left and lower-right sub-matrices

are both block diagonal. Since Di are assumed to be nonsingular, we can pivot on the odd

diagonals (the upper left section of the matrix in (5.9)) to eliminate the lower right section

of the matrix. After doing this, the linear system becomes (5.10) with fill-in blocks marked

with X :

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 65

5.3 BLOCK CYCLIC REDUCTION

D1 U1

D3 L3 U3

.

DN−1 LN−1 UN−1

0 0 X X

. X
.

. . . 0
. X

0 X X

x1

x3

...

xN−1

x2

...

xN−2

xN

=

r1

r3

...

rN−1

X

...

X

X

(5.10)

Note here that the fill in pattern in the lower right section is also block tridiagonal. We

can apply the same permutation and elimination process recursively until the block size

equals one.

Once the block size equals one, we solve the resulting small system. This result gives

half of unknowns [x2, x4, . . . , xN] for the previous iteration, so we simply multiply them by

the upper right part of the matrix (5.9) and backsolve for the unknowns with odd indices.

This process steps upward until the final solution vector is recovered.

For the implementation, we only need to store the individual matrix blocks and calculate

the variable eliminations in parallel. For each cycle k within the TCR recursion, we first

calculate three auxiliary matrices for the odd rows, listed as follows:

P
(k)
2i−1 = (D

(k−1)
2i−1)−1L

(k−1)
2i−1 ;

Q
(k)
2i−1 = (D

(k−1)
2i−1)−1U

(k−1)
2i−1 ;

Y
(k)

2i−1 = (D
(k−1)
2i−1)−1r

(k−1)
2i−1 ;

(5.11)

where i is the block index. To calculate these three matrices, only one LDLT factorization

is applied to each odd diagonal D2i−1. The factors are used for three backsolves, then the

66
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.3 BLOCK CYCLIC REDUCTION

remaining matrices are updated based on P , Q and Y :

L
(k)
i = −L(k−1)

2i P
(k)
2i−1;

U
(k)
i = −U (k−1)

2i Q
(k)
2i+1;

D
(k)
i = D

(k−1)
2i − L(k−1)

2i Q
(k)
2i−1 − U

(k−1)
2i P

(k)
2i+1;

r
(k)
i = r

(k−1)
2i − L(k−1)

2i Y
(k)

2i−1 − U
(k−1)
2i Y

(k)
2i+1;

(5.12)

Note that some parts of the update rely on auxiliary matrices 2i−1 and some are related to

2i+1. Therefore a synchronization point is required after calculating the auxiliary matrices,

which will slightly impede parallel performance. Otherwise, the updates for each imay be

calculated in parallel, with synchronization only for incrementing cycle count k and after

calculating the auxiliary matrices.

At each cycle k, the matrices P (k)
2i−1, Q(k)

2i−1, and Y
(k)

2i−1 are retained in memory. After

log2(N) cycles, the final block size is equal to one and that linear system is solved. Then,

the values of x(k)
i are calculated recursively from k = log2(N) to k = 0 using the stored P ,

Q, and Y matrices as follows:

x
(k−1)
2i−1 = x

(k)
i ;

x
(k−1)
2i = Y

(k)
2i − P

(k)
2i−1x

(k)
i −Q

(k)
2i+1x

(k)
i+1;

(5.13)

The values x(0)
i will then be the solutions of (5.9). Also, for each update step in the recursion

on k, the i’s may be updated in parallel. Nevertheless, synchronization is needed when

moving from one cycle k to the next.

5.3.2 Yalamov Cyclic Reduction

Yalamov’s Cyclic Reduction (YCR) method [62] requires that all Li, Ui, Di be square ma-

trices. By constructing a sequence of matrices V (k) and multiplying them to both sides of

linear system (5.8), the off-block matrices are pushed further and further away from the

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 67

5.3 BLOCK CYCLIC REDUCTION

diagonal matrices. When there are only diagonal matrices left, linear solves can be applied

block by block in parallel.

The matrices V (k) are constructed as follows. At cycle k, we first generate P (k)
i and Q(k)

i ,

P
(k)
i = −L(k−1)

i [D
(k−1)

i−2k−1]−1

Q
(k)
i = −U (k−1)

i [D
(k−1)

i+2k−1]−1
(5.14)

and then use them to construct the matrix V (k)

V (k) =

I 0 · · · 0 Q
(k)
1

0
.

...
.

0
.

P
(k)

2k−1+1

. . . Q
(k)

N−2k−1

. 0

.
...

. 0

P
(k)
N 0 · · · 0 I

(5.15)

When we apply this matrix to both sides of the linear system (5.8), we get a new lin-

ear system with a block diagonal and off-diagonal block bands 2k blocks away from the

diagonal. This process is repeated until the system is fully block diagonal.

Instead of storing the whole KKT matrix, we only manipulate the non-zero blocks. The

update formulas are listed as follows, where the matrices U (k)
i , D

(k)
i , L

(k)
i , r

(k)
i represent

the upper off-diagonal band matrices, the diagonal matrices, the lower off-diagonal band

68
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.3 BLOCK CYCLIC REDUCTION

matrices, and the right hand sides, respectively:

L
(k)
i = P

(k)
i L

(k−1)

i−2k−1

U
(k)
i = Q

(k)
i U

(k−1)

i+2k−1

D
(k)
i = D

(k−1)
i + P

(k)
i U

(k−1)

i−2k−1 +Q
(k)
i L

(k−1)

i+2k−1

r
(k)
i = r

(k−1)
i + P

(k)
i r

(k−1)

i−2k−1 +Q
(k)
i r

(k−1)

i+2k−1

(5.16)

With TCR a synchronization is required after calculating the auxiliary matrices. With YCR

the updates of U (k)
i , D

(k)
i , L

(k)
i , r

(k)
i only depend on the auxiliary matrices that match in

index i. This means that within one cycle k there is no need for synchronization between

processors. Consequently, at each cycle the calculations for each block index i can be done

in parallel.

In summary, the algorithm works as follows: at cycle k = 1 . . . log2(N), apply (5.14) and

calculate P (k)
i andQ(k)

i . Then using (5.16) updateU (k)
i , D

(k)
i , L

(k)
i , r

(k)
i and increase the cycle

count k by 1. At cycle log2(N), only the diagonal matrices are left. So, in the final cycle

k = log2(N) + 1 , we compute

xi = [D
(k−1)
i]−1r

(k−1)
i , i = 1, . . . , N (5.17)

to obtain the solution of (5.8).

5.3.3 Time complexity analysis

Time complexity of an algorithm quantifies the amount of time required by an algorithm

in the worst case as a function of the size of the problem. Here we analyze the time com-

plexity of these two cyclic reduction methods based on the number of blocks N . In this

sense, we treat the size of blocks as a constant, and quantify scaling in terms of the number

of finite elements.

As mentioned before, the LDLT factorizations are the most time consuming steps in the

cyclic reduction algorithm. For the complexity analysis, we assume these steps dominate

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 69

5.3 BLOCK CYCLIC REDUCTION

the CPU time and simply count the number of factorizations required for a linear system

with N blocks. This will be used as a measure of the time complexity. In section 5.5.2, we

show that experimental results match the time complexity analysis, which confirms our

assumption that number of factorizations dominates the computational expense.

Both algorithms require log2(N) cycles, but we need also consider the number of factor-

izations per cycle. In Yalamov cyclic reduction, N − 2k−1 factorizations are performed at

the kth cycle, and N factorizations are performed in the last cycle to calculate the solution.

So for a tridiagonal linear system with N blocks on the diagonal, N(log2(N) − 1) + 1 fac-

torizations are performed. Then we can conclude that the time complexity is O(N logN).

In traditional cyclic reduction, only N/2k factorizations are applied at the kth cycle. So for

a tridiagonal linear system with N blocks on the diagonal and log2(N) cycles, N factoriza-

tions are performed in total. So the time complexity is O(N). If N is not a power of 2, the

total number of cycles is dlog2(N)e and the big O results are still valid.

Based on the complexity analysis, we expect the Yalamov cyclic reduction method to

be slower than TCR. However, Yalamov cyclic reduction is more parallelizable than TCR

in that it requires fewer synchronizations. If the number of processors is very large (ex-

ceeds block number N), then the bottleneck of the algorithm is the number of cyclic re-

duction iterations instead of the number of factorizations. As shown above, the iteration

requirement is the same for the two methods, so we expect performance would be more

competitive in a highly parallel environment. However in this study we will only work

with 8 processors. The comparison of numerical performance is presented and discussed

in section 5.5.

70
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.3 BLOCK CYCLIC REDUCTION

5.3.4 Symmetry

In sections 5.3.1 and 5.3.2, we discussed cyclic reduction methods for general tridiagonal

matrices. On the other hand, KKT matrices are symmetric and this feature can be used to

reduce the computational effort. First, we will show that the CR methods we discussed

both maintain symmetry through each cycle of the cyclic reduction approach.

For the traditional cyclic reduction method, assume that at cycle (k − 1), U (k−1)
i =

(L
(k−1)
i+1)T and D

(k−1)
i is symmetric, which is valid at the first cycle for the original KKT

linear system. Considering the update formulas (5.11) and (5.12), it is easy to show D
(k)
i is

still symmetric and U (k)
i = (L

(k)
i+1)T .

For Yalamov’s cyclic reduction methods, assume at cycle (k−1) thatU (k−1)

i+2k−1 = (L
(k−1)

i−2k−1)T

and D
(k−1)
i is symmetric. These conditions are valid at the first cycle for the original KKT

linear system as well. Combining update (5.14) and (5.16), it is easy to show that the rela-

tionship is still valid at cycle (k).

Therefore in both methods we only need to update matrices L, which reduces computa-

tional cost of the update formulas. However, the number of factorizations required stays

the same. In other words, taking advantage of symmetry won’t affect the time complexity

analysis.

Moreover, when the symmetric update is applied (with only L updated), the accumu-

lated run-off error may cause Di to become less symmetric with each pass, so we correct

Di by reassigning Di to (Di + DT
i)/2 at each cycle in order to balance the error. Our com-

putational results in section 5.5.2 demonstrate the effectiveness of this approach.

5.3.5 Singular Diagonal Blocks

In previous sections, we assumed that the Di blocks to be nonsingular. Actually, the first

block D1 is naturally degenerate because z1 is not a free variable. This means that the KKT

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 71

5.3 BLOCK CYCLIC REDUCTION

matrix corresponding to the first diagonal block has more constraints than variables. In

traditional cyclic reduction, we can pivot on the even diagonals (the lower right section of

the matrix in (5.9)) to eliminate the upper right section of the matrix. Under this modified

version of algorithm from Section 5.3.1, we no longer require the inverse of D1.

Besides D1, the other Di could be singular as well. In general in dynamic optimization

Wi is nonsingular. Since we assume the inertia of the whole KKT matrix is (n,m, 0), the

algebraic constraint Jacobian Hi within each Di block is full rank as well. However, be-

cause part of the continuity constraints are in the off-diagonal blocks, there may also be a

singularity of Di arising from the differential constraint Jacobian Gi(wi).

To ensure that every Di is nonsingular, we add slack variables si to all continuity equa-

tions. The new NLP is shown as follows,

min
N−1∑
i=1

Φ̂(zi, wi) + Ψ̂(zN) +
N∑
i=1

ρ||si||22

s.t. Gi(wi)− zi+1 = si i = 1, . . . , N − 1

Hi(zi, wi) = 0, i = 1, . . . , N

(5.18)

72
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.4 IMPLEMENTATION

Then the KKT matrix is modified as

Ww1w1 0 ∇w1H1 ∇w1G1

0 ρI 0 −I

∇w1H
T
1 0 0 0

∇w1G
T
1 −I 0 0 −I

−I Wz2z2 Wz2w2 0 ∇z2H2 ∇z2G2

Ww2z2 Ww2w2 0 ∇w2H2 ∇w2G2

0 0 ρI 0 −I

∇z2HT
2 ∇w2H

T
2 0 0 0

∇z2GT2 ∇w2G
T
2 −I 0 0

. . . −I

−I WzNzN WzNwN (∇zNHN

WwNzN WwNwN (∇wNHN

∇zNHT
N ∇wNHT

N 0

(5.19)

and the individual Di are now nonsingular. In our case study section 5.7, we applied these

corrections whenever we apply CR methods.

5.4 Implementation

We implemented both traditional cyclic reduction and Yalamov cyclic reduction methods

in Matlab 7.14.0.739 (R2012a) with the Matlab parallel computing toolbox. MA57 3.9.0 is

called through MEX interface as a symmetric linear solver inside cyclic reduction methods

and also is used directly as a serial method for comparison. All results are obtained on an

Intel(R) Xeon(R) CPU E5-2440 @ 2.40GHz×12 with 64 GiB memory and 8 cores are used

for all the experiments.

In all of our experiments, Matlab’s built-in linear solver which is invoked by a backslash

operator is used as a benchmark solver. We refer to this as ‘Backslash’ in the following sec-

tions. Backslash uses a well-tuned set of heuristics to determine which algorithm to use for

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 73

5.5 TESTING RESULTS FOR RANDOMLY GENERATED LINEAR KKT SYSTEMS

the linear system. First, it evaluates the structure of the linear system, including checking

for symmetry, sparsity, or block diagonal structure. Then it selects the corresponding state-

of-art linear solver such as UMFPACK[64], MA57[31] or LAPACK’s banded solver[65]. We

choose Matlab Backslash as a benchmark solver because of its well known high perfor-

mance.

5.5 Testing Results for Randomly Generated Linear KKT Systems

In this section, six different linear solvers are compared on a test set of randomly gen-

erated linear systems. Ten randomly symmetric tridiagonal linear systems are generated

for various choices of block size and number of blocks. The diagonal blocks are obtained

by randomly generating a matrix with 3% density, then adding its transpose to guaran-

tee symmetry. The off-diagonal matrices are random matrices with 3% density. Matlab

function sprand(m,n,den) is applied for matrix generations. It generates a random, m-by-n,

sparse matrix with approximately den × m × n uniformly distributed nonzero entries in

the range (0, 1). We compare the CPU time and rhs errors among these six methods where

the rhs error ε is defined by ||Ax − b||∞. To provide stable timings, we solved all linear

systems three times and the average CPU time was used for comparison.

The six linear solvers under consideration are:

1. MA57: Using Matlab to call MA57 through MEX interface

2. Backslash: mldivide(A,B) in Matlab

3. TCR: Traditional cyclic reduction method without considering symmetry

4. TCR with symmetry: Traditional cyclic reduction method using symmetric updates

5. YCR: Yalamov’s cyclic reduction method without considering symmetry

74
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.5 TESTING RESULTS FOR RANDOMLY GENERATED LINEAR KKT SYSTEMS

6. YCR with symmetry: Yalamov’s cyclic reduction method using symmetric updates

5.5.1 Rhs Error and CPU time variation

Figure 5.1: rhs error log scale Figure 5.2: cpu time linear scale

In the first comparison, we fix the number of blocks at 500 (N = 500) and fix the block

size at 500 × 500. Fig. 5.1 and Fig. 5.2 are stock plots for CPU time and rhs error (ε).

Each figure has six vertical lines corresponding to each algorithm. The algorithms are

labeled according to the numbering above. The vertical line runs from the minimum and

maximum of these values among all 10 test problems. The mean values are marked as a

horizontal line on the right side while median values are marked on the left side.

Note that the rhs errors from MA57 and Backslash are the same for all 10 test cases, so we

conclude that Matlab Backslash is most likely using MA57 as the symmetric linear system

solver for these systems. However, from Fig. 5.2, we can see using Backslash is slighter

faster than applying MA57 directly even if it takes time for Matlab to recognize it as a

symmetric matrix. This is expected because Backslash’s interface to MA57 is more memory

efficient than our MEX interface.

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 75

5.5 TESTING RESULTS FOR RANDOMLY GENERATED LINEAR KKT SYSTEMS

Compared to YCR, TCR is less accurate. However, when including the symmetric cor-

rection formula for the KKT matrices, traditional CR has a very similar level of rhs error as

Yalamov’s method.

In Fig. 5.2, Yalamov’s methods are much slower than the other methods since it is an

O(N logN) method as we discussed in section 5.3.3. As expected, the symmetry-exploiting

variants are generally faster than the base algorithms. Also, traditional CR methods are

faster than Backslash even if there is a memory allocation disadvantage when using the

MEX interface for the factorization of blocks within the CR method.

5.5.2 Increasing Number of Blocks

number of blocks

100 200 300 400 500 600 700 800

rh
s
 e

rr
o

r

10 -15

10 -10

10 -5

10 0

10 5

MA57

Backslash

TCR

TCR sys

YCR

YCR sys

Figure 5.3: rhs error log scale

number of blocks

100 200 300 400 500 600 700 800

C
P

U
 t

im
e

(s
)

0

200

400

600

800

1000

1200

1400

1600

MA57

Backslash

TCR

TCR sys

YCR

YCR sys

Figure 5.4: cpu time linear scale

In this section, we compare the scaling of the methods with the number of blocks. We fix

the block size at 500× 500 and vary the number of blocks (N) from 100 to 800. The median

rhs error and CPU times among 10 randomly generated test cases are used for comparison.

In Fig. 5.3, the median rhs error is plotted on a log scale against varying number of blocks.

The traditional cyclic reduction method is not as accurate, with rhs error increasing as the

76
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.5 TESTING RESULTS FOR RANDOMLY GENERATED LINEAR KKT SYSTEMS

number of blocks increases. However, for the tradition cyclic reduction with symmetry

and Yalamov’s cyclic reduction methods, the rhs errors are all near 10−5 and don’t change

as strongly as the number of blocks changes. Matlab Backslash and MA57 have the best

error control, as expected. Note that these lines overlap exactly because the error is the

same. Because MA57 can choose pivots from the entire matrix, it has more flexibility to

control the error. Cyclic reduction, however, can only choose pivots within the blocks

under consideration.

In Fig. 5.4, the median CPU time is used for each number of blocks as an indicator

of efficiency. In general, the symmetric methods perform better than the non-symmetric

methods, since the symmetric methods require fewer operation counts. However, this is

not a major improvement because the performance bottleneck of all algorithms is the fac-

torization of the KKT matrix, and the symmetric methods do not impact the numbers of

factorizations. Traditional CR methods perform better than Yalamov’s methods, which is

consistent with the results of time complexity analysis. In fact, the computational results

match very well to a plot of O(N) vs O(N logN) time complexity. As a result, the per-

formance difference between the methods is amplified by the number of blocks. The more

blocks we have, the larger the performance gap. This suggests that traditional CR methods

will have superior speed for large scale problems.

5.5.3 Increasing Block Size

In this section, we fix the number of blocks at 500 and vary the size of blocks from 100×100

to 800× 800. In Fig. 5.5, again we see that traditional cyclic reduction is unstable, and the

rhs error increases as the size of blocks increases. However, for Yalamov’s cyclic reduction

methods and traditional cyclic reduction with symmetry, the rhs error doesn’t vary much

with the size of blocks. Compared to Fig. 5.4, the trend in Fig. 5.6 is more severe since

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 77

5.6 LINEAR SYSTEM TESTING WITH DYNAMIC STRUCTURE

size of blocks

100 200 300 400 500 600 700 800

rh
s
 e

rr
o

r

10 -15

10 -10

10 -5

10 0

10 5

MA57

Backslash

TCR

TCR sys

YCR

YCR sys

Figure 5.5: rhs error log scale

size of blocks

100 200 300 400 500 600 700 800

C
P

U
 t

im
e

(s
)

0

100

200

300

400

500

600

700

800

900
MA57

Backslash

TCR

TCR sys

YCR

YCR sys

Figure 5.6: CPU time linear scale

the total number of nonzeros increases quadratically with the size of blocks. However, the

conclusion remains the same: the Yalamov CR method is slower than traditional CR or

standard linear solvers, and traditional CR with symmetry is the fastest method.

5.6 Linear System Testing With Dynamic Structure

In the previous section, we compared all six block tridiagonal linear system solvers using

randomly generated linear systems. The computational results show that the traditional

cyclic reduction method that utilizes symmetry is the best linear solver considering both

CPU time and rhs error. In this section, we wish to further examine the performance of this

method on random linear systems that even more closely represent the sparsity structure

encountered in dynamic optimization problems. Three methods, Backslash, MA57, and

TCR with symmetry, are tested on a new set of linear systems with dynamic optimization

structure.

After permuting into block tridiagonal structure, the individual blocks of the KKT ma-

trix have a specific sparsity structure, as discussed in section 5.2.2. The sparsity structure

78
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.6 LINEAR SYSTEM TESTING WITH DYNAMIC STRUCTURE

can be described in terms of the size of the problem (5.1) and the discretization scheme

used. First, define nz as the number of states, ny as the number of algebraic variables, and

nu as the number of control variables in problem (5.1). Now, consider the transformation

of discretization (5.2) into form (5.3). If discretization uses K collocation points, then the

aggregate variable vector wTi = [żTi,j , z
T
i,j , y

T
i,j , u

T
i,j] is of dimension

nw = K(2nz + ny + nu).

The remaining variables in (5.3) are the state variables at finite element boundaries, zi.

As shown in (5.7), each block diagonal matrix Di is in a KKT form, with an upper left

“Hessian” part, and the upper right/lower left “Jacobian” part. Define

nn := nw + nz

and

nm := nw + nz −Knu.

Except for the first and last blocks, the Hessian part ofDi is of dimension nn×nn, while the

Jacobian part (upper right sub-block) is of dimension nn × nm. The off diagonal identity

matrices in (5.3) are all of dimension nz .

In this section, the linear systems are randomly generated based the pattern of (5.7)

except that all blocks are the same size. The random generator is the same with the one

we mentioned in section 5.5. For each Di, a random matrix X ∈ Rnn×nn is generated with

density den and the Hessian part of Di is set to X+XT to guarantee the symmetry. Unless

otherwise specified, den = 0.01 in this section. The Jacobian part of Di is generated with

density den as well. Finally, the off-diagonal identity matrices are determined based on

the specified value of nz . As in section 5.5, 10 linear systems are generated for each size

and the median of these 10 cases is used as an average performance. We vary the number

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 79

5.6 LINEAR SYSTEM TESTING WITH DYNAMIC STRUCTURE

of continuity constraints nz , the ratio of variables and constraints in each block, and the

density den to compare how the performance varies for Backslash, MA57, and TCR with

symmetry.

n
z

0 100 200 300 400 500 600 700 800 900

C
P

U
 t

im
e

(s
)

0

10

20

30

40

50

60

70

80

90

100

MA57

Backslash

TCR sys

Figure 5.7: CPU time versus nz

5.6.1 Increasing Number of Connection Variables

We set number of finite elements to N = 20, nn = 1000, nm = 900 and we vary nz from

10 to 900. The CPU time performance is shown in Fig. 5.7. Because of the special (highly

sparse) structure of the off-diagonal blocks, CR performs better compared to the serial

methods than linear systems of similar size from section 5.5.

As shown in [59], the cyclic reduction maintains the sparsity of the off-diagonal ma-

trices. Therefore in the implementation all zero columns are ignored when we calculate

the auxiliary matrices Pi and Qi in (5.11). This means that increasing the dimension of zi

increases the number of backsolves for update (5.11). In addition, the MA57 Matlab inter-

80
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.6 LINEAR SYSTEM TESTING WITH DYNAMIC STRUCTURE

variable/blocksize

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

C
P

U
 t

im
e

(s
)

60

80

100

120

140

160

180

200

MA57

Backslash

TCR sys

Figure 5.8: CPU time versus variable ratio

Density

0.05 0.1 0.15 0.2 0.25 0.3

C
P

U
 t
im

e
(s

)

0

10

20

30

40

50

60

70

MA57

Backslash

TCR sys

Figure 5.9: CPU time versus density

face only accepts the L(k−1)
2i−1 matrix in full format rather than sparse, which increases the

data operation time. Since this interface is used repeatedly in the TCR symmetry method,

this contributes to the additional deterioration in performance for this method at large nz .

For all methods, increasing nz leads to more fill-ins in the matrices and therefore longer

computation times.

In Fig 5.7, TCR symmetry is better than Backslash and MA57 for smaller nz , but it gets

much worse as nz increases. However, in section 5.5 we showed that TCR symmetry can

be better than Backslash and MA57 even for random off-diagonal matrices, but at a much

larger scale. In practice, the continuity equations are usually only a small fraction of all the

constraints, so nz is normally small.

5.6.2 Ratio of variables and constraints with fixed block size

We now set N = 20, the blocksize of Di to 5000 and vary the ratio nn
nn+nm

from 0.55 to 0.95.

The CPU time performance is shown in Fig. 5.8. The performance stays roughly the same

as the ratio of variables and constraints in Di varies. Compared to the Schur complement

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 81

5.6 LINEAR SYSTEM TESTING WITH DYNAMIC STRUCTURE

methods introduced in [59], this is a significant advantage for cyclic reduction methods.

The parallel algorithm is not sensitive to the number of control and algebraic variables,

which allows for application to a wider variety of dynamic optimization problems.

5.6.3 Density of block diagonal matrices

We now set N = 20, nn = 1000, nm = 900, nz = 10 and vary the block diagonal matrix

density den from 0.05 to 0.3. The CPU time performance is shown in Fig. 5.9. It is clear

that the CPU time increases as the density increases since the computational expense of

all of our algorithms is related to the number of fill-ins. As the density increases, the per-

formance gap between MA57 and Backslash gets larger, which is explained by the memory

efficiency of Matlab’s interface for MA57 compared to our interface and the larger amount

data to transfer. On the other hand, for large dynamic optimization problems the density

is often less than 0.01.

5.6.4 Parallel performance

To further understand the parallel performance of cyclic reduction, the computation time

spent calling the external linear solver was recorded. In Fig. 5.10, time spent calling the

external linear solver is highlighted in blue for one linear solve with TCR with symmetry.

The KKT system used for this plot has N = 64 diagonal blocks with nn = 1000, nm = 900,

and nz = 10. The horizontal axis is the timeline from t = 0 to the time the solution is

obtained at t = 15.33 seconds. The vertical axis labels each of the eight processors working

on the problem. The blue blocks show the time period that is spent on MA57 external

calls. If two calls to MA57 are very close in sequence, we have slightly expanded the gap

to make the distinction more clear.

It is clear that external calls to solve linear systems constitute the major computational

82
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.7 DYNAMIC PROCESS OPTIMIZATION EXAMPLES

expense of this algorithm, further justifying the assumption in complexity analysis. How-

ever, the distribution between the 8 processors is fairly even. We can clearly see that each

cycle of cyclic reduction reduces the number of linear solves by a factor of two. The first

cycle lasts about 5.5 seconds. In this cycle, 32 factorizations are done corresponding to

32 diagonal blocks. Similarly, the second cycle (ending around t = 9) and the third cycle

(ending around t = 10.5) contain 16 and 8 external calls respectively. From the fourth cycle

onward, the processors are not fully loaded due to fewer factorizations required.

As we know from section 5.6.3, calling MA57 from Matlab’s MEX interface has a larger

overhead than using the interface through Backslash. With a more efficient interface, ev-

ery blue bar in Fig. 5.10 could be shortened, leading to better performance of the cyclic

reduction method.

Time(s)

0 2 4 6 8 10 12 14 15.33

P
ro

c
e
s
s
o
r

1

2

3

4

5

6

7

8

Figure 5.10: MA57 calls on each processor

5.7 Dynamic Process Optimization Examples

We now apply both TCR with symmetry and Matlab Backslash as linear solvers to solve

four dynamic process optimization problems. These tests will allow us first to determine

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 83

5.7 DYNAMIC PROCESS OPTIMIZATION EXAMPLES

whether the overall NLP algorithm can tolerate the relatively larger rhs error. Then, we

can evaluate the potential for parallel speedup by using CR methods.

The four case study models are built in the AMPL [66] modeling environment and

solved by an IPOPT-like solver in MATLAB (i.e. MIPOPT). MIPOPT uses ASL to perform

function and derivative evaluations. Since cyclic reduction methods require a special struc-

ture in the KKT matrices, we pre-process the model to determine the permutation order.

Because the NLP solver requires primal and dual variables to be sorted in the default order

(all primal first, then dual), the permutation is applied before each cyclic reduction solve,

then reversed afterwards. This assures that the NLP algorithm applied in the parallel CR

method and the serial method are the same except for the choice of linear solver. However,

this increases the computational expense in the cyclic reduction approach. Therefore, we

use cycle count and average KKT solve time as performance metrics instead of total CPU

time.

5.7.1 Auto permutation tool

Typically, when a NLP solver needs to solve a linear KKT system, the primal and dual

variables are in default order (5.5). This means that the KKT matrix, from the perspective

of the NLP solver, is always in form (5.4). To directly integrate our CR methods without

modifying the NLP solver, we need to permute the matrix into block tridiagonal form at

each cycle, then permute the system back to return it to the optimization method. This

means we permute the original KKT system into variable order (5.6) and matrix structure

(5.7). In this section, we introduce an auto permutation tool that we developed to auto-

matically generate the permutation matrix directly from an AMPL model. Once we know

the permutation matrix, it is easy to permute the KKT matrix to a block tridiagonal matrix

for cyclic reduction methods and permute it back for the general IPOPT routine.

84
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.7 DYNAMIC PROCESS OPTIMIZATION EXAMPLES

To make the permutation easier, we require that all state variable names in AMPL have

a prefix “s ” and all continuity constraint names have a prefix “con ”. Also we require that

when variables and constraints are indexed over finite elements and collocation points, the

finite element index comes first.

In the pre-processing phase, we read the AMPL auxiliary files (.col, .row). These files

give the AMPL default order for constraints and variables. Using both of these lists, we

determine the new ordering of variables and constraints that gives the block tridiagonal

structure. The permutation orderings are stored in memory and used at each cycle.

5.7.2 MHE-CSTR

The first case study is state-estimation of a continuous stirred tank reactor. The dynamic

optimization problem represents the estimation at a single time point within a moving

horizon estimation framework.

The dynamic model, taken from Qu and Hahn [67], describes the exothermic reaction

between sodium thiosulfate (component A) and hydrogen peroxide (component B).

dCA
dt

=
F

V
(CinA − CA)− 2k(TR)C2

A (5.20a)

dTR

dt
=
F

V
(T inR − TR) +

2(−∆HR)k(TR)C2
A

ρCP
−

UA

VρCP
(TR − TCW) (5.20b)

TCW

dt
=
FCW

VCW
(T inCW − TCW) +

UA

VCWρCWCPCW
(TR − TCW) (5.20c)

This model was used to estimate all three state variables, concentration CA, reactor tem-

perature TR, and cooling water temperature Tcw. The estimation uses noisy measurements

of two states, TR and Tcw. The values of control variables F and Fcw are known. Parame-

ters CinA , T inR , T incw, V , A, ∆HR, ρ, Cp, and U were taken from Rajaraman et al. [68].

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 85

5.7 DYNAMIC PROCESS OPTIMIZATION EXAMPLES

Figure 5.11: KKT sparsity patterns for MHE-CSTR

The left graphic of Fig. 5.11 presents the original KKT sparsity pattern, which follows

the default order of variables and constraints from the AMPL ASL interface. The Hessian

and Jacobian parts of the KKT matrix are clearly distinguishable. The KKT matrix after

the re-ordering of variables and constraints based on the finite elements is shown in the

middle graphic of Fig. 5.11. There are 50 small blocks on the diagonal, corresponding to

50 finite elements (N = 50). These blocks appear to be dense, but if we zoom in to see two

finite elements, the symmetric sparsity pattern in each block is shown in the right graphic

of Fig. 5.11. Note that there are three continuity constraints in the off-diagonal blocks to

connect the variables. Within the diagonal blocks, we can again see the symmetric KKT

structure. Within the Jacobian part, there are three small dense blocks resulting from the

collocation equations. This example uses six collocation points per finite element.

The problem was solved by MIPOPT using several linear solvers, and the results are

shown in Table 5.1. All problems converged in 22 cycles and the KKT matrix is solved

within one second. The lack of parallel improvement is due to the relatively small problem

size. However, we note that the additional rhs error introduced by TCR symmetry does

not change the number of cycles required in the NLP solver. This means that the rhs error

is manageable.

86
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.7 DYNAMIC PROCESS OPTIMIZATION EXAMPLES

Table 5.1: MHE CSTR results

MA57 Backslash TCR symmetry

#Iter 22 22 22

Aver KKT solve time 0.0309 0.028 0.806

5.7.3 NMPC-CSTR

The second case study is nonlinear model predictive control of a CSTR benchmark problem

presented in [69]. The dynamics of the CSTR are described by the following differential

equations:

dcA
dt

= F (cA0 − cA)− k1cA − k3c
2
A (5.21a)

dcB
dt

= −FcB + k1cA − k2cB (5.21b)

dTR
dt

= F (Tin − TR) +
kWA

ρcpVR
(TK − TR)−

k1cA∆HAB + k2cB∆HBC + k3c
2
A∆HAD

ρcp

(5.21c)

dTK
dt

=
1

mKcpK
(Q̇K + kWA(TR − TK)) (5.21d)

where the reaction rates ki follow the Arrhenius law:

ki = k0,ie
−EA,i

R(TR+273.15) (5.22)

The ODEs are derived from component balances for the species A (with concentration

cA) and for species B (with concentration cB). The reactor temperature (TR) and the coolant

temperature (TK) evolve in time according to the energy balance, which considers the flow

in and out of the reactor, cooling duty, and reaction rates. The control inputs are the inflow

(F) normalized by the volume of the reactor and the heat removed by the coolant (Q̇K).

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 87

5.7 DYNAMIC PROCESS OPTIMIZATION EXAMPLES

The parameters that appear in the model equations are described in Table 5.2. The initial

conditions and constraints on the states are described in Table 5.3, while the constraints for

the control inputs are shown in Table 5.4.

Table 5.2: Parameter values of the NMPC CSTR

Parameter Value Unit Parameter Value Unit

k0,1 1.287× 1012 h−1 ρ 0.9342 kg/l

k0,2 1.287× 1012 h−1 cp 3.01 kJ/(kg ·K)

k0,3 9.043× 109 l/(mol · h) cpK 2.0 kJ/(kg ·K)

EA,1/R 9758.3 K A 0.215 m2

EA,2/R 9758.3 K VR 10.0 l

EA,3/R 8560.0 K mk 5.0 kg

∆HAB 4.2 kJ/mol Tin 130.0 ◦C

∆HBC −11.0 kJ/mol kW 4032 kJ/(h ·m2 ·K)

∆HAD −41.85 kJ/mol

The left graphic of Fig. 5.12 is the original KKT matrix sparsity pattern, while the middle

one shows the sparsity pattern after rearrangement. This example uses 40 finite elements

(N = 40) with 3 collocation points each. Because of fewer collocation points, the block

size is slightly smaller than in the previous case study. In the right graphic of Fig. 5.12,

the collocation constraints for each of the 4 state variables are visible, and the continuity

constraints are observed in the off-diagonal blocks.

The problem is solved in MIPOPT with MA57, Matlab Backslash, and traditional cyclic

reduction with symmetry. The results are presented in Table 5.5. All solves converge

quickly in a reasonable number of cycles, and the average KKT solve time is very small.

88
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.7 DYNAMIC PROCESS OPTIMIZATION EXAMPLES

Table 5.3: State variables of the NMPC CSTR

State Initial Condition Lower Bound Upper Bound Unit

cA 0.8 0.1 5.0 mol/l

cA 0.8 0.1 5.0 mol/l

TR 134.14 50.0 180.0 ◦C

TK 134.0 50.0 180.0 ◦C

Table 5.4: Control variables of the NMPC CSTR

Control Min. Max. Unit

F 5 100 h−1

Q̇K -8500 0 kJ/h

Again, parallel improvement is not observed because of the small problem size. This

means that the expense of calling the external linear solver within CR does not dominate

the other costs of the parallel algorithm, such as data transfer and parallelization set-up.

5.7.4 Polymer grade transition FBR

The third case study comes from operation of polymerization reactors. A single polymer-

ization reactor is used to produce many different grades of a polymer. When operating

this reactor, it is common to switch between grades without shutting down the process.

Any product produced during the transition is considered off-grade, usually with far less

value. This case study is a dynamic optimization problem to minimize the production of

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 89

5.7 DYNAMIC PROCESS OPTIMIZATION EXAMPLES

Figure 5.12: KKT sparsity patterns for NMPC CSTR

Table 5.5: NMPC CSTR results

MA57 Backslash TCR symmetry

#Iter 24 24 26

Aver KKT solve time 0.0153 0.0138 0.754

this off-specification product.

The model considers the copolymerization of ethylene and propylene. The reaction sys-

tem is described by the set of reactions shown in Table 5.6. Cp represents a potential catalyst

site, P0 represents an activated catalyst site, Cd represents dead site, A is the cocatalyst, Mi

represents monomer species i ∈ {C3H6, C2H4}, Pn,i represents a live polymer with chain

length n and end group i, andDn,i represents a dead polymer with chain length n and end

group i.

The polymer system is modeled using the method of moments to decrease the number

of states. Instead of modeling each chain length of polymer as a separate state variable,

the first three moments of the molecular weight distribution are used as states instead. The

90
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.7 DYNAMIC PROCESS OPTIMIZATION EXAMPLES

Table 5.6: Polymer grade transition FBR reactions

Reaction step Reactant Reaction Rate constant

Site activation
Hydrogen Cp +H2 → P0 kAH

Cocatalyst Cp +A→ P0 +B kAA

Chain initiation Monomer i P0 +Mi → P1,i kIi

Chain propagation Monomer j Pn,i +Mj → Pn+1,j kPj

Chain transfer

Hydrogen Pn,i +H2 → P0 +Dn,i kTH

Monomer j Pn,i +Mj → P1,j +Dn,i kTMj

Spontaneous Pn,i → P0 +Dn,i kTS

Site deactivation Spontaneous
Pn,i → Cd +Dn,i

kDS
P0 → Cd

differential equations are derived from the detailed reaction kinetics.

The kth moment of the living polymer distribution is given by

µk =

∞∑
n=1

nk [Pn]

and the kth moment of the bulk polymer is given by

λk =
∞∑
n=1

nk([Dn] + [Pn])

After applying the method of moments to describe moments k = 0, 1, and 2, the reaction

system is described by six differential equations in Table 5.7.

The reactor includes a bubble phase and an emulsion phase. Solid catalyst, cocatalyst,

and polymer are suspended in the emulsion phase. The bubble phase contains no solids,

thus no reactions occur there. The gas component concentrations are represented by Yi,

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 91

5.7 DYNAMIC PROCESS OPTIMIZATION EXAMPLES

Table 5.7: Polymer grade transition FBR moments model

Moments Reaction Rate

Zero order Rµ0 =

NM∑
i=1

(kIi [P0] [Mi])− ((kTH + kDH) [H2] + (kTS + kDH))µ0

Rλ0 =
NM∑
i=1

(kIi [P0] [Mi])

First order Rµ1 =
NM∑
i=1

(kIi [P0] [Mi] + kPi [Mi]µ0 + kTMi [Mi] (µ0 − µ1))

−((kTH + kDH) [H2] + (kTS + kDS))µ1

Rλ1 =
NM∑
i=1

(kIi [P0] [Mi] + kPi [Mi]µ0 + kTMi [Mi]µ0)

Second order Rµ2 =

NM∑
i=1

(kIi [P0] [Mi] + 2kPi [Mi]µ1 + kTMi [Mi] (µ0 − µ2))

−((kTH + kDH) [H2] + (kTS + kDS))µ2

Rλ2 =
NM∑
i=1

(kIi [P0] [Mi] + 2kPi [Mi]µ1 + kTMi [Mi]µ0)

for components i ∈ {H2, C3H6, C2H4, C3H8, C2H6, N2}. The solid particle concentrations

are represented as Sj for solid components j ∈ {catalyst, cocatalyst, polymer moments}.

The overall mass and energy balances are shown in Table 5.8, where parameters such as

minimum fluidization velocity Umf , bubble fraction δ, voidage εmf , mass transfer coeffi-

cient Kbe, and heat transfer coefficient Hbe are determined by semi-empirical correlations.

These correlations, taken from [70, 71], are included as algebraic equations in the model.

After applying the method of moments, the system consists of 27 state variables, includ-

ing concentrations of monomers, catalysts, inerts, temperature, and the moments of the

molecular weight distribution. Due to the highly non-linear nature of the process, the dif-

ferential equations are discretized with Radau collocation on 80 finite elements (N = 80).

92
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.7 DYNAMIC PROCESS OPTIMIZATION EXAMPLES

Table 5.8: Mass balance and energy balance

Emulsion Phase

d[Yi]e
dt = Ue

H ([Yi]in − [Yi]e) + (1−δ)Kbe

δεmf
([Yi]b − [Yi]e) +

1−εmf

εmf
Ri − [Yi]e

H
dH
dt

d[Sj]
dt =

Qin,j

Ve(1−εmf) [Sj]in − Qout

Ve
[Sj] +Rj − [Sj]

H
dH
dt

dTe

dt =
UeAeεmf

∑
i

[Yi]in
∫ Tin
Te

CpidT+Ve(1−εmf)Rpol∆Hpol+VbHbe(Tb−Te)+VbKbe

∑
i

([Yi]b−[Yi]e)
∫ Tb
Te

CpidT∑
i
Veεmf [Yi]eCpi+Ve(1−εmf)ρpolCppol

Bubble

d[Yi]b
dt = Ub

H ([Yi]in − [Yi]b)−Kbe([Yi]b − [Yi]e)− [Yi]b
H

dH
dt

dTb

dt =
UbAb

∑
i

[Yi]in
∫ Tin
Tb

CpidT−VbHbe(Tb−Te)∑
i
Vb[Yi]bCpi

Bed height

dH
dt =

−Qout(1−δ)(1−εmf)ρpol−
∑
i

(RMi
Mwi)Ve(1−εmf)

ρpolAe(1−εmf)

The objective minimizes the integral of squared deviation from the desired polymer prop-

erties, plus a regularization term on the controls, i.e.,

Min

∫ Tf

0
‖z(t)− z∗‖Q + ‖u(t)− u∗‖Rdt. (5.23)

In Fig. 5.13, the original KKT pattern looks relatively dense because most states interact

with each other in the reactions. However, we can still permute this system based on the

finite elements, as shown in the middle graphic of Fig. 5.13. If we zoom in to one finite

element, the block is shown in the right graphic, with a relatively dense but well-defined

structure.

This problem is slightly larger than the previous ones and more nonlinear because of

the particular reaction kinetics. Therefore, optimization using all methods requires more

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 93

5.7 DYNAMIC PROCESS OPTIMIZATION EXAMPLES

cycles to solve the NLP than the previous examples. Even though Matlab Backslash is still

fastest in average KKT solve time, the gap between serial and parallel methods decreases

with increasing problem size.

Figure 5.13: KKT sparsity patterns for polymer grade transition FBR

Table 5.9: Grade transition FBR results

MA57 Backslash TCR symmetry

#Iter 96 96 54

Aver KKT solve time 0.81 0.72s 0.88s

5.7.5 NMPC BFB

The final case study is motivated by post-combustion carbon capture. The system under

consideration is a bubbling fluidized bed adsorber. Solid sorbent particles are added at

the top of the bed while flue gas is added from the bottom of the bed. The solid and

gas contact each other in counter-current flow and CO2 adsorbs onto the surface of the

solid particles. The solid particles are then transported to a regenerator, where increased

94
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.7 DYNAMIC PROCESS OPTIMIZATION EXAMPLES

temperature causes the CO2 to desorb for later compression and sequestration. In this case

study, we solve one time step of nonlinear model predictive control for a detailed adsorber

model.

This bubbling fluidized bed adsorber model developed by NETL considers adsorption

kinetics and bed hydrodynamics to predict the axial and temporal variations in concentra-

tions and temperature [72, 73]. The flow within the column is modeled using three flow

regimes as shown in Figure 5.14: an upward flowing bubble region (containing no solids),

an upward flowing cloud wake region (containing some solids), and a downward flowing

emulsion region (containing solids). The adsorption reactions, which occur in the solid

phase, are given as follows:

H2O(g) −−⇀↽−− H2O(phys)

2 R2NH+CO2 −−⇀↽−− R2NH +
2 + R2NCO −

2

R2NH + CO2 + H2O(phys) −−⇀↽−− R2NH +
2 + HCO −

3

(5.24)

Mass and energy balances are written for each of the three regions and each phase within

those regions. The allowable set of mass and heat transfer flows are shown in Fig. 5.15.

The total set of mass and energy balances consists of 20 partial differential equations. As

an example, consider the gas phase mass balance equation in the bubble region:

∂cb,j
∂t

δAx = −
∂Gbyb,j
∂x

−AxδKbc,j(cb,j − cc,j) +Kg,bulk,j (5.25)

The left hand side accounts for the accumulation of component j in the bubble region,

where cb,j is the concentration of component j in the bubble region, δ is the volume fraction

of the bubble region, and Ax is the cross-sectional area. The first right hand side represents

the upward gas flow in the bubble region, where Gb is the axial flow rate and yb,j is the gas

mole fraction for component j in the bubble region. The second term on the right hand

side represents the mass transfer between the bubble and the cloud-wake regions, where

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 95

5.7 DYNAMIC PROCESS OPTIMIZATION EXAMPLES

Figure 5.14: BFB

adsorber

Figure 5.15: Mass and energy relations

Kbc,j is the mass transfer coefficient and cc,j is the concentration of component j in the

cloud-wake region. The final term Kg,bulk,j represents the bulk flow of component j from

the emulsion region into the bubble region. The value of this last term is determined by

a separate algebraic equation. The other mass and energy balance PDEs may be found in

[49, 72, 73].

The remainder of the model consists of algebraic equations. These equations include

empirical correlations to describe the hydrodynamics, heat and mass transfer coefficient

relations, gas phase properties including viscosity, thermal conductivity, and heat capac-

ity, empirical correlations to describe the cooling tubes within the adsorber, and detailed

nonlinear reaction kinetics for reactions (5.24).

When fixing the discretization in space, all the collocation variables in space become

state variables in time. This leads to about 16000 variables and constraints for each finite

element in time. We discretized the problem using 5, 10, and 16 time finite elements and

compare the performance of the serial and parallel methods.

96
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

5.8 CONCLUSIONS

Figure 5.16: KKT sparsity patterns for NMPC BFB

In Fig. 5.16 we use 10 time finite elements (N = 10) as an example. This KKT matrix has

2.7 million nonzeros. The auto permutation tool permutes this system to block tridiagonal

structure; the structure of one finite element is shown in the right graphic.

When using 16 finite elements, the number of variables and constraints is nearly 257000,

and the order of the KKT matrix is about 514000. From Table 5.10, we can see that both

methods converge the problem easily. Even though TCR with symmetry takes slightly

more iterations than Matlab Backslash (due to larger rhs error discussed in section 5.5),

parallelization significantly reduces the average KKT solve time for traditional cyclic re-

duction with symmetry as the problem size increased. With 16 finite elements, Matlab

Backslash required 485.45 seconds for each linear system solve on average, while the tra-

ditional cyclic reduction with symmetry only takes 118.96 seconds.

5.8 Conclusions

In this chapter, we present two cyclic reduction methods to exploit the block tridiagonal

structure in simultaneous dynamic optimization. Despite having better stability proper-

ties, Yalamov CR is no more accurate than traditional CR after exploiting symmetry. In

CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION
PROBLEMS 97

5.8 CONCLUSIONS

Table 5.10: BFB results

#Finite Elements 5 10 16

#Variables 80250 160500 256800

#Constraints 80235 160470 256752

MA57 #Iter 7 8 11

MA57 Aver KKT solve time 35.18s 189.39s 356.11s

Backslash #Iter 7 8 11

BS Aver KKT solve time 42.36s 182.63s 485.45s

TCR symmetry #Iter 13 14 17

TCR Aver KKT solve time 59.86s 98.29s 118.96s

addition, traditional CR is much faster than the Yalamov variant on a set of test matrices.

The worst-case time complexity analysis explains the observed behavior very clearly.

In addition, we applied traditional CR with symmetry stabilization to 4 case studies

from chemical engineering. The case studies show that an interior point method using

our CR linear solver is competitive with the same method using serial linear solvers. The

advantage of the parallel CR algorithm is most evident for the largest problem. With very

many states and blocks, a parallel speedup of a factor of 4 was observed using 8 processors.

Future work will deal with a deeper analysis and refinement of the stability properties

for CR methods. We also plan to implement these methods within an MPI environment in

order to demonstrate these approaches on massively parallel machines.

98
CHAPTER 5. PARALLEL CYCLIC REDUCTION DECOMPOSITION FOR DYNAMIC OPTIMIZATION

PROBLEMS

Chapter 6

IPOPT for Mathematical Programs with

Complementarity Constraints (MPCCs)

In this Chapter, we consider the solution of MPCCs with IPOPT. First, we will explore

the ways to reformulate MPCCs to NLPs. Based on the reformulations, we apply two

auto-adjustment penalty methods, then propose a constraint elimination method which

can eliminate the dependent (equality or inequality) constraints locally. All methods are

compared with MacMpec benchmark library and two large-scale applications are consid-

ered.

6.1 Introduction

Mathematical programs with complementarity constraints (MPCCs), are useful for op-

timization in many applications. Complementarity constraints require at least one of a

pair of bounds to be active. This is useful for optimization since they can model certain

disjunctions without binary variables. Although introducing binary variables and using

mixed integer optimization is the more general approach to handling disjunctions, these

solution methods may be computationally expensive for large nonlinear systems because

worst-case complexity is exponential in the number of discrete decisions (NP hard). Com-

plementarity constraints allow for solution techniques based on nonlinear programming,

which can be used to quickly obtain local solutions.

CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS
(MPCCS) 99

6.1 INTRODUCTION

A good review of MPCC applications is given in [74]. The authors review applications

such as contact and friction mechanics, structural design, traffic equilibrium, optimal con-

trol, and market equilibria. In chemical engineering, applications include flow reversal,

check valves, relief valves, controller saturation, and disappearance of phases in equilib-

rium calculations [75].

There is a long history of work on solution methods for MPCCs. Many papers use the

term Mathematical Programs with Equilibrium Constraints (MPECs), which is a gener-

alization of the complementarity constrained problem. The relation is outlined below in

section 6.2. MPCCs or MPECs are difficult to solve because constraint qualifications do

not hold. This is a challenge for nonlinear programming solvers. Many approaches have

been proposed to transform the MPCC into an NLP that satisfy constraint qualifications,

including relaxation methods [76, 77], smoothing methods [78], lifting methods [79, 80],

and penalization methods [81, 82, 83].

In this work, we will focus on computational efficiency of MPCC solution methods.

In Section 6.2, we will derive the MPCC formulation from a more general MPEC for-

mulation, which itself is an example of how to reformulate a bilevel optimization into

an MPCC. Then we discuss the features that make MPCC challenging and review some

computationally attractive solution strategies. In Section 6.3, we will present two auto-

adjusting penalty methods with convergence guarantees. In Section 6.4, we introduce a

new constraint elimination method to eliminate the locally dependent constraints arising

from complementarity constraints. The implementation details are provided in Section

6.5, and the algorithms are compared on the MacMPEC test set and results are presented

in Section 6.6. In Section 6.7, we discuss two applications in chemical engineering, in-

cluding building the MPCC model and testing with our proposed methods. Finally we

conclude and discuss future directions.

100
CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

(MPCCS)

6.2 MPCC BACKGROUND

6.2 MPCC Background

The general form of a MPCC we use in this chapter is given as follows:

min f(x)

s.t. c(x) = 0

g(x) ≤ 0

0 ≤ y ⊥ z ≥ 0

(6.1)

where x = [wT , yT , zT]T ∈ Rn. Both complementarity variables y and z are in Rnc and the

remaining variables w ∈ Rn−2nc . The objective function is f : Rn → R, equality constraints

c : Rn → RmE , inequality constraints g : Rn → RmI . ⊥ is the complementarity operator

enforcing at least one of the bounds to be active. The complementarity constraint implies

that

y(i) = 0 OR z(i) = 0, i = 1, . . . , nc,

y ≥ 0, z ≥ 0
(6.2)

Here the OR operator is inclusive, as both variables may be zero.

MPCCs can be generalized as mathematical programs with equilibrium constraints (MPECs).

A mathematical program with equilibrium constraints is an NLP with a variational in-

equality as a constraint, represented as follows:

〈G(vy), u− vy〉 ≥ 0 ∀u ∈ K

where 〈·, ·〉 represents an inner product, and K is typically a convex set, and vy ∈ K. If

the functional G is a gradient mapping of some convex function g, i.e. G(vy) := ∇g(vy),

and K is convex, then the variational inequality corresponds to the optimality conditions

of a convex optimization problem. Assuming a finite dimensional variational inequality

CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS
(MPCCS) 101

6.2 MPCC BACKGROUND

we can include it in a mathematical program to form an MPEC, as follows:

minvx,vy f(vx, vy)

s.t. c(vx, vy) ≥ 0

(u− vy)TG(vx, vy) ≥ 0 ∀u ∈ K(vx)

(6.3)

where we have introduced upper level variables vx that may affect the set K. If the set K

can be represented as a set of inequalities,

K(vx) = {vy | s(vx, vy) ≥ 0}

Problem (6.3) can then be transformed to a MPCC as follows [81]:

minvx,vy ,λ f(vx, vy)

s.t. c(vx, vy) ≥ 0

G(vx, vy)−∇s(vx, vy)Tλ = 0

0 ≤ s(vx, vy) ⊥ λ ≥ 0

(6.4)

Note that formulation (6.4) can be easily stated in the MPCC standard form (6.1). This

is equivalent to using the KKT conditions when the variational inequality represents the

optimality conditions of an inner convex optimization problems.

Now we will discuss how to go about solving MPCCs. Most solution approaches use

nonlinear programming concepts. To apply existing NLP solution strategies, we can refor-

mulate the complementarity constraints in (6.1) in several ways as follows,

y(i)z(i) = 0, i = 1, . . . , nc

y(i)z(i) ≤ 0, i = 1, . . . , nc

yT z ≤ 0

yT z = 0

, x ≥ 0, y ≥ 0 (6.5)

The first two reformulations each contain nc constraints while the last two reformulations

only use one constraint to replace the complementarity constraints.

102
CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

(MPCCS)

6.2 MPCC BACKGROUND

After reformulation, the MPCC problem becomes a general NLP problem. However,

these NLP problems are hard to solve due to the nonsatisfaction of constraint qualifica-

tions. It is easy to show that neither LICQ nor MFCQ is satisfied at any feasible points for

any of the reformulations in (6.5). For example, consider the first reformulation y(i)z(i) = 0.

At a feasible point where y(i) = 0, the constraint y(i)z(i) = 0 is dependent with the active

bound y ≥ 0, so LICQ does not hold. Because of the complementarity constraints, it is also

clear that there is no feasible search direction into the interior of the inequalities (y > 0,

z > 0), so MFCQ fails as well. Similar reasoning can be used to show that none of the

reformulations satisfy LICQ or MFCQ. We will discuss this in more detail later in Section

6.4. As we mentioned in Chapter 2, without a CQ, an optimal solution may not be a KKT

point, and NLP solvers designed to find KKT points may not be suitable. Therefore, we

will first consider alternative optimality conditions for MPCCs.

6.2.1 MPCC optimality conditions

We focus on KKT-like optimality conditions for MPCCs. Depending on the assumptions,

different stationarity conditions may be derived. However, the practicality of some of these

constraint qualifications is debatable. The most desired stationarity condition is Bouligand

stationarity, or B-stationarity. A feasible point w∗ of (6.1) is said to be B-stationary if d = 0

is a solution of the linearized complementarity problem:

mind ∇xf(x∗)Td

s.t. ∇xc(x∗)Td = 0

g(x∗) +∇xg(x∗)Td ≤ 0

0 ≤ y + dy ⊥ z + dz ≥ 0

(6.6)

However, verification of B-stationarity would require solving an LPEC (linear program

with equilibrium constraints). Therefore, most stationarity conditions propose some KKT-

CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS
(MPCCS) 103

6.2 MPCC BACKGROUND

like condition instead, which requires additional assumptions.

Consider the following KKT-like conditions for (6.1). We say that x∗ is weakly stationary

if there exist multipliers (λ, η, νy, νz) such that

∇f(x∗) +∇c(x∗)Tλ+∇g(x∗)T η −

0

νy

νz

 = 0

c(x∗) = 0

0 ≥ g(x∗) ⊥ η ≥ 0

0 ≤ y∗ ⊥ z∗ ≥ 0

y∗i > 0 =⇒ νy,i = 0, and z∗i > 0 =⇒ νz,i = 0, ∀i = 1, . . . , nc

(6.7)

Note that a weakly stationary point still permits a descent direction if some νy,i < 0

or νz,i < 0 for some i. The condition may be strengthened in several ways. Based on

the presentation in [84], we summarize these common stationarity conditions using the

conditions they put on multipliers νy and νz . Define the set of biactive indices:

D(x) := {i | yi = zi = 0} (6.8)

1. A point x∗ satisfying (6.7) is called strongly stationary if

νy,i ≥ 0 and νz,i ≥ 0, ∀i ∈ D(x∗) (6.9)

2. A point x∗ satisfying (6.7) is called A-stationary if

νy,i ≥ 0 or νz,i ≥ 0, ∀i ∈ D(x∗) (6.10)

3. A point x∗ satisfying (6.7) is called C-stationary if

νy,iνz,i ≥ 0, ∀i ∈ D(x∗) (6.11)

104
CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

(MPCCS)

6.2 MPCC BACKGROUND

4. A point x∗ satisfying (6.7) is called M-stationary if

(νy,i > 0 and νz,i > 0) or νy,iνz,i = 0, ∀i ∈ D(x∗) (6.12)

Although each stationarity condition is valid with its corresponding assumptions, in

practice only strong stationarity excludes the possibility of a trivial search direction on

general problems. Therefore, we will examine in more detail the conditions associated

with strong stationarity.

6.2.2 MPCC constraint qualification

Let x̄ = [w̄T , ȳT , z̄T]T be a feasible point of (6.1), and define the relaxed NLP (RNLP) as:

min f(x)

s.t. c(x) = 0

g(x) ≤ 0

y(i) = 0, i ∈ IY /IZ

z(i) = 0, i ∈ IZ/IY

y(i) ≥ 0, z(i) ≥ 0 IY ∩ IZ

(6.13)

where IY = {i : ȳi = 0} and IZ = {i : z̄i = 0}. If LICQ (see Chapter 2) holds for (6.13)

at the point x̄, then we say that MPCC-LICQ holds for (6.1) x̄. MPCC-MFCQ is defined

similarly.

It has been shown that strong stationarity implies B-stationarity [85]. With MPCC-LICQ,

B-stationarity implies strong stationarity as well. The usefulness of strong stationarity as

necessary optimality conditions is summarized with the following theorem:

Theorem 5. [1, 85, 86] If x̄ is a solution to the MPCC (6.1) and MPCC-LICQ holds at x̄, then x̄

is strongly stationary.

CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS
(MPCCS) 105

6.2 MPCC BACKGROUND

6.2.3 Solving methods

Most solving methods for MPCCs of form (6.1) can be divided into two categories: NLP

reformulations and specialized algorithms. The first category applies some transformation

of the constraint (6.5) to convert the problem into normal NLP problem(s). Usually, this

involves relaxation of the complementarity, and a sequence of NLPs are solved, to create a

sequence that converges to the solution of (6.1). Here, we listed the most common relax-

ations for NLP tools to be applied. See [83, 86] for details on the convergence properties.

Reg(ε) : min f(x)

s.t. c(x) = 0, g(x) ≤ 0

y, z ≥ 0, yizi ≤ ε, i = 1, . . . , nc

(6.14)

RegComp(ε) : min f(x)

s.t. c(x) = 0, g(x) ≤ 0

y, z ≥ 0, yT z ≤ ε

(6.15)

RegEq(ε) : min f(x)

s.t. c(x) = 0, g(x) ≤ 0

y, z ≥ 0, yizi = ε, i = 1, . . . , nc

(6.16)

PF (ρ) : min f(x) + ρyT z

s.t. c(x) = 0, g(x) ≤ 0, y, z ≥ 0
(6.17)

Besides the regularization and penalty formulas, nonlinear complementarity problem

functions and smoothing functions have also been used to solve MPCCs [87, 88]. An alter-

native way to form the complementarity constraint is

y −max(0, y − z) = 0, y > 0, z > 0

106
CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

(MPCCS)

6.2 MPCC BACKGROUND

The max operator can be smoothed by several nonlinear functions. One widely studied

NCP function is the Fischer-Burmeister function, and the problem is reformulated as fol-

lows,

NCP (ε) : min f(x)

s.t. c(x) = 0, g(x) ≤ 0, y, z ≥ 0

y + z −
√
y2 + z2 + ε = 0

(6.18)

The practical performance of popular NLP reformulations was compared by [75]. Com-

paring both on the MacMPEC test set and several chemical process examples, it was found

that the penalty reformulation was the most effective. The penalty reformulation transfers

the complementarity condition to the objective function, multiplied by a penalty weight.

The nonlinear programming solver KNITRO has an interface for MPCCs using the penalty

reformulation [1]. The method will be discussed in more detail in later sections.

IPOPT-C [89] is a specialized modification of the NLP solver IPOPT designed to solve

MPCCs. This method is closely based on the inequality reformulation (second equation in

(6.5)). The right hand side zero is replaced with an ε term that is automatically adjusted

with the barrier parameter µ. As the two parameters converge to zero, the iterates converge

superlinearly to the solution under the assumptions of strong stationarity, MPCC-LICQ,

and upper level strict complementarity.

FilterMPEC [90] is another method adapted from an NLP solver, in this case filterSQP.

As an active set method, it has advantages in dealing with degeneracy of the NLP reformu-

lation. FilterMPEC uses the third reformulation from (6.5) with the right hand side relaxed

as follows:

yT z ≤ δ(yTk zk)1+κ

Without this relaxation, Fletcher and Leyffer [91] showed that the QP can be infeasible

arbitrarily close to a solution of the MPCC. By using this relaxation, this issue is avoided

CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS
(MPCCS) 107

6.3 AUTO-ADJUSTING PENALTY METHODS

and convergence can be shown. FilterMPEC has linear convergence in theory but practical

performance is very good.

While FilterMPEC addresses the problem of infeasible QP subproblems with a problem

specific relaxation, SNOPT [14] has a built in general method for handling this problem

that works well for solving the inequality reformulation (third equation in (6.5)). When

encountering an infeasible QP subproblem, SNOPT will enter nonlinear elastic mode. In

this mode, new positive variables are added to slack nonlinear constraints and the positive

slacks are penalized in the objective function. This allows the SQP algorithm to continue

despite the poorly posed MPCC constraint set. Practical performance is good, similar to

FilterMPEC in speed and robustness [90]. Convergence properties are analysed by [86].

In general, replacing the structural complementarity constraint by a set of equations

could trap the algorithm into spurious stationary points (A- M- C-stationary points), which

are not necessarily stationary points of the original MPCC. SLPEC Alogrithm [84] solves an

LPEC to predict the optimal active set and solves an equality-constrained QP to accelerate

local convergence. The global convergence proof shows that this algorithm avoids the

spurious stationary and converges to B-stationary points. Alternatively, in [92], another

numerically stable approach using a sequence of perturbed problems is considered. These

methods can successfully deal the spurious stationarity generated by the KKT-approach

for bilevel optimization problems and converges to B-stationary points.

6.3 Auto-adjusting penalty methods

We mentioned above that the penalty reformulation method has the most success of the

MPCC to NLP reformulations. The success of SNOPT elastic mode is similarly related. The

penalty approach to MPCCs works by solving a sequence of penalty subproblems with the

108
CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

(MPCCS)

6.3 AUTO-ADJUSTING PENALTY METHODS

form (6.17).

The penalty parameter ρ can be adjusted to eventually find a solution of the MPCC. The

following two theorems form the basis of the penalty method.

Theorem 6. [83] If x∗ is a strongly stationary point for the MPCC (6.1), then x∗ is a stationary

point of NLP (6.17) for all ρ sufficiently large.

Theorem 7. [86] If x∗ is a solution to NLP (6.17) for some ρ > 0, and x∗ is feasible for MPCC

(6.1), then x∗ is a strongly stationary solution to (6.1).

Together, these two theorems tell us that we only need to find a sufficiently large value of

ρ, then solving (6.17) is equivalent to solving the MPCC, as long as we find a solution where

the penalty term in the objective equals zero (i.e. the solution is feasible for the MPCC).

However, as ρ gets large, the NLP (6.17) becomes more poorly scaled, so we prefer to start

with a moderate value and increase it until finding a solution.

The penalty approach can be very efficient for MPCCs. With a fixed penalty parameter,

there is no guarantee that at the optimal solution of (6.17), the penalty function yT z is below

a desired tolerance. In other words, the solution of (6.17) is not necessarily the solution of

(6.1). To avoid this problem, in practice, we give an initial guess of ρ, and converge (6.17).

If yT z is too large, we increase the penalty parameter ρ and try again. Once ρ is sufficiently

high, we will converge to a strongly stationary solution of (6.1) as long as MPCC-LICQ

holds.

Applying IPOPT to (6.17), the subproblem(ρ, µ) is shown as follows,

min f(x) + ρyT z − µB

s.t. c(x) = 0

g(x) + s = 0

(6.19)

where B = Σ ln(yi) + Σ ln(zi) + Σ ln(si).

CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS
(MPCCS) 109

6.3 AUTO-ADJUSTING PENALTY METHODS

Using the interior point strategy, problem (6.19) is solved repeatedly as µ is decreased

until (6.17) converges. In the penalty reformulation for MPCCs, ρ is increased until the so-

lution of (6.17) is feasible for the original problem. In the following section, we investigate

two methods to automatically adjust these two parameters

6.3.1 ρ(µ) algorithm

The typical way to deal with these two parameters ρ and µ is to solve (6.17) with an NLP

solver such as IPOPT, then check the value of yT z. If the value is not within the tolerance,

we increase the penalty parameter ρ try again. Note that when we increase the penalty

parameter ρ, we start the new NLP problem from the current point instead of the initial

point of the MPCC. We call this the ρ(µ) approach because first we converge on µ, then

adjust ρ. The detailed algorithm is shown as follows,

Algorithm ρ(µ):

1. Initialization: ρ = ρ0, µ = µ0

2. Solve subproblem(ρ, µ) Equation (6.19)

3. if PF(ρ) is solved, go to next step, otherwise µ := c1µ, go to Step 2.

4. if yT z ≤ εmpcc, terminate, otherwise ρ := c2ρ, go to Step 2.

6.3.2 µ(ρ) algorithm

Algorithm ρ(µ) required convergence of problem (6.17) before increasing the penalty pa-

rameter ρ. However, sometimes it is clear that ρ is not large enough very early in the NLP

solving process. In this case, it may not be worthwhile to fully converge the NLP. Rather

we can increase ρ before converging µ. This is called the µ(ρ) approach, first proposed in

110
CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

(MPCCS)

6.3 AUTO-ADJUSTING PENALTY METHODS

[1].

Algorithm µ(ρ):

1. Initialization: ρ = ρ0, µ = µ0

2. Solve subproblem(ρ, µ) Equation (6.19)

3. if yT z ≥ µc3 , ρ := c2ρ, otherwise µ := c1µ.

4. if PF(ρ) is solved and yT z ≤ εmpcc, terminate. Otherwise go to Step 2.

In both algorithms, εmpcc > 0 is the tolerance of the complementarity error. In practice

we can use the same value as the overall tolerance of IPOPT. 0 < c1 < 1 is the ratio to

decrease barrier parameter µ, while c2 > 1 is the ratio to increase the penalty parameter

ρ and 0 < c3 < 1 is a tuning parameter. In [1], these values were c2 = 10, c3 = 0.4

for experimental results (c1 is related to IPOPT settings). However, the best values of

the parameters are problem specific. In general, we set c3 so that εmpcc = µc3final where

µfinal is an estimate of the final barrier parameter value required to converge the particular

problem within tolerance.

In the above two algorithms, every time we change µ or ρ, the filter used for globaliza-

tion in IPOPT has to be reset. This is a disadvantage of the penalty method because IPOPT

may revisit previous points after updating the penalty.

CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS
(MPCCS) 111

6.4 CONSTRAINT ELIMINATION METHODS

6.4 Constraint elimination methods

Consider the equality reformulation for the constraint 0 ≤ yi ⊥ zi ≥ 0

yizi = 0 (6.20a)

yi ≥ 0 (6.20b)

zi ≥ 0 (6.20c)

There are three cases that this constraint is feasible. Case 1: yi = 0, zi > 0. Case 2: yi > 0,

zi = 0. Case 3: yi = 0, zi = 0. Since Case 1 and Case 2 are symmetric, we will only discuss

Case 1 and Case 3.

For case 1, both (6.20a) and (6.20b) are active because yi = 0 at this point. The Jacobian

matrix of active constraints of the equality reformulation for the pair of complementarity i

is shown as follows, zi 0

−1 0

where zi > 0, note that the matrix is singular. Because the Newton step from IPOPT

satisfies the linearized equality constraints. The constraint solves yi = 0, yidzi + zidyi = 0

assures the search direction dyi = 0, so yi ≥ 0 is a redundant active constraint that will only

contribute degeneracy. We could simply remove the yi ≥ 0 for the purposes of calculating

the step at this iteration, since the search direction will always satisfy this constraint.

For case 3, yi = 0, zi = 0. The Jacobian matrix yizi = 0 is a zero row in the KKT matrix.

This doesn’t provide any information and the degeneracy makes the KKT system hard to

solve. As mentioned in Chapter 4, we can use Big-M structured regularization to eliminate

the dependent equality.

In Chapter 4, we discussed how to delete dependent equality constraints in IPOPT. In

this chapter, we will discuss how to remove inequality constraints, then propose an al-

112
CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

(MPCCS)

6.4 CONSTRAINT ELIMINATION METHODS

gorithm to solve MPCCs which automatically removes the dependent constraints locally.

The testing results for this new algorithm are shown in Section 6.6.2.

6.4.1 Removing inequality constraints

In IPOPT, all the inequality constraints are modified with slack variables to become equal-

ity constraints and the inequality is transformed into bounds on the slack variables. There-

fore, numerically eliminating an inequality constraint is equivalent to removing the vari-

able bound. As we mentioned in Chapter 3, the linear system of the KKT conditions is

given as follows,
Wk Ak −I

(Ak)
T 0 0

Vk 0 Sk

dxk

dλk

dvk

 = −

∇f(xk) +Akλk − vk

c(xk)

SkVke− µje

 (6.21)

The presentation in Chapter 3 assumes that all variables have a zero lower bound. Here,

we assume arbitrary lower bounds xL and define the matrix Sk := diag(xk−xL). This will

make it easier to introduce the concept of eliminating a bound.

To remove one lower bound of x, it is equivalent to set the lower bound x
(i)
L to −∞. So

in (6.21) we set s(i)
k to +∞. Borrowing the concept from Big-M structured regularization, if

we would like to eliminate the lower bound of the ith variable, a large finite number M is

used in the implementation instead of s(i)
L . When we pivot on the modified SL, the results

are shown as follows,Wk + Σk Ak

(Ak)
T 0

dxk
dλk

 = −

∇ϕµj (xk) +Akλk

c(xk)

 (6.22)

Both Σk = S−1
k Vk and ∇ϕµj (xk) are changed due to the modification. Σ

(i)
k → 0 since

(S
(i)
k)−1 goes to zero. Similarly, the corresponding µ(i)

j is eliminated in ∇ϕµj (xk) as well.

CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS
(MPCCS) 113

6.4 CONSTRAINT ELIMINATION METHODS

Here, we can calculate the step without a bound. However, the bound push and filter

acceptance criteria don’t change, which assures that the step is also valid for the original

problem.

6.4.2 Algorithm

The overall algorithm for solving the MPCC with IPOPT using constraint elimination is

stated in Algorithm III.

Algorithm III

Given: Starting point (x0, λ0, v0) with x0, v0 > 0; initial value for the barrier parameter

µ0 > 0 and δlastw ← 0; Constants εtol, κθ, κε > 0, sθ > 1, sϕ ≥ 1, γα ∈ (0, 1], γϕ, γθ ∈ (0, 1),

ηϕ ∈ (0, 1
2) and 0 < δ̄minx < δ̄maxx , δ̄c > 0, 0 < κ−x < 1 < κ+

x < κ̄+
x , κc ≥ 0 εmpcc > 0.

1. Initialize. Initialize the filter F0 := {(θ, f) ∈ R2 : θ ≥ θmax} and the iteration counter

k ← 0.

2. Check convergence for the overall problem. If E0(xk, λk, vk) ≤ εtol (with the error estimate

E0 defined in (3.4)), then STOP [CONVERGED].

3. Check convergence for the barrier problem. If Eµj (xk, λk, vk) ≤ κεµj , then

3.1. Update µj+1 = max
{
εtol/10,min

{
κµµj , µ

θµ
j

}}
, and set j ← j + 1

3.2. Re-initialize the filter F0 := {(θ, f) ∈ R2 : θ ≥ θmax}

3.3. If k = 0 repeat step 3, otherwise continue at step 4.

4. Compute search direction with regularization.

4.1. if yi < εmpcc and zi < εmpcc, apply (4.4) to the equality constraint yizi = 0. Go to

Step 4.5

114
CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

(MPCCS)

6.4 CONSTRAINT ELIMINATION METHODS

4.2. if yi < εmpcc, apply method in Section 6.4.1 to eliminate the bound yi > 0. Go to

Step 4.4

4.3. if zi < εmpcc, apply method in Section 6.4.1 to eliminate the bound zi > 0. Go to

Step 4.4

4.4. Factorize the KKT matrix in (3.8) with δx = δc = 0. If the inertia is (n, m, 0), then

calculate dk and go to step 5. Otherwise, continue with step 4.5.

4.5. If the matrix has zero eigenvalues, set δc = δ̄c Otherwise, set δc = 0

4.6. If δlastx = 0, set δx = δ̄0
x, otherwise set δx = max (δ̄x

min
, κ−x δ

last
x)

4.7. Attempt to factorize the KKT matrix in (3.8) with δx and δc. If inertia is correct then

calculate dk and go to step 5. Otherwise continue with step 4.8

4.8. If δlastx = 0, set δx = κ̄+
x δx, otherwise set δx = κ+

x δx.

4.9. If δx > δ̄maxx , abort the current step and directly go to step 9. Otherwise, go to step

4.7.

5. Backtracking line search.

5.1. Initialize line search. Calculate αmaxk , set αk,0 = min(αmaxk , 1) and l← 0.

5.2. Compute new trial point. If the trial step size becomes too small, i.e. αk,l < αmin
k with

αmin
k defined by (3.10), go to the feasibility restoration phase in step 9. Otherwise,

compute the new trial point xk(αk,l) = xk + αk,ldk.

5.3. Check acceptability to the filter. If xk(αk,l) ∈ Fk, reject the trial step size and go to

step 5.5.

5.4. Check sufficient decrease with respect to current iterate.

5.4.1. Case I: αk,l is an f -step-size (i.e. SC holds): If the AC for the objective function

holds, accept the trial step and go to step 6. Otherwise, go to step 5.5.

CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS
(MPCCS) 115

6.5 IMPLEMENTATION

5.4.2. Case II: αk,l is not an f -step-size (i.e. SC is not satisfied): If SDC holds, accept the

trial step and go to step 6. Otherwise, go to step 5.5.

5.5. Choose new trial step size. Set αk,l+1 = 1
2αk,l, l← l + 1, and go back to step 5.2.

6. Accept trial point. Set αk := αk,l and xk+1 := xk(αk).

7. Augment filter if necessary. If k is not an f -type iteration, augment the filter using (3.9);

otherwise leave the filter unchanged, i.e. set Fk+1 := Fk.

8. Continue with next iteration. Increase the iteration counter k ← k + 1 and go back to

step 2.

9. Feasibility restoration phase. Compute a new iterate xk+1 by decreasing the primal infea-

sibility, so that xk+1 satisfies SDC and is acceptable to the filter. Augment the filter using

(3.9) (for xk) and continue with the regular iteration in step 8.

6.5 Implementation

The implementation of auto-adjusting penalty methods and constraint elimination meth-

ods is based on the AMPL complementarity constraints interface. In AMPL, the comple-

mentary constraints can be defined by the keyword complements. Then the information

is provided to solvers as pairs of variable and constraints that are perpendicular to each

other. The formula is shown as follows,

xl ≤ x ≤ xu ⊥ gl ≤ g(x) ≤ gu (6.23)

Note that AMPL guarantees that there are exactly two finite bounds for each complemen-

tary constraint. However, there is no guarantee that the bounds are found on opposite

sides of the complements operator. In our implementation, we only focus on the problems

with exactly one finite bound on each side of the complementary constraint. The case

116
CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

(MPCCS)

6.6 RESULTS

where both bounds are on one side of the complementarity can be reformulated to stan-

dard form (6.1) but this reformulation is not supported at this time.

To simplify the notation, assume both finite bounds are lower bounds. Now the com-

plementarity constraints are as follows,

0 ≤ x− xl ⊥ g(x)− gl ≥ 0 (6.24)

In IPOPT, all inequality constraints are modified by slack variables and the bounds of the

inequalities are transferred to the bounds of the slack variables. Then, (6.24) becomes

0 ≤ x− xl ⊥ s− gl ≥ 0

g(x)− s = 0
(6.25)

which is equivalent to the formulation discussed in Section (6.1).

Both auto-adjusting penalty methods are implemented in IPOPT 3.12.3 with a new pa-

rameter ρ0. The constraint elimination methods are implemented in MIPOPT with a de-

pendent tolerance ε̄. All results are obtained on an Intel Core i7-3770 CPU @ 3.40GHz8

with 7.8 GiB memory. IPOPT is compiled with GNU Fortran 4.8.2 and GCC 4.8.2 with the

suggested BLAS library by IPOPT. MA57 3.8.0 is applied to both IPOPT and MIPOPT as

the linear solver and all options are set to the default values except tol is relaxed to 10−6

for all methods.

6.6 Results

MacMPEC [93] is a MPCC benchmark problem library maintained by Sven Leyffer. We

applied both the auto-adjusting penalty methods and constraint elimination method to

this library to compare performance.

CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS
(MPCCS) 117

6.6 RESULTS

6.6.1 Auto-adjusting penalty methods

We selected 123 problems from MacMPEC and applied both ρ(µ) and µ(ρ) methods. First,

we vary the parameter ρ0 (the initial value of ρ) and plot the performance profile. The per-

formance is measured by iteration count. The optimal solution of each MacMPEC problem

is well known and posted on the website. For consistent comparison, we only consider a

problem as solved when it converged to the reference optimal solution.

Figure 6.1: performance profile ρ(µ)

The parameter ρ0 is very important for both algorithms. If it is initialized with a large

value, it will put too much weight on satisfying the complementarity constraint, and con-

vergence is slow. However, if ρ0 starts at a very small value, the initial iterates wander far

away from the feasible set before converging.

According to the performance profile, for both ρ(µ) and µ(ρ) methods, ρ0 = 1 has the

118
CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

(MPCCS)

6.6 RESULTS

Figure 6.2: performance profile µ(ρ)

best performance, which can be explained by the good scaling of the MacMpec library.

In Fig. 6.3, we compare 5 different methods. These include both ρ(µ) and µ(ρ) methods

with ρ0 = 1, the equality reformulation RegEq(0) (6.16) with and without structured reg-

ularization, and the inequality relaxation Reg(10−4) (6.14). RegEq(0) is the worst method

in both speed and stability because there is no interior area for IPOPT to explore. Regular-

ization helps with the degeneracy but restoration is often called at nearly feasible points.

However, structured regularization as a special case of our constraint elimination method

dramatically improves the performance even if it only helps the weakly active case. So the

result here provides good motivation for the constraint elimination method.

Among these methods, the ρ(µ) method is the fastest and the most stable. Also the auto-

adjusting penalty methods are much faster than the other methods, with 60% of problems

solved with the fewest iterations. For relatively simple problems, penalty approaches gives

CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS
(MPCCS) 119

6.6 RESULTS

IPOPT a lot of freedom to explore and in general will converge faster than Reg(ε). Mean-

while, since the algorithm has to empty the filter either µ or ρ changes, ρ(µ) method keeps

to one ρ value, which persevered the filter information longer than µ(ρ). This may help

explain the faster convergence.

Figure 6.3: performance profile comparison

6.6.2 Constraint elimination methods

In this section, we selected several problems from MacMpec and test it with constraint

elimination method. The results are shown in Table 6.1. The entries in the table are the

number of iterations required to solve a particular problem with the specified method.

‘RF’ means restoration failed.

In general, the proposed method converge faster than RegEq(0). For outrata32 and out-

120
CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

(MPCCS)

6.7 APPLICATIONS

rata33, RegEq(0) calls the restoration phase at an almost feasible point and restoration

phase fails immediately. In our new algorithm, the degeneracy is removed by constraint

elimination, allowing the algorithm to converge to the optimal solution easily.

The proposed algorithm is very sensitive to the parameter εmpcc, which is used to judge

whether a variable bound is active or not. In our experiments, we set εmpcc to 10−4 for

all problems. However, the appropriate value should be different for each case, or even

each iteration. We observe that when εmpcc is too small, restoration phase is called before

the algorithm removes the degenerate constraints. In this case, IPOPT will terminate with

the error that calling restoration at an almost feasible point. However, when εmpcc is too

large, the constraint is removed too early, before it is actually active. This can cause the

Newton step to go outside of the bounds. The linesearch cuts back the step, but because

the search direction may not be valid, progress may be stuck at that point. These problems

dramatically reduce the performance of the constraint elimination methods.

In the future, we would like to further investigate the effect of εmpcc and try to find a

systematic way to set it. According to our experience, it may be effective to set εmpcc based

on the barrier parameter µ. Since the barrier parameter determines how close iterates

can get to bounds, it is related to what we could reasonably consider as an active bound.

Therefore as µ changes, we can change the tolerance accordingly.

6.7 Applications

6.7.1 Differential inclusion

Complementarity constraints are useful in many dynamic optimization problems. Because

complementarity is required to hold at every point in time, the number of complementar-

ities nc after discretization can be very large. By increasing the number of discretization

CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS
(MPCCS) 121

6.7 APPLICATIONS

Table 6.1: MacMPEC results (# iter) for constraint elimination method

Test Proposed RegEq(0) Test Proposed RegEq(0)

Case Algorithm Case Algorithm

kth1 19 24 exp913 32 30

kth2 10 15 exp915 16 23

kth3 6 10 exp917 33 28

scholtes1 10 14 sl1 25 31

scholtes2 18 23 outrata31 41 86

scholtes 3 8 15 outrata32 40 RF

scholtes 4 22 22 outrata33 33 RF

exp911 23 27 outrata34 45 59

points, nc can be arbitrarily increased. This test problem uses a dynamic system repre-

sented by the differential inclusion

ẋ ∈ sgn(x) + 2

with initial condition x(0) = −2. This differential inclusion is easily modified into com-

plementarity constraints. Applying the reformulation and adding an arbitrary objective

122
CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

(MPCCS)

6.7 APPLICATIONS

function, we form the optimal control problem:

min (xend − 5/3)2 +
∫ tend

0 x2dt

s.t. ẋ = u+ 2

x(0) = −2

x = s+ − s−

0 ≤ 1− u ⊥ s+ ≥ 0

0 ≤ u+ 1 ⊥ s− ≥ 0

(6.26)

This problem is discretized using the implicit Euler method, as follows:

min (xend − 5/3)2 +
∑N

i=1 x
2
i

s.t. ẋi = ui + 2 i = 1, . . . , N

xi = xi−1 + hẋi i = 1, . . . , N

x0 = −2

xi = s+
i − s

−
i i = 1, . . . , N

0 ≤ 1− ui ⊥ s+
i ≥ 0 i = 1, . . . , N

0 ≤ ui + 1 ⊥ s−i ≥ 0 i = 1, . . . , N

(6.27)

We solved this model with

N = [10, 100, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000]

When N = 8000, the problem has 95940 variables, 47964 equality constraints and 31986

inequality constraints along with 15988 complementary constraints.

With N = 10, this problem is solved using the ρ(µ) and µ(ρ) methods and compared to

Reg(10−5),RegEq(0) with and without structured regularization. The performance profile

for these 10 problems are shown in Fig 6.4.

Overall, this performance profile is very similar to Fig 6.3. However, µ(ρ) is slightly

better than ρ(µ) methods. Since these 10 problems are derived from one problem, µ(ρ)

CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS
(MPCCS) 123

6.7 APPLICATIONS

τ

1 2 4 8 16

%
 P

ro
b
le

m
s
 s

o
lv

e
d
 w

it
h
in

 τ
*m

in
(#

It
e
r)

0

10

20

30

40

50

60

70

80

90

100

µ(ρ)

ρ(µ)
ineqn
eqn
eqn_str

Figure 6.4: performance profile comparison

approach seems more suitable for this problem. Reg(10−5) failed in restoration phase for

one case, while RegEq(0) failed to converge for two cases. Structured regularization can

help equality reformulations, but it is very slow due to the difficulty of recognizing the

dependent equality constraints.

6.7.2 Distillation Optimization

A common application of MPCCs in chemical engineering is for phase equilibrium prob-

lems. The discontinuous behavior occurs when a phase disappears. The overall behavior

of a vapor liquid system is determined by the minimization of Gibbs free energy. The

Gibbs free energy minimization problem is written as follows, where the mass balance

creates inequality constraints. For fixed temperature T and pressure P , the minimization

124
CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

(MPCCS)

6.7 APPLICATIONS

determines the amount of chemical species i in vapor phase vi and liquid phase li. The

total number of chemical species is NC.

minli,vi G(T, P, li, vi) =
∑NC

i=1 liḠ
L
i +

∑NC
i=1 viḠ

V
i

s.t.
∑NC

i=1 li ≥ 0
∑NC

i=1 vi ≥ 0

li + vi = mi > 0, i = 1, . . . , NC

(6.28)

To include phase equilibrium within a larger model, the optimality conditions of this

problem are written using complementarity constraints. After some reformulation using

thermodynamic laws, the optimality conditions can be expressed as

yj = βKjxj

β = 1− sl + sv

0 ≤ L ⊥ sl ≥ 0

0 ≤ V ⊥ sv ≥ 0

(6.29)

where yj =
vj∑NC
i=1 vi

is the vapor fraction, xj is the liquid fraction, Kj = φL/φV and φL and

φV are the fugacity coefficients for liquid and vapor respectively. The full derivation can

be found in [3].

The formulation (6.29) can be used anywhere that requires vapor liquid equilibrium cal-

culations. In the following section we show how this can be used to optimize a distillation

column.

A distillation column can be modeled using the mass balance, equilibrium, summation,

and heat balance (MESH) equations. We will consider a modification proposed by Lang

and Biegler [94] to optimize the feed tray location and total number of trays. The total

number of trays is adjusted by changing the reflux location. Trays above the reflux loca-

tions are basically “turned off” by the optimization. To avoid introducing integer variables,

the reflux and feed streams are fed to all Nmax potential trays in the column.

CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS
(MPCCS) 125

6.7 APPLICATIONS

Figure 6.5: Distillation Column

As shown in Figure 6.5, the distribution of these flows is required to be a discretized

Gaussian distribution, where the mean is a variable and the standard deviation is fixed.

The standard deviation is chosen to be small (0.5) so that most of the flow goes in at the

location of the mean. Therefore, the mean of these distributions represent the optimal feed

and reflux tray locations.

In the distillation model, each potential tray includes the equilibrium equations (the ‘E’

in MESH). This means that equations (6.29) are indexed over all potential trays as follows:

yij = βiKijxij

βi = 1− sli + svi

0 ≤ Li ⊥ sli ≥ 0

0 ≤ Vi ⊥ svi ≥ 0

(6.30)

where i = 1 . . . Nmax, j is the component index,Li and Vi are the liquid and vapor flowrates

leaving tray i, and x and y are liquid and vapor mole fractions.

In this section, we will test our methods on a distillation column separating benzene

126
CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

(MPCCS)

6.7 APPLICATIONS

and toluene. This uses the MPCC model presented above with Nmax = 25, and the feed

stream is 100 mol/s of a 70/30 mixture of benzene/toluene. The distillate is required to be

50 mol/s. The model was tested with several different objective functions of the form

min wtDxD,tol + wrr + wnNt (6.31)

where xD,tol is the mole fraction of toluene in the distillate,D = 50 is the distillate flowrate,

r is the reflux ratio, and Nt is the number of trays. The weights wt, wr, and wn allow us

to examine the trade-offs between product purity, utility cost, and capital cost. The model

was tested using ideal thermodynamics. The initial point used 21 trays, with the feed

tray at tray 7 and reflux ratio of 2.2. Temperature and concentration profiles were linearly

interpolated based on top and bottom conditions.

This problem has 48 complementarity constraints, with 403 variables and 350 equality

constraints. By changing the objective function weights, three problems were tested.

• Case 1: (wt = wr = wn = 1) Equal weights on toluene in distillate.

• Case 2: (wt = 1, wr = 0.1, wn = 1) This case places less weight to utility usage, as

represented by the reflux ratio r.

• Case 3: (wt = 1, wr = 1, wn = 0.1) This case places less weight on capital cost, as

represented by the number of trays Nt.

We test these 3 cases with ρ(µ) and µ(ρ) methods and compared to the NCP reformu-

lation (6.18), inequality relaxation (6.14), equality reformulation (6.16) with and without

structured regularization. The results of this comparison are listed in Table 6.2,

In this table, RF stands for “restoration failed” and the number in parentheses shows the

iteration that restoration fails. All the other numbers represent the number of iterations for

IPOPT to converge to the optimal solution.

From Table 6.2, we see that the NCP reformulation is the hardest one for IPOPT to solve.

CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS
(MPCCS) 127

6.8 CONCLUSION

Table 6.2: Distillation test results (# iter)

Case 1 Case 2 Case 3

NCP(10−8) 1080 562 410

RegEq(0) RF(692) 350 RF(687)

RegEq(0) with str 280 382 268

Reg(10−5) 115 198 111

Reg(10−8) 191 196 118

ρ(µ) 159 173 147

µ(ρ) 205 245 157

The equality reformulation is naturally degenerate. Both restoration failures are due to

calling restoration phase at an almost feasible point. Degeneracy occurs as IPOPT ap-

proaches a feasible solution. If IPOPT regularization can’t correct the inertia, restoration

is called and then fails directly. However, if we apply structured regularization instead,

all three cases can be solved in a reasonable number of iterations. As discussed before,

the inequality relaxation generally works well for IPOPT. Here we compared Reg(10−5)

and Reg(10−8) with our ρ(µ) and µ(ρ) methods. Since the problem is relatively easy to

converge, the advantage of auto-adjust penalty methods are not obvious compared to the

previous example problems.

6.8 Conclusion

In this chapter, we reviewed optimality conditions and CQs and discussed several NLP

reformulations for MPCCs. Based on previous success with penalty-based reformulations

128
CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS

(MPCCS)

6.8 CONCLUSION

with interior point solvers, we implemented two auto-adjustment penalty approaches in

IPOPT. These two methods are tested on the MacMPEC library, and we conclude ρ(µ) is

slightly better. We also discussed two applications of MPCCs and compared the auto-

reformulation techniques against other popular reformulations. Finally we discussed an

extension of structured regularization to MPCCs, called the constraint elimination method.

Preliminary results for the constraint elimination show that it can solve problems but

numerical difficulties remain. Future work can further explore these challenges for con-

straint elimination. Also, the penalty approach relies on the assumption of a strong sta-

tionary solution. Another potential direction would be to address problems where only

B-stationarity holds.

CHAPTER 6. IPOPT FOR MATHEMATICAL PROGRAMS WITH COMPLEMENTARITY CONSTRAINTS
(MPCCS) 129

Chapter 7

Conclusions

In this chapter we summarize our contributions and discuss the directions for future work.

7.1 Summary and Contributions

This thesis can be summarized as follows, Chapter 1 defined nonlinear programming prob-

lems, and discussed the usefulness in many applications. We also introduced several chal-

lenges in nonlinear programming. Chapters 2 and 3 provide a basis for the methods pre-

sented in Chapters 4-6. Chapter 2 reviewed first and second order optimality conditions

for nonlinear programming. In addition, we talked about the history of NLP solvers and

current popular NLP solvers. In Chapter 3, we reviewed the detailed algorithm of IPOPT,

including background for interior methods and the combination of line search and filter

concepts. The local and global convergence proofs of IPOPT were also discussed. Chapter

4 proposed three structured regularization methods for interior point methods. Dependent

equality constraints are common in process system models. With the proposed methods,

these constraints can be removed locally from model and effectively without changing the

sparsity pattern during the solution process. We implemented these methods in IPOPT

and compared them with current versions of IPOPT and KNITRO. The results shows the

new regularization methods dramatically increased the performance of IPOPT for depen-

dent equality constraints. Then we applied the new algorithm on two blending problems

that are locally degenerate and improvements are observed. The major contributions are

130
CHAPTER 7. CONCLUSIONS

7.1 SUMMARY AND CONTRIBUTIONS

listed as follows,

• Proposed three regularization methods to remove dependent equality constraints

locally.

• Proved the convergence of these methods with IPOPT.

• Implemented these methods in the current version of IPOPT

• Compared structured regularization with current version of IPOPT on CUTEr set

and applied them to two blending problems.

Chapter 5 explored methods for speeding up IPOPT on dynamic optimization problems

through parallelizing the linear solve. The KKT linear system for dynamic optimization

problems can be permuted to a block tridiagonal linear system. Two parallel algorithms

capable of exploiting this structure were introduced and time complexity of the algorithms

was analyzed. Both algorithms were tested with randomly generated linear systems and

the results matched well with predictions based on the time complexity analysis. Finally,

we studied how the work distributed to each processors and applied the traditional cyclic

reduction method to four dynamic optimization applications. IPOPT with the traditional

cyclic reduction linear solver can solve all applications easily with a strong improvement

on KKT solving time for large dynamic optimization problems.

The major contributions are listed as follows,

• Proposed to use the cyclic reduction algorithm to solve the KKT linear system from

dynamic optimization problems.

• Implemented two traditional cyclic reduction method and Yalamov’s cyclic reduc-

tion method with and without symmetric updates.

• Analysed the time complexity of these two cyclic reduction methods and verified the

analysis with performance of cyclic reduction methods on randomly generated block

tridiagonal linear systems.

CHAPTER 7. CONCLUSIONS

131

7.1 SUMMARY AND CONTRIBUTIONS

• Implemented a tool to automatically permute dynamic optimization problems to

block tridiagonal form.

• Applied traditional cyclic reduction with symmetric updates to four dynamic opti-

mization applications, showing the potential of the parallel method for very large

dynamic applications.

Chapter 6 considered the solution of MPCCs using IPOPT. This chapter first reviews the

special optimality conditions and constraint qualifications for MPCCs, then introduced

popular ways to reformulate MPCCs to NLPs. We implemented two auto-adjustment

penalty methods in IPOPT and tested them with a common benchmark MPEC library

MacMpec. The test results show that ρ(µ) method is the fastest and also the most stable

method. In addition, we applied structured regularization method to the equality refor-

mulation of MPCCs. The promising results for structured regularization with equality

reformulation motivated a constraint elimination method customized for MPCCs. This

method eliminates either inequality or equality constraints locally according to the active

set. Preliminary results were shown for the convergence of the algorithm.

The major contributions are listed as follows,

• Implemented two auto-adjustment penalty methods in IPOPT that can accept com-

plementarity constraints from the AMPL interface.

• Analyzed the performance of auto-adjustment penalty methods and compared with

several popular NLP reformulations using MacMpec benchmark library.

• Proposed a method to remove dependent inequality constraints. Combined with

structured regularization methods, this forms a constraint elimination method for

MPCCs in IPOPT.

• Preliminary results are shown for the constraint elimination method.

132
CHAPTER 7. CONCLUSIONS

7.2 RECOMMENDATIONS FOR FUTURE WORK

7.2 Recommendations for Future Work

In this section, we provide some recommendations for future work.

7.2.1 Dependent Constraints

In Chapter 4, we proposed structured regularization methods to remove the equality con-

straints. The results show that the algorithm can successfully recognize the dependent

equality constraints and remove them effectively. However, the results improve drasti-

cally after tuning the threshold parameter. This is because the dependent threshold should

be different for each problem based on the problem scaling. In this thesis, the dependent

threshold is tuned manually. Future work includes developing an algorithm which can

systemically set the dependent threshold based on the particular features and scaling of

the problem.

In chemical engineering models, in addition to dependent equality constraints, the de-

pendent active inequality constraints could keep the algorithm from converging as well.

Recall that the definition of LICQ considers the active constraints, which include all equal-

ity constraints and also active inequality constraints. In IPOPT, all inequality constraints

are converted to variable bounds through the introduction of slacks, however, LICQ can

still be violated by the active variable bounds. In Chapter 6, we propose a method to re-

move bounds of a variable in the context of MPCCs. This method could be extended to

general dependent inequality constraints. However, the task of recognizing which bounds

are dependent is challenging. A naive approach would be to factorize an extra matrix at

each iteration consisting of all active constraints. However, one more factorization per it-

eration will slow down IPOPT significantly. Therefore, we are still searching for a cheaper

approach to identify the dependent inequality constraints to apply our method to elimi-

CHAPTER 7. CONCLUSIONS

133

7.2 RECOMMENDATIONS FOR FUTURE WORK

nate dependent variable bounds in IPOPT.

7.2.2 Cyclic Reduction for Dynamic Optimization

In Chapter 5, we observed that the KKT linear system structure for dynamic optimization

problems is block tridiagonal. Therefore, Cyclic Reduction (CR) methods can be applied to

solve the KKT linear system in parallel for dynamic optimization problems. We assumed

that the inertia of the KKT matrix is always (n,m, 0) when it is passed to the linear solver,

which is required for the convergence proof of IPOPT. When using a direct factorization

solver, the value of the inertia is obtained as a by-product of factorization. However, if

we apply CR, the inertia information is hard to get. Chiang and Zavala have proposed

an inertia free method for IPOPT if the inertia information is unavailable [95], which we

would like to apply to this algorithm.

Based on the time complexity, Yalamov’s Cyclic Reduction is O(n log n) while Tradi-

tional Cyclic Reduction is O(n). However, if we have a very high number of cores, i.e. if

the number of cores is greater than the number of blocks on the diagonal, then the bot-

tleneck of the cyclic reduction algorithm is the number of cycles instead of factorizations.

Yalamov’s Cyclic Reduction has one less synchronization for each cycle and both cyclic

reduction methods need log n cycles, so Yalamov’s method should be slightly better than

the traditional methods. In this thesis, we were limited by computing resources. However,

it would be interesting to see if this prediction holds in practice.

7.2.3 Mathematical Programming with Complementarity Constraints

In Chapter 6, we proposed a constraint elimination algorithm to solve MPCCs. Preliminary

results show it can solve problems but numerical difficulties remain. For the future work,

first we would like to address the numerical issues. For example, the parameter εMPCC

134
CHAPTER 7. CONCLUSIONS

7.2 RECOMMENDATIONS FOR FUTURE WORK

should be automatically set as a function of the barrier parameter µ. Also the convergence

of this method should be considered from a theoretical perspective.

Most of the reformulations in Chapter 6 required the assumption of a strong stationary

solution. However, there are many examples showing that it is easy to be trapped in a

spurious stationary point, where weaker stationarity conditions apply. For future work,

we would like to work on an algorithm which only requires B-stationary solutions, and

can avoid other spurious solutions.

CHAPTER 7. CONCLUSIONS

135

BIBLIOGRAPHY

Bibliography

[1] S. Leyffer, G. López-Calva, and J. Nocedal, “Interior methods for mathematical pro-

grams with complementarity constraints,” SIAM Journal on Optimization, vol. 17, no. 1,

pp. 52–77, 2006.

[2] A. Forsgren, P. E. Gill, and M. H. Wright, “Interior methods for nonlinear optimiza-

tion,” SIAM review, vol. 44, no. 4, pp. 525–597, 2002.

[3] L. T. Biegler, Nonlinear programming: concepts, algorithms, and applications to chemical

processes. SIAM, 2010.

[4] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta numerica, vol. 4,

pp. 1–51, 1995.

[5] P. E. Gill, W. Murray, and M. H. Wright, “Practical optimization,” 1981.

[6] W. Murray, “Sequential quadratic programming methods for large-scale problems,”

Computational Optimization and Applications, vol. 7, no. 1, pp. 127–142, 1997.

[7] L. T. Biegler, Nonlinear programming: concepts, algorithms, and applications to chemical

processes. SIAM, 2010.

[8] A. V. Fiacco and G. P. McCormick, Nonlinear programming: sequential unconstrained

minimization techniques. SIAM, 1990.

[9] R. Fletcher and S. Leyffer, “Nonlinear programming without a penalty function,”

Mathematical programming, vol. 91, no. 2, pp. 239–269, 2002.

136
BIBLIOGRAPHY

BIBLIOGRAPHY

[10] R. H. Byrd, J. Nocedal, and R. A. Waltz, “Knitro: An integrated package for nonlinear

optimization,” in Large-scale nonlinear optimization, pp. 35–59, Springer, 2006.

[11] K. Schittkowski, “Nlpql: A fortran subroutine solving constrained nonlinear pro-

gramming problems,” Annals of operations research, vol. 5, no. 1, pp. 485–500, 1986.

[12] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, “User’s guide for npsol

(version 4.0): A fortran package for nonlinear programming.,” tech. rep., STANFORD

UNIV CA SYSTEMS OPTIMIZATION LAB, 1986.

[13] P. Gill, W. Murray, and M. Saunders, “Snopt: An sqp algorithm for large-scale con-

strained optimization,” SIAM Review, vol. 47, no. 1, pp. 99–131, 2005.

[14] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm for large-scale

constrained optimization,” SIAM review, vol. 47, no. 1, pp. 99–131, 2005.

[15] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-

search algorithm for large-scale nonlinear programming,” Mathematical Programming,

vol. 106, no. 1, pp. 25–57, 2006.

[16] R. H. Byrd, M. E. Hribar, and J. Nocedal, “An interior point algorithm for large-scale

nonlinear programming,” SIAM Journal on Optimization, vol. 9, no. 4, pp. 877–900,

1999.

[17] R. J. Vanderbei, “Loqo: An interior point code for quadratic programming,” Optimiza-

tion methods and software, vol. 11, no. 1-4, pp. 451–484, 1999.

[18] A. Drud, “Conopt: A GRG code for large sparse dynamic nonlinear optimization

problems,” Mathematical Programming, vol. 31, no. 2, pp. 153–191, 1985.

[19] B. A. Murtagh and M. A. Saunders, “Minos 5.51 users guide,” 1983.

BIBLIOGRAPHY
137

BIBLIOGRAPHY

[20] A. R. Conn, G. Gould, and P. L. Toint, LANCELOT: a Fortran package for large-scale

nonlinear optimization (Release A), vol. 17. Springer Science & Business Media, 2013.

[21] M. Kočvara and M. Stingl, “Pennon: A code for convex nonlinear and semidefinite

programming,” Optimization methods and software, vol. 18, no. 3, pp. 317–333, 2003.

[22] A. Wächter and L. T. Biegler, “Line search filter methods for nonlinear programming:

Motivation and global convergence,” SIAM Journal on Optimization, vol. 16, no. 1,

pp. 1–31, 2005.

[23] A. Wächter and L. T. Biegler, “Line search filter methods for nonlinear programming:

Local convergence,” SIAM Journal on Optimization, vol. 16, no. 1, pp. 32–48, 2005.

[24] I. Quesada and I. Grossmann, “Global optimization of bilinear process networks with

multicomponent flows,” Computers & Chemical Engineering, vol. 19, no. 12, pp. 1219–

1242, 1995.

[25] L. T. Biegler, I. E. Grossmann, and A. W. Westerberg, “Systematic methods for chemi-

cal process design,” 1997.

[26] B. Baumrucker, J. Renfro, and L. T. Biegler, “Mpec problem formulations and solution

strategies with chemical engineering applications,” Computers & Chemical Engineering,

vol. 32, no. 12, pp. 2903–2913, 2008.

[27] S. Kameswaran and L. Biegler, “Advantages of nonlinear-programming-based

methodologies for inequality path-constrained optimal control problemsa numerical

study,” SIAM Journal on Scientific Computing, vol. 30, no. 2, pp. 957–981, 2008.

[28] R. Fletcher, S. Leyffer, D. Ralph, and S. Scholtes, “Local convergence of sqp methods

for mathematical programs with equilibrium constraints,” SIAM Journal on Optimiza-

tion, vol. 17, no. 1, pp. 259–286, 2006.

138
BIBLIOGRAPHY

BIBLIOGRAPHY

[29] M. Y. B. Poku, L. T. Biegler, and J. D. Kelly, “Nonlinear optimization with many de-

grees of freedom in process engineering,” Industrial & Engineering Chemistry Research,

vol. 43, no. 21, pp. 6803–6812, 2004.

[30] I. S. Duff and J. K. Reid, “The multifrontal solution of indefinite sparse symmetric

linear,” ACM Trans. Math. Softw., vol. 9, pp. 302–325, Sept. 1983.

[31] I. S. Duff, “Ma57—a code for the solution of sparse symmetric definite and indefinite

systems,” ACM Transactions on Mathematical Software (TOMS), vol. 30, no. 2, pp. 118–

144, 2004.

[32] J. D. Hogg and J. A. Scott, HSL MA97: A bit-compatible multifrontal code for sparse sym-

metric systems. Science and Technology Facilities Council, 2011.

[33] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent, “Multifrontal parallel distributed sym-

metric and unsymmetric solvers,” Computer methods in applied mechanics and engineer-

ing, vol. 184, no. 2, pp. 501–520, 2000.

[34] A. Gupta, “Wsmp: Watson sparse matrix package (part-ii: direct solution of general

sparse systems),” tech. rep., Citeseer, 2000.

[35] A. Kuzmin, M. Luisier, and O. Schenk, “Fast methods for computing selected ele-

ments of the greens function in massively parallel nanoelectronic device simulations,”

in Euro-Par 2013 Parallel Processing (F. Wolf, B. Mohr, and D. Mey, eds.), vol. 8097 of

Lecture Notes in Computer Science, pp. 533–544, Springer Berlin Heidelberg, 2013.

[36] I. S. Duff, J. K. Reid, N. Munksgaard, and H. B. Nielsen, “Direct solution of sets of

linear equations whose matrix is sparse, symmetric and indefinite,” IMA Journal of

Applied Mathematics, vol. 23, no. 2, pp. 235–250, 1979.

BIBLIOGRAPHY
139

BIBLIOGRAPHY

[37] K. Wang, Z. Shao, Y. Lang, J. Qian, and L. T. Biegler, “Barrier nlp methods with struc-

tured regularization for optimization of degenerate optimization problems,” Comput-

ers & Chemical Engineering, vol. 57, pp. 24–29, 2013.

[38] A. W. Dowling and L. T. Biegler, “Degeneracy hunter: An algorithm for determining

irreducible sets of degenerate constraints in mathematical programs,” in 12th Interna-

tional Symposium on Process Systems Engineering and 25th European Symposium on Com-

puter Aided Process Engineering (J. K. H. Krist V. Gernaey and R. Gani, eds.), vol. 37 of

Computer Aided Chemical Engineering, pp. 809 – 814, Elsevier, 2015.

[39] N. I. Gould, D. Orban, and P. L. Toint, “Cuter and sifdec: A constrained and uncon-

strained testing environment, revisited,” ACM Transactions on Mathematical Software

(TOMS), vol. 29, no. 4, pp. 373–394, 2003.

[40] F. E. Curtis, J. Nocedal, and A. Wächter, “A matrix-free algorithm for equality con-

strained optimization problems with rank-deficient jacobians,” SIAM Journal on Opti-

mization, vol. 20, no. 3, pp. 1224–1249, 2009.

[41] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with performance

profiles,” Mathematical programming, vol. 91, no. 2, pp. 201–213, 2002.

[42] T. Binder, L. Blank, H. G. Bock, R. Bulirsch, W. Dahmen, M. Diehl, T. Kronseder,

W. Marquardt, J. P. Schlöder, and O. von Stryk, Introduction to Model Based Optimiza-

tion of Chemical Processes on Moving Horizons, pp. 295–339. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2001.

[43] A. E. Bryson and Y.-C. Ho, Applied optimal control: optimization, estimation and control.

CRC Press, 1975.

140
BIBLIOGRAPHY

BIBLIOGRAPHY

[44] R. G. L.S. Pontryagin, V. Boltyanskii and E.Mishchenko, Mathematical theory of optimal

processes. New York, NY: Interscience Publishers Inc., 1962.

[45] V. Vassiliadis, R. Sargent, and C. Pantelides, “Solution of a class of multistage dynamic

optimization problems. 1. problems without path constraints,” Industrial & Engineer-

ing Chemistry Research, vol. 33, no. 9, pp. 2111–2122, 1994.

[46] V. Vassiliadis, R. Sargent, and C. Pantelides, “Solution of a class of multistage dynamic

optimization problems. 2. problems with path constraints,” Industrial and Engineering

Chemistry Research, vol. 33, pp. 2123–2123, 1994.

[47] U. M. Ascher and L. R. Petzold, Computer methods for ordinary differential equations and

differential-algebraic equations. Philadelphia: SIAM, 1998.

[48] A. Armaou and P. D. Christofides, “Dynamic optimization of dissipative pde sys-

tems using nonlinear order reduction,” Chemical Engineering Science, vol. 57, no. 24,

pp. 5083–5114, 2002.

[49] M. Yu, D. C. Miller, and L. T. Biegler, “Dynamic reduced order models for simulating

bubbling fluidized bed adsorbers,” Industrial & Engineering Chemistry Research, vol. 54,

no. 27, pp. 6959–6974, 2015.

[50] A. Hartwich, K. Stockmann, C. Terboven, S. Feuerriegel, and W. Marquardt, “Parallel

sensitivity analysis for efficient large-scale dynamic optimization,” Optimization and

Engineering, vol. 12, no. 4, pp. 489–508, 2011.

[51] D. B. Leineweber, I. Bauer, H. G. Bock, and J. P. Schlöder, “An efficient multiple shoot-

ing based reduced sqp strategy for large-scale dynamic process optimization. part

1: theoretical aspects,” Computers & Chemical Engineering, vol. 27, no. 2, pp. 157–166,

2003.

BIBLIOGRAPHY
141

BIBLIOGRAPHY

[52] D. B. Leineweber, A. Schäfer, H. G. Bock, and J. P. Schlöder, “An efficient multiple

shooting based reduced sqp strategy for large-scale dynamic process optimization:

Part ii: Software aspects and applications,” Computers & chemical engineering, vol. 27,

no. 2, pp. 167–174, 2003.

[53] I. D. Washington and C. L. Swartz, “Design under uncertainty using parallel multi-

period dynamic optimization,” AIChE Journal, vol. 60, no. 9, pp. 3151–3168, 2014.

[54] V. M. Zavala, C. D. Laird, and L. T. Biegler, “Interior-point decomposition approaches

for parallel solution of large-scale nonlinear parameter estimation problems,” Chemi-

cal Engineering Science, vol. 63, no. 19, pp. 4834–4845, 2008.

[55] X. Zhang, R. H. Byrd, and R. B. Schnabel, “Parallel methods for solving nonlinear

block bordered systems of equations,” SIAM journal on scientific and statistical comput-

ing, vol. 13, no. 4, pp. 841–859, 1992.

[56] D. Feng and R. B. Schnabel, “Globally convergent parallel algorithms for solving

block bordered systems of nonlinear equations,” Optimization Methods and Software,

vol. 2, no. 3-4, pp. 269–295, 1993.

[57] D. P. Word, J. Kang, J. Akesson, and C. D. Laird, “Efficient parallel solution of large-

scale nonlinear dynamic optimization problems,” Computational Optimization and Ap-

plications, vol. 59, no. 3, pp. 667–688, 2014.

[58] N. Chiang, C. G. Petra, and V. M. Zavala, “Structured nonconvex optimization of

large-scale energy systems using pips-nlp,” in Power Systems Computation Conference

(PSCC), 2014, pp. 1–7, IEEE, 2014.

[59] B. Nicholson, S. Kameswaran, and L. T. Biegler, “Parallel cyclic reduction strategies

for dynamic optimization,” submitted for publication, 2017.

142
BIBLIOGRAPHY

BIBLIOGRAPHY

[60] R. W. Hockney, “A fast direct solution of poisson’s equation using fourier analysis,”

J. ACM, vol. 12, pp. 95–113, Jan. 1965.

[61] W. Gander and G. H. Golub, “Cyclic reductionhistory and applications,” in Scientific

computing (Hong Kong, 1997), pp. 73–85, 1997.

[62] P. Yalamov and V. Pavlov, “Stability of the block cyclic reduction,” Linear Algebra and

its applications, vol. 249, no. 1, pp. 341–358, 1996.

[63] G. H. Golub and J. M. Ortega, Scientific computing: an introduction with parallel comput-

ing. Elsevier, 2014.

[64] T. A. Davis, “Algorithm 832: Umfpack v4. 3—an unsymmetric-pattern multifrontal

method,” ACM Transactions on Mathematical Software (TOMS), vol. 30, no. 2, pp. 196–

199, 2004.

[65] L. S. Blackford, J. Choi, A. Cleary, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,

G. Henry, A. Petitet, K. Stanley, et al., “Scalapack: a portable linear algebra library for

distributed memory computers-design issues and performance,” in Supercomputing,

1996. Proceedings of the 1996 ACM/IEEE Conference on, pp. 5–5, IEEE, 1996.

[66] R. Fourer, D. M. Gay, and B. W. Kernighan, Ampl. Boyd and Fraser, 1993.

[67] C. C. Qu and J. Hahn, “Process monitoring and parameter estimation via unscented

kalman filtering,” Journal of Loss Prevention in the Process Industries, vol. 22, no. 6,

pp. 703–709, 2009.

[68] S. Rajaraman, J. Hahn, and M. S. Mannan, “A methodology for fault detection, isola-

tion, and identification for nonlinear processes with parametric uncertainties,” Indus-

trial & Engineering Chemistry Research, vol. 43, no. 21, pp. 6774–6786, 2004.

BIBLIOGRAPHY
143

BIBLIOGRAPHY

[69] K.-U. Klatt and S. Engell, “Gain-scheduling trajectory control of a continuous stirred

tank reactor,” Computers & Chemical Engineering, vol. 22, no. 4, pp. 491–502, 1998.

[70] D. Kunii and O. Levenspiel, Fluidization engineering. Stoneham, MA: Butterworth-

Heinemann, 2 ed., 1991.

[71] S. Mori and C. Wen, “Estimation of bubble diameter in gaseous fluidized beds,”

AIChE Journal, vol. 21, no. 1, pp. 109–115, 1975.

[72] A. Lee and D. C. Miller, “A one-dimensional (1-d) three-region model for a bubbling

fluidized-bed adsorber,” Industrial & Engineering Chemistry Research, vol. 52, no. 1,

pp. 469–484, 2012.

[73] S. Modekurti, D. Bhattacharyya, and S. E. Zitney, “Dynamic modeling and control

studies of a two-stage bubbling fluidized bed adsorber-reactor for solid–sorbent co2

capture,” Industrial & Engineering Chemistry Research, vol. 52, no. 30, pp. 10250–10260,

2013.

[74] M. C. Ferris and J.-S. Pang, “Engineering and economic applications of complemen-

tarity problems,” Siam Review, vol. 39, no. 4, pp. 669–713, 1997.

[75] B. Baumrucker, J. Renfro, and L. Biegler, “Mpec problem formulations and solution

strategies with chemical engineering applications,” Computers and Chemical Engineer-

ing, vol. 32, no. 12, pp. 2903–2913, 2008.

[76] T. Hoheisel, C. Kanzow, and A. Schwartz, “Theoretical and numerical comparison of

relaxation methods for mathematical programs with complementarity constraints,”

Mathematical Programming, pp. 1–32, 2013.

[77] V. DeMiguel, M. P. Friedlander, F. J. Nogales, and S. Scholtes, “A two-sided relaxation

144
BIBLIOGRAPHY

BIBLIOGRAPHY

scheme for mathematical programs with equilibrium constraints,” SIAM Journal on

Optimization, vol. 16, no. 2, pp. 587–609, 2005.

[78] F. Facchinei, H. Jiang, and L. Qi, “A smoothing method for mathematical programs

with equilibrium constraints,” Mathematical programming, vol. 85, no. 1, pp. 107–134,

1999.

[79] O. Stein, “Lifting mathematical programs with complementarity constraints,” Mathe-

matical programming, vol. 131, no. 1, pp. 71–94, 2012.

[80] A. F. Izmailov, A. Pogosyan, and M. V. Solodov, “Semismooth newton method for the

lifted reformulation of mathematical programs with complementarity constraints,”

Computational Optimization and Applications, vol. 51, no. 1, pp. 199–221, 2012.

[81] Z.-Q. Luo, J.-S. Pang, and D. Ralph, Mathematical programs with equilibrium constraints.

Cambridge University Press, 1996.

[82] X. Hu and D. Ralph, “Convergence of a penalty method for mathematical program-

ming with complementarity constraints,” Journal of Optimization Theory and Applica-

tions, vol. 123, no. 2, pp. 365–390, 2004.

[83] D. Ralph and S. J. Wright, “Some properties of regularization and penalization

schemes for mpecs,” Optimization Methods and Software, vol. 19, no. 5, pp. 527–556,

2004.

[84] S. Leyffer and T. S. Munson, “A globally convergent filter method for mpecs,” Preprint

ANL/MCS-P1457-0907, Argonne National Laboratory, Mathematics and Computer Science

Division, 2009.

[85] H. Scheel and S. Scholtes, “Mathematical programs with complementarity con-

BIBLIOGRAPHY
145

BIBLIOGRAPHY

straints: Stationarity, optimality, and sensitivity,” Mathematics of Operations Research,

vol. 25, no. 1, pp. 1–22, 2000.

[86] M. Anitescu, P. Tseng, and S. J. Wright, “Elastic-mode algorithms for mathematical

programs with equilibrium constraints: global convergence and stationarity proper-

ties,” Mathematical programming, vol. 110, no. 2, pp. 337–371, 2007.

[87] C. Kanzow, “Some noninterior continuation methods for linear complementarity

problems,” SIAM Journal on Matrix Analysis and Applications, vol. 17, no. 4, pp. 851–

868, 1996.

[88] O. Stein, J. Oldenburg, and W. Marquardt, “Continuous reformulations of discrete–

continuous optimization problems,” Computers & chemical engineering, vol. 28, no. 10,

pp. 1951–1966, 2004.

[89] A. U. Raghunathan and L. T. Biegler, “An interior point method for mathematical

programs with complementarity constraints (mpccs),” SIAM Journal on Optimization,

vol. 15, no. 3, pp. 720–750, 2005.

[90] R. Fletcher and S. Leyffer, “Solving mathematical programs with complementarity

constraints as nonlinear programs,” Optimization Methods and Software, vol. 19, no. 1,

pp. 15–40, 2004.

[91] R. Fletcher, S. Leyffer, D. Ralph, and S. Scholtes, “Local convergence of sqp methods

for mathematical programs with equilibrium constraints,” SIAM Journal on Optimiza-

tion, vol. 17, no. 1, pp. 259–286, 2006.

[92] A. G. Mersha and S. Dempe, “Direct search algorithm for bilevel programming prob-

lems,” Computational Optimization and Applications, vol. 49, no. 1, pp. 1–15, 2011.

146
BIBLIOGRAPHY

BIBLIOGRAPHY

[93] S. Leyffer, “Macmpec: Ampl collection of mpecs,” Argonne National Laboratory, 2000.

[94] Y.-D. Lang and L. Biegler, “Distributed stream method for tray optimization,” AIChE

Journal, vol. 48, no. 3, pp. 582–595, 2002.

[95] N.-Y. Chiang and V. M. Zavala, “An inertia-free filter line-search algorithm for large-

scale nonlinear programming,” Computational Optimization and Applications, vol. 64,

no. 2, pp. 327–354, 2016.

BIBLIOGRAPHY
147

