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Abstract
With the the emergence of the Internet-of-Things (IoT) and Cyber-Physical

Systems (CPS), modern computing is now transforming from residing only in
the cyber domain to the cyber-physical domain. I focus on one important aspect
of this transformation, namely shortcomings of traditional security measures.
Security research over the last couple of decades focused on protecting data
in regard to identities or similar static attributes. However, in the physical
world, data rely more on physical relationships, hence requires CPS to verify
identities together with relative physical context to provide security guarantees.
To enable such verification, it requires the devices to prove unique relative physical
context only available to the intended devices. In this work, I study how varying
levels of constraints on physical boundary of co-located devices determine the
relative physical context. Specifically, I explore different application scenarios with
varying levels of constraints – including smart-home, semi-autonomous vehicles,
and in-vehicle environments – and analyze how different constraints affect binding
identities to physical relationships, ultimately enabling IoT devices to perform
such verification. Furthermore, I also demonstrate that sensing may pose risks for
CPS by presenting an attack on personal privacy in a smart home environment.
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Chapter 1

Introduction

Traditionally, computational devices are stand-alone devices that merely process information
that is input to them via input interfaces (e.g., keyboard, mouse, keypad, etc.). Hence, they
have limited interactions with the surrounding environments. Desktop machines, 2G feature
phones, and cars are great examples of such devices.

However, over the last decade, devices have been designed to interact with the physical
world, especially with the advent of the Internet-of-Things (IoT). The old home desktop
machine is now transforming into a smart home, filled with various networked computational
devices, such as Amazon Echo, Smart TV, Internet-Connected Refrigerator, etc. Traditional
2G feature phones are transforming themselves into smartphones, full of sensors that monitor
and interact with the outside world. Cars, too, are transforming to self-driving cars, which
are all about monitoring the environment to make autonomous driving decisions. This
transformation will continue to expand with the emergence of connected V2V infrastructure.
The overwhelming number of sensors along with improved artificial intelligence helps devices to
make autonomous decisions, which starts to resemble some traits of human beings, especially
on how we sense and interact, or perceive the physical world.

1.1 Challenges of Cyber-Physical Security

However, we pose the following important question regarding such transformation. Is the
security we have sufficient and adequate enough to cope with such transformation? I claim
that it is not, and illustrate the shortcomings of the security today in this thesis. Traditional
security concentrated on protecting data in regard to identities or similar static attributes.
Decades of research in this area resulted in significant contributions such as development of
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cryptographic algorithms to ensure different security properties, and utilizing the algorithms
to create security tools and protocols that many of us enjoy today. For example, we utilize
authentication protocols to verify certain identity using cryptographic solutions. Accessing
online banking such as Bank of America website leverages SSL/TLS, which enables server
authentication.

Traditionally, authentication (i.e., verification of identity) constituted of the following
three factors:

• What you know : Password, PIN, SSN

• What you have: Digital Certificate, Door Key, Credit Card

• Who you are: Biometric (such as fingerprint, iris, face)

All of the above traditional notion of authentication require an important step to pre-register
prior knowledge to map the identity to certain attribute. For example, creating Gmail service
requires the user to create ID and Password before usage. Similarly, using FaceID or TouchID
on an iPhone requires registering one’s face or fringerprint information.

However, as we move into the cyber-physical world, data rely more on the physical
relationships among the involved parties rather than the identities alone. Specifically, identity-
based solutions (such as the crypto systems) alone are not adequate to prove the relative
physical relationships. For example, when there are two cars on a road as depicted in Figure 1.1,
it is difficult for the cars to verify one’s location relative to another car. Specifically, if Car
M is malicious and wants to fool Car A into believing that Car M is behind Car A, it is
difficult for Car A to verify that information. Simply sending GPS information and digitally
signing the message will not help because GPS information can at best be low in accuracy
and is vulnerable to spoofing attacks. In addition, signatures only verify the authenticity of
the message and not the physical relationships. In order to overcome this challenge, I ask the
following question: How can the IoT devices verify and bind the identities to their physical
relationships?

1.2 Signals-of-Opportunity : Contextual Information Avail-

able in Physical Environments

In order to answer the above question, I take inspirations from how we, as humans, interact
with each other in our physical world and apply the inspirations to the IoT devices.
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Figure 1.1: Figure depicts the difficulty of Car A attempting to verify the location of Car M.
Digitally signing the GPS coordinates is not an adequate solution because GPS can easily be spoofed.

1.2.1 Inspirations from Humans

Specifically, how do we identify and verify each others’ identity? We actually do not just
depend on identities (i.e., names) alone, but with various other contextual cues, by sensing and
interpreting sensed information. For example, when your manager at work calls your name,
you first identify your manager, and implicitly verify that identity with various contextual cues
including appearance, voice, intonation, vocabulary, as well as spatio-temporal information.
Then you would cross-verify across these multiple context to arrive at the conclusion that it
was indeed your boss calling your name.

Likewise, we also interact with our physical environments by depending on various forms
of sensory perceptions as well. For example, we recognize a door opening and closing by
verifying the information across different senses – we hear, see, and sometimes feel the
vibration of the door opening and closing.

1.2.2 Sensors to Capture Signals-of-Opportunity

In this thesis, I am inspired by the aforementioned human behavior and propose to apply the
inspirations to the IoT devices. Specifically, I enable the IoT devices and cyber-physical sys-
tems to also capture contextual information abundantly available in the physical environment,
also known as Signals-of-Opportunity to assist with the binding. Such Signals-of-Opportunity
– ranging from speakers emitting sound, fridge or dryer humming, and to vehicles experiencing
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Figure 1.2: Figure depicts the generic Context-based Pairing framework. Main contribution of my
work lies within the Entropy Extraction Module.

bumps on a road – can be captured with the sensors that are equipped in the devices. The
devices then may use the sensed data to verify the physical relationships across devices (e.g.,
proving co-location of two devices) to complement security protocols.

1.3 Context-based Pairing

In order to study how devices may bind their identities to their corresponding physical
relationships, I study context-based pairing. This is because context-based pairing is a
process that enables two co-located devices to discover, authenticate, and create a secure
channel by proving their physical relationships. The devices make use of sensor measurements
to capture common contextual cues to prove their physical relationships (e.g., co-location of
two cars on a road). I first present the generic framework, main challenges, and desirable
properties.

1.3.1 Generic Framework

Figure 1.2 depicts the generic context-based pairing framework. Each party involved in the
pairing process first leverages its sensor to measure the corresponding Signals-of-Opportunity,
resulting in depicted raw signal. The signal is then pre-processed, and subsequently input
to the Entropy Extraction Module. This module translates the pre-processed sensor signal
into entropy bits that is then input to a cryptographic key agreement protocol. As I will

4



demonstrate from the following Chapter 1.4, how to extract entropy from the collected sensor
data depends largely on the physical constraint of the application, namely the physical
boundary. For example, if the two devices are located in a complete insulation (e.g., perfectly
soundproof room), then the two devices would simply exchange entropy bits over audio
channels. However, relaxing the constraint (hence more practical problems) increases the
difficulty of such entropy extraction protocol, as the solution cannot allow potential attackers
to also extract the common entropy. I note that this protocol involves communication across
the involved parties over wireless communication medium such as Wi-Fi, Bluetooth, or ZigBee.
At the end of the framework, the two parties arrive at a shared symmetric cryptographic key.
Furthermore, capturing Signals-of-Opportunity on the left-hand side can be performed by
any arbitrary devices including both legitimate and attacker devices. However, through a
successful context-based pairing protocol, only the intended devices should be able to satisfy
the requirements to achieve the shared symmetric key, depicted on the right-hand side. This
leads us to the next question of how to enable this in the Entropy Extraction Module.

1.3.2 Main Challenges

The main challenge of context-based pairing lies in its Entropy Extraction Module in order to
provide a secure binding of identities to their physical relationships. Specifically, this module
needs to extract “common”, “secret”, “randomness”. First, the extracted entropy needs
to be “common” across the interacting devices. Hence, the entropy needs to be extracted
from common source of contextual information that is commonly perceived by the interacting
devices. Second, the extracted entropy needs to be “secret”. Hence, the contextual information
needs to be perceived only by the interacting (intended) devices. Otherwise, the attackers
may launch impersonation attacks. Third, the extracted entropy needs to have sufficient
“randomness”. Hence the contextual information should be unpredictable. Otherwise, the
attacker may again be able to guess the randomness and attack the pairing process. For
example, contextual information such as door opening events may provide randomness because
it is very difficult to predict the exact timing of each door opening events.

1.3.3 Desirable Properties

Taking these challenges, there are a number of desirable properties such as scalability, usability,
and performance. First, it would be more desirable to have a scalable solution by reducing
assumptions of hardware used. This is enable the use of available, cost-effective, and/or
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Figure 1.3: Figure depicts an analogy of varying levels physical boundary that insulates conversation
to the outside attacker. The physical boundary also governs common secret randomness.

dissimilar hardware across devices. Second, it would also be more desirable to have a usable
solution by reducing active human involvements in the context-based pairing protocols. Third,
I would also want to increase performance by reducing the pairing time.

1.4 Constraint on Physical Boundary

In solving the aforementioned challenges of context-based pairing, namely extracting common
secret randomness from the Entropy Extraction Module, I need to ensure that the attacker
does not perceive the same events as the intended devices. I notice that there is a notion
of physical boundary that may separate legitimate devices from the attackers. Hence, the
physical boundary insulates certain amount of contextual information that are commonly
perceived by intended devices from the attacker outside. For example, Figure 1.3 depicts an
analogy by presenting varying levels of physical boundary that insulates conversation that
occurs inside the boundary to the outside attacker trying to eavesdrop on the conversation. I
note that as the insulation gets weaker (i.e., from soundproof room, to conference room, to
an open office setting), it is more difficult to insulate the signals from the attacker. Hence,
physical boundary, which is an inherent restriction for a given application in its physical world,
governs which Singals-of-Opportunity to capture to extract common secret randomness.

Applying this analogy to the IoT and CPS, applications with strict constraint on physical
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boundary may be cases where there are Complete Insulation of a physical boundary. For
example, a Faraday cage may be categorized with such a constraint, where devices inside are
completely segregated from the outside world, as no signals are either leaked or injected from
and to the cage. Devices inside the boundary can easily authenticate each other knowing
that there are only intended devices inside, free from any signal injection from the attackers
outside. Following this, less constrained applications may be cases where there are only Some
Insulation of a physical boundary. For example, a private office or room may be such a
constraint, where only intended devices are granted physical access, but wireless signals are
also able to penetrate through the walls. Devices in this boundary need to carefully choose
the relative context to prove to succeed in authenticating the intended devices. Hence, the
devices may prove to each other that they are experiencing similar events that can only be
experienced by devices within the boundary. Lastly, applications with more relaxed constraint
may be cases with No Insulation of physical boundary. For example, a public building such
as a shopping mall has almost no constraint, granting access to anyone. Because there are no
physical separation, it becomes extremely challenging for the intended devices to authenticate
each other.

1.5 Adversary Model

The attacker’s goal is to break the main goal of the approach, namely to maliciously forge
the verification of physical context during the context-based pairing process. The attacker
would try to achieve this goal with the capabilities of capturing relative physical context
determined by varying constraint on physical boundary. Specifically, given a constraint, I
define a reasonable assumption of the attacker’s capability to not be able to capture the
relative physical context. For example, devices co-located in Complete Insulation such as
inside a Faraday Cage are constrained by the physical boundary and so no devices outside
can eavesdrop or inject signals inside. Hence, there is a correlation between the spectrum of
varying constraint with the varying capabilities of the attacker. There is a high correlation
because relaxing the constraint makes verification more difficult as it becomes easier for
the attacker to launch attacks. On the other hand, with more constraint, it becomes more
difficult for the attacker to forge the relative physical context.
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1.6 Contributions of This Thesis

I now highlight my thesis statement and the corresponding research road map. Subsequently,
I present a high-level outline of the rest of this thesis.

Thesis statement. Given a specific constraint on physical boundary, IoT devices identify
corresponding Signals-of-Opportunity to extract common secret randomness. In turn, the
extracted entropy is used to perform context-based pairing to to bind their identities to their
physical relationships, while satisfying scalability, usability, and performance.

18#
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spectrum of constraint on physical boundary.

In this thesis, I present how I solve the above challenges and achieve the desirable
properties by presenting three representative real-world use case scenarios that span across
the spectrum of varying constraint on physical boundary. This is depicted in Figure 1.4.
Specifically, I demonstrate how to capture the relevant Signals-of-Opportunity to extract
common secret randomness in the entropy extraction module for these three scenarios.

1.6.1 Research Road Map

First, I present a pairing scenario between a car’s infotainment system and a driver’s phone,
to illustrate the most constrained solution (of the three examples) – i.e., Complete Insulation.
Second, I present a smart home scenario to illustrate the less constrained solution – i.e., Some
Insulation. Finally, I present a truck platooning scenario to illustrate the least constrained
solution – i.e., Least Insulation.

Complete Insulation: Secure Pairing a Smartphone to a Vehicle Infotainment
System – With the increasing popularity of mobile devices, drivers and passengers will
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naturally want to connect their devices to their cars. Malicious entities can and likely
will try to attack such systems in order to compromise other vehicular components or
eavesdrop on privacy-sensitive information. It is imperative, therefore, to address security
concerns from the onset of these technologies. While guaranteeing secure wireless vehicle-to-
mobile communication is crucial to the successful integration of mobile devices in vehicular
environments, usability is of equally critical importance. Several researchers proposed different
methods for key agreement between two devices that share no prior secret. However, many
of these proposals do not take advantage of the vehicular environment. In Chapter 3, I
propose novel approaches to secure vehicle-to-mobile communication tailored for vehicular
environments without installing existing hardware for solving this problem. Specifically, I
leverage a vehicle’s glove compartment as a complete insulation analogous to a Faraday
cage of a wireless communication. Using this method, I present novel security protocols and
their security analysis and provide implementation and user study results demonstrating the
feasibility and the usability of our solution.

Some Insulation: Autonomous Secure Pairing of Smart Home Devices – Pre-
vious work on context-based pairing solutions increase the usability of IoT device pairing
by eliminating any human involvement in the pairing process. This is possible by utilizing
on-board sensors (with same sensing modalities) to capture a common physical context (e.g.,
ambient sound via each device’s microphone). However, in a smart home scenario, it is
impractical to assume that all devices will share a common sensing modality. For example,
a motion detector is only equipped with an infrared sensor while Amazon Echo only has
microphones. In Chapter 4, I present our novel context-based pairing mechanism that uses
time as the common factor across differing sensor types. By focusing on the event timing,
rather than the specific event sensor data, our solution creates event fingerprints that can be
matched across a variety of IoT devices. I propose our solution based on the idea that devices
co-located within a physically secure boundary (e.g., single family house) can observe more
events in common over time, as opposed to devices outside. Devices make use of the observed
contextual information to provide entropy for our pairing protocol. In this chapter, I present
our design and implementation details and evaluate its effectiveness as an autonomous secure
pairing solution. Our implementation demonstrates the ability to sufficiently distinguish
between legitimate devices (placed within the boundary with only some insulation) and
attacker devices (placed outside) by imposing a threshold on fingerprint similarity.

No Insulation: Verifying Relative Vehicle Positioning – Truck platooning is
emerging as a promising solution with many economic incentives. However, securely admitting
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a new vehicle into a platoon is an extremely important yet difficult task. There is no adequate
method today for verifying physical arrangements of vehicles within a platoon formation.
Specifically, I address the problem of a platoon ghost attack wherein an attacker spoofs
presence within a platoon to gain admission and subsequently execute malicious attacks.
To address such concerns, I present in Chapter 5 a novel autonomous platoon admission
scheme which binds the vehicles’ digital certificates to their physical context (i.e., locality).
Our solution exploits the findings that vehicles traveling together experience similar context
to prove to each other over time that they are co-present. Specifically, they experience
similar road (e.g., bumps and cracks) and traffic (e.g., acceleration and steering) conditions
as opposed to vehicles traveling even in adjacent lanes. Hence, the vehicles have the least
insulation among the three projects. Specifically, our approach is based on the ability for
vehicles to capture this context, generate fingerprints to establish shared keys, and later bind
these symmetric keys to their public keys. I design and implement our protocol and evaluate
it with real-world driving data. Our implementation demonstrates that vehicles traveling in
adjacent lanes can be sufficiently distinguished by their context and this can be utilized to
thwart platoon ghost attacks and similar misbehavior.

Risks of Sensing for Cyber-Physical Systems – In addition to leveraging sensing
information to help bind identities to the physical relationships, I studied how sensing
information can pose potential security threats from several research projects during my Ph.D.
program. In this thesis, I present one of the additional work in this theme. To exemplify this
line of work, I present one project that highlights how an attacker may invade personal privacy
in a smart home using a fusion of available sensor data. Specifically, in Chapter 6, I propose a
new side-channel attack, where a network of distributed non-acoustic sensors can be exploited
by an attacker to launch an eavesdropping attack by reconstructing intelligible speech signals.
In this chapter, I demonstrate the feasibility of speech reconstruction from non-acoustic sensor
data collected offline across networked devices. Unlike speech reconstruction which requires a
high sampling frequency (e.g., > 5 KHz), typical applications using non-acoustic sensors do not
rely on richly sampled data, presenting a challenge to the speech reconstruction attack. Hence,
our solution leverages a distributed form of Time Interleaved Analog-Digital-Conversion (TI-
ADC) to approximate a high sampling frequency, while maintaining low per-node sampling
frequency. I demonstrate how distributed TI-ADC can be used to achieve intelligibility by
processing an interleaved signal composed of different sensors across networked devices. I
present our implementation details and evaluate reconstructed speech signal intelligibility
via user studies. The word recognition accuracy is as high as 79%. Though some additional
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work is required to improve accuracy, our results suggest that eavesdropping using a fusion
of non-acoustic sensors is a real and practical threat.

1.6.2 Thesis Outline

The remainder of this thesis is organized as follows. I present the related work with respect
to the varying physical boundary constraint in Chapter 2. Subsequently, I present the three
research projects from most to least constrained physical boundaries in Chapters 3, 4, and 5.
In Chapter 6, I present one of the security vulnerabilities due to sensing. In Chapter 7, I
summarize my contributions, and present future directions of my research.
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Chapter 2

Related Work

In this chapter, we investigate three related work that span the spectrum of varying constraints
on physical boundary and highlight their limitations in achieving the main challenges.

As the most constrained scenario among the three related work, we present Message-In-a-
Bottle (MIB) [84], which leverages a Faraday cage, a special hardware device that ensures
authenticity and secrecy of the communication inside the cage. The cage prevents any wireless
signals communicating between the sensor nodes inside to be leaked to attackers outside
the cage. Also, attackers are infeasible to inject wireless signals into the cage. The main
drawback of this approach is that it requires specialized hardware such as the Faraday cage.

Second, as a relatively relaxed constraint scenario, we present Distance Bounding (DB) [39],
which leverages estimated distance via wireless signals to be used as a “virtual" boundary.
Although there are no physical boundary like MiB, DB requires that a human verifies if
there are non-intended devices within the virtual boundary. Similarly, we also present
HAPADEP [125], which leverages audio channel as an Out-of-Band Channel to perform a
secure pairing of devices. It first exchanges the public keys of two smartphones via sound,
using built-in speakers and microphones. In the verification phase, the two devices reveal
data commitments by emitting another sequence of sound signals. The user is required to
verify if the two sound signals are identical. Similar to DB, there are no physical boundary.
However, it also requires that a human verifies if there are non-intended devices within the
virtual boundary.

Third, as a most relaxed constraint scenario, we present Zero Interaction Authentication
(ZIA) [99], which proposes to perform secure pairing across devices in a smart home using
either a pair of microphone or light sensors. The core idea is that the devices inside the
house would share similar context as opposed to devices in a neighbor’s house. Similarly,
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Ambient Audio [117] presents a similar idea by utilizing short audio signals as contextual
information shared across a pair of microphones and leverages fuzzy commitment schemes to
perform a secure pairing. However, both of these papers make strong assumptions that the
devices inside are all equipped with the same sensor type. Hence, this assumption limits the
practicality and scalability especially in a smart home environment, where the number of
devices are expected to increase to hundreds in the next few years. In this thesis, we propose
to also achieve such scalability by reducing the assumptions of hardware used.
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Chapter 3

Most Constrained: Vehicle
Infotainment System

We identify the pairing scenario as the most constrained one because the methodology used
in this chapter entails use of a car and its glove compartment as a tightly managed physical
boundary.

3.1 Problem Definition

With the proliferation of wireless devices using Wi-Fi and Bluetooth technologies, security of
their communication is a vital concern as numerous real-world attacks have been reported [116].
Insecure wireless communication may allow attackers to eavesdrop or launch Man-in-the-
Middle (MitM) attacks, impersonating legitimate communicating devices.

Efforts to eradicate such attacks have inspired many research proposals as well as industrial
solutions, namely to provide secure pairing between devices by “bonding” them to establish
a secure channel. However, it is still difficult for human users to easily determine which
devices are being paired because of the invisible nature of wireless communication. Hence,
researchers propose demonstrative identification, which affirms to the human user which
devices are actually communicating leveraging out-of-band channels. [30].

However, many naive solutions attempting to establish such secure pairing for any two
devices introduces a trade off. In many cases, increasing security leads to decreased usability,
which becomes a significant hindrance for wide adoption of the technology by the general
public. On the other hand, decreased usability may cause a security breach in these protocols.
This is exemplified by the use case scenario when a user tries to pair her phone with a
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friend’s phone using Bluetooth. The state-of-the-art solutions require the user to either copy
a passkey displayed on one device to the other, compare two passkeys displayed on both
devices, or to enter a hard-to-guess passkey on both devices. However, the security of such
protocols often rely on the passkey not being repeated or easy-to-guess, requiring the users to
input hard-to-guess passkeys to guarantee the protocol security [85]. These designs, however,
lead to multiple problems in practice. Many devices actually display a repeated and/or
easy-to-guess passkeys (e.g., 000000, 123456, etc.) [136]. Also, many users tend to make fatal
mistake of inputting easy-to-guess passkeys [132].

In this section, we delve into a specific problem of vehicular environments. The proliferation
of smartphones coupled with emerging smarter vehicles allows constant exchange of sensitive
information over wireless communication. For example, different automotive manufacturers
and smartphone companies established Car Connectivity Consortium (CCC) and have formed
Mirror Link, a standard for integrating smartphones and the vehicles to enable access to the
phones using car’s control, display, and speakers [41]. In addition to pairing with personal
cars, we expect more frequent pairing use cases for widely deployed rental car services – both
traditional and short-term rental cars (e.g., Zipcar).

Unfortunately, coupling of smartphones and vehicles introduces a new avenue of potential
attacks if the wireless channel is not secured. Although launching such attacks may not seem
plausible at a first glance, they are certainly within the realm of possibility especially for
high-value targets (e.g., celebrities, politicians, etc.) that provide more incentives for the
attackers. Furthermore, such targets are more likely to drive luxury vehicles that embrace
next-generation vehicle-to-mobile convergence systems. Are current cars effectively protected
from remote attackers attempting to compromise vehicular components? Can we be convinced
that the sensitive information in our vehicles is not being maliciously transmitted to attackers
in other nearby cars on the road, or in parking lots connected via Bluetooth or Wi-Fi?

To address these problems, we present MVSec, the first secure key agreement scheme
tailored specifically for vehicular environments, providing strong security guarantees and easy
usability. MVSec leverages out-of-band channels such as sound or light because commodity
hardware such as LED, ambient light sensor, speaker, and microphone are readily available
in cars and/or smartphones. MVSec allows a user, typically the driver, to simply press a
button on each device (the car and the phone) to initiate the protocols. For the protocols
that leverage sound, all the user needs to do is to simply verify that both the car and the
intended mobile device emit a short beep. Similarly, for protocols that leverage light emission,
the user simply needs to place the mobile device in the glove compartment for a short amount
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of time.

3.2 System Models

This section presents the goals we plan to achieve given the constraints, lists the assumptions
we hold, and discusses the attacker model. The main goal of MVSec is to present a complete
system that provides a secure and usable communication between the car and the smartphone.
If an attacker is present and launches an attack, it will be clear to the user that an error has
occurred, so that the user can immediately abort the pairing process. The main properties
MVSec tries to achieve are the following. MVSec achieves secrecy by allowing the driver’s
phone and the car to hide information from unintended devices. It also achieves authenticity
and integrity by allowing the driver’s phone and the car to validate that unaltered data
arrived from the claimed sender. MVSec also achieves demonstrative identification by
enabling the user to explicitly be aware of which devices are actually communicating via the
wireless communication.

We also categorize some of the constraints that pose challenges in achieving the afore-
mentioned goals. The phone and the car initially do not share any prior secret, nor depend
on any Trusted Third Party (TTP) for exchanging the secret. In addition, MVSec incurs
minimal hardware cost by leveraging available hardware commonly installed in today’s cars
and smartphones to communicate via out-of-band (OOB) channels (discussed further in
Section 3.3).

3.2.1 Adversary Model

This subsection presents the attacker model by describing the attacker goals and capabilities.

Attacker Goals The goals of the attacker is to break the security properties that MVSec
aims to achieve, namely to break secrecy and authenticity of vehicle-to-mobile communication.

Attacker Capabilities We assume that the attacker can perform both passive and active
attacks. A passive attacker can perform attacks without actively participating in the protocol,
such as eavesdropping. An active attacker follows a Dolev-Yao attacker model who are able
to perform various types of attacks in addition to eavesdropping – data injection attacks,
denial-of-service, man-in-the-middle (MitM), etc. In this thesis, we concentrate on defending
against the MitM attack.

There are two types of attackers that we envision in a secure pairing environment with
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vehicle and mobile devices. Different attackers are limited by different capabilities given
corresponding constraints.
(1) Attacker inside the vehicle. In this case, an attacker is present inside the vehicle. This
type of attacker can launch powerful attacks because the attacker has access to the visual
display in the vehicle. Computational power is not a limitation for this type of attacker
because he can have remote access to powerful computational devices. The only limitation
would be the bandwidth of the network connectivity.
(2) Attacker is outside of the vehicle but within wireless transmission range (<100 meters
away). Attackers who are outside of the car can still perform powerful attacks. This type of
attacker is constrained in many aspects compared to the first type as the attacker cannot
see the visual display and listen to sound emissions from the vehicle and the mobile devices,
and cannot launch out-of-band channel attacks. The attacker can still perform considerable
attacks such as jamming, eavesdropping, and man-in-the-middle attacks, especially if equipped
with powerful devices such as a high-gain antenna.

3.2.2 Assumptions

Given the specific vehicular setting, we make the following assumptions to achieve the
aforementioned goals. We assume that the OOB channel does not require user diligence.
This is a necessary assumption to ensure high usability. We also assume that there is no
malware on the vehicle or mobile device. If there is malicious code on the mobile device, a
secure pairing protocol cannot establish a secret because attackers can gain the shared secret
through the malware.

3.3 Capturing Contextual Cues

This section presents the overview of the MVSec protocols, discusses the OOB channel
selection, and then delves into the protocol details. The main goal of MVSec is to allow a user
to securely pair his/her smartphone with a vehicle such that an attacker will not successfully
launch MitM attacks.

To achieve this goal, we first need to overcome the challenge of providing demonstrative
identification, to ensure that the vehicle and the intended smartphone are in fact commu-
nicating with each other. We leverage out-of-band (OOB) communication channels as a
solution. Different from the in-band channels used by the devices, e.g., Wi-Fi or Bluetooth,
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an OOB channel is a separate communication medium between the communicating devices
(e.g, humans, light, sound, vibrations).

Pairing 
Successful 

(1) Press 

START on 

phone and car 

(2) Place phone 

in a glove box 

(3) Wait for a 

few seconds 

(4) Car prompts 

SUCCESSFUL 

message 

(a) Strong OOB Channel (light)

(1) Press 

START on 

phone and car 

(2) Phone and car exchanges beeps 

with each other. User verifies that no 

other devices beep. 

(3) Car prompts 

SUCCESSFUL 

message 

Pairing 
Successful 

(b) Weak OOB Channel (sound)

Figure 3.1: Overview of MVSec using light and sound as OOB channels

3.3.1 Out-of-band Channel Selection

MVSec leverages two types of OOB channels for different protocols. According their charac-
teristics, they are categorized into strong and weak OOB channels.

Strong OOB Channel. A strong OOB channel guarantees both secrecy and authenticity.
We select light in a vehicle’s closed glove compartment as the strong OOB channel because
it helps to provide both of these security properties with minimal human involvement. We
assume that the glove compartment does not leak any light signal, thus provides secrecy.
This channel also provides authenticity because only the vehicle will emit light signals. This
is because no other device is inside the compartment as the driver first verifies that other
devices are not placed inside the compartment during protocol execution.

In addition to considering the security properties, we choose light because of the following
requirements of the OOB channel. The OOB channel needs to (1) be readily available in
vehicles and smartphones today in order to be easily deployable, and (2) provide high usability,
i.e., the OOB channel needs to have a relatively fast data rate and be easy and pleasant to
use (i.e., should not require user diligence nor annoy the users). We define relatively fast data
rate to be faster than the OOB channel used as baseline case, which is manual human input.
This OOB channel allows such usability because the only task that the user performs is to
press a button on both the vehicle and the smartphone, and place the smartphone inside
the glove compartment. After waiting for a few seconds, during which the vehicle transmits
signals via blinking lights to the smartphone, the pairing process successfully completes. The
steps are depicted in Figure 3.1(a).

Weak OOB Channel. A weak OOB channel provides only authenticity. We select sound
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signals as the weak OOB channel. This channel helps to provide authenticity, again, with
minimal human involvement, because we assume that it is easy for the user to identify that
the sound beeps are originating only from the intended devices (e.g., vehicle and driver’s
smartphone). If an unintended device beeps, the user simply aborts the protocol. We
assume that the beeps are sufficiently long and loud enough for the user to easily identify
the origin of the beeps. We assert that this is a realistic assumption, because smartphone
users generally distinguish who’s phone is ringing when (s)he hears a phone ring. We also
use sound signals because of the ubiquitous deployments of microphones and speakers in
vehicles and smartphones. Figure 3.1(b) depicts the steps the user performs. We provide
different variation of protocols using different cryptographic primitives that leverage the two
aforementioned OOB channels.

3.4 Design and Implementation

This section presents the design and implementation details of MVSec.

3.4.1 MVSec Protocols

This subsection describes three MVSec protocols that leverage light and sound signal in a
closed compartment as the OOB channel. We present the underlying cryptographic primitives
of these protocols and compare them to select the most efficient protocol. Table 3.1 denotes
the notations used in the MVSec protocols.

3.4.1.1 Strong OOB Channel

We now describe protocol details leveraging the light as an OOB channel. This protocol
makes use of the Encrypted Key Exchange (EKE) [32] and is depicted in Figure 3.2.

MVSec-I: Protocol leveraging Encrypted Key Exchange (EKE). A conventional
EKE scheme allows two participating entities to use a shared low-entropy password to derive
a temporary shared key that can be used to authenticate the key exchange messages. We use
a variant of the EKE scheme by treating a short shared secret Ks (20 bits) as a low entropy
password. Ks is first transmitted via the light signal in Step 2. In Steps 3 and 4, both the
vehicle and the smartphone transmit their DH public keys encrypted with Ks. Then the
vehicle and the mobile device also performs key confirmation in Steps 4 and 5.
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NotationDescription
Light
=⇒ Strong OOB channel using light in

a closed glove compartment
Sound
=⇒ Weak OOB channel using sound
BT−→ In-band Bluetooth channel
MK(x) MAC (e.g., HMAC) computed over

the input x, using key K
gx Diffie-Hellman public parameter

(omitted mod p for clarity)
H(x) Cryptographic hash (e.g., SHA-3)

of input x
{x}K Symmetric encryption (e.g., AES)

of input x using key K
[x]i Truncated i bit string of input x
{0, 1}i Random binary string with length i

Table 3.1: Notations for MVSec protocols

3.4.1.2 Weak OOB Channel

MVSec leverages Short Authenticated Strings (SAS) [88, 109, 135] which uses commit-
ment/decommitment schemes prior to transmitting the short hash comparisons for verification.
This approach is preferred over a naive approach of sending short hash values over the weak
OOB channel for verification. The reason is that attackers may be able to launch attacks to
find hash collisions.

MVSec-II: SAS with random nonce. Figure 3.3 presents first of the two protocols
that leverages weak OOB channel. This protocol uses short authenticated strings (SAS) with
random nonces.

In Steps 2 and 3, the vehicle and the mobile device generate and exchange commitments.
The commitments are the hashes of each party’s DH public key concatenated with its random
nonce, nA and nB. Steps 4 and 5 allows the vehicle and the mobile device to transmit the
decommitment in order to verify public keys with stored commitments. Once both parties
verify the hash by comparisons, they will transmit the SAS messages mutually through the
weak OOB channel in Steps 6 and 7. Note that the vehicle can also use light in a glove
compartment to transmit this SAS message, although the secrecy is not needed in this
protocol. Meanwhile, the vehicle and the smartphone both verify the received SAS value is
equal to the SAS value they sent out. If two SAS values match, both devices generate their
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MVSec-I: Protocol using EKE
1. User : Presses start buttons on A and B.

Places B in the glove compartment.
2.A : Ks

R←−{1, 0}`

A
Light
=⇒ B : Ks

3.ABT−→B : {ga}Ks

B : Decrypts {ga}Ks to get ga;
Computes shared key K′ = (ga)b.

4.BBT−→A : {gb}Ks ||MK′ (nA) where nA = H({ga}Ks )
A : Decrypts {gb}Ks to get gb;

Computes shared key K = (gb)a;

MK′ (nA)
?
=MK(H({ga}Ks ));

aborts if verification failed.
5.ABT−→B : MK′ (nB) where nB = H({gb}Ks )

B : MK′ (nB)
?
=MK(H({gb}Ks ));

aborts if verification failed.

Figure 3.2: Key agreement protocol between a vehicle (A) and a smartphone (B) using EKE with
light as the strong OOB channel. In practice, ` = 20.

individual DH ephemeral key, K and K ′. Such as the previous protocol, the key confirmation
procedure would perform in Steps 8 – 11.

3.4.2 Implementation

We demonstrate working MVSec protocols using the Android platform. We use two Motorola
Droid 1 phones running Android 2.2.3 (Froyo) - one to simulate the car and the other to
represent the driver’s smartphone respectively.

3.4.2.1 MVSec Pairing Walk-Through

We now provide a walk-through of the MVSec pairing protocols by describing our imple-
mentation prototypes leveraging both the weak and strong OOB channels (described in
Section 3.4.1). Figure 3.4 presents chronological protocol steps for the protocols that leverage
sound which is a weak OOB channel. First, both devices prompt the user with instructions
and a “Pair Now" button on the car. Once the user presses this button, the two devices will
first initiate pairing messages over Bluetooth, as shown in MVSec-II protocol. Then the two
devices transmit each other’s SAS messages over the authentic OOB channel, which is via the
audio channel. As soon as the car finishes emitting the beep, the smartphone starts beeping,
and the car listens for the beep. In Section 3.4.2.2, we present a detailed description of the
encoding and decoding of the sound pulses. After the SAS messages have been exchanged,
the two devices complete the protocol by exchanging the key confirmation messages again
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MVSec-II: Protocol using SAS with Nonce
1. User : Presses start buttons on A and B. Aborts if devices

other than A or B beep during execution.
2. A : Nonce nA

R←−{1, 0}`.
A
BT−→B : CA = H(ga||nA).

3. B : Nonce nB
R←−{1, 0}`.

B
BT−→A : CB = H(gb||nB).

4. A
BT−→B : ga||nA.

B : CA
?
=H(ga||nA); aborts if verification fails.

5. B
BT−→A : gb||nB .

A : CB
?
=H(gb||nB); aborts if verification fails.

6. A
Sound
=⇒ B : SASA = nA ⊕ nB .

B : SASB = nB ⊕ nA
SASA

?
=SASB ; aborts if verification fails.

Computes shared key K = (ga)b;

7. B
Sound
=⇒ A : SASB .

A : SASB
?
=SASA; aborts if verification fails.

Computes shared key K′ = (gb)a.

Key confirmation (check K′ ?=K)

8. A : Nonce n′A
R←−{1, 0}η .

A
BT−→B : n′A||MK′ (n′A)

9. B : Nonce n′B
R←−{1, 0}η .

B
BT−→A : n′B ||MK(n′A||n

′
B)

10.A : MK(n′A||n
′
B)

?
=MK′ (n′A||n

′
B);

abort if confirmation fails.
A
BT−→B : MK′ (n′B)

11.B : MK′ (n′B)
?
=MK(n′B);

abort if confirmation fails.

Figure 3.3: Key agreement protocols between a vehicle (A) and a smartphone (B) using SAS with
random nonce, leveraging weak OOB channel providing only authenticity. In practice, ` = 20 and η
= 256 (HMAC-SHA3).

over the in-band Bluetooth channel. After the entire protocol has successfully completed, the
two devices prompt the user of a pairing successful message.

Figure 3.5 provides a similar chronological protocol steps, but leverages light in a glove
compartment which is a strong OOB channel. Once the user initiates the pairing process,
the device simulating the vehicle (car for short) will start transmitting light pulse by varying
the light intensity levels of the screen. Section 3.4.2.3 also provides implementation detail
of the light channel. The smartphone will capture the varying light intensity levels in this
step. Then the car and the phone will now exchange messages over Bluetooth, to complete
MVSec-I protocol. Once the protocol completes, both devices prompt the user of a successful
pairing message.
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(a) (b)

Figure 3.4: Execution flow of MVSec protocol leveraging a weak OOB channel (via sound). (a)
Upon pressing a start button, the phone simulating the vehicle (car for short) displays instructions
to initiate pairing and to abort if any unintended devices beep. (b) User is prompted with pairing
successful message.

3.4.2.2 Audio Channel

MVSec leverages sound as an weak OOB channel for the following reasons. First, as described
in Section 3.4.1.2, the SAS messages only need to be authenticated, but not require to be
secret. The audio channel provides authenticity because the driver can easily determine the
source device of the sound beeps inside the car - i.e., whether the beep is originating from the
car speakers and his intended mobile device, as opposed to other unintended devices (e.g.,
passenger smartphone). Second, the necessary hardware are already available in the car and
the phone. This is because all cars and phones have speakers and microphones.

In order to transmit 20 bits of the SAS message, we first encode the data into eight
different frequencies, allowing 20 bits to be encoded to 8 pulses. It takes roughly 800 ms
to transmit a pulse (including the pause), so it takes roughly 5.6 seconds to transmit all 20
bits of data. For example, when the transmitter transmits 0x93759 as the SAS message,
it is first encoded the message to ‘2233531’ in base 8. On the receiver’s side, we leverage
Android’s AudioRecord class to record the sound signal. Once the signal is recorded, we filter
the signal by applying Goertzel algorithm [40, 60] for the eight target frequencies. We use
eight frequencies evenly distributed from 900Hz to 1600Hz. The aggregate of the filtered
frequencies represented by their magnitude squared (mag2), is depicted in Figure 3.6. Each
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(a) (b)

(c)

Figure 3.5: Execution flow of MVSec protocol leveraging a strong OOB channel (via light in a
glove compartment). (a) Upon pressing a start button, the phone simulating the vehicle (car for
short) prompts the user instruction to place the phone in the glove compartment. (b) The car is
emitting light signal inside the glove compartment and the phone is detecting the signal. (c) User is
prompted with pairing successful message.

spike represents the pulse that correlates to a base 8 number. To finalize the decoding phase,
we process the pulses by apply a sliding window technique to the mag2 values. The sliding
window algorithm is triggered when the mag2 value exceeds a certain threshold, th. Upon
triggering the sliding window algorithm, we check to see if the mag2 value exceeds th within
a certain window size, wnd. If the value exceeds th, we increment a counter until it exceeds
the detection threshold, dth. We then classify this window as a legitimate sound pulse. Using
empirical analysis, we set wnd=4000, th = 40, and dth=200. The described processing
increases the detection accuracy, and reduce false positives, and successfully decodes the
pulses to the correct ‘2233531’(0x93759).
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Figure 3.6: Magnitude squared of target frequencies 900Hz - 1600Hz. The decoding algorithm will
process this to ‘2233531’ (== 0x93759).

3.4.2.3 Visual Channel

MVSec leverages a strong OOB channel to transmit a short, temporary secret key to
defend against the MitM attack. This OOB channel leverages the light bulb in a closed
glove box to transmit messages, which will be detected by an ambient light sensor on the
driver’s smartphone. An Android smartphone is equipped with an ambient light sensor that
measures the light intensity experienced by the phone. This sensor is generally used to detect
light intensity for automatic brightness control and screen locking. We leverage Android’s
SensorManager class to implement the prototype using the ambient light sensor. In our
implementation, we fully implement the driver’s smartphone, and simulate the car’s glove box
light source, by using another Android device, by varying the light intensity of the screen.

When the driver presses the start button on each device to initiate the protocol, the car
will emit a sequence of light signals to the driver’s smartphone. The signal is an encoding of a
short temporary key (20 bits) as described in the protocol details in Section 3.4.1. Accounting
for the low resolution of the ambient light sensor on the smartphones, the current prototype
leverages four intensity levels to encode the corresponding bits: low, medium, high, and pause.
Each level corresponds to the following lux values received by the receiver’s ambient light
sensor – 10 lx, 40 lx, 90 lx, and 160 lx. Due to the low sampling rate of the ambient sensor
in the driver’s phone, the car transmits one intensity level for every two seconds (one second
for intensity value and another second for the pause bit), and takes a total of 26 seconds to
transmit (20 bits encodes to 13 pulses). However, we envision that more responsive ambient
sensors installed in newer phones will increase the speed.

MVSec uses the ambient light sensor as a proof-of-concept. However, we envision that
using other sensors to read the light signal (e.g., camera) would increase the overall detection
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time and improve the performance.

3.5 Evaluation

This section provides the evaluation of the usability, as well as the OOB channel detection
accuracy. We present the results of the user study conducted by describing the participant
profile, study process, and analysis of the results. We also evaluate how accurate the OOB
channel is in terms of the detection accuracy.

3.5.1 Usability Analysis

The main goal of this user study is to determine the usability of the MVSec. Specifically, we
design our study to verify (1) whether MVSec reduces user errors as well as pairing timing,
and (2) the user’s perception of MVSec being more secure and simple to use compared to
other solutions.

3.5.1.1 Demographics

We recruited 23 participants from different sources such as Craigslist and a university mailing
lists. The participant pool varied in gender, age, and education background. The participants’
age range was 20–59; 13 are in twenties, 6 are in thirties, and 4 are in more than forties. These
participants include 12 male and 11 female. Among 23 participants, 10 have undergraduate
degree (e.g., master or doctorate degrees), 13 have college degree, and one participant has
only high school diploma.

3.5.1.2 User Study Process

Participants are invited to the driver’s seat in a car to perform user study. We present to
them with two phones – one to simulate the car’s control unit (Pcar) and the other to be used
as the driver’s smartphone (Pdriver). Pcar is attached to the car’s dashboard to simulate the
vehicle’s infotainment system. We designed both the light (L) and sound (S) MVSec scenarios
to be tested for the user study. Although we fully implemented the working prototype for L
scenario, we simulated the L scenario for the user study by asking the user to place Pdriver
into the glove compartment and explained to them that the light in the compartment will be
emitting secret light signal to Pdriver.
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Scenarios Description
Light (L) Light in a glove box. MVS-I is represented by this scenario.

Participant are informed that the light in the glove compartment will
transmit secret message to the smartphone’s ambient light sensor.

Sound (S) Bi-directional OOB channel using audio signals. MVS-II is
represented by this scenario.

Sound Attack (SA) An unintended device beeps while presenting the Sound scenario, and
the user is expected to abort after noticing the beep.

Choose-and-Enter
(CE)

Base line case that asks the user to create a passkey and enter it on
both devices.

Compare-and-
Confirm (CC)

Base line case that asks the user to compare the displayed numbers on
both devices.

Compare-and-
Confirm Attack
(CCA)

Different numbers are displayed in the Compare-and-Confirm, and the
user is expected to notice the difference.

Copy (C) Base line case that asks the user to copy a displayed number from one
device to the other.

Table 3.2: Different scenarios presented to the participants.

For comparison, we implemented three baseline cases that are currently used as Bluetooth
pairing schemes in vehicles. The three cases are choose-and-enter (CE), compare-and-confirm
(CC), and copy (C). CE allows the user to choose a hard-to-guess number and enter it on
both of the devices. CC allows the user to compare the numbers displayed on each of the
devices. C allows the user to copy a displayed number on the car, and input it into his phone.

In addition to these five scenarios, we also added two attack scenarios – one for MVSec
and the other for the baseline case. First, we present an attack on sound by having an
unintended device beep, when the participant is performing sound pairing scenario, and test
if the participant is able to detect the beep from the unintended device and aborts the pairing
process. Second, we present an attack on CC by presenting two numbers that are different by
a digit, and test if the participant can determine the difference. To reduce bias between the
subjects, we present the seven scenarios in random order for different participants. Table 3.2
lists all seven scenarios presented to the participants.

3.5.1.3 Study Results

During the execution of the scenarios, we measure the following two outputs for comparison
– error rate and time. For non-attack scenarios (i.e., L, S, CE, CC, and C ), we claim that
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Figure 3.7: Error rate and time measurements of different study types. Note attack scenarios for
both S and CC are included.
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Figure 3.8: Post-test questionnaire results that rate user’s perceptions for simplicity/security.

an error occurs when the participant performs tasks in an incorrect manner resulting in an
unsuccessful pairing. For attack scenarios for S and CC, an error occurs if the participant
does not detect a problem, and continues the pairing procedure without aborting. Figure 3.7
depicts the comparison of the six scenarios with respect to error rate and timing.

The first graph in Figure 3.7 illustrates that the error rate is around 45% for CE, which
is a significant percentage. This is because many participants chose easy-to-guess six digit
number, when asked to come up with a six digit passkey. Because the security of this approach
depends on the passkey to be unpredictable, this demonstrates a clear security problem. We
also observe that for the attack scenario of compare-and-confirm (Scenario SA), about 10%
of the participants mistakenly accepted different values displayed on the devices to be the
same. However, we did not find any error caused by the participants when pairing via the
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Average back-
ground noise

Success
rate

Human perception of background noise

65 dB 90% Quiet inside car, with some noise from garage ventilation
75 dB 92% Music volume is loud, but beeps from phones audible
85 dB 86% Music volume is very loud, beeps from phones are not

audible at times
95 dB 2% Music volume is extremely loud, beeps from phones are

not audible at all

Table 3.3: Comparison of sound signal detection accuracy, when varying the background noise
level by performing 50 trials per dB.

L and S. More interestingly, during the attack scenario of S, all participants distinguished
the beeps from the intended devices as opposed to the unintended device, and pressed abort
button as instructed.

The lower graph in Figure 3.7 depicts the average time taken for different scenarios. On
average, L took around 29 seconds, which is the longest to complete, due to the low resolution
of the ambient light sensor. CE followed L with around 20 seconds of average completion
time. This is because the participants had to come up with a six digit passkey, and enter the
number twice, once on each device. C and S took about the same time of around 12 seconds.
The fastest average completion time was CC, because this scenario did not require the user
to enter any numbers on the devices.

Upon completion of all seven scenarios, we asked the participants to rate the scenarios
(excluding the attack scenarios) with a five point Likert scale for simplicity and security
(scale from 1 to 5: 1 being the least simple/secure unto 5 being the simplest/most secure).
Figure 3.8 depicts the average of five point Likert scale. It is interesting to note that both L
and S have significantly higher average (both above average value 4) than the baseline cases
for simplicity, despite the fact that L took the longest time to complete. It is also interesting
to note that the user perception for security are relatively well distributed among different
scenarios, fortifying the fact that the participants well represent average users without security
expertise.

With the aforementioned results, we claim that MVSec protocols provide a clear usability
advantage over the baseline cases, which are used as industry standards in many of the
vehicle-to-mobile pairing schemes. We find that MVSec simplifies user experience, while
significantly reducing error rate.
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3.5.2 OOB Detection Accuracy

We now present the detection accuracy of the audio channel of our prototype implementation
discussed in Section 3.4.2.2. The detection accuracy of audio signals, even in the presence
of background noise, are important because drivers will be faced with similar situations in
real-world use cases.

We conducted the test inside a vehicle, and varied the background noise level, by changing
the volume while repeating the same song segments. We measured the average background
noise by recording the segment via Skypaw’s Multi Measures – Decibel smartphone applica-
tion [122]. We transmitted a 20 bit number via the audio channel between two smartphones
separated by 11 inches apart. We repeat the transmission for 50 trials per each background
noise level. The test results are summarized in Table 3.3. As shown in the table, the detection
rate is significantly high even when exposed to a relatively loud background noise. However,
we find that the detection accuracy drops significantly when the noise level reaches a threshold
where the beeps from the phones are almost inaudible to human ears. From this experiment,
we claim that the sound detection of MVSec prototypes are robust to be used in practice.

3.6 Related Work

Many researchers have investigated the problem of securely pairing two devices that do not
share prior secret key, or have each other’s authentic public key. One of the main challenges
in secure pairing, however, is to provide usability while guaranteeing security.

Commodity wireless solutions such as Bluetooth or Wi-Fi have standards that attempt to
provide a secure exchange of credentials (e.g., Bluetooth Secure Simple Pairing (SSP) [64]
and Wi-Fi Protected Setup [22]). We illustrate as an example the details of one of the SSP
protocols called numeric comparison. This protocol consists of two phases in performing a
secure pairing. In the first phase, a pair of devices exchange their public keys (e.g., Diffie
Hellman Key Exchange). Then in the second phase, both devices perform verification on the
received public keys by requiring the user to verify if the displayed numbers on both devices
are identical. Once the user performs a successful verification, the devices then establish a
secure connection. However, Kuo et al. [85] highlight that large attack surfaces for these
specifications exist, and provide recommendations to improve usability. For example, the
security of the numeric comparison method depends on the displayed number to be hard
to guess, and not repeated. However, in many products, manufacturers are not careful in
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implementing the standards, and cause potential security vulnerabilities.

Many researchers propose different solutions to achieve secure pairing while preserving
usability. They attempt to leverage different types of OOB channels to provide demonstrative
identification. First, researchers propose using visual channels as the OOB channel. McCune
et al. propose Seeing-is-Believing (SiB) [96], a solution that allows two smartphones to
securely exchange each other’s public keys using QR codes and phone cameras. SiB, however,
is not well suited for a vehicular setting because it requires extra hardware such as cameras,
which is not present in vehicles. SiB also requires user diligence as the users need to actively
take pictures of the QR code.

There are solutions that explicitly require human users to play the role of the OOB
channel. Gehrmann et al. [58] propose a series of protocols named Manual Authentication
(MANA) by allowing the user to read and input short strings to different devices. Although
MANA protocols may seem secure, we claim that MANA is not suitable for solving our
problem because it requires user diligence which often leads to human errors, eventually
resulting in possible attacks.

Many researchers also investigate the usability of different secure pairing proposals [77,
83, 131]. The results of these studies conclude that authentication mechanisms that involve
active user participation (e.g., comparing numbers) is one of the most important factor in
influencing user’s perception of the convenience of a specific pairing solution.

3.7 Discussion

We now discuss some of the relevant points that were not addressed in the above sections.

Alternative Pairing Methods: There are alternative pairing solutions that may seem
to be valid at a first glance for performing a secure key agreement. However, we provide
reasons for why they may not be adequate solutions. First, many cars are already equipped
with built-in iPod jacks. While it is possible to perform secure key agreement using such
cables, we find that not all existing cars today have such cables. We design MVSec to be
deployed in all cars, including existing cars without such cables. Second, NFC may be used
as an OOB channel to perform authentication. However, NFC suffers the same issue – not
all cars are equipped with NFC chips today. Furthermore, many smartphones and tablets
including all iOS devices ship without NFC chips. We find that NFC cannot meet our goal
of deploying MVSec to all existing cars, while incurring minimal hardware cost.
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Visual Channel: Recall that our solution leveraging visual channel was established by
varying the light intensity in the glove compartment to emit signals to the phone inside the
compartment. While current cars today only have a simple mechanical controller that turns
on the light when the compartment door opens, we envision that the light source can be
controlled by either installing a new ECU (Electronic Control Unit) or being controlled by
existing ECU in the future. To support MVSec in existing cars, dealers can easily service
existing cars to install such controllers.

Access Control Policy: MVSec employs an access control policy where the right to
drive the vehicle equates to the right to pair a phone. In addition, the driver may delegate
such rights to the passengers. However, there may be situations that such policy may not be
sufficient. This is best exemplified when the driver leaves his car with valet parking or repair
service center. If the glove compartment is unlocked, the valet or service personnel may pair
their phones with the car. To resolve this issue, we envision MVSec to employ the following
mechanism. MVSec may enforce the car to prompt the driver’s phone for any additional
pairing requests, so that the car would only proceed with the pairing process after the driver’s
authorization. We assume that first phone to be paired does not require such authorization.

Bluetooth Discovery Overhead: MVSec aims to increase usability while guaranteeing
security. One of the main usability drawbacks of the current Bluetooth pairing process is
the slow device and service discovery phases. In addition to using the OOB channel for
security, we may leverage the OOB channels to transmit the vehicle’s Bluetooth MAC address,
eliminating human efforts in Bluetooth pairing setup. Thus, the only task the user has to
perform is clicking a button on a vehicle and a smartphone. The task will take less than 13
seconds to transit a 48-bit long Bluetooth mac address using sound signals in the current
implementation.

Potential OOB Channels in Future: We find that newer cars will be equipped with
various types of sensors and actuators, which can be used to establish alternative OOB
channels. For example, the vehicular industry is moving towards installing haptic seats (using
vibrators) and accelerometers. These new equipment can help establishing an alternative
weak OOB channel with a smartphone, as the phone can receive messages encoded via the
vibration signals using its accelerometer, and also transmit its signal encoded using vibration
signals as well.
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3.8 Chapter Summary

Wireless device pairing is often vulnerable to MitM attacks. Thus, secure pairing between
a vehicle and a phone is important for a successful industry deployment. The proposed
protocols in this chapter address solutions to protect against these attacks, while providing
demonstrative identification to the human user. MVSec leverages readily available hardware
to allow a car and a phone to perform secure key agreement without any pre-shared secret,
and independent of a trusted third party, while still preserving usability.
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Chapter 4

Less Constrained: Smart Home

We now present an application scenario that is less constrained than that of the previous
scenario, namely autonomous IoT device pairing in a smart home. This is less constrained in
terms of physical boundary, because a single detached house inherently provide a physical
separation between devices inside and outside. However, unlike the previous scenario, wireless
signals as well as some attenuated sound or vibration signals still propagate to the devices
outside of the boundary.

4.1 Problem Definition

Securing the IoT network becomes a necessity as introducing more IoT devices comes at a
cost of potential privacy leakage as these devices are equipped with sensors that monitor
activities within a house [70, 100, 107]. While securing the connectivity of the IoT devices is
crucial, it is non-trivial for an end user to perform security configurations on the devices. We
refer to performing security configurations (e.g., configuring Wi-Fi WPA2 for secure pairing)
in this chapter as establishing a secure channel between devices (i.e., cryptographic key
agreement). First, many IoT devices come without any I/O mechanisms. Trying to configure
a motion detector without a proper display and keypad will be extremely cumbersome for
home owners. Second, there are too many IoT devices to configure. One can already easily
find tens of IoT devices in a home. Furthermore, the number of IoT devices in a smart home
are even projected to increase to 500 within the next decade [47]. To exacerbate the problem,
the devices may need multiple security reconfigurations during the life span of these devices.
Such reconfigurations may be due to multiple reasons – new cryptographic algorithm may be
introduced requiring longer keys, or the IoT devices may themselves be compromised and
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the keys may have been breached – all of which, require re-establishment of cryptographic
keys. In addition to the aforementioned I/O problems, many of the devices, such as smoke
detectors, HVAC systems, etc., are permanently installed and are extremely cumbersome
to physically reinstall after reconfigurations. Considering a long life span of many of these
devices, which usually range in the order of years, security reconfiguration introduces a serious
usability drawback. While newer IoT devices are starting to be equipped with NFC or other
out-of-band channels such as light to help in solving the I/O problem, such solutions still do
not scale with many devices requiring multiple reconfigurations and additional specialized
hardware [13, 14].

The aforementioned drawbacks necessitate an autonomous pairing mechanism for the IoT
devices that require no human involvement in any of the pairing processes. To address this
concern, we propose Perceptio (which means perception in Latin), an autonomous pairing
scheme based on the similarity of contextual information collected by sensors of the IoT
devices. Perceptio makes use of the findings that IoT devices co-located within a physical
boundary such as a room will experience more of the similar events over time as opposed
to potential devices owned by an attacker, who may be outside of the physical boundary.
Specifically, physical boundary such as homes are naturally enforced with a notion of physical
security. For example, access rights to an apartment complex are only granted to the residents.
Visitors are also granted access after an implicit or explicit delegation of trust. In this section,
we are inspired by such notion of trust within a physical boundary because it provides a
natural separation of trust. Hence, we envision devices within a physical boundary would also
trust each other compared to devices that are outside of an apartment. Figure 4.1 depicts
this idea where the user’s sensors observe the events occurring within an apartment, while
the attacker who is outside cannot observe such events.

However, many challenges exist to fully address the aforementioned problem. First, we
identify new challenges related to devices that have disparate sensing capabilities. We find
from our main observations of recent trends in commercially available IoT devices, which
reveals the emergence of special-purpose sensing devices with only a small number (often
one) of embedded sensors, typically optimized for a specific application for cost, power
consumption, and form factor. For example, Passive infrared motion detectors are only
equipped with a single infrared sensor to monitor movements [35]. Hence, it is infeasible
to directly compare context collected from different devices with different sensor modalities
because differing sensor types produce completely different signals. Toward such goals, we
need to gain a stronger understanding of the contextual content of sensory data as observed
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Figure 1: A physical boundary provides a perceptual
separation between valid devices inside and untrusted
devices outside, enabling autonomous pairing by utiliz-
ing unpredictable timings of perceived events.

power consumption, and form factor (e.g., motion detec-
tor equipped with a single infrared sensor [14]). Given
such trends, it is infeasible to directly compare sensor
measurements because signals vary significantly across
sensor modalities or even chip manufacturers. Instead,
we make use of recent findings that many sensors of dif-
ferent modalities can actually perceive the same events
in context (see Section 2.1). Hence, we enable devices
with di↵ering sensor modalities to extract fingerprints
from the observed context to prove their co-presence.
We leverage inter-event time intervals among a series of
similar events to achieve cross-modal verification. It is
possible to extract su�cient entropy from the context to
be used for Perceptio’s key exchange protocol because
we take advantage of the following findings that it is
extremely di�cult for an attacker to: (1) consistently
capture events as accurately as the devices within the
physical boundary; or (2) predict an event occurring
within the physical boundary at a millisecond granular-
ity. In contrast, previous work focused on interactions
with devices with same sensing modality [26, 32]. While
such approaches are promising first steps, they focus on
leveraging identical sensor pairs, such as a pair of mi-
crophones or light sensors, using direct signal analysis.

Abstracting away from numerical signals by leverag-
ing time interval analysis provides many other advan-
tages. First, Perceptio does not require interacting de-
vices to be time synchronized. Second, Perceptio is tol-
erant to di↵ering sensor signal amplitudes across de-
vices due to di↵erent modalities and relative arrange-
ment of sensors and events. Third, Perceptio devices do
not need to recognize the types of events they observe,
instead using unsupervised clustering to group them by
type, with no prior training.

To further support verification across sensor modali-
ties, we design Perceptio to be tolerant to certain types
of errors. However, to maintain the strength of the veri-
fication, the tolerance can be tuned as a design parame-
ter. We further incorporate a minimum confidence level

that must be attained before trust is declared, meaning
devices can gradually build trust over time depending
on error tolerance, event rates, and scenario.

We evaluate Perceptio by placing di↵erent devices
equipped with disparate sensor types modeling exist-
ing commercial IoT products – a microphone, an ac-
celerometer, a motion detector, a power meter, and a
geophone – in an o�ce. We also place attacker’s de-
vices just outside the o�ce. We conduct experiments
to allow these devices to capture events caused by hu-
man subjects that occur in an o�ce setting. Through
empirical evaluation, we present the feasibility of suf-
ficiently distinguishing valid devices within a physical
boundary as opposed to the attacker’s devices placed
right outside. To demonstrate Perceptio’s practicality,
we also model entropy extraction based on real-world
smart-home sensor data recorded for two months.

We summarize the contributions as following:

• We present an autonomous IoT device pairing
system leveraging a novel fingerprinting mecha-
nism across heterogeneous sensing modali-
ties, which inherently requires no time synchro-
nization across devices, una↵ected by di↵ering
amplitudes of sensor measurement across devices,
and needs no prior training phase.

• We design Perceptio based on the properties of the
physical boundary that make it extremely di�cult
for an external device to consistently capture
a sequence of events or to predict events at a
millisecond time scale.

• We implement and evaluate our Perceptio pro-
tocol to demonstrate that co-located devices share
su�cient fingerprint similarity to be distinguished
from attacker devices located just outside of the
boundary. We also demonstrate Perceptio’s prac-
ticality by modeling entropy extraction using real-
world smart home data recorded for two months.

2. BACKGROUND
We present relevant background information on sen-

sors in commercial smart home devices and their event
perception. We then present related work.

2.1 Sensors and Event Perception
Sensors in a Smart Home/O�ce. Varying IoT

applications necessitate monitoring their respective en-
vironment, each with a specific sensing modality. We in-
troduce some of the most prevalent sensors, and where
they are used in real-world commercial products. Ta-
ble 1 summarizes them. While most of the real-world
IoT devices are equipped with heterogeneous sensor
modalities, we present a mechanism to enable these de-
vices to prove that they are co-located within a physical
boundary by experiencing similar events.

Event Perception. Perceptio leverages the fact that
many sensors in the same environment, despite hav-

2

Figure 4.1: A physical boundary (house) provides a perceptual separation between user’s devices
inside vs. other devices outside, enabling context-based pairing via observations of random events
within the house.
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Figure 4.2: We demonstrate how different types of sensors are capable of measuring aspects of the
same events.

from different IoT devices. To do this, we can gain some insight from analogous human
behavior through the following scenario. Suppose that one person with a hearing impairment
and another with a visual impairment are both in a room. When the door to the room closes,
both people can observe the event at the same time, but using different senses; the hearing
impaired person can see the door closing, while the visually impaired person can hear the

37



door closing. Because of the timing, both people could share their observations and determine
they had witnessed the same event. This analogy can be further extended to include events
that humans perceive in multiple ways. For example, we perceive rainfall through hearing,
feeling, and seeing raindrops [28]. By applying this analogy to the IoT device space, we can
similarly leverage timing information as an invariant property among heterogeneous devices.
We thus develop our approach using a principle we refer to as “numerically different yet
contextually similar ” observation of events, exploiting commonly observed timing information.
In the IoT device regime, we provide a more detailed example to demonstrate the ability for
disparate sensing devices to measure common events. In this scenario, Bob knocks on his
roommate Dan’s door to invite him for coffee in the living room. Dan opens his bedroom
door and walks into the living room, and Bob then makes two cups of coffee. After enjoying
their coffee together, Dan goes back into his bedroom and closes the door. Suppose now
that Bob and Dan have deployed IoT devices with a geophone and microphone and that
the coffee machine is connected to a power meter. In this case, the corresponding sensor
readings from these devices capture the events, as depicted in Figure 4.2. The different types
of sensors are capable of perceiving some events in common. In particular, the geophone
and the microphone both capture the knocks and door opening/closing events, while the
microphone and power meter both capture the activity of the coffee machine.

Hence, we make use of the findings that many sensors of different modalities actually
respond to and perceive the same context. Specifically, Perceptio leverages a common feature
across different modalities, namely the time intervals of starting points of the common events.
Because Perceptio leverages the time intervals, it does not require the devices to be time
synchronized.

Yet, challenges still remain, as different sensors located at different positions within a
room would produce similar but not equal signals. Hence Perceptio tolerates these error by
leveraging a fuzzy commitment scheme, which bases its error tolerance on Reed-Solomon
error correction mechanism.

To evaluate the design of Perceptio, we perform experiments by equipping a room with
a variety of sensors to represent existing and prevalent commercial IoT products. Our
deployment includes a microphone (smart speakers [23, 61]), an accelerometer (on-object
sensors [56, 104, 123]), a motion detector [52, 102], a power meter [72, 74], and a geophone
(structure or footstep monitors [107, 130]). In addition, we deploy corresponding devices
as well as higher quality microphone and accelerometer outside the room to represent the
attacker’s devices. Human participants perform a number of typical events in the room,
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providing the ambient inputs to the various sensors. As a proof of concept, our empirical
evaluation demonstrates that fingerprints generated by devices within the room are far more
likely to match (yielding an average of 94.9%), while the highest fingerprints generated by
the attacker’s devices outside the room have low similarity to those inside the room (only
yielding an average of 68.9%). To support the proof of concept, we study existing data sets
for activity within smart homes to quantify the available entropy and the corresponding
amount of time for devices to establish keys with sufficient confidence.

4.2 System Models

This section presents our threat model describing the goals and capabilities of the attacker.
Subsequently, we present the assumptions and constraints of Perceptio.

4.2.1 Threat Model

The goal of the attacker is to leak private information of home occupants by eavesdropping
on the communication between IoT devices. In order to achieve this goal, the attacker may
launch (1) Shamming attack or (2) Man-in-the-Middle attack.

We define a Shamming attack where the attacker’s device, M (placed outside of the
house but within the wireless communication range), succeeds in fooling a legitimate device,
LD (inside the house), to accept the pairing as another LD. M may launch three types
of Shamming attacks. First, it may launch an (1-a) Eavesdropping attack by attempting
to sense (from outside) the events occurring inside. M may have following three levels of
capabilities to launch this attack. M may have (i) normal-level of resources equipped with
standard off-the-shelf IoT sensors that are comparable to LDs inside the house. M may also
have (ii) medium-level of resources equipped with higher-end off-the-shelf consumer electronic
devices that are more powerful than (i). Furthermore,M may have (iii) powerful-level of
resources equipped with asymmetric capabilities (e.g., military-grade thermal imaging and
x-ray vision). As such, we focus on (i) and (ii) and disregard (iii) because such attackers
could already visualize activities within the home and reveal private activities, independent
of Perceptio and the IoT devices deployed within the home. Moreover, the attacker may
launch other types of Shamming attack such as: (1-b) Signal Injection attack – by creating
events with large noise or vibration from outside (e.g., using jack-jammer); or (1-c) Sensor
Spoofing attack – by injecting spoofing signals to LDs. The attacker launches either of these
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attacks again in an attempt to allow bothM and LDs to perceive simultaneous event signals
and ultimately succeed in fooling LDs to accept the pairing withM.

Second,M may launch a man-in-the-middle (MitM) attack on key agreement messages
between a pair of LDs by simply intercepting messages transmitted over the wireless medium.
Such an attacker is able to use a variety of primitives such as injection, replay, modification,
and blocking/deleting messages in the communication channel.

4.2.2 Assumptions and Constraints

We assume that the physical boundaries of a house draw a natural trust boundary for deployed
devices, LDs. This assumption reflects scenarios in which LDs inside the boundary are owned
and operated by a common entity (e.g., home owner). However, non-authorized personnel do
not have access to the physical space, hence do not have control over the IoT devices. We
also assume that the family members and authorized guests are not malicious. For example,
if one’s family members or authorized guests are the only people who have access to their
house, and devices brought into the home for prolonged periods of time are assumed to be
trustworthy, then a proof of deployment within the house is sufficient to bootstrap a trusted
connection to the IoT network. We view the introduction of unauthorized devices into the
home by malicious guests as a problem of the homeowner’s physical security, not as a relevant
problem of secure pairing. Hence, this issue is out of scope for our work.

In addition, we acknowledge that single-family homes are made up of a number of joined
rooms, and the separating walls actually present numerous physical boundaries within the
home. While sensors within the same home are likely to perceive some common events due
to the common physical structure, the walls are bound to induce a non-negligible attenuation
factor, with different propagation media causing distortion and attenuation of mechanical
signals. More specifically, walls and joints are known to cause material damping, reflection
and diffraction of acoustic and vibration signals [59, 75]. However, since interior walls tend to
provide far less attenuation compared to exterior walls, we expect a fair amount of signal to
propagate between nearby IoT devices, at least a sufficient amount to allow for IoT network
connectivity, as full pairwise connectivity is likely unnecessary. As we will discuss later, it
may also be possible to configure a small number of IoT devices to act as “bridging devices”,
if needed, to facilitate secure pairing across the internal walls of the home.

In either case, we design Perceptio to rely on the core observation that sensors outside
the home cannot consistently perceive the relevant activities inside with similar fidelity as
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LDs. While our design focuses on single-family detached housing (comprising 61.5% of U.S.
housing [95]), we believe that future extensions of Perceptio could extend our work to other
multi-tenant attached housing (e.g., apartments or townhouses) through rigorous engineering
of thresholds and other protocol parameters.

4.3 Capturing Contextual Cues

As with any cryptographic key agreement protocols, Perceptio needs to bootstrap its trust
from a source of entropy. We leverage the inherent randomness of events occurring in a room
(e.g., knocking, walking, talking, etc.) as its source of entropy in its cryptographic protocol.
Specifically, Perceptio leverages the fact that it is infeasible for an attacker to guess a series
of event occurrence in sub-second granularity. Hence, fingerprint extraction from contextual
information is a vital part of Perceptio. We now discuss the design choice of the fingerprint
extraction algorithm, and how multiple event types affect Perceptio fingerprinting.

We now address the seemingly impossible challenge of trying to “fingerprint” disparate
sensor modalities across IoT devices. This is possible because sensors of different modalities
“perceive” the same context even though their numerical representation may be different.
Hence, Perceptio abstracts out from differing numerical sensor data, and leverages temporal
domain as common feature across the devices. Specifically, Perceptio makes use of the fact
that starting points of commonly observed events are spaced out at equal time intervals,
and captures the collection of these time intervals as fingerprints. Figure 4.3(a) depicts an
example of how two sensors of different modalities fingerprint a commonly observed context.
Assuming that both SensorA and SensorB observed an event, their numerical representations
of the event are shown as triangles and circles, respectively. Note that intervals between the
starting times of adjacent triangles, denoted as intvSA1

and intvSA2
, while those of circles are

denoted as intvSB1
and intvSB2

. Perceptio makes use of the fact that intvSAi and intvSBi are
very similar to each other. Subsequently, the intervals are converted into bits and appended
to the fingerprints as:

FA = {intvSAn ||intvSAn−1
||...||intvSA1

}
FB = {intvSBn ||intvSBn−1

||...||intvSB1
}

(4.1)

However, we need to address an additional challenge of how disparate sensors have varying
events (e.g., walking, door opening, talking, etc.) that they are responsive to. For example,
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consider SensorA and SensorB of different modalities, and the corresponding events that
the two sensors observe. Events that only SensorA and SensorB observes are denoted
as EAEB and EAEB, respectively. Events that both modalities observe in common are
denoted as EAEB. For example, a microphone will be more sensitive to people speaking,
geophones will be more sensitive to footsteps of a walking event, and both of these sensors are
responsive to a running coffee machine (i.e., EmicEgeo = {talking}, EmicEgeo = {walking},
and EmicEgeo ={running coffee machine}). However, the core idea of Perceptio lies in the
fact that most pairs of disparate sensor types have sets of common events that they respond
to with varying sensitivity.

In Figure 4.3(b), {�,N,F} and {H,�} depict set of signals that are observed by SensorA
and SensorB, respectively. Hence, each sensor will first locally determine similar events (i.e.,
clustering events into different clusters), and extract corresponding fingerprints per event type.
Hence SensorA will have three distinct fingerprints (i.e., F�, FN, and FF), while, SensorB
will have two distinct fingerprints (i.e., FH and F�).

4.3.1 Fingerprint Entropy

Perceptio bootstraps its trust from the entropy of the occurrence of captured events. These
occurrences are converted to the intervals of the starting points, which in turn are translated
into the bits of the fingerprint. Hence, the entropy of the fingerprint depends on the length
of the fingerprint. This is depicted in Equation 4.2. F depicts the concatenation of bit values
of each intervals, intvSAi , for i = [1, n] intervals, where [1, n] represent integers from 1 to n,
inclusive. If the length of F are greater than lmin, a minimum length of a fingerprint, F is
truncated to lmin bits. If less than the minimum length, the fingerprint is discarded due to
lack of enough entropy.
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FEA =


[
F
]
lmin

, if |F | ≥ lmin

∅, otherwise
(4.2)

4.4 Design and Implementation

This section presents Perceptio protocol and its design and implementation details.

4.4.1 Perceptio Protocol Details

Perceptio’s fingerprint verification incorporates the fingerprint, F , into a cryptographic
protocol to yield a verifiable shared symmetric key between the two parties. Figure 4.4
depicts the high-level overview of Perceptio protocol. (1) Initially two devices with disparate
sensor modalities captures numerically unequal time series data streams. (2) While co-located
devices observe similar events, the extracted pair of fingerprints will not be exactly the
same due to sensitivity and different modalities. (3) We treat such subtle differences in
fingerprints as errors and tolerate them using a fuzzy commitment scheme [51, 76] building
on error correcting codes. (4) Finally two devices share a master symmetric key, k, and can
subsequently generate shared session key, kAB. Similar to the related work [68, 99], we design
a Key Strengthening Process, which gradually strengthens the initially shared (but potentially
insecure) key. This is made possible by gradually increasing the authenticity confidence over
time through repeated execution of the fuzzy commitment using different fingerprints (Steps
(1) through (4)), until a minimum confidence score is attained, inherently making it extremely
difficult for Shamming attacker devices (located outside of the physical boundary) to sustain
the shared key.

In the Key Agreement Phase, A and B generates fingerprints {FAi , i = 1, . . . , p} and
{FBj , j = 1, . . . , q} for the p and q observed event clusters. Device A then encodes a randomly
generated secret key ki using each fingerprint FAi , i = 1, . . . , p, to create a set of commitments
as CAi = FAi 	 ENC(ki), where 	 is subtraction in a finite field, Fn, equivalent to an
XOR operation, and ENC(·) is the encoding operation for an error correcting code (e.g.,
Reed-Solomon). A then sends {(CAi , h(ki)), i = 1, . . . , p} to B, where h(·) is a collision-
resistant hash function, which discloses no information about the keys ki or the fingerprints
FAi . Upon receiving the set of commitments from A, device B attempts to open the
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multiple sensing modalities
To address the above concerns, we propose an ap-

proach that relies on the inherent randomness of events
in a device’s surroundings to establish a context finger-
print. We leverage the inherent randomness of events
occurring in a room (e.g., knocking, walking, talking,
etc.) as its source of entropy for a cryptographic proto-
col. Specifically, Perceptio leverages the fact that it is
infeasible for an attacker to predict the precise timing
of events within the physical boundary at a millisecond-
scale granularity. Using the randomness in event tim-
ing, the fundamental goal of the fingerprint generation
mechanism is for two devices to generate “similar” fin-
gerprints only if they meet the contextual requirements
of the scenario. Unlike cryptographic protocols, how-
ever, the nature of our problem requires that there is
a degree of tolerance to capture the dissimilarities be-
tween sensing devices and their respective abilities of
perception, namely relaxing the requirement that fin-
gerprints FDeviceA

and FDeviceB
are numerically equal

to instead satisfy d(FDeviceA
, FDeviceB

) < ✏ for a suit-
able distance metric d and small tolerance ✏ > 0 only
when the two devices “match”. For now, we leave the
specifics of fingerprint matching to the later sections and
focus on the fingerprinting mechanism.

4.2 Context Fingerprinting
We present the fingerprint extraction algorithm and

how multiple event types a↵ect Perceptio fingerprinting.
We also explain how Perceptio guarantees su�cient en-
tropy needed for key agreement protocol.

4.2.1 Fingerprint Extraction Algorithm
The main idea behind Perceptio’s context fingerprint-

ing mechanism is based on three primary insights: (1)
raw signals obtained by di↵erent devices and sensor
types will have di↵erent characteristics; (2) sensors on
di↵erent devices will perceive the same event in roughly
the same way; and (3) inter-event timing measured by
di↵erent sensors will be roughly the same. When we
combine these three properties, we arrive at an approach
that combines event detection, event clustering, and
per-cluster inter-event timing. Specifically, each device
will generate a set of fingerprints, one for each cluster,
that collectively represent the observable context. Note
that devices do not need to know what specific types of
events are occurring. From these core ideas, it is clear
that the context fingerprinting approach is quite gen-
eral, and we will further describe specific use cases and
experimental evaluations in later sections.

To illustrate how the start times and corresponding
inter-event intervals (time between start of subsequent
events of the same type) are used to create the finger-
prints, we provide Figure 3(a). The figure highlights the
fact that the two sensors do not need to have a common
representation of the event detected (one device labels
the clusters with N and the other uses ⌅), but the inter-
event timings match. Note also that the event detection

does not need to be perfectly synchronized. In general,
each device measures an event sequence S yielding the
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event cluster. The microphone’s event sequence SA will
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ing co↵ee – while the geophone’s event sequence SB will
involve two event types – walking and making co↵ee.
From Figure 3(b), we see that the microphone labeled
its three event clusters with {N,F,⌥} and the geophone
labeled its two event clusters with {⌅,H}. The embed-
ded devices will create sets of per-cluster fingerprints
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that the context fingerprinting approach is quite gen-
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ded devices will create sets of per-cluster fingerprints
{FN, FF, F⌥} and {F⌅, FH}, exchange them with each
other, and perform a pairwise search to see if any of the
fingerprints match (see Section 5).

A"

B"

iA1$

t

iA2$

iB1$ iB2$

$…$$$$||""""iB2$$$$||""""iB1$FB="

$…$$$$||""""iA2$$$$||""""iA1$FA="

t
(a) Single event commonly observed

A"

B"

FA"""""="
FA"""""="
FA"""""="

FB"""""="
FB"""""="

t

t

(b) Events observed by each sensor

Figure 3: Creating F with starting point intervals

4.2.2 Fingerprint Entropy
Perceptio bootstraps its trust from the entropy of

event timing in the environment. Intervals between
starting points of subsequent event observations are

4

Fuzzy(
Commitment(

Fuzzy(
Commitment(

Error 
Correction 

Code 

(1)"Unequal"
Raw"Signal"

(2)"Similar"
Fingerprints"

multiple sensing modalities
To address the above concerns, we propose an ap-

proach that relies on the inherent randomness of events
in a device’s surroundings to establish a context finger-
print. We leverage the inherent randomness of events
occurring in a room (e.g., knocking, walking, talking,
etc.) as its source of entropy for a cryptographic proto-
col. Specifically, Perceptio leverages the fact that it is
infeasible for an attacker to predict the precise timing
of events within the physical boundary at a millisecond-
scale granularity. Using the randomness in event tim-
ing, the fundamental goal of the fingerprint generation
mechanism is for two devices to generate “similar” fin-
gerprints only if they meet the contextual requirements
of the scenario. Unlike cryptographic protocols, how-
ever, the nature of our problem requires that there is
a degree of tolerance to capture the dissimilarities be-
tween sensing devices and their respective abilities of
perception, namely relaxing the requirement that fin-
gerprints FDeviceA

and FDeviceB
are numerically equal

to instead satisfy d(FDeviceA
, FDeviceB

) < ✏ for a suit-
able distance metric d and small tolerance ✏ > 0 only
when the two devices “match”. For now, we leave the
specifics of fingerprint matching to the later sections and
focus on the fingerprinting mechanism.

4.2 Context Fingerprinting
We present the fingerprint extraction algorithm and

how multiple event types a↵ect Perceptio fingerprinting.
We also explain how Perceptio guarantees su�cient en-
tropy needed for key agreement protocol.

4.2.1 Fingerprint Extraction Algorithm
The main idea behind Perceptio’s context fingerprint-

ing mechanism is based on three primary insights: (1)
raw signals obtained by di↵erent devices and sensor
types will have di↵erent characteristics; (2) sensors on
di↵erent devices will perceive the same event in roughly
the same way; and (3) inter-event timing measured by
di↵erent sensors will be roughly the same. When we
combine these three properties, we arrive at an approach
that combines event detection, event clustering, and
per-cluster inter-event timing. Specifically, each device
will generate a set of fingerprints, one for each cluster,
that collectively represent the observable context. Note
that devices do not need to know what specific types of
events are occurring. From these core ideas, it is clear
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From Figure 3(b), we see that the microphone labeled
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Figure 4.4: Figure depicts Perceptio protocol overview. Unequal heterogeneous sensors data from
A and B are eventually converted to numerically equivalent symmetric key.

commitment to acquire any one of the original secrets ki using its fingerprints FBj . B

computes k̂i,j = DEC(FBj 	 CAi) for all i, j pairs, where DEC(·) is the complementary
decoding function, such that DEC(ENC(m) 	 ν) = m for a bit string m whenever the
Hamming weight (l1 norm) |ν|1 is within the code’s decoding capability t. If B finds an
i, j pair such that h(ki) = h(k̂i,j), then it most likely found a fingerprint match,FAi ≈ FBj .
There are many protocol variations at this point, but we choose one in which B needs to find
only one such pair, so not all pq values need to be computed if a match is found. At this
point, B can use a key derivation function KDF (·) [111] to create a shared symmetric key
as kAB = KDF (k̂i,j), though A is unaware of this key at this point (Figure 4.5 Steps 1-4).

To allow A to generate the matching symmetric key kAB and verify it actually matches
the key generated by B, both A and B further participate in the Key Confirmation Phase.
B generates a random nonce nB and transmits β, where H(k̂i,j) equals to H(ki) and Mk(m)

represents a keyed message authentication code (MAC) of message m using key k. A, upon
receiving this message, first identifies the key, ki, from H(ki). If found, A derives the shared
key as kAB = KDF (ki) for the matching i. A then performs a MAC verification with kAB
and if successful, it also generates a nonce, nB, and transmits to B, α. B, upon receiving α,
performs MAC verification to verify that A also generated the same key kAB. If successful,
device A and B successfully computed a shared symmetric key for one round (Figure 4.5,
Steps 5- 8).

In addition to the aforementioned protocol, Perceptio includes an optional extension to
allow a notion of transitive verification for cases where two devices want to verify each other
but their sensing equipment does not allow for generation of matching fingerprints (e.g., the
accelerometer and the power meter who perceive no event in common). This is synonymous
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Key Agreement Phase
1. A : FAi = extractFs(ctx, tF ); i = 1, . . . , p

B : FBj = extractFs(ctx, tF ); j = 1, . . . , q

2. A : ki
R←− KGen(1γ)

CAi = FAi 	 ENC(ki)

3. A→ B : CA = CA1||H(k1), .., CAp ||H(kp)

4. B : k̂i,j = DEC(FBj 	 CAi)
Verify H(ki)

?
= H(k̂i,j); Aborts if fails

Creates k̂AB = KDF (k̂i,j)

Key Confirmation Phase
5. B → A : β = H(k̂i,j)||nB||Mk̂AB

(nB),
where nB

R←− {0, 1}η

6. A : Creates kAB = KDF (ki);

Mk̂AB
(nB)

?
=MkAB(nB); Aborts if fails

7. A→ B : α = nA||MkAB(nB||nA),
where nA

R←− {0, 1}η

8. B : MkAB(nB||nA)
?
=Mk̂AB

(nB||nA);
Aborts if fails

Figure 4.5: Details of Perceptio key agreement and confirmation protocol using contextual infor-
mation

to a disconnected graph if the nodes are sensors and edges are commonly perceivable event.
We call this extension Transitivity of Trust (ToT). If the two devices A and C have each
performed the fingerprint verification with a third device B, meaning A and B share key kAB
and B and C share key kBC , A and C can rely on ToT to expand the “pairing” operation
to a “grouping” operation by leveraging authenticated encryption scheme [115] to exchange
public parameters for Diffie-Hellman key exchange [50]. Furthermore, this approach enables
devices located in different rooms within a house to pair, leveraging bridging devices. We
discuss this extension further in Section 4.7.

45



4.4.2 Implementation

Figure 4.6 depicts the flow chart diagram of fingerprint generation steps. First a sensor
captures contextual information for fingerprint time period, tF , producing a raw sensor data.
This is first input to Signal Detection module, which distinguishes signals of events (e.g.,
walking, talking , etc.) against ambient noise and outputs the corresponding indices of the
event signals. Subsequently, these indices, along with the raw sensor data, are input to Event
Clustering module, which performs unsupervised learning to cluster signals of similar events
via K-Means clustering. Hence, module outputs different cluster IDs and the corresponding
indices of the signals belonging to the clusters. The output is then input to Fingerprint
Extraction module, which finally converts the cluster indices into fingerprints to be used in
Perceptio protocol. We now present the implementation details of Signal Detection and Event
Clustering modules.

Finger	
Print	

Raw	
Signal	

Event	
Clustering	

Signal	
Detec6on	

Finger	Print	
Extrac6on	

Signal	
Lump	
Idx	

Cluster	
Idx	

Figure 4.6: Overview of Perceptio fingerprint generation flow chart.

4.4.2.1 Signal Detection

The goal of signal detection module is to identify the signals that represent events of interest
as opposed to ambient noise. We break down the tasks into two steps – (1) performing
a moving average; and (2) thresholding and signal detection. We first compute a moving
average to smooth out the signal for noise removal using Exponentially Weighted Moving
Average (EWMA). Figure 4.7(a) illustrates this effect, as the first plot depicts the original
geophone signal of the event of a person walking. The second plot depicts the absolute value
of the original plot, and the third plot depicts the EWMA of the absolute value.

We then perform thresholding for signal detection. We note that we have two types of
thresholding, namely a lower-bound (Thrlower and an upper-bound (Thrupper) threshold. We
leverage Thrlower to distinguish event signals to ambient noise. On the other hand, we leverage
Thrupper to remove any signals of high amplitude, in order to thwart an eavesdropping attack.

46



We note that Thrupper can be a function of Thrlower after certain calibration phase. This is
depicted in Figure 4.7(b) (a), where we apply a lower-bound thresholding to the EWMA signal
using the lower dotted line (i.e., Thrlower = 3). The signal above the threshold are highlighted
with a gray box. Also, we apply an upper-bound thresholding as well using the upper dotted
line (i.e., Thrupper = 10). For more accurate event clustering, however, we implement a signal
lumping technique to group segmented parts of the event signal into a single event signal, as
shown in Figure 4.7(b) (b). Specifically, we disregard short discontinuities between adjacent
segmented signals above threshold to “lump” the signals into one continuous group of signal
event. From the indices returned by these steps, we determine the signal of interest in the
original signals as presented in Figures 4.7(b) (c) and (d), depicting before and after lumping
technique, respectively. Finally, this module outputs the corresponding indices of detected
signal to the Event Clustering module.
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Figure 4.7: Illustration of (a) raw geophone signal, followed by corresponding absolute value, and
subsequent exponentially weighted moving average; (b) thresholding and signal isolation.

4.4.2.2 Event Clustering

We implement event clustering to reliably categorize observed events into appropriate cluster
groups. Though some additional work may increase the accuracy and efficiency of the
clustering results, we present a preliminary proof-of-concept implementation details.

We select a set of features per sensor to reliably separate perceived events via clustering
such as maximum amplitude, duration, and area under the curve and its variants. We leverage
K-Means Clustering to cluster data points of similar groups, without prior training, by taking
in hypothesis cluster number, K. Hence, we make use of Elbow method to infer the optimum
value of K [79], which tests several number of K cluster hypothesis to find the optimal K
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Figure 4.8: To study event detection accuracy for LDs and Ms of different sensor modalities,
we have human subjects conduct the following actions shown in (a): knock on a door hosting an
accelerometer, walk across a motion detector, around a microphone and geophone on the ground,
and brew coffee from a machine attached to a power meter. The attacker sensors are placed outside
the wall opposite to the door. We study the effect of environmental factors in (b): a coffee machine
and blender are used successively while varying the distance between them and the sensors, the floor
type and the noise level inside the room. We illustrate the fiveMs in (c) including higher quality
accelerometer and microphone.

value. Consequently, K-means clustering and elbow method enables each sensor device to
roughly group perceived events to categories without the burden on the manufacturers to
train specific events for all the devices.

4.5 Evaluation

We implement the Perceptio protocol and evaluate its effectiveness in different settings. After
detailing the apparatus used, we present an end-to-end study of Perceptio’s various aspects,
including sensors’ event detection abilities and robustness of fingerprint similarity and key
establishment.

4.5.1 Experiment Apparatus

We describe the nature of legitimate devices, LDs, placed inside the environment and attacker
devices,Ms, placed outside attempting to launch Shamming–Eavesdropping attack. The
LDs include a SM-24 geophone [38], an MD9745APA-1 microphone [21], an ADXL335
accelerometer [49], an MP Motion Sensor NaPiOn passive infrared motion detector [108],
and a Kill-A-Watt P4400 power meter [74]. Each of the sensors is interfaced to an Arduino
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Figure 4.9: We study the ROC of LDs and Ms for accuracy of event detection. Across all
events, the LDs have a high detection rate while theMs (even the higher-quality microphone and
accelerometer) hardly perform better than a random guess. (Note: For each event type, we only
show sensors whose modalities have the ability to detect that event. For example, the accelerometers
cannot detect the coffee machine, hence are ignored in (c) and (f)).

Uno board [10] with a Wireless SD Shield [19] and microSD card for data logging at 5 kHz
sampling rate. The sensors were placed between 2.5-5.5m apart from each other. TheMs
also include a SM-24 geophone, MD9745APA-1 microphone, and an ADXL335 accelerometer,
as well as a higher-quality MMA1270KEG accelerometer [118] and a higher-quality Blue
Yeti microphone [98] as depicted in Figure 4.8(c). The higher-quality accelerometer and
microphone cost an estimated $10 and $100 respectively, which is roughly one and two orders
more expensive than the normal-quality IoT accelerometer and microphone.
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4.5.2 Event Detection

4.5.2.1 Detection Abilities of Legitimate and Attacker Devices

We now evaluate the performance of each sensor in distinguishing event signals from ambient
noise. Recall from Section 4.4.2.1 the three variables of interest are a lower-bound threshold
Thrlower to separate the signal from noise; an upper-bound threshold Thrupper to discard
distinct signals with high amplitude to thwart Shamming–Eavesdropping attacks; and the
weight α used in the exponential moving average. In this experiment, we vary Thrlower, which
is important in signal detection, while fixing Thrupper and α to empirically optimized values.

We illustrate the study setup in Figure 4.8(a). The experiment is conducted in a squash
court wherein the LDs are arranged with the geophone on the floor, the microphone on a table,
the accelerometer on the door, the motion detector aimed at the center of the room, and the
power meter supporting a single serving coffee machine (Nespresso Pixie Carmine [101]). The
Ms deployed just outside the room (as illustrated in Figure 4.8(a)) include the accelerometer,
the higher-quality accelerometer and the geophone attached to the outside of one of the walls
of the squash court and the microphone and higher-quality microphone placed on the ground
adjacent.

We have ten human subjects perform the following tasks: knock on the door hosting the
accelerometer, walk across the court (across the motion detector and the geophone) and
around the table, brew coffee from the espresso machine on the table two times, one after
another, walk back across the court, and knock on the door again before exiting. Hence,
participants performed each activity of knock, walk and coffee twice per trial over ten different
trials, providing a total of 600 activity traces. To evaluate sensor accuracy in event detection,
we present Receiver Operating Characteristic (ROC) curves for each sensor used in this setup.
The ROC curves plot the true positive rate (TPrate) against false positive rate (FPrate) and
depict the ability of the different sensor modalities to detect events at varying threshold levels
of signal amplitude.

Figure 4.9 depicts the resulting ROCs by event type. For each event, we depict the ROC
of only those sensors whose modalities would allow them to possibly detect it. For example, a
motion detector cannot detect a coffee event, and hence is ommitted from the coffee ROC. We
find that all legitimate sensors have a high signal detection accuracy as most Thrlower yield
a high TPrate with relatively low FPrate. For example, knock ROC depicts good detection
abilities for the inside geophone, microphone, and accelerometer, yielding large area under
the curve (AUC), while the motion detector and power meter do not produce any signal

50



for this event as expected (hence not shown). On the other hand, ROC curves for theMs
show relatively poor detection ability. We note that while all three events indicate that the
higher quality attacker accelerometer and microphone generally perform better than their
lower-quality counterparts, they are nevertheless unable to generate high TPrate without
generating equally high FPrate. At best, their curves follow a random guess trend. Some of
the ROCs, especially for the attacker, appear to be increasing in a piecewise step fashion
rather than a smooth concave trend. This is due to the nature of ambient noise in the
system. As the signal detection threshold is lowered, noise is detected as true positive until
the threshold is lowered enough such that other (lower) ambient noise is detected as false
positives.

4.5.2.2 Effect of Floor Types and Distances

We next study the effect of the floor type on the detection accuracy of LDs vs. Ms. We
vary the floor type between wood and carpet (most common variations found in homes) as
depicted in Figure 4.8(b). For each floor type, we trigger two events sufficiently spaced apart
with no overlap in signal detection: a coffee maker brewing (the same machine used from
Section 4.5.2.1) and a blender (Cuisinart SPB-650 [43]) grinding. Since the accelerometer
and motion detector cannot detect either, and the floor type does not affect the power meter,
we study the sensing accuracy of the legitimate and attacker geophones and microphones.
For each event type, the distance between the attacker/legitimate nodes and the event source
(coffee maker/blender) is varied from 1-6m.

We show the resulting area under the ROC curve (AUC) for each sensor in Figure 4.10.
Since the ambient noise inside the room is low (as is typical in homes), the legitimate
geophone and microphone detect both the coffee and blender events with high accuracy for
both floor types and across distances. The latter occurs due to the high signal to noise
ratio inside the room even at longer distances from event source. On the other hand, the
attacker’s AUC fluctuates around 50% for carpet and wood alike across all distances for coffee
events. Essentially, the attacker outside is contending with fluctuating noise levels due to
the noisy surrounding, and is unable to detect these signals with accuracy any better than
a random guess. For the blender event, the attacker geophone does show a slightly higher
AUC, indicating better than random guess. This is as expected with the consistently higher
sound and vibration caused by the blender as compared to the coffee machine. However,
the attacker’s AUC for blender, even for the geophone, barely exceeds 80% at best, and is
significantly lower than the legitimate node’s AUC.
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(a) Legitimate Devices – Coffee
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(b) Legitimate Devices – Blender
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(c) Attacker Devices – Coffee
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(d) Attacker Devices – Blender

Figure 4.10: As the distance between sensor devices and event source varies from 1-6m, the LDs
are consistently able to detect the event (with high AUC) while the Ms have a detection rate
fluctuating around a random guess for carpet and wood alike. Since the blender is significantly
louder with higher vibration than coffee brewing, the attacker’s AUC is correspondingly higher.

4.5.2.3 Effect of Background Noise and Distances

While our analysis in Sections 4.5.2.1 and 4.5.2.2 show that LDs consistently have high
detection accuracy, the prevailing ambient noise inside the court was indeed low. We now
study the degradation in event detection accuracy for the legitimate sensors with increasing
background noise. Hence the background noise is varied between 50, 60 and 70 dB.

We show the resulting AUC for the legitimate microphone and geophone inside the room
across distances of 1m to 6m from the event source in Figure 4.11. We see a clear trend
of decreasing AUC across noise levels for all sensor types. As the ambient noise floor rises,
the signal to noise ratio for the events degrades, incurring higher false positives for a given
threshold of signal amplitude. At 50dB both the geophone and microphone are able to
detect the coffee and blender with high AUC, with hardly any decline in detection rate from
increasing distances to source. At 60 dB, the geophone’s AUC for coffee is decreased compared
to 50 dB, but remains mostly stable. The microphone, however, exhibits significantly degraded
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Figure 4.11: For events coffee and blender alike, increasing noise levels result in poorer detection
accuracy even for devices inside, as expected. Since the coffee machine has a significantly weaker
signal than the blender, the degradation in detection accuracy is steeper for coffee event as the
distance from source and noise level increases.

performance as the distance from the coffee maker increases at 60dB. As seen from previous
analysis, the inherently higher sound and vibration generated by the blender results in the
both sensors continuing to perceive it with high accuracy. At 70 dB, the signal to noise ratio
for the coffee event degrades enough at higher distances to make its detection effectively a
random guess for both nodes. Even for the blender, we see the geophone’s AUC start to
suffer at higher distances. Most home environments where Perceptio is suitable might have
instances of high background noise (e.g. music playing loudly for a few minutes), during which
sensors inside might not be able to fingerprint successfully. But as long as the environment
exhibits ambient noise levels below 70dB for the most part, the sensors are able to detect
events successfully for fingerprint extraction.
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4.5.3 Key Establishment

4.5.3.1 Fingerprint Similarity between Legitimate Devices

While we demonstrated generally high event detection accuracy of legitimate devices, LDs,
under prevailing conditions inside the squash court in Section 4.5.2, this may not directly
translate to satisfactory key establishment. This could be due to occasional detection
errors, clustering errors, and relative temporal offsets in event detection between different
sensor modalities. Hence, we evaluate our protocol in an end-to-end manner to demonstrate
Perceptio’s ability to establish shared keys between LDs (with heterogeneous modality) located
within the physical boundary. To do so, we use real-world data to execute the Perceptio
protocol and evaluate the fingerprint similarities Fsim between device pairs. Specifically,
we first generate a data stream of three thousand events – consisting of knocking, walking,
coffee, and ambient noise – by randomly drawing samples from the data set described in
Section 4.5.2.1. Upon executing the protocol, we compute Fsim for all seven feasible sensor
pairs across LDs, as depicted in Figure 4.12 (note that there are ten sensing modality-pairs
possible, but {acc,mot}, {acc, pow} and {mot, pow} are omitted as none of the tested events
can be sensed in common by these pairs). We illustrate two interpretations of the fingerprint
similarity for each sensor pair. First, we depict the overall fingerprint similarity across
all fingerprint comparisons. The large standard deviation in this first set of bars reflects
the variation across fingerprints that will be used and those that will be discarded due
to low similarity. Second, we depict the average fingerprint similarity Fsim for only those
fingerprints that are not discarded (i.e., those with similarity above the threshold). These
are the fingerprints that actually contribute to secure key establishment and confidence. As
depicted in Figure 4.12, all the sensor pairs that perceive at least one common event have
high Fsim after the thresholding.

4.5.3.2 Confidence Score

Another important aspect of Perceptio is its Key Strengthening Process, which takes advantage
of incremental growth in the confidence score (ConfScore) upon a successful iteration of key
establishment protocol. Figure 4.13 depicts ConfScore of sensor pairs over time. As in the
previous discussion, we depict the sensor pairs that perceive at least one event in common.
The notion of time is depicted as the number of events arrivals in this figure, as more events
arrive with more time (detailed modeling of event inter-arrival times and resulting time for
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entropy extraction is presented in Appendix 4.5.5). From this figure, we have two important
takeaways. First, sensor pairs that detect more events reliably and/or frequently in common
exhibit a steeper increase in confidence. For example, {geo,mic} pair perceives three events
in common – knock, walk, and coffee – while {acc,mic} perceives only the knock event in
common. Hence we see that as more events arrive,ConfScore of {geo,mic} pair increases
faster than that of {acc,mic}. The pairs that do not reliably or frequently perceive a common
event, such as {geo,mot} have much slower increase in ConfScore. Second, it is important
to note that ConfScore never decreases over time. Upon fingerprint mismatches (which
contributes to lowered average Fsim in the first bar graphs of each sensor pairs depicted in
Figure 4.12), the ConfScore levels off at the current state until the next successful fingerprint
matching occurs. This means that any fingerprint mismatches – due to detection and/or
clustering errors – do not degrade the key establishment process, but simply takes longer.
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Figure 4.12: We verify that LDs that sense common events are indeed able to pair with high
fingerprint similarity. Occasional inaccuracies in event clustering and temporal offsets in event
detection cause the average fingerprint similarity between modality-pairs to be around 65% with a
high variance. However, even at 85% similarity threshold for successful pairing, all sensor modalities
manage to establish keys within a few successful tries, with low variance.

4.5.3.3 Fingerprint Similarity between Attacker and Legitimate Devices

It is evident from the attacker’s event detection ROC studied in Figures 4.9(d) 4.9(e) 4.9(f)
that theMs can hardly perform better than random guess. Further, given that requisite
clustering also incurs some errors, it is expected that the likelihood of an M achieving a
high Fsim with an LD can be no better than a random guess. We nevertheless evaluate this
by further granting two unfair advantages in favor of the attacker. First, we assume that
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Figure 4.13: We study the key strengthening process by observing the increase in confidence score
for each established legitimate sensor pairing as the number of encountered events in the environment
increases. Modalities such as geophone and microphone that are able to simultaneously sense most
of the occurring events exhibit a much steeper increase in confidence scores as compared to pairings
such as {geo, mot} that sense relatively fewer events in common.

theMs are capable of yielding less errors in event detection. There are two types of errors
in event detection – insertion and deletion errors, each represented by FPrate and TPrate
respectively. We only considering errors due to deletion, and assume that theMs do not
yield any insertion errors – i.e., yielding high TPrate with no FPrate. From the ROC curves
aforementioned in Section 4.5.2, we choose the best possible TPrate for each attacker sensor
that corresponds to FPrate = 50%, but replace the FPrate to 0%. Second, we assume that
the attacker has 100% clustering accuracy.

While these are unrealistic advantages, we evaluate Fsim with such assumptions to account
for the chance possibility that the attacker may detect events at a higher accuracy or have
access to better clustering methods. Hence, the two advantages provide an optimistic scenario
for the attacker.We evaluate fingerprint similarities betweenMs and LDs with a simulated
stream of events by exhaustively searching for best matching fingerprints. Figure 4.14 depicts
the reported values, with a maximum value of 70% between the attacker and legitimate
geophones. Recall from Figure 4.12 that we draw the requisite similarity threshold at 85%.
Hence the attacker’s best case Fsim, even with the unfair advantages, are sufficiently below
the tolerance level, demonstrating that Perceptio succeeds in thwarting the attack.
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Figure 4.14: We present a simulated study of Fsim forMs attempting to pair with LDs. Even
with overestimated capabilities of the attacker, average of all Fsim is only at 55%, bar the expensive
geophone (around 70%), but nevertheless sufficiently below the tolerance line of 85% set in Figure 4.12.

4.5.4 Security Analysis

We now present the analysis of Perceptio’s cryptographic protocol, namely presenting how
an attacker would try to launch attacks to compromise the shared secret. Specifically, the
attacker’s goal is to acquire ki generated by A in Figure 4.5 Step 2. We analyze two types of
attacks that an attacker may launch to achieve the aforementioned goal – (1) bruteforcing
and (2) eavesdropping attacks.

(1) Bruteforcing attack. The attacker first tries to directly bruteforce the key, ki by
attempting to perform dictionary attack on the hash, H(ki), which is transmitted together
with CAi in Figure 4.5 Step 3. As long as the length of the cryptographic hash function
(H(·)), lH(·), is longer than lNIST bits, bruteforce attack is computationally infeasible (i.e.,
lH(·) ≥ lNIST bits). We leverage the state-of-the-art secure cryptographic hash function such
as SHA-3 [33], which is well above lNIST bits. We define lNIST = 112bits, as recommended
by NIST [31].

(2) Eavesdropping attack. A more sophisticated attacker pretends to be a legitimate
device placed within the physical boundary by trying to open the commitment. The attacker
launches an eavesdropping attack to try to capture some of the events by placing his/her
devices just outside of the physical boundary. Hence, these devices may capture some of the
signals, depending the transmission media as well as the amplitude of the original signal.
Hence, rather than performing a bruteforce attack with no known information, the attacker
has more information at guessing the fingerprint, which can be decoded with DEC(·), which
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in turn leads to less amount of computations to acquire ki.
We denote leaves as the number of bits of the fingerprint that the attacker knows as a

result of the eavesdropping attack. Hence, we denote lbf as the number of bits the attacker
needs to bruteforce in order to successfully know ltol bits in order to succeed in the attack,
such that lbf = ltol − leaves. Hence, the attacker’s success probability is P (Adv) = 1 with
computational complexity, Cpx, as following:

Cpx = p2lbf (Ops+	+DEC(·) +H(·) + VH(·))

≈ O(2lbf )

where p is the number of F s and VH(·) is hash verification. Cpx is computationally infeasible
if lbf ≥ lNIST . Hence the gain from eavesdropping, leaves should be bounded by leaves =

ltol − lNIST .

4.5.5 Evaluating Entropy Extraction

0 2 4 6 8 10

Time (hours)

0

0.2

0.4

0.6

0.8

1

C
D

F
 o

f 
G

a
m

m
a
 D

is
tr

ib
u
tio

n Motion Events

#events=5
#events=10
#events=15
#events=20

(a) Motion

0 10 20 30 40

Time (hours)

0

0.2

0.4

0.6

0.8

1

C
D

F
 o

f 
G

a
m

m
a

 D
is

tr
ib

u
tio

n Door Events

#events=5
#events=10
#events=15
#events=20

(b) Door

Figure 4.15: Cumulative probability distribution of motion and door opening events modeled after
real world smart home data collected for two months

We now evaluate the required time to extract lF (i.e., length of fingerprint) to ensure
sufficient entropy (e.g., 128 bits). F is created by concatenating the time intervals of
consecutive events of same cluster type (e.g., series of knocking events).

4.5.5.1 Modeling the Arrival Time

We follow the traditional approaches of modeling event arrivals as a Poisson process [71, 91].
We define Sn as the waiting time until the nth event, assuming that n events yields lF bits of
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fingerprint. We define Ti as the sequence of inter-arrival times for i = 1, 2, ..., which can also
be described as i.i.d. exponential random variables. Furthermore, the probability density
function of Sn has a gamma distribution with average arrival rate λ, number of events n, and
time t as depicted in Equation 4.3.

Sn =
n∑
i=1

Ti, n ≥ 1, fSn(t) = λe−λt
(λt)n−1

(n− 1)!
. (4.3)

The corresponding expected time of nth event, E(Sn), is depicted in Equation 4.4. We also
define bit rate which is the effective rate of the generating the lF fingerprint bits in a time
duration of E(Sn), capturing the effective rate of generating useful fingerprint bits. The bit
rate is modulated by a correction factor, ρ, which is proportional to the detection rate of the
events. We note that the units of the bit rate can be measured in bits per second, but in
many practical scenarios it may be more meaningful to express this value in bits per hour.

E(Sn) =
n

λ
, BitRate =

lF ρ

E(Sn)
=
λ lF ρ

n
(4.4)

4.5.5.2 Evaluation Using a Real-world Smart Home Dataset

To ensure the practicality of our analysis, we analyze a real-world smart home data set,
publicly available from CASAS online repository [57]. We analyze two sets of sensor data
collected for two months (i.e., over 1450 hours of data): a motion detector used to monitor
movement in the home, and a door sensor to monitor door open/close activities. Specifically,
we extract mean arrival rate of the two events, λmotion and λdoor, to be 8.85 events/hour
and 0.96 events/hour, respectively. We note that the average was computed from the users’
daily activities only. This reflects the practical use case of Perceptio, as the system will not
extract much entropy at night due to stagnant event occurrences. Using these values, we
plot a cumulative probability density function (CDF) and vary n and t. Figure 4.15 (a) and
(b) depict the CDF of the two types of events, respectively. The results are intuitive as the
plots demonstrate that for more number of n events, the longer t is required to reach a high
probability. Furthermore the two figures of motion and door events depict clear contrast,
as the door events require much longer time to reach a high probability. We note that this
analysis is an optimistic approach as we assume perfect detection accuracy (i.e., ρ = 1) for
simplicity of the analysis.

For example, assume that it takes 20 events to yield lF = 128 bits of the fingerprint,
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then using (Equation 4.4), n = 20 events arrive in about 2.3 hours for motion events, as
opposed to 20.8 hours for door events. Hence, the corresponding bit rate for the two events
are BitRatemotion of 56.6 bits/hour and BitRatedoor of 6.1 bits/hour. We note that the bit
rate would potentially increase if there were more occupants in the house as opposed to a
single resident case from this data set. (For example, the average number of occupants in a
home in the United States is 3.14 persons [36]).

4.6 Related Work

We present related work in automatic trust establishment enabling the IoT devices to leverage
contextual information. Miettinen et al. propose recurring authentication when pairing IoT
devices at home by leveraging contextual information (i.e., light and sound) [99]. Devices
co-located at one household would experience similar context as opposed to devices in a
neighbor’s house. This scheme increments authenticity score over time to derive a shared key
among the devices with certain confidence. Schurmann et al. propose a similar idea where
they leverage short audio as contextual information to be used for pairing [117].

There are work in non-residential settings that make use of contextual information to
achieve security guarantees. Han et al. proposes leveraging context from road characteristics
to prove co-presence of trucks in platoon [68]. Rostami et al. propose Heart-to-Heart, a key
agreement scheme between an implanted heart with its remote programmer [114]. The two
devices establish a shared key by extracting entropy bits from measuring the patient’s heart
beat.

While these work make use of contextual information to verify co-presence, all of their
approaches rely on leveraging same sensing modality across devices. These approaches are
promising first steps but they focus on leveraging identical sensor pairs such as microphones,
accelerometers, microphones, and other sensors using direct signal analysis. Unlike the
traditional line of work that make use of homogeneous sensing modalities, Perceptio addresses
a difficult but interesting question of how to enable differing (i.e., heterogeneous) sensor
modalities to capture the same context information.

4.7 Discussion

We now discuss practical considerations when deploying Perceptio in smart homes.
Simultaneous Events. While we present experiment evaluations with a single event per
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time period and background noise, this may not always be true in real life, as multiple events
may occur simultaneously (e.g., coffee making while walking). In such cases, we have seen that
the concurrent events will produce an overlapping signal and either be clustered as a separate
event type or mismatch errors will occur leading to a longer time to reach the confidence
threshold. To test our hypothesis, we conducted a preliminary experiment with two events –
coffee making and generating footsteps (walking in place) – occurring simultaneously, while the
sensors were located 1m away from the event sources. We then kept the locations of sensors
and the coffee machine static, while varying the stepping positions from 1-6m. Figure 4.16
depicts an example plot of signals captured at 1-4m distances between the simultaneous
events. At 1m distance, the signals differ significantly from those generated by the coffee
machine and footsteps in isolation, while at 4m distance, the signal characteristics are closer
to those of a coffee machine in isolation. We see that many overlapping signals will lead to
new event clusters of their own, rather than with existing event types.
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Figure 4.16: When events coffee and footsteps occur simultaneously, the combined signals are
distorted significantly enough to possibly cluster into a new event type of its own. However, the
magnitude of this distortion also depends on distance between event sources.

Ad-hoc networking. Perceptio provides a novel solution to secure ad-hoc connectivity
among IoT devices, without the need for a trusted home gateway. Many applications may
benefit from such ad-hoc networks due to reduced communication and computational overhead,
as it no longer requires going through a central gateway or cloud. In fact, there is a push
in the industry to shift from star to mesh topologies, as seen by industry activities such as
Thread [65].

Resourceful attackers. Through our evaluation, we demonstrated the difficulty of
the attacker succeeding in Shamming–Eavesdropping attack due to the need to consistently
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detect events inside the home. However, if an attacker launches Shamming–Signal Injection
attack by creating and injecting events from outside that are consistent and loud enough
to be sensed from legitimate devices inside the house, the attacker may succeed in fooling
the legitimate device to pair. However, due to the same attenuation factor that protects
inside events from the external attacker, it would be difficult for inside devices to consistently
detect outside events unless they are extremely loud, otherwise the fingerprints would not
match. To make this attack harder, Perceptio’s Key Strengthening Process requires multiple
iterations that take enough time that such injections would be easily noticed by human users,
making the attack extremely risky and likely impractical. Furthermore, our threat model
also defines Shamming–Sensor Spoofing attack by injecting spoofing signals to sensors of
legitimate devices similar to prior work [120, 121, 124, 128]. While such attacks may still be
possible, Perceptio would cluster injected signals into another event type. Hence, the attacker
would only slow down the Key Strengthening Process. Furthermore, such injection attacks
require a high amplitude signal to be exerted to the sensor, which is rather difficult in our
setting as signals attenuate significantly through the wall as our experiments have shown.

Devices located in different rooms. Perceptio is potentially unable to establish trust
between valid devices located in different rooms of a smart home. A possible remedy is to
introduce a bridging device in each room to facilitate cross-room connections. A bridging
device would be like any other IoT device, but with the additional functionality for human-in-
the-loop pairing. For example, two infrared- and NFC-enabled motion detectors in different
rooms may be first manually paired by the user (e.g., via NFC tagging with a smartphone)
and then deployed to each room. Devices in each room can leverage the Transitivity-of-
Trust (ToT) protocol (Section 4.4.1) via the bridging devices to pair with devices in other
rooms. Manually bootstrapping bridging devices is reasonable because there are only as many
bridging devices as rooms in the home. This is analogous to distributed WiFi systems that
use multiple APs to provide or enhance connectivity through a large home [53, 62, 112].

Calibration. Perceptio depends on sensor calibration and determination with respect
to appropriate threshold values presented in Section 4.4.2.1. Thresholding is important to
helps distinguish signals from noise and is thus critical with respect to factors such as sensor
placement, sampling rate, and events in the environment. Hence, in practice, Perceptio would
require a calibration phase by allowing the IoT devices to perform local sensor calibrations
for a given amount of time prior to starting the Perceptio protocol. Device manufacturers
could also provide course-grained pre-calibrated settings.

Public and Shared Spaces. Perceptio is based on the assumption that physical
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boundaries draw natural barriers between the legitimate devices and the attacker’s device
outside, which may not hold for public spaces such as public libraries or shopping malls.
However, with further work on fine tuning thresholding parameters, Perceptio can be extended
from single family housing to other multi-tenant private office buildings with existing access
control policies.

Frequency of activity vs. Pairing time. The pairing time between devices is directly
proportional to the frequency of activities in the house. However, there may be households
with less family members and thereby decreased sensor activity, leading to undesirably
long pairing times. In such cases, users may introduce a signal injecting device for faster
convergence. This solution, however, trades procurement cost and usability for speed.

4.8 Chapter Summary

We propose Perceptio for autonomous, secure pairing of IoT devices using context information
from embedded sensors. The novelty of Perceptio stems from its ability to address the difficult
challenge of context-based pairing across devices equipped with different types of sensors.
Perceptio achieves this goal by abstracting sensor measurements and using timing information
as an invariant property to generate context fingerprints as a source of shared entropy for
cryptographic key agreement. We demonstrate through proof-of-concept experiments that
Perceptio is able to securely pair heterogeneous sensing devices co-located within the same
physical boundary, while rejecting potential attacker devices placed outside.
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Chapter 5

Least Constrained: Truck Platooning

We now present an application scenario with the least constraint among the three examples
we present in this chapter. We present a truck platooning scenario, where there is no physical
boundary that exists to keep the unintended devices out. Rather, the trucks may be traveling
openly, with the possibility of attackers driving along side the trucks.

5.1 Problem Definition

Vehicle platooning is a method of having a group of vehicles drive in a single file to follow the
preceding vehicle and ultimately the leading vehicle, which is gaining large traction today.
Platooning is getting significant attention in the commercial trucking industry [12, 15, 17,
87, 138] as it provides benefits of increase in fuel efficiency (and reduction in CO2 emissions),
driving safety, road efficiency , and driver convenience [16]. The consumer vehicle industry
is also preparing to incorporate personal vehicles into platooning to take advantage of the
aforementioned benefits [18, 113].

Because platooning leverages wireless communications to transmit control messages such
as accelerating, braking, and steering information from the participating cars, securing the
communication is extremely crucial as attacks may result in life-threatening collisions, damage
to high-value vehicles and cargo, and loss of business. Specifically, vehicle platooning uses
Dedicated Short-Range Communications (DSRC) and Wireless Access in Vehicular Environ-
ments (WAVE) as de facto standards for vehicle-to-vehicle (V2V) communications [78, 90].
The current DSRC/WAVE model assumes Public Key Infrastructure (PKI) that authenticates
each vehicle’s public key by leveraging certificates signed by a trusted third party, such as
a Certificate Authority (CA). Unfortunately, this model is susceptible to impersonation
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attacks such as masquerading or sybil attacks (impersonating as non-existing or “ghost
vehicles”) [34, 89].

The root cause of the aforementioned problems is due to the fact that the vehicles have
no way of binding their digital certificates with their physical identities. This is on the
contrary to the analogy of web server authentication in TLS/SSL. The certificates of the
server contains the identifier (i.e., URL), which can be compared to the URL that the user
has visited via the web browser, hence naturally binding the “physical identity" with the
identity included in the certificate. Even though the certificate of the vehicles contain their
identifiers, other cars in the platoon have no way of verifying the physical identity of the
certificate. This is exemplified in Figure 5.1, where Cars A and B are vehicles in am existing
platoon. Car C is a vehicle that wishes to join the platoon, and Car M is an attacker’s car
driving in an adjacent lane. In this example, Cars A and B receives Car C ’s certificate, but
is unsure if the certificate is actually from Car C or Car M in the adjacent lane.

Figure 5.1: Overview diagram depicting vulnerabilities of platooning systems to impersonation
attacks.

To address the above problem, we present Convoy , an autonomous authentication and
verification scheme of platooning vehicles. Convoy performs the verification by binding the
certificate with the physical context. Convoy is based on the findings that vehicles wishing to
form a platoon can prove to each other that they are indeed traveling together using context
information captured from their sensor data. This is possible because Convoy requires a
vehicle wishing to join the platoon (Car C ) to follow a rear vehicle of the platoon (Car B) for
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a period of time resorting to automated technologies such as Adaptive Cruise Control (ACC),
which enables a vehicle to autonomously follow the front car with constant headway and keeps
the vehicle within the traveling lane (ACC is prevalent in many vehicles today) [11, 133].
Consequently, unique road conditions per lane (e.g., bumps, cracks, potholes, etc.) cause
similar vibrations between potential vehicles of a platoon as they travel on the same lane
in a single file, as opposed to a car traveling on an adjacent lane (Cars A, B and C as
opposed to Car M). Furthermore, traffic conditions cause vehicles traveling in a single file to
experience similar acceleration, deceleration, braking, and steering. Hence Convoy leverages
these conditions as sources of entropy to establish a symmetric cryptographic key between a
pair of vehicles, naturally binding the physical context to the symmetric key. Subsequently,
the symmetric key is used to authenticate the certificates to delegate the bindings of physical
context to the certificates.

Yet, challenges remain to achieve the aforementioned goals. First, different cars wishing
to join as a platoon (e.g., Cars A, B, and C) would experience similar but different context,
leading to numerically unequal signals. In order to compensate for subtle differences in
the signals between the cars, Convoy makes use of an emerging cryptographic primitive
called Fuzzy Commitment [76, 99] that relies on error-correcting codes to establish a shared
symmetric key from similar-but-unequal signals capturing a common context.

Second, comparison of contextual information increases room for error because similar
context may exist for attackers at times (e.g., two lanes may have similarities at times).
Hence, Convoy requires the vehicles to repeat the protocol for multiple iterations over time
(and increment a confidence score upon a successful termination of each iteration), thereby
increasing the probability of vehicles traveling together to experience more similar context,
while vehicles traveling in another lane would not. Hence, Convoy thwarts attackers driving
on an adjacent lane to the platoon, attempting to claim a membership in the platoon or
impersonating an existing member in the platoon.

5.2 System Models

In this section, we present our models and assumptions for the attacker and vehicle platoons.

67



5.2.1 Adversary Model

We consider a Platooning Ghost Attack , where the attacker’s goal is to impersonate a
non-existing “ghost” vehicle in the platoon. By pretending to be in the platoon formation,
and hence gaining admittance to the platoon, the attacker gains knowledge of the control
commands (i.e., acceleration, braking, and steering information) from the preceding vehicles
relative to the position of the ghost vehicle. The attacker further has control over transmission
of the control messages to its succeeding vehicles. Hence, the attacker effectively controls
certain aspects of the platoon. The attacker is now capable of launching a variety of attacks
as a platoon insider, including man-in-the-middle, denial-of-service, and collision induction
attacks. More specifically, it may send malicious control messages to its succeeding vehicles
to cause it to crash into the rest of the platoon in front. It may prevent admissions of newer
members of the platoon, or cause existing succeeding vehicles to brake away from the rest of
the platoon.

5.2.2 Platoon Model

Platoons are typically set up with a manually-driven lead vehicle with semi-autonomous
followers [138]. In our work, assume that a candidate vehicle is only admitted to the platoon
after the rear-most platoon vehicle validates the position and identity of the candidate. We
suppose that the candidate will initially follow the platoon using Adaptive Cruise Control
(ACC) [133] without explicit coordination, until it can be verified and admitted to the platoon.
Once admitted, members are declared to be trustworthy and thereby earn the benefits of
efficiency and safety offered by platooning [16]. To enable the coordinated acceleration
among vehicles, vehicle-to-vehilcle (V2V) communication is employed. As platoons travel
amongst other traffic, it is critical for them to communicate securely. We thus assume that
all control messages (e.g., acceleration, brake, and steering messages) are encrypted with a
group symmetric key known only to the platoon members, though we do not address group
key management in this work.

5.3 Capturing Contextual Cues

The goal of Convoy is to enable vehicles trying to establish a secure platoon to verify that
their public keys indeed belongs to the vehicles driving in the platoon as opposed to an
attacker’s car driving in an adjacent lane. Hence, the protocol binds the physical context,
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namely innate context experienced by the vehicles driving together in a platoon, to their
public keys. Specifically, Convoy enables this binding by making use of the shared context
as sources of entropy in establishing a shared symmetric key between a pair of cars. This
symmetric key is used to verify the owner of the public keys by having the pair of vehicles
each compute a MAC over each car’s public key.

Convoy leverages the following innate context for a platoon to leverage as sources of
entropy to the key agreement protocol – unique road and traffic conditions. First, each
lane has varying road conditions that are hard-to-guess by attackers. The road conditions
not only differ at different segments of the road, but also across different lanes. This is
often due to many factors such as patches, bumps, cracks, pot-holes, etc. Second, traffic
conditions are inherently random as they vary when different vehicles on the road travel
together, causing the platoon to accelerate, brake, and steer differently. Hence, the vehicles
traveling on the same lane within a platoon will experience similar road and traffic conditions,
while an attacker traveling in an adjacent lane will not. We note that the control messages
(e.g., acceleration, brake, and steer messages) are encrypted to be shared only within the
members of a platoon to thwart attackers from mimicking the traffic conditions. However, a
new vehicle wishing to join a platoon (Car C ) follows the read vehicle of the platoon (Car
B) resorting to ACC so that C’s traffic information would be similar to that of B. This is
depicted in Figure 5.1, where Vehicles A and B already travel as an existing platoon and
Vehicle C is trying to join the platoon, while an attacker’s vehicle, M , is traveling in an
adjacent lane.

Convoy leverages the aforementioned findings to extract context fingerprints to have
a newly joining vehicle (C) to prove to the vehicles in a platoon (A and B) that they
are traveling together. Each vehicle running Convoy protocol makes use of a multi-axis
accelerometer to capture the context. Specifically, the road condition is captured by an
axis perpendicular to the road (AccRoad), while the traffic condition is captured by the axis
parallel to the lane (AccTraf ). The captured context is then extracted to fingerprints, which
will be used in the protocol shown later in this chapter to prove to each other that they are
in fact driving together in a platoon.

5.4 Design and Implementation

This section presents the design of Convoy protocols and the corresponding implementation
details.
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5.4.1 Protocol Overview

From the example illustrated in Figure 5.1, in order for Car C to prove to Car B that it is
traveling close behind the platoon, it leverages a fuzzy commitment scheme. This scheme
translates sensor measurements, represented by an extracted fingerprint F , and a secret K
into a commitment and decommitment (or opening) pair (µ, o). This is analogous to one-time
pad encryption, where F is used as an encryption key, and K is used as the plaintext to
be encrypted. µ can only be opened if one has a fingerprint, F̂ that is within a few bit
errors of F . The fingerprints FB and FC extracted by B and C traveling on the same lane
would ideally be within a small margin of error, while FM extracted by M on a different lane
would be more error-prone. By applying an error-correcting code operation, vehicle pairs
can verify fingerprint similarity, resulting in a shared key. This can be repeated to build
confidence over time, ultimately yielding a key with sufficient entropy and corresponding
platoon admission. In this work, we rely on a fuzzy commitment scheme similar to that of
previous work [76, 99, 117].

5.4.2 Protocol Details

Convoy protocol consists of five phases – (1) Initialization, (2) Key Agreement, (3) Key
Confirmation, (4) Public Key Verification, and (5) Confidence Score Check phases. We
describe each phase in detail with the platoon example depicted in Figure 5.1. The protocol
is summarized in Figure 5.2.

Initialization Phase. To start the initialization phase of Convoy , the platoon leader A
broadcasts a beacon message BeaconA containing current platoon member IDs, their (GPS)
locations, and a timestamp. When platoon candidate C receives several beacons, it sends a
request JOIN_RQST to join the platoon. Upon receiving the request, A sends a message
INIT_V ERIF to B (the trailing vehicle, in general) and C to initialize the verification
process; A names C in this message and includes the measurement duration tF . At this point,
B and C commence the key agreement phase.

Key Agreement Phase. This phase is performed by the trailing platoon member
(B in our example) and the candidate vehicle C. When A triggers the INIT_V ERIF
messages, B and C collect accelerometer measurements for a duration of tF seconds. The
vehicles then apply a fingerprint extraction function extractF(). B computes fingerprint as
FB = extractF (AccB, tF ), where C does the same for its measurements AccC . We present
the details of our fingerprint extraction algorithm in Section 5.4.3. Subsequently, B generates
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Convoy PROTOCOL
Phase 1: Initialization
1. A

bcast−→All : BeaconA=IDA||IDB||TS||GPSA||GPSB
2. C → A : JOIN_RQST
3. A→ B,C : INIT_V ERIF (IDC , tF )
Phase 2: Key Agreement
4. B : Holds FB, KB, (µB, oB)

C : Holds FC
5. B → C : µB||H(KB)
6. C : ôB = Open(µB)

: K̂B = RSdec(ôB); H(K̂B)
?
=H(KB)

: K̂BC = KDF (K̂B)
Phase 3: Key Confirmation
7. B ↔ C : Key confirmation messages for KBC

Phase 4: Public Key Verification
8. B → C : mB1||MKBC (mB1), where mB1 = K+

B ||K+
A

9. C → B : mC ||MKBC (mC), where mC = K+
C

10.B → A : mB2||MKAB(mB2), where mB2 = K+
C

Phase 5: Confidence Score Check
11.B,C : Increment CSBC ; Check if CSBC>Thr

Repeat Steps 4 - 9 until check passes

Figure 5.2: Convoy protocol overview. Upon successful completion of this protocol, Car C is
securely admitted to the platoon with existing members Cars A and B.

KB using a key generation algorithm KGen that outputs keys of length γ (e.g., 128 bits).
B’s commitment and opening pair (µB, oB) is then computed as oB = RSenc(KB) and
µB = FB 	 oB, where RSenc and 	 denote Reed-Solomon (RS) encoding and subtraction in a
finite field (analogous to an XOR operation), respectively. Finally, B sends µB and H(KB)

to C. The hash is sent so that C can locally verify the opening of the commitment. Upon
reception of µB, C first tries to open the commitment (Open(·)) by inverting the operations
using its fingerprints FC in place of B’s commitment, obtaining ôB ≈ FC 	 µB. As long as
FB ≈ FC , the resulting ôB will also be similar to oB. Applying RS decoding operation will
yield a key K̂B = RSdec(ôB) that will be equal to KB if and only if the input fingerprints FB
and FC are within the error-correction threshold t of the RS code, ‖FB − FC‖1 ≤ t, where
‖ · ‖1 is the Hamming distance (or `1 norm), counting the number of bit errors between FB
and FC . Vehicle C then verifies that the acquired K̂B value matches those computed by B by
checking the original hash received from B as H(K̂B)

?
=H(KB). Upon successful verification,
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C computes a shared symmetric key, KBC using a Key Derivation Function as KDF (K̂B).
B and C then continue to the key confirmation phase.

Key Confirmation Phase. C initiates the key confirmation phase by leveraging the
newly computed KBC to challenge B to verify the same key KBC was derived by both parties.
To construct the challenge β1, C computes a Message Authentication Code (MAC) using
KBC over a random nonce nC such that β1 = nC ||MACKBC (nC), and sends β1 to B. Upon
receiving the challenge, B similarly computes KBC as KDF (KB) and verifies the received
MAC using its version of KBC . When this verification succeeds, B similarly creates its own
challenge α with nonce nB, such that α = (nB||nC)||MACKBC (nB||nC) and sends α to C,
who similarly verifies α. Upon successful verification, C transmits a final MAC β2 over
nB received from B such that β2 = nB||MACKBC (nB). At this point, both B and C have
confirmed mutual agreement upon the symmetric key KBC .

Public Key Verification Phase. With a confirmed symmetric key between the platoon
trailer B and candidate vehicle C, the platoon provides verifiable public keys of all platoon
members. Specifically, B computes a MAC over the public keys K+

A and K+
B and transmits

the public keys and MAC values to C. C mirrors the process and transmits its public key
and corresponding MAC to B. If desired, B can share this information internally within the
platoon group, using the shared group key, in case B leaves the platoon before C completes
the final phase.

Confidence Score Check Phase. After key confirmation and verification, B increments
its (or the group’s) confidence score CSBC in candidate vehicle C. If CSBC has surpassed a
pre-defined threshold Thr, then C is admitted to the platoon and given access to the group
key. Otherwise, C remains a candidate and must repeat the process from the key agreement
phase until sufficient confidence is achieved. Use of the confidence score minimizes false
positives and ensures that over time, B and C must be traveling together in the same lane.

5.4.3 Fingerprint Extraction Algorithm and Implementation

The extractF() function takes in a raw signal (i.e., AccRoad or AccTraf) and the fingerprint
capture time, tF , to encode the signal to a bit stream, F , of length lF . The main idea behind
this extraction algorithm is to capture abrupt changes in the raw signals and encode them
into high bits (i.e., bit value ‘1’s), while encoding the rest of the signal as low bits (i.e.,
bit value ’0’s). The extraction is divided into the following phases: (1) Pre-processing, (2)
Derivative, (3) Bit Translation. The phases are illustrated in Figure 5.3.
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Figure 5.3: Fingerprint extraction depicting (a) raw data; (b) noise reduction phase; (c) absolute
value and moving average; (d) binary signal after thresholding; (e) bit translation phase(total bit
length is 128); and (f) extracted fingerprint.

Pre-processing. We pre-process raw sensor data to minimize noise and maximize detection
of information (i.e., context from road and traffic conditions). Hence, first process raw sensor
data to remove high frequency noise components in the raw data which would otherwise
appear as noise in the following steps. We compute the absolute value of the entire signal to
capture the magnitude of the samples independent of the sign. Next, with goals to remove
high frequency noise in the data, we compute the average of samples as a sliding window,
computing a moving average of the raw signal.

Derivative. Taking the pre-processed signal, we take the derivative of the signal to obtain,
S ′[x] . The derivative helps to detect abrupt changes in the smoothed signal. The derivative
of the signal with respect to time rewards abrupt changes in the signal while penalizing slow
stagnant changes. We note that this is computationally synonymous to applying a bandpass
filter to capture the signal of interest, while implementation may be realized in different ways.
This is depicted in Figure 5.3 (c). The dotted lines indicate the thresholding value, ThrDeriv,
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to capture sudden changes. The resulting binary signal, S ′binary[t] is computed as Equation 5.1
and illustrated in Figure 5.3 (d).

S ′binary[t] =

1, if S ′[t] > ThrDeriv

0, otherwise
(5.1)

Bit Translation. S ′binary[t] is then divided into lF windows (e.g., 64 windows for 64 bits)
of size bitWnd. For each window, we compute the summation of the values of S ′binary[t]. The
resulting summation is depicted in Figure 5.3 (e). If this sum is greater than a threshold
(depicted with the dotted line), Thrtrans, the encoded bit is 1, and 0 otherwise, for the
fingerprint, F , as depicted by Equation 5.2.

F [n] =

1, if
∑bitWnd

t=0 S ′binary[t] > Thrtrans

0, otherwise
(5.2)

Subsequently, each truck verifies if the fingerprint contains enough entropy by computing the
ratio of high bits. If the ratio is below certain threshold, the fingerprint is discarded and new
fingerprint is generated in the next iteration.

5.4.4 Entropy Verification

To prevent an attacker from guessing the fingerprint, Convoy requires that the fingerprint
exceed a certain amount of randomness. We define the fingerprint weight w(F ) as the fraction
of high bits in a fingerprint F , capturing the amount of variation in the signal. Hence a
fingerprint F with w(F ) = 0.5 indicates a context that is most unpredictable to guess, as it
has equal number of high and low bits. To capture this idea, we define a fingerprint weight
deviation as dw(F ). The following equations describe how w(F ) and dw(F ) are computed.

w(F ) =
1

|F |
∑
i

F [i], dw(F ) = 1− 2

∣∣∣∣12 − w(F )
∣∣∣∣ (5.3)

Hence a low weight deviation indicates that there are fewer contextual changes, making it
easier for the attacker to guess the fingerprint. On the other hand, a high weight deviation
indicates that there are more contextual changes, making it difficult for the attacker to guess.
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Note that the maximum dw(F ) is 1 when half of the bits are high.
Consequently, Convoy requires the committing vehicle (B in the example) to compute

the fingerprint weight deviation and only transmit the commitment if dw(F ) > Thrw for a
given threshold Thrw.

5.5 Evaluation

We evaluate Convoy through experimentation with vehicles in real traffic scenarios. We
first describe the experiment setup and then evaluate the effects of road conditions, leaving
evaluation of traffic conditions for future work.

5.5.1 Experiment Setup

Y

XZ 

Figure 5.4: Illustration of experiment apparatus for evaluation. Y-Axis is parallel to the lane and
Z-Axis is perpendicular to the road surface.

We experiment by driving two distinct vehicles (2014 Volkswagen Jetta and a 2012 Subaru
Impreza) with trial driving segment spanning over six miles of highway by cruising at 65 mph.
We only test the road condition by keeping the traffic condition consistent and delay the
traffic condition analysis for future work. Each car was driven in two lanes, with two trials
each, yielding a total of 48 miles worth of sensor data. We deployed a triple-axis MEMS
accelerometer [49] (with a range of -3 to 3 g sampling at 5KHz) on an Arduino Uno board [10]
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in the trunk of each car. The z-axis is normal to the road surface to measure road conditions,
while the y-axis of the accelerometer points in the direction of travel to measure acceleration
due to traffic conditions.
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Figure 5.5: Subsection of accelerometer (Z-Axis) time series data (≈ 5 minutes of drive at 65 mph)
of adjacent lanes with two independent trials.

5.5.2 Fingerprint Similarity

We compare extracted fingerprints from the z-axis accelerometer to evaluate the feasibility of
distinguishing between vehicles driving in different lanes, where each fingerprint has a length
of 128 bits. Figures 5.5(a)–(b) and (c)–(d) exemplify the fingerprint similarities between
vehicles traveling on the same lane (measured by two trials of the same car). However,
comparison across the two pairs depict significant deviance, sufficient to distinguish two
adjacent lanes. We discuss our results in three separate cases: similarity between different
trials of the same vehicle in the same lane, between different vehicles in the same lane, and
between the same vehicle in different lanes. This last case highlights the best-case scenario
for an attacker, since the hardware is eliminated as a variable.

Similarity across trials of same vehicle in same lane. We show that the fingerprint
pairs created from the same vehicle traveling on same lanes are consistent. We extracted
fingerprints from accelerometer data which reflects bumpiness due to imperfection of the
road. We repeated this on total of two vehicle models and report the fingerprint similarity of
the aggregate result in Figure 5.6. As the figure shows, high fingerprint similarity is observed
in different driving instances of same road with an average of 92.8%. We also note that this
result would improve further with usage of lane control modules (such as the Adaptive Cruise
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Control (ACC)) in a real scenario.

Similarity across vehicles in the same lane. As the same vehicle traveling in the
same lane creates consistent fingerprints, we perform additional evaluation to confirm whether
the fingerprint similarity is retained as we change vehicles. Again, we use all possible pairs
of fingerprints created from accelerometer data. We report the resulting average fingerprint
similarity result of 90.6% in the same figure. While the data trends show slight degradation,
the fingerprints remain fairly consistent.

Similarity across lanes. We next compare fingerprint similarities for the same vehicle
in adjacent lanes. Using the same vehicle minimizes the effect of mechanical variation and
reflects a benefit for the attacker. We perform the fingerprint extraction and compare the
fingerprint similarity between two different lanes traveled by the same vehicle and report the
aggregate result of 81.6% in the same figure.

We also present a set of p-values that compares how fingerprint similarity compares
between the Same-Car-Same-Lane (SCSL), Different-Car-Same-Lane (DCSL), and Same-
Car-Different-Lane (SCDL) conditions, as depicted in Table 5.1. The comparison between
Same-Lane conditions (SCSL vs. SCDL) yielded p-value of 0.60, showing that these two are
not significantly different. However, the comparison between any Same-Lane conditions with
Same-Car-Different-Lane condition (SCSL vs. SCDL and DCSL vs. SCDL) yielded 0.0008
and 0.003 respectively, showing significant difference in both comparisons.
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Figure 5.6: Comparison of fingerprint similarity due to road conditions for Same-Car-Same-Lane
(SCSL), Different-Car-Same-Lane (DCSL), and Same-Car-Different-Lane (SCDL)
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Comparison Pair p-value
Same Car – Same Lane Different Car – Same Lane p=0.60
Same Car – Same Lane Same Car – Different Lane p=0.0008
Different Car – Same Lane Same Car – Different Lane p=0.003

Table 5.1: Paired t-test for comparison pairs from Figure 5.6.

5.6 Related Work

This section presents related work including platooning insider attacks, V2V wireless security,
contextual authentication, and pothole detection.

Platooning insider attacks. There has been prior work in platooning security, especially
on insider attacks. This category of research deals with abnormal behaviors from vehicles
inside a platoon. An inside attacker can launch a collision induction attack by signaling
its following vehicle to speed up while itself de-accelerating. This will abruptly reduce the
distance between the attacker and its follower. As it is, the distance between adjacent vehicles
in a platoon is usually small. Therefore, at high speeds, it is likely to cause an accident
and also probably induce all the following vehicles to collide, leading to a massive pile up
accident. Another issue is that rogue vehicles inside the platoon can reduce the efficiency
of the platoon by increasing the distances between adjacent vehicles thereby, increasing
the drag (wind pressure) and reducing the fuel efficiency. These insider attacks can be
mitigated by techniques mentioned in the following papers [46]: each vehicle in a platoon
models the expected behavior of the car directly preceding it, and detect any inconsistency
between actual behavior and the expected behavior. Two or more attackers within a single
platoon can also team up to implement a collusion attack. In this attack, some of the
attackers within the platoon accelerate while some others strategically located break at the
same times. This produces heightened oscillations in the platoon, thereby increasing its
instability as demonstrated by Dadras et al. [44]. Convoy focuses on outsider attacks when
malicious vehicles attempt to join a platoon. Our work serves as a complement to the existing
countermeasures and contributes to the comprehensive protection of platooning.

WAVE/DSRC security. (location spoofing, Sybil attacks, voting, etc.) Many re-
searchers have proposed using traditional DSRC (VAuth references 9,23,25)/ WAVE security
mechanisms in previously published VANET papers. They leverage the PKI for authentication
in vehicle to vehicle (V2V) communication. This scheme leaves the system vulnerable to
spoofing and forging attacks such as the Sybil attack. To mitigate this threat, researchers
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have proposed using a global reputation system [46], which acts as a mass surveillance check
whereby if a vehicle is flagged on multiple occasions by several different vehicles, it can run
a diagnostic check to test for system failures [141]. It can also get its license revoked by
authorities.

Recurrent contextual authentication. Ambient contextual information has been
leveraged for the purpose of authentication. Miettinen et al. studied secure pairing of IoT
devices [99]. The proposed pairing scheme relies on the fact that co-present devices can
sense similar ambient context, from which they can extract fingerprints as their shared
secret. Another work [117] investigates secure communication through ambient audio. It
proposes methods to effectively extract fingerprint from ambient audio and to establish a
secure channel by using fuzzy-cryptography. Convoy tackles the authentication challenges in
another emerging application scenario. We study how to obtain useful information from both
the traffic and road conditions.

Pothole detection. Previous work [55] examines the feasibility of using solid-state
sensors to detect road conditions. Specifically, they leverage measurements from accelerometers
deployed on normal cars. The results show that it is effective to assess road surface conditions
through the vibrations detected by those sensors. Convoy also uses road condition information.
Instead of merely detecting potholes or bumps on road, we compare the road conditions
experienced by different vehicles to generate entropy for authentication.

5.7 Discussion

We now present two main discussion points of Convoy .
Road conditions in different cities. The experiments were performed in relatively

newer roads in California, which do not have considerable wear and tear. However, given that
Convoy shows promising performance even with such conditions, we expect to find higher
variations from road segments of cities subject to more severe weather conditions.

Sensor placement in trucks. While we report experimental results by driving two
sedans, we note that the accelerometer readings from trucks will most likely yield similar
results with trivial adjustments such as minor changes to the signal processing algorithm as
well as a more careful sensor placement. We note that platooning trucks could place their
sensors in locations more sensitive to road conditions and truck movements (e.g., perhaps
below the chassis).

Pre-shared keys. One may propose trucks from same vendors to share keys in advance.
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However, such solutions are not sufficient because of two reasons. First, truck platooning
envisions supporting trucks on the road to form a platoon in an ad-hoc fashion regardless
of their vendors. Second, even in the extreme case of platoon formation among trucks from
same vendors, key pre-sharing approach is inherently vulnerable to insider attack, where a
supposedly valid truck turns malicious and launches a ghost attack. Convoy addresses such
problems because it provides the trucks supplemental guarantee of their physical arrangements.

5.8 Chapter Summary

We propose Convoy to secure trucks admissions into a platoon by verifying physical context.
Convoy is novel because it leverages inherent randomness from road and traffic conditions
to autonomously bootstrap a shared cryptographic key that is used by vehicles to securely
bind physical context, or locality information to digital identifiers, or certificates. We
implement and evaluate the Convoy fingerprint verification scheme against real-world driving
data collected from two different vehicles, and demonstrate the feasibility of sufficiently
differentiating between adjacent lanes using only single axis of an accelerometer data. As our
future work, we plan to conduct more rigorous experiments covering longer segments with
varying traffic conditions. We also plan to provide a robust defense against potential replay
attacks on a targeted vehicles on specific road segments.
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Chapter 6

Risks of Sensing

While sensor measurements may complement verification of physical relationships as shown
in the above chapters, we also demonstrate that sensing may lead to potential security
vulnerabilities of IoT devices and cyber-physical systems. In this chapter, we present how
attackers may capture contextual information through device coordination and sensor fusion.
Specifically, we present the feasibility of launching a side-channel (eavesdropping) attack by
reconstructing intelligible speech signals, by fusing multiple non-acoustic IMU-based sensor
data available in a smart home environment [66].

6.1 Problem Definition

Emerging technologies in the Internet of Things (IoT) give rise to wide deployment of pervasive
networked sensors. This trend is evidently increasing as recently demonstrated [2, 103],
projecting an IoT and global sensor market of $1.7 Trillion and $190.6 Billion, respectively,
by 2021. As the number of IoT devices increase, sensors will surround us to monitor various
parts of our lives at our homes, offices, and numerous other places.

While sensors contribute to numerous constructive applications, some of the recent re-
search demonstrate the feasibility of launching side-channel attacks to leak privacy sensitive
information. The following attacks infer sensitive information of a victim using only ac-
celerometer data from a smart phone. ACComplice demonstrates how an attacker could infer
a victim’s location [69]. ACCessory infers a victim’s keystroke presses on a smartphone [105].
spiPhone infers a victim’s key presses on a computer keyboard when the smartphone is
located nearby [94].

All of the aforementioned side-channel attacks focus on extracting private information
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Reconstructed	  	  
Speech	  

Eavesdropper	  

Sensor	  1	  

Sensor	  2	   Sensor	  3	  

Figure 6.1: Example scenario where non-acoustic sensors embedded in IoT devices are “listening"
to conversations.

from an individual sensor. However, the expected penetration of IoT devices into our homes
and workplaces inspires us to consider additional threats due to wide deployment of sensors,
including environmental and activity sensors used for common IoT applications. Beyond the
already prevalent sensing capabilities of smartphones, smart watches, and tablets, we are
now seeing activity sensors (such as accelerometers and gyroscopes) deployed in smart TV
remotes and gaming controllers (e.g., Wii remote, PS4 and Xbox controllers) [54, 129]. In
addition, we are seeing environmental and structural sensors (such as temperature, humidity,
and geophone sensors) in smart buildings and smart cities [81, 106, 107, 130]. Many of these
sensors are widely deployed in experimental and generic wireless sensor boards for multi-
purpose sensing [86, 92, 137], and we expect their deployment and inclusion in commercial
services to increase dramatically based on the market projections mentioned above.

With such wide deployment of sensors in IoT devices, we find that a large portion of
research community has concentrated on finding and defending against vulnerabilities of
individual sensors or devices, and what the posed risks are for the users. However, we are
more interested in exploring new vulnerabilities if an attacker compromises data collected
from multiple devices. Specifically, we pose the question – what unforeseen information can
one extract from fusion of these sensors across networked devices?

In search for the answer to the above question, we present PitchIn to demonstrate the
feasibility of achieving the seemingly unrealizable goal of reconstructing an intelligible speech
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Figure 6.2: Time series plots of geophone, accelerometer, gyroscope, and microphone of the word
“one" sampled at 8 KHz.

signal by fusing non-acoustic sensor data collected from a network of nodes. Specifically,
we consider scenarios of potential security breaches of a smart home/office’s gateway or in
service provider’s database, which has logs of sensor data from victim’s IoT devices. Such
breaches have been witnessed in many real-world examples recently [20, 25, 63]. Hence, the
attacker does not have to compromise individual devices equipped with sensors in victim’s
home or office to gain access to the sensor data. We illustrate an example scenario depicted
in Figure 6.1.

Traditionally, non-acoustic sensors such as geophones, accelerometers, and gyroscopes are
thought to be unresponsive to acoustic signals, as they are designed to capture motion signals
(vibrations, movements, and tilt angles, respectively). However, we find from our experiments,
along with the findings from related work, that when exposed to sound waves, the sensors
vibrate to output minuscule signals, sufficient to be processed to reconstruct intelligible
acoustic signals [97, 142]. Figure 6.2 depicts the time series plots of non-acoustic sensors such
as a geophone, an accelerometer (x-axis), and a gyroscope (x-axis), when sampled at 8 KHz1.

1We note that we only use the x-axis of accelerometer and gyroscope throughout this thesis for simplicity,
but the axis can be interchanged or combined with other axes.
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We also show microphone data for comparison.
Unfortunately, a sampling frequency of 8 KHz is much higher than the typical rate at

which these motion sensors are configured to be sampled at in commercial devices. Obtaining
intelligible speech signals, however, require a high sampling frequency, with a minimum of 5
KHz [110], while telephones and CDs are sampled at 8 KHz and 44.1 KHz, respectively [42, 93]
for higher quality audio. Hence, an attacker cannot recover an intelligible speech from sensor
data of a single device.

To increase the overall system sampling frequency, PitchIn builds upon the idea of Time
Interleaved Analog-Digital-Conversion (TI-ADCs) [6, 7], which is a method to parallelize
the sampling task with multiple ADCs with temporal offset. PitchIn extends this idea to
create Distributed TI-ADCs so that the reconstructed signal, which we refer to as the
Amalgam signal, has an overall effect of being sampled at a high sampling frequency. In
reality, however, each node is sampled at a much lower sampling frequency. Hence, each node
is “pitching in" to contribute to the Amalgam signal.

Even with the high overall Amalgam signal sampling frequency thanks to PitchIn’s Dis-
tributed TI-ADC, achieving intelligibility from the reconstructed Amalgam signal is extremely
challenging because fusion of sensor data creates mismatches in amplitude alignments and
causes distortions. Hence, we transform the signals using different signal processing techniques
(e.g., normalization and denoising) to reconstruct a final speech signal that can be interpreted
by humans.

We evaluate the intelligibility of PitchIn via a user study (approved by our Institutional
Review Board (IRB)) by reconstructing two sets of Amalgam signals constructed of varying
number sensors sampled with per node sampling frequency of 500 Hz and 1 KHz.

6.2 Background

In this section, we present relevant background information on how motion sensors function.
We also present the main idea of interleaved ADC, and how it increases the overall sampling
frequency. We then present how speech signals can be reconstructed from motion sensors.

6.2.1 Sensors

Even though the device physics of each sensor modality varies, all sensors operate under
the same principle: they capture physical signals and transform them into electrical signals.
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Specifically, we address how a geophone, an accelerometer, and a gyroscope perform such
transformations.

Geophone. Geophone captures mechanical vibrations that travel through solid media [38].
As illustrated in Figure 6.3, a geophone consists of proof mass, magnet, and coil. As
mechanical waves reach the base of a geophone, small vibrations cause the base magnet
to vibrate. Subsequently, an electrical coil attached to the proof mass experiences changes
in magnetic flux. Such events translate the mechanical signal to voltage induction which
is output as an analog signal. As geophones are tuned to capture longitudinal mechanical
waves, it is no surprise that they capture sound waves as well. Vibrations from sound waves
induce small vibrations of the sensory mechanism, so acoustic waves are registered as small
but detectable signals in the analog output.

PROOF MASS

MAGNET

COIL

Figure 6.3: Illustration of how a geophone translates physical movements into voltage.

Accelerometer. Similarly, accelerometers capture mechanical vibrations through its
sensing axes [48, 49]. As depicted in Figure 6.4, a commercial Micro Electro Mechanical
Systems (MEMS) accelerometer has physical structures that allow movement in a proof
mass to be translated to voltage signals by change in capacitance. As the MEMS sensor
accelerates along the axis of interest, a fictitious inertial force shifts the proof mass to swing
between springs. The change in the distance between the metal plates results in the change
in capacitance, yielding the analog signal change which can be mapped to the acceleration
value using a predetermined conversion factor.Most MEMS accelerometers include three such
mechanisms to realize X, Y, and Z orientations.Since acoustic pressure waves exert a force on
the proof mass, small vibrations occur and yield an analog signal output that would otherwise
be interpreted as acceleration.

Gyroscope. MEMS gyroscopes also have a similar structure to that of MEMS accelerom-
eters [126]. As depicted in Figure 6.5, as a gyroscope is rotated, the proof mass rotates
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Figure 6.4: Illustration of how an accelerometer translates physical movements into voltage.

as a result of the fictitious Coriolis force. This force is analogous to that of inertial force
in translation. As metal plates rotate as a response, the capacitance change is registered
as an analog signal. As acoustic waves come in contact with a MEMS gyroscope, small
vibrations that reach the proof mass also create vibration along the rotating axis, translating
to electrical signals through capacitance.

PROOF MASS

CAPACITANCE

SENSING 

MECHANISM

Figure 6.5: Illustration of how a gyroscope translates physical movements into voltage.
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Gyroscope

Accelerometer/
Gyroscope

Accelerometer/
Gyroscope Geophone Geophone
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Gyroscope

Geophone/
Accelerometer/
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Table 6.1: IoT devices used for different applications and the corresponding sensors embedded in
the devices.
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6.2.2 Sensors Embedded in IoT Devices

Different IoT devices have various sensors depending on their applications. We highlight
example IoT devices that include geophone, accelerometer, or gyroscope. Different devices
sample these sensors at varying frequencies depending on the application. Higher sampling
frequency captures more information resulting in more accurate representation of the signal,
but at a cost of higher computational and energy costs. Table 6.1 depicts some of the IoT
applications and the corresponding sensor modalities.

Controllers for gaming consoles (e.g., Wii Remote, PS4 Dualshock4 Controller, Xbox
Controller) embed accelerometers and gyroscopes to detect user motion for dynamic gaming
experiences [129]. Similarly, smart TV remotes embed sensors for user gesture recognition
and identification [54]. These devices sample sensors on the order of 100 Hz.

Mobile devices such as smartphones, smart watches, and tablets embed a large number
of sensors, including accelerometers and gyroscopes, used for various applications (e.g.,
activity/gesture recognition, gaming, etc). Mobile OSes such as iOS and Android restrict the
sampling frequencies of these sensors to a maximum of 200 Hz.

IoT devices used for monitoring applications also embed geophones, accelerometers,
and gyroscopes. Earthquake detection devices leverage geophones to measure and analyze
vibrations. Indoor footstep monitoring systems of occupants also make use of geophones [106,
107]. Structural health monitoring devices make use of the above three sensors to monitor the
condition of buildings and/or bridges [81, 130]. These devices sample on the order of 1 KHz.

Furthermore, the industry and academia are pushing forward to deploying sensor platforms
that integrate a suite of general-purpose sensors driven by various environmental sensing
applications [86, 92, 137]. These devices enable varying sampling frequencies depending on
the application (on the order of tens of KHz).

6.2.3 Time Interleaved ADC

Time Interleaved Analog-Digital Conversion (TI-ADC) has been explored to acquire high
sampled data on resource-constrained systems. The main idea behind TI-ADC is that while
each ADC is bounded by a relatively low sampling frequency, it is possible to increase the
effective sampling rate by using multiple ADCs in parallel. Specifically, a set of multiple ADCs
are placed at different temporal points to sample at a low frequency [6, 7]. Subsequently,
software recombines the pieces of sampled data. Assuming time synchronization, TI-ADC
allows effective sampling frequency to increase by a factor of the number of ADCs. This is
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Figure 6.6: Illustration of how TI-ADC increases the overall sampling frequency by leveraging
multiple ADCs in parallel with temporal offset.
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Figure 6.7: System overview diagram of PitchIn speech signal reconstruction.

depicted in Figure 6.6. PitchIn builds upon this idea, but rather than using multiple ADCs
on a single physical system, we treat distributed devices in a network as “virtual" ADCs.

6.2.4 Speech Intelligibility

Two of the main factors contribute to achieving speech intelligibility – (1) sampling frequency
and (2) contextual information. Human auditory systems process acoustic signals up to 20
KHz. Due to the Nyquist sampling theorem – which defines minimum required sampling
rate for the signal [119] – audio files on CDs are created using a sampling rate of 44.1 KHz
to avoid distortion [42, 93]. We also note that minimum sampling frequency of 5 KHz is
required for intelligibility of human speech signals [110].

Another factor to consider is the context within speech. Speech recognition by humans is
known to be a complex experience that subconsciously perceives words that make best sense
within the given context. When a distorted signal is presented to human perceptual system, it
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is known to perform much better when the context of the information is also presented [134].
Inspired by the human speech recognition, automatic speech recognition (ASR) tools also use
language models to increase the recognition accuracy [80].

In this thesis, we take into consideration how sampling frequency from each sensor affects
reconstruction of speech signals. Furthermore, we also take into consideration of contextual
information when designing our user study to reflect the reality of speech recognition performed
by humans.

6.3 Adversary Model

We now present the threat model of PitchIn. Specifically, we present the goals and capabilities
of the attacker as well as the assumptions made. The main goal of the attacker is to launch
a successful eavesdropping attack on victim’s spoken verbal communications in his/her
home, office, conference rooms, etc. Specifically, we consider an offline attack made possible
by potential breaches of recorded sensor data from a gateway in a smart home or service
provider’s database, often encountered in many real-world incidents [20, 25, 63].

Furthermore, we note that in practice, each IoT devices samples their non-acoustic sensors
at a low sampling rate (<1 KHz, as presented in Section 6.2.2). Consequently, resulting
signals from individual sensor produce non-intelligible sound. We assume an attacker without
the capability of remotely modifying the sampling frequencies of the sensors in each of the
devices. Hence, the attacker may interleave multiple signals (with low sampling rate per
signal) captured by different devices to achieve a Amalgam signal that has an overall effect of
a single device with a high sampling rate, increasing the intelligibility.

We also assume that the attacker does not have access to a microphone data, which is
usually sampled at a high sampling rate (>5KHz [110]). Otherwise, the attacker will directly
make use of the microphone data instead of the non-acoustic sensor data, eliminating the
need to interleave signals of different devices.

6.4 Design and Implementation

We now discuss the implementation details of reconstructing an intelligible Amalgam signal
by fusing data collected from a network of sensors. We first present an overview of the
Amalgam signal generation, and then discuss the details.
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6.4.1 Design Overview

To construct Amalgam signals from different sensors, PitchIn leverages a distributed form of
Time Interleaved Analog-Digital Conversion (Distributed TI-ADC). This is to generate an
effect of high sampling frequency (FsAmal) signal from a fusion of multiple sensor data that
are sampled at low per-node sampling frequency (Fssensor). However, distributed TI-ADC
requires addressing difficult challenges to produce an intelligible speech signal. Figure 6.7
depicts the flow chart diagram of PitchIn Amalgam generation steps. First, each sensor data
is sampled locally with its low Fssensor. Then each individual signal is leveled to account for
DC offset mismatches that occurred during the ADC phase. Subsequently, individual signals
are normalized to be aligned because different physical sensors lead to gain mismatches. We
then leverage distributed TI-ADC to interleave different signals into one Amalgam signal and
then perform post-processing such as interpolation and denoising.

6.4.2 Implementation

We discuss in detail how PitchIn addresses the following main challenges: leveling DC offset,
gain normalization, accounting for temporal offset mismatches, and post-processing.
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Figure 6.8: A toy example of amplitude normalization and its effects.
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6.4.2.1 Leveling DC Offset

Data sets from different sensors may have distinct DC offset, or average value offset from 0
volts [27], because of the way that analog signals are converted to digital signals. With the
aggregated data from all the nodes, PitchIn reconstructs the Amalgam signal by first leveling
the DC offset. Leveling the DC offset is important to speech intelligibility because the DC
offset contributes to distortion or reduced audio volume.

6.4.2.2 Gain Normalization

Data sets from different sensors also exhibit different amplitude levels due to the differences
in how each sensor captures the vibrations from the sound signal and the differences in the
amplification level before going through the ADC. Amplitude normalization is imperative for
PitchIn to reconstruct intelligible speech signal by fusing different sensor readings. Figure 6.8
depicts a toy example that illustrates this concept. Figure 6.8(a) and 6.8(b) depict two
signals, S1 and S2, respectively, exemplifying noisy sensor readings of a sinusoidal signal
with non-aligned amplitudes. Figure 6.8(c) depicts the resulting interleaved signal, SintS1S2,
when no amplitude normalization is performed. We note that the resulting signal is heavily
distorted.

However, we show the effect of normalization with the remaining subfigures. Figures 6.8(d)
and 6.8(e) depict ZS1 and ZS2 , which are output of Z-Score normalization of S1 and S2,
respectively. Figure 6.8(f) depicts the resulting interleaved signal, SintZS1ZS2 of the normalized
signals, ZS1 and ZS2 . As depicted from this figure, the resulting signal has a high resemblance
to the original sinusoidal signal.

While other types of normalization methods may be applied, we leverage Z-Score because
it computes the statistical quantification of how much each score is distant from the mean in
terms of standard deviations. Within a sensory modality, the signal to noise ratio of audio
signal is expected to be similar between the sensors. This allows usage of Z-scores to project
the signals in a statistically normalized space, where the amplitude of the signals in all the
sensors will be aligned to one another based on signal to noise ratio. The normalized value
of Z-Score ZSi is computed for data Si from the ith sensor that has a known mean µi and
standard deviation σi is computed as ZSi = (Si − µi)/σi.
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6.4.2.3 Accounting for Temporal Offset Mismatches

Different devices start sampling their sensors at different times. We note that to achieve the
best results for the distributed TI-ADC, each device has to sample at a regular interval relative
to each other, resulting in a perfectly interleaved signals. This increases the Amalgam signal
sampling frequency by n times, where n is the number of sensors. As a proof-of-concept, we
demonstrate this with experiments in Section 6.5. However, achieving a perfectly interleaved
data is extremely infrequent in practice. Rather, the temporal offset is close to being modeled
as random. We demonstrate, however, that even with such limitations, PitchIn obtains
reasonable recognition accuracy depicted in Section 6.5.3.2.

6.4.2.4 Post-processing

Interpolation. Once available data points are collected, spline interpolation is used to
estimate the original signal. We interpolate the signal to output a Amalgam signal with
a sampling frequency of 40 KHz. This method uses pieces of polynomials to estimate the
region with no signal. Because spline interpolation has no restriction on how available data
points are spaced, it is appropriate to use especially in the current implementation where
data points may be available at random temporal offsets.

Filtering. We then perform high-pass filtering to the normalized signal to remove the
transient noise. We leverage a fourth-order Butterworth filter [37] with a cutoff frequency
at 300 Hz. Butterworth filter design uniformly preserves the passband frequency, while
attenuating stopband frequencies.

6.5 Evaluation

We now describe the implementation and evaluation details of PitchIn eavesdropping attack.
We first present the experiment setup and the implementation details. We then present and
analyze different evaluation scenarios.

6.5.1 Experiment Setup

Apparatus. We implement PitchIn by interfacing the sensors with Arduino Uno boards [10].
Each Arduino board interfaces with one distinct sensor, namely a geophone, accelerometer, or
gyroscope. For ground truth, we also interface an Arduino with a microphone. The apparatus
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is depicted in Figure 6.9. The SM-24 geophone [38] is designed to detect ground movement
and translates to an output voltage. The ADXL-335 three-axis MEMS accelerometer [49]
measures and creates signals to represent the acceleration experienced by the sensor in the
range of -3 to 3 g. The LPY403AL two-axis gyroscope [126] measures and outputs signals for
the angular velocity of the pitch (X) and yaw (Z) axes in the range of -30 to 30 degrees per
second. Each sensor is amplified in hardware using two operational amplifiers [73] and then
fed into the Arduino’s ADC. We refer to each of the board-sensor combinations as a node

The Arduino Uno board uses an 8-bit ATmega328P microprocessor [26]. It has 32 KB
flash memory, 2 KB SRAM, and 1 KB EEPROM and a clock speed of 16 MHz. It has six
analog interface pins. The single ADC has a resolution of 10 bits and output voltage range of
0 to 5 Volts. In our work, we modify the Arduino setting to range from 0 to 3.3 Volts to
match the maximum output voltage of the sensors.

Geophone	   Accelerometer	  

Gyroscope	   Microphone	  

Speaker	  

Figure 6.9: Experimental apparatus with a geophone, an accelerometer, a gyroscope, and a
microphone.

Names of
People Joseph Catherine Thomas Jefferson Elizabeth Michelle Anthony Emmanuel Hilary Patrick

Cities Atlanta Los Angeles New York San
Francisco

Washington
D.C. Paris London Moscow Tokyo Hong Kong

Companies Apple Microsoft Google Facebook Amazon Comcast Tesla
Motors Starbucks Walmart United

Airlines
Numbers One Two Three Four Five Six Seven Eight Nine Ten

Table 6.2: WG1, WG2, WG3, and WG4 of names of people, cities, companies, and numbers (1 to
10), respectively.
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Data Collection. Each node logs data on a microSD card, leveraging Arduino Ethernet
Shield [8]. We make use of SdFat Analog Bin Logger library [9] to enable low latency SD
card writes so the Arduino can write while sampling at such a high frequency.

We place the apparatus on a desk about a meter away from the person speaking (henceforth
called speaker). The speaker’s average Sound Pressure Level (SPL) is 85 dB, a typical
“presentation-level" volume. We measure the average SPL using SkyPaw’s dBMeter app on
an iPhone 6 [122] positioned close to the speaker. The speaker is a male and a fluent but
non-native English speaker.

User Study Process. The goal of this study is to determine the intelligibility of the
reconstructed Amalgam signals. Participants were given instructions to transcribe recordings
of different words. The participants were given an additional information of the word group
that each recording belongs to. There are four word groups of ten words, WG1 constituting
names of people, WG2 constituting names of cities, WG3 constituting names of companies,
and WG4 constituting numbers from one to ten. The additional information serve to provide
contextual information synonymous to context within speech (e.g., words in a sentence),
reflecting the reality of how humans perform speech recognition [134]. The words are listed
in Table 6.2.

We recruit a total of 230 participants, and presented randomized words so that each
participant does not listen to the same word from different signals. Hence, each data point in
the figures of this section consists of 230 transcriptions. The participants were recruited via
Amazon Mechanical Turk [24]. We performed the user study after receiving approval from
our Institutional Review Board (IRB) and complied to the IRB’s recommendation.

6.5.2 Non-Acoustic Sensors

Before presenting the Amalgam construction, we first evaluate how each of the individual non-
acoustic sensors respond to human speech, and how the intelligibility varies corresponding
to their sampling frequencies, Fs. We compare the results to microphone as a baseline.
Figure 6.10 depicts the recognition accuracy of the non-acoustic geophone, accelerometer, and
gyroscope sensors sampled at Fs = 8 KHz, compared to the baseline case of a microphone
also sampled at the same frequency. This figure clearly depicts the fact that the non-acoustic
sensors respond to speech signals, yielding non-negligible accuracies depicted in the figure.
As expected, the microphone yields a highest accuracy (94%).

To provide a better understanding of these signals and deeper insight into our results, we
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have posted audio and video clips at http://mews.sv.cmu.edu/research/pitchin/. The
video clips show spectrogram reconstructions of the spoken words “apple" and “seven", using
the open source audio editor Audacity. We strongly advise the readers to view the video clips
together with the figures in this section.
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Figure 6.10: Non-acoustic sensors capture speech signal when sampled at a high rate (Fs=8KHz)
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Figure 6.11: Recognition accuracy increases as Fs increases for each sensor.

We further investigate these sensors to test the relationship between the recognition
accuracy (i.e., intelligibility) and the sampling frequency, Fs, depicted in Figure 6.11. As
depicted from this figure, we note the trend of increasing recognition accuracy as Fs increases
from 1, 2, 4, and 8 KHz. We also note that the accuracy is extremely low for all sensors when
Fs=1 KHz, including the microphone (4.7%, 3.5%, 7.0%, and 9.8% for geophone, accelerometer,
gyroscope, and microphone, respectively). Hence, we highlight that intelligibility decreases
significantly as the sampling frequency decreases. Figure 6.12 depicts spectrograms of
corresponding signals that yield the results evaluated in Figure 6.11. Furthermore, we
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(d) Gyroscope

Figure 6.12: Spectrogram of single microphone, geophone, accelerometer, and gyroscope, each
sampled at different Fs (Evaluated in Figure 6.11). We strongly advise the readers to view this
figure in color.

demonstrate statistical significance of the results with paired t-test (along with t-test results
of all following evaluations in this section) in Tables 6.3, 6.4, and 6.5 at the end of this section.

6.5.3 Amalgam Evaluation

We evaluate Amalgam signals constructed of fused sensor data. We first present the results
of a proof-of-concept when sensor fusion is performed by interleaving signals with a regular
temporal offset. We then present the results when we relax this assumption, more closely
resembling the real-world scenarios. We also present an idea of fusing sensor data across
sensor modalities.

6.5.3.1 Ideal Temporal Offset

We test the effects of achieving a higher Amalgam sampling frequency FsAmal as we increase
the number of nodes that “pitch in" to constructing the Amalgam signal. We report two sets
of experiments as following. In the first experiment, we fix the per node sampling frequency,
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Figure 6.13: Amalgam signals constructed with Fs=500 Hz. Recognition accuracy of each Amalgam
signal increases as FsAmal increases from 2, 4, and 8 KHz by varying number of nodes from 4, 8, and
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Figure 6.14: Amalgam signals constructed with Fs=1 KHz. Recognition accuracy of each Amalgam
signal increases as FsAmal increases from 2, 4, and 8 KHz by varying number of nodes from 2, 4, and
8.

Fs=500 Hz, and vary the number of nodes to 4, 8, and 16. Similarly, in the second experiment,
we fix Fs=1 KHz and vary the number of nodes to 2, 4, and 8. Both experiments yield FsAmal
of 2 KHz, 4 KHz, and 8 KHz. Figures 6.13 and 6.14 depict the two experiments, respectively.
We defer the discussion of how we “simulate" different sensor data from a single physical
sensor readings for each of these sensors in Section 6.5.3.3. Figures 6.15 and 6.16 depict
corresponding representative sprectrograms, respectively.

In both experiments, the trend of increasing recognition accuracy with increasing FsAmal is
preserved, similar to the non-Amalgam findings depicted in Figure 6.11. More specifically, the
accuracy (i.e., intelligibility) significantly increases within most sensor modalities, yielding
accuracies as high as 79%, 53%, and 35%, for geophone, accelerometer, and gyroscopes,
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Figure 6.15: Spectrogram of Amalgam signals constructed with per node Fs = 500Hz. FsAmal
increases from 2, 4, and 8 KHz when varying number of nodes from 4, 8, and 16, respectively
(Evaluated in Figure 6.13). We strongly advise the readers to view this figure in color.

respectively. We note that these numbers may significantly empower the attacker, as any
additional information to the attacker is a gain when launching eavesdropping attacks,
potentially posing serious threat to the victims. As an analogy, most people would feel
uncomfortable or even threatened if 79% of their phone conversations are eavesdropped.

6.5.3.2 Practical Temporal Offset

Recall that the aforementioned results assume a regular temporal offset, which inherently
results in the best case scenario for the PitchIn attack. However, in reality, temporal offset
may be randomly distributed among devices. We investigate this aspect by exploring how
varying temporal offset affects recognition accuracy.

To provide an intuition, we provide five different temporal offsets of four nodes sampling
different gyroscopes. Figure 6.17 illustrates pictorial representation of a spectrum of varying
temporal offsets (i.e., sampling patterns) from the worst case to the best case scenario. (a)
depicts the situation when all four nodes are sampling exactly at the same time (hence the
worst case scenario). (b) and (c) depict the situations when two of the nodes are sampling at
the same time. Specifically, (b) depicts an example where there is not too much information
gain from the temporal offset due to samples being clustered. We note that (c) resembles
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Figure 6.16: Spectrogram of Amalgam signals constructed with per node Fs = 1KHz. FsAmal
increases from 2, 4, and 8 KHz when varying number of nodes from 2, 4, and 8, respectively
(Evaluated in Figure 6.14). We strongly advise the readers to view this figure in color.

the situation synonymous to when two nodes are sampling at an evenly distributed interval.
(d) depicts the situation when four nodes are sampling at different times, but are not evenly
distributed. Hence, the samples are more distributed, allowing larger temporal coverage. (e)
depicts the situation when four nodes are sampling at an evenly distributed time (hence the
best case scenario). We denote these as Sample Scenarios (a) through (e).

Figure 6.18 depicts the recognition accuracy of (a) through (e) for four gyroscope sensors
with Fs=1 KHz. We chose gyroscope to demonstrate the lower bound of recognition accuracy
among the sensors (as seen from Figure 6.10). It is interesting to note that the recognition
accuracy increases from (a) to (e), from 7% to 30%), which justifies the spectrum of varying
temporal offsets from worst to best case scenario. Furthermore, we note that (c) yields
roughly twice the accuracy of (a) and half of (e).

While scenarios (b), (c), and (d) are each single instances of temporal offset of these four
sensors in between worst and best case scenarios (i.e., (a) and (e)), this example serves to
demonstrate the trend of increasing recognition accuracy as temporal offset lies in between
the two extremes.

We also present an example to provide an intuition of how “random" temporal offset still
contributes to reasonable recognition accuracy by providing an example. The accuracy of
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Figure 6.17: Varying temporal offsets from worst to best case sample scenarios for four nodes.
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Figure 6.18: Comparison of recognition accuracy of four gyroscopes (Fs=1KHz each) sampled at
different temporal offset.

the estimation depends on many factors including the frequency of the signal to sample, the
number of nodes sampling, and the sampling frequency per node. This idea is illustrated in
Figure 6.20.

Figure 6.20(a) displays a scenario where different sensors sample a sine wave which varies
its frequency from 2 Hz to 10 Hz), with a constant sampling frequency of 25 Hz across the
sensor nodes (Sensor 1, 2, and 3). The starting point of the nodes were not synchronized and
were taken at random.

We demonstrate that even without synchronizing the nodes, the attacker gains enough in-
formation to estimate a sensible signal for certain portion of the original signal. Figure 6.20(b)
depicts this idea, where the solid line shows the estimated signal after interleaving the sampled
data from the sensors. Specifically, the 2 Hz portion of the sine wave can be estimated more
closely than that of the 10 Hz portion, even though the three sensors did not sample with
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Figure 6.20: An example of Distributed TI-ADC and its effects when sensors 1, 2, and 3 are
sampling the original signal with random temporal offset.

an evenly distributed temporal offset. This is intuitive as more points are sampled for the
slower portion of the signal. However, the 10 Hz portion of the signal is not well estimated
as shown from the same figure.

6.5.3.3 Amalgam Signal Simulation

A realistic simulation of sensor node requires acknowledgment of the noise that are unique to
each physical sensors. Using a Gaussian fit, we make an assumption that sensors of the same
sensor modality has similar signal to noise ratio, and therefore, Gaussian noise of similar
variance. In the aforementioned experiments, we sample ambient noise (in a quiet room) from
each sensor to estimate the inherent noise distribution in each sensor modality. The values
that are sampled are interpreted as a result of a Gaussian noise corrupting the audio signal.
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Figure 6.21: Inherent noise in time series of geophone, accelerometer, and gyroscope and the
corresponding histogram and Gaussian fit. The time series data are collected from a quiet room.

We create a generative model to model the noise characteristic of each sensor modality and
then estimate the Gaussian fit of such profile. This profile is then used to create multiple
instances of possible noise given a sensor. As we add this known noise to the signals we
acquired, we simulate realistic sensor data. This process is repeated for all signals used in
the present study. Figure 6.21 depicts this process.

6.5.3.4 Multi-modal Amalgam Construction

The focus of PitchIn is on what the attacker gains when fusing signals from different
homogeneous sensors (e.g., fusing distinct geophone signals). We, however, explore the
possibilities of fusing multi-modal sensor data to hint at the possibility of recovering speech
when only a number of heterogeneous sensor data are available to the attacker. Though more
work is required to make this a practical attack with high accuracy, we hope the preliminary
evaluation we present in this subsection will demonstrate the feasibility of an even more
powerful attack than the aforementioned homogeneous sensor fusion attack.
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We compare two multi-modal Amalgam signals constructed from fusing each of the
following sensors sampling at 1 KHz. Amal1 is composed of an accelerometer and a gyroscope,
yielding FsAmal=2 KHz. Amal2 is composed of a geophone, an accelerometer, and a gyroscope,
yielding FsAmal=3 KHz. Figure 6.19 depicts the recognition accuracy of these signals to its
components, namely geophone, accelerometer, and gyroscope signals each sampled at 1 KHz.
The figure also depicts microphone sampled at 1 KHz for comparison. While the recognition
accuracy is low for both Amalgam signals (12% and 9%, respectively), we still find that there
is an increase in the recognition accuracy compared to their components. Amal1 resulted in
a higher accuracy compared to microphone, while Amal2 was comparable. The results hint
that sensor fusion across multi-modal sensor data helps to increase the intelligibility.

We note that the accuracy of Amal1 was higher than Amal2, even though the latter
included geophone signal. One possible explanation could be that accelerometer and gyroscope
had similar signal to noise ratio (SNR) compared to geophone, and interleaving them with
the current approach actually yielded more noise in the signal.

Comparison
Pair (Fs)

p-value
Geo Acc Gyr Mic

Figure 6.11

1KHz 2KHz .86 <0.001 .41 <.001
2KHz 4KHz <.001 <.001 <.001 <.001
4KHz 8KHz <.001 <.001 <.001 <.001
1KHz 8KHz <.001 <.001 <.001 <.001

Figure 6.13
2KHz 4KHz <.001 <.001 .43 N/A
4KHz 8KHz .24 <.001 .43 N/A
2KHz 8KHz <.001 <.001 .22 N/A

Figure 6.14
2KHz 4KHz <.001 <.001 .05 N/A
4KHz 8KHz <.001 <.001 .28 N/A
2KHz 8KHz <.001 <.001 <.001 N/A

Table 6.3: Paired t-test for Figures 6.11, 6.13, 6.14 data

6.6 Related Work

We now present related work relevant to PitchIn. We first present papers that exploit
a non-acoustic sensors to capture sound signals. We then present related work exploring
methods to leak side-channel information via sensor data.
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Comparison Pair p-value
Pattern (a) Pattern (b) .006
Pattern (c) Pattern (b) .52
Pattern (e) Pattern (b) <.001
Pattern (a) Pattern (d) <.001
Pattern (c) Pattern (d) .003
Pattern (e) Pattern (d) .84

Table 6.4: Paired t-test for Figure 6.18 data

Comparison Pair (Fs) p-value
Geophone 1KHz 3KHz .006
Accelerometer 1KHz 3KHz .012
Gyroscope 1KHz 3KHz .41
Geophone 1KHz 2KHz .005
Accelerometer 1KHz 2KHz <.001
Gyroscope 1KHz 2KHz .06

Table 6.5: Paired t-test for Figure 6.19 data

6.6.1 Sensors Capturing Acoustic Signals

Sensors in Smartphones. Recent research has demonstrated keyword detection using
an accelerometer [142] and a gyroscope [97] in smartphones. Gyrophone demonstrates
that commercial gyroscopes that are implemented in smartphones are capable of capturing
acoustic signal even at low sampling frequency [97]. With proper signal processing and
machine learning algorithms, this is enough to show speaker identification and speech finger
printing. AccelWord demonstrates hot word detection using accelerometer, while achieving
low energy consumption [142]. In addition to demonstrating high accuracy in hot word
detection, this work also demonstrates the feasibility of an accelerometer capturing rich data
more so than conventionally expected.

However, both of these approaches rely on machine learning to train a classifier on
a small, predefined group of keyword fingerprints (on the order of tens of words) and
later test whether the spoken words’ fingerprints match the trained fingerprints, neither
reconstructing intelligible speech signals. While these are promising first steps, each work
mainly focuses on recovering fingerprints of a small predefined word group. Furthermore,
we find that Gyrophone is limited as a practical eavesdropping tool because of the low
recognition accuracies when evaluating speaker-independent experiments, which resembles a

104



more realistic attack scenario than speaker-dependent expeirment, yet only yielding 7% to
17% on different phones. Gyrophone also provides a preliminary evaluation of merging two
gyroscope readings from different smartphones to increase the overall sampling frequency.
While Gyrophone neglects to evaluate the results of speaker-independent experiments of
interleaving two gyroscope signals, we imply that the results must be less than 17% because
accuracies of interleaved signals cannot be higher than that of a single sensor.

In this thesis, we are rather more interested in focusing on reconstructing intelligible
speech signals without restriction of predefined keywords nor any prior training. Instead of
predefined keywords, we can leverage any additional context information relevant to the
deployment scenario to infer a restricted language model that is independent of the Amalgam
signal, which aids in speech intelligibility. Hence, the problem we are tackling is necessarily
more challenging than the previous approaches because there is no prior restriction on possible
fingerprints when the Amalgam signal is constructed, requiring much more information to be
extracted from the Amalgam signal.

Sensors embedded in Non-smartphone Devices. There have been approaches to
capture acoustic signals from non-smartphone environments as well. Son et al. describe how
gyroscopes respond to acoustic signals of certain frequency, enough to malfunction the flight
control of drones [124]. Visual Microphone leverages a camera to capture small vibrations on
object surfaces due to sound waves, which recovers the acoustic signal of the sound source [45].
Once again, while PitchIn has a synonymous initial idea of capturing sound signals from
non-acoustic sensors, we are more interested in fusing disparate non-acoustic sensors that
inherently are sampled at low sampling frequencies.

6.6.2 Side-Channel Attacks

ACComplice presents a side-channel attack on an accelerometer in a smartphone by inferring
a driver’s starting location within a 200 meter radius, along with the traveled route [69].
ACCessory also exploits vulnerabilities of an accelerometer in a smartphone by inferring
tapped keystrokes, and is able to extract six character passwords within a median of 4.5
trials [105]. spiPhone uses accelerometer readings of a smartphone placed close to a computer
keyboard to infer text entered on the keyboard [94]. These work look into exploiting sensor
side-channel vulnerabilities from a single device. PitchIn, however, looks into interesting
potential vulnerabilities when fusing sensor signals from different devices.

105



6.7 Discussion

This section presents practical considerations of PitchIn.

6.7.1 Time Synchronization

PitchIn requires the devices to be tightly synchronized. Otherwise, it is difficult for an
attacker to fuse the aggregated sensor data collected from the network simply because the
timestamps from each sensor data are not correlated. However, we are inspired by previous
work in time interleaving ADCs (of local devices) that make use of a known reference signal
to try to detect and correct timing mismatches or skews among signals sampled by different
ADCs. While it is infeasible for an attacker in PitchIn to have such a reference signal, we
claim that it is feasible for an attacker to perform a manual search (in a bruteforce manner)
to shift and find optimal results. While this may be time consuming, it is certainly feasible
due to the nature of offline attacks.

Furthermore, similar to how synchronization using NTP is common today, we carefully
speculate that a more accurate time synchronization protocols such as Precision Time Protocol
(PTP) may be prevalently used in the near future among the IoT devices, as we already find
many open source libraries that support PTP protocol on even cheap devices like Arduino [3].
PTP is sufficiently accurate to aid the attacker because PitchIn devices require sampling
frequencies far less than 8 KHz per node, which translates to a minimum of 125 microsecond
per sample, well above the sub-microsecond synchronization accuracy range of PTP.

6.7.2 Amplification

As mentioned in Section 6.5.1, the sensor output were amplified in hardware using operational
amplifiers (op-amps) before being interfaced to the Arduino’s ADC. We note, however,
that the hardware amplification reflects reality as many IoT devices are manufactured with
circuitry that leverages hardware amplifiers for sensors [1]. In addition, many IoT devices
use digital MEMS sensors, which already come equipped with op-amps within the MEMS
circuitry [5].

106



6.7.3 Automating the Attack

An attacker may automate PitchIn attack by feeding in the results obtained by PitchIn
to an existing Automatic Speech Recognition (ASR) engine. While we had conducted a
preliminary experimentation with publicly available Speech Recognition Engine [140], the
results were not satisfying, due to the fact that the ASR is trained with microphone data.
From consultations with speech recognition experts, we are hopeful that if an attacker trains
an ASR with non-acoustic sensors with varying sampling rate, it would most likely yield a
relatively high accuracies.

6.8 Chapter Summary

We present PitchIn to demonstrate a feasibility of fusing non-acoustic sensors (e.g., geophone,
accelerometer, gyroscope) to reconstruct intelligible speech signals using various speech
processing techniques. PitchIn minimizes per-node sampling frequency by leveraging a
distributed Time Interleaved Analog-Digital-Converter (TI-ADC) across network of sensor
devices. We conduct user studies to evaluate the intelligibility of the reconstructed signals.
PitchIn achieves speech recognition accuracy ranging from 79% to 35% depending on the
sensor modalities, sampling rate, and number of nodes. We find many potential extensions
to PitchIn, including increasing scalability of PitchIn attack by leveraging automated speech
recognition engines to create a fully automated remote eavesdropping tool.
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Chapter 7

Summary of Contributions and Future
Directions

7.1 Summary of Contributions

This thesis is motivated by the security challenges arising from transformation of computing
paradigm from cyber domain to cyber-physical domain. Specifically, traditional security
approaches are limited to protecting data with regard to identities. For example, authenti-
cation is verification of identity. However, in the physical world, it is equally important to
consider the physical relationships between the interacting parties. Hence, I present analysis
on solutions for IoT devices to bind identities and their physical relationships together
using sensor data (i.e., Signals-of-Opportunity) to measure their relative physical context.
More specifically, I present the solution of allowing IoT devices to prove their unique set of
relative physical context, which is governed by how the devices are constrained in terms of
physical boundary. As exemplary scenarios, I investigated secure pairing of IoT devices in
varying application scenarios with different levels of physical constraints including in-vehicle
environment, smart home, and semi-autonomous vehicles. I summarize the contributions and
key finding of this thesis as following.

In Chapter 3, I demonstrate how devices perform secure pairing when they are provided
with the most constrained physical environment. Specifically, a car’s glove compartment
acts as a tightly managed physical boundary, ensuring that the attackers outside of the
compartment cannot access any messages transmitted inside encoded in light pulses. Through
this chapter, I demonstrate how a driver or passenger can establish a secure connection
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between a car’s infotainment system and his/her smartphone while preserving usability and
low hardware or deployment cost.

In Chapter 4, I demonstrate how devices perform secure pairing when the physical
constraint is relaxed. Specifically, a single detached house acts as a physical boundary
which attenuates much of the signals so that the attacker’s device outside has low fidelity
of information. Through this chapter, I also demonstrate how I can enable context-based
pairing with dissimilar sensor types by utilizing common timing information as sources of
common entropy to be input to a fuzzy commitment protocol.

In Chapter 5, I demonstrate how devices perform secure pairing in a least constrained
environment. Specifically, I study a truck platooning on a road, where there are no clear
physical boundary to restrict attackers as opposed to the previous chapters. However, I
demonstrate that the trucks driving on the same lane would experience similar road charac-
teristics, which unintended vehicles on the adjacent lanes cannot experience, thereby using
the bumps on the road as common source of entropy in the cryptographic key establishment
protocols.

While I demonstrate how sensed data can complement cyber-physical security in the
above chapters, I also demonstrate that sensing may pose security vulnerabilities to IoT
and CPS in Chapter 6. Specifically, I investigate the feasibility of launching a side-channel
(eavesdropping) attack by reconstructing intelligible speech signals, by fusing multiple non-
acoustic IMU-based sensor data available in a smart home environment. Even though each
individual sensing device samples at a low rate, I interleaved the signals across sensors to
yield a reconstructed signal that is intelligible due to high overall sampling rate. Through
this work, I demonstrate the importance of shifting our defense strategies from exploits on
individual devices to coordination of devices. This is because I find that a large portion of
the research community has concentrated on finding and defending against vulnerabilities
of individual sensors or devices, and what the posed risks are for the users. However, I
believe that it is also important to explore new vulnerabilities if an attacker compromises
data collected from multiple devices located within the same environment.

7.2 Future Directions

In the future, I plan to improve the limitations of my current work. I also plan to continue to
identify newer security challenges and investigate solutions in such emerging CPS applications.
In addition, I plan to continue to explore newer side-channel attacks exploiting signals-
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of-opportunity, and extend my work in non-security oriented problems that contribute to
value-added services for cyber-physical systems.

7.2.1 Improving Limitations of Current Work

I plan to extend my thesis by improving the limitations of the current work presented in the
aforementioned chapters. Specifically, I plan to (1) understand the physical phenomena by
characterizing and modeling the Signals-of-Opportunity; and (2) measure and quantify how
much entropy can be extracted from the characterized physical phenomena.

Characterize and Model Physical Phenomena: Investigating and modeling char-
acteristics of various corresponding physical phenomena will be extremely helpful to fully
understanding the limitations of my work and simultaneously understanding the capabilities
of the attacker. For example, in the current version of Chapter 4, we define a notion of an
“attenuation factor” (discussed in Chapter 4.2 and 4.7) due to the wall of a house, which
provides some insulation of signals to propagate to the outside. While we demonstrate
empirically that the attackers do not observe with sufficient fidelity of information, it would
be more desirable to model this attenuation factor for varying types of signals. For example,
understanding and modeling how different structures limits the penetration of different types
of signals induced from different activities inside the house will directly lead to quantifying the
attacker’s capabilities. Specifically, I anticipate to apply similar notion to Wyner’s “Wire-tap
Channel” [139] to the physical sensing scenario, where I can treat the transmitter, receiver,
and noiseless communication channel as the event source, sensor, and the physical medium
within the physical boundary, respectively. Furthermore, I can treat the attacker’s degraded
wire-tapping channel as the physical boundary with certain attenuation factor.

Measure and Quantify Extracted Entropy: Taking the aforementioned characterized
physical phenomena, I also plan to measure and quantify the strength of the randomness of
corresponding Signals-of-Opportunity (i.e., modeling the entropy). While we are currently
utilizing Fuzzy Commitment Schemes [76] to utilize random activities from the environments,
the current work is limited in quantifying how many bits of entropy can be extracted that are
close to being uniformly distributed. I will further investigate the use of randomness extractor
schemes [4, 51, 127] to measure, model, and quantify random activities as sources of entropy.
Furthermore, to enhance the entropy bits, I will also investigate solutions to “inject” entropy
to the physical world. This approach would help the devices to extract shared entropy by
deliberately injecting randomness to the devices within the physical boundary. This may be
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realized by introducing a signal injecting device synonymous to a physical pseudo-random
number generator (e.g., device with vibration motor or speaker) that outputs signals such
as vibration or sound that are encoded random bits. This is analogous to traditional key
establishment schemes that provide “deliberate entropy” [29].

7.2.2 Exploring Security Challenges in Emerging Applications

Newer application domains such as smart buildings, vehicles, and cities inevitably introduce
unforeseen challenges with regard to cross-platform verification and coordination. For example,
I envision applications of autonomous cars exchanging messages for driving safety. Although
authenticating the message and the sender is an important problem, prioritizing the message
with regard to the relative location is equally important. Context verification would be a
potential solution to establish trust across cars on a road in an ad-hoc manner, as well as for
verifying relative locations. In fact, I have engaged in ongoing and past collaborations with
research labs at automotive companies such as Ford and General Motors to tackle such ideas,
some of which have resulted in patent publication [82].

7.2.3 Side-Channel Attacks Exploiting Contextual Information

I plan to continue my investigation of unexplored side-channel threats that may be exploited
from contextual information. This will be a natural extension of my past work on side-
channel attacks to infer a victim’s driving locations and keystrokes based on signals from
an accelerometer in a smartphone [69, 105], as well as the aforementioned eavesdropping of
speech signals from non-acoustic IMU-based sensors [66] in Chapter 6. Investigating new side-
channel attacks is important because it allows me to gain insight into the system, which can
often be used to (1) turn a vulnerability into a functionality (e.g., turning an eavesdropping
attack into speech recognition), as there is a fine line between risk and value-added services.
It can also be used to (2) design defense mechanisms to protect against such vulnerabilities.

7.2.4 Non-Security Oriented Value-Added Services for IoT and CPS

I am also interested in extending my work to solve non-security oriented problems. For
example, GPS in urban areas is known to be error-prone and has limitations in providing
fine-grained navigation services (e.g., lane-level granularity). I am currently investigating the
feasibility of verifying physical context from road characteristics (e.g., cracks, bumps, and
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patches) using a car’s accelerometer readings to augment the noisy GPS readings [67].
Furthermore, I plan to utilize contextual information to investigate solutions to problems

such as time synchronization without requiring specialized hardware. For instance, I have
been exploring the possibility of leveraging commonly perceived sound and vibration as
sources of synchronization.
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