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Abstract
Robotic swarms are multi-robot systems whose global behavior emerges from lo-

cal interactions between individual robots and spatially proximal neighboring robots.
Each robot can be programmed with several local control laws that can be activated
depending on an operator’s choice of global swarm behavior (e.g. flocking, aggre-
gation, formation control, area coverage). In contrast to other multi-robot systems,
robotic swarms are inherently scalable since they are robust to addition and removal
of members with minimal system reconfiguration. This makes them ideal for appli-
cations such as search and rescue, environmental exploration and surveillance.

Practical missions often require a combination of swarm behaviors and may have
dynamically changing mission goals. However, a robotic swarm is a complex dis-
tributed dynamical system, so its state evolution depends on the timing as well as
sequence of the supervisory inputs. Thus, it is difficult to predict the effects of an
input on the state evolution of the swarm. More specifically, after becoming aware
of a change in mission goals, it is unclear at what time a supervisory operator must
convey this information to the swarm or which combination of behaviors to use to
accomplish the new goals.

The main challenges we address in this thesis are characterizing the effects of
input timing on swarm performance and using this theory to inform automated com-
position of swarm behaviors to accomplish updated mission goals.

We begin by formalizing the notion of Neglect Benevolence — the idea that
delaying the application of an input can sometimes be beneficial to overall swarm
performance — and using the developed theory to demonstrate experimentally that
humans can learn to approximate optimal input timing. In an adversarial setting, we
also demonstrate that by altering only the timing of consensus updates for a subset
of the swarm, we can influence the agreement point of the entire swarm.

Given a library of swarm behaviors, automated behavior composition consists
of identifying a behavior schedule that must specify (1) the appropriate sequence of
behaviors and (2) the corresponding duration of execution for each behavior. Ap-
plying our notion of Neglect Benevolence, it is clear these two parts are intricately
interdependent. By first assuming the durations are known, we present an algorithm
to identify the optimal behavior sequence to achieve a desired swarm mission goal
when our library contains general swarm behaviors. By restricting our library to
consensus-based swarm behaviors, we then relax the assumption on known dura-
tions and present an algorithm to simultaneously find the sequence and durations of
swarm behaviors to time-optimally accomplish multiple unordered goals.



vi



Acknowledgments
First and foremost, I would like to thank my advisor, Professor Katia Sycara.

I am very grateful to have had her as my guide on this journey, during which I
had many opportunities to learn and grow. Our discussions have been invaluable in
shaping my research and without her advice and support, this thesis would not have
been possible.

I would like to thank my thesis committee members. I appreciate Professor
Howie Choset’s expertise, enthusiasm and words of encouragement, which inspired
me to pursue this endeavor. I appreciate Professor Maxim Likhachev’s experience,
insight and helpful comments. Throughout my graduate research, Professor Nilan-
jan Chakraborty has always been a mentor to me and our discussions have always
steered my research in fruitful new directions.

I am very thankful to Professor Michael Lewis for discussions and advice during
our lab meetings. The experiments involving human participants were possible as a
result of his guidance. Thank you also to Dr. Changjoo Nam for comments during
lab meetings. Thank you to Tony Dear for very insightful discussions early in my
research.

I have been fortunate to have had many great labmates over the years, who I thank
in the order we met, including Lingzhi Luo, Phillip Walker, Shih-Yi Chien, Robert
Thome, Wenhao Luo, Shehzaman Khatib, Anqi Li, Navyata Sanghvi, Meghan Chan-
darana, Ramitha Sundar, Jaeho Bang, Kyle Morris, Gabriel Arpino, Huao Li, Akshat
Agarwal, Sha Yi, Sumit Kumar, Vigneshram Krishnamoorthy, Yifan Ding, Xinzhi
Wang and Fan Jia. Special thanks to Wenhao Luo for many interesting discussions
over delicious food.

I am thankful to Suzanne Muth for graduate program related support during my
time in the Robotics Institute.

Finally, I am deeply grateful to my parents and my sister for their boundless
support and encouragement, which enabled me to complete this endeavor.



viii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Neglect Benevolence in Human Control of Robotic Swarms 5
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Formalizing the Notion of Neglect Benevolence . . . . . . . . . . . . . . . . . . 8
2.3 Analysis of Neglect Benevolence in Linear Time Invariant Systems . . . . . . . . 10

2.3.1 Neglect Benevolence in LTI Systems with a Normal Dynamics Matrix . . 10
2.4 Application to Robot Swarm Configuration Control . . . . . . . . . . . . . . . . 13
2.5 Simulation Results for Robot Swarm Configuration Control . . . . . . . . . . . . 15
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Human Approximation of Optimal Input Times 21
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Neglect Benevolence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Configuration Control as a Base Human-Swarm Interaction Task . . . . . . . . . 26
3.4 Intelligibility of Swarm Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 A Timing-Only Approach to Adversarial Influence of Swarm Consensus 39
4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.4 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

ix



4.3 Computing Optimal Periods and Delays . . . . . . . . . . . . . . . . . . . . . . 44
4.3.1 Convergence Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 Problem Reformulation and Algorithmic Solution . . . . . . . . . . . . . 47

4.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.1 Multi-Robot Ambush . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.2 Maximally Diverting Opinions in Social Networks . . . . . . . . . . . . 49

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Automated Behavior Sequencing with Known Switch Times 55
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Formalization of the Swarm Behavior Sequencing Problem . . . . . . . . . . . . 57

5.2.1 Mathematical Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 Algorithm for Behavior Sequencing . . . . . . . . . . . . . . . . . . . . . . . . 59
5.4 Simulated Robotic Swarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4.1 Robot Dynamic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4.2 Swarm Meta-Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.3 Swarm Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Application to Swarm Navigation . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.6 Application to Swarm Dynamic Area Coverage . . . . . . . . . . . . . . . . . . 70
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Time-Optimal Scheduling of Consensus-based Behaviors to Achieve Multiple Goals 75
6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.1 Consensus-based Behaviors . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Identifying a Behavior Schedule with No Intermediate Goals . . . . . . . . . . . 81
6.3.1 Behavior Library Contains Only Two Behaviors . . . . . . . . . . . . . . 82
6.3.2 Behavior Library Contains Many Behaviors . . . . . . . . . . . . . . . . 85
6.3.3 Procedure for Computing Behavior Schedule with No Intermediate Goals 86

6.4 Algorithm for Sequencing of Unordered Intermediate Goals . . . . . . . . . . . 88
6.5 Application to Configuration Control of Robotic Swarms . . . . . . . . . . . . . 89

6.5.1 Known Behavior Sequence with Unknown Durations . . . . . . . . . . . 90
6.5.2 Target Configuration with No Desired Intermediate Configurations . . . . 90
6.5.3 Target Configuration with Desired Intermediate Configurations . . . . . . 90

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Conclusion 95
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.2.1 Instantiating a Library of Concrete Behaviors from Meta-Behaviors . . . 96

Bibliography 99

x



List of Figures

2.1 Effect of Different Human Control Input Times on the Final State of the Swarm . 6
2.1a When the human input is applied at t = 0 the swarm splits and only 3

robots reach the goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1b When the human input is delayed all the robots reached the goal . . . . . 6

2.2 Neglect Benevolence During a Configuration Control Task . . . . . . . . . . . . 16
2.2a Initial Positions of the Robots . . . . . . . . . . . . . . . . . . . . . . . 16
2.2b Robot Formation Achieved when No Human Input is Applied . . . . . . 16
2.2c Robot Formation Desired by the Human and Generated when Human

Input is Applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2d Time at which the Desired Formation is Achieved vs. Time at which

Human Input is Applied . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Neglect Benevolence when Moving Robots into a Narrow Passage. The dotted

red line is the deadline within which the human goal must be achieved. . . . . . . 17
2.3a Initial Positions of the Robots . . . . . . . . . . . . . . . . . . . . . . . 17
2.3b Robot Formation Achieved when No Human Input is Applied . . . . . . 17
2.3c Robot Formation Desired by the Human and Generated when Human

Input is Applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3d Time at which the Desired Formation is Achieved vs. Time at which

Human Input is Applied . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 This plot shows the relationship between convergence time (i.e. total time to
goal) and input time for one of the trials in our experiment. The convergence
time if the input is applied immediately at the start of the simulation is shown
as the baseline time. Each trial has a maximum length of 60 seconds. For this
trial, if the input is applied after approximately 33 seconds the swarm would not
converge within the 60 second limit. . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 For each trial in the first (passive) training phase, participants were shown three
simulations. In all simulations, robots started in the same initial positions, but
the input telling them to move to Formation 2 was applied at different times: (1)
too early, (2) at the best time, (3) too late. After the swarm converged to the final
formation (see panel 1 and 2), participants were shown the time taken for the
robots to converge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

xi



3.3 For each trial in the second (active) training phase, participants were asked to
apply the input at whatever time they thought would minimize the total time
required for the robots to converge to Formation 2. At the end of the trial, par-
ticipants were told the optimal input time and whether they should have applied
their input earlier or later. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 For each trial in the test phase, participants were asked to apply the input at
whatever time they thought would minimize the total time required for the robots
to converge to Formation 2. They were not given any feedback. . . . . . . . . . . 35

3.5 This plot shows the average absolute deviation of the participants’ input time
from the optimal input time for each trial in the unaided and aided condition. . . 36

4.1 A team of seven agents has the interaction topology given by the graph shown in
(a). The joint initial state of the team is x (0) = [1, 2, 3, 4, 5, 6, 7]>. The default
update periods are ∀i : Ti = 1 and initial delays are ∀i : τi = 0. The adversary’s
desired goal is xg = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1a Interaction topology for an example team of seven agents. . . . . . . . . 51
4.1b State evolution of multi-agent team with default update periods. The

agents converge to an agreement point 4. . . . . . . . . . . . . . . . . . 51
4.1c State evolution of multi-agent team when τ1 = 5 and T1 = 15. The

agents converge to an agreement point 2.3751. . . . . . . . . . . . . . . 51
4.1d Assume only agent 1 can be influenced. The choice of delay τ1 changes

the agreement point and the minimum achievable distance to the desired
goal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1e Assume only one of the agents can be influenced. The choice of ad-
versarial agent changes the minimum achievable distance to the desired
goal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 A robot team has the interaction topology shown in (a). The initial robot po-
sitions are shown as triangles. The default delays are ∀i : τi = 0 and update
periods are T1 = 2, T2 = 1, T3 = 1, T4 = 3, T5 = 4, T6 = 2. The adversary’s
desired goal is xg = [6, 4]>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2a Interaction topology for a robot team. . . . . . . . . . . . . . . . . . . . 52
4.2b State evolution of multi-robot team with default update periods. The

agents converge to an agreement point [3.501, 5.755]>. . . . . . . . . . . 52
4.2c State evolution of multi-robot team when τ4 = 10 and T4 = 4. The

agents converge to an agreement point [6.0348, 4.0331]>. . . . . . . . . . 52
4.2d State evolution of multi-robot team when τ2 = 0, τ4 = 8, T2 = 2 and

T4 = 9. The agents converge to an agreement point [5.9797, 3.9890]>. . . 52
4.3 A group of social agents has the interaction topology shown in (a). The initial

agent opinions are x (0) = [0.2, 0.4, 0.1, 0.9, 0.4, 0.3, 0.2, 0.1, 0.8]>. The default
delays are ∀i : τi = 0 and update periods are T1 = 2, T2 = 1, T3 = 2, T4 =
1, T5 = 2, T6 = 1, T7 = 2, T8 = 1, T9 = 2. . . . . . . . . . . . . . . . . . . . . . 53
4.3a Interaction topology for some social agents. . . . . . . . . . . . . . . . . 53
4.3b State evolution of agents with default update periods. The agents con-

verge to an agreement point 0.4275. . . . . . . . . . . . . . . . . . . . . 53

xii



4.3c State evolution of agents when τ5 = 0 and T5 = 12. The agents converge
to an agreement point 0.4748. . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Simulated Swarm of 20 Robots Executing a Behavior Sequence to Move to a
Target Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1a Initial Robot Poses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1b Poses After of 1st Behavior (Flock North) in Sequence over 1st Time

Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1c Poses After of 4th Behavior (Flock East) in Sequence over 4th Time Interval 64
5.1d Trajectory of the Swarm . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Simulated Swarm of 20 Robots Executing a Behavior Sequence to Achieve at
Least 25% Area Coverage While Minimizing Robot Motion . . . . . . . . . . . 71
5.2a Initial Robot Poses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2b Poses After 1st Behavior (Flock West) in Sequence over 1st Time Interval 71
5.2c Poses After 2nd Behavior (Flock North) in Sequence over 2nd Time Interval 71
5.2d Trajectory of the Swarm Over Complete Time Horizon . . . . . . . . . . 71

6.1 Given a library containing four behaviors with LTI dynamics defined by a com-
mon stable dynamics matrix A but different equilibrium points, we want to iden-
tify a behavior schedule (behavior sequence and corresponding durations of ap-
plication) that minimizes the total time to achieve all unordered intermediate
goals and the final goal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.1a Behavior 1 Defined by Bias z1 . . . . . . . . . . . . . . . . . . . . . . . 92
6.1b Behavior 2 Defined by Bias z2 . . . . . . . . . . . . . . . . . . . . . . . 92
6.1c Behavior 3 Defined by Bias z3 . . . . . . . . . . . . . . . . . . . . . . . 92
6.1d Behavior 4 Defined by Bias z4 . . . . . . . . . . . . . . . . . . . . . . . 92
6.1e Initial State (red), Final Goal (green) and Intermediate Goals (brown) . . 92
6.1f Feasible Solution Trajectory that Achieves All Intermediate Goals and

Final Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Equilibrium Configurations for Behaviors in Our Library . . . . . . . . . . . . . 93

6.2a Rendezvous (z1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2b Circle (z2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2c Torus (z3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2d S (z4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2e Line X (z5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2f Line Y (z6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2g Spiral (z7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2h V (z8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xiii



xiv



Chapter 1

Introduction

1.1 Motivation

Robotics is a vast field that was traditionally characterized by the use of a single complex robot
applying perception, cognition and action to complete a mission. Growing capabilities of indi-
vidual robots, a better understanding of individual limitations and a healthy surge in envisioned
applications requiring multiple co-operating robots led to interest in multi-robot systems. Multi-
robot teams can complete complex missions that would not be possible with an individual robot
(e.g. patrolling, environmental monitoring) and can complete other missions more effectively
and efficiently than individual robots operating independently (e.g. search and rescue). More
recently, the need for scalability and robustness to individual failure has led to interest in a par-
ticular class of multi-robot system known as a robotic swarm. Robotic swarms are distinguished
from other multi-robot systems by the fact that their global behavior emerges from local inter-
actions between robots and objects within their spatial neighborhood (e.g. nearby robots, envi-
ronmental factors, terrain, obstacles), communication neighborhood (i.e. robots with which they
can communicate) or sensing neighborhood (e.g. robots, objects or events they can perceive).
These emergent global behaviors may be biologically inspired (e.g. flocking, aggregation) or en-
gineered (e.g. formation generation and maintenance). Ideally, individual robots may be added
or removed from the swarm with minimal reconfiguration, which indicates that a robotic swarm
is a multi-robot system with the potential to be scalable and robust to individual failure.

In many realistic scenarios, mission goals change intermittently or arise dynamically, necessi-
tating supervisory interaction with the robotic swarm. Supervisory interaction can take many
forms including both discrete commands (e.g. selecting a rendezvous point, selecting a leader,
selecting a collective behavior) or continuous signals (e.g. applying a time-varying virtual force)
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or some combination of discrete and continuous signals (e.g. selecting a leader and driving it to a
goal location while having the other swarm members follow via a flocking behavior). Sometimes
it is useful to think of a continuous signal applied over a known duration as a discrete command
moving the swarm from a known initial state at the beginning of the duration to a final state at
the end of the duration. In this way, the final state is a function of both the discrete command
and the duration of application. This final approach is the one taken in this thesis. Our discrete
commands are swarm behaviors selected by a supervisory operator and the operator may switch
transiently between behaviors after applying them for a particular duration.

In this thesis, we study swarm behavior composition in interaction between a supervisory opera-
tor and a robotic swarm to improve the overall performance of the system. Behavior composition
consists of (a) identifying the appropriate sequence of swarm behaviors and (b) the times at which
to switch between behaviors in the sequence. It is then natural to ask which swarm behaviors
should the operator select and for what durations should they be applied to optimize a perfor-
mance criterion? We refer to this as the swarm behavior composition problem. The two parts
of this problem are intricately interdependent. We begin by identifying approaches to solve each
part while holding the other fixed (i.e. identify switch times given sequence or identify sequence
given switch times) and then follow with an approach to solve both problems simultaneously, a
process we refer to as behavior scheduling.

1.2 Thesis Statement

Swarm behavior composition, consisting of sequencing and switching transiently between swarm
behaviors at the appropriate times is a novel approach enabling effective supervisory interaction
with robotic swarms for improved joint performance.

1.3 Contributions

This dissertation makes the following contributions.

1. Formally model the swarm behavior composition problem.

2. Characterize the impact of input timing on swarm performance.

3. Given a library of swarm behaviors, develop automated algorithms to optimally find the
sequence of swarm behaviors and the durations for which they should be applied.
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1.4 Outline of Thesis

This thesis approaches the problem of swarm behavior composition in two parts. We first begin
with a thorough investigation of the impact of timing on swarm performance, which we follow
with methods for optimal sequencing and scheduling of swarm behaviors.

In Chapter 2, we introduce the Neglect Benevolence phenomenon, which is the notion that
delaying a supervisory input to the swarm can sometimes improve swarm performance. We
formalize this notion in a control theoretic framework and present a proof that all linear time-
invariant systems exhibit Neglect Benevolence. We then develop a simple algorithm to identify
optimal input times and apply it to find the optimal input time to inform the swarm to switch
between two configurations. The work in this chapter has been published in [57].

In Chapter 3, we use the formal notion of Neglect Benevolence introduced in the previous chap-
ter to develop a base human-swarm interaction task in which we can empirically study human
ability to approximate optimal input times. Characterizing timing of human inputs as redirecting
swarm trajectories through state space, we measure human ability to find the correct input time
to switch between swarm configurations and compare it to the optimal time identified by our
algorithm. We develop a simple visual aid to augment the human interface and measure the hu-
man performance with and without the aid. We conclude that human performance is affected by
multiple factors, but tends to improve with experience and their approximation of optimal input
timing can be significantly improved by the use of a visual aid. The work in this chapter has been
published in [58].

In Chapter 4, we show that an adversary can apply timing independently of any particular in-
put to influence a swarm performing consensus. By considering a slightly different model of a
swarm, where individual agents periodically apply the consensus update rule with different fre-
quencies and delays, we show that by changing only the periods and delays of a subset of swarm
members, we can influence the final agreement point of the entire swarm. Some of the work in
this chapter has been published in [61].

In Chapter 5, given a library of swarm behaviors, we develop a method to find the appropriate
sequence of swarm behaviors for a particular task for which none of the behaviors in the library
may have been individually designed. Given a library of concrete swarm behaviors, a set of de-
sired goal states defining the task objective, a performance criterion to evaluate solution quality
and known switch times, we develop an informed search algorithm that finds the appropriate be-
havior sequence to complete the task with minimum cost. The algorithm is proven to be optimal
and complete. We demonstrate the utility of the algorithm in two different applications: swarm
navigation and swarm dynamic area coverage. The work in this chapter has been published
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in [59].

In Chapter 6, we relax the assumption that switch times must be known and develop a method
to schedule (i.e. simultaneously find the sequence and duration of application) swarm behaviors
to achieve an unordered set of intermediate goals in minimum time. Our algorithm is proven to
be locally optimal in the durations and the sequence in which the goals are achieved has bounded
suboptimality. We revisit the problem of swarm configuration control and apply our algorithm to
find the optimal schedule. The work in this chapter has been published in [60].

Finally, in Chapter 7, we present a summary of our contributions and present some directions
for future work.
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Chapter 2

Neglect Benevolence in Human Control of
Robotic Swarms

Robotic swarms use control laws based on local information about the environment and/or other
members of the swarm within their spatial neighborhood to achieve various collective behav-
iors. The key advantage of swarms is that the behaviors generated are robust to individual robot
failures. Practical missions or tasks for robotic systems may require a combination of different
swarm behaviors in dynamic environments or situations. However, swarms are not yet capa-
ble of performing such complex dynamic missions autonomously. Human experiments with a
simulated swarm system performing a variety of tasks including environment exploration [45]
and radiation source detection [7] have been performed. In a previous experimental study in a
foraging scenario [79], we found that the performance of the system was affected by the time
between two commands that the human was applying to the robots. In particular, we found that
one group of subjects who performed well waited for some time after they issued a command
before issuing another corrective command (when they wanted to change the direction in which
the swarm was heading). We termed the phenomenon Neglect Benevolence, since neglecting the
swarm (or not “correcting” the swarm) for some amount of time leads to better performance of
the system. The goal of this chapter is to formalize the notion of Neglect Benevolence.

Our human experiment findings indicated that when the swarm was in a transient state (i.e. mov-
ing towards one goal), application of another input (that changes the goal) could have different
effects depending on the timing of the inputs. To verify this in a more controlled setting we set
up a simulation of a small swarm system (12 robots) performing rendezvous. The robots move
under simple control laws given in [36] with a repulsive potential to avoid inter-robot collision
and an attractive potential field to maintain swarm cohesion. The operator inputs change the
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(a) When the human input is applied at t = 0 the
swarm splits and only 3 robots reach the goal

(b) When the human input is delayed all the robots
reached the goal

Figure 2.1: Effect of Different Human Control Input Times on the Final State of the Swarm

point at which the agents rendezvous. Figure 2.1 shows an example of the difference in the end
result when the input is applied at two different times. In Figure 2.1a when the input is applied
immediately after the operator wants to change the goal point of the rendezvous, the robot swarm
splits and some of the robots, shown in the figure via the pink circles, wander off never reaching
the operator goal, and only a small number (3) of robots, shown in the green circle, reaches the
goal. However, when there is a delay in applying the input, shown in Figure 2.1b, the swarm
stays as a single entity and converges around the operator goal. This example further reinforces
the experimental findings that for a human to influence the operations of a robotic swarm the tim-
ing of the human input can greatly affect the performance of the robotic system. We performed
additional simulations with large numbers of robots under different control laws and initial con-
figurations and found similar results in that the timing of the operator input affected the system
performance.

Since the behavior of a swarm system is emergent via the robots’ autonomous interactions, it
is difficult for humans to have an intuitive understanding of the evolution of the swarm states.
Consequently, it is difficult for humans to have a reasonable guess of the appropriate delay after
which to apply the input. Therefore, formal characterization of the notion of Neglect Benevo-
lence and methods to calculate the best time the operator must give an input are needed. These
results are of practical significance since they can enable the design of computational aids for the
human to ensure that the human input is given to the swarm at the appropriate time.

Note that for the results shown in Figure 2.1, the underlying dynamics of the swarm system is
nonlinear and the results show that the inappropriate timing of the human input can make the
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system unstable. However, the system does not need to be nonlinear for Neglect Benevolence
to be present. Even if (a) the system dynamics is linear and (b) the swarm is always guaranteed
to be stable, which is the case with well-designed linear systems, Neglect Benevolence can still
exist (as we will show later in the chapter).

Different performance measures for the swarm system can be used for defining Neglect Benev-
olence. Examples include the time taken by the swarm to reach the human goal and the energy
used by the swarm to reach the goal. We will study Neglect Benevolence for a particular class
of linear systems, namely linear systems with normal dynamics matrix, where the performance
measure is defined as the time taken by the swarm to reach the human specified goal. The
dynamics matrix of a swarm that performs consensus-based behaviors falls within this class.
Consensus-based behaviors include rendezvous and configuration control. The human input can
control the inter-robot spacing and thereby control the final shape into which the robots converge.
We will illustrate our concepts with this example (see Section 2.4). We make the following con-
tributions in this chapter: (a) formally define the new notion of Neglect Benevolence, (b) prove
the existence of Neglect Benevolence for a set of linear dynamical systems, (c) provide an an-
alytic characterization and an algorithm for calculating the optimal input time, (d) apply the
analysis to human control of swarm configuration to illustrate the approach.

This chapter is organized as follows. In Section 2.1, we present a discussion of the related
work. In Section 2.2, we formalize the notion of Neglect Benevolence and prove the existence
of Neglect Benevolence for a class of linear systems. In Section 2.3, we present a procedure
to compute the delay time efficiently for linear systems with a normal dynamics matrix. In
Section 2.4, we show an application of the analysis for configuration control of swarms. Finally,
in Section 2.5, we present our simulation results.

2.1 Related Work

Robotic swarms, where local interactions between robots produce a variety of emergent col-
lective behaviors have been extensively studied. Swarms can achieve behaviors such as flock-
ing [14, 24, 69, 74], rendezvous [16], deployment [20], and foraging [7, 30]. Formation control
of robotic swarms has been proposed to adjust the spatial configuration of multi-robotic systems
so that they satisfy the requirements of deployment tasks or they can adapt to different environ-
ments while performing tasks [5, 8, 31, 77].

However, schemes that include human operator in the loop together with robotic swarms are
required for some complicated tasks (e.g. complex surveillance and reconnaissance). For using
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swarm robotic systems in human-supervised missions, human swarm interaction (HSI) has been
studied in the extant literature [22, 27, 34, 37, 42, 45]. The concept of Neglect Tolerance has
been introduced to capture the idea that a human operator can neglect robots that work inde-
pendently of one another in a multi-robot system for a certain time before system performance
degrades [25, 65, 66, 75]. One key issue in neglect tolerance is how to schedule the attention
of the human operator among the multiple and independent robots so that the neglect time be-
tween servicing robots is minimized [19, 52, 54, 85]. In Neglect Tolerance, it is assumed that the
robot system’s performance will degrade over time and the system will need human interaction
to restore performance to a desirable level. In contrast, the concept of Neglect Benevolence is
proposed in human swarm interaction to capture the idea that it may be beneficial for the human
operators to wait for a certain length of time before applying input to the system while the swarm
evolves to a stable state [79]. The concept of Neglect Benevolence has not been quantitatively
characterized to date. Based on the observation of Neglect Benevolence in human control of
robotic swarms, we propose a formal way to characterize Neglect Benevolence under different
performance criteria by considering the swarm system dynamics.

2.2 Formalizing the Notion of Neglect Benevolence

Consider a system that consists of a swarm of robots guided by a human operator. The robot
swarm can be modeled as an autonomous distributed dynamical system that is capable of incor-
porating an input from an intelligent external controller (i.e. human operator). Each individual
component of the distributed dynamical system has a state x(i) that evolves as a function of time
t. For a system with m components, the joint state x of the entire dynamical system (i.e. swarm)
is given by concatenating the states of the individual components (i.e. robots). The set of all
states of the system is known as the state space X . The state x ∈ X of the entire system evolves
over time according to the system dynamics f , which relate the change in the state over time ẋ

to the current state x and autonomous input ua ∈ Ua, where Ua is a bounded set. Each robot
in the system contains an automatic controller g(i) that computes the autonomous input u

(i)
a to

the robot’s actuators based on an estimate x̂ of the (partial) state of the system and the human
input uh. The human has a desired — possibly time-varying — set of goals that he/she would
like to achieve with the robot swarm and a fixed set of inputs Uh that they can apply to influence
the swarm. The goals may arise dynamically due to unexpected events in the environment or
mission changes and are not known in advance. The goals can be expressed as a set of goal
states Xg ⊂ X . The human combines this knowledge of desired goal states Xg with their pos-
sibly noisy, incorrect or incomplete knowledge x̃ of the swarm’s current state via a process h to
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generate an input uh ∈ Uh to the robot swarm. The relationships between all of these variables
are summarized in the equations below.

x (t) =
[
x(1) (t)T x(2) (t)T · · · x(m) (t)T

]T
(2.1)

ua (t) =
[
u

(1)
a (t)T u

(2)
a (t)T · · · u

(m)
a (t)T

]T
(2.2)

ẋ (t) = f (x (t) ,ua (t)) (2.3)

u(i)
a (t) = g(i) (x̂ (t) ,uh (t)) (2.4)

uh (t) = h (x̃ (t) ,Xg) (2.5)

For our purposes, we assume that the human can come up with the input uh without modeling
the function h. Furthermore, we will assume that each robot in the swarm has perfect access to
its own and its neighbors’ state (i.e. x̂ = x). The set of stable equilibrium points Xn ⊂ X of
the system is called the natural goal set. When there is no human influence (i.e. uh = 0), any
control input un ∈ Ua that drives the system to the natural goal set is called a natural input.

A path through the state space is a sequence of states. The path taken by a system from any initial
state xs towards a natural goal, when uh = 0, is called the natural path.

As the system proceeds towards its natural goal xn, the human may wish to apply an input uh to
influence the swarm towards the desired set of goal states Xg. The input may be instantaneous
or persistent, but for illustration, assume that there is only one opportunity to apply or activate
it. Given a performance criterion that the human wishes to maximize, if applying the input at
some time T > 0 results in better performance than applying the input at any time t < T , then
all states of the system during time t < T are said to be Neglect Benevolent. Given a system,
a performance criterion, an input uh ∈ Uh and a set of desired goal states Xg, there may exist a
set of Neglect Benevolent states Xnb ⊂ X where delaying the application of the input will result
in improved system performance. Specifically, when the system begins in state xnb ∈ Xnb and
follows a natural path through the state space, there is some future state at which applying the
input results in better performance than applying the input at state xnb. Systems where Xnb 6= ∅
are said to exhibit the property of Neglect Benevolence. The performance criterion to be used
is task-specific and depends on the mission goals. Examples of performance criteria include the
time taken to reach the human goal and the total energy required to reach the human goal. For
the rest of the chapter, we will use the time required by the system to reach the human goal as
the performance criterion.
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2.3 Analysis of Neglect Benevolence in Linear Time Invariant
Systems

In this section, we quantitatively analyze the concept of Neglect Benevolence in human control of
robot swarm systems. In Section 2.4, we use the analysis to determine Neglect Benevolence and
best time to apply human input for swarm configuration control. We focus on linear time invariant
(LTI) robot swarm systems with a normal dynamics matrix. In Section 2.3.1, we first consider
a swarm system without external human input, and numerically solve the system convergence
time based on the eigenvalue decomposition. Then we discuss the situation when the human
operator wants to give a new command to the dynamic swarm system, and present an algorithmic
way of finding the optimal time to impose the human operator’s new input so that the time to
reach the new goal is minimized. In Section 2.4, we analyze an application of human control
in robot swarm configuration control. We first design a control law for a robot swarm system
so that it can form desired spatial configurations. The swarm system under the designed control
law has a symmetric dynamics matrix, and we apply the above analysis results to optimize the
configuration control of the system.

2.3.1 Neglect Benevolence in LTI Systems with a Normal Dynamics Matrix

Consider a linear time-invariant (LTI) robot swarm system with a normal dynamics matrix and
without external human inputs.

ẋ (t) = Ax (t) (2.6)

x (0) = x0 (2.7)

where A is the dynamics matrix, x (t) represents the system state vector at time t and x0 is
the initial state. We assume that A is normal (i.e. ATA = AAT ) and all its eigenvalues have
negative real parts (so that the system is stable). Below we first numerically solve the system
convergence time based on the eigenvalues of A + AT .

Solving the dynamic equation, we get

x (t) = eAtx0 (2.8)

Since A is normal, ATA = AAT , so

‖x (t) ‖2
2 = xT0 QeΛtQTx0 (2.9)
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where AT + A = QΛQT is the eigenvalue decomposition of the symmetric matrix
(
AT + A

)
and Λ is a diagonal matrix with elements λi, where λi ∈ R are the eigenvalues of

(
AT + A

)
.

Define y = QTx0, we have

‖x (t) ‖2
2 = yT eΛty =

∑
y2
i e
λit (2.10)

From the above, the 2-norm of the state evolution function is a sum of decaying exponentials
with positive coefficients. We can find an upper bound on the convergence time tnatural for the
system without external input using the maximum eigenvalues. Define α = max

i
λi and ε as the

tolerance for convergence.

‖x (tnatural) ‖2
2 =

∑
y2
i e
λitnatural ≤ yTyeαtnatural < ε2 (2.11)

tnatural ≤
1

α
ln

ε2

yTy
=

1

α
ln

ε2

xT0 x0

(2.12)

Define f (t) = ‖eAtx0‖2
2 and F (t) = f (t) − ε. Since f (t) is monotonically decreasing and

converges to 0, F (t) only has one root, which represents the convergence time of the system.
A numerical solution for the convergence time tnatural can be found using the following iterative

Newton’s Method where F ′(t) =
n∑
i=1

y2
i λie

λit.

tk+1 = tk −
F (t)

F ′(t)
(2.13)

Now consider the situation when the human operator wants to give a new input to the dynamic
swarm system.

ẋ (t) = A (x (t)−Kθ (t− tinput)) (2.14)

where K represents the human input, so that the system now converges to state K rather than the
origin. Here θ (t) is the Heaviside step function such that θ (t) = 0 for t < 0 and θ (t) = 1 for
t ≥ 0. tinput is the time when the new inputK is imposed on the system. Solving Equation (2.14),
we have

x (t) = eAt
(
x0 − e−AtinputKθ (t− tinput)

)
+Kθ (t− tinput) (2.15)

For a stable system, eAt is a decaying matrix exponential, so the system will converge to the
input K at some time tgoal after tinput.

x (tgoal) = eAtgoal
(
x0 − e−AtinputK

)
+K (2.16)
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Define xd = x0 − e−AtinputK,

x (tgoal) = eAtgoalxd +K (2.17)∥∥eAtgoalxd
∥∥

2
< ε (2.18)

So we can solve tgoal in the same way as we solve for tnatural. The only difference is that the initial
condition changes from x0 to xd.

The convergence time tgoal depends on tinput (implicitly included in the expression of xd). We can
use the following naive algorithm to sample all possible tinput ≤ tnatural and find the best input
time t∗input so that tgoal is minimized:

1. Solve the dynamics equations (i.e. find x (t)).

2. Find the convergence time to the natural goal without external input.

tnatural = min
{
tf | ∀t > tf :

∥∥eAtx0

∥∥
2
< ε
}

3. For each possible input time tinput 6 tnatural, compute the convergence time to the new input
goal.

tgoal = min
{
tf | ∀t ≥ tf : ‖eAt(x0 − e−AtinputK)‖2 < ε

}
4. The input time, t∗input, that results in the minimum convergence time to the new input goal,
tgoal, is the optimal input time.

Whenever t∗input > 0, it means that the new input should be delayed for t∗input before being im-
posed on the system, so that the convergence performance of the system is optimized. Generally
speaking, whether t∗input = 0 or t∗input > 0 would depend on the dynamics matrix A, the nat-
ural goal, the newly input goal K, as well as the initial state x0. However, for any dynamics
matrix A (normal and exponentially stable), we can construct a condition (including the new
goal K, initial state x0), such that under such a condition, x0 is always Neglect Benevolent, and
thus t∗input > 0 (See Theorem 1). The above analysis provides a quantitative way to characterize
Neglect Benevolence.

Theorem 1. Consider an exponentially stable linear system where the human input is incorpo-
rated using Equation 2.14.

ẋ (t) = A (x (t)−Kθ (t− tinput))

In such a system, for any initial state x0, if the state K lies along the natural path from x0 to the
origin, then the state x0 must be Neglect Benevolent.
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Proof. Let the system take time t1 to go from initial state x0 to the state K along the natural
path under the dynamics ẋ (t) = Ax (t). Without loss of generality, we can assume that there is
a state x1 along the natural path such that the time taken to goal from state K to state x1 is t1.
Define x2 = K − x1. Suppose that it takes time t2 from x0 to K under the new input dynamics
ẋ (t) = A (x (t)−K).

eAt1x0 = K (2.19)

‖eAt2 (x0 −K) ‖2 < ε (2.20)

Substituting Equation 2.19 to Equation 2.20, we have

‖eA(t2−t1)
(
I − eAt1

)
K‖2 < ε (2.21)

‖eA(t2−t1)x2‖2 < ε (2.22)

Thus, the time taken to go from state x2 to the origin along the natural path is t2− t1, which must
be positive. So t2 > t1, which means that it takes longer when tinput = 0 than tinput = t1 for the
system to reach the state K from initial state x0. So x0 must be Neglect Benevolent.

In Theorem 1, we showed that for any input K, we can find at least one initial state x0 that must
be Neglect Benevolent. Conversely, it can be shown via similar arguments that given any initial
state x0, we can find at least one input K under which that state x0 is Neglect Benevolent. Thus,
for any exponentially stable linear system, when the set of human inputs Uh is non-empty, the
set of of Neglect Benevolent states Xnb is non-empty. Therefore, any exponentially stable linear
system exhibits Neglect Benevolence.

2.4 Application to Robot Swarm Configuration Control

In this section, we use the above quantitative approach to analyze Neglect Benevolence in human
control of robot swarm configurations. We first design a control law for a robot swarm system
that enables it to form various spatial configurations. The swarm system under the designed
control law has a symmetric (normal) dynamics matrix. Consequently, we can apply the analysis
results presented in the previous section to optimize the configuration control of the system.

Consider a swarm of robots where each robot has a bidirectional communication link with some
subset of the other robots in the swarm. Assume that the communication topology of robots can
be modeled by an undirected connected graph G = (V , E), where each vertex is a robot and
each edge is a bidirectional communication link. The adjacency matrix for the graph is given by
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Aadjacency = [aij], where aii = 0 and aij ≥ 0 is the weight of the edge between vertex i and vertex
j in the graph. If such an edge does not exist in the graph, aij = 0. Note that in an undirected
graph, the adjacency matrix is symmetric. The Laplacian matrix is given by L = [lij], where
lii =

∑
j aij and lij = −aij . Note that when the graph is connected, L is a singular matrix with

one eigenvalue equal to 0 and the vector of all components 1 as the corresponding eigenvector.

1>L = L1 = 0

As presented in [68], the state update equation for the swarm is

ẋ (t) = −Lx (t) (2.23)

where the vector x (t) represents the state of the system at time t, and is a concatenation of all
the state values xi (t) of each robot i in the system. The system would converge to a state xfinal,
where

xfinal =

∑
i xi (0)

n
1 (2.24)

Each robot has the same state value, which is the average of all robots’ initial states. If the state
of each robot is multi-dimensional (e.g. x-positions, y-positions) then Equation 2.23 holds for
each dimension. This means that if the state represents the spatial location of robots, then all
robots would rendezvous under the state update (or control) law.

Below we design another control law for a connected robot swarm system, so that all robots
would rendezvous but in a desired spatial formation around the centroid of their initial location,
specified beforehand by a vector parameter K.

Lemma 1. Under the following control law:

ẋ (t) = −L (x (t)−K) (2.25)

the robot swarm state would converge to xfinal, with individual robot’s state difference specified
by K (i.e. the robot swarm would rendezvous to a desired spatial formation specified by K),
around the initial centroid.

Proof. First, we show that the sum of all robots’ state values is always a constant.
n∑
i=1

ẋi(t) = 1>ẋ (t) = −1>L (x (t)−K) = 0 (2.26)

n∑
i=1

xfinal,i =
n∑
i=1

xi (0) (2.27)
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where xfinal,i represents the final state of robot i.

Next we show that when the state of all robots converges, the difference among their state values
is specified by K.

ẋfinal = 0⇒ L (xfinal −K) = 0 (2.28)

Since we assume that G is connected, the eigenvector of L corresponding to eigenvalue 0 is a1,
where a ∈ R.

xfinal = K + a1 (2.29)

Combining Equation (2.27) and (2.29), we have that

xfinal,i =

∑
i xi (0)

n
+

(
Ki −

∑
iKi

n

)
(2.30)

So the centroid of the convergence state is the same as the initial centroid, but robots have a
spatial formation, specified by K.

Now if we consider the situation when the human operator intends to give a new input K2 after
the initial K1, depending on the input time tinput of K2, the control law is

ẋ (t) = −L (x (t)−K1 + (K1 −K2) θ (t− tinput)) (2.31)

We want to impose the new input K2 at an optimal time t∗input so that the transient time to the
formation specified by K2 is minimized. Since the dynamics matrix −L is symmetric, it must
be normal. So the system can be viewed as a special case of systems discussed in Section 2.3.1.
So we can apply the results in Section 2.3.1 to analyze Neglect Benevolence for robot swarm
configuration control.

2.5 Simulation Results for Robot Swarm Configuration Con-
trol

The method of generating various robot configurations presented in the previous section can be
used to generate rigid formations for the robots as shown in Figure 2.2. If the state vector x

represents the concatenated x-positions and y-positions of the robots, the vector K specifies a
spatial distribution for the robots. As the robots are moving into a natural goal formation under
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(a) Initial Positions of the Robots (b) Robot Formation Achieved when No Human
Input is Applied

(c) Robot Formation Desired by the Human and
Generated when Human Input is Applied

(d) Time at which the Desired Formation is
Achieved vs. Time at which Human Input is

Applied

Figure 2.2: Neglect Benevolence During a Configuration Control Task
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(a) Initial Positions of the Robots (b) Robot Formation Achieved when No Human
Input is Applied

(c) Robot Formation Desired by the Human and
Generated when Human Input is Applied

(d) Time at which the Desired Formation is
Achieved vs. Time at which Human Input is

Applied

Figure 2.3: Neglect Benevolence when Moving Robots into a Narrow Passage. The dotted red
line is the deadline within which the human goal must be achieved.
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the influence of the system dynamics, the human may become aware of a new goal to be achieved
with the swarm prior to a fixed deadline. The human would then want to provide an input to
influence the swarm into a different formation required to achieve the new goal prior to the
deadline. In this case, the performance criterion comes in two parts: (1) the swarm must achieve
the desired formation before the deadline and (2) minimizing the total time required to achieve
the goal formation is desirable. To meet the deadline and minimize the time required to achieve
the goal, the human may naively try to provide input as soon as possible (i.e. immediately after
becoming aware of the new goal). However, the theory of Neglect Benevolence developed in
previous sections indicates that there may exist certain states of the system in which applying the
input immediately causes the system to have worse performance than delaying the application of
input. Specifically, delaying the application of input may increase system performance.

Several simulations demonstrated that this system for generating robot configurations did in-
deed exhibit Neglect Benevolence. Simulated swarms consisted of between 3 and 25 holonomic
robots that could communicate bidirectionally with a fixed subset of other swarm members (i.e.
communication graph not assumed to be complete). Each simulated robot could measure only
its own position on the map.

Results from one such simulation are shown in Figure 2.2. In Figure 2.2a, the robots are shown
initially dispersed across the map. If no human input is provided to the swarm, the system
dynamics naturally drive the robots into the circular formation shown in Figure 2.2b. However,
when the swarm is in the initial state shown in Figure 2.2a, the human becomes aware of a new
goal that requires the swarm to be in the torus formation shown in Figure 2.2c. The human
also becomes aware that the swarm must achieve this formation within 37 seconds and that it
is preferable to achieve the formation as early as possible. As shown in Figure 2.2d, if the
human naively tells the swarm to form a torus immediately at t = 0, the swarm does not achieve
the formation within the minimum amount of time. In fact, the swarm does not achieve the
torus formation prior to the deadline at all, much less in the minimum amount of time! The
human must wait approximately 4 seconds before influencing the swarm in order for the swarm
to create a torus formation before the deadline. If the human delays the application of input
by approximately 10 seconds, then the swarm achieves the torus formation within the minimum
amount of time.

Figure 2.3 presents simulation results from another scenario that also requires the swarm to
achieve different formations and exhibits Neglect Benevolence. In this simulation, the swarm
begins in a room in the initial configuration shown in Figure 2.3a. It is assumed that prior to the
start of the simulation the human operator’s primary goal was to maximize exploration of the
room and the human chose to do so by informing the swarm to form a grid. If no further human
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influence is provided, the swarm will naturally move into the grid formation shown in Figure
2.3b. However, immediately after the human operator has applied the input for forming the grid
configuration, they are given a new goal that requires moving the swarm into the narrow passage.
To achieve this goal, the human informs the swarm to move toward the passage. This input
appears as a constant bias term in the system dynamics equation and causes the swarm centroid
to move towards the passage. To avoid colling with the walls of the room before reaching the
passage, the human must also inform the swarm to create the line formation shown in Figure 2.3c.
The first robots in the swarm will reach the passage (or collide into the walls) at 24 seconds, but
this implicit deadline is not necessarily known to the human. In the previous section, it was
shown that the system dynamics will always ensure the formation is centered on the (in this
case, moving) centroid of the swarm. As shown in Figure 2.3d, if the human applies the input
immediately, the swarm will not achieve the formation before reaching the narrow passage. There
is a narrow window of opportunity between approximately 1 and 5 seconds when applying the
input enables the swarm to achieve the new formation prior to reaching the passage. In addition,
there is an optimal input time at 3 seconds, when applying the input will enable the swarm to
move into the line formation by 18 seconds, well before the 24 second implicit deadline.

2.6 Conclusion

Robotic swarms that autonomously coordinate via simple local control laws are becoming in-
creasingly interesting for applications such as reconnaissance, surveillance and disaster response.
These applications are characterized by uncertainty and potential changes of the environment and
mission goals. This results in the human redirecting the swarm by changing its goals and behav-
iors. In prior experimental work in Human Swarm Interaction [79], we observed that system
performance often depended on the timing of the operator input to the swarm. In particular, in
many instances, system performance improved if the operator, instead of giving input to the sys-
tem immediately as soon as mission goals changed, delayed giving the new input to the system.
We labeled this notion of beneficial delay as Neglect Benevolence. In this chapter, we formal-
ized Neglect Benevolence and presented ways to quantify this notion as well as procedures to
compute the optimal time for the operator to give input. We also proved the existence of Ne-
glect Benevolence for a class of linear systems. Experimental simulation results showed that in
many situations where the system must reach a specified human goal within some deadline, if
the human does not consider the effects of Neglect Benevolence in timing her input, the system
may never achieve the goal. This chapter is the first to formally introduce the notion of Neglect
Benevolence and present initial results. There remain many additional challenges and areas of
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research that we will consider in future work. Some of the issues we plan to address are: (a) ob-
tain further formal results for a sequence of goals and new human inputs, (b) prove the existence
of Neglect Benevolence for different measures of system performance (e.g. energy minimiza-
tion), (c) provide characterization of Neglect Benevolence and optimal timing of human input for
non-linear systems, (d) investigate system sensitivity to the phenomenon of Neglect Benevolence
with regard to noise in sensor measurements or state estimates.
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Chapter 3

Human Approximation of Optimal Input
Times

A robotic swarm is a multi-robot system where individual swarm members use control laws based
on local spatial information about the environment and/or other members of the swarm within
their spatial neighborhood to achieve various emergent collective behaviors, such as foraging or
rendezvous. The key advantage of swarms is that the behaviors generated are robust to individual
robot failures. Applications of swarm robotics are envisioned in environmental exploration, large
scale emergency response and search and rescue and environmental cleanup (e.g. cleaning oil
spills). Such missions may require use of a sequence of different swarm behaviors that may need
to be imparted to the swarm by a human operator.

Since the state of a swarm not yet at equilibrium is continuously evolving, the supervisor’s task is
to supply inputs that divert the swarm from its current trajectory to a new desired trajectory. This
Trajectory1-Input-Trajectory2 sequence therefore defines the basic task that must be addressed in
the study of human-swarm interaction (HSI).

There are two related but distinct capabilities needed to supervise a robotic swarm. The first is
comprehension of the swarm’s state and the second is prediction of the effects of human inputs
on the swarm’s behavior. Comprehension of the swarm’s state requires a human to perceptually
extract relations and regularities in behavior from observable data such as robots’ positions and
velocities. This can be a challenging task since crucial aspects of the robots’ internal states,
such as distances from active goals or the conditions controlling current behaviors, may not
be directly observable. In [53], for example, researchers were moved to install LEDs on their
robots in order to display their internal states to aid in debugging swarm behaviors. Fortunately,
regularities in relations and dynamics of widely employed swarm algorithms such as flocking are
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readily perceived by human viewers. In fact, the original purpose of the flocking algorithm [69]
was to generate computer graphics that humans would find similar to the behavior of flocks of
birds or schools of fish.

The second capability, predicting effects of human inputs, requires the operator to develop an
“internal model” of the swarm’s dynamics. This capability is related to the first, since, if it is
possible for the human to discern continuity in the behavior and state evolution of the swarm,
then the human would have a better idea of the system dynamics, would be able to predict to
some extent what the swarm would do next, and hence be able to choose when to insert input to
bring about desired behavior. Even for relatively intuitive relationships such as commanding a
leader who is followed by a swarm employing a flocking algorithm, issues involving limitations
in communications, robot speed or lags in response require the operator to develop a model of
the swarm dynamics in order to effectively control the swarm. For other inputs, such as a com-
mand to switch between algorithms, delivered by broadcast or propagation, the relation between
input and a desired effect on the swarm may be even less clear. Difficulties in developing internal
models of dynamics have been found to be particularly acute when timing of inputs or lags in
response are present [79] as is likely in controlling a swarm. A close counterpart lies in industrial
processes where substantial lags between input and response have been abstracted to laboratory
tasks such as Crossman’s water bath [38]. In the waterbath task, operators were asked to control a
heater under a beaker to heat the water in the beaker to maintain a setpoint with a lag introduced
by putting the thermometer inside a testtube. Later, computerized versions of process control
tasks [55] have used multiple tanks, valves and pumps but preserved the lagged integrative re-
sponse of the waterbath. Common findings in these experiments are that performance improves
with practice, but instruction in principles underlying the system does not improve performance
[56]. Negative correlations often found between performance and verbalizable knowledge [15]
further suggest learning of dynamics may be largely implicit making it difficult to improve or
correct human performance.

In view of these results, enabling humans to effectively exert supervisory control on swarms by
understanding the underlying dynamics and giving control inputs at the right time to optimize
performance objectives presents a huge challenge. In this chapter, we study this challenge and
explore ways to better understand whether and how humans comprehend swarm dynamics and
also how to best aid them. In particular we want to answer the following questions: (a) Can
humans develop a model of the dynamics expressed in moving from one swarm configuration to
another, so that they approximate the optimal time to give their input to the swarm? (b) Can we
improve human performance by providing an aid which makes the robots’ goals visible to the
operator and provides a holistic guide to the swarm’s state? (c) More generally, can we extend
human monitoring and control to distributed systems that do not conform to perceptual principles
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by engineering displays for humans rather than requiring swarms to follow inefficient algorithms
to make their behavior humanly intelligible?

We conducted a study to investigate human performance at the Neglect Benevolence shape-
changing HSI reference task to determine the degree to which human operators could approxi-
mate optimal performance, given experiences interacting with system dynamics of a swarm. We
ran experiments in two conditions, one where the participants interacted via a usual display (un-
aided condition) and another where the participants had the use of an augmented display (aided
condition). Our results showed that the participants indeed learned over time to improve their
performance. Moreover, the success of the participants in the aided condition lends some support
to our hypothesis that making swarm consensus variables perceptible to humans would increase
the efficiency of human swarm interaction.

This chapter makes the following contributions. First, it presents a framework characterizing
Human-Swarm Interaction (HSI) as a sequence of human inputs diverting a swarm’s trajectory
through state space that is reducible to a series of Trajectory1-Input-Trajectory2 events and not
restricted to behaviors involving only translation such as flocking, rendezvous, or deploy. Sec-
ond, it introduces the swarm configuration shape-changing Neglect Benevolence Task as an HSI
reference task allowing comparison between human and optimal input timing performance in
control of swarms. Third, it introduces a Gestalt-based approach to characterizing the intelligi-
bility of swarm behavior based on the perceptual saliency of the object of consensus. Fourth, it
provides an initial test of human performance on the Neglect Benevolence reference task and a
test of display augmentation based on characterization of intelligibility.

The chapter is organized as follows. Section 3.1 presents related work. Section 3.2 briefly
outlines the notion of Neglect Benevolence and optimal input time. Section 3.3 describes the
configuration control and shape-changing task as a HSI reference task allowing comparison be-
tween human and optimal performance. Section 3.4 introduces an approach to characterizing the
intelligibility of swarm behavior based on the Gestalt principle of common fate and evaluates
common swarm algorithms including shape-changing. Sections 3.5 and 3.6 describe the ex-
periment and results comparing human performance with conventional and aided displays at the
Neglect Benevolence reference task. Section 3.7 presents discussion and Section 3.8 conclusions
and future work.
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3.1 Related Work

Robotic swarm systems where a group of robots need to act through local interactions to col-
lectively achieve a variety of behaviors have been extensively studied. Swarms can achieve
behaviors such as flocking [14, 24, 69, 74], rendezvous [16], deployment [20], and foraging
[30]. Formation control of robotic swarms has been proposed to adjust the spatial configuration
of robotic systems so that they satisfy the requirements of deployment tasks or they can adapt to
different environments while performing tasks [5, 31, 77]. However, schemes which include a
human operator in the loop together with robotic swarms are required for some complicated tasks
(e.g. complex surveillance and reconnaissance). For using swarm robotic systems in human-
supervised missions, human swarm interaction (HSI) has been studied in [13, 22, 34, 42, 45]
primarily at variants of foraging tasks. Study of human involvement in formation control in-
cludes transitions between flock and torus [13], leader choice and network configuration [29].

The concept of Neglect Tolerance has been introduced to capture the idea that a human operator
can neglect robots that work independently of one another in a multi-robot system for a certain
time before system performance degrades [65, 75]. One key issue in Neglect Tolerance is how
to schedule the attention of the human operator among the multiple and independent robots so
that the neglect time between servicing robots is minimized [52, 54]. In Neglect Tolerance, it is
assumed that the robot system’s performance will degrade over time and the system will need
human interaction to restore performance to a desirable level. In contrast, the concept of Neglect
Benevolence in human swarm interaction captures the idea that it may be beneficial for the human
operator to wait for a certain length of time before applying input to the system while the swarm
state evolves to stabilization (since the swarm performance may not degrade monotonically with
time) [57].

3.2 Neglect Benevolence

In a previous experimental study using a foraging scenario [79], it was found that the perfor-
mance of the human-swarm system was strongly affected by the time between two commands
that the human applied to the robots. In particular, it was found that one group of subjects who
performed well waited for some time after they issued a command before issuing another cor-
rective command (when they wanted to change the direction in which the swarm was heading).
The phenomenon was called Neglect Benevolence, since neglecting the swarm for some amount
of time led to better performance of the system.
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Further analysis of the results [79] found that when the swarm was in a transient state (i.e. moving
towards one goal), applying another input (that changes the goal) could have different effects
depending on the timing of the inputs.

To determine whether this was a spurious effect or not, [57] reported various simulations of
swarm systems, starting at different configurations and performing rendezvous where the oper-
ator inputs changed the rendezvous point. The robots were moving under simple control laws
given in [36] with a repulsive potential to avoid inter-robot collision and an attractive potential
field to maintain swarm cohesion. It was observed that the simulation gave a variety of resulting
outcomes depending on the times when the human input was given following the desired change
in the swarm goal. More concretely, it was observed that giving the input immediately after the
need arose to change the rendezvous point resulted in detaching several robots who subsequently
never made rendezvous while some of the delayed inputs led to the whole swarm staying together
and completing the rendezvous at the desired point.

Here, we briefly discuss some results shown in [57] that serve as a useful background for the
computations and task proposed in this chapter. First, it was shown that Neglect Benevolence
is present not only for nonlinear systems (e.g. swarms with collision avoidance) but also for
linear systems. Second, a formal definition of Neglect Benevolence was introduced that allows
performance to be defined by a variety of measures such as the time or energy used by the swarm
to reach the human goal. Third, it was proven that any exponentially stable linear system exhibits
Neglect Benevolence. Fourth, an algorithm that computes the optimal input time for insertion
of human input to achieve least time to human goal for linear time invariant (LTI) systems was
given. Fifth, it was shown that the dynamics matrix of a swarm that performs consensus for
controlling swarm configuration control and shape-changing (the reference HSI task proposed in
the current chapter) falls within this class of (LTI) systems.

From the results reported in [57], it can be concluded that Neglect Benevolence is a nuanced and
quantifiable notion that captures precise calculation of “too early” or “too late” in inserting the
human input. In other words, if a system is neglected for a very long time, it may take a very long
time to converge. On the other hand, if a system is neglected for too little time it may also take
a very long time to converge. Therefore, in order to guarantee timely convergence, a bounded
Neglect Benevolence must be determined, so that the neglect interval is neither too small nor too
large. Hence, another way of looking at the study in this chapter is to determine whether humans
have the ability to gauge the bounds of Neglect Benevolence.

We consider configuration control and swarm shape-changing as a base task within which to
study Neglect Benevolence and optimal input timing in human swarm interaction. In the next
section, we present more details about the underlying formal model and dynamics of this task.
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3.3 Configuration Control as a Base Human-Swarm Interac-
tion Task

In this section, we describe the dynamics of a swarm system using consensus for configuration
control. Individual robots within the swarm communicate with their neighbors. The communica-
tion graph G = (V , E) captures the connectivity of robots within the swarm. An individual robot
is represented as a vertex vi ∈ V of the graph and the edges E ⊂ V ×V represent communication
links such that each edge (vi, vj) ∈ E indicates that robot vi ∈ V can communicate with robot
vj ∈ V . Assume that all communication links are bidirectional. This means the communication
graph is undirected (i.e. (vi, vj) ∈ E ⇒ (vj, vi) ∈ E). The adjacency matrix A = [aij] is a
mathematical representation of the graph where where element aii = 0, aij = 1 if (vi, vj) ∈ E ,
and aij = 0 if (vi, vj) 6∈ E . The Laplacian matrix L = [lij] can be obtained from the adjacency
matrix with each element lii =

∑
j aij and lij = −aij . Since the graph is undirected, the adja-

cency matrix and the Laplacian matrix are both symmetric. When the graph is connected, the
Laplacian matrix is singular and has one eigenvalue equal to 0 and a corresponding eigenvector
1. Note that 1 represents a column vector with all entries equal to 1.

The joint state of the robotic swarm is given by the state vector x, which is composed of the
concatenated states xi of individual robots within the swarm. In continuous-time averaging con-
sensus, the change in the state ẋi over time t of an individual robot vi is based on averaging the
states of neighboring robots. Two robots vi and vj are called neighbors if they can communicate
with each other (i.e. (vi, vj) ∈ E). As presented in [68], the evolution of the joint state of a
system performing averaging consensus can be described by the following equation, where L is
the Laplacian matrix of the system’s communication graph.

ẋ (t) = −Lx (t) (3.1)

Note that Equation (3.1) describes a stable linear time-invariant (LTI) system. The Laplacian
matrix L has all non-negative real eigenvalues, so −L has only non-positive real eigenvalues.
Since all eigenvalues of the system are real and non-positive, the system with dynamics described
by Equation (3.1) will always move monotonically from any initial state x0 = x (0) towards a
final state xf = limt→∞ x (t) that lies within the null space of the system [57]. For a swarm with
a connected communication graph, the final state is any state in which the robots all agree with
each other. That is, xf = c1 where c ∈ R.

When the robot states are their spatial positions, the averaging consensus dynamics in Equa-
tion (3.1) result in rendezvous at the centroid of the robots’ initial positions. In [57], this algo-
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rithm is extended to incorporate an input vector K.

ẋ (t) = −L (x (t)−K) (3.2)

It was shown in [57] that these dynamics cause the system to evolve towards a final state xf that
(a) preserves the centroid of the initial positions of the robots and (b) preserves the differences
in corresponding entries of the input vector K. Thus, if K specifies the robot positions for a
formation in some arbitrary but consistent coordinate frame, a robot swarm with the dynamics
in Equation (3.2) will generate the specified configuration around the centroid of the initial posi-
tions. Thus, a robot swarm could be performing simple consensus and a human operator could
broadcast an input vector K and with only local interactions, the robots would still generate the
desired configuration.

This introduces the important question of when a human operator should apply a particular input.
Specifically, if the human operator has already specified an input Kold that generates a particular
configuration, then when should the operator specify a new input Knew to generate a new con-
figuration (i.e. change the goal of the swarm) as quickly as possible? Human intuition would
indicate that the operator should specify Knew as soon as possible if they want to obtain the
new configuration as quickly as possible. However, as shown in [57], this intuition is provably
wrong in the general case! For any LTI system, given an input K, it is always possible to find a
state x in which it is beneficial to delay the application of the input. Since this is non-intuitive
to the human operator, this motivates the need for appropriately aiding the operator in finding
or approximating the optimal time to apply the input, maximizing the performance of the robot
swarm.

3.4 Intelligibility of Swarm Behavior

The emergent behavior of a swarm results from many local interactions among its members.
Most commonly, some variant of consensus (averaging values among neighbors) is used for
the coordination giving rise to swarm behaviors. Perceiving an emergent swarm behavior re-
quires the observer to recognize and associate similarities among the many local interactions
among robots. Consequently, human perceptual access to swarm behavior depends on these lo-
cal interactions/agreement being expressed in a way in which salient similarities and relations
(consensus) can be recognized. Recognition of these regularities and the swarm’s trajectory is
a prerequisite for monitoring and decision making. The extraordinary ability of humans to per-
ceive biological motion has been well established since Johansson’s [40] experiments in which
human actors with point-lights attached to major joints were recorded and later viewed as images

27



showing only a few moving dots. Viewers easily identified the human figures and their activities,
such as walking, even in the presence of substantial “masking” by other dots [28]. Even hidden
characteristics of motion such as the weight of a box [70] or distance of a thrown object [43]
were discernible to viewers of these point-light displays. Inverting the imagery (upside down
human walkers), however, eliminates almost all of the effect [10] leaving observers unable to
discriminate between scenes containing a walker and those with only a “mask”. These results
suggest a strong ecological and/or learned component to human abilities to perceive biological
motion that may not fully extend to behaviors of a swarm. This suggests that the more general
Gestalt principles of proximity, similarity, closure, symmetry, continuity, common fate, prag-
nanz and past experience may provide the best guidance for identifying representations likely or
unlikely to lead to the perception of swarm behaviors. Of these principles, only common fate
applies specifically to motion, while the rest largely prescribe how parts come to be perceived as
wholes and could come into play as robots approach well defined formations.

The most common display of a swarm comprises spatially related icons on a plane or in a 3D
space corresponding to robot positions. Swarm behavior following standard algorithms such as
flocking or those collected in [16] such as rendezvous, deploy or boundary following is displayed
through movements of these icons. Fortunately, these displays (moving dots perceived as pat-
terns) closely resemble those studied by psychologists and vision researchers so there is already
research into the factors supporting the perception of group behavior in this context. Common
fate refers to the grouping factor that leads a previously invisible grouping of dots to pop out of
a noisy background when moved and has been found to be the most important factor in perceiv-
ing coordinated behavior although proximity [78], similarity [26] and pragnanz in the form of
grouping features such as collinearity [78] have all been shown to play important roles and to
interact [78] in strengthening the effects of common fate. Humans are very sensitive to perceiv-
ing common fate groupings with success at signal-to-noise ratios as low as 1-2% [76] and the
effect is relatively robust to divergence among trajectories as long as some coordinated global
direction is maintained [82]. There are suggestions, however, that common fate may be limited
to a single group at a time [48]. For example, of two overlapping groups only one would appear
to move coherently. Effects have been found strongest for linear or circular trajectories [83].
While spatial characteristics predominate in perception of moving groups other features such as
common color can also contribute [26].

By this analysis, even without the benefits of biological motion, flocking behavior in which
agents adopt the average heading and velocities of their neighbors seems ideally suited for per-
ceptual recognition. In either its linear or torus form [13], the interaction among agents is pre-
cisely that giving rise to common fate while the regulation of distance (proximity and pragnanz)
enhances this effect. For the rendezvous and deploy algorithms, the consensus process should
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be less strongly conveyed because while the global movement inward or outward and reflected
in local interactions should be perceivable [83] it lacks the matching of velocities and headings,
which are the dominant contributors to the perception of common fate [78].

By a similar analysis we would predict that the behavior of a swarm following the shape-changing
algorithm would be extremely difficult for a human observer to follow because in moving from
one configuration to another neither headings nor velocities are matched (common fate) nor con-
stant distances nor boundaries maintained (proximity and pragnanz). That is to say that the
movement of the swarm toward consensus as perceptually manifested by a centroid is masked by
the formation. Since the consensus process is not perceptually accessible from robot behaviors,
the human monitor would be left with the impression of robots that are moving about indepen-
dently and be unable to either monitor their progress toward a goal or compose an input to alter
that progress. As the target formation is approached, however, the entire set of Gestalt principles
governing perception of form (proximity, similarity, closure, symmetry, continuity) would come
into play making the goal and progress toward it increasingly apparent in this second phase.

These analyses suggest that intelligibility of swarm behavior could be improved for algorithms
in which progress toward consensus is not perceptually available by augmenting the display in
a way that makes this information available. Since the perceptually uncoordinated movements
of robots to their positions in the target formation cannot be eliminated, the display can only be
augmented in ways that make the robots’ goals and progress toward their goals more apparent.
A potential augmentation of this sort would be to draw lines from the robots’ current positions to
their predicted locations in the new formation. As the swarm evolves toward its initial goal shape
these lines would shorten and lengthen until the supervisor chooses to divert the swarm to the
desired shape at the point he/she judges to be the closest (shortest lines). In this augmentation, the
line between each robot’s current position and its final position is a visual proxy for the distance
in the swarm’s state space between current and goal state. The swarm’s state space has very high
dimensionality and cannot be easily visualized, so this proxy is used as an aid. The next section
describes an experiment comparing a display augmented in this way with a conventional display.

3.5 Experimental Design

Our initial experiment investigating human performance at the Neglect Benevolence HSI ref-
erence task was to determine the degree to which human operators could approximate optimal
performance given experience interacting with system dynamics (implicit learning). Comparison
of human and optimal performance is a standard practice in the study of human-machine systems
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for benchmarking human performance and evaluating human competence within a work domain.
While we would expect to assign easily automatable tasks such as input timing to the system, it
may be important to allow the human to intervene in response to “out of band” information or
other anomalies. In addition, the possibility of manual control may be an important element for
preventing out-of-the-loop effects or complacency and enabling the operator to effectively mon-
itor the system for failures or abnormal behavior. Possible outcomes included almost optimal
performance, biased performance favoring late inputs (“finding the bottom” heuristic), idiosyn-
cratic performance indicated by a wide dispersion between early and late inputs or some other
explainable outcome. These are descriptive questions answerable by descriptive statistics.

We used a mixed-model design for our experiment, which divided subjects into two groups
and had one group interact with the swarm through a conventional display showing only robot
positions (unaided condition), while the other group interacted with the swarm through a display
that included a Gestalt-based augmentation to the visualization of the swarm (aided condition).
Interactions with the swarm were divided into discrete trials. Each group interacted with the
swarm in the same number of training and test trials. The swarm dynamics and initial state
remained consistent between corresponding trials in the unaided and aided condition. Thus,
for the mixed-model design, the within-subject variable was the trial number and the between-
subject variable was the presence or lack of the Gestalt-based visual aid. A regression against
trials was used to measure practice effects. The comparison between the display with the Gestalt-
based augmentation and the conventional display provides an initial test of our hypothesis that
swarm behaviors can be made more intelligible and controllable by making progress toward
consensus perceptually assessable.

3.5.1 Method

Task

The experimental task involves human interaction with a simulated robotic swarm performing
consensus on robot positions. The swarm includes the capacity to incorporate an input as de-
scribed in Section 3.3. The task is for the subject to choose the best time at which to provide an
input diverting the robotic swarm from the shape toward which it is initially moving (equilibrium
point of the dynamical system) to another desired shape (new equilibrium point). This matches
our earlier depiction of the canonical HSI task as redirecting the swarm — modelled as a dy-
namical system — from one “natural goal” state (Formation 1) to another “desired goal” state
(Formation 2). If the system in a Neglect Benevolent state, it is beneficial to delay the application
of the input to minimize the total time required to converge to the desired formation. Figure 3.1
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shows an example of how delaying the application of the input could reduce the time required to
reach the goal state.

Figure 3.1: This plot shows the relationship between convergence time (i.e. total time to goal)
and input time for one of the trials in our experiment. The convergence time if the input is

applied immediately at the start of the simulation is shown as the baseline time. Each trial has a
maximum length of 60 seconds. For this trial, if the input is applied after approximately 33

seconds the swarm would not converge within the 60 second limit.

Participants first read the standard instructions on how to use the interface to interact with the
swarm robots and then proceed to complete each trial in the experiment. In the aided condition,
there is a line between each robot’s current position and its final position in the desired formation.
These lines help participants visualize the distance between the robots’ current positions and the
desired formation (Formation 2). Since the swarm dynamics are LTI as described in Section 3.3,
when the collective distance represented by all the lines is larger, more time is required to reach
the desired formation. Formation 1 and Formation 2 are shown in thumbnails at the top of the
screen following a summary of instructions.

The experiment has 12 training trials to familiarize participants with the system and allow them
to observe the asymmetric effects of leading/lagging the optimal input time. As learning of
system dynamics is presumed implicit, familiarization is needed to engender common strategies
so performance might be compared. During the training trials, participants are informed of the
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effects of applying the input too early/late and compare them with the optimal time. The training
trials are divided into two types: passive, where participants only observe, and active, where
participants give input themselves. The first 6 trials are passive, where participants observe
three simulation panels situated below thumbnails depicting Formation 1 and Formation 2. All
three simulations begin with the robots in the same random initial configuration. When a user
clicks “Begin”, the swarms in all three panels begin moving toward Formation 1 until given an
input (at a different time for each panel). Visually, upon receiving the input, the swarm robots
change color from red to green. Each panel shows how the input redirects the configuration
of the swarm towards Formation 2. Upon converging to Formation 2, the convergence time is
shown. The left, middle and right panels each display the effects when the input is applied “too
early”, at the optimal time, and “too late” respectively (see Figure 3.2). The next 6 trials are
active, where participants have the chance to apply the input themselves and get feedback as to
whether they gave the input too early, too late, or optimally (see Figure 3.3). Participants are
again presented with thumbnails showing Formation 1 and Formation 2, but followed by only
one simulation panel. The panel shows the robot swarm in a random initial configuration. After
the participant clicks “Begin”, the swarm starts moving toward Formation 1. The participant then
has the chance to give an input by clicking “Activate New Formation” at any time before the end
of the simulation. Once the swarm has converged (or the simulation has reached the 60 second
time limit), the convergence time resulting from the input and feedback as to whether their input
was too early or too late (see Figure 3.3) is displayed.

After the subjects finish the 12 training trials, they are presented with 36 test trials in the same
condition (aided or unaided). In the test trials, the subjects are presented with the same screen
arrangement (see Figure 3.4) as in the active training trials, but although they are able to observe
the convergence time, they are not given feedback as to whether their input was too early or too
late. The participants are instructed to impose the new goal on the swarm at the time leading to
the earliest convergence.

Participants and Data Collection

A total of 44 participants were recruited (22 for aided condition, 22 for unaided condition) from
the University of Pittsburgh and Carnegie Mellon University communities through online solic-
itation. Data was collected through a HTML5 / JavaScript web application that recorded each
subject’s trial data anonymously in a secured MySQL database. Participants were randomly as-
signed to either the control group (unaided condition) that interacted with the swarm through a
conventional interface or the experimental group that interacted with the swarm through an inter-
face with a Gestalt-based augmentation (aided condition). Participant input times were recorded
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Figure 3.2: For each trial in the first (passive) training phase, participants were shown three
simulations. In all simulations, robots started in the same initial positions, but the input telling
them to move to Formation 2 was applied at different times: (1) too early, (2) at the best time,
(3) too late. After the swarm converged to the final formation (see panel 1 and 2), participants

were shown the time taken for the robots to converge.

for each trial. Optimal input times for each trial were computed offline using the algorithm in
[57].

3.6 Results

Input time deviation and convergence time served as dependent variables. Input time deviation
(|tinput − toptimal|) was defined as the absolute difference between the time chosen by participants
to divert the swarm and the optimal diversion time. Convergence time was defined as the interval
from the beginning of the trial until the swarm converged to the desired formation (Formation 2).
Input time measured the participants’ deviation from optimality directly while convergence time
measured the effect of these suboptimal inputs on performance. Since delays that were too long
could lead to much longer convergence times than those that were too short, strategies favoring
earlier inputs might be a rational response for participants having difficulty in approximating
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Figure 3.3: For each trial in the second (active) training phase, participants were asked to apply
the input at whatever time they thought would minimize the total time required for the robots to

converge to Formation 2. At the end of the trial, participants were told the optimal input time
and whether they should have applied their input earlier or later.

the optimal interval making convergence and input times slightly different measures. Indepen-
dent variables were Display type (conventional or aided), Transition Type (circle-spiral, circle-V,
spiral-circle, spiral-V, V-circle, V-spiral), and trial number.

Data were analyzed both in an ANOVA design treating Display type and Transition type as fac-
tors and a regression incorporating trial numbers as well. An ANOVA found main effects for
both Display types (F1,1572= 6.214, p=.013) and Transition type (F1,1572=33.402, p¡.001) for
input time deviation. An ANOVA for convergence time also found main effects for both Display
type (F1,1572= 3.387, p = .006) and Transition type F1,1572=45.418, p¡.001). Both groups on
average preceded the optimal time with participants in the aided display condition responding
nearly twice as early (M=-1.23 sec, SD=5.11) as those in the unaided condition (M=-.65 sec,
SD=7.49) although this difference was not significant at the p¡.05 level. A Mann-Whitney U test
of deviations from optimal input times, however, found that participants in the aided condition
(mean rank=767.63) were significantly closer to the optimum (z=-2.164, p=.03) than those in the
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Figure 3.4: For each trial in the test phase, participants were asked to apply the input at
whatever time they thought would minimize the total time required for the robots to converge to

Formation 2. They were not given any feedback.

unaided condition (mean rank=817.37). A comparison of deviations from optimal convergence
times found that participants in the aided condition (mean rank=762.55) were significantly closer
to the optimum than those in the unaided condition (mean rank=822.45); z=-1.97, p=.009 on this
measure as well. Regression of input time deviations against trials found a significant improve-
ment (F1,34=4.918, p=.033) in the unaided Display condition but not in the aided condition.

3.7 Discussion

Our results as shown in Figure 3.5 indicate that humans did, in fact, learn to approximate the
optimal input time over the course of the experiment. This suggests that both Display types
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Figure 3.5: This plot shows the average absolute deviation of the participants’ input time from
the optimal input time for each trial in the unaided and aided condition.

provided sufficient cues for humans to learn to time their input in order to decrease convergence
times. The quality of this approximation, however, began at a high level for the group using
the aided Display but developed only slowly for those in the unaided condition. We believe this
occurred because the lines drawn to terminal locations in Formation 2 on the augmented Display
provided viewers with a reference for judging the swarm’s evolution while the movement of
robots in the unaided Display did not. Relying only on Gestalt influences over the perception
of form as formations were approached, unaided participants did not have a basis for earlier
responses. This conjecture is supported by the finding that those in the aided condition responded
on average earlier than those in the unaided condition There are several possible explanations for
the improvement in performance of participants in the unaided condition. Participants might
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have acquired an implicit model of shape-changing dynamics that allowed them to better assess
the swarm’s state as it evolved. Alternately, they may have developed greater sensitivity in
recognizing an evolving formation’s similarity to their goal formation. A third alternative might
be that participants learned a timing heuristic for delaying input. These and similar questions can
only be answered through additional properly designed experiments to test those explanations.

The success of the augmented condition in improving the performance of naive participants
lends some support to our hypothesis that difficulties can arise in interaction with swarm systems
because the variables on which the swarm is coordinating are not perceptually accessible to
the human. Many distributed algorithms involving human interaction such as flocking, biology-
mimicking control through leaders and predators, or physicomimetic direction via potential fields
depend in some part on their intelligibility to human users and their programmers. If we could
develop principled methods for augmenting the behavior of swarm algorithms with display of
variables under consensus it could extend human control and use to a wider range of potentially
more efficient algorithms.

3.8 Conclusion

Some of the main contributions of this work are methodological and lie in providing a framework
for a more controlled study of human-swarm interaction. Characterizing HSI as the act of divert-
ing a swarm’s trajectory through state space from the current goal to an alternate goal provides
a new basis for evaluating HSI in isolation from normally confounding factors. In particular, by
focusing on progress toward goal states rather than simply measuring transient effects of behav-
ior, it allows an experimenter to define a strict performance reference for human behavior unlike
earlier efforts such as [45] which have relied on comparing performance to that of intelligent
agents.

The shape-changing Neglect Benevolence Task provides an example of an HSI reference task
of this sort that allows direct comparison between human and optimal performance in control of
swarms. The methods and tools developed in this process provide a roadmap for other researchers
wishing to develop distributed algorithms and displays that can be evaluated in these ways. We
have presented and provided an initial test of a Gestalt-based approach to characterizing the
intelligibility of swarm behavior based on the perceptual salience of the object of consensus.
While results are preliminary they are promising in providing a closer linkage between human
cognition, distributed algorithms and the way we display them.
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Chapter 4

A Timing-Only Approach to Adversarial
Influence of Swarm Consensus

Multi-agent consensus is essential to the operation of many distributed systems including sen-
sor networks [64], social networks [1] and multi-robot systems such as robotic swarms. When
each agent in the system begins with a possibly different value for the same variable of interest,
global consensus is said to be achieved when all agents in the system agree upon the same value
for the variable. Global consensus may be achieved at a particular time instant or it may be
achieved asymptotically as differences between the values assigned by each agent to the variable
of interest decrease over time. In sensor networks [64], consensus may be used for estimating a
quantity of interest via measurements captured by each of the sensors without having a central
processor to perform sensor fusion. In social networks [1], consensus is often used to model
the dynamic evolution of opinions held by different members of society. It can be used to study
phenomena such as opinion polarization or the effects of disparity in the influence of particular
members of society. In distributed multi-robot systems such as robotic swarms [12][46], multi-
agent consensus enables distributed coordination using only local information and no central
coordinator. These features make robotic swarms that employ consensus-based behaviors [60]
robust to failures and scalable since members can be added and removed with minimal system
reconfiguration. Swarm behaviors such as formation control and rendezvous are based on linear
averaging consensus using agent positions as state variables, while other swarm behaviors such
as flocking [69] employ a form of non-linear averaging consensus.

Mathematically, the consensus problem has been studied in a wide variety of settings and can
be characterized along multiple dimensions including but not limited to (a) continuous-time or
discrete-time updates [50], (b) synchronous or asynchronous updates [33], (c) fixed or time-
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varying network topology [63][84], (d) adversarial agents (that can cause byzantine failures) or
cooperating agents [71], (e) homogeneous or heterogeneous agents [67]. In this chapter, we study
a multi-agent team that asynchronously performs discrete-time averaging consensus. The team
consists of cooperating agents that are unaware that some of the agents could be compromised
by an adversary. For example, this system could effectively model a robotic swarm of citizen
agents that might have been compromised through the introduction of mole agents [72] or a
robotic swarm with a subset of agents that have been hacked. The agents on our team have a
fixed interaction topology (i.e. each agent has the same set of neighbors over time), but they
are heterogeneous in the sense that each agent executes the discrete-time consensus update (i.e.
sets its current state to the average of its own and its neighbors’ states) with a possibly different
frequency. In addition, there is a different delay before the first update for each agent on the
team. These delays enable us to model real world features such as initialization delays, timers
or even deliberate input delays. It has been shown in the literature that delaying an input to a
robotic swarm can actually improve the performance of the swarm [58] — a phenomenon known
as Neglect Benevolence — and in some cases it is only possible to meet a deadline by applying
a sufficient delay [57].

While unweighted synchronous averaging consensus guarantees that a connected network of
agents will always asymptotically converge to an agreement point that is the average of the
initial states of each agent [68], there are no such guarantees for general asynchronous consensus.
However, in a real-world multi-robot system, asynchrony is is almost inevitable. There has been
substantial work in the literature studying how to mitigate the effects of asynchrony to ensure
convergence [33] and even specify protocols under which convergence to the same agreement
point as synchronous consensus is guaranteed [18]. In contrast to the prior work, in this chapter
we investigate how asynchrony in a multi-robot system periodically applying standard consensus
updates can actually be exploited to change to agreement point of the team. Particularly, we are
interested in situations where we are unable to directly affect the interaction topology or the
update rules used by the agents. Instead, we show that by only changing the update periods
(equivalently, frequencies) or initial update delays of a subset of agents on the team, we can
influence the agents to move towards a desired agreement point of our choosing.

Studying the effects of changing update periods and delays is essential to understanding potential
vulnerabilities in distributed robotic systems such as robotic swarms that rely heavily on local
coordination through consensus to generate emergent global behaviors. Changing the update
period or introducing a delay is often a very simple form of attack since, in the worst case, it only
requires access to the communication medium rather than direct access to individual agents (e.g.
periodically jam messages to introduce delays or stretch update periods). Understanding these
effects can lead to the development of mitigation strategies or tradeoffs for not implementing
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such strategies. Studying these effects can also enable the development of strategies to exploit
them for beneficial effect (e.g. introduce delay to improve performance without changing the
update rules or network topology).

Our contributions are (a) formalizing this problem, (b) proving convergence properties enabling
us to reformulate the problem to more efficiently find optimal solutions and (c) illustrative sim-
ulations highlighting the utility of our results in robotics and multi-agent applications.

4.1 Related Work

A large variety of different multi-agent consensus problems have been studied in the extant
literature. A survey of the basic properties of systems performing linear continuous-time and
discrete-time consensus is given in [68]. The problem of convergence of consensus protocols
in discrete-time systems with arbitrary time-varying delays is explored in [33]. When the com-
munication graph topology is fixed, it is shown that if the graph contains an directed spanning
tree and the delay along any edge in the graph is bounded and at least one agent in the system
can access its own state without delay, then the system is guaranteed to asymptotically achieve
global consensus. Interestingly, an equivalence is established between a synchronous system
with a time-varying topology and an asynchronous system with a fixed topology and zero com-
munication delays. Thus, similar conditions for convergence are established for the former. Our
work is distinguished from prior work by exploiting asynchrony for desired effects rather than
treating it as something that creates undesirable artifacts for averaging consensus protocols.

It was shown in [57] that delaying an input to dynamical system, such as a robotic swarm per-
forming consensus, can improve the performance of the system (e.g. minimizing the time re-
quired achieve an objective). This phenomenon was termed Neglect Benevolence. These results
were applied to a robotic swarm performing a form of biased consensus to generate formations
around the centroid of the initial positions of the robots using neighbor-only relative measure-
ments. It was shown that sometimes delaying an input is necessary to meet a deadline. In this
chapter, we explore the impact of timing on a team performing consensus by not only considering
the inclusion of a delay, but also changing the update period.
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4.2 Problem Formulation

In this section, we first introduce some preliminary definitions and notions that we use to formal-
ize our problem. We then describe our system model. Finally, we provide a formal mathematical
statement of our problem.

4.2.1 Preliminaries

Consider a group of n agents. The state of agent i at time t ∈ Z : t ≥ 0 is given by xi (t) ∈ Rm

and the joint state is given by x (t) =
[
x1 (t) x2 (t) . . . xn (t)

]>
. Global consensus [68] is

said to be achieved asymptotically if ∀i, j : limt→∞ ‖xi (t)− xj (t)‖2 = 0. When m = 1, this
condition can be equivalently written as limt→∞ x (t) = c1 for some constant c ∈ R.

A real square matrix D ∈ Rn×n is called right stochastic if the sum of each row is 1 (i.e. ∀i :∑n
j=1 Dij = 1). The product of two right stochastic matrices is also right stochastic. A right

stochastic matrix D is called regular if there exists n such that all entries of Dn are positive. A
Markov chain [41] with a regular transition matrix is aperiodic and irreducible (i.e. all states
communicate), which means limn→∞Dn = 1µ> for some stochastic vector µ ∈ Rn : µ>1 = 1

called the stationary distribution of the Markov chain. In fact, µ is the left eigenvector of D

corresponding to the eigenvalue 1 (i.e. D>µ = µ).

4.2.2 System Model

We consider a team of n agents with unique identifiers I = {1, 2, . . . , n} interacting with each
other. The initial state of agent i is given by xi(0) ∈ Rm and joint initial state of the team is given
by x (0). Each agent in the team has a fixed set of neighbors. The graph G = (V , E) captures the
neighbor information for this team, where the nodes V = {v1, v2, . . . , vn} represent agents and
each edge (vi, vj) ∈ E ⊆ (V × V), represents that agent j communicates with agent i (i.e. agent
i has access to the state information of agent j). We assume that every node has access to its own
state information (i.e. (vi, vi) ∈ E). The adjacency matrix for this graph is given by A ∈ Rn×n

and contains non-negative binary elements such thatAij = 1 if (vi, vj) ∈ E (otherwise, Aij = 0).
The set of neighbours of node vi is Ni = {vj ∈ V | (vi, vj) ∈ E}. Note that ∀i : vi ∈ Ni.

Each agent on our team periodically updates its own state as a function of the states of neigh-
boring agents. The update rule used by all agents on our team is exactly the same: discrete-time
averaging consensus. Specifically, on every update, each agent i updates its own state to the
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average its own state and the states of neighbor agents Ni. In contrast to many consensus sys-
tems studied in the literature, in our system each agent executes the same update rule, but with
a possibly different period and phase shift. The update period of each agent is given by Ti ∈ Z
and the delay prior to executing the first update is given by τi ∈ Z.

Based on the above system model, the set of agents that execute an asynchronous discrete-time
consensus update at time t is given as follows.

U (t, T1, . . . , Tn, τ1, . . . , τn) = {j ∈ I | t− τj ≡ 0 mod Tj} (4.1)

Due to limited space, we will drop the explicit dependence of this set on the update periods and
delays and write it as U (t). Now the state evolution of each agent can be described using the
following recurrence relation.

xi (t+ 1) =


1∑n

j=1 Aij

∑n
j=1Aijxj (t) if i ∈ U (t) , t ≥ τi

xi (t) otherwise
(4.2)

where i, j ∈ I and t ≥ 0 is the time.

4.2.3 Problem Statement

Imagine that we can influence a subset of agents on the team given by C ⊆ I. However, we
cannot change the update rule, the initial states or the set of neighbors for each agent. We
can only change the update periods {Ti | ∀i ∈ C} and the initial update delays {τi | ∀i ∈ C}.
As shown in Figure 4.1, changing these periods and delays can significantly change the final
agreement point to which the team of agents converge. Consider the situation where we would
like the final agreement point of these agents performing consensus to be as close as possible to
a desired value xg ∈ Rm. Our problem may then be written formally as follows.

arg min
∀i∈C:Ti,τi

n∑
k=1

||xg − lim
t→∞

xk (t) ||22

subject to

∀k : Bk =
1∑n

j=1Akj

∀k : xk (t+ 1) =

Bk

∑n
j=1Akjxj (t) if k ∈ U (t) , t ≥ τk

xi (t) otherwise

∀i ∈ C : 0 ≤ τi ≤ τupper

∀i ∈ C : 1 ≤ Ti ≤ Tupper

(4.3)
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4.2.4 Motivating Example

In Figure 4.1, we show a concrete example that illustrates our system model and various aspects
of our problem. A team of seven agents has the interaction topology shown in Figure 4.1a. If
agent states evolve according to the consensus update rule using their default update periods
and initial delays (i.e. no delay prior to first update), their states evolve as shown in Figure 4.1b.
However, changing the update period and initial delay for an agent can change the final agreement
point to which the team converges and Figure 4.1c shows one example where the update period
and delay of agent 1 has been modified. Figure 4.1d demonstrates that the choice of initial delay
can change the minimal achievable distance to the adversary’s desired goal xg. In addition,
it shows that sometimes (but not always) larger delays are beneficial, so the system exhibits
Neglect Benevolence. Figure 4.1e shows that changing the update periods of different agents can
have dramatically different effects in our system.

Curiously, this example shows that the best choice of agent to influence is not the one whose
initial state begins closest to the value for the desired goal (i.e. agent 3), nor the one whose initial
state begins furthest from the desired goal (i.e. agent 7). Instead, changing the update period
of agent 1 or agent 2 seems to be the most effective way to minimize the distance between the
team’s agreement point and the desired goal. In addition, introducing an initial delay reduces the
required change in the update period of the influenced adversarial agent.

4.3 Computing Optimal Periods and Delays

In this section, we first develop some insight into the properties of the dynamical system de-
scribed by the agent update rule in Equation (4.2) by analyzing its convergence properties. We
then apply these results to reformulate the problem described in Section 4.2 to more efficiently
compute optimal periods and delays via a simple algorithm.

4.3.1 Convergence Properties

Let us first consider case where each agent’s state consists of a single real number (i.e. m = 1).
The recurrence relation for the agent updates given in Equation (4.2) can be expressed as follows
for some time-varying right stochastic matrix D (t, T1, . . . , Tn, τ1, . . . , τn) whose entries are a
function of time t, the update periods {Ti | ∀i ∈ I} and the delays {τi | ∀i ∈ I}.

x (t+ 1) = D (t, T1, . . . , Tn, τ1, . . . , τn) x (t) (4.4)
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Due to limited space, we will drop the dependence on update periods and delays from our nota-
tion and express this matrix as D (t). Entries of this time-varying matrix are given as follows,
where I is the appropriately size identity matrix and A is the adjacency matrix capturing the
neighbor information for the agents on the team.

Dij (t) =


1∑n

j=1 Aij
Aij if i ∈ U (t) , t ≥ τi

Iij otherwise
(4.5)

Note that each element of D (t) can only take on three different values (0, 1 or 1
|Ni| ) over its time

evolution. We can now write the recurrence relation in closed form as follows.

x (t+ 1) = D (t) . . .D (1) D (0) x (0) (4.6)

To analyze the long-term (i.e. t→∞) behavior of this system, we first consider the simple case
where all agents begin updating immediately without any delay (i.e. ∀i : τi = 0). In this case,
it is clear that the matrix D (t) actually takes on the same values periodically since each element
is directly a function of the agent update periods. Taking TLCM = lcm ({Ti | ∀i ∈ I}), it is clear
that the period of the matrix D (t) is TLCM. By defining

P (t) = D (t) . . .D (1) D (0) (4.7)

we can write the time evolution of the joint state of the agents as follows.

x ((k + 1)TLCM) = P (TLCM − 1) x (k)

= [P (TLCM − 1)]k+1 x (0)
(4.8)

For a given set of update periods, P (TLCM − 1) is constant, so we have effectively taken our
asynchronous system, where each agent executes its update rule with a different frequency, and
written it as an equivalent synchronous system.

Theorem 2. If the graph G representing the interaction topology for the multi-agent team con-
tains a directed spanning tree, then the matrix P (TLCM − 1) is an irreducible, aperiodic, right
stochastic matrix.

Proof. Since each matrix D (t) is right stochastic, the product of these matrices is also right
stochastic. Each unique matrix D (t) is the transition matrix of a different Markov chain. Some
of these Markov chains may be reducible or periodic, but each has a corresponding representation
as a directed graph. However, it has been shown in [33] that if the union of the directed graphs
corresponding to the transition matrices contains a directed spanning tree, then the product of
those matrices will always result in a transition matrix that is irreducible and aperiodic. If the
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graph G representing the interaction topology for the multi-agent team contains a directed span-
ning tree, then it is clear that the transition matrix D (TLCM − 1) must also have a corresponding
graph with a directed spanning tree. Thus, P (TLCM − 1) must be the transition matrix for an
irreducible and aperiodic Markov chain.

Theorem 3. If the graph G representing the interaction topology for the multi-agent team con-
tains a directed spanning tree, then by applying the update rule in Equation (4.2), the agents
achieve global consensus to the agreement point µ>x (0), where µ is the stationary distribution
of P (TLCM − 1).

Proof. Since P (TLCM − 1) is irreducible and aperiodic (Theorem 2), it must have an eigenvalue
1 with corresponding stochastic left eigenvector µ ∈ Rn : µ>1 = 1. In addition, the largest
eigenvalue of this matrix is unique and it is 1.

lim
k→∞

x (kTLCM)

= lim
k→∞

[P (TLCM − 1)]k x (0)

=
(

lim
k→∞

[P (TLCM − 1)]k
)

x (0)

=1µ>x (0)

(4.9)

Thus, the team of agents converges to the agreement point stated above.

Remark 1. Note that all of the convergence results above still apply when there are delays prior
to the first update. Simply consider the properties of the following matrix.

τmax = max ({τi | ∀i ∈ I}) (4.10)

P (t) = D (t) D (t− 1) . . .D (τmax) (4.11)

lim
t→∞

x (t) = 1µ>x (τmax) (4.12)

Then the agreement point of the system will be given by µ>x (τmax).

Remark 2. Note that all of the convergence results above still apply when each agent’s state
consists of more than one element (i.e. m ≥ 2). If xi (t) ∈ Rm is the state of agent i at time
t, then let x

(k)
i (t) ∈ Rm for 1 ≤ k ≤ m represent the k-th component of that agent’s state. In

addition, let the vector x(k) (t) ∈ Rn represent the k-th components of the states of all agents.

Then the agreement point of the system will be given by
[
x(1) (τmax) . . . x(m) (τmax)

]>
µ.
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4.3.2 Problem Reformulation and Algorithmic Solution

Based on the convergence results in the previous section, the problem statement in Equation (4.3)
may be equivalently rewritten as the following non-linear integer program.

arg min
∀i∈C:Ti,τi

∥∥∥∥xg − [x(1) (τmax) . . . x(m) (τmax)
]>
µ

∥∥∥∥2

2

subject to TLCM = lcm ({Ti | ∀i ∈ I})
P (TLCM − 1) = D (TLCM − 1 + τmax) . . .D (τmax)

P (TLCM − 1)> µ = µ

µ>1 = 1

1 ≤ k ≤ m : x(k) (τmax) = D (τmax − 1) . . .D (1) D (0) x(k) (0)

∀i ∈ C : 0 ≤ τi ≤ τupper

∀i ∈ C : 1 ≤ Ti ≤ Tupper

(4.13)

Noting that general integer programming is NP-hard, we now present an algorithm to find op-
timal solutions to the problem in Equation (4.13). Unlike the formulation in Equation (4.3),
the formulation in Equation (4.13) does not require forward simulation of the system dynamics
until convergence to find the agreement point to evaluate candidate solutions. This enables us
to more efficiently evaluate candidate solutions making this difficult problem more tractable for
applications.

Consider the known set C ⊆ I of agents that can be influenced. Let the agents that can be
influenced be given as C =

{
c1, c2, . . . , c|C|

}
where ∀k : 1 ≤ ck ≤ n. Consider the tuple

S =
(
Tc1 , Tc2 , . . . , T|C|, τc1 , τc2 , . . . , τ|C|

)
. The first |C| elements of this tuple can take on values

in the range Tck ∈ {1, 2, . . . , Tupper} and the next |C| elements can take on values in the range
τck ∈ {0, 1, . . . , τupper}. Each possible value of this tuple S represents a candidate solution for
the problem given in Equation (4.13). We evaluate all possible values of this tuple S and select
the one that results in the lowest value for our objective function. We can terminate early if we
find S∗ that results in the objective function being minimized below an acceptable threshold ε for
a ‘good enough’ solution. Based on the convergence analysis presented in the previous section,
the objective function is relatively inexpensive to evaluate and can be computed directly from the
stationary distribution µ and ∀k : x(k) (τmax). The worst-case time complexity of this algorithm
is O

(
(Tupperτupper)

|C|
)

, which is exponential in the number of agents that can be influenced.
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4.4 Applications

In this section, we present some illustrative simulations that demonstrate how asynchrony in
consensus can be exploited by an adversary applying the techniques in the previous sections to
achieve a variety of different goals. All simulations were conducted on a computer with an Intel
Core i5 750 (4 cores, 2.66 GHz) processor and 12 GB RAM.

4.4.1 Multi-Robot Ambush

A common task for a multi-robot team in a hostile environment is for all members of the team
to meet at a common location using only local interactions between neighboring robots and
without advance knowledge of the meeting point. In swarm robotics, this behavior is more
commonly known as rendezvous (or aggregation) and is often achieved by applying the discrete-
time consensus update laws with the positions (m = 2 or m = 3) of the robots as the state
variables. When the consensus updates are applied synchronously, it is well known that the
rendezvous location (the agreement point) will be the centroid of their initial positions. When the
consensus updates are performed asynchronously but the interaction topology remains connected
(i.e. every update suggested by the topology occurs within finite time), the agents will converge
to a common location, but the location may not be the centroid of their initial positions. A
hostile adversary that can influence the periods and delays of the robots’ consensus updates can
potentially force the entire multi-robot team to converge in a dangerous location (e.g. where they
would be ambushed).

Figure 4.2a shows the interaction topology for a multi-robot team of six robots. Figure 4.2b
shows the trajectories and rendezvous location of the team when there is no adversarial influence.
The robots’ initial positions are shown by triangles and the dangerous region (unbeknownst to
the robots) is shown as the yellow circle. Assume the adversary can influence only robot 4.
As shown in Figure 4.2c, by selecting xg as the center of the dangerous region and solving
Equation (4.13), the adversary can compute the optimal delay and update period for robot 4 (i.e.
τ4 = 10, T4 = 4) to force the multi-robot team to converge as close as possible to the center of
the dangerous region. For τupper = 12 and Tupper = 12, the optimal solution was computed in 1.6
seconds on the computer. Figure 4.2d shows the trajectories resulting from the optimal choice
of delays and periods when the adversary can influence both robot 2 and robot 4 (i.e. τ2 = 0,
T2 = 2, τ4 = 8, T4 = 9). In this case, again with τupper = Tupper = 12, the optimal solution was
computed within 255 seconds on the computer, showing the exponential scaling in computation
required as the number of influenced robots grows. However, only a marginally better solution
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was found.

4.4.2 Maximally Diverting Opinions in Social Networks

There has been substantial work on convergence (or divergence) of opinions in social networks.
For example, [1] discusses the idea of regular agents and forceful agents, such as the media,
which can spread “misinformation”. Given a network of social agents who update their opin-
ions asynchronously, we show that the techniques described in this chapter could be used by an
outside actor to influence a subset of agents to maximally divert the converged opinions from
the expected agreement point by exploiting only asynchrony in updates. Given that xorig is the
expected agreement point with no outside influence, our objective can be rewritten as follows
(all constraints still apply).

arg max
∀i∈C:Ti,τi

∥∥∥∥xorig −
[
x(1) (τmax) . . .x(m) (τmax)

]>
µ

∥∥∥∥2

2

(4.14)

Figure 4.3a shows the interaction topology for this group of agents. Figure 4.3b shows the
natural evolution of the opinions of these agents on a particular binary topic (agent opinions
are confined to the range 0 to 1). Figure 4.3b shows the evolution of agent opinions when
an adversary optimally influences agent 5 by changing its delay and update period to cause
maximum diversion of agent opinions from the original agreement point. As expected, the larger
the size of the group, the more challenging it is to divert opinions with only a single adversarially
influenced agent.

4.5 Conclusion

In this chapter, we considered a team of agents that updated their states using the discrete-time
consensus protocol, but with different update frequencies and delays prior to first update. Given
a subset of agents on the team that we could influence, we studied the problem of changing
only their update periods and delays to change to the agreement point reached by the team.
An analysis of the convergence properties of the system led to a reformulation that enabled
more efficiently evaluating candidate solutions (i.e. without naive forward simulation of system
dynamics) to optimally select the update periods and delays to minimize the distance between
the final agreement point and a desired goal. In illustrative simulations, we explored how this
technique could be used by an adversary to change the agreement point of a multi-robot team
performing rendezvous and force the robots to rendezvous in a dangerous region of the map. In
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another application, we demonstrated that it was possible to select the update periods and delays
to cause a group of social agents to converge to an agreement point as far as possible from the
original agreement point. In future work, we plan to use heuristics to quickly find approximate
solutions to our problem, further improving tractability for practical applications. We also plan
to investigate mitigation techniques.
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1 2 3 4 5 6 7

(a) Interaction topology for an example team
of seven agents.

(b) State evolution of multi-agent team with default
update periods. The agents converge to an

agreement point 4.

(c) State evolution of multi-agent team when
τ1 = 5 and T1 = 15. The agents converge to an

agreement point 2.3751.

(d) Assume only agent 1 can be influenced. The
choice of delay τ1 changes the agreement point and

the minimum achievable distance to the desired
goal.

(e) Assume only one of the agents can be
influenced. The choice of adversarial agent

changes the minimum achievable distance to the
desired goal.

Figure 4.1: A team of seven agents has the interaction topology given by the graph shown in (a).
The joint initial state of the team is x (0) = [1, 2, 3, 4, 5, 6, 7]>. The default update periods are
∀i : Ti = 1 and initial delays are ∀i : τi = 0. The adversary’s desired goal is xg = 3.
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(a) Interaction topology for a robot team.

(b) State evolution of multi-robot team with
default update periods. The agents converge to

an agreement point [3.501, 5.755]>.

(c) State evolution of multi-robot team when
τ4 = 10 and T4 = 4. The agents converge to an

agreement point [6.0348, 4.0331]>.

(d) State evolution of multi-robot team when
τ2 = 0, τ4 = 8, T2 = 2 and T4 = 9. The agents

converge to an agreement point
[5.9797, 3.9890]>.

Figure 4.2: A robot team has the interaction topology shown in (a). The initial robot positions
are shown as triangles. The default delays are ∀i : τi = 0 and update periods are

T1 = 2, T2 = 1, T3 = 1, T4 = 3, T5 = 4, T6 = 2. The adversary’s desired goal is xg = [6, 4]>.
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8

9

(a) Interaction topology for some social agents.

(b) State evolution of agents with default update
periods. The agents converge to an agreement

point 0.4275.

(c) State evolution of agents when τ5 = 0 and
T5 = 12. The agents converge to an agreement

point 0.4748.

Figure 4.3: A group of social agents has the interaction topology shown in (a). The initial agent
opinions are x (0) = [0.2, 0.4, 0.1, 0.9, 0.4, 0.3, 0.2, 0.1, 0.8]>. The default delays are ∀i : τi = 0

and update periods are T1 = 2, T2 = 1, T3 = 2, T4 = 1, T5 = 2, T6 = 1, T7 = 2, T8 = 1, T9 = 2.

53



54



Chapter 5

Automated Behavior Sequencing with
Known Switch Times

Swarm robotics is characterized by using simple robots in large numbers to accomplish com-
plex tasks. The emergent behaviors based on the local interactions among the robots and their
environment allows the swarm to accomplish tasks even with the sensor and computation limita-
tions necessary to produce a large group of robots inexpensively. Unfortunately, the algorithms
producing the emergent behaviors are often only guaranteed to succeed in very controlled en-
vironments (e.g. obstacle-free environments), which is not practical in real-world applications.
Real-world applications include area coverage, search and rescue operations, military surveil-
lance or even first responder assistance [7, 34, 42, 45, 62]. The environments in which robotic
swarms are used for these applications are often cluttered and non-convex. One way to achieve
complex tasks with swarms is to synthesize local control laws that would accomplish the task
while satisfying practical constraints like collision avoidance [80]. However, this is a hard prob-
lem in general and there are no known solutions with guaranteed performance for tasks like area
coverage, search and rescue, and surveillance [44]. Alternatively, one can use a library of simple
swarm behaviors (which may not necessarily be designed for the task at hand) and compose them
using a supervisory controller to accomplish the task. In this chapter, we study the problem of
swarm behavior composition to achieve complex tasks.

More formally, the problem of swarm behavior composition can be stated as follows: Given
a library of swarm behaviors, B, and an objective function or performance criterion encoding
the task at hand, find the sequence of behaviors and the times at which the behaviors should
be switched to accomplish the desired task. Although behavior composition for accomplishing
complex tasks has been widely studied for single robot systems [4, 9], it is not well studied
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for swarm systems. The key features of the swarm robotic systems that make the behavior
composition problem challenging are (a) the dimension of the joint state space of the swarm is
very high, (b) very often the closed loop dynamics of the individual robots using the local control
laws are nonlinear and so it is hard to have an a priori estimate of the state of the system at a future
time, (c) convergence guarantees for behaviors are available only under restrictive assumptions
like no collision avoidance and hence the swarm may not converge to the desired behavior. The
above features makes it difficult to evaluate the effect of executing a behavior for a prescribed
time and hence planning a sequence of behaviors becomes difficult.

In this chapter, we solve a simpler version of the general behavior composition problem where
we assume that the behaviors are selected at given discrete decision time points. After formal-
izing the problem, we present an informed search algorithm that computes the optimal behavior
sequence that should be executed from a given initial state to maximize swarm performance on
the task. We then apply our algorithm to a swarm navigation application in which our library
of behaviors is well-suited for the task objectives. Conversely, we then apply our algorithm to a
swarm dynamic area coverage application, which is an application for which none of the behav-
iors in our library has been originally designed. This demonstrates the utility of our algorithm
in composing behaviors to accomplish tasks for which individual behaviors were not originally
designed.

Finally, we note that in prior work, experiments on human control of robotic swarms have iden-
tified challenges and interesting phenomena such as Neglect Benevolence [79], where delaying
an input can actually increase overall system performance. These discoveries led to the for-
malization of the phenomenon, which resulted in an algorithm for identifying the optimal input
time [57]. Interestingly, in returning to human-swarm interaction experiments, this algorithm en-
abled the creation of a rigorous benchmark task for evaluating human performance in estimating
the optimal input time [58], something that humans need to do in real-world situations where
automated algorithms may not be sufficiently efficient. Existing experiments in human-swarm
interaction [44] have repeatedly identified the challenge human operators face in selecting ap-
propriate swarm behaviors. We believe the algorithm we present, which is proven to be both
optimal and complete for the given decision time points, not only represents a contribution (a) to
solving the problem of choosing an optimal behavior sequence, but also (b) as an enabling factor
in the creation of additional benchmarks for human-swarm interaction performance.
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5.1 Related Work

While many different types of collective behaviors for swarms have been studied in the literature
[12, 44], it is somewhat difficult to find a consistent mathematical definition of swarm behavior
within prior work. Simple local control laws have been proposed to generate spatially coordi-
nated motion for groups of robots for swarm behaviors like flocking [69], rendezvous [3, 23]
and pattern formation [6]. Many of these swarm behaviors are often parameterized and small
changes in parameters can drastically change the overall system dynamics and the swarm’s abil-
ity to accomplish a task. The tuning of these parameters for a particular task — even in the rare
event that the task can be completed with only one behavior — is another significant challenge.
To address these issues, we first provide a consistent mathematical definition of a swarm be-
havior that allows us to treat very different behaviors like flocking and pattern formation in the
same framework. In addition, we differentiate between swarm meta-behaviors defined by a set of
control laws with open parameters (e.g. flocking attraction radius), and concrete swarm behav-
iors, which are instantiated from swarm meta-behaviors by specifying the parameters resulting
in fixed swarm dynamics. Thus, it is possible to systematically generate a behavior library by in-
stantiating concrete swarm behaviors from swarm meta-behaviors described by existing control
laws in the literature.

5.2 Formalization of the Swarm Behavior Sequencing Prob-
lem

We begin by considering a remote robotic swarm that is controlled by a supervisory operator (e.g.
a human). There are a variety of tasks (e.g. cohesive navigation through a cluttered environment,
area coverage) that the operator would like to complete with the robots in the swarm, but the
supervisory operator cannot interact directly with individual robots and instead can only control
the swarm in aggregate. The operation of individual robots is defined by local interactions with
other robots in their spatial neighborhood and the global choice of swarm behavior. More accu-
rately, the choice of swarm behavior defines how each robot reacts to local information (sensed
or communicated) from neighboring robots. There is a fixed library of swarm behaviors and the
operator interacts with the entire swarm by selecting a particular behavior from the library. Note
that each behavior in the library is actually the result of every robot in the swarm executing a
particular local control law corresponding to that behavior. The resulting local interactions give
rise to overall system dynamics, which we define as a swarm behavior. A different local control
law will give rise to a different swarm behavior. In this way, each robot can be programmed with
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a fixed number of local controllers and the operator’s global choice of behavior selects which
local control law is executed by all of the robots. Once a behavior has been selected, it is ac-
tive over a certain time interval after which a new behavior may be selected. The operator may
choose to execute the same behavior again if desired. In such a system, the operator selects a
sequence of swarm behaviors to complete a task and it is desirable to select the “best” sequence
of swarm behaviors. However, in many real-world scenarios, it is often unclear whether there
even exists a behavior sequence that enables the swarm to complete the task. Thus, our goal is
to automate this process for the operator. More specifically, given a performance criterion for a
particular task the operator would like to complete, our objective is to automatically choose the
optimal sequence of behaviors to complete the task and optimize the performance criterion. In
addition, if it is not possible to complete the task using the behaviors in the library, we would
like to identify this situation and report it.

5.2.1 Mathematical Formulation

We treat the robotic swarm as a distributed dynamical system where the swarm consists of M
robots and the state of an individual robot i at time t is given by x(i) (t) ∈ RN . The joint state of
the swarm at time t is given by x (t) ∈ Rd where d = MN . There is a finite-sized, fixed library

B = {f1, f2, . . . , fB} (5.1)

of swarm behaviors, where each behavior is a piecewise continuous map

fj : Rd → Rd (5.2)

representing the overall system dynamics that govern the joint state evolution of the swarm.
There is a time horizon tf ∈ R+ over which we would like to use the swarm to complete a
particular task (e.g. move to an area). In order to complete the task, we would like to select a
sequence of behaviors from the library. There is an ordered set

T = {t0, t1, t2, . . . , tn} (5.3)

of n decision time points tk ∈ R+ at which we can select a new behavior to be executed by
the robotic swarm. Without loss of generality assume t0 = 0. For k ∈ {0, 1, . . . , n}, the state
evolution of the swarm over each time interval

Tk = [tk, tk+1) (5.4)

is governed by the choice of behavior

bk ∈ {1, 2, . . . , |B|} (5.5)
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that is selected for that interval. Note that the final time interval is from the last decision time
point to the end of the time horizon (i.e. Tn = [tn, tf )). Specifically, during time interval Tk, the
state of swarm evolves according to the following differential equation

t ∈ [tk, tk+1) : ẋ (t) = fbk (x (t)) (5.6)

where ẋ (t) is the derivative of the joint state with respect to time. The state of the swarm at the
end of time interval Tk is given by

x (tk+1) = x (tk) +

∫ tk+1

tk

fbk (x (τ)) dτ (5.7)

with x (t0) = x0. Given a performance criterion, our objective is to choose a behavior sequence
S = (b0, b1, b2, . . . , bn) that optimizes the performance criterion. Our performance criterion
can be expressed as a cost function P (x0,Xg,B, T , S) we want to minimize with the following
properties, where Xg is a set of goal states for our swarm and SitSj represents the concatenation
of sequences Si and Sj . The first property assigns an infinite cost to all behavior sequences that
do not cause the swarm to reach some x ∈ Xg from x0. The second property states that all
behavior sequences S executed from x0 beginning with a particular prefix subsequence Si can
be computed in two parts: the cost of the sequence Si executed from x0 plus the cost of the
remaining sequence Sj executed from xSi

(i.e. the state reached by executing Si from x0 at times
TSi

). Thus, if we can accurately estimate the cost of Sj using a heuristic, we can estimate the
cost of the entire sequence S.

∀S : x (tf ) 6∈ Xg =⇒ P (x0,Xg,B, T , S) =∞ (5.8)

P (x0,Xg,B, T , Si t Sj) = P (x0,Xg,B, TSi
, Si) + P

(
xSi

,Xg,B, TSj
, Sj
)

(5.9)

5.3 Algorithm for Behavior Sequencing

Given the initial state x0, a set of goal states Xg, a library of swarm behaviors B, time horizon
tf , set of decision time points T , a swarm behavior execution cost function C(·) and heuristic
cost-to-goal estimation functionH(·), Algorithm 1 finds a sequence of swarm behaviors selected
from B to apply at times in T to ensure that the swarm is in one of the goal states in Xg at the
end of the time horizon tf . If such a swarm behavior sequence does not exist, then the algorithm
simply returns an empty sequence (∅) to indicate failure. Note that the set of goal states Xg
does not need to be specified explicitly, but given a particular state x it must be possible to check
whether x ∈ Xg or x 6∈ Xg. Algorithm 1 may be described as an informed search algorithm
similar in spirit to traditional search algorithms such as best-first search and the many variants
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of A*. The algorithm searches over the space of swarm behavior sequences by incrementally
building the sequence and choosing to evaluate sequences with a lower estimated cost first.

The algorithm begins on line 2 by initializing the empty priority queue Q, setting the best known
swarm behavior sequence Sbest to ∅ and setting the cost cbest of the best known sequence to∞.
The priority queue Q will contain a set of 3-tuples with each tuple consisting of (a) a state xs,
(b) the swarm behavior sequence Ss used to reach state xs from the initial state x0 and (c) the
cost cs to reach state xs by applying the partial swarm behavior sequence Ss. In addition, all of
the tuples in the queue are ordered by a priority ps, which is the estimated minimum cost of the
complete behavior sequence to reach Xg from x0 if the complete sequence must begin with the
partial sequence Ss. On line 3, this estimate of the minimum cost of the best swarm behavior
sequence from x0 to reach a state in Xg is computed using the heuristic function H (·) and stored
as p0. On line 4, the search is initiated by enqueuing on Q with priority p0 the 3-tuple containing
the initial state x0, an empty partial swarm behavior sequence (i.e. ∅) and initial cost (i.e. zero).
While the queue is not empty, lines 5–26 are executed to expand each partial swarm behavior
sequence in the queue.

On line 6, the tuple with lowest priority (i.e. estimated minimum cost to reach Xg) is dequeued
from the queue. Assuming that our heuristic function never overestimates the minimum cost
required to reach Xg (i.e. it is admissible), then if the dequeued tuple has a higher estimated cost
ps than the cost cbest of the best sequence found so far (line 7), it is clearly not possible for the
search to produce a better sequence, so we can terminate the search early and return Sbest as the
best swarm behavior sequence (line 8). Otherwise, we proceed to evaluate more swarm behavior
sequences.

One line 10, we identify the length k of the current partial swarm behavior sequence Ss. If the
length of the sequence is equal to the number of decision time points (line 11), then the sequence
is complete (i.e. no further expansion is possible because we have reached the end of the time
horizon) and we can evaluate the sequence. The swarm behavior sequence is feasible if the goal
has been reached (i.e. xs ∈ Xg). If swarm behavior sequence is feasible and has a lower cost
than any known sequence (line 12), then we store it as the best known sequence Sbest and update
the minimum cost cbest (line 13).

Conversely, if the length of the partial swarm behavior sequence Ss is less than the number of
decision time points (line 15), then it can be expanded by selecting another behavior for the next
time interval [tk, tk+1). On lines 16–24, the partial sequence Ss is expanded using each behavior
in the library B. On line 17, the successor state xe reached by applying behavior fj over time
interval [tk, tk+1) is computed. While the definite integral may be evaluated numerically, in
some cases it is possible to compute the solution analytically (e.g. linear time-invariant system
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Algorithm 1 Find the Best Behavior Sequence
1: function FINDBESTSEQUENCE(x0,Xg,B, tf , T , C,H)
2: Q← ∅, Sbest ← ∅, cbest ←∞
3: p0 ← H (x0,Xg,B, tf , T , 0)

4: ENQUEUE(Q, p0, (x0,∅, 0))
5: while Q 6= ∅ do
6: ps, (xs, Ss, cs)← DEQUEUE(Q)
7: if cbest ≤ ps then
8: return Sbest

9: end if
10: k ← |Ss|
11: if k = |T | then
12: if (xs ∈ Xg) ∧ (cs < cbest) then
13: Sbest ← Ss, cbest ← cs

14: end if
15: else if k < |T | then
16: for all fj ∈ B do
17: xe ← xs +

∫ tk+1

tk
fj (x (τ)) dτ

18: Se ← Ss t (j)

19: ce ← cs + C (xs, fj, tk+1 − tk)
20: pe ← ce +H (xe,Xg,B, tf , T , k + 1)

21: if pe < cbest then
22: ENQUEUE(Q, pe, (xe, Se, ce))
23: end if
24: end for
25: end if
26: end while
27: return Sbest

28: end function
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dynamics), which can greatly speed up computation. On line 18, the partial sequence Ss is
concatenated with the swarm behavior index j to generate the successor sequence Se. On line 19,
the cost of executing behavior fj for a time period of length tk+1 − tk is computed using the
provided cost functionC (·) and added to the cost cs of the current sequence to give the cost of the
successor sequence ce. Note that the cost function C (·) also implicitly captures environmental
details and enables us to identify and handle situations where selecting a behavior results in a
potentially invalid trajectory through state space for the robotic swarm. For example, if the state
trajectory from the current state xs to successor state xe as result of behavior fj causes some
robots in the swarm to collide with an obstacle, then the cost function C (·) would evaluate to∞
indicating that Se is an invalid partial swarm behavior sequence. That invalid sequence would
then no longer be expanded. For valid sequences, on line 20, the estimated cost of reaching
Xg from xe over time period [tk+1, tf ) is computed and added to ce to generate a priority pe for
sequence Se. Finally, on line 22, the tuple containing the successor state xe, sequence Se and
cost ce is enqueued with priority pe.

Since the algorithm is very similar in spirit to A* search, the algorithm inherits many of its
properties. These properties include the fact that the algorithm is complete and optimal with
respect to the inputs (e.g. decision time points) when (a) the cost function is monotonically non-
decreasing with respect to the length of the sequence (i.e. adding a behavior to the sequence can
never decrease the cost of the sequence) and (b) the heuristic function is admissible (i.e. it never
overestimates the minimum cost to reach Xg).

Theorem 4. If the cost function is monotonically non-decreasing, the heuristic is admissible and
a feasible swarm behavior sequence exists, then Algorithm 1 will find this sequence. Otherwise,
it will return an empty sequence ∅ to indicate failure. That is, Algorithm 1 is complete.

Proof. First, note that if lines 7–9 are omitted, then there is no method to exit the loop on lines 5–
26 until the queue is empty and thus the algorithm will necessarily evaluate all possible swarm
behavior sequences of length |T |. Since it evaluates all possible behavior sequences, if a feasible
sequence exists, the algorithm must find it. In addition, note that as the algorithm proceeds,
since the heuristic is admissible, the lowest priority in the queue is also actually a lower bound
on the minimum cost to reach Xg via any possible partial sequence that can be expanded from
the queue. On line 7, cbest will be ∞ unless a feasible solution has been found and all feasible
solutions must have cbest < ∞. Thus, if a feasible solution has not been found, line 8 will only
be reached if cbest = ps = ∞. In that case, the algorithm will still terminate correctly on line 8
and Sbest = ∅ will be returned to indicate that no feasible solution exists.

Theorem 5. If the cost function is monotonically non-decreasing and the heuristic is admissible,
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then Algorithm 1 will find the optimal behavior sequence to minimize the provided cost function.

Proof. As noted in the proof for Theorem 4, cbest is ∞ unless a feasible sequence has been
found. From Theorem 4, if a feasible sequence exists, it will be found. In addition, since the
lowest priority in the queue is a lower bound on the minimum cost for any sequence expanded
from the queue, it is clear that line 8 will only be reached if the lowest priority in the queue
becomes larger than cbest. In this case, no better solution can possibly exist, so the algorithm has
certainly found the optimal swarm behavior sequence with the minimum cost.

Since Algorithm 1 can evaluate all possible swarm behavior sequences in the worst case, it has
a worst-case time complexity O

(
|B||T |

)
. As usual for most informed search algorithms, the

actual real-world performance of the algorithm depends on how accurately the heuristic H (·)
estimates the minimum cost of the best swarm behavior sequence.

Based on the above results, and similarly to Weighted A*, we note that Algorithm 1 can also in-
corporate a multiplicative weight on the admissible heuristic resulting in bounded suboptimality
(with respect to total cost) of the solution swarm behavior sequence. Line 20 would be modified
as follows, where w ∈ R+ : w ≥ 1 is a chosen weight and the swarm behavior sequence found
by the algorithm will have a cost at most w times the cost of the optimal sequence.

pe ← ce + wH (xe,Xg,B, tf , T , k + 1) (5.10)

In [2], a clever Multi-Heuristic variant of A* is given, in which it is shown that multiple arbitrarily
inadmissible heuristics can be combined with a single admissible heuristic to make the search
more computationally efficient while maintaining the properties of bounded suboptimality and
completeness. For applications where multiple heuristics are available, Algorithm 1 could also
be made more computationally efficient by incorporating the techniques from [2].

5.4 Simulated Robotic Swarm

5.4.1 Robot Dynamic Model

Each robot in the swarm has the following dynamic model, where xi, yi and θi are the state
variables representing the position and orientation of robot i. The control inputs to the robot are
given by uiv and uiω, which represent the commanded linear velocity and commanded angular
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(a) Initial Robot Poses (b) Poses After of 1st Behavior (Flock North) in
Sequence over 1st Time Interval

(c) Poses After of 4th Behavior (Flock East) in
Sequence over 4th Time Interval

(d) Trajectory of the Swarm

Figure 5.1: Simulated Swarm of 20 Robots Executing a Behavior Sequence to Move to a Target
Area
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velocity.

ẋi = uiv cos
(
θi
)

ẏi = uiv sin
(
θi
)

θ̇i = uiω

(5.11)

For convenience, we define the position vector pi ∈ R2, which is the xy-coordinates of the robot
as given above, and bearing vector bi ∈ R2 : ‖bi‖2 = 1, which is a unit vector in the heading
direction θi. The function φ(v1,v2) finds the smallest angle required to rotate from v1 to v2.
Assume v1 to v2 are augmented appropriately (with zeros) to compute their cross product and
that ê3 is the unit vector normal to the x-y plane along the positive z-axis.

bij =
pj − pi

‖(pj − pi)‖2

φ(v1,v2) = sgn
(

(v1 × v2)T ê3

)
cos−1

(
vT1 v2

‖v1‖2‖v2‖2

) (5.12)

Within the simulation, our inputs are bounded (uiv ∈ [Uv,min, Uv,max], uiω ∈ [Uω,min, Uω,max]) and
may saturate as would be expected for a real robotic swarm. The chosen saturation limits for our
simulated swarm were Uv,max = −Uv,min = 2 and Uω,max = −Uω,min = π

8
.

5.4.2 Swarm Meta-Behaviors

In this section, we introduce a set of meta-behaviors for our robotic swarm. These meta-behaviors
are parameterized and generate different dynamics for our robotic swarm depending on the
choice of parameters. Specifying the parameters for these meta-behaviors allows us to instanti-
ate the meta-behaviors into concrete behaviors (see Section 5.4.3) that would be included in the
behavior library B.

Biased Flocking

The following control law generates flocking behavior for the swarm but with flocking biased in
the direction specified by the parameter q ∈ R2. Within the equations below, Nr (i) specifies
neighbors of robot i within the repulsion radius Rr, Nh (i) specifies neighbors outside of Rr

but within the heading alignment radius Rh, and Na (i) specifies neighbors outside of Rh but
within the attraction radius Ra. Finally, N (i) specifies robots within any of the three regions.
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The minimum forward velocity for all robots was Uv,default.

v(i) =
1

|N (i)|

 ∑
j∈Nr(i)

−bij

‖p(j) − p(i)‖2
2

+
∑

j∈Na(i)

(
p(j) − p(i)

)
γ(i) =

1

|N (i)|

 ∑
j∈Nr(i)

φ
(
bi,−bij

)
+
∑

j∈Nh(i)

φ
(
bi,bj

)
+
∑

j∈Na(i)

φ
(
bi,bij

)
uiv = max

(((
v(i) + q

)T
bi
)
, Uv,default

)
uiw =γ(i) + φ

(
bi,q

)
(5.13)

The chosen radii for our simulated swarm were Rr = 5, Rh = 10, Ra = 20 and the chosen
minimum forward velocity was Uv,default = 1.

Rendezvous / Anti-Rendezvous

The following control law can generate different dynamics depending on the choice of parameter
Kp. If Kp > 0, then each robot moves toward neighboring robots. If Kp < 0, each robot moves
away from neighboring robots. If Kp = 0, then each robot stops moving.

ṗ(i) =
Kp

|N (i)|
∑
j∈N (i)

(
p(j) − p(i)

)
uiv =

(
bi
)T

ṗ(i)

uiw = φ
(
bi, ṗ(i)

) (5.14)

Formation Control

For formation control, we use the following consensus-based control law from [57]. The forma-
tion itself is specified via the vector z ∈ R2M (note that this was calledK in [57]). The formation
may be specified using a set of positions in the vector z and the following consensus-based con-
trol law will generate the desired formation around the centroid of robots’ initial positions. Thus,
the formation can be specified independently of the robots’ actual positions in the workspace. If
the robot inputs don’t saturate, the control law below preserves the centroid of the robots’ initial
positions as they move and also ensures that differences between robot positions in their final
configuration will match the differences between their positions in the vector z. Note that z is
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the only parameter to this meta-behavior.

ṗ(i) (t) =
1

|N (i)|

 ∑
j∈N (i)

(
p(j) − p(i)

)
−
∑
j∈N (i)

(
z(j) − z(i)

)
uiv =

(
bi
)T

ṗ(i)

uiw =φ
(
bi, ṗ(i)

)
(5.15)

5.4.3 Swarm Behaviors

In this section, we describe a set of concrete swarm behaviors. These behaviors have no unspec-
ified parameters, so the dynamics that result from these control laws are fully specified. These
are behaviors that would be included in the behavior library B for Algorithm 1.

Flock

All robots flock in a direction that is a result of their initial positions and orientations. Use control
law in Section 5.4.2 with bias q = 0.

Flock East

Robots flock in the positive x-direction. Use control law in Section 5.4.2 with bias q =
[
1 0

]T
.

Flock North

Robots flock in the positive y-direction. Use control law in Section 5.4.2 with bias q =
[
0 1

]T
.

Flock West

Robots flock in the negative x-direction. Use control law in Section 5.4.2 with bias q =
[
−1 0

]T
.

Flock South

Robots flock in the negative y-direction. Use control law in Section 5.4.2 with bias q =
[
0 −1

]T
.
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Stop Moving

All robots stop moving. Use control law in Section 5.4.2 with Kp = 0.

Rendezvous

All robots move toward each other. Use control law in Section 5.4.2 with Kp = 1.

Anti-Rendezvous

All robots move away from each other. Use control law in Section 5.4.2 with Kp = −1.

Line X

Robots move into a line parallel to the x-axis. The control law in Section 5.4.2 is used with

z(0) = 0 and z(i+1) = z(i) +
[
2 0

]T
.

Line Y

Robots move into a line parallel to the y-axis. The control law in Section 5.4.2 is used with

z(0) = 0 and z(i+1) = z(i) +
[
0 2

]T
.

5.5 Application to Swarm Navigation

In many real-world scenarios, a supervisory operator for a robotic swarm would like to complete
a mission composed of many tasks. A very common task in many missions is for the supervisory
operator to navigate the robotic swarm from an initial area to a target area through a region that
may contain obstacles. For example, consider a robotic swarm that is transported on a larger
carrier vehicle. It may not be possible for the carrier vehicle to reach the region where the swarm
must operate for the remainder of the mission. The carrier vehicle would drop off the swarm in
the initial area and it would be necessary for the supervisory operator to navigate the swarm to
the target area to complete the rest of the mission. While there has been a tremendous amount of
work on both complex multi-robot motion planning and distributed multi-robot control, here we
explore a slightly different approach where we use Algorithm 1 to select a sequence of behaviors
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that moves the robots from the initial region to the target region without colliding with obstacles.
Note that this approach has the benefit of only selecting from behaviors corresponding to local
control laws already programmed onto the robots and it only requires the operator to transmit
a short sequence of behavior identifiers and time points (i.e. a few integers and floating point
numbers) to the robot swarm, resulting in very little data transmission between the operator
and the swarm. Therefore, this approach is very useful for applications in domains where the
bandwidth between the human supervisor and the swarm is very limited, for example where
there is a swarm of robots under water supervised by a human on a ship.

For this scenario, we use the simulated robotic swarm described in Section 5.4. The state x is
composed of positions pi and orientations θi of all robots in the swarm. Given a target region
specified by center atarget ∈ R2 and radius Rtarget ∈ R+, the set of goal states Xg is given as
follows.

Xg =
{
x | ∀i :

∥∥pi − atarget
∥∥

2
< Rtarget

}
(5.16)

Our cost function C (·) penalizes the motion of each robot in the swarm. This ensures that our
optimal behavior sequence navigates the swarm to the target area while minimizing the motion
of all robots. It is defined as

C (xs, f, t) =
∑
i

Lf
(
pi (0) ,pi (t)

)
(5.17)

where Lf computes the length of the curve from pi (0) to pi (t) when each individual robot
trajectory pi (t) is based on the joint state trajectory x (t) = xs +

∫ t
0
f (x (τ)) dτ . Note that

we define Lf (pi (0) ,pi (t)) = ∞ if the trajectory from pi (0) to pi (t) intersects an obstacle or
moves off the map. Our heuristic estimates the cost of the optimal behavior sequence using the
traditional Euclidean distance metric and sums the straight-line distances between each robot and
the target area. This is the minimum distance each robot would need to travel if it were possible
for the robot to drive directly toward the target area, so the heuristic will never overestimate the
cost of a behavior sequence. Thus, the heuristic is admissible.

H (xs,Xg,B, tf , T , k) =
∑
i

max
((∥∥pi − atarget

∥∥
2
−Rtarget

)
, 0
)

(5.18)

Figure 5.1 shows a simulation where Algorithm 1 was applied to move the swarm from the
initial area in the bottom left corner of the map to the target area shown by the blue circle while
avoiding the green obstacles over a time horizon of tf = 150 seconds. There were 15 evenly
spaced decision time points 0 ≤ k ≤ 14 : tk = 10k seconds. The map was a square area
with X ∈ [−50, 50) meters and Y ∈ [−50, 50) meters For this simulation, the heuristic had a
multiplicative weight of w = 2 leading to bounded suboptimality (i.e. the solution sequence had

69



no greater than 2 times the cost of the best sequence). The chosen swarm behavior sequence
was Flock North, Flock North, Flock North, Flock East, Flock East, Flock East, Flock North,
Flock East, Flock North, Flock East, Flock North, Stop Moving, Stop Moving, Stop Moving,
Rendezvous. Since no cost was placed on time-to-completion, there were several intervals in
the middle where the Stop Moving behavior was chosen rather than having the swarm Stop
Moving after reaching the target area. In addition, since no cost was placed on switching swarm
behaviors across adjacent time intervals, the chosen sequence alternates between Flock North
and Flock East more frequently than necessary. Adding a cost on time-to-target and switching
swarm behaviors can make the behavior sequence match human intuition more closely. Most
other parts of the sequence match intuition: Flock North and Flock East were selected to navigate
to the target area that was northeast of the robot start positions and Rendezvous was selected at
the end because the centroid (but not all robots) of the swarm was within the target area. In that
state, Rendezvous clearly had a lower motion cost than Flock East.

Experiments were conducted on a desktop with an Intel Core i5 750 (2.66 GHz, quad-core)
processor and 12GB of RAM. Across 10 trials with 20 robots in environments with different
arrangements of obstacles, the average time to identify the behavior sequence with w = 2 was
27.92 seconds. When the environment was kept constant and w = 2, for 10, 15, 20 and 25
robots, it took 9.19, 15.98, 24.52 and 35.42 seconds respectively to find the best sequence. For
the w = 10, the corresponding times were slightly faster at 9.52, 15.62, 19.27 and 24.63 seconds.

5.6 Application to Swarm Dynamic Area Coverage

In this section, we explore the use of Algorithm 1 to find the best sequence of swarm behaviors
to complete a task that the behaviors were not originally designed to accomplish. In contrast to
the swarm navigation task described in Section 5.5 where the goal of motion towards a target
area mapped well to swarm behaviors such as biased flocking that achieve motion in a coherent
direction, here we try to complete a dynamic area coverage task over a given time horizon using
the same library of behaviors — none of which have been designed in advance to maximize the
area covered by the swarm. Specifically, given an environment that has been discretized into a
number of grid cells, we try to find a swarm behavior sequence that ensures a certain percentage
of grid cells have been visited by a robot in the swarm within the given time horizon. This is in
contrast to static area coverage where robots with a certain sensing region (e.g. disk, cone) try to
move to fixed final poses that maximize the area simultaneously viewed by all robots.

We use the simulated robotic swarm described in Section 5.4, but for this scenario, we augment
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(a) Initial Robot Poses (b) Poses After 1st Behavior (Flock West) in
Sequence over 1st Time Interval

(c) Poses After 2nd Behavior (Flock North) in
Sequence over 2nd Time Interval

(d) Trajectory of the Swarm Over Complete Time
Horizon

Figure 5.2: Simulated Swarm of 20 Robots Executing a Behavior Sequence to Achieve at Least
25% Area Coverage While Minimizing Robot Motion
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our state x with the state of the grid cells. Each grid cell gxy has a corresponding binary variable
in the state x where gxy is 1 if it has been visited by a swarm robot and 0 if it has not. The set of
goal states Xg is given as follows. Assume the grid has dimensions Gx × Gy. Here Rtarget is the
desired coverage ratio.

Xg =

{
x |
∑
x

∑
y

gxy ≥ RtargetGxGy

}
(5.19)

Our cost function C (·) again penalizes the motion of each robot in the swarm.

C (xs, f, t) =
∑
i

Lf
(
pi (0) ,pi (t)

)
(5.20)

This time our heuristic estimates the cost of the optimal behavior sequence by the minimum
distance the robots would need to travel to cover the remaining cells that need to be visited to
achieve the desired coverage ratio if the cells were arranged in the best possible configuration.
Note that M is the number of robots in the swarm.

H (xs,Xg,B, tf , T , k) =
Gs

√
2

3
max

(
0, RtargetGxGy − 4M −

∑
x

∑
y

gxy

)
(5.21)

Assume each grid cell is square with side length Gs. The cost computed by the heuristic is the
minimum distance each robot would have to travel to cover enough cells to achieve the desired
coverage ratio if all the remaining cells to be covered were divided (not necessarily evenly)
among the robots in the swarm and it was possible for each swarm robot to cover its respective
cells by driving diagonally in an almost straight line by zig-zagging very slightly. In this way, it
would be possible for each robot to visit 3α+ 4 cells for α ∈ N by travelling only (α + ε)Gs

√
2

units, where ε ∈ R+ can be made arbitrarily small. Thus, this heuristic is admissible and will
never overestimate the minimum cost to visit the remaining cells.

Figure 5.2 shows a simulation where Algorithm 1 was applied to find a swarm behavior sequence
that achieves at least 25% area coverage (i.e. Rtarget = 0.25) while minimizing the distance
travelled by the robots over a time horizon of tf = 150 seconds. The map was a square area with
X ∈ [0, 100) meters and Y ∈ [0, 100) meters and square grid cells with side lengthGs = 1 meter.
There were 15 evenly spaced decision time points 0 ≤ k ≤ 14 : tk = 10k seconds. For this
simulation, the heuristic had a multiplicative weight of w = 5 leading to bounded suboptimality
(i.e. the solution sequence had no greater than 5 times the cost of the best sequence). The chosen
swarm behavior sequence was Flock West, Flock North, Flock South, Anti-rendezvous, Line X,
Rendezvous, Stop Moving, Stop Moving, Stop Moving, Flock South, Flock South, Flock East,
Line X, Flocking, Flock West. We note that a wider variety of swarm behaviors were chosen to
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accomplish this task than the navigation task. Initially, the robots were very dispersed and could
not Rendezvous without colliding with the obstacle. While one might expect a lawn mower
pattern to emerge given the flocking behaviors in the library, this is not the sequence that was
chosen. In retrospect, this is logical since all of the flocking behaviors are somewhat wasteful of
individual robot motion with multiple robots revisiting the same grid cells as they move in the
same direction. Thus, a more diverse combination of behaviors in the sequence led to a lower
overall motion cost to achieve the desired coverage ratio.

Experiments were conducted on the same computer used for Section 5.5. Across 10 trials with 20
robots in environments with different arrangements of obstacles, the average time to identify the
behavior sequence whenw = 5 was 63.55 seconds. When the environment was held fixed and the
weights werew = 10,w = 30,w = 50 andw = 70 the time required was 50.49, 29.43, 19.98 and
18.75 seconds respectively verifying that higher bounds on suboptimality enabled solutions to be
found more quickly though the gains eventually diminished. A comparison between sequences
varying the number of robots did not make sense for this application because over the same time
horizon, the area covered was highly correlated with the number of robots.

5.7 Conclusion

We formalized the swarm behavior sequencing problem, the solution of which enables a supervi-
sory operator to select the optimal behavior sequence for a swarm to complete a given task. We
presented an algorithm that performs an informed search over sequences of behaviors to find the
optimal swarm behavior sequence. The algorithm was shown to be optimal and complete for the
chosen decision time points. We applied the algorithm to (a) swarm navigation, where the swarm
behaviors in the library mapped well to the required task and (b) swarm area coverage, which
none of the swarm behaviors in the library were individually designed to accomplish. Simulation
results in static environments with obstacles showed that using an admissible weighted heuristic,
our algorithm successfully selected the best behavior sequences with bounded suboptimality to
accomplish the task. While the execution times for the algorithm were too high for real-time
supervisory control of a real robot swarm, the optimality (or bounded suboptimality) and com-
pleteness guarantees of the algorithm validate its usefulness for creating benchmarks for human
performance. It can also be used to periodically aid a human operator when required. Execution
times can be significantly improved in the future through the use of parallel computing hardware
such as GPUs.
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Chapter 6

Time-Optimal Scheduling of
Consensus-based Behaviors to Achieve
Multiple Goals

Swarms are multi-robot systems that operate using simple local control laws. Global swarm be-
haviors emerge via interactions of swarm members. These emergent behaviors, such as flocking,
deployment, rendezvous, allow the swarm to accomplish tasks even with the individual swarm
members’ sensor and computation limitations. Real-world applications, including area coverage,
search and rescue operations, military surveillance or first responder assistance [7, 34, 42, 45, 62],
are composed of complex tasks which usually cannot be achieved with a single existing behav-
ior. One way to achieve complex tasks with swarms is to manually synthesize more sophisticated
local control laws that would allow the swarm to accomplish the task while individual robots sat-
isfy practical local constraints like collision avoidance [11, 80]. Other work has used formal
methods to automatically synthesize the local control logic for each robot from a set of indi-
vidual robot specifications [51], which provides formal guarantees for each robot, but limited
insight into overall swarm performance. This is a hard problem in general and there are few
known solutions with guaranteed performance even for specific tasks like area coverage, search
and rescue, and surveillance [12, 35, 44]. Alternatively, one can use a library of collective swarm
behaviors (which may not necessarily be designed for the task at hand) and compose them using
a supervisory controller [59] to accomplish the task. Often, an operator knows, not only the final
task goal but also a set of intermediate goals that must be reached on the way to the final goal. In
this chapter, we study the problem of finding a behavior schedule (i.e. behavior sequence and the
times of instantiation of the behaviors), so that the total time to reach the final goal is minimized
and all intermediate goals are achieved.
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More formally, we consider a swarm robotic system equipped with a library of collective behav-
iors. In each behavior, the state evolution of the swarm is modeled by a linear dynamical system.
Formally, we model the state evolution of the swarm as a hybrid dynamical system, where there
is one mode with linear dynamics corresponding to each behavior. We are also given a set of in-
termediate goals (represented in the joint state space of the robots) that are unordered and a final
goal that the robots should reach. Note that each intermediate goal as well as the final goal is the
equilibrium point of some behavior in our behavior library, which ensures that the intermediate
and final goals are reachable. Our objective is to compute a sequence of the modes (behaviors)
and the switch times such that the robot swarm reaches the final goal state in minimum time while
achieving all the intermediate goal states. Our problem is related to the problem of switch time
optimization studied for hybrid systems [49]. In switch time optimization problems for hybrid
systems, the objective is to compute the sequence of the modes and the switch times between
the modes so as to optimize a given objective function (over the path taken by the dynamical
system) over a given time horizon. A key distinction of our problem from the extant literature
on switch time optimization is that we have intermediate states that the dynamical system has to
reach. Furthermore, in our problem, the final state is fixed while the objective is to minimize the
total time to get to the final goal state.

We develop a two-step procedure to solve the swarm behavior scheduling problem. Our first
step is to compute the minimum time trajectory between any two given (possibly intermediate)
goal states with our dynamics as constraints. We present an algorithm to compute the different
behavior switches and their timings for moving from one goal state to another. Please note that it
has already been established in the literature that for going to a given goal state in a time-optimal
fashion, it may be beneficial to delay the choice of the behavior that results in achievement of the
goal [57]. The result here is a generalization of the result in [57], since we show that one can use
other behaviors (whose fixed points may not correspond to the given goals) transiently in order
to move between the goals in a time-optimal fashion. Since our method is based on gradient
descent, we achieve a locally optimal solution. In our second step, we formulate a Traveling
Salesman Problem, where the cities are the goals and the cost of traveling between the goals is
as given by the first step above. We show that the costs satisfy the triangle inequality although
they are asymmetric. Therefore, we use a variant of Christofides’ algorithm [21, 39] to compute
a goal sequence with bounded suboptimality - specifically, it is a constant factor approximation
to the optimal sequence.

Our contributions are (a) formalization of the problem of behavior scheduling to achieve multi-
ple unordered goals with a robotic swarm, (b) an algorithm that produces a behavior schedule to
achieve all intermediate goals and the final goal in minimum time such that the behavior dura-
tions are locally optimal and given which the goal sequence has bounded suboptimality and (c)
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application of this algorithm to configuration control of robot swarms.

6.1 Related Work

We formulate our problem in the framework of switch time optimization for hybrid systems
(see [49] for a comprehensive survey of recent results) where the mode sequence is not known a
priori and also apply some results from traditional time-optimal control to characterize the length
of the unknown optimal mode sequence. The authors of [32] consider the problem of finding
the optimal switch times for a hybrid system where the cost functional is defined over a fixed
time horizon and the final state is unconstrained. After finding an expression for the gradient
of the cost functional in terms of the dynamics of the system and the costate, they propose
a gradient descent algorithm that iteratively forward integrates the state equations, backward
integrates the costate equations and then takes a gradient step (with Armijo step size) in the cost
functional to eventually find a locally optimal solution. They also propose a procedure to use
the gradient related information to iteratively alternate between adding modes to the sequence
and updating the switch times. In [81], a sufficient descent version of the algorithm is presented
with a procedure to satisfy dwell time constraints. The techniques presented in [81] are quite
powerful and provide locally optimal solutions to the free-endpoint fixed-time horizon switch
time optimization problem in hybrid systems with piecewise continuous modes.

In contrast to this locally optimal solution to the general free-endpoint fixed-time problem, in
the first part of our approach we solve a particular case (for systems performing consensus) of
the constrained-endpoint free-time problem using a more direct approach that does not require
integration of the costate equations. Our method also relies on gradient descent techniques and
provides a locally optimal solution. This solution is a behavior schedule for a robotic swarm
to move from an initial state towards a goal state in minimum time using only consensus-based
behaviors from a given library. In the second part of our approach, we then extend this technique
with a variant [39] of Christofides’ algorithm [21] for generating fixed-endpoint Hamiltonian
paths with bounded suboptimality, which allows us to find a behavior schedule for a robotic
swarm to move from an initial state to a desired final state while also achieving a set of un-
ordered intermediate goals in minimum time. Our primary contribution is the application of
these techniques to robotic swarms.
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6.2 Problem Formulation

6.2.1 Consensus-based Behaviors

Consider a robotic swarm whose joint state (i.e. stacked states of individual robots) is given by
x (t) ∈ X at time t ∈ R+ in state space X = Rn. For this robotic swarm, the state evolution
of each robot may be written as a weighted linear combination of its own state and the states
of other robots in the swarm. That is, the joint state evolution of the swarm is given by the
following differential equation when there is no external influence from a supervisory operator
(e.g. a human).

ẋ (t) = Ax (t) (6.1)

For the dynamics above, it is clear that the joint state of the swarm continuously evolves over
time unless x (t) lies in the null space of the dynamics matrix A. If the system is stable (i.e.
all eigenvalues of A have negative real parts), then it is clear that the state of the system will
evolve from any initial state x (0) to asymptotically approach a point in the null space of A (i.e.
limt→∞Ax (t) = 0).

The state evolution of the swarm may be influenced by selecting a constant bias input z ∈ Rn,
which is incorporated into the dynamics as follows.

ẋ (t) = A (x (t)− z) (6.2)

Applying the terminology we introduced in [59], Equation (6.2) represents the dynamics for a
swarm meta-behavior with two unspecified parameters: the dynamics matrix A and the bias
vector z. This meta-behavior can be instantiated into many different concrete swarm behaviors
via different choices for the dynamics matrix A and the bias vector z. For example, if indi-
vidual robot states represent their spatial positions, then the concrete swarm behavior known as
rendezvous may be instantiated by specifying z = 0 and A = −L, where L is the Laplacian
matrix of the swarm’s communication graph. In fact, the case when the dynamics matrix is fixed
as A = −L is an important subclass of the meta-behavior with the dynamics given in Equa-
tion (6.2). Specifically, fixing the dynamics matrix in this way results in the swarm performing
a biased version of linear time-invariant (LTI) consensus with the following dynamics. See [68]
for more information about the unbiased version of continuous-time continuous-state consensus.

ẋ (t) = −L (x (t)− z) (6.3)

For this reason, we refer to this meta-behavior and any concrete behaviors instantiated from it
(by specifying z) as consensus-based behaviors. When the states represent spatial positions of
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the robots, we can instantiate concrete consensus-based behaviors like rendezvous (as described
above) or various spatial configurations (e.g. line, circle) through appropriate selection of z.
In contrast to other methods of rendezvous or generating the spatial configurations, instantiat-
ing them as a consensus-based behavior would provide useful properties such as preserving the
centroid of the original robot positions as they move.

It is important to recognize that the states do not necessarily have to represent spatial positions.
For example, the states could instead represent more abstract quantities, such as the distribution
of robots among tasks as in [67] (continuous-time macroscopic model of swarm). In that case,
we can instantiate concrete consensus-based behaviors such as mission-specific robot distribu-
tions among tasks by appropriately selecting z and with A = −L = K (K as defined in [67])
representing the transition rate matrix, where L (not necessarily symmetric) is the weighted
Laplacian of a directed graph modelling transitions between tasks. Here, the consensus-based
behavior would provide the beneficial (and necessary) property that the total quantity of robots
is preserved as their distribution among tasks changes.

6.2.2 Problem Statement

Assume we have a finite-sized, fixed library

B = {f1, f2, . . . , fm} (6.4)

of m concrete consensus-based behaviors where the i-th behavior in the library is a map fi :

Rn → Rn that has been instantiated from Equation (6.3) by specifying the bias vector zi ∈ Rn.

fi (x (t)) = −L (x (t)− zi) (6.5)

For notation purposes, we write Z = {z1, z2, . . . , zm} for the set of bias vectors with which the
concrete consensus-based behaviors in our library were instantiated.

A supervisory operator controls the robotic swarm by selecting a behavior fbk ∈ B where bk ∈
{1, 2, . . . , |B|} and applying it for a corresponding duration τk ∈ R+. Thus, control of the robotic
swarm may be represented as a sequence

S = ((b1, τ1) , (b2, τ2) , . . . , (bd, τd)) (6.6)

of d 2-tuples where the first element in the 2-tuple is the index bk of the selected behavior in the
library and the second element is the duration τk over which the behavior is applied. We refer to
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this sequence as a behavior schedule for our robotic swarm. For notation purposes, we write the
behavior selection times

tk = t0 +
k∑
i=1

τi (6.7)

and without loss of generality assume t0 = 0. The corresponding dynamics guiding the state
evolution of the swarm is given as follows.

ẋ (t) =



fb1 (x (t)) for t ∈ [0, t1)

fb2 (x (t)) for t ∈ [t1, t2)

...

fbd (x (t)) for t ∈ [td−1, td)

(6.8)

Our supervisory operator has an unordered set of c intermediate goals Y = {y1,y2, . . . ,yc}
where yj ∈ Rn that they would like to achieve with the robotic swarm in minimal time. We
define a goal yj to be achieved within time T if the following condition is true.

∃t ≤ T : ‖P (x (t)− yj)‖2
2 ≤ ε (6.9)

The parameter ε ∈ R+ is a desired tolerance chosen by the supervisory operator. The matrix P

is an orthogonal projection matrix that rejects any component in the null space of L. That is, if{
v1,v2, . . . ,vnullity(L)

}
is an orthonormal basis (i.e. ∀i : ‖vi‖2 = 1 and ∀i, j : v>i vj = 0) for the

null space of L, then P can be written as follows.

P =

nullity(L)∏
i=1

(
I− viv

>
i

)
(6.10)

For example, every Laplacian matrix L has an eigenvector 1 with corresponding eigenvalue
0. For a connected undirected graph, 1 is also the only eigenvector with eigenvalue 0, so it
must be part of a basis for the null space of L, which means for an undirected connected graph
P = I−

(
1>1

)−1
11>.

In this chapter, given the library B of consensus-based behaviors, the initial state xinitial of the
swarm, the final goal xfinal and the unordered set Y of intermediate goals the operator would
like to achieve, our objective is to identify the behavior schedule S, which consists of selected
behaviors and the associated time intervals of application, to minimize the total time T . Formally,
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our problem is written as follows.

arg min
S

T

subject to x (0) = xinitial

‖P (x (T )− xfinal)‖2
2 ≤ ε

ẋ (t) =



fb1 (x (t)) for t ∈ [0, t1)

fb2 (x (t)) for t ∈ [t1, t2)

...

fbd (x (t)) for t ∈ [td−1, td)

∀y ∈ Y ,∃t ≤ T : ‖P (x (t)− y)‖2
2 ≤ ε

(6.11)

The first constraint in this problem specifies the initial state of the swarm. The second constraint
specifies a necessary and sufficient condition on the final state of the swarm for the final goal
to be achieved. The third constraint restricts the trajectory describing the state evolution of the
swarm based on the dynamics of the chosen behaviors from the library. The final constraint not
only captures the requirement that all intermediate goals must be achieved, but also that they
may be achieved in any order. The optimal solution to this problem is a behavior schedule S∗

that causes the swarm to achieve all intermediate goals and then the final goal in minimal time
T ∗.

To provide some mathematical intuition, this problem is visualized for a system with a two-
dimensional (n = 2) state space and stable dynamics matrix (eigenvalues of A have negative
real parts) as shown in Figure 6.1.

6.3 Identifying a Behavior Schedule with No Intermediate Goals

The problem in Equation (6.11) is quite challenging to approach directly, so we begin with a
relaxed version of the problem where there are no intermediate goals (i.e. Y = ∅). In this
section, we begin by analyzing the simplest case, where the behavior library only contains two
behaviors (m = 2) and we show how to find the optimal behavior schedule to achieve the single
goal xfinal. We then extend our analysis to the case where there are multiple behaviors in the
library.
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6.3.1 Behavior Library Contains Only Two Behaviors

When the behavior library only contains two behaviors, any behavior schedule must necessarily
alternate between selecting the two behaviors, so the only variables are the durations. Thus, the
state of the system evolves as follows.

ẋ (t) =



−L (x (t)− z1) for t ∈ [0, t1)

−L (x (t)− z2) for t ∈ [t1, t2)

−L (x (t)− z1) for t ∈ [t2, t3)

−L (x (t)− z2) for t ∈ [t3, t4)

...

(6.12)

By considering the change of variables x̄ (t) = x (t)− z1, we can always analyze the equivalent
system

˙̄x (t) =



−Lx̄ (t) for t ∈ [0, t1)

−L (x̄ (t) + z1 − z2) for t ∈ [t1, t2)

−Lx̄ (t) for t ∈ [t2, t3)

−L (x̄ (t) + z1 − z2) for t ∈ [t3, t4)

...

(6.13)

and find an optimal behavior schedule to transition from initial state x̄initial = xinitial − z1 to final
state x̄final = xfinal − z1. Thus, we will drop the overbar notation and analyze the following
system.

ẋ (t) =



−Lx (t) for t ∈ [0, t1)

−L (x (t)− z) for t ∈ [t1, t2)

−Lx (t) for t ∈ [t2, t3)

−L (x (t)− z) for t ∈ [t3, t4)

...

(6.14)

Given the system above, the following important question naturally arises: what is the maximum
number of switches required to achieve a goal xfinal? We will now seek to answer this question by
considering the following problem that occurs in traditional time-optimal control of LTI systems
with bounded control signals u (t) ∈ [0, 1].

Theorem 6. The solution (if it exists) to the problem in Equation (6.15) is the optimal control
signal u∗ (t). This control signal corresponds to the optimal behavior schedule for the problem
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in Equation (6.11) when Y = ∅ and the state evolution corresponds to Equation (6.14).

arg max
u(t)

∫ T

0

−1 dt

subject to x (0) = xinitial

‖P (x (T )− xfinal)‖2
2 ≤ ε

ẋ (t) = −Lx (t) + Lzu (t)

u (t) ∈ [0, 1]

(6.15)

Proof. The payoff functional
∫ T

0
−1 dt = −T is maximized when the time T at which the swarm

achieves the desired goal xfinal is minimized. First, we form the Hamiltonian, where p (t) is the
costate. Due to space constraints, we will drop the dependence on time t from our notation.

H (x,p,u) = p> (−Lx + Lzu)− 1 (6.16)

This is a free-time, constrained-endpoint problem, for which Pontryagin’s Maximum Principle
states the following conditions under which a given input signal u (t) is optimal.

ẋ = ∇pH = −Lx + Lzu (6.17)

ṗ = −∇xH = L>p (6.18)

∀t ∈ [0, T ] : H (x,p,u) = max
a∈[0,1]

H (x,p, a) (6.19)

p (T ) = ∇x

(
‖P (x− xfinal)‖2

2 − ε
)∣∣
t=T

(6.20)

Here, we have two differential equations representing the state x (t) and costate p (t) evolution.
In addition, we have a terminal condition on the costate trajectory — it must be perpendicular
to the curve representing the set of possible final states x (T ) for the system. By expanding the
third condition, we find

H (x,p,u) = max
a∈[0,1]

H (x,p, a)

u = arg max
a∈[0,1]

(
p> (−Lx + Lza)− 1

)
u = arg max

a∈[0,1]

(
p>Lza

) (6.21)

which implies the following for optimal u∗.

∀a ∈ [0, 1] : p>Lz (u∗ − a) ≥ 0 (6.22)

u∗ =

{
1 for p>Lz ≥ 0

0 for p>Lz < 0
(6.23)
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Clearly, the above form of piecewise continuous u∗ has an exactly corresponding representation
as a discrete behavior schedule S∗ and applying u∗ to solve the problem in Equation (6.15) causes
the state to evolve according to Equation (6.14) as required.

Returning to our robotic swarm, Theorem 6 implies that even when the the supervisory operator
is permitted to select a convex combination of the consensus-based behaviors in the library, the
optimal behavior schedule only switches discretely between individual behaviors in the library.

Theorem 7. The maximum length of the optimal behavior schedule S∗ for a robotic swarm
performing consensus-based behaviors with Y = ∅ and with a behavior library containing
|B| = 2 behaviors is |S∗| ≤ n.

Proof. By expanding the costate evolution we find p>Lz = p (0)> eLtLz, which implies the well
known result that for time-optimal control of a linear time-invariant system where the control
signal is constrained to a convex set, each component of the control signal only takes on values
at its limits (in this case, 0 and 1) — that is, the signal is bang-bang — and that the optimal control
signal only switches a finite number of times. Since the dynamics matrix for our consensus-based
behavior is the Laplacian of an undirected communication graph, it is symmetric positive-definite
with real entries and has an eigendecomposition L = QΛQ>.

p>Lz

=p (0)> eLtLz

=p (0)> eQΛQ>tQΛQ>z

=p (0)>QeΛtQ>QΛQ>z

=p̃ (0)> eΛtΛz̃

=
∑
i

p̃i (0) z̃iλie
λit

(6.24)

Here z̃ = Q>z and p̃ = Q>p. Since all the eigenvalues λi of L must be real and nonnegative,
this is simply a sum of growing exponentials. Some of the coefficients may be positive and some
of the coefficients may be negative, so this switches between positive and negative a maximum
of n times over t ∈ [0, T ], which means that the optimal control signal must switch between
0 and 1 at most n times. This implies that the optimal behavior schedule for our swarm has a
maximum length of n.

We note that while the proofs of Theorem 6 and Theorem 7 were presented for a symmetric
dynamics matrix for ease of exposition, they can actually be extended to any diagonalizable
dynamics matrix in a straightforward manner.
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6.3.2 Behavior Library Contains Many Behaviors

We now turn our attention to the problem of finding the optimal behavior schedule when our
behavior library can contain any number of consensus-based behaviors and there are no inter-
mediate goals (i.e. Y = ∅). Rather than a vector z ∈ Rn, now consider a matrix Z ∈ Rn×m

where the i-th column is the i-th bias vector zi from the set of bias vectors Z corresponding to
behaviors in the library B.

Theorem 8. For the problem in Equation (6.15), if the dynamics constraint is replaced with
ẋ (t) = −Lx (t) + LZu (t) and u (t) is constrained to a simplex in the positive orthant (i.e.
u (t) ∈ [0, 1]m : ‖u (t)‖1 ≤ 1), then the optimal signal u∗ (t) corresponds to the optimal behav-
ior schedule for the problem in Equation (6.11) when Y = ∅ and the state evolution corresponds
to Equation (6.8).

Proof. Applying Pontryagin’s Maximum Principle with A = {a | a ∈ [0, 1]m : ‖a‖1 ≤ 1}, we
find the following condition.

H (x,p,u) = max
a∈A

H (x,p, a)

u = arg max
a∈A

(
p> (−Lx + LZa)− 1

)
u = arg max

a∈A

(
p>LZa

) (6.25)

Expanding the costate evolution with L = QΛQ>, we find

p (t)> LZa =
∑
j

aj
∑
i

p̃i (0) z̃ijλie
λit

(6.26)

with Z̃ = Q>Z and p̃ = Q>p which implies the following for optimal u∗.

j∗ = arg max
j

(∑
i

p̃i (0) z̃ijλie
λit

)
(6.27)

∀j 6= j∗ : u∗j (t) = 0 (6.28)

u∗j∗ (t) =

{
1 for

∑
i p̃i (0) z̃ij∗λie

λit ≥ 0

0 for
∑

i p̃i (0) z̃ij∗λie
λit < 0

(6.29)

Thus, the optimal signal u∗ (t) has either all entries equal to 0 or a single entry equal to 1 at any
given time t. Clearly, it is piecewise continuous and has an exactly corresponding representation
as an optimal behavior schedule S∗ to solve Equation (6.11) when Y = ∅.
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Theorem 8 implies that even when the supervisory operator is allowed to continuously switch
between a convex combination of the behaviors in the library, the optimal behavior schedule mar-
velously only switches discretely between individual behaviors rather than selecting a weighted
combination.

Theorem 9. The maximum length of the optimal behavior schedule S∗ for a robotic swarm
performing consensus-based behaviors with Y = ∅ and with a behavior library containing
|B| = m behaviors is |S∗| ≤ m(m−1)

2
n.

Proof. The proof is immediate from Theorem 8 since we may switch between any pair of behav-
iors in the library at most n times and there are m(m−1)

2
unique pairs.

In practice, we expect the majority of behavior schedules to be much shorter than the maximum
suggested by Theorem 9.

6.3.3 Procedure for Computing Behavior Schedule with No Intermediate
Goals

Now that we have characterized the maximum length of the optimal behavior schedule, we
present a procedure to compute it when Y = ∅. Begin by assuming the length of the behav-
ior schedule S we are optimizing is d = m2(m−1)

2
n with all m behaviors in the library repeated

m(m−1)
2

n times (i.e. bk = bmj+k for j = 0, 1, . . . , m(m−1)
2

n − 1). The reason we select this
length for the behavior schedule is that we can also use it to represent all possible sequences of
behaviors of length m(m−1)

2
n (i.e. the maximum length of the true optimal behavior sequence) by

simply deleting m(m−1)2

2
n entries in the schedule (i.e. setting their corresponding durations to 0).

This allows us to somewhat indirectly address the sequencing problem, which is combinatorial
and computationally difficult to tackle directly.

Now we simply have to compute the corresponding durations, which we can represent as a vector

τ̄ =
[
τ1 τ2 . . . τd

]>
. Since all of our behaviors are consensus-based behaviors, we can write

the state evolution recursively.

x (tk) = e−Lτk (x (tk−1)− zbk) + zbk (6.30)

Expanding and simplifying, we get the following closed form expression for the state evolution.

x (td) = e−L
∑d

i=1 τix (0)−
d∑
j=1

e−L
∑d

i=j τizbj +
d−1∑
j=1

e−L
∑d

i=j+1 τizbj + zbd (6.31)
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We can now rewrite the problem in Equation (6.11) as follows (assuming Y = ∅) and noting
that T = td.

arg min
τ̄∈Rd

1>τ̄

subject to x (0) = xinitial

‖P (x (td)− xfinal)‖2
2 ≤ ε

x (td) = e−L
∑d

i=1 τix (0)−
d∑
j=1

e−L
∑d

i=j τizbj +
d−1∑
j=1

e−L
∑d

i=j+1 τizbj + zbd

(6.32)

This is a nonlinear optimization problem with a single equality constraint and nonnegative op-
timization variables. Conveniently, in this form, both the objective function and the constraints
are continuous and smooth in τ̄ . The gradient of the objective function is given as follows.

∇τ̄T = 1 (6.33)

The gradient of the equality constraint is given as follows.

φ (x) = ‖P (x (T )− xfinal)‖2
2 − ε

∇τ̄φ = 2
[

dx
dτ1

. . . dx
dτd

]>
P>P (x (T )− xfinal)

(6.34)

The derivative of the state evolution with respect to each duration is given as follows.

dx

dτk
= −Le−L

∑d
i=1 τix (0)−

k∑
j=1

−Le−L
∑d

i=j τizbj +
k−1∑
j=1

−Le−L
∑d

i=j+1 τizbj (6.35)

Since we have analytic gradients for both the objective function and the constraints, we can use
any number of standard gradient-based optimization techniques to find locally optimal solutions
efficiently (see Section 6.5 for an example). As noted above, we expect the vast majority of the
durations in our behavior schedule to be 0 because we intentionally increased its length to enable
it to represent all possible behavior sequences. In addition, if the supervisory operator for the
robotic swarm knows the behavior sequence in advance, our technique can be used to identify
the optimal durations for which those behaviors should be executed.

Finally, we note that our technique applies equally well to a general dynamics matrix A and it
is obvious that computational efficiency can be improved when A is diagonalizable by taking
the eigendecomposition A = QΛQ−1 and considering transformed state x̃ (t) = Q−1x (t), and
behaviors f̃j (x̃ (t)) = Λ (x̃ (t)− z̃j) with z̃j = Q−1zj . For these transformed behaviors, the
dynamics matrix Λ is diagonal, which makes its matrix exponential eΛt much faster to compute.
Clearly, this transformation is for computational purposes only and does not change either the
mathematical results or the physical motion of robots in our swarm.
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6.4 Algorithm for Sequencing of Unordered Intermediate Goals

In the previous section, we showed that when there are no intermediate goals, it is possible to
identify the maximum length of the time-optimal behavior schedule, fix the sequence and then
solve a nonlinear optimization problem with smooth objective function and smooth constraints
for the durations. The identified behavior schedule will be locally optimal in the space of du-
rations. Given a particular behavior library, we can do this for any choice of initial state and
goal.

We now consider the problem of behavior scheduling with a set of c intermediate goals Y that
must be achieved by the robotic swarm. Consider the weighted directed graph G = (V , E ,W).
The vertices V = Y ∪ {xinitial,xfinal} of this graph include the initial state, the intermediate
goals and the final goal. The edge set E includes directed edges between every pair of nodes
but does not include any edges that begin at xfinal or end at xinitial. The entries wij ∈ R+ of
the weight matrix W ∈ R(c+2)×(c+2) represent the minimum time required to transition from
the state represented by vertex vi to the state represented by vertex vj . These weights may be
computed by using the procedure in the previous section to find the optimal behavior schedule
to move from vi to vj . Thus, we note that weighted edges in our directed graph must satisfy
the triangle inequality (i.e. ∀i, j, k : wij + wjk ≥ wik). In the rare case that particular triplets
do not satisfy the triangle inequality (since our procedure is only locally optimal), we enforce
the triangle inequality by replacing the computed behavior schedule for edge (vi, vk) with the
concatenation of the computed behavior schedules for (vi, vj) and (vj, vk).

Once we have created the weight matrix W, which is not symmetric for our problem, and com-
puted the behavior schedules, our problem is reduced to finding the minimum cost Hamiltonian
path which starts at xinitial and ends at xfinal. This is a variation of the Metric Asymmetric Trav-
elling Salesman Problem (TSP), which is known to be NP-hard. Christofides’ approximation al-
gorithm solves the Metric Symmetric TSP problem in O(|V|3) with bounded suboptimality [21].
Specifically, the cost of the tour produced by Christofides’ algorithm will be at most 3

2
times the

cost of the optimal tour. In [47], the authors show that the Asymmetric TSP problem can be
transformed into the Symmetric TSP, problem after which we can apply Christofides’ algorithm
as usual to find a 3

2
-approximation to the optimal tour. However, our problem also has fixed end-

points, so we must apply a variant of Christofides’ algorithm [39] for Hamiltonian paths rather
than tours. It is shown in [39] that when there are two fixed endpoints, the algorithm produces
a 5

3
-approximation to the optimal Hamiltonian path. The behavior schedule S∗ which solves the

problem in Equation (6.11) is the concatenation of the locally optimal behavior schedules for
each edge in the Hamiltonian path from initial state xinitial through intermediate goals Y to final
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Algorithm 2 Compute the Best Behavior Schedule
1: function MULTIGOALBEHAVIORSCHEDULE(B,xinitial,Y,xfinal)
2: Sall ← ∅, V = Y ∪ {xinitial,xfinal}
3: for vi ∈ V : vi 6= xfinal do
4: for vj ∈ V : (vi 6= vj) ∧ (vj 6= xinitial) do
5: Sij ← ONEGOALBEHAVIORSCHEDULE(B, vi, vj)
6: wij ← TOTALDURATION(Sij)

7: end for
8: end for
9: W← ENFORCETRIANGLEINEQUALITY(W)

10: P ← FIXEDENDPOINTSHAMILTONIANPATH(W,xinitial,xfinal)

11: for (vi, vj) ∈ P do
12: Sall ← Sall t Sij

13: end for
14: return Sall

15: end function

goal xfinal. The behavior schedule S∗ has bounded local suboptimality.

The method described above is summarized in Algorithm 2. The function ONEGOALBEHAVIORSCHEDULE()

solves the problem in Equation (6.32). Notice that the locally optimal behavior schedule for ev-
ery edge and every entry of the weight matrix can be computed in parallel (lines 3–8).

We conclude this section by noting that if the final goal is not fixed (i.e. no xfinal), then we
can use the algorithm in [39] to find a single endpoint Hamiltonian path starting at xinitial and
achieving all Y with 3

2
bounded suboptimality. This fact can also be used to extend Algorithm 2

in a straightforward manner to handle ordered subsets of unordered goals (e.g. achieve all goals
in Y1, then Y2, then Y3, etc.).

6.5 Application to Configuration Control of Robotic Swarms

In this section, we revisit the problem of optimal timing in configuration control of robotic
swarms, which we presented to illustrate the phenomenon of Neglect Benevolence in [57]. There
are many applications, including artistic performances [17, 73], surveillance, cooperative manip-
ulation or robotic printing where it is important to generate and maintain various configurations
with a multi-robot team. In some of these applications, the sequence of desired configurations
is known in advance and in others the desired configurations are known, but not the sequence.
Given a library of consensus-based behaviors B that each cause the swarm to move towards a
particular spatial configuration z ∈ Z , we now apply the results from the previous sections to
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identify a behavior schedule S that generates the desired configurations Y in minimum time. For
these examples, we make the reasonable assumption that Y ⊂ Z . The optimal behavior sched-
ule S will transiently switch between configurations Z in our library to ensure that the swarm
achieves (to ε-convergence) all unordered goals Y and final goal xfinal in minimum time. We
instantiate our behavior library B with a set of configurations Z shown in Figure 6.2.

6.5.1 Known Behavior Sequence with Unknown Durations

We first consider a case similar to the one we considered in [57]. The human operator is perform-
ing a mission with the robotic swarm and has applied behavior f2, which causes the swarm to
move towards the corresponding configuration z2. However, at time t = t0 = 0 when the swarm
is in state xinitial (random configuration), the operator becomes aware of a change in mission goal
to xfinal, which can be achieved using behavior f3 (e.g. ‖P (z3 − xfinal)‖2

2 = 0). Based on this
description, the behavior schedule must have the form S = ((2, τ1) , (3, τ2)). Note that xinitial is
Neglect Benevolent simply if the optimal schedule has τ1 > 0. In our simulation (which had dif-
ferent xinitial than [57]) when |S| = 2, the schedule computed is S = ((2,12.5267), (3,38.0237))
with total time T = 50.55. When we allow |S| = n, which is the maximum possible entries in the
optimal schedule, the non-zero duration entries in the schedule computed are S = ((3,19.2606),
(2,2.9868), (3,27.9326)) with total time T = 50.18, a slight improvement.

6.5.2 Target Configuration with No Desired Intermediate Configurations

We now consider the case where we don’t know the behavior sequence in advance, but want to
find the behavior schedule to achieve xfinal = z7 from xinitial (random configuration) in minimum
time. We implemented the procedure in Section 6.3.3 in MATLAB and used fmincon (with
‘interior-point’ and analytic gradients specified) to identify the optimal behavior sched-
ule S = ((5,0.1198), (6,0.8556), (8,0.1277), (5,15.9487), (8,0.4150), (5,2.1281), (7,35.4172))
for a total duration T = 55.01. We only show entries with non-zero duration, but note that the
length of the behavior schedule is significantly less than the maximum suggested in Theorem 9.
Clearly, only two of the behaviors (5 and 7) were applied for a significant portion of time.

6.5.3 Target Configuration with Desired Intermediate Configurations

Finally, we consider the case where we want to find a behavior schedule that achieves a set of
intermediate configurations Y = {y1,y2} (with y1 = z2 and y2 = z3) from xinitial (random con-
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figuration) to xfinal = z7 in minimum time. We apply the algorithm in Section 6.4 to our problem
and identify the optimal behavior schedule S = ((3,1.3048), (4,3.7551), (5,0.0914), (3,10.8722),
(5,6.7721), (3,31.0313), (8,1.0880), (2,11.7012), (7,1.0925), (2,20.9164), (7,0.4393), (7,0.8738),
(7,23.8005)) for a total duration T = 113.74. We only show entries with non-zero duration, but
note that the length of the behavior schedule is significantly less than the maximum suggested in
Theorem 9. Intermediate goal y2 = z3 was reached at t = 53.83 and goal y1 = z2 was reached
at t = 89.06.

6.6 Conclusion

In this chapter, given a library of consensus-based behaviors, we considered the problem of
generating a behavior schedule that enables a robotic swarm to achieve a set of unordered in-
termediate goals and a final goal in minimum time. After identifying a procedure to produce a
locally optimal behavior schedule between any two goals, we presented an algorithm that com-
putes locally optimal behavior schedules between all pairs of goals and then applies a variant
of Christofides’ algorithm to find a 5

3
-approximation to the optimal Hamiltonian path through

the goals. Concatenating the behavior schedules along path, we obtained an overall behavior
schedule. In this work, our only cost was on time to achieve all goals. In future work, we plan to
explore other cost functions and more types of behaviors in our library.
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(a) Behavior 1 Defined by Bias z1 (b) Behavior 2 Defined by Bias z2

(c) Behavior 3 Defined by Bias z3 (d) Behavior 4 Defined by Bias z4

(e) Initial State (red), Final Goal (green) and
Intermediate Goals (brown)

(f) Feasible Solution Trajectory that Achieves
All Intermediate Goals and Final Goal

Figure 6.1: Given a library containing four behaviors with LTI dynamics defined by a common
stable dynamics matrix A but different equilibrium points, we want to identify a behavior

schedule (behavior sequence and corresponding durations of application) that minimizes the
total time to achieve all unordered intermediate goals and the final goal.
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(a) Rendezvous (z1) (b) Circle (z2)

(c) Torus (z3) (d) S (z4)

(e) Line X (z5) (f) Line Y (z6)

(g) Spiral (z7) (h) V (z8)

Figure 6.2: Equilibrium Configurations for Behaviors in Our Library93
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Chapter 7

Conclusion

7.1 Summary of Contributions

In this thesis, we studied the challenging problem of behavior composition in supervisory inter-
action with robotic swarms. Since swarms are large distributed dynamical systems, it is difficult
to predict the effect of an input on the state of the swarm. Our contributions included a formal-
ization of the swarm behavior composition problem, characterizing the impact of input timing
on swarm performance and algorithms to optimally schedule swarm behaviors to optimize a
performance criterion.

Our approach began with a principled study of the impact of input timing on human-swarm
interaction and then applying these results to inform the development of methods for automated
composition of swarm behaviors from a library to accomplish tasks.

We introduced the Neglect Benevolence phenomenon, the idea that delaying an input could
sometimes improve the performance of the swarm, and formalized it in a control theoretic frame-
work. Interestingly, while we studied this phenomenon in the context of robotic swarms, these
ideas are more universally applicable to distributed dynamical systems. Using a simple algo-
rithm to identify the optimal input time, we applied it to swarm configuration control to find
the best time to switch between two swarm behaviors where each behavior achieved a different
configuration. Treating this problem of switching between two swarm behaviors achieving dif-
ferent configurations as a base human-swarm interaction task in which we could automatically
identify optimal input times, we demonstrated with an empirical study that humans can learn to
approximate optimal input times and that visual aids can be developed to augment human inter-
faces. We expect that these results will be very valuable in future design of augmentations for
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human-swarm interaction interfaces.

We next considered the issue of timing in an adversarial setting involving a swarm of agents
applying discrete-time consensus, but executing updates periodically with different frequencies
and delays. In this situation, we showed that we could systematically influence the agreement
point of the entire swarm by influencing the update periods and delays of only a subset of agents.
We believe these results will be important to developing mitigation techniques in the future for
various timing-only approaches to adversarial subversion of swarm performance.

We then tackled the problem of optimally sequencing swarm behaviors selected from a library
of concrete behaviors to accomplish tasks for which no individual behavior had been designed.
Our contribution was an algorithmic approach based on informed search that was proven to be
optimal and complete. Our results demonstrated that the approach could be used for multiple
applications, even those for which behaviors in the library had not been designed. Despite the
assumption that the durations for each behavior are known, we believe this technique represents
a significant step forward toward composing general swarm behaviors.

Finally, we solved the problem of finding the optimal behavior sequence and the associated
switch times simultaneously in a process we referred to as behavior scheduling. This is a very
challenging problem for general swarm behaviors, so we restricted ourselves to consensus-based
swarm behaviors which are widely used in the literature and have representative applications
such as rendezvous or configuration control. Our contribution was a reformulation that permitted
finding analytical gradients for our problem, which could be used to identify a locally optimal
solution in any gradient-based solver. We extended our approach to achieve multiple unordered
goals with bounded suboptimality on the sequence in which we achieve the goals. We believe this
approach represents an important step forward for swarm behavior composition since consensus
is essential to many swarm behaviors.

7.2 Future Work

As is often the case with any research, there are always more unanswered questions. In this
section, we outline a few directions for future work.

7.2.1 Instantiating a Library of Concrete Behaviors from Meta-Behaviors

In this thesis, we approached the swarm behavior composition problem from the perspective that
our library of behaviors consisted of concrete behaviors with no unspecified parameters rather
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than meta-behaviors with some unspecified parameters. However, in some cases, it may not be
possible to achieve the task with the given concrete behaviors. In this case, we can ask a few
questions:

1. If we cannot achieve our goals with the current set of concrete behaviors in our library, but
we can instantiate new concrete behaviors into our library from a set of meta-behaviors,
which new concrete behaviors should we instantiate?

2. How do we select the appropriate values for the parameters to the corresponding meta-
behaviors in order to instantiate concrete behaviors with the desired properties?

3. What is the minimal set of concrete swarm behaviors that should be in our library to ac-
complish our desired goals?

Some of these questions can be answered in a straightforward manner for certain special cases.
For example, for consensus-based behaviors, if a certain goal cannot be achieved with the current
concrete behaviors in the library, then one can instantiate a new consensus-based concrete be-
havior where the bias vector is the currently unachievable goal. However, this approach quickly
becomes unwieldy if applied successively to a series of goals explicitly crafted to force a new
concrete behavior being instantiated every time. In addition, it will not necessarily result in a
minimal library of concrete behaviors to achieve all goals.

These questions are very challenging to answer in the general case. Progress towards their an-
swers is of great importance to future work on swarm behavior composition.
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