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Abstract

People with upper extremity disabilities are gaining increased
independence through the use of assisted devices such as
wheelchair-mounted robotic arms. However, the increased capability and
dexterity of these robotic arms also makes them challenging to control
through accessible interfaces like joysticks, sip-and-puff, and buttons that
are lower-dimensional than the control space of the robot. The potential for
robotics autonomy to ease the control burden within assistive domains has
been recognized for decades. While full autonomy is an option, it removes
all control from the user. When this is not desired by the human, the
assistive technology has, in fact, made them less able and discards useful
input the human might provide. For example, the leveraging of superior
user situational awareness to improve system robustness could be lost.

This thesis takes an in-depth dive into how to add autonomy to an
assistive robot arm in the specific application of eating, and how to make it
faster and more enjoyable for people with disabilities to feed themselves.
While we are focused on this specific application, the tools and insights we
gain can generalize to the fields of deformable object manipulation,
behavior library selection, intent prediction, robot teleoperation, and
human-robot interaction. The nature of the physical proximity and the
heavy dependence on the robot arm for doing daily tasks creates a very
high-stakes human-robot interaction.

We build the foundations for a system that is capable of fully
autonomous feeding by (1) predicting bite timing based on social cues,(2)
detecting relevant features of the food using RGBD sensor data, and (3)
automatically selecting a goal for a food-collection motion primitive to
bring a bite from the plate to the operator’s mouth. We investigate the
desired level of autonomy through user studies with an assistive robot
where users have varying degrees of control over the bite timing, control
mode-switching, and direct teleoperation of the robot to determine the
effect on cognitive load, acceptance, trust, and task performance.
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1
Introduction

Assistive machines like powered wheelchairs, myoelectric prostheses
and robotic arms promote independence and ability in those with
severe motor impairments [Hillman et al., 2002b, Prior, 1990, Sijs
et al., 2007, Huete et al., 2012, Yanco, 1998]. As the state-of-the-art
advances, more dexterous and capable machines hold the promise to
revolutionize the ways in which people with motor impairments can
interact within society and with their loved ones, and to care for
themselves with independence.

Figure 1.1: The JACO robot,
a testing platform that will be
used in this work.

However, as these machines become more capable, they often also
become more complex. This raises the question: how to control this
added complexity? A confounding factor is that the more severe a
person’s motor impairment, the more limited are the control
interfaces available to them to operate their assistive technology. The
control signals issued by these interfaces are lower in dimensionality
and bandwidth. Thus, paradoxically, a greater need for sophisticated
assistive devices is paired with a diminishing ability to control their
additional complexity. Assistive robot arms on the market are mostly
using direct control which interprets signals from a traditional
interface as commands to change the robot’s joint or Cartesian
configuration (see section 2.1.2 for details).

(a) Traditional
Wheelchair

Joystick

(b) Customized Chin
Joystick

(c) Sip-N-Puff (d) Head Array

Figure 1.2: Traditional assistive
control interfaces.

Traditional interfaces often cover only a portion of the control space
of more complex devices like robotic arms [Tsui et al., 2008a]. For
example, while a 2-axis joystick does fully cover the 2-D control space
(heading, speed) of a powered wheelchair, to control the end-effector
of a robotic arm is nominally a 6-D control problem. This already is
a challenge with a 2-D control interface, which is only exacerbated if
limited to a 1-D interface like a Sip-N-Puff or switch-based head array
[Nuttin et al., 2002, Valbuena et al., 2007, Mandel et al., 2009, Prenzel
et al., 2007, Luth et al., 2007, Simpson et al., 2008, Firoozabadi et al.,
2008, Vaidyanathan et al., 2006, Galán et al., 2008].

To ease the burden of control, some robotic arms are now being
provided with special control modes for specific tasks. For assistive
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robot arms, an example is the “drinking mode” which was developed
by Kinova Robotics, in which the operator’s control input is
remapped to moving the robot’s end effector along an arc of a
predetermined radius. We are seeing these task-specific assisted
modes in other applications as well, such as using high-level grasp
commands for a hand-shaped gripper [Michelman and Allen, 1994].

Similarly, we propose creating a “feeding mode” which would
enable assistive arm users to be able to eat independently.
Independent feeding is a high-impact task on both improved
self-image and reduction of care-giving hours [Chiò et al., 2006,
Jacobsson et al., 2000, Prior, 1990, Stanger et al., 1994]. Unlike the
drinking mode, we will study sharing control between the robot and
the user for different parts of the feeding task to see for which parts
robot assistance has the most positive impact. There are also social
challenges with feeding that are not as pronounced with drinking or
other manipulation tasks. We draw from insights from occupational
therapists and human caregivers as well as robotics research.

This thesis takes an in-depth dive into how to add autonomy to an
assistive robot arm in the specific application of eating, to make it
faster and more enjoyable for people with disabilities to feed themselves.

While we are focused on this specific application, the tools and
insights we gain can generalize to the fields of deformable object
manipulation, selection from behavior libraries, intent prediction,
robot teleoperation, and human-robot interaction. The nature of the
physical proximity and the heavy dependence of the user on the
robot arm for doing daily tasks creates a very high-stakes
human-robot interaction (HRI).

Next, we identify and discuss the challenges that we will face
creating an assistive feeding mode with the robot arm.

Challenge 1: Controlling a high-dimensional robot with a
low-dimensional input Translation Mode Wrist Mode Finger Mode

Figure 1.3: In this example, the
input is a 3-axis joystick, and the
three control modes are transla-
tion, wrist, and finger mode.

A common technique to control a high-dimensional system like an
arm with a low-dimensional input like a joystick is through switching
between multiple control modes, such as those shown in fig. 1.3. The
operation of an assistive device via different control modes is
reminiscent of upper-limb prosthesis control [Ajiboye and ff. Weir,
2005, Chu et al., 2006, Nishikawa et al., 1999, Scheme and Englehart,
2011, Simon et al., 2011, Tenore et al., 2008, 2009].In the case of
prosthetics, control is diverted between different functions (e.g.
elbow, wrist). The parallel for a robotic arm is to divert control
between different subsets of the joint-control space. (Modes that
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operate subsets of the end-effector control space are equally viable.)
Within the field of prosthetics, function switching is known to be
cumbersome, and the opportunity for autonomous switching to ease
this burden has been identified [Pilarski et al., 2012] (though it is not
yet feasible to implement on today’s prosthetic hardware). Our
interviews with daily users of the Kinova JACO arm identified mode
switching as a key problem with robotic arms as well, both in terms
of time and cognitive load. We further confirmed objectively that
mode switching consumes on average 17.4% of execution time even
for able-bodied users controlling the MICO robot (a smaller, lighter
version of the JACO robot).

Once we identified the high cost associated with mode switching,
the question then becomes how to alleviate that burden. While full
autonomy is an option, it removes all control from the user. When
this is not desired by the human, the assistive technology in fact has
made the user less able. It also discards useful input the human might
provide, leveraging for example their superior situational awareness,
that would add to system robustness.

Control sharing is a way to offload some control burden, without
removing all control authority, from the human [Dragan and Srinivasa,
2013, 2012, Yanco, 2000, Philips et al., 2007, Vanhooydonck et al., 2003,
Bourhis and Sahnoun, 2007]. The most common paradigms augment
or adjust control signals from the human (e.g. to bridge the gap in
control signal dimensionality), or partition the control problem (e.g.
high-level decisions like which task to execute lie with the human,
and low-level execution decisions lie with the robot).

Here, we propose one alternative role for the autonomy: to assist
the user in transitioning between different subsets of the control
space—that is, to autonomously remap signals from the user interface
to different control modes (e.g. subsets of the control dimensions)
using a time-optimal model (section 3.2.1). We also hypothesize that
automatically switching control modes achieves an equilibrium of
assistance: helping with the tedious parts of the task while still giving
full control over continuous motion.

Challenge 2: Food is non-rigid, highly variable, and deformable.

The manipulation of rigid objects has been the dominant subject of
robotic manipulation research. To relax rigid body assumptions and
work with deformable objects, past work has either evaluated
deformation characteristics of objects (such as elasticity or viscosity)
[Jacobsson et al., 2000] or performed planning using a topological
state representation [Saha and Isto, 2006]. If we want to use a physics
model-based technique, we would have to estimate physical
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properties of each type of food on the fly (potentially causing
robustness and trust issues), since a plate full of food does not have a
set topology.

Feeding devices that are on the market enact a single
preprogrammed motion to get food (with one exception; more details
in section 2.3.2). As a result, the food must be placed in one of several
bowls that are attached to the robot base. The users are given the
high-level choice over which bowl is used. However, there is no
low-level ability to select bites of food, and certain types of food are
not compatible with the single programmed motion.

Instead, we propose having the robot learn from experience a
strategy for collecting food morsels. Depending on the properties of
food, people perform different techniques for acquiring bites. If
trying to eat soup, a scooping motion is called for. If trying to eat a
piece of cut fruit, a skewering motion is more appropriate. We
propose generating a database of such actions from human
demonstration, and then learning which action is appropriate and
where on the plate it is most likely to be successfully applied based
on color and depth features of the food. The advantage of using this
formulation is that it is intuitive to give the user control over which
action and where it is applied when we are testing different levels of
autonomy. If the robot learned the parameters for the action
representation directly from the visual features of the food, then it
would not necessarily be possible for the user to define these
parameters manually in a meaningful way. We present a taxonomy of
the action primitives and implement the skewering action.

Challenge 3: Eating is an inherently social act with its own social rules
and norms

Dining is a social act which provides a personal link to the wider
community [Marshall, 2005]. People use mealtime as a time to have
discussion and companionship. We are working under the premise
that assisted dining is a careful creation of a new schema with the
goal to replicate self-reliant eating as closely as possible [Martinsen
et al., 2008]. It takes human caregivers months to learn the verbal,
non-verbal, and gestural communication schema for a smooth
interaction. The robot will also need to be able to tune into the subtle
signals for communicating desired actions.

We trained a model to learn bite timing based on social cues
captured via a microphone and a video camera pointed at the user’s
face. We trained this model with able-bodied users since past work
has laid the premise that replicating the way self-reliant people eat is
the gold standard (section 2.3.1). We generalized the learned model
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across users to predict the appropriate timing for presenting a bite.
We postulated that there may be differences between how a user eats
by themselves and how they eat in a group setting, so we analyzed
and compared these two situations. Finally, we evaluated the model’s
performance through a user study with different levels of control over
the timing of bite delivery.

Challenge 4: Balancing assistance with independence; customizing
shared control

In assistive robotics, abandonment is a big concern [Phillips and Zhao,
1993]. People want to feel like they are in control, but also want a
system that will enable them to do more tasks without needing the
assistance of another person. Different people also have different levels
of control ability, based on their physical capabilities and the type of
interface they use. In order to build a feeding system that will cater
to all needs, both physically and psychologically, we propose having
varying levels of autonomy over subparts of the feeding task.

We validated through user studies which aspects of dining should
be controlled by the robot, by the operator, or shared (via
mode-switching). To develop a useful assistive feeding system, a
user-centric design is critical.

The need for customization extends beyond level of control to other
aspects of the human-robot interaction. Wheelchair-mounted assistive
robots are a constant companion to their users by the very nature of
their physical attachment. As such, it is important that the robot and
its behavior fit in with the operator’s self image and communicates
what they want to say about themselves [Desmond and MacLachlan,
2002].





2
Background

In this chapter we cover relevant background information to
familiarize the reader with the domain of assistive robot arms. First,
we introduce assistive robot arms that are commercially available or
developed in research labs, describe common control interfaces and
their comparative strengths and weaknesses, and address how
assistive robot arms are assessed and evaluated – particularly in the
context of using shared control systems (section 2.1). Next, we
present prior work that has been done in the context of food
manipulation with robots (section 2.2) which is typically in the
domain of food quality control testing. Finally, we discuss factors to
consider in the context of assisted feeding with human caregivers
(section 2.3.1), summarize commercially available assisted dining
tools (section 2.3.2), and discuss the tradeoff between functional,
social, and aesthetic properties of assistive devices section 2.3.3.

2.1 Teleoperation of Assistive Robot Arms

We will present a brief summary of assistive robotic arms that are
either available commercially or have been developed as research
platforms at universities, and the interfaces that have been used to
control them. A summary of some of the most influential assistive
robot arm designs can be found in table 2.1.

2.1.1 Summary of Available Assistive Robot Arms

The majority of assistive arms use direct control, where the operator
uses an interface to activate the actuators of the robot. Direct joint
control is when the operator’s interface directly controls the robot’s
joint position or velocity. Direct Cartesian control is when the
operator’s interface directly controls the position and orientation of
the end effector of the robot, but does not explicitly choose how each
joint of the robot will move to affect that Cartesian motion. Early
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Manus ARM/iARM Handy-1 KARES I KARES II

• 6 DOFs
• Commercial product

by Exact Dynamics
• Wheelchair-mounted
• Controlled through

wheelchair’s input
[Driessen et al., 2001, Gräser,

1998]

• 5 DOFs
• Research prototype
• Modes for feeding,

cosmetics, and facial
hygiene

• Controlled by a sin-
gle switch

• Stationary base
[Topping, 2002]

• 6 DOFs
• Research prototype
• Stereo camera in the

hand
• Controlled directly or

given a visual target
• Wheelchair-mounted

[Bien et al., 2003]

• 6 DOFs
• Research prototype
• Stereo camera in the

hand
• Controlled by eye-

mouse, haptic suit, or
EMG

• Wheelchair-mounted
[Bien et al., 2003]

Raptor WMRA JACO The Weston

• 4 DOFs
• Commercial prod-

uct by Applied
Resources

• Joint velocity com-
mands

• Controlled by joy-
stick, 10 button
keypad, or sip and
puff

• Wheelchair-mounted
[Mahoney, 2001]

• 7 DOFs
• Research prototype
• Cartesian velocity

commands
• Controlled by joy-

stick or BCI2000

[Alqasemi and Dubey, 2007,
Edwards et al., 2006, Palankar

et al., 2009a]

• 6 DOFs
• Commercial product

by Kinova Robotics
• Controlled through

wheelchair’s input or
separate joystick

• Wheelchair-mounted
[Campeau-Lecours et al.,

2016]

• 4 DOFs
• Research prototype
• Controlled through

cursor on screen with
button menus

• Wheelchair-mounted
[Hillman et al., 2002a]

Table 2.1: Summary of influ-
ential assistive robot arms and
their characteristics. (DOF = De-
gree of Freedom)
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assistive arms were controlled through direct joint control, but the
intuitiveness of Cartesian control was quickly recognized and added
[Alqasemi et al., 2005]. Kumar et al. [1997] give an overview of the
earliest assistive robot arms.

Since 2000, a number of wheelchair-mounted robot arms have
become commercially available. The iARM (derivative of the
well-known MANUS robot created by Exact Dynamics) is a 6 degree
of freedom (DOF) robot arm with a parallel gripper. The JACO
(produced by Kinova Robotics) is a 6 DOF robot with a parallel
gripper that has either 2 or 3 fingers. Both robots can be controlled by
a variety of assistive interfaces, can move automatically to
prerecorded positions, and have a special mode for drinking.

Across available assistive robot arms, 6 degrees of freedom is
becoming standard. The lower the degrees of freedom, the fewer
actuators are needed, and the lower the cost. The greater the degrees
of freedom the robot has, the greater the number of configurations for
a given actuator position there are. The more configurations possible,
the less likely it is that the arm will approach a singularity while
using Cartesian control. Designers are converging towards 6 DOF
designs because it balances cost and maneuverability.

Assistive robot arms can be designed as stationary workstations or
to be mounted permanently or temporarily to an electric wheelchair.
Typically due to weight and electricity requirements,
wheelchair-mounted robot arms are limited to electric wheelchairs
and are not generally designed to be attached to manual wheelchairs.
Using a stationary workstation makes the calibration of sensors easier
and removes constraints on size and portability that would be
required for a wheelchair-mounted arm. Using a
wheelchair-mounted design increases the range of tasks that can be
performed and greatly increases the robot’s workspace by
introducing the addition of the electric wheelchair’s 2 degrees of
freedom. Because technological advances have enabled hardware and
electronics to become more compact, there is an ongoing shift toward
wheelchair-mounted robot arms.

Choosing a wheelchair-mounted design tightens the physical
constraints placed on the robot. The robot-wheelchair combination
must be small enough to fit through doorways. Additionally, people
who use a wheelchair have a restricted ability to change their
viewpoint. People with cervical SCI or multiple sclerosis (MS) may
experience neck weakness, resulting in a decreased range of head
motion [LoPresti et al., 2000], and therefore a significant decreased
range of viewpoint. With a stationary workstation, new vantage
points can be achieved by moving the wheelchair base, but with an
assistive robot arm attached to the wheelchair itself, new operator
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(a) Joystick (b) Chin Joystick (c) Sip and puff (d) Head Array

Figure 2.1: Common interfaces
for electric wheelchairs and as-
sistive robot arms. (a) 2-
axis hand joystick, (b) 2-axis
chin-operated joystick, (c) a sip
and puff interface, in which
the operator controls a pow-
ered wheelchair through mouth-
generated changes in air pres-
sure, (d) head array interface by
Permobil, in which the operator
controls a powered wheelchair
through switches mounted in
the headrest.

viewpoints with respect to the robot can only be achieved through
small torso and head movements.

2.1.2 Summary of Assistive Control Interfaces

We will present a summary of interfaces that have been used to
control assistive robot devices. First we will examine interfaces for
smart wheelchairs. Smart wheelchairs are electric wheelchairs that
have added automated features such as obstacle avoidance. There is a
large overlap between smart wheelchair interfaces and assistive robot
interfaces since they face many of the same challenges. Then we will
discuss how the interfaces have been modified or extended to include
assistive robot arms.

The vast majority of electric wheelchair users (95%) use a joystick
(or chin joystick), sip-and-puff, or head interface to control their
wheelchair [Fehr et al., 2000]. The standard wheelchair joystick has
two axes that can be controlled simultaneously, one for forward and
backward speed, and the other for turning angle. Many attachments
may be added to the joystick handle, such as a high friction ball or
custom printed mold, to customize the joystick to each individual’s
comfort and physical abilities. A typical powered wheelchair joystick
is shown in fig. 2.1a. A sip and puff interface is a straw-like device
that can be activated by changing the air pressure with the operator’s
mouth. A sequence of puffs (where the operator blows into the straw)
and sips (where the operator sucks air from the straw) generates a
digital signal that is in turn interpreted by the wheelchair controller
[Mougharbel et al., 2013]. A sip and puff interface is shown in
fig. 2.1c. Head control is typically achieved through a series of
switches mounted in a headrest that are activated by head movement
[Kuno et al., 2003, Matsumotot et al., 2001]. An example of a head
array used to control the wheelchair’s motion is shown in fig. 2.1d.

More exotic interfaces exist, such as voice control [Cagigas and
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Abascal, 2004], eyegaze direction [Yanco, 1998], electromyography
[Han et al., 2003], and tongue control [Huo and Ghovanloo, 2009,
Slyper et al., 2011], but have yet to be widely adopted. Less reliable
control input techniques are also being combined with
obstacle-avoidance and other assistive algorithms to enable robust
control [Simpson, 2005].

The wide variety of physical capabilities of power wheelchair users
is what leads to such a large variety of input devices. The choice of
which interface to use will vary on an individual basis. However,
most common control interfaces have two degrees of freedom. A
wheelchair is effectively a mobile robot, one in which rotation and
forward/backward motion are the two independent control signals.
In the case of a head button array or a sip and puff interface, the
signals are discrete. In the case of a joystick or eyegaze direction, the
signals are continuous. While such interfaces are sufficient for
controlling a 2 DOF system, they do not all directly scale to
controlling a robot arm which can require 4-7 DOF control.

The commercially available robot arms (e.g. MANUS, Raptor and
JACO) are controlled via a joystick by cycling through which axes are
being controlled at a time – either joint axes or Cartesian axes with
respect to the gripper. Some robot arms can save positions which the
operator can access quickly via switches. A common example for
wheelchair-mounted robot arms would be to save a position in which
the robot is retracted to allow the operator’s wheelchairs to fit
through doorways.

Researchers have experimented with goal-oriented control, in which
the operator indicates a goal object they would like to pick up, and the
robot moves towards the goal object by itself. Providing goal-oriented
control through a graphical interface has had mixed results [Tsui and
Yanco, 2007, Laffont et al., 2009]. The task performance increased, but
users preferred more traditional interfaces.

Using a neural interface system to control a high DOF robot arm is
a popular research domain, and great strides are being made in the
brain-computer interface (BCI) technology. Speed, accuracy and
reliability continue to be challenges in using BCIs in real-world
applications [McFarland and Wolpaw, 2008]. BCIs typically classify
the brain signals into a finite number of categories which are then
translated to predefined robot arm motions or binned velocity
commands (Examples: Hochberg et al. [2012], Palankar et al. [2009b],
Onose et al. [2012]). The best parallel in conventional interfaces
would be a head array, with potentially many more binary switches
that require less physical effort to press. BCIs face the same challenge
as traditional interfaces in controlling a high dimensional robot with
a limited number of inputs.
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2.1.3 Evaluation Techniques

Next, we will discuss evaluation techniques that have been used by
other researchers and clinicians to evaluate control systems for
assistive robot arms.

Task completion times with respect to an able-bodied user are often
used for robotic manipulation applications, when there is no other
baseline to use [Tsui et al., 2008b]. However, there is not a standard set
of tasks used to assess assistive arm technology, so comparison across
devices can be challenging. For example, Tijsma et al. [2005a] uses the
following evaluation tasks: (1) Pick up an upside-down cup and place
it right-side up on the table, (2) put two blocks into a box, (3) pick
up two pens from out of sight and place them on the table. Maheu
et al. [2011] uses: (1) grasping a bottle located at different locations, (2)
pushing buttons of a calculator, (3) Taking a tissue from a tissue box,
(4) grasping a straw, and (5) pouring a glass of water from a bottle.
Chung et al. [2016] created a device with buttons and levers to mimic
the activities of button presses and opening doors. One thing that is
consistent across all the tasks used is that the evaluators are trying
to get a cross-section of motions that are needed to perform activities
of daily living. We chose to follow the evaluation process outlined
in Tsui et al. [2008b], in which we met with an occupational therapist,
discussed our goals, and found the best parallel to a preexisting clinical
test. More details are provided in section 3.1.2.

In addition to objective functional evaluations of the performance
of the assistive robot arm, other factors such as user friendliness, ease
of operation, and effectives of input device must be taken into
account [Romer and Stuyt, 2007]. In a survey of performance metrics
for assistive robotic technology, researchers found that the
performance metric should focus more on the end-user evaluations
than on the performance of the robot [Tsui et al., 2008b]. The
“end-user evaluation” has been interpreted as the mental effort
[Tijsma et al., 2005a], independence [Chaves et al., 2003], trust and
preference [Tsui et al., 2008b]. Trust in robots (and other technologies)
has been a topic of much interest within the community, as it is
closely linked with capability expectations and effective collaboration.
Schaefer [2013] provides a detailed summary of trust between human
and robots.

The choice of end user evaluation metrics comes from the unique
requirements of the assistive technology. Physical and mental fatigue
can cause participants to stop using the robotic arm [Tijsma et al.,
2005b], so it is important that the control interface and algorithms
produce as little strain on the operator as possible. People with
disabilities rely on helpers to perform physical actions, making it
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even more important to maintain situational autonomy, that is, the
ability of a person to assign a goal when faced with a particular
situation [Hexmoor, 2000]. Feeling in control over one’s body and life,
independence, and feeling of personal autonomy are among the most
important attributes of assistive technology regardless of disability
[Lupton and Seymour, 2000].

2.2 Food Manipulation with Robots

In this section, we will present a brief survey of robotics research done
in the context of food manipulation: detecting and identifying food,
grasping food, and cutting food.

Considerable work using computer vision with food detection and
classification has been done in the context of quality assurance of
particular foods. Algorithms have been designed for nuts, apples,
oranges, strawberries, meats, cheese, and even pizza [Brosnan and
Sun, 2002]. Each algorithm is tailored to the specific domain. A
summary of the type of features that have been successfully used in
these targeted applications is given by Du and Sun [2006] and
summarized in table 2.2. While these features were successful in
targeted applications, they may not be sufficient to distinguish
between types of food. Take for example a grain detector [Ding and
Gunasekaran, 1994] which uses shape, center, and orientation of
individual kernels of grain. These features would not successfully
distinguish between a round nut and a round pea of similar shape
and size.

Characterization Products

Area Apple
Hinge Oyster
Color Apple, Citrus, Lemon, Mandarin, Barley,

Oat, Rye, Wheat, Bell pepper, Muffin
Morphological Features Apple, Corn, Edible bean, Rye, Barley,

Oat, Wheat
Textural features Barley, Oat, Rye, Wheat, Edible bean
Spectral Images Tomato, Poultry carcass
Hue histograms Apple, Potato
Gradient magnitude Raisin, Asparagus
Curvature Carrot
Edges Asparagus

Table 2.2: Summary of features
used for quality assurance of
different food products.

Some recent work has tried to classify images of food into types of
dishes, usually for the purpose of determining calorie counts [Bossard
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et al., 2014, Zheng et al., 2017, Sudo et al., 2014, Oliveira et al., 2014].
What follows are potential features or feature-extraction techniques
that have been used in this domain. While we want to manipulate
food, food classification is a complementary task, since the type of
food is likely correlated with the way in which to manipulate it.

Just as there are several options for food features, there are many
learning algorithms that have been applied to the food quality
assurance problem [Du and Sun, 2006]. We will formulate this as a
supervised learning problem, where the labels are obtained from
robot executions and results. More details on our approach can be
found in chapter 4.

In addition to quality control, some recent work has been focused
on robot manipulation for cooking or preparing food for
consumption. Cutting for example, has been achieved through optical
and tactile feedback for foods with different hardnesses ranging from
apples to bananas [Yamaguchi and Atkeson, 2016]. Robots that can
cook are usually specialized specifically for that purpose and require
ingredients to be placed in preselected bins or containers [Ma et al.,
2011, Bollini et al., 2011, Sugiura et al., 2010]. While it is not directly
relevant to food manipulation, physical properties of food have been
examined through a mastication robot which emulates the motion of
the human jawbone during chewing [Xu et al., 2008].

2.3 Assisted Feeding

In this section, we describe the impact of dining with a caregiver on a
person with disabilities. We discuss some social considerations that are
relevant to this domain and summarize commercially available eating
aides to be used in place of or in tandem with a human caregiver.

2.3.1 Assisted Feeding with a Human Caregiver

Dining together is a cornerstone of society and provides a personal
link to the wider community that attests to the shared understanding
that underpins much of our routine food consumption [Marshall,
2005]. Inversely, social phenomena impact population eating patterns
[Delormier et al., 2009]. The eating ritual can be a very complex
process, with remarkably similar table manners both historically and
world-wide [Visser, 2015]. Dining habits have a particularly high
impact on the morale of those with disabilities. In the example of
stroke patients, the loss of meal-related autonomy may threaten their
hope for the future, whereas hope returns when meals become easier
[Jacobsson et al., 2000]. Prior work has identified self-feeding as a
highly sought-after ability for people with disabilities [Prior, 1990,
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Stanger et al., 1994].

Figure 2.2: A caregiver assisting
with feeding.

In addition to raising the self-worth of people with disabilities,
independent dining might have a considerable impact on caregiver
hours. Feeding is one of the most time consuming tasks for caregivers
[Chiò et al., 2006]. Training of new caregivers is particularly
important and difficult with respect to feeding. Initially, the disabled
person would have to explicate all that they wanted the helper to do
and the technical aspects of execution, and they could not enjoy the
food while constantly focusing on the meal procedure [Martinsen
et al., 2008].

Eating is a complex process requiring sensitive coordination of a
number of motor and sensory functions. When a person has to rely
on assisted feeding, meals require that patient and caregiver
coordinate their behavior [Athlin et al., 1990]. In order to achieve this
subtle cooperation, the people involved must be able to initiate,
perceive, and interpret each other’s verbal and non-verbal behavior.
The main responsibility for this cooperation lies with caregivers,
whose experiences, educational background and personal beliefs may
influence the course of the mealtime [Athlin and Norberg, 1987].
However, personal wishes must be communicated to such an extent
that the caregiver can consider the diner’s needs [Martinsen et al.,
2008].

Figure 2.3: Complex social cues
and interactions occur during
meals, which extend to assisted
feeding situations.A qualitative study by Martinsen et al. [2008] on the topic of eating

with a caregiver found that while assisted feeding requires the
construction of a new eating pattern, it is a careful creation of a new
schema which uses conventions among self-reliant people as a frame
of reference. “The goal of the interaction is to as closely as possible
replicate the meal experience from before the disability, when the
eating pattern was independent of conscious reflection and not
possible to articulate.” This supports the premise of using insights
learned from able-bodied people’s eating patterns to inform the way
an assistive feeding device should behave. Even the physical
properties of the device should deviate as little as possible from the
way self-reliant people eat, as the study found that people with
disabilities do not wish to draw attention to their dependency on help
from others. This supports using a silverware-like utensil and
human-like robot motion to avoid drawing undue attention to the
device.

The same study found that privacy becomes a concern when
having a caregiver present during dinner with friends or relatives.
People have to consider whether they prefer assistance from the
caregiver or from a relative. One study participant stated: “So far, it is
a great strain not to be able to sit and talk with your friends as you
used to do.” Using a robotic feeding device would allow for
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(a) Meal-MateTM (b) Meal Buddy (c) My Spoon (d) Obi

Figure 2.4: Four assistive feed-
ing devices currently on the
market.

increased privacy and intimacy during mealtime. However,
personalization to each individual is crucial to the feeder-receiver
relationship [Martinsen et al., 2008], and should be incorporated into
the control of the assistive feeding device.

2.3.2 Commercially Available Eating Aides

Several specialized feeding devices for people with disabilities have
come onto the market in the past decade, some of which are shown in
fig. 2.4. They all work in a similar manner.

The Meal Buddy Assistive Feeder is made by Patterson Medical More information on the Meal
Buddy Assistive Feeder at
http://www.pattersonmedical.com/

and features three bowls of food that are rigidly attached to the base
of a robot arm. A button is used to select which bowl, and to initiate
bite collection.

My Spoon is made by Secom, and features a robot arm with four More information on My Spoon at http:
//www.secom.co.jp/english/myspoon/bowls for food and an actuated silverware end effector, that will open

and close to grasp food before presenting it to the user. Since being
introduced in 2002, researchers have expanded the system’s original
interface to vary the level of control [Soyama et al., 2004]. In manual
mode, the operator uses a joystick to position the gripper above the
piece of food, then presses a button to have the fork/spoon collect
the food. In semi-automatic mode, the operator uses the joystick to
select one of the four containers and then the robot picks up pieces of
food in a predefined order that have been laid out in a grid in each
of the bowls. In automatic mode, the operator presses a button and is
given a piece of food in a predetermined sequence. In all modes with
autonomy, the food is placed in predefined locations and not detected
visually or otherwise.

The Obi is made by Desin and features four bowls of food that More information on the Obi at https:

//meetobi.com/are rigidly attached to the base of a robot arm. The Obi also has a
“teach” mode where a caregiver can place the robot at a position near
the mouth that will be remembered when the user triggers a bite via
button press.

Meal-MateTM Eating Device is made by RBF Healthcare uses a More information on Meal-MateTM

at http://rbfindustries.co.uk/

healthcare/
spoon attached to a robot arm, which will move down to a plate and
back up with the press of a button, but while the spoon is on the

http://www.pattersonmedical.com/
http://www.secom.co.jp/english/myspoon/
http://www.secom.co.jp/english/myspoon/
https://meetobi.com/
https://meetobi.com/
http://rbfindustries.co.uk/healthcare/
http://rbfindustries.co.uk/healthcare/
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plate, a joystick or arrow buttons can be used to move the spoon
along the plate.

All these feeding devices are designed only for food manipulation,
and require specialized food containers to function effectively. With
the exception of Meal-MateTM, all the feeding devices are controlled
with buttons to select a food bowl and then to trigger a bite action,
with control over the robot’s motion. Similarly, none of these devices
have any way to sense success or failure of taking bites, nor a way to
automatically time when to provide bites to the operator.

2.3.3 Balancing Assistive Device Properties

.
Prior rehabilitation studies have shown that there can exist a social

stigma around using assistive devices. Some factors that contribute to
the stigmatization include social acceptability and aesthetics [Parette
and Scherer, 2004]. Unwanted attention due to the use or presence of
an assistive device can make some users feel self-conscious in certain
social contexts [Shinohara and Tenenberg, 2009]. However, it has been
shown that functional access takes priority over feeling self-conscious
when using assistive technologies [Shinohara and Wobbrock, 2011].

A study on assistive device abandonment by Phillips and Zhao
[1993] found that the cost to purchase, durability, reliability, ease of
use, safety features, aesthetics, ease of repairs,
maneuverability/portability, and good instructions were the most
important characteristics of a good device. In device design, it is often
necessary to compromise between contradictory design goals – for
example a slimmer design could lead to better aesthetics, but also
make the device harder to repair. Developers of assistive devices
must try to balance these design requirements to increase the
likelihood of user acceptance.





3
Teleoperation of Assistive Robotic Manipulators

In this chapter, we discuss challenges and pitfalls common to all
teleoperated assistive robot manipulators. We introduce modal
control and mode-switching strategies. We generate a model to
predict mode switching occurrences, and evaluate automatic mode
switching as an assistive control strategy. Finally, we discuss
generalization of strategies to mitigate mode switching to other tasks
and assistive devices such as prosthetics.

3.1 Exploration of Modal Control

In this section, we introduce modal control and describe a study in
which we identify and quantify the challenges of teleoperating an
assistive robot with a modal control interface.

3.1.1 Exploratory Interviews

To explore the user base of the Kinova JACO robot, we interviewed
current users of the JACO robot arm and Kinova employees who have
contact with clients during initial training on how to use the robot. We
recruited participants through Kinova Robotics who forwarded our
contact information to clients who had previously reported an interest
in providing feedback to researchers. We interviewed participants over
the phone, using the guiding questions listed in table 3.1.

From the responses, we pinpointed that the struggles with modal
control relate back to the need to constantly change modes. Users
found switching between the various control modes, seen in fig. 1.3,
to be slow and burdensome, noting that there were “a lot of modes,
actions, combination of buttons”. Each of these mode changes
requires the user to divert their attention away from accomplishing
their task to consider the necessary mode change [Tijsma et al.,
2005a,b]. The cognitive action of shifting attention from one task to
another is referred to as task switching. Task switching slows down
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For JACO Users:

1. Have you tried using the JACO arm?
2. How often do you use the JACO arm?
3. For how long do you use it?
4. What do you use it for? (Give specific examples)
5. Do you think of the JACO arm as a personal possession, someone

else’s possession, as a partner, as a tool, or as something else?
6. Is your relationship with the JACO arm more like that of a friend,

a servant, a jailer, or something else?
7. What do you wish the arm could do?
8. What do you appreciate that the arm can do already?
9. Do you have a caregiver?
10. How often is the caregiver present?
11. Can you think of a time when your caregiver did something for

you that you wanted to do for yourself?
12. What parts do you think you could have done?
13. Are there some things that you prefer to have your caretaker do?

(Give specific examples)

For Kinova Employees:

1. How are you involved in the JACO arm project?
2. How were you involved in the JACO arm interface specifically?
3. What goals did you have for the interface?
4. How much contact have you had with clients?
5. What feedback have you gotten from your clients?
6. Have you considered ways to evaluate the interface?
7. Have you considered way to test the arm’s abilities?
8. How do you feel about the finished product?

Table 3.1: List of questions asked
during exploratory interviews
about the JACO robot arm.
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(a) 9 Hole Peg Test (b) Purdue Pegboard Test (c) Box and Block Test (d) Minnesota Test

Figure 3.1: Functional tests that
repeat specific motion primi-
tives.

users and can lead to increased errors regardless of the interface they
are using to make this switch [Monsell, 2003, Wylie and Allport, 2000,
Meiran et al., 2000, Strobach et al., 2012, Arrington and Logan, 2004].
Simply the need to change modes is a harmful distraction that
impedes efficient control.

3.1.2 Inventory of Occupational Therapy Manipulation Metrics

There are a wide variety of evaluation techniques used for
wheelchair-mounted assistive robotic manipulators. A literature
review of end-user evaluations [Chung and Cooper, 2012] revealed
that task completion time and task completion rate were the most
used evaluation metrics, but the tasks being used were different
across researchers and platforms leading to difficult comparisons. In
one Manus arm evaluation, there were no predefined set of tasks, but
rather the user was allowed to use the arm naturally within their
environment. Afterwards, the common tasks across users were
inventoried and evaluated [Eftring and Boschian, 1999]. Another
study with the Manus arm was evaluated by having users grasp the
following objects: remote controller, a cereal box, two jars, a soda can,
and a water bottle [Kim et al., 2012]. A third study with the Manus
arm was tested with the task of grasping a foam ball that was
hanging on a string [Tsui and Yanco, 2007]. While each task is
reasonable, it is very difficult to draw comparisons between the
studies, even though all are done on the same system.

There are advantages to evaluating our assistive robot arm system
with the same standardized tests that occupational therapists (OT) use
with human patients. Standard OT tests are already validated, have
years of application, provide a metric that can be used across robots
and people, and makes our results more understandable to a larger
community. Additionally, this would allow for a larger interaction
with insurance companies or healthcare economists [Mahoney, 1997].

Standard OT tests can be divided into strength tests, which
measure the muscular ability of the human hand and upper limbs,
and functional tests, which measure the ability to perform particular
tasks or motions. Because the robot’s hardware will exclusively
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determine its performance on strength tests and will not change
drastically over time, evaluations using functional tests make more
sense for comparing across robot and control platforms.

A survey of functional tests shows that they fall into two categories:
repeated tasks that test specific motion primitives, and tasks that are
based on daily living and cover several motion primitives per task.
The Purdue Pegboard test [Tiffin and Asher, 1948], 9 Hole Peg Test
[Sunderland et al., 1989], Box and Block Test [Mathiowetz et al., 1985],
and Minnesota Rate of Manipulation Test (see fig. 3.1) ask the user to
complete a number of short repeated tasks and use the overall task
time as the primary evaluation metric. Tests based on daily activities
include the Motor Activity Log (MAL) [Taub et al., 2011, Uswatte et al.,
2005], the Jebsen Taylor Hand Function Test [Tipton-Burton, 2011], the
Action Research Arm (ARA) Test [McDonnell, 2008], the Sollerman
Hand Function test [Sollerman and Ejeskär, 1995], and the Chedoke
Arm and Hand Activity Inventory (CAHAI) [Barreca et al., 2004].

Our prior work has used tasks from the CAHAI test, which has
the advantage of including both qualitative and quantitative metrics
for evaluation and tasks that can be easily modified to be performed
with one hand. It is optimized for evaluating stroke recovery, which
is not the target population for this work. We argue that spinal cord
injury patients with an assistive robot manipulator is more similar to
the situation of a stroke patient, who has varying levels of control over
their limb.

The CAHAI test is performed in a controlled environment with a
specific set of tasks and items. This makes it easy to compare across
users and practical to administer, but it may suffer from not being the
most representative set of tasks to characterize how the robot would
be used by each person. If we were performing a field study during
typical operational use, we would see a much greater variety of tasks
and could measure effects that take a longer time to develop such as
self-efficacy, changes in caregiver hours, and muscle fatigue. However,
in longitudinal studies it can be difficult to compensate for diminishing
mental or physical capacities.

3.1.3 Chedoke Tasks with the Robot with Able-bodied Users

To objectively measure the impact of mode switching, we ran a study
with able-bodied users performing household tasks with the Kinova
MICO arm using a joystick interface.

Experimental Setup Users sat behind a table on which the MICO
arm was rigidly mounted. They used the standard Kinova joystick to
control the arm.

Tasks The tasks we chose are slightly modified versions of those in
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the Chedoke Arm and Hand Activity Inventory (CAHAI), a validated,
upper-limb measure to assess functional recovery of the arm and hand
after a stroke [Barreca et al., 2004]. The CAHAI has the advantage
of drawing tasks from instrumental activities of daily living, which
are representative of our desired use case, rather than occupational
therapy assessment tools such as the 9-Hole Peg Test [Kellor et al.,
1971] or the Minnesota Manipulation Test [Cromwell, 1960] that also
evaluate upper extremity function, but do not place the results into
context.

TASK COMPONENT CHART
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Task 2: Call 911 
 

If affected hand is holding receiver If affected hand is dialing 911 

Components of arm mobility and hand 
manipulation 

• Reaches and grasps ear/mouth piece 

• Brings phone to ear 

Components of stabilization 

• Maintains sufficient grasp on phone and 
holds to ear 
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manipulation 

• Reaches for buttons 

• Pushes individual buttons clearly 
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Task 1: Open jar of coffee 
 

If affected hand is holding the jar If affected hand is holding the jar lid 

Components of arm mobility and hand 
manipulation 

• Reaches and grasps jar 

• Lifts jar off the table 

Components of stabilization 

• Maintains grasp on jar 

• Maintains jar off the table 

Components of arm mobility and hand 
manipulation 

• Turns and removes lid 

Components of stabilization 

• Maintains grasp on lid while it is removed 
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Task 4: Pour a glass of water 
 

If affected hand is holding the glass If affected hand is holding the 
pitcher 

Components of arm mobility and hand 
manipulation 

• Reaches and grasps glass 

• Lift glass off the table 

Components of stabilization 

• Maintain sufficient grasp to hold the glass 
away from table 

• Maintain glass steady while pouring 

Components of arm mobility and hand 
manipulation 

• Reaches and grasps pitcher 

• Lifts picture off the table 

• Pours water from pitcher 

Components of stabilization 

• Maintain sufficient grasp to hold the pitcher 
off the table 

• Maintain pitcher steady while pouring 
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(a) Telephone (b) Coffee (c) Pouring water

Figure 3.2: Three modified
tasks from the Chedoke Arm
and Hand Activity Inventory,
which able-bodied users per-
formed through teleoperating
the MICO robot.

Study Goal The purpose of this study was to quantify the amount
of time spent switching modes and to analyze any identifiable trends
related to mode switching.

Manipulated Factors We manipulated which task the user
performed. The three tasks we used were: calling 911, pouring a glass
of water from a pitcher, and unscrewing the lid from a jar of coffee.
These three tasks were chosen from the CAHAI test because they
could easily be modified from a bimanual task to being performed
with one arm. The three tasks are shown in fig. 3.2.

Procedure After a five minute training period, each user was given
a maximum of ten minutes per task. The order of tasks was
counterbalanced across the users. The joystick inputs and the robot’s
position and orientation were recorded throughout all trials. After all
the tasks were attempted, we asked the users to rate the difficulty of
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(a) (b) (c) (d)
Figure 3.4: The connected com-
ponents are a single user, and
the colors represent the diffi-
culty that user rated each task
with red being most difficult,
yellow being second most diffi-
cult, and green being least diffi-
cult.

each task on a 7-point Likert scale and to describe what aspects make
performing tasks difficult with this robot.

Participants and Allocation We recruited 6 able-bodied participants
from the local community (4 male, 2 female, aged 21-34). This was a
within subjects design, and each participant performed all three tasks
with a counterbalanced ordering.

Analysis On average, 17.4 ± 0.8% of task execution time is spent
changing control modes and not actually moving the robot. The
mode changing times were calculated as the total time the user did
not move the joystick before and after changing control mode. The
fraction of total execution time that was spent changing modes was
fairly consistent both across users and tasks as seen in fig. 3.3. If time
spent changing mode could be removed, users would gain over a
sixth of the total operating time.

(a) By Task

(b) By User

Figure 3.3: Execution time,
with time spent mode switching
shown in the darker shades.

The tasks the users performed were reported to be of unequal
difficulty. Users responded that the pitcher pouring was the most
difficult task (M=5.5, SD=0.7), followed by unscrewing the jar
(M=5.2, SD=0.7), and the easiest task was dialing 911 (M=4, SD=0.6).
The total execution time shown in fig. 3.3 mirrors the difficulty
ratings, with harder tasks taking longer to complete. Difficulty could
also be linked to the number of mode switches, mode switching time,
or ratio of time spent mode switching, as shown in fig. 3.4. The
hardest and easiest tasks are most easily identified when using
switching time as a discriminating factor. The pitcher and jar tasks
both rated as significantly more difficult than the telephone task,
which may be due to the large number of mode changes and small
adjustments needed to move the robot’s hand along an arc — as one
user pointed out: “Circular motion is hard.”

One might argue that we are basing our findings on novice users,
and their discomfort and hesitation switching modes will diminish
over time. However, over the course of half an hour using the arm,
and an average of more than 100 mode switches, users did not show
any significant decrease in the time it takes to change mode (fig. 3.5).
The continued cost of mode switching is further supported by our
interviews, in which a person using the JACO for more than three
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years stated “it’s really hard with the JACO because there are too many
mobilizations and too many movements required.”

The users had three possible modes and used two buttons on the
top of the joystick to change between them. The left button started
translation mode, the right button started wrist mode, and pressing
both buttons simultaneously started finger mode. Changing into
finger mode was particularly burdensome since the timing between
the two buttons had to be very precise lest the user accidentally press
the left or right button when releasing and switch to translation or
wrist mode. The cost to change from one mode to another was not
constant across the modes; table 3.2 shows the average time it took to
change from the mode in the row to the mode in the column. While
in this case the difference can be explained by the chosen interface, it
could be important to consider if switching from one particular
control mode to another causes a larger mental shift in context. Such
differences would require the cost of mode switches to be directional,
which we leave for future work.

3.2 Time-Optimal Mode Switching Model

The users of the JACO arm identified that frequently changing modes
was difficult. We objectively confirmed the difficulty of mode changing
by having able-bodied users perform everyday tasks with the MICO
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Figure 3.5: Each point is a
mode switch, with the y-value
indicating the mode switching
time, and the x-value indicat-
ing when the mode switch oc-
curred. The colors correspond to
the task (blue: pouring pitcher,
brown: unscrew jar of coffee,
red: dial 911), and the order of
tasks can be seen for each user
as arranged from left to right.
Dashed lines in the pitcher task
identify locations where the user
dropped the pitcher and the task
had to be reset.
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Translation Wrist Finger

Translation - 1.98 ± 0.15s 1.94 ± 0.16s
Wrist 2.04 ± 0.51s - 3.20 ± 1.85s
Finger 1.30 ± 0.13s 0.98 ± 0.24s -

Table 3.2: Mean mode switching
times in seconds.

arm. Having identified mode switching as a problem in this complex
scenario, we tried to model the problem in a much simpler scenario
and provide the foundations for scaling the solution back up to the
full space of the MICO arm.

3.2.0.1 Study 2: 2D Mode Switching Task

Study 1 demonstrated that people using modal control spend a
significant amount of their time changing modes and not moving the
robot. The next step is to model when people change modes so that
the robot can provide assistance at the right time. We identified
certain behaviors from Study 1 that could confound our ability to fit
an accurate model. We observed that different people used very
different strategies for each of the tasks, which we postulated is
because they were performing multi-step tasks that required several
intermediate placements of the robot’s gripper. In some trials, users
changed their mind about where they wanted to grab an item in the
middle of a motion, which we could detect by the verbal comments
they made. To gather a more controlled set of trajectories under
modal control, we ran a second study in which we more rigidly
defined the goal and used only two modes. To fully constrain the
goal, we used a simulated robot navigating in two dimensions and a
point goal location. We kept all the aspects of modal control as
similar to that of the robot arm as possible. Using a 2D simulated
robot made it simpler to train novice users and removed confounds,
allowing us to more clearly see the impacts of our manipulated
factors as described below.

Experimental Setup In this study, the users were given the task of
navigating to a goal location in a planar world with polygonal
obstacles. We had each user teleoperate a simulated point robot in a
2D world. There were two control modes: one to move the robot
vertically, and one to move it horizontally. In each mode, the users
pressed the up and down arrow keys on the computer keyboard to
move the robot along the axis being controlled. By using the same
input keys in both modes, the user is forced to re-map the key’s
functionality by pressing the spacebar. This is a more realistic
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(a) Task 1 (b) Task 2 (c) Task 3

Figure 3.6: Top row: Three tasks
that the users performed with
a 2D robot. The green square
is the goal state and the black
polygons are obstacles. Middle
row: regions are colored with
respect to the time-optimal con-
trol mode; in blue regions it is
better to be in x mode, in or-
ange regions it is better to be in
y mode, and in gray regions x

and y mode yield the same re-
sults. Bottom row: user trajec-
tories are overlaid on top of the
decision regions, illustrating sig-
nificant agreement.

analogy to the robot arm scenario, where the same joystick is being
used in all of the different control modes to control different things.

Task 1 Task 2 Task 3

No delay
Task 1,

No delay
Task 2,

No delay
Task 3

No delay

1 sec. delay
Task 1,

1 sec. delay
Task 2,

1 sec. delay
Task 3,

1 sec. delay

2 sec. delay
Task 1,

2 sec. delay
Task 2,

2 sec. delay
Task 3

2 sec. delay

Table 3.3: Within Subjects Con-
ditions for 2D Mode Switching
Study.

Manipulated Factors We manipulated two factors: the delay when
changing modes (with 3 levels) and the obstacles in the robot’s world
(with 3 levels). To simulate the cost of changing modes, we
introduced either no delay, a one second delay, or a two second delay
whenever the user changed modes. Different time delays are
analogous to taking more or less time to change mode due to the
interface, the cognitive effort necessary, or the physical effort. We also
varied the world the robot had to navigate in order to gather a variety
of different examples. The three tasks are as follows: (1) an empty
world, (2) a world with concave and convex polygons obstacles, and
(3) a world with a diagonal tunnel through an obstacle, and are
shown in the top row of fig. 3.6. The nine randomized conditions are
summarized in table 3.3.

Procedure This was a within subjects study design. Each user saw
only one task, but they saw all three delay conditions. Each user had
a two trial training period with no delay to learn the keypad controls,
and then performed each of the three delay conditions twice. Five
users performed each task. The goal remained constant across all the
conditions, but the starting position was randomly chosen within the
bottom left quadrant of the world. We collected the timing of each
key press, the robot’s trajectory, and the control mode throughout
each of the trials. The order of delay conditions was randomized and
counterbalanced.

Measures To measure task efficiency, we used three metrics: the
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Figure 3.7: User strategies for
Task 2 are shown via their paths
colored in blue. As the delay in-
creases, some users choose to go
around the obstacles rather than
through the tunnel, to avoid
switching mode. There is still
significant agreement with the
time-optimal strategy.

total execution time, the number of mode switches, and the total
amount of time switching modes. We also recorded the path the user
moved the robot and which control mode the robot was in at each
time step.

Participants We recruited 15 participants aged 18-60. While this
is a fairly small sample, all subjects saw all conditions, and this was
primarily an exploratory study to examine qualitatively how the cost
of mode switching impacts user strategies.

Analysis When the cost of changing modes increases, people
choose different strategies in particular situations. This is best seen in
Task 2, where there were two different routes to the goal, whereas in
Task 1 and Task 3 the map is symmetrical. When there was no mode
delay, nearly all users in Task 2 navigated through the tunnel to get to
the goal, fig. 3.7. When the delay was one second, some users began
to navigate around the obstacles completely, and not through the
tunnel. While navigating the tunnel was a shorter Euclidean distance,
it required more mode changes than navigating around the tunnel
entirely. Therefore we saw that when the cost of mode changes
increased, people were taking paths that reduced the number of
mode switches.

We noticed that the user trajectories could be very well modeled
by making the assumption that the next action they took was the one
that would take them to the goal in the least amount of time. Since
switching modes is one of the possible actions, it becomes possible
to use this simple model to predict mode switches. The next section
discusses the time-optimal model in more detail and its relevance to
these results.

3.2.1 Time-Optimal Mode Switching

The time-optimal policy was found by assigning a cost to changing
mode and a cost to pressing a key. These costs were found by
empirically averaging across the time it took the users from Study 2

to perform these actions. Using a graph search algorithm, in our case
Dijkstra’s algorithm [Dijkstra, 1959], we can then determine how
much time the optimal path would take. By looking at each (x,y)
location, we can see if the optimal path is faster if the robot is in
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x-mode or y-mode. The time-optimal mode for each particular (x,y)
location is the mode which has a faster optimal path to the goal. A
visualization of the optimal mode can be seen in fig. 3.6 for each of
the tasks. Time-optimal paths change into the optimal mode as soon
as the robot enters one of the x-regions or one of the y-regions. By
plotting the user trajectories over a map of the regions, we can see
where users were suboptimal. If they were moving vertically in the
x-region or horizontally in the y-region, they were performing
sub-optimally with respect to time.

In Task 1, users were in the time-optimal mode 93.11% of the time.
In Task 2, users were in the time-optimal mode 73.47% of the time. In
Task 3, users were in the time-optimal mode 90.52% of the time. Task 2

and Task 3 require more frequent mode switching due to the presence
of obstacles.

3.3 Evaluation of Automatic Mode Switching

Once we determined that people often switch modes to be
time-optimal, we tested how people would react if the robot
autonomously switched modes for them. Using the same tasks from
Study 2, we used the time-optimal region maps (fig. 3.6), to govern
the robot’s behavior.

3.3.0.1 Study 3 : 2D Automatic Mode Switching

No Delay Delay

Manual
Manual,
No delay

Manual,
Delay

Automatic
Automatic,
No delay

Automatic,
Delay

Forced
Forced,

No delay
Forced,
Delay

Table 3.4: Within Subjects Con-
ditions for Time-Optimal Mode
Switching Study.

Manipulated Factors We manipulated two factors in a within-subjects
study design: the strategy of the robot’s mode switching (with 3

levels) and the delay from the mode switch (with 2 levels) as
summarized in table 3.4. The mode switching strategy was either
manual, automatic or forced. In the manual case, changing the robot’s
mode was only controlled by the user. In the automatic case, when
the robot entered a new region based on our optimality map, the
robot would automatically switch into the time-optimal mode. This
change would occur only when the robot first entered the zone, but
then the user was free to change the mode back at any time. Within
each region in the forced case, by contrast, after every action the user
took, the robot would switch into the time-optimal mode. This meant
that if the user wanted to change to a suboptimal mode, they could
only move the robot one step before the mode was automatically
changed into the time-optimal mode. Hence the robot effectively
forces the user to be in the time-optimal mode.

Similar to Study 2, we had a delay condition, however we
considered the following three cases: (1) no delay across all assistance
types, (2) a two second delay across all assistance types, and (3) a two
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second delay for manual switching but no delay for auto and forced
switching. The purpose of varying the delay was to see if the user’s
preference was impacted equally by removing the imposed cost of
changing mode (delay type 3), and by only removing the burden on
the user to decide about changing mode (delay type 1 and 2).

Hypotheses

H1: People will prefer when the robot provides assistance.

H2: Forced assistance will frustrate users because they will not be able
to change the mode for more than a single move if they do not accept
the robot’s mode switch.

H3: People will perform the task faster when the robot provides
assistance.

Procedure After giving each user two practice trials, we conducted
pairs of trials in which the user completed the task with the manual
mode and either the forced or automatic mode in a counterbalanced
randomized order. Testing the automatic assistance and forced
assistance across the three delay conditions led to six pairs. For each
pair, users were asked to compare the two trials on a forced choice
7-point Likert scale with respect to the user’s preference, perceived
task difficulty, perceived speed, and comfort level. At the conclusion
of the study, users answered how they felt about the robot’s mode
switching behavior overall and to rate on a 7-point Likert scale if the
robot changed modes at the correct times and locations.

Participants We recruited 13 able-bodied participants from the local
community (7 male, 6 female, aged 21-58).

Analysis People responded that they preferred using the two types
of assistance significantly more than the manual control, t(154) = 2.96,
p = .004, supporting H1. The users’ preference correlated strongly
with which control type they perceived to be faster and easier (R=0.89

and R=0.81 respectively).
At the conclusion of the study, users responded that they felt

comfortable with the robot’s mode switching (M=5.9, SD=1.0), and
thought it did so at the correct time and location (M=5.7, SD=1.8).
Both responses were above the neutral response of 4, with t(24)=4.72,
p < .001 and t(24)=2.34, p = .028 respectively. This supports our
finding that mode switching can be predicted by following a strategy
that always places the robot in the time-optimal mode.

Since this was an experiment, we did not tell participants which
trials the robot would be autonomously changing modes in. As a
result, the first time the robot switched modes automatically, many
users were noticeably taken aback. Some users immediately adjusted,
with one saying “even though it caught me off guard that the mode
automatically switched, it switched at the exact time I would have
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switched it myself, which was helpful”. While others were initially
hesitant, all but two of the participants quickly began to strongly prefer
when the robot autonomously changed for them, remarking that it
saved time and key presses. They appreciated that the robot made the
task easier and even that “the program recognized my intention”.

Over time people learned where and when the robot would help
them and seemed to adjust their path to maximize robot assistance.
People rarely, if ever, fought against the mode change that the robot
performed. They trusted the robot’s behavior enough to take the
robots suggestions [Mead and Matarić, 2009, Baker and Yanco, 2004,
Kubo et al., 2009]. We found no significant difference between the
forced and automatic mode switching in terms of user preference
t(76) = 0.37, p = 0.71. Some users even stated that there was no
difference at all between the two trials. Therefore we did not find
evidence to support H2.

Task efficiency, measured by total execution time and total time
spent changing modes (as opposed to moving the robot), was not
significantly different between the manual control, auto switching,
and forced switching conditions. Therefore we were not able to
support H3. However, this is not surprising as the assistance
techniques are choosing when to switch modes based on a model that
humans already closely follow. It follows that the resulting
trajectories do not differ greatly in terms of path length nor execution
time.





4
Robotic Food Manipulation

In this chapter we construct a robotic system for the purpose of food
manipulation through the use of a commercially-available assistive
robot arm and selected sensors. We describe and compare different
methods of scanning plates of food and develop a taxonomy of food
collection strategies. We train a neural network to determine and
rank potential bite locations for the robot to autonomously acquire
food morsels. Finally, we evaluate the model and discuss how to
generalize to other foods and acquisition strategies.

4.1 Preparing the Robot for Food Manipulation

The Kinova MICO robot has a two-fingered, underactuated, parallel
gripper. While the tips of the two fingers can touch to hold objects
smaller than one centimeter in diameter, it is designed to hold larger
objects or surfaces such as a glass or a doorknob. Directly
manipulating food is not recommended due to hygiene concerns and
because it would be difficult to adequately clean the fingers after use
and the robot is not waterproof. Holding a fork in the robot’s
grippers would also be a problem because the tips of the fingers are
fairly slippery and do not have a large contact area with the fork, thus
risking dropping the fork when it comes into contact with food or the
plate. We specifically avoided the decision to rigidly mount the fork
to the robot’s end effector because the robot is an assistive tool
providing a wide array of manipulation abilities, such as pressing
buttons and opening doors, that having a permanently mounted fork
would interfere with. Instead, we use a 3D printed fixture, supplied
by Kinova Robotics and shown in fig. 4.1, which the robot can grasp
and release as desired by the robot operator. Inside the fixture, a fork
(or other utensil) can be affixed via a hand-tightened bolt.

We considered whether to use two robot arms during food
manipulation or to constrain our design to a single arm. Using two
robots would enable bimanual manipulations such as cutting while
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holding a piece of food, or pushing food with one utensil onto
another utensil. Two robots would however increase the overall cost
of the system two-fold, decrease the maneuverability of the overall
wheelchair-robot system, and at least double the control complexity
for direct teleoperation. While bimanual assistive robot systems have
been attempted for the purpose of specialization [Song et al., 2010],
we decided that a single robot arm is capable for an acceptable
percentage of food acquisition and feeding needs.

Figure 4.1: Adaptations of the
MICO robot to enable food ma-
nipulation.

To add sensing to the arm, we mounted an Occipital Structure
Sensor to the robot’s wrist to gather depth data. When determining
the mounting location, we decided that mounting it on the robot’s
proximal link would enable a greater range of viewpoints, which
would be of particular value to the robot’s intended operators who
have limited ability to change their own vantage point. We mounted
the sensor slightly above the gripper to avoid occlusions from small
objects in the hand, such as the silverware fixture. We oriented the
sensor to be aligned with the robot’s gripper as it makes an approach
to an object. In retrospect, it could have been useful to point the
sensor along the fork’s axis, which is perpendicular to the gripper
axis, in order to get real time feedback while acquiring a bite. With
the mounting location we chose, the robot can examine a plate of
food, then perform an acquiring action, but has no visual feedback
while the robot is interacting with the plate via the fork.

When selecting a depth sensor, we cared a great deal about the
minimum range, as the MICO robot arm only has a reach of 0.7
meters, and would often be mounted at a height equal or below the
tabletop. Even with the Occipital Structure Sensor, we were reaching
its minimum range specifications, so eventually switched it for an
Orbbec Astra S, which has a minimum range of 0.4 meters.

4.2 Food Acquisition Strategies

We began our investigation of food acquisition by observing how
humans eat. We limited our observations to able-bodied subjects
using a fork. We don’t consider methods to acquire food that use
hands, chopsticks, spoons, knives, or other utensils. One reason for
this is that most foods can be eaten with a fork, even if they are
primarily eaten in another way (with the exception of dilute soups or
broths). Another is that in North America, use of the fork is more
common than, say, use of chopsticks, and therefore more accessible
for us to study.

We recorded videos of participants eating a variety of foods with
only a fork. Foods we provided include beef, broccoli, rice, salad,
chicken pieces, cheese, cut fruit, and noodles. During our initial
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Figure 4.2: Taxonomy of food
acquisition primitives.

observations, participants were feeding themselves just as during a
normal meal, and in later observations, we asked participants to pick
up food with the fork and mime feeding a mannequin the food.

Watching the videos provided a qualitative source of information
for the techniques people use to eat, but we were also interested in
considering the fork’s motion so that it could be recreated with the
robot. To that end, we added a cube of AprilTag fiducial markers
[Olson, 2011] to the end of the fork to track its location and orientation
in the videos. We chose the marker location to maintain maximum
visibility while manipulated, but even so, there were frames where
no markers could be detected and noise in the tag detectors made it
impossible to get a smooth trajectory. Instead, we used the OptiTrack
motion capture system with infrared markers mounted on the fork to
successfully collect natural fork trajectories (as shown in fig. 4.3).

We examined the video recordings an identified that there are
discrete strategies for food acquisition, and further that the strategy
used was dependent on the food being eaten. We organized each of
these strategies as food acquisition primitives in a taxonomy similar
to the grasping taxonomy developed by Cutkosky [1989] as shown in
fig. 4.2. Next, we describe each of the primitives.

Figure 4.3: Fork with infrared
markers mounted on the oppo-
site end from the fork tines.Skewer In a skewering motion, the fork tines are brought

downward to impale a morsel of food, and then lifted back upwards
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and into the mouth. In a Vertical skewer, the fork is pressed into the
food at a near vertical, and lifted back upwards vertically. The piece
of food is held on entirely by friction and is not in danger of slipping
off the end of the fork when held vertically. In an Angled skewer, the
fork is pressed into the food at an angle, and then pivoted to use a
combination of friction and gravity to hold the morsel of food on the
fork. In an angled skewer, the morsel of food would slip off the fork if
held vertically.

Scoop In a scooping motion, the fork is held with its primary axis
nearly parallel to the plate, and the flat part of the tines are pushed
underneath the food so that at the end of the motion, a morsel of food
is resting atop the fork tines. The fork must remain horizontal after
food collection to maintain control of the food. In an impulse scoop, the
fork is scraped quickly along the plate to use the inertia of the food
staying in place to position food atop the tines. In a sustained scoop, the
fork is scraped along the plate until the food is forced atop the tines
when it hits the edge of the plate or enough other food to keep it from
moving with the fork.

Twirl In a twirling motion, the fork is brought downward in a
manner similar to skewering, entrapping some part of food between
the tines, and is then rotated around the vertical axis to twist food
around the fork tines before being angled and lifted to a horizontal
position.

We have arranged the primitives in fig. 4.2 along trends that were
consistent with our observations. When people used vertical
skewering, it was with harder foods in larger pieces such as carrots,
broccoli, and apples. When people used angled skewering, it was still
with large pieces but with softer foods, such as pasta or chicken
pieces. Scooping could be used with larger pieces, but was primarily
observed with granular food such as rice or salad. Twirling seems to
be a special case reserved only for long noodles such as spaghetti. It
is an interesting manipulation strategy because it often combines
scooping and skewering.

In addition to the actual acquisition motions, the fork was used to
prepare food for acquisition. People used the edge of the fork to cut
larger pieces of soft food into manageable-sized bites. Preparatory
actions were performed, such as pushing food to the edge of the plate,
or gathering it into a larger pile before executing one of the acquisition
strategies.

To recreate these primitives on the robot, we need a parameterized
representation that can be instantiated for a given bite location.
Because skewering can be used on the widest variety of foods, we
chose to use a vertical skewering motion as a starting point for food
acquisition with the robot.
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We represented a skewering motion as a vertical downward
motion of the fork tines through a piece of food to the plate. Once the
plate is reached, the fork is lifted vertically, then rotates 90 degrees to
bring the fork flat and level. Once a bite is acquired, the robot can
bring the skewered food to the operator’s mouth. We used this
simple representation of skewering so that the only parameter needed
is the food’s location, without respect to food orientation, shape, or
type. A more complicated definition of skewering could include also
an approach direction, application force, lifting angle, and any other
number of motion descriptors.

While this skewering motion is inspired by watching humans
eating, we could make it more truly human-like by fitting a function
to the fork trajectories of human examples. Using the simple
skewering strategy outlined here has been effective in our tests, and
we did not see a need to change its motion. Scooping, twirling, and
even angled skewering will be harder to manually implement because
they rely on adapting to the state of the food as the motion is being
performed. Even while performing vertical skewering, people may
adapt the forces they apply, but we have not seen evidence that they
adjust the fork’s trajectory.

4.3 Food Detection

We have identified discrete strategies that can be used to acquire bites
of food. In order to identify where on a plate of food the strategies
should be applied, the robot needs to be able to detect prospective bite
locations. In this section we describe a hand-tuned detector, a Support
Vector Machine based model that uses locally computed features, and
a neural-network model that uses raw RGBD sensor values.

4.3.1 Hand-tuned Bite Detector

To detect potential bite locations, we started with classical techniques
from computer vision. Using the point cloud obtained from the
RGBD sensor, we first used RANSAC [Fischler and Bolles, 1987] to
identify the plane of the table. Then, we used a round mask to filter
out data that was generated outside the plate of food on the table.
This was necessary to avoid including a glass of water or other objects
on the table as potential bite locations. The remaining point cloud
was segmented into connected components. At this point, if all the
food items were discretely located on the plate, the centroids of each
connected component would be enough to serve as a robust bite
location. However, in the case of overlapping food, the centroid might
not be the ideal place to skewer. In the case that a connected
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component is above a threshold bite size, bite candidates are chosen
along the edge of the connected component, at a distance equal to
half the threshold bite size. This allows the robot to select bites along
the edge of a pile, working its way to the center, and reducing its risk
of skewering a section of food too large to reasonably acquire or eat.

4.3.2 Local Features from Dense Scans

The hand-tuned bite detector is very effective for discrete pieces of
food, but it had a hard time detecting foods that were smaller than
usual, or making very good guesses about bite locations for piles of
food. Instead of tuning parameters in our hand-built bite detection
model for each new type of food, we opted to train a model to learn
bite locations to help account for the large variation in bite size and
food appearance.

We chose to leverage the available point cloud data by using Point
Feature Histograms (PFH) [Rusu et al., 2009], Fast Point Feature
Histograms [Rusu, 2010] (FPFH), aSnd Point Feature Histograms with
Color (PFHRGB) [Rusu et al., 2009] to describe the local geometry
around each point in the dataset. PFHs have been successfully used
for object classification [Hetzel et al., 2001, Himmelsbach et al., 2009],
segmenting surfaces in living environments [Rusu, 2010], and point
cloud registration [Rusu et al., 2008]. We believe that the local
geometry will be very important for determining good bite locations,
as the plate and different types of food have very distinctive shapes
and textures.

The goal of the point feature histogram (PFH) formulation is to
encode a point’s k-neighborhood geometrical properties by
generalizing the curvature around the point using a 125-dimensional
histogram of values. It is capable of capturing all possible surface
variations by taking into account interactions between the normals of
k neighbors. The resultant vector is dependent on the quality of
normals. This vector is binned into 5 bins for each angular, which
creates total of 125 bins and defines the length of the vector. This high
dimension hyperspace provides a distinct signature for the feature
representation of geometry. It is invariant to the 6D pose of the
underlying surface and copes very well with different sampling
densities and noise within its neighborhood.

The difference between PFH and fast point feature histograms
(FPFH), is that FPFH does not fully interconnect all neighbors of the
point of interest pq. It thus misses some value pairs which might have
contributed to capturing the geometry around the query point,
making it less accurate than PFH, but faster to compute. The FPFH
includes additional point pairs outside the sphere of radius r and has
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(a) Structured IR (b) Stereo Camera

Figure 4.4: Comparison between
pointclouds from a dense scan
made with structured IR light
(a) and a stereo camera (b).

a larger span of up to 2r away. The overall complexity of FPFH is
greatly reduced due to the decrease in neighbors, making it possible
to use it in real-time applications. The histogram that is produced is
simplified by de-correlating each feature dimension and
concatenating them together.

The point feature histograms with color (PFHRGB) is calculated in
similar fashion, but in addition to the information about the
relationship of the normals, it also includes color channels. The
PFHRGB has three additional parameters: one for the ratio between
each color channel of source and the corresponding color channel of
destination point. These histograms are binned in similar way to the
PFH, and generate another 125 floating point values. This brings the
total size of the feature vector to 250.

The descriptiveness of PFHs is related to the resolution of the point
cloud, and the size of the influence region. Some food features are
very small in comparison to the sensor resolution (e.g. grains of rice
or pieces of salad), so fairly dense point clouds of the food are needed.
To train a classifier based on the feature histograms, we also needed to
procure point-wise labeling of the point clouds into “skewerable” and
“non-skewerable” regions.

Colored point cloud datasets have been published to benchmark
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Figure 4.5: Examples of objects
which must be given non-bite la-
bels to effectively train a classi-
fier that does not use a mask for
objects not on the user’s plate.

computer vision and machine learning algorithms. Potential source
datasets that include food items are the TST Intake Monitoring
database [Gasparrini et al., 2015], the Cornell Activity Datasets
CAD-120 [Koppula et al., 2013], the RGBD-HuDaAct: A Color-Depth
Video Database for Human Daily Activity Recognition [Ni et al.,
2011], and the Leeds Activity Dataset [Aldoma et al., 2014]. The
number of point clouds in each dataset that includes food on a plate
is very limited, and is always of a full plate, never of any partially
eaten examples. We therefore supplemented existing datasets with
our own collection of RGBD images of plates of partially eaten food.

To generate dense colored point clouds using the wrist-mounted
RGBD sensor, the robot is programmed to move to a pose where the
RGBD camera can look down at the known plate location. The robot
moves along a scanning trajectory, in which the plate is always in
view of the camera, to collect several seconds worth of data that are
then merged via Elastic Fusion [Whelan et al., 2015] to create a
denser, more complete point cloud. We also explored using a stereo
camera to generate a dense scan of the food, but found that using a
stereo camera to generate the dense scans was more prone to holes as
visualized in fig. 4.4.

To label the generated scans, we manually segmented the point
clouds into potential bite and non-bite locations. Because we are no
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Figure 4.6: A dense scan of
a plate of food after apply-
ing Elastic Fusion. The bottom
point cloud is colored by hand-
labeling of potential bite and
non-bite locations.

longer using a mask for the plate to remove other objects in the scene,
it was important to include negative examples such as the glass of
water, other silverware, and napkins in the scene during training such
as those in fig. 4.5. With the features and labels for each point in the
scans, we trained a non-linear Support Vector Machine to classify
each point as a potential bite location or a non-bite location.

Applying the trained SVM results in a labeling for every point in
the point cloud. A representative example is shown in fig. 4.6 in
which the bite locations have been colored in blue and the non-bite
locations in red. Unlike the hand-tuned bite detector, this method
presents many bite locations for each piece of food, instead of a single
centroid. The edges of pieces of food are labeled as non-bite locations,
which is desirable since skewering on the edge of a piece of food is
more likely to be unsuccessful.

There are two major shortcomings to this technique for choosing
bite locations. The first is that generating the dense scan and
computing local features is time consuming, on the order of 5-10

seconds per bite. This kind of delay is frustrating as a user and can be
disruptive to dining socially since the robot has to move in very
imposing ways to produce the food scan. The second shortcoming is
that the model is very sensitive to the food examples it was trained
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with and that adding data for a new food is expensive due to manual
labeling. We trained only with pieces of fruit, but there is a wide
variety of food shapes, sizes, and colors that were not yet explored.

To fix the first shortcoming, we can draw from the success of
applying neural networks to raw sensor data for classification and
segmentation [Dong and Xie, 2005]. We will use only single images
instead of dense scans, and adjust the depth of the neural network as
needed to discover important local information.

To fix the second shortcoming, we can gather supervised data from
robot trials instead of hand-labeling. While this does not make the
labeling necessarily less expensive in terms of time or effort, it does
enable online learning to take place, where the robot can get better at
manipulating food the longer it is in use. To that end, we use the
force-torque sensor embedded within the fork as shown in fig. 4.7 to
determine how much food was captured after an attempt by the robot
to collect food. With this measure of success, we can define our
problem as follows. Figure 4.7: Force-torque sensor

embedded within a fork to mea-
sure forces and torques applied
at the tinetips.

4.4 Learning Bite Locations

The objective is to select an (x, y) plate coordinate at which to perform
a skewering action given an input RGBD image of the whole plate.

4.4.1 Data Collection

During each trial, the robot makes an observation of the plate of food,
selects the policy parameters needed to execute a food acquisition
policy, and measures the success of the food acquisition attempt.

The initial observation is a single RGBD image of a plate of food
with a resolution 256x256. Due to the time restrictions of scanning
and computing a combined image/point cloud from multiple vantage
points, the size and detail of the observation is limited by the RGBD
sensor’s capability for a single image. To compare performance of a
wrist-mounted camera versus an overhead camera, we collected both
sources and trained with them separately.

For this experiment, we used the skewering primitive because it can
be specified with the fewest number of parameters, but the same setup
can be used with different parameterizations. The policy parameters
needed to execute the robot’s action are simply the (x, y) location on
the plate of the skewering target.

Success is measured at the end of the trial by rotating the fork to a
horizontal orientation and using the force-torque sensor to calculate
the mass in grams of any food matter attached to the fork. For
unsuccessful bites, no food mass will be acquired. For successful
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bites, we can choose to use the mass as a metric of success – the more
food, the more successful.

(a) 2D Bite Labeling

(b) 3D Bite Labeling

Figure 4.8: GUI for perform-
ing standardized hand labeling
of bite locations in (a) 2D and (b)
full 3D.

We considered jump-starting the learning process by using
human-labeled bite locations via either a 2D or 3D interface (as
shown in fig. 4.8), but determined that bite selection is a very
subconscious decision and examples provided in such a manner
would be artificial and potentially even detrimental examples.
Instead, we ran several hundred trials in which the robot would pick
a random (x, y) location on a plate of food, attempt a skewer, and
record its level of success.

Prior to each trial, the robot moved to a position where the plate was
in view of the overhead Kinect sensor and where the wrist-mounted
Astra-S sensor could see the whole plate without hitting the minimum
range limits of the sensor. The RGBD image from each sensor was
recorded as a “pre-bite” image. Next, an (x, y) target was chosen from
a uniform distribution over the surface of the plate: x ∈ U (−r, r),
y ∈ U (−r, r), for plate radius r, rejecting samples outside the circle
of the plate. The robot performed a skewering action as described in
section 4.2. After the skewering motion, the robot’s wrist rotated 90°
so that the fork is held at a horizontal to the table. This happens to
mimic human behavior, but is done for the purpose of measuring the
weight of the attached food via the force-torque sensor embedded in
the fork. We tested the accuracy of measuring weight this way with
standardized metal weights and determined the accuracy to be within
0.5 grams. After this measurement is made, the robot scrapes the fork
against a soft sponge which enables the robot to empty the fork in
preparation of the next trial.

We collected 500 robot trials to use as training data, using mixed
fruit as the type of food. We chose mixed fruit because it is a type
of food that is acquired almost exclusively using a skewering motion,
and it provides a variety of colors, textures, shapes, sizes, and physical
properties. Of the trials, 21.4% resulted in a successful acquisition of a
bite. The average successful bite collected 4 grams of food.

4.4.2 Model 1: Local Bite Classification

Given the pre-acquisition images and the skewering location, we
cropped the images to 32 x 32 pixels centered around the skewering
location. For each of the cropped images, we used the force readings
on the fork at the end of the execution to produce a binary label of
success or failure if the fork collected food mass weighing above the
threshold of 1 gram. Examples for each of the classes is shown in
fig. 4.10. Intuitively, the positioning of food on the whole plate will
not impact the success or failure of a given bite since the physical
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Figure 4.9: The learning setup
in which the robot captures an
image of the plate, performs a
skewering action, and receives a
reward based on the amount of
food on the fork.

interaction will be governed by local dynamics between the fork and
the food during the skewering motion.

In the training examples of fig. 4.10, we can identify some sources
of failure for the negative examples. In the failed bite locations, food
is either not present or there are multiple pieces of food together, but
the skewering motion is targeting the space where two pieces of food
are touching one another.

(a) Success (b) Failure

Figure 4.10: Examples of local
images of bites where the robot
succeeded or failed to skewer a
bite. The skewer target is at the
center of each image square.

Deep convolutional neural networks have been used extensively
for image classification and segmentation [LeCun et al., 2015]. We are
performing image classification as well, but the classes instead of
being related to visual properties of the object itself, are related to the
performance of a manipulation strategy enacted on the object.

Figure 4.11: The building block
for residual learning networks
from [He et al., 2016]

We used two layers of a Residual Network for our network
architecture [He et al., 2016], which is composed of multiple ResNet
blocks. In the original LeNet formulation, there are alternating layers
of convolution, non linear combinations (ReLU), and pooling,
followed by a fully connected layer with a softmax activation function
classification [LeCun et al., 1998]. The ResNet blocks add “shortcut
connections”, skipping one layer as shown in fig. 4.11 and leading to
deeper networks with higher accuracy.
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Figure 4.12: Model1: ResNet
which takes an image centered
around a skewering location and
outputs a 2x1 vector of [0,1] val-
ues. The input image shown is
for color, but we use the same
network layout for depth and
color+depth images.

We used TensorFlow [Abadi et al., 2015] and its python libraries in
our implementation, and trained the network with a machine that has
a NVIDIA GeForce GTX 950 GPU. The layout of the network is shown
in fig. 4.12.

To apply the output of this network to the problem of determining
the actual (x, y) bite locations given an image of a whole plate of
food, we use a sliding window to generate a pixel-wise labeling for
the image of the whole plate. From the pixel-wise labeling, we can
choose to prioritize bite locations in the order of labeling probability,
or use the centroids of the largest connected components in an
attempt to increase robustness of the skewering.

4.4.3 Model 2: Local Bite Weight Regression

As in section 4.4.2, for local bite weight regression, we cropped the
pre-acquisition images to 32 x 32 pixels around the skewering location.
Instead of thresholding the force readings into success or failure, we
instead use the food mass measurement as the output of a regression
model. The objective is given a cropped image, to produce the amount
of food mass that will result after a skewering action performed at the
image’s center.

The distribution of food masses is shown in fig. 4.13. Because all of
the skewering attempts that did not result in a bite have a mass of zero,
the distribution of food masses is heavily skewed in that direction.

Figure 4.13: Distribution of bite
weight readings for training.

The structure of this network is similar to that in section 4.4.2,
except for the last layer in which we use a fully-connected layer
without a softmax operation. We used the l1 cost metric between the
true mass and the network’s output. The layout of the network is
shown in fig. 4.14.

To apply the output of this network to the problem of determining
the actual (x, y) bite locations given an image of a whole plate of
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Figure 4.14: Model2: ResNet
which takes an image centered
around a skewering location and
outputs a single value for the
food weight. The input im-
age shown is for color, but we
use the same network layout for
depth and color+depth images.

food, we use a sliding window to generate a pixel-wise mass
prediction for the image of the whole plate. From the pixel-wise
labeling, we can choose to maximize the mass prediction to produce a
behavior of picking up the largest piece of food, use the labeling
probability to maximize the expected mass that is collected, or choose
locations that will produce bite masses in a specified range (perhaps
based on user preferences).

4.4.4 Model 3: Bite Location Regression

The goal of this model is to directly produce the (x, y) location of a
bite-sized food given an un-cropped image of a plate of food. The
training data is compiled by only using successful trials – defined as
skewering attempts in which at least 1 gram of mass was acquired. The
full pre-acquisition image is used, and the objective of the network is
to produce an (x, y) location that is as close as possible to the actual
(x, y) that was executed by the robot to produce a successful bite.

The advantages of this model over the two local models described
in section 4.4.2 and section 4.4.3 are that it uses the entire plate as
input, which could be necessary in meals such as spaghetti where
interconnected pieces of food may span the whole plate. By directly
implementing the problem formulation, this network makes no
assumptions about the relevance of the area local to the skewer target,
nor the impact of the mass of collected bites.

The major disadvantage to this technique is that due to the nature of
how the data must be collected, we never have more than a single (x, y)
location for a given image of a plate of food, and there is no guarantee
that it is the best bite location. Additionally, only successful trials can
be used in training, which vastly cuts down on the amount of training
data available. This could be alleviated by adding hand-labeled bite
locations via an interface such as that shown in fig. 4.8, but we would
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Figure 4.15: Model3: ResNet
which takes an image of the full
plate and outputs a 2x1 vec-
tor corresponding to a skew-
ering location. The input im-
age shown is for color, but we
use the same network layout for
depth and color+depth images.

lose the valuable real-world feedback of the robot’s actual performance
given that skewering location, and have to rely on the judgment of the
human labeler.

The overall structure of network is similar to that described in depth
in section 4.4.2, but the input images are now 256 x 256 pixels. The last
layer is a fully-connected layer without a softmax operation, with two
output nodes, for the x and y locations. The layout of the network is
shown in fig. 4.15.

The output of this network is a single (x, y) location, which limits
the ability to add additional constraints or heuristics to bite selection.

4.4.5 Comparison and Performance

Wrist or Overhead Camera When this work is ready for distribution
in the home, the ideal setup would only use a wrist-mounted camera
instead of an overhead camera to allow for maximum portability. To
that end, we train each model with only the wrist camera and only
the overhead camera. The wrist camera is closer to the plate of the
food and therefore has a better viewing angle, but the resolution is
lower, so the output images are comparable. We did our best to
maximize the angle between the wrist camera and the table to
minimize occlusions from the food, but were constrained by the
maximum range of the robot arm. Two example images are shown in
fig. 4.16. The plate for both images was 256 x 256 pixels, and the wrist
had minimal occlusions. To maintain consistency in comparing
results, the overhead images were used for training the models for the
results in this section.

Depth Channel We collected an RGBD dataset partially on the
premise that the depth channel would be important for learning
appropriate bite locations. To test this, we trained each model using
only the color channels, using only the depth channel, and using the
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(a) Overhead (b) Wrist

Figure 4.16: A comparison of the
two sensor viewing angles of the
plate. Occlusions from the wrist
due to food are minimal even
from the wrist-mounted sensor
and the resolution is comparable
between both sensors.
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Figure 4.17: Metrics during the
training and testing phases for
each of the networks. The train-
ing is shown in blue, and testing
in red, and the number of itera-
tions is on the x-axis.

color channels and the depth channel combined.
Metrics for training and testing for each of the models are shown

in fig. 4.17. For Model 1, the cross-entropy values are plotted for the
binary labeling of skewering location or non-skewering location. For
Model 2, the absolute difference in weight is plotted. For Model 3, the
mean squared pixel distance between the predicted (x, y) location and
the actual location is plotted.
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In Model 1, which generates a binary labeling for each image
around a skewering location, the performance on the test set is poor
over all types of training input. For Model 2, the test error follows the
training error very closely. We see slightly better results when
combining color and depth images for training. The combined image
model predicts the food weight to within 1.5 grams. For Model 3,
there was very limited data to perform extensive tests since it was
only trained with successful bites. Nevertheless, an initial training
with Model 3 converged to a mean pixel distance of about 10 pixels.

To make use of the output of Models 1 and 2, a sliding window
across a full image was used to evaluate potential skewer locations in
a pixelwise manner. We then ranked the potential locations by either
the cross entropy and positive label (for Model 1) or by predicted bite
weight (for Model 2). The output of Model 3 is an (x, y) location and
can be directly used as the only potential skewer location. The results
of Models 1 and 2 are shown on an example image in fig. 4.18.
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Figure 4.18: The top 20 choices
for bite locations as predicted by
Model 1 and Model 2, as trained
with different source data. The
lighter and more red labels are
higher ranked bite locations - in
the case of Model 1 a higher
probability of correct classifica-
tion - in the case of Model 2 a
higher predicted food weight.





5
Human-Robot Interaction Considerations

All assistive devices face a trade-off between performance and
acceptance. The rate of abandonment in assistive technology (shown
in fig. 5.1), particularly technology infused with a higher degree of
intelligence – i.e. predictive and/or corrective algorithms – is a large
roadblock to their adaptation [Phillips and Zhao, 1993]. Carefully
considering the social and physical ramifications of a new assistive
technology is therefore critical in predicting its adaptation and
feasibility of long-term integration into the target population’s lives.

Figure 5.1: Abandonment of as-
sistive mobility devices as col-
lected by Phillips and Zhao
[1993]

In chapter 3 we considered the level of control preferred in
switching control modes. Now we consider a similar question about
the level of the control that is needed and preferred in the context of
eating with an intelligent robot. Starting with the endpoints of the
spectrum of shared control – fully manual control and fully
autonomous control – we can ground ourselves and anticipate the
range of performance and reactions to systems within that spectrum.
Through interviews with users of the JACO assistive robot arm we
have established that manual control in the context of eating is not
feasible due to practical constraints on the time it takes to manually
acquire a bite of food and bring it to the operator’s mouth (For more
details see section 3.1.1). For an automated feeding mode therefore,
the speed and timing are critical to success.

In chapter 4 we described a method for the robot to autonomously
acquire pieces of food. To complete an autonomous feeding system,
the robot must now be given the ability to deliver the forkful of food to
the operator’s mouth. Further, the robot must do so in a way which is
acceptable to the operator in the hopes of mitigating the potential for
abandonment of the technology. In this chapter, we will present our
approach to timing when to give the operator bites of food, an analysis
of the performance of that approach, and finally a discussion on other
HRI factors not included in this study but that would be relevant to a
long-term automated feeding implementation.
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(a) Self-self (b) Caregiver-self (c) Robot-self

Figure 5.2: Feeding as a han-
dover for able-bodied users
(self-self), for disabled users and
their caregivers (caregiver-self)
and for disabled users and their
assistive robots (robot-self).

5.1 Modeling Bite Timing Triggered by Social Cues

Timing is a subtle and vastly important thing. While eating a meal,
particularly in the context of others, when a person takes bites is
dependent on many factors such as whether they are already chewing
a bite, whether they want to say something, whether they already
have food on their fork, etc. We build and test a model for predicting
the timing of taking bites based on social cues of the person that is
eating.

5.1.1 Bite Timing Model

To generate a model for predicting bite timing, we borrow from work
done in the context of human-robot handovers. We consider eating
as a handover where food is being brought to the mouth from one
of 3 possible origins: the person’s own hand (“self-self”), a human
caregiver (“caregiver-self”), or a robotic feeding device (“robot-self”)
as shown in fig. 5.2. We expect each source to make a difference on
the handover interaction. For example, when being fed by a human
caregiver, the person will need to use a gesture or audio indication of
what food they want or when to take a bite [Martinsen et al., 2008].
When being fed by a robotic feeding device, such as those in fig. 2.4,
a physical button press is required to initiate the handover. When the
person is using their own hands to make the handover, there will be
coordinated movement between the head, mouth, and arm.

In the handover literature, the handover action can be defined as a
state machine with a finite number of states and non-zero transition
probabilities. For handovers, one such state representation would be
hold, transfer, and not hold [Grigore et al., 2013]. Another model
with more granularity would be hold, approach, signal, transfer,
and not hold [Strabala et al., 2013]. We can break down feeding into a
similarly simple state representation informed by observing how able-
bodied people eat. From the collected data, we will extract features
that can potentially indicate the hidden state. We will then estimate
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the transition probabilities and use a Hidden Markov Model (HMM)
to predict when the next bite will occur.

5.1.1.1 Data Collection

Figure 5.3: Experimental setup
for gathering data to build a
model for bite prediction. A
table-top camera is pointed at
each participant to gather gaze
direction, bite timing, and detect
who is speaking.

To determine which states are needed to represent eating and collect
observational data that might be useful to distinguish between states,
we asked between one and four able-bodied participants to sit around
a table and eat lunch while having a conversation. In the case of a
single participant, they were asked not to read, answer the phone, or
otherwise distract themselves from eating. For groups, we added the
conversational component to encourage the social cues of eating to
manifest themselves. To reduce the number of confounding variables,
we chose to use food that was bite-sized and only required a fork to eat
and restricted participants to those who could eat unassisted. During
the meal, a camera was placed in front of each participant pointing
at their face as shown in fig. 5.3. The conversations were undirected
and the experimenters were not present, to allow for natural topic
choice and conversation flow among participants. We administered
18 sessions, with a total of 40 participants (12 male, 19 female, ages
20-61), that generated 16.5 hours of video and audio recordings.

We eventually want to apply the findings of this work to creating
a system for people with disabilities to dine independently. As such,
the choice of sensors was deliberate. We used a small web camera
pointed at the participant from the table perspective. This maintains
the privacy of other people the operator may be dining with. Similarly,
there could be an option to either place a small wireless camera on the
table before each meal (we are using low enough resolution to make
wireless video practical), or to attach the camera to the wheelchair
pointing upward at the operator from a discreet angle. We recorded
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Figure 5.4: Eating state ma-
chine with transition probabil-
ities. The area of each state
is proportional to the average
amount of time spent in each
state across 31 users.

video from overhead for visualization purposes, but only the cameras
facing the participants were used to learn an eating model.

5.1.1.2 Eating States

The simplest state representation that could capture bite timing would
be to split the eating activity into biting and gathering states. In the
biting state, the user moves the fork full of food to their mouths and
takes a bite. In the acquiring state, the user is manipulating the food on
the plate in order to load the fork with food in preparation for taking
the next bite. Upon reviewing the participant videos, it was clear that
this was not the whole story. In between taking bites and gathering
food, we observed an abundance of fork queuing behaviors.

Rather than directly taking a bite after gathering a full bite of food,
users would hold the loaded fork near the plate 37% of the time,
waiting for an average of 13.49 seconds before bringing the fork to
their mouth for the next bite. Similarly, after taking a bite, users
would only gather food immediately 39% of the time. The remaining
61% of the time, they would hold the empty fork near the plate,
waiting for an average of 10.34 seconds before gathering the next
forkful. The time spent in these two waiting states comprised an
average of 56% of the total time eating, which seems to be a very
inefficient way to consume a meal if the only goal is to consume
nutrients.

Qualitatively, one source of waiting with a full fork is due to the
fact that the participant is still chewing the previous bite and it would
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be impractical to take the next bite until finished. Another more
subtle cause is when the participant is speaking and waits until they
have concluded their thought before taking their next bite to avoid
interrupting themselves mid-sentence. People also wait with an
empty fork while listening intently to another speaker, or if they
themselves are speaking with too much focus to simultaneously look
down at the plate and gather food. The times spent resting the fork
are important for the social aspects of dining.

Therefore, we decided that it was more appropriate to separate the
process of eating into four states: gathering, waiting with fork

full, biting, and waiting with fork empty. By annotating the
videos with these four states, we estimated the transition probabilities
and how much time was spent in each state, as shown in fig. 5.4.
There are a few transition probabilities of note. There is a probability
of 1.0 that waiting with a fork empty transitions to gathering food.
This makes sense if we consider that no one would take a bite from
an empty fork and that an empty fork cannot spontaneously be filled
without performing the gathering step. Surprisingly, the transition
from waiting with a full fork to gathering food is non-zero. This
transition occurs when the person decides after filling their fork that
they would like to eat something else in their next bite. Similarly,
gathering actions that transition to a resting empty fork are used to
redistribute food on the plate but without actually loading the fork.

Figure 5.5: The amount of time
since taking the last bite is plot-
ted as a histogram (top) and
as a cumulative density function
(bottom).

From the labeled states, we examined the timing information
between bites to see how evenly-spaced bites taken are. On average,
there are 14.23 seconds (SD=13.44) between bites across all users. The
full distribution is shown in fig. 5.5. By calculating the cumulative
distribution function for having taken a bite, we can choose a timing
threshold for each probability of having taken a bite. We fit a Burr
distribution (for continuous non-negative random variables) to the
bite timing data to make the choice analytically.

5.1.1.3 Eating Features

While the state of the biting process is not directly observable without
placing a sensor on the fork or using an overhead camera to monitor
food movement, we can observe several features that are related to
the current state. By monitoring these emission features, we can
estimate the hidden state. Because of the high-dimensionality and
limited descriptiveness of the raw video and audio signals, we have
identified video and audio features that may be relevant to the eating
state.

Figure 5.6: Social cues are auto-
matically extracted from videos
on each participant as they are
eating and conversing.

From the video, we used facial recognition and pose estimation
[De la Torre et al., 2015] to calculate the gaze direction (up, down, left,
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right, or straight ahead), whether the mouth was open or closed, and
whether a face was detected or not as shown in fig. 5.6. Prior work
shows that gaze cues impact the strategies for item handovers [Moon
et al., 2014, Admoni et al., 2014, Strabala et al., 2013], so we would
expect it to be a relevant feature in this domain as well. The mouth
being open or closed can be a useful feature for detecting an initial
bite, but could also be confounding when a person is talking. When
the face detection failed, it was usually due to the participant
drastically changing their position by shifting in their seat, or by
extreme head movement to the left or right. For people with
upper-limb disabilities, the neck range of motion is less than an
able-bodied person [LoPresti et al., 2000], so we do not believe this
problem will exist in the target application.

Each person-facing camera recorded its own audio, so by using the
volume, we could identify if the person being recorded was speaking
or not. Carrying on a conversation requires turn-taking between
speakers, and that implicitly requires eye-contact and other indicators
of attention. Etiquette also implies that people will not be able to take
bites while talking, since chewing while talking is generally
considered bad manners. Anecdotally, we can see this theory in
action in fig. 5.3, where the participant in the upper right is talking,
the participant in the lower right is listening, and only the participant
on the left who is not engaged in the conversation is taking a bite.
Therefore, we expect talking to be a relevant feature for predicting the
eating state.

All the features are automatically detected in order to preserve the
ability to use this model with an assistive robotic feeding device. A
summary of the social features used is in table 5.1.

Feature Dimensionality Source

Gaze direction 6 Video
Head pose 6 Video

Mouth area in pixels 1 Video
Time since last bite 1 Video

Face detected Binary Video
Talking Binary Audio

Table 5.1: Social cues used to
predict bite timing.

5.1.1.4 HMM

HMMs are used to model sequential, statistical processes in a variety
of fields, including handovers and speech and gesture
recognition[Rabiner and Juang, 1986]. Formally, an HMM can be
written as a tuple λ = (Q, V, A, B, π), where:
• Q = {q1, q2, . . . , qN}, finite number of N states
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• V = {v1, v2, . . . , vM}, discrete set of possible M symbol observations
• A = {aij}, aij = Pr(qj at t|qi at t), state transition probability distri-

bution
• B = {bj(k)}, bj(k) = Pr(vk at t|qj at t), observation symbol

probability distribution in state qj

• π = {πi}, πi = Pr(qi at t = 1), initial state distribution

For eating, N = 4 and Q = {gathering, waiting with fork full,
biting, waiting with fork empty}. The state transition matrix A was
calculated from the hand-labeled data as shown in fig. 5.4. Since the
data we collected contains full meals, the initial state distribution π is
zero everywhere except in the waiting with fork empty state.

Initialization of the observation symbol probability distribution
matrix B was performed by using the features from videos whose
states were hand-labeled. These samples show a representative
number of observations for each state and transition.

The HMM parameters were then reestimated using a normalized
Baum-Welch Algorithm described in [Grigore et al., 2013] as follows:

Forward Algorithm:

α̂t(i) =
πibi(O1)

∑N
k=1 πkbi(O1)

(5.1)

α̂t+1(i) =
bi(Ot+1)∑N

j=1 α̂t(j)aji

∑N
k=1 bk(Ot+1)∑N

j=1 α̂t(j)ajk
, 1 ≤ i ≤ T (5.2)

where the forward variable αt(i) = Pr(O1, O2, . . . , Ot, qt = qi|λ)
represents the probability of the partial observable sequence
O1, O2, . . . , Ot until time t and state qi at time t, considering model λ.

Backward Algorithm:

β̂(i) = βt(i)
T

∏
k=t+1

k (5.3)

where k is the normalizer

β̂t(i) = βt(i) = 1 (5.4)

β̂t(i) = t+1

N

∑
j=1

β̂t(j)aijbj(Ot+1), 1 ≤ t ≤ T (5.5)

where the backward variable βt(i) = Pr(Ot+1,Ot+2, . . . , OT |qt = qi,
λ) represents the probability of the partial observation sequence from
t + 1 to the end, given state qi at time t, and the model λ.

Once the model parameters have been reestimated, the most likely
state sequence is determined by applying the Viterbi Algorithm
[Rabiner and Juang, 1986]. Finally, to evaluate the model’s
effectiveness at predicting the correct hidden state, we compared
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(a) (b) (c)

Figure 5.7: Comparison between
group and individual bite tim-
ing. The amount of time spent
transferring food from the fork
to the mouth is consistent be-
tween group and individual set-
tings (a). The time between bites
has the same mean, but differing
distributions (b,c).

hand-labeled states to the model’s prediction on the corresponding
observation sequence.

The correct state was predicted 61.22% of the time. One reason that
we did not see better performance is that the observations for waiting
with fork full and waiting with fork empty are very similar, so
the HMM has to rely more heavily on the transition probabilities.
However, a more meaningful metric would be how accurately the
HMM predicted the correct bite timing, since it is this state transition
we are the most interested in. To do so, we used the hand-labeled
states to identify when bites were initiated, and then calculated the
offset between the true bite times and those that were predicted using
the HMM. The average bite timing error was 1.57 seconds, and 90%
of the bite timing predictions had an error of less than 2 seconds.

We tested to see if performance would increase by using a simpler
model with only two hidden states, Q ={biting, not biting}. We
computed the new parameter initialization in the same way as with
four states. With the 2-state HMM, the correct state was predicted
61.9% of the time, which is comparable to the 4-state HMM. However,
when we look at the bite timing error, using only 2 states had an
average of 3.53 seconds of error and only 46% of the bite timing
predictions had an error of less than 2 seconds. For state estimation,
using a simple 2 state representation (biting or not biting) yields
results comparable to the more complex 4 state representation.
However, when it comes to predicting bite timing, we can conclude
that including the intermediate waiting states in the HMM provides
valuable information.

5.1.2 Differences Based On Group Size

We considered that individuals eating alone may have a different bite
frequency than those eating in groups because they are not
simultaneously carrying on a conversation. To test this premise, we
compare both the time between bites and the time spent actually
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taking a bite (transferring food from the fork to the mouth) in fig. 5.7.
We would expect that the transfer of food to the mouth would be
consistent since it is a quick physical act that is performing
qualitatively the same way individually or in a group setting, and
quantitatively we found this to be the case.

The time spent between taking bites does vary based on the group
size. Individuals have a much more normally distributed bite
separation and a lower average time between bites (M = 10.83
seconds for individuals and M = 16.81 seconds for groups). People
eating in groups had a much larger variance in bite separation
(SD = 16.60 for groups versus SD = 5.92 for individuals), with a
heavy left-skew.

The difference in variance can be explained by the individual having
fewer distractions and demands on their mouth and attention. The
individual diners’ biting rate is constrained only by the rate that they
chew and the rate that they acquire the next piece of food. While
it may be influenced by other factors such as the type of food being
chewed/acquired and the size of the bite, people were fairly consistent
when eating alone. People eating in groups alternate speaking. If
they are the speaker, bites become further spaced out. If they are the
listener, bites are taken more quickly to make up for the slower eating
times in an attempt to target a similar meal completion time as the
other diners. Regardless of group size, most people were listeners at
any given time, which may explain the left-skewed distribution.

To test whether the individual case versus the group case need to
modeled separately, we trained an HMM as described in section 5.1.1.4
on only individual diners and a separate HMM on only groups of
diners. Once trained, we tested each to see how well they generalized
to the other condition. The results are displayed in table 5.2.

Tested on
Individual Group Both

Tr
ai

ne
d

on Individual 2.56 3.33 2.65

Group 2.26 0.72 1.41

Both 1.83 1.40 1.57

Table 5.2: Average bite timing
error measured in seconds for
a HMM with different training
sets. 70% of the data was used
for training and 30% for valida-
tion.The model trained only on individuals had the poorest performance

because many of the social cues are no longer useful - no one is talking
so there is no change in audio, gaze is almost entirely directed towards
the plate throughout the meal, etc. We again chose to evaluate model
performance by the average bite timing area instead of the percentage
of correct hidden state estimation since the purpose of this model is to
predict when to give a bite, not necessarily to predict the other phases
of the eating process.
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Figure 5.8: Experimental setup
for the evaluation of the bite tim-
ing model.

5.2 Evaluation of Bite Timing Control Techniques

To evaluate the bite timing model in practice, we ran a study to
determine how using different methods of controlling the bite timing
impacted the subject’s ability to effectively eat and interact.

Experimental Setup In this study, two participants eat a meal
together. We chose to use pairs of participants instead of groups of 3

or 4 as in the prior study in order to reduce the complexity of the
interaction and because the model learned on pairs did not yield
significantly different results than the model learned on 3 or 4 people.
One of the participants is selected to be the robot operator and uses
the MICO robot arm to eat with. The other participant sits across the
table and eats their food under their own power. Throughout the
meal, both participants are encouraged to engage in conversation
with each other while eating.

Manipulated Factors We manipulated one factor: the method used
to initiate bite delivery to the robot operator. In the manual condition,
the robot operator is responsible for triggering the delivery of a bite
of food from the robot via pressing a large physical button located
near the base of the robot. This condition is designed to mimic the
operation of commercial stationary feeding aides, such as those
described in section 2.3.2. In the regular intervals condition, the robot
brings a bite to the operator’s mouth at regular time intervals,
without any input from the operator. To choose the amount of time to
use between bites, we analyzed the collected bite timing data from
groups and individuals and chose to use the average across all users
of 14.23 seconds between bites. In the socially aware condition, the
robot brings a bite to the operator’s mouth only when the bite timing
model indicates that the robot operator would like to take a bite
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according to the bite timing model. Each subject saw only one
condition, making this a between subjects study.

Procedure Each participant was asked to rate their level of hunger
prior to the trial. For each pair of participants, one was randomly
selected via coin toss to operate the robot. In the 3 instances where
only one participant was present for their trial, they were given the
role of robot operator. The participants were seated across from one
another and food was then distributed on each of their plates. We
explained that the robot would bring the food to the same location in
front of their mouth for each bite, and that the robot operator would
need to lean forward to manually take the piece of food from the fork
– i.e. the robot would not be detecting and trying to approach the
robot operator’s mouth. We calibrated the stationary set point for the
operator’s height and comfort.

We ran the robot through several bite sequences, demonstrating
the movement of the robot, and if applicable how it responded to the
button pressing. Both participants were part of this training process.
The conversational partner was given a list of topics and starter
questions to help get the conversation going. The content of these
questions pertained mostly to general background information such
as “What is your career or what are you studying” rather than
controversial questions such as politics or religious beliefs. We added
the question prompts after a pilot in which participants were asked
merely to maintain a conversation with no direction to the discussion
because we found in the pilot that the conversation centered around
what the robot was doing, and therefore was not an accurate
representation of normal conversations.

Measures To evaluate the efficacy of food consumption, the total
time it takes for the meal to be completed was recorded. To allow for
possible robot failures in automatically acquiring pieces of food from
the plate, any time the robot wasted due to unsuccessfully attempting
to acquire food was subtracted from the total time.

To evaluate the social fluency, a survey was given to both
participants to capture their impressions of the interaction. We asked
robot operators to rate the timing of the bites of the robot and
whether the robot was a distraction to their conversation. We asked
both participants to complete the Muir Trust Questionnaire and the
NASA Task Load Index.

Participants We performed 21 sessions with 2 people each, and
randomized which of the 3 conditions was used. We also performed
an additional 3 sessions in which one participant was absent, so the
role of conversational partner was left empty and were therefore not
included in the following statistical analyses. One of these sessions
was in the button-pressing condition, and 2 were in the evenly-spaced
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Figure 5.9: Raw scores fit with
curves for each participant in
the 3 bite-triggering conditions
of how much they agree that the
robot delivered bites early, on
time, or late, on a 7-point Likert
scale.

condition.
Analysis We asked each robot operator in different parts of the

survey to rate statements about whether the robot delivered a bite too
early, at the desired time, or too late. The raw scores for each user
and a curve connecting them to roughly approximate the distribution
as perceived by each user is shown in fig. 5.9. We combined these
responses over each condition and normalized so that each user’s
scores would sum to the same amount in order to compare across
conditions as shown in fig. 5.10. We found that the button-pressing
condition was the most closely aligned with the bite timing that
people desired, which confirms that operator-triggered bites are the
gold standard to which we should be comparing our model’s results.
The evenly-spaced condition had the most variability, and we saw a
dichotomy of ratings in which some users found the bites to be too
early and others too late. This is consistent with using the average
bite spacing, some users are sure to eat more slowly, and some are
sure to eat more quickly. It underlies the need either for
customization to each user in the even spaced condition or a model
that can handle differences among operators. The socially-aware
condition received ratings consistent with the button-pushing gold
standard.

For both the evenly-spaced condition and the socially-aware
condition, there were occasions where the robot was not fast enough
at acquiring the next bite of food to deliver it when the model would
dictate the next bite should be delivered. However, this was only true
in 3.4% of bites in the evenly-spaced condition and 4.9% in the
socially-aware condition, and produced a 1.27 second delay on
average. The delays occurred in part due to occasional failure of the
acquisition process to actually gather a bite. In the event that the
robot did not successfully skewer a piece of food – which was
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Figure 5.10: Comparison be-
tween normalized scores for
each of the three bite timing con-
ditions.

observed and recorded by the experimenter – the robot would
attempt to skewer another piece of food, continuing until a piece was
successfully acquired. This way every time the robot brought the fork
to the user’s mouth, it had a morsel of food on it. The downside of
this technique is that on rare occasion gathering a morsel of food took
longer than the interval between bites. Watching the robot fail to
collect a piece of food on its first try probably impacted the trust
participants placed in the robot, but as it was consistent across all
conditions, it does not impact conclusions drawn between the
conditions.

In addition to questions about the bite timing, we asked
participants two questions about whether they were able to carry on a
normal conversation and whether they felt distracted by the robot.
We asked these two questions to both the robot operator and the
conversational partner. We found that both participants in each trial
did not find the robot to be a distraction to their conversation
(M = 2.90, STD = 1.22 overall on a 1-7 scale, below the neutral
response of 4, with t(42) = 6.61, p < .0001) and that these ratings
were not significantly different for the social condition.

In general, we found that the robot operator and the conversational
partner (who was not being fed with the robot) had approximately
equal levels of trust in the robot system. This was somewhat
surprising as the robot was physically much closer to the operator
than to the conversational partner, which we would have expected to
lead to higher anxiety in the robot operator. However, in the
button-pressing case, the robot operator had significantly more trust
in the robot than their conversational partner (t(7) = 4.86, p = .0046
for a paired t-test). We speculate this is due to the operator selecting
when the robot is to present a bite, thus increasing their perceived
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level of control and predictability of the robot. The button was
positioned in such a way that it was visible to the conversational
partner when it was pressed, but between maintaining a conversation
and acquiring their own food to eat, the conversational partner was
not always aware of when the button had been pressed. In the
evenly-spaced and socially-aware conditions we saw no significant
difference between the trust level of the robot operator and the
conversational partner.

The results of the NASA TLX for measuring cognitive load
revealed that controlling the robot was not a draining task for
participants across all conditions (average score of 3.12 out of a
maximum of 20 for high load). We asked the conversational partners
to also fill out the NASA TLX for the task of manually feeding
themselves with a normal fork to use as a comparison point. The
difference between the robot operator and the conversational partner
is significant, but not between bite timing conditions.

We found that how hungry the participants were was not strongly
correlated with their responses on the robot’s timing, trust, or
cognitive load.

5.3 Discussion of User Studies

From this work, we have established that timing plays an important
role in robotic feeding, just as it does in many other applications
involving robots such as handovers [Strabala et al., 2013], theatrical
performances [Zeglin et al., 2014], and dialogue [Fong et al., 2003].
The consequences of presenting a bite to the diner earlier than
expected can include an interruption to conversation or to finishing
chewing the prior bite and is poorly tolerated. The consequences of
presenting a bite later than desired can include frustration towards
the robot and disruption of the natural flow of conversation during
the meal.

Through a user study to evaluate different levels of control over
how to trigger a bite, we identified that individual people have
differing preferences. This indicates that the level of control is not a
"one size fits all" solution. These studies were performed with
able-bodied users, and if there is already variation in opinions within
this group of subjects, varied physical and cognitive abilities will
surely expand the variance in opinion. This highlights the need for
individualization not only among the physical interfaces for people
with disabilities, but also among the level of control that is entrusted
to the robot and the operator respectively.



6
Future Work

6.1 Teleoperation and Modal Control

6.1.1 Generalizing the Time-Optimal Mode Switching Model

In this work, we used a provided goal location for users. This made
the prediction of mode switches simpler because the robot did not also
have to reason over a probability distribution of goals. If there were
several equally good goals in a particular scenario, our time-optimal
mode switching strategy would still be effective, but if some goals
were preferred more than others, the robot would need to maintain a
distribution over goals and rewards respectively.

Along the same lines, we considered a single-shot action with a
single goal at the end. In reality, tasks often require sequences of
actions, each with their own sub-goals. Take the example of dialing a
telephone. First the receiver must be grasped. Second, it must be
placed on the table. Third, individual keys must be pressed on the
telephone’s base. Breaking down a task into logical subtasks is a
prerequisite for applying the mode-switching model. For
well-studied interactions, such as grasping, studies of human hand
movement have been used to identify phases of the task [Kang and
Ikeuchi, 1995].

While our studies involved exclusively able-bodied subjects, we
want to see how these results, particularly those relating to
acceptance, generalize to people with disabilities. Study 3, as
described in section 3.3.0.1, was restricted to a 2D point robot and we
are looking to reconduct this experiment on the MICO robot arm.
The optimal mode regions will become optimal mode volumes, and
the assisted mode switching will occur when the robot enters a new
volume.

In summary, next steps for generalizing the time-optimal mode
switching model are:

1. Predict mode-switching over a distribution of goals instead of a
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single known goal.

2. Segment tasks into discrete sub-tasks to apply the mode-switching
model.

3. Expand studies to include people with disabilities.

6.1.2 Alternatives to Automatically Changing Mode

How best to improve modal control is an open question. Here we
presented one technique: having the robot perform mode switches
automatically.

An alternative form of assistance would be to have a priority
ordered list of modes. With a single button press the user could
transition to the most likely next mode, as estimated by the robot. In
the case of an incorrect ordering the user would cycle through the list.
This kind of assistance would complement Kinova’s LCD screen as
described in section 3.1.1. There are also prosthetics in which the user
must select which axis to control with their shoulder motion. By
reordering the list of modes, it would reduce the physical strain
needed to change modes, while still giving the operator full control
over mode selection.

We have suggested a method for more easily switching modes.
Another approach is to remove mode switching entirely by having
the user only control one mode. The remaining modes would be
controlled by the robot, in a type of assistance we have defined as
extramodal assistance [Herlant et al., 2016]. When using extramodal
assistance, avoiding mistakes in goal prediction becomes increasingly
important. In the case of the robot moving in an undesirable way in
the non-controlled modes, the user would have to change modes
manually, correct the mistake and then revert back to their original
task, causing a costly interruption.

Figure 6.1: Drinking mode, in
which tilting the joystick moves
the gripper to rotate a specified
radius around a given point -
configured to be the rim of a
particular glass.

If we can redefine the mapping between operator inputs and the
robot’s position, we can also remove the need for modal control. In
normal teleoperation with a joystick for example, each axis of the
joystick corresponds to either moving along a Cartesian plane or
rotating about an axis through the origin of the robot’s gripper. One
exception is when the robot is controlled in “drinking mode” where
pushing one axis on the joystick controls the gripper’s position along
an arc with a predefined diameter and center [Campeau-Lecours
et al., 2016] as shown in fig. 6.1. We could take this idea further and
identify a sub-manifold needed for the task of eating. The two axes
on the joystick would then map to coordinates on the sub-manifold.
This strategy may be successful for a number of repeated tasks (like
drinking and eating) but if it becomes a general solution, it could
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result in long lists of specialized modes which will need to be
traversed as an additional step before task execution.

By investigating modal control and helpful interventions we strive
to close the gap between what users want to do with their assistive
arms and what they can achieve with ease. In summary, next steps for
exploring assistance strategies besides automatically changing modes
are:

1. Reorder the list of modes based on probability of switching to that
mode given the goal.

2. Have the robot control modes that are not being actively controlled
by the operator.

3. Map the control input to a 2D sub-manifold within the 6D robot
workspace for specific tasks.

6.2 Food Manipulation

Generalizing to other types of foods may be tricky if the physical
properties are very different from those with which the robot has
been trained. A possible way to reduce training and increase the
model accuracy would be to perform a pre-classification where the
robot first identifies the types of food on the plate and then learns the
mapping to acquisition parameters for each of them separately. Food
identification for a full plate of food has been looked at in the context
of estimating dietary value for a plate of food, but not much work has
been done in identifying specific regions which contain one food or
another. A few frameworks exist for automatically detecting and
creating specialized skills [Stulp et al., 2014], which could also be
applied.

This work could be extended beyond predicting skewering success
to predicting the next state of the plate after a skewering action has
been taken. In effect, predicting ot+1 from ot and θt. Learning this
transition between states could be used in lieu of a physics model for
interacting with food to create a data-driven food simulator. Having
access to such a simulation would enable longer-horizon food
manipulation planning, which could include preparatory motions
such as pushing food into a pile so it is easier to skewer or pushing
food to the edge of the plate where it is easier to scoop.

The skewering motion used in this section is completely open loop
– the robot takes sensor readings of the plate before skewering and
after skewering, but is effectively blind during the actual execution.
This limitation means that actively changing forces applied or using
mitigating strategies for food slipping off the fork is not possible.
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Positioning a camera along the fork axis would enable live feedback
for the robot to make such adjustments and probably increase the rate
of success in gathering bites. A sensor at that angle could also be
used to visually servo the fork into the operator’s mouth in a safe
way.

Finally, we could expand our taxonomy of food acquisition
primitives by collecting fork trajectories from people as they eat and
performing a clustering analysis on the trajectories. It may be that
there are in fact other primitives or sub-primitives that are difficult to
identify visually, but that can be quantified through trajectory
analysis. We did not catalog the variety of preparatory motions or
non-acquisition contact that was made with the food since that was
not our focus in this work, but it could open an interesting planning
problem akin to repositioning or orienting an object before grasping.
Methods for performing the automatic segmentation are usually
based on using a Hidden Markov Model to identify key points to
generalize between trajectories and then Dynamic Movement
Primitives to parameterize the trajectories [Vakanski et al., 2012,
Niekum et al., 2012] but methods are being developed which can
segment and parameterize the trajectories simultaneously via
Gaussian Mixture Models [Lee et al., 2015] or perform probabilistic
segmentation [Kulic et al., 2009].

In summary, next steps for generalizing and expanding our food
manipulation approach are:

1. Identify regions of food on the plate first, and then apply the
learned acquisition strategy for each region.

2. Predict how the plate of food will look after an action is performed
to create a data-driven food simulator for longer-horizon planning.

3. Add sensors to enable reactive acquisition strategies that can
respond to food slippage and use visual servoing.

4. Quantify other acquisition and non-acquisition primitives for plan-
ning.

6.3 HRI Implications

One limitation of the socially-aware bite timing model we developed
is that it does not account for changes in bite timing due to the type
of food being consumed. For example, some fibrous foods take longer
to chew and would slow down the frequency of bites. Some foods are
harder to acquire, such as spaghetti which may take a long sequence of
actions to neatly bring to the mouth, also slowing down the frequency
of bites. Other foods, by their very nature require a different eating
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rhythm. Raclette and fondue both rely on melting cheese during the
meal, enforcing constraints on when diners can eat. We can foresee a
more advanced system which can use information gained during the
food acquisition process as well as the observed social cues to predict
bite timing.

In this work, we looked at bite timing and compared different
triggering strategies which give more or less control to the robot
operator. The question of how to balance control between the human
operator and the robot’s algorithms is tricky and depends
significantly on context, the human and robot’s capabilities, and the
human’s preference. Even within the context of feeding, there are
additional control parameters that would be compelling to explore; in
our studies, the operator could not control which food was being
acquired, or the path the robot took to get the food.

To develop a useful assistive feeding system, a user-centric design
is critical. One aspect of having a target population with limited
physical mobility means that the user will have limited ability to
change their viewpoint. The further we move towards an
autonomous system, the more important it may be for the robot to
avoid blocking the user’s view of important objects in the scene. For
example in feeding, it might be important to have the end of the fork
always be visible for the user to feel comfortable during autonomous
operation. A next step would be to collect eye gaze data from people
performing manipulation and feeding tasks in order to optimize the
robot motion to maintain visibility of relevant parts of the scene.

Figure 6.2: The pitcher textured
with the gaze saliency calculated
using simulated gaze data.

Figure 6.3: Visualization of a
single moment in time of gaze
and gaze target.

We can think of the operator’s eyes as a spotlight that is pointed at
relevant parts of the scene (fig. 6.3). We accumulate the amount of
light that is absorbed by each object’s surface over the course of task
execution to tell how salient that part of the object is. But the eye gaze
is not a laser beam penetrating one object at a single point, it diffuses
with distance forming a cone. As it spreads, we will decrease the
amount being added to the salience score as a function of the distance
to the center of the gaze direction. Since the gaze saliency is now a
property of each object surface, the gaze saliency can be computed
off-line from collected gaze data as a texture for the object mesh
(section 6.3). Finally, the saliency could be used to inform the robot’s
motion planning to optimize visibility of salient parts of the scene.

In summary, next steps to explore the HRI implications of eating
with an assistive robot arm are:

1. Add the type of food as an input to the learned bite-timing model.

2. Compare different levels of user vs. robot control using the models
created in this thesis for mode switching, bite timing, bite selection,
etc.
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3. Incorporate visibility metrics into autonomous motions of the robot.

6.4 Conclusion

We identified that switching between control modes is a critical
stumbling block to smooth teleoperation for assistive robot arms. We
modified a standard occupational therapist test to quantify the impact
of mode switching. We then used insights from a lower-dimensional
teleoperated robot to build a time-optimal mode switching model to
predict when robot operators would change modes given certain
assumptions about their goals. We evaluated the time-optimal mode
switching model and found it did not decrease task performance and
was preferred by most participants. By predicting when users switch
control modes, we can gain insights to the design of teleoperation
systems and open the door for new types of assistance.

Due to the wide and varying physical properties of food, we chose
to use a data-driven approach to food collection. We classified
observed food gathering strategies and created a taxonomy of food
collection primitives. We implemented the skewering primitive for
the robot to perform autonomously. The parameters for the food
gathering strategy were learned through a series of robot trials, in
which it attempted to pick up pieces of fruit from a plate. We limited
the design to be feasible in a realistic home or restaurant setting by
adding different perspectives, and randomizing food placement on
the plate. By directly learning the robot’s policy parameters, we can
easily expand on this work to use a wide array of motion primitives
or start to include force control.

We have shown the importance of social cues while eating with a
robot, and trained a model to use them to successfully predict when
the operator wants to take a bite of food. We used this model to
perform autonomous feeding with a robot arm and evaluated several
levels of operator control. We have gained insights into the
relationship between a person and their human/robot dining
assistant engaged in the intimate activity of feeding.

It will be challenging for our work to date to keep up with the
new control interfaces and exotic food dishes that are being frequently
introduced. As with any data-driven approach, our food acquisition
technique is only as good as the data it is trained with, and as the
parameterized acquisition policies the robot may execute. Learning
by albeit slower but more accurate user demonstrations would be a
promising way to jump-start the learning process with new foods. The
social culture around the act of eating is different across societies and
may also need be reevaluated for other countries and communities.

Overall, we believe that we have clearly presented the
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short-comings and potential ways to mitigate teleoperation systems
that use modal control and that we presented techniques that can be
used to successfully manipulate food material and collaborate with
the operator to create a seamless dining experience. We look forward
to the application of these techniques in commercially available
products that will positively impact people’s lives.
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