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Abstract

Energy and cost performance optimization for commercial building system de-

sign is growing in popularity, but it is often criticized for its time consuming pro-

cess. Moreover, the current process lacks integration, which not only affects time

performance, but also investors’ confidence in the predicted performance of the

generated design. Such barriers keep building owners and design teams from em-

bracing life cycle cost consideration. This thesis proposes a computationally effi-

cient design optimization platform to improve the time performance and to stream-

line the workflow in an integrated multi-objective building system design optimiza-

tion process.

First, building system cost estimation is typically completed through a building

information model based quantity take-off process, which does not provide suffi-

cient design decision support features in the design process. To remedy this issue,

an automatic cost estimation framework that integrates EnergyPlus with an external

database to perform building systems’ capital and operation costs is proposed.

Optimization, typically used for building system design selection, requires a

large amount of computational time. The optimization process evaluates building

envelope, electrical and HVAC systems in an integrated system not only to explore

the cost-saving potential from a single high performance system, but also the inter-

related effects among different systems. An innovative optimization strategy that

integrates machine learning techniques with a conventional evolutionary algorithm

is proposed. This strategy can reduce run time and improve the quality of the solu-

tions.

Lastly, developing baseline energy models typically takes days or weeks de-

pending on the scale of the design. An automated system for generating baseline

energy model according to ANSI/ASHRAE/IESNA Standard 90.1 performance

rating method is thus proposed to provide a quick appraisal of optimal designs in



comparison with the baseline energy requirements.

The main contribution of this thesis is the development of a new design opti-

mization platform to expedite the conventional decision making process. The plat-

form integrates three systems: (1) cost estimation, (2) optimization and (3) bench-

mark comparison for minimizing the first cost and energy operation costs. This

allows designers to confidently select an optimal design with high performance

building systems by making a comparison with the minimum energy baseline set

by standards in the building industry.

Two commercial buildings are selected as case studies to demonstrate the ef-

fectiveness of this platform. One building is the Center for Sustainable Landscapes

in Pittsburgh, PA. This case study is used as a new construction project. With 54

million possible design solutions, the platform is able to identify optimal designs

in four hours. Some of the design solutions not only save the operation costs by

up to 23% compared to the ASHRAE baseline design, but also reduce the capital

cost ranging from 5% to 23%. Also, compared with the ASHRAE baseline design,

one design solution demonstrates that the high investment of a product, building

integrative photovoltaic (BiPV) system, can be justified through the integrative de-

sign optimization approach by the lower operation costs (20%) as well as the lower

capital cost (12%). The second building is the One Montgomery Plaza, a large of-

fice building in Norristown, PA. This case study focuses on using the platform for

a retrofit project. The calibrated energy model requires one hour to complete the

simulation. There are 4000 possible design solutions proposed and the platform is

able to find the optimal design solution in around 50 hours. Similarly, the results

indicate that up to 25% capital cost can be saved with $1.7 million less operation

costs in 25 years, compare to the ASHRAE baseline design.

Keywords: Design decision support, Construction cost estimation, Life cycle cost

analysis, Multi-objective optimization, Building energy baseline automation
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Chapter 1

Introduction

Energy efficient buildings have demonstrated higher life cycle profits and lower market risks

in a number of studies and market reports (Enkvist et al., 2007; Eichholtz et al., 2012; WGBC,

2013; National Research Council, 2013), which encourage both public sectors and private in-

vestors to pursue energy efficient buildings in their property portfolios. Building system design

optimization using life cycle cost analysis (LCCA) as a performance goal is one of the many

approaches to achieve energy efficient buildings. This technique is used at the schematic or de-

tail design phase to assist with selecting building systems. Figure 1.1 depicts a typical building

system design optimization workflow and its role in the conventional project delivery process.

It can be observed that many processes are isolated and require manual process (e.g. cost es-

timation, baseline modeling). The motivation of implementing such a system is to find a good

design solution that can satisfy performance goals efficiently, thus reducing the time and cost of

design decision-making in the building design phase.

1.1 Problem discussion

1.1.1 Building system optimization problem

Building system design optimization typically couples an optimization algorithm with building

energy simulation to maximum single or multiple performance goals (Nguyen et al., 2014).
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Figure 1.1: Typical building system design optimization workflow in the conventional project

delivery process (Dashed line: processes that are not considered in this thesis. )
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Optimization algorithms have advantages over the other optimization procedures in complex

system design problems because of the challenges that the current building industry are facing

(Evins, 2013):

• The design of energy efficient buildings is not straightforward. All buildings are unique

and there are no such design prototypes.

• There are many physical processes that lead to conflicting objectives such as high energy

performance and low capital cost.

• The design space of possible solutions is subject to combinatory explosion, which means

the problem size is growing exponentially as the number of design alternatives increase.

Hence, meta-heuristic algorithms such as evolutionary algorithms are popular in solving this

type of problem because they can effectively provide “good” solutions within a computing

timeframe that is “small enough” (Glover and Sörensen, 2015). Flager, et al. (2012) developed

a semi-automated multi-objective optimization process using the multi-objective genetic al-

gorithm (MOGA) (Flager et al., 2012). The study objective was to find the best combination

of glazing type and window-to-wall ratio that had the lowest life cycle cost and environmental

impact. The results showed the optimized cases had achieved savings on both design parame-

ters and also demonstrated the evaluation time reduction from weeks to 84 man-hours by using

the advanced optimization algorithm. Karaguzel, Zhang and Lam (2014) constructed an opti-

mization framework that integrated EnergyPlus and GenOpt for minimizing the life cycle cost

of a commercial building (Karaguzel et al., 2014). The particle swarm optimization (PSO) al-

gorithm was implemented for searching the feasible space in multiple dimensions, which were

glazing types and wall and roof insulation values. This algorithm successfully found global op-

timal solutions within 60% of the evaluation time of the brute force approach. In the results, the

optimized design solution yielded a 28.7% life cycle cost savings compared to an initial solu-

tion. The initial solution in the study was equipped with the cheapest design options. However,

both of these studies focus on one or multiple independent building systems, which ignore the

synergistic effects among building systems.
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Some studies address the synergistic effects by evaluating building designs in an integrated

view. However, due to the complexity of the building systems in energy simulation engines,

work around approaches are often found in such studies. Evins, et al. (2012) carried out a multi-

objective optimization study to reduce a modular hotel unit’s carbon emission and construction

cost in different climates (Evins et al., 2012). The design variables included building envelope

systems as well as HVAC systems and renewable energy systems. An initial case was created in

this study using the design options with the lowest unit price for comparison. Although build-

ing simulation was conducted in EnergyPlus, the HVAC energy consumption was calculated ex-

ternally by applying system efficiencies on an ideal load system’s results. Such a work around

approach calculates the HVAC’s energy performance and cost using the system efficiency met-

ric only, which is not accurate for capital cost estimation and energy consumption prediction.

Pountney also addressed the system integration effects on building life cycle cost by including

HVAC system performance-related parameters such as boiler efficiency and AHU fan power

in the design variables (Pountney, 2012). This approach focuses on optimizing an HVAC sys-

tem’s performance instead of testing different HVAC systems. After including the synergistic

effects of the building systems, the optimization algorithm was able to identify better design so-

lutions with less capital costs within 9000 evaluations. Due to the use of the Simplified Build-

ing Energy Model (SBEM) and parallel computing, the optimization was completed within a

day. Other similar building design optimization studies are well summarized in (Evins, 2013;

Nguyen et al., 2014; Shi et al., 2016).

In summary, the effectiveness and efficiency of optimization algorithms have been demon-

strated in building system design optimization studies. However, such studies also require thou-

sands of simulations in a typical optimization study. Due to the mathematical properties of the

energy model, this process could take days to weeks to complete. Despite the algorithm effec-

tiveness, the current practices focus on either optimizing one specific building system or opti-

mizing integrated building systems. Table 1.1 summaries the approaches each literature uses.

Optimizing one particular building system could potentially attain sub-optimal solutions from
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Table 1.1: Building systems investigated in the building cost optimization studies
Studies Objectives Approach Possible issue

Flager et al. (2012) Life cycle cost, carbon
emission

Envelope system Maybe sub-optimal in an
integrated system.

Karaguzel et al. (2014) Life cycle cost Envelope system Maybe sub-optimal in an
integrated system.

Evins et al. (2012) Capital cost, carbon emis-
sion

Integrated system
HVAC energy is calcu-
lated using a work-around
method.

Pountney (2012) Life cycle cost Integrated system

Optimize a boiler’s effi-
ciency and capacity can
produce impractical prod-
uct.

a whole building perspective. On the other hand, optimizing an integrated building system usu-

ally adopts work around approaches for HVAC system modeling, which can lead to inaccurate

performance evaluations.

1.1.2 Cost estimation problem

In addition to the building systems, various performance goals are also investigated in building

system design optimization studies. Currently, there are more than 20 different objectives found

in the literature and among them, life cycle costs are listed as the most frequent performance

goals employed in most of the building system design optimization (Evins, 2013). To perform a

life cycle cost analysis, building system capital cost estimation is important. However, there is

no systematic building system cost estimation method in most of these studies. One of the most

common approaches is to perform a simple estimation. This estimation typically uses a fixed

price for each design option. Ascione, et al. (2015) conducted a multi-objective optimization

to minimize energy consumption and discomfort hours under a budget constraint. The design

options included envelope, boiler and chiller types, and HVAC control. Each option was as-

sociated with a price. The project budget was calculated by summing up every design option

price in a solution (Ascione et al., 2015). A similar capital cost estimation approach can also

be found in (Hamdy et al., 2011) and (Evins et al., 2012). Alternatively, some studies adopted
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Table 1.2: Cost estimation in building cost optimization studies
Studies Approach Remark Possible issue

Ascione et al. (2015) Simple estimation Assign a cost to a design
option

Overestimate or underesti-
mate capital cost.

Barg et al. (2015) Customized QTO Extract unit cost with cus-
tomized price factor

Difficult to replicate the
study.

the customized quantity take-off (QTO) approach combined with a building energy model.

The customized QTO method is manually established by the author for a specific case and it

varies from study to study. Barg, Flager and Fischer applied multi-objective optimization on

minimizing the life cycle cost and carbon footprint of an office building. The building element

quantities were manually extracted from the building energy model and the unit price for each

building element was collected from RSMeans® (Barg et al., 2015). The same approach can

be found in (Karaguzel et al., 2014) and (Pountney, 2012). Although this approach has a simi-

lar concept as the building information model based quantity take-off, it is missing a structured

classification standard, which prevents the case study from being replicated. This issue was

found by comparing the price factors for the same building element in different studies. For in-

stance, window price factor in (Barg et al., 2015; Karaguzel et al., 2014) include U-value and

SHGC whereas in (Stocker et al., 2015), the window’s price only depends on U-value. Also,

none of these approaches are tightly integrated with the building energy model, so they typi-

cally involve a manual process that is very time consuming. Table 1.2 summaries these two cost

estimation techniques.

1.1.3 Optimization results analysis problem

One advantage of employing multi-objective optimization is the presentation of results. Pareto

optimality is commonly used in analyzing the design solutions from these studies. For a build-

ing system design problem, the pareto optimality is defined as a distribution of design solutions

where there is no alternative design solution that can achieve the same performance, while mak-

ing at least one of its objectives better off. This distribution of design solutions is also called
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Table 1.3: Results analysis in building cost optimization studies
Studies Approach Remark Possible issue

Evins et al. (2012) Cheapest Select cheapest design op-
tions

The base case may fail to
meet the minimum energy
requirements.

Flager et al. (2012) Common practice Use expert judgement Expert judgment may vary
from study to study.

pareto front or pareto set. Pareto front efficiently narrows down the design solutions into a

smaller set, and it offers a view that helps clients understand the trade-offs between different

optimal solutions (Deb, 2011). However, this technique does not provide cost performance im-

provements of optimized cases, which is the key metric for conducting optimization. The cur-

rent studies often compare the optimized design case with a vaguely defined base case model.

Most of the studies identify the base case as a building design that consist of the cheapest build-

ing systems or the design with the poorest performance (Karaguzel et al., 2014; Evins et al.,

2012). Some other studies define this base case as an industry common practice (Flager et al.,

2012). Table 1.3 lists the possible issues for these two approaches. Different definitions of the

base case will certainly result in different improvements, and more importantly, none of these

base cases are explicitly confirmed to meet with local or national minimum energy require-

ments or benchmarks. Lack of comparison with standards requirements or market benchmarks

will reduce the investors confidence in the optimized design solutions.

1.1.4 Summary

The current practices indicate issues in the building system design optimization:

• Building system design optimization typically focuses on either optimizing one specific

building system or optimizing integrated building systems. However, optimizing one par-

ticular building system could potentially attain sub-optimal solutions from a whole build-

ing perspective. On the other hand, optimizing integrated building systems usually adopts

work around approaches, which can lead to inaccurate performance evaluations.

• The commonly used metaheuristic algorithms are not subject to combinatorial explosion.
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However, the optimization process still requires days or weeks to complete because of the

computational intensive building simulation process.

• The process lacks a systematic building system cost estimation method. Most of the cur-

rent system cost estimation techniques are performed manually with data sources from

an external database or surveyed from manufacturers or project contractors. Furthermore,

the system’s price factors vary from study to study. This creates difficulties in applying

the same methodology to another building project.

• The improvements from optimized cases are typically calculated by comparing a vaguely

defined base case. For most of the studies, the base cases are modeled with building sys-

tems that have the cheapest cost or poorest performance, which may not qualify to meet

the minimum energy requirements set by standards. This could lower building owners’

confidence on the optimized case.

• Several processes such as cost estimation, building system integration and benchmark

comparisons are not fully integrated in the conventional building system design optimiza-

tion workflow, and they are commonly addressed in a manual approach or some work

around methods, which affects the time performance as well as the accuracy of the opti-

mized solution.

1.2 Market for building system design optimization

Adopting an optimization algorithm in solving building system design problems is gradually

becoming a mainstream research effort. In 2016, nearly 500 optimization papers were pub-

lished in the Journal of Energy and Building (ScienceDirect, 2016). In industry, case studies

(EcoGlobe, 2016) and design competitions (ASHRAE, 2016b) also demonstrated the advan-

tages of integrating optimization algorithms in the building design process. Following the com-

petition, approximately 200 people attended the webinar for the tutorial of the optimization

module in DesignBuilder software.
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Table 1.4: State-of-art optimization strategies in building design optimization
Studies Algorithm Remark

Eisenhower et al. (2012) Meta-model
Fast, however, train a meta-
model may take longer than run
a conventional algorithm.

Hamdy et al. (2011) Hybrid algorithms

Fast, however, it is subject to
combinatory expansion and its
speed still depends on objective
functions.

1.3 Review of State-of-the-art

1.3.1 Building system design optimization techniques

Coupling optimization with energy simulation for design decision support has been actively

discussed among academia for decades; however, it is still rare to find this technique being im-

plemented in real world cases. One of the greatest barriers is the computationally expensive

process due to the mathematical properties of the energy model. In such a process, the main

difficulty arises in the immense computational time required in evaluating a solution using en-

ergy simulation (Eisenhower et al., 2012). Recent studies focus on proposing advanced opti-

mization strategies such as optimizing a meta-model (Eisenhower et al., 2012; Rysanek and

Choudhary, 2013) or hybrid optimization algorithms (Juan et al., 2010; Hamdy et al., 2011)

to alleviate the effect. A meta-model approach optimizes design parameters on a “model of

model” instead of real simulations. This method requires a fixed database that contains design

variables and parameters for constructing the meta-model. Therefore, it demands hundreds of

simulations upfront. Furthermore, a meta-model is commonly not general enough to adapt to

different cases such as evaluating the energy consumption of a building in different climates.

On the other hand, hybrid optimization algorithms typically start with an evolutionary search

in a large space to advance the population to the optimal region. Once the search space is nar-

rowed down sufficiently, the search process will switch to a fast and accurate gradient-based

search algorithm to converge on the optimal region (Greiner et al., 2015). However, the time
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spent by the evolutionary algorithm is still highly dependent on the number of design options

and objective functions, which could make the project impossible from a practical point of

view. Table 1.4 lists the features of these two algorithms. It implies the need for an innovative

optimization process to be developed for building system design optimization. This new opti-

mization process should not only improve the time performance, but also improve the search

effectiveness for finding high quality design solutions.

1.3.2 Cost estimation techniques

A common method to perform automatic cost estimation is BIM-based quantity take-off (QTO).

QTO is the measurement of the schematics or work results of a construction project. It is one of

the key steps in the construction delivery process and the foundation of several other critical

tasks (Monteiro and Martins, 2013). The BIM-based QTO method focuses on implementing a

data mapping strategy to connect the cost information and the data that contains the quantity

of building elements in a BIM model. A few case studies have demonstrated that the BIM-

based QTO not only shortens the time, but also reduces the risk of budgeting issues (Tiwari

et al., 2009; Choi et al., 2015). To achieve automated QTO, several possible BIM-based cost

estimation approaches are suggested in (Wu et al., 2014; Eastman et al., 2011) , namely BIM

to cost estimation, software integration, and BIM quantification tools. The BIM to cost esti-

mation approach utilizes BIM’s estimating function to export quantities into a spreadsheet or

external database. Then the quantity surveyors can price each item based on the exported in-

formation. This approach is semi-automated. It does not support fast cost updates with changes

on the BIM model (Hardin and McCool, 2015). The software integration approach mainly fo-

cuses on integrating cost estimating software with a BIM tool for a direct cost estimation in

an integrated platform. An example could be Tocoman iLink, which offers a direct link to the

Autodesk Revit® through a plug-in (Autodesk, 2007). A similar plug-in software that pro-

vides multi-level cost estimations in the early design stage can also be found in SketchupTM

platform (Cheung et al., 2012). Lastly, BIM quantification tools suggest the extraction of the a

BIM model to an external platform, which is specifically developed for performing both quan-
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Table 1.5: State-of-art QTO techniques
Studies Approach Remark

Hardin and McCool (2015) BIM to cost estimation Semi-automated and does not
support updates and LCCA.

Cheung et al. (2012) Software integration

Plug-in in design tools, fast and
accurate, but the quality subjects
to the integrity of BIM data and
it does not support LCCA.

Autodesk (2007) BIM quantification tools

Data integration through special-
ized tool, but the quality subjects
to the integrity of BIM data and
it does not support LCCA.

tification extraction and cost estimation. Such type of software include the Autodesk QTO®

and the Vico OfficeTM. Similar to the first approach, these tools still require manually take-off

cost items. However, with complete access to the BIM data, these tools are capable of provid-

ing model visualization of the project as well as finding useful information for a high quality

cost estimation. Table 1.5 summaries these techniques. Although BIM-based QTO is growing

in popularity, this technique is facing slow adoption issue, as reported in several survey stud-

ies worldwide (Wu et al., 2014; Aibinu and Venkatesh, 2013). This is partly due to the lack of

awareness of the benefits from the BIM-based QTO approach, but the challenges from the in-

adequate data quality issue are more critical and have arisen in every BIM-based QTO survey

study. A survey conducted in 2011 shows that more than 80% of the BIM models received by

general contractors do not contain the sufficient data for performing a good quality cost estima-

tion (Sattineni and Bradford, 2011). This certainly jeopardizes the BIM-QTO automation pro-

cess and force the quantity surveyors to move back to the manual process. Also, as discussed

in the research, BIM-based QTO is not an ideal framework to support design decision making

based on life cycle cost analysis.

1.3.3 Baseline energy model development

ASHRAE 90.1 performance rating method (PRM) requires energy modelers to develop mini-

mum efficiency energy models for evaluating relative design improvements in comparison to
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Table 1.6: State-of-art baseline energy model automation techniques
Tools Approach Remark

DesignBuilder (2016) Templates

Provides abundant baseline tem-
plates. (The V5.0 just released
its new baseline automation sys-
tem)

Trane (2016) Templates and guidelines

Provides envelope and lighting
templates. User needs to create
HVAC system following the in-
struction.

Roth (2016) Fully automated

Fully automated process. It can
be called via OpenStudio mea-
sure. However, it cannot be ex-
tended to EnergyPlus raw file.

CBECCCOM (2016) Fully automated

Fully automated process. It is
only available for CBECC-Com
user even though its simulation
engine is EnergyPlus.

the performance of the proposed energy model. PRM is an iterative process and manually per-

formed by developing building energy models using the standard approved building energy

simulation software, such as EnergyPlus. This manual process is labor intensive and error-

prone. In response to this issues, tools such as DesignBuilder (DesignBuilder, 2016) and Trane

TraceTM 700 (Trane, 2016) can generate “baseline models” with generic templates and guide-

lines to facilitate this process. These approaches only offer a range of pre-defined templates as

starting point to be extended by the energy modeler. However, pre-defined building and HVAC

system templates have to be subjected to significant customization process to be accepted as

complete and standard-compliant energy model components. Such customization approaches

still inherit the problems observed in manual model development process. Recently, Open-

Studio baseline model measure (Roth, 2016) and CBECC-COM (CBECCCOM, 2016) offer

highly structured automated baseline model development strategies. However, the function is

only available for the software tool users, which could be difficult to extend their application

to design support for a variety of EnergyPlus-based design tools. Table 1.6 lists the baseline
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generation feature of each design tool.

1.4 Hypothesis of the dissertation

In sum, the hypothesis of this thesis is:

• An integrated life cycle design optimization tool, combining BEM with quantity and op-

erational take-offs in a life cycle analysis, will efficiently search for optimal integrated

system solutions among a group of interdependent building design options, to optimize

capital plus operational cost performance for building owners.

In this thesis, the definition of an “optimal integrated system solution” or “optimal design so-

lution” is a feasible design solution that employs a group of user defined design options for a

specific building design, which yields the lowest possible capital investment and highest possi-

ble operation savings. Therefore, the quality of the optimal design is limited by the accuracy of

cost data and design performance data.

1.5 Proposed new approach

Figure 1.2 lists the methods and approaches concluded from literature review. The main topics

cover construction cost estimation, building system design optimization and baseline genera-

tion. Under each main topics, there are one or multiple sub topics. Specific methods in each

sub topic are indicated by black dots. Under each topic, several methods are reviewed and com-

pared. The methods that were used in this dissertation are highlighted by red dots.

Considering the issues identified in the literature review, there is a demand for a novel building

system design optimization approach that provides a practical and a high quality design deci-

sion support for building system selection from an integrated system perspective. This moti-

vates the objective of this thesis to develop a quick and robust building system design optimiza-

tion framework. Figure 1.3 depicts the proposed workflow of this framework. In comparison

with previous studies, this framework integrates and automates different systems of the method

and streamline the work processes to form a comprehensive analysis. The proposed optimiza-
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Figure 1.3: Proposed building system design optimization framework (Dashed line: processes

that are not considered in this thesis.)
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tion platform in this thesis aims to:

• Streamline the processes in the building system design optimization workflow.

• Performs life cycle cost analysis at the building system level to show capital cost trade-

offs as well as life cycle cost trade-offs among building systems.

• Improve optimization process to achieve better time performance with high quality of

results.

• Include benchmarking comparisons in the conventional optimization results analysis.

In Figure 1.3, four components of the system are identified. The development for each compo-

nent will be explained in detail in the following chapters.

• Chapter 2: EnergyPlus based quantity take off system that can automatically measure the

quantity of building elements based on the energy performance metrics of the elements.

• Chapter 3: LCCA model, a system, which is based on the economic module in Energy-

Plus, performs long-term life cycle cost analysis with actual utility tariff.

• Chapter 4: ammNSGAII, a faster convergence meta-heuristic algorithm that implements

an adaptive meta-model approach on the non-dominated sorting genetic II (NSGAII) al-

gorithm.

• Chapter 5: Building a baseline model automaton system that automatically generates

ASHRAE 90.1 compliant building energy baseline model for comparison.

• Chapter 6: Apply the method on a new construction project to demonstrate the hypothe-

sis.

• Chapter 7: Apply the method on a retrofit project to demonstrate the hypothesis.
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Chapter 2

EnergyPlus based quantity take off system

2.1 Overview

The EnergyPlus based quantity take off system is developed primarily for evaluating the capital

cost of a proposed design solution. Figure 2.1 depicts the workflow and data flow of the sys-

tem. In this system, the main components include a building system cost database, a building

energy model (BEM) to quantity take-off (QTO) communication protocol and a cost estimation

controller. Based on this system, an application, namely the EplusQTO, is developed for per-

forming the EnergyPlus based quantity take off. Further information about this application can

be found in Appendix A.

2.2 Building system cost database

As mentioned in several studies, an external cost database is critical in the cost estimation pro-

cesses (Bazjanac, 2005; Wu et al., 2014). This cost database should contain building systems

price factors, cost information as well as their maintenance and replacement schedule for life

cycle purposes. The price factor is defined as a system’s characteristics that could affect the

system’s price, such as boiler capacity and efficiency. The cost information of a building system

consists of material cost, labor cost, equipment rental cost and overhead cost.

However, there are numerous building systems in the market. It is necessary to have a struc-
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Figure 2.1: Proposed building system design optimization framework: cost estimation (Dashed

line: processes that are not considered in this thesis.)
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tured classification schema to classify these systems. In this proposed cost database, Master-

Format is adopted as the classification standard. It is a trade-based standard developed for or-

ganizing construction work results. This standard has been in the industry for more than 50

years, and gained recognition for organizing commercial construction specifications in the

North American region (CSI, 2005). The most recent version is MasterFormat 2016, which is

an updated version based on the MasterFormat 2004 release. It includes 50 divisions and each

division is subdivided into a number of sections. Each type of building system and its opera-

tion, maintenance and replacement (OM&R) data are assigned with a unique number according

to its 6- or 8- digits scheme (Gulledge et al., 2007). This division-subsection-numbering ar-

rangement offers a systematic structure for managing building system data in a relational data

schema. mySQL v6.0 is used as the database management system. The cost database is struc-

tured based on the MasterFormat 2016 classification standard. Cost information is mainly ac-

quired from the RSMeans® construction cost data 2015. Additionally, literature may be used

if the cost information of a system cannot be found in RSMeans® database. Figure 2.2 de-

picts the relational schema of the cost data. Four divisions are included to demonstrate the hi-

erarchy of the cost data according to the MasterFormat classification standard. Each division

has a primary key (PK) to connect to a lower level building system and a foreign key (FK) to

connect to a higher level category. The building systems connected to divisions carry the sys-

tem characteristics as well as cost vectors, which include material cost, labor cost, equipment

rental cost, total cost and total cost with overhead. This allows users to adjust individual cost

items based on their project information or location etc. Finally, each building system con-

nects to a OM&R database, which contains not only the OM&R work cost, but also the typical

work schedule. The OM&R data are collected from the (RSMeans, 2015; Scholand and Dillon,

2012; ASHRAE, 2015). Figure 2.3 illustrates the cost database in the mySQL v6.0 interface.

The database is continuously running as a service in the operation system. It can be accessed

through an application programming interface (API) for Java through the Java database connec-

tivity (JDBC) package (Oracle, 2015).
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Figure 2.2: Building system cost database relational schema
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Figure 2.3: Cost database in mySQL v6.0

2.3 BEM-QTO mapping layer

2.3.1 Data communication protocol

In this BEM-QTO system, a mapping module is created to map the building system properties

and characteristics with the building system design cost database. Hence, the cost estimation

can be performed automatically. However, the building system in the cost database are built

based on MasterFormat classification and RSMeans® database, which have very different meta-

data compared to those in the EnergyPlus model. Therefore, a data communication protocol has

to be implemented in order to unify these two components’ semantics. The data communication

protocol specify two main sections.

First, mapping the data from EnergyPlus to the cost database involves a list of building sys-

tem characteristics. However, generalizing this list for all the building systems is impossible in

EnergyPlus because different building systems have different properties. For instance, opaque

constructions consist of layers of material objects. Each material object carries information
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Figure 2.4: Construction data mapping between EnergyPlus and MasterFormat
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Figure 2.5: Opaque construction data communication protocol

such as material roughness, thickness, conductivity, density, specific heat, etc. This informa-

tion can be grouped and mapped to various divisions in the MasterFormat directly. Compared

to opaque constructions, transparent constructions have more complicated modeling methods

as well as required datasets. However, only U-value, solar heat gain coefficient, visible trans-

mittance as well as number of glazing layers are needed in cost mapping. Figure 2.4 shows

the building envelope data mapping between the divisions in MasterFormats and the objects

in EnergyPlus v8.3. It can be seen that most of the materials in MasterFormat can be mapped to

the same or similar EnergyPlus objects such as the “Material” or “WindowMaterial:Glazing”.

Therefore, the development of these data lists for cost mapping depends on two factors: (1) the

data inside the EnergyPlus model, and (2) the data required by the cost database. Figure 2.5

shows an example of opaque construction data protocol. For opaque materials and construc-

tions, the data list contains floor area, surface height, surface type, thickness, conductivity, den-

sity, specific heat and thermal resistance. This information can be found in “Material”, “Con-
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Table 2.1: User interaction syntax
Data Type Form Description Example
Input INPUT:ELEMENT:UNIT Request for numeri-

cal values
INPUT : boilerpower
: watt

Option OPTION:ELEMENT:ITEM Request user to select
an option

OPTION : bricktype :
thinbrickveneer

Bool BOOL:ELEMENT:ITEM Request a yes or no
selection

BOOL : fandrive :
V-beltdrive

struction”, “BuildingSurface:Detailed” and output files from an EnergyPlus model. More in-

formation about these objects can be found in (LBNL, 2016). Similarly, a transparent construc-

tion’s data list carries information including glazing size, number of layers, thickness, U-value,

solar heat gain coefficient and visible transmittance etc.

However, defining data lists for HVAC systems are more complicated than constructions. In

EnergyPlus v8.3, there are 328 objects related to HVAC systems, and among them, 163 objects

are used to describe the performance of an HVAC component. They can be organized into 12

groups namely the unitary system, heat pump system, zone HVAC, air terminals, coils, boilers,

chillers, cooling tower, fan, pump, generator and solar collectors. Each group has their own

data list to communicate with the cost database.

Besides the data requirements from the EnergyPlus model to the cost database, the protocol

also defines a set of syntaxes to allow client and cost estimation framework communications.

The necessity of client interaction is realized for cases such that additional information are re-

quired for a successful cost mapping. This information can be categorized into three data types.

Table 2.1 shows these three data types and provides examples.

The last part of this data communication protocol between EnergyPlus and cost database is the

cost data exported from the cost database. Once a building system is selected from the cost

database, the data is sorted and arranged in a cost vector. This includes the name of the building

system, quantity unit (m2,m,Each, etc), and the system unit costs. The unit costs are further

divided into material cost, labor cost, equipment cost, total cost and total cost including over-

head and profit. This gives clients the ability to further adjust each individual cost item based
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on the local rate.

In summary, the integration of the EnergyPlus model and the cost database is achieved through

a well-developed data communication protocol, which is built inside a data mapping module in

Figure 2.1. The mapping layer is designed to be general so that it can adapt to various BEMs

for extracting building system characteristics.

2.3.2 BEM quantification extraction

The mapping protocol unifies the semantics of the data in two different components. However,

to complete the system quantification extraction and cost estimation, it still requires techniques

to measure and analyze the data. In EnergyPlus, “Component:LineItem” is the object that cal-

culates building system costs. This object matches the unit cost to the quantity of the objects

for performing the cost calculation. Table 2.2 exhaustively lists all the available objects and

their cost calculation methods in the “ComponentCost:LineItem” object (LBNL, 2016). It can

be observed that each object has different cost method. The building constructions and shading

devices are typically estimated with $/m2, and the daylighting controls are often estimated with

a control system set ($/Each). Therefore, this object could offer sufficient estimation for these

two types of building system cost estimation. However, the support for electrical and HVAC

system measurements are not as sufficient as the previous two examples.

As part of the electrical system, the conventional approach for specifying a “Lights” object is

to use an approximate lighting power density (LPD) in a thermal zone. Thus, $/Each is not

an ideal cost calculation method unless the designers are certain about the total cost of lighting

system for each thermal zone. Similarly, the other cost calculation method, $/kW is a good ap-

proach. However, lighting system is typically measured by the number of fixtures (n), which

is not provided by EnergyPlus. Therefore, an external quantification extraction module is built

to extract the quantity of building electrical systems. Unlike the constructions and shading de-

vices, the quantity of electrical systems are converted from $/kW into the number of fixture.
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Table 2.2: EnergyPlus cost line item types

Object Available Unit Cost Measurement Method

General $/Each Manual

Construction $/m2 Automatic

Coil:DX $/Each, $/kW Automatic

Coil:Cooling:DX:SingleSpeed $/Each, $/kW Automatic

Chiller:Electric $/Each, $/kW Automatic

Coil:Heating:Gas $/Each, $/kW Automatic

Daylighting:Controls $/Each Automatic

Shading:Zone:Detailed $/m2 Automatic

Lights $/Each, $/kW Automatic

Generator:Photovoltaic $/kW Automatic

Equation 2.1 shows the method for converting a electrical system quantity.

N
e

= min

⇢
n | n  P

q

�
(2.1)

Where,

N
e

is the number of electrical devices in a thermal zone,

P is the total power of a electric system in the thermal zone,

q is the unit power of the electrical system.

Extracting the quantity of the HVAC system is complicated because the measurement of the

HVAC system is $/Each in most of the measurement standards whereas in EnergyPlus, an

HVAC system object could aggregate multiple identical systems. Thus, a process is built to

estimate system quantities from one EnergyPlus object. Currently, this system is able to ex-

tract the quantity of up to 10 different HVAC systems including the variable air volume system

(VAV), dedicated outdoor air system with fan coil or variable refrigerant system (DOAS+FC/VRF)

and heat pumps (HP). Figure 2.6 shows the process’s workflow. The BEM-QTO system first

analyzes the HVAC related objects in EnergyPlus. The analysis includes examining whether
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Figure 2.6: HVAC automatic quantity extraction process
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this object is used, how many of them and what are the price factors. If a price factor is found

to be autosized for the object, then BEM-QTO system will request the sizing results of this ob-

ject from EnergyPlus output files. With the sizing results, a equipment that has equal or higher

value of price factors can be selected from the cost database and the cost of the equipment will

be used as the cost of the HVAC object. This workflow can also be an iterative process. It hap-

pens when none of the equipment in the cost database meet the requirements of a price factor

in the HVAC object. Through several iterations, BEM-QTO system quickly identifies an equip-

ment and the quantity of this equipment that can satisfy the price factors. Furthermore, multiple

price factors can be found in some EnergyPlus objects such as a heat pump, which has cool-

ing capacity and heating capacity. In this case, the selection of the equipment from the cost

database has to satisfy all the price factors of those objects in order to carry out the final cost

estimation. It is also possible for users to override the selected HVAC equipment and its quan-

tity with the assistance of a user interface (Appendix A). Once the HVAC equipment is overrid-

den, the final price will be calculated according to the user inputs.

2.4 Cost estimation controller

The cost estimation module is a process controller that manages or directs the flow of data be-

tween different modules. The extracted building elements cost and quantities are aggregated

in this controller. Then the initial project cost is calculated. Figure 2.7 depicts a BEM-based

cost estimation system domain model in the unified modeling language (UML) diagram. The

controller has a “EnergyModel” module, a “MasterFormat” module and a “Mapper” module.

The cost estimation is realized through a sequence of function calls from the “analyzeSys-

tems”, which calls the “EnergyModel” to analyze the EnergyPlus model data, then to “map-

Costs(String system)”.The “mapCosts” function calls the “mapper” to extract the metadata

from “EnergyModel” and map it on to the “MasterFormat”. In addition, this controller also

integrates an application programming interface (API) to allow specific functions or plugins to

be added to this cost estimation system. The BEMQTOPlugin interfaces in Figure 2.7 shows
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Figure 2.7: BEM based cost estimation domain process model

the details about this API as well as its relationship with the controller. Since the method in

this interface allows a plugin to access both energy model and cost database, a variety of func-

tions can be implemented in this system. In Figure 2.7, two plugins are built in this system for

demonstration purposes. One is an IFC model exporter, which arranges the final cost estimation

data into IFC data format. The other one shows a more complicated application that connects

the system to a building system performance database for design decision support. This plugin

could overwrite the systems in the EnergyPlus model, perform energy simulation and calculate

the capital cost. Both plugins can be activated at the same time since their functions are mutu-

ally exclusive.
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Chapter 3

The life cycle cost (LCC) model in

EnergyPlus

3.1 Overview
The life cycle cost model consists of a building system database, operation cost model in Ener-

gyPlus and building energy simulation as indicated in Figure 3.1. The primary focus of devel-

oping a life cycle cost model in EnergyPlus is to construct the fitness or the objective function

for evaluating long-term operation costs for a design solution. The key feature for this model is

the building system database, which contains the physical properties for design options and the

data can be easily mapped to a building energy model as inputs. Moreover, the capability of the

economic module in EnergyPlus is explored and tightly integrated into the whole platform in

this work.

3.2 EnergyPlus building system database
The building system database is designed with two goals: (1) To manage the physical proper-

ties of building systems, (2) To connect to the cost database. There are three identified building

system categories, namely the passive system, active system and energy renewable system, and

their physical properties are collected from various data sources as indicated in Figure 3.2. A
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Figure 3.1: Proposed building system design optimization framework: life cycle cost model

(Dashed line: processes that are not considered in this thesis)
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Figure 3.2: The hierarchy of building system design alternatives

detail list of the data sources is also tabulated in the Table B.1 in Appendix B. These sources

include standards (ASHRAE, 2010), benchmarking and guidelines (DOE, 2017; ASHRAE,

2009) and well-established databases and manufacturers’ published data. Each system type has

several design parameters and each design parameter contains multiple design options. Figure

3.2 also includes the number of systems that are currently inside the building system database.

The building system database is managed in a relational database schema and can be accessed

through a Java application. In addition, this database is designed to connect to the cost database

through two sets of keys, the “CostNumber” and “CostIndex”. The “CostNumber” is the num-

bering system in the cost database, and it links to the “Number” key in the cost database. Simi-

larly, the “CostIndex” shows the index of the cost information in the cost database. For instance

the material cost index or the labor cost index. It links to the “Index” in the cost database. Fur-
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Figure 3.3: Example of opaque construction database and its relation to the cost database

thermore, for systems that require aggregating various building products, such as wall and roof

construction, one set of keys is necessary for completing the data link. Figure 3.3 shows an ex-

ample of the opaque constructions (Wall and Roof constructions) database and their relations to

the cost database.

3.2.1 Passive system data

Passive systems focus on building envelope related aspects determined by the architectural de-

sign so as to reduce building energy demand (Chen et al., 2015). The passive systems usually

require a one time cost and little or no maintenance needed after the installation. Such system

includes walls, roofs, windows and shading systems (Blumenfeld and Thumm, 2014).

There are currently 39 wall, 19 roof and 4 floor constructions in the building system database.

The insulation level varies from R-0.3 to R-6.5. All the constructions use the layer-by-layer
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method in EnergyPlus, which requires the assembly information of a construction. Further-

more, the thermal properties of each layer are calculated through a detail parameter set, which

includes the material’s density (kg/m3), thickness (m), conductivity (W/mK) and specific

heat (J/kgK) etc. All this data is collected from ASHRAE 90.1 2010 standard (ASHRAE,

2010), DOE commercial reference buildings (DOE, 2017), ASHRAE Fundamental Handbook

2009 (ASHRAE, 2009) and the ASHRAE advanced energy design guides (AEDG) (ASHRAE,

2016a).

Similarly, six distinct type of window systems are recorded in the building system database.

These windows are assembled according to the same sources as the opaque constructions. How-

ever, with an exception that the spectral data of each glazing are collected from the Interna-

tional Glazing Database (IGDB) v53.0 (LBNL, 2017). The IGDB is a collection of optical data

for over 5000 glazing products and it is currently maintained by the Lawrence Berkeley Na-

tional Lab. The selected windows range from double clear to quadruple. The thermal transmit-

tance (U-Value) of these window starts from 3.13 W/m2K to 0.781 W/m2K, the solar heat

gain coefficient (SHGC) ranges between 0.7 to 0.3 and the visibility transmittance (Vt) covers

from 0.4 to 0.8. Besides the envelope systems, window to wall ratio (WWR) is also considered

as part of the passive systems. The options includes 10% to 90% WWR in a step of 10%.

Lastly, the daylight shelf system is included in the building system database. The daylight

shelves are one of the many daylighting devices for bringing more daylight into a building.

They are typically installed as an inside shelf, an outside shelf, or both on south facing win-

dows (Meresi, 2016). The shelves reflect the exterior light onto the ceiling of a room to achieve

extended daylight penetration distance and increase uniformity in daylight distribution lev-

els.(LBNL, 2016). In EnergyPlus, daylight shelves are modeled via the “DaylightingDevice:Shelf ”

object, where it requires a shelf host window, a heat transfer surface (inside light shelf), an at-

tached shading surface (outside light shelf) and a shelf construction (LBNL, 2016). In order to

add daylight shelves to an existing window, the window must be separated into upper window

and lower window sections. The height of the upper window section decides where the daylight
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shelves are mounted. In EnergyPlus, daylight shelves are simulated separately for daylight-

ing and the zone heat balance; however, the calculations vary between the inside and outside

daylight shelves. The inside shelf is assumed to reflect all the transmitted light from the upper

window onto the ceiling of the room as diffuse light. This means no beam or downgoing flux

can pass the end of the shelf. On the other hand, the daylighting of the outside shelf is calcu-

lated by integrating over the sky and ground and summing the luminance contribution of each

sky or ground element(UIUC and LBNL, 2016). The daylighting interactions are assumed to be

between shelves and the upper window except the lower window receives shading from the out-

side shelf. For heat balance calculation, the inside shelf is defined as an inter-zone heat transfer

surface (partition) and the outside shelf is simulated as an external shading device.

Three numeric parameters are included for the daylight shelf design. They are the height (h) of

the upper window, the projection (p
in

) of the inside shelf and the projection (p
out

) of the outside

shelf. A threshold has been set for each of the parameters. For h, it can be a value between 10%

to 30% of the original window height (Meresi, 2016). Any value that is outside of this range

is considered a no daylight shelf system. For p
in

and p
out

, the value is limited between 0.5m

to 1.5m. If the projection of a shelf is less than 0.5m, this shelf will not be modeled. The cost

of the shelf is quoted based on the construction material cost from RSMeans construction cost

database (RSMeans, 2015). The construction of the light shelf consists of one lightweight con-

crete layer, which is identical to the daylighting shelf example file in EnergyPlus.

3.2.2 Active system data

The active systems are those that consume external energy resources to maintain the indoor en-

vironment quality of a building (Chen et al., 2015). Such systems include heating, ventilation,

air-conditioning (HVAC) systems, lighting and other building service systems. These systems

typically have high capital cost and have to be properly operated and maintained (Blumenfeld

and Thumm, 2014).

Three lighting and six HVAC systems are collected in the building system database. The light-

ing systems are selected according to the ASHRAE AEDG (ASHRAE, 2016a), and their prop-
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erties are derived from the manufacturers’ specification (GE, 2016). Besides lighting systems,

a daylighting control system that can dim the lighting fixtures, is included in the building sys-

tem database. The specification for daylighting control system is based on the examples in the

EnergyPlus installation package and the EnergyPlus input output document (LBNL, 2016). The

height of daylighting reference point is set at a desk height (0.8m) and the location of the day-

lighting reference point is set to the center of the room. The illuminance setpoint for the day-

lighting reference point is 500 lux, which is a typical value for general office work (LBNL,

2016). A continuous daylighting control type is assumed. This type of control dims the over-

head lights continuously and linearly from the maximum electric power and light output to

minimum electric power and light output (0.1) as the daylight illuminance increases (LBNL,

2016). The choice for daylighting control system is in a boolean or integer type, where 1 indi-

cates “Yes” and 0 indicates “No”.

The HVAC systems are more complex than most of the active systems in EnergyPlus. One of

the advantages of EnergyPlus is its modularization feature, which allows energy modelers to

model a large variety of advanced HVAC systems. However, this feature creates problems for

generalizing the HVAC system creation process in various building layouts because different

HVAC systems may have different system connection methods and different control logics.

Therefore, an automatic HVAC system generation system is developed according to (Xu et al.,

2016b) to generalize the creation of various popular HVAC systems in a building energy model.

The system consists of a pre-defined thermal zone format, a HVAC-XML data schema and

an idf translator that translates XML data into .idf format. The pre-defined thermal zone for-

mat is designed to capture the HVAC components connections. There are five elements in the

proposed thermal zone format (Table 3.1). They are block, zone function, zone identification,

zone’s mechanical ventilation group and its thermal condition group. The first three elements

store a zone’s architectural information and the last two elements indicate a zone’s HVAC sys-

tem information. For instance, Floor6%Office%601%DOAS6%VRF6E2 indicates the number

601 thermal zone is located on the 6th floor and it is an office room. Regarding to its mechani-
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Table 3.1: Thermal zone name convention
Name element Remark
Block Block composed of a number of thermal zones. e.g, Floor6
Function The primary function of a thermal zone. e.g, Office
Identification The label of a particular thermal zone. e.g, 602
Ventilation Zone group of mechanical ventilation. e.g, DOAS
Thermal Zone group of indoor thermal conditions. e.g, VRF6E2

cal system information, this zone belongs to the DOAS6 zone group for mechanical ventilation

and the VRF6E2 zone group for indoor thermal condition. There are some reserved characters

for the last two elements, which are designed for the zones that require special mechanical con-

ditions. For example, an ”EXT” in the ventilation group element means an exhaust system is

required in this zone. This zone name convention allows tools to quickly construct basic zone

activity assumptions and some common HVAC systems.

The HVAC data is stored in an XML format. The design of this XML data schema focuses on

providing quick data conversion between EnergyPlus .idf data structures and HVAC property

data structures. The design quality attributes of the HVAC system XML data schema includes:

1. Adaptable to common HVAC systems’ property data

2. Extensible and easy to modify with EnergyPlus version upgrades.

The XML format has elements including:

<dataset>: dataset is the parent element that contains the entire data of one specific HVAC

system. It has two attributes:

1. setname: specify the HVAC product name of this dataset

2. version: specify EnergyPlus version for this dataset

Example: <dataset setname = “Manufactuer VRF 4Ton” version = “V8.3”/>.

<object>: object is a child of <object>element. This element represents the objects in Ener-

gyPlus. It has two attributes:

1. description: the name of the EnergyPlus object

2. reference: the object reference. This attribute indicates the sub-system that this object
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Figure 3.4: EnergyPlus HVAC XML schema and its connections to thermal zone name

belongs to.

Example: <object description = “AirLoopHVAC” reference = “Supply Side System”>.

<field>: field is a child element of <object>. This element represents the individual field un-

der an object in EnergyPlus. It also has two attributes:

1. description: the key of a field

2. type: data type, this includes “String”, “Double” and “Integer”.

Example: <field description = “Gross Rated Cooling COP” type = “Double”>3.2</field>.

The data schema can directly link to the EnergyPlus HVAC system model based on a two-layer

logic process. The first layer identifies HVAC system type and EnergyPlus version to extract

the corresponding dataset at dataset element. The next step applies auto generation strategies

to different sub-systems and thermal zones. Figure 3.4 shows an example of the second connec-

tions process. The sub-system, supply side system, is created by analyzing both the ventilation

group, and the thermal condition group (“Zone%” or “Floor%”) in the zone name. Currently

in the building system database, six different types of HVAC systems are collected and stored.

The selection of the systems is based on ASHRAE AEDG (ASHRAE, 2016a) and ASHRAE
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90.1 2010 standard (ASHRAE, 2010). The system specifications are collected from multi-

ple sources including the DOE commercial reference buildings (DOE, 2017), EnergyPlus ex-

ample files, and manufacturer’s specifications (Toshiba Carrier, 2016; Carrier, 2016). All the

property of systems have met the minimum requirements set by ASHRAE 90.1 2010 standard

(ASHRAE, 2010).

3.2.3 BiPV system data

The use of building integrated photovoltaic (BiPV) system is increasing due to its contribution

towards net zero building in urban areas, where most of the buildings have limited rooftop area

but large facade areas (Ng and Mithraratne, 2014). The selected photovoltaic technology in this

thesis is applicable to opaque and mono-crystalline silicon (m-Si)-based solar cells encapsu-

lated between multiple glass layers (i.e., glass-glass encapsulation). The objective here is to

provide parametric evaluations of systems integrative energy performance of BiPV elements.

Therefore, the PV heat transfer integration mode is selected as “Integrated Outside Face” within

EnergyPlus. In such an integration mode, the solar cells are treated as integral elements of the

building envelope assemblies with bi-directional thermal interactions, where solar cell tempera-

tures are effected by conductive heat flux within the envelope assembly, while electrical energy

generated by solar cells are taken as a heat sink term and removed from heat transfer surfaces.

So as to achieve this thermal interaction, the PV integrated envelope assemblies are defined by

a “Construction: InternalSource” in EnergyPlus (LBNL, 2016), which allows locating an in-

ternal heat source or sink element, such as a PV element, within the assembly. The front glass

of the BiPV system selected as a clear uncoated monolithic glass with relatively high front-side

solar and visible transmittances at normal incidence (0.903 and 0.912, respectively). Currently,

Solar World 185 watt BiPV product is collected in the building system database (SolarWorld,

2016). It is m-Si PV with a peak power rating of 185 Wp and a solar conversion efficiency of

16.32% under the Standard Test Conditions. A simple DC-to-AC inverter model with a con-

stant operating efficiency of 0.94 is assumed for the entire BiPV system. It should be noted

that the BiPV system life time in this thesis is assumed to be 25 years. This was set in accor-
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dance with literatures (Ng and Mithraratne, 2014) as well as IEA recommended life expectancy

(Fthenakis et al., 2011). In addition, the performance degradation of BiPV system in the 25

year life span is not considered in this thesis.

3.3 Utility tariff model in EnergyPlus

The EnergyPlus’s economics module is capable of modeling complex utility cost tariffs. Un-

like an average energy cost value, the well established tariff model can accurately represent the

monthly energy cost based on both energy consumption and monthly peak demand (Xu et al.,

2016a). It also allows energy modelers to set tariff qualifiers which capture the energy perfor-

mance of a building (typically the peak demands in 6 or 12 consecutive months) and determine

the tariff that this building should subscribe to. In addition, block rates, ratchet and seasonal

rates can be modeled as well. For the full capability of the EnergyPlus utility model, readers are

encouraged to explore in (LBNL, 2016). Therefore, with a tariff model, the optimization pro-

cess will not only minimize the building’s annual energy consumption, but also reduce its peak

demands.

To demonstrate the accuracy of the utility tariff model in EnergyPlus, an energy model, whose

monthly energy consumption is calibrated in accordance with the ASHRAE Guidenline 14-

2002 threshold (Chong et al., 2015), is used to estimate the monthly energy cost with a detailed

local tariff model and the average energy price from the EIA average of the electricity price

(EIA, 2016). The results in Figure 3.5 suggests that the utility tariff model could achieve less

than 5% coefficient of variation of the root mean square error (CVRMSE) compared to the re-

sults by using the average energy price, which is more than 30% CVRMSE.

3.4 LCC model in EnergyPlus

The LCC is one of the most frequently used economic methods for project evaluations. How-

ever, it requires effort and data to initialize such a study. In this thesis, the LCC follows the
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Figure 3.5: Prediction accuracy comparison between utility tariff model and average energy

rate approaches

guideline that is provided in (Fuller and Petersen, 1995). The formulation of LCC study is:

f1(X) = c
rep

� c
res

+ c
e

+ c
om&r

(3.1)

f2(X) = c
ei

+ c
hi

+ c
li

+ c
rest

(3.2)

Where,

X is a design solution,

f1(x) is the building operation costs,

f2(x) is the capital cost,

c
ei

is the envelope costs,

c
hi

is the HVAC system costs,

c
li

is the lighting system costs,

c
rest

is the other costs,

c
rep

is the present value of capital replacement costs,

c
res

is the present value of residual value less the disposal costs,

c
e

is the present value of energy costs,
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Table 3.2: Life cycle cost analysis important parameters and sources

Parameter Description Source

Base date date when the study starts Design Team
Service date date on which project starts Design Team
Study length expected life span of the project (Fuller and Petersen,

1995)
Adjusted value of currency constant dollars or current dollars Design Team
Interest Rate discount rate NIST 2016 Supple-

ment/ (Rushing et al.,
2016)

Depreciation reduction in the value of an asset (IRS, 2016)

c
om&r

is the present value of non-fuel operating, maintenance and repair costs.

X =
�
x 2 Zsc|xij, i 2 {1..c} , j 2 {1..s}

 
(3.3)

Where,

Zsc is the constraint set,

x is the design parameter,

s is the building system types,

c is a system cost information.

The Zsc is the constraint set, which contains the pre-defined building system types s and their

cost c. The design parameter x is specified as discrete or continuous independent variables that

can only take the values from Zsc.

The parameters in LCC could largely affect the final outcome. This task also collects these crit-

ical parameters from various reliable sources. Table 3.2 shows the LCC parameters and their

sources that are used in this thesis.

3.4.1 Discounting in LCC analysis

The essential idea of performing life cycle cost analysis for buildings is to justify the short-term

investments by considering the long-term cost savings impacts on the present value. Therefore,
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it is critical to discount the future costs to its present value. In this LCC model, two types of

discounting operations are included.

• Discounting one-time amounts to a present value. This type of discounting method is

used to calculate the present value of costs occurring at irregular or non-annual intervals.

Examples include fan replacement at end of 15 years or residual value of a system at the

end of the study period.

• Discounting a series of annually recurring amounts to a present value. Examples include

annual system checkup, energy costs etc.

Equation 3.4 shows the single present value (SPV) factor that can be used to calculate the present

value of a future cash amount occurring at the end of year t, F
t

, given a discount rate of d (Fuller

and Petersen, 1995).

PV = F
t

⇥ 1

(1 + d)t
(3.4)

Equation 3.5 presents a a uniform present value (UPV) factor for calculating the present value

of a series of equal cash amounts, A0, that recur annually over a period of n
y

years, given a dis-

count rate of d (Fuller and Petersen, 1995).

PV = A0 ⇥
(1 + d)ny � 1

d(1 + d)ny
(3.5)

These calculation processes has been integrated in the life cycle cost module in EnergyPlus.

The validation of the life cycle cost module was conducted in (Cho et al., 2011) by comparing

its outputs against the building life cycle programs (BLLC5) (NIST, 2016).
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Chapter 4

ammNSGA-II, an advanced

multi-objective optimization algorithm

4.1 Overview

The adaptive meta-model NSGA-II is one of the most advanced meta heuristic optimization

algorithms developed for tackling the optimization problems with computationally expensive

fitness functions. This type of algorithms has been tested in many real-world engineering prob-

lems, whose fitness functions involve solving differential algebra equations (DAE) with approx-

imation techniques. Such examples can be found in aeronautics designs (Giannakoglou, 2002),

airfoil design (Emmerich and Naujoks, 2004), and building design (Gilan and Dilkina, 2015;

Brownlee and Wright, 2015).

Figure 4.1 depicts the workflow of the proposed framework and highlights the position of the

ammNSGA-II algorithm. The algorithm takes in cost information and energy simulation re-

sults from the cost estimation model and life cycle cost analysis model. Then it will generate a

group of optimal design solutions for design team and clients review. In this chapter, a detailed

description for the development of a mixed type ammNSGA-II algorithm for building system

design optimization is presented.
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Figure 4.1: Proposed building system design optimization framework: optimization (Dashed

line: processes that are not considered in this thesis.)
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4.2 Meta-heuristic algorithm

The optimization algorithms can be categorized into deterministic or stochastic. A determin-

istic algorithm works in a mechanical deterministic manner without any random nature, such

as a hill-climbing algorithm (Yang, 2011). On the contrary, stochastic algorithms add random-

ness into its process. Therefore, the algorithm may generate different outputs from time to time,

even though the initial point remains the same. In recent optimization literature, such type of

algorithms are often being referred to as metaheuristic algorithms (Glover and Kochenberger,

2006). The word “metaheuristic” first appeared in (Glover, 1986). It can be considered as “an

master strategy that guides and modifies other heuristics to produce solutions beyond those that

are normally generated in a quest for local optimality”(Glover and Laguna, 2013). Summa-

rized in (Yang, 2011), there are two distinct advantages of metaheuristic algorithms.

• Quality solutions to difficult optimization problems can always be found in a reasonable

time.

• Global optimality can be achieved in problems that have a discontinuous solution space.

For the majority of building system design problems, evaluation of the fitness function involves

solving differential algebra equations (DAE) with approximation techniques, which is not only

computationally intensive but also introduces the discontinuity relation between fitness func-

tions and design parameters (Wetter, 2004). Therefore, metaheuristic optimization algorithms

are the ideal algorithms for solving building system design problems. Many popular algorithms

are classified as metaheuristic which includes the simulated annealing type that searches along

a markov chain and converges under appropriate conditions (Kirkpatrick et al., 1983), parti-

cle swarm optimization, which searches by adjusting the trajectories of a swarm of intelligent

agents (particles) on a solution space (Eberhart and Kennedy, 1995), and genetic algorithms

etc. Among these algorithms, genetic algorithms (GAs) are probably the most popular with

a diverse range of applications (Yang, 2011). The algorithms are developed based on Charles

Darwin’s natural selection theory that models the biological evolution (Holland, 1992). By
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mimicking gene reproduction, crossover and mutation behaviors, the algorithm’s mathematic

foundation shows that the GAs can achieve exponential search power in the solution space

(Goldberg and Holland, 1988).

The essential components of a genetic algorithm are selection, crossover and mutation opera-

tors. These components are often referred to as genetic operators. The selection operator pre-

serves the elite design solutions in a generation, which ensures the offsprings have the optimal

solutions. On the other hand, crossover is one of the operators used in producing offspring (i.e,

candidate design solution alternatives). A typical crossover proceeds in two steps. First, mem-

bers of the newly reproduced design solutions in the mating pool are mated in a pair at random.

Second, every pair of design solutions exchange a group of their design parameters with each

other (Goldberg and Holland, 1988). The key idea of this operator is to enhance the exploration

process by recombining the “high-performance” group of design parameters. The selection and

crossover can efficiently search and recombine the “better performance” group of design pa-

rameters along the generation. However, occasionally they may become overzealous and lose

some potentially useful combinations of design parameters, which is often referred to as the

premature convergence issue. The mutation operator is intended to protect against this issue

through a random alteration in the value of design parameters (Goldberg and Holland, 1988). A

typical procedure of GA can be summarized in seven steps.

1. Encode parameters (design option) into GAs data format.

2. Define the fitness function (energy, cost or predicted mean vote) to evaluate each chromo-

some (design solution).

3. Create a population of chromosomes (a group of design solutions).

4. Evaluate the fitness of every chromosome in the population.

5. Create a new population by performing selection, crossover and mutation.

6. Replace the old population with the new population

7. Repeat step 4,5,6 for a number of iterations
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8. Decode the best chromosome to obtain a solution to the problem.

4.3 Multi-Objectives optimization

Most of the building system design optimization problems have multiple goals. It is possible

to optimizing one goal with constraints from the other goals. However, this approach limits the

flexibility of solution evaluation in multiple dimensions. For instance, the goals for a medium

size office is to minimize the energy consumption with a limited budget. By setting energy as

the main goal and budget as one of the constraints, the design team could potentially find a

solution to achieve a design that has relatively low energy consumption within the target bud-

get. However, it does not offer “what-if” situations, e.g, “will the energy consumption reduced

drastically if the budget can be stretched by 5%?” Multi-Objective optimization is designed

to answer such questions. Instead of one fitness function, Multi-Objective optimization has

two or three fitness functions that are evaluated in parallel in the process. Pareto optimality is

a frequently used method for analyzing Multi-Objective optimization results (Evins, 2013).

This method introduces a set of design solutions as an optimal solution set. In this solution set,

a unique situation occurs where a single objective adversely affects other objectives. Figure

4.2 shows a typical Pareto Front curve. It can be observed that there is no solution in this opti-

mal solution set, which has both lower capital and operation costs than any other solutions in

the same set. However, by analyzing this Pareto Front curve, one can learn that in a span of 25

years, design solution “case 3” demands 4% higher capital cost but yield 10% lower operation

costs than design solution “case 1”.

To equip an algorithm with the ability for evaluating multiple fitness functions, a design solu-

tion sorting algorithm must be applied. The current most popular sorting algorithm is the non-

dominated sorting algorithm, which ranks a design solution based on the number of the design

solutions in a population it dominates. The definition of dominance can be described in two

conditions. Assume one design solution is X1 and the other is X2.

• If all the outcomes of the fitness function f(X1)  f(X2) and
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Figure 4.2: The pareto front curve (adopted from (Xu et al., 2016a))

• If at least one f(X1) < f(X2)

Then X1 dominates X2 .

There are many metaheuristic algorithms that are equipped with the non-dominance sorting

algorithm to achieve a Multi-Objective evaluation capability. The non-dominant sorting genetic

algorithm II (NSGA-II), proposed by (Deb et al., 2002), is one of the most popular algorithm

that has been applied in many real-world engineering problems (Roberti et al., 2017; Esfe et al.,

2017; Chan et al., 2016).

4.4 ammNSGA-II algorithm framework

The NSGA-II algorithm has combined the search capability of a genetic algorithm with an

advanced sorting algorithm. It is robust but, not fast, especially when the fitness functions are

computationally expensive. In this thesis, a new method called adaptive meta-model NSGA-II

(ammNSGA-II) algorithm is proposed to speed up the conventional NSGA-II algorithm so that

the optimization process for problems with a heavy computational requirement can be com-
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Figure 4.3: The coarse-to-fine adaptive meta-modeling theory.

pleted in a short timeframe. Unlike the convention NSGA-II algorithm, ammNSGA-II algo-

rithm integrates the optimization components and machine learning modules. This concept is

based on a “coarse-to-fine” search theory, which is proposed in (Deb and Nain, 2007). The the-

ory states that the accuracy of meta-models could be compromised at the beginning stage of an

optimization process due to the lack of sufficient data points for training. However, they can be

refined in later stages when the search is conducted in a smaller but more focused region. Fig-

ure 4.3 demonstrates the concept of the “coarse-to-fine” theory. The initial regression curve in

Figure 4.3 does not provide enough accuracy to predict the actual solution value, however, it

provides the algorithm with a search direction to move to. As the optimization continues, the

regression curve is refined to a higher accuracy in predicting target values. Eventually, a final

regression curve can successfully predict the values in the optimal region.

The optimization components include an elite selection mechanism, crossover operator, muta-

tion operator and solution ranking algorithm. Additionally, the machine learning modules equip

regression models and a k-fold cross validation scheme. The functions for each component will
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Figure 4.4: The procedure of adaptive meta-model NSGA-II (adopted from (Xu et al., 2016a))

be detailed in the following sections.

4.4.1 Optimization procedure

The optimization procedure of ammNSGA-II contains two hyper-parameters n and Q. Figure

4.4 depicts the overall process of the proposed ammNSGA-II algorithm. At the beginning, the

ammNSGA-II behaves similar to a conventional optimization. A population is raised by ran-

domly selecting from pre-defined design options and their operation costs are evaluated through

energy simulations. Meanwhile, external storage is created for storing all the design solutions at

each generation. At generation n, the ammNSGA-II pauses the optimization process and then

trains the meta models with data retrieved from the external storage. Once regression models

are built, the ammNSGA-II replaces the energy simulation in the fitness functions with newly

trained meta models and restarts the optimization process until Q’s generation is reached. Ev-

ery Qth generation is called one optimization cycle. The cycle will continue until a maximum

evaluation number is reached.

4.4.2 GeneAS scheme for mix-type data

Most of the building system design optimizations are complex not only because of the compu-

tationally expensive fitness functions, but also the design parameters that needs to be explored.
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These design parameters can be a set of systems such as HVAC systems, which are transferred

into binary or integer data types before passing to the algorithm, or design variables such as the

height of a piece of shade that should be recognized as numeric data types. However, the typ-

ical NSGA-II algorithm can only work with one type of parameter due to the data processing

limitation from the crossover and mutation operations. In order to equip ammNSGA-II with

the ability to handle mixed type of parameters, the combined genetic adaptive search (GeneAS)

scheme proposed in (Deb and Goyal, 1996) is adopted. In a GeneAS scheme, each parameter to

be encoded depends on its type nature in the optimization process, and the crossover and muta-

tion operators apply their operations parameter by parameter.

• For a binary or integer parameter, the binary-genetic operations are performed

• For a numeric parameter, the numeric-genetic operations are performed.

4.4.3 Crossover operator

Crossover is one of the operators used in producing offspring (i.e, candidate design solution al-

ternatives). A typical crossover proceeds in two steps. First, members of the newly reproduced

design solution in the mating pool are mated at random. Second, each pair design solutions ex-

change a group of their design parameters (Goldberg and Holland, 1988). The concept of this

operator is to enhance the exploration process by recombining the “high-performance” group

of design parameters. Several operations are available for performing the random mating with

binary or integer parameters such as one-point crossover, two-point crossover, or half uniform

crossover (HUX). However, these crossover operations cannot be used for numeric parameters.

For those type of parameters, operators such as simulated binary crossover (SBX) can be imple-

mented to perform the same task. The SBX operator is designed with respect to the properties

of a single point crossover by ensuring the average design parameter value holds in the process,

and the spread factor (�), which controls the spread of likely offspring, is more likely equal to 1

(Deb and Kumar, 1995).
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>>:

(2µ)
1

⌘c+1 for µ  0.5

( 1
2(1�µ))

1
⌘c+1 for µ > 0.5

(4.1)

p01 = 0.5[(1 + �)p1 + (1� �)p2]

p02 = 0.5[(1� �)p1 + (1 + �)p2]
(4.2)

Where,

� is the spread factor,

µ is a random number between 0 and 1,

⌘
c

is the distribution index,

p0 is offspring value,

p is parent value.

In Equation 4.1, µ is a number randomly drawn from the set of [0, 1) and the ⌘
c

is the distribu-

tion index which determines how close the offsprings are to their parents. p0 and p are the val-

ues for offspring and parents respectively. The mathematical formation of Equation 4.1 implies

a high possibility of achieving a � that is close or equal to 1. The � calculated in Equation 4.1

is used in Equation 4.2 for calculating the values of design parameters in offspring. Equation

4.3 combines the two equations in Equation 4.2. It implies that the average design parameters

values are the same for both parents and offspring.

p01 + p02
2

=
p1 + p2

2
(4.3)

4.4.4 Mutation operator

The mutation operator is primarily used to maintain the diversity of design solutions. A bit-flip

algorithm is ordinarily used for parameters with integer data type. The algorithm simply re-

places the original value of a design parameter by selecting a random integer value within the

allowable range of this design parameter. For numeric design parameters, a polynomial muta-

tion operator with a user-defined index variable (⌘
m

) is often used to perturb a design solution

in a parent’s vicinity. The calculation consists of three steps.
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1. Generate a random number µ between 0 and 1.

2. Calculate a parameter � as follows:

�
q

=

8
>><

>>:

[2µ+ (1� 2µ)(1� �)⌘m+1]
1

⌘m+1 � 1 for µ  0.5,

1� [2(1� µ) + 2(µ� 0.5)(1� �)⌘m+1]
1

⌘m+1 for µ > 0.5.

(4.4)

Where,

µ is a random number between 0 and 1,

� is normalized differences,

⌘
m

is the distribution index for mutation.

In Equation 4.4, the ⌘
m

controls the distances of the mutated value with its parent. A

larger ⌘
m

shows a higher probability that the mutated value is closer to its parent. As

demonstrated in (Deb and Agrawal, 1999), a value between [20, 100] for ⌘
m

is sufficient

for most of the problems. The � can be calculated in Equation 4.5.

� = min[(p� p
l

), (p
u

� p)]/(p
u

� p
l

) (4.5)

Where,

p
u

is the upper bound of a parameter p,

p
l

are the upper and lower bounds of parameter p.

3. Calculate the mutated offspring as follow:

p0 = p+ �
q

(p
u

� p
l

) (4.6)

In GeneAS, the polynomial mutation operator (Equation 4.4 and 4.6) has been integrated into

the operator with a mutation clock scheme. The mutation clock scheme requires that the proba-

bility of a bit followed by a mutated bit should be determined by using an exponential probabil-

ity distribution (Deb and Deb, 2014).
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4.4.5 Regression models

Two candidate machine learning algorithms, linear regression and support vector machine, are

included in the framework.

Linear Regression

Linear regression (LR) is a commonly used method where energy performance is estimated

by building characteristics (Braun et al., 2014; Zhao and Magoulès, 2012). The Mathematical

representation of LR is shown in Equation 4.7. In this equation, y
i

is the output vector, and x

stands for the input vector. � and " denotes parameters estimated from the data. The selection

of the LR model is performed through a greedy search using Akaike-based criterion (AIC) as

shown in Equation 4.8 (Hall et al., 2009). In this equation, I represents the number of instances

considered in the regression model and k is the number of attributes.

y
i

= XT ✓ + ↵
i

(4.7)

Where,

y
i

is the output vector,

X is the design solution,

✓ is the slope vector,

↵ is the intercept vector.

AIC = (I � k) + 2k (4.8)

Where,

I is number of instances (design parameters),

k is the number of attributes (design options).

Support Vector Machine

Support vector machine (SVM) is one of the popular supervised machine learning algorithms

that is often used in the building field (Dong et al., 2005). In this study, LibSVM was used for
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SVM training and predicting (Chang and Lin, 2011). The algorithm constructs a set of hyper-

planes in high dimensional space to separate training data into different classes with a func-

tional margin, which offers high generalization. Consider a set of training points, ((x1, z1), ..., (xi

, z
i

))

where x
i

2 Rn is a feature vector and z
i

2 R1 is the target output. Under the given parameters

C > 0 and " > 0 (Chang and Lin, 2011) , "� SV R can be formulated as:

min
!,b,⇠,⇠

⇤

1

2
!T! + C

lX

i+1

⇠
i

+ C
lX

i+1

⇠⇤
i

s.t. !T!(x
i

) + b� z
i

 "+ ⇠
i

,

z
i

� !T'(x
i

)� b  "+ ⇠⇤
i

,

⇠
i

⇠⇤
i

� 0, i = 1, ..., l.

(4.9)

Where,

! is the support vectors,

⇠
i

is the slack variables,

" is the soft margin.

The formation of equation 4.9 represents the Lagrange Multiplier. In this equation, ! denotes

the support vectors, which are the input vectors that lie within the margin’s boundary. ⇠
i

is a

slack variable that controls the sensitivity of the algorithm to outliers, and lastly " provides a

soft margin which alters hard constraints into ranges.

The SVM hyper-parameters were tuned with a set of pre-simulated data to ensure the algo-

rithm’s prediction performance. A polynomial kernel was used in this test. Different combi-

nations of C (0.0625, 1, 16) and degree in kernel function (3, 4, 5) were tested. The results in-

dicated no significant difference in prediction errors among these combinations. Therefore, the

default value C = 1 and d = 3 were used in this thesis.

4.4.6 Cross-validation

The selection of regression models is performed through a k-fold cross validation method ac-

cording to their prediction errors. The k is set to 10 according to the “caret” tool default settings

(Kuhn, 2008). In the model selection process, this method is performed on LR and SVM. The
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Figure 4.5: k-fold cross validation procedure

model with the smallest calculated prediction error is selected and used for prediction. The pro-

cess of this method is demonstrated in Figure 4.5.

• Rearrange the index of the instance in a random order and split these randomized data

into 10 equally sized partitions.

• Perform 10 iterations of the evaluations. At each iteration, the method leaves one parti-

tion out as the testing case and uses the rest of the data to train the regression model.

• Accumulate the calculated prediction errors as the accuracy metric for the regression

model with this dataset.

The prediction error is a function of the differences between the actual and the predicted output

values. It is typically used as an accuracy metric for evaluating the regression model’s gener-

alization property, which prevents the model from under-fitting and over-fitting issues. In this

study, normalized root mean square error (NRMSE) is used as the prediction error (Equation
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4.10).

RMSE =

sP
nt

t=1(ŷt � y)2

n
t

NRMSD =
RMSE

y
max

� y
min

(4.10)

Where,

ŷ
t

is the predicted value at time t,

y is the simulated value at time t,

n
t

is the number of training data,

y
max

is the maximum target value in the training data,

y
min

is the minimum target value in the training data.

In the regression model selection process, a 10-fold cross validation method is performed on

SVM and LR models with respect to each objective. The model with the smallest calculated

accuracy metric in one objective is selected and used for predicting this objective.

4.5 Algorithm performance validation
The validation process was conducted on a medium-size office building in Pittsburgh, PA. The

case study demonstrated that the proposed ammNSGA-II algorithm could achieve up to 60%

time savings and 25 times higher convergence performance. Details regarding this case study

can be found in Appendix C.
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Chapter 5

Building baseline energy model generation

5.1 Overview

This chapter introduces a system that can automatically generate baseline energy models ac-

cording to the ASHRAE standard 90.1 2010 performance rating method (PRM). Figure 5.1

depicts the role of this system in the optimization result analysis. Once the multi-objective op-

timization generates a Pareto Front curve, a baseline energy model is created through an enve-

lope, a lighting and an HVAC engine for comparison. Such comparison could inform the design

team and clients about the quality of the generated optimal design solutions. In order to auto-

mate this process, envelope, lighting and HVAC system generation engines are developed and

the methods are described in this chapter.

5.2 Automatic generation method

5.2.1 Envelope system engine

The building envelope engine takes care of all the construction requirements. Figure 5.2 shows

the workflow of this module. The engine first analyzes each building and fenestration surface

to identify their types (wall, roof or partition, etc.), surrounding environment and thermal prop-

erties. The processed data is prepared and stored in a data structure for the next step. Then, the
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Figure 5.1: Proposed building system design optimization framework: baseline generation

(Dashed line: processes that are not considered in this thesis.)
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Figure 5.2: Building envelope engine process diagram

engine checks the condition of the building to determine the necessity of activating the base-

line constructions generation process. If this is a new construction, the baseline envelopes will

be extracted from a construction database based on the climate zone that the building resides

in. The opaque envelopes are created using a layer-by-layer method. This method requires the

envelope engine to specify each material layer’s thermophysical and surface properties and as-

semble all layers in a design order (outside-to-inside). Baseline fenestration is created using a

simple window method. The simple window method in EnergyPlus uses U-factor, solar heat

gain coefficient (SHGC) and visible transmittance (Vt) as the 3 inputs to extrapolate a single

layer window’s optic and thermal properties. This object is typically used when specific prop-

erty levels are being targeted (LBNL, 2016). The assembled baseline constructions will then

replace the design constructions in the baseline energy model. However, if the project is an ex-

isting building, these steps will be skipped. Once the envelope check is completed, the envelope

engine will start a window to wall ratio (WWR) checking process. If the overall WWR is more
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than 40%, dimension adjustment on the windows are performed to reduce the window area.

Lastly, overhangs and fins are removed from the design model to eliminate shading impacts ac-

cording to the requirements of ASHRAE standard 90.1 2010 (ASHRAE, 2010).

5.2.2 Lighting system engine

The lighting engine replaces lighting power density (LPD) following either the building area

method or the space-by-space method defined in ASHRAE 90.1 Chapter 9. The values of LPD

are provided in the ASHRAE standard 90.1 Table 9.5.1 and Table 9.6.1. For the building area

method, the lighting engine can directly read the building type from user inputs, and map the

correct LPD value to the “Lights” objects in EnergyPlus. However, if the space-by-space method

is selected, the space function, following the common space types specified in the ASHRAE

standard 90.1 such as “Office”, has to be included in the thermal zone name. Exterior lighting

power and its controls are also accounted for in the baseline model. However, at the current de-

velopment stage, the exterior lighting systems are directly replicated from the design model to

the baseline models.

5.2.3 HVAC system engine

HVAC engine is the most complex module. It is due to the complicated mechanism of the base-

line HVAC system selection as well as their design specifications in ASHRAE standard 90.1

2010. For instance, in the ASHRAE standard 90.1 2010, there are 45 out of 64 clauses and 19

out of 27 exceptions that describe the baseline HVAC system. According to these rules, 18 dis-

tinct HVAC system types and a total of 416 different HVAC configurations can be produced.

Furthermore, excluding the scenario of having multiple baseline HVAC systems in a building,

1744 logic process branches are required to be implemented in this automation process to de-

fine HVAC systems and their performance data correctly. Figure 5.3 shows the selection logic

for commercial buildings. In this Figure, the major decision factors for selecting a baseline

HVAC system are floor numbers, floor area and sources of heating and cooling energy. Besides

system selection, system components in a baseline system can also be varied based on different
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Figure 5.3: Baseline HVAC system type selection logic for commercial buildings
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Table 5.1: Baseline HVAC system components variations

Component Decision Source Standard 90.1 2010 Reference

Economizer Climate Zones Table G3.1.2.6A; Table G3.1.2.6B

Preheat Coils Design Case G3.1.2.4

Supply Fan Design Case G3.1.2.9.1; G3.1.2.10; G3.1.2.10.1

Exhaust fan Design Case G3.1.2.9.1; G3.1.2.10; G3.1.2.10.1

Boiler Sizing Result G3.1.3.2 (for System 1,5,7)

Chiller Sizing Result G3.1.3.7 (for System 7 and 8)

Hot Water Pumps Floor Area G3.1.3.5

Chilled Water Pumps Sizing Result G3.1.3.10

sources. Table 5.1 indicates the sources of the HVAC system components variations’ sources

and their reference in the ASHRAE standard 90.1 2010 version.

Besides the selection of HVAC systems, the data under each baseline HVAC is stored in a des-

ignated XML format described in section D.3. Based on the XML schema, the HVAC data is

divided into supply, demand, and plant loops and recorded in the “reference” attribute inside the

“object” element as described in D.3. The HVAC engine firstly examines and groups the condi-

tioned thermal zones. Then, the demand loops are generated, which are installed at the thermal

zone level, inside each group of thermal zones. A supply loop is then constructed and linked to

every demand loop in a thermal zone group. The supply loop is typically an air handling unit

or a unitary system, which usually connects the demand-side HVAC components via both the

“AirLoopHVAC:ZoneSplitter” and the “AirLoopHVAC:ZoneMixer” objects in EnergyPlus. A

plant loop may need to be installed in some of the baseline HVAC systems such as System Type

7 (Figure 5.4). Once the HVAC engine detects a plant loop in the database, it creates not only

the plant loop equipment but also the method for connecting the supply loops. “BranchList”

is the object for connecting supply and plant-side systems. Figure 5.4 shows the system type 7

template as an example of such creation logic. In Figure 5.4, the text section specifies the sys-

tem features followed by a list of fixed specifications identified for this baseline HVAC system.
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Figure 5.4: Baseline HVAC System Type 7 creation logic
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The three processes in Figure 5.4 are the plant, supply and demand loops creation processes. It

should be noted that in System Type 7, the demand loops also connect to the plant loop because

the heating source of reheat coils in the air terminals are from boilers.
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Chapter 6

Optimization on a new construction

project: Center for Sustainable

Landscapes (CSL)

6.1 Project overview

The proposed platform utilizes the ammNSGA-II optimization algorithm that builds on a cost

database, strategically linked to EnergyPlus with an LCC module and a building system database,

is tested with case studies. This chapter focuses on a new construction project, the Center for

Sustainable Landscapes (CSL) at Phipps Conservatory, a net-zero energy building that received

the LEED Platinum and Living Building Challenge designation. The goal of this case study is

to explore the potential combined capital and operational costs reduction by performing opti-

mization on an integrated building system. The design parameters include exterior wall, roof,

window, window to wall ratio (WWR), light shelf, lights, daylight control, HVAC and building

integrative photovoltaic system (BiPV).
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6.2 Building description

The CSL is a two-floor office building located at 1 Schenley Dr., Pittsburgh, PA, U.S. It is owned

by the Phipps Conservatory and Botanical Gardens, which is a non-profit organization in Pitts-

burgh. The designed building embraced high-insulation envelopes, lighting and HVAC systems

to minimize the site energy consumption effectively. Also, with the help of onsite photovoltaic

solar panels and wind turbines, it successfully achieved zero energy consumption. Figure 6.1

depicts the energy flow diagrams between the building and its renewable energy systems. Its

main HVAC system, including the tri-coil unit, the under floor air distribution system and the

hot water radiant system, consumes the energy generated from geothermal wells (A), photo-

voltaic array (B) and wind turbines (E). Besides the geothermal wells, the other two renewable

systems connect to a power control center (red box). If the CSL electricity demand is lower

than generated, the power control center can supply the excess power to the main campus, lo-

cated next to the power control center.

6.3 The EnergyPlus model

A CSL energy model in EnergyPlus format is obtained from previous research conducted by

(Lam et al., 2014). The energy model contains open plan offices, classrooms, research space

and conference rooms. In total, there are 20 thermal zones that occupy around 2000 m2 of

gross floor area. The real building has been operating for more than four years. In 2015, the

measured total energy consumption was around 70kWh/m2. The CSL energy model was cal-

ibrated against monthly energy consumption. The procedure of the energy model calibration

is detailed in (Zhao, 2015). The model was first created in DesignBuilder version 4.7 and then

exported into an EnergyPlus data format (.idf). Figure 6.2 shows the rendered geometry in the

DesignBuilder interface.
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Figure 6.1: The net zero energy diagram of CSL (courtesy of the Design Alliance.)

6.4 Design parameters for CSL

Table 6.1 lists the design options under each design parameter and the thermal properties and

costs for each option. This list of design parameters is formed based on the recommendations

from ASHRAE advanced energy design guides (AEDG) (ASHRAE, 2016a) in ASHRAE cli-

mate zone 5 (ASHRAE, 2010) and the real building design. The maintenance and replacement

cost information is dynamically extract from Table A.1 in Appendix A based on the selected

design options. For example, a concrete wall will extract the concrete patch as the maintenance

task. In addition, a BiPV system, which is not in the real building, is proposed as an integra-

tive renewable energy source to the case study. In total, there are nine categories of design
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Figure 6.2: Rendered CSL building geometry in DesignBuilder v4.7

parameters with 56 design options. The properties for walls and roofs are extracted from the

(ASHRAE, 2009). The properties of window systems are collected from the default dataset

in EnergyPlus (UIUC and LBNL, 2016), manufacturers specifications (Euroglas, 2016) and

DesignBuilder dataset (DesignBuilder, 2016). Lighting fixtures and BiPV system are also ex-

tracted from manufacturers specifications (GE, 2016; SolarWorld, 2016). In addition, the light

shelf system design parameters are recommended in (Meresi, 2016). Lastly, the HVAC system

selected in this study contains a whole package of the system, including both primary and sec-

ondary systems. The efficiencies of the HVAC system are based on calibrated operation data or

manufacturers’ specifications. If the data is not available, then the minimum efficiency data in

ASHRAE 90.1 2010 performance rating method is used (ASHRAE, 2010).

It should be noted that the cost information is extracted from “RSMeans construction cost es-

timating data book” in 2015 and adjusted for the differences in consumer price index (CPI) to

2016 dollar values (RSMeans, 2015). The cost data only includes the material cost. This is be-

cause the labor, equipment and overhead costs for some of the advanced building systems (e.g,

VRF system) are currently not available in the “RSMeans construction cost estimating data
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Table 6.1: Design Options for each Design Parameters (Part-1)

Design Parameters Design Options Property Unit Cost
Wallsa Wall R-0.3 U-3.11 $189.65/m2

6 options Wall R-1.5 U-0.673 $222.65/m2

Wall R-2.1 U-0.467 $242.89/m2

Wall R-2.6 U-0.418 $265.34/m2

Wall R-3.8 U-0.266 $302.44/m2

Wall R-6.5 U-0.153 $448.73/m2

Windowsa Double Clear (DC) U-3.13, SHGC-0.73, Vt-0.8 $242/m2

6 options Double Tinted (DT) U-2.58, SHGC-0.37, Vt-0.53 $290/m2

Double Low-e Clear (DLC) U-1.40, SHGC-0.41, Vt-0.61 $356/m2

Heat Reflective Clear (HRC) U-1.40, SHGC-0.25, Vt-0.45 $409/m2

Triple Glazing (TG) U-1.31, SHGC-0.57, Vt-0.47 $480/m2

Quadruple (Q) U-0.73, SHGC-0.46, Vt-0.62 $862/m2

WWRb 40%, 50%, 60%,
For each orientation -6 options 70%, 80%, 90%

Light shelf Shelf height 10% to 30% -
numeric Inside shelf projection 0.5m to 1.5m -

Outside shelf projection 0.5m to 1.5m -
Roof Metal Roof R-2.2 U-0.452 $46.52/m2

4 options Metal Roof R-3.1 U-0.323 $58.68/m2

Metal Roof R-4.9 U-0.227 $71.18/m2

Green Roof R-5.3 U-0.189 $142/m2

Lights T8 LPDa � 10.2W/m2 $150/m2

3 options T5 LPD � 7.5W/m2 $220/m2

LED LPD � 4.5W/m2 $390/m2

Light control Yes
$268/Each2 options No

BiPVb Yes
Each orientation $4.5/W2 options No

HVACc VAV with Chillers and Boilers $1, 233/kW
3 options DOAS+VRF System $1, 541/kW

VAV+GeoHP System $1, 891/kW

a: R: overall thermal resistance (m2K/W ), U: overall coefficient of thermal transmission (W/m2K), SHGC: solar

heat gain coefficient (dimensionless), Vt: visible transmittance, LPD: lighting power density (W/m2)
b: WWR: window to wall ratio, BiPV: building integrated photovoltaic system,
c: HVAC: heating ventilation, air conditioning system, VAV: variable air volume system, DOAS: dedicated outdoor air

system, VRF: variable refrigerant flow system, GeoHP: geothermal heat pump.
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Figure 6.3: HVAC air side zone layout. Left: first floor, Right: second floor

book”. For HVAC systems, only the components that are available in EnergyPlus (e.g, chiller,

boiler, VRF air conditioner, etc.) are included in the cost estimation. Most of the design pa-

rameters are integer type except for the three parameters under the light shelf system. In the

“Design Options” column, a design with an underline indicates that it is installed on the tar-

get building. It shows that CSL is currently equipped with most of the advanced systems in the

available set of design options. Such “deluxe” design can effectively lower the annual energy

consumption. Not including the light shelf system, the total number of system combinations

can reach up to 54 million.

6.5 Model assumptions

In addition to the ASHRAE 90.1 baseline model, the calibrated EnergyPlus model is another

base case model for comparison in this case study. All the calibrated operation data, e.g, the

occupant and lighting schedules, remain identical in the optimization. The HVAC system in-

stalled in the current building consists of two air handling units. One controls the first floor and

the other controls the second floor (Figure 6.3). This HVAC air side zone layout, including the

DOAS and VAV, is also unchanged in the study.
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Table 6.2: Life Cycle Cost Model Parameters
Field Input
Discounting Convention End of Year
Inflation Approach Constant Dollar
Real Discount Rate 0.03 (Rushing et al., 2016)
Base Date 2016 January
Service Date 2018 January
Study Length 25 Years
Price Escalation NIST Handbook 135 Table Ca-1, Census Region 1
Electricity Tariff Duquesne Light 2016 Rate GS (Duquesne Light Co., 2016)
Natural Gas Tariff Equitable Gas 2016 Rate GSS (People Natural Gas, 2016)

6.6 Life cycle cost model parameters for CSL

Apart from the energy model assumptions, there is a life cycle cost model (LCC) and a detail

utility tariff model built in the EnergyPlus. The LCC is constructed using the parameters pub-

lished in the “NIST Handbook 135” (Rushing et al., 2016). Table 6.2 lists the important LCC

parameters defined in this study. It should be noted that the study length is set to 25 years. This

is because most of the systems included in this study can last for a minimum of 25 years. In ad-

dition to the LCC model, utility tariff models that represent published local utility tariffs (Table

6.2) are also included in the economic module of EnergyPlus.

The optimization is conducted on a desktop with a configuration of i7 quad-core 3.5 GHz CPU

and 16 GB RAM. A maximum thread pool mechanism is used so that the optimization can uti-

lize all available computer powers to evaluate the fitness functions of design solutions concur-

rently. Using EnergyPlus for energy simulation takes about 4 minutes. Therefore, a full enu-

meration of the parameter space, which consist of more than 50 million possible design com-

binations, using a one-at-a-time strategy would require 200 million minutes to complete. This

is equivalent to 400 years. With the concurrent strategy and the advanced ammNSGA-II algo-

rithm, the full optimization is completed in 4 hours.
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6.7 Results analysis on CSL case study

6.7.1 Overview

The same optimization is repeated five times with different initial starting design solutions.

This strategy ensures the optimization results can cover a broad range of design combinations

in the solution space. Figure 6.4 shows the design solutions, whose energy and cost perfor-

mances are evaluated by EnergyPlus in the five optimizations, are color-coded by the index

of generations (iterations). The red color dots indicate design solutions that are generated in

the initial set of the optimizations, and the purple color dots are generated close to the end of

the optimizations. It can be observed that through generations, the design solutions move to-

wards the bottom left corner of the plot. This pattern shows that the optimization algorithm is

effectively searching for all the combinations of the building system to find design solutions

that can minimize both operation and capital costs. Furthermore, the total operation costs for

these generated design solutions is reduced from $530,000 to $44,000 in a 25-year term. Along

with the reduction in operation costs, the capital cost increases from $600,000 to $2,000,000.

Among the generated design solutions, many of them show that the optimization of an inte-

grated building system design can help clients make “smart” decisions. These decisions save

not only operation costs but also the capital cost. To strengthen this argument, two examples are

selected from the generated design solution pool (Table 6.3). These two solutions both have a

VAV as HVAC system. However, the overall envelope insulation level in design solution 48 is

higher than design solution 2. Also, design solution 48 uses T5 lighting fixtures with daylight

control system to reduce the interior load further. Although it seems that design solution 48 re-

quires a higher capital cost on these additional investments, the results shows a different story.

By investing extra capital on better insulations and higher efficiency lighting system, design so-

lution 48 saves more capital cost on its HVAC system by purchasing a smaller size of the VAV

system.

One may argue that the BiPV system in design solution 2 is a high-cost investment system
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Figure 6.4: Generated design solutions for CSL

Table 6.3: Comparison between two design solutions that are under $1 million budget
Solution Index Insulation Level WWR HVAC Lights BiPV LightShelf

2 Wall: R-0.3 South: 40 VAV T8 South: No Inside:
Operation: $528k Roof: R-2.2 North: 60 Daylit Sensor: North: No 0.53m

Capital: $813k Window: East: 70 Off East: No Outside:
DC West: 40 West: Yes N/A

48 Wall: R-2.1 South: 40 VAV T5 South: No Inside:
Operation: $385k Roof: R-4.9 North: 50 Daylit Sensor: North: No N/A

Capital: $659k Window: East: 90 On East: No Outside:
DLC West: 50 West: No 1.3m

which may be the reason for its higher capital cost. However, the West facade has a gross wall

area of 160.50 m2, which is four times smaller than the south and north gross wall area. With

40% WWR, the total estimated cost of the BiPV system for design solution 2 is $118,000.

Therefore, the design solution 2 has a higher capital cost even without the BiPV system com-

pared to the design solution 48. Also, removing BiPV system in the design solution 2 will en-

large the differences in the operation costs.
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6.7.2 Compared with the ASHRAE baseline model

In Figure 6.4, a black dashed line ($287,000) and the red dashed line ($823,000) form the cost

performance of the baseline model. The baseline model is generated according to the ASHRAE

standard 90.1 2010 Appendix G performance rating method. Without a renewable energy sys-

tem, the maximum operation cost saving compared to the baseline model reaches around 40%,

which is close to the estimation (30%-50% saving) given by the Building Technology Office

(Building Technologies Office, 2014). Based on the operation costs of baseline model (black

dashed line), Figure 6.4 can be separated into two sections.

1. Undesirable solutions: the design solutions that have higher operation costs than baseline

model.

2. Desirable solutions: the design solutions that have lower operation costs than baseline

model.

In addition, based on the capital cost of the baseline model (red dashed line), these desirable

design solutions can be further divided into two sub-types.

1. Desirable premium solutions: the desirable solutions that require higher capital cost than

baseline model.

2. Desirable economy solutions: the desirable solutions that require less capital cost than

baseline model.

Undesirable solutions are probably the least appealing solutions to clients and design teams

since they are expensive and inefficient. On the other hand, Desirable solutions are perhaps the

attractive solutions to clients and design teams. Further divided the desirable solutions, desir-

able economy solutions present an integrated building system that outperforms the baseline

design in both capital and operation costs. Design solution 1201 represents the highest capi-

tal cost saving (23% or $196,000), and it still manages to achieve 4% operation costs saving

($12,000). This design solution upgrades roof insulation (R-5.3), window (Double Tinted),

lighting (T5) and HVAC system (Table 6.4). A higher window to wall ratio is also observed
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Table 6.4: Design solution 1201, 1221 and 2407 compare with ASHRAE 90.1 baseline design
Solution Index Insulation Level WWR HVAC Lights BiPV LightShelf

Baseline Wall: R-2.6 South: 40 System Type 6 T8 (12W/m2) South: No Inside:
Operation: $287k Roof: R-3.3 North: 40 Daylit Sensor: North: No N/A

Capital: $823k Window: East: 40 Off East: No Outside:
U:1.9, SHGC: 0.4 West: 40 West: No N/A

1201 Wall: R-2.1 South: 40 DOASVRF T5 South: No Inside:
Operation: $256k Roof: R-5.3 North: 50 Daylit Sensor: North: No N/A

Capital: $678k Window: East: 50 Off East: No Outside:
DT West: 60 West: No 1.5m

1221 Wall: R-2.1 South: 40 DOASVRF LED South: No Inside:
Operation: $217k Roof: R-4.9 North: 50 Daylit Sensor: North: No 0.5m

Capital: $780k Window: East: 60 On East: No Outside:
DLC West: 60 West: Yes 1.06m

2407 Wall: R-6.5 South: 80 GEOHP LED South: Yes Inside:
Operation: $44.3k Roof: R-5.3 North: 40 Daylit Sensor: North: Yes 0.8m
Capital: $1991k Window: East: 70 On East: Yes Outside:

Quadruple West: 40 West: Yes N/A

in design solution 1201, which further increases its capital cost of the envelope system. Never-

theless, it seems the upgrades can effectively reduce the size of the HVAC system, thus achiev-

ing an instant capital cost saving. On the other hand, design solution 1221 further upgrades the

lighting (LED) and window (Double Low-E Clear) as well as adds a BiPV system on the West

facade (Table 6.4). The capital cost is increased by $100k. However, this design solution maxi-

mizes operation costs saving by 23% ($70,000) with less on capital cost (5% or $45,000) com-

pare to the ASHRAE baseline design.

Unlike desirable economy solutions, desirable premium solutions have higher capital cost but

lower operation costs. The trade-offs between premium cost and operation cost saving could

be an interesting factor that attracts the design team to investigate these design solutions. Also,

if the target of the project is to achieve net-zero building, desirable premium solutions are cer-

tainly the only design solutions that the design team should be considered. The highest opera-

tion costs saving over the ASHRAE baseline design reaches 84% ($243,000) in design solution

2407. This design solution has configured with all the best design options under each design

parameter (Table 6.4). As trade-offs, the capital cost for this design solution is increased by
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Figure 6.5: Comparing the generated design solutions with the real building design

142% ($1,168,000). The expensive capital cost is mainly due to the advanced BiPV systems.

However, it should be noted that the window to wall ratio is largely increased. It is probably be-

cause the high insulation level of the quadruple glazing allows less energy loss from openings.

In addition, it also shows the algorithm is optimizing the cost trade-off between high investment

and operation cost savings of BiPV system.

6.7.3 Compared with the real building design

Figure 6.5 shows the comparison between the real design and the generated design solutions.

The real design is equipped with many high efficiency systems, which maximizes the energy

saving of the building. This can be observed as the operation costs (black dashed line) is ahead

of most the generated design solutions. There are still almost a hundred of design solutions that

have lower operation costs than that of the real design. All these design solutions have BiPV

systems to reduce the consumption of net site energy. On the contrary, the real design surpasses

the energy and cost performance of all the design solutions that have no BiPV system. Further-

more, capital cost (red dashed line) of the real design out-performs some of these generated

78



Figure 6.6: Design options for desirable economy solutions: Wall, Roof, Window and BiPV

design solutions, which proves that integrating advanced building systems does not equate to

the high price premium.

Among all the generated design solutions, the desirable economy solutions are the most in-

teresting design solutions that clients and design teams could consider. This is because these

design solutions save not only long-term operation costs but also capital cost compared to the

real design. Figure 6.6 shows the envelope and BiPV design choices of the desirable economy

solutions. Figure 6.6a illustrutes that most of the designs select lower wall insulations (R-2.1 or

R-2.6). Similarly, for windows, triple glazing or quadruple glazing are not selected for the de-

sirable economy solutions. On the contrary, all the desirable economy solutions contains BiPV

systems. This implies that the algorithm trades the capital costs of wall and window systems for

advanced BiPV systems. Furthermore, a higher roof insulation may be economically preferred

since most of the designs choose R-4.9 or R-5.3. Figure 6.7 lists the rest of the design choices

including the daylight control, lighting fixture, HVAC and light shelves. It can be observed that

besides light shelves, all the other systems prefer high efficiency options among the desirable
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Figure 6.7: Design options for desirable economy solutions: Daylighting Sensor, Lighting fix-

ture, HVAC and Light Shelves

economy solutions. Most of the design solutions choose to have daylight control with LED

lighting fixtures and geothermal heat pump systems. Besides viewing the design choices for

Table 6.5: Comparison between design solution 1245 with real design
Solution Index Insulation Level WWR HVAC Lights BiPV LightShelf

1245 Wall: R-3.8 South: 50 GEOHP LED South: No Inside:
Operation: $150k Roof: R-4.4 North: 40 Daylit Sensor: North: No N/A
Capital: $1016k Window: East: 40 On East: No Outside:

DT West: 60 West: Yes 1m
Real Wall: R-6.5 South: 50 GEOHP LED South: No Inside:

Operation: $155k Roof: R-5.3 North: 30 Daylit Sensor: North: No N/A
Capital: $1121k Window: East: 40 On East: No Outside:

TG West: 40 West: No 1m

each design parameter, the comparison can also be made by comparing the integrated design

solutions. Table 6.5 lists the detail building systems selected from one of the desirable economy

solutions and the real building design. The major differences come from the building envelope,

where design solution 1245 has a lower insulation level on the wall, roof, and windows. Also,
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design solution 1245 has a slightly higher overall window to wall ratio than the real design. The

lower insulation level does pose large impacts on the building peak heating load (from 66kW

to 86kW). However, at the same time, this design solution reduces the peak cooling load from

157kW to 133kW. The reduction in cooling load is mainly due to the double tinted windows,

whose SHGC (0.37) is nearly 40% lower than windows in the real design (0.6). Therefore, the

lower insulation level has negligible impacts on the capital cost of the HVAC system. In this

case, it creates more room in the budget for the BiPV systems, which results in lower capital

and operation costs. However, the double tinted window may not be a preferred choice due to

its low visible transmittance. Such low visible transmittance could cause an unpleasant view for

the tenants. This factor can be applied as a constraint to narrow down the available selections of

design solutions. However, constraint optimization is not within the scope of this thesis.

6.7.4 Pareto front curve

Figure 6.8 shows the optimal design solutions among the results derived from the five repli-

cated optimizations. The Pareto front curve plots the optimal design solutions in the solution

space. Among these solutions, the total operation costs are quickly reduced from $270,000 to

$44,300. Adversely, the capital cost climb rapidly from $627,000 to $1,991,000. The absolute

improvement plot consists of absolute changes in operation costs, capital cost, and life cycle

cost (LCC) compared to those of ASHRAE baseline design. Similarly, the percentage improve-

ment curves show the improvement of both capital and operation costs over the ASHRAE base-

line design. Table E.1, E.2, E.3 and E.4 in the Appendix E show the details about these design

solutions on the Pareto front curve.

To understand the trade-offs in Figure 6.8, the very first observation should start at the right

side of the plots. The design solution 30 shows cost saving for both capital and operation costs

and its absolute saving from capital cost is larger than that from operation costs. However, this

is not the optimal LCC saving. The design solution 29 in Figure 6.8 indicates the highest LCC

saving among all the optimal solutions (red dashed line). It is not the cheapest option, and it is

also not the design solution that saves the most operation costs. However, it optimizes the trade-
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Figure 6.8: Pareto front curve, percentage and absolute improvement curves
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offs between the capital and operation costs. Further to the left, the operation cost saving is in-

creasing at a constant 3% rate (percentage improvement curves) while the capital cost saving is

decreasing at around 3.3% (percentage improvement curves). At design solution 25, the capi-

tal cost saving is diminished, which means that the rest design solutions require higher capital

cost than the ASHRAE baseline design. However, as the optimization algorithm continuously

increases the price premium to trade for lower operation costs, it finally reaches a break-even

point at the design solution 18 (black dashed line), where the saving from operation costs is

offset by the increased price premium. Beyond this point, all the remaining optimal design so-

lutions (1-17) show a negative LCC. From the investment point of view, the analysis should end

at design solution 18. This is because a further stretch on the budget to trade smaller saving in

25-year term is not an appealing option. However, there are many reasons that clients may con-

sider to stretch their budget to reach a certain level of operation cost saving such as meeting the

regulation constraints or fulfilling requirements for certifications. These design solutions also

demonstrate the cost to bring the design to net-zero for a middle-size office building. Never-

theless, by providing the Pareto front curve with the improvement curves, clients or the design

team can easily focus on a certain optimal area and find a best design solution that satisfies all

the building stakeholders.

6.7.5 BiPV system in optimal design solutions

Figure 6.9 presents the same Pareto front curve with the BiPV system indicator. A red dashed

line indicates the capital cost of the ASHRAE baseline design and the black dashed line shows

the operation costs of the ASHRAE baseline design. The first observation is that only the de-

sign solutions with the BiPV systems can achieve operation costs of $150,000, which is close

to 50% of the baseline design. However, the BiPV systems are not a cheap design option. For

instance, Table 6.6 indicates a detail system comparison between design solution 26 and design

solution 27 in Figure 6.9. Both design solutions use the medium to high insulation systems with

close to 40% overall WWR. Also, both design solutions have LED lighting fixtures with day-

light control and DOAS + VRF hybrid HVAC system. Design solution 27 has a 1.5 meter out-
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Figure 6.9: Compare optimal solutions with baseline in BiPV perspctive

side light shelf on its south facade. Similarly, design solution 26 has a 0.5m inside light shelf

and a 0.5m outside light shelf. The major difference is the BiPV systems on the West facade in

design solution 26, which increases the capital cost by $50,000 (7%). In return, there is only

around $10,000 (4%) operation cost saving.

However, comparing design solution 26 with the energy and cost performance of ASHRAE

baseline design, it not only lowers the capital cost by $100,000 but also achieves less operation

costs ($61,000) in 25-year term. This proves that with an optimized integrated building sys-

tem, the high investment of BiPV system can be justified. Also, the design solution 18, which

is highlighted in Figure 6.9, demonstrates that it is impossible to achieve more than 50% opera-

tion costs saving without the BiPV systems.

6.7.6 Light shelf in optimal design solution

A light shelf system is installed in the real building. Therefore, an investigation on the energy

impact of the light shelf system is included in the optimizations. Figure 6.10 shows the distri-

bution of light shelf system in the Pareto front curve. Light shelves can be viewed from two

different perspectives, the outside shelf, and the inside shelf. The outside shelf is acting as a

shading device and daylight reflector at the same time. The inside shelf is used for reflecting

the daylight to the indoor ceiling as well as the thermal mass in the room (UIUC and LBNL,
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Table 6.6: Comparison between design solution 27 and design solution 26 in Figure 6.9 with

ASHRAE baseline design
Solution Index Insulation Level WWR HVAC Lights BiPV LightShelf

Baseline Wall: R-2.6 South: 40 System Type 6 T8 (12W/m2) South: No Inside:
Operation: $287k Roof: R-3.3 North: 40 Daylit Sensor: North: No N/A

Capital: $823k Window: East: 40 Off East: No Outside:
U:1.9, SHGC: 0.4 West: 40 West: No N/A

27 Wall: R-2.1 South: 50 DOASVRF LED South: No Inside:
Operation: $234k Roof: R-4.9 North: 40 Daylit Sensor: North: No N/A

Capital: $679k Window: East: 50 On East: No Outside:
TG West: 40 West: No 1.5m

26 Wall: R-2.1 South: 40 DOASVRF LED South: No Inside:
Operation: $226k Roof: R-3.1 North: 40 Daylit Sensor: North: No 0.5m

Capital: $730k Window: East: 50 On East: No Outside:
DLC West: 40 West: Yes 0.5m

2016). In Figure 6.10, it seems that the impact of the light shelf system has a strong relation to

the window glazing selections. Since most of the optimal designs choose double Low-E clear

and triple glazing windows with high Vt, the analysis focuses on these two subsets of the entire

Pareto front curve. The double Low-E clear window has a lower SHGC (0.41) than that of the

triple glazing (0.57). It seems that the outside shelf is preferred than the inside shelf in design

solutions with a triple glazing window due to the extra shadings. This is because a longer piece

of the light shelf can provide more shades to the window. Therefore, it relieves the negative im-

pact from a high SHGC in the cooling season. Also, the majority of the design solutions prefer

investing in high insulation walls (R-2.6 to R-6.5) or roofs (R-4.9 to R-5.3) instead of having an

inside light shelf as an additional piece of thermal mass.

6.7.7 LCC model sensitivity analysis

The LCC model sensitivity analysis focuses on predicting the effect of changes in the interest

rate on net present value (NPV). This procedure is often used in investment decision making

related to the investment project evaluation under a condition of uncertainty (Marenjak and

Krstic, 2010). In this study, the interest rate is varied from 1% to 17% with a step of 2%. The

analysis is conducted within the Pareto front curve. The 30 design solutions (Table E.1, E.2,
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Figure 6.10: Compare optimal solutions in light shelf system perspective (divided by windows)

Figure 6.11: Net present value sensitivity analysis for design solution 28, 29 and 30
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E.3 and E.4) are sorted based on operation costs in an ascending order. In Appendix E, Table

E.5 lists the NPV for all the optimal design solutions (1-30) at different interest rates. In a de-

sign solution, a higher interest rate yields a lower NPV. Depends on the weight of operation

costs in the total life cycle costs, the drop rate of NPVs are different. For instance, the opera-

tion costs are small compared to the capital cost in design solution 1. Therefore, its NPV drops

2% between 1% to 17% interest rate. On the contrary, design solution 30 drops more than 26%

within the same range of interest rates. These results demonstrate that design solutions with

lower operation costs are more resistant to the market risk.

Furthermore, as the interest rate increases, some of the cases become logical choices. Figure

6.11 shows the analysis results for design solution 28, 29 and 30. It shows that the design so-

lution 30 is the least favored design solution among the three if the interest rate is lower than

3%. However, it is also an ideal design solution if the interest rate exceeds 11%. By navigat-

ing through the different interest rates, investors get a better understanding of the risk of each

design solution.

6.7.8 Algorithm performance comparison

The ammNSGA-II algorithm is designed to improve the speed and convergence performance in

solving building design problem. To demonstrate the algorithm’s performances, an additional

optimization is replicated and performed with the conventional NSGA-II algorithm. The Pareto

front curve comparison is shown in Figure 6.12. The red dots represents the design solutions

generated from ammNSGA-II, and the green dots shows the design solutions generated from

NSGA-II algorithm. A reference Pareto front curve is constructed according to the method de-

scribed in (Deb and Nain, 2007). This method extracts the best design solutions from a pool of

optimal design solutions generated by the five replicated studies. Visually, it can be observed

that the red dots are much closer to the reference Pareto front curve than the green dots. Using

the normalize convergence metric (Equation C.2) and spread metric (Equation C.3) for com-

parison, the ammNSGA-II outperforms the NSGA-II with almost 3 times smaller convergence

metric and 2 times smaller spread metric (Table 6.7). These mean the results generated from
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Figure 6.12: Compare the performance of ammNSGA-II and NSGA-II algorithms

Table 6.7: Algorithm performance comparison for CSL
Algorithm Speed (hr) Convergence (C̄(P (t))) Spread (�)
NSGA-II 5.3 0.07 0.95

ammNSGA-II 4 0.02 0.45

ammNSGA-II is closer, and its shape is more similar to the reference Pareto front curve. Also,

the faster convergence grants the ammNSGA-II the advantage of generating more duplicated

design solutions at the later stage. With a mechanism that skips evaluation for duplicate design

solutions, ammNSGA-II can save around 1.3 hours than NSGA-II out of 5 hours.

6.8 Summary of the CSL case study
• The real design of CSL is amazingly close to the global optimal. The only reason that

the design does not reside on the Pareto front curve is that the design did not consider

the BiPV system. Nevertheless, this case study demonstrates that through an integrated

design process, a building could achieve low operation costs with reasonable capital cost.

• Multiple cases (Design solution 2 vs. Design solution 48, Design solution 1243 vs. Real

design) support that an integrated building system optimization can find a design solu-

tion that offers more appealing long-term operation costs and capital cost than the current
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standard.

• Pareto front curve demonstrates the trade-offs between capital cost and operation costs,

which provides clients and the design team a visual approach to select the most desired

optimal solutions that satisfy the project goals.

• The high capital cost of the BiPV system can be justified not only by long-term operation

costs but also by the short-term capital cost via optimization (Design solution 1245 vs.

Real design, optimal design solution 26 vs. Baseline energy model), which fully explores

the energy and cost interactions among the various building systems.

• The LCC model sensitivity analysis demonstrated that depending on the interest rate

used in the study, the design solution that generates the lowest net present value could

be changed. In addition, the study shows buildings with higher operation costs are more

fragile to the fluctuation of the market.
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Chapter 7

Optimization on a retrofit project: One

Montgomery Plaza

7.1 Project overview
This chapter focuses on a retrofit project. The One Montgomery Plaza is a large-scale office

building owned by the Montgomery County. The building was built in 1973 and 2 years ago,

the Montgomery County decided to retrofit the building in order to reduce the building’s energy

consumption. Similar to the previous case stud, the proposed platform is utilized in this case

study to search for optimal renovation plan.

7.2 Building description
The One Montgomery Plaza is a multi-story office building located in Norristown, PA, U.S.

Norristown has a heating dominant climate with a nearly 3000 heating degree day (HDD18).

The building is a public property owned by the Montgomery County, PA. The facility houses

county offices as well as other tenants. The building was built in 1973 and currently, requires

a major renovation due to issues discovered in its envelope and HVAC systems. It consists of

two towers, one has eight stories on the north, and the other has ten stories on the south. The

total floor area of this building is 28,000 m2 with 18,000 m2 of conditioned building area. The
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Figure 7.1: Rendered image of One Montgomery Plaza in DesignBuilder v4.7

building energy model is built in DesignBuilder v4.7 (Figure 7.1).

The HVAC system in One Montgomery Plaza is a dual duct VAV system and is modeled ac-

cording to actual configurations in EnergyPlus. Figure 7.2 shows the chilled water plant loop

modeled according to the actual configurations with the two chillers supplying chilled water to

cooling coils located within the two AHUs of One Montgomery Plaza. The heating system is

provided via hot water supplied by two boilers connected in parallel as shown by the hot water

loop in Figure 7.3.

7.3 Energy model calibration

The One Montgomery Plaza energy model was calibrated at monthly resolution against the

measured data (Chong et al., 2015). The calibration was conducted for the period of Mar-16

to Dec-18 in 2013. The calibrated model had cooling, heating as well as lighting and equip-

ment energy within 5% of measured data and fan energy by 8%. Also, the coefficient of varia-

tion of the root mean square error (CVRMSE) and Normalized mean bias error (NMBE) rec-

ommended by (ASHRAE, 2002) were employed to demonstrated the robustness of the cal-

ibrated model in monthly resolution. The calibration results indicated that the NMBE was

2.46%, and CVRMSE was 13.6%, which were lower than 5% NMBE and 15% CVRMSE

thresholds set by the ASHRAE guideline 14 (ASHRAE, 2002). This case study has been in-
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Figure 7.2: Chilled water loop of One Montgomery Plaza modeled in DesignBuilder

Figure 7.3: Hot water loop of One Montgomery Plaza modeled in DesignBuilder

92



Table 7.1: Design Options for each Design Parameters in One Montgomery Plaza

Design Parameters Design Options Property Unit Cost
Insulation Ra-2.5 U-0.36a $0/m2

3 options R-3.3 U-0.25 $16.15/m2

R-5.3 U-0.18 $20.88/m2

Windows Double Clear (DC) U-3.13, SHGCa-0.73, Vta-0.8 $0/m2

6 options Double Tinted (DT) U-2.58, SHGC-0.37, Vt-0.53 $290/m2

Double Low-e Clear (DLC) U-1.40, SHGC-0.41, Vt-0.61 $356/m2

Heat Reflective Clear (HRC) U-1.40, SHGC-0.25, Vt-0.45 $409/m2

Triple Glazing (TG) U-1.31, SHGC-0.57, Vt-0.47 $480/m2

Quadruple (Q) U-0.78, SHGC-0.46, Vt-0.62 $862/m2

Lights Current LPDa � 10.2W/m2 $0/m2

3 options T5 LPD � 7.5W/m2 $220/m2

LED LPD � 4.5W/m2 $390/m2

Light Control Yes $268/Each
2 options No $0/Each

BiPVb Yes
South, East, West $4.5/W2 options No

Chiller Current COPc-5.5 $0
2 options New COP-8.4 Sizing
Boiler Current 80% AFUEc $0
2 options New 92% AFUE Sizing

a: R: overall thermal resistance (m2K/W ), U: overall coefficient of thermal transmission (W/m2K), SHGC: so-

lar heat gain coefficient (dimensionless), Vt: visible transmittance (dimensionless), LPD: lighting power density

(W/m2).
b: BiPV stands for building integrative photovoltaic system
c: COP: coefficient of performance (dimensionless), AFUE: annual fuel utilization efficiency (%)

tegrated into a proposed DesignAdvisor tool HVAC interface, and it can be found in the link:

http://128.2.109.83:8888/HVAC_CMU/DesignAdvisorDEMO.html.

7.4 Design parameters for the One Montgomery Plaza

Table 7.1 lists the design parameters for this study. The list is extracted from the top ten sen-

sitive parameters for office buildings in the Energy Asset Score Tool (Wang et al., 2015). The

underlined design options are the currently installed systems. Therefore, their costs are set to

$0 per unit. Similar to the previous case study, the unit cost includes only the material cost. The
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list contains a subset of the database, which includes most of the design options that have bet-

ter efficiencies in their categories than the current systems in the building. In this list, there are

seven design parameters. Two of them are passive system improvements including wall insu-

lation and windows. The calibrated wall insulation is R-2.5, and in the proposed retrofit plan,

R-3.3 and R-5.3 are considered. Similarly, high insulation windows are suggested for window

replacement strategy. Other than passive systems, active system improvement strategies such

as high efficient lighting systems, chillers, and boilers as well as daylight controls are also in-

cluded. Furthermore, renewable energy system, building integrated photovoltaic (BiPV), is in-

troduced into this retrofit project. The maintenance and operation cost information is dynam-

ically extracted from Table A.1 in Appendix A based on the selected design options. In total,

there are nearly 4000 possible combinations. Compared with the new construction, this project

has a significantly smaller set of possible design combinations (54 million vs. 4000). However,

the One Montgomery Plaza is a much larger office building with nearly 450 thermal zones. A

single simulation of this building could take up to an hour depending on the system selected. It

means that a full enumeration of the possible combinations requires approximately 170 days.

The optimization is conducted on a desktop with a configuration of i7 quad-core 3.5 GHz CPU

and 16 GB RAM. The total time required for performing one optimization is 50 hours.

7.5 Life cycle cost model parameters for One Montgomery Plaza

Table 7.2: Life Cycle Cost Model Parameters
Field Input
Discounting Convention End of Year
Inflation Approach Constant Dollar
Real Discount Rate 0.03
Base Date 2016 January
Service Date 2017 January
Study Length 25 Years
Price Escalation NIST Handbook 135 Table Ca-1, Census Region 1
Electricity Tariff PECO 2016 Electric Tariff (PECO Energy Co., 2016a)
Natural Gas Tariff PECO Gas Service 2016 (PECO Energy Co., 2016b)

Table 7.2 lists the life cycle cost (LCC) parameters defined for this retrofit project. Similarly,
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the LCC is constructed using the parameters published in the “NIST Handbook 135” (Rushing

et al., 2016). The local electric and gas tariff model are provided by PECO (PECO, 2016). It

should be noted that the study length is 25 years in this retrofit project. It is because most of the

systems included in this study can last for a minimum of 25 years.

7.6 Results analysis on the One Montgomery Plaza case study

7.6.1 Overview

Similarly, the same optimization for One Montgomery Plaza is repeated five times to prevent

premature convergence. Figure 7.4 shows all the generated design solutions for One Mont-

gomery Plaza. The “as is”solution represents no retrofit plan solution. The red dashed line

shows the capital cost of this “as is” solution ($0), and the black dashed line shows the present

value of operation costs in 25 years ($9, 481, 399) for this solution. The intersection of these

two dashed lines plots the location of the “as is” solution in the solution space. All the other de-

sign solutions are on the top left region of this design solution. It indicates that the comparison

in retrofit project is different from that of new constructions in two aspects.

• Comparison metric: Both new construction and retrofit projects should be compared

with a standard-compliance design. Also, the retrofit project should compare with the

current condition of the building.

• Capital investment: The capital cost of the new construction can be reduced from a

standard-compliance design through the integrated building system design optimization;

however, a retrofit design cannot have lower capital cost than the “as is” option.

Therefore, the optimization in this study would focus on helping design team find productive

investments which can maximize the long-term saving with minimal capital investment. Table

7.4 shows the comparison between two generated design solutions. It can be observed that both

solutions choose to upgrade the boilers and chillers. Besides boiler and chiller, design solution

680 also increases the thermal resistance of the building envelope. This additional upgrade re-

duces not only the operation costs by $0.2 million in 25 years, but also reduces the capital cost
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Figure 7.4: Generated design solutions for One Montgomery Plaza

Table 7.3: Comparison between design solution 80 with design solution 680
Solution Index Insulation Level Window Lights Heat Cool PV

80 Wall: R-2.5 DC T8 New New South:No
Operation: $8.4M Daylit Sensor: East: No
Capital: $0.44M On West: No

680 Wall: R-5.3 DC T8 New New South:No
Operation: $8.21M Daylit Sensor: East: No

Capital: $0.41M On West: No

by $0.03 million. This is mainly due to the capital cost trade-offs between load-reduction mea-

sures (insulation) and HVAC systems.

7.6.2 Compare to the ASHRAE baseline model

The generation of an ASHRAE baseline design for a retrofit project is almost the same as that

of a new construction. The only difference is that the baseline design should use the existing

envelopes, including wall, roof, and windows, etc., which could vary depending on the age

of the building. Therefore, the capital cost for these systems is $0.0. The lighting system in

One Montgomery Plaza (11W/m2) has a similar power density value as the ASHRAE 2010

baseline design requirement (12W/m2). Therefore, it is not necessary to replace the lighting
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Figure 7.5: One Montgomery Plaza generated design solution compare with ASHRAE baseline

design

system as well. In addition, the baseline design should not include any daylight control and

renewable energy systems. Hence, the only change in capital cost is the HVAC system. For a

fair comparison, the capital cost for the HVAC system is assumed to be equal to the material

costs of chillers and boilers. The results from baseline design indicate that the cooling load is

around 430tons and the heating load is 1700kW . Therefore, the total chiller cost is estimated

by using three 145tons reciprocating chillers, and the total boiler cost is calculated by using a

1, 788, 000kW gas-fired hot water boiler. It should be noted that the efficiency of a hot water

boiler for ASHRAE baseline design is 82%, which is much lower than the design option listed

in Table 7.1. Similarly, the coefficient of performance of the chiller is 6.1 in the baseline design

instead of 8.4. The cost has been adjusted to reflect the standard efficiency equipment. For the

boiler, the adjustment is multiplying the current price by 0.7. This number is derived from com-

paring the price of a condensing boiler with a regular boiler (HomeAdvisor, 2017). The same

correction applied to the chiller as well. Therefore, the total chiller cost is $214,500, and the

total boiler cost is around $115,500.
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Figure 7.5 indicates the comparison between the generated design solutions with ASHRAE

baseline design model. The comparison divides the generated design solutions into two types.

1. Undesirable solutions: design solutions that have higher operation costs than the baseline

model.

2. Desirable solution: design solutions that have lower operation costs than the baseline

model.

Furthermore, the desirable solutions can be divided into two types.

1. Desirable premium solutions: desirable solutions that higher capital cost than the baseline

model.

2. Desirable economy solution: desirable solutions that have lower capital cost than the

baseline model.

The undesirable solutions are the least appealing design solutions because their cost perfor-

mance is worse than the baseline design. Desirable economy solutions could be the most pop-

ular solutions because they have lower capital and operation costs. On the other hand, desir-

able premium solutions may be attractive to the design team as well even though they require

more capital cost than the ASHRAE baseline design. Table 7.4 compares two design solutions

with the ASHRAE baseline design. The design solution 2406 is one of the desirable economy

solutions. This design solution chooses to increase the wall insulation level and upgrade the

lighting system instead of replacing chillers. The results show a $0.17M operation costs sav-

ing with nearly 25% less capital cost. It indicates that the replacement plan should focus on the

integrated building system instead of a particular system. At the current stage, replacing light-

ing system and increasing insulation level could maximize the saving with minimal investment

comparing with the designs that replace both chillers and boilers.

On the contrary design solution 2426 is one of the desirable premium solutions. This design so-

lution achieves even lower operation costs with slightly more capital investments than the base-

line design. On top of the design solution 2406, design solution 2426 adds higher insulations,

daylight control and chillers, which immediately increases the capital cost by $0.2M. However,
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Table 7.4: Comparison between design solution 80 with design solution 680
Solution Index Insulation Level Window Lights Heat Cool PV

Baseline Wall: R-2.5 DC 12W/m2 New New South:No
Operation: $9.01M Daylit Sensor: 82%AFUE COP-6.1 East: No

Capital: $0.33M Off West: No
2406 Wall: R-3.3 DC T5(7.5W/m2) New No South:No

Operation: $8.84M Daylit Sensor: East: No
Capital: $0.25M Off West: No

2426 Wall: R-5.3 DC T5(7.5W/m2) New New South:No
Operation: $8.19M Daylit Sensor: East: No

Capital: $0.53M On West: No

in return, more than $0.8M operation costs are saved with this design solution. Through such

analysis, clients and design team can quickly identify better design solutions than the ASHRAE

baseline design.

7.6.3 Important designs

Table 7.5: Information gain for each design variable
Item Importance to operation costs Importance to capital cost

Window 0.218 0.348
Insulation 0.035 0.004

Light 0.076 0.046
Daylighting Sensor 0.018 0.005

Chiller 0.37 0.009
Boiler 0.096 0.016
BiPV 0.004 0.311

Interestingly, in Figure 7.4, the design solutions are clustered. This pattern usually implies that

one or multiple design parameters have significant impacts on one or both objectives. Table 7.5

shows the information gain of every design parameter on both objectives. The information gain

is a metric that informs the importance of a given design parameter to the objectives. Table 7.5

suggests windows and chillers have the high impact on operation costs and windows and BiPV

systems are most critical to the capital cost.

Figure 7.6 shows all the design solutions that are highlighted by their window types. Based on

the unit cost and the thermal properties of a window, design solutions are separated into dif-
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Figure 7.6: One Montgomery Plaza design solution plots by windows

ferent clusters. Remaining with current window options (“No”) have taken most of the bottom

and right side area. On the other hand, design solutions with quadruple window, which has the

best thermal properties among all the other windows, have occupied the most of the top left and

middle area.

Unlike windows, chiller has a significant impact on operation costs. However, it seems it is

not very relevant to the capital cost. Figure 7.7 indicates all the design solutions that are high-

lighted by chiller design. First of all, upgrading chiller does not guarantee a lower operation

costs. It can be observed when the operation costs are around $8.5M, where the two types of

design solutions are well mixed. However, this option is a must-have option if the client desire

for a better operation costs saving. On the other hand, the differences between capital cost are

not so obvious. A possible reason for this could be the high window and BiPV system costs,

which reduce the relevance of chillers capital cost.

Lastly, the BiPV systems also play a major role in the capital cost. Figure 7.8 shows the de-

sign solutions with (“TRUE”) and without(“FALSE”) BiPV systems. Almost all of the design

solutions that require more than $2M capital cost have BiPV system installed. However, it is

surprising to find that the BiPV systems do not provide a significant amount of operation costs
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Figure 7.7: One Montgomery Plaza design solution plots by chillers

Figure 7.8: One Montgomery Plaza design solution plots by BiPV system
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saving compare to the other design parameters. It partly because the One Montgomery Plaza

has a high overall window to wall ratio (50%), but also because the electricity generated from

the BiPV system is relatively small compares to the energy the building consumes in one year.

Despite its high costs, design solutions still have to equip BiPV systems to reach minimum op-

eration costs ($7.50M).

7.6.4 Pareto front curve

Figure 7.9 shows the optimal design solutions among the results derived from the five repli-

cated optimizations. The Pareto front curve plots 26 optimal design solutions in the solution

space. The full list of the 26 design solutions can be found in Appendix F, Table F.1, F.2 and

F.3. The capital cost ranges from $0.0 to above $4.0M while the operation costs in 25 years

dropped from $9.5M to $7.5M. The absolute improvement curves consist of changes in oper-

ation costs, capital cost, and life cycle cost (LCC) compared with the existing building. Simi-

larly, the percentage improvement curves indicate the improvement of both capital and opera-

tion costs over the existing building.

The optimal design solutions are sorted by their operation costs in an ascending order. An op-

timal design solution index shows the standing of the design solution in the optimal design so-

lution set. Therefore, the “as is” solution is plotted on the right side of the figures. Observing

the absolute improvement curves from right to left, the operation and capital costs curves go

into two opposite directions. The blue curve shows the absolute changes in the life cycle cost.

At first, it climbs with the operation costs until the design solution 17. Afterward, it slowly falls

to a break-even point at design solution 12, where the saving in operation costs is diminished

by the increase of the capital investment. Last, it quickly falls with the capital investment. The

black dashed line shows the design solution 17, which has the optimal life cycle cost perfor-

mance among all the other design solutions.

Table 7.6 shows the design options under design solution 12 and 17. Compared with the design

solution 17, design solution 12 enhances its thermal insulation, replaces windows with higher

thermal insulation windows and upgrades lighting system. Although these upgrades enlarge the
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Figure 7.9: One Montgomery Plaza pareto front curve, percentage and absolute improvement

curves
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Table 7.6: Comparison between design solution 17 with design solution 12
Solution Index Insulation Level Window Lights Heat Cool PV

12 Wall: R-5.3 DLC T5 New New South:No
Operation: $7.89M Daylit Sensor: East: No

Capital: $1.52M On West: No
17 Wall: R-3.3 No No New New South:No

Operation: $8.24M Daylit Sensor: East: No
Capital: $0.40M On West: No

operation costs saving by 3%, the capital cost increases around 10%. However, this is based

on the assumption of 3% interest rate. The next section will further investigate the impact of

interest rate on the decisions.

7.6.5 LCC model sensitivity analysis

In this study, the interest rate is varied from 1% to 17% with a step of 2%. The analysis is con-

ducted within the Pareto front curve. There are in total 26 optimal design solutions, and they

are sorted based on operation costs in an ascending order. Table F.4 in Appendix F lists the net

present value (NPV) for all the optimal design solutions (1-26) at different interest rates. In the

table, the NPV decreases significantly when higher interest rates apply. Another observation

implies that the lower the capital cost, the larger the differences between R=1% to R=17%. For

instance, the NPV of design solution 1 drops by around 50% from R=1% to R=17%. However,

the NPV of design solution 26 drops almost 75%. Lastly, although some design solutions have

a high NPV at lower interest rates, its NPV may drop faster and become lower than most of the

other design solutions after increasing the interest rates. Figure 7.10 shows the NPV curves for

design solution 15 to 20. In this Figure, the design solution 20 has the highest NPV when the

interest rate equals to 1%. However, after R=11%, it achieves lower NPV than the other design

solutions.

7.6.6 Algorithm performance comparison

To demonstrate the performance of ammNSGA-II algorithm in a larger scale office building,

an additional optimization is replicated and performed with NSGA-II algorithm. Figure 7.11
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Figure 7.10: One Montgomery Plaza life cycle cost sensitivity analysis (15 to 20)

Table 7.7: Algorithm performance comparison for One Montgomery Plaza
Algorithm Speed (hr) Convergence (C̄(P (t))) Spread (�)
NSGA-II 59 0.018 0.85

ammNSGA-II 50 0.002 0.60

shows the comparison results, where the red dots indicate the design solutions generated from

ammNSGA-II algorithm, and the green dots denote the results of NSGA-II algorithm. The blue

dots are the reference design solutions, which are found according to the method described in

(Deb and Nain, 2007). It can be observed that the NSGA-II is quite comparable with ammNSGA-

II in this case except for the middle region of the solution space. Compare the normalized con-

vergence metric (C̄(P (t))), the advantage of using ammNSGA-II is not significant. It could be

due to the smaller set of design combinations which allows NSGA-II finding optimal design so-

lutions within the maximum number of evaluations. However, the ammNSGA-II does demon-

strate its ability to find diverse design solutions by comparing the spread metric (�). Also, it

seems that ammNSGA-II can reach optimal region earlier than NSGA-II. The algorithm typ-

ically preserves these optimal design solutions and reproduces them in the next generations.

With a mechanism that skips evaluation for duplicate design solutions, the ammNSGA-II re-
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Figure 7.11: Compare the performance of ammNSGA-II and NSGA-II algorithms

sults in 10 hours less.

7.7 Summary of One Montgomery Plaza study

• The retrofit project has a different perspective on analyzing the cost benefit of design so-

lutions since the capital cost performance of every design solution is worse than the “as

is” solution. Therefore, the analysis should focus on minimizing the retrofit investment to

trade for a more operational costs saving.

• Multiple cases (design solution 80 vs. design solution 680, baseline design vs. design

solution 2406) demonstrate the effectiveness of an optimization algorithm in finding the

design solutions with lower capital and operation costs than the current standard. They

also illustrate that the capital cost of a higher investment choice (chiller) can be justified

by not only the long-term operation costs but also the capital cost trade-offs between wall

insulation and chiller.

• In this case study, the window system has a tremendous impact on both capital cost and

operation costs. On the other hand, chiller has an enormous impact on operation costs

and BiPV system can significantly affect the capital cost.
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• The LCC model sensitivity analysis suggests that clients or design team could select a

preferred design solution depending on the interest rates. It is realized by investigating

the net present value of design solution 17 and design solution 20 at R=1% and R=17%.
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Chapter 8

Conclusion

8.1 Contribution

This thesis presents a computation platform to optimize the cost performance of building sys-

tem design through an integrated design approach. More specifically, the work has:

• Established a method to allow performing quantity take-off with a building energy model

for an automatic capital cost estimation on designs that influence the building energy con-

sumption.

• Integrated the economic module in EnergyPlus with a designed building system perfor-

mance database, which contains passive, active and renewable building systems, for long-

term operation costs evaluation.

• Developed a multi-objective meta-heuristic optimization algorithm, ammNSGA-II, for

solving optimization problems with computationally expensive fitness functions.

• Analyzed the optimization results in a new construction and a retrofit project with an in-

tegrated design mindset to obtain an in-depth understanding of the platform capabilities

in assisting building energy design decision.

The computation platform proposed in this thesis is a highly automated and fast process that

helps design team, and client maximizing the operation costs saving with minimal capital cost
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by:

• Organizing and managing the unique building system cost and performance data with a

designed SQL relational data schema and XML data schema, allows fast sorting, retriev-

ing and recombining operations on different types of building system data structure.

• Reusing the information generated in the process of a meta-heuristic algorithm by im-

plementing machine learning techniques, which not only save time but also increase the

algorithm convergence.

• Automating the tedious and error-prone process of creating ASHRAE 90.1 compliance

baseline model.

A step by step instruction of using this platform is provided in Appendix G. This instruction in-

cludes the installation of third-party applications and packages, the installation of the platform,

the creation of the EnergyPlus model, running optimization and results analysis method.

8.2 Summary of findings
The major findings achieved through the thesis work can be summarized as follows:

• Building energy model (BEM) can be used for building system quantity take-off (QTO).

It is because 1) BEM is a multi-disciplinary model that covers the performance of the ma-

jority building systems including building envelope system, electric system, and HVAC

system, etc., 2) BEM requires a full set of data for a successful energy simulation; its

completeness allows performing high-quality QTO. However, one drawback of the BEM-

based QTO is the lack of less energy related product descriptions, such as ducts and

pipes.

• The developed ammNSGA-II algorithm successfully marry the machine learning tech-

nique with the conventional meta-heuristic algorithm to achieve higher convergence in

less time.

• Integrated system optimization can effectively explore the energy and cost trade-offs

among a group of interdependent building systems. Furthermore, with the system integra-
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tion approach, the optimization can tunnel through the capital cost barrier that is defined

in (Lovins, 2007). For example, compared design solution 2 with design solution 48 in

the new construction case study, design solution 48 demonstrates a higher insulation level

and a more efficient lighting system can reduce not only reduce operation costs, but also

the capital cost through a smaller size of HVAC system.

In the case study of a new construction, the platform found multiple design solutions that achieved

not only lower operation costs (4% to 23% savings) but also lower capital cost (5% to 23% sav-

ings) than the ASHRAE 90.1 baseline design through an integrated design optimization ap-

proach.

• The platform found a design solution that took advantage of the cost and performance

trade-offs in an integrated design approach to achieve lower operation costs ($5000 sav-

ings) and capital cost ($100,000 savings) than the real design of the building, which was

configured with the best design options in every design parameter.

• The high investment in the building integrated photovoltaic (BiPV) system could be jus-

tified not only by the long-term operation costs but also the capital cost trade-offs be-

tween systems in an integrated design. One of the optimal design solutions with the BiPV

system revealed that 21% ($61,000) operation cost savings could be achieved with 12%

($100,000) less capital cost compare to the ASHRAE 90.1 baseline design.

• The sensitivity analysis of life cycle cost model indicated cheap design solutions with

higher operation cost were more susceptible to the fluctuation of the market risk. The

increase of interest rate not only reduced the total net present value for each design solu-

tions but also changed the ranking of the optimal design solutions.

The findings could be generalized as design guidelines for a small new office buildings in Pitts-

burgh area through exploring the preferred design options that are selected in the desirable

economy solutions. In comparison with baseline design, the results indicate the ASHRAE

90.1 2010 specified insulation level with high-efficiency lighting and HVAC system can effec-

tively reduce both capital and operation costs. Furthermore, for projects whose target is net zero
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buildings, installing BiPV system is probably a better option than stacking the insulation levels

of the envelope. However, whether the high investment of BiPV system can be justified by cap-

ital cost trade-offs is also highly dependent on the window properties such as U-value, SHGC,

and Vt, as well as the window to wall ratios.

In the case study of a retrofit project, the platform found the trade-offs between the operation

costs and capital cost as well as the trade-offs within each objective.

• Unlike the new construction project, a retrofit project was about how many systems can

be upgraded or replaced to achieve total life cycle cost savings within a given period. The

optimization successfully targeted at a design solutions that minimized the capital cost

($400,000 investments) and maintained a lower life cycle cost ($800,000 savings) com-

pared with the “as is” solution.

• For a large size office building, the information gain analysis showed HVAC system (In-

formation Gain: 0.37), window system (Information Gain: 0.22) and lighting power den-

sity (Information Gain: 0.08) are the top 3 most sensitive design parameters related to the

operation costs. This conclusion was similar to the study conducted by the Energy Asset

Score Tool (Wang et al., 2015).

• The value of BiPV system was under-rated in this case study. It could be due to the rel-

atively small amount of electricity generated by BiPV systems compared to the energy

consumed by the building. However, it was necessary to have BiPV system if the design

team and clients were targeting at more than 20% operation cost savings.

• Similarly, the sensitivity analysis of life cycle cost showed the building designs with

higher operation costs are more fragile to the market risk.

The results of this case study could be used to guide the retrofit design for large office buildings

in Philadelphia area. Table 7.5 provides the importance of the design parameters for both op-

eration costs and capital cost. For operation costs, the window, chiller, and boilers are the most

critical design parameters that the design team should consider. On the other hand, the win-

dows, lights, and boiler have an enormous impact on capital cost. It should be noted that in this
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study, the cost assumptions are based on multiplying the national average values by Philadel-

phia local cost index (RSMeans, 2015). Any additional information such as price discounts or

unexpected events could alter the results significantly.

8.3 Future work

The following additional work can be conducted based on the outcome of this thesis:

• Link the cost database with the commercial construction cost database.

The current version of the cost database is static, and it only allows manual entry, which

means to update or add more cost items, it requires manual extraction of the informa-

tion from the “RSMeans cost data book” (RSMeans, 2015). It requires at least one or

two full-time employees to maintain the database to keep its cost information up-to-date.

However, recently, RSMeans has released its online platform and API to access that plat-

form. Through their web API, updating the database would be automated. It not only

saves time and reduces the possible human errors, but also provides users a most up-to-

date cost information with their cost optimization.

• Include constraint functions in the optimization process

Constraints are common in the optimization, but they are not considered in this thesis.

Thus, some of the optimal design solutions generated by the optimization may be not

applicable for the particular project or sacrificing human comfort for energy savings (e.g.

low visibility windows), etc. Future work could consider to include constraints in the

optimization process to better filtering the optimal design solutions.

• Automating the design parameter recommendations

The design parameters are manually selected for the optimizations in the current ver-

sion of the platform. However, based on the recommendations given in the ASHRAE

advanced energy design guides (AEDG), a rule-based expert system for design parame-

ter selections can be implemented and automated. By integrating such system, the user

can acquire the recommended design parameters for optimization just by specifying the
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building type, size and climate zone.

• Extension of the retrofit decision

The platform only optimizes the retrofit plans that can save operation costs in a long

term (e.g., 10-25 years) while minimizing the investment. However, it does not consider

whether the building is worth retrofitting. This statement means the residual value of the

building could be lower than the value of the land. In this case, sell, or demolition of the

building might be better options than upgrading the building. To add this level of decision

making, the platform requires to have a detail time-series database that records the real

estate market fluctuations as well as implementing the depreciation method provided by

IRS for residual value calculation (IRS, 2016).

• Uncertainty analysis of the cost

There are many uncertainties in the building design, especially for design cost estima-

tions. The capital costs could be affected by local price change, material price fluctu-

ations, and relations between the clients and manufacturers. Also, the operation costs

might be different if the interest rate and utility cost changes or the uncertainties embed-

ded in the performance of building system operations. Moreover, most of the factors do

not have a linear relation to the cost. A conventional optimization results analysis is a

deterministic approach for decision making. This means the uncertainties in the cost es-

timation is not considered in this thesis. However, to enable the uncertainties analysis on

the optimal results, there are two key components should be established in the future. 1)

A database that specifies the knowledge of the uncertainties for each factor (e.g., uncer-

tainties of the interest rate; uncertainties of the material price) 2) A methodology that can

be implemented in the optimization process to analyze the uncertainties in the optimal

design solutions such as the reliability-based optimization proposed in (Deb et al., 2009).
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Appendix A

EplusQTO, an EnergyPlus-based building

system cost estimation framework

A.1 EplusQTO Framework development

EplusQTO is a newly developed tool for performing building energy model (BEM) based quan-

tity take off (QTO). In BIM-based cost estimation, there are two processes identified in most

studies (Wu et al., 2014). One is building element quantification extraction, and the other is

quantity take off with a cost database. To perform a similar task with building energy model

(BEM), the framework has defined six elements. It includes (1) Building system quantification

extraction; (2) Building system design cost database; (3) BEM to cost database mapping sys-

tem; (4) Cost estimation controller; (5) Operation costs calculation; (6) User interface. Figure

A.1 depicts the developed framework of the BEM-based cost estimation system. In this sys-

tem, the infrastructure is written in JAVA, and the cost database is created in a relational data

schema, which is managed through the mySQL v6.0 system. In EplusQTO, EnergyPlus and its

simulation results provide building system information for quantity calculation. Through the

data mapping layer, these extracted building systems and their quantities are mapped to the cost

database in the framework. The detail process and method have been described in Chapter 2.

A user interface is provided to users to interact with the framework. Thus users could provide
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Figure A.1: The framework of BEM based cost estimation system

additional information to help the framework select the correct building system for cost estima-

tion.

A.2 EplusQTO interface development

The user interface is developed to facilitate client-framework interaction. The interface is di-

vided into two different types: (1) interface for building constructions cost estimation, (2) in-

terface for building electrical and HVAC system cost estimation. Figure A.2 shows the graphic

user interface for building constructions. In this interface, there are six main sections. Section

1 indicates different building system categories in this mapping framework. Section 2 shows

objects found in a building energy model on the selected category. Section 3 displays the con-

struction classification lists corresponding to a selected material layer under a construction ob-

ject. Section 4 provides additional information for cost mapping. Section 5 shows the map-

ping results for each material layer and Section 6 offers user options to confirm the mapped
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Figure A.2: GUI for building construction systems

Figure A.3: GUI for HVAC and electrical systems

cost with the building system by exporting this cost to the EnergyPlus economic module.

The interface of electrical and HVAC systems is slightly different compared to the interface

for construction system cost estimation. In Figure A.3, the most significant change of these

two system’s cost estimation interfaces is the modularization section. This section shows all

available systems and indicates the quantity of each system needed to satisfy the requirements

on the selected EnergyPlus object.
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A.3 EplusQTO maintenance and replacement data
As illustrated in the Figure 2.2, the cost database in EplusQTO contains both capital and oper-

ation, maintenance and replacement cost data. The capital cost data in the database is collected

from RSMeans construction data book (RSMeans, 2015). The operation costs are provided

from various sources. Table A.1 lists all the collected OMR tasks and their cost information.

Table A.1: Building operation, maintenance and replacement database (dated on 05/10/2017)
OMR Task Category Year Cost Sources
Concrete patching Maintenance 25 $48/m2

(RSMeans, 2015)
Masonry cleaning Maintenance 50 $82/m2

Metal cleaning Maintenance 25 $16/m2

Carpet cleaning Maintenance 1 $2.3/m2

Economizer Maintenance 1 $10/Ea.

(RSMeans, 2015; ASHRAE, 2015)

Terminal Unit Maintenance 1 $40/Ea.
Air filters Replacement 1 $35/Ea.
Fan motors Replacement 10 $416/Ea.
Terminal Unit Repair 10 $15/Ea.
Refrigerant Replacement 10 $81/Ea.
Fan coil filters Replacement 0.5 $5/Ea.
Fan coil Maintenance 1 $10/Ea.
Fan coil motor Replacement 10 $140/Ea.
Fluorescent Replace T5 2.25 $81/Ea.

(Scholand and Dillon, 2012)Fluorescent Replace T8 2.25 $67/Ea.
LED Replacement 7 $450/Ea.
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Appendix B

Building system database sources

The building system database is developed to carry the properties of various building systems

for creating EnergyPlus energy models. Currently, the database has six types of passive build-

ing systems, three types of active building systems and one energy renewable system.

Table B.1: Building system database design variable list (dated on 05/10/2017)
Design Variables Properties Resources
Wall, roof, floor Density (kg/m3), (ASHRAE, 2010, 2016a; DOE, 2017)

Thickness (m),
Conductivity (W/mK),
Specific Heat (J/kgK)

Window
U-value (W/m2K),

(LBNL, 2017)SHGC and Vt
Daylight shelf Project length, (Meresi, 2016; LBNL, 2016)
Lights LPD (W/m2) (ASHRAE, 2016a; GE, 2016)
Daylight control reference point (LBNL, 2016)

illuminance setpoint
HVAC system type (ASHRAE, 2016a, 2010) and

equipment properties (Toshiba Carrier, 2016; Carrier, 2016)
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Appendix C

ammNSGA-II algorithm performance

validation and sensitivity analysis

C.1 Algorithm performance metrics
The performance of multi-objective optimization is measured by three attributes: (i) conver-

gence, (ii) diversity preservation, and (iii) time. The first two attributes are assessed by com-

paring the optimal solution sets from an optimization study with a reference optimal set. A nor-

malized convergence metric is used for evaluating the algorithm’s convergence performance

(Deb and Jain, 2002):
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In equation C.1, P ⇤ is the reference optimal set and F is the generated optimal solution set,

fmax

k

and fmin

k

are the maximum and the minimum function values of kth objective function

in P ⇤ (Deb and Jain, 2002). C(P (t)) is the convergence metric that averages the normalized

distance d
i

for all points in F t. The normalized convergence metric is achieved in equation C.2:

C̄(P (t)) =
C(P (t))

C(P (max))
(C.2)
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This suggests that a smaller normalized convergence metric indicates a better convergence.

Diversity preservation prevents the algorithm from having premature convergence as well as

ensuring the diversity of design solutions in search spaces. The performance metric for evaluat-

ing the diversity of the optimal solution set is through a diversity metric Deb et al. (2002):
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(C.3)

In equation C.3, d
f

and d
l

are the euclidean distances between the extreme solutions and the

boundary solutions of the obtained non-dominated set. d̄ is the average of all distance d
i

=

1, 2...(N � 1) Deb et al. (2002). A smaller diversity metric indicates a better diversity preserva-

tion.

Lastly, the speed performance is measured by the speed metric, which is the elapsed time for

completing one optimization study.

C.1.1 Reference Pareto Front Curve

The P ⇤ in Equation C.1 or the non-dominated set in Equation C.3 are both referring to the true

global optimal solution set. However, the building system design problems are not only subject

to the curse of dimensionality, but also slow to evaluate the fitness functions, it is impractical to

generate a true global optimal solution set to validate the performance of proposed algorithm.

However, as mentioned in Deb and Nain (2007), for multi-objective problems that are impracti-

cal to find the true global optimal solutions, a reference optimal curve can be extracted through

repeat optimizations. In this thesis, in total 5 replicated optimizations are performed and a ref-

erence optimal curve, called reference Pareto Front, is defined according to the procedure de-

scribed below:

1. Repeat the same optimization process for 5 times.

2. Combine the optimal solutions that are generated from the optimization processes.

3. Apply the NSGAII sorting algorithm to re-rank the optimal solutions

4. Extract the top design solutions to form the reference optimal curve.
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C.2 Case study for demonstrating the algorithm performance

The performance of the ammNSGA-II has been demonstrated in a medium-size office building

in Carnegie Mellon University campus, Pittsburgh, PA. It has four stories and a basement with

more than 3700 m2 of floor area. In total, 112 thermal zones were identified based on the lo-

cation of air terminals in the provided computer-aided design (CAD) drawings. DesignBuilder

v4.5 was used to create the building geometry. The geometry was then exported to EnergyPlus.

Figure C.1 shows the actual building exterior view and its energy model in EnergyPlus. There

Figure C.1: Representation of Building in EnergyPlus

were six design parameters were selected, namely external wall, roof, window lighting fixture,

daylight control and HVAC systems. In total, 71,820 possible design combinations and the task

for ammNSGA-II was to found a group of optimal design solutions that minimize both capital

cost and operation costs at the same time. A detail list of the design options under each design

parameter can be found in (Xu et al., 2016a). Table C.1 shows the performance metrics com-

parison between the NSGA-II and ammNSGA-II. The results indicate that ammNSGA-II can

achieve significant convergence improvement with 60% less time than NSGA-II algorithm.

Although ammNSGA-II shows slight losses on solution diversity preservation, in the build-

ing system design field, design solutions’ precision is more important than their diversity. This

is because building owners could only view a limited number of design solutions instead of a

whole range of solution set.
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Figure C.2: Optimization comparison between NSGA-II and ammNSGA-II (left: NSGA-II;

right: ammNSGA-II, adopted from (Xu et al., 2016a))
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Table C.1: Performance comparison between NSGA-II and ammNSGA-II ((Xu et al., 2016a))

Model Name Generation Time (s)
Normalized Convergence

Metric (C̄(P (t)))
Spread Metric (�)

NSGA-II 30 82, 924s 0.025 0.410
ammNSGA-II 12 32, 070s 0.001 1.022

Table C.2: Performance metrics comparison between the NSGA-II and different adaptive meta-

model NSGA-II configurations

Model Name Generation Time (s)
Normalized Convergence Met-

ric (C̄(P (t)))
Spread Metric (�)

NSGA-II 30 82, 924s 0.025 0.410
B-3-20 12 32, 070s 0.001 1.022
B-3-10 12 32, 008s 0.019 1.158
B-4-20 16 42, 543s 0.003 1.002
B-2-20 8 20, 432s 0.099 0.810
I-3-20 12 33, 432s 0.002 0.870

C.3 Hyper parameter sensitivity analysis
Figure 4.4 shows the overall procedure of adaptive meta-model evolutionary optimization. The

critical parameters are n and Q which determine the size of the training dataset and the search

power provided by the regression model. In integer type optimization, a small n may cause in-

sufficient training data, which impacts the accuracy of the regression model. On the contrary,

a large n will increase the time for optimization. Q affects the search power of the regression

model because the proposed procedure expects regression models to improve their accuracy

and precision after each cycle. A large Q will certainly mislead the search to an incorrect re-

gion, which could trap the optimal solutions in local optimal regions.

In (Xu et al., 2016a), 5 sets of n and Q were compared. The name of the tests was structured

in a convention of “Type-n-G”. Type included “I” and “B”. “I” represented cumulative training

data, where the database was built cumulatively after each cycle. “B” represented intermittent

training data, where the database was rebuilt after each cycle. Each test performed three cy-

cles in the optimization procedure. Table C.2 lists the performance metrics for these 5 tests.

When comparing B-3-20, B-2-20 and B-4-20, it implies that a training dataset with less than 90
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data points is insufficient for accurate prediction. B-2-20 has only 60 data points at each cycle,

which means that it converges poorly at the third cycle. On the other hand, it can be concluded

that G = 20 can provide enough search power to advance design solutions to the optimal region

by comparing B-3-20 and B-3-10. I-3-20 indicates no obvious advantages on convergence per-

formance; however, it can slightly improve the diversity of design solutions. All the test cases

have similar spread metrics. The diversity preservation of these test cases is poorer than the

conventional NSGA-II algorithm. This could be due to the regression model being confined to

the search region at the later stage. Therefore, these results in a limited number of the available

design solutions in the final optimal set. Thus, several duplicate design options appear in the

optimal set, which increases the spread metric. Comparing the time, B-2-20 requires the least

number of simulations; hence it performs the fastest. On the contrary, B-4-20 needs the most

number of simulations, thus its demands twice as much as B-2-20. The other models have a

similar time performance. However, I-3-20 shows a slightly higher time metric compared to the

other two models. The observation suggests a longer time spent on training regression models

with a cumulative database.
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Appendix D

EBMA, a building energy baseline model

automation system

D.1 System composition

The primary focus on designing a building energy baseline model automation (EBMA) system

is to minimize user efforts in creating standard-compliant baseline models in design optimiza-

tion problems. Since standards are being continuously updated to advance the architectural,

engineering and construction (AEC) industry towards energy efficiency, the software architec-

ture of EBMA is designed to be extensible and adaptable to various standards as well as future

updates. The EBMA consists of four major components (Figure D.1):

• User input preparation module

• Standards building component database

• Energy model automation module

• Simulation outputs module

With these four modules, the EBMA could automatically generate baseline models, which

comply with specified building standards, based on user’s proposed energy model case.
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Figure D.1: EBMA System Components
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D.2 User input preparation module
A critical goal of the EBMA is to reduce user modeling efforts by minimizing required inputs.

One of the most crucial pieces of information is a structured building design energy model (i.e.

the proposed design case model) in EnergyPlus format. The EBMA reads the layout of design

energy model and extracts the building design information for baseline energy model genera-

tion. In addition to the baseline energy model, a simulation output file in HTML format is pre-

ferred but optional. Submitting the output file of design energy model can eliminate the neces-

sity of design energy model evaluation, thus reducing the amount of execution time. In addition

to the design energy model and its output file, the EBMA still requires users to specify a few

more user manual input fields. Examples of such data include ASHRAE climate zone classi-

fication, building use type, lighting power density method and whether the building is a new

or existing construction, etc. Although minimizing the number of input fields can reduce the

amount of work, it is practically impossible to eliminate all the required information for gen-

erating baseline models. The is because some critical building information is missing in the

design energy model as well as its result files.

Another important function of this module is to analyze and store building design information

in an internal data structure through the “Analyzer” object (Figure D.1). The “Analyzer” object

reads an EnergyPlus design energy model and then converts it into an internal data structure to

facilitate search, sort, modification and export functions. Furthermore, based on the specifica-

tions in standard 90.1, this module will also check items that match any exceptions or rules set

by standards. The results will be passed to the next module for baseline generation.

D.3 Standard 90.1 building component database
The Standard 90.1 building component database (hereinafter referred to as the component database)

is created based on the specifications in Standard 90.1 in a specially designed extensive markup

language (XML) schema. XML was originally developed by an XML Core Working Group

with the goal of providing a human and machine readable format for easy and concise data
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communication (Yergeau et al., 2004). Since the EBMA is built to couple with the EnergyPlus,

which operates on text-based IO structure, XML becomes an ideal interoperable data format to

consolidate the data linkage between the EBMA and EnergyPlus.

The component database is separated into construction, lighting, and HVAC system categories.

Construction stores the complete building envelope assembly based on requirements and mini-

mum performance in the Standard 90.1. Detailed information about construction assembly can

be found in (ASHRAE, 2010) normative Appendix A and section 5. Lighting contains lighting

power densities for both building types and space types. Depending on which lighting method

is specified in the user input, EBMA extracts the corresponding information from this category.

The HVAC system contains various system templates that match the Standard 90.1 require-

ments. However, creating an HVAC system involves not only generating system node linkage

between the supply loop with hot water/chilled water/refrigerant side system, but also the node

linkage inside the HVAC system as well as thermal zones. To overcome these challenges, the

system data is stored in a format that is divided into an air supply loop, an air demand loop and

a plant loop. The air supply and plant loop data can be used for internal connections. On the

other hand, the air supply and air demand data can be used for loop-zone connections. The im-

plementation of the connections will be further explained in section D.4.

All data are stored in this XML data schema, which is similar to that described in (Xu et al.,

2016b). This XML data schema focuses on providing quick data conversion and manipulation

from the construction, lighting, and HVAC performance data structure to the EnergyPlus .idf

data structure. The quality attributes of the XML data schema include:

1. Adaptable to various systems’ performance data

2. Extensible and easy to modify with EnergyPlus version upgrades.

The data schema can directly link to the EnergyPlus building system model based on two-layer

logic processes. The first layer identifies building system category, building system and En-

ergyPlus version to extract the correspondent dataset in dataset element. The next step trans-

fers data to correspondent EnergyPlus objects. The methods that are accessing, manipulating
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and outputting XML in EBMA system is supported by JDOM 2.0.5 library (Hunter and Lear,

2015).

D.4 Energy modeling automation module

The energy modeling automation module focuses on envelope, lighting and HVAC system gen-

eration as well as analyzing and duplicating the equipment power load and operation schedules

in the design energy model. In addition to the building systems, this module is also conducting

EnergyPlus simulations. The two or three iterations that are required in this module depends on

whether the user uploads the design model’s output file in the user input preparation module.

Besides the design energy model iteration, the other two are:

• HVAC system sizing (using design day data).

• Annual baseline model simulation (using annual hourly weather data).

In the baseline model sizing simulation, a baseline energy model is constructed with baseline

envelope and lighting systems. Since the goal of this iteration is to determine HVAC system

capacity, the ideal load system is built in the baseline model. After this iteration is complete,

the baseline model’s sizing results are passed to the next iteration for HVAC system genera-

tion. The second iteration performs after inserting constructed HVAC systems into the baseline

model. A model validity checker checks whether the baseline model generation is successful

based on the errors found in EnergyPlus error logs.

There are three engines are implemented in this module, namely the envelope engine, lighting

engine and HVAC engine. The detail of these engines has been described in Chapter 5. One

exception is the HVAC system for middle to high-rise residential building, which is not related

to the thesis but included in the current release of EBMA.

D.5 Simulation outputs module

The simulation outputs in Figure D.1 consists of a compliance check process and three output

data types. The compliance check process examines the baseline model’s time-setpoint-not-
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met during occupied hours based on Standard 90.1 requirements. If this value is higher than

300 hours for an annual simulation run (8760 total simulation hours), the baseline model would

have to be re-tuned. The current retune techniques that are implemented in EBMA are increas-

ing the sizing factor, the system capacity and minimum supply air flow rate of the problematic

zones.

If the generated models pass the compliance check process, three types of outputs will be gen-

erated in the simulation outputs module.

• Baseline energy models in EnergyPlus data format and their error files.

• Design energy model simulation results in HTML format

• Generated baseline simulation results in JSON format for display on webpages.

The baseline energy models and results are useful for users to review the generated baseline

model specifications and performance. These files can also be used in comparison with de-

sign cases for the LEED submission requirements for the points. The results sent in JSON for-

mat could be directly extracted from an EBMA API system. Therefore, application developers

could request the information to acquire simulation results and display them in their application

website.

D.6 System architecture

There are two major challenges in designing the EBMA system: (1) unpredictable data style

of EnergyPlus files, and (2) the continuously Standard 90.1 update. The first challenge comes

from the various EnergyPlus authoring tools. The EnergyPlus installation package includes the

simulation engine and one authoring tool, called IDF Editor, which has limited functions. In

the early 2000s, despite its advanced simulation concept and powerful algorithms, the software

did not have a user-friendly interface, which restricted its application. In recent years, many

EnergyPlus authoring tools have been developed to meet the industry needs. Tools such as De-

signBuilder DesignBuilder (2016) and the asset score tool of Energy (2016) provide not only

graphic drawing capability but also a user-friendly interface. However, different authoring tools
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exports data in different styles. For example, DesignBuilder uses a colon (:) to separate block

name from zone name while the asset score tool uses an underscore ( ). It is impossible to have

a generalized translator to accommodate every EnergyPlus authoring tool. Secondly, the Stan-

dard 90.1 is currently under a three-year update cycle. Additionally, different states may adopt

a different version of the Standard 90.1. It implies that the EBMA system should generate base-

line energy models according to a selected standard version. Therefore, the attributes of the

EBMA system architecture are set to be adaptable and extensible.

Figure D.2 shows the object model of the EBMA system in unified modeling language (UML).

A generator class is defined to control the workflow of the EBMA system. This class carries

all the other classes including the EnergyPlusModel, which is the core data structure for the

system, the RunSimulation that runs EnergyPlus simulations, version controller, construction,

lighting and HVAC classes. The adaptable attribute is achieved through the thermal zone adap-

tor interface. This interface is designed to accommodate the dissimilar thermal zone conven-

tions in the EnergyPlus authoring tools, where, different analysis strategies should be applied

for data processing. The implementation of strategy is programmed in different classes that

inherit this interface. This architecture proves that the EBMA system is adaptable to various

EnergyPlus authoring tools.

Furthermore, EBMA should not only handle various EnergyPlus authoring tools, but also ca-

pable of future changes in EnergyPlus versions, HVAC specifications and exceptions in stan-

dards. Therefore, extensibility is a crucial attribute for the system. This attribute is achieved

through both the version controller, the HVACSystem interface and exception observers. The

version controller recorded both the standard version and EnergyPlus version, which extends

the EBMA system baseline generation ability to multiple versions of the Standard 90.1. The

HVAC system needs a special design architecture other than a simple version controller. There-

fore, a HVACSystem interface is designed to accomplish this work. The core concept of HVAC

system architecture is the use of a decorator pattern, where each additional feature, such as dis-

trict heating system or return fan, are decorators to the original system. This process starts with
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Figure D.2: EBMA system object model
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a standard HVAC system. Afterwards, the EBMA fact checks the rules and exceptions based

on the HVAC system in the design energy model. Any modifications will be added to the stan-

dard HVAC system as “decorators”. One benefit of this system architecture is the extensibility.

Additional features can be easily added anytime as new “decorators” without interrupting the

integrity of the core engine. For changes in rules and exceptions from standards, an observer

design pattern is implemented in Figure D.2. Exception observers can be registered in the ini-

tialization process. The registered observers (i.e. district cooling observer or district heating

observer) listen to the data in the “EnergyPlusModel”. Once the processed data match the ex-

ception criteria, the observers will notify the system and execute changes in the baseline model.

With this software design, customized observers can be added in the future by inheriting the

“ExceptionObserver” interface.

D.7 System deployment and test
The system is currently deployed on CMU server and is undergoing with private beta test. Fig-

ure D.3 shows the user interface of the system. Currently, there are only two inputs required

from user: (1) EnergyPlus model, (2) ASHRAE climate zone. Once the user successfully up-

loaded their file, they can start the generation by click “Submit” button. Once the simulation

is completed, the user can download the generated baseline models and view some of the out-

puts on the following table. This system can be accessed via the link: http://128.2.108.

198/Optimization/pages/baselineauto.html.

D.8 EMBA application
This is an on-going work that focuses on developing a commercial ready energy model base-

line automation (EMBA) system that can automatically generate a ASHRAE 90.1 compli-

ant baseline energy model in EnergyPlus format. The system is detailed in Appendix D. The

system is currently deployed in http://128.2.108.198/Optimization/pages/

baselineauto.html.
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Figure D.3: Baseline automation system interface
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Appendix E

CSL Case Study Results

E.1 Pareto Front curve
Table E.1, E.2, E.3 and E.4 list the optimization results generated from CSL case study.

Table E.1: List of the design solutions on the Pareto Front Curve (Part-1)
Solution Index Insulation Level WWR HVAC Lights BiPV LightShelf

1 Wall: R-6.5 South: 80 GEOPUMP LED South: Yes Inside:
Operation: $44.3k Roof: R-5.3 North: 40 Daylit Sensor: North: Yes 0.86m
Capital: $1,991k Window: East: 70 On East: Yes Outside:

PP: 75 year DTC West: 40 West: Yes N/A
2 Wall: R-3.8 South: 40 GEOPUMP LED South: Yes Inside:

Operation: $44.6k Roof: R-5.3 North: 40 Daylit Sensor: North: Yes N/A
Capital: $1,845k Window: East: 40 On East: Yes Outside:

PP: 65 year DTC West: 80 West: Yes 1.3m
3 Wall: R-6.5 South: 40 GEOPUMP LED South: Yes Inside:

Operation: $44.8k Roof: R-5.3 North: 40 Daylit Sensor: North: Yes N/A
Capital: $1,624k Window: East: 70 On East: Yes Outside:

PP: 51 year HRC West: 40 West: Yes N/A
4 Wall: R-6.5 South: 40 GEOPUMP LED South: Yes Inside:

Operation: $45.3k Roof: R-4.9 North: 40 Daylit Sensor: North: Yes N/A
Capital: $1,590k Window: East: 50 On East: Yes Outside:

PP: 49 year DTC West: 50 West: Yes N/A
5 Wall: R-2.1 South: 40 GEOPUMP LED South: Yes Inside:

Operation: $48.6k Roof: R-5.3 North: 40 Daylit Sensor: North: Yes N/A
Capital: $1,544k Window: East: 50 On East: Yes Outside:

PP: 46 year TG West: 60 West: Yes N/A
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Table E.2: List of the design solutions on the Pareto Front Curve (Part-2)
Solution Index Insulation Level WWR HVAC Lights BiPV LightShelf

6 Wall: R-2.1 South: 40 GEOPUMP LED South: Yes Inside:
Operation: $51.2k Roof: R-3.1 North: 40 Daylit Sensor: North: Yes N/A
Capital: $1,493k Window: East: 40 On East: Yes Outside:

PP: 44 year TG West: 40 West: Yes 0.64m
7 Wall: R-6.5 South: 40 GEOPUMP LED South: Yes Inside:

Operation: $63.9k Roof: R-5.3 North: 60 Daylit Sensor: North: No 0.88m
Capital: $1,429k Window: East: 70 On East: Yes Outside:

PP: 42 year DTC West: 40 West: Yes N/A
8 Wall: R-2.1 South: 50 GEOPUMP LED South: Yes Inside:

Operation: $66.4k Roof: R-4.9 North: 40 Daylit Sensor: North: No N/A
Capital: $1,371k Window: East: 70 On East: Yes Outside:

PP: 39 year DTC West: 40 West: Yes N/A
9 Wall: R-2.6 South: 40 GEOPUMP LED South: Yes Inside:

Operation: $69.5k Roof: R-3.1 North: 60 Daylit Sensor: North: No N/A
Capital: $1,365k Window: East: 40 On East: Yes Outside:

PP: 38 year DTC West: 50 West: Yes N/A
10 Wall: R-2.1 South: 40 GEOPUMP LED South: Yes Inside:

Operation: $69.8k Roof: R-4.9 North: 40 Daylit Sensor: North: No N/A
Capital: $1,308k Window: East: 60 On East: Yes Outside:

PP: 34 year TG West: 40 West: Yes 0.64m
11 Wall: R-2.1 South: 40 GEOPUMP LED South: Yes Inside:

Operation: $80.1k Roof: R-4.9 North: 50 Daylit Sensor: North: No N/A
Capital: $1,257k Window: East: 40 On East: No Outside:

PP: 32 year DTC West: 50 West: Yes N/A
12 Wall: R-2.1 South: 40 GEOPUMP LED South: Yes Inside:

Operation: $86.3k Roof: R-3.1 North: 40 Daylit Sensor: North: No N/A
Capital: $1,215k Window: East: 50 On East: No Outside:

PP: 30 year TG West: 40 West: Yes 1.5m
13 Wall: R-2.6 South: 40 GEOPUMP LED South: Yes Inside:

Operation: $99.9k Roof: R-3.1 North: 40 Daylit Sensor: North: No N/A
Capital: $1,177k Window: East: 50 On East: No Outside:

PP: 29 year DTC West: 40 West: No N/A
14 Wall: R-2.1 South: 40 GEOPUMP LED South: Yes Inside:

Operation: $103.0k Roof: R-3.1 North: 60 Daylit Sensor: North: No N/A
Capital: $1,154k Window: East: 40 On East: No Outside:

PP: 28 year TG West: 80 West: No N/A
15 Wall: R-2.1 South: 40 GEOPUMP LED South: Yes Inside:

Operation: $103.6k Roof: R-3.1 North: 40 Daylit Sensor: North: No N/A
Capital: $1,127k Window: East: 50 On East: No Outside:

PP: 25 year TG West: 40 West: No 1.5m
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Table E.3: List of the design solutions on the Pareto Front Curve (Part-3)
Solution Index Insulation Level WWR HVAC Lights BiPV LightShelf

16 Wall: R-1.5 South: 40 GEOPUMP LED South: No Inside:
Operation: $138.0k Roof: R-2.2 North: 40 Daylit Sensor: North: No N/A

Capital: $1,064k Window: East: 50 On East: Yes Outside:
PP: 25 year TG West: 40 West: Yes 0.56m

17 Wall: R-2.6 South: 40 GEOPUMP LED South: No Inside:
Operation: $146.4k Roof: R-4.9 North: 40 Daylit Sensor: North: No N/A

Capital: $1,033k Window: East: 50 On East: No Outside:
PP: 23 year DTC West: 60 West: Yes N/A

18 Wall: R-2.1 South: 40 GEOPUMP LED South: No Inside:
Operation: $147.6k Roof: R-4.9 North: 40 Daylit Sensor: North: No N/A

Capital: $960.7k Window: East: 50 On East: No Outside:
PP: 15 year TG West: 40 West: Yes 1.5m

19 Wall: R-2.1 South: 50 GEOPUMP LED South: No Inside:
Operation: $164.3k Roof: R-5.3 North: 40 Daylit Sensor: North: No N/A

Capital: $916.3k Window: East: 50 On East: No Outside:
PP: 11 year TG West: 40 West: No 1.45m

20 Wall: R-2.1 South: 40 GEOPUMP T5 South: No Inside:
Operation: $177.3k Roof: R-4.9 North: 50 Daylit Sensor: North: No N/A

Capital: $882.6k Window: East: 40 On East: No Outside:
PP: 8.4 year TG West: 80 West: No N/A

21 Wall: R-2.1 South: 40 GEOPUMP T5 South: No Inside:
Operation: $178.0k Roof: R-3.1 North: 60 Daylit Sensor: North: No N/A

Capital: $869.5k Window: East: 40 On East: No Outside:
PP: 6.6 year TG West: 40 West: No 1.46m

22 Wall: R-2.1 South: 50 DOASVRF LED South: No Inside:
Operation: $209.5k Roof: R-5.3 North: 40 Daylit Sensor: North: No 0.80m

Capital: $868.6k Window: East: 50 On East: Yes Outside:
PP: 9.1 year TG West: 40 West: Yes 0.61m

23 Wall: R-2.6 South: 80 DOASVRF LED South: No Inside:
Operation: $213.6k Roof: R-5.3 North: 60 Daylit Sensor: North: No 0.98m

Capital: $856.0k Window: East: 40 On East: No Outside:
PP: 6.9 year DTC West: 40 West: Yes N/A

24 Wall: R-2.1 South: 40 DOASVRF LED South: No Inside:
Operation: $216.6k Roof: R-2.2 North: 40 Daylit Sensor: North: No N/A

Capital: $854.7k Window: East: 50 On East: Yes Outside:
PP: 6.9 year DTC West: 50 West: Yes 1.40m

25 Wall: R-2.6 South: 40 DOASVRF LED South: No Inside:
Operation: $217.1k Roof: R-4.9 North: 40 Daylit Sensor: North: No N/A

Capital: $780.0k Window: East: 60 On East: No Outside:
PP: N/A DTC West: 40 West: Yes N/A
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Table E.4: List of the design solutions on the Pareto Front Curve (Part-4)
Solution Index Insulation Level WWR HVAC Lights BiPV LightShelf

26 Wall: R-2.1 South: 40 DOASVRF LED South: No Inside:
Operation: $226.4k Roof: R-3.1 North: 40 Daylit Sensor: North: No 0.5m

Capital: $730.6k Window: East: 50 On East: No Outside:
PP: N/A DTC West: 40 West: Yes 0.5m

27 Wall: R-2.1 South: 50 DOASVRF LED South: No Inside:
Operation: $234.4k Roof: R-4.9 North: 40 Daylit Sensor: North: No N/A

Capital: $679.7k Window: East: 50 On East: No Outside:
PP: N/A TG West: 40 West: No 1.5m

28 Wall: R-2.6 South: 40 DOASVRF LED South: No Inside:
Operation: $241.4k Roof: R-4.9 North: 40 Daylit Sensor: North: No N/A

Capital: $657.2k Window: East: 40 On East: No Outside:
PP: N/A TG West: 40 West: No N/A

29 Wall: R-2.1 South: 40 DOASVRF LED South: No Inside:
Operation: $245.3k Roof: R-3.1 North: 50 Daylit Sensor: North: No N/A

Capital: $640.5k Window: East: 40 On East: Yes Outside:
PP: N/A TG West: 40 West: No N/A

30 Wall: R-1.5 South: 40 DOASVRF T8 South: No Inside:
Operation: $270.3k Roof: R-3.1 North: 40 Daylit Sensor: North: No N/A

Capital: $627.2k Window: East: 40 On East: No Outside:
PP: N/A TG West: 60 West: No 0.56m

“PP” represents the payback period. It is calculated using Equation E.1. The I
i

� I
b

indicates

the additional capital cost over the baseline design and the O
b

� O
i

calculates the annual op-

eration cost savings generated with the proposed design. A design solution with N/A of “PP”

represents it has lower operation costs and capital cost. This implies that the design have an

instant payback compare to the ASHRAE baseline design.

PP =
I
i

� I
b

O
b

�O
i

(E.1)

Where,

I
i

is the capital cost of a design solution,

I
b

is the capital cost of the ASHRAE baseline design,

O
b

is the operation cost of the ASHRAE baseline design,

O
i

is the operation cost of the design solution.
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E.2 LCC model sensitivity analysis results

Table E.5: Net present value of total life cycle cost for time period of 25 years ($1k)
Solution Index R=1% R=3% R=5% R=7% R=9% R=11% R=13% R=15% R=17%

1 2047.27 2035.6 2027.1 2020.9 2016.3 2012.7 2009.9 2007.7 2005.9
2 1901.6 1889.8 1881.3 1875.0 1870.3 1866.7 1863.9 1861.7 1859.9
3 1681.0 1669.1 1660.6 1654.3 1649.6 1643.209 1640.9 1639.2 1637.7
4 1607.1 1595.1 1586.4 1580.1 1575.3 1571.7 1568.8 1566.6 1564.8
5 1605.2 1592.3 1576.2 1571.1 1567.2 1564.2 1561.7 1559.8 1558.2
6 1557.5 1544.0 1534.2 1527.0 1521.6 1517.5 1514.3 1511.8 1509.7
7 1510.0 1493.1 1480.9 1471.9 1465.3 1460.1 1456.1 1452.9 1450.4
8 1455.2 1437.6 1424.9 1415.7 1408.7 1403.3 1399.2 1395.9 1393.2
9 1453.3 1434.9 1421.6 1411.9 1404.6 1399.0 1394.6 1391.2 1388.4
10 1396.1 1377.6 1364.3 1354.5 1347.2 1341.5 1337.2 1333.7 1330.9
11 1358.2 1337.0 1321.8 1310.5 1302.1 1295.7 1290.6 1286.7 1283.5
12 1324.2 1301.4 1285.0 1272.9 1263.8 1256.8 1290.6 1286.7 1243.7
13 1303.0 1276.5 1257.5 1243.5 1233.0 1224.9 1218.7 1213.7 1209.7
14 1284.3 1257.1 1237.4 1223.0 1212.2 1204.0 1197.5 1192.4 1188.3
15 1257.6 1230.2 1210.4 1195.9 1185.0 1176.7 1170.2 1165.0 1160.9
16 1238.3 1201.8 1175.5 1156.2 1141.7 1130.6 1121.9 1115.1 1109.5
17 1218.5 1179.7 1151.9 1131.4 1116.0 1104.2 1095.0 1087.7 1081.9
18 1147.5 1108.4 1080.2 1059.6 1044.0 1032.1 1022.9 1015.6 1009.6
19 1124.1 1080.6 1049.3 1026.3 1009.0 995.8 985.5 977.3 970.7
20 1106.8 1059.9 1026.1 1001.2 982.6 968.3 957.2 948.4 941.3
21 1094.6 1047.5 1013.6 988.6 969.9 955.6 944.4 935.6 928.4
22 1133.6 1078.1 1038.2 1008.8 986.8 969.9 956.8 946.4 938.0
23 1126.1 1069.6 1028.8 998.9 976.4 959.3 945.9 935.3 926.7
24 1128.6 1071.3 1029.9 999.6 976.9 959.4 945.8 935.1 926.4
25 1054.6 997.1 955.7 925.3 902.4 884.9 871.3 860.5 851.8
26 1016.9 957.0 913.9 882.2 858.4 840.1 825.9 814.6 805.6
27 976.1 914.1 869.4 836.5 811.9 793.0 778.3 766.7 757.3
28 962.4 898.5 852.5 818.6 793.3 773.9 758.7 746.8 737.1
29 950.8 885.8 839.0 804.6 778.9 759.1 743.7 731.5 721.7
30 969.1 897.5 846.0 808.1 779.7 757.9 741.0 727.6 716.7
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Appendix F

One Montgomery Plaza Case Study

Results

F.1 Pareto Front curve
Table F.1, F.2 and F.3 list the optimization results generated from One Montgomery Plaza case

study.

Table F.1: List of the design solutions on the Pareto Front Curve (Part-1)
Solution Index Insulation Level Window Lights Heat Cool PV

1 Wall: R-5.3 LED New New South:Yes 39 year
Operation: $7.50M Window:Q Daylit Sensor: East: Yes

Capital: $4.24M On West: No
2 Wall: R-5.3 LED New New South: Yes 30 year

Operation: $7.51M Window:Q Daylit Sensor: East: No
Capital: $3.35M On West: No

3 Wall: R-5.3 LED New New South:No 29 year
Operation: $7.53M Window:TG Daylit Sensor: East: Yes

Capital: $3.15M On West: No
4 Wall: R-5.3 LED New New South:No 20 year

Operation: $7.53M Window:TG Daylit Sensor: East: No
Capital: $3.17M On West: Yes

5 Wall: R-5.3 LED New New South:No 20 year
Operation: $7.53M Window:TG Daylit Sensor: East: No

Capital: $2.25M On West: No
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Table F.2: List of the design solutions on the Pareto Front Curve (Part-2)
Solution Index Insulation Level Lights Heat Cool PV PP

6 Wall: R-5.3 LED New New South:No 20 year
Operation: $7.59M Window:TG Daylit Sensor: East: No

Capital: $2.18M Off West: No
7 Wall: R-3.3 LED New New South:No 20 year

Operation: $7.60M Window:TG Daylit Sensor: East: No
Capital: $2.17M Off West: No

8 Wall: R-5.3 LED New New South:No 18 year
Operation: $7.67M Window:DTC Daylit Sensor: East: No

Capital: $1.90M On West: Yes
9 Wall: R-3.3 LED New New South:No 18 year

Operation: $7.69M Window:DTC Daylit Sensor: East: No
Capital: $1.89M On West: No

10 Wall: R-5.3 LED New New South:No 18 year
Operation: $7.72M Window:DTC Daylit Sensor: East: No

Capital: $1.83M Off West: Yes
11 Wall: R-3.3 LED New New South:No 18 year

Operation: $7.74M Window:DTC Daylit Sensor: East: No
Capital: $1.82M Off West: Yes

12 Wall: R-5.3 T5 New New South:No 16 year
Operation: $7.89M Window:DTC Daylit Sensor: East: No

Capital: $1.52M On West: No
13 Wall: R-3.3 No New New South: No 16 year

Operation: $7.92M Window:DTC Daylit Sensor: East: No
Capital: $1.49M On West: No

14 Wall: R-5.3 LED New New South: No 7.7 year
Operation: $7.92M Window:No Daylit Sensor: East: No

Capital: $0.87M On West: No
15 Wall: R-3.3 LED New New South:No 6.9 year

Operation: $7.98M Window:No Daylit Sensor: East: No
Capital: $0.80M Off West: No

16 Wall: R-5.3 T5 New New South:No 3.0 year
Operation: $8.15M Window:No Daylit Sensor: East: No

Capital: $0.50M On West: No
17 Wall: R-3.3 No New New South:No 1.4 year

Operation: $8.24M Window:No Daylit Sensor: East: No
Capital: $0.40M On West: No

18 Wall: R-5.3 T5 No New South:No 1.1 year
Operation: $8.42M Window:No Daylit Sensor: East: No

Capital: $0.37M On West: No
19 Wall: R-3.3 T5 No New South:No N/A

Operation: $8.50M Window:No Daylit Sensor: East: No
Capital: $0.30M Off West: No
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Table F.3: List of the design solutions on the Pareto Front Curve (Part-3)
Solution Index Insulation Level Window Lights Heat Cool PV

20 Wall: R-3.3 No No New South:No N/A
Operation: $8.52M Window:No Daylit Sensor: East: No

Capital: $0.27M Off West: Yes
21 Wall:No No No New South:No N/A

Operation: $8.76M Window:No Daylit Sensor: East: No
Capital: $0.25M Off West: No

22 Wall: R-5.3 No New No South:No N/A
Operation: $8.86M Window:No Daylit Sensor: East: No

Capital: $0.23M On West: Yes
23 Wall: R-3.3 No New No South:No N/A

Operation: $8.94M Window:No Daylit Sensor: East: No
Capital: $0.15M Off West: Yes

24 Wall: R-5.3 T5 No No South:No Not
Operation: $9.12M Window:No Daylit Sensor: East: No Applicable

Capital: $0.12M On West: No
25 Wall: R-3.3 No No No South:No Not

Operation: $9.21M Window:No Daylit Sensor: East: No Applicable
Capital: $0.02M Off West: Yes

26 Wall:No No No No South:No Not
Operation: $9.48M Window:No Daylit Sensor: East: No Applicable

Capital: $0.00M Off West: No

The “PP” in Table F.1, F.2 and F.3 represents payback period. It is calculated in Equation E.1.

Similarly, the “N/A” of “PP” implies that the design solution has a lower capital cost and oper-

ation costs. In addition, Table F.3 also has “Not Applicable”. This value indicates that a design

solution requires less capital cost than the ASHRAE baseline design. However, it generates

higher annual operation costs. Therefore, there is no savings in the operation phase.
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F.2 LCC model sensitivity analysis results

Table F.4: Net present value of total life cycle cost for time period of 25 years ($1 million)
Solution Index R=1% R=3% R=5% R=7% R=9% R=11% R=13% R=15% R=17%

1 13.74 11.75 10.32 9.27 8.48 7.88 7.41 7.03 6.73
2 12.86 10.87 9.43 8.38 7.59 6.98 6.51 6.14 5.84
3 12.68 10.69 9.25 8.20 7.40 6.80 6.32 5.95 5.65
4 12.70 10.70 9.27 8.21 7.42 6.82 6.34 5.97 5.67
5 11.78 9.79 8.35 7.29 6.50 5.90 5.42 5.05 4.75
6 11.79 9.78 8.33 7.27 6.47 5.86 5.38 5.01 4.70
7 11.80 9.78 8.33 7.27 6.47 5.86 5.38 5.00 4.70
8 11.60 9.57 8.11 7.03 6.23 5.61 5.13 4.75 4.44
9 11.62 9.58 8.11 7.04 6.23 5.61 5.13 4.75 4.44

10 11.60 9.56 8.09 7.00 6.19 5.57 5.09 4.70 4.40
11 11.62 9.57 8.09 7.01 6.19 5.57 5.08 4.70 4.39
12 11.50 9.41 7.91 6.80 5.98 5.34 4.85 4.45 4.14
13 11.51 9.42 7.91 6.79 5.96 5.32 4.83 4.43 4.11
14 10.90 8.80 7.29 6.18 5.35 4.71 4.21 3.82 3.50
15 10.89 8.78 7.26 6.14 5.30 4.66 4.16 3.76 3.44
16 10.80 8.65 7.10 5.95 5.10 4.44 3.93 3.53 3.20
17 10.82 8.64 7.07 5.92 5.05 4.39 3.87 3.46 3.13
18 11.03 8.80 7.19 6.01 5.12 4.45 3.92 3.50 3.16
19 11.04 8.80 7.17 5.98 5.09 4.40 3.87 3.45 3.11
20 11.04 8.79 7.16 5.97 5.07 4.39 3.86 3.43 3.09
21 11.32 9.01 7.34 6.11 5.19 4.48 3.94 3.50 3.15
22 11.43 9.09 7.40 6.16 5.22 4.51 3.96 3.52 3.16
23 11.46 9.09 7.39 6.14 5.20 4.48 3.92 3.47 3.11
24 11.66 9.25 7.51 6.23 5.27 4.54 3.96 3.51 3.14
25 11.68 9.24 7.48 6.19 5.22 4.48 3.90 3.44 3.07
26 11.99 9.48 7.67 6.35 5.35 4.59 3.99 3.52 3.14
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Appendix G

Step-by-step instruction

G.1 Required third-party applications

In order to use the platform, user need to download a few essential tools.

• DesignBuilder version 4.7 and above. This software is recommended for creating an En-

ergyPlus model. It can be downloaded in https://www.designbuilder.co.uk/

download/software/release-software. However, this software has only 30

days free trial.

• An alternative to DesignBuilder v4.7 is the OpenStudio and SketchUp. OpenStudio is a

free EnergyPlus model design tool, and SketchUp is free for education and research us-

age. OpenStudio can be downloaded in: https://www.openstudio.net/downloads

and SketchUp is available in https://www.sketchup.com.

• EnergyPlus version 8.0 and above, this software can be downloaded in https://energyplus.

net. It is free, and there are a lot supporting documents and forums on their website.

• MySQL Community package. This package is commonly used for running SQL server in

the local or distributed systems. It is open source and can be downloaded in https://

dev.mysql.com/downloads/. It is recommended to include MySQL Workbench

in the installation.
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• JAVA8, JAVA is the programming language used to build the optimization platform. The

user must download and install the JAVA SE Development version via this link http:

//www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.

html.

• Eclipse is an open source development platform. It offers strong supports on JAVA and

web development. This software can be downloaded through https://www.eclipse.

org/downloads/.

G.2 System setup

G.2.1 Database setup

First, install all the downloaded software tools and correctly configure them according to the

documentations. A recommended installation order is: (1) EnergyPlus, (2) JAVA, (3) Design-

Builder v4.7 or OpenStudio and SketchUp, (4) MySQL community package and last, the Eclipse

software.

All data required in this platform is exported and packaged in a single file “migrate.sql”. The

user should first launch the MySQL Workbench to import this file. The detail importing process

is described in the list below.

• Select a server instance you want to import to under the Server Adminstration.

• Click on Manage Import/Export button

• Click on Data Import/Restore on the left side of the screen

• Select Import from Self-Contained File radio button

• Select the file path of the “migrate.sql” file.

• Click Start Import button

Once the import is completed, MySQL Workbench will automatically list the SQL schema of

the cost database and building system database. Figure G.1 shows the interface of the MySQL

Workbench after the data is successfully imported. The “energyplusconstruction” schema con-
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Figure G.1: mySQL WorkBench interface with data successfully imported

tains the building system database. All the rest schemas are the cost database.

Import data is a major step. However, the user should also make sure the SQL server is run-

ning on the local machine. The user can use the window command line tool to check the status.

Click “Start” button on Windows, and enter ”CMD” in the “Search programs and files” option

to initiate a new window command line tool session. Then, follow the instruction in Figure G.2.

If the connection is successful, the SQL server will request the password to connect.

G.2.2 JAVA project setup

In this part, there are four JAVA projects to import, and a few configurations need to be done.

The first JAVA project that should be imported is the customized JMetal project. This JAVA

project can be downloaded or cloned from https://github.com/weilixu/CustomJMetal.

The major difference between this customized JMetal project and the JMetal project in https:

//github/com/jMetal/jMetal is the adaptive meta-model algorithm called pNSGAI-

IAdaptive under “metaheuristics.nsgaII package”. Other customized functions include mixed-
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Figure G.2: Success SQL access using window command line tool

type data encoding function, crossover function (MixedSBXSinglePointCrossover) and muta-

tion function (MixedBitFlipPolynomialMutation).

The second JAVA project required is the baseline automation project located in https://

github.com/weilixu/baseline and the last JAVA project can be found in https:

//github.com/weilixu/CostStandard.

Import these three projects into Eclipse. The main executable is in the CostStandard project

(Also, in the Eclipse, the name is changed to MasterFormat project). Therefore, configure the

build path of this project by going to the “Project Properties”. Select the “JAVA Build Path”

option in the prompt window, and select “Projects”. Click “Add” button to add the customized

JMetal project and baseline automation project to the build path of the CostStandard project.

Once the user completed these steps, the project setup is completed.
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G.2.3 System configurations

The system can be started using the MappingPanel.java file under masterformat.gui. The file

directory string in line number 5 in the createAndShowGUI() method should be modified to the

local .idf file directory.

1 p r i v a t e s t a t i c vo id createAndShowGUI ( ) t h ro ws E x c e p t i o n {

/ / c r e a t e and s e t u p t h e window

3 JFrame frame = new JFrame ( ” EnergyPlus�O p t i m i z a t i o n A p p l i c a t i o n V1” ) ;

f rame . s e t D e f a u l t C l o s e O p e r a t i o n ( JFrame . EXIT ON CLOSE ) ;

5 F i l e f i l e = new F i l e ( ”E : / / User / / R e s e a r c h / / 1MP / / imp . i d f ” ) ; / / change t h i s

l i n e t o t h e your . i d f d i r e c t o r y

EnergyPlusModel model = new EnergyPlusModel ( f i l e ) ;

7 / / Add c o n t e n t t o t h e window

frame . add ( new MappingPanel ( model ) ) ;

9

/ / D i s p l a y t h e window

11 f rame . pack ( ) ;

f rame . s e t V i s i b l e ( t r u e ) ;

13 }

The hyper-parameters for the ammNSGAII algorithm can be configured in the EnergyPlus-

Model.java file (under eplus package). A method called BudgetEUIOptimization() holds all the

parameters that required.

The parameters are separated into three categories, namely the global parameters, operator pa-

rameters, and simulation parameters. The global parameters include the number of iterations

running on actual EnergyPlus simulation (realSimuN), the number of iterations to complete one

optimization cycle (circleDivider), the number of population generated in one iteration (pop)

and the maximum evaluations (ammMaxEvaluation).

The operator parameters include the types of crossover, mutation and selection operators, the

probabilities of executing these operators, and their distribution index if there are any numeric
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values involved in the optimization.

Lastly, the simulation parameters needed in this function is the number of parallel simulations

(thread).

1 p u b l i c vo id b u d g e t E U I O p t i m i z a t i o n ( ) t h r ow s JMException ,

C l a s s N o t F o u n d E x c e p t i o n {

/ / a l g o r i t h m g l o b a l p a r a m e t e r s e t u p

3 i n t rea lSimuN = 3 ; / / t h e a c t u a l No . o f s i m u l a t i o n

i n t c i r c l e D i v i d e r = 2 0 ; / / No . o f i t e r a t i o n f o r one c y c l e

5 i n t pop = 3 0 ; / / number o f p o p u l a t i o n

i n t ammMaxEvaluation = 2870 ; / / s t o p c r i t e r i o n

7 Problem problem = new OPT4 ( b u i l d i n g , idfDomain , p a r e n t F o l d e r ) ;

9 / / o p e r a t o r p a r a m e t e r�s e t u p

S t r i n g c r o s s o v e r T y p e = ” MixedSBXSing lePo in tCrossove r ” ;

11 S t r i n g muta t i onType = ” M i x e d B i t F l i p P o l y n o m i a l M u t a t i o n ”

S t r i n g s e l e c t i o n T y p e = ” BinaryTournament2 ” ;

13 do ub l e c r o s s o v e r P r o b a b i l i t y = 0 . 9 ;

do ub l e c r o s s o v e r D i s t r i b u t i o n I n d e x = 2 0 . 0 ;

15 do ub l e m u t a t i o n P r o b a b i l i t y = 0 . 5 ;

do ub l e m u t a t i o n D i s t r i b u t i o n I n d e x = 2 0 . 0 ;

17

/ / p a r a l l e l s i m u l a t i o n p a r a m e t e r s

19 i n t t h r e a d = 6 ; / / number o f c o n c u r r e n t s i m u l a t i o n s

I P a r a l l e l E v a l u a t i o n p a r a l l e E v a l = new M u l t i t h r e a d e d E v a l u a t o r ( t h r e a d ) ;

21

/ / e x e c u t e o p t i m i z a t i o n

23 . . .

}
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G.2.4 Configure optimization output file directory

Another important step in the system configuration is to configure the directory for optimiza-

tion output files. First, there are two output files, “FUN” and “VAR” will be generated under

the program directory. The “FUN” contains the value of each objective for every optimal de-

sign solution. Similarly, “VAR” contains the variables or design parameters selected for the op-

timal design solutions. The directory of these two files can not be changed. Besides these two,

the directories that needs to be manually changed are the outputs of all the generated design

solutions (“output.txt”) and the output of the prediction errors (“prediction.csv”).

To change the output files directory, the user needs to visit the “EnergyPlusBuildingForHVAC-

Systems.java” and find the “writeOutResults” function.

p u b l i c vo id w r i t e O u t R e s u l t s ( ) {

2 i n t row = o p t R e s u l t s . g e t R e s u l t S e t ( ) . s i z e ( ) ;

t r y {

4 / / change t h e d i r e c t o r y h e r e ! !

F i l e W r i t e r w r i t e r = new F i l e W r i t e r ( ”E:\\02 W e i l i \\02 R e s e a r c h \\OneMP\\

o u t p u t . t x t ” ) ;

6 f o r ( i n t i =0 ; i<row ; i ++){

. . .

8 }

w r i t e r . f l u s h ( ) ;

10 w r i t e r . c l o s e ( ) ;

} c a t c h ( IOExcep t ion e ) {

12 e . p r i n t S t a c k T r a c e ( ) ;

}

14 }

To change the prediction error files directory, the user needs to visit one of the “OPT” file, for

example, the “OPT5”, and locate the function “dataForplot()”. The number of the prediction

error files depends on the number of optimization cycle the user specify. For instance, if the
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number of cycle is calculated to be 5, then the optimization will generates 5 prediction error

files.

p u b l i c vo id d a t a F o r p l o t ( ) {

2 t r a inNumber ++;

S t r i n g B u f f e r sb = new S t r i n g B u f f e r ( ) ;

4 . . .

t r y {

6 / / change t h e d i r e c t o r y h e r e ! !

F i l e f i l e = new F i l e ( ”E:\\02 W e i l i \\02 R e s e a r c h \\OneMP\\\ p r e d i c t ” +

t r a inNumber + ” . csv ” ) ;

8 i f ( ! f i l e . e x i s t s ( ) ) {

f i l e . c r e a t e N e w F i l e ( ) ;

10 }

F i l e W r i t e r fw = new F i l e W r i t e r ( f i l e . g e t A b s o l u t e F i l e ( ) ) ;

12 B u f f e r e d W r i t e r bw = new B u f f e r e d W r i t e r ( fw ) ;

bw . w r i t e ( sb . t o S t r i n g ( ) ) ;

14 bw . c l o s e ( ) ;

} c a t c h ( IOExcep t ion e ) {

16 e . p r i n t S t a c k T r a c e ( ) ;

}

18 }

G.3 Prepare EnergyPlus model

The EnergyPlus model can be prepared in DesignBuilder Version 4.7. There are a few limi-

tations on the structure of energy model in order to successfully generate a qualified energy

model for the study.
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Figure G.3: CSL model in DesignBuilder editing interface

G.3.1 Zone naming

As described previous, the current HVAC system automation system does not equip with intel-

ligence that can automatically configure the thermal zone groups. Therefore, manual thermal

zone grouping is required, and the user should give the thermal zone a name format that follows

Block%Function%Identification%V entilation%Thermal. Figure G.3 shows the CSL

energy model in DesignBuilder version 4.7. On the left side of the DesignBuilder interface is

the thermal zone browser. It can be observed that the zone names are following the proposed

format closely. The block name can be mapped to Block. The zone name consists of a zone’s

function (e.g. Break), identification (e.g. 1), ventilation system group (e.g. AHU) and thermal

system group (e.g. South).
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G.3.2 Window to wall ratio

Additionally, in Figure G.3, the window to wall ratio of the building is set to 90%. This is be-

cause the current algorithm can only shrink the window size on its host surface. The expansion

function is implemented; however, it still requires comprehensive tests. The biggest challenges

for developing a window expansion function in EnergyPlus can be summarized into two points.

• The expansion may require relocating the center of the window surface to prevent the

over-expand issue, which the window dimensions exceed its host surface’s boundary.

• The fenestration surface object in EnergyPlus only allows 3 or 4 coordinates to identify

windows. The expansion could cause “too many coordinates” sever error, which will halt

the simulation. This error is often seen when the host surface of the window is not in a

regular shape.

These two points have made the development of expansion function significantly more chal-

lenging than the shrinking function. Therefore, as an alternative, the energy model should be

built with 90% window to wall ratio to include this design parameter in the optimization pro-

cess.

G.3.3 Daylighting position

The daylighting sensors should be predefined in the DesignBuilder. Figure G.4 shows the De-

signBuilder daylighting sensor editing interface. On the tab “Lighting Control”, the user should

check on and configure the performance of daylighting sensors that should be performed in the

optimization. This is because the current daylighting module does not equip with sensor lo-

cation generator, which could generate coordinates that the sensor should be placed in a room.

Therefore, rather than develop the entire daylighting sensors, a lighting sensor switch is adopted

in the current version of the optimization system. Based on the selection of daylighting sensors

(Yes/No) in the optimization process, the system will keep or delete these daylight sensors.
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Figure G.4: CSL model in DesignBuilder editing daylighting sensor

G.4 Select design parameters

Once configured the platform directory and the EnergyPlus model, the user can start the pro-

gram by clicking the “Run” button on “MappingPanel.java” (Figure G.5). The program will

start loading the EnergyPlus model. Once it finished loading, the BEM-QTO application inter-

face will be prompted as shown in Figure G.6.

Click the highlighted button, “Optimization”, to switch to the optimization interface. Figure

G.7 shows the optimization interface. The red block highlights the optimization algorithm se-

lection. In total there are three optimization algorithms available for the version 1. They are the

conventional NSGA-II, adaptive meta-model NSGA-II and Particle Swarm algorithms. The

green block illustrates the hyper-parameters for these algorithms. However, in this version,
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Figure G.5: Start the program on Eclipse

Figure G.6: BEM-QTO interface

the parameters are not fully connect to the optimization engine. User is still recommended to

change these hyper-parameters by following the instruction in Section G.2.3. Furthermore, the

blue blocks show the optimization type. In current version, user can switch between the new

construction and the retrofit project. The change of optimization type will affects the available

design parameters which are highlighted by a yellow block.

Within the yellow block, user can select the range of design options under each design param-
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Figure G.7: Optimization interface

eters. Once the range is set, the optimization can be initialized by click the “Start” button. The

program will not response to any further actions until severe errors detected or the optimization

is completed.

G.5 Result analysis

Once the optimization is completed, the program will resume and the output files will be gener-

ated at the directory where the user have specified. Since both “output.txt” and “prediction.csv”

follows the comma-separate values (CSV) format, it is recommended to analyze the data in R.

In this instruction, a decision tree style results analysis is introduced for comparing the base

case with all the generated design solutions. Figure G.8 shows the example from the new con-

struction case study.
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Figure G.8: Result analysis - decision tree style

The black dashed line indicates the operation costs of the base case and the red dashed line

shows the capital cost of the base case. Based on the black dashed line, the entire design so-

lutions can be separated into “Desirable” and “Undesirable”. The reason for this labeling is

because the undesirable design solutions have higher operation costs than base case. If the base

case is ASHRAE 90.1 2010 performance rating method, the undesirable design solutions will

failed to meet building code and green building certifications such as LEED.

In addition, the “Desirable” design solutions can be further divided into “Premium” and “Econ-

omy”. The desirable economy solutions reduce both the capital cost and operation costs com-

pare to base case. On the contrary, the desirable premium solutions increase the capital cost

compare to the base case, but they save more energy cost than base case and desirable economy

solutions.
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