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Abstract 

Rapid testing of electrocatalysts and corrosion resistant alloys accelerates 

discovery of promising new materials. Imaging amperometry, based on the 

deployment of colloidal particles as probes of the local current density, allows 

simultaneous electrochemical characterization of the entire composition space 

represented in a thin-film alloy "library" electrode.  Previous work has shown that 

nanometer scale variations in particle-electrode distance for single particles in 

electric fields can be measured optically and translated into local current density, 

independent of electrical measurements.  Implementation of this method to enable 

simultaneous measurements across non-uniform samples involves using a sparse, 

uniform layer of particles, which requires modification of previously existing 

theory and methods.  Imaging individual particles for this application is infeasible 

at the low magnification levels needed to image an entire macroscopic (~1 square 

cm) sample.  Mapping of electrochemical activity across the surface can be 

achieved nevertheless by imaging the entire electrode surface and gridding the 

resulting images into a mosaic of square “patch” areas 100 μm to a side, each 

containing 15-30 particles.  The work presented in this dissertation shows that the 

integrated light intensity in each patch is the sum of the light scattering from all of 

the particles present in that patch, and that this total measured intensity can be 

used to infer the current density in the patch during electrochemical experiments. 

In addition to scaling the imaging ammeter up to ensembles of particles, 

the theory for translating measured particle motion to current density has been 

substantially improved.  These improvements involve proper modeling of the 
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current distribution on the electrode below the particles, which has a profound 

impact on the forces acting on each particle.  This work demonstrates that the use 

of realistic kinetic models for the imaging ammeter is both vital and a discovered 

opportunity to increase its sensitivity.  Finite element analysis was used to explore 

the variable space of the parameters involved, to better understand the impact of 

factors such as the current density and solution conductivity on the motion of the 

particles.  Going forward, this information will be leveraged to improve the 

accuracy of the macroscopic imaging ammeter. 

 To complete the groundwork for the imaging ammeter laid out in this 

thesis, proof of concept experiments using a nickel/iron composition spread alloy 

film were performed.  In a 1×5 mm2 area containing alloy compositions from 20% 

iron to 100% iron, expected trends in electrochemical activity were observed 

during experiments, i.e. the current density as a function of voltage increased with 

increasing nickel content on the electrode surface.  Future work will probe Fe/Ni 

alloy compositions with less iron, subsequently moving on to other binary and 

eventually ternary alloy systems. 
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Fig. 1.1.    Schematic of the particle-electrode system, where 𝜁𝑝 and 𝜁𝑤 are 
negative.  Electrostatic repulsion pushes the particle away from the electrode 
while gravity pulls the particle down.  With E > 0 as shown here, the sum of the 
electrokinetic forces Fek pulls the particle down towards the electrode surface. If E 
< 0, Fek would reverse direction as well. 
 
Fig. 1.2. A diagram of a particle scattering light during a TIRM experiment. Light 
strikes the interface from within a transparent electrode at an angle greater than 
the critical angle for that interface, engendering an evanescent wave adjacent to 
the interface.  A particle in close proximity to the interface scatters light with an 
intensity I(h) that depends on the particle height h. 
 
Fig. 1.3.  Data from a cyclic voltammogram (CV), showing current density across 
an electrochemical cell as a function of applied potential.  The surface here is tin-
doped indium oxide (ITO), the particles are 10 μm sulfonated polystyrene bead 
and the electrolyte is 0.15 mM KOH.  Inset are images taken of particles levitated 
above the electrode, scattering light from the evanescent wave with an intensity 
that corresponds to the distance between the particles and the wall.  Positive 
current pulls the particles towards the electrode, and negative current drives them 
away. 
 
Chapter 2. 
 
Fig. 2.1. A schematic of the axisymmetric domain space simulated in these 
studies.  Numbered interfaces indicate boundaries at which boundary conditions 
are applied.  E indicates the electric field, positive in this work, and h indicates the 
particle-wall separation.  A and B refer to the electroosmotic flow originating in 
the double layer of the particle and electrode, respectively.  The particle-wall 
separation is indicated by h.  Boundaries 1, 2, and 3 correspond to the electrode, 
particle and axisymmetric axis, respectively, while 4 and 5 are open fluid 
boundaries. 
 
Fig. 2.2.  Potential and normal current density on the electrode surface are plotted 
against radial distance from r=0, directly beneath the particle, for h/a=0.04 and 
𝐸∞ = 33 V/m.  The dashed line indicates the current density given a uniform 
potential distribution on the electrode: this is the primary current distribution.  
The solid line indicates the potential given a uniform current density on the 
electrode, relative to the electrode potential far from the particle. 
 
Fig. 2.3.  The total force on the particle in the z-direction, normalized by Fbulk =
6πεaζE∞, where ζ = ζp = ζw.  The dotted and solid lines indicate analytical 
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solutions in the limit of uniform current density and uniform potential on the 
electrode, respectively.  The upwards and downwards triangles indicate FEM 
results in these same limits.  The other points indicate FEM results for different 
values of J, at a fixed δ=0.0066. 
 
Fig. 2.4.  Force and potential are plotted for h* = 0.04.  (a) Force on the particle in 
the z-direction is plotted against the angle coordinate, where ∠=0 indicates the 
bottom of the particle and ∠=π indicates the top.  The force here is calculated by 
multiplying the stress at a given ∠ and multiplying by the differential wedge area 
2𝜋𝑎2sin (∠).  The solid line indicates the case of uniform potential on the 
electrode and the dashed line indicates the case of uniform current.  The force on 
the top half of the particle is magnified in the inset, to clearly show the 
convergence and sign change.  (b) The potential on the particle surface as a 
function of angle, relative to the potential at the top of the particle.  With this 
frame of reference, convergence between the two curves is again observed for 
angles greater than π/2. 
 
Fig. 2.5.  Fluid flow streamlines calculated around a 10 μm particle given a 
uniform current density on the electrode under the particle, with h*=0.04, 𝜁𝑝 =
𝜁𝑤, and 𝐸∞ = 33 V/m.  This plot illustrates the two separate circulation cells that 
exist given electroosmotic flow originating from the particle and the electrode.  
Streamline spacing is not indicative of fluid velocity. 
 
Fig. 2.6. The ratio of 𝐹𝐸𝑃 to 𝐹𝐸𝑂 as a function of particle-wall separation, in the 
uniform current distribution limit and for four values of J, with δ=0.01. The 
increase with increasing h* is due to the diminishing impact of the electroosmotic 
flow originating at the electrode as the particle-electrode separation increases. 
 
Fig. 2.7.  𝐹𝐸𝑃 and 𝐹𝐸𝑂 as a function of J and δ, for h*=0.02.  As seen in Fig. 2.6, 
𝐹𝐸𝑃∗ > 𝐹𝐸𝑂∗  for ℎ∗ > 0, and that is seen here for all J and δ.  As J becomes large, 
𝐹𝐸𝑃∗  approaches C(h), which is 4.92 for h*=0.02.  In that limit, 𝐹𝐸𝑂∗  approaches 0, 
as seen here. 
 
Fig. 2.8. Two contours of the total force on the particle, where 𝐹𝑇𝑜𝑡 = 0.95𝐹𝑌𝑎𝑟𝑖𝑣 
and 𝐹𝑇𝑜𝑡 = 1.05𝐹𝑌𝑎𝑟𝑖𝑣, plotted for 𝜁𝑝 = 𝜁𝑤 = −100 mV and ℎ∗ = 0.06.  The 
intervening space represents a region of J and δ where Eq. 2.2 is accurate to 
within 5% of the actual force on the particle.   
 
Fig. 2.9.  Current density normal to the an electrode tangent a dielectric colloidal 
sphere, as a function of the radial distance away from the point of contact, 
normalized by the current density far from the particle.  The inset shows the same 
data on a linear/log scale, to illustrate the behavior of the system at small values 
of r/a.  The dotted line indicates data calculated assuming a uniform potential on 
the electrode surface. 
 



xiii 
 
Fig. 2.10.  Current density normal to the an electrode tangent a dielectric colloidal 
sphere, as a function of the radial distance away from the point of contact, 
normalized by the current density far from the particle.  The inset shows the same 
data on a linear/log scale, to illustrate the behavior of the system at small values 
of r/a.  The dotted line indicates data calculated assuming a uniform potential on 
the electrode surface. 
 
Fig. 2.11.  Current density 𝑖𝑧/𝑖𝑎𝑣𝑒|𝑟=0  infinitesimally far away from the point of 
contact between an electrode surface and a tangent particle, normalized by the 
current density far from the particle.  Current densities are plotted at constant 
values of dimensionless exchange current density J, for varying values of 
dimensionless current density δ.  A uniform current distribution is obtained only 
for small J and small δ, where 𝑖𝑧/𝑖𝑎𝑣𝑒|𝑟=0 approaches unity.  Given large J or 
large δ, the system approaches the primary current distribution. 
 
Fig. 2.12. An example of the fitting accuracy in 𝐹𝐸𝑂∗  for h*=0.02.  Circles indicate 
results from FEM calculations, and curves indicate the fit resulting from the 
parameters given in Table 2.3.  Each line indicates a different value of J, ranging 
from 10 to 0.01, decreasing along the arrow shown. 
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Fig. 3.1.  Current density and light scattering from particles (inset images) in a 
typical Ensemble TIRM cyclic voltammetry experiment.  Potentials are relative to 
an Ag/AgCl electrode in the same solution.  Large potentials result in positive 
faradiac current passing through the electrode and a net downward electrokinetic 
force on the particles.  Downward and upward motion of the particles is indicated 
by an increase and decrease in the scattering intensity, respectively. 
 

Fig. 3.2. A diagram of a particle scattering light during a TIRM experiment. Light 
strikes the interface from within a transparent electrode at an angle greater than 
the critical angle for that interface, engendering an evanescent wave adjacent to 
the interface.  A particle in close proximity to the interface scatters light with an 
intensity I(h) that depends on the particle height h. 
 
Fig. 3.3.  The potential energy of polystyrene particles as a function of separation 
between the particle and the wall for 𝜁𝑤 = 𝜁𝑝 = 100 𝑚𝑉 and κ-1 = 25 nm.  The 
increase in ϕ at large separations is a result of the force of gravity on the particle, 
while the exponential increase in ϕ at small separations is due to electrostatic 
repulsion. 
 
Fig. 3.4. Schematic of the particle-electrode system, where 𝜁𝑝 and 𝜁𝑤 are 
negative.  Electrostatic repulsion pushes the particle away from the electrode 
while gravity pulls the particle down.  With E > 0 as shown here, the 
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electrokinetic forces Feo and Fep both pull the particle down towards the electrode 
surface. If E < 0, these forces would reverse direction as well. 
 
Fig. 3.5.  Schematic of the TIRM apparatus used in patch-level ensemble average 
experiments.  The working electrode (WE) and counter electrode (CE) are 
conductive layers of ITO on glass slides.  The reference electrode (RE) is a thin 
Ag/AgCl sheet sandwiched between two Teflon gaskets to ensure insulation and 
seal. 
 
Fig. 3.6.  (a)The probability density functions for simulated total scattering 
intensity (divided by the number of particles) and (b) the mean height h of 
ensembles of varying numbers of particles during open circuit experiments.  
Simulated parameters correspond to expected experimental values: a=2.65μm, 
ζp=-80mV, ζw=-123mV, σ = 25 Ω-1cm-1.  I0 is the intensity of light scattering 
when h=0.  Note (see (b)) that the peak of the mean height distribution shifts from 
the most probable height of the particles, hm, towards the time-averaged mean 
height of the particles, ha, with increasing ensemble size. 
 
Fig. 3.7.  θ is the ratio of 𝐼𝑎 measured in ensemble experiments, which is also the 
mean light scattering intensity of a single particle, to the actual average 𝐼𝑚 for the 
particles in that ensemble, defined as the light scattering intensity of the particles 
at the minimum of their potential energy wells. The larger the particle, the more 
symmetric the probability distribution and the closer the mean and mode heights 
are to each other.  
 
Fig. 3.8.  Currents calculated from ensemble average electrochemical TIRM 
experiments, for particles of two sizes, with and without correcting the scattered 
light intensity to account for the difference between the mean of the scattering 
intensity distribution and the desired scattering intensity corresponding to the 
most probable height of the particles.  The agreement is much improved when 
heavier particles, with smaller differences between the mean and mode heights, 
are used. 
 
Fig. 3.9.  Light scattering intensity measured from ensembles of particles adjacent 
to two portions of the same electrode: one region where the electrode surface was 
gold, and another region of exposed indium doped tin oxide (ITO), as a function 
of applied voltage vs. a Ag/AgCl reference electrode.  From these raw intensity 
data, the differentiation between the two regions of the electrode is clear.  
Direction of the CV sweep is indicated by the arrow. 
 
Fig. 3.10.  The average of the most probable heights of particles in ensembles 
adjacent to two portions of the same electrode: one region where the electrode 
surface was gold, and another region of exposed indium doped tin oxide (ITO), as 
a function of applied voltage vs. a Ag/AgCl reference electrode.  The particles 
over the gold portion of the electrode move in response to the electric field in 
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their vicinity, while the particles over the ITO portion of the electrode do not stray 
far from ℎ𝑚.  Direction of the CV sweep is indicated by the arrow. 
 
Fig. 3.11.  Actual and inferred current densities normal to gold and ITO coated 
sections of the electrode.  Inferred currents are calculated from Eq. 3.11, after 
applying the appropriate corrections to 𝐼𝑚 and 𝐼𝑚′ .  The response of the gold is 
easily distinguishable from the response of the ITO, but the difference between 
the inferred current on gold and the actual current on gold indicates something is 
missing in the model.  
 
Fig. 3.12.  The total electrokinetic force on a colloidal particle as a function of the 
separation between the particle and the nearby electrode, normalized by the 
electrophoretic force that particle would feel at large h.  Curves are plotted for 
analytical solutions in the limiting cases of electrode kinetics, and one 
intermediate case.  The current distribution in the immediate vicinity of each 
particle profoundly affects the force on the particle. 
 
Fig. 3.13.  The actual current passing through a gold electrode is plotted, along 
with currents inferred from measured light scatter from particles adjacent that 
electrode.  The three inferred current plots represent data calculated assuming the 
three electrokinetic models represented in Fig. 3.12.  The currents calculated 
assuming limiting kinetic cases bracket the actual current, which closely 
approximates the intermediate case. 
 
Chapter 4. 
 
Fig. 4.1.  A colloidal particle scattering light from the evanescent light wave 
adjacent a clear electrode surface.  The evanescent wave forms when incident 
laser light strikes the interface at an angle greater than the critical angle of that 
interface.  The intensity of light scattering I(h) increases with decreasing particle-
wall separation h. 
 
Fig. 4.2. Schematic of the particle-electrode system, where 𝜁𝑝 and 𝜁𝑤 are 
negative.  Electrostatic repulsion pushes the particle away from the electrode 
while gravity pulls the particle down.  With E > 0 as shown here, the 
electrokinetic forces Feo and Fep both pull the particle down towards the electrode 
surface. If E < 0, these forces would reverse direction as well. 
 
Fig. 4.3. Schematic of the TIRM cell used in these experiments.  Laser light 
enters from the right, normal to the surface of a equilateral F2 glass prism.  The 
bottom glass slide electrode acts as a waveguide for the laser beam, which reflects 
down the length of the cell and exits through another equilateral prism.  The light 
scattering from the particles interacting with the evanescent wave adjacent the 
working electrode is collected by a CCD camera beneath the cell. 
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Fig. 4.4.  Schematic of the working electrode surface with the Ni/Fe CSAF 
deposited on top.  The CSAF was deposited in the middle of the glass slide, as 
pictured here.  The composition on the CSAF surface are shown below.  The red 
dotted rectangle represents the region over which imaging was performed in this 
study.  Thanks to Matthew Payne for deposition and characterization of the CSAF 
electrode. 
 
Fig. 4.5.  Scattering intensities and current densities over the region of interest. (a) 
Light scattering intensity at open circuit. (b),(e) Light scattering during negative 
and positive polarization, respectively. (c),(f) Current density calculated with 
circular pillbox averaging during negative and positive polarization, respectively. 
(d),(g) Current density calculated averaging over 1×5 mm2 patch regions during 
negative and positive polarization, respectively.  In (c),(d),(f) and (g), lighter 
regions indicate greater positive current, with a maximum of 1 A/m2. 
 
Fig. 4.6.  Current densities inferred from light scatter measurements as a function 
of applied voltage for the upwards sweep of a CV, averaged over ten cycles, for 
three different alloy compositions are plotted here.  Also plotted in green is the 
mean current density across the entire electrode surface, measured electronically.   
 
Fig. 4.7. The maximum current densities during the CV experiments described 
here, inferred from light scattering measurements, as a function of electrode 
composition, plotted as diamonds against the right ordinate axis.  Also plotted 
against the left ordinate axis are current densities at a fixed overpotential of 360 
mV on an alloy oxide electrode coated onto a nickel mesh support, as described 
by Landon et al. Both current densities trend downwards with increasing iron 
content in the electrode, above 20% iron.  Axis scaling is arbitrary, and was 
chosen to illustrate the qualitative agreement between the two data sets. 
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Chapter 1 

Introduction 

1.0 Background 

High throughput testing of electrocatalysts and corrosion resistant 

materials accelerates discovery. Some current methods for rapid testing utilize 

electrodes made from composition spread alloy films (CSAFs), which exhibit 

continuously varying surface concentrations.1–6  While the use of these electrodes 

enables rapid testing of many different alloy compositions in parallel or rapid 

succession, location-specific electrochemical measurements are difficult to 

perform, and the optimal method combining flexibility, speed, and resolution has 

yet to be fully developed.7–9 

Using classical electrochemical methods, testing of electrocatalyst alloy 

combinations is a time consuming and costly process, involving synthesizing 

multiple samples with different compositions and testing each individually.7  

Combinatorial screening of electrocatalysts allows for rapid testing of alloy 

compositions.1–3  Some current methods for combinatorial screening involve the 

use of microelectrode array or composition spread alloy film (CSAF) samples, 

which have different alloy compositions at different locations on the sample.4,10–14  

Characterizing local electrochemical properties for different points on a single 

sample is difficult to do using traditional electrochemical methods, since these 

require the presence of electrolyte solution, which spreads across the entire 

electrode surface.  The use of a scanning drop cell (SDC) electrode can be used to 
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circumvent this problem, and some imaging methods have also been 

investigated.1–3,13,15–18 

SDC makes use of a small drop of electrolyte, radius 50-500 μm, at the 

bottom of a scanning tip.  In this serial method, the tip rasters along the bottom 

electrode surface, stopping to perform electrochemical characterization at 

different points on the surface.  Resolution of 1/10th of the drop diameter has been 

reported for this method, with particle diameters ranging from 1-500 μm.17  This 

method has been used to characterize the electrochemical activity on an AlxCu1-x 

CSAF surface with continuously varying composition.1  As this is a serial method, 

the measurement time for each location on the surface limits the amount of 

information that can be gathered in a reasonable amount of time.  In a practical 

sense this greatly reduces the resolution of this method, since separate ~10 minute 

experiments must be performed at each point on the surface for which data is to 

be gathered.   While this method has proven effective for characterizing binary 

alloy systems, time restraints limit the use of the method to these systems. 

Imaging methods have also been proposed for determining 

electrochemical activity across inhomogeneous surfaces, which have the 

advantage of simultaneous measurements over the entire imaged surface.  In 

1992, Engstrom et al. demonstrated a method for imaging amperometry using pH 

sensitive Fluoroscein to indicate hydrogen evolution, followed by Reddington et 

al. who used quinine as a fluorescent pH indicator in 1998.3,19  The test reaction in 

this work was the oxidation of methanol, which produces protons and changes the 

pH accordingly.  This method is only valid for examining reactions that directly 
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affect the pH of the solution, and even when that condition is met, molecular 

diffusion makes it difficult to resolve features on a varying surface.  In a more 

recent study, Shan et al. showed that surface plasmon resonance (SPR) could be 

used to measure electrochemical activity simultaneously at different points on an 

inhomogeneous surface: specifically, one which had a fingerprint deposited onto 

it.18  Unsurprisingly, portions of the surface which were not covered by skin oils 

were more electrochemically active than portions which were.  While this is a 

promising approach, only noble metal surfaces are candidates for SPR 

measurements, which reduces this method’s scope.   

These contributions indicate substantial interest in high throughput 

methods in the electrochemistry community.  By imaging colloidal particles as 

probes of local electrochemical current, we are able to combine the strengths of 

SDC (accurate measurement, independent of reaction) with those of imaging 

techniques (rapid, parallel measurements over the entire surface).  Although the 

method described here requires a transparent electrode and a constant ionic 

strength, its advantages should allow for rapid identification of new alloy 

combinations for electrocatalytic applications through the testing of 

electrochemical activity across CSAF surfaces. 

1.1 Electrocatalysis of the oxygen evolution reaction 

The work presented here explores the oxygen evolution reaction (OER) in 

alkaline solution as a test system.  The OER is an electrochemical reaction 

implicitly linked to many energy storage problems through electrolysis of water 

for H+ generation.  The OER requires more energy than the opposing hydrogen 
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evolution reaction, and makes hydrogen evolution, as a whole, much less efficient 

than it could be since both reactions must progress at the same rate.20  This is the 

motivation behind the search for effective, inexpensive electrocatalysts for the 

OER.  Traditionally, alloy electrocatalyst samples are prepared and tested one 

alloy composition at a time— given the large composition space of alloy 

electrocatalyst systems, testing to determine the ideal composition is a time 

consuming proposition.  Development of a method for rapidly testing a CSAF 

sample and analyzing the data would assist researchers in this field. 

The OER is a convenient test reaction for the imaging ammeter for several 

reasons.  TIRM is most accurate at very small particle-wall distances, meaning 

that it is a much better at detecting changes in particle height when the particles 

are being electrophoretically drawn towards the electrode than when they are 

being pushed away.  The electrodes under investigation generally have a layer of 

oxide at the electrolyte interface, resulting in a large negative equilibrium charge 

on the surface.  As such, negatively charged particles must be used in these 

experiments, as they can be levitated above the surface due to electrostatic 

repulsion.  Conveniently, negative particles are drawn towards the electrode in the 

anodic current developed during oxygen evolution on the nearby electrode, 

enabling very accurate TIRM measurements.   

Many alloy systems have been investigated for use in the OER.  Trasatti 

reported results for mixtures of nickel and iron oxides and for mixtures of 

NiCo2O4 and FeOx.21  Mixing FeOx and NiOx, he found a “sharp maximum” in 

oxygen generation in the range of 10-20 mol% Fe.22  Later, Trasatti found that the 
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mixed component system NiCo2O4 and FeOx is effective in alkaline solutions, but 

reported only slight dependence on composition.  The NiFe system represents an 

excellent basis for investigating the proposed method for high throughput 

screening of electrocatalysts.  Enough is known about its performance to serve as 

a reference for the findings, and it is a technologically relevant system.   

1.2 Motion of particles under the influence of an electric field 

Microparticles adjacent to an electrode surface are levitated hundreds of 

nanometers from the surface, at an equilibrium height where the gravity, 

electrostatic repulsion, electrophoretic and viscous forces all sum to zero.23,24  

Microparticles levitated over an electrode surface are pictured in Fig. 1.1, where 

the bottom electrode is polarized positively with respect the top electrode.  Given 

sufficient polarization, oxidation occurs at the bottom electrode, resulting in a 

positive electric field, and anodic current indicated by the large red arrow.  The 

electric field results in an electrokinetic force felt by the negatively charged 

particles, which are attracted to the electrode, resulting in smaller average 

particle-wall separations.  Were the direction of the electric field reversed, the 

particles would instead be propelled away from the bottom electrode, which 

would be passing cathodic current.  It is important to note that the strength of the 

electrokinetic force acting on the particles, and therefore their departure from their 

equilibrium height, is dependent on the strength of the local electric field, which 

in turn is proportional to the local current density.   
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Fig. 1.1.    Schematic of the particle-electrode system, where 𝜁𝑝 and 𝜁𝑤 are 
negative.  Electrostatic repulsion pushes the particle away from the electrode 
while gravity pulls the particle down.  With E > 0 as shown here, the sum of the 
electrokinetic forces Fek pulls the particle down towards the electrode surface. If E 
< 0, Fek would reverse direction as well. 
 
1.3 Relationship between particle motion and current density 

 The distance between a colloidal particle and a nearby surface can be 

measured very accurately through the use of total internal reflection microscopy 

(TIRM).25  In this method, a laser is directed at the electrode/electrolyte interface 

at an angle of incidence θ>θc, where θc is the critical angle for that interface, 

resulting in total internal reflection.  An evanescent light wave forms which 

travels parallel to the interface and has an intensity that decays exponentially with 

distance from the interface.  Fig. 1.2 is a schematic of a particle scattering light 
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from the evanescent wave.  As the particle approaches the surface, light from the 

evanescent wave scatters more intensely.  The scattering intensity can be 

measured and used to determine the absolute height of the particle with a height 

resolution of 1 nm.    

 

Fig. 1.2. A diagram of a particle scattering light during a TIRM experiment. Light 
strikes the interface from within a transparent electrode at an angle greater than 
the critical angle for that interface, engendering an evanescent wave adjacent to 
the interface.  A particle in close proximity to the interface scatters light with an 
intensity I(h) that depends on the particle height h. 
 

Averaging over long times or many cycles to eliminate Brownian 

fluctuations, the departure of the particle height from its equilibrium value can be 

used to determine the local electrochemical current density, as shown by Wirth et 

al.26  Fig. 1.3 shows data from a cyclic voltammogram (CV), which shows current 
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density across an electrochemical cell as a function of applied potential.  Inset are 

images taken of light from an evanescent wave scattering from sulfonated 

polystyrene particles levitated above the electrode.  At middling voltages (-0.5 < 

V < 0.7), the only current being passed is from capacitive charging of the 

electrode double layer, and the scattering off the particles is visible, but not 

intense.  As the applied voltage is increased, oxygen begins to evolve at the 

working electrode and anodic passes through the working electrode, drawing the 

particles closer to the electrode.  This increases the scattering intensity, as seen by 

the larger and brighter dots in the top right inset as compared to the middle inset, 

where negligible current is passing through the electrode.  At voltages less than    

-0.5 V, cathodic current is passed at the working electrode, and the particles are 

expelled away from the surface, out of the evanescent wave.  In traditional single 

particle TIRM experiments, the light scattering intensity is measured with a 

photomultiplier tube (PMT), which measures total light intensity over the entire 

field of view with great accuracy and time resolution.25  The integrated intensity 

of scattering of the ensembles shown in these insets can be measured in the same 

way. 
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Fig. 1.3.  Data from a cyclic voltammogram (CV), showing current density across 
an electrochemical cell as a function of applied potential.  The surface here is tin-
doped indium oxide (ITO), the particles are 10 μm sulfonated polystyrene bead 
and the electrolyte is 0.15 mM KOH.  Inset are images taken of particles levitated 
above the electrode, scattering light from the evanescent wave with an intensity 
that corresponds to the distance between the particles and the wall.  Positive 
current pulls the particles towards the electrode, and negative current drives them 
away. 

 
Thesis Summary 

The end goal of this project is to create maps of electrochemical activity 

for non-uniform macroscopic alloy samples, to identify the locations of greatest 

(or least) electrochemical activity. Previous work established the fundamental 

feasibility of this method, and this thesis represents the theoretical and 

experimental refinement and development of the imaging ammeter for 
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macroscopic CSAF electrodes.   This work can be partitioned into three sections.  

Initial work involved refinement of the basic theory for translating particle motion 

into local current density, based on a computational study of the particle-electrode 

system.  After this, the experimental and theoretical foundation for the imaging 

ammeter was expanded to allow for current determinations based on ensemble 

average light scatter measurements—a necessary step towards the macroscopic 

imaging ammeter.  Finally, the new apparatus to allow for measurements of 

particle light scatter over large areas was constructed and used to probe 

electrochemical current as a function of applied voltage across a nickel/iron 

CSAF surface.   

 Accurate determination of current density from particle motion requires an 

accurate model for the relationship between the electric field strength local to the 

particles and the electrokinetic forces that act on those particles.  The 

electrokinetic force acting on the particle is a strong function of the kinetics of the 

electrode reaction under the particle; for a given electric field, the force acting on 

the particle in the case of slow reaction kinetics can differ from the force acting 

on the particle in the case of fast reaction kinetics by an order of magnitude.  

Previous theoretical studies probed the limiting cases of infinitely fast and 

infinitely slow reaction kinetics, and developed expressions for the relationship 

between the electric field strength and the electrokinetic force on particles given 

these assumptions.24,27,28  In the original imaging amperometry work by Wirth et 

al., the infinitely fast reaction kinetics assumption was invoked for the sake of 

simplicity,26,29 but the actual reaction kinetics of these systems lies somewhere 
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between the two limiting cases.  Finite element analysis was used to explore the 

variable space of the kinetic parameters involved, to better understand the impact 

of factors such as the current density and solution conductivity on the motion of 

the particles.  This allowed for the determination of an empirical relationship 

between the reaction kinetics of the system and the magnitude of the 

electrokinetic forces acting on the colloidal particles adjacent to the electrode, 

which is applied in the later experimental work presented in this thesis. 

 The next step in the realization of the imaging ammeter was the theoretical 

and experimental adaptation of the method to allow for determination of current 

density from ensemble average light scattering measurements from many particles 

arrayed across a macroscopic CSAF electrode surface.  Due to optical and 

computational constraints, imaging individual particles across the entire ~1cm2 

surface is not a feasible approach to the problem.  Mapping of electrochemical 

activity across the surface can be achieved nevertheless by imaging the entire 

electrode surface and gridding the resulting images into a mosaic of square 

“patch” areas 100 μm to a side, each containing 15-30 particles.  The work 

presented in Chapter 3 demonstrates that the integrated light intensity in each 

patch is the sum of the light scattering from all of the particles present in that 

patch, and that this total measured intensity can be used to infer the current 

density in the patch during electrochemical experiments.  This requires a 

correction to the collected data to address the fact that the ensemble average 

intensity values measured to not correspond directly to the minimum energy 

location of the particles.  This correction was derived and applied to the collected 
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data, resulting in much improved agreement between current densities inferred 

from particle scatter and externally measured current densities.   

Additionally, light scatter from colloidal particles over different regions on 

an electrode surface with two areas of differing electrochemical activity (one 

region 100% gold, one region 100% ITO) was measured and used to infer current 

densities for each corresponding electrode region.  Since gold is a much better 

catalyst for the OER than ITO, the difference in particle motion above the two 

regions of the electrode was well pronounced.  The currents inferred from the 

light scatter measurements corresponded to the actual current densities passing 

through these two regions of the same electrode, as well.   

The final experiments were performed with a new experimental apparatus 

that allows for optical measurements of macroscopic samples.  To illuminate 

particles across the entire macroscopic sample, the new apparatus involves 

treating the working electrode as a wave guide, which results in multiple 

reflections of the laser onto the surface of interest.  These experiments provide 

final proof-of-concept for the imaging ammeter, by inferring the current over a 

1×5 mm region of a binary Fe/Ni CSAF electrode from the motion of colloidal 

particles during electrochemical experiments.  The inferred currents agree with 

established trends for that alloy system.20 

Major accomplishments of this thesis: 

1. Development of an empirical relationship between electrode kinetics and the 

electrokinetic forces acting on particles proximate to the electrode.  This allows 
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for more accurate determination of current density from particle motion 

measurements. 

2. Development of theory and experimental techniques to allow for quantitative 

imaging amperometry from ensemble average TIRM measurements.  This was 

a necessary step towards the macroscopic imaging ammeter. 

3. Proof of concept experimentation of the macroscopic imaging ammeter, 

probing electrochemical activity across an iron/nickel binary alloy electrode 

film.  Observed trends agree with the established behavior of this alloy system. 
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Chapter 2 

The effect of electrode kinetics on electrophoretic forces 

Reproduced in part from: 

“The effect of electrode kinetics on electrophoretic forces”, R.M. Rock, P.J. 
Sides, D.C. Prieve, Journal of Colloid and Interface Science 393 (2013) 306. 

2.0 Abstract 

 Electric fields are commonly used to deposit colloidal particles on 

electrode surfaces and can even be used in directed assembly. The electric field 

beneath each particle changes as the particle approaches the wall; the proximity of 

the wall breaks the fore/aft symmetry and drives complicated flows that exert 

forces on the particle. While two limiting cases have been partially analyzed, 

constant electrode potential and uniform current density, the full problem has not 

been explored.  Here, the electroosmotic flows in the region between the particle 

and the electrode are analyzed and the forces are computed for arbitrary electrode 

kinetic boundary conditions.  Finite element analysis is employed to explore the 

current distribution beneath a particle and its impact on the net force acting on the 

particle. Previously established dimensionless kinetic parameters are used to scale 

between the two limiting cases. The forces on particles are an order of magnitude 

larger than the bulk electrophoretic force and are profoundly sensitive to the 

current distribution beneath the particle as it approaches the electrode.  
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2.1 Introduction 

Electrokinetic flows around insulating colloidal particles in close 

proximity to an electrode surface of like charge can move individual particles and 

particle aggregates both in the direction of the imposed field and orthogonally to 

it, with implications for colloidal assembly, electrophoretic deposition, and 

colloidal sensing.1–8 Long-range repulsive and attractive lateral forces between 

these particles arise in the presence of AC or DC electric fields perpendicular to 

the electrode surface. These forces lead to particle aggregation and the formation 

of colloidal crystal lattices.1,2,4,5,8–10  Exploitation of this self-assembly has been 

proposed as a method for fabrication of a variety of devices such as photonic 

crystals, for a variety of applications.5,11,12 

Theory and experiment have established that the motion of particles  is a 

result of mutual entrainment in toroidal fluid flow originating from the interaction 

of an imposed electric field with the electric double layer of the particle, and in 

some cases, with the double layer of the electrode beneath the particle.2,4,13,14  

Experimental studies have been performed in DC electric fields to probe 

interactions between particle pairs and particle ensembles, resulting in an 

empirical understanding of how this behavior changes with particle separation and 

concentration, as well as other control parameters such as electric field direction 

and cell confinement.9,12  Much of the theoretical work in this field has focused on 

determination of the flow profiles in the vicinity of the particle, to determine what 

impact this flow might have on neighboring particles.  The boundary condition 

used on the electrode surface has a profound impact on the magnitude of the 
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electric field underneath the particle, and thereby affect fluid flow and pressure 

gradients that determine the force on the particle and its neighbors.   

As a dielectric colloidal particle approaches an electrode, the geometric 

constraint of passing current through the gap between the electrode and the 

particle alters the relationship between current density and electric potential under 

the particle.  To our knowledge this problem has been treated only in two limiting 

cases: either the electrode potential is uniform and the normal current density is 

non-uniform, or the current density is uniform and the potential is non-

uniform.9,13–17  These two conditions are termed the primary and uniform current 

distributions, respectively.18  The primary current distribution occurs in the limit 

of infinitely fast reaction kinetics and low solution conductivity, while the 

uniform current distribution occurs in the limit of infinitely slow reaction kinetics 

and high solution conductivity.  In other words, the primary current distribution 

develops when the only resistance to current is ohmic resistance in the electrolyte, 

and the secondary current distribution develops when the only resistance to 

current is the slow electrochemical kinetics at the electrode. 

The simpler of these two cases is the primary current distribution because 

the uniform potential does not generate electroosmotic flow along the 

electrode.9,15  This condition also generates a minimum electroosmotic flow 

originating near the particle.  A uniform current distribution does, however, drive 

substantial electroosmotic flow on the surface of the electrode under the particle, 

due to the tangential electric field adjacent to that surface.  This potential gradient 
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on the electrode also accentuates the gradient on the particle surface, resulting in 

increased electroosmotic flow there as well.13 

The consequence of these considerations is that the electrokinetic force on 

the particle perpendicular to the wall depends strongly on the details of the 

electrical boundary condition on the electrode surface. Regardless of the boundary 

condition on the electrode, the perpendicular force increases as the particle 

approaches the electrode surface, due to a combination of changes in the pressure 

gradient around the particle and the potential gradient along the particle surface.  

We refer to the force on the particle due to electroosmotic flow along the particle 

as the electrophoretic force, FEP.  Additionally, if the potential on the electrode 

surface is not uniform, a force resulting from these effects is present and referred 

to here as the electroosmotic force, FEO.  Like the distribution of current density 

itself, these forces have also only been systematically studied in the limits of the 

primary and uniform current distribution. For a wide range of physical and 

electrochemical parameters, the total electrokinetic force in these two cases can 

differ by an order of magnitude or more and varies continuously between the 

extremes.13–15,19  In this work, we examine these forces on the particle as a 

function of the current distribution on the electrode and around the particle.  Finite 

element analysis is used to explore the effect of boundary conditions between the 

two limiting cases. The goal is to quantify the relationship between the force on 

the particle and the physicochemical conditions that determine the current 

distribution, such as electrode kinetic constants and electrolyte conductivity.   
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The current distribution itself under a particle in contact is also examined 

as a function of these same parameters, to provide a greater understanding of how 

the environment under the particle changes with changing electrode conditions.  

This computational approach follows the theoretical work other researchers have 

done to investigate the current distribution on axisymmetric surfaces and around 

particles, and allows for exploration of the variable space between the two 

limiting cases of uniform potential and uniform current density on the electrode 

surface.20,21 
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2.2 Theory 

2.2.0 Uniform potential and uniform current density 

Consider a single colloidal particle separated from an electrode by 

distance h, as in the axisymmetric domain shown in Fig. 2.1.  Given sufficient like 

charges on the electrode and the particle surface, the downward force of gravity 

on the particle and electrostatic repulsion between the particle and the electrode 

balance one another, resulting in an effective equilibrium separation distance heq 

between the particle and the wall.  Force balances and potential energy 

distributions for these particles have been explored in previous works.3,22  When 

current flows through the electrode surface, a potential gradient develops in the z-

direction, resulting in electroosmotic flow originating from the action of the 

electric field on the diffuse part of the electric double layer of the particle.   

Similarly, an electric field may also develop along the electrode surface, which 

can act on the diffuse part of the electrode’s double layer to drive electroosmotic 

flow along that interface. 
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Fig. 2.1. A schematic of the axisymmetric domain space simulated in these 
studies.  Numbered interfaces indicate boundaries at which boundary conditions 
are applied.  E indicates the electric field, positive in this work, and h indicates the 
particle-wall separation.  A and B refer to the electroosmotic flow originating in 
the double layer of the particle and electrode, respectively.  The particle-wall 
separation is indicated by h.  Boundaries 1, 2, and 3 correspond to the electrode, 
particle and axisymmetric axis, respectively, while 4 and 5 are open fluid 
boundaries. 

 The tangential electric fields along the particle and electrode surfaces both 

depend on the distribution of the electric potential at the electrode,  ϕ|z=0 , which 

is defined as the potential of a reference electrode of the same kind as the working 

electrode and located just outside the diffuse layer.13,15,23  Two limiting cases 

bound the range of possible potential distributions.  When the electrode offers no 



23 
 

 
 

electrochemical charge transfer resistance to current, ϕ|z=0 equals the applied 

voltage V0 at every location on the surface, and the tangential electric field 

Er|z=0 = 0.  Given the uniform driving force for current on the electrode surface 

and the large ohmic resistance resulting from the constrained geometry under the 

particle, a non-uniform current distribution develops under the particle, known as 

the primary current distribution.18  The primary current distribution for an 

insulating sphere tangent to an electrode surface, one limiting case of this 

problem, was described in 1980.21   

A very different limiting behavior occurs when the electrochemical kinetic 

barrier to current at the electrode is very high and the ohmic resistance in the 

electrolyte very low; this combination results in a uniform current distribution on 

the electrode under the particle.  If the current density normal to the electrode is 

uniform and if the particle is very close to the wall (h/a ≪ 1, where a is particle 

radius), the current density in the electrolyte between the particle and the wall 

significantly exceeds the current density far from the particle.  Since current is 

passing through the electrolyte under the particle, a radial potential gradient 

appears in the electrolyte adjacent to the electrode; that is to say, Er|z=0 ≠ 0.   

The potential immediately adjacent to the electrode surface and the current 

normal to the electrode are shown in Fig. 2.2 as a function of radial distance from 

the bottom of a tangent insulating particle, for the uniform current density and 

uniform potential cases, respectively.  These data were computed numerically 

following the method described in this work, for a current density far from the 
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particle of +0.1 A/m2, a particle size of a=5μm and a solution conductivity of 30 

μS/cm. 

 

Fig. 2.2.  Potential and normal current density on the electrode surface are plotted 
against radial distance from r=0, directly beneath the particle, for h/a=0.04 and 
𝐸∞ = 33 V/m.  The dashed line indicates the current density given a uniform 
potential distribution on the electrode: this is the primary current distribution.  
The solid line indicates the potential given a uniform current density on the 
electrode, relative to the electrode potential far from the particle. 
 

In the limit of an infinitesimally thin double layer, any tangential 

component of the electric field appears to cause the fluid to “slip” along a charged 

solid surface at a speed given by Smoluchowski’s equation: 

ut =
εζEt
µ

 

where ut is the fluid velocity tangent to the surface, ζ is the zeta potential of the 

surface (either particle ζp or electrode ζw), Et is the electric field tangent to the 
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surface, and μ is the viscosity of the electrolyte.  In the example of E>0 and 

ζp < 0, the direct action of the electric field on the negatively charged particle 

pulls it toward the electrode while the same electric field acts to push the 

positively charged cloud of counterions away from the electrode and up over the 

surface of the particle; the net electrophoretic force on the particle is downward 

and denoted by FEP.   As the particle approaches the wall, both the electric field 

tangent to the particle surface and the hydrodynamic resistance to movement of 

the particle increase.  Assuming a primary current distribution under the particle, 

Keh & Lien15 calculated the electrophoretic mobility of the particle as a function 

of h, and Solomentsev et al. 9 offered an expression for the electrophoretic force, 

FEP, on the particle, given by Eq. 2.1.  

 Ftot = FEP = 6πεaζpE∞C(h) (2.1(a))  

 C(h) = h+1.554a
h+0.300a

 (2.1(b)) 

where E∞ is the electric field far away from the particle, ε is the dielectric 

permittivity of the electrolyte, Fbulk = 6πεaζpE∞ is the electrophoretic force the 

particle feels far away from the wall in the limit of an infinitesimally thin double 

layer, and C(h) is a correction for the proximity of the wall.  As the particle 

approaches the wall (h→0), C(h) approaches a constant value of 5.18, and at large 

h, C(h) approaches unity, indicating that FEP  =  Fbulk.  It is important to note 

again that in this limit, there is no electroosmotic flow along the electrode because 

ϕ|z=0 is uniform over the electrode surface. 
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In the limit of a uniform current density under the particle, a non-zero 

potential gradient exists on the electrode surface under the particle, as shown in 

Fig. 2.2.  This electric field component drives radial electroosmotic flow along the 

electrode, in addition to the electroosmotic flow on the particle surface.  The 

entrainment force from the flow on the electrode, FEO, can be of the same order of 

magnitude as the electrophoretic force on the particle, FEP.  In the limit of thin 

double-layers and small particle-wall separation, Yariv13 calculated the combined 

electrophoretic and electroosmotic force on the particle, shown in Eq. 2.2.  

  Ftot = FEP + FEO = 3επE∞ �
a2

h
� �ζw + ζp� (2.2) 

Here, ζw is the zeta potential of the electrode.  The equal weighting of ζw and ζp 

in this equation indicates that, at infinitesimally small particle-wall separations, 

FEO = FEP if the two zeta potentials are equal.   Yariv13 points out that in the limit 

of h → 0 most of the contribution to either force arises from the narrowest region 

of the gap between the sphere and the plate where the two surfaces are virtually 

parallel to each other.  In this limit, the tangential component of the electric field 

is independent of z and thus the same for either surface.   

Given that Yariv’s analysis applies only asymptotically as h → 0, it should 

not be applied when the particle is far from the electrode; the boundary conditions 

on the electrode as well as ζw become irrelevant and Ftot|h→∞ = Fbulk.   
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2.2.1 The intermediate case: nonuniform current density and potential 

The current distribution in the general case falls somewhere between these 

two special cases.   A  more general boundary condition on the electrode surface 

is the Bulter-Volmer equation which relates the current density to the potential via 

the kinetics of the electrode reaction: 

  iz = i0 �exp �αaF
RT

�V0 −  ϕ|z=0�� − exp �−αcF
RT

�V0 −  ϕ|z=0��� (2.3) 

In this equation, iz is the normal current density at the electrode, i0 is the 

exchange current density of the electrode material, αa and αc are anodic and 

cathodic symmetry coefficients, respectively, F is the Faraday constant, R is the 

gas constant, T is the temperature, and V0 is the voltage applied to the electrode.  

Linearizing this expression around V0 −  ϕ|z=0 =  0 and stating it in terms of the 

electric field on the electrode gives 

  ∂ϕ
∂z
�
z=0

= i0
(αa+αc)F
σRT

�V0 −  ϕ|z=0� (2.4) 

where σ is the conductivity of the electrolyte.  This expression can be 

nondimensionalized by scaling the electric potential with V0 and the axial distance 

z with the radius of the particle.  Grouping the constants on the right hand side of 

the resulting expression, one obtains a dimensionless group that  represents the 

ratio of the ohmic resistance to current in the electrolyte to the kinetic resistance 

to current at the electrode.  This group, J, is given in Eq. 2.5. 24 

  J ≡ (αa+αc)aF
σRT

i0 (2.5) 
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When i≪i0 and V0 − ϕ is small compared to RT/F, J uniquely characterizes the 

current distribution under the particle, as demonstrated by Newman.18  At large 

values of J, the charge transfer kinetics are fast and the ohmic resistance in the 

electrolyte is large, which leads to the uniform potential electrode condition.  As J 

becomes small, kinetic resistance at the electrode dominates, yielding the uniform 

current distribution condition. 

 At large current densities, such as i ≳ i0, linearization of Eq. 2.3 is no 

longer possible, and an additional parameter, δ, becomes important in determining 

the distribution of current and potential under the particle.20  

  δ ≡ (αa+αc)aF
σRT

iavg (2.6) 

Here, iavg is the current density on the electrode far from the particle.   When 

i ≫ i0, δ has a qualitatively similar impact on current distribution as J does when 

i ≪ i0.  When i ≈ i0, the current and potential distribution under the particle is 

affected by both J and δ if they are within a few orders of magnitude of each 

other.  To calculate the force on the particle, three other quantities are needed: the 

ratio of the particle-wall separation to the radius of the particle, h* = h/a, and the 

zeta potentials of the particle and the electrode. 

2.2.2 Equations and boundary conditions 

 In the limit of an infinitesimally thin double layer, where the Debye length 

of the electrolyte is substantially shorter than the other length scales in the system, 

the fluid is electrically neutral virtually everywhere and the problem of 
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determining the electrostatic potential is decoupled from the mass-transfer and 

fluid flow problems.  The electric potential is calculated first by solving Laplace’s 

equation with current conservation at every point in the domain, given by Eq. 2.7. 

  ∇ ∙ i = 0 (2.7(a)) 

  i = σE (2.7(b)) 

  E = −∇ϕ (2.7(c)) 

Here, i is the current density vector and E is the electric field strength.  Next, the 

fluid flow is calculated from Stokes equation with continuity as seen in Eq. 2.8. 

  0 = −∇p + µ∇2u (2.8(a)) 

 ∇ ∙ u = 0 (2.8(b)) 

Where u is the velocity vector of the fluid and p is the pressure.   

The electric field boundary conditions are the Butler-Volmer equation at 

the electrode, axial symmetry at the axis of the particle, ground at the boundary 

opposite the electrode and insulation on the particle and the last boundary.  The 

fluid flow boundary conditions are Smoluchowski flow along the particle and 

electrode surfaces, axial symmetry at r=0 and open boundaries at the other edges.  

The domain and boundary equations are shown in Table 2.1, numbered by the 

boundaries given in Fig. 2. The thin double layer approximation for the electric 

double layer is implicit in these expressions. 
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Table 2.1.  Computational boundary conditions. 

Boundary EC BC Fluids BC 

1 

−σ
∂ϕ
∂z
�
z=0

= i0 �exp �
αaF
RT

(V0 −  ϕ|z=0)� 

− exp �
−αcF

RT
(V0 −  ϕ|z=0)�� 

ur =
εζwEr
µ

 

2 n ∙ i = 0 ut =
εζpEt
µ

 

3 ∂ϕ
∂r

= 0 
∂u
∂r

= 0 

4 ϕ = 0 n ∙ T = 0 

5 n ∙ i = 0 n ∙ T = 0 

 

In the equations of Table 2.1, n is the vector normal to the interface and T 

is the total stress tensor, including contributions from viscous stress and isotropic 

pressure, but not the electrical Maxwell stress.  Analytical analyses of this type of 

problem commonly specify a uniform electric field as an asymptote at infinity for 

mathematical convenience.  The analogous condition would be specification of a 

uniform field on boundary 4, with ∂ϕ ∂z⁄ = − iavg σ⁄ , instead of the zero 

(ground) voltage used here.13,15 In this numerical analysis specifying either the 

average flux or a uniform potential on boundary 4 are functionally equivalent 

conditions, if the distance between boundaries 1 and 4 is many times the particle 
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diameter. In this analysis, we chose to specify  V0 and calculate the current on the 

electrode (boundary 1).  

After the fluid flow is known, the z-component of the total force on the 

particle is calculated from Eq. 2.9: 

 FEK = ∮ n ∙ T ∙ ezdaA  (2.9) 

where ez is the unit vector in the z direction. 

2.3 Methods 

2.3.0 Simulation of electric field and fluid flow 

Finite element method (FEM) calculations were performed using Comsol 

Multiphysics V4.2 to mesh the system depicted in Fig. 2.1 and solve the equations 

presented in Table 2.1.  The fixed computational parameters are presented are 

presented in Table 2.2. These values correspond roughly to the particles and tin-

doped indium oxide (ITO) electrodes in 0.15 mM KOH electrolyte used in 

previous ETIRM experiments.3,19  The values of the dimensionless parameters 

governing the system were varied by changing the exchange current density and 

the applied voltage V0. 
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Table 2.2.  Dimensional parameters used for FEM calculations. 

Parameter Value 

Particle radius a =5 μm 

Solution conductivity σ =30 μS/cm 

Electrolyte viscosity μ =8.8×10-4 Pa×s 

Zeta potential of particle ζp = -100 mV 

Zeta potential of electrode ζe =-100 mV 

Electrolyte density ρ = 1000 kg/m3 

 

The calculations were performed in a domain 200×200 μm2, which was 

large enough to mitigate the effect of the finite domain size on the fluid flow 

immediately surrounding the particle.  The domain was meshed with 

approximately 36,000 mesh points, over 60% of which were within 2a of the 

particle surface.  The particle was bounded by 400 mesh elements, and the 

electrode by 150.  Refining the mesh beyond this complexity did not change the 

results.   

The accuracy of the calculation was validated by comparing the output to 

established theory for the uniform potential limit.  The current normal to an 

electrode in contact with a dielectric sphere was computed and compared to the 

theory presented by Sides & Tobias21, and the fluid flow around the particle was 

compared to the results presented by Keh & Lien15. The FEM results matched the 

published theory and data to within one percent.   
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2.3.1 Calculation of EO and EP forces 

The electrokinetic forces on the particle were calculated from the integral 

presented in Eq. 2.9, along the particle surface.  To confirm that the forces were 

correctly calculated, the force on a microparticle sedimenting through the center 

of an infinite vertical cylinder of finite radius, Fc, was calculated as a function of 

cylinder radius.25 Comparing this result to output of the simulation again showed 

a difference of less than 1% between the theoretical and computational results.  

 FEP and FEO were calculated individually by setting the electrode zeta 

potential ζw = 0 and the particle zeta potential ζp = 0, respectively.   

2.3.2 Variation of J, δ,h* 

The variable space explored in this work consists of J and δ values ranging 

from 0.01 to 10, and h*=h/a values  ranging from 0.02 to 10.  These values 

reflected the range of likely physical operating parameters in electrophoretic 

deposition or imaging amperometry experiments. With all other physical 

properties kept constant, changing V0 changed δ; changing both io and Vo, while 

keeping δ constant, varied J. Variations of all of the physical parameters were 

tested, while keeping the dimensionless groups constant; it was concluded that the 

state of the system is uniquely defined by the set {J, δ, h*, ζp, ζw}. 

Fitting was performed to establish the empirical relationship between the 

force on the particle, and the parameters J, δ and h*.  The forces FEO and FEP 

were normalized as shown in Eq. 2.10 and mapped to the 3D parameter space 

(J,δ,h*). 
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  FEO∗ (J,δ, h∗) = FEO
6πεaζwE∞

 (2.10(a)) 

  FEP∗ (J,δ, h∗) = FEP
6πεaζpE∞

 (2.10(b)) 

This scaling nondimensionalizes the forces on the particle, while accounting for 

the fact that FEO∗  originates from flow on the electrode, while FEP∗  originates from 

flow on the particle.  A more complete description of the fitting and the equations 

generated are included in the appendix. 

2.3.3 Current distribution around tangent particle 

 Minor adjustments were made to the methods presented above to calculate 

the current density around a particle tangent to the electrode surface.  The 

simulated particle was 10 μm in diameter, and particle-wall contact was 

approximated by h=500 pm, giving h*=5×10-5.  Smaller h values did not 

substantially change the calculated current distributions, but did increase the 

computational time prohibitively.  Electrokinetic fluid flow was not calculated, 

which simplified the problem and allowed for much finer meshing in the region of 

interest underneath the particle.  In these calculations, the domain was meshed 

with ~350,000 mesh units, 90% of which were within 2r of the particle surface.  

Aside from this, the parameter scaling was performed in an identical manner to 

the methods described for the electrokinetic fluid flow and force calculations. 
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2.4 Results & Discussion 

2.4.0 Limiting Cases 

We illustrate the principal finding of this work by showing the total 

electrokinetic force on a particle for varying electrode reactivity at a constant 

current level, calculated with FEM and plotted with Eqs. 2.1 and 2.2 is shown in 

Fig. 2.3.  The two limiting cases, the primary and uniform current distributions, 

were simulated by setting the boundary condition at the electrode to uniform 

potential and uniform current density, respectively, while all of the other 

simulations were performed with the Butler-Volmer relation at the boundary, as 

defined in Table 2.1.  Agreement between the force calculated with FEM and Eqs. 

2.1 and 2.2 is very good in both of the limiting cases.  The difference between the 

force calculated for larger h* using Eq. 2.2 and from the simulation is expected, 

because Eq. 2.2 was derived for asymptotically small values of h*.  This 

expression vanishes at large particle-wall separations, while the true value of 

FEP∗ + FEO∗  approaches 1 at large values of h*; one therefore expects the simulated 

values to exceed Yariv's predictions as the separation between the particle and the 

wall increases.  The simulations accurately reflected this difference. 
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Fig. 2.3.  The total force on the particle in the z-direction, normalized by Fbulk =
6πεaζE∞, where ζ = ζp = ζw.  The dotted and solid lines indicate analytical 
solutions in the limit of uniform current density and uniform potential on the 
electrode, respectively.  The upwards and downwards triangles indicate FEM 
results in these same limits.  The other points indicate FEM results for different 
values of J, at a fixed δ=0.0066. 
 

This plot clearly demonstrates that the primary current distribution and the 

uniform current distribution are associated with the  minimum and the maximum 

in the force on the particle, respectively, and that varying the parameter J at a 

constant value (for example, in Fig. 2.3  δ=0.0066) adjusts the force between 

these two limiting cases.  Fixing J and varying δ yields a qualitatively similar 

trend of decreasing force with increasing δ.  This decrease in total electrokinetic 
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force is due to a decrease in both FEP∗  and FEO∗ , because the strength of the 

tangential electric fields near the particle and the electrode are both minimized in 

the case of uniform potential on the electrode surface.  As expected, the force on 

the particle given a uniform current distribution on the electrode is greater than 

given a uniform potential distribution.  In this case, the total force varies between 

the two current distributions by about a factor of 6.   

 Two notable properties at the particle surface are plotted in Fig. 2.4: the 

force in the z-direction and the potential relative to the potential at the top of the 

particle.  The abscissa on these plots is the angle at the particle center ∠ , where 

∠ = 0 indicates the bottom of the particle (closest to the electrode) and ∠ = π the 

top.  These results were calculated for ζp = ζw = −100mV, h∗ = 0.04, and 

E∞ = 33 V/m, which are typical values for the polystyrene particles and ITO 

electrodes used in ETIRM experiments.3,22  The force plotted is the stress 

multiplied by differential area 2πa2sin∠, which is why the force goes to zero at ∠ 

= 0, even though the stress at that location is at a maximum due to the rapidly 

increasing pressure differential approaching the bottom of the particle.   
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Fig. 2.4.  Force and potential are plotted for h* = 0.04.  (a) Force on the particle in 
the z-direction is plotted against the angle coordinate, where ∠=0 indicates the 
bottom of the particle and ∠=π indicates the top.  The force here is calculated by 
multiplying the stress at a given ∠ and multiplying by the differential wedge area 
2𝜋𝑎2sin (∠).  The solid line indicates the case of uniform potential on the 
electrode and the dashed line indicates the case of uniform current.  The force on 
the top half of the particle is magnified in the inset, to clearly show the 
convergence and sign change.  (b) The potential on the particle surface as a 
function of angle, relative to the potential at the top of the particle.  With this 
frame of reference, convergence between the two curves is again observed for 
angles greater than π/2. 
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Most of the force in Fig. 2.4 acts on the bottom half of the particle—both the 

force on the particle and the potential converge around ∠ = π/2 , moving towards 

the top of the particle.  Note also that the force actually reverses at the top of the 

particle, as seen in the inset.  This is an effect of the reduced pressure around the 

top of the particle—the electroosmotic flow along the particle is away from the 

electrode at every point on the particle surface and therefore viscous forces can 

only act in the –z direction in this case.   

The fluid streamlines around a 10 μm particle given a uniform current 

appear in Fig. 2.5, which highlights the existence of two separate closed 

streamlines in the vicinity of the particle.  This pattern follows from the fact that 

the electroosmotic flow along both the particle and the electrode is away from the 

origin, and therefore the superposition of these flows necessarily results in 

separate closed streamlines corresponding to the flow originating at each surface.  

This flow profile can have a profound impact on the aggregation behavior of 

particles above the electrode.  The streamlines of Fig. 2.5 do not correspond to 

equally spaced values of the stream function, and in most cases the magnitude of 

the flow in the small toroid corresponding to electrode EO is significantly less 

than the flow in the toroid resulting from EO generated at the particle.   
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Fig. 2.5.  Fluid flow streamlines calculated around a 10 μm particle given a 
uniform current density on the electrode under the particle, with h*=0.04, 𝜁𝑝 =
𝜁𝑤, and 𝐸∞ = 33 V/m.  This plot illustrates the two separate circulation cells that 
exist given electroosmotic flow originating from the particle and the electrode.  
Streamline spacing is not indicative of fluid velocity. 

2.4.1 Dependence of EO and EP forces on parameters 

The linearity of the flow equations in these calculations allowed 

decoupling of the flow originating from the double layer of the particle from the 

flow originating from the double layer of the electrode.  This decoupling allowed 

the exploration of the impacts various system parameters on the resulting forces, 

individually. First, we consider the relative strengths of the EP and EO forces on 

the particle and the limiting behavior described by Yariv for uniform current 
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density.  Yariv assumed an asymptotically small particle-wall separation, that is, 

h∗ → 0.  As stated in the theory presented here, in this limit, FEO∗ = FEP∗ , due to 

the dominance of pressure over viscous forces in this limit and the divergence of 

the electric field at r = z = 0.  As the particle moves away from the wall, FEO∗  

decreases more rapidly than FEP∗ , because the particle is moving away from the 

electrode, the source of the FEO∗  entrainment force.  To test the validity of the 

assumptions made in that work, we display the ratio FEP∗ /FEO∗  as a function of h∗ 

representing common values for electrostatically levitated particles in Fig. 2.6, 

demonstrating the rapid decrease of FEO∗  as the particle moves away from the 

electrode surface.  Extrapolating this plot to h∗ = 0 gives FEP∗ / FEO∗  =  1.05, very 

close to the value of 1 predicted by Yariv.  Given a typical particle-wall gap of  

4% of the particle's radius, the difference between FEO∗  and FEP∗  is over 50%. This 

indicates that for particles levitated above the surface, using theory with the 

assumption of very small h* overestimates the strength of electroosmotic flow 

along the electrode surface due to the rapid decay in FEO∗  with separation between 

the particle and electrode. 
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Fig. 2.6. The ratio of 𝐹𝐸𝑃 to 𝐹𝐸𝑂 as a function of particle-wall separation, in the 
uniform current distribution limit and for four values of J, with δ=0.01. The 
increase with increasing h* is due to the diminishing impact of the electroosmotic 
flow originating at the electrode as the particle-electrode separation increases. 
 
 The simulations also allowed systematic variation of J, δ and h∗.  As seen 

in Fig. 2.3, the total force on the particle decays monotonically in a roughly 

exponential manner with increasing h∗.  Fig. 2.7 shows the dependence of FEP∗  

and FEO∗  on J and δ at a fixed particle-wall separation of h∗ = 0.02.  These plots 

show the expected trends: In the limit of small J and small δ, for which the current 

density is uniform, the force is maximal. When either J or δ is large, the force 

approaches a minimum described by Eq. 2.1, for the case of uniform potential on 

the electrode surface where FEP∗ = C(h) and FEO∗ = 0.  Surfaces such as these 

were calculated for heights between h∗ = 0.02 and h∗ = 0.1, and the forces 
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decayed monotonically as a function of height for every value of J and δ.  The full 

set of data from these calculations is available in the supplementary materials.   

 

Fig. 2.7.  𝐹𝐸𝑃 and 𝐹𝐸𝑂 as a function of J and δ, for h*=0.02.  As seen in Fig. 2.6, 
𝐹𝐸𝑃∗ > 𝐹𝐸𝑂∗  for ℎ∗ > 0, and that is seen here for all J and δ.  As J becomes large, 
𝐹𝐸𝑃∗  approaches C(h), which is 4.92 for h*=0.02.  In that limit, 𝐹𝐸𝑂∗  approaches 0, 
as seen here. 

 Fig. 2.7 shows that the forces on the particles are 20 to 30 times the 

corresponding bulk electrophoretic force.  It is also possible using these results to 

determine where on the J-δ variable space it is appropriate to refer to the 

analytical solutions derived in the uniform potential and uniform current density 

kinetic limits.  In Fig. 2.8, contours are plotted against J and δ for FTot = FEO∗ +

FEP∗ = FYariv(1 ± 0.05), where FYariv is the force calculated from Eq. 2.2 for 

ζp = ζw = −100 mV and h∗ = 0.06.  At first glance, the lower left boundary on 

the use of this approximation in this plot seems counterintuitive, since FYariv was 

derived in the limit of uniform current distribution, which occurs in the limit 

J=δ=0.  Without the assumption of h∗ → 0 in the derivation of Eq. 2.2, only one 
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boundary would be present, at FTot = 0.95FYariv, and the force would 

asymptotically approach FYariv heading towards J=δ=0.  As seen in Fig. 2.3, Eq. 

2.2 underestimates the actual force in the uniform current limit, for all h∗ > 0, 

with increasing deviations as the particle-wall separation increases.  This means 

that instead of approaching FYariv asymptotically as moving towards J=δ=0, the 

total force actually crosses through FYariv as the current approaches uniformity on 

the electrode surface.  As a result of this, at moderate values of h*, FYariv is 

accurate only for a narrow range of J and δ, as pictured here.  A similar contour 

can be plotted to illustrate the accuracy of Eq. 2.1 for the uniform potential limit, 

but does not appear on this plot because it is beyond the extent of the parameter 

space shown here, representing likely physical parameters.  The best agreement 

here between FTot and the force determined by Eq. 2.1, FKL, occurs at J=δ=10, 

where FTot = 1.23FKL. 
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Fig. 2.8. Two contours of the total force on the particle, where 𝐹𝑇𝑜𝑡 = 0.95𝐹𝑌𝑎𝑟𝑖𝑣 
and 𝐹𝑇𝑜𝑡 = 1.05𝐹𝑌𝑎𝑟𝑖𝑣, plotted for 𝜁𝑝 = 𝜁𝑤 = −100 mV and ℎ∗ = 0.06.  The 
intervening space represents a region of J and δ where Eq. 2.2 is accurate to 
within 5% of the actual force on the particle.   

2.4.2 Current distribution under a particle tangent to the electrode 

 The finite element method approach demonstrated here was also used to 

examine the current distribution itself under a particle tangent to the electrode 

surface.  Since the particle is assumed to be a perfect dielectric, this system is 

mathematically identical to the electrode-bubble system explored by Sides and 

Tobias21 for the uniform potential case.  This computational method allows for 

exploration of the intermediate parameter space between the primary and uniform 

current density distributions, to illustrate how the current density distribution 

changes with changing electrode reaction kinetics.  As with the force calculations, 

the current distribution was determined for varying values of J and δ.  The current 
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distribution on the electrode for a constant value of J=0.01 and varying values of 

dimensionless current density δ is shown in Fig. 2.9.  As expected, the current 

distribution becomes increasingly uniform with decreasing values of δ, as the 

resistance to current flow at the electrode increases with respect to the ohmic 

resistance to current flow in the electrolyte.  In the limit of large values of δ, the 

potential distribution approaches uniformity, and the current density on the 

electrode drops below i/iave = 0.01 at a radial distance of r/a≈0.3, as reported in 

previous work.21  The current density also goes through a shallow maximum 

around r/a=2 for all cases aside from the uniform current density case.  The 

system represented here is axisymmetric, which means that the derivative of 

current density with respect to r/a must be zero at r/a=0, although this does not 

appear to be the case upon initial examination of the data shown in this figure.  
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Fig. 2.9.  Current density normal to the an electrode tangent a dielectric colloidal 
sphere, as a function of the radial distance away from the point of contact, 
normalized by the current density far from the particle.  The inset shows the same 
data on a linear/log scale, to illustrate the behavior of the system at small values 
of r/a.  The dotted line indicates data calculated assuming a uniform potential on 
the electrode surface. 
  

 The current density distribution with a constant δ=0.01 and varying values 

of J was also explored, as shown in Fig. 2.10.  This shows clearly the transition 

between the uniform potential and uniform current density cases, given constant 

electric field strength far from the particle.  Similar trends are observed here as 

are shown in Fig. 2.9, with deviations between the two figures due to the slightly 

greater impact of J on the current distribution as compared to δ when examining 

the intermediate cases between uniform current density and uniform potential on 

the electrode.   
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Fig. 2.10.  Current density normal to the an electrode tangent a dielectric colloidal 
sphere, as a function of the radial distance away from the point of contact, 
normalized by the current density far from the particle.  The inset shows the same 
data on a linear/log scale, to illustrate the behavior of the system at small values 
of r/a.  The dotted line indicates data calculated assuming a uniform potential on 
the electrode surface. 
 
 To observe the effects of both J and δ on the nonuniformity of the current 

distribution, the current density at r=0 is plotted as a function of δ for varying 

values of J in Fig. 2.11.  This is analogous to the analysis done by John Newman 

for a circular disk electrode.20  Regardless of the value of J, the current density at 

r=0 approaches zero with increasing values of δ, indicating that the system is 

moving away from the uniform current density condition and towards the primary 

current distribution, where 𝑖|𝑟=0 = 0 in this particle-wall geometry.  This plot 

also demonstrates plainly that to obtain the uniform current density distribution, 

both δ and J must be at a minimum.  With increasing values of J, the current at 

r=0 drops off rapidly.  It is important to note that for these computations, r=0 is 
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allowable since h/a = 5×10-5 to facilitate solving of the finite element system.  

Given a particle truly tangent to the electrode surface, these data can be taken to 

be the current density infinitesimally far away from the point of contact between 

the particle and the wall. 

 

Fig. 2.11.  Current density 𝑖𝑧/𝑖𝑎𝑣𝑒|𝑟=0  infinitesimally far away from the point of 
contact between an electrode surface and a tangent particle, normalized by the 
current density far from the particle.  Current densities are plotted at constant 
values of dimensionless exchange current density J, for varying values of 
dimensionless current density δ.  A uniform current distribution is obtained only 
for small J and small δ, where 𝑖𝑧/𝑖𝑎𝑣𝑒|𝑟=0 approaches unity.  Given large J or 
large δ, the system approaches the primary current distribution. 
 

2.5 Conclusions 

The electrokinetic forces on an insulating colloidal particle 

electrostatically levitated over an electrode surface have been computationally 

explored here using finite element analysis, to determine the impact of the current 
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distribution around the particle on these forces.  This current distribution is 

determined by the relationship between the kinetic resistance to electric current at 

the electrode and the ohmic resistance to electric current in the electrolyte.  

Theory exists for determining the force on a particle in either of two limiting 

cases of the current distribution—either the current distribution on the electrode 

under the particle is uniform or the potential is.9,13,15  The theory developed to 

establish the electrokinetic force on the particle in these two limiting cases was 

verified here, and the analysis was extended to explore the variable space between 

these cases, using previously defined dimensionless kinetic parameters J and δ.  

The electrophoretic force originating from the particle was isolated from the fluid 

entrainment force from electroosmotic flow originating from the electrode 

surface, and the former was found to be greater than the latter by at least 50% for 

typical particle-wall separations.  Use of these data will be a key part of future 

work that relies on accurate determination of the electrokinetic force on the 

particle as a function of electric field strength and physical characteristics of the 

particle-wall system, such as in the implementation of the colloidal imaging 

ammeter.   
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2.7.0 Description of Fitting 

Fitting was performed to establish an empirical relationship between the 

force on the particle, and the parameters J, δ and h*.  Multiple parameter fitting 

was performed in Matlab.  At a fixed h*, 1D cross sections of the FEO data for 

constant J were fit to a complementary error function, with three arbitrary fitting 

parameters, giving an expression for the force across each 1D cross section 

(J = J0, δ, h∗ = h0∗).   

FEO∗ (J, δ, h∗ = h0∗) = A1(J) ×  erfc�
log10 δ − A2(J)

A3(J)
� 

where An are initially fit as constants.  To fit a 2D cross section of J and δ at a 

constant h∗, An are fit to separate, arbitrary functions to determine their 

dependence on J.   

A1 = B1 ×  erfc �
log10 J − B2

B3
� 

A2 = C1 × {exp (log10 J − C2) + C3}  

A3 = D1 ×  erfc �
log10 J − D2

D3
� 

These expressions represent the force on the particle at a single value of h*.  To 

express the height dependence of the force, an exponential prefactor is added to 

the equation with several more fitting parameters.   

FEO∗ (J,δ, h∗) = FEO∗ (J,δ, h∗ = h0∗) ×
 E1(J)

�h∗ − E2(J)�
1.3 
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E1 = F1 ×  erfc �
log10 J − F2

F3
� + F4 

E2 = G1 ×  erfc �
log10 J − G2

G3
� + G4 

The h−1.3 dependence of the force is arbitrary, and was found to fit the data well 

for FEO∗  and FEP∗  for h*<1.  FEP∗  was fit in a very similar manner, with one  notable 

difference.  The initial 1-D fit for varying values of δ is modified to account for 

the fact that the minimum in the electrophoretic force in the limit of uniform 

potential on the electrode is C(h), not zero.  All of the other expressions remain 

the same. 

FEP∗ (J,δ, h∗ = h0∗) = A1(J) ×  erfc�
log10 δ − A2(J)

A3(J)
� + C(h) 

The full set of fitting parameters is shown in Table 2.3, and an example of the fit 

is shown in Fig. 2.12 for the force at h∗ = 0.02 and varying values of δ and J.  

Seventeen fitting parameters were used to fit each set of 455 data points, 

occupying the variable space 0.01<J<10, 0.01<δ<10, and 0.02<h*<0.1.  

Effectively fitting the data required a large number of parameters, given the 

highly non-linear nature of the force in this parameter space.  The fit here is 

clearly quite good, but the true strength of this method is the ability to extrapolate 

to values of J, δ and h* beyond the parameter space explicitly explored in this 

study.  Matlab code which can be used to calculate the force for any set of 

physical parameters using this fitted expression can be found in the appendix.  

Forces calculated using these parameters has an average |Ffitted/Fsimulated| of 
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4%, a maximum offset at any single point of 10%.  The full set of data for FEP∗  

and FEO∗ , as well as a Matlab script which uses these fitting parameters to 

determine the forces as a function of input parameters, can be found in the 

auxiliary materials. 

Table 2.3.  Fitting parameters. 

Variable 𝐅𝐄𝐎 𝐅𝐄𝐏 

𝐁𝟏 2.634 2.847 
𝐁𝟐 -0.1053 -0.1052 
𝐁𝟑 0.9816 0.9883 
𝐂𝟏 0.02834 0.02749 
𝐂𝟐 -3.330 -3.309 
𝐂𝟑 7.806 8.026 
𝐃𝟏 1.376 0.6341 
𝐃𝟐 -2.728 0.4704 
𝐃𝟑 8.371 2.064 
𝐅𝟏 0.2203 0.7663 
𝐅𝟐 2.555 1.918 
𝐅𝟑 1.477 1.194 
𝐅𝟒 0.2398 0.8044 
𝐆𝟏 -0.04942 -0.7313 
𝐆𝟐 1.157 1.718 
𝐆𝟑 1.086 1.172 
𝐆𝟒 -0.05738 -0.7677 
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Fig. 2.12. An example of the fitting accuracy in 𝐹𝐸𝑂∗  for h*=0.02.  Circles indicate 
results from FEM calculations, and curves indicate the fit resulting from the 
parameters given in Table 2.3.  Each line indicates a different value of J, ranging 
from 10 to 0.01, decreasing along the arrow shown. 

 

2.7.1 Instrumental MATLAB Code. 

What follows is a MATLAB function written to return the normalized 

electrokinetic forces on a particle, using the fitting described in Appendix A. 

function [F_EO_star, F_EP_star] = EK_Forces(J,delta,hStar) 
  
%[F_EO_star, F_EP_star] = EK_Forces(J,delta,hStar) 
%This takes the variables delta, J, h/a (hStar) and spits out 
FEO_Star and 
%FEP_star 
% Constants format is [Letter]([FEO=1,FEP=2], Subscript), so that 
it comes 
% out as 
% B=[FEO1 FEO2 FEO3 
%    FEP1 FEP2 FEP3] 
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% clear; clc; 
  
Ch = (1.554+hStar)./(0.3+hStar); 
  
lJ = log10(J); 
ld = log10(delta); 
  
A = zeros(2,3); 
B = [2.634, -0.1053, 0.9816; 2.847, -0.1052, 0.9883]; 
C = [0.02834, -3.33, 7.806; 0.02749, -3.309, 8.026]; 
D = [1.376, -2.728, 8.371; 0.6341, 0.4704, 2.064]; 
E = zeros(2); 
F = [0.2203, 2.555, 1.477, 0.2398; 0.7663, 1.918, 1.194, 0.8044]; 
G = [-0.04942 1.157, 1.086, -0.05738; -0.7313, 1.718, 1.172, -
0.7677]; 
  
%Now we solve for the other parameters, E and A, with the same 
format 
  
E(:, 1) = F(:,1) .* erf ( (lJ-F(:,2))./F(:,3) ) + F(:,4); 
E(:, 2) = G(:,1) .* erf ( (lJ-G(:,2))./G(:,3) ) + G(:,4); 
A(:, 1) = B(:,1) .* erfc ( (lJ-B(:,2))./B(:,3) ); 
A(:, 2) = C(:,1) .* (exp ( lJ - C(:,2)) + C(:,3));  
A(:, 3) = D(:,1) .* erfc ( (lJ-D(:,2))./D(:,3) ); 
  
F_EO_star = A(1,1) .* erfc ( (ld-A(1,2))/A(1,3) ) * E(1,1) 
./((hStar-E(1,2)).^1.3); 
F_EP_star = (A(2,1) .* erfc ( (ld-A(2,2))/A(2,3) ) + Ch ) * 
E(2,1) ./((hStar-E(2,2)).^1.3); 
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2.7.2 Data Tables 

 What follows are tables of the raw simulation data for 𝐹𝐸𝑂∗  and 𝐹𝐸𝑃∗ , as 
defined by Eq. 2.10. 

Table 2.4.  𝐹𝐸𝑂∗  as a function of h*, J and δ.  Base of logs is log10.  

Table 2.4(a). 𝐹𝐸𝑂∗ , h* = 0.02 

 
log J→ 

       log δ↓ -2 -1.5 -1 -0.5 0 0.5 1 
-2 22.4171 21.73 19.7203 15.1904 8.5003 3.1847 0.9345 
-1.75 22.3439 21.7039 19.7136 15.1895 8.5004 3.1846 0.9344 
-1.5 22.1669 21.6275 19.6945 15.1867 8.5002 3.1846 0.9344 
-1.25 21.8118 21.4182 19.6341 15.1768 8.4994 3.1846 0.9344 
-1 21.1806 20.9363 19.4547 15.1473 8.4974 3.1844 0.9345 
-0.75 20.1581 20.0244 18.98 15.0555 8.4905 3.1842 0.9344 
-0.5 18.6354 18.5687 17.957 14.7882 8.4694 3.1836 0.9344 
-0.25 16.5787 16.5465 16.2389 14.1104 8.4043 3.1814 0.9344 
0 14.0891 14.0772 13.9358 12.7599 8.2163 3.1743 0.9342 
0.25 11.4049 11.4044 11.3431 10.7812 7.7461 3.1528 0.9337 
0.5 8.8225 8.8202 8.7973 8.5918 6.8843 3.0903 0.932 
0.75 6.5516 6.532 6.5368 6.495 5.6168 2.9318 0.9268 
1 3.9136 4.7065 4.694 4.754 4.51 2.6316 0.9118 

 

Table 2.4(b). 𝐹𝐸𝑂∗ , h* = 0.04 

 
log J→ 

       log δ↓ -2 -1.5 -1 -0.5 0 0.5 1 
-2 10.4545 10.1906 9.3797 7.531 4.6143 1.9961 0.6725 
-1.75 10.4253 10.1802 9.3772 7.5307 4.6142 1.9961 0.6725 
-1.5 10.3556 10.1489 9.369 7.5293 4.6141 1.9961 0.6725 
-1.25 10.2137 10.0652 9.3439 7.525 4.6137 1.9961 0.6725 
-1 9.96 9.8703 9.2697 7.5117 4.6126 1.9961 0.6725 
-0.75 9.5443 9.4984 9.0726 7.4705 4.609 1.9959 0.6725 
-0.5 8.9153 8.8953 8.6428 7.3504 4.5978 1.9955 0.6725 
-0.25 8.045 8.0381 7.9086 7.0436 4.5634 1.994 0.6724 
0 6.9524 6.9593 6.8977 6.4259 4.4637 1.9894 0.6723 
0.25 5.7465 5.7508 5.7326 5.5032 4.2144 1.9752 0.6719 
0.5 4.5366 4.5389 4.5309 4.4467 3.7569 1.9338 0.6705 
0.75 3.4324 3.4308 3.4323 3.4173 3.0805 1.8294 0.6664 
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1 2.6152 2.5092 2.5021 2.5336 2.506 1.6333 0.6544 
Table 2.4(c). 𝐹𝐸𝑂∗ , h* = 0.06 

 
log J→ 

       log δ↓ -2 -1.5 -1 -0.5 0 0.5 1 
-2 6.5688 6.3031 5.9495 4.8684 3.1149 1.4337 0.5195 
-1.75 6.5519 6.2973 5.9482 4.8682 3.1149 1.4337 0.5195 
-1.5 6.5117 6.2798 5.9433 4.8672 3.1149 1.4336 0.5195 
-1.25 6.43 6.2324 5.9286 4.8646 3.1146 1.4337 0.5195 
-1 6.2835 6.1222 5.885 4.8565 3.114 1.4336 0.5195 
-0.75 6.0416 5.9102 5.7689 4.8312 3.1114 1.4335 0.5195 
-0.5 5.672 5.565 5.5144 4.7575 3.1039 1.4332 0.5195 
-0.25 5.1543 5.0669 5.0752 4.5686 3.0809 1.4321 0.5195 
0 4.4976 4.4283 4.4619 4.1858 3.0141 1.4286 0.5194 
0.25 3.7497 3.6976 3.7357 3.6215 2.8465 1.4178 0.519 
0.5 2.9873 2.9483 2.9838 2.9491 2.5394 1.3867 0.5179 
0.75 2.2801 2.2507 2.2754 2.2836 2.0843 1.308 0.5144 
1 1.5427 1.6527 1.6701 1.7117 1.7068 1.1546 0.5043 

 

Table 2.4(d). 𝐹𝐸𝑂∗ , h* = 0.08 

 
log J→ 

       log δ↓ -2 -1.5 -1 -0.5 0 0.5 1 
-2 4.6598 4.5555 4.2447 3.5142 2.3073 1.1124 0.4168 
-1.75 4.6486 4.5517 4.2437 3.5141 2.3072 1.1124 0.4168 
-1.5 4.6216 4.5397 4.2404 3.5136 2.3073 1.1123 0.4168 
-1.25 4.5668 4.5068 4.2305 3.5117 2.3071 1.1124 0.4168 
-1 4.4681 4.4307 4.2007 3.5059 2.3065 1.1123 0.4168 
-0.75 4.3048 4.2843 4.1217 3.4884 2.3047 1.1122 0.4168 
-0.5 4.0538 4.0437 3.9479 3.4368 2.2991 1.112 0.4168 
-0.25 3.6992 3.6944 3.646 3.3043 2.282 1.111 0.4168 
0 3.2441 3.242 3.2204 3.0346 2.2323 1.1082 0.4167 
0.25 2.7192 2.719 2.7098 2.6346 2.1081 1.0995 0.4164 
0.5 2.1766 2.1762 2.1752 2.1563 1.88 1.0743 0.4154 
0.75 1.6673 1.6646 1.6637 1.6749 1.542 1.0109 0.4124 
1 1.1501 1.2298 1.2227 1.2593 1.2688 0.8936 0.4037 
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Table 2.4(e). 𝐹𝐸𝑂∗ , h* = 0.10 

 
log J→ 

       log δ↓ -2 -1.5 -1 -0.5 0 0.5 1 
-2 3.5371 3.4614 3.2346 2.6825 1.8028 0.8921 0.3426 
-1.75 3.5288 3.4586 3.2337 2.6824 1.8028 0.8921 0.3426 
-1.5 3.5091 3.4498 3.2314 2.6819 1.8027 0.8921 0.3426 
-1.25 3.469 3.4258 3.224 2.6806 1.8026 0.8921 0.3426 
-1 3.3969 3.3701 3.2022 2.6763 1.8021 0.8921 0.3426 
-0.75 3.277 3.2624 3.1438 2.663 1.8007 0.892 0.3426 
-0.5 3.0919 3.085 3.0151 2.6245 1.7964 0.8917 0.3426 
-0.25 2.8289 2.8255 2.7905 2.5254 1.7828 0.891 0.3426 
0 2.4886 2.4875 2.4716 2.323 1.7438 0.8886 0.3425 
0.25 2.0925 2.0925 2.086 2.0133 1.6459 0.8813 0.3422 
0.5 1.6789 1.6788 1.6768 1.6427 1.4667 0.8603 0.3414 
0.75 1.2868 1.2856 1.285 1.2694 1.201 0.8075 0.3387 
1 0.8801 0.9462 0.9434 0.9359 0.9922 0.7104 0.3311 

 

Table 2.5.  𝐹𝐸𝑃∗  as a function of h*, J and δ.  Base of logs is log10.  

Table 2.5(a). 𝐹𝐸𝑃∗ , h* = 0.02 

 
log J→ 

       log δ↓ -2 -1.5 -1 -0.5 0 0.5 1 
-2 28.8637 28.1339 26.0006 21.2017 14.1173 8.4477 5.9899 
-1.75 28.7859 28.1074 25.9935 21.2009 14.1172 8.4476 5.99 
-1.5 28.5982 28.025 25.9727 21.1971 14.1173 8.4476 5.99 
-1.25 28.2202 27.8022 25.9083 21.1872 14.1162 8.4476 5.9899 
-1 27.5488 27.2891 25.7174 21.155 14.1138 8.4475 5.9899 
-0.75 26.4597 26.3177 25.2131 21.0572 14.1063 8.4473 5.99 
-0.5 24.8394 24.768 24.1215 20.7704 14.0835 8.4463 5.9899 
-0.25 22.6473 22.614 22.2885 20.0426 14.0116 8.4439 5.9899 
0 19.9931 19.9783 19.8297 18.5947 13.8053 8.4356 5.9896 
0.25 17.1285 17.1218 17.0583 16.4717 13.2883 8.4103 5.9888 
0.5 14.3579 14.355 14.3287 14.0694 12.2961 8.3372 5.9864 
0.75 11.9205 11.9195 11.9078 11.7974 10.9228 8.1528 5.9798 
1 9.935 9.9348 9.93 9.883 9.4768 7.7916 5.9599 
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Table 2.5(b). 𝐹𝐸𝑃∗ ,  h* = 0.04 

 log J→ 
       log δ↓ -2 -1.5 -1 -0.5 0 0.5 1 

-2 15.9942 15.6985 14.8216 12.8131 9.6801 6.8734 5.4384 
-1.75 15.9622 15.6872 14.8187 12.8124 9.6802 6.8734 5.4385 
-1.5 15.8858 15.6537 14.8099 12.8111 9.68 6.8734 5.4384 
-1.25 15.7306 15.5615 14.7825 12.8062 9.6794 6.8734 5.4387 
-1 15.4531 15.3479 14.7012 12.7917 9.6783 6.8734 5.4384 
-0.75 14.9985 14.941 14.4857 12.7466 9.6743 6.8731 5.4385 
-0.5 14.3109 14.2827 14.0158 12.6147 9.6621 6.8726 5.4384 
-0.25 13.361 13.3478 13.2141 12.2788 9.6234 6.8708 5.4382 
0 12.1786 12.1727 12.1121 11.6036 9.5125 6.8654 5.4381 
0.25 10.861 10.8584 10.8329 10.5968 9.2347 6.8487 5.4375 
0.5 9.5428 9.5418 9.5315 9.4319 8.7011 6.8003 5.4356 
0.75 8.3467 8.3462 8.3419 8.3007 7.9604 6.6784 5.4302 
1 7.3432 7.3453 7.3417 7.3254 7.1777 6.4428 5.4146 

 

Table 2.5(c). 𝐹𝐸𝑃∗ , h* = 0.06 

 
log J→ 

       log δ↓ -2 -1.5 -1 -0.5 0 0.5 1 
-2 11.5804 11.4084 10.8946 9.7107 7.8192 6.0345 5.0491 
-1.75 11.5616 11.4017 10.893 9.7104 7.8193 6.0346 5.0491 
-1.5 11.5171 11.3818 10.8875 9.7091 7.8192 6.0345 5.0491 
-1.25 11.4259 11.3276 10.8716 9.7064 7.8188 6.0348 5.0491 
-1 11.2628 11.2019 10.823 9.6973 7.8181 6.0345 5.0491 
-0.75 10.9941 10.961 10.6942 9.6695 7.8153 6.0344 5.049 
-0.5 10.5849 10.568 10.412 9.5879 7.8068 6.0339 5.049 
-0.25 10.0134 10.006 9.9278 9.3787 7.7813 6.0327 5.049 
0 9.2917 9.2884 9.2534 8.9574 7.7063 6.0285 5.0488 
0.25 8.4747 8.4733 8.4586 8.3234 7.5198 6.0159 5.0483 
0.5 7.6437 7.6431 7.6372 7.5815 7.1615 5.9797 5.0467 
0.75 6.8776 6.8771 6.875 6.8528 6.6647 5.8889 5.0422 
1 6.2262 6.2279 6.2256 6.2166 6.1394 5.7138 5.0295 
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Table 2.5(d). 𝐹𝐸𝑃∗ , h* = 0.08 

 
log J→ 

       log δ↓ -2 -1.5 -1 -0.5 0 0.5 1 
-2 9.3071 9.1912 8.8427 8.0383 6.7373 5.4737 4.7442 
-1.75 9.2945 9.1867 8.8416 8.038 6.7373 5.4736 4.7443 
-1.5 9.2641 9.1732 8.838 8.0374 6.7372 5.4736 4.7443 
-1.25 9.2022 9.1362 8.827 8.0354 6.7371 5.4736 4.7443 
-1 9.0914 9.0507 8.7936 8.029 6.7364 5.4737 4.7442 
-0.75 8.9083 8.8861 8.7053 8.0094 6.7344 5.4734 4.7443 
-0.5 8.6279 8.6169 8.5113 7.9521 6.7281 5.4732 4.7442 
-0.25 8.2336 8.2288 8.176 7.805 6.7091 5.472 4.7442 
0 7.7322 7.7301 7.7066 7.5078 6.6538 5.4687 4.7439 
0.25 7.1589 7.158 7.1482 7.0586 6.516 5.4589 4.7435 
0.5 6.5699 6.5694 6.5657 6.5295 6.2517 5.43 4.7423 
0.75 6.0221 6.0221 6.0205 6.0062 5.8858 5.3584 4.7385 
1 5.5531 5.5546 5.5528 5.5474 5.4996 5.2209 4.7276 

 

Table 2.5(e). 𝐹𝐸𝑃∗ , h* = 0.10 

 
log J→ 

       log δ↓ -2 -1.5 -1 -0.5 0 0.5 1 
-2 7.9054 7.8207 7.5643 6.9726 6.0098 5.0583 4.4937 
-1.75 7.8961 7.8173 7.5634 6.9724 6.0098 5.0583 4.4937 
-1.5 7.8738 7.8073 7.5606 6.9719 6.0097 5.0583 4.4936 
-1.25 7.8283 7.7802 7.5524 6.9706 6.0094 5.0582 4.4936 
-1 7.7467 7.7167 7.5277 6.9655 6.0089 5.0583 4.4937 
-0.75 7.6112 7.5952 7.4622 6.9508 6.0075 5.0582 4.4937 
-0.5 7.4036 7.3956 7.3182 6.9076 6.0026 5.0578 4.4936 
-0.25 7.1107 7.107 7.0684 6.7968 5.9877 5.0569 4.4935 
0 6.7355 6.734 6.7171 6.5724 5.9447 5.0541 4.4934 
0.25 6.3044 6.3038 6.2968 6.2323 5.837 5.0461 4.493 
0.5 5.8588 5.8585 5.8559 5.8303 5.6314 5.0225 4.4918 
0.75 5.4424 5.4419 5.4413 5.4313 5.3473 4.9637 4.4886 
1 5.0845 5.0856 5.0842 5.0806 5.0485 4.8521 4.4794 
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Chapter 3 

Ensemble Average TIRM for Imaging Amperometry 

Reproduced in part from “Ensemble Average TIRM for Imaging Amperometry”, 
Reza M. Rock, Paul J. Sides, Dennis C. Prieve, accepted for publication by the 
Journal of Colloid and Interface Science, 2013, DOI: 10.1016/j.jcis.2013.04.010 
 

3.0 Abstract 

Colloidal particles can function as probes of local electrochemical current 

density if a functional relationship between the response of the particles and the 

electric field in the vicinity of the particles can be established. The nanometer 

scale movement of a single colloidal particle during cyclic voltammetry can be 

observed with the aid of total internal reflection microscopy. The intensity of 

scattered light can be related back to the current density local to that particle, and 

hence the method is called imaging amperometry. Data acquisition and optical 

constraints, however, make a single-particle method impractical for analysis of 

macro-scale (~1cm2) surfaces covered by several hundred thousand particles. 

Subdivision of the electrode into small patches, each containing an ensemble of 

particles, solves this problem if the scattering from the ensembles can be related 

to the local electric field.  For example, a 100 × 100 array of square 100 µm 

patches each containing approximately two dozen particles would form a mosaic 

of electrochemical activity with 0.01% area resolution on a 1cm2 electrode having 

location-dependent electrocatalytic properties. The focus of this contribution, 

therefore, is adaptation of the method from single particles to particle ensembles. 

The algebraic relationship between current density and scattering intensity for 

single particles holds for ensembles if the mean scattering intensity is corrected to 
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its mode.  Currents calculated from particle light scattering at different locations 

on a single ITO/gold patterned electrode agree well with currents measured on 

these two electrode materials, which have quite different electrocatalytic 

properties.   
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3.1 Introduction 

High throughput testing of electrocatalysts and corrosion resistant 

materials accelerates research. Some methods for rapid testing utilize electrodes 

made from composition spread alloy films (CSAFs) that exhibit continuously 

varying compositions.1–5  A means for measuring the local current on these CSAF 

electrodes would enable researchers to map the electrochemical activity over the 

entire composition space of the sample in a single experiment. While such 

electrodes would enable rapid testing of many alloy compositions in parallel or 

rapid succession, local electrochemical measurements on films of varying 

composition are difficult because current density in a typical electrochemical cell 

is the quotient of the total current and the entire electrode area.   

Investigators nevertheless have attempted to exploit the high-throughput 

concept.6 The scanning drop cell (SDC) is a serial method for surface 

characterization.  Using this method, one measures local current on an 

inhomogeneous surface by rastering a small drop of electrolyte at the tip of an 

electrode across the surface, stopping to take data at different locations on the 

sample.1,2,7,8  The resolution of this method scales with the radius of the droplet, 

generally between 50 and 500 μm, although smaller sizes have been reported.9 

The SDC method offers good resolution, at the cost of increased longer 

experiments because data are acquired serially; collecting data over a large 

composition space takes time. Surface plasmon resonance (SPR) or specific 

fluorescent tags, among other imaging techniques, indicate local electrochemical 

reactions on the electrode.3,10–12 These methods allow parallel testing over a large 
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composition space but have drawbacks.  SPR requires that the electrode consist of 

noble metals, such as gold, while lateral diffusion of fluorescent tags degrades 

resolution. Electrode arrays, coated with a CSAF or separately prepared 

electrocatalyst samples,13–16 allow accurate electrochemical measurements but 

limit the composition space of experimentation to the number of electrodes 

available. A method combining flexibility, speed, and resolution has yet to 

appear. 

We have proposed using colloidal particles as probes of local current 

density. 17,18 Based on observing the electrophoretic motion of colloidal particles 

in the vicinity of a working electrode (WE), the method is advantageous for 

electrochemical sensing because the particles are passive probes; they do not rely 

on chemical interactions with the products or reactants of the electrochemistry.  

We established that the motion of a single particle above tin-doped indium oxide 

(ITO) and gold surfaces can be monitored using total internal reflection 

microscopy (TIRM) and used to infer the electrochemical current density local to 

that particle with no adjustable parameters. The particle scattered light from an 

evanescent wave adjacent to the electrode surface. The scattered light was 

measured by means of a photomultiplier tube (PMT) and was used to deduce the 

instantaneous separation between the particle and the wall during a cyclic 

voltammetry (CV) experiment.   

Gathering scattering intensity from a single particle proved the concept, 

but the overall goal is to image the motion of hundreds of thousands of “probes” 

distributed across an entire electrode simultaneously. Furthermore, the method 
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should have sufficient local resolution to distinguish the electrochemical 

reactivity of one site from another.   Since implementation of this method for 

characterization of large-scale (~1cm2) CSAF surfaces involves levitating 

colloidal particles over the entire surface to give a surface coverage of 5-10%, 

simultaneous measurements must be taken across the entire surface by means of a 

CCD camera instead of the PMT.  For example, Bevan and co-workers perform 

TIRM experiments with ensembles of particles using video microscopy and 

tracking the location and scattering intensity of each individual particle.19–21  

Ideally, an analogous approach could be applied to the current problem.  The 

particles could then be treated as individual experiments and the data from each 

particle would be analyzed using the theory developed in a previous publication 

on the topic.17  The success of this method, however, requires tracking several 

hundred thousand individual particles during an entire experiment and resolving 

the scattered light from each particle, which is not practical.  

We propose a grid of patches, squares approximately 100 μm to a side and 

containing 20-40 particles each.  Average scattering intensities are measured over 

each of these patches during CV experiments and analyzed to create a map of 

electrocatalytic activity across the surface, with a resolution limited by the length 

scale of the patches.  The contrast provided by the scattering from ensembles of 

particles is dramatic, which provides confidence that the method can be quite 

sensitive. Example images of a patch of particles scattering light during ETIRM 

experiments appear  in Fig. 3.1.  As positive current passes through the electrode, 

the particles are driven toward the electrode surface and the scattering is intense.  
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Conversely the particles are driven away by negative current and the field is 

black. In the presence of small capacitive currents, the particles scatter an 

intermediate amount of light from the evanescent wave, with fluctuations due to 

Brownian motion of the particles. 

 

Fig. 3.1.  Current density and light scattering from particles (inset images) in a 
typical Ensemble TIRM cyclic voltammetry experiment.  Potentials are relative to 
an Ag/AgCl electrode in the same solution.  Large potentials result in positive 
faradiac current passing through the electrode and a net downward electrokinetic 
force on the particles.  Downward and upward motion of the particles is indicated 
by an increase and decrease in the scattering intensity, respectively. 

In this contribution we show that the single particle theory can be adapted 

to ensembles, but some issues must be addressed. First, particles are polydisperse 

in size, zeta potential, and their scattering intensity in TIRM experiments.20  In 

addition, taking average measurements removes the ability to construct full 
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potential energy diagrams for the particles.  Thus the intensity corresponding to 

the mode height of the particle (which is the quantity used to deduce the local 

electric field in single-particle experiments) cannot be directly measured; instead, 

it must be inferred from the mean intensity using a theory for the expected 

distribution.  These concerns have been addressed successfully; we demonstrate 

that the equation for scattering from a single particle can be used for particle 

ensembles if one corrects for the difference between the mean of the scattering 

intensity and the mode.  

3.2 Theory 

Here we present the theoretical basis for ensemble-average imaging 

amperometry.  The description begins with theory for single particles and 

proceeds to ensembles.  The single particle theory is reprised because recent work 

has shown that accuracy even for a single particle depends on details of the 

current distribution around each particle, which enhances the sensitivity of the 

method to electrode kinetics. After the new complete theory for a single particle 

and arbitrary values of electrode kinetic parameters is established, we treat the 

ensembles.  

3.2.0 Theory for single particles with a uniform potential on the electrode 

When illuminated by an evanescent wave, a particle scatters light whose 

intensity I(h) is very sensitive to the elevation h, as pictured in Fig. 3.2. 
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Fig. 3.2. A diagram of a particle scattering light during a TIRM experiment. Light 
strikes the interface from within a transparent electrode at an angle greater than 
the critical angle for that interface, engendering an evanescent wave adjacent to 
the interface.  A particle in close proximity to the interface scatters light with an 
intensity I(h) that depends on the particle height h. 

 
In TIRM, rays of a laser beam strike the interface from within the solid 

phase at an angle (measured from the normal) greater than the critical angle of 

that interface, resulting in total internal reflection of the rays and the formation of 

an evanescent wave that propagates parallel to the interface and whose intensity 

decays exponentially with distance.  Upon interacting with the colloidal particle, 

light from the evanescent wave is scattered away from the electrode with an 

intensity that also decays exponentially with the particle-wall separation h.  This 

intensity, measurable by means of a PMT or CCD camera, is given by: 

 

 𝐼(ℎ)
𝐼𝑚

= exp[𝛽(ℎ𝑚 − ℎ)] (3.1) 
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where I(h) and Im are the scattering intensities of a single particle at heights h and 

hm, respectively, and β-1 is the decay length of the evanescent wave. The 

parameter hm is the most probable (mode) height of the particle above the 

interface at open circuit and Im is the scattering intensity at that height.  

Consider a colloidal particle that has sedimented near to a rigid horizontal 

surface.  If the particle and the surface have sufficient charge of like sign, 

electrostatic double-layer repulsion prevents the particle from sticking to the 

solid.  The Brownian particle samples elevations according to a Boltzmann 

distribution given by 

 

 𝑝(ℎ) = 𝐴 exp �−𝜙(ℎ)
𝑘𝐵𝑇

� (3.2) 

 

where p(h) is the probability density function (PDF) for the particle's 

instantaneous height, and A is a normalization constant defined such that 

  

� 𝑝(ℎ)𝑑ℎ = 1
∞

0
 

 

kBT is the thermal energy and ϕ(h) is the potential energy of the particle at 

separation h.  If only double-layer repulsion and gravity act on the particle, the 

potential energy is given by 
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 𝜙 = 𝐵 exp(−𝜅ℎ) + 𝐺ℎ (3.3(a)) 

 

where κ-1 is the Debye length of the electrolyte, G is the net weight of the particle, 

and B is the electrostatic parameter approximated as 

 

 𝐵 = 64𝜋𝜀𝑎 �𝑘𝐵𝑇
𝑒
�
2

tanh � 𝑒𝜁𝑝
4𝑘𝐵𝑇

� tanh � 𝑒𝜁𝑤
4𝑘𝐵𝑇

� (3.3(b)) 

 

Eq. 3.3 does not include van der Waals interactions which become significant 

only at much smaller values of h than encountered in these experiments.  

Examples of potential energy profiles calculated using Eq. 3.3 appear in Fig. 3.3 

for polystyrene particles with two different radii.   
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Fig. 3.3.  The potential energy of polystyrene particles as a function of separation 
between the particle and the wall for 𝜁𝑤 = 𝜁𝑝 = 100 𝑚𝑉 and κ-1 = 25 nm.  The 
increase in ϕ at large separations is a result of the force of gravity on the particle, 
while the exponential increase in ϕ at small separations is due to electrostatic 
repulsion. 
 

According to Eq. 3.2, the most probable height of these particles above the 

surface is the height corresponding to minimum potential energy. This is also the 

height at which the forces sum to zero (as in Eq. 3.5 below).  The parameter hm 

introduced in Eq. 3.1 represents this mode height in the absence of any imposed 

electric field. Solving for h in Eq. 3.3, with 𝑑𝜙/𝑑ℎ = 0, thus yields 

 ℎ𝑚 = 𝜅−1 ln 𝜅𝐵
𝐺

 (3.4) 
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Fig. 3.4. Schematic of the particle-electrode system, where 𝜁𝑝 and 𝜁𝑤 are 
negative.  Electrostatic repulsion pushes the particle away from the electrode 
while gravity pulls the particle down.  With E > 0 as shown here, the 
electrokinetic forces Feo and Fep both pull the particle down towards the electrode 
surface. If E < 0, these forces would reverse direction as well. 
 

When the solid is an electrode and an electric field 𝐸∞ is imposed, 

additional forces act on the charged particle, as shown in Fig. 3.4 for the case 

where E∞ is positive, and ζp and ζw are negative.  We denote the new most-

probable height as ℎ𝑚′  where 

 

 𝐹𝑔 + 𝐹𝑒𝑠(ℎ𝑚′ ) + 𝐹𝑒𝑝(ℎ𝑚′ ,𝐸∞) + 𝐹𝑒𝑜(ℎ𝑚′ ,𝐸∞) = 0 (3.5) 

 

In this work, a prime on the variable denotes a quantity measured or inferred in 

the presence of a non-zero electric field.  The sign convention adopted for the 
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forces in Eq. 3.5 is that any force or 𝐸∞ directed away from the electrode is 

positive.  Fg is the particle’s weight: 

 

 𝐹𝑔 = −4
3
𝜋𝑎3�𝜌𝑝 − 𝜌𝑓�𝑔 = −𝐺 (3.6) 

 

ρp and ρf are the density of the particle and the fluid, respectively, a is the radius 

of the particle and g is the acceleration due to gravity.  Fes is the electrostatic 

double-layer repulsion between the particle and the surface,  

 

 𝐹𝑒𝑠 = 𝜅𝐵𝑒𝑥𝑝(−𝜅ℎ) (3.7) 

 

Fep is the electrophoretic force caused by the electroosmotic flow generated by the 

action of the electric field on the diffuse cloud on the particle;  

  

 𝐹𝑒𝑝 = 𝐶(ℎ)6𝜋𝜀𝑎𝜁𝑝𝐸∞ ≡ 𝑄𝑒𝑝𝐸∞ (3.8) 

 

ζp is the zeta potential of the particle in question; ε is the electric permittivity of 

the fluid; and C(h) is a wall hindrance factor that weakly depends on h and is 

defined by Eq. 3.9. 

 

 𝐶(ℎ) = 1.554+ℎ/𝑎
0.300+ℎ/𝑎

 (3.9) 
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Solomentsev et al. deduced this relationship as an empirical fit to numerical 

calculations by Keh & Lien,22,23 derived in the limit of fast electrochemical 

reaction kinetics and a uniform potential adjacent to the electrode surface.  The 

coefficients of E∞ in Eq. 3.8 can be lumped into Qep, which represents the 

effective electrokinetic charge on the particle.  Qep is not the actual charge fixed to 

the particle; the enveloping counterion cloud shields most of the true charge.17   

Feo in Eq. 3.5 is the force on the particle as a result of electroosmotic flow 

generated by the action of the electric field on the diffuse cloud on the electrode.  

In the limit of uniform potential on the electrode surface, the tangential electric 

field vanishes at the electrode; hence, no lateral electroosmotic flow occurs along 

the electrode, i.e. Feo = 0 for a uniform potential on the electrode.24   

The function C(h) is approximately constant for the range of heights hm 

probed in this work; C ≈ 4.5. Therefore, Qep can be treated as a constant whose 

value can be calculated from Eq. 3.8.  Substituting Eqs. 3.6, 3.7 and 3.8 into Eq. 

3.5 and solving for the equilibrium particle-wall separation, ℎ𝑚′ , in the presence of 

an electric field yields  

 

 ℎ𝑚′ = 𝜅−1 ln 𝜅𝐵
𝐺−𝑄𝑒𝑝𝐸∞

 (3.10) 

 

Substituting Eqs. 3.4 and 3.10 into Eq. 3.1, taking ℎ =  ℎ𝑚′ , and 𝐼(ℎ)  =  𝐼𝑚′ , and 

then solving for E∞ yields:17 
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 𝐸∞ = 𝑖
𝜎

= 𝐺
−𝑄𝑒𝑝

��𝐼𝑚
′

𝐼𝑚
�
𝜅
𝛽 − 1� (3.11) 

 

Given measured scattering intensities 𝐼𝑚′  and 𝐼𝑚 that correspond to the most 

probable elevations of the particle with and without the applied electric field, 

respectively, and after calculating Qep from Eq. 3.8 and G from Eq. 3.6, one uses 

Eq. 3.11 to calculate the local electric field strength E∞ or the local current density 

i, where σ is the specific conductance of the solution. The exponent κβ-1 is 

approximately 5 in typical conditions, which makes the inferred E∞ quite sensitive 

to the measured intensities.   

3.2.1 Theory for single particles with a uniform current density on the 

electrode 

The expressions for Fep and Feo are different, however, for a uniform 

current distribution on the electrode under the particle.  Yariv25 evaluated the 

electroosmotic and electrophoretic forces using an asymptotic analysis valid when 

the Debye length 𝜅−1 is infinitesimal compared to the other length scales h and a; 

thus κ-1<<  h << a.  

 

 𝐹𝑒 = 𝐹𝑒𝑝 + 𝐹𝑒𝑜 = 3𝐸∞𝜀𝜋 �
𝑎2

ℎ
� �𝜁𝑤 + 𝜁𝑝� (3.12) 

 

Here, ζw is the zeta potential of the electrode surface. The simple addition 

of zeta potentials of the wall and particle means that Feo and Fep contribute equally 

(at least when ζw = ζp) to the total force on the particle in the limit of small h. 
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Owing to the significant dependence of Fe on h, Eq. 3.5 can no longer be solved 

explicitly for ℎ𝑚′ ; no closed-form expression like Eq. 3.11 for the E∞ is possible in 

this case.  Instead, we must first infer ℎ𝑚′  from the measured scattering intensities 

and then calculate E∞ from Eq. 3.5.  Here are the necessary steps: 

 

• 𝐼𝑚 is first determined by monitoring the scattering intensity of the 

particles with no applied electric field over a long time and 

determining the intensity corresponding to the minimum potential 

energy.   

• The corresponding elevation ℎ𝑚 must be calculated from Eq. 3.4 using 

values of B estimated from Eq. 3.3(b) and G from Eq. 3.6.   

• Given some average intensity 𝐼(ℎ𝑚′ ), averaged at one voltage over 

multiple cycles of a CV scan, one can then estimate the corresponding 

elevation from Eq. 3.1, which is assumed to represent ℎ𝑚′ .  In previous 

implementations of this algorithm,17 no attempt was made to correct 

for the difference between the intensities corresponding to the mean 

and mode particle heights, although corrections similar to those 

described below for ensembles could be made. 

• Once ℎ𝑚′  is thus determined, 𝐸∞ can finally be calculated as the root of 

Eq. 3.5 after Eq. 3.12 is substituted.   
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3.2.2 Theory for single particles with a current density governed by arbitrary 

electrode kinetics 

Calculations based on the two limiting cases described in the previous 

sections indicate that the current distribution beneath each particle profoundly 

affects the force on the particle. Calculating the electrical forces Fep and Feo is 

much more complicated, however, if neither the potential nor the current is 

uniform on the electrode around the particle. The current density distribution then 

depends in general on two parameters, J and δ.24  

 

 𝐽 ≡ (𝛼𝑎+𝛼𝑐)𝑎𝑒
𝜎𝑘𝐵𝑇

𝑖0 (3.13) 

 

 𝛿 ≡ (𝛼𝑎+𝛼𝑐)𝑎𝑒
𝜎𝑘𝐵𝑇

𝑖𝑎𝑣𝑔 (3.14) 

where αa and αc are the coefficients of symmetry for the anodic and cathodic 

reactions, respectively, i0 is the exchange current density, e is the elementary 

charge and iavg is the actual current density averaged over the surface of the entire 

electrode. J and δ are therefore dimensionless current densities.  In the limit of J 

≫1 or δ ≫1, the potential is uniform on the electrode under the particle because 

the electrode kinetics are facile; Eq. 3.11 was derived in this limit. In the opposite 

limit of J ≈ δ ≪ 1, the current density (instead of the potential) becomes 

increasingly uniform under the particle.  

 Recent work employed a finite element analysis to determine the 

relationship between the electrokinetic forces on these particles, the electrode 
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kinetic parameters J, δ, and h/a for arbitrary particle size and zeta potential.26  

This advance allows calculation of the electrokinetic forces for any pair of J and 

δ. Given the large differences between forces reported in analytical studies under 

the assumption of either a uniform current density or uniform potential at the 

electrode surface, this contribution improves the estimate of current density 

calculated from the motion of the colloidal particles.  Given values of  J≈2 and δ < 

0.005, which are characteristic of a fast reaction on the electrode below the 

particle, the electrophoretic and electroosmotic forces on the particle can then be 

closely approximated by the following separate expressions, which are empirical 

fits to numerical results from those investigations.26 

 

 𝐹𝑒𝑜(ℎ) = 𝜀𝑎𝜁𝑤𝐸∞
1.459

�ℎ𝑎+0.02110�
1.3 (3.15(a)) 

 

 𝐹𝑒𝑝(ℎ) = 𝜀𝑎𝜁𝑝𝐸∞
11.82

�ℎ𝑎+0.1002�
1.3 (3.15(b)) 

 

3.2.3 Theory for particle ensembles 

Using measurements of the light scattered by multi-particle ensembles 

complicates the analysis (even if the particles are acting as independent scatterers) 

because summing over multiple particles at different elevations erases 

information needed to form the probability distribution. Consider the open-circuit 

case. If the ensemble contains a very large number of identical particles and the 

total scattering intensity is divided by the number of particles, we measure the 



81 
 

 
 

mean scattering intensity 𝐼𝑎 which differs from the intensity corresponding to the 

most probable elevation, 𝐼𝑚.  One solution is to use the expected potential energy 

profile and Boltzmann’s equation to calculate the distribution and the ratio of the 

two intensities.   

According to the ergodic hypothesis, the mean of any fluctuating property 

of a single particle over a long time is the same as the instantaneous mean of a 

very large ensemble of identical independent particles observed at a single time.  

In particular, if the property is the scattering intensity, then 

 

 
𝐼𝑎,𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝐼𝑚
= 𝐼𝑎,𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒

𝐼𝑚
≡ 𝜃 (3.16) 

 

Assuming enough samples of the intensity are observed to avoid statistical 

errors in calculating the average, no distinction needs to be made between the 𝐼𝑎 𝐼𝑚⁄  

ratios for a single particle and for an ensemble of identical particles because this 

ratio is the same for each particle.   If one determines the ratio θ a priori as a 

function of particle properties, then Eq. 3.16 can be used to convert the measured 

average intensity values 𝐼𝑎 to the intensities corresponding to the mode heights, 𝐼𝑚.  

We calculate θ as a function of particle properties first by using Eq. 3.4 to 

eliminate B from Eq. 3.3: 

  

 𝜙(ℎ) − 𝜙(ℎ𝑚) = 𝐺
𝜅
�𝑒−𝜅(ℎ−ℎ𝑚) − 1� + 𝐺(ℎ − ℎ𝑚) (3.17) 
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The height h = hm is taken as the reference state for potential.  Thus ϕ(hm)≡0 and Eq. 

3.17 becomes  

 

 𝜙
𝑘𝐵𝑇

= 𝐺
𝜅𝑘𝐵𝑇

(e−𝑥 + 𝑥 − 1) (3.18) 

 

where 𝑥 ≡ 𝜅(ℎ − ℎ𝑚). The mean intensity of light scattered from an ensemble of 

particles can be calculated as  

 

 𝐼𝑎 = ∫ 𝐼(𝑥)𝑝(𝑥)𝑑𝑥∞
−∞  (3.19) 

 

Substituting I(x) from Eq. 3.1 and p(x) from Eq. 3.2, one obtains 

 

 𝜃 ≡ 𝐼𝑎
𝐼𝑚

=
∫ exp�−𝛽𝜅𝑥�exp�−

𝜙
𝑘𝐵𝑇

�𝑑𝑥∞
−∞

∫ exp�− 𝜙
𝑘𝐵𝑇

�𝑑𝑥∞
−∞

 (3.20) 

with 𝜙(𝑥) given by Eq. 3.18.  This expression can be evaluated numerically for 

arbitrary particle properties.  Dividing the measured Ia by 𝜃 gives Im, as required 

by Eq. 3.11 for a single particle or for an ensemble of identical particles. 

A similar approach can be used to obtain the ratio of the scattering 

intensities corresponding to the mode and mean heights of the particle in the 

presence of an electric field, 𝐼𝑎′ /𝐼𝑚′ = 𝜃′.  With the inclusion of the total 

electrokinetic force 𝐹𝑒 =  𝐹𝑒𝑝 +  𝐹𝑒𝑜 in the force balance from Eq. 3.5 and a 

reference state of ℎ = ℎ𝑚′ , Eq. 3.18 is now expressed as  
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 𝜙′

𝑘𝐵𝑇
= 

1
𝑘𝐵𝑇

�𝐺−𝐹𝑒�ℎ𝑚
′ �

𝜅
�𝑒−𝜅�ℎ−ℎ𝑚′ � − 1� + 𝐺(ℎ − ℎ𝑚′ ) − ∫ 𝐹𝑒(ℎ)𝑑ℎℎ

ℎ𝑚′
� (3.21) 

With a model for 𝐹𝑒 like those provided in Eqs. 3.8, 3.12, or 3.15, 𝜃′ can be 

evaluated by substituting 𝜙′ into Eq. 3.20 and 𝜙.  Since 𝜃′ depends on the electric 

field 𝐸∞, which is unknown, both 𝜃′ and 𝐸∞ must be determined iteratively.  An 

initial guess for 𝐸∞ is first determined from the measured light scattering intensity, 

𝐼𝑎′ , taking 𝜃′ = 1 as an initial guess, using the method outlined above.  This electric 

field can be used to calculate 𝜃′, which is then used in the next iteration to convert 𝐼𝑎′  

to 𝐼𝑚′  for determining the new electric field strength.  After several iterations, 𝐼𝑚′  and 

𝜃′ converge to constant values.  Since 𝜃 is not a function of the electric field strength, 

it remains constant during the iterative process. 

While Eq. 3.20 was derived for a single particle, the correction can also be 

applied to total intensities collected over many particles, assuming that 

polydispersity in the colloidal sample can be assumed to be negligible.  In the case of 

particle size and charge, which determine in part the values of B and G, one might 

expect a 5% variation around the mean from one particle to the next in 

commercially available colloidal suspensions.  These small variations around the 

mean are neglected in this work, because their effect is small in Eqs. 3.11 or 3.20, 

when averaged.   

One potential complication arises because virtually identical latex particles 

have been observed to scatter light at very different intensities (differing by a 

factor or two or even four) even when they are located at the same elevation (say 
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h=0).27  Bevan et al.20 have shown that resonant scattering for latex particles in 

this size range cause the intensity of scattering to be exquisitely sensitive to 

particle diameter.  Fortunately, this resonant-scattering effect is the same at all 

elevations of the latex particle in the evanescent wave.  When ratios of scattering 

intensity for the same particle are taken (as Eq. 3.20), this sensitivity cancels.  

Similarly, when the intensity is summed over an ensemble of virtually identical 

particles having nearly the same θ, and the mean intensity 𝐼𝑎,𝑖 for each particle is 

separately converted into the mode 𝐼𝑚,𝑖 using Eq. 3.20, then this sum of the means 

is divided by the sum of the modes and the sensitivity from resonance again 

cancels, leaving the same correction factor as for single particles:  

 

 ∑𝐼𝑎,𝑖
∑𝐼𝑚,𝑖

= ∑𝜃𝐼𝑚,𝑖
∑𝐼𝑚,𝑖

= 𝜃 (3.22) 

 

3.2.4 Brownian Dynamics Simulations 

Brownian dynamics simulations were performed following the method of 

Ermak & McCannon28 as reproduced in Wirth et al.17 for ensembles of particles to 

demonstrate the impact of polydispersity of particle parameters on ensemble 

average TIRM (EATIRM) experiments.  Particles were simulated individually 

and assumed to be non-interacting.  Simulations were performed with a time-step 

of 2 ms for one simulated hour.  The results from these simulations were verified 

by comparing the potential energy profiles constructed for the simulated particles 

to potential energy profiles calculated with Eq. 3.3.  These calculations  allowed 
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investigation of the effects of particle polydispersity and ensemble size on 

EATIRM measurements. 

3.3 Experimental 

A sketch of the apparatus appears in Fig. 3.5.  The particles interacted with 

the evanescent wave from a 632.8 nm, 10 mW HeNe laser, with an incident angle 

with the interface of 68°. A Photon Technology Inc. photomultiplier tube 

collected and generated an analog intensity signal subsequently digitized and 

recorded by a Princeton Applied Research versaSTAT3 potentiostat.  The total 

scattering intensity from ensembles of colloidal particles was recorded during 

open circuit and cyclic voltammetry (CV) experiments, and used to infer the 

current density, which was also independently recorded for comparison. In the 

CV experiments, intensity and current curves were averaged over 20 cycles. The 

scan rate was 50 mV/s in experiments involving only ITO electrodes, and 15 

mV/s during experiments involving gold coated electrodes, to reduce capacitive 

current.   

Transparent, 30-60 nm thick ITO thin film electrodes (Sigma-Aldrich), 

functioned as the working and counter electrodes.  Working electrodes were also 

prepared by magnetron sputtering thin films of gold on top of the masked ITO 

surface to make a 2-component surface, with some area of exposed ITO and some 

area of exposed gold. A thin film of <1 nm of chromium was sputtered first to 

bond the gold to the ITO surface.  Gold films prepared in this manner were 

approximately 3 nm thick and sufficiently transparent. A thin sheet of silver was 
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squeezed between PTFE gaskets; its exposed inner cross-section was treated to 

form a Ag/AgCl reference electrode for the working electrode polarization. 

The particles were IDC™ sulfonated latex (Life Technologies) 

electrostatically stabilized by covalently attached sulfonate groups in the absence 

of surfactant, giving a corresponding zeta potential of approximately ζp=-120 mV.  

The particles had nominal diameters of 5.6 and 10.1 μm. 

Before each experiment, 18.2 MΩ Millipore water was thoroughly purged 

of atmospheric CO2 by sparging nitrogen gas through it for two hours; 

experiments were performed in 0.15 mM KOH solutions.  Under these conditions 

the ITO surfaces have a zeta potential of ζw ≈ -80 mV, sufficient to levitate the 

negatively charged particles electrostatically. 

Ensemble average measurements were acquired with particle coverage of 

5-10% on the electrode surface.  The field of view was approximately 150 μm x 

150 μm, with 20-30 particles scattering light from that area.   
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Fig. 3.5.  Schematic of the TIRM apparatus used in patch-level ensemble average 
experiments.  The working electrode (WE) and counter electrode (CE) are 
conductive layers of ITO on glass slides.  The reference electrode (RE) is a thin 
Ag/AgCl sheet sandwiched between two Teflon gaskets to ensure insulation and 
seal. 
 

3.4 Results & Discussion 

3.4.0 Determination and use of the correction factor θ  

The Brownian dynamics simulations generate intensity-based PDFs to 

simulate the total scattering intensity that would be measured in experiments 

using ensembles of particles, and to gain insight into the mean heights of the 

particles in those ensembles.  The probability distributions of the mean intensity 

and mean particle-wall separation for ensembles of varying numbers (n) of 

identical simulated particles appear in Fig. 3.6.  The asymmetry present in the 

single-particle PDFs in both Fig. 3.6(a) and 3.6(b) reflects the asymmetric expo-
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linear nature of the potential energy profiles appearing in Fig. 3.3.   Note that due 

to the non-linear relationship between particle height and scattering intensity, the 

scattering intensity 𝐼𝑚 at the most probable height of the particle does not 

correspond to the most probable scattering intensity for that particle.29  This can 

be seen in this figure, where ℎ𝑚 (see 3.6(b)) corresponds to the peak of the single 

particle height PDF, while 𝐼𝑚 (see 3.6(a)) does not correspond to the peak of the 

single particle intensity PDF. Also, ℎ𝑎 does not correspond exactly to the peak of 

the 10-particle PDF in Fig. 3.6(b).  The distribution becomes increasingly 

Gaussian around this mean with increasing numbers of particles, but becomes 

wholly symmetrical about ℎ𝑎 only as  𝑛 → ∞. 

As the number of particles increases, the PDFs become more symmetric 

around the mean intensity of the particles, Ia, and the mean particle height ℎ𝑎.  

Since the height PDF is skewed toward higher elevations where the light 

scattering is less, ℎ𝑎 > ℎ𝑚 and Ia must always be less than Im.  As a result, using 

the raw average intensity 𝐼𝑎 in place of 𝐼𝑚 in Eq. 3.11 results in an over-prediction 

of the current density.   
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Fig. 3.6.  (a)The probability density functions for simulated total scattering 
intensity (divided by the number of particles) and (b) the mean height h of 
ensembles of varying numbers of particles during open circuit experiments.  
Simulated parameters correspond to expected experimental values: a=2.65μm, 
ζp=-80mV, ζw=-123mV, σ = 25 Ω-1cm-1.  I0 is the intensity of light scattering 
when h=0.  Note (see (b)) that the peak of the mean height distribution shifts from 
the most probable height of the particles, hm, towards the time-averaged mean 
height of the particles, ha, with increasing ensemble size. 
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The correction factor θ, defined in Eq. 3.16, was calculated for 

polystyrene particles over a range of sizes, both from simulation data and from 

Eq. 3.20, as shown in Fig. 3.7.  The line indicates θ as calculated from Eq. 3.20.  

The points indicate the ratio of the sum of the scattering intensities for an 

ensemble of particles to the sum of the Im values for that ensemble of particles for 

two ensembles of 40 particles: one of identical particles, and one of particles 

which had arbitrary I(h=0) values ranging from values of 1 to 2.  All three sets of 

values fall on the same curve, as expected from the arguments advanced in the 

Theory section.   

The correction factor θ approaches unity as the size of the particles 

increases because the potential energy well becomes more symmetric with a 

larger force of gravity on the particle, as seen in Fig. 3.3.  These results point to 

two possible options for avoiding the over-prediction of current based on 

inaccurate Im values obtained in ensemble average measurements.  1. Using larger 

or denser particles minimizes the impact of this effect in the first place.  2. Given 

sufficient physical information about the system to compute θ and θ’ using Eq. 

3.20, this Ia/Im ratio can be divided out of the measured Ia value to give the true 

value of Im for use in calculating the current density.   
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Fig. 3.7.  θ is the ratio of 𝐼𝑎 measured in ensemble experiments, which is also the 
mean light scattering intensity of a single particle, to the actual average 𝐼𝑚 for the 
particles in that ensemble, defined as the light scattering intensity of the particles 
at the minimum of their potential energy wells. The larger the particle, the more 
symmetric the probability distribution and the closer the mean and mode heights 
are to each other.  

 

Both of these methods are demonstrated in Fig. 3.8, which shows the 

anodic region of a CV curve acquired from an ITO electrode.  CV experiments 

were performed with a scan rate of 50 mV/s, with a minimum voltage of 0V and 

maximum voltages of 1.0V and 0.95V for the 5.7 μm and 10.1 μm particles, 

respectively.  The maximum voltage necessary to obtain similar current densities 

in these experiments varied due to variations in the pH of the electrolyte.  The 

currents were measured externally in the conventional way and were calculated 

from the measured average scattering intensity of an ensemble of particles with 
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the aid of Eq. 3.11.  Given the experimental parameters presented here, Qep = -

2.11×10-14 C and -3.69×10-14 C for the 5.7 and 10.1 μm particles, respectively.  

Note that use of Eq. 3.11 means that the potential at the electrode was taken as 

uniform.  The region on the right of the plots indicates anodic current.  Hydroxyl 

ion is being oxidized on the electrode to form oxygen at a rate, i.e. faradaic 

current, that increases with increasing voltage.  To the left, at voltages less than 

800 mV, only capacitive current charges the ITO surface and the electric double 

layer at the interface with a current density that depends only on the CV scan rate.  

In the case of the 5.7 μm particles, the current calculated using the as-measured 

ensemble-average intensity Ia exceeds the electrically measured current density by 

almost a factor of four.  The use of the raw Ia also overpredicts the current when 

the larger, 10.1 μm particles were used as the probe particles, but by much less.  

The calculated θ values for these particles were 0.76 and 0.95, for the 5.7 and 10.1 

μm particles, respectively.  The value of 𝜃’ calculated with Eqs. 3.20 and 3.21 

varied over the course of the experiments, as it is a function of the electric field 

strength.  In the case of the 5.7 μm particles, 𝜃′ varied from 0.52 to 0.97 for a 

negative and positive electric field, respectively.  For the 10.1 μm particles, 𝜃′ 

varied from 0.90 to 0.99.  Dividing the measured 𝐼𝑎 and 𝐼𝑎′ values by 𝜃 and 𝜃′, 

respectively, gives the red curves in Fig. 3.8.  In both cases the current calculated 

after applying the corrections matched the externally measured current density 

much better than the current density calculated from the as-measured average 

intensities.   
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The impact and necessity of the 𝜃 and 𝜃′ corrections is substantially less if 

larger particles are used in imaging ammeter experiments.  In subsequent 

experiment and analysis, 10.1 micron particles were used exclusively, reducing 

the effect of the 𝜃 and 𝜃′ corrections. 

 

Fig. 3.8.  Currents calculated from ensemble average electrochemical TIRM 
experiments, for particles of two sizes, with and without correcting the scattered 
light intensity to account for the difference between the mean of the scattering 
intensity distribution and the desired scattering intensity corresponding to the 
most probable height of the particles.  The agreement is much improved when 
heavier particles, with smaller differences between the mean and mode heights, 
are used.  



94 
 

 
 

3.4.1 Distinguishing between gold regions and ITO regions on the same 

electrode 

CV experiments were performed using 10.1 μm particles on an electrode 

with side-by-side areas of ITO and gold in order to demonstrate the applicability 

of this method to electrodes having a heterogeneous surface composition (extreme 

in this case).  The measured scattering intensity over the two areas of the 

electrode are shown in Fig. 3.9.  From these raw data, the difference in particle 

behavior between the two regions of the electrode are readily apparent.  The 

particles over the ITO section of the electrode do not stray far from their 

equilibrium position regardless of applied voltage, which results in a scattering 

intensity that does not vary significantly over the course of the experiment.  The 

particles over the gold portion of the electrode do react to the electric field 

resulting from the applied voltage, resulting in scattering intensity that varies 

substantially during the CV, as seen in this plot. 
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Fig. 3.9.  Light scattering intensity measured from ensembles of particles adjacent 
to two portions of the same electrode: one region where the electrode surface was 
gold, and another region of exposed indium doped tin oxide (ITO), as a function 
of applied voltage vs. a Ag/AgCl reference electrode.  From these raw intensity 
data, the differentiation between the two regions of the electrode is clear.  
Direction of the CV sweep is indicated by the arrow. 
 

From these intensity data, the mean of the most probable particle heights 

for the particles in the ensemble were calculated by first correcting the measured 

intensities with Eqs. 3.20 and 3.21, and using Eqs. 3.1 and 3.4 to obtain the 

particle-wall separation values.  These data are plotted as a function of applied 

voltage in Fig. 3.10.  In this plot we can see quite clearly that the particles over 

the gold are drawn down towards the electrode on the upswing of the CV, coming 

into closest approach to the electrode surface at the maximum polarization of 0.5 

V.  The calculated heights for the particles over the ITO portion of the electrode 
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do not vary far from ℎ𝑚, as expected due to the minimal current passing through 

that portion of the electrode. 

 

Fig. 3.10.  The average of the most probable heights of particles in ensembles 
adjacent to two portions of the same electrode: one region where the electrode 
surface was gold, and another region of exposed indium doped tin oxide (ITO), as 
a function of applied voltage vs. a Ag/AgCl reference electrode.  The particles 
over the gold portion of the electrode move in response to the electric field in 
their vicinity, while the particles over the ITO portion of the electrode do not stray 
far from ℎ𝑚.  Direction of the CV sweep is indicated by the arrow. 
 

While direct measurement of the current was in principle no longer 

possible because the current density was not uniform over the entire electrode, the 

known inertness of the ITO in the -0.3V to 0.8V window (see Figure 8) allowed 

the assumption that only capacitive current was passing on the ITO region of the 

electrode surface.  Given the known capacitance of these ITO films, the coverage 

fraction of the gold film, and the measured total current, we determined the actual 
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current density on the gold and ITO portions of the electrode from the total 

current passing through the electrode as a function of applied voltage.  These 

current densities are compared with the currents inferred from the measured 

particle scatter of an ensemble of 10 μm particles in Fig. 3.11.  The current 

density on the ITO was much smaller than the current density on the gold.  A 

larger current density through the gold electrode might be expected because gold 

is a better catalyst than ITO for the oxygen evolution reaction. The ~0.04 A/m2 

difference between the current on the upper and lower halves of the CV on the 

gold surface, however, indicated substantial capacitive-like charging of the gold 

by comparison with ITO. Capacitive current on the gold electrode should not 

differ from that on the ITO by enough to account for this discrepancy.  Another 

possible explanation for this opening in the CV is another electronic process 

occurring at the electrode, taking place at the interfaces between the ITO, the 

chromium and the gold that were layered in that region of the electrode.  Indeed, 

the thickness of the thin gold layer was visibly reduced after the experiments, 

indicating that some destructive process was occurring in that region of the 

electrode.   

The imaging ammeter clearly distinguishes current density on the two 

regions of the electrode, whatever the reason for that difference.  In fact the 

scattering response confirms that most of the current is crossing the interface 

through the gold. On the ITO portion of the electrode, the particles responded 

weakly to the applied voltage.  The variations in intensity of scattering from this 

region were low and yielded a very small inferred current.  The current calculated 
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from the light scattering in the gold-coated region in the same experiment was 

substantial by comparison in the same voltage range. The current density 

calculated from scattering over the gold surface followed the trend of the 

measured current density but over-predicted the magnitude of the current. The 

reason and cure for that over–prediction is described in the next section.  

 

 
Fig. 3.11.  Actual and inferred current densities normal to gold and ITO coated 
sections of the electrode.  Inferred currents are calculated from Eq. 3.11, after 
applying the appropriate corrections to 𝐼𝑚 and 𝐼𝑚′ .  The response of the gold is 
easily distinguishable from the response of the ITO, but the difference between 
the inferred current on gold and the actual current on gold indicates something is 
missing in the model.  
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3.4.2 The effect of current density distribution below the particles 

The current calculated from the scattering data and presented in Fig. 3.11 

were obtained using Eq. 3.11, thereby neglecting electroosmotic flow along the 

electrode surface under the assumption that the potential distribution under the 

particles was uniform.  Non-uniformity of current distribution around each 

particle can affect the force that the particle experiences.  The force on a 10.1 μm 

particle as a function of particle height and potential distribution is plotted in Fig. 

3.12, normalized by the electrophoretic force that particle would feel far from the 

electrode surface.  As stated in the theory section, the Keh & Lien model assumes 

a uniform potential across the electrode under the particle, the Yariv model 

assumes uniform current density on the electrode under the particle, and 

intermediate cases, where neither the current or potential distributions are 

uniform, have been computationally explored in other studies.22,25,26,30  As seen in 

Fig. 3.12, the magnitude of the combined electrophoretic and electroosmotic force 

is significantly larger with the assumption of uniform current density on the 

electrode, as expected. 
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Fig. 3.12.  The total electrokinetic force on a colloidal particle as a function of the 
separation between the particle and the nearby electrode, normalized by the 
electrophoretic force that particle would feel at large h.  Curves are plotted for 
analytical solutions in the limiting cases of electrode kinetics, and one 
intermediate case.  The current distribution in the immediate vicinity of each 
particle profoundly affects the force on the particle. 
 

 Incorporating the force terms given in Eqs. 3.12 and 3.15 into the current 

calculation, which means positing that the electric potential distribution below the 

particle was nonuniform, current densities were calculated from the particle 

ensemble scattering intensity data shown in Fig. 3.9, used to construct Fig. 3.11.  

These calculated current curves are plotted in Fig. 3.13, compared to the data 

calculated using Eq. 3.11.   
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Fig. 3.13.  The actual current passing through a gold electrode is plotted, along 
with currents inferred from measured light scatter from particles adjacent that 
electrode.  The three inferred current plots represent data calculated assuming the 
three electrokinetic models represented in Fig. 3.12.  The currents calculated 
assuming limiting kinetic cases bracket the actual current, which closely 
approximates the intermediate case. 
 

Given 𝜁𝑝 < 0 and 𝜁𝑤 < 0, the agreement between the measured current 

and the current inferred from the light scatter is best when 𝐸∞ > 0, where the 

particles are pulled towards the electrode surface.  When 𝐸∞ < 0 such that 𝐹𝑒 >

𝐺, the particles are electrokinetically driven away from the electrode with a non-

zero velocity.  This precludes accurate application of the methods described here 

for electric fields which push the particle strongly away from the wall, since the 

analysis performed here assumes a steady-state particle-wall separation, and 
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because the particles rapidly leave the evanescent wave as they move away from 

the wall.   

Eq. 3.8 represents the smallest estimate of electrokinetic forces because 

the electroosmotic force 𝐹𝑒𝑜 on the particle is zero for uniform potential on the 

electrode below the particle.  The consequence of an assumed uniform potential 

distribution is an upper limit in the current density back-calculated from the 

scattering.  More current is required to cause a given change in scattering intensity 

when the force per unit current is less. On the other hand, assuming a uniform 

current density maximizes the potential gradients under the particle and therefore 

the electrokinetic forces, resulting in the force term given in Eq. 3.12.  This, 

conversely, results in a minimum in the calculated current, because much weaker 

electric fields, now with lateral components producing electroosmotic flow near 

the electrode, would exert the same amount of force on the particle and give the 

same change in measured scattering intensity.  The electrokinetic forcing terms 

derived from finite element calculations for J=2 result in a calculated current 

between the two limiting cases.26  This is all substantiated by the results in Fig. 

3.13: the two limiting cases frame both the actual current density and the current 

density calculated using Eq. 3.15 for Feo and Fep.   
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3.5 Conclusions 

Adapting the imaging ammeter method as previously put forth for analysis 

of CSAF electrocatalysts surfaces necessitates average measurements over tens of 

particles in patch areas on the order of 100 μm in size, due to imaging constraints 

on the system.  Previously proposed theory for translating measured scattering 

intensities into current densities has been adapted in this work with the inclusion 

of a correction factor on the measured open and closed circuit intensities.  This 

was done to address the fact that the intensities measured in ensemble 

experiments correspond to the average location of the particles, not the most 

probable, or minimum energy, location as required by the theory.  This error 

results in an overprediction of current density based on TIRM measurements if 

not corrected.  The use of larger or denser colloidal particles was also found to 

partially obviate the need for this correction factor. 

Ensemble average TIRM experiments were done on ITO surfaces with 5.7 

and 10.1 μm diameter particles to investigate the impact of this correction factor.  

It was found that the current inferred from measured scattering intensities without 

the inclusion of the correction factor overshot the externally measured current 

densities to a much greater extent in the 5.7 micron particle case than in the 10.1 

micron particle calculations.  In both cases the application of the correction factor 

to the open circuit equilibrium intensities used in current calculations reduced the 

calculated current to a reasonable approximation for the actual value.  In further 

work, the larger 10.1 μm particles will be used exclusively, in addition to the 

correction factor. 
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Experiments were performed with 10.1 μm particles on patterned 

ITO/gold surfaces to demonstrate the utility of this method on non-uniform 

electrode surfaces.  It was found that qualitative differences in current density 

between the two surfaces were readily apparent in the calculated current, although 

quantitative agreement between the calculated and measured current density 

values is more difficult to achieve.  To this end, modification of the electrokinetic 

forcing terms used in the calculation of current density from scattering intensity 

was also investigated.  The amount of electroosmotic flow along the electrode 

surface is determined by the potential distribution under the particle, which has 

two limiting cases: uniform potential, where no electroosmotic flow is present, 

and uniform current, which maximizes the potential gradients and therefore the 

electroosmotic flow.  This electroosmotic flow results a vertical force on the 

particle, and changing the model used for this has a profound impact on the 

calculated current values.  It was shown that for particles over a gold surface, 

currents calculated under the assumption of the two limiting cases framed the 

actual current density.  With an assumed, intermediate potential distribution under 

the electrode, the calculated current density agreed very well with the measured 

values. 

The next step in the progression of this work is to use the theory and 

methods developed here to inform future work on CSAF surfaces, collecting data 

from many patches simultaneously with a CCD camera. 
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3.7 Appendix 

 What follows is a collection of MATLAB code used to assemble and analyze the 

measured light scatter data to calculate the current density.  For these, a “control” 

script was written to define overall constants and call the other functions. 

clear; clc; 
tic 
% Loads data as a struct with fields for OC (open circuit) and CV 
(cyclic 
% voltammogram) fields.  The CV fields are formatted as columns 
load rawdata_2011_09_29_with_pts; 
  
% This script takes the PMT and versaSTAT data and formats it for 
the 
% subsequent data analysis 
CV_PMT_Handling_2011_09_29; 
  
%Assumed or measured background intensity.  Zero for this data 
set. 
I_BG = [0 0]; 
  
J=2; %dimensionless exchange current density 
delta = 0.001; %dimensionless current density 
numThetaLoops = 30; % Number of loops for determination of the 
active theta value 
jumpStep = 4; % To reduce the computational time, every nth point 
is analyzed. 
              % Total computational time multiplied by 1/jumpStep 
  
I_m_corr = 1/0.9512; %0.9512 is the theta value in the absence of 
electric field 
  
i_calc_active_theta; 
plots_2011_09_29 
toc 
  
save 2011_09_09_data_KL_limit 
 

 The function i_calc_active_theta is defined below: 
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%Play script 
clear sumUp sumDown capCurrDiff %To save memory 
close all %closes any open figures 
  
%Variable Inputs 
  
% This code was adapted from previous versions.  These 
adjustments helped 
% remove copy/paste errors 
aveInt = aveInt3; 
V=V3; 
  
% scanSpeed = 0.01; %V/Sec 
a = 10.1e-6/2; %radius of particles, m 
Cn = 0.15; %Nominal concentration of KOH, mM 
sigma = 0.00388; %A/V/m 
zp = -0.123; %V, zeta of particle 
zw = -0.08; %V, zeta of electrode 
  
rho_f = 1000; %Water, kg/m^3 
rho_p = 1055; %PS 
G=-(4/3)*pi*a.^3*(rho_p-rho_f)*9.81;  %Newtons, buoyant force on 
the particle 
  
%Constants 
beta = 1/113.7e-9; %1/m, decay length of evanescent wave 
eta = 1e-3; %Water at ~300 K, viscosity of water 
epsilon = 80*8.854e-12; %(J/(V^2*m)), water 
k = 1.38e-23; %J/K 
T = 295; % temperature 
e = -1.602e-19; %C, elementary charge 
R=8.314; %Gas constant, used in calculation of lambda 
z=1; %Valence, assumes symmetric electrolyte 
F = 96485.3; %A*s/mol 
Qstar_eo = (1.909e-8)*epsilon*zw/eta; % Keh&Lien adjustment for 
                                      % electrophoretic charge 
  
%Calculated Values 
kappa = 1/sqrt((epsilon*R*T./(2*z^2*F^2*Cn)));  %C in mM or 
mol/m^3; %1/m,  
Qep=6*pi*epsilon*a*zp; %C  Qep = -2.177e-14; %C abouts 
B = 64*pi*epsilon*a*(k*T/e)^2*tanh(e*zp/4/k/T)*tanh(e*zw/4/k/T); 
%electrostatic parameter 
  
heq = -(1/kappa)*log(-G/(kappa*B)); %equilibrium height, 
corresponds to 
                                    % h_m in the manuscript 
  
V=V(1:jumpStep:end); %data reduction 
  
cycleLength = length(V); 
  
%% Initialize arrays 
theta = ones(numThetaLoops, cycleLength, numPatches); 
hm = zeros(cycleLength, numPatches); 
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Ch = zeros(cycleLength, numPatches); 
i_Keh = zeros(cycleLength, numPatches); 
hm_opt = zeros(cycleLength, numPatches); 
Ch_opt = zeros(cycleLength, numPatches); 
i_Keh_opt = zeros(cycleLength, numPatches); 
i_Yariv= zeros(cycleLength, numPatches); 
i_Fagan = zeros(cycleLength, numPatches); 
i_Fitted = zeros(cycleLength, numPatches); 
currentHistory = zeros(cycleLength, numThetaLoops); 
  
%% Calculate currents 
for i_ = 1:numThetaLoops 
     
    % This loop adjusts the intensity to facilitate the active 
theta 
    % correction 
    for j_=1:numPatches; 
        %I_BG is zero, here.  This is only correcting for the 
equilibrium intensity. 
        I_m_ens_BGsub(j_) = I_m_corr*(I_m_ens(j_));  
        tempo = (aveInt(:, j_) - I_BG(j_)); %This is the averaged 
intensity during experiment 
        aveInt_BGsub(:, j_)=tempo(1:jumpStep:end)./(theta(i_,:, 
j_)'); 
    end 
     
    %This loop calculates the current densities for the different 
assumed 
    %current density distributions. 
    for j_=1:numPatches; 
         
        % hm is the calculated particle heights as a function of 
current 
        % density, calculated from the adjusted scattering 
intensity 
        hm(:,j_) = -log(aveInt_BGsub(:, 
j_)./I_m_ens_BGsub(j_))/beta+heq; 
        Ch(:,j_) = (hm(:,j_)+1.554*a)./(hm(:,j_)+0.3*a); 
%electrophoretic term coefficient, based on particle height 
        [FeoStar FepStar] =  EK_Forces(J,delta,hm(:,j_)./a); 
         
        i_Keh(:,j_) = 
(G*sigma./(Qep.*Ch(:,j_))).*((aveInt_BGsub(:,j_)./I_m_ens_BGsub(j
_)).^(kappa/beta)-1); %current density without EO, via original 
theory 
        i_Yariv(:,j_) = -sigma*(G+kappa*B*exp(-kappa*hm(:,j_))) 
./ (epsilon*3*pi*(a^2./hm(:,j_))*(zw+zp)); 
        i_Fagan(:,j_) = -sigma*( (G+kappa*B*exp(-kappa*hm(:,j_))) 
./ (Qep.*Ch(:,j_)+Qstar_eo*(a./hm(:,j_)).^0.976)); 
        
        i_Fitted(:,j_) = -sigma*( (G+kappa*B*exp(-
kappa*hm(:,j_))) ./ (6*pi*epsilon*a*(FeoStar*zw + FepStar*zp ) )  
); 
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        % This loop calculates theta with the new current 
density, and 
        % outputs the progress of the loop 
        if i_ ~= numThetaLoops 
            for k_=1:length(i_Fitted(:,j_)) 
                theta(i_+1,k_,j_) = 
theta_calc_fun((i_Fitted(k_,j_)/sigma)*(i_/numThetaLoops), a, J, 
delta); 
                progress = [i_ j_ k_] 
            end 
        end 
    end 
     
    %currentHistory allows for tracking of the calculated 
currents with the 
    %changing values of theta 
    currentHistory(:,i_) = i_Fitted(:,1) ; 
     
end 
  
  
 
 The functions theta_calc_fun, EK_Forces and EK_Forces_Int are required to execute 

this code: 

function theta = theta_calc_fun(E, a, J_val, delt) 
   
%% Initialize 
   
epsilon = 80*8.854e-12; %(J/(V^2*m)), water @ T=295 
Cn = 0.15; %Nominal concentration of KOH, mM 
rho_f = 1000; %Water, kg/m^3 
rho_p = 1055; %PS 
%rho_p = 1960; %Silica, 2648 from wikipedia 
R=8.314; %Gas constant, used in calculation of lambda 
I_0=1; 
beta = 1/113.7e-9;%1/113.7e-9; %1/m, decay length of evanescent 
wave 
% beta = 1/3e-08;%1/113.7e-9; %1/m, decay length of evanescent 
wave 
k = 1.38e-23; %J/K 
T = 295; 
e = -1.602e-19; %C 
zw = -0.08; %V, zeta potential of the electrode 
zp = -0.123; %V, base value for zeta potential of particles 
z=1; %Valence, assumes symmetric electrolyte 
F = 96485.3; %A*s/mol 
  
%% Calculate thetas 
close all; 
kappa = 1/sqrt((epsilon*R*T./(2*z^2*F^2*Cn)));  %C in mM or 
mol/m^3; 
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vec_a = a; 
  
vec_G = (4/3)*pi*vec_a.^3*(rho_p-rho_f)*9.81; 
vec_B = 
64*pi*epsilon*vec_a.*(k*T/e)^2*tanh(e*zp/4/k/T)*tanh(e*zw/4/k/T); 
theta = zeros(1, length(vec_a)); 
  
% E = 2; %V/m 
J=J_val; 
delta=delt; 
  
  
%loops over every particle size input 
for i_= 1:length(vec_a) 
     
    G= vec_G(i_); 
    B= vec_B(i_); 
     
    hm = log(kappa*B/G)/kappa; 
     
    % This loop iterates to find the new value of h_m.  Usually 
it  
    % converges after a few iterations 
    for j_=1:100 
        [Feo_star_hm Fep_star_hm] = EK_Forces(J, delta, hm/a); 
        F_EK_hm = 6*pi*epsilon*a*E* (Feo_star_hm*zw + 
Fep_star_hm*zp); 
        hm_new = log(kappa*B/(G-F_EK_hm))/kappa; 
        if abs(hm/hm_new-1)<0.0001; 
            j_; 
            hm=hm_new; 
            break 
        end 
        hm=hm_new; 
    end 
    if i_ == 100 
        output = 'WARNING maximum iterations on hm determination' 
    end 
     
    % Forces and integrated forces calculated in a manner 
consistent with 
    % the derivation in the manuscript 
    [Feo_star_hm Fep_star_hm] = EK_Forces(J, delta, hm/a); 
    F_EK_hm = 6*pi*epsilon*a*E* (Feo_star_hm*zw + 
Fep_star_hm*zp); 
    F_EK_int_hm =  6*pi*epsilon*a*E*(EK_Forces_int(J, delta, 
(hm)/a,1)*zw + EK_Forces_int(J, delta, (hm)/a,2)*zp); 
    F_EK_int_h = @(hdiff) 6*pi*epsilon*a*E*(EK_Forces_int(J, 
delta, (hm+hdiff)/a,1)*zw + EK_Forces_int(J, delta, 
(hm+hdiff)/a,2)*zp); 
     
     
    xi = @(hdiff) kappa*hdiff; 
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    phi_kT= @(hdiff) ((G- F_EK_hm)/kappa/k/T) * (exp(-
xi(hdiff))+xi(hdiff)-1) + (F_EK_int_hm-F_EK_int_h(hdiff)); 
     
    theta_top_integrand = @(hdiff) exp((-
beta/kappa).*xi(hdiff)).*exp(-1*phi_kT(hdiff)); 
    theta_bottom_integrand = @(hdiff)  exp(-1*phi_kT(hdiff)); 
     
    %Calculation of theta.  Outputs for tracking.  Add a ; to the 
statement 
    %to suppress it 
    theta(i_)=integral(theta_top_integrand,-
1*hm,hm*10)./integral(theta_bottom_integrand,-1*hm,hm*10) 
     
end 
  
  
%} 
%% Calculate theta no force 
%{ 
    % This section calculates the theta correction with no 
applied electric 
    % field.  This is much quicker than the method shown above. 
    hm = log(kappa*B/G)/kappa; 
  
    xi = @(hdiff) kappa*hdiff; 
    phi_kT= @(hdiff) (G/kappa/k/T) * (exp(-xi(hdiff))+xi(hdiff)-
1); 
     
    theta_top_integrand = @(hdiff) exp((-
beta/kappa).*xi(hdiff)).*exp(-1*phi_kT(hdiff)); 
    theta_bottom_integrand = @(hdiff)  exp(-1*phi_kT(hdiff)); 
     
    theta(i_)=integral(theta_top_integrand,-
1*hm,hm*10)./integral(theta_bottom_integrand,-1*hm,hm*10); 
%} 
  
  
function [F_EO_star, F_EP_star] = EK_Forces(J,delta,hStar) 
  
%[F_EO_star, F_EP_star] = EK_Forces(J,delta,hStar) 
%This takes the variables delta, J, h/a (hStar) and spits out 
FEO_Star and 
%FEP_star 
% Constants format is [Letter]([FEO=1,FEP=2], Subscript), so that 
it comes 
% out as 
% B=[FEO1 FEO2 FEO3 
%    FEP1 FEP2 FEP3] 
  
% clear; clc; 
  
Ch = (1.554+hStar)./(0.3+hStar); 
  
lJ = log10(J); 
ld = log10(delta); 



111 
 

 
 

  
  
A = zeros(2,3); 
B = [2.634, -0.1053, 0.9816; 2.847, -0.1052, 0.9883]; 
C = [0.02834, -3.33, 7.806; 0.02749, -3.309, 8.026]; 
D = [1.376, -2.728, 8.371; 0.6341, 0.4704, 2.064]; 
E = zeros(2); 
F = [0.2203, 2.555, 1.477, 0.2398; 0.7663, 1.918, 1.194, 0.8044]; 
G = [-0.04942 1.157, 1.086, -0.05738; -0.7313, 1.718, 1.172, -
0.7677]; 
  
%Now we solve for the other parameters, E and A, with the same 
format 
  
E(:, 1) = F(:,1) .* erf ( (lJ-F(:,2))./F(:,3) ) + F(:,4); 
E(:, 2) = G(:,1) .* erf ( (lJ-G(:,2))./G(:,3) ) + G(:,4); 
  
A(:, 1) = B(:,1) .* erfc ( (lJ-B(:,2))./B(:,3) ); 
A(:, 2) = C(:,1) .* (exp ( lJ - C(:,2)) + C(:,3));  
A(:, 3) = D(:,1) .* erfc ( (lJ-D(:,2))./D(:,3) ); 
  
  
F_EO_star = A(1,1) .* erfc ( (ld-A(1,2))/A(1,3) ) * E(1,1) 
./((hStar-E(1,2)).^1.3); 
F_EP_star = (A(2,1) .* erfc ( (ld-A(2,2))/A(2,3) ) + Ch ) * 
E(2,1) ./((hStar-E(2,2)).^1.3); 
 
 
function [F_star_int] = EK_Forces_int(J,delta,hStar, idx) 
  
% This function outputs the integral of the EK forces, from zero 
to h. 
%input delta, J, h/a (hStar) and spits out EO:idx=1,EP:idx=2 
% 
% Constants format is [Letter]([FEO=1,FEP=2], Subscript), so that 
it comes 
% out as 
% B=[FEO1 FEO2 FEO3 
%    FEP1 FEP2 FEP3]   
  
lJ = log10(J); 
ld = log10(delta); 
  
A = zeros(2,3); 
B = [2.634, -0.1053, 0.9816; 2.847, -0.1052, 0.9883]; 
C = [0.02834, -3.33, 7.806; 0.02749, -3.309, 8.026]; 
D = [1.376, -2.728, 8.371; 0.6341, 0.4704, 2.064]; 
E = zeros(2); 
F = [0.2203, 2.555, 1.477, 0.2398; 0.7663, 1.918, 1.194, 0.8044]; 
G = [-0.04942 1.157, 1.086, -0.05738; -0.7313, 1.718, 1.172, -
0.7677]; 
  
%Now we solve for the other parameters, E and A, with the same 
format 
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E(:, 1) = F(:,1) .* erf ( (lJ-F(:,2))./F(:,3) ) + F(:,4); 
E(:, 2) = G(:,1) .* erf ( (lJ-G(:,2))./G(:,3) ) + G(:,4); 
  
A(:, 1) = B(:,1) .* erfc ( (lJ-B(:,2))./B(:,3) ); 
A(:, 2) = C(:,1) .* (exp ( lJ - C(:,2)) + C(:,3)); 
A(:, 3) = D(:,1) .* erfc ( (lJ-D(:,2))./D(:,3) ); 
  
% A = A*(-10/3); 
  
Ch = @(hStar)(1.554+hStar)./(0.3+hStar); 
F_EO_star =@(h) A(1,1) .* erfc ( (ld-A(1,2))/A(1,3) ) * E(1,1) 
./((h-E(1,2)).^1.3); 
F_EP_star =@(h) (A(2,1) .* erfc ( (ld-A(2,2))/A(2,3) ) + Ch(h) ) 
* E(2,1) ./((h-E(2,2)).^1.3); 
% hStar 
if idx == 1 
    F_fun = F_EO_star; 
else 
    F_fun = F_EP_star; 
end 
  
F_star_int = zeros(size(hStar)); 
for j_=1:length(hStar) 
    F_star_int(j_) = integral(F_fun,0,hStar(j_)); 
end 
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Chapter 4 

Use of Colloidal Particles for Imaging Amperometry on a Macroscopic CSAF 

Electrode 

4.0 Abstract 

   High-throughput methods of electrochemical experimentation can 

increase the pace of discovery of promising new alloys and materials for 

electrocatalytic applications.  A common approach in this field is the deposition 

and subsequent testing of composition spread alloy film (CSAF) electrodes, 

which present surfaces with continuously varying compositions.  Simultaneous 

measurement of electrochemical activity across these surfaces allows for rapid 

selection of optimum alloy compositions for a wide range of applications.  

Previous work showed that the electrokinetic motion of colloidal particles 

proximate to electrode surfaces can be measured using total internal reflection 

microscopy and used to infer the current density at the electrode, with reasonable 

accuracy compared to electronic current measurements.  The strength of this 

method as compared to traditional electrochemical measurement is that it allows 

for determination of local current density at any location on an electrode, as 

opposed to the total current over the available surface.  Recently published and 

submitted work has focused on developing the fundamental theory and methods 

for translating imaging data into current density from single particles and from 

average measurements over ensembles of particles, at individual locations on both 

uniform and non-uniform electrodes.  The work presented here demonstrates the 
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efficacy of this imaging ammeter for measuring the current density across a Ni/Fe 

CSAF electrode.  Light scattering from particles over a region representing a 

range of compositions from 20% Fe to 100% Fe was collected with a CCD 

camera and used to infer the current density across that entire composition space 

as a function of applied voltage. Inferred current densities agree with established 

trends for the electrochemical activity of this alloy system. 

4.1 Introduction 

High throughput investigation of electrocatalysts and corrosion resistant 

materials accelerates discovery of promising new materials and alloys. Using 

classical electrochemical methods, testing of electrocatalyst alloy combinations is 

a time consuming and costly process, involving the synthesis of multiple samples 

with different compositions and testing each individually.1   One approach for 

rapid testing utilizes electrodes made from composition spread alloy films 

(CSAFs), which exhibit continuously varying surface concentrations.2–14 

Deposition of these CSAFs onto electrode surfaces represents part of the 

challenge in this problem, the other part being the development of an accurate 

method for measuring the current density at different locations on the same 

electrode in a single experiment, as traditional electronic measurements of current 

density yield only the total current passing through the electrode.  There are 

numerous examples of approaches to this problem in the literature, but to date the 

optimal method combining flexibility, speed, and resolution has yet to be fully 

developed.1,15   
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There is interest in both serial and parallel methods for characterizing 

CSAF surfaces for electrocatalysis. The use of a scanning drop cell (SDC) 

electrode is an example of one serial approach, and a number of imaging methods 

have also been investigated.2,4,16–21  In this work, we explore the use of ensemble 

average total internal reflection microscopy (TIRM) as a method for imaging 

amperometry.  This method involves measuring the light scattering from colloidal 

particles interacting with an evanescent wave adjacent an electrode surface during 

electrochemical experiments, translating these measured intensities into 

information about the motion of the particles.  With an appropriate model for the 

relationship between the electrokinetic forces on the particles and the electric field 

strength, it is then possible to infer the current density at the electrode from the 

motion of the particles.  Initial work on this imaging ammeter demonstrated that 

the current density on a tin doped indium oxide (ITO) electrode could be inferred 

from the motion of a single particle during electrochemical experiments, using a 

basic model for the  electrokinetic forces acting on the particle.22,23  Further 

investigations involved a computational study to investigate the significant impact 

of electrode kinetics on the electrokinetic forces acting on the particle and further 

work to allow for translation of measured intensities averaged over ensembles of 

particles to current density.24,25  Previous experimental studies also showed that 

the imaging ammeter could distinguish between two regions of varying 

electrochemical activity on the same patterned gold/ITO electrode.25   

The current contribution represents the first demonstration of the colloidal 

imaging ammeter in parallel operation, for measuring current at different points 
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on a CSAF surface in a single experiment.  The nickel/iron alloy system for the 

oxygen evolution reaction was used as the test case for this study.  The behavior 

of this system has been characterized in the past through more traditional 

methods: a sharp peak in oxygen generation is observed at 10-20% Fe in the 

electrode surface, with rapidly decreasing electrochemical activity with increasing 

iron content in the catalyst.26–28  The well-understood nature of this catalyst 

system, the stability of the CSAF electrode in the basic solutions commonly 

utilized for TIRM, and the established method for deposition of Ni/Fe CSAF 

films29 makes this an ideal proof-of-concept case for the imaging ammeter. 

 

4.2 Theory 

4.2.0 Measurement of particle motion with TIRM 

Total internal reflection microscopy (TIRM) is used in this study to 

measure the motion of particles proximate to the working electrode.  In TIRM, 

rays of a laser beam strike the interface from within the solid phase at an angle 

(measured from the normal) greater than the critical angle of that interface, 

resulting in total internal reflection of the rays and the formation of an evanescent 

wave that propagates parallel to the interface and whose intensity decays 

exponentially with distance.  A schematic of this system is shown in Fig. 4.1.   
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Fig. 4.1.  A colloidal particle scattering light from the evanescent light wave adjacent 
a clear electrode surface.  The evanescent wave forms when incident laser light 
strikes the interface at an angle greater than the critical angle of that interface.  The 
intensity of light scattering I(h) increases with decreasing particle-wall separation h. 

Upon interacting with the colloidal particle, light from the evanescent 

wave is scattered away from the electrode with an intensity that decays 

exponentially with the particle-wall separation h.  This intensity, measurable by 

means of a photomultiplier tube (PMT) or CCD camera, is given by: 

 

 𝐼(ℎ)
𝐼𝑚

= exp[𝛽(ℎ𝑚 − ℎ)] (4.23) 

 

where I(h) and Im are the scattering intensities of a single particle at heights h and 

hm, respectively, and β-1 is the decay length of the evanescent wave. The parameter 

hm is the most probable (mode) height of the particle above the interface at open 

circuit and Im is the scattering intensity at that height. 
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 In this study, the measured intensities are averaged over ensembles of 

particles, but the discussion of the theory involved focuses on the interactions 

between electrodes and single particles.  The relationship between scattering 

intensities measured from single particles and ensembles of particles as it pertains 

to the imaging ammeter has been explored in previous work, as described in 

Chapter 3. 25  The correction described therein to allow for the use of ensemble 

average measurements in equations derived for single particles is applied to the 

data presented here.  
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4.2.1 Relationship between particle motion and electric field strength 

Consider the charged particle and electrode system pictured in Fig. 4.2, 

where the zeta potentials of the particle (𝜁𝑝) and wall (𝜁𝑤) are both negative.  In 

the absence of an applied electric field, the weight of the particle is defined as 

 

 𝐹𝑔 = −4
3
𝜋𝑎3�𝜌𝑝 − 𝜌𝑓�𝑔 = −𝐺 (4.24) 

 

where ρp and ρf are the density of the particle and the fluid, respectively, a is the 

radius of the particle and g is the acceleration due to gravity.  This force will act 

to pull the dense particle down towards the electrode surface.  Once the particle 

approaches to close proximity with the surface, the double-layer repulsion 

between the two surfaces becomes significant, given by: 

 

 𝐹𝑒𝑠 = 𝜅𝐵𝑒𝑥𝑝(−𝜅ℎ) (4.25) 

 

where κ-1 is the Debye length of the electrolyte, G is the net weight of the particle, 

and B is the electrostatic parameter approximated as 

 

 𝐵 = 64𝜋𝜀𝑎 �𝑘𝐵𝑇
𝑒
�
2

tanh � 𝑒𝜁𝑝
4𝑘𝐵𝑇

� tanh � 𝑒𝜁𝑤
4𝑘𝐵𝑇

� (4.26) 

 

where ε is the permittivity of the medium.  When the particle is at its equilibrium 

position in the absence of an electric field ℎ𝑚, the force of gravity on the particle 
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and the double layer force balance each other, resulting in an equilibrium particle-

wall separation of some hundreds of nanometers.   

 

Fig. 4.2. Schematic of the particle-electrode system, where 𝜁𝑝 and 𝜁𝑤 are 
negative.  Electrostatic repulsion pushes the particle away from the electrode 
while gravity pulls the particle down.  With E > 0 as shown here, the 
electrokinetic forces Feo and Fep both pull the particle down towards the electrode 
surface. If E < 0, these forces would reverse direction as well. 
 

When an electric field 𝐸∞ is imposed across the electrochemical cell, 

additional forces act on the charged particle, as shown in Fig. 4.4 for the case 

where E∞ is positive.  We denote the new most-probable height as ℎ𝑚′  where 

 

 𝐹𝑔 + 𝐹𝑒𝑠(ℎ𝑚′ ) + 𝐹𝑒𝑝(ℎ𝑚′ ,𝐸∞) + 𝐹𝑒𝑜(ℎ𝑚′ ,𝐸∞) = 0 (4.27) 
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 In this work, a prime on the variable denotes a quantity measured or 

inferred in the presence of a non-zero electric field.  The sign convention adopted 

for the forces in Eq. 4.5 is that any force or 𝐸∞ directed away from the electrode 

is positive.  𝐹𝑒𝑜 and 𝐹𝑒𝑝 refer to the electrokinetic forces acting on the particle 

from fluid flow originating at the electrode and at the particle, respectively.  

Previous work by Keh & Lien30 and Yariv31 has demonstrated that these forces 

are strong functions of the kinetics of the electrode reaction occurring below the 

particle; for a given electric field strength, the force on the particle in the case of 

fast electrode kinetics may differ from the force on the particle in the case of slow 

electrode kinetics by an order of magnitude.32  These studies involve analytical 

solutions for the force on the particle in two limiting cases of electrode kinetics: 

infinitely fast kinetics, which results in a uniform potential at the electrode, and 

infinitely slow kinetics, which results in a uniform current density at the electrode.  

Recent computational studies of the system allows for scaling between these two 

limiting cases, as seen in Chapter 2.24  Dimensionless parameters J and δ, can be 

used to define the current distribution:33,34 

 

 𝐽 ≡ (𝛼𝑎+𝛼𝑐)𝑎𝑒
𝜎𝑘𝐵𝑇

𝑖0 (4.28) 

 

 𝛿 ≡ (𝛼𝑎+𝛼𝑐)𝑎𝑒
𝜎𝑘𝐵𝑇

𝑖𝑎𝑣𝑔 (4.29) 

 



124 
 

 
 

where αa and αc are the coefficients of symmetry for the anodic and cathodic 

reactions, respectively, i0 is the exchange current density, e is the elementary 

charge and iavg is the actual current density far from the particle. J and δ are 

therefore dimensionless current densities.  In the limit of J ≫1 or δ ≫1, the 

potential is uniform on the electrode under the particle because the electrode 

kinetics are facile. In the opposite limit of J ≈ δ ≪ 1, the current density (instead 

of the potential) becomes increasingly uniform under the particle.  For the 

purposes of this study, values of J=2 and δ=0.005 are assumed, corresponding to 

the small current densities present in these studies and an intermediate exchange 

current density at the electrode.  This assumption results in the following form for 

𝐹𝑒𝑜 and 𝐹𝑒𝑝, as fit from the computational results presented in Chapter 2:24 

 

 𝐹𝑒𝑜(ℎ) = 𝜀𝑎𝜁𝑤𝐸∞
1.459

�ℎ𝑎+0.02110�
1.3 (4.30) 

 

 𝐹𝑒𝑝(ℎ) = 𝜀𝑎𝜁𝑝𝐸∞
11.82

�ℎ𝑎+0.1002�
1.3 (4.31) 

 

Summing these expressions to obtain a force balance on the particle gives 

 

  𝐹𝑔 + 𝐹𝑒𝑠(ℎ𝑚′ ) + 𝐹𝑒𝑝(ℎ𝑚′ ,𝐸∞) + 𝐹𝑒𝑜(ℎ𝑚′ ,𝐸∞) = 0 (32) 
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which can be used to determine the electric field strength 𝐸∞ with known physical 

parameters and particle-wall separation during cell polarization ℎ𝑚′ , using the 

method outlined in Chapter 3.25 

 

4.3 Methods & Materials 

A sketch of the apparatus appears in Fig. 4.3.  To obtain evanescent wave 

illumination over macroscopic electrodes, adjustments were made to the standard 

TIRM methodology, which is generally used to illuminate particles across a 

comparatively small field of view.  First, the beam from a 30 mW, 632.8 nm 

HeNe laser with a 0.8 mm spot diameter was expanded through a 3x Edmund 

Optics beam expander, and then formed into an ellipse with a pair of anamorphic 

prisms, giving beam dimensions of 2.4 mm by 11 mm.  In addition to this 

expanded laser beam, a new TIRM cell was designed in which the bottom glass 

slide (n=1.5) electrode acts as a waveguide for the laser light, as seen in Fig. 4.3.  

The laser enters the cell normal to a equilateral prism made from F2 

glass(n=1.63), resulting in an incident angle at the electrode surface of 70°.  This 

gives an evanescent wave decay length of 𝛽−1 = 111 nm, which is comparable to 

the evanescent wave decay length used in other studies.23,35,36  Repeated total 

internal reflection of the laser beam within glass slide results in the formation of 

evanescent waves at each region of contact with the top or bottom of the slide.  

With proper alignment and laser spot shape, this result in an evanescent wave 

present across the entire surface of the electrode, allowing for imaging of particles 

across the surface.  In this study, the input laser was masked, reducing the size of 
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the initial laser spot in order to eliminate undesired additional reflections and 

background signal. 

 

Fig. 4.3. Schematic of the TIRM cell used in these experiments.  Laser light 
enters from the right, normal to the surface of a equilateral F2 glass prism.  The 
bottom glass slide electrode acts as a waveguide for the laser beam, which reflects 
down the length of the cell and exits through another equilateral prism.  The light 
scattering from the particles interacting with the evanescent wave adjacent the 
working electrode is collected by a CCD camera beneath the cell. 
 

The working electrode (WE) present in this cell was a transparent 30-60 

nm ITO coated glass slide(Sigma-Aldrich), with a Ni/Fe CSAF deposited on top 

using a rotatable shadow mask apparatus.29  Measurements of composition of the 

CSAF were performed via energy dispersive X-ray (EDX) analysis.  The 

reference electrode (RE) was a Ag/AgCl gasket ring, which was sandwiched by 

1/32” Buna-N-Rubber gaskets to provide a seal.  The counter electrode (CE) was 

gold, electrodeposited onto copper plate.  Voltage sweeps were performed using a 

Princeton Applied Research versaSTAT3 potentiostat, which also recorded the 

gross current passing through the entire working electrode.  Images of the light 

scattering from the particles as a function of applied voltage were captured with a 

DAGE-MTI CCD100 video camera, attached to an Edmund Optics zoom lens set 
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to 1x magnification, and digitized with a USB Live 2 Analog Video Digitizer.  

The measured intensities were averaged over 10 cycles of a cyclic 

voltammogram, with a scan rate of 100 mV/s.  Video was taken of the light 

scattering from particles over a rectangular region of the CSAF electrode 

representing alloy compositions between 20% Fe and 100% Fe.  Measured 

intensities were averaged over patch regions of two sizes: the data were processed 

by averaging intensities around each point in a circle of radius 100 μm with a 

pillbox filter, alternatively, intensities were averaged over patch regions of 100 

μm × 1 mm, with each patch containing alloy compositions over a range of 

approximately 2.5%.  The current was calculated from these average intensity 

measurements in the manner described in Chapter 3. 

The particles were IDC™ sulfonated latex (Life Technologies) 

electrostatically stabilized by covalently attached sulfonate groups in the absence 

of surfactant, giving a corresponding zeta  potential of approximately ζp=-120 

mV.  The particles had nominal diameters of 10.1±0.5 μm. 
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4.4 Results & Discussion 

The first step in this study of the Ni/Fe alloy system for the oxygen 

evolution reaction in base was to deposit a CSAF onto the ITO coated glass slide.  

A schematic showing the location of the CSAF on the electrode surface, as well 

as the composition map of that CSAF obtained with EDX, is shown in Fig. 4.4.  

The dotted red rectangle represents the region imaged in this study. 

 

Fig. 4.4.  Schematic of the working electrode surface with the Ni/Fe CSAF 
deposited on top.  The CSAF was deposited in the middle of the glass slide, as 
pictured here.  The composition on the CSAF surface are shown below.  The red 
dotted rectangle represents the region over which imaging was performed in this 
study.  Thanks to Matthew Payne for deposition and characterization of the CSAF 
electrode. 
 

The light scattering at open circuit was first measured to determine the 

reference 𝐼𝑚 at every location on the electrode.  This image is shown in Fig. 

4.5(a).  By referencing the light scattering intensity during negative and positive 
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cell polarization (Figs.  4.5(b) and 4.5(e), respectively) to this open circuit 

intensity, it is possible to calculate current densities across the electrode surface, 

as shown in Figs. 4.5(c) and 4.5(f), again for negative and positive polarization.  

These currents were calculated using intensities averaged in a circle (r=100μm) 

about each point.  The irregular nature of the currents seen in Fig. 4.5(f) is likely 

due to a combination of unaccounted-for background signal, non-uniformity in 

the particle distribution on the surface, and insufficient signal/noise of the camera 

itself.  All of these concerns will be addressed in future work, but to allow for 

more reliable mapping of the current density based on these data, patch averaging 

of the intensity signal was performed for strips of 1×5 mm2, resulting in the 

current densities shown in Figs. 4.5(d) and 4.5(g). 

One important feature to note in Fig. 4.5(a) is the non-uniformity of the 

illumination across the 1×5 mm2 region with no applied electric field.  This is due 

to a combination of the Gaussian nature of the laser beam intensity profile and the 

varying surface opacity of the electrode.  This should have no impact on the 

currents calculated from the measured light scatter, since the current is calculated 

on the basis of changes in the light scattering, not with the absolute intensity.  

This effect is clear when comparing Fig. 4.5(e) to Fig. 4.5(f): while the absolute 

intensity on the top of the frame is greater, the current density is at a maximum 

near the bottom of the frame, since this is where the ratio of the intensity shown in 

Fig. 4.5(e) to the open circuit intensity in Fig. 4.5(a) is largest.  
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Fig. 4.5.  Scattering intensities and current densities over the region of interest. (a) 
Light scattering intensity at open circuit. (b), (e) Light scattering during negative 
and positive polarization, respectively. (c), (f) Current density calculated with 
circular pillbox averaging during negative and positive polarization, respectively. 
(d), (g) Current density calculated averaging over 1×5 mm2 patch regions during 
negative and positive polarization, respectively.  In (c), (d), (f) and (g), lighter 
regions indicate greater positive current, with a maximum of 1 A/m2. 
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Current densities were calculated from measured light scattering at 

different locations in the red window pictured in Fig. 4.4 as a function of CSAF 

composition.  One way to display these data is shown in Fig. 4.6, where the 

current data for three different alloy compositions are plotted as a function of 

applied potential for the upward sweep up the CV experiments.  The average 

current density of the entire electrode surface, measured electronically with a 

potentiostat, is also plotted for comparison.   

 

Fig. 4.6.  Current densities inferred from light scatter measurements as a function 
of applied voltage for the upwards sweep of a CV, averaged over ten cycles, for 
three different alloy compositions are plotted here.  Also plotted in green is the 
mean current density across the entire electrode surface, measured electronically.   
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Over this range of alloy compositions, it is expected that the 

electrochemical activity should increase with decreasing iron content, and indeed 

that is the trend observed the current densities inferred from the motion of the 

particles adjacent the CSAF electrode.  The mean current density across the entire 

electrode is between the two extremes plotted here, which is not surprising, as the 

average surface makeup of the electrode is some intermediate between 100% Fe 

and 100% Ni.   

Polarizations probed in this study were not sufficiently large to reliably 

obtain Tafel parameters from the inferred current densities, so other measures 

were used to quantify the activity of the electrode surface as it relates to electrode 

alloy composition.  One way to examine the activity of the electrode for varying 

alloy compositions is to plot the maximum current density observed as a function 

of composition.  These data are shown in Fig. 4.7, plotted against data from 

Landon et al.28, who tested electrodes synthesized using several different methods 

over a wide range of compositions.  The data are not quantitatively comparable, 

as the currents from Landon et al. is the current density per mg substrate at a fixed 

overpotential as opposed to maximum current densities per area, but they are 

plotted together nevertheless to illustrate the qualitative agreement between 

previously established trends in electrochemical activity and the data obtained 

with the imaging ammeter.  Despite the scatter in the data plotted here, the 

upward trend in current density with decreasing iron content over the range of 30-

100% iron is clear. 
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Fig. 4.7. The maximum current densities during the CV experiments described 
here, inferred from light scattering measurements, as a function of electrode 
composition, plotted as diamonds against the right ordinate axis.  Also plotted 
against the left ordinate axis are current densities at a fixed overpotential of 360 
mV on an alloy oxide electrode coated onto a nickel mesh support, as described 
by Landon et al.28  Both current densities trend downwards with increasing iron 
content in the electrode, above 20% iron.  Axis scaling is arbitrary, and was 
chosen to illustrate the qualitative agreement between the two data sets. 

There is some noise present in the plots shown in Figs. 4.5 and 4.7.  While 

these errors do not detract significantly from the overall trend observed in this 

study, future studies will demand measures to address the underlying issues 

causing this.  One reason for this noise is insufficient light scattering intensity at 

certain locations on the electrode.  Given a large number of particles scattering 

light on the electrode in the absence of an electric field, variations in the light 
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scattering intensity are due predominantly to variations in the incident laser light, 

governed by the Gaussian nature of the original beam, and variations in the 

opacity of the electrode itself, both of which impact the intensity of the 

evanescent light.  In theory, the light scattering is referenced to the constant 𝐼𝑚 as 

shown in Eq. 4.1, meaning that variations in the intensity of the evanescent wave 

should have no impact on inferred particle heights and current densities.  In 

practice, however, imperfect collection of the light scattering from the particles 

means that insufficient illumination of the particles can lead to unreliable 

calculation of current density from light scattering measurements.  Possible 

solutions to this issue include the purchase and use of a more sophisticated 

camera for image acquisition and deposition of thinner CSAF films to reduce the 

variations in surface opacity.  Another possible cause for the noise in the plots 

presented here is the misinterpretation of light scattering from blemishes on the 

surface or “stuck” particles, which results in a background light intensity.  

Addressing these issues calls for adjustments to the experimental protocol, to 

include acquisition of a background intensity image which can be subtracted out 

of subsequent measurements.   

Additionally, smaller particles should be used in the future when working 

with CSAF surfaces that have lesser surface charge than the ITO films 

traditionally used for TIRM.  Shortly after the data presented here were collected, 

the 10.1 μm particles here irreversibly adsorbed to the surface due to Van der 

Waals interactions, limiting the amount of data that was collected.  Using the 

correction factors for intensity described in Chapter 3 allows for the reliable use 
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of smaller particles, which have a lesser tendency to adsorb to the surface given 

their smaller weight.  Use of 4 to 6 μm diameter particles should be sufficient to 

avoid these issues in the future. 

It is also important to note that a single set of kinetic parameters (J and δ) 

were assumed when calculating the electrokinetic forces in this experiment, and 

that this may be a source of error, considering the fact that the actual exchange 

current density will be varying as a function of alloy composition.  Future work 

should include some effort to address this issue.  Options include deposition of a 

“standard” material somewhere on the electrode, or imaging of the entire active 

area of the electrode to allow for fitting of the total current to externally measured 

data. 

4.5 Conclusions 

The oxygen evolution reaction on a Ni/Fe alloy surface was explored here, 

using colloidal imaging amperometry to determine the current density across 

compositions ranging between 20% Fe and 100% Fe in a single experiment.  This 

was achieved by imaging the motion of colloidal particles proximate to a 

composition spread alloy film electrode during cell polarization and inferring the 

current density at each location on the electrode through the application of a force 

balance.  Inferred currents agree with established trends in the electrochemical 

activity of this alloy system as a function of alloy composition.  This work 

represents the proof-of-concept for the macroscopic colloidal imaging ammeter.  

Future advancements in the method include adjustments to the experimental 
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protocol and some equipment upgrades, which will make future work focusing on 

more complex systems with subtler behavior possible. 
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4.7 Appendix 

 The current density calculations performed here were done with the same 

methodology as that presented in Chapter 3, with the major difference being the 

manner in which the data was collected.  The function used to open and filter the 

video files into a format usable in MATLAB is included below. 

function [filt_vid] = CCvidHandlingSqueezeStrip(fileName, 
filterType, squeezeFactor, startZ, endZ) 
  
%{ 
This function reads in the video file designated by filename, 
converts the 
data to single format and applies a filter of filterType to the 
data. 
  
Example filter: filterType = fspecial('disk',filterRadius); 
This will apply an averaging circular filter around each point in 
the 
matrix 
  
squeezeFactor allows for data reduction *after* the filtering is 
performed. 
 The size of the matrix output is original_x/squeezeFactor by 
 original_y/squeezefactor 
  
startZ and endZ allow for cutting data out of the video output on 
the top 
and bottom of the video 
%} 
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[video, audio] = mmread(fileName, [],[]) 
vidSize = 
size(squeezeFrame(im2single(video.frames(1,1).cdata(startZ: endZ-
1,1:end-10,1)),squeezeFactor)); 
tempVid = zeros(vidSize(1),vidSize(2), video.nrFramesTotal, 
'single'); 
  
for i_=1:video.nrFramesTotal 
    temp = im2single(video.frames(1,i_).cdata(startZ:endZ-
1,1:end-10,1)); %im2double converts image format data to double 
    tempVid(:,:,i_) = squeezeFrame(imfilter(temp, filterType, 
'replicate'),squeezeFactor); 
end 
  
filt_vid = tempVid; 
 
 
function [smallImg] = squeezeFrame(myImg, squeezeFactor) 
%  This section reduces the size of the image to one where each 
dimension 
%  of size=n is n/squeezeFactor 
  
rowsNotRemoved = 1 : squeezeFactor : size(myImg,1); 
colsNotRemoved = 1 : squeezeFactor : size(myImg,2); 
  
rowsRemoved = 1:size(myImg,1); 
colsRemoved = 1:size(myImg,2); 
  
rowsRemoved(rowsNotRemoved) = []; 
colsRemoved(colsNotRemoved) = []; 
  
myImg(rowsRemoved,:)=[]; 
myImg(:,colsRemoved)=[]; 
  
smallImg = myImg; 
  

  

 

  



138 
 

 
 

4.8 Works Cited 

(1)  Smotkin, E. S.; Diaz-Morales, R. R. Annu. Rev. Mater. Res 2003, 33, 557–
79. 

(2)  Klemm, S. O.; Kollender, J. P.; Walter Hassel, A. Corrosion Science 2011, 
53, 1–6. 

(3)  Mardare, A. I.; Yadav, A. P.; Wieck, A. D.; Stratmann, M.; Hassel, A. W. 
Science and Technology of Advanced Materials 2008, 9, 035009. 

(4)  Reddington, E. Science 1998, 280, 1735–1737. 

(5)  Prochaska, M.; Jin, J.; Rochefort, D.; Zhuang, L.; DiSalvo, F. J.; Abruña, 
H. D.; Van Dover, R. B. Review of Scientific Instruments 2006, 77, 054104. 

(6)  Jin, J.; Prochaska, M.; Rochefort, D.; Kim, D.; Zhuang, L.; Disalvo, F.; 
Vandover, R.; Abruna, H. Applied Surface Science 2007, 254, 653–661. 

(7)  Barber, Z. H.; Blamire, M. G. Materials Science and Technology 2008, 24, 
757–770. 

(8)  Priyadarshini, D.; Kondratyuk, P.; Miller, J. B.; Gellman, A. J. Journal of 
Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2012, 30, 
011503. 

(9)  Muster, T. H.; Hughes, a. E.; Furman, S. a.; Harvey, T.; Sherman, N.; 
Hardin, S.; Corrigan, P.; Lau, D.; Scholes, F. H.; White, P. a. 
Electrochimica Acta 2009, 54, 3402–3411. 

(10)  Jiang, R. The Review of Scientific Instruments 2007, 78, 072209. 

(11)  Spong, a Journal of Power Sources 2003, 119-121, 778–783. 

(12)  Mardare, A. I.; Ludwig, A.; Savan, A.; Wieck, A. D.; Hassel, A. W. 
Electrochimica Acta 2009, 54, 5171–5178. 

(13)  Whitacre, J. F.; Valdez, T. I.; Narayanan, S. R. Electrochimica Acta 2008, 
53, 3680–3689. 

(14)  Russell, A. E. Physical Chemistry Chemical Physics : PCCP 2008, 10, 
3607–8. 

(15)  Muster, T. H.; Trinchi, a.; Markley, T. a.; Lau, D.; Martin, P.; Bradbury, a.; 
Bendavid, a.; Dligatch, S. Electrochimica Acta 2011, 56, 9679–9699. 



139 
 

 
 

(16)  Williams, C. G.; Edwards, M. a; Colley, A. L.; Macpherson, J. V; Unwin, 
P. R. Analytical chemistry 2009, 81, 2486–95. 

(17)  Engstrom, R. C.; Ghaffari, S.; Qu, H. Anal. Chem. 1992, 2525–2529. 

(18)  Bowyer, W. J.; Xie, J.; Engstrom, R. C. Anal. Chem. 1996, 68, 2005–9. 

(19)  Panova, A. A.; Pantano, P.; Walt, D. R. Anal. Chem.  1997, 69, 1635–41. 

(20)  Lohrengel, M. M.; Moehring, A.; Pilaski, M. Electrochimica Acta 2001, 
47, 137– 141. 

(21)  Lohrengel, M. M.; Moehring, A.; Pilaski, M. Fresenius’ Journal of 
Analytical Chemistry 2000, 367, 334–9. 

(22)  Sides, P. J.; Wirth, C. L.; Prieve, D. C. Electrochemical and Solid-State 
Letters 2010, 13, F10–F12. 

(23)  Wirth, C. L.; Sides, P. J.; Prieve, D. C. Journal of Colloid and Interface 
Science 2011, 357, 1–12. 

(24)  Rock, R. M.; Sides, P. J.; Prieve, D. C. Journal of Colloid and Interface 
Science 2013, 393, 306–13. 

(25)  Rock, R. M.; Sides, P. J.; Prieve, D. C. Ensemble Average TIRM for 
Imaging Amperometry. DOI: 10.1016/j.jcis.2013.04.010 2013. 

(26)  Krstajić, N.; Trasatti, S. In Oxygen Electrochemistry; Adzic, R.; Anson, F.; 
Kinoshita, K., Eds.; The Electrochemical Society, 1996; pp. 155–165. 

(27)  Guerrini, E.; Trasatti, S. In Catalysis for Sustainable Energy Production; 
2009; pp. 235–269. 

(28)  Landon, J.; Demeter, E.; Nilay, I.; Keturakis, C.; Wachs, I. E.; Vasic, R.; 
Frenkel, A. I.; Kitchin, J. R. ACS Catalysis 2012, 2012, 1793–1801. 

(29)  Fleutot, B.; Miller, J. B.; Gellman, A. J. Journal of Vacuum Science & 
Technology A: Vacuum, Surfaces, and Films 2012, 30, 061511. 

(30)  Keh, H.-J.; Lien, L.-C. J. Chin. Inst. Chem. Eng. 1989, 20, 283–290. 

(31)  Yariv, E. Journal of Fluid Mechanics 2010, 645, 187. 

(32)  Solomentsev, Y.; Bohmer, M.; Anderson, J. L. Langmuir 1997, 13, 6058–
6068. 



140 
 

 
 

(33)  Newman, J. Journal of The Electrochemical Society 1966, 113, 1235. 

(34)  Newman, J.; Thomas-Alyea, K. E. Electrochemical Systems; 3rd ed.; John 
Wiley & Sons, Inc.: Hoboken, NJ, 2004. 

(35)  Fagan, J. A.; Sides, P. J.; Prieve, D. C. Langmuir 2002, 18, 7810–7820. 

(36)  Prieve, D. C.; Sides, P. J.; Wirth, C. L. Current Opinion in Colloid & 
Interface Science 2010, 15, 160–174.  

 

  

 



141 
 

 
 

Chapter 5 

Summary and Future Directions 

5.0 Summary 

 The work presented in this dissertation advances theory and experimental 

methods to test the following hypothesis: 

 Colloidal particles can be used as probes of electrochemical current 

across planar composition spread alloy film electrodes to enable rapid parallel 

screening of novel electrocatalysts.  This method will allow for accurate, 

reaction-independent, high resolution testing of alloy materials. 

 This effort yielded three major contributions.  (1) A computational 

exploration of the impact of electrode reaction kinetics on the electrokinetic 

forces acting on particles proximate to the electrode surfaces.  This work is of 

general interest to the electrophoretic deposition community, and resulted in a 

much more sophisticated understanding of the relationship between electric fields 

and the resulting forces acting on the particles.  (2)  Theoretical and experimental 

advances to allow for application of this method to average measurements taken 

over ensembles of particles.  This was a necessary step to adapt from previous 

work, which focused on relating the motions of a single particle to the electric 

field local to that particle.  (3) Application of these advances to measure the 

current density as a function of applied potential across a Fe/Ni CSAF electrode.  

This represents the proof-of concept for the macroscopic imaging ammeter, and 

would not have been possible without the previous work outlined here. 
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5.1 Future Directions 

 There are a number of opportunities for future work on the imaging 

ammeter.  The initial alloy electrode experiments described in Chapter 4 explore 

the electrochemical response of a Fe/Ni alloy surface undergoing the oxygen 

evolution reaction (OER) for compositions ranging from 20% Fe to 100% Fe, 

which unfortunately does not capture the region of greatest interest in this system, 

between 0% and 30% Fe content.  Near future work should undertake further 

characterization of this system to provide more concrete validation of the method 

for macroscopic imaging amperometry.  The refinements in the experimental 

method described here will provide for more reliable data collection and analysis 

going forward.   

The imaging ammeter has matured to the point that it can be used to probe 

technologically relevant alloy systems to determine ideal alloy compositions.  

Expansion of the current work to alloy systems such as Fe1-x-yNixCoy  or           

Fe1-x-yNixMny for oxygen evolution is a natural progression of the work presented 

here.  Alternatively, different reactions and alloy systems could be probed with 

some adjustments to the experimental method.  A primary strength of the 

colloidal imaging ammeter is that the method can be used to infer current density 

regardless of electrolyte chemistry, so long as the surface and particles have 

sufficient like charge to maintain particle levitation.  Probing cathodic reactions 

reaction as opposed to the anodic oxygen evolution reaction, for example, would 

require the use of positively charged particles and an acidic electrolyte, but would 
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be procedurally identical to the experiments described here.  Corrosion resistant 

materials could also be probed using this method. 

5.2 Qualifications and Limitations 

The authors believe ensemble average TIRM for macroscopic imaging 

amperometry is a viable technique for high throughput testing of alloy 

electrocatalyst materials.  Using colloidal particles as probes of electrochemical 

current allows for imaging measurement of current density for a wide variety of 

electrode materials, electrolytes and electrode chemistries.  Some limitations of 

the method should be explicitly noted, however, to allow for effective application 

of the method in future work.  The primary limitation of TIRM is the necessity of 

a clear electrode to allow for formation of the evanescent wave that facilitates 

particle motion measurement.  As a result of this, electrode films used for testing 

must be very thin (<10 nm) and smooth, which can make electrode deposition and 

characterization difficult.  The electrostatic levitation of colloidal particles over 

the electrode also necessitates the use of very dilute electrolytes in comparison to 

those used in traditional electrochemical methods, and limits the method to small 

current densities, as the electrokinetic forces that result from large current 

densities can be large enough to irreversibly deposit particles onto the electrode 

surface.  High current densities and prolonged experiments must also be avoided, 

as this can also result in changing of the ionic strength in the vicinity of the 

electrode.  Despite these drawbacks, the authors believe there is much promise for 

this method. 
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