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Chapter 1: Introduction to Reasoning 1

Chapter 1

Introduction to Reasoning

1.1 The Language of Logic

Before we can really delve into mathematics, and calculus in particular, we
need to make some important conventions about how we present our ideas
to one another. Calculus has some very powerful ideas, but they are easy to
abuse if we aren’t careful about what steps we are allowed to do as we solve
problems.

Why should we be formal?

The English language, or any language that people use, is full of ambi-
guities. Suppose I say, “Either I will go to the store, or I’ll mow the lawn.”
If I go to the store but don’t mow the lawn, then you’ll probably believe I
said something true. If I mow the lawn but don’t go to the store, then you’ll
think I was true as well. But what if I do both? Was I lying?

Here’s another puzzler. Suppose I say, “Everyone owes somebody money.”
There are two ways to interpret this statement. The first way says each
person has their own debt to pay, but possibly to different people. (For
instance, I might be paying off loans for a car, while you’re paying off loans
for school.) However, there is a second way: maybe one person in the world
is so powerful and so influential that everyone owes THAT person money.
Which of these two meanings did I intend? Normally, in speech, people use
context to tell the difference, but in mathematics, the situation can be rather
complicated and it may become harder to tell which interpretation “makes
the most sense.”

PREPRINT: Not for resale. Do not distribute without author’s permission.



2 Section 1.1: The Language of Logic

These examples illustrate the need for precision, and careful logic will
help us be more precise. However, there is another important benefit to
being more formal. In many cases, when we work more formally, the logic
imposes some structure on the problem, giving us ideas of how to proceed.
We’ll see examples of this later in this chapter.

1.1.1 Statements and Connectives

The simplest building blocks of logic are statements. A statement is roughly
an expression which is either true or false. Thus, sentences like “3=3” and
“every prime number is odd” are statements, but “3” and “x+1” are not.
Often we use capital letter variables like P and Q to represent statements.

We want to break down sophisticated statements into simple components
to make our analysis easier. For example, the complicated statement “If I
don’t go to the store, then I’ll be hungry” is made out of the simple pieces
“I don’t go to the store” and “I’ll be hungry”, joined with the word “if”.
The word “if” is an example of a connective. Connectives glue statements
together; popular examples include the words “and”, “or”, and “if”. Let’s look
at what different connectives do.

Negation

To get ourselves started, we’ll look at the simplest connective, “not”.

Definition 1.1. If P is a statement, then the negation of P , denoted ¬P or
“not P ”, is true when P is false, and it is false when P is true.

Frequently, to describe complex statements, we draw a truth table to
describe the values of a statement in terms of its simple pieces (these are
frequently variables). To illustrate what goes in a truth table, let’s look at
the table for ¬P :

P ¬P
T F
F T

A truth table has columns for each of the simple pieces (here, there’s only
one simple piece, P ) and columns for each of the more complex statements
(the only one here is ¬P ). The rows start with the possible combinations
values that the simple pieces can have (each piece can be either true T or

PREPRINT: Not for resale. Do not distribute without author’s permission.



Chapter 1: Introduction to Reasoning 3

false F ). The corresponding values for the other columns are filled in (so
the first row should be read as “when P is true, ¬P is false”). Negation only
applies to one statement, so we say it is a unary connective.

And and Or

Negation is the only basic connective to apply to one statement. Most
connectives work with two statements, so they are binary connectives. We
introduce a couple more connectives.

Definition 1.2. The conjunction of P and Q, denoted P ∧Q or “P and Q”,
is true when P and Q are both true; otherwise it is false.

The truth table for P ∧Q has two simpler components, P and Q, each of
which can take 2 values, so the table has 2 · 2 = 4 rows:

P Q P ∧ Q
T T T
T F F
F T F
F F F

Definition 1.3. The disjunction of P and Q, denoted P ∨ Q or “P or Q”,
is false when P and Q are both false; otherwise it is true.

The truth table:
P Q P ∨ Q
T T T
T F T
F T T
F F F

Note that this definition of “or” does consider “true or true” to be true.
For example, the statement “3 is positive, or 3 is prime” is true. However,
in common speech, this case is usually meant to be false, like when a waiter
says, “You may have soup or salad for that price.” When this meaning is
intended, the connective is instead called exclusive or, or xor for short.

Example 1.4:
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4 Section 1.1: The Language of Logic

Let’s make a truth table for the statement P∧(¬Q∨P ). (Note that parenthe-
ses are frequently necessary when dealing with layers of complexity in your
statement.) The basic components are P and Q. After that, ¬Q exhibits
the next layer of complexity, followed by ¬Q ∨ P and lastly P ∧ (¬Q ∨ P ).
We’ll make a column in our truth table for each of these statements, so that
we only need to keep one connective in mind at any time when building the
table.

Our truth table is:

P Q ¬Q ¬Q ∨ P P ∧ (¬Q ∨ P )
T T F T T
T F T T T
F T F F F
F F T T F

Note that P ∧ (¬Q ∨ P ) is true precisely when P is true. We say that
P ∧ (¬Q∨P ) is equivalent to P , and the truth table proves this equivalence.
Thus, we may replace anything of the form P ∧ (¬Q ∨ P ) with P in any
statement, possibly making our work easier.

There are many other examples of equivalent statements, which allow us
to do simplification. See the exercises for a number of useful equivalences.
�

If-Then

For our next connective, we would like to address statements like “if P ,
then Q.” (Note that the words “is true” are frequently omitted after vari-
ables.) When should “if P , then Q” be true? When P is true, Q should be
true in order for “if P , then Q” to be true. However, what do we do if P is
false? Should “if there is a cow on the moon, then there is a purple cow on
the moon” be true? What about “if there is a cow on the moon, then 0 = 0”?

By convention, we decide that these statements are true, because there
is no cow on the moon. This leads to the following definition:

Definition 1.5. The implication P → Q, also called “P implies Q”, “if P
then Q”, etc., is false only when P is true and Q is false; otherwise it is true.
P is called the hypothesis, and Q is called the conclusion.
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Chapter 1: Introduction to Reasoning 5

The truth table:

P Q P → Q
T T T
T F F
F T T
F F T

This definition may seem uncomfortable at first, but it’s absolutely nec-
essary for mathematics. The goal of a proof in mathematics is to start from
some hypotheses and to work toward conclusions, with each step along with
the way being a true implication. If the hypotheses of a theorem are false
in some situation, then that doesn’t make the theorem wrong; the theorem
is still true, but it doesn’t have any use in that situation. Try looking at
P → Q as a promise: if P → Q is true, then we promise to prove Q when
provided a proof of P . If you fail to show me P is true, then we don’t have
to do anything, and we have not broken our promise.

The last connective we will mention here will be defined in terms of the
previous connectives.

Definition 1.6. P ↔ Q, also written as P ≡ Q or “P if and only if Q”, is
defined as (P → Q) ∧ (Q → P ).

Thus, P ↔ Q is true if each of P and Q implies the other. Since P ↔ Q
is built out of P → Q and Q → P , we’ll include them in our truth table:

P Q P → Q Q → P P ↔ Q
T T T T T
T F F T F
F T T F F
F F T T T

Thus, P ↔ Q is true when P and Q have the same value. Since the
phrase “if and only if” is so common in mathematics, it is often abbreviated
as iff!

Remark. In some other textbooks, double-thickness arrows, like ⇒ and ⇔,
are used instead of → and ↔.
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6 Section 1.1: The Language of Logic

1.1.2 Sets and Quantifiers

Now that we have basic statements, we would like to make statements that
are more sophisticated. While our current connectives allow for a lot of
expressibility, they don’t provide us any simpler way of breaking down many
important mathematical statements like “Every real number is smaller than
some other real number.” We need to discuss how to encode words like
“every” and “some” into mathematical statements. Also, since mathematical
statements rarely talk about EVERY object in the known universe, we need
a device to be able to talk about all objects within some restricted group.
Sets and quantifiers will provide the devices we need.

Sets

A set is a collection of objects. The objects in a set are called elements,
or members, or any other common synonym. Frequently, sets are specified
by giving some property of their elements. For example, “the real numbers”
form a set, but there are also non-mathematical sets, like “the people I have
met”, and “the pizzas I sold yesterday”. We often use capital letters like S
or T to represent sets and lowercase letters like s or t to represent elements.
We use the notation x ∈ S to say “x is a member of S”. To say x is not a
member of S, we may write x 6∈ S instead of ¬(x ∈ S).

Certain common sets get special names to represent them. The set of
real numbers is denoted by R (that style of writing R is called “blackboard
bold”, in case you’re curious). The set of complex numbers is C. The set of
integers is Z (from the German “Zahlen”, meaning “number”). The rational
numbers, which are fractions of integers, form the set Q (for “Quotient”). The
natural numbers are denoted by N; however, not all mathematicians agree
which numbers ought to be “natural”. Specifically, it is quite controversial
whether 0 ought to be natural. This book will define N to consist of all
positive integers and 0, as 0 is quite natural (at least to the author) to use
in many situations. If we wish to talk about just the positive integers, then
we’ll use the symbol N∗.

In our discussion in this chapter, we will take for granted some familiarity
with these basic sets and their properties. Many of these results will be
proven later, especially in Chapter 2, where we study R more formally.

Free Variables
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Chapter 1: Introduction to Reasoning 7

How can we incorporate sets into our statements? As a starting point,
sentences like “x ∈ R” seem to be statements. Unfortunately, there’s one
problem here: we don’t know if that sentence is true or false unless we know
what x is. However, as soon as a value of x is specified, then we obtain a
statement: “3 ∈ R”, “4 ∈ R”, and “(the President of the U.S.A.) ∈ R” are
three statements (the last one is false).

In some sense, “x ∈ R” is an abbreviation for a whole collection of state-
ments, where each value of x produces a new statement. We call this kind
of phrase a proposition. x is called a free variable of the proposition, and
we write P (x), read as “P of x”, to denote that P may depend on x. (x
can also be called a parameter of P .) We can have multiple free variables
in a proposition: P (x, y) (read as “P of x and y”) denotes a proposition P
depending on two values x and y, and so forth. Any free variable occuring in
a proposition MUST be listed in the parenthesized list after the proposition
name (though possibly some extra variables are listed too). Statements are
considered the same as propositions with no free variables.

For example, if P (x) denotes “x = 3”, then P (x) is a proposition with
one free variable x. However, propositions with free variables occur outside
mathematics too: if S is the set of students in your school, then “x ∈ S,
y ∈ S, and x loves y” and “x ∈ S, y ∈ S, and x and y are in a class together”
are propositions with two free variables x and y.

The connectives can also be used with propositions, yielding other propo-
sitions. For this reason, the distinction between proposition and statement
is commonly blurred, and many people use the words proposition and state-
ment interchangeably.

Quantifiers

Now that we have introduced free variables, we need ways to deal with
them effectively. There are many times in mathematics where we want to
talk about all possible values of a variable, like in the statement “Every
even integer n greater than 2 is not prime.” In this example, the variable
n is supposed to range over all even integers. There are also many times
where we want to talk about existence of some value, as in “There exists
a complex number i with i2 = −1.” For these scenarios, we use new tools
called quantifiers. We use two kinds of quantifiers.

Definition 1.7. If P (x) is a proposition and S is a set, then ∀x ∈ S P (x) is
true precisely when P (x) is true for every member x of S. It is read as “for
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8 Section 1.1: The Language of Logic

all x in S, P (x)” (though this is not the only way to read ∀x ∈ S P (x) in
English). The symbol ∀ is the universal quantifier. (Think of an upside-down
A standing for “All”.)

Definition 1.8. If P (x) is a proposition and S is a set, then ∃x ∈ S P (x)
is true precisely when P (x) is true for at least one value of x in S. It is read
as “for some x in S, P (x)” (this is also not the only way to read it). The
symbol ∃ is the existential quantifier. (Think of a backwards E standing for
“Exists”.)

For example, “every integer n greater than 2 is not prime” can be alter-
nately written as, “for every integer n, if n > 2 then n is not prime”, which is
“∀n ∈ Z (n > 2 → n is not prime)”. This is a quantified statement. For an-
other example, the statement “there exists a complex number i with i2 = −1”
can be written as “∃i ∈ C (i2 = −1)”.

These are the key ingredients to a quantified proposition:
• A quantifier symbol.

• A variable. This variable is said to be bound by the quantifier. The
actual name of the bound variable is not important; “every integer n is
odd” means the same thing as “every integer k is odd”, since n and k
are just placeholders to represent arbitrary integers.

• A set of possible values for the quantified variable, called the domain
of the variable. This lets us restrict our attention to values that we
actually want to study. Occasionally people will write quantifiers with
no domain (like ∀x x = x), but then a domain is understood by con-
text (sometimes that domain is called the universal set of discourse).
However, we should adopt good habits and make our domains clear.

• A proposition. This forms the scope of the variable, or it is also called
the body of the quantifier.

Example 1.9:

Consider the proposition ∀x ∈ R(y−x > 0). Its body is y−x > 0, which has
x and y free, but once the quantifier is added, x is no longer free; x is bound
by the quantifier. The variable y is still free, however. Call this quantified
proposition Q(y).

Why do we distinguish between free and bound variables? When looking
at Q(y), we need to know a value for y before we can start to decide if Q(y)
is true or false. Hence, y is “free for the reader to choose”. However, x is
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Chapter 1: Introduction to Reasoning 9

assigned a meaning by the quantifier. We don’t have free choice for a value
of x: the quantifier forces us to consider ALL real numbers x to decide if
Q(y) is true. In essence, when it comes to x, our hands are tied.

Since the quantifier gives x its meaning, once we leave the body of the
quantifier, the quantifier is done and x no longer makes sense. Consider the
phrase “(∀x ∈ R (x = x)) ∧ (x = 3)”: this is not a well-formed statement,
as the scope of x is x = x, and the last occurrence of x in our formula falls
outside that scope. To fix this, we should change the bound variable name
of x to something different, such as y, and we get the legitimate proposition
“(∀y ∈ R (y = y)) ∧ (x = 3)” with x free. �

Example 1.10:

Quantifiers can be even be placed inside other quantified propositions! To
keep things from being confusing, however, different variable names should
be used for each quantifier. For example, consider the sentence “for each real
number x, there is some real number y with x + y = 0”, which says that
each real number has a negation. This can be written as “∀x ∈ R (∃y ∈
R (x + y = 0))”. When one quantifier immediately follows another, we often
can omit parentheses around the scope of the first one, so we may write this
also as “∀x ∈ R ∃y ∈ R (x + y = 0)”. �

Example 1.11:

In Section 1.1, we discussed the sentence “Everyone owes somebody money.”
The first interpretation is “For each person, there exists a person to whom
money is owed”. How is that written in logic? It says that given an arbitrary
person, there exists some other person DEPENDING ON OUR FIRST PER-
SON to whom the money is owed. If P is the set of people, then we write
this as “∀x ∈ P ∃y ∈ P (x owes y money)”. The idea here is that we first
take an arbitrary person x, and then afterwards we look for some specific
person y, depending on x, which is the one to whom x owes money. Thus,
∃y comes after ∀x, as you can’t pick y based on x if you haven’t picked x!

The second interpretation, however, is “There is one person to whom
everyone owes money”. In this setting, we FIRST choose the person to whom
everyone owes money, and then we talk about arbitrary people. Thus, this
meaning is denoted by “∃y ∈ P ∀x ∈ P (x owes y money)”. Here, y is chosen
independently of x.
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10 Section 1.1: The Language of Logic

This subtlety about quantifier orders is quite important in mathematics
too. The statement “∀x ∈ R ∃y ∈ R (x < y)” is true (because once x is
given, y can be chosen as x + 1), but “∃y ∈ R ∀x ∈ R (x < y)” is false, as
there is no largest real number! �

We now have the ability to express basically every mathematical state-
ment we wish. However, there are many equivalent ways of expressing the
same statement with quantifiers. The exercises will cover some important
equivalences, and we’ll point out another here as an example.

Example 1.12:

Consider the awkward-sounding statement “it is not true that every student
passed the exam”. A better way of writing this is “there is some student
who did not pass the exam” (or even better, “some student failed the exam”).
However, it is NOT correct to rewrite this as “everyone failed the exam”; only
one student needs to fail the exam in order to spoil a 100% pass rate for the
class. In symbols, if S is the set of students, then this shows that “¬(∀p ∈
S (p passed the exam))” is equivalent to ∃p ∈ S (¬(p passed the exam))”
and is NOT equivalent to “∀p ∈ S (¬(p passed the exam))”.1

In general, if P (x) is any proposition and S is any set, then the two
statements

¬(∀x ∈ S P (x)) ∃x ∈ S (¬P (x))

are equivalent. It’s also true that the two statements

¬(∃x ∈ S P (x)) ∀x ∈ S (¬P (x))

are equivalent. These two equivalences are very helpful, because they allow
us to rewrite statements with negations outside quantifiers as statements
with negations inside quantifiers. Hence, these equivalences are often called
“negation-pushing” rules, since the negation is pushed inside of a quantifier.
Note that the quantifier “flips” from ∀ to ∃ or vice versa when performing a
negation push.

By continually applying equivalences like these, we can make statements
much more readable. Consider, for instance, the sentence “not everyone lives
with someone”. If P is the set of people, then this is “¬(∀x ∈ P ∃y ∈

1When we say “not (passing the exam)” is equivalent to “failing the exam”, we are
assuming that every student in the class took the test! This may be a safe assumption,
depending on how the class is run, but it’s important to acknolwedge this assumption.
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Chapter 1: Introduction to Reasoning 11

P (x lives with y)). Doing one push yields “For some person, there does not
exist someone with whom they live”, i.e. “∃x ∈ P ¬(∃y ∈ P x lives with y)”.
Pushing once again yields the much better-sounding sentence “someone lives
with nobody”, i.e. “∃x ∈ P ∀y ∈ P (x does not live with y)”.2 �

1.2 Exercises

1. Build truth tables for the following statements in terms of P and Q:

(a) P → (Q → P )

(b) (P → Q) → P

(c) P ∨ ¬(P ∧ Q)

(d) (P ∧ Q) ↔ ¬Q

2. Build truth tables for the following statements in terms of P , Q, and
R (these truth tables will need 8 rows since there are 2 · 2 · 2 = 8 ways
to choose the values of P , Q, and R):

(a) P → (Q ∧ ¬R) (b) (R ∧ P ) ∨ (R ∧ Q)

3. We mentioned the “xor” connective briefly after mentioning “or”. While
“P or Q” is true when at least one of the two statements P , Q is true,
“P xorQ” is true when exactly one of the two statements is true.

(a) Build a truth table for “P xor Q”.

(b) How can we write “P xorQ” in terms of the connectives ∨, ∧, and
¬ (i.e. “or”, “and”, and “not”)?

4. Show the following equivalences are true for all statements P ,Q,R:

(a) Commutativity:

(P ∧ Q) ↔ (Q ∧ P ) and (P ∨ Q) ↔ (Q ∨ P )

(b) Associativity:

(P ∧ Q) ∧ R ↔ P ∧ (Q ∧ R) and (P ∨ Q) ∨ R ↔ P ∨ (Q ∨ R)

(c) Distributivity:

P∨(Q∧R) ↔ (P∨Q)∧(P∨R) and P∧(Q∨R) ↔ (P∧Q)∨(P∨R)

These are often described by saying “or” distributes over “and” (for
the first one) and “and” distributes over “or” (for the second one.)

2As a convention, we believe that a person does not live with himself / herself. You
are welcome to disagree, however.
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12 Section 1.2: Exercises

(d) Double Negation: ¬¬P ↔ P

(e) DeMorgan’s Laws:

¬(P ∨ Q) ↔ (¬P ∧ ¬Q) and ¬(P ∧ Q) ↔ (¬P ∨ ¬Q)

These laws allow us to push negations inside of complicated state-
ments.

(f) ¬(P → Q) ↔ (P ∧ ¬Q)

5. If P is the set of people, K(x, y) means “x knows y”, and m is “myself”
(so m ∈ P ), then write the following English sentences using quanti-
fiers:

(a) I know everyone.

(b) Nobody knows me.

(c) Everyone I know also knows me.

(d) I know someone who does not know himself/herself.

6. In the following propositions, identify the free variables, the bound
variables, and the scopes of the bound variables:

(a) ∀x ∈ R ((∃y ∈ R xy = 0) ∨ (xz = 1))

(b) (∃z ∈ R ∀x ∈ R x + z = x) ∧ (∃t ∈ R y + t = 2)

7. For each of these following statements, if it is true for all propositions
P (x), Q(x), and all sets S, then explain why. Otherwise, find a coun-
terexample (i.e. pick a P (x), Q(x), and S which makes the statement
false.)

(a) (∀x ∈ S (P (x) ∧ Q(x)) ↔ (∀x ∈ S P (x)) ∧ (∀x ∈ S Q(x))

(b) (∀x ∈ S (P (x) ∨ Q(x)) ↔ (∀x ∈ S P (x)) ∨ (∀x ∈ S Q(x))

(c) (∃x ∈ S (P (x) ∧ Q(x)) ↔ (∃x ∈ S P (x)) ∧ (∃x ∈ S Q(x))

(d) (∃x ∈ S (P (x) ∨ Q(x)) ↔ (∃x ∈ S P (x)) ∨ (∃x ∈ S Q(x))

8. If P (x) is a proposition and x is a set, then we know “∃x ∈ S P (x)”
means that P (x) is true for at least one x ∈ S.

(a) How would you use connectives and quantifiers to express “P (x)
is true for EXACTLY one x ∈ S”? In other words, come up with
a way to write “there exists a unique x ∈ S satisfying P (x)”.

(b) How would you express “P (x) is true for exactly two members
x, y ∈ S”? (Thus, x and y have to have distinct values.)
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Chapter 1: Introduction to Reasoning 13

9. Using the negation-pushing rules in Example 1.12 and DeMorgan’s Law
from Exercise 1.2.4.(e), rewrite the following statements by pushing the
negations as much as possible. For example, ¬(∀x ∈ S (P (x) ∧ Q(x))
becomes ∃x ∈ S ¬(P (x) ∧ Q(x)) by negation pushing, which then
becomes ∃x ∈ S (¬P (x) ∨ ¬Q(x)) by DeMorgan’s Law.

(a) ¬(∀x ∈ R ∀y ∈ R (x < y))

(b) ¬(∀x ∈ R (x = 0 ∨ ∃y ∈ R (xy = 1))

(c) ¬((∀x ∈ Q x2 ≥ 0) ∧ (∃x ∈ Q x2 = −1))

1.3 Operations with Sets

Sets are important in mathematics, so it’s important to have convenient ways
of specifying and building sets. Much like we build sophisticated statements
out of simple ones using connectives, we operations for building more com-
plicated sets out of simple ones.

Defining a Set from Scratch

Before we have any other sets to use, we have a couple ways to build
sets. The first, and simplest, option is to list all the elements of a set in curly
braces. Thus, {1, 2, 5} is the set whose three members are 1, 2, and 5. One set
with four countries in it is {U.S.A., Mexico, Canada, Belize}. Our elements
listed can be of different types, like {Uganda, 3}. In fact, the elements of our
sets could be other sets! For example, {1, 2, {1}} is a set with three elements:
the number 1, the number 2, and a set whose sole member is 1 (if you think
of sets as boxes holding items, then think of this example like a small box
inside of a big box).

We can even abuse this notation slightly and use ellipses (i.e. . . .) when
we wish to convey a pattern that the elements follow, without actually writ-
ing every single element. For example, {1, 2, . . . , 10} really means the set
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and {−3,−2,−1, 0, 1, . . .} really means the set of
all integers that are at least as big as −3 (note that this last set is an infi-
nite set, unlike the previous examples). If you plan on using ellipses in set
notation, then it should be very clear what the pattern is.

One particularly special example is the following:

Definition 1.13. The empty set, written as ∅ or {}, is the set with no mem-
bers.
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14 Section 1.3: Operations with Sets

When talking about a set, all that matters is which elements belong to
the set and which do not. {1, 3, 2} and {1, 2, 3} are the same set, since the
same three integers appear in each; the order of presentation does not matter
for a set. Similarly, writing an element multiple times does not matter; the
sets {1, 1, 2} and {1, 2} are the same, since they both contain precisely the
elements 1 and 2. The only way to show two sets are different is to find a
member of one of them which is not in the other: ∅ 6= {∅} since ∅ ∈ {∅}
and ∅ 6∈ ∅ (an empty box is not the same as a box with another empty box
inside!).

Defining a Set with a Property

The second basic option is to use some proposition to specify a set, like
saying “the set of all real numbers less than 2”. If P (x) is a proposition (like
“x ∈ R ∧ x < 2”), then {x | P (x)} or {x : P (x)} is written to denote the
set of all objects x so that P (x) is true, and we read this as “the set of x
such that P (x) is true”. Sometimes other synonyms are used, such as saying
“P (x) holds” instead of “P (x) is true”. Also, when used in this context, the
proposition P (x) is sometimes called a property of the elements, so {x | P (x)}
is said to be the set of x values with property P .

Here, x is a variable bound to the set, so it is no longer in scope once
the set has been finished, similar to how bound variables in quantifiers work.
For example, consider {n | n ∈ Z ∧ n ≥ −3}, which is the set of all
integers greater than or equal to −3. After the } symbol, the letter n doesn’t
mean anything anymore. Just like with variables bound to quantifiers, the
variable name can be changed without harm, so our set could also be called
{k | k ∈ Z ∧ k ≥ −3}.

There are other notational shortcuts we use to make life easier. For
instance, we can list several propositions together with commas separating
them instead of using the ∧ symbol, as in {r | r ∈ R, r2 < 2}, the set of real
numbers whose squares are less than 2. Another very common practice is,
just like we specify domains for quantifiers, we can also specify domains for
sets made out of a property. For instance, {r ∈ R | r2 < 2} is the same as
the set {r | r ∈ R, r2 < 2} but looks much better. It’s like the difference
between saying “the set of real numbers r with r2 < 2” and saying “the set of
items r so that r is a real number and r2 < 2”.

Frequently, we wish to convey that the elements of our set have a certain
form. For example, the odd numbers are the numbers which can be written

PREPRINT: Not for resale. Do not distribute without author’s permission.



Chapter 1: Introduction to Reasoning 15

in the form 2n + 1 where n ∈ Z. In other words, this is “the set of numbers
k which can be written k = 2n + 1 for some n ∈ Z”, i.e. {k | ∃n ∈ Z (k =
2n + 1)}. However, k is only used as a placeholder for the form 2n + 1. It is
more convenient for us to just say “for each n ∈ Z, put 2n + 1 into the set”.
To do this, we write {2n + 1 | n ∈ Z}. Technically, this set definition is just
shorthand for the earlier definition, but this form is very handy.

Also, set definitions can use more than one variable to specify them. In
the style of the last paragraph, we may write {2n + 3k | n ∈ Z, k ∈ Z} to
denote all integers which can be written as a multiple of 2 plus a multiple
of 3. (This definition looks much nicer than the formal {x | ∃n ∈ Z ∃k ∈
Z (x = 2n + 3k)}.) This definition corresponds to saying “For each integer n
and each integer k, put 2n + 3k in the set”.

Example 1.14:

If a and b are real numbers with a < b, then we can define the closed interval
[a, b] as {x ∈ R | a ≤ x ≤ b}. The open interval (a, b) is {x ∈ R | a <
x < b} (parentheses are used when an end does not belong to an interval,
and square brackets are used when it does). There are also two half-open
intervals [a, b) = {x ∈ R | a ≤ x < b} and (a, b] = {x ∈ R | a < x ≤ b}.

In the special case where a = b, we have [a, b] = {a} = {b} but the open
and half-open intervals are empty. Also, if a > b, then [a, b] is also considered
empty.

Also, if a is a real number, then we write (a,∞) to denote {x ∈ R | x > a},
and similarly [a,∞) denotes {x ∈ R | x ≥ a}. Also, (−∞, a) and (−∞, a]
are defined similarly. Note that ∞ is not a real number; the symbol ∞ is just
a convenient shorthand to denote this interval. Lastly, (−∞,∞) is another
way to write R. �

Example 1.15 (Russell’s Paradox):

Consider the following very curious set: R = {x | x 6∈ x}. In other words, R
is the set of all sets which do not contain themselves. Many objects you know
belong to R: the set of all people is not a person, the set of all hamburgers
is not a hamburger, etc. (However, perhaps the set of all ideas really is an
idea... this matter is better left to philosophers.)

Is R ∈ R true? If R ∈ R were true, then the definition of R would
say R 6∈ R (when x has the value R), which contradicts our assumption.
However, if R ∈ R were false, then R 6∈ R would be true, and hence R would
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16 Section 1.3: Operations with Sets

be a valid value for x in R’s definition. Thus, R 6∈ R implies R ∈ R as well!
It seems that R ∈ R can neither be true nor false.

This is known as Russell’s Paradox, named after the mathematician
Bertrand Russell. It illustrates that if you allow ANY property to be used
when building a set, then havoc can result. People studying formal logic and
set theory avoid this paradox by placing restrictions on what kinds of prop-
erties may be used to build a set, i.e. they only allow P (x) to take certain
forms.

More frequently, though, to avoid Russell’s Paradox, mathematicians of-
ten work within what is called a universe of discourse. For each argument
we study, there is some set U , called the universe of discourse for that argu-
ment, such that all mathematical objects we consider in the argument come
from U . For instance, U may contain all real numbers, all functions from
real numbers to real numbers, and other similar objects. By restricting our
attention to U , Russell’s Paradox does not occur.3

We will not have to worry much about these technical details, as the para-
doxes like Russell’s Paradox don’t show up when doing calculus. However,
if this paradox intrigues you, I would highly suggest a more formal course in
set theory. �

Combining Sets

Now, we aim to build more sophisticated sets out of basic ones. We’ll
introduce four useful operations for combining sets, analogous to how con-
nectives combine statements.

Definition 1.16. If A and B are two sets, then their intersection A ∩ B is
the set {x | x ∈ A ∧ x ∈ B}, so A ∩ B is the set of objects belonging to
both A and B. If A ∩ B = ∅, then A and B are said to be disjoint.

As an example, consider {2n | n ∈ Z}∩{3n | n ∈ Z} (the uses of n in the
different sets are unrelated to one another, since one scope ends before the
other begins). This set consists of numbers which are multiples of 2 AND
multiples of 3. With a little effort, you can see that these are precisely the
multiples of 6, i.e. this intersection is {6n | n ∈ Z}.
Definition 1.17. The union A ∪ B is the set {x | x ∈ A ∨ x ∈ B}, so
A ∪ B consists of elements in at least one of A or B.

3For a challenge, figure out why the set {x ∈ U | x 6∈ x} doesn’t cause any paradox!
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Chapter 1: Introduction to Reasoning 17

For example, if P is the set of people, then the set {p ∈ P | firstname(p) =
“Michael”} ∪ {p ∈ P | lastname(p) = “Klipper”} is the set of all people who
share a name in common with the author. All people with the first name of
“Michael” are in this set, as are the people with the last name of “Klipper”.
In contrast, the intersection of these two sets would only have people with
the exact same name.4

Just like a truth table is a convenient way to lay out all the information
about statements, a Venn diagram is a convenient way to display information
about sets. There is one circle drawn for each basic set, with overlaps between
every pair of basic sets, making some regions. The regions that lie in our
sophisticated set are shaded. See Figure 1.1, where the circle on the left
represents A and the circle on the right represents B.

A B A B

Figure 1.1: Venn diagrams for A ∩ B (left) and A ∪ B (right)

Definition 1.18. The difference A − B (also written A \ B) is {x | x ∈
A, x 6∈ B}, so A − B has the elements belonging to A which also do not
belong to B.

For example, R−Q is the set of irrational numbers. As another example, if
A = {1, 2, 3} and B = {2, 4}, then A−B = {1, 3}. In this example, although
4 doesn’t occur in A, it doesn’t matter that it occurs in B: elements of A−B
have to be in A as well as also being absent from B. In the exercises, you
are asked to show that A − B is always the same set as A − (A ∩ B).

Occasionally, people want to deal with elements to belong to A or B but
not both. This can be written as (A∪B)− (A∩B), and this is also the same

4However, the intersection could still have more than one member, because different
people may have the same name!
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18 Section 1.3: Operations with Sets

set as (A − B) ∪ (B − A). This set is common enough to be given its own
name: it is called the symmetric difference of A and B and is written A∆B.
See Figure 1.2.

A B A B

Figure 1.2: Venn diagrams for A − B (left) and A∆B (right)

Also, we frequently want to talk about when certain sets are contained
in other sets. For example, every multiple of 4 is also a multiple of 2, so
the set of multiples of 4 is contained in the set of multiples of 2. We define
“containing” as follows:

Definition 1.19. If A and B are sets, then the statement A ⊆ B, read as
“A is a subset of B”, or as “A is contained in B” (or other synonyms), means
“∀x ∈ A (x ∈ B)”.

Thus, we may rephrase our last example as saying {4n | n ∈ Z} ⊆ {2n |
n ∈ Z}. Another very important example is

N∗ ⊆ N ⊆ Z ⊆ Q ⊆ R

(by chaining these together, analogously to how people chain together in-
equalities, we’re saying that N ⊆ Z and Z ⊆ Q, and so forth).

In fact, equality of sets is defined as

A = B iff A ⊆ B ∧ B ⊆ A

If A ⊆ B and A 6= B, then we say that A is a proper subset of B and write
A ⊂ B (it’s like how ≤ means “less than or equal” but < means “strictly less
than”). Unfortunately, there are a couple different conventions for defining
notation, and the other convention uses the symbol ⊂ to denote what we have
called ⊆. Therefore, to make ourselves absolutely clear, we sometimes write
( to mean “proper subset” (the subset symbol has part of the not-equals 6=
symbol under it).
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Example 1.20:

The empty set is contained in every single set, i.e. for all sets A, ∅ ⊆ A. This
sounds quite plausible, since the empty set has no members, so it can be fit
inside of any other set. However, writing out the definition of subset, we get
“∀x ∈ ∅ (x ∈ A)”. What exactly does “∀x ∈ ∅” mean, since there are no x
values in ∅?

Well, if “∀x ∈ ∅ (x ∈ A)” were false, i.e. “¬(∀x ∈ ∅ (x ∈ A))” were true,
then pushing the negation yields “∃x ∈ ∅ (x 6∈ A)”. There can’t exist any
value x which belongs to ∅, let alone belonging to ∅ and also not belonging to
A! By this reasoning, any statement of the form ∀x ∈ ∅ P (x) is automatically
true. We say such statements are vacuously true.

As another example of a vacuously true statement, consider “every cow
on the moon is purple.” This is equivalent to “for all animals a, if a is a cow
on the moon, then a is purple”. However, the hypothesis of the if-then is
always false, so the whole statement is true! �

1.4 Building Proofs

At this point, you now have the major tools for building your own mathe-
matical objects and writing propositions about them. However, having the
tools and knowing how to use them are rather different things. After all,
mathematics is not just about discovering results; it is also about convincing
others (and yourself) that you are correct. We, as mathematicians, should
hold ourselves to a higher standard and provide proofs for what we believe,
to show others that our work is valid. Writing a proof of a mathematical
statement which you believe to be true takes a lot of practice, and mathe-
maticians get better at it as they do more proofs and see more examples of
good reasoning.

Direct Proofs

To get ourselves started, let’s look at the construction of a few simple
proofs and see how they work.

Example 1.21:

Suppose A, B, and C are sets. It seems quite plausible that if A is contained
in B, and B is contained in C, then A is also contained in C. For example,
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20 Section 1.4: Building Proofs

N ⊆ Q and Q ⊆ R are both true (every natural number is rational, and every
rational number is real), so these should imply every natural number is real,
or N ⊆ R. Thus, let’s aim to prove the following:

A ⊆ B ∧ B ⊆ C → A ⊆ C

Strategy. Before making the proof, let’s discuss a strategy for approaching
the proof. This statement is an implication: we want to show that IF A ⊆
B ∧ B ⊆ C is true, THEN A ⊆ C is true. Hence, we might as well assume
A ⊆ B ∧ B ⊆ C is true, otherwise the hypothesis is false and we’re already
done (remember that a false statement implies anything!).

Next, with our new assumption, we’d like to show A ⊆ C. To do this, we
should examine what ⊆ means. By definition, A ⊆ C means “∀x ∈ A x ∈ C”,
so we want to show that every element of A is also an element of C. Thus,
we should start with some arbitrary element x of A and show x ∈ C.

At this point, I have the assumptions A ⊆ B∧B ⊆ C (thus I know A ⊆ B
and B ⊆ C are both true) and x ∈ A. How do I put these assumptions
together? Well, A ⊆ B says that members of A are also members of B,
and our particular value x is a member of A, so it is also a member of B!
Similarly, since x ∈ B and B ⊆ C, we conclude x ∈ C, as desired.

Now, we tidy up a little, being more precise about the quantifiers used in
A ⊆ B and B ⊆ C, and we get the actual proof.

Proof. Assume A ⊆ B and B ⊆ C. Now let x ∈ A be arbitrary. Because
A ⊆ B, by definition ∀y ∈ A (y ∈ B) is true5, and x ∈ A in particular, so we
infer x ∈ B. Since B ⊆ C, or in other words ∀y ∈ B (y ∈ C), from x ∈ B
we infer x ∈ C. Therefore, every x ∈ A satisfies x ∈ C, so ∀x ∈ A (x ∈ C)
is true, i.e. A ⊆ C. �

At the end of a proof, there is usually some marker to let you know
the proof is complete. A box like � is one such marker. Another common
marker is the phrase QED, abbreviating the Latin Quod erat demonstrandum,
meaning “that which was to be demonstrated”. �

The previous proof has some features which occur very frequently in
mathematics:

5We had originally written the definition of subset using the variable name “x”. How-
ever, since x has already been declared as arbitrary in this proof, we change the dummy
variable to y.
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• The statement to prove was an implication, so we assumed a hypoth-
esis (e.g. A ⊆ B ∧ B ⊆ C) and proved a conclusion (e.g. A ⊆ C).
This strategy for handling implications, called direct proof, helped us
organize our work. (However, the assumption A ⊆ B ∧ B ⊆ C should
be viewed as temporary; we may make that assumption only to prove
A ⊆ C. After we’re done with that proof, we have to discard the
assumption.)

• To show A ⊆ C, we used the definition of ⊆. Many proofs need to use
careful definitions of the terms involved.

• Since we wanted to prove a “for all” statement (e.g. ∀x ∈ A(x ∈ C)),
we started with an arbitrary x ∈ A and aimed to prove x ∈ C. This
process of letting x be arbitrary is the main way to show a “for all x”
statement (the phrase “Let x ∈ A be given” is also frequently used to
describe taking an arbitrary x ∈ A).

Why is the last point a valid proof strategy? Think of the proof of
∀x ∈ A (x ∈ C) as a battle between you and a rival. You claim the result
is true, but your rival is suspicious. He says, “Oh yeah? Is it true for this
value?” and he gives you some value of x in A. You, undaunted, show him
that x ∈ C. Flustered, he challenges you with a different value from A,
but you still show him that value is in C. Your proof doesn’t use any more
information about x except that x is in A, so every time your rival challenges
you, you successfully rise to his challenge. Eventually, after fighting off a few
examples, you get annoyed and say, “Look, no matter which x ∈ A you give
me, I can show x ∈ C” and you present your argument using an arbitrary
x ∈ A. Your rival acknowledges that he has no examples that can defeat
you, and you win!

Let’s look at another example which uses this idea.

Example 1.22:

Let’s prove the following straightforward fact about integers:

∀n ∈ Z ∀k ∈ Z (n is odd ∧ k is odd → n + k is even)

Before we can start, we need to know precisely what “odd” and “even”
mean. The even numbers are defined as the set {2z | z ∈ Z}, i.e. the
integers which are twice some other integer. The odd numbers are the set
{2z+1 | z ∈ Z}. Now that we have definitions, we can start talking strategy.
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22 Section 1.4: Building Proofs

Strategy. Let’s start with arbitrary odd numbers n and k (we’re anticipating
our rival will challenge us with these numbers). What do we know from
them being odd? By definition, n has the form 2z + 1 for some z ∈ Z, i.e.
∃z ∈ Z (n = 2z + 1). We ought to choose a value for z out of all the possible
values, just so that we have a value available for future use.

k also has a similar form, but it would be a mistake to say that k = 2z+1.
Basically, the choice that worked for n above might not work for k, since n
and k could be different! However, we can still make a choice for k, but we
give it a different name; suppose we choose y ∈ Z so that k = 2y + 1.

Now that we have these forms for n and k, we can use them to rewrite
n + k, and we want to show that sum is even. Hence, by definition of even,
we want to end up with something looking like 2 times an integer. We’re
now ready for the proof.

Proof. Let n ∈ Z and k ∈ Z be given. (Sometimes, since the domain is the
same, we shorten this to “Let n, k ∈ Z be given”.) Assume n and k are both
odd, so we may choose z, y ∈ Z so that n = 2z+1 and k = 2y+1. Therefore,

n + k = (2z + 1) + (2y + 1) = 2z + 2y + 2 = 2(z + y + 1)

is even because z + y + 1 ∈ Z. �

A natural question you might have at this point is “Didn’t your strategiz-
ing already do the proof?” While the work was similar, the strategizing isn’t
the exact same thing as the proof. We develop strategy at the beginning as
brainstorming, to generate ideas and to see where we think a proof is going to
go. We allow ourselves to be more informal, we leave out some small details,
and we make notes to ourselves about WHY we do certain steps in the proof.

However, in the actual proof, many of these motivational notes are gone
(though a couple are sometimes left in, like saying what the current goal
is, to help the reader keep track of the argument), and the steps are more
rigorous. In essence, the final proof has all the steps, whereas the strategizing
discusses the IDEAS behind the steps. These may look about the same right
now, but that’s mainly because these proofs are short and direct; for longer
proofs, the strategizing becomes much more valuable. �

This previous proof had some similar logic components to the first exam-
ple of the section: they both featured implications and universal quantifiers.
However, this proof did something quite different: it used a statement with
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the form of “there exists”, i.e. an existential quantifier. When we use state-
ments like those (e.g. “there is some z ∈ Z so that n = 2z + 1”), our main
action is to choose a value with the stated property (i.e. z ∈ Z is chosen so
that n = 2z + 1).

Why is this a valid strategy for existential quantifiers? Think of the
possible values of the variable z as being laid out on a shelf in the library;
you see them there, but you don’t own any of them. When you choose one,
you finally have a value in your hand, and that value can be used in the rest
of your proof. You didn’t care which of the z’s you grabbed; all you cared
about was that it had the property you needed, which was that n = 2z + 1.
Because this is a library, the librarian lets you take the value for free, but
you must return the value when you’re done with your proof. In our case,
after proving n + k is even, which is a statement that doesn’t use z, we no
longer need z and can return it to the library.

Our examples so far have focused a lot on how to work with quantifiers.
Many mathematical statements have at least one quantifier in them, some-
times more, so developing good approaches for them is quite important. Let’s
do another example which mixes the two kinds of quantifiers.

Example 1.23:

Suppose that f is a function which takes real numbers as input and produces
real numbers as output. (We’ll talk more about functions in Section 1.6.)
Let’s show that

∀c ∈ R ((∃x ∈ R f(x) = 0) ↔ (∃y ∈ R f(y − c) = 0))

Strategy. After taking an arbitrary c ∈ R, what does this statement mean in
simpler terms? From experience with algebra, you probably have seen that
f(x−c) has a graph which is shifted c units to the right of the graph of f(x).
Also, saying f(x) = 0 is the same as saying x is an x-intercept of f(x)’s
graph, or a zero of f(x). Thus, this result is saying that f(x) has a zero iff
the shifted version f(x − c) does.6

Now the result seems quite plausible. After all, a zero of f(x) can be
shifted by c units to get a zero of f(x − c), and vice versa! To do the proof,
we want to show two propositions are equivalent. Thus, we should show the

6Technically, a zero is not the same thing as a root; zeros belong to functions, and roots
belong to equations. However, we will often ignore this distinction.
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one on the left implies the one on the right, and we should also show the
right one implies the left one.

To do left implies right, let’s choose an x ∈ R with f(x) = 0. We want
to find some number y ∈ R with f(y − c) = 0. (We will sometimes say y
witnesses the truth of ∃x ∈ Rf(x − c) = 0.) One simple way to find y is to
have y − c = x, or y = x + c. Thus, x + c is our desired witness.

Showing right implies left is very similar, except that y ∈ R is chosen
with f(y − c) = 0, so therefore x = y − c is a witness to ∃x ∈ R f(x) = 0.
Now we build the proof.

Proof. Let c ∈ R be given. First assume ∃x ∈ R f(x) = 0, and choose
such a value for x. Then f((x + c) − c) = f(x) = 0, so x + c witnesses
∃y ∈ R f(y − c) = 0, finishing one direction of proof.

For the other direction, assume ∃y ∈ R f(y − c) = 0, and choose such a
y. Thus, y − c witnesses ∃x ∈ R f(x) = 0, and we are done. �

This proof can be confusing at first glance. One reason for this is that
the variable x is used differently in each direction of the argument. In one
direction, we choose a value of x, and in the other direction, x is set to
y− c. This is fine, since the choice in the first direction is only valid for that
direction. Using the metaphor from earlier, the first argument “returns x to
the library” before the other direction “checks out” a value for y and uses it
to obtain the witness x = y − c. �

Remark. Some people write the previous theorem written in the form

∀c ∈ R((∃x ∈ R f(x) = 0) ↔ (∃x ∈ R f(x − c) = 0))

This is equivalent to the original statement, since only the name of a dummy
variable has been changed. Also, this form uses fewer variable names, which
reminds us that the different uses of x are related (though not the same).
However, this form looks more confusing, since it raises the question “Are
you saying that x = x − c? What if c 6= 0?”

The issue here is that the different occurrences of x have different mean-
ings. There are two existential quantifiers, and their scopes don’t overlap at
all. Hence, the value of x doesn’t have to be the same on each side of the ↔.

As we proceed through these examples, we see more techniques for work-
ing with different forms of statements. Here’s an example of a very common
kind of proof in mathematics: showing that two sets are the same.
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Example 1.24:

Let’s show a result about inequalities:

{x ∈ R | 0 < x < 1} =

{

x ∈ R | 1

2
<

1

1 + x
< 1

}

Strategy. Suppose A is the set on the left and B is the set on the right. Recall
that A = B means that A ⊆ B and B ⊆ A. Thus, we should prove both
A ⊆ B and B ⊆ A.

To show A ⊆ B, let x ∈ A be given. We want to show x ∈ B. Right
now, we know 0 < x < 1, and we’d like to build 1/(1 + x) out of x. Thus,
we should add 1 to all parts of the inequality and then take reciprocals.

To show B ⊆ A, we let x ∈ B be given, so 1/2 < 1/(1 + x) < 1, and
we want to show 0 < x < 1. The steps used are the reverse of the steps for
showing A ⊆ B. We’re now ready to write the proof.

Proof. Let A be the set on the left and B be the set on the right. First we
show A ⊆ B. Let x ∈ A be given, so x ∈ R and 0 < x < 1. Adding 1
throughout, we get 1 < 1 + x < 2. Taking reciprocals throughout (which is
valid because all the numbers have the same sign) flips the inequalities, so
we get 1/2 < 1/(1 + x) < 1, which means x ∈ B.

For the other direction, let x ∈ B be given. Thus, x ∈ R and 1/2 <
1/(1+x) < 1. Taking reciprocals gives 1 < 1+x < 2. Subtracting 1 to both
sides yields 0 < x < 1, so x ∈ A. Therefore, B ⊆ A. �

In our case, since the two subproofs just use the same implications but in
opposite directions, we can combine them and prove the equivalent statement
“∀x ∈ R(x ∈ A ↔ x ∈ B)”. We can write our work in a more table-like
format, with justifications provided on the side:

∀x ∈ R x ∈ A
↔ 0 < x < 1 definition
↔ 1 < 1 + x < 2 adding 1 throughout

↔ 1

2
<

1

1 + x
< 1 reciprocals of positive numbers

↔ x ∈ B definition

�

In the last example, we wrote our work conveniently as a sequence of
statements following each other, rather than using full English sentences.
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You’ve probably used a format like this before when solving equations. For
example, if you wanted to find the roots of x3 + x2 − x − 1 = 0, then you’d
probably have written

x3 + x2 − x − 1 = 0
x2(x + 1) − 1(x + 1) = 0

(x2 − 1)(x + 1) = 0
(x − 1)(x + 1)(x + 1) = 0

x = 1,−1

on your paper. However, there are three small but important things that the
proof in Example 1.24 has which this algebra doesn’t have:

1. A quantifier : The proof in Example 1.24 says where x comes from and
whether it is arbitrary or chosen.

2. Justifications: Each line has a reason for why it works.

3. Iff (↔) symbols: These say that the logic flows both ways. Without
them, the algebra above only says “if x3 + x2 − x − 1 = 0, then x =
1 or x = −1”, i.e. the logic only flows from top to bottom. This
shows x = 1 or x = −1 are the only POSSIBLE solutions, but the
top-to-bottom direction doesn’t check whether they are ACTUALLY
solutions. However, by writing in the ↔ symbols, we see x = 1 and
x = −1 are precisely the two solutions.

Out of those three points, the third is generally the most important,
as forgetting to check two directions leads to many common mistakes by
students. Note the following example.

Example 1.25:

Let’s try and find the roots to

√
x − 3 = x − 5

where x ∈ R. Let x ∈ R be given, and let’s try solving for the roots:

√
x − 3 = x − 5
x − 3 = (x − 5)2 squaring
x − 3 = x2 − 10x + 25 expanding

0 = x2 − 11x + 28 collecting terms
0 = (x − 4)(x − 7) factoring

x = 4 or x = 7 one factor must be zero

PREPRINT: Not for resale. Do not distribute without author’s permission.



Chapter 1: Introduction to Reasoning 27

However, if we check our answer, then we see that
√

7 − 3 = 2 = 7 − 5, but√
4 − 3 = 1 and 4 − 5 = −1, so

√
4 − 3 6= 4 − 5! What went wrong with

4? The problem is in the first two rows. It is true that
√

x − 3 = x − 5
IMPLIES x−3 = (x−5)2 by squaring both sides, but the opposite direction
doesn’t work: taking the square root of both sides of x−3 = (x−5)2 actually
yields

√
x − 3 = |x − 5|. This shows that by being careless and not writing

↔ symbols in our proof, we accidentally obtained an extra solution to our
equation.

However, we still do have a valid proof from top to bottom by inserting
→ symbols in our work. We just have to realize our work does not flow in
both directions, and thus we need only check the possible solutions in the
original equation. �

Proof By Cases

Sometimes in a proof, we end up in a situation where we have a few
different possibilities but don’t know which possibility is the correct one. For
example, maybe we’ve managed to find an integer n in our proof, but we
aren’t sure how to proceed unless we know whether n is odd or n is even.
As another example, maybe we have two sets A and B, and we’ve found an
element z ∈ A ∪ B, so it follows that at least one of z ∈ A or z ∈ B is true.
Which one is true? In these kinds of situations, proof by cases is useful. To
do proof by cases, consider each possibility one at a time as a separate case,
and try to draw the same conclusion from each case.

Let’s go over a couple of examples to see proof by cases in action.

Example 1.26:

Let’s prove an inequality with absolute values:

∀x ∈ R (|x| > 1 → x2 > 1)

Strategy. By now we know to start with an arbitrary x ∈ R and assume
|x| > 1. However, |x| is defined by two cases: it is x if x ≥ 0, and it is −x
if x < 0. Since we don’t know which of x ≥ 0 and x < 0 is true, we should
handle the cases separately.

In the first case, |x| = x > 1, so x is positive and we can safely multiply
it through the inequality to get x2 > x. In the second case, |x| = −x > 1,
so x < −1 and x is negative, thus multiplying it through the inequality flips
the inequality direction. In either case, though, we’ll get x2 > 1. We’re now
ready to do the proof.

PREPRINT: Not for resale. Do not distribute without author’s permission.



28 Section 1.4: Building Proofs

Proof. Let x ∈ R be given, and assume |x| > 1. Either x ≥ 0 or x < 0.
In the first case, x ≥ 0. Thus, |x| = x, so x > 1. As x is positive, we may

multiply it to both sides of the inequality and obtain x2 > x. Since x2 > x
and x > 1, we have x2 > 1, finishing the first case.

In the second case, x < 0. Thus, |x| = −x, so −x > 1 and hence
x < −1. As x is negative, multiplying it to both sides of the inequality flips
the inequality, so x2 > −x. As x2 > −x and −x > 1, we have x2 > 1.

Thus, in either case x2 > 1 is true. � �

Example 1.27:

Let’s prove a nice result about integers:

∀n ∈ Z (n2 − n is even)

Strategy. If n ∈ Z, then how can we show n2 − n is even? Since this is a
question about even versus odd, it seems useful to break into cases based on
whether n is even or odd (we say we’re considering the parity of n). After
that, it should be routine calculation to see whether we can factor a 2 out of
n2 − n (note as well that n2 − n = n(n − 1), which gives us another way to
try deciding the parity of n2 − n).

Proof. Let n ∈ Z be given. Either n is even or n is odd.
If n is even, then we may choose some k ∈ Z with n = 2k. It follows

n2 − n = 4k2 − 2k = 2(2k2 − k), which is even because 2k2 − k ∈ Z.
On the other hand, if n is odd, then we choose k ∈ Z so that n = 2k + 1.

It follows that n2 − n = (2k + 1)2 − (2k + 1) = 4k2 + 4k + 1 − 2k − 1 =
4k2 + 2k = 2(2k2 + k). Since 2k2 + k ∈ Z, this shows n2 − n is even.

In either case, n2 − n is even. � �

On a related note, suppose that rather than ASSUMING one of several
possibilities holds (like in the last two proofs), what if you want to SHOW
that one of several possibilities holds, but you don’t know which one? In
other words, say we have a goal of the form P ∨Q, but we’re not sure which
of P or Q is going to be true. We have a nice tactic for these situations.
Since P ∨Q is equivalent to (¬P ) → Q (i.e. if at least one of P or Q is true,
but P is not true, then Q must be the true one), we can try to show P ∨ Q
by assuming P is false and then proving Q. Let’s see this in action.
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Example 1.28:

Let’s prove a very important result about factoring:

∀x, y ∈ R (xy = 0 → (x = 0) ∨ (y = 0))

Strategy. This result helps us find zeroes of products and is used all the
time when factoring polynomials. How will we approach the proof? Assume
xy = 0, and (x = 0) ∨ (y = 0) is our goal. This goal has the form P ∨ Q
where P is x = 0 and Q is y = 0 (note that by this point in the proof, x
and y have been given values, so they’re not really free variables and thus I
don’t have to write P (x) or Q(y)). Thus, we’ll treat this as (¬P ) → Q, by
assuming x 6= 0 and proving y = 0.

Proof. Let x, y ∈ R be given, and assume xy = 0. It suffices to show that
x 6= 0 → y = 0, so assume x 6= 0. Therefore, x may be divided from the
equation to obtain xy/x = 0/x, i.e. y = 0. � �

Alternatives to Direct Proof

Every time so far that we’ve dealt with an implication of the form P → Q,
we’ve assumed the hypothesis P and aimed to get the conclusion Q. This
is usually the easiest approach to read and use, but not always. Consider,
for example, showing that for all n ∈ Z, if n2 is even then n is even (so P
is “n2 is even” and Q is “n is even”). Knowing that n2 is even allows us to
write n2 = 2k for some k ∈ Z, but then it’s not clear how one could show n
is even from that. The problem is that knowing a factor of n2 doesn’t lead
right away to a factor of n.

However, we do have a couple approaches for getting around this problem.
One very handy approach involves an alternate way of writing an implication:

Definition 1.29. The contrapositive of an implication P → Q is the state-
ment (¬Q) → (¬P ).

There are a couple other related definitions: the converse of P → Q is
Q → P , and the inverse of P → Q is (¬P ) → (¬Q). However, as can be
verified from truth tables, the contrapositive and the original are equivalent!
For example, the statements “if it rains, then I carry an umbrella” and “if I’m
not carrying an umbrella, then it is not raining” are equivalent.
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Going back to proving that “(n2 is even) implies (n is even)”, let’s try
handling the contrapositive instead. Hence, we want to show “(n is not
even) implies (n2 is not even)”, or in other words, “n odd → n2 odd”. Thus,
assuming n is odd yields n = 2k + 1 for some k ∈ Z, and now we may write
n2 in terms of k. This yields the following proof:

Proof. Let n ∈ Z be given. We prove the contrapositive: if n is odd, then n2

is odd. Assume n is odd, so choose some k ∈ Z so that n = 2k + 1. Hence,
n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 is odd (2k2 + 2k ∈ Z). �

The other approach is called proof by contradiction, and it is useful in
many situations. The idea is that if you want to prove something, then in-
stead assume it is false and obtain a contradiction. This is a very common
tactic for proving something whose negation is a very useful assumption. For
example, the proof above could have been rewritten as a proof by contradic-
tion as follows:

Proof. Let n ∈ Z be given, and assume n2 is even. We want to prove n is
even. Suppose for contradiction that n is odd, thus we may choose k ∈ Z

so that n = 2k + 1. Thus, n2 = 2(2k2 + 2k) + 1 is odd, contradicting the
assumption that n2 is even. Hence, n must be even. �

The last example we’ll provide in this section is an argument that really
shows the power of proof by contradiction.

Example 1.30:

It’s well-known that sometimes a rational number to a rational power is
rational (e.g. 22) and sometimes it is irrational (e.g. 21/2 =

√
2). However, is

an irrational number to an irrational power still irrational? Not necessarily:
we’ll prove

∃x ∈ R − Q ∃y ∈ R − Q (xy ∈ Q)

Strategy. A direct proof would figure out what the values of x and y are,
though we probably don’t have any good guesses for x or y right now, mak-
ing that tactic difficult. Let’s try a contradiction argument, so we assume
¬(∃x, y ∈ R − Q (xy ∈ Q)). By doing a negation push, our assumption is
∀x, y ∈ R−Q (xy 6∈ Q). This is quite a useful assumption since it applies to
all irrationals!

Since this assumption applies to all irrationals, let’s try some simple
choices for x and y to substitute into our assumption to hope to get a con-
tradiction. One of the simplest irrational numbers to work with is

√
2, so if
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we put in x =
√

2 and y =
√

2, then we find (
√

2)
√

2 is irrational. This means
that this new number can be substituted in our assumption! Hence, we try
x = (

√
2)

√
2 and y =

√
2, and algebra properties of powers simplify xy a lot.

(On the other hand, if we chose x =
√

2 and y = (
√

2)
√

2, then xy wouldn’t
simplify at all.) Now we write the proof.

Proof. Suppose for contradiction that ∃x, y ∈ R − Q (xy ∈ Q) is false, so
thus ∀x, y ∈ R − Q (xy 6∈ Q) is true. Since

√
2 is irrational, plugging in

x =
√

2 and y =
√

2 shows that (
√

2)
√

2 is irrational; for ease of notation,
call this number c. Now, plugging in x = c and y =

√
2 to our assumption

yields c
√

2 6∈ Q, but

c
√

2 =

(√
2
√

2
)

√
2

= (
√

2)(
√

2·
√

2) = (
√

2)2 = 2

and 2 ∈ Q, contradicting c
√

2 6∈ Q. � �

Remark. Although proof by contradiction is a very powerful tactic, it can be
difficult to use and read. The issue is: you don’t know ahead of time what
the contradiction will be! This makes it tricky to design the argument. In
contrast, when using the contrapositive, you know what the goal is: to prove
P → Q, you assume ¬Q and must show ¬P .

In fact, the method of proof of contradiction is risky for another important
reason. If you make a small mistake in your argument, and you arrive at an
impossible situation, then you will be led to conclude that you found your
contradiction, finishing the proof. However, the error may not be in your
hypothesis you aim to contradict; the error may be in your work! The method
of proof by contrapositive doesn’t have this problem as often, because it gives
you a specific goal to achieve.

When proving P → Q by contradiction, the most effective arguments
assume P and ¬Q and USE BOTH. If the assumption of P is never used,
then you’ve probably proven ¬P directly from ¬Q, and hence you’ve built a
contrapositive argument! For instance, consider the argument:

“To prove (x > 0 → −x < 0), assume x > 0, and also suppose for
contradiction that −x is not less than 0. Thus, −x ≥ 0. By negating both
sides of this, we obtain x ≤ 0, which contradicts x > 0.”

In this argument, the hypothesis of x > 0 is not used except to obtain the
final contradiction! Essentially, this proof is really showing ¬(−x < 0) →
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¬(x > 0). We rewrite this as a cleaner contrapositive argument: “Assume
¬(−x < 0), so −x ≥ 0. Negate both sides to obtain x ≤ 0. Therefore,
¬(x > 0).”

Now that you’ve seen a number of different examples of proofs and proof
strategies, it’s good to notice that they all share one important feature: when
building these proofs, the logical structure of the goal sets up our proof.
Consider, for instance, Example 1.23, which proved the following for any
function f from real numbers to real numbers:

∀c ∈ R ((∃x ∈ R f(x) = 0) ↔ (∃x ∈ R f(x − c) = 0))

Immediately after seeing this result, we can already build an outline of the
proof steps, with two gaps in it marked GAP:

1. Let c ∈ R be given.

2. Assume ∃x ∈ R f(x) = 0.

3. Goal: y ∈ R with f(y − c) = 0.

4. Choose x ∈ R with f(x) = 0.

5. GAP

6. Thus, ∃y ∈ R f(y − c) = 0.

7. Assume ∃y ∈ R f(y − c) = 0.

8. Goal: x ∈ R with f(x) = 0.

9. Choose y ∈ R with f(y − c) = 0.

10. GAP

11. Thus, ∃x ∈ R f(x) = 0.

Line 1 comes from “∀c ∈ R”. Next, the ↔ symbol tells us to do two
directions of proof: the first is in lines 2 through 6, and the second is in lines
7 through 11. Each direction has its own assumption and its own goal. The
goals, having “∃x ∈ R” or “∃y ∈ R” in them, tell us to look for witnesses, so
we make a goal to find some value with the desired property (lines 3 and 8).
Lastly, our assumptions with “∃x ∈ R” or “∃y ∈ R” in them tell us to choose
a value as specified (lines 4 and 9).

After doing that outline, it becomes much clearer how to fill in the gaps.
Line 5 should be “Define y = x + c, so f(y − c) = f(x) = 0”. Line 10 should
be “Define x = y − c, so f(x) = f(y − c) = 0”.

By building the outline for ourselves, we made our remaining steps much
clearer. This is the ultimate goal of logic: to make reasoning clearer, both for
the reader and the writer. Unfortunately, many students, when first exposed
to logic, are not shown this process of building an outline, so they view logic
as an unnecessary technicality and hindrance. In fact, the logical process
gives us guidance, clarity, and precision.

PREPRINT: Not for resale. Do not distribute without author’s permission.



Chapter 1: Introduction to Reasoning 33

1.5 Exercises

1. Prove the following for all sets A, B, and C:

(a) A − B = A − (A ∩ B)

(b) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

(c) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Suggestion for parts (b) and (c): use the distributivity laws in Exercise
1.2.4.(c).

(d) A − (B ∪ C) = (A − B) ∩ (A − C)

(e) (A ∪ B) ⊆ C ↔ ((A ⊆ C) ∧ (B ⊆ C))

(f) A ⊆ (B ∩ C) ↔ ((A ⊆ B) ∧ (A ⊆ C))

2. For each of the following statements, either prove the statement if it is
true for all sets A, B, and C, or provide a counterexample.

(a) A − (B ∩ C) ⊆ (A − B) ∪ (A − C)

(b) (A − B) ∪ (A − C) ⊆ A − (B ∩ C)

(c) (A − B) − C = A − (B ∪ C)

(d) A − (B − C) = A − (B ∩ C)

3. For each of the following statements, suppose that A,B,C,D are arbi-
trary sets satisfying A ⊆ B and C ⊆ D. If the statement is true, then
prove it. Otherwise, give a counterexample.

(a) A ∩ C ⊆ B ∩ D

(b) A ∪ C ⊆ B ∪ D

(c) A − C ⊆ B − D

(d) A∆C ⊆ B∆D

4. Prove that for all n ∈ Z, if n is even then (n + 1)(n + 3) − 1 is even.

5. Prove that for all x ∈ R, if x 6= 4 then there is a unique y ∈ R so that
xy = 4y + 5.

6. Prove that for all x ∈ R, x ∈ [−1, 1] iff 3x2 ∈ [0, 3]. (Hint: Recall that√
x2 is |x|, not x.)

7. Prove by contrapositive that for all a, b, c ∈ Z, if a2 + b2 = c2, then at
least one of a, b, or c is even. (You may assume that no integer is both
even and odd.)
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34 Section 1.6: Functions

1.6 Functions

Functions are the basic tool we use in mathematics when we want to take
input and produce output. For example, when we wrote “f(x) = x2” in
high school algebra, we were describing a function that takes a real num-
ber x as input and produces its square as output. However, functions can
be significantly more general than just functions from the real numbers to
the real numbers. For example, a machine that takes a person’s name as
input and prints out their birthday is computing a function from names to
days of the year. If we call that function f , then, for instance, we have
f(“Michael Klipper”) = “July 20”, f(“John Mackey”) = “January 13”, and
so on.7

Since functions occur quite often in mathematics, it’s good to have a
precise definition for them. To do this, we consider ordered pairs. An ordered
pair is an object of the form (x, y) for some objects x and y, where we say
that x is the first coordinate of the pair and y is the second coordinate.

Unfortunately, the notation for the ordered pair (x, y) is the same as the
notation for an open interval; hopefully in context it will be clear which of
the two is meant when we see that symbol. Also, note that the ordered pair
(x, y) is not the same as the set {x, y}. First, in (x, y), x and y are allowed
to be the same, whereas the set {x, y} simplifies to just {x} if x and y are
the same. Second, order matters in an ordered pair: (x, y) is not the same
as (y, x) if x 6= y, but {x, y} = {y, x}.

We frequently want to consider sets of ordered pairs, such as the following:

Definition 1.31. If A and B are sets, then the set A×B, called the Carte-
sian product of A and B, is the set {(x, y) | x ∈ A, y ∈ B}. In other words, it
is the set of all ordered pairs whose first coordinates come from A and whose
second coordinates come from B.

Example 1.32:

Here are some simple examples of Cartesian products:

• {0, 1} × {0, 2} = {(0, 0), (0, 2), (1, 0), (1, 2)}.
• {0, 1, 2} × {0} = {(0, 0), (1, 0), (2, 0)}.

7However, this is only a well-defined function if a person can be uniquely identified by
their name! One alternative might be to have f take two inputs, such as a name and a
birthday.
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• If my set of ties is {red, yellow, blue} and my set of shoes is {black,
brown}, then the Cartesian product of these sets gives the six tie-
shoes combinations {(red, black),(red, brown),(yellow, black),(yellow,
brown),(blue, black),(blue, brown)}.

• R × R is the set of points in the plane. This is often given the simpler
name R2. In general, A2 means A × A when A is a set.

• For any set B, ∅ ×B = ∅. Why? Since there are no members of ∅, it’s
not possible to make any pairs (x, y) where x ∈ ∅ and y ∈ B. Similarly,
A × ∅ = ∅ for any set A.

�

Similarly to ordered pairs, we can define ordered triples to be objects of
the form (x, y, z) and make products of three sets A×B×C = {(x, y, z) | x ∈
A, y ∈ B, z ∈ C}. Thus, R × R × R is the set of points in three-dimensional
space, though this set is often given the simpler name R3 (in general, A3

means A × A × A when A is a set). We can even make ordered quadruples
(x, y, z, w), and in general for each positive integer n we can make ordered
n-tuples with n coordinates. However, for our purposes, ordered pairs are
usually enough.

Ordered pairs allow us to write a precise definition of functions:

Definition 1.33. A function f from a set A to a set B is a subset of A×B
such that for each member x of A, there is exactly one y ∈ B satisfying
(x, y) ∈ f . This unique value of y is written as f(x). A is called the domain
of f (written as dom(f) = A), and B is called a codomain of f . We write
“f : A → B” to say “f is a function from A to B”.

Many functions with which you are familiar from algebra are functions
from R to R. For instance, writing f = {(x, x2) | x ∈ R} means f(x) = x2

for each x ∈ R. Technically speaking, the phrase “f(x)” does not represent a
function; it represents the value of the function at some number x, so x has
to be known for this to make sense. Thus, writing “f(x) = x2” isn’t really
a proper definition of a function. Instead, we write “f : R → R defined by
f(x) = x2 for all x ∈ R”, which includes both a specification of domain and
codomain and also writes “for all x ∈ R”.

Example 1.34:

A definition of a function has to make sure that each domain value is assigned
to only one codomain value. For example, consider the statement “when
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x ∈ [−1, 1] and y ∈ R, f(x) = y ↔ x2 + y2 = 1”, which means the same
as saying f = {(x, y) ∈ [−1, 1] × R | x2 + y2 = 1}. This does not define
a function, because when x = 0, both 02 + 12 = 1 and 02 + (−1)2 = 1 are
true, so (0, 1) and (0,−1) are two pairs in f with the same first coordinate.
(When we graph functions from R to R in the usual way from algebra, we
sometimes say that this equation for f fails the Vertical Line Test, because
the vertical line x = 0 strikes the graph twice.) However, if we instead say
“when x ∈ [−1, 1], f(x) = y ↔ (x2 + y2 = 1 and y ≥ 0)”, then f is a
function. We can manipulate algebraically to get the equivalent statement
“f(x) =

√
1 − x2 when x ∈ [−1, 1]”.

However, there’s no reason why a function from R to R has to be specified
by one single equation. Any proposition of x and y that makes sure every x
in the domain is paired with exactly one y in the codomain is good enough.
For example, we could define a function f : {0, 1} → {−1, 0, 1} by just saying
“f(0) = 0 and f(1) = −1”. As another example, we can define a function by
cases: the absolute-value function f : R → R, defined by

f(x) =

{

x if x ≥ 0

−x if x < 0

is one of the most popular examples. Its definition can also be phrased as
“for all x, y ∈ R, (x, y) ∈ f iff (x ≥ 0 ∧ y = x) ∨ (x < 0 ∧ y = −x)”. �

One-to-One and Onto Functions

In the definition of function, the domain is the set of all inputs to the
function. Hence, a function can only have one possible domain. However, the
codomain is not uniquely specified; a codomain has to contain all possible
outputs, but it’s not required to EQUAL the set of all outputs. Thus, every
function can have plenty of possible codomains! For example, consider the
function f : R → R given by f(x) = x2 for x ∈ R. For any x ∈ R, the
statement f(x) ∈ R is true, but also f(x) ∈ C is true8; therefore, we may
also write f : R → C.

In general, if f : A → B, then any set containing B is also a valid
codomain for f , i.e. codomains can be made larger. This raises the question:

8The author adopts the view that R ⊆ C. Not all mathematicians agree with this,
claiming that real numbers and complex numbers are very different types of objects. The
details are technical and will not be covered here.
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what is the smallest possible codomain for f? A set B is a codomain for f iff
f ⊆ A × B, i.e. whenever (x, y) ∈ f , y ∈ B. Thus, the set of all such y’s is
the smallest codomain. This set is called the range of f and can be written
as {y | ∃x ∈ A (x, y) ∈ f}, as {f(x) | x ∈ A}, or as ran(f).

Example 1.35:

Consider the function f : R → R defined by

f(x) =
1

1 + x2
for all x ∈ R

We note this is well-defined because 1 + x2 is never zero when x ∈ R (on the
other hand, that formula would not define a function from C to C because
the formula wouldn’t make sense when x = i). What is the range of f? If y
is an arbitrary member of the codomain (i.e. y ∈ R), then we find that

y ∈ ran(f)
↔ ∃x ∈ dom(f) y = f(x) def. of ran(f)

↔ ∃x ∈ R y =
1

1 + x2
def. of f

↔ ∃x ∈ R (1 + x2)y = 1 multiplying
↔ ∃x ∈ R (y)x2 + (y − 1) = 0 distributing

(Note that we really do have to keep writing “∃x ∈ R”, because we’re con-
tinually saying there is SOME corresponding domain member x, but we’re
never actually choosing x. )

Now, if y is 0, then this last line reduces to “∃x ∈ R (−1 = 0)”, which
is false, so 0 6∈ ran(f). If y 6= 0, then this last line is a quadratic equation.
Thus, when y 6= 0, the last line is equivalent to

∃x ∈ R x =
±
√

−4y(y − 1)

2y

which is really just saying
√

−4y(y − 1)

2y
∈ R

(since if the positive square root is real, then so is the negative square root).
Thus, we want to know: which nonzero real values of y satisfy −4y(y −

1) ≥ 0? (Remember that the square root of a negative number is purely
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imaginary.) The zeroes of −4y(y − 1) occur at y = 0 and y = 1, so on each
of the three intervals (−∞, 0], [0, 1], and [1,∞), the sign of −4y(y − 1) does
not change (see Figure 1.3, where the sign on each interval is marked with
+ for positive or − for negative).

0 1

+- -

x

fHxL

Figure 1.3: A number line displaying the signs of −4y(y−1) on each interval

By testing some values, we find that −4y(y−1) ≥ 0 iff y ∈ [0, 1]. However,
we must also have y 6= 0, so we find that the set of possible y values is
ran(f) = (0, 1]. �

When we present a function with the “best possible” codomain, where the
codomain contains all the outputs of the function and ONLY the outputs of
the function, we use a special term to explain this situation:

Definition 1.36. If A and B are sets and f : A → B, then f is surjective
onto B (or more simply “f maps onto B”) if B = ran(f). We also say f
is a surjection onto B9. Occasionally, people also say f is onto (using the
preposition as an adjective).

One question you might have at this point is: why do we ever work
with codomains that are larger than the range? In other words, why is
surjectivity useful? There are a couple of reasons. First of all, sometimes
finding the range of a function is hard or takes a lot of work, but finding
an appropriate codomain is easier. For example, with the function f in
Example 1.35, it’s easy to see that f produces real numbers as output, but
it took significant work to find ran(f). Hence, for convenience, we will often
just write f : R → R and be more specific later, if necessary, about which
numbers are in the range.

Secondly, when working with several functions and combining them, it
is more convenient to have all of the functions use the same codomain. For
instance, we may want to add or multiply several functions from R to R. By
using the same codomain with each function, the reasoning is simpler.

9Technically, it’s more correct to say “f is surjectively presented”, since you need to
know what the chosen codomain is in order to determine if the function is surjective. Most
of the time, when we say a function is surjective, B is known in context.
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Example 1.37:

The function defined by f(x) = x2 for all x ∈ R does not map onto R,
because there is no x ∈ R satisfying f(x) = −1. However, if f is viewed as
a function from R to [0,∞), then f is surjective.

As a nonmathematical example, the function which takes a person and
maps them to their birthday is surjective (there is no calendar day of the
year on which nobody has been born). �

Another way to phrase the definition of surjectivity is as follows: if f :
A → B, then f is surjective iff for all y ∈ B, there is AT LEAST one x ∈ A
satisfying (x, y) ∈ f . In other words, each possible output arises from at
least one input.

What kind of property do we obtain if we replace “at least” with “at
most” in that statement? If each possible output arises from at most one
input, then every actual output (i.e. every member of the range) arose from
a unique input. To put this in symbols, if x, x′ ∈ A produce the same output
f(x) = f(x′), then they must be the same input, so x = x′. Equivalently, by
using the contrapositive, if x 6= x′, then we must have f(x) 6= f(x′).

Definition 1.38. A function f : A → B is injective (or one-to-one) if for
every y ∈ B, there is at most one x ∈ A satisfying (x, y) ∈ f . Equivalently,
f satisfies ∀x, x′ ∈ A (f(x) = f(x′) → x = x′). We also say that f is an
injection.

Example 1.39:

The function defined by f(x) = x2 for all x ∈ R is not injective, because
f(1) = f(−1) = 1. (When we graph the function f for all real x, sometimes
we say that f fails the Horizontal Line Test, since the horizontal line y = 1
strikes the graph twice). However, consider the function g = {(x, y) ∈ f | x ∈
[0,∞)}; we say that g is the restriction of f to [0,∞) and use the notation
“g = f ↾ [0,∞)”. g is injective: whenever x, x′ ≥ 0 and x2 = (x′)2, |x| = |x′|
is true and hence x = x′.

As another example, consider the function h : [0,∞) → R defined by
h(x) = x2 + x + 1 for all x ≥ 0. Let’s show h is injective by using the
contrapositive. Let x, x′ ≥ 0 be given and assume x 6= x′; without loss of
generality, we may assume x < x′. (Frequently, “without loss of generality”
is abbreviated as WLOG.) Therefore, x2 < (x′)2 and thus x2 + x + 1 <
(x′)2 + x′ + 1, showing that h(x) < h(x′). In particular, h(x) 6= h(x′).
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The function which takes a person and produces their birthday is also not
injective, since many people have the same birthday. In fact, it’s impossible
to avoid repetitions of birthdays unless there are at most 366 people in the
domain (accounting for leap years). In contrast, the function that takes an
American driver and returns their driver’s license number should be injective
(there’s less confusion for the government and police that way). �

A B A B

Figure 1.4: An injective but not surjective function (left) and a surjective
but not injective function (right)

Take a look at Figure 1.4. In this picture, the domain and codomain are
drawn as ovals, with solid dots inside standing for members, and an arrow
pointing from a member x ∈ A on the left to a member y ∈ B on the right
means (x, y) is in the function. The left picture has one right-side dot with
no arrow pointing to it, so that function is not surjective. However, the left
function is injective, since no two arrows point to the same right-side dot.
The right picture has two left-side dots pointing to the same right-side dot,
so that function is not injective. However, the right function has an arrow
to each right-side dot, so it is surjective.

Definition 1.40. A function f : A → B is bijective (so it is a bijection or a
1-1 onto correspondence) if f is both injective and surjective. In other words,
for each y ∈ B, there is EXACTLY one x ∈ A satisfying (x, y) ∈ f .

For example, the left function in Figure 1.4 becomes a bijection by re-
moving the right-side dot with no arrow pointing to it (i.e. we remove one
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codomain element). Also, the right function becomes a bijection by removing
the bottom left-side dot (i.e. we restrict the domain to be smaller).

Example 1.41:

If A is any set, then one basic example of a bijection is the function f : A → A
defined by f(x) = x for all x ∈ A. This function is called the identity function
on A. We’ll use the symbol idA to represent this function.

As a harder example, consider the function g : (0,∞) → (0, 1) defined by

g(x) =
x

x + 1
for all x ∈ (0,∞)

Note that g is well-defined since x + 1 6= 0 whenever x > 0. We’ll show g
is a bijection. This involves showing both that g is injective and that g is
surjective.

To show injectivity, let x, x′ ∈ (0,∞) be given, and assume g(x) = g(x′).
The following proves that x = x′:

x

x + 1
=

x′

x′ + 1
→ x(x′ + 1) = x′(x + 1) cross-multiplying
→ xx′ + x = xx′ + x′ distributing
→ x = x′ subtracting to both sides

Now, to show surjectivity, let’s show the range is (0, 1). Let y ∈ R be
given; we want to show y ∈ ran(g) iff y ∈ (0, 1). We find

y ∈ ran(g)
↔ ∃x ∈ dom(g) y = g(x) def. of ran(g)

↔ ∃x ∈ (0,∞) y =
x

x + 1
def. of g

↔ ∃x ∈ (0,∞) y(x + 1) = x multiplying
↔ ∃x ∈ (0,∞) xy − x = −y distributing and rearranging
↔ ∃x ∈ (0,∞) x(y − 1) = −y factor out x

This shows that in order for y ∈ R to be in the range, we must have
y 6= 1 (since otherwise the last line simplifies to the false statement “∃x ∈
(0,∞) 0 = −1”). When y 6= 1, we may divide and obtain the equivalent
statement

∃x ∈ (0,∞) x =
−y

y − 1
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which is the same as saying
−y

y − 1
> 0

To solve this inequality for y, note that −y/(y − 1) is zero at y = 0
and undefined at y = 1, so we should check three intervals: (−∞, 0), (0, 1),
and (1,∞). (Here, we don’t include the interval endpoints because we need
−y/(y − 1) to be STRICTLY bigger than 0). If y < 0, then y and y − 1 are
both negative, so −y/(y− 1) is negative. If 0 < y < 1, then y is positive but
y− 1 is negative, so −y/(y− 1) is positive. Lastly, if y > 1, then y and y− 1
are positive, so −y/(y − 1) is negative.

This shows that y ∈ ran(g) iff y ∈ (0, 1), so g is surjective. This finishes
the proof that g is a bijection. �

Composition of Functions

At this point, we’ve developed a definition for functions, and we’ve looked
at some examples. We’ve also seen properties that a function could have, like
not producing duplicate outputs (injectivity) and producing all the outputs
in the codomain (surjectivity). However, why stop at just studying individual
functions? We have ways of combining functions together.

When we’re working with two functions f, g : R → R, we have certain
useful algebraic ways of combining them. One way is to add the functions:
f + g : R → R is defined by (f + g)(x) = f(x) + g(x) for all x ∈ R. We can
similarly define f − g and fg to be respectively the difference and product
of the functions. If x ∈ R and g(x) 6= 0, then we can also define f/g at
x by (f/g)(x) = f(x)/g(x). These operations are usually called pointwise
addition, subtraction, multiplication, and division of functions.

However, for more general functions, we have a very important operation,
which corresponds to using one function right after another:

Definition 1.42. Suppose A, B, and C are sets, and f : A → B and g :
B → C are functions. The composite function g ◦ f : A → C is defined by
(g◦f)(x) = g(f(x)) for all x ∈ A. The function g◦f is called the composition
of f followed by g (since when evaluating the function, f is applied first, and
then g is applied).

See Figure 1.5 for a picture of what composition does. It takes one func-
tion f and immediately follows it with another function g. It is important
that the domain of g be a codomain for f , otherwise g won’t know how to
handle the outputs of f .
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A B C

f g

g o f

Figure 1.5: Two functions f and g and their composite g ◦ f

Example 1.43:

When dealing with a graph of a function f : R → R in the plane, algebra
courses teach that to stretch the picture vertically by a factor of c, you mul-
tiply the formula by c throughout. For example, the graph of 2x2 stretches
twice as tall as the graph of x2. We may express stretching in other terms
by defining s : R → R by s(x) = cx for all x ∈ R, and then we say that the
stretched version of f is s ◦ f . For example, if f : R → R satisfies f(x) = x2

for all x ∈ R, then (s ◦ f)(x) = s(x2) = 2x2.

Multiple stretches and shifts can be done by multiple compositions. For
example, replacing x2 by (x−1)2 shifts the graph one unit to the right. This
is the same as replacing f with f ◦ t, where t(x) = x− 1 for all x ∈ R. (Note
that the shift happens BEFORE f is applied!) By combining stretching and
shifting, we can replace f with s ◦ f ◦ t, which has the formula s(f(t(x))) =
s(f(x − 1)) = s((x − 1)2) = 2(x − 1)2 for all x ∈ R. Technically, we’re
only supposed to compose two functions at a time, but you can check that
(s ◦ f) ◦ t is the same as s ◦ (f ◦ t) (they produce the same outputs for each
input), so either of these expressions makes sense as a definition for s ◦ f ◦ t.

It is good to note that usually the order in which functions are composed
matters. For example, when x ∈ R, (f ◦ s)(x) = (x − 1)2, but (s ◦ f)(x) =
x2 − 1. Plugging in x = 0, we see that (f ◦ s)(0) = 1, (s ◦ f)(0) = −1, and
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1 6= −1, so the functions f ◦ s and s ◦ f are unequal. �

A good question to consider here is: if f : A → B and g : B → C are
functions, then which properties of f and g also hold for the composite g ◦f?
We say that these properties are preserved by composition.

As an example, suppose that A = B = C = R. Consider first when
f(x) = 1 and g(x) = 2 for all x ∈ R. f and g are constant functions,
and (g ◦ f)(x) = g(f(x)) = g(1) = 2 for all x ∈ R, so g ◦ f is also a
constant function. More generally, if A and B are any sets and f : A → B
is a function, then we say f is a constant function if all outputs of f are
the same, i.e. ∀x, x′ ∈ A f(x) = f(x′). The property of being a constant
function is preserved by composition: if A, B, C are any sets and f : A → B
and g : B → C are any constant functions, then you can prove that g ◦ f is
also constant.10

However, some properties are not preserved by composition. Consider
when f(x) = x − 1 and g(x) = x + 1 for each x ∈ R. Both f and g have
the property that they never map x to itself; i.e. ∀x ∈ R f(x) 6= x and
∀x ∈ R g(x) 6= x. However, (g ◦ f)(x) = g(x + 1) = (x − 1) + 1 = x maps
every x ∈ R to itself. Thus, the property of never mapping a value to itself
is not preserved by composition.

We are most interested in the properties we have defined in this chapter.
Those properties are preserved by composition:

Theorem 1.44. Let A, B, C be arbitrary sets, and suppose f : A → B and
g : B → C are functions.

(i) If f and g are injective, then so is g ◦ f .
(ii) If f and g are surjective, then so is g ◦ f .
(iii) If f and g are bijective, then so is g ◦ f .

Strategy. Let’s start with part (i), so we assume f and g are injective. This
means that for all x, x′ ∈ A, f(x) = f(x′) → x = x′, and similarly, for all
y, y′ ∈ B, g(y) = g(y′) → y = y′ (we’ll use a different letter from x just to
remind ourself these variables come from a different set). Now, we want to let
x, x′ ∈ A be given and assume (g◦f)(x) = (g◦f)(x′), i.e. g(f(x)) = g(f(x′)),
with the goal of showing x = x′.

Everything until now has just been using the definitions we previously
introduced. At this point, we need to put our assumptions to good use. Since

10In fact, you only need g to be constant in order to ensure g ◦ f is constant!
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we currently know that g(f(x)) = g(f(x′)), which features g as the outermost
function, the assumption about g allows me to remove the application of g
from each side to get f(x) = f(x′) (think of choosing y = f(x) and y′ = f(x′)
in the definition above). Similarly, at this point, our assumption about f
comes in handy to give x = x′.

The strategy for (ii) will also have to use definitions carefully. To show
g ◦ f is surjective, we need to show that each z ∈ C occurs as an output,
i.e. there is x ∈ A with g(f(x)) = z. This shows that we want z to be an
output of g; here’s where the surjectivity of g tells us there is some y ∈ B
with g(y) = z. Now, if f(x) were y, then that would finish our argument,
and fortunately we can find such an x because f is surjective.

In essence, the approaches for parts (i) and (ii) end up working with each
function, one at a time, starting from the outside. We are “peeling off” the
functions, first peeling off g and then peeling off f .

For (iii), if f and g are bijective, then they are both injective and surjec-
tive, so (i) and (ii) apply to them.

Proof. (i) Assume f and g are injective. Let x, x′ ∈ A be given with (g ◦
f)(x) = (g ◦ f)(x′), i.e. g(f(x)) = g(f(x′)). We want to show x = x′.
Because g is injective, g(f(x)) = g(f(x′)) implies f(x) = f(x′). Because f is
injective, f(x) = f(x′) implies x = x′.

(ii) Assume f and g are surjective. Let z ∈ C be given; we wish to find
x ∈ A so that (g ◦ f)(x) = g(f(x)) = z. Because g is surjective, we may
choose y ∈ B so that g(y) = z. Because f is surjective, we may choose x ∈ A
so that f(x) = y. Therefore, g(f(x)) = g(y) = z.

(iii) If f and g are both bijective, then they are both injective and sur-
jective. Therefore, by parts (i) and (ii), g ◦ f is both injective and surjective,
so it is bijective. �

Example 1.45:

In Example 1.41, we saw that the function g : (0,∞) → (0, 1), given by
g(x) = x/(x + 1) for all x ∈ (0,∞), is a bijection. A little work shows that
f : (0,∞) → (0,∞), given by f(x) = 2x for all x ∈ (0,∞), is also a bijection.
Therefore, Theorem 1.44 tells us that the function g ◦ f : (0,∞) → (0, 1),
defined by

(g ◦ f)(x) = g(2x) =
2x

2x + 1
for all x ∈ (0,∞)
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is a bijection.

As a nonmathematical example, suppose P is the set of all people who
have ever lived, D is the set of all possible days in a calendar year (so D has
366 members because of leap years), and M is the set of all calendar months.
Consider the function b : P → D, which maps people to the calendar date
of their birthday, and the function m : D → M , which maps each day of
the year to its month. (Note that capitalization is important. m and M are
not the same!) Certainly b and m are surjective, as each day of the year has
some person born on it, and each month has some day belonging to it. Thus,
m ◦ b : P → M , which maps people to their birth month, is surjective. This
makes sense, since every month has someone born in it. �

Example 1.46:

Theorem 1.44 is very useful for studying properties of functions, but it is easy
to accidentally believe the theorem says more than it really does. One of the
statements it proves is “for all sets A,B,C, and for all functions f : A → B
and g : B → C, if f and g are injective then g◦f is injective”. The innermost
body of this statement is an implication but NOT an equivalence; let’s show
that “for all sets A,B,C, and for all functions f : A → B and g : B → C, if
g ◦ f is injective then f and g are injective” is false.

To show the converse is false, we find a counterexample, which is an
example showing that the claim fails. (When you have a statement of the
form ∀x P (x), a counterexample is a value of x for which P (x) fails). Thus,
we’d like to exhibit sets A, B, C and functions f : A → B and g : B → C
such that g ◦ f is injective but f and g are not both injective (this is how
you negate “for all sets A, B, C and all functions f : A → B and g : B → C,
if g ◦ f is injective, then so are f and g”). Let’s choose A = C = {1} and
B = {1, 2}, and then we define f and g by f(1) = 1 and g(1) = g(2) = 1.
f and g ◦ f are both injective because their domain only has one element.
However, since g(1) = g(2) and 1 6= 2, g is not injective. See Figure 1.6.

What causes this counterexample to work? Look at the hollow dot in
Figure 1.6. This dot represents a member of B which is not in ran(f). When
computing the composite, g ◦ f evaluates g at points of the form f(x) for
x ∈ A, i.e. g is only evaluated at points in ran(f). Thus, the hollow dot
is not used when constructing g ◦ f . Although that dot makes g fail to be
injective, g ◦ f never notices it!

Despite this example, which shows that the converse isn’t true, there are
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A B C

f g

g o f

1 1 1

2

Figure 1.6: g ◦ f is injective but g is not

still some statements we can prove about how g ◦ f influences g and f . See
the exercises. �

Inverses

As we’ve mentioned, one way to think of a function is to think of it as
something which converts inputs into outputs. This raises the question: can
we also make a function to reverse this process and send outputs back to
the inputs which made them? Essentially, this second function “cancels out”
the first function. For example, the functions f, g : R → R, defined by
f(x) = x + 1 and g(x) = x − 1 for each x ∈ R, cancel each other, since for
any x ∈ R, g(f(x)) = g(x + 1) = (x + 1) − 1 = x (g sends f(x) back to x)
and f(g(x)) = f(x − 1) = (x − 1) + 1 = x (f sends g(x) back to x). We
formalize this “canceling” notion with the definition of an inverse function.

Definition 1.47. Let A, B be sets and let f : A → B be a function. A
function g : B → A is said to be an inverse for f iff

∀x ∈ A g(f(x)) = x and ∀y ∈ B f(g(y)) = y

Equivalently, using the identity functions defined in Example 1.41,

g ◦ f = idA and f ◦ g = idB
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If f has an inverse, then we say that f is invertible.

A couple things are worth noting about this definition. First of all, the
domain of g must be precisely the codomain we used to describe f , and
the codomain of g must be the domain of f . This is required so that the
composites g ◦ f and f ◦ g both exist. Secondly, we want g and f to cancel
each other no matter which direction we compose them; sometimes, to place
emphasis on this, g is called a two-sided inverse. There are also definitions
for one-sided inverses: see the exercises.

Example 1.48:

The functions f, g : R → R satisfying f(x) = x + 1 and g(x) = x − 1 for all
x ∈ R are inverses for each other. In general, for any c ∈ R, the functions
defined by f(x) = x + c and g(x) = x − c for all x ∈ R are inverses for
each other. Similarly, if c 6= 0, then the functions defined by f(x) = cx and
g(x) = x/c for all x ∈ R are inverses for each other. (We often just say f
and g are inverses instead of saying “inverses for each other”.)

Some common functions are even introduced as inverses for other func-
tions. For instance, it is known that the function f : R → R, defined by
f(x) = x3 for each x ∈ R, is a bijection. (We’ll prove this formally in Chap-
ter 3.) We’ll soon show that this implies f has exactly one inverse. The
cube-root function g : R → R, satisfying g(x) = x1/3 for each x ∈ R, is
DEFINED as the inverse for f .

However, if f : R → R and g : [0,∞) → R are defined by f(x) = x2

and g(x) =
√

x for all x ∈ [0,∞), then f and g are NOT inverses. First
of all, the domain for g is not the codomain for f . Second, for any x ∈ R,
g(f(x)) =

√
x2 = |x|, since g only produces the nonnegative square root.

To fix these issues, we first restrict f to the smaller domain [0,∞). Define
h = f ↾ [0,∞) (this means that dom(h) = [0,∞) and h(x) = f(x) for all
x ∈ [0,∞)). Second, we choose the codomain [0,∞) for g and h instead of
choosing R. After doing these steps, h and g ARE inverses. �

The following lemma provides a convenient way to check whether two
functions are inverses. (A lemma is a result which usually isn’t so important
on its own, but it serves as a helpful tool for other theorems.)

Lemma 1.49. Let A,B be sets, and let f : A → B and g : B → A be
functions. f and g are inverses iff

∀x ∈ A ∀y ∈ B (f(x) = y ↔ g(y) = x)
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Strategy. For the forward direction, we assume that g is an inverse for f .
Therefore, for all x ∈ A, g(f(x)) = x, so letting y = f(x) gives us one part
of the conclusion. Also, for all y ∈ B, f(g(y)) = y, so letting x = g(y) gives
the other part. The backward direction will be similar.

Proof. For the forward direction, assume that g is an inverse for f . Let
x ∈ A and y ∈ B be given. If f(x) = y, then by the definition of inverse,
g(y) = g(f(x)) = x. Conversely, if g(y) = x, then the definition of inverse
says f(x) = f(g(y)) = y. Hence, f(x) = y ↔ g(y) = x.

For the backward direction, assume that for all x ∈ A and all y ∈ B,
f(x) = y iff g(y) = x. We must show that for all x ∈ A, g(f(x)) = x, and
that for all y ∈ B, f(g(y)) = y.

First, if x ∈ A is given, then choose y = f(x), so y ∈ B. Because
f(x) = y is true, by the assumption for this direction, g(y) = x is true, so
g(f(x)) = g(y) = x.

Second, if y ∈ B is given, then choose x = g(y), so x ∈ A. Because
g(y) = x is true, by the assumption for this direction again, f(x) = y is true,
so f(g(y)) = f(x) = y. �

Up until now, we’ve had to use the phrase “an inverse” because we don’t
yet know how many inverses a function has. However, using Lemma 1.49, we
will now show uniqueness of inverses as a corollary, so we may use the phrase
“the inverse”. (A corollary is a result which follows quickly from a previously
proven result, much like a footnote to a paragraph.)

Corollary 1.50. Let A, B be sets, f : A → B and g, h : B → A be functions,
and suppose g and h are both inverses for f . Then g = h, i.e. for all
y ∈ B, g(y) = h(y). Thus, if f has an inverse, then it has a unique inverse,
frequently denoted by f−1.

Strategy. Suppose that g, h are both inverses for f . For all y ∈ B, we want
to show g(y) = h(y). If we give g(y) the name x, so x ∈ A, then Lemma 1.49
lets us manipulate the statement “g(y) = x” into other convenient forms.

Proof. Suppose that g, h : B → A are both inverses for f : A → B. Let
y ∈ B be given; we wish to show g(y) = h(y). Define x = g(y), so that
x ∈ A. Since g is an inverse for f , by Lemma 1.49, f(x) = y iff g(y) = x, so
f(x) = y. By Lemma 1.49 again, f(x) = y iff h(y) = x (because h is also an
inverse for f), so h(y) = x. Thus, g(y) = h(y). �
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Now we wish to answer the biggest question of this subsection: which
functions are invertible?

Theorem 1.51. Let A,B be sets, and let f : A → B be a function. f is
invertible iff f is bijective.

Strategy. For the forward direction, we want to show invertible functions are
bijective. We have two parts to the definition of inverse. The part that says
f−1(f(x)) = x for all x ∈ A will allow us to show injectivity of f , because if
f(x1) = f(x2) for some x1, x2 ∈ A, then we can apply f−1 on each side to
get x1 = x2. The other part of the definition, saying f(f−1(y)) = y for all
y ∈ B, allows us to take an element y of B and “undo f ” to find a choice
of x ∈ A, namely f−1(y), that f maps to y. This shows every y ∈ B is in
ran(f), so f is surjective.

For the backward direction, if f is bijective, then each y ∈ B has exactly
one x ∈ A with (x, y) ∈ f . Since we want an inverse for f to go “in the
reverse direction” of f , if f sends x to y, then the inverse should send y to
x! In other words, we define g : B → A by saying that for each y ∈ B, g(y)
should be THE x ∈ A which satisfies f(x) = y. We’ll show g = f−1 by using
Lemma 1.49.

Proof. For one direction of proof, assume f−1 exists. To show f is bijective,
we show f is injective and f is surjective. To show f is injective, let x, x′ ∈ A
be given with f(x) = f(x′), and we’d like to show x = x′. Applying f−1 to
both sides yields f−1(f(x)) = f−1(f(x′)), i.e. x = x′. To show f is surjective,
let y ∈ B be given, and we’d like to find x ∈ A with f(x) = y. Choose
x = f−1(y), so that f(x) = f(f−1(y)) = y. This proves f is bijective.

For the other direction, assume f is bijective. Thus, for every y ∈ B, there
is exactly one x ∈ A with (x, y) ∈ f . We define g : B → A as follows: for
each y ∈ B, g(y) is the UNIQUE x ∈ A satisfying f(x) = y. (More precisely,
g can be written as the set of ordered pairs {(y, x) ∈ B × A | (x, y) ∈ f}.)
This definition shows that for all x ∈ A and all y ∈ B,

f(x) = y ↔ g(y) = x

By Lemma 1.49, g is an inverse for f . (Note that by Corollary 1.50, we may
write g = f−1.) �

We conclude with a demonstration of how to use Lemma 1.49 to find
inverses of functions. Looking back at Example 1.41, where we started with
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the function g : (0,∞) → (0, 1), defined by

g(x) =
x

x + 1
for all x ∈ (0,∞)

we showed that g is a bijection. During that proof, we showed that for all
y ∈ R with y 6= 1,

y ∈ ran(g) ↔ ∃x ∈ (0,∞) x =
−y

y − 1

which is equivalent to

∀x ∈ (0,∞) ∀y ∈ R − {1}
(

g(x) = y ↔ x =
−y

y − 1

)

After that, the proof showed both sides of the ↔ in the body are true when
y ∈ (0, 1). Hence if we choose A = (0,∞) and B = (0, 1), we have

∀x ∈ A ∀y ∈ B

(

g(x) = y ↔ −y

y − 1
= x

)

Lemma 1.49 now tells us that

g−1(y) =
−y

y − 1
for all y ∈ (0, 1)

This shows that a process like the one used in Example 1.41 to show a
function is a bijection can also produce the inverse as a byproduct!

1.7 Exercises

1. Suppose f : R → R is defined by f(x) = x2 − 4x + 3 for all x ∈ R.
Find ran(f).

2. (a) Suppose g : Z × Z → Z is defined by g(a, b) = 2a − 3b for all
a, b ∈ Z (g takes PAIRS as input, so we think of g as taking two
integer inputs.) Find ran(g).

(b) Do the same as (a) but with g(a, b) = 6a + 4b for all a, b ∈ Z.
(Suggestion: if you want to show the range is some set B ⊆ Z,
then first show B ⊆ ran(f) and then show ran(f) ⊆ B separately.)
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3. Perhaps this is surprising, but ∅ is a function. Explain why ∅ is a
function. What are its domain and range?

4. Find functions f, g : R → R so that f and g are both bijective but
f + g : R → R is neither injective nor surjective. This shows that
pointwise addition does not preserve injectivity or surjectivity.

5. Prove that the function f : (R − {1}) → (R − {2}), defined by

f(x) =
2x + 5

x − 1
for all x ∈ R − {1}

is a bijection. (Suggestion: To make the algebra more convenient, it
helps to note that 2x + 5 = 2(x − 1) + 7.) What is a formula for f−1?

6. For each of the parts of this exercise, suppose that f : R → R.

(a) We say that f is strictly increasing to mean

∀x1, x2 ∈ R (x1 < x2 → f(x1) < f(x2))

(In other words, f sends smaller inputs to smaller outputs.) Sim-
ilarly, we say f is strictly decreasing when

∀x1, x2 ∈ R (x1 < x2 → f(x1) > f(x2))

Prove that if f is strictly increasing, then f is injective. (The same
type of proof works to show that strictly decreasing functions are
also injective.)

(b) Suppose that f is strictly increasing, and also assume that f is
surjective. Thus, by part (a) and Theorem 1.51, f−1 : R → R

exists. Prove that f−1 is also strictly increasing. (Hint: Use a
proof by contradiction.)

(c) Prove that if a strictly decreasing function is invertible, then its
inverse is also strictly decreasing. (Note: There is a simple way
to reuse part (b) to do this.)

(d) Give an example where f is injective but is neither strictly in-
creasing nor strictly decreasing.

7. Suppose that f : A → B and g : B → C are bijections. Thus, g ◦ f is
a bijection and hence invertible. Prove that (g ◦ f)−1 = f−1 ◦ g−1.

PREPRINT: Not for resale. Do not distribute without author’s permission.



Chapter 1: Introduction to Reasoning 53

8. For each of these statements, either prove the statement if it is true for
all sets A,B,C and all functions f : A → B and g : B → C, or provide
a counterexample if the statement is false.

(a) If g ◦ f is injective, then f is injective.

(b) If g ◦ f is injective, then g is injective.

(c) If g ◦ f is surjective, then f is surjective.

(d) If g ◦ f is surjective, then g is surjective.

The next four exercises deal with one-sided inverses, defined as follows.

Definition 1.52. If f : A → B, then a left inverse for f is a function
g : B → A such that g ◦ f = idA (i.e. g cancels f on the left). If f has a left
inverse, then we say f is left-invertible. Similarly, a right inverse for f is a
function g : B → A such that f ◦ g = idB, and f is right-invertible if a right
inverse exists.

As examples, we note that any bijection’s inverse is both a left inverse
and a right inverse. Also, the function f : R → [0,∞), defined by f(x) = x2

for all x ∈ R, has a right inverse g defined by g(x) =
√

x for all x ∈ [0,∞),
but g is not a left inverse. (See Example 1.48.)

9. Give examples which show that a left-invertible function could have
more than one left inverse, and also show similar examples for right
inverses. (Hint: if f : A → B has a left inverse and is not surjective,
then what could a left inverse do with inputs from B−ran(f)? For right
inverses, if f has a right inverse and is not injective, consider elements
x, x′ ∈ A with x 6= x′ and f(x) = f(x′). Also, drawing pictures should
give you guidance.)

10. Prove that if a function f : A → B has both a left inverse g : B → A
and a right inverse h : B → A, then g = h. (Hint: Consider g ◦ f ◦ h.)

11. Prove the following theorem:

Theorem 1.53. When A, B 6= ∅, a function f : A → B is left-
invertible iff f is injective.

12. Prove the following theorem:
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Theorem 1.54. A function f : A → B is right-invertible iff f is
surjective.

13. Let f : C → C be defined by f(z) = z2 for all z ∈ C. Prove f is
surjective. (Hint: This is a long problem. Given a, b ∈ R, we wish to
find x, y ∈ R so that f(x+yi) = a+bi. Thus, (x+yi)2 = x2+2xyi−y2 =
a + bi. This means that x2 − y2 = a and 2xy = b. Consider cases when
b = 0 and when b 6= 0. In the second case, try to solve for y in terms
of x and then find solutions for x.)

1.8 Induction

There is another proof technique, called induction (formally, it’s called math-
ematical induction), which is helpful for proving statements about natural
numbers. Before explaining more formally how induction works, let’s exam-
ine a situation where induction is useful.

Example 1.55:

Consider the four squares of dots in Figure 1.7.

Figure 1.7: Four squares of dots with alternating colored layers

Each square consists of “L”-shaped layers, starting from the upper-right
corner of the square, where the layers are alternately colored white and black.
The first layer has 1 white dot, the next has 3 black dots, the next has 5
white dots, and so on. This suggests that the following pattern occurs:

1 = 12

1 + 3 = 22

1 + 3 + 5 = 32

1 + 3 + 5 + 7 = 42
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and in general, for any n ∈ N∗, the sum of the first n odd numbers is n2. If
we use P (n) to denote the proposition “1 + 3 + · · ·+ (2n− 1) = n2” (so P (n)
is the nth row of this pattern), we’d like to prove ∀n ∈ N∗P (n). However, if
we start by taking an arbitrary n ∈ N∗, then the tactics from the last section
don’t seem to help us prove P (n).

Let’s take a different approach. Rather than trying to prove that P (n)
is true for all n ∈ N∗ at the same time (which is what taking an arbitrary
n ∈ N∗ tries to do), let’s prove the statements P (n) in order. Thus, we’ll
prove P (1), then P (2), then P (3), and so forth. This is a useful approach
because for any n ∈ N∗, when we get to P (n), we know we’ve already proven
P (1) through P (n − 1), so we may use them as hypotheses in our proof of
P (n) if we want.

Why do these extra hypotheses help? The main reason is because bigger
squares are built from smaller squares by adding “layers” (for instance, Figure
1.7 portrays the fourth square as four layers of dots). More precisely, the
(n+1)st square arises from the nth square by adding one layer of 2n+1 dots.
Now, let’s suppose we’ve managed to do n steps of proof, showing that P (1)
through P (n) are all true. Since P (n) is true, we know the nth square has n2

dots. Thus, the (n + 1)st square has 2n + 1 more dots than that, i.e. it has

n2 + (2n + 1) = (n + 1)2

dots. This proves P (n + 1).
The previous paragraph proves that for all n ∈ N∗, P (n) implies P (n+1).

(In other words, we’ve shown how to “add a layer” in the proof.) In essence,
we’ve proven the infinite chain of implications

P (1) → P (2) → P (3) → · · · → P (n) → P (n + 1) → · · ·
Now, we note that P (1) says “1 = 12”, which is true. Therefore, the chain
above shows that P (n) is true for every n ∈ N∗, as desired. �

The principle of induction is the proof strategy that uses the idea shown
in the previous example. Suppose P (n) is a proposition that we would like
to prove for all n ∈ N∗. We first start by showing P (1) is true, which
corresponds to starting the chain above. After that, for any n ∈ N∗, we
prove that P (n) implies P (n + 1). Thus, P (1) implies P (2), which implies
P (3), which implies P (4), and so on. As P (1) is true, all the P (n)’s are true.

Definition 1.56. Let P (n) be a proposition. A proof of ∀n ∈ N∗P (n) by
induction on n consists of the following steps:
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1. Establish the base case (BC): Prove that P (1) is true.
2. Let n ∈ N∗ be given, and assume the inductive hypothesis (IH) that

P (n) is true.
3. Lastly, perform the inductive step (IS): Prove that P (n + 1) is true.

(The proof will generally use the IH.)

Another way to think of a proof by induction is to think of a row of
dominoes, with one domino for each natural number. Think of domino n
falling over as representing that P (n) is true. At the beginning of the line
is domino number 1, which we knock over by proving P (1) as our base case.
Next, we show that whenever the nth domino falls for any n ∈ N∗, it makes
the (n+1)st domino fall, which corresponds to showing P (n) implies P (n+1)
(the IH implies the IS). As a result, every single domino eventually falls down,
so all the P (n) statements are true.

Remark. The domino analogy makes induction more intuitively plausible,
but it does not prove that mathematical induction is a legitimate proof tactic.
In order to justify induction more formally, one needs to rigorously define N∗,
which is frequently done in a set theory course. (For more details, you should
search for information about “well-ordering” N.)

For our purposes, it will suffice to say that N∗ has the property that every
member of N∗ can be obtained by repeatedly adding 1, starting from 1. In
other words, for every n ∈ N∗, a proof by induction eventually proves P (n)
after finitely many steps.

Here is an example of how to write a proof by induction:

Example 1.57:

Let’s prove that for all n ∈ N∗,

1 + 2 + · · ·+ n =
n(n + 1)

2

In this case, P (n) is “1 + 2 + · · ·+ n = n(n + 1)/2”.

Proof. We prove ∀n ∈ N∗P (n) by induction on n.
Base Case: P (1) says “1 = 1(1 + 1)/2”, which is true.
Inductive Hypothesis: Let n ∈ N∗ be given, and assume P (n) is true, i.e.

1 + 2 + · · ·+ n = n(n + 1)/2.
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Inductive Step: We note that the sum 1 + 2 + · · · + (n + 1) contains the
sum 1+2+ · · ·+n as its first n terms, so we can apply our IH to those terms.
This gives us

1 + 2 + · · ·+ (n + 1) = (1 + 2 + · · ·+ n) + (n + 1)

=

(

n(n + 1)

2

)

+ (n + 1) by the IH P (n)

= (n + 1)

(

n

2
+

2

2

)

factoring

=
(n + 1)(n + 2)

2

which proves that P (n + 1) is true. � �

Not all examples of proofs by induction have to use summations. Induc-
tion is a valid proof strategy when trying to prove any proposition P (n),
where n is supposed to be a natural number. Induction works well when
P (n + 1) can be related to P (n), so that the inductive step can “reuse” all
the work that went into proving P (n) to help prove P (n+1). For instance, in
the earlier examples, the summation on the left side of P (n+1) contained the
summation on the left side of P (n). This makes induction ideal for reasoning
about patterns, since the step from P (n) to P (n + 1) essentially proves why
“the pattern continues” or how we can “add a layer” to the problem.

For illustration, here is an induction example without summations:

Example 1.58:

Let’s prove that for all x ∈ R and all n ∈ N∗, if x > 1 then xn > 1. Induction
is a good strategy for this proof because xn+1 is xxn, so a statement of the
form xn > 1 comes in handy when trying to prove xn+1 > 1.

Proof. Let x ∈ R be given, and assume x > 1. We will prove ∀n ∈ N∗xn > 1,
by induction on n. (Frequently, if the choice of P (n) is clear from context,
we don’t have to state P (n) explicitly.)

Base case: “x1 > 1” is true by assumption.
Inductive hypothesis: Let n ∈ N∗ be given, and assume xn > 1.
Inductive step: Because x > 1 and xn is positive (by the IH), xxn > 1xn.

Thus, xn+1 > xn and xn > 1 by the IH, so xn+1 > 1. � �
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Induction Variants and Strong Induction

There are several variants on the principle of induction. For example,
an induction proof doesn’t necessarily have to start with P (1). Suppose you
have a proposition P (n), n0 is some integer, and you’d like to prove P (n) is
true for all integers n ≥ n0. This basically means that you’d like to prove
P (n0), then P (n0 + 1), then P (n0 + 2), etc. Hence, your base case should be
to prove P (n0), and your inductive step proves that P (n) implies P (n + 1)
whenever n ≥ n0.

This proof tactic is often called “induction with a modified base case”.
We can also relate a proof of this style to a row of dominoes. Suppose
that instead of pushing over domino #1, you start by pushing domino #n0.
Every domino after that nth

0 domino will fall. However, the dominos that
come before #n0 may or may not fall (for instance, some might have fallen
if you were careless when pushing #n0 and accidentally knocked over some
dominoes to the side).

The following example illustrates a proof with a modified base case:

Example 1.59:

Let’s define the factorial n! (read “n factorial”) for n ∈ N as follows. We
define 0! = 1 and, whenever n! is defined for any n ∈ N, we define (n + 1)! =
(n+1) ·n!. Thus, 1! = 1 ·0! = 1 is defined in terms of 0!, 2! is defined in terms
of 1!, 3! is defined in terms of 2!, and so forth. (This is called an inductive
definition.) It is also possible to write n! as 1 · 2 · · · · · n.

We’d like to know which n ∈ N satisfy n! > 2n. We try a few values of n:

n n! 2n

0 1 1
1 1 2
2 2 4
3 6 8
4 24 16
5 120 32

We see that n! ≤ 2n when n ≤ 3, but for n ≥ 4, it seems that n! is growing
so quickly that it overtakes 2n. Thus, if we write P (n) to mean “n! > 2n”,
we’d like to prove that P (n) is true for all n ≥ 4. We prove this by induction
on n.

Base case: When n = 4, the table above shows 4! > 24.
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Inductive hypothesis: Let n ≥ 4 be given, and assume P (n).
Inductive step: We’d like to prove P (n + 1), i.e. (n + 1)! > 2n+1. By

the definition of factorial, (n + 1)! = (n + 1)n!. Since n! > 2n by the IH,
and n + 1 is positive (in fact, n + 1 ≥ 5), (n + 1)n! > (n + 1)2n. Also, since
n + 1 ≥ 5 > 2, (n + 1)2n > 2 · 2n = 2n+1. Therefore, (n + 1)! > 2n+1. �

Another useful variant of induction is called strong induction. The main
idea is that if we’re trying to prove P (n+ 1), and we’ve already proven P (1)
through P (n), we should be able to use ALL of the statements P (1), P (2),
and so forth up to P (n) as hypotheses. (There is also a variant on strong
induction allowing us to start at P (n0) for any integer n0.) Thus, we have a
stronger set of assumptions than just assuming P (n).

Definition 1.60. Suppose P (n) is a proposition. A proof of ∀n ∈ N∗P (n)
by strong induction consists of the following steps:

1. Let n ∈ N∗ be given, and assume the (Strong) Inductive Hypothesis:
P (1), P (2), and so on up to P (n) are all true. (If n = 0, then this is an
empty set of assumptions.) In other words, assume that for all k ∈ N

with 1 ≤ k ≤ n, P (k) is true.

2. Perform the Inductive Step: Prove that P (n + 1) is true.

Strong induction doesn’t technically need a base case: P (1) is proven in
the inductive step as P (n+1) where n = 0 (so the induction hypothesis is an
empty statement). Here is an example showing a proof by strong induction.

Example 1.61:

The Fibonacci numbers fn, where n ∈ N∗, are a famous inductively-defined
sequence of numbers. They are defined as follows: f1 = 1, f2 = 1, and
for all n ≥ 3, fn = fn−1 + fn−2. (Some people also define f0 = 0, so that
f2 = f1 + f0 as well.) Hence, f3 is defined in terms of f2 and f1, f4 is defined
in terms of f3 and f2, and so forth. The first few Fibonacci numbers are
1, 1, 2, 3, 5, 8, 13, . . ..

We’d like to prove that for all n ∈ N∗, fn < 2n. How would the inductive
step go for this proof? To prove fn+1 < 2n+1, we need to know how to
compute fn+1. If n + 1 ≥ 3, then we may use the definition of the Fibonacci
numbers to say that fn+1 = fn+fn−1, and then our IH will tell us information
about fn and fn−1. Otherwise, if n + 1 ≤ 2, then either n = 0 or n = 1, and
we can handle those cases separately using the definition f1 = f2 = 1.
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Proof. Let P (n) be “fn < 2n”. We prove P (n) for all n ∈ N∗ by strong
induction on n.

IH: Let n ∈ N be given, and assume that for all k ∈ N∗, if 1 ≤ k ≤ n,
then P (k) is true.

IS: Let’s prove fn+1 < 2n+1. In the first case, if n = 0, then f1 = 1 < 21

by definition of f1. Second, if n = 1, then f2 = 1 < 22 by definition of f2.
For the last case, suppose n + 1 ≥ 3. Therefore, fn+1 = fn + fn−1. By

our IH, P (n) and P (n − 1) are true (since both n − 1 and n are at least 1),
so fn < 2n and fn−1 < 2n−1. We compute

fn+1 = fn + fn−1 definition of fn+1

< 2n + 2n−1 IH with P (n) and P (n − 1)
= 2n−1(2 + 1) factoring
< 2n−1(22)
= 2n+1

which proves P (n + 1). � �

It turns out that any theorem which can be proven by strong induction
can also be proven by ordinary induction, so the word “strong” is a slight
misnomer. However, the process which turns a proof by strong induction
into a proof by regular induction makes the proof look more cluttered and
technical. Strong induction provides a convenient way to organize our work
when we want to use multiple values in our induction hypothesis. We will
not have much need for strong induction in this book, but it is a useful proof
strategy in much of discrete mathematics.

1.9 Exercises

1. Prove the following summations for all n ∈ N∗ by induction on n:

(a) 12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6

(b) 1 − 2 + 3 − 4 + · · · + (−1)n−1n = (−1)n+1

(

n(n + 1)

2

)

(c) (1)1! + (2)2! + · · ·+ (n)n! = (n + 1)! − 1 (see Example 1.59)

2. (a) Prove by induction on n that for any x 6= 1 and any n ∈ N∗,

1 + x + x2 + · · · + xn =
xn+1 − 1

x − 1
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(b) What is the value of 1 + x + · · ·+ xn when x = 1?

3. Use induction to prove for all n ∈ N∗ that n2 + 3n + 2 is even. (Hint:
If f(n) = n2 + 3n + 2, then what is f(n + 1) − f(n)?)

4. Prove by induction that for all n ∈ N∗ and all x ≥ 0, (1+x)n ≥ 1+nx.

5. In Example 1.61, we proved that fn < 2n. Suppose that we replace
2 with a positive number c everywhere in the proof, to try and prove
that fn < cn. For which values of c does the proof still work?

6. For each n ∈ N with n ≥ 2, let

an =

(

1 − 1

2

)(

1 − 1

3

)

· · ·
(

1 − 1

n

)

Guess a simpler formula for an, and prove your guess by induction.

7. The following proof is incorrect. Explain where the proof fails.

Proof. I prove that 1 + 2 + · · · + n =
n2

2
+

n

2
+ 1 by induction on n ∈

N∗. Suppose as the IH that the statement is true for n. Then adding
n + 1 to each side yields

1 + 2 + · · · + n + (n + 1) =
n2

2
+

n

2
+ 1 + (n + 1)

=
n2

2
+

n

2
+

2n + 2

2
+ 1

=
n2 + 2n + 1

2
+

n + 1

2
+ 1

=
(n + 1)2

2
+

n + 1

2
+ 1

proving the statement is true for n + 1. �

8. Find the mistake in this proof by strong induction.

Proof. I prove that for all x 6= 0 and all n ∈ N∗, xn−1 = 1. The proof
is by strong induction on n.

Inductive hypothesis: For some n ∈ N, assume x1−1 = 1, x2−1 = 1, and
so on up to xn−1 = 1.
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Inductive step: We wish to prove xn = 1. If n = 0, then clearly x0 = 1.
Otherwise, we note

xn =
xn−1xn−1

xn−2

and by the IH, xn−1 = 1 and xn−2 = 1. Thus, xn = 1. �

9. Find the mistake in this following argument, which tries to prove that
all people have the same name.

Proof. We prove the following statement by induction on n ∈ N∗: “In
any set of n people, all the people have the same name.” For the base
case, when n = 1, clearly any set with one person in it has all people
named the same.

Assume the statement is true for some n ∈ N∗ as an inductive hypothe-
sis, and let {p1, p2, . . . , pn+1} be a set of n+1 people. By the IH applied
to the set {p1, p2, . . . , pn} with n people in it, the people p1, p2, and so
on up to pn all have the same name. Similarly, by the IH applied to
the set {p2, p3, . . . , pn+1} with n people, the people p2, p3, and so on up
to pn+1 all have the same name. Thus, the people p1, p2, and so on up
to pn+1 have the same name. �
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Chapter 2

The Real Numbers, Really

Much of our study of calculus will work with real numbers and with functions
from real numbers to real numbers. The set of real numbers R has many
useful properties, and we want to take advantage of those properties. Some
of these properties include:

• The factoring property: For all a, b ∈ R, if ab = 0, then a = 0 or
b = 0. This was proven in the last chapter. This is a very useful tool
for solving equations.

• The distributive property: For all a, b, c ∈ R, a(b + c) = ab + ac. This
helps us solve equations like “x2+5x = 0” by noting x2 +5x = x(x+5),
and then we use the factoring property above.

• Adding inequalities: For all a1, b1, a2, b2 ∈ R, if a1 < b1 and a2 < b2,
then a1 + a2 < b1 + b2. Inequalities will be extremely useful to us as a
way to place restrictions on the values a variable can take, so we need
tools for manipulating inequalities. For example, if we know 2 < x and
1 < y for some real numbers x, y, then we know 2 + 1 < x + y, i.e.
3 < x + y, which places a restriction on the sum x + y.

• Reciprocals: For all a ∈ R, if a 6= 0 then 1/a exists. These reciprocals
help us solve equations and inequalities. For example, say 2x = 3 for
some x ∈ R. Because 2 has a reciprocal 1/2, we can multiply 1/2 to
both sides and get (1/2)(2x) = (1/2)3, or x = 3/2.

• Density: For any two real numbers, there is always a real number
in between them. More precisely, this means ∀a, b ∈ R (a < b →
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∃c ∈ R a < c < b). Why is this property meaningful? Consider the
number line representing R. If the density property were not true, say
there were two numbers a, b ∈ R with no real numbers between them,
then our line would have a “break” in between the points a and b. See
Figure 2.1. Density tells us this behavior doesn’t happen, so we draw
our number line as a solid line without breaks. This relates as well to
drawing nice smooth curves for graphs of functions; we’ll return to that
point in Chapter 3.

a b

?

Figure 2.1: A break in the number line between two points

These properties aren’t specific to the real numbers. The factoring and
distributive properties, for instance, still work with the integers; i.e. “∀a, b ∈
Z (ab = 0 → a = 0 ∨ b = 0)” and “∀a, b, c ∈ Z a(b + c) = ab + ac” are both
true. The natural numbers N satisfy those two properties as well. However,
the natural numbers and the integers do not satisfy the last two properties
of the list above.

The rational numbers Q satisfy every property in the list above. However,
there are further properties of R which are not satisfied by Q. For instance,
the equation “x2 = 2” has a solution with x ∈ R, namely x =

√
2, but there

is no solution with x ∈ Q. We’ll return to this point later.
Why are all these properties true for R in the first place? It is rather

difficult to make a definition of the real numbers; many attempts at a defini-
tion lead to circular reasoning, like: “The real numbers are the rationals and
the irrationals. The irrational numbers are the real numbers which are not
rational.” We will not aim to give a complete description of how R is con-
structed, although such constructions do exist: generally junior-level courses
in real analysis provide a definition of R.

For our purposes, we only need a basic system for reasoning about R. To
do this, we will introduce some fundamental properties of R; these properties
are not meant to be proven, but they will instead start as our beginning
assumptions from which every other result will follow. (Assumptions with
this purpose are frequently called axioms or postulates.) We will show that
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these axioms imply the major properties of the real numbers with which we
are familiar.

We’ll break up our collection of axioms into three groups: the algebraic
axioms, the order axioms, and a last axiom called completeness. These dif-
ferent groups will help explain different facets of R.1

2.1 The Algebraic Axioms

First, we will consider axioms which allow us to simplify and manipulate
equations (inequalities follow a different set of rules and will be addressed in
Section 2.3). After all, one of the major purposes of the laws of algebra is to
enable us to take equations with variables in them and solve for the values
of the variables. For this reason, these upcoming axioms will be called the
algebraic axioms.

Traditionally, there are five major operations we first learn to perform
with numbers: addition, subtraction, multiplication, division, and exponen-
tiation (also known as the process of “taking powers”). These are generally
called the arithmetic operations. The rules for adding and multiplying are
simpler than the rules for the other operations. For instance, if a and b are
any nonzero real numbers, then “a + b = b + a” and “ab = ba” are true,
but “a − b = b − a”, “a/b = b/a”, and “ab = ba” are false except in certain
special cases. Hence, we will only introduce axioms for addition and multi-
plication, and later we will define the other operations in terms of addition
and multiplication.

We need to define some basic symbols. Addition and multiplication are
functions from R × R to R, i.e. +, · : (R × R) → R. Out of habit, for
any x, y ∈ R, instead of writing +(x, y) to denote the sum of x and y, we
write x + y; we say that we are using infix notation for + (as opposed to
the conventional prefix notation for functions). Similarly, we write x · y, or
simply xy, for the product instead of writing ·(x, y). We also introduce the
symbols 0, 1 to stand for two distinct real numbers; i.e. 0 ∈ R, 1 ∈ R, and

1More precisely, any system which satisfies all of our axioms is called a complete ordered

field. It is shown in junior-level analysis courses that there’s essentially only one complete
ordered field. More precisely, given any two complete ordered fields, there is a bijection
between them that “preserves” all the operations and inequalities, so any statement which
is true in one can be turned into a statement which is true in the other. This topic,
however, is beyond the scope of this book.
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0 6= 1. Some major properties of 0 and 1 appear in the axioms.
With these symbols in place, we now present our six algebraic axioms.

Instead of writing “Algebraic Axiom 1”, “Algebraic Axiom 2”, etc., we’ll ab-
breviate with “AA1”, “AA2”, and so forth. Sometimes these axioms are also
called the field axioms, because in abstract algebra, any set which satisfies
these axioms is called a field (so algebraists simply say “R is a field with the
usual definitions of +, ·, 0 and 1”).

Axiom (AA1: Commutativity). For all x, y ∈ R,

x + y = y + x and xy = yx

This is also described by saying addition and multiplication are commutative,
or that they commute.

Axiom (AA2: Associativity). For all x, y, z ∈ R,

(x + y) + z = x + (y + z) and (xy)z = x(yz)

This is also described by saying addition and multiplication are associative,
or that they associate.

Remark. By AA2, when x, y, z are real numbers, there is no ambiguity when
we write “x+y+z”: the two possible interpretations as “(x+y)+z” or as “x+
(y + z)” yield the same value. Similarly, we may write “xyz” without causing
any confusion. In fact, whenever doing multiple additions or multiplications
sequentially, we may omit parentheses; for example, for any real numbers
a,b,c,d,e, the values “(a + (b + c)) + (d + e)”, “a + (((b + c) + d) + e)”, and
“(((a+ b)+ c)+d)+ e” are all the same, so we merely write “a+ b+ c+d+ e”
to denote the sum of all five numbers.

However, when mixing addition and multiplication, AA2 does not help.
In this case, we commonly adopt an order of operations, which says that
multiplications occur first and additions occur last, unless parentheses are
used. Thus, for any real numbers a,b,c, “ab + c” means “(ab) + c” and not
“a(b + c)”.

Axiom (AA3: Distributivity). For all x, y, z ∈ R,

x(y + z) = xy + xz

(hence (y + z)x = yx + zx is true also by AA1). This is also called the
distributive property, and we sometimes describe it by saying multiplication
distributes over addition.
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Axiom (AA4: Identities). For all x ∈ R,

x + 0 = x and x · 1 = x

(Hence, by AA1, 0+x = x and 1 ·x = x as well.) We say that 0 is an additive
identity element, as the function f : R → R, defined by f(x) = x + 0 for all
x ∈ R, is equal to the identity function idR. Similarly, 1 is a multiplicative
identity element, since the function g : R → R, defined by g(x) = x · 1 for all
x ∈ R, is idR.

Axiom (AA5: Negations). For every x ∈ R, there exists some y ∈ R so
that

x + y = 0

(hence y + x = 0 as well by AA1). Note that this axiom does not say how
many such values of y exist. We’ll address this soon.

Axiom (AA6: Reciprocals). For every x ∈ R, if x 6= 0 then there exists
some y ∈ R so that

xy = 1

(hence yx = 1 as well by AA1). Note that this axiom does not say how many
such values of y exist, nor does it say whether such a y exists when x = 0.

These six axioms will allow us to develop useful algebraic laws. However,
before proceeding further, we want to address the question “Why should we
find proofs for all these really obvious laws?” For R, you are presumably
rather familiar with these axioms and with many laws which follow from
them, so you accept the laws as true with hardly a second glance.

However, there are other nontrivial examples of fields, some of them much
less intuitive or commonplace than R. For those fields, many of the laws
we will discover will not be immediately evident. Once we discover proofs
for our laws using only AA1 through AA6 as starting assumptions, though,
these laws will apply to any field, even to the nontrivial fields. In other words,
reasoning from the axioms allows us to be quite general, proving algebra laws
for a wide variety of fields all at once.

To illustrate this point, let’s demonstrate a couple other examples of fields.
For the sake of these examples, we’ll assume the usual algebraic properties
of R (we’ll prove many of them shortly).
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Example 2.1:

The set Q[
√

2] is defined as {a + b
√

2 | a, b ∈ Q}. Note that Q ⊆ Q[
√

2],
because for all x ∈ Q, x can be written as x + 0

√
2. In particular, 0 and 1

belong to Q[
√

2]. Certainly Q[
√

2] ⊆ R, so we may use the usual addition
and multiplication of R to perform calculations in Q[

√
2].

However, we need to check an important detail. Plus and times are
supposed to be functions from Q[

√
2] × Q[

√
2] to Q[

√
2] (it’s not enough to

have them just be functions from Q[
√

2] × Q[
√

2] to R, since we want to be
able to perform repeated additions and multiplications). Thus, we need to
show that for all x, y ∈ Q[

√
2], both x+y and xy are in Q[

√
2] (sometimes we

describe this by saying Q[
√

2] is closed under addition and multiplication).
Let’s prove this closure property. Let x, y ∈ Q[

√
2] be given. Thus, there

are a, b, c, d ∈ Q so that x = a+b
√

2 and y = c+d
√

2 (it turns out those values
of a, b, c, d are uniquely determined, but we don’t need that information for
our proof... see Exercise 2.2.7). We compute

x + y = a + b
√

2 + c + d
√

2 = (a + c) + (b + d)
√

2

and

xy = ac + (ad + bc)
√

2 + bd(
√

2)2 = (ac + 2bd) + (ad + bc)
√

2

Since a + c, b + d, ac + 2bd, and ad + bc are all in Q, x + y and xy are in
Q[

√
2], proving closure.

Since Q[
√

2] is closed under the usual plus and times of R, properties
AA1 through AA3 hold for Q[

√
2] (because they hold for R). Property AA4

similarly holds since 0, 1 ∈ Q[
√

2]. To check AA5, if x ∈ Q[
√

2] is given, we
need to find some y in Q[

√
2] (NOT just in R) so that x + y = 0. Write

x = a + b
√

2 for some a, b ∈ Q; we can choose y = (−a) + (−b)
√

2.
Lastly, to verify AA6, suppose a, b ∈ Q[

√
2] is given with a + b

√
2 6= 0.

Note that

(a + b
√

2)(a − b
√

2) = a2 + ab
√

2 − ab
√

2 − 2b2 = a2 − 2b2

which leads us to

1

a + b
√

2
=

a − b
√

2

a2 − 2b2
=

(

a

a2 − 2b2

)

+

( −b

a2 − 2b2

)√
2

However, one detail of this should be checked: could a2 − 2b2 be zero? The
answer is no, for if a2 − 2b2 were zero, then we would have 2 = a2/b2 and
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hence
√

2 = ±a/b, contradicting the fact that
√

2 is irrational (see Exercise
2.2.6). This shows that a + b

√
2 has a multiplicative inverse in Q[

√
2], so

AA6 holds. Thus, Q[
√

2] is a field. �

Example 2.2:

The last example showed that a particular subset of R, namely Q[
√

2], is
a field using the same addition and multiplication operations of R (but re-
stricted to the subset under consideration). This example will use completely
different operations!

Define Z2 = {0, 1} (this is called the integers modulo 2, since it consists
of all possible remainders when dividing integers by 2). For all x, y ∈ Z2,
we define x + y in Z2 to be the remainder of the usual value of x + y in R

when divided by 2, and xy in Z2 is the remainder of the usual value of xy in
R when divided by 2. For example, in R, 1 + 1 = 2, which has remainder 0
when divided by 2, so in Z2, 1 + 1 = 0. We have the following addition and
multiplication tables:

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Z2 satisfies AA1 because for all x, y ∈ Z2, in R we have x + y = y + x, so
their remainders when dividing by 2 are the same (the same also holds for
multiplication). We can similarly check that AA4 holds. However, AA2 and
AA3 are more annoying to prove. Let x, y, z ∈ Z2 be given. If x = 0, then
(x + y) + z = (0 + y) + z = y + z = 0 + (y + z) and (0y)z = 0z = 0 = 0(yz),
showing AA2 holds in this case (similar calculations show that AA3 holds in
this case too). Similar reasoning shows AA2 and AA3 hold if y = 0 or z = 0.
The last case to consider is when x = y = z = 1, and you can check that
AA2 and AA3 hold for that case as well.

Lastly, we need to address AA5 and AA6. For AA6, the only nonzero
element is 1, and clearly its reciprocal is also 1. AA5 is proven by noting
that 0+0 = 0 and 1+1 = 0 (so in Z2, we have −1 = 1!). Thus, Z2 is a field.
In fact, since its only elements are 0 and 1, it is the smallest field.

This example can be generalized by considering remainders upon division
by n for integers n > 1 (so this example is the case where n = 2). Some
values of n produce fields, but some do not. See Exercise 2.2.3. �
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Now that we’ve seen some other examples of fields, let’s get started de-
veloping properties of fields, beginning with laws that will help us define
subtraction and division. Note that since addition and multiplication are
functions, we can always add or multiply a number to both sides of an equa-
tion: i.e. if a, b, c are real numbers and b = c, then a+ b = a+ c and ab = ac.
The next couple theorems address whether we can go the other way, starting
from a + b = a + c or ab = ac and obtaining b = c.

Theorem 2.3 (Cancellation of Addition). For all a, x, y ∈ R, if a+x =
a + y, then x = y.

Strategy. Suppose we start with the assumption a + x = a + y. How do we
cancel a from both sides? We are allowed to add numbers to both sides, so
we should add a real number which “cancels out” a. We use AA5 to find such
a number, use AA2 to group the additions properly so as to produce 0’s, and
use AA4 to remove the 0’s from the equation.

Proof. Let a, x, y ∈ R be given, and assume a + x = a + y. By AA5, we may
choose b ∈ R so that a + b = 0. By AA1, b + a = 0 as well.

Now, add b to both sides of a + x = a + y to get b + (a + x) = b + (a + y).
By AA2, (b + a) + x = (b + a) + y. As b + a = 0, we have 0 + x = 0 + y. By
AA1, x + 0 = y + 0, and hence x = y by AA4. �

The following similar theorem is left as an exercise:

Theorem 2.4 (Cancellation of Multiplication). For all a, x, y ∈ R, if
a 6= 0 and ax = ay, then x = y.

As a quick consequence of the cancellation theorems, we show that we
can’t have “two different 0’s” or “two different 1’s”:

Corollary 2.5. The numbers 0 and 1 are uniquely defined by the algebraic
axioms. In other words, if y is any real number satisfying “∀x ∈ R x + y =
x”, then y must be 0. Similarly, if z is any nonzero real number satisfying
“∀x ∈ R xz = x”, then z must be 1.

Strategy. For uniqueness of 0, if there were some y ∈ R with x + y = x for
all x ∈ R, then we would have x + y = x = x + 0. Theorem 2.3 now applies.
The proof is similar for uniqueness of 1.
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Proof. First, for uniqueness of 0, let y ∈ R be given such that for all x ∈ R,
x+y = x. By AA4, for all x ∈ R, x = x+0, thus x+y = x+0. By Theorem
2.3, y = 0.

You are asked to show uniqueness of 1 as an exercise. �

There is another way to view Theorems 2.3 and 2.4. For any a ∈ R, define
fa, ga : R → R by fa(x) = a + x and ga(x) = ax for all x ∈ R. Theorem 2.3
then says that fa is an injection, and Theorem 2.4 says that ga is an injection
whenever a 6= 0. We’ll now show that these functions are also surjections,
and hence they are bijections.

Theorem 2.6. For all a, b ∈ R, there exists x ∈ R so that a + x = b. In
other words, the function fa from above is surjective.

Strategy. We wish to find some x such that a+x = b. As in Theorem 2.3, we
ought to try and cancel a from the left side by adding something appropriate
to both sides. Thus, we use AA5 to get some number y with a + y = 0, and
then y + (a + x) = y + b. This simplifies to x = y + b.

Proof. Let a, b ∈ R be given. By AA5, we may choose y ∈ R so that a+y = 0.
Now, define x = y + b. We compute

a + x = a + (y + b) def. of x
= (a + y) + b AA2
= 0 + b choice of y
= b AA1 and AA4

which shows that a + x = b as desired. �

Similarly, you can prove the following theorem as an exercise:

Theorem 2.7. For all a, b ∈ R, if a 6= 0 then there exists x ∈ R so that
ax = b. In other words, the function ga from above is surjective.

The last few theorems allow us to define subtraction and division.

Definition 2.8. Let a, b ∈ R be given. By Theorems 2.3 and 2.6, there
exists exactly one x ∈ R so that a + x = b (or equivalently, so that x + a = b
by AA1). This value of x is called the difference of b by a, written as x = b−a
and sometimes called “a minus b”. The function − : (R×R) → R defined in
this way is called subtraction.
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As a special case, for all b ∈ R, 0 − b is called the negation2 of b and is
simply written as “−b”. Thus, in AA5, for any x ∈ R, −x is precisely the
unique real number y with x + y = 0.

Similarly, for all a, b ∈ R, Theorems 2.4 and 2.7 show that if a 6= 0, there
exists a unique x ∈ R with ax = b (or equivalently, with xa = b by AA1).
This value of x is called the quotient of b by a, written as x = b/a or as
x = b

a
. x is also sometimes called “b over a”, where b is the numerator and

a is the denominator. The function / : (R × (R − {0})) → R defined in this
way is called division.

As a special case, for all b ∈ R, if b 6= 0 then 1/b is called the reciprocal
of b and is denoted b−1. Thus, in AA6, for any x ∈ R with x 6= 0, x−1 is
precisely the unique real number y with xy = 1.

From the definitions, we see that for all x ∈ R, x − 0 = x, because
0+x = x by AA4. This also shows that for all x ∈ R, x−x = 0. In addition,
for all x ∈ R, x/1 = x because 1x = x (which also shows x/x = 1 when
x 6= 0).

Since we have convenient axioms for addition and multiplication, let’s
prove a useful theorem allowing us to write subtractions in terms of additions:

Theorem 2.9. For all a, b ∈ R, b − a = b + (−a).

Strategy. b − a is, by definition, the unique number which is added to a to
produce b (note that this is ALL we know about b−a just from the definitions
above). Thus, we need to show that adding a to b + (−a) gives b as a result.
Along the way, we’ll use the definition of −a, which says that −a + a = 0.

Proof. Let a, b ∈ R be given. We compute

a + (b + (−a)) = (b + (−a)) + a AA1
= b + ((−a) + a) AA2
= b + 0 def of −a
= b AA4

so, by definition of subtraction, b − a = b + (−a). �

Similarly, we also obtain

Theorem 2.10. For all a, b ∈ R, if a 6= 0 then b/a = b(a−1).

2Alternate terms include “the opposite of b” or “minus b”.
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Proof. Exercise. �

The two theorems above allow us to rewrite subtractions and divisions,
but they introduce negations and reciprocals into our work. Therefore, we
should develop some results allowing us to work with negations and recipro-
cals. This next result, for instance, shows you never need to negate a number
more than once, because double negations can be canceled.

Theorem 2.11. For all a ∈ R, −(−a) = a. In other words, the negation of
a negation is the original number.

Strategy. We need to use the definition of negations. We know a+(−a) = 0.
Thus, −a is what you add to a to make 0. Now, −(−a) is what you add to
−a to make 0, but the equation above shows that a does the job.

Proof. Let a ∈ R be given. By definition of negations, a + (−a) = 0. This
means, however, that adding a to −a produces 0. Since −(−a) is, by defini-
tion, the number which is added to −a to produce 0, −(−a) = a. �

Similarly, we never need to take reciprocals more than once:

Theorem 2.12. For all a ∈ R, if a 6= 0 then (a−1)−1 = a.

Proof. Exercise. �

This next theorem has a surprisingly tricky proof strategy:

Theorem 2.13. For all a ∈ R, 0a = 0 (hence a0 = 0 too by AA1).

Strategy. At this point, the most important property we have for 0 is AA4,
which says adding 0 to a number does not change the number. To try and
make this useful, we can replace a by a + 0 in the expression 0a. Thus,
0a = 0(a + 0), but then AA3 says this equals 0a + 0 · 0. As 0a = 0a + 0 · 0,
we may cancel 0a from each side by Thm 2.3.

However, this yields 0 · 0 = 0, which is not quite what we want. Looking
back, we see we chose to replace a by a + 0. What if we replaced 0 by 0 + 0
instead? Trying to do that, and using AA3 and cancellation, everything
works.
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Proof. Let a ∈ R be given. We compute

0a = (0 + 0)a AA4
= 0a + 0a AA3

thus 0a + 0 = 0a + 0a by AA4 applied to the left side. By Theorem 2.3,
0 = 0a. �

It also helps to have theorems about how negations interact with products
and reciprocals.

Theorem 2.14. For all a, b ∈ R, −(ab) = (−a)b (hence −(ab) = −(ba) =
(−b)a = a(−b) as well by a couple uses of AA1).

Strategy. −(ab) is the number which is added to ab to produce 0. Let’s show
(−a)b also has that property. When computing the sum ab + (−a)b, we can
factor out b by using AA3.

Proof. Let a, b ∈ R be given. We compute

ab + (−a)b = (a + (−a))b AA3 (and AA1)
= 0b def of −a
= 0 by Thm 2.13

so, by definition, −(ab) = (−a)b. �

Corollary 2.15. For all b ∈ R, −b = (−1)b.

Proof. Use Thm 2.14 with a = 1, since 1b = b by AA4. �

Theorem 2.16. For all a ∈ R, if a 6= 0 then −a 6= 0 and (−a)−1 = −(a−1).
In other words, the reciprocal of the negation is the negation of the reciprocal.

Strategy. Suppose a 6= 0. If −a = 0, then 0 = a + (−a) = a + 0 = a, which
contradicts our assumption. Hence −a 6= 0. Next, (−a)−1 is, by definition,
the number which produces 1 when multiplied by −a. We just need to show
−(a−1) has this property. The previous theorem will be helpful to work with
the negations that occur.
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Proof. Let a ∈ R be given, and assume a 6= 0. Therefore, a + 0 = a 6= 0, so
0 cannot be the negation of a. This shows −a 6= 0, so (−a)−1 exists.

We compute

(−a)(−(a−1)) = −(a(−(a−1))) Thm 2.14
= −(−(a · a−1)) Thm 2.14 with AA1
= −(−(1)) def. of a−1

= 1 Thm 2.11

which shows, by definition of reciprocal, that (−a)−1 = −(a−1). �

At this point, we have discovered a number of useful algebra rules. There
are some other useful properties we haven’t yet explored, but those properties
can mostly be derived by applying the results already shown in this section;
see the exercises. In contrast, most of the proofs which have been presented
in this section demonstrate important proof strategies with using the axioms,
and they emphasize in particular the importance of referring to a definition
in a proof.

2.2 Exercises

1. Prove the theorems listed as exercises in this section. Namely,

(a) Prove Theorem 2.4.

(b) Finish the proof of Corollary
2.5.

(c) Prove Theorem 2.7.

(d) Prove Theorem 2.10.

(e) Prove Theorem 2.12.

2. Which of the algebraic axioms are satisfied by Q, where the usual op-
erations of + and · are restricted to Q×Q? Similarly, which algebraic
axioms are satisfied by Z? State your reasoning.

3. This problem will generalize Example 2.2. For any positive integer
n > 1, we define the arithmetic of Zn, the integers modulo n, as follows.
The members of Zn are {0, 1, 2, . . . , n − 1}. If a, b ∈ Zn, then the sum
a + b in Zn is defined to be the remainder of the usual sum a + b in
R when divided by n, and the product ab in Zn is defined to be the
remainder of the usual product ab in R when divided by n.
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For example, consider when n = 6. In R, 2+5 = 7, which has remainder
1 when divided by 6. Thus, in Z6, 2+5 = 1. Also, in R, 2·5 = 10, which
has remainder 4 when divided by 6, so in Z6 we have 2 · 5 = 4. The full
addition and multiplication tables for Z6 can be found in Figure 2.2.

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

· 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Figure 2.2: Addition and multiplication tables for Z6

For any n > 1, you may assume that Zn, with these definitions of plus
and times, satisfies AA1 through AA3. (Showing this requires some
number theory which is outside the scope of this book.)

(a) For all n > 1, prove that Zn satisfies AA4 and AA5.

(b) If n > 1 is not prime, show that Zn does not satisfy AA6, so Zn

is not a field. (In fact, when n is prime, Zn is a field, but we will
not prove this.)

4. Prove the following properties for all a, b, c ∈ R, using any axioms and
theorems desired from the previous section:

(a) a(b − c) = ab − ac.

(b) (−a)(−b) = ab.

(c) −(a + b) = (−a) + (−b).

(d) −(a − b) = b − a.

(e) 0 does not have a reciprocal
(this can be casually stated as
“1/0 does not exist”).

5. Let a, b, c, d ∈ R be arbitrary, and assume b 6= 0 and d 6= 0. By
the Factoring Theorem, bd 6= 0, so (bd)−1 exists. Prove the following
properties, using any axioms and theorems desired from the previous
section or from the previous exercise:
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(a) (bd)−1 = b−1d−1.

(b) −
(a

b

)

=
−a

b
=

a

−b
.

(c)
a

b
+

c

d
=

ad + bc

bd
.

(d)
a

b
− c

d
=

ad − bc

bd
.

(e)
(a

b

)( c

d

)

=
ac

bd
.

(f)
a

b
= 0 iff a = 0.

(g) c 6= 0 →
(a

b

)

/
( c

d

)

=
ad

bc

6. In Example 2.1, we needed to use the fact that
√

2 was irrational in
order to show Q[

√
2] satisfied AA6. Prove that

√
2 is irrational. (Hint:

If it could be written as p/q where p, q ∈ Z and the fraction p/q is
in lowest terms, then 2 = p2/q2. Use this to show p is even, then use
that information to show q is even, contradicting that p/q is in lowest
terms.)

7. Using the result of Exercise 2.2.6, prove that for any x ∈ Q[
√

2], there is
exactly one way to choose a, b ∈ Q so that x = a+b

√
2. In other words,

prove that the function f : Q×Q → Q[
√

2], defined by f(a, b) = a+b
√

2
for all a, b ∈ Q, is a bijection.

2.3 The Order Axioms

The algebraic axioms tell us a lot about the structure of R. They also help
us distinguish R from some other sets. For example, arithmetic in N behaves
very differently from arithmetic in R because N, with its usual plus and times,
doesn’t satisfy AA5 or AA6. In fact, the study of N and Z forms the basis
of number theory, one of the oldest forms of mathematics.

The algebraic axioms, while useful, do not address inequalities, a very
important aspect of R. Inequalities are everywhere in day-to-day events: ex-
amples include comparing prices of goods, trying to find the shortest walking
route to class, and driving below speed limits (there is no law that says you
have to drive EXACTLY the speed limit; the speed limit law is an inequal-
ity). In mathematics, we want to find optimal solutions to problems, such
as finding out which price to set to earn the most profit, or discovering how
to minimize the cost of material needed to make a container with a fixed
volume. All of these tasks require having a well-defined notion of comparing
numbers, i.e. saying that some numbers are larger than others.
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Thus, we should establish a few axioms allowing us to make statements
about which numbers are larger than others, called the order axioms. We
will abbreviate the order axioms with “OA”. For convenience, it is common
to state order axioms in terms of a distinguished subset R+ of R, called the
positive numbers. Just like we didn’t define + and · for R but we instead gave
properties of them as axioms, the order axioms don’t define R+ but merely
state important properties of it. We can then define our usual comparisons
in terms of R+:

Definition 2.17. The proposition < (x, y), meaning “x is less than y”, is
defined as “y − x ∈ R+”. We frequently write < in the middle as an infix
operator like we did with + and ·. Thus, the definition can be rephrased as
“For all x, y ∈ R, x < y iff y − x ∈ R+”.

We also similarly define, for all x, y ∈ R:

• “x ≤ y” means “x < y or x = y” (said “x is less than or equal to y”)

• “x > y” means “y < x” (said “x is greater than y”)

• “x ≥ y” means “y ≤ x” (said “x is greater than or equal to y”)

Note that when x, y ∈ R and x < y, some mathematicians will choose to
say “x is strictly less than y” to emphasize that x 6= y (we shall prove that
x < y implies x 6= y soon).

Axiom (OA1: Closure of R+ under Plus and Times). For all x, y ∈
R+, both x + y and xy are in R+.

Axiom (OA2: Uniqueness of Signs). For all x ∈ R+, if x 6= 0 then ex-
actly one of x ∈ R+ and −x ∈ R+ is true.

When −x ∈ R+ is true, we say that x is negative. (The sign of x 6= 0
is + if x ∈ R+ and − if −x ∈ R+). Similarly, if x ≥ 0, then we say x is
nonnegative, and if x ≤ 0, then we say x is nonpositive.

Axiom (OA3: Zero Has No Sign). 0 6∈ R+

Before proceeding, a couple remarks are worthwhile concerning the sign
of a number. For each x ∈ R, we defined “x is positive” to mean “x ∈ R+”.
Since x − 0 = x, x ∈ R+ is equivalent to 0 < x, so the positive numbers are
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the numbers strictly greater than 0. Similarly, 0−x = −x, so x is negative iff
x < 0. (These results sound obvious, but they need to be checked because of
the way < was defined.) Thus, OA2 and OA3 imply that every nonzero real
number is either positive or negative, but no real number is both positive
and negative.

The first question we should address is: for any two real numbers x and
y, is it always the case that either x ≤ y or y ≤ x? In other words, is it
possible to compare any two numbers? (If so, this makes the real numbers
rather different from fruits, since as the old saying goes, you can’t compare
apples and oranges.) It turns out we can compare any two numbers:

Theorem 2.18 (Trichotomy). For all a, b ∈ R, exactly one of the three
statements “a < b”, “a = b”, and “a > b” is true. Equivalently (by using the
definitions of ≤ and ≥), “a ≤ b” or “a ≥ b” is true, with both being true iff
a = b.

Strategy. For all a, b, we defined a < b to mean b − a ∈ R+. Thus, we want
to consider the number x = b − a. If x = 0, then a = b. Otherwise, either
x > 0 or x < 0 but not both. This leads to either a < b or a > b but not
both. We also need to use OA2 and OA3 carefully to show no two of “a = b”,
“a < b”, and “a > b” can hold at the same time.

Proof. Let a, b ∈ R be given, and define x = b− a. In the first case, suppose
x = 0. It follows that a = b. By OA3, “a < b” is false. Also, since a = b,
a − b = 0 as well, so “a > b” is false by OA3.

In the second case, x 6= 0. Thus, by OA2, exactly one of “x ∈ R+” and
“−x ∈ R+” is true. x ∈ R+ is equivalent to a < b by definition of <, and
−x ∈ R+ holds iff −(b− a) = a− b ∈ R+, which holds iff a > b by definition
of >. Thus, in all possibilities, exactly one comparison is true. �

Remark. Theorem 2.18 immediately implies that for all a ∈ R, “a < a”
is false, because “a = a” is true. Since a = a is true for all a ∈ R, we
sometimes say that the = operator is reflexive. In contrast, we just showed
< is irreflexive.

A crucial property of inequalities is that they can be “chained”, as this
next theorem states:

Theorem 2.19 (Transitivity of <). For all a, b, c ∈ R, if a < b < c (this
is shorthand for saying a < b and b < c), then a < c.
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Strategy. a < b means b − a is positive, and b < c means c − b is positive.
We want to show c − a is positive. This is where OA1 helps, since c − a =
(b − a) + (c − b).

Proof. Let a, b, c ∈ R with a < b and b < c be given. Therefore, b − a ∈ R+

and c− b ∈ R+. Now, (b−a)+(c− b) = b+(−a)+ c+(−b) by Theorem 2.9,
which equals (−a) + c = c− a. Thus, by OA1, c− a ∈ R+, and by definition
of <, a < c. �

Next, we show that adding the same number to both sides of an inequality
is safe:

Theorem 2.20. For all a, b, c ∈ R, if a < b then a + c < b + c.

Strategy. We just need to compute (b+ c)− (a+ c) in terms of b−a. It turns
out they are exactly the same number.

Proof. Let a, b, c ∈ R be given with a < b. Therefore, b − a ∈ R+. It follows
that (b + c) − (a + c) = b + c + (−a) + (−c) (by Exercise 2.2.4.(c)), which
equals b + (−a) = b − a. Thus, (b + c) − (a + c) ∈ R+, so a + c < b + c. �

However, when multiplying the same number to both sides of an inequal-
ity, we have to pay attention to the sign of that number:

Theorem 2.21. For all a, b, c ∈ R, if a < b and c > 0 then ac < bc.

Strategy. Here, bc− ac = (b− a)c. If b− a is positive, and c is positive, then
so is the product.

Proof. Let a, b, c ∈ R be given with a < b and c > 0. Therefore, b − a ∈ R+

and c ∈ R+, so (b − a)c ∈ R+ by OA1. However, (b − a)c = bc − ac by AA1
and Exercise 2.2.4.(a), so ac < bc. �

These last few results are the most important tools for working with in-
equalities. Many other properties can be obtained by applying these previous
results; see the exercises. However, while we’ve discussed how to work with
positive numbers, we have yet to come up with any numbers that we know
are positive. Let’s end this section by finding some positive numbers:

Theorem 2.22. For all a ∈ R, if a 6= 0 then a2 > 0. In particular, when
a = 1, we obtain 1 > 0.
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Strategy. If a 6= 0, then a is either positive or negative. OA1 shows that if a
is positive, then a2 is positive. If a is negative, however, we can write it as
−b where b = −a > 0, and then squaring a “cancels the minus sign”.

Proof. Let a ∈ R with a 6= 0 be given. If a ∈ R+, then a2 = a · a ∈ R+ by
OA1. Otherwise, by OA2, −a ∈ R+, and thus a2 = a · a = (−a)(−a) by
Exercise 2.2.4.(b), and (−a)(−a) ∈ R+ by OA1. �

2.4 Exercises

1. In the statement of OA2, it says that for nonzero x ∈ R, exactly one
of x ∈ R+ and −x ∈ R+ is true. Suppose we weaken this statement to
“for all x ∈ R with x 6= 0, x ∈ R+ or −x ∈ R+”; call this weaker state-
ment WOA2 (Weak Order Axiom 2). Thus, WOA2 doesn’t exclude
the possibility that both x ∈ R+ and −x ∈ R+ when x 6= 0.

Prove that OA1, WOA2, and OA3 together imply OA2. Hence, when
we want to show that a field F can be ordered (by finding a subset
F+ satisfying the order axioms), we only have to check that WOA2 is
satisfied instead of showing that OA2 is satisfied.

2. Since our main properties above use the < symbol, it’s good to have
some similar properties with ≤ in them. The following lemma helps
when proving properties with ≤. Prove this lemma:

Lemma 2.23. For all a, b ∈ R, if a, b ≥ 0, then a + b ≥ 0 and ab ≥ 0.

3. Prove the following properties of inequalities. You may use any results
from the additive axioms (including the exercises), any results in the
previous section, or any earlier parts of this problem:

(a) The sum of any two negative numbers is negative.

(b) ∀a, b, c ∈ R (a < b ∧ c < 0) → ac > bc. (Thus, multiplying by a
negative number “flips” an inequality.)

(c) ∀a, b ∈ R (a < b ↔ −a > −b). In particular, for all a ∈ R, a is
positive iff −a is negative.

(d) For all a, b ∈ R, if ab > 0, then a and b are both nonzero and have
the same sign.
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(e) For all a, b, c, d ∈ R, if a < b and c < d then a + c < b + d. (Thus,
we can “add inequalities”.)

4. Suppose that a, b, c, d ∈ R are given with a < b and c < d.

(a) Show that “a− c < b− d” might be false, i.e. we cannot “subtract
inequalities”.

(b) Show that “ac < bd” might be false, i.e. we cannot “multiply
inequalities”. How can you add an extra hypothesis to make ac <
bd true?

(c) Using your new hypothesis from part (b), as well as the old hy-
potheses a < b and c < d, prove ac < bd.

(d) Using part (c), prove that if 0 < a < b, then a2 < b2.

5. (a) Prove that for all a ∈ R, if a 6= 0 then a and a−1 have the same
sign. (Hint: do a proof by contradiction.)

(b) Prove that if a, b ∈ R−{0} satisfy 0 < a < b, then 0 < b−1 < a−1.
Also, show that “a < b implies b−1 < a−1” might be false.

6. Prove that for all a, b, c ∈ R, if a ≤ b, b ≤ c, and a = c, then a = b = c.

7. (a) Prove that there is no largest real number, i.e. there does not
exist x ∈ R such that for all a ∈ R, a ≤ x.

(b) Prove that there is no smallest real number, i.e. there does not
exist x ∈ R such that for all a ∈ R, x ≤ a. This and part (a) are
sometimes summarized by saying that R has no endpoints.

8. Prove ∀x ∈ R (∀h ∈ R+ 0 ≤ x < h) → x = 0. Thus, 0 is the only
nonnegative number smaller than every positive number.

9. Prove that C cannot be ordered, i.e. it is impossible to pick a subset
C+ ⊆ C of positive complex numbers satisfying OA1 through OA3.
This shows an important way that R and C differ.

10. See Exercise 2.2.3 for a definition of Zn where n is a positive integer
greater than 1. Why can’t Zn be ordered for any n > 1?

11. (a) Show that for all x, y ∈ R, 2xy ≤ x2 + y2. (Hint: first show
(x − y)2 ≥ 0... this isn’t quite the same as Theorem 2.22 because
≥ is used instead of >.)
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(b) Suppose that a, b ∈ R satisfy a, b ≥ 0. Using part (a), show
that

√
ab ≤ (a + b)/2, and that this is an equality iff a = b

(you may use the fact that the square root function is injective
on the nonnegative real numbers). This result is known as the
Arithmetic-Geometric Mean Inequality, or the AGM Inequality
for short.

12. Prove that R is dense, i.e. for all x, y ∈ R with x < y, there exists
z ∈ R with x < z < y.

2.5 The Completeness Axiom

The last few sections have explored what it means for R to be an ordered
field : this means it satisfies axioms AA1 through AA6 (describing useful
algebraic laws) and axioms OA1 through OA3 (describing important prop-
erties of inequalities and sign). You can show that Q is also an ordered field,
using the same operations and ordering as R (but restricted to Q). However,
if both R and Q are ordered fields, why is R used so frequently in calculus
(functions from R to R are especially common), whereas you rarely see a
function in calculus from Q to Q?

Example 2.24:

Consider the famous Pythagorean Theorem: a2 + b2 = c2, where a and b
are lengths of legs of a right triangle and c is the hypotenuse length. This
equation can be used to find the third side of a triangle from knowledge of
the other two sides. However, suppose a = b = 1, and we want to find the
hypotenuse length c. Putting in our values of a and b, we obtain c2 = 2.
This equation has no solutions for c when c is rational, by Exercise 2.2.6,
but intuitively this equation ought to have a positive solution (after all, the
hypotenuse SHOULD have a length). In R, unlike in Q, there is a unique
positive solution for c, namely c =

√
2 ≈ 1.414214.

Another way of looking at this situation is to consider the sets A = {q ∈
Q+ | q2 < 2} and B = {q ∈ Q+ | q2 > 2}. It can be shown that for every
a ∈ A and every b ∈ B, a < b holds (using exercise 2.4.4.(d)). Hence, a real
number c satisfying c2 = 2 would have to be between A and B. However,
there is no such number in Q, so there is a “gap” between the sets A and B
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in Q with no number to fill the gap. Intuitively, this suggests that R may be
more suitable for our calculus because R fills in Q’s gaps.3 �

We haven’t yet formally justified that 2 has a square root in R; we’ve
only explained why such a number ought to be in R. In fact, it’s impossible
to prove that 2 has square roots using only the axioms for an ordered field
(otherwise, Q would also contain

√
2, since Q is an ordered field). We need

another axiom for R which will allow us to “fill the gap” between the sets A
and B from the last example. To do this, we need some new terminology.

Definition 2.25. Let S be a subset of R and x be a member of R. We say
x is an upper bound of S if for all a ∈ S, a ≤ x. If S has any upper bounds,
we say S is bounded above, otherwise we say S is unbounded above. Similarly,
x is a lower bound of S if for all a ∈ S, x ≤ a. We say S is bounded below if
it has any lower bounds, otherwise we say S is unbounded below. We say S
is bounded if S is bounded both above and below, otherwise S is unbounded.

If x is both a member of S and an upper bound of S, we say that x
is a maximum element of S, denoted x = maxS. Similarly, if x is both a
member of S and a lower bound of S, we say that x is a minimum element
of S, denoted x = min S.

Remark. If S is a set with a maximum element, then the maximum element
is uniquely determined. To prove this, suppose x, y ∈ R are both maximum
elements of S. Since x ∈ S (by the definition of maximum) and y is maxi-
mum, so y is an upper bound of S, we must have x ≤ y. Also, since y ∈ S
and x is maximum, y ≤ x. By trichotomy, x = y, so there can be at most
one maximum element.

The same style of argument proves there is at most one minimum element.
Thus, we may use the word “the” when describing maximum and minimum
values.

Example 2.26:

Here are a few examples of subsets of R with information about their bounds:

• The set R+ is bounded below, because 0 is a lower bound. In addition,
any number x with x ≤ 0 is also a lower bound of R+. By Exercise
2.4.8, the only lower bound of R+ which is not smaller than 0 is 0 itself,

3In fact, a formal construction of R can be done by precisely defining gaps in Q and
designing R to fill every gap. For more information, search for “Dedekind cuts”.
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so 0 is the greatest of the lower bounds of R+. Since 0 6∈ R+, R+ does
not have a minimum element.

Exercise 2.4.7.(a) shows that R+ is not bounded above.

• The closed interval [0, 1] has the minimum element 0 and the maximum
element 1. In particular, [0, 1] is bounded both above and below, so it
is bounded.

• The open interval (0, 1) has no minimum element. To prove this, let
x ∈ (0, 1) be given; we show that there is some y ∈ (0, 1) with x 6≤ y
(i.e. y < x), which shows x is not a minimum element of (0, 1). Since
2 = 1 + 1 > 1 > 0, 1/2 > 0 as well and 1/2 < 1 by Exercise 2.4.5.
Therefore, as x is positive, x/2 < x < 1 and x/2 > 0. This means we
may choose y = x/2, and then y ∈ (0, 1) and y < x, finishing the proof.

A similar style of proof shows that (0, 1) has no maximum element
either. However, 0 is a lower bound of (0, 1), and 1 is an upper bound,
so (0, 1) is bounded.

�

When upper and lower bounds exist for sets, the bounds are certainly
not unique; while 0 is a lower bound of R+, −1, −42, and −1/6 are also
lower bounds of R+, to name a few. We feel 0 is the most useful of the lower
bounds, because no greater number is a lower bound for R+. Similarly, 1 is
the most useful upper bound of [0, 1] and of (0, 1), since it can be shown that
no smaller number is an upper bound of either of those sets. These “most
useful” upper and lower bounds receive special names:

Definition 2.27. Let S ⊆ R and x ∈ R be given. We say that x is a least
upper bound of S, also called a supremum of S and written x = sup S, if
x is a minimum of the set of upper bounds for S. (Hence, since minimum
elements are unique if they exist, a set can have at most one supremum.)
Similarly, we say x is a greatest lower bound of S, also called an infimum of
S and written x = inf S, if x is a maximum of the set of lower bounds for S.

Note that not all sets of real numbers have to have suprema or infima.
Furthermore, if S ⊆ R has a supremum, then sup S might not belong to S.
It is possible to prove that (sup S) ∈ S iff S has a maximum element, and
in that case max S = sup S. An analogous statement holds for the infimum
and the minimum.
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Thus, sup[0, 1] = sup(0, 1) = 1, inf[0, 1] = inf(0, 1) = 0, and inf R+ = 0.
However, sup R+ does not exist.

Looking back at Example 2.24, we created the sets A = {q ∈ Q+ | q2 < 2}
and B = {q ∈ Q+ | q2 > 2}. A does not have a maximum element, but A is
bounded above, as every member of B is an upper bound of A. Intuitively,√

2 should be an upper bound of A, but it should also be smaller than every
member of B, so

√
2 should be a small upper bound of A. This gives us the

idea to define
√

2 as the least upper bound of A, provided this number exists.
The last axiom for R allows us to fill the gap between A and B. It tells

us, in essence, that R has no “holes” in it, so the axiom is commonly called
the completeness axiom.

Axiom (C: Completeness). Every nonempty subset of R which is bounded
above has a supremum.

You may ask: why is Axiom C stated in terms of suprema (“suprema”
is the plural of “supremum”) but says nothing in terms of infima? This is
because Axiom C can be used to prove the following theorem:

Theorem 2.28. Every nonempty subset of R which is bounded below has an
infimum.

Strategy. Suppose S ⊆ R is nonempty and bounded below, say b ∈ R is a
lower bound. To find a greatest lower bound, we want to turn our problem
into a problem we already know how to solve with Axiom C: the problem of
finding least upper bounds.

One option is to “flip” our comparisons by using negation. This is because
for all x, y ∈ R, x ≤ y is equivalent to −x ≥ −y. Thus, we consider −S, the
set of negations of members of S, which has the UPPER bound of −b. This
means −S has a supremum c, and we show that −c is the infimum of S.

Another option is to consider the set of lower bounds of S. We want
to show there is a maximum lower bound. Thus, we can use Axiom C to
find a supremum for the lower bounds, and then we show it is actually a
lower bound for S. You are asked in Exercise 2.7.1 to provide a proof of this
theorem using this method.

Proof. Let S ⊆ R be given which is nonempty and bounded above. Hence,
there is some x ∈ S and some b ∈ R so that b is a lower bound of S.
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Define T = {−y | y ∈ S} (sometimes this set is written as −S). Since
x ∈ S, −x ∈ T , so T is nonempty. Also, for all y ∈ S, y ≥ b (as b is a lower
bound of S), so −y ≤ −b, which shows −b is an upper bound of T .

By Axiom C, T has a supremum, say c = sup T . It remains to show
−c = inf S. First, to see why −c is a lower bound of S, for all y ∈ S, −y ≤ c
(because c is an upper bound of T and −y ∈ T ), so y ≥ −c. Second, if d ∈ R

is any lower bound of S, then for all y ∈ S, y ≥ d, so −y ≤ −d, showing
that −d is an upper bound of T . Because c is the LEAST upper bound of
T , −d ≥ c, so d ≤ −c, showing that −c is the greatest lower bound. �

Other important consequences of Axiom C will be discussed in the remain-
der of this chapter. Before proceeding, however, a couple remarks concerning√

2 are in order. The discussion around Example 2.24 indicates how to find√
2 as the supremum of a set, but we have not yet shown why that supremum

c actually has the property that c2 = 2. This theorem provides the necessary
justification:

Theorem 2.29. For every x ≥ 0, there is a number c ≥ 0 so that c2 = x. c
is called a nonnegative square root of x, and we write c =

√
x or c = x1/2.

(Exercise 2.7.2 shows that there is exactly one nonnegative square root.)

The main idea of the proof of Theorem 2.29 is to define c = sup{y ∈ R |
y2 < x}, once we have argued that this supremum is well-defined. We then
show that we cannot have either c2 > x or c2 < x. However, the proof is
particularly difficult and unenlightening. (The proof shows that if c2 > x,
then c cannot be an upper bound, and if c2 < x, then c cannot be a LEAST
upper bound.) You may take this theorem on faith for now. In Chapter
3, when we study continuity, we will revisit the issue of defining roots and
provide a simple proof to show that nth roots of nonnegative numbers exist
whenever n ∈ N∗.

2.6 Calculations with Suprema

The completeness axiom, Axiom C, is useful for showing solutions exist for
certain equations (for example, the previous section shows how to find a
solution to the equation x2 = 2), but the axiom doesn’t tell you very much
information about what the solution actually is. Hence, it will be useful to
develop a few tools for doing calculations with suprema and infima. As one
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example, we have the following relationship between infima, suprema, and
negatives:

Theorem 2.30. If S ⊆ R is nonempty, then S is bounded below iff −S =
{−x | x ∈ S} is bounded above, in which case − inf S = sup(−S).

Most of the work of this theorem was done in the proof of Theorem 2.28, so
we omit the proof.

The next result addresses what happens when the members of two sets
are added together. If A and B are any subsets of R, we define A + B to be
the set {a + b | a ∈ A, b ∈ B}. Note that in the sum A + B, every member
of A gets added to every member of B. For example, if A = {1, 3, 4} and
B = {2, 5}, then A+B = {1+2, 3+2, 4+2, 1+5, 3+5, 4+5} = {1, 3, 5, 6, 8, 9};
in this sum of sets, the number 6 can be obtained in two ways, either as 4+2
or as 1 + 5.

Example 2.31:

Let’s show that Z + Z = Z. To prove Z ⊆ Z + Z, if n ∈ Z is given, then n
can be written as n + 0, and 0 ∈ Z, so n ∈ Z + Z. To prove Z + Z ⊆ Z, if
a, b ∈ Z are given, then their sum a + b is also an integer, so a + b ∈ Z.

One common mistake to make is to guess that Z + Z consists only of
even integers. After all, for any a ∈ Z, the sum a + a is even. However, the
sum Z + Z can add any integer to ANY other integer; certainly sums of the
form a + a appear in Z + Z, but other sums are included too. Exercise 2.7.4
explores this further.

As another example, consider A = {sin x | x ∈ R} and B = {cos x | x ∈
R}. In other words, A and B are respectively the ranges of the sine and
cosine functions, so A = B = [−1, 1]. In Exercise 2.7.3, you are asked to
prove that A + B = [−2, 2]. Note that for this example, A and B both have
the maximum element 1, and A + B has the maximum element 1 + 1, or 2.
In other words, max(A + B) = maxA + max B. �

Theorem 2.32. Let A, B ⊆ R be given. If A and B both have suprema,
then so does A + B, and sup(A + B) = sup A + sup B. Similarly, if A and
B both have infima, then so does A + B, and inf(A + B) = inf A + inf B.

Strategy. Let’s just focus on the part with suprema; the other part of the
theorem, dealing with infima, is left as Exercise 2.7.5. Suppose that sup A
and sup B both exist. The main idea is that although sup A and sup B might
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not be members of A or of B, there are elements of A which are arbitrarily
close to sup A, and similarly for B. Therefore, the sums in A + B should be
arbitrarily close to sup A + sup B.

However, this needs to be more formal. To show sup(A + B) = sup A +
sup B, by the definition of supremum for the set A + B, we need to show
that sup A + sup B is an upper bound of the set A + B, and then we need to
show that no other upper bound is smaller.

Let’s consider how to do the second task. Suppose that x < sup A+sup B.
We want to show that x is too small to be an upper bound of A+B by finding
elements a ∈ A and b ∈ B such that a + b > x. Ideally, a and b should be
close to sup A and sup B respectively, but how close?

The trick we’ll use is to examine distances. Let h = sup A + sup B − x,
so h > 0 and h is the distance from x to sup A + sup B. If h1 = sup A − a
and h2 = sup B − b, how small do we want h1 and h2 to be? Note that
sup A+sup B− (a+ b) = (sup A−a)+ (sup B− b) = h1 +h2. Since we want
to have a + b > x, we’d like sup A + sup B − (a + b) < sup A + sup B − x, i.e.
h1 + h2 < h. This suggests that we choose h1 = h2 < h/2.

Proof. We only prove the statement about suprema here; the statement
about infima is Exercise 2.7.5. Assume that sup A and sup B exist. For
all a ∈ A and b ∈ B, a ≤ sup A and b ≤ sup B, because the suprema are
upper bounds. Thus, a + b ≤ sup A + sup B. This shows that sup A + sup B
is an upper bound of the set A + B.

Next, let x ∈ R be given with x < sup A + sup B; it remains to prove
that x is not an upper bound of A + B. Let h = sup A + sup B − x, so
h > 0. Therefore, h/2 > 0 as well. There must exist some a ∈ A with
a > sup A − h/2, or else the number sup A − h/2 would be a smaller upper
bound of A than sup A, contradicting the definition of supremum. Choose
such an a ∈ A. Similarly, choose some b ∈ B such that b > sup B − h/2.
Therefore,

a + b > (sup A − h/2) + (sup B − h/2) = (sup A + sup B) − h = x

finishing the proof. �

The previous proof has a couple of tactics which are very common when
arguing with suprema and infima:

• The proof used the fact that sup A is the LEAST upper bound of A in
order to guarantee that there is an element a ∈ A with a > sup A−h/2,

PREPRINT: Not for resale. Do not distribute without author’s permission.



90 Section 2.6: Calculations with Suprema

where h could be any positive number. In other words, we could find
elements of A arbitrarily close to sup A. This makes the supremum of
A very useful, more so than the other upper bounds.

• Note how the proof also used h/2 twice as a distance, so that in the
end the two h/2’s would add together and form h. Frequently, when
a proof wants to find a number within some specified distance (such
as here, when we wanted to find a member of A + B with distance
less than h from sup A + sup B), that distance is often broken into a
few smaller, but still positive, pieces. We’ll see this tactic again when
talking about limits in the next chapter.

For the last result in this section, recall the sets we used to explain the
“gap” that

√
2 filled: they were A = {q ∈ Q+ | q2 < 2} and B = {q ∈

Q+ | q2 > 2}. All of A’s elements are smaller than all of B’s elements, so
intuitively A and B leave a number in the middle between them. In some
sense, the members of A are underestimates for

√
2, whereas the members of

B are overestimates for
√

2, and right in the middle is
√

2.
In general, a useful way to find a number is to create a set of overestimates

and a set of underestimates, and then you argue that the number you want
is in between the two sets. This will be especially useful in the definition
of the integral in Chapter 5. Let’s prove the main theorem that says there
really is some number in the middle:

Theorem 2.33. Let A, B ⊆ R be two nonempty sets such that for all a ∈ A
and all b ∈ B, a ≤ b. Then sup A and inf B both exist, and sup A ≤ inf B.

Strategy. The set A has upper bounds, because any member of B is an upper
bound of A. Thus, by Axiom C, sup A exists. However, sup A is the minimum
of the upper bounds of A; since all the members of B are themselves upper
bounds of A, sup A is smaller than or equal to all the members of B. This
shows B has sup A as a lower bound, but inf B is the greatest lower bound
of B.

Proof. Assume that A, B 6= ∅ and that for all a ∈ A and all b ∈ B, a ≤ b.
Let b ∈ B in arbitrary, so that we have ∀a ∈ A a ≤ b. This shows that b is
an upper bound of A. As A is nonempty as well, Axiom C says that sup A
exists. Because sup A is the least upper bound of A, and b is an upper bound
of A, sup A ≤ b.

Thus, ∀b ∈ B sup A ≤ b is true, so sup A is a lower bound of B. Therefore,
by Theorem 2.28, inf B exists. As inf B is the greatest lower bound of B,
and sup A is a lower bound of B, we must have sup A ≤ inf B. �
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2.7 Exercises

1. Give another proof of Theorem 2.28, using the second strategy outlined.
Your proof should consider the set B of lower bounds of S, where S is a
nonempty set which is bounded below, and it should prove sup B exists
and equals max B. (Hint: Once you’ve shown sup B exists, assume
sup B is not in B and derive a contradiction.)

2. Let a ≥ 0 be given. Thus, there exists at least one c ∈ R+ ∪ {0} with
c2 = a. Prove there is exactly one such c. (Hint: Solutions to the
equation x2 = c2 for x ∈ R are solutions to the equation x2 − c2 = 0.)

3. Prove that [−1, 1] + [−1, 1] = [−2, 2].

4. Let f, g : [0, 1] → [0, 1] be arbitrary. Assume that max(ranf) and
max(rang) both exist.

(a) Prove that sup{f(x)+g(x) | x ∈ [0, 1]} exists and that sup{f(x)+
g(x) | x ∈ [0, 1]} ≤ max(ranf) + max(rang).

(b) Provide an example of functions f, g : [0, 1] → [0, 1] such that
max(ranf) and max(rang) both exist but sup{f(x) + g(x) | x ∈
[0, 1]} < max(ranf) + max(rang).

REMARK: This exercise shows that adding functions is not the same
thing as adding sets! (Compare this to Theorem 2.32.)

5. Prove the statement in Theorem 2.32 pertaining to infima.

6. Let A, B ⊆ R be arbitrary nonempty sets. Prove that if sup(A + B)
exists, then sup A and sup B also exist. (Hint: for any particular a ∈ A,
if b ∈ B is allowed to vary, how large can a+ b get? For which set does
this information give you an upper bound?)

7. Let A, B ⊆ R be nonempty, and assume that for all a ∈ A and b ∈ B,
a < b.

(a) Find an example of sets A, B as described where sup A < inf B,
and find an example of sets A, B as described where sup A = inf B.

(b) Let C = {b − a | b ∈ B, a ∈ A}. Prove that C is bounded below
and that inf C = (inf B)− (sup A). This measures the “size of the
gap” between A and B.
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8. Let A, B ⊆ R be nonempty, and suppose that for all a ∈ A, there exists
b ∈ B with a ≤ b. (This is not the same hypothesis as in Theorem 2.33.)

(a) Find an example of such sets A, B where A and B are both un-
bounded above.

(b) Prove that if sup B exists, then so does sup A, and sup A ≤ sup B.

2.8 Completeness and the Integers

Consider basic counting4, which lists the elements of N∗ in increasing order,
starting with 1, then 2, then 3, and so forth. Certainly, this process doesn’t
stop, as every n ∈ N∗ always has a successor n+1 which is greater. However,
how large do the listed numbers really get? In other words, is there some
upper bound of N∗? How do you know there isn’t some real number ∗ like
in Figure 2.3?

0 1 2 * *+1

Figure 2.3: A number line with an upper bound ∗ of N∗

It is tempting to say “there can’t be an upper bound, because we can
count forever”. However, this reasoning is not correct. To see why, suppose
that instead of listing the natural numbers, we instead list the elements of
S = {1/2, 2/3, 3/4, . . .} in increasing order, so that the nth number in our
list is n/(n + 1) instead of n. Because S is an infinite5 set, we can list its
members forever. However, S does have an upper bound, namely 1. See also
Exercise 2.9.2.

4In this book, we will assume familiarity with some basic principles of integers rather
than proving them formally. For instance, we will take for granted that 1 is the smallest
positive integer, and the sum or product of two integers is an integer. We will not cover
a formal construction of N or Z; much of this work is done in a junior-level real analysis
course.

5Technical definitions of “finite” and “infinite” are often given in a beginning discrete
mathematics course, but a casual understanding of these terms is sufficient for our pur-
poses.
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What, then, makes N∗ different from the set S? One important difference
is that any two successive members of N∗ differ by exactly 1. In contrast, the
successive members n/(n + 1) and (n + 1)/(n + 2) differ by

n + 1

n + 2
− n

n + 1
=

(n + 1)2 − n(n + 2)

(n + 1)(n + 2)

=
n2 + 2n + 1 − n2 − 2n

(n + 1)(n + 2)
=

1

(n + 1)(n + 2)

and upon plugging in larger and larger values of n, it seems this difference is
becoming quite small. This says that, in essence, the natural numbers grow
at a constant rate, whereas the members of S do not. However, it turns out
even this property is not enough to guarantee that N∗ is unbounded above.
In formal logic courses, it is possible to create an ordered field which satisfies
most of the properties of R (it satisfies all the axioms except for Axiom C),
but in this field, the set {1, 1 + 1, 1 + 1 + 1, . . .} (where 1 is the number
specified in AA4) IS bounded above!

It turns out that we can prove that N∗ is unbounded above, but we need
to use Axiom C in the proof.

Theorem 2.34. N∗ has no upper bound (in R).

Strategy. If there were an upper bound of N∗, Axiom C would guarantee the
existence of a least upper bound c. There exist natural numbers which are
“pretty close” to c, i.e. there is some n ∈ N∗ with |c−n| < 1. However, c has
to be at least as big as both n and n + 1, which is impossible.

Proof. Suppose for contradiction that N∗ is bounded above. As N∗ is clearly
nonempty, Axiom C says that there exists a least upper bound c = sup N∗.
Therefore, c − 1, being smaller than c, is not an upper bound, so there is
some n ∈ N∗ with c − 1 < n.

Thus, c < n+1 by adding 1 to both sides. As n+1 ∈ N∗, this contradicts
the fact that c is an upper bound of N∗. �

Corollary 2.35. Z has no upper or lower bounds (in R).

Strategy. If b were a lower bound of Z, it would also be a lower bound of
−N∗, but then −b would be an upper bound of N∗, which is impossible.
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Proof. Because N∗ ⊆ Z and N∗ has no upper bounds, neither does Z. Next,
suppose that there is some lower bound b of Z for a contradiction. For any
n ∈ N∗, because −n ∈ Z, and b is a lower bound of Z, we have b ≤ −n, so
therefore −b ≥ n. This shows that −b is an upper bound of N∗, which is
impossible, finishing the proof by contradiction. �

Corollary 2.36 (Archimedian Property). For all x > 0 and all y ∈ R,
there exists an n ∈ N∗ satisfying nx > y.

Strategy. The idea is that this should be true for “large enough” values of n.
How big should n be? We want to find n so that nx > y, so by dividing x to
both sides, we get n > y/x.

Proof. Because N∗ is unbounded above, y/x is not an upper bound of N∗, so
there is some n ∈ N∗ with n > y/x. Because x is positive, multiplying x to
both sides of the inequality yields nx > y. �

The Archimedian Property can be understood as follows: if you have a
ruler which can measure lengths up to x (such as, for example, x is 12 inches,
or x is 30 centimeters), and you wish to measure a total length of y, then
you only need to place finitely many copies of your ruler, say n copies, end
to end to measure the total length. Even though n could be quite large, it is
still finite; there is no length y which is beyond your reach with a ruler. This
prohibits “jumps to infinity” like those pictured in Figure 2.3 from earlier.

Thus, the completeness axiom tells us that the integers stretch out ar-
bitrarily far to the left and right on a number line. As consecutive integers
differ by 1, the integers are also evenly spaced along the line. Hence, it seems
quite plausible that every real number of x lies between a unique pair of
consecutive integers (where if x is already an integer, we make x the smaller
of the two integers in the pair). This is surprisingly tricky to prove:

Theorem 2.37. For all x ∈ R, there is exactly one n ∈ Z with n ≤ x <
n + 1. This value n is called the greatest integer below x, or the floor of x,
and is written ⌊x⌋.

Strategy. Out of all the integers which are smaller than or equal to x, we
want to find the “closest” integer to x. More precisely, we want the largest
integer which does not exceed x. Let’s say S = {k ∈ Z | k ≤ z}; thus, the
floor of x, if it exists, should be max S. Once we show that this max exists, it
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follows that the floor of x is uniquely determined, since sets with maximum
elements have unique maximum elements.

We don’t have any tools for showing that a set has a maximum element if
we don’t know what to guess for its maximum. Thus, let’s consider a similar
concept: sup S. Thanks to Axiom C, we have a way to check whether sup S
exists: we show that S is nonempty and bounded above. Neither of these
details is very hard to check. Let’s say c = sup S.

At this point, though, we don’t know whether c is an integer! To get
around this, we know that there are members of S which are as close to c as
we’d like. More precisely, there is an integer n ∈ S such that n > c− 1. The
next larger integer is n + 1, and n + 1 > c, so since c is an upper bound of
S, it follows that n + 1 6∈ S. This shows that no integer larger than n is in
S, so n = maxS. (In fact, n = c, but we don’t need this information.)

Proof. Let x ∈ R be given. Define S = {k ∈ Z | k ≤ x}. We claim that
S has a (necessarily unique) maximum element. Once we have proven this
claim, it follows that if n = max S, then n is the floor of x. This is because
n + 1 is an integer which is not in S (because it is larger than the max n),
so by definition of S, we must have n + 1 > x and hence n ≤ x < n + 1.

First, we show that sup S exists. The set S is certainly bounded above
by x. If S were empty, then for all k ∈ Z we’d have k > x, so x would be
a lower bound of Z, contradicting Corollary 2.35. Therefore, S is nonempty
and bounded above, so Axiom C guarantees that sup S exists.

By the definition of supremum, sup S − 1 is not an upper bound of S, so
we may choose some n ∈ S with n > sup S−1. It follows that n+1 > sup S.
In fact, for any integer k satisfying k > n, we have k ≥ n + 1 > sup S, and
it must follow that k 6∈ S (because sup S, as an upper bound of S, cannot
be smaller than members of S). Thus, n is the largest member of S, so
n = maxS = sup S. �

As a quick consequence of the previous theorem, we can say that any
two numbers that are greater than 1 apart have an integer fitting in between
them:

Corollary 2.38. For all x, y ∈ R, if y − x > 1, then there exists n ∈ Z with
x < n < y.

Strategy. Intuitively, we want to pick an integer greater than x which is as
close to x as possible. Because ⌊x⌋ is the closest integer to x which is smaller
than x, ⌊x⌋ + 1 seems like a good choice for n.
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Proof. Let x, y ∈ R be given with y − x > 1. Define n = ⌊x⌋ + 1, so n ∈ Z

and n − 1 ≤ x < n. Therefore, n ≤ x + 1 < y, so x < n < y. �

The exercises have some other good properties of Z, but there are also
properties of the rationals Q and of the irrationals R − Q which follow from
the properties of Z in this section. Some of these properties will be used in
later chapters.

2.9 Exercises

1. Prove that for all x > 0, there is some n ∈ N∗ with 1/n < x. (This is
not the same as Exercise 2.4.8.)

2. If S = {1/2, 2/3, 3/4, . . .}, prove that sup S = 1. (Hint: Exercise 2.9.1
might be useful.)

3. Prove that for all x ∈ R, there exists a unique n ∈ Z with n−1 < x ≤ n.
This n is called the least integer above x, or the ceiling of x, written
⌈x⌉. (Hint: Note that ⌈x⌉ = min{k ∈ Z | k ≥ x}. You can also use the
floor function to solve this problem quickly!)

4. Prove that for all x, y ∈ R with x < y, there exists some q ∈ Q with
x < q < y. We describe this by saying that the rationals are dense in
R. (Hint: Let’s say q = a/b where b > 0. In order to have x < a/b < y,
we must have bx < a < by, so bx and by should have an integer between
them. How large should b be in order to apply Corollary 2.38?)

5. The proof of Theorem 2.29 (which we did not cover) shows that
√

2 =
sup{x ∈ R+ | x2 < 2}. Using this fact and Exercise 2.9.4, prove that√

2 = sup{x ∈ Q+ | x2 < 2}.

6. Prove that for all x, y ∈ R with x < y, there exists r ∈ R − Q with
x < r < y. This shows that the irrationals are dense in R. (Hint: This
is similar to Exercise 2.9.4. However, instead of finding an element in
between x and y of the form a/b, find an element of the form a/(b

√
2),

where a, b ∈ Z, b > 0, and a 6= 0.)

7. For all a, b ∈ N with b > 0, prove there exists exactly one pair (q, r) ∈
N × N with the properties that a = qb + r and 0 ≤ r < b. The
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process of obtaining q and r is called Euclidean division, where q is the
quotient and r is the remainder. (Hint: You want to pick q so that
qb ≤ a < (q + 1)b.)

2.10 Using the Axioms in Real Mathematics

This chapter presented the important axioms of R for two main reasons. The
first reason is to illustrate the process of building a series of results starting
only from simple assumptions (the axioms) and some definitions, where the
axioms summarize the most essential features of R. The other reason is
to show some of the important ways in which R differs from other sets of
numbers like Z, R, and C, showing that R is a suitable set of numbers to use
in the study of calculus.

However, most mathematicians do not bother with axioms of R very fre-
quently. A proof from axioms is often long and mundane, but straightforward
with enough practice. Furthermore, there are many statements like “3 > 1”
that technically should receive formal proofs (such as “Because 1 > 0 by
Theorem 2.22, 3 = 2 + 1 > 2, and 2 = 1 + 1 > 1, proving 3 > 1”), but
including proofs for all of these “trivial” statements would clutter the book
with technical details that distract you from the main points. Lastly, many
of the properties of the real numbers that follow from the algebraic and or-
der axioms are presumably quite familiar to you from years of mathematics
education prior to now.

Thus, from this point on, we will be more casual when using properties
of the real numbers which follow from the algebraic and order axioms. Since
the completeness axiom is probably more unfamiliar, and it yields some very
powerful consequences for calculus, we will still treat the completeness axiom
formally. To be less verbose, though, in future proofs we will probably not
cite Axiom C or Theorem 2.28 by name when saying that a supremum or
infimum exists; we will merely check that the hypotheses of Axiom C or
Theorem 2.28 apply.
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Chapter 3

Limits and Continuity

x

y

Figure 3.1: Graphs of f(x) = x3 (dotted) and g(x) = 1/x (solid)

In your previous mathematics education, many of the graphs you drew of
functions from R to R were probably connected curves. Roughly, this means
you could draw the entire graph without lifting your pencil (or pen, or other
writing implement) off the paper (or touchscreen, or other drawing surface).
There were sometimes certain examples, like the graph of g(x) = 1/x, where
you had to lift your pencil off the paper at x = 0, but that was only because
the function’s graph went off to arbitrarily large values. Basically, wherever
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your function was actually defined, you could draw a connected curve. See
Figure 3.1.

Let’s consider the following example. Suppose that you are driving a car.
If we measure time t in seconds after the start of your trip (so that t = 0
corresponds to when you start the car, t = 60 is a minute afterward, t = 0.5
is half a second after starting, and so on), we’ll let v(t) be the speed of the
car after t seconds. (To be concrete, we’ll measure v(t) in miles per hour,
or mph, but it is certainly possible to measure v(t) in other units.) After 20
minutes (i.e. t = 60 · 20 = 1200), you stop driving. Thus, v is a function
from [0, 1200] to [0,∞).

Note that your speed can’t just “jump” from one value to another. Cer-
tainly there are times when instantaneous change of speed can be useful, like
if you want to stop your car immediately to avoid an accident, but this is
not possible: acceleration has to occur, and the car builds up or loses speed
over a period of time. We describe this by saying that speed changes contin-
uously with time, i.e. v is a continuous function. Now, the motion of your
car doesn’t have to be smooth: depending on how erratically you hit the gas
pedal or the brakes, the car’s acceleration can be quite jumpy. This means
the acceleration doesn’t have to be continuous; we’ll explore this more when
we talk about rates of change and derivatives in the next chapter.

The speed function v has some other useful properties. In only 20 minutes,
you can’t expect to make the car go infinitely fast (you’d need an infinite
amount of time to do that), so your speed will be bounded over the course
of the trip. In fact, there will be some point t∗ on the trip where your car is
going faster than at any other point. In other words, your car attains some
maximum speed over the entire trip (which may not be the maximum speed
that the car is physically capable of driving).

If we draw a graph of v as t goes from 0 to t∗, we’ll draw a connected1

curve (since the speed can’t “jump” all of a sudden). Along that curve, we
must hit every possible speed from v(0) up to v(t∗) somewhere along the way.
For instance, if v(t∗) is 60mph, and v(0) = 0 (corresponding to starting the
car from a complete stop), then at some time between 0 and t∗, the car must
have been going 30mph, because 30mph is between 0mph and 60mph.

We claim those properties of v follow just from the fact that v is continu-
ous on [0, 1200]. However, in order to make such claims and prove them, we’ll

1The word “connected” has a formal meaning, but we only intend to use the word
casually.
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need careful definitions of what exactly it means to say “v can be graphed
with a connected curve”. In general, the main idea will be roughly as follows:
for any function f with codomain R and any a ∈ dom(f), we say f is con-
tinuous at a to mean that for all x ∈ dom(f), we can guarantee that f(x) is
as close as we like to f(a) by taking x close enough to a.

Thus, intuitively, we see that even if we try to make the function g from
Figure 3.1 defined at 0 by picking a value for g(0), we can’t get continuity at
a = 0 because of the “jump” in the values of g(x) from very negative values
to very positive values that happens when x is close to 0. It seems that the
values of g(x) don’t seem to approach any one particular value when x is
near 0. We describe this by saying that g(x) has no limit as x approaches 0.

However, along with the examples of “nice” functions in Figure 3.1, there
are other, more complicated, examples which we will study. In order to
properly analyze those functions, as well as to place our study on a firm
foundation, we will need more formal definitions of a limit and of continuity,
from which we’ll be able to prove the properties we mentioned previously.
Establishing formal definitions of limits and continuity, along with studying
important consequences of the definitions, is the purpose of this chapter.

3.1 The Definition of a Limit

In this section, we’ll aim to make a precise way to say things like “As x
approaches 3, x2 approaches 32.” As this involves being able to say how
far numbers are from one another, we should also come up with a way to
measure distance between numbers.

Distance and the Absolute-Value Function

A useful tool for us will be the absolute-value function, whose value on
any x ∈ R is written as |x| and defined by

|x| =

{

x if x ≥ 0

−x if x < 0

(This function is well-defined because the Trichotomy Law says that exactly
one of x > 0, x = 0, or x < 0 is true.) |x| is called “the absolute value of x”,
“absolute x”, or “the magnitude of x”, among other phrases. Note that for all
x ∈ R, |x| ≥ 0, and |x| = 0 iff x = 0.
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102 Section 3.1: The Definition of a Limit

How does this function relate to distance? If a and b are two real numbers,
then the distance from a to b on a number line is the larger number minus
the smaller one. In other words, the distance from a to b is b − a if b ≥ a
(i.e. b − a ≥ 0), or is a − b = −(b − a) if b < a (i.e. b − a < 0). This means
that the distance is the same as |b − a|. In particular, when a = 0, |b| is the
distance of b to the origin 0.

Unfortunately, the absolute-value function is difficult to use with algebraic
laws, because for real a and b, |a + b| might NOT be equal to |a| + |b|:
|−1 + 1| = 0 but |−1| + |1| = 2. However, the following are true for every
a, b ∈ R:

|ab| = |a||b|
∣

∣

∣

a

b

∣

∣

∣
=

|a|
|b| if b 6= 0

We do frequently use absolute values in inequalities, however. For instance,
let’s consider the set of all points that are at a distance at most r from some
central point c, i.e. all x ∈ R such that |x − c| ≤ r. Looking at the number
line in Figure 3.2, it seems that the smallest x can be is r less than c (i.e.
c − r), and the largest x can be is r more than c (i.e. c + r). The following
lemmas prove this more formally:

r r

cc-r c+r

Figure 3.2: The points x with distance at most r from c

Lemma 3.1. For all x ∈ R, −|x| ≤ x ≤ |x|.

Lemma 3.1 is easy to show by considering two cases, so we leave its proof
to the reader. We use this result to establish the following:

Lemma 3.2. For all c, r, x ∈ R, |x − c| ≤ r iff c − r ≤ x ≤ c + r, thus
{x ∈ R | |x− c| ≤ r} is the set [c− r, c + r]. (This set is empty if r < 0.) In
particular, when c = 0, |x| ≤ r iff −r ≤ x ≤ r.

Strategy. Let’s first concentrate on proving the special case when c = 0. If
we can prove that case, then by applying it to the number x − c, we find
that |x − c| ≤ r iff −r ≤ x − c ≤ r, which is equivalent to c − r ≤ x ≤ c + r
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by adding c to all sides of the inequality. (We sometimes say describe this
situation, where after proving one case, the rest of the cases follow easily, by
saying that the lemma can be reduced to the case where c = 0.)

For one direction, if −r ≤ x ≤ r, then we consider cases based on whether
x ≥ 0 or x < 0. If x ≥ 0, then |x| = x, so x ≤ r implies |x| ≤ r. If x < 0,
then |x| = −x, and x ≥ −r implies −x ≤ r.

The other direction can be done in a similar manner, or we can use Lemma
3.1 to simplify our work: −|x| ≤ x ≤ |x|. Thus, if |x| ≤ r, then −|x| ≥ −r,
and we can put all these inequalities together.

Proof. Let c, r ∈ R be given. It suffices to prove that for all x ∈ R, |x| ≤ r is
equivalent to −r ≤ x ≤ r, because then plugging in x− c in place of x yields
|x − c| ≤ r iff −r ≤ x − c ≤ r iff c − r ≤ x ≤ c + r. Thus, we may assume
c = 0 for the remainder of the proof.

For one direction of proof, assume |x| ≤ r. By Lemma 3.1, we have
−|x| ≤ x ≤ |x|. Thus,

−r ≤ −|x| ≤ x ≤ |x| ≤ r

or −r ≤ x ≤ r in particular.
For the other direction, assume −r ≤ x ≤ r. If x ≥ 0, then x = |x| and

x ≤ r, so |x| ≤ r. If x < 0, then |x| = −x and x ≥ −r, so −x ≤ r and
|x| ≤ r. Thus, |x| ≤ r in either case. �

Remark. A very similar proof can be used to prove a strict inequality version
of the lemma: for all c, r, x ∈ R, |x − c| < r iff c − r < x < c + r, i.e. iff
x ∈ (c − r, c + r).

The following consequence of Lemma 3.2 is a very important tool in han-
dling inequalities with absolute values:

Theorem 3.3 (Triangle Inequality). For all x, y ∈ R, |x + y| ≤ |x|+ |y|.

Before we prove this theorem, let’s see why it is named the Triangle
Inequality. When mathematicians work with vectors (which are essentially
arrows from the origin with a length and a direction), they frequently use
the notation |x| to represent the length of a vector x. Our use of |x| for real
values of x is a special case of this definition, if you think of the real number
x as a vector pointing from 0 to x on the number line. To add two vectors
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x

y

x+y

origin

Figure 3.3: Adding two vectors in R2

x and y, you draw x starting from the origin, then you draw y starting from
x’s ending, and then x + y is the arrow from the origin to y’s final point.
Figure 3.3 illustrates this in two dimensions.

The vectors x, y, and x + y form a triangle, so the statement “ |x + y| ≤
|x| + |y|” says that the third side of the triangle cannot be longer than the
sum of the other two side lengths. For another way to interpret this, when
you walk from the origin to the final point on the vector x + y, it takes less
time to walk straight along the vector x + y than it takes to first walk along
x and then walk along y. In other words, the straight-line path between two
points is the shortest path.

Strategy. One way to prove this is to break the proof into four cases based
on the signs of x and y, but that gets messy. It is simpler to use Lemma 3.2
and try to prove

−(|x| + |y|) ≤ x + y ≤ |x| + |y|
instead (where r = |x| + |y| and c = 0 in the lemma). This is easy to show
with two applications of Lemma 3.1.

Proof. Let x, y ∈ R be given. By Lemma 3.1, we know −|x| ≤ x ≤ |x| and
−|y| ≤ y ≤ |y|. Adding these inequalities yields

−(|x| + |y|) ≤ x + y ≤ |x| + |y|

so |x + y| ≤ |x| + |y| by Lemma 3.2. �

The ǫ-δ Definition
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Now that we have a way of conveniently expressing the distance between
two real numbers, let’s investigate a potential definition for limits. Namely,
if f is a function with dom(f), ran(f) ⊆ R (for convenience, we’ll say that
such functions are real functions) and L, a ∈ R, what should it mean to say
that f(x) approaches L as x approaches a?

First, we want f(x) to be “as close as desired” to L, so let’s specify how
close we want f(x) to be to L. Let’s say we want the distance |f(x)−L| to be
less than some positive number, which is traditionally denoted by the Greek
letter ǫ (pronounced “epsilon”). Hence, we want to make sure |f(x) − L| < ǫ
when x is near enough to a, but what does “near enough” mean? Once again,
we formalize this by using a positive number to denote how far apart x and
a should be; traditionally, the Greek letter δ (pronounced “delta”) is used for
this purpose2. Thus, we want to pick δ > 0 so that whenever x ∈ dom(f)
and |x − a| < δ, it follows |f(x) − L| < ǫ.

Putting this all together, we arrive at this potential definition: we want
the property that for every ǫ > 0 (representing a desired distance from the
limit L), there exists some corresponding δ > 0 (representing how close our
input x should be to a) such that for every x ∈ dom(f), if |x − a| < δ, then
|f(x) − L| < ǫ.

Here’s a casual example to illustrate what is going on here. Let’s say you
are holding a laser pointer, so that you can shine a spot on a screen far away
from you. To control where the spot lands, you angle your hand: when your
hand is at an angle of x radians away from being completely flat, the spot
lands at height f(x) on the screen, where f is some function of your hand’s
angle. Ideally, you’d like to have the pointer shine exactly at height L, which
you could do if you could hold the laser pointer perfectly steady in your hand
at an angle of a.

However, you’re not that steady. Thus, the pointer wobbles a little, and
this causes the spot to move up and down. Let’s say your friend challenges
you to keep that shined spot “pretty close” to L, say they give you a distance
ǫ > 0 and want the shined spot to be between L − ǫ and L + ǫ. (In essence,
your friend wants you to hit a “bullseye” centered at L with radius ǫ.) By
holding yourself pretty steady, i.e. you never let your hand’s angle deviate
more than some distance δ > 0 from a, your light shines within distance ǫ

2The use of ǫ and δ is due to the French mathematician Augustin-Louis Cauchy. The
letter ǫ stands for “erreur”, where we think of f(x) as having “error less than ǫ” in measuring
L. The letter δ stands for “différence”, representing the difference between x and a.
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of L. Your friend keeps challenging you with different values of ǫ, trying to
make you more and more accurate, and each time, you find a corresponding
control value of δ that dictates how steady your hand must stay. After many
challenges, your friend acknowledges that while your aim is never perfect, at
least it’s clear you’re able to make your spot approach the ideal height of L.

This is the idea of our attempted definition: when challenged with an
accuracy of ǫ we must get for a function’s outputs, we find out how much
control δ needs to be placed on the inputs. The definition we have outlined
above is almost the definition we want, but it has two issues.

x

y

fHxL

Figure 3.4: A function for which the limit as x → 0 shouldn’t equal f(0)

First, if we consider the function f in Figure 3.4, then the limit as x
approaches 0 should be at the hollow circle. However, the actual value of
f(0) is at the solid circle, and that solid circle is not within distance ǫ of the
hollow circle when ǫ is small enough (the region between the dashed lines
represents the region from L− ǫ to L+ ǫ on the y-axis). The issue is that the
limit ought to depend on the values of f(x) where x is CLOSE to 0 but NOT
equal to 0. To fix this, our definition will say “if 0 < |x − a| < δ” instead of
“if |x − a| < δ”. In other words, we will consider all points x near a except
for a itself.

Second, if dom(f) doesn’t have many points near a, then the statement
“for all x ∈ dom(f), if |x−a| < δ then |f(x)−L| < ǫ” could be vacuously true
for small choices of δ. To avoid this issue, we’ll require that dom(f) contain a
deleted open interval around a, which is a set of the form (a1, b1)−{a} where
a1 < a < b1. More simply, we’ll say f needs to be defined near a. There are
other kinds of requirements we could place on dom(f), but this requirement
is simple to state and also seems quite plausible (as it requires that when x
is close enough to a, f(x) actually exists).
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This leads us to the following definitions, including our official limit def-
inition:

Definition 3.4. Let a ∈ R be given. A deleted open interval around a is
a set of the form (a1, b1) − {a}, where a1, b1 ∈ R and a1 < a < b1. (The
terminology is appropriate because we start with an interval containing a
and then “delete” a from it.)

Let f be a real function. We say that f is defined near a if dom(f)
contains a deleted open interval around a.

Definition 3.5. Let a, L ∈ R be given, and suppose f is a real function
defined near a. We say that f(x) has limit L as x approaches a, written in
any of the following three ways

lim
x→a

f(x) = L f(x) → L as x → a f(x)−→
x→a

L

if the following holds:

∀ǫ > 0 ∃δ > 0 ∀x ∈ dom(f) (0 < |x − a| < δ → |f(x) − L| < ǫ)

If f(x) does not approach L as x approaches a, we sometimes write “f(x) 6→ L
as x → a”.

L
L+Ε

L-Ε

a

a-∆ a+∆

Figure 3.5: A picture of the limit definition

Another picture illustrating this definition is in Figure 3.5. The horizontal
dashed lines above and below the limit L represent the points where |f(x)−
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L| < ǫ. The vertical dashed lines left and right of a represent the region
where |x − a| < δ. We note that the entire portion of the curve where
|x− a| < δ lands within the two horizontal lines, i.e. for all these x, we have
|f(x) − L| < ǫ.

Remark. When you have a function f and a real number a, the definition
of limit does NOT tell you what the value of L should be. In other words,
the definition gives you a way to check if you guessed the correct limit, but
it doesn’t say how to obtain that guess in the first place. Sometimes we
describe this by saying the definition is not constructive.

However, it is worth noting that a function can have at most one limit
at any point. In other words, as x → a, f(x) cannot approach two distinct
limits at the same time. See Exercise 3.2.9.

Example 3.6:

Suppose that f : R → R is a constant function, i.e. there is some c ∈ R so
that for all x ∈ R, f(x) = c. For any a ∈ R, it makes sense to guess that
f(x) → c as x → a. To prove this guess, let’s use the definition of limit.

Let ǫ > 0 be given. We wish to find δ > 0 so that for any x ∈ R,
0 < |x−a| < δ implies |f(x)− c| < ǫ. However, since |f(x)− c| = |c− c| = 0,
ANY value of x works, so δ can be any positive number. (In other words, for
any accuracy ǫ > 0 we want, there is no need to control our inputs because
the function values never change, so δ > 0 can be anything.) �

Example 3.7:

Suppose that f : R → R is the identity function, so for all x ∈ R, f(x) = x.
For any a ∈ R, we prove that f(x) → a as x → a.

Let ǫ > 0 be given. We wish to find δ > 0 so that for any x ∈ R,
0 < |x − a| < δ implies |f(x) − a| < ǫ. However, since |f(x) − a| = |x − a|,
it suffices to choose δ = ǫ. �

In the last examples, we found that for any a ∈ R, the limit of f(x) as x
approaches a is in fact f(a). This is a useful property a function can have:

Definition 3.8. If f is a real function and a ∈ R, we say that f is continuous
at a if a ∈ dom(f), lim

x→a
f(x) exists, and lim

x→a
f(x) = f(a). We also say that a

is a continuity point of f . For any S ⊆ R, if f is continuous at every a ∈ S,
we say f is continuous on S.
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Equivalently, for a ∈ R, f is continuous at a if f is defined in an open
interval containing a and the following holds:

∀ǫ > 0 ∃δ > 0 ∀x ∈ dom(f) (|x − a| < δ → |f(x) − f(a)| < ǫ)

If f is defined near a but is not continuous at a, then we say f is discontinuous
at a.3

Remark. In the definition of continuity, we may allow x to equal a (i.e. we
don’t have to write the 0 < in the definition of limit) since when x = a, we
have |f(x) − f(a)| = |f(a) − f(a)| = 0 < ǫ.

One-Sided Limits

In the definition of limit as x approaches a, we consider all values of x
which are close enough to a, including both the values below a and the values
above a. Thus, we sometimes say that the limit we defined is a two-sided
limit. There are analogous definitions where we only consider values for x
that are greater than a or only values that are smaller than a. These are
called one-sided limits.

Definition 3.9. Let a ∈ R and a real function f be given. We say that f is
defined near a on the left if dom(f) contains a set of the form (a1, a) where
a1 ∈ R and a1 < a. Similarly, we say that f is defined near a on the right if
dom(f) contains a set of the form (a, b1) where b1 ∈ R and a < b1.

Definition 3.10. Let a, L ∈ R be given, and let f be a real function defined
near a on the left. We say f(x) approaches L as x approaches a from the
left, also written in the following ways

lim
x→a−

f(x) = L f(x) → L as x → a− f(x) −→
x→a−

L

if the following holds:

∀ǫ > 0 ∃δ > 0 ∀x ∈ dom(f) (0 < a − x < δ → |f(x) − L| < ǫ)

If f(a) is defined and lim
x→a−

f(x) exists and equals f(a), then we say f is

continuous from the left at a.

3Some authors do not require f to be defined near a in order to have a discontinuity,
and some place other requirements on f .
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Similarly, if f is defined near a on the right, then we say f(x) approaches
L as x approaches a from the right, written in one of the following ways

lim
x→a+

f(x) = L f(x) → L as x → a+ f(x) −→
x→a+

L

if the following holds:

∀ǫ > 0 ∃δ > 0 ∀x ∈ dom(f) (0 < x − a < δ → |f(x) − L| < ǫ)

If f(a) is defined and lim
x→a+

f(x) exists and equals f(a), we say f is continuous

from the right at a.

It turns out that a two-sided limit exists and equals L iff the corresponding
one-sided limits also exist and equal L: see Exercise 3.2.7. However, the one-
sided limits can sometimes provide us more information about how a function
behaves. To illustrate this, we present a couple examples.

Example 3.11:

In Theorem 2.37, we established the existence of the floor function f : R → R,
where for any x ∈ R, f(x) = ⌊x⌋ is the unique integer satisfying ⌊x⌋ ≤ x <
⌊x⌋+1. In the usual drawing of the floor function in Figure 3.6, the function
jumps up 1 unit at each integer, but otherwise the function looks smooth.
Thus, we expect that the floor function is continuous at all points which are
not integers. The next theorem makes this more precise:

Theorem 3.12. For every a ∈ R,

lim
x→a+

⌊x⌋ = ⌊a⌋ and lim
x→a−

⌊x⌋ =

{

⌊a⌋ if a 6∈ Z

a − 1 if a ∈ Z

Thus, the floor function is continuous from the right everywhere but is not
continuous from the left at integers.

Strategy. Let’s say f is the floor function, and we’ll consider the left and
right-hand limits separately. First, from the right side, let’s consider the
interval (a, ⌊a⌋+ 1). (This corresponds to choosing δ = ⌊a⌋+ 1− a, which is
guaranteed to be positive.) On this interval, the function f is constant with
value ⌊a⌋. As constants are continuous, the right-hand limit should be ⌊a⌋.
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Figure 3.6: The function ⌊x⌋ (solid dots are the function value, and hollow
dots are “jumps”)

However, for the left side, we need to consider whether a ∈ Z or not, since
this determines whether a−⌊a⌋ is zero or not. If a 6∈ Z, then on the interval
(⌊a⌋, a) (corresponding to δ = a−⌊a⌋, which is positive), the function f takes
the constant value of ⌊a⌋. We already saw constant functions are continuous,
so therefore the limit from the left should be ⌊a⌋. On the other hand, if
a ∈ Z, then the interval (⌊a⌋, a) is empty (it’s the same as (a, a)), so we need
to consider the interval (a−1, a), on which the function f takes the constant
value a − 1. This tells us the limit from the left should be a − 1.

Proof. Let a ∈ R be given. First, we prove that the floor function is contin-
uous from the right at a. Let ǫ > 0 be given. We choose δ = ⌊a⌋ + 1 − a;
note that δ > 0 because a < ⌊a⌋+ 1. Now, suppose that x ∈ R is given with
0 < x − a < δ, i.e. x ∈ (a, a + δ). Therefore,

⌊a⌋ ≤ a < x < a + δ = ⌊a⌋ + 1

In particular, ⌊a⌋ ≤ x < ⌊a⌋ + 1, so the definition of the floor function says
⌊x⌋ = ⌊a⌋ (since ⌊a⌋ is an integer). Hence, |⌊x⌋ − ⌊a⌋| = 0 < ǫ, proving the
right-hand limit is ⌊a⌋.

Next, let’s consider the left-hand limit assuming that a 6∈ Z. Let ǫ > 0
be given. We choose δ = a − ⌊a⌋; because a 6∈ Z, a > ⌊a⌋, so δ is positive.
Now, suppose that x ∈ R is given with 0 < a − x < δ, i.e. x ∈ (a − δ, a).
Therefore,

⌊a⌋ = a − δ < x < a < ⌊a⌋ + 1
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In particular, ⌊a⌋ ≤ x < ⌊a⌋ + 1, so by definition, ⌊x⌋ = ⌊a⌋. Hence,
|⌊x⌋ − ⌊a⌋| = 0 < ǫ, showing the left-hand limit is ⌊a⌋.

Lastly, suppose a ∈ Z. Let ǫ > 0 be given, and we choose δ = 1. Now,
suppose x ∈ R is given with 0 < a − x < 1, so x ∈ (a − 1, a). Because
a − 1 ∈ Z, and a − 1 ≤ x < (a − 1) + 1, we have ⌊x⌋ = a − 1. Hence
|⌊x⌋ − (a − 1)| = 0 < ǫ, proving that the left-hand limit is a − 1. � �

Example 3.13:

Let’s consider a function f where some one-sided limit fails to exist. Let
f : (R − {0}) → R be defined by f(x) = 1/x for all x ∈ dom(f). We claim
that f has no limit as x → 0+. In other words, for all L ∈ R, we’ll show
f(x) 6→ L as x → 0+. This means we will prove

Theorem 3.14. For all L ∈ R,

∃ǫ > 0 ∀δ > 0 ∃x ∈ (0, δ)

∣

∣

∣

∣

1

x
− L

∣

∣

∣

∣

≥ ǫ

which is precisely the negation of the statement “1/x → L as x → 0+”.

Remark. Another way to think about this is that there is some accuracy ǫ
which we fail to achieve: no matter which δ > 0 we use to control our inputs,
there is always some point x which is within distance δ to the right of 0 but
for which f(x) has distance at least ǫ from L.

Strategy. Which ǫ works? Intuitively, 1/x becomes arbitrarily large as x gets
close to 0 from the right side, so any choice of ǫ should work. (In other words,
the graph of 1/x eventually becomes arbitrarily far away from EVERY fixed
value L.) To be definite, let’s choose ǫ = 1.

Now, let δ > 0 be given. We wish to find a real number x ∈ dom(f) so
that 0 < x < δ and |1/x − L| ≥ ǫ = 1. Using the remark following Lemma
3.2, this means we want some x ∈ (0, δ) satisfying either 1/x ≥ L + 1 or
1/x ≤ L − 1. Intuitively, since the values of 1/x are becoming very large,
we expect that 1/x will eventually be greater than L, so we’d like to satisfy
1/x ≥ L + 1.

However, we can’t take reciprocals of both sides of the inequality unless
we know the sign of L + 1. This leads us to consider two cases. In the first
case, if L+1 ≤ 0, then clearly any positive x satisfies 1/x ≥ 0. In the second
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case, if L + 1 > 0, then we want x to be less than 1/(L + 1). In each case, x
can also be chosen to be smaller than δ. (After all, we need to show that we
can find a suitable value of x no matter which control δ we try to place on
our inputs.)

Proof. Let L ∈ R be given, and we choose ǫ = 1. Let δ > 0 be given. It
suffices to find some x ∈ (0, δ) such that 1/x ≥ L+ǫ = L+1. This is because
for such an x, the statement

−1 <
1

x
− L < 1

is false, and thus by the remark after Lemma 3.2, “ |1/x−L| < 1” is false, so
“ |1/x − L| ≥ 1” is true.

We consider two cases. In the first case, L + 1 ≤ 0. We choose x = δ/2.
Note that x ∈ (0, δ), and since x is positive, 1/x > 0 ≥ L + 1.

In the second case, L + 1 > 0. Thus, for any x ∈ (0, δ), 1/x ≥ L + 1
is equivalent to x ≤ 1/(L + 1) by taking reciprocals of both sides. (This is
possible because we know both sides are positive.) We choose

x =
1

2
min

{

1

L + 1
, δ

}

(Essentially, we have two constraints we want x to satisfy: x < 1/(L+1) and
x < δ. By using a min, we take the “stricter” of the two constraints.) Thus,
x < δ and x < 1/(L + 1), so x ∈ (0, δ) and 1/x ≥ L + 1 as desired. � �

Remark. Using Exercise 3.2.7, we now see that the two-sided limit lim
x→0

1

x
does not exist. This confirms our intuition in the beginning of this chapter.
In fact, neither one-sided limit exists: see Exercise 3.2.6.

Remark. The previous two examples show that several different types of
discontinuities can arise in a function. One type, called a jump discontinuity,
occurs when both one-sided limits exist but are unequal. Thus, the floor
function has jump discontinuities at each integer.

Another type, called a removable discontinuity, occurs when the two one-
sided limits are equal, but the function value does not equal that limit. This
is often the least worrisome type of discontinuity, because it can be “fixed” by
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redefining the function’s value at the point! Figure 3.4 illustrates a removable
discontinuity.

The discontinuity in 1/x at 0 is called an infinite disconuity, because the
function values are unbounded near 0. More details can be found in the
exercises of Section 3.4: see Definitions 3.32 and 3.33.

3.2 Exercises

1. Sometimes the Triangle Inequality is stated in terms of distances be-
tween three points as follows: for any x, y, z ∈ R, the distance from x
to z is at most the sum of the distances from x to y and then from y
to z. In other words,

∀x, y, z ∈ R |z − x| ≤ |y − x| + |z − y|

Prove this version of the Triangle Inequality using Theorem 3.3.

2. Prove the following for all x, y ∈ R:

(a) |−x| = |x|
(b)

√
x2 = |x|

(c) |x − y| ≤ |x| + |y|

(d) |x| − |y| ≤ |x − y|
(e) ||x| − |y|| ≤ |x − y|

(Hints: For (d), add |y| to both sides. For (e), use Lemma 3.2.)

3. Let a ∈ R be given and let f be a real function. Prove that f is defined
near a iff there exists some δ > 0 so that (a− δ, a+ δ)−{a} ⊆ dom(f).
(This result simplifies some proofs where it is helpful to work with
deleted open intervals around a which are symmetric about a.)

4. For any a ∈ R, find the following limits and prove that your answer is
correct:

(a) lim
x→a

2x + 5

(b) lim
x→a

2 − x

(c) lim
x→a

mx + b for any m, b ∈ R

where m 6= 0

5. The ceiling function is defined in Exercise 2.9.3. Find lim
x→a−

⌈x⌉ and

lim
x→a+

⌈x⌉ for any a ∈ R. Prove your answers are correct.
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6. Prove that lim
x→0−

1

x
does not exist.

7. Suppose that a, L ∈ R and f is a real function whose domain contains
an open interval containing a (except for possibly a itself). Prove that

lim
x→a

f(x) = L ↔
(

lim
x→a+

f(x) = L

)

∧
(

lim
x→a−

f(x) = L

)

In other words, a two-sided limit exists iff the one-sided limits exist
and are equal.

(Hint: For one direction, we assume both one-sided limits exist. Thus,
each one-sided limit has a corresponding choice of δ. If δ+ is the choice
for the right-hand limit, saying how close x should be to a from the
right, and δ− is the choice for the left-hand limit which says how close x
should be to a from the left, then how close can x be to a from EITHER
side?)

8. Find a function f : R → R and a number a ∈ R where lim
x→a

f(x) = a

but lim
x→a

f(f(x)) 6= a.

9. Suppose that a, L, M ∈ R and f is a real function defined near a. Prove
that if f(x) → L and f(x) → M as x → a, then L = M . This justifies
us saying “the” limit of a function as opposed to saying “a” limit.

(Hint: Suppose WLOG that L < M for a contradiction. Imagine
drawing a horizontal line right in between the lines y = L and y = M
to serve as a “barrier” between L and M . Find a value of ǫ such that
f(x) is below this barrier when |f(x)−L| < ǫ and is above this barrier
when |f(x) − M | < ǫ.)

10. Prove that lim
x→0

|x|
x

does not exist. However, show that the one-sided

limits lim
x→0+

|x|
x

and lim
x→0−

|x|
x

do exist by calculating these one-sided

limits with proof.

11. Prove that lim
x→0+

√
x = 0.

12. Prove that lim
x→a

√
x =

√
a for every a ∈ R+. (Hint: Note that |√x −

√
a||√x +

√
a| = |x − a|. How small can

√
x +

√
a be?)
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13. Suppose f, g : R → R and p ∈ R satisfy the property that for all x ∈ R

with x 6= p, f(x) = g(x). Suppose also that for some a ∈ R with a 6= p,
lim
x→a

f(x) exists. Prove that lim
x→a

g(x) = lim
x→a

f(x).4

(Hint: How small should |x − a| be in order to guarantee x 6= p?)

14. Consider the following function f : R → R:

∀x ∈ R f(x) =

{

1 if x ∈ Q

0 if x ∈ R − Q

Prove that for all a ∈ R, lim
x→a

f(x) does not exist. Thus, f is discontin-

uous everywhere.

(Hint: Use the facts that Q and R − Q are dense in R, as shown in
Exercises 2.9.4 and 2.9.6.)

3.3 Arithmetic Limit Laws

The definition of a limit is rather cumbersome. It involves multiple quanti-
fiers, and proving that the value of a limit is correct often involves careful
work with inequalities or clever ways of writing formulas (for instance, see
Exercise 3.2.12). Luckily, just like many functions are built from simpler
functions by adding, multiplying, and so forth, many limits can also be com-
puted from simpler limits. The theorems that help us compute limits in this
way are frequently called limit laws.

We should be clear about how we build functions out of other functions.
If f and g are two real functions, then the sum f + g is also a real function,
and it’s defined by (f + g)(x) = f(x) + g(x) whenever f(x) and g(x) are
both defined. (We describe this style of definition by saying that f + g is
defined pointwise; roughly, “the value of the sum is the sum of the values”.)
Thus, f + g has domain dom(f) ∩ dom(g). There is a subtle distinction here
between the FUNCTION f +g and the VALUE f(x)+g(x) that the function
takes when x ∈ dom(f + g).

Similarly, the difference f −g and product fg are defined pointwise: their
domain is dom(f) ∩ dom(g), and at any x ∈ dom(f) ∩ dom(g), we have (f −

4This result is also true when a = p, but then the proof is much simpler: if a = p, then
f and g have the same limit at a because the definition of limit doesn’t consider the value
of the function at a!
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g)(x) = f(x) − g(x) and (fg)(x) = f(x)g(x). We also can do multiplication
by constants: when c ∈ R, cf is the function for which (cf)(x) = cf(x)
for all x ∈ dom(f). Lastly, division f/g is defined pointwise by (f/g)(x) =
f(x)/g(x), but now the domain consists of values of x for which f(x) and
g(x) are both defined AND g(x) 6= 0.

Before starting the limit laws, it will be worth our while to get a technical
concern out of the way. Recall that in order for a function f to have a limit
as the input approaches a, f needs to be defined near a. This next result
is very helpful for showing that when you combine functions defined near a,
the result is still defined near a.

Lemma 3.15. For all a ∈ R, the intersection of two open intervals contain-
ing a is another open interval containing a. It follows that the intersection
of two deleted open intervals around a is also a deleted open interval around
a.

Strategy. Suppose that (a1, b1) and (a2, b2) are both open intervals containing
a. Certainly their intersection contains a. Now we consider the question:
what are bounds on the elements of (a1, b1)∩ (a2, b2)? If x ∈ (a1, b1)∩ (a2, b2),
then x > a1 and x > a2, i.e. a1 and a2 are lower bounds for the possible
values of x. The bigger choice of lower bound yields the stricter condition (i.e.
x > max{a1, a2} implies x > min{a1, a2}). Similarly, we know x < b1 and
x < b2, and the smaller of these upper bounds yields the stricter condition.

Proof. Let a, a1, a2, b1, b2 ∈ R be given so that a ∈ (a1, b1) ∩ (a2, b2). For all
x ∈ R, we have the following:

x ∈ (a1, b1) ∩ (a2, b2) ↔ (a1 < x < b1 and a2 < x < b2)

↔ (max{a1, a2} < x < min{b1, b2})

This shows that (a1, b1) ∩ (a2, b2) = (max{a1, a2}, min{b1, b2}), which is an
open interval. Similarly, the intersection of deleted open intervals is

((a1, b1) − {a}) ∩ ((a2, b2) − {a}) = (max{a1, a2}, min{b1, b2}) − {a}

which is a deleted open interval around a. �

Constant Multiples
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Let’s start our analysis of limit laws by considering the simplest kind of
example: multiplying a function by a constant.

Example 3.16:

It seems natural to guess that lim
x→0

x2 = 02 = 0 and lim
x→0

(3x2) = 3 · 02 = 0.

Indeed, we’ll prove these limits, but as we proceed, we should try to see what
effect the extra constant of 3 really has on the proof.

To start with the first limit, let ǫ > 0 be given. We’d like to guarantee
|x2 − 0| < ǫ provided that 0 < |x − 0| < δ for some δ > 0. (We sometimes
call δ the “control” value, since it controls how much choice we have over our
input.) Note that |x2| < ǫ iff

√

|x2| <
√

ǫ, and
√

|x2| = |x|. Thus, we can
take δ =

√
ǫ, and this finishes the first limit.

For the second limit, if ǫ > 0 is given, we’d like a control δ that guarantees
|3x2 − 0| < ǫ. Since |3x2 − 0| = 3|x2|, we have 3|x2| < ǫ iff |x2| < ǫ/3. As in
the first proof, we could take square roots of both sides and thus we’d choose
δ =

√

ǫ/3.
However, there’s another way to do this. The first proof already showed

that we could make |x2| as small as we’d like, provided we use an appropriate
choice of δ. In the second proof, we’d like to guarantee |x2| < ǫ/3 (whereas
the first proof guaranteed |x2| < ǫ). The steps of the first proof work perfectly
for this second proof if you just replace the occurrences of ǫ with ǫ/3 in the
argument. Doing this gives you δ =

√

ǫ/3 instead of δ =
√

ǫ. �

The key idea here is the tactic of “using a different ǫ”. Since our first
proof worked for arbitrary positive values of ǫ, we could use ANY positive
number we want in place of ǫ. Basically, to guarantee an accuracy of ǫ for
the second limit, we need to guarantee a “new accuracy” of ǫ/3 in the first
limit. The next theorem will use this tactic more generally.

Theorem 3.17. Let a, L ∈ R be given, and let f be a real function satisfying
lim
x→a

f(x) = L. Then, for all c ∈ R, lim
x→a

(cf(x)) = cL. In other words,

lim
x→a

(cf(x)) = c lim
x→a

f(x)

provided the limit on the right exists. This is sometimes described by saying
“constant multiples can come out of limits”.

Strategy. We want to guarantee that |cf(x) − cL| < ǫ for x close enough to
a. Since |cf(x) − cL| = |c||f(x) − L|, we would like |f(x) − L| < ǫ/|c| if
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c 6= 0 (the case of c = 0 is handled separately). Therefore, since f(x) → L
as x → a, there is some control δ > 0 on x which guarantees f(x) is within
ǫ/|c| of L. (Our “new accuracy” is ǫ/|c| instead of ǫ.)

Proof. Let a, L, f be given as described in the theorem. Let c ∈ R be given.
Since lim

x→a
f(x) exists, f is defined near a, so as dom(cf) = dom(f), the

function cf is also defined near a. If c = 0, then cf(x) = 0 for all x ∈ dom(f),
and therefore

lim
x→a

(cf(x)) = lim
x→a

0 = 0 = 0 · L

Otherwise, if c 6= 0, then let ǫ > 0 be given. Because ǫ/|c| > 0 and f(x) → L
as x → a, we may choose some δ > 0 so that any x ∈ dom(f) satisfying
0 < |x − a| < δ also satisfies |f(x) − L| < ǫ/|c|. Then, for all x ∈ dom(f)
with 0 < |x − a| < δ, we have

|cf(x) − cL| = |c||f(x) − L| < |c|
(

ǫ

|c|

)

= ǫ

as desired. �

Addition and Subtraction: Linear Combinations

Our next limit laws deal with adding and subtracting functions. Let’s
look at an example of a proof of a limit using a sum to gain an appreciation
for the tactics the argument uses.

Example 3.18:

Let f, g : R → R be defined by f(x) = x and g(x) = ⌊x⌋ for any x ∈ R.
We’ve previously seen that both f and g are continuous at 1/2. Let’s prove
that lim

x→1/2
(x + ⌊x⌋) = 1/2 + ⌊1/2⌋.

For any ǫ > 0, we want to find a control δ on x which guarantees
∣

∣

∣

∣

(x + ⌊x⌋) −
(

1

2
+

⌊

1

2

⌋)
∣

∣

∣

∣

< ǫ

when 0 < |x − 1/2| < δ. As a first step, let’s regroup things so that similar
terms come together, so

∣

∣

∣

∣

(x + ⌊x⌋) −
(

1

2
+

⌊

1

2

⌋)
∣

∣

∣

∣

=

∣

∣

∣

∣

(

x − 1

2

)

+

(

⌊x⌋ −
⌊

1

2

⌋)
∣

∣

∣

∣
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This seems helpful, because x → 1/2 and ⌊x⌋ → ⌊1/2⌋ as x → 1/2, so the
distances |x − 1/2| and |⌊x⌋ − ⌊1/2⌋| can be made as small as we’d like.

However, how do we relate |(x − 1/2) + (⌊x⌋ − ⌊1/2⌋)| to those two dis-
tances? This is where the Triangle Inequality from Theorem 3.3 becomes
useful, giving us:

∣

∣

∣

∣

(

x − 1

2

)

+

(

⌊x⌋ −
⌊

1

2

⌋)
∣

∣

∣

∣

≤
∣

∣

∣

∣

x − 1

2

∣

∣

∣

∣

+

∣

∣

∣

∣

⌊x⌋ −
⌊

1

2

⌋
∣

∣

∣

∣

We’d like this sum of two distances on the right-hand side to be less than
ǫ, and we know we can make each of those distances as small as we’d like.
Thus, let’s try to make each distance less than ǫ/2, so that the total sum is
less than ǫ. (Basically, we’re using the “use a different ǫ” tactic twice.)

Since 0 < |x − 1/2| < δ, and we want |x − 1/2| < ǫ/2, this suggests
choosing δ = ǫ/2. However, we also want to have |⌊x⌋ − ⌊1/2⌋| < ǫ/2. Using
the ideas from the proof of Theorem 3.12, we consider choosing δ = 1/2
(since ⌊x⌋ is constantly 0 on (1/2 − 1/2, 1/2 + 1/2) = (0, 1)).

This suggests two values of δ: ǫ/2 and 1/2. How do we pick ONE value of
δ that guarantees both |x− 1/2| < ǫ/2 AND |⌊x⌋ − ⌊1/2⌋| < ǫ/2? Basically,
we want 0 < |x − 1/2| < ǫ/2 and 0 < |x − 1/2| < 1/2 at the same time
(corresponding to our two choices for δ). To make this happen, we use the
stricter control on x, i.e. δ is the minimum of ǫ/2 and 1/2. Thus, when

0 < |x − 1/2| < min

{

ǫ

2
,
1

2

}

we have both |x − 1/2| < ǫ/2 and |x − 1/2| < 1/2, as we wanted. �

Using the ideas from the example above, we prove a general addition law.

Theorem 3.19. Let a, L, M ∈ R be given, and let f and g be real functions
satisfying lim

x→a
f(x) = L and lim

x→a
g(x) = M . Then lim

x→a
(f(x) + g(x)) = L+M .

In other words,

lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x)

provided the limits on the right exist. This is often described as saying “the
limit of a sum is the sum of the limits”.
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Strategy. For any ǫ > 0, we’d like to find values of x close enough to a so that
|(f(x) + g(x)) − (L + M)| < ǫ. As in the example, we’d like to group things
in terms of |f(x) − L| and |g(x) − M |, since we can control those distances.
By regrouping terms and using the Triangle Inequality, we get

|(f(x)+g(x))−(L+M)| = |(f(x)−L)+(g(x)−M)| ≤ |f(x)−L|+|g(x)−M |
To make the sum less than ǫ, we aim to make each term of the sum less

than ǫ/2. Since f(x) → L as x → a, we can make |f(x) − L| < ǫ/2 using
some control δ1 > 0 on x. Similarly, we can make |g(x) − M | < ǫ/2 using
a control δ2 > 0 on x (we use subscripts because the two functions might
not use the same value of δ). Since we want both |f(x) − L| < ǫ/2 and
|g(x) − M | < ǫ/2 at the same time, we’ll take δ to be the smaller of δ1 and
δ2, i.e. δ = min{δ1, δ2}.

(This tactic of using the Triangle Inequality, followed by bounding two
terms each by ǫ/2 and choosing δ as a minimum of two possibilities, is com-
mon enough that sometimes it is called “an ǫ/2 argument”.)

Proof. Let a, L, M, f, g be given as described in the theorem. Since lim
x→a

f(x)

and lim
x→a

g(x) exist, f and g are defined near a, so by Lemma 3.15, dom(f) ∩
dom(g) contains a deleted open interval around a. As dom(f+g) = dom(f) ∩
dom(g), f + g is defined near a.

Now, let ǫ > 0 be given. We wish to find some δ > 0 so that for all
x ∈ dom(f + g),

0 < |x − a| < δ → |(f(x) + g(x)) − (L + M)| < ǫ

Since ǫ/2 > 0, by the definition of limit applied to f and g as x → a, we may
choose values δ1, δ2 > 0 so that

∀x ∈ dom(f) (0 < |x − a| < δ1 → |f(x) − L| < ǫ/2)

and
∀x ∈ dom(g) (0 < |x − a| < δ2 → |g(x) − M | < ǫ/2)

Now, let δ = min{δ1, δ2}, so δ > 0. Let x ∈ dom(f + g) be given with
0 < |x−a| < δ. Therefore, x ∈ dom(f) and x ∈ dom(g), and by the choice of
δ, 0 < |x− a| < δ1 and 0 < |x− a| < δ2. Thus, using the Triangle Inequality,

|(f(x) + g(x)) − (L + M)| = |(f(x) − L) + (g(x) − M)|
≤ |f(x) − L| + |g(x) − M |
< ǫ/2 + ǫ/2 = ǫ
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as desired. �

Corollary 3.20. Let a, L, M ∈ R be given, and let f and g be real functions
satisfying lim

x→a
f(x) = L and lim

x→a
g(x) = M . Then lim

x→a
(f(x) − g(x)) = L−M .

In other words,

lim
x→a

(f(x) − g(x)) = lim
x→a

f(x) − lim
x→a

g(x)

provided the limits on the right exist. This is often described as saying “the
limit of a difference is the difference of the limits”.

Strategy. We’ll omit the formal proof and just describe the strategy. One
very quick way to prove this corollary is to reuse the laws we have already
proven! First, we write f(x) − g(x) as f(x) + (−1)g(x). Next, we apply
the constant-multiple law (Theorem 3.17) to (−1)g(x). Lastly, we apply the
addition law (Theorem 3.19) to f(x) + (−1)g(x).

However, it’s also worth noting that we can give a proof of the subtraction
law in nearly the same way as for the addition law. The main change is that
instead of the Triangle Inequality, we can use the result of Exercise 3.2.2.(c)
to say

|(f(x)−g(x))−(L−M)| = |(f(x)−L)−(g(x)−M)| ≤ |f(x)−L|+|g(x)−M |

After this, we can use an ǫ/2 argument with |f(x) − L| and |g(x) − M |.

To summarize the results we have shown so far, we have shown that for
any a, c, d ∈ R and any real functions f, g for which lim

x→a
f(x) and lim

x→a
g(x)

both exist, we have

lim
x→a

(cf(x) + dg(x)) = c lim
x→a

f(x) + d lim
x→a

g(x)

(this follows just by applying the previous results). A sum of the form cf(x)+
dg(x), where we only use constant multiples (i.e. no product terms like
f(x)g(x)) and sums or differences, is called a linear combination of f(x) and
g(x). With this terminology, we say that a limit of a linear combination
is a linear combination of limits, or more simply we say that taking limits
is a linear operation. The important operations of calculus are all linear
operations, as we will see in later chapters.
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Products

Now we consider products. Once again, we will need a new tactic for
handling these limits, which we illustrate with an example.

Example 3.21:

We showed earlier that x2 → 0 as x → 0. Now, let’s show x2 → 1 as x → 1.
Perhaps surprisingly, this will be a much harder task.

Let ǫ > 0 be given, and we wish to find a control δ on x that guarantees
|x2 − 1| < ǫ when 0 < |x − 1| < δ. Since we can make the distance |x − 1|
small, we ought to try and express |x2 − 1| in terms of |x− 1| if possible. To
do this, we factor to get |x2 − 1| = |x − 1||x + 1|.

One tempting idea is to say “if we want |x − 1||x + 1| < ǫ, i.e. |x − 1| <
ǫ/|x + 1|, then why not pick δ = ǫ/|x + 1|?” This doesn’t work, because in
the limit definition, δ can only depend on ǫ, not on x as well. (After all, we
choose x based on δ, since δ tells us how to control the x’s, so having δ based
on x as well would lead to circular reasoning!)

However, a modification of this idea does work: let’s try to find a good
bound for |x + 1| which doesn’t depend on δ, and then we’ll use that bound
to help us pick δ. The key tactic here is that since we’re taking a limit as x
goes to 1, we can make x as close to 1 as we’d like. This allows us to make
bounds on x, which lead to bounds on x + 1.

Suppose we require that |x− 1| < 1/2 (i.e. we consider 1/2 as a possible
choice for δ). Then, 1/2 < x < 3/2, so 3/2 < x + 1 < 5/2. This means that

3

2
|x − 1| < |x − 1||x + 1| <

5

2
|x − 1|

Thus, to make |x − 1||x + 1| < ǫ, it’s enough to guarantee (5/2)|x − 1| < ǫ,
i.e. |x − 1| < 2ǫ/5, so we are led to consider 2ǫ/5 as another choice for δ.

As in the proof of the addition law, we now have two possibilities for δ,
and we go with the stricter one. Thus, we take δ = min{1/2, 2ǫ/5}. �

Using ideas from the approach in the previous example, we come up with
the following rule:

Theorem 3.22. Let a, L, M ∈ R be given, and let f and g be real functions
satisfying lim

x→a
f(x) = L and lim

x→a
g(x) = M . Then lim

x→a
(f(x)g(x)) = LM . In

other words,

lim
x→a

(f(x)g(x)) =
(

lim
x→a

f(x)
)(

lim
x→a

g(x)
)
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provided the limits on the right exist. We sometimes describe this as “the
limit of a product is the product of the limits”.

Strategy. As usual, when ǫ > 0, we wish to make |f(x)g(x) − LM | < ǫ for
values of x close to a. However, unlike with the addition law, it’s not clear
how to write |f(x)g(x)−LM | in terms of |f(x)−L| or |g(x)−M |. The trick
here is to add and subtract a term:

f(x)g(x) − LM = f(x)g(x) − Lg(x) + Lg(x) − LM

= g(x)(f(x) − L) + L(g(x) − M)

Therefore, by the Triangle Inequality,

|f(x)g(x) − LM | ≤ |g(x)||f(x) − L| + |L||g(x) − M |

We’d like to make the whole sum less than ǫ, so as in the proof of the addition
law, let’s make each term in the sum less than ǫ/2.

The second term of the sum is easy to estimate, because L does not
depend on x. If we want |L||g(x)−M | less than ǫ/2, we should make |g(x)−
M | less than ǫ/(2|L|), but that’s only allowed when L 6= 0. By making
|g(x)−M | even smaller, say less than ǫ/(2|L|+1), we’ll have |L||g(x)−M | <
ǫ/2 even when L = 0. To ensure |g(x)−M | is that small, we use some control
δ1 on x (as in the proof of the addition law, we’ll need to consider several
different possibilities for the control δ).

The first term of the sum is harder, because |g(x)| depends on x. As in
the previous example, let’s find an upper bound on |g(x)| which IS constant,
and we’ll use that constant to help us get another choice of δ.

Since g(x) → M as x → a, we should expect that g(x) is close to M
for x near a. In fact, the definition of limit says we can guarantee the
error |g(x) − M | is as small as we’d like. To be definite, let’s say we want
|g(x) − M | < 1, so that g(x) is between M − 1 and M + 1. In order to get
this accuracy, we need some control δ2 on x.

With this insight, we should be able to say that |g(x)||f(x)−L| ≤ |M +
1||f(x) − L|, which we want to be less than ǫ/2. This is almost correct, but
it has one error. If M is negative, then it is possible that g(x) ≤ M + 1 does
NOT imply |g(x)| ≤ |M + 1|. However, we can fix this by noting that it is
true that |g(x)| ≤ |M | + 1: writing |g(x)| as |M + (g(x)−M)|, we find that

|g(x)| = |M + (g(x) − M)| ≤ |M | + |g(x) − M | ≤ |M | + 1
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by the Triangle Inequality.

Hence, we have |g(x)||f(x)−L| ≤ (|M |+1)|f(x)−L|. By picking a third
control δ3 on x, we can guarantee that |f(x) − L| < ǫ/(2(|M | + 1)), so that
(|M |+1)|f(x)−L| < ǫ/2. Finally, we have all the pieces we want, but we’ve
introduced the need for three possible controls δ1, δ2, and δ3 on x. We’ll go
with the strictest one, i.e. the minimum.

Proof. Let a, L, M, f, g be given as described in the theorem. Because f and
g are defined near a (since they have limits as x → a), Lemma 3.15 shows
that dom(f) ∩ dom(g) contains a deleted open interval around a. Hence, fg
is defined near a.

Now, let ǫ > 0 be given. We wish to find δ > 0 so that for all x ∈ dom(fg),

(0 < |x − a| < δ) → (|f(x)g(x) − LM | < ǫ)

First, because g(x) → M as x → a, and ǫ/(2|L|+1) > 0, by the definition
of limit, we may choose δ1 > 0 so that

∀x ∈ dom(g)

(

0 < |x − a| < δ1 → |g(x) − M | <
ǫ

2|L| + 1

)

Second, by the same reasoning, we may choose δ2 > 0 so that

∀x ∈ dom(g) (0 < |x − a| < δ2 → |g(x) − M | < 1)

Thus, using the Triangle Inequality, if x ∈ dom(g) and 0 < |x−a| < δ2, then

|g(x)| = |M + (g(x) − M)| ≤ |M | + |g(x) − M | < |M | + 1

Third, because f(x) → L as x → a, and ǫ/(2(|M |+1)) > 0, by the definition
of limit, we may choose δ3 > 0 so that

∀x ∈ dom(f)

(

0 < |x − a| < δ3 → |f(x) − L| <
ǫ

2(|M | + 1)

)

Choose δ = min{δ1, δ2, δ3}. Thus, for all x ∈ dom(fg) with 0 < |x− a| <
δ, we have x ∈ dom(f), x ∈ dom(g), 0 < |x − a| < δ1, 0 < |x − a| < δ2, and
0 < |x−a| < δ3. By the choices of δ1, δ2, and δ3, and the Triangle Inequality,
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we find

|f(x)g(x) − LM | = |f(x)g(x) − Lg(x) + Lg(x) − LM |
= |g(x)(f(x) − L) + L(g(x) − M)|
≤ |g(x)||f(x) − L| + |L||g(x) − M |

< (|M | + 1)

(

ǫ

2(|M | + 1)

)

+ |L|
(

ǫ

2|L| + 1

)

≤ ǫ

2
+

ǫ

2
= ǫ

as desired. �

Quotients

With the product law available, we’d like to handle quotients. To simplify
our work, we’ll prove a law allowing us to take limits of reciprocals easily.
Afterward, if f and g are real functions defined near a, we’ll write the fraction
f/g as the product f · (1/g), so the product law and reciprocal law together
tell us the limit of the fraction.

To see how handling limits of reciprocals works, let’s try an example.

Example 3.23:

We’ve already seen that 1/x has no limit as x → 0. However, we do have a
limit as x → 1: we’ll prove 1/x → 1 in that case.

If ǫ > 0 is given, we’d like to find out how close to 1 we want x to be in
order to insure |1/x− 1| < ǫ. A common tactic with fractions like these is to
use a common denominator

∣

∣

∣

∣

1

x
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

1 − x

x

∣

∣

∣

∣

=
|x − 1|
|x|

since |1 − x| = |−(x − 1)| = |x − 1|. We’re taking a limit as x → 1, so we
can make |x− 1| as small as we’d like. However, we need to find a bound on
1/|x| which doesn’t depend on δ (like we did with our product law example).

The idea is to notice once again that x can be made as close to 1 as
we like, so |x| can be made close to 1. Say, for example, that we decide to
make |x − 1| < 1/2 (i.e. we consider 1/2 as a possible choice for δ), so that
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1/2 < x < 3/2. It follows then that 1/2 < |x| < 3/2, so 2/3 < 1/|x| < 2/1
and

2

3
|x − 1| <

|x − 1|
|x| < 2|x − 1|

Thus, we need only guarantee that 2|x − 1| < ǫ, which suggests ǫ/2 as a
possibility for δ. With two possibilities available (1/2 and ǫ/2), we make δ
the minimum of those two. �

Our example earlier used two important techniques. First, it made a
common denominator out of a subtraction. Second, it estimated the denom-
inator with bounds, much like the tactic used in the product law. We use
those techniques more generally to make a reciprocal law:

Lemma 3.24. Let a, M ∈ R be given, and let g be a real function for which
lim
x→a

g(x) = M . If M 6= 0, then g is defined and nonzero near a, and

lim
x→a

1

g(x)
=

1

M

Strategy. If ǫ > 0, then we’d like to find out how close x should be to a
to guarantee |1/g(x) − 1/M | < ǫ. By collecting the terms over a common
denominator, we find

∣

∣

∣

∣

1

g(x)
− 1

M

∣

∣

∣

∣

=

∣

∣

∣

∣

M − g(x)

Mg(x)

∣

∣

∣

∣

=
|g(x) − M |
|Mg(x)|

since |M − g(x)| = |−(g(x) − M)| = |g(x)−M |. Since g(x) → M as x → a,
the numerator |g(x)−M | can be made as small as we’d like. We need to get
bounds on the denominator |g(x)| so that we can estimate the entire fraction.

Since g(x) → M , the values of g(x) can be made close to M . In particular,
there is a control δ1 > 0 on x which guarantees that |g(x) − M | < |M |/2
(remember that M could be negative, and distances need to be nonnegative).
It follows that g(x) is between M/2 and 3M/2, and thus g is nonzero near a.

Thus, we have
|M |2

2
< |M ||g(x)| <

3|M |2
2

and therefore

2|g(x) − M |
3|M |2 <

|g(x) − M |
|Mg(x)| <

2|g(x) − M |
|M |2
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Therefore, we need 2|g(x) − M |/|M |2 < ǫ, which suggests taking a control
δ2 to guarantee |g(x) − M | < |M |2ǫ/2. By taking a control stricter than δ1

and δ2, such as their minimum, we are done.
An alternate way to finish, which we’ll use in the proof for the sake of

variety, is to notice that our two controls are each trying to influence the
same limit for g. Thus, we only need one control value δ corresponding to
the tighest accuracy we need, i.e. one value of δ to guarantee that

|g(x) − M | < min

{ |M |
2

,
|M |2ǫ

2

}

Proof. Let a, g, M be given as described in the theorem. Let ǫ > 0 be given.
We wish to find δ > 0 so that for all x ∈ dom(1/g),

(

0 < |x − a| < δ →
∣

∣

∣

∣

1

g(x)
− 1

M

∣

∣

∣

∣

< ǫ

)

Since g(x) → M as x → a, we may choose δ > 0 so that for all x ∈ dom(g),

(

0 < |x − a| < δ → |g(x) − M | < min

{ |M |
2

,
|M |2ǫ

2

})

In particular, this implies that for all x ∈ dom(g) ∩ ((a − δ, a + δ) − {a}),
|g(x) − M | < |M |/2, so g(x) is between M/2 and 3M/2. In particular,
g(x) 6= 0. As g is defined near a (it has a limit as x → a), Lemma 3.15 shows
that g is defined and nonzero in an open interval around a, except possibly
at a.

Now, let x ∈ dom(1/g) ⊆ dom(g) be given with 0 < |x−a| < δ. We have
|g(x)| > |M |/2, and we also have |g(x) − M | < |M |2ǫ/2. Therefore,

∣

∣

∣

∣

1

g(x)
− 1

M

∣

∣

∣

∣

=

∣

∣

∣

∣

M − g(x)

Mg(x)

∣

∣

∣

∣

=
|g(x) − M |
|Mg(x)|

<
|M |2ǫ/2

|M |2/2
= ǫ

as desired. �
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Corollary 3.25. Let a, L, M ∈ R be given, and let f and g be real functions
satisfying lim

x→a
f(x) = L and lim

x→a
g(x) = M . Also assume that M 6= 0. Then

lim
x→a

(f(x)/g(x)) = L/M . In other words,

lim
x→a

(

f(x)

g(x)

)

=
lim
x→a

f(x)

lim
x→a

g(x)

provided the fraction on the right is defined. This is sometimes described as
“the limit of a quotient is the quotient of the limits”.

Strategy. The strategy was mentioned before Lemma 3.24. All we have to
do is write f/g as f · (1/g) and use the reciprocal and product laws.

Proof. Let a, L, M, f, g be given as described. By Lemma 3.24, g is defined
and nonzero in an open interval around a, except possibly at a. As f is also
defined near a, Lemma 3.15 tells us that dom(f) ∩ dom(g) contains an open
interval around a (except possibly a itself) within which g is nonzero. Thus,
f/g is defined near a.

By using the product law (Theorem 3.22) and the previous lemma, we
calculate

lim
x→a

(

f(x)

g(x)

)

= lim
x→a

(

f(x) · 1

g(x)

)

= L · 1

M
=

L

M

as desired. �

Basic Examples

Now, let’s put the limit laws to good use by computing some limits. It is
much easier to use the limit laws when possible than to use the definition of
limit to prove these limits are correct.

In the last section, we saw that constant functions and the identity func-
tion idR (which maps x to x for each x ∈ R) are continuous everywhere. It
follows that the functions which map x ∈ R to x2, x3, etc. are all products
of idR and are also continuous everywhere. For instance, for any a ∈ R,

lim
x→a

(x2) = lim
x→a

(x · x) =
(

lim
x→a

x
)(

lim
x→a

x
)

= a · a = a2
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Note that we wrote our calculations as if we went from left to right. However,
technically, we need to know that lim

x→a
x exists BEFORE we are allowed to

use the product law, so the justifications really go from right to left.
As a longer example, we do the following computation for any a ∈ R (the

law used as justification is provided with each step):

lim
x→a

(3x3 + 2x + 1) = lim
x→a

(3x3) + lim
x→a

(2x) + lim
x→a

(1) Sum

= 3 lim
x→a

(x3) + 2 lim
x→a

x + lim
x→a

1 Constant Multiple

= 3
(

lim
x→a

x
)3

+ 2 lim
x→a

x + lim
x→a

1 Product

= 3a3 + 2a + 1 Known limits

(Note that when using the sum and product law above, we really used them
twice, since we had sums and products of three terms.)

More generally, the following theorem is left as an induction exercise:

Theorem 3.26. Every polynomial function, i.e. every function f : R → R

of the form f(x) = anxn + an−1x
n−1 + · · · + a1x + a0 for some n ∈ N∗ and

some an, an−1, . . . , a0 ∈ R, is continuous everywhere.

Similarly, we can easily compute limits of fractions of polynomials:

Corollary 3.27. Every rational function, i.e. every function of the form
f/g where f and g are polynomials, is continuous at every point in its do-
main.

Example 3.28:

The limit laws can apply to more than just sums or products of two functions.
By using these laws over and over, we can apply them to any finite sum or
products of functions. To help state this result clearly, we should introduce
some notation for writing sums and products more compactly.

When a, b are integers with a ≤ b, and f is a function defined on the
integers from a to b, we write the sum

f(a) + f(a + 1) + f(a + 2) + · · · + f(b)

using the summation operator
∑

as

b
∑

i=a

f(i)
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Here, the
∑

symbol is a capital sigma (remember that the “s” is for “sum”).
The subscript i = a tells us that we are using the variable i as an index of
summation which starts counting at a. The superscript of b tells us that the
value of i counts up to b. The whole expression is read as “the sum from
i = a to b of f(i)”, and this amounts to plugging in a for i, then a + 1 for i,
and so forth up to plugging in b for i, and finally adding up all the results
together. (Also, if b < a, then we treat the whole sum as just 0, i.e. the “sum
of nothing”.)

For example, we have the following sums:

5
∑

i=1

i = 1 + 2 + 3 + 4 + 5 = 15

4
∑

i=2

i2 = 22 + 32 + 42 = 29

(in the first sum, f is just the identity function, and in the second sum, f is
the function which squares numbers). As another example, a polynomial of

the form anx
n + an−1x

n−1 + · · ·+ a1x + a0 can also be expressed as
n
∑

i=0

aix
i.

The variable i is not the only valid choice of name for an index of sum-
mation. Any variable that isn’t already being used for some other purpose
can be used instead. For instance, the following sums are all equal:

n
∑

i=0

f(i) =

n
∑

j=0

f(j) =

n
∑

q=0

f(q)

(When the variable name can be changed freely like this, sometimes we say
the variable is a dummy variable.) However, the index of summation is only
in scope during the summation, and the variable has no meaning when the

summation is done. Thus, an expression like

(

n
∑

i=0

i

)

+ i2 makes no sense.

With this notation, we can now generalize the sum law to the following.
Suppose that a ∈ R, n ∈ N, and that for each i from 1 to n, fi is a real
function and Li is a real number such that fi(x) → Li as x → a. Then

lim
x→a

(

n
∑

i=1

fi(x)

)

=

n
∑

i=1

(

lim
x→a

fi(x)
)

=

n
∑

i=1

Li

This result is proven by induction on n (using Theorem 3.19 to carry out the
inductive step), so we omit the proof.
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There is also similar notation for products using the product operator
∏

(which is a capital “pi”), so instead of

f(a) · f(a + 1) · · · · · f(b)

for integers a, b and a function f , we can write

b
∏

i=a

f(i)

For example, we have the following products:

4
∏

i=1

i = (1)(2)(3)(4) = 24

−1
∏

i=−3

i2 = (−3)2(−2)2(−1)2 = 36

We also have the convention is that when b < a, the product is 1.
You should formulate and prove a limit law for handling products. �

Example 3.29:

The Quotient Law allows us to compute limits of quotients when the denom-
inator does not approach 0. If the denominator does approach 0, that does
NOT necessarily mean the limit fails to exist. Consider the example of

lim
x→0

x

x

Although x/x is not defined when x = 0, for all other values of x, x/x = 1.
Therefore, since the limit is unaffected by whether the function is defined at
0 (only by whether it is defined NEAR 0), we have

lim
x→0

x

x
= lim

x→0
1 = 1

This is an example of what we sometimes call a 0/0 form (read as “0
over 0 ”), where both the numerator and denominator approach 0. When you
have a 0/0 form, the Quotient Law does not apply, so the formula should be
rewritten in a form which is not 0/0. In some cases, the limit exists, and in
some cases, it does not. For instance,

lim
x→0

x

x2
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is another 0/0 form, but this limit does not exist (since lim
x→0

1

x
does not exist,

as shown in the previous section.)
One common tactic with 0/0 forms is to try and cancel common factors,

as the next two calculations show:

lim
x→1

x2 − x

x2 − 3x + 2
= lim

x→1

x(x − 1)

(x − 2)(x − 1)
= lim

x→1

x

x − 2
=

1

1 − 2
= −1

lim
x→−1

x + 1

x2 − 1
= lim

x→−1

x + 1

(x − 1)(x + 1)
= lim

x→−1

1

x − 1
=

1

−1 − 1
=

−1

2

�

Variants of the Limit Definition: Asymptotes

Intuitively, when a, L ∈ R and f is a real function defined near a, the
statement

lim
x→a

f(x) = L

says that f(x) can be made as close to L as desired by restricting x to be
sufficiently close to a. In this definition, a and L are finite. However, there
are also variations of the basic limit definition that consider “infinite” inputs
or outputs. The main definitions are presented more formally in the exercises
(see Definitions 3.30, 3.31, 3.32, and 3.33), but we will still mention the main
ideas here.

When L ∈ R, the statement

lim
x→∞

f(x) = L

informally means that f(x) can be made as close to L as desired by taking
x sufficiently large, i.e. “sufficiently close to infinity.” There is a similar
definition for a limit as x → −∞, i.e. when x is negative with a sufficiently
large magnitude. If f(x) has a finite limit L as either x → ∞ or x → −∞,
then we call the line y = L a horizontal asymptote for f . (Thus, a function
can have at most two horizontal asymptotes: one as x → ∞ and one as
x → −∞.)

On the other hand, we have limit definitions to address what happens
when the values of f grow arbitrarily large or small. When a ∈ R, the
statement

lim
x→a

f(x) = ∞
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informally means that the values of f(x) can be made arbitrarily large by
restricting x to be close enough to a. There is a similar definition for saying
f(x) → −∞ as x → a. When f(x) approaches ∞ or −∞ as x → a, we call
the line x = a a vertical asymptote of f .

There are some other variants on these definitions, such as one-sided
vertical asymptotes or “double-infinity” limits like

lim
x→∞

f(x) = ∞

The reader is encouraged to try formulating definitions of those for him-
self/herself. Furthermore, many of our limit laws, slightly modified, hold for
these variants of the limit definition. To get a sense of how the proofs change,
consult the exercises.

Remark. By convention, when we say a limit exists, we mean to say that
the limit value L is finite. At a vertical asymptote, we do not say the limit
“exists”; however, it fails to exist in a very special way.

3.4 Exercises

1. Find the following limits using the limit laws. Justify each step with
an appropriate law.

(a) lim
x→0

x2 − 1

x + 3
(b) lim

x→1

x

1 + x
1+x

2. The limit laws from the last section also work when the two-sided limits
are replaced with one-sided limits (the proofs are quite similar). For
instance, if f(x) → L and g(x) → M as x → a+, then f(x) + g(x) →
L + M as x → a+. Using these laws (except in part (a)), find the
following limits, justifying your steps:

(a) lim
x→0

|x|

(b) lim
x→0+

|x|
x

(c) lim
x→a−

⌊x⌋
x

provided that a ∈ Z

and a 6= 0

(d) lim
x→0−

√
x2

x

(Hint for (a): Consider cases based on the sign of x.)
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3. (a) For which value(s) of a ∈ R does lim
x→a

(x2 + 1) = 2a?

(b) If a ∈ R is given, and f : R → R is defined by

∀x ∈ R f(x) =

{

ax2 if x ≤ 2

bx + 5 if x > 2

then for which value(s) of b (depending only on a) is f continuous
at 2?

4. Find the following limits:

(a) lim
x→1

x2 − 1

x2 − 2

(b) lim
x→1

x2 − 1

x2 − x

(c) lim
x→2

x4 − 16

x2 − x − 2

(d) lim
h→0

(x + h)2 − x2

h

(e) lim
x→0

1

x(x + 1)
+

1

x(x − 1)

(Hints: For (d), h is the limit variable, so x should be treated as a
constant. For (e), use a common denominator.)

5. Prove Theorem 3.26 by proving the following statement by induction
on n ∈ N: for all a0, a1, . . . , an ∈ R, the function which takes x ∈ R to

n
∑

i=0

aix
i is continuous everywhere. Also prove Corollary 3.27.

6. This exercise outlines a proof of the Limit Comparison Theorem (The-
orem 3.34), which is stated more formally in the next section.

(a) Suppose that f is a real function defined near a satisfying f(x) ≥ 0
for all x near a (except possibly not at a). Prove that if lim

x→a
f(x)

exists, then lim
x→a

f(x) ≥ 0. (Hint: Do a proof by contradiction.)

(b) Now let f be a real function with the property that for some
constant M , f(x) ≥ M for all x near a. Show that if lim

x→a
f(x)

exists, then lim
x→a

f(x) ≥ M . (Hint: Use part (a) on a different

function.)

(c) Now suppose f and g are real functions defined near a satisfying
f(x) ≥ g(x) for all x near a. Prove that if lim

x→a
f(x) and lim

x→a
g(x)

both exist, then lim
x→a

f(x) ≥ lim
x→a

g(x).
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For the next problems, we need some new definitions. Suppose that f is a
real function whose domain contains some interval of the form (a,∞) (let’s
say such functions are defined near infinity). Thus, f(x) is defined for “very
large” values of x. How do we express a statement saying that the values
of f(x) approach a limit L as x becomes “very large”? We want to say that
f(x) can be made as close to L as desired by taking x “large enough”. The
notion of “large enough” is formalized by saying there is some cutoff value M
so that for all x ≥ M , f(x) is close enough to L. (See Figure 3.7).

L
L+Ε

L-Ε

M

Figure 3.7: A limit L as x → ∞

Definition 3.30. Let L ∈ R be given, and let f be a real function defined
near infinity. We say that f(x) approaches L as x approaches infinity, also
written in any of the following ways

lim
x→∞

f(x) = L f(x) → L as x → ∞ f(x) −→
x→∞

L

if the following holds:

∀ǫ > 0 ∃M > 0 ∀x ∈ dom(f) (x ≥ M → |f(x) − L| < ǫ)

Similarly, we can define limits that go to −∞ by talking about taking values
of x which are “negative enough”:

Definition 3.31. Let L ∈ R be given, and let f be a real function defined
on an interval of the form (−∞, a) (i.e. f is defined near negative infinity).
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We say that f(x) approaches L as x approaches negative infinity, also written
in any of the following ways

lim
x→−∞

f(x) = L f(x) → L as x → −∞ f(x) −→
x→−∞

L

if the following holds:

∀ǫ > 0 ∃M < 0 ∀x ∈ dom(f) (x ≤ M → |f(x) − L| < ǫ)

7. Use the definitions above to prove lim
x→∞

1

x
= 0 and lim

x→−∞
1

x
= 0.

8. Use the definitions above to prove that
1

x
+

2

x2
→ 0 as x → ∞. (Hint:

You’ll want to do a form of ǫ/2 argument. If you handle 1/x and 2/x2

separately, each of them has their own “cutoff” M . How do you pick
one cutoff that works for both?)

9. State analagous versions of the constant multiple, sum, difference, prod-
uct, and quotient laws for limits as x → ∞ or x → −∞. Describe
informally what changes need to be made to the original proofs. (Hint:
Instead of taking a min of “δ” values, the previous exercise suggests
you should do something different with multiple “M” values.)

10. (a) Find lim
x→∞

x2

x2 + 1
= 1 by multiplying the numerator and denomi-

nator by 1/x2. (Also, use Exercise 3.4.7 to help).

(b) Using a similar tactic to the last part, compute lim
x→∞

3x2 + 2x

4 − x2
.

(c) Compute lim
x→∞

x − 5

x2 + 7
.

For these next exercises, we consider functions where limits fail to exist,
but they fail to exist in a special way. The function whose value at any x 6= 0
is 1/x, for example, does not have a limit as x → 0, and this is because its
values become arbitrarily large as x gets close to 0 from the right. To describe
this situation, we say that 1/x → ∞ as x → 0+. The formal definition of this
uses a notion of “cutoff point” similar to the definition as x → ∞, but this
time we use the cutoff with the function outputs instead of with the function
inputs:

PREPRINT: Not for resale. Do not distribute without author’s permission.



138 Section 3.4: Exercises

Definition 3.32. Let a ∈ R be given, and let f be a real function defined
near a. We say that f(x) approaches infinity as x approaches a, also written
in any of the following ways

lim
x→a

f(x) = ∞ f(x) → ∞ as x → a f(x)−→
x→a

∞

if the following holds:

∀M > 0 ∃δ > 0 ∀x ∈ dom(f) (0 < |x − a| < δ → f(x) ≥ M)

Thus, the idea is that no matter what cutoff M you specify for values of
f(x), eventually by taking x close enough to a with a control δ, the values
of f(x) surpass that cutoff. There is a similar definition for functions whose
values become very negative:

Definition 3.33. Let a ∈ R be given, and let f be a real function defined
near a. We say that f(x) approaches negative infinity as x approaches a, also
written in any of the following ways

lim
x→a

f(x) = −∞ f(x) → −∞ as x → a f(x)−→
x→a

−∞

if the following holds:

∀M < 0 ∃δ > 0 ∀x ∈ dom(f) (0 < |x − a| < δ → f(x) ≤ M)

Remark. We note that if f(x) → ∞ or f(x) → −∞ as x → a, we do NOT
say that f(x) has a limit as x → a. However, saying that f(x) → ∞ or
f(x) → −∞ as x → a does tell us information about SPECIFICALLY why
there fails to be a finite limit for f(x) as x → a, and this can be useful
information.

11. (a) Formulate similar definitions for what it means to write f(x) → ∞
or f(x) → −∞ as x → a+ or x → a−. These are one-sided versions
of the definitions above.

(b) Use your definition to prove that 1/x → ∞ as x → 0+ and 1/x →
−∞ as x → 0−.

12. Prove that 1/x2 → ∞ as x → 0.
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13. (a) Formulate a definition for what it means to write f(x) → ∞ as
x → ∞. (We suggest you combine the ideas from all the definitions
you’ve seen in these exercises.) There are similar definitions using
−∞ instead of ∞, but you don’t need to write them all.

(b) Use your definition to prove that x2 → ∞ as x → ∞.

(c) Prove that for any n ∈ N∗, xn → ∞ as x → ∞. (It turns out you
do not need to use nth roots to prove this, nor do you need to use
induction!)

(d) Prove that lim
x→∞

x2 − 1

3x + 1
= ∞ by using techniques like those in Ex-

ercise 3.4.10. (Hint: Divide x from the top and bottom, so the
new denominator approaches 3 as x → ∞. Thus, when x is large,
you can find a constant upper bound for this new denominator.
Use this to make a lower bound for the entire fraction, where the
lower bound goes to ∞.)

14. Prove that lim
x→0

1

x2
+ x = ∞. (Hint: With an appropriate choice of δ,

you can make sure that x > −1. If you want 1/x2+x to be greater than
a cutoff M , how large do you want to make 1/x2? Does this suggest a
value of δ?)

15. (a) Prove that for any a, L ∈ R and any real functions f and g defined
near a, if f(x) → ∞ and g(x) → L as x → a, then f(x) + g(x) →
∞ as x → a. (Thus, we have essentially “∞ + L = ∞”.)

(b) Prove that if f(x) → ∞ and g(x) → ∞ as x → a, then f(x) +
g(x) → ∞ as x → a. (“∞ + ∞ = ∞”.)

(c) For any r ∈ R, find examples of real functions f and g defined
near 0 for which f(x) → ∞, g(x) → −∞, and f(x) + g(x) → r as
x → 0. (This shows that sums of the form “∞−∞” don’t have
any clear outcome, similar to 0/0 forms.)

3.5 More Limit Theorems

We’ve now shown how limits interact with addition, multiplication, and so
forth. However, we still need some more techniques for computing limits
of many functions which occur frequently. First, we’ll analyze how limits
and inequalities are related. This will lead us to a useful theorem, called
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the Squeeze Theorem, which helps us find limits by analyzing limits of lower
and upper bounds. After that, we’ll look at how limits work with function
composition; this is especially important because many complicated functions
are composites of simple functions.

Inequalities with Limits

Suppose that we have two real functions, f and g, which are both defined
near a point a. Also, suppose f is smaller near a, i.e. f(x) ≤ g(x) for all x in
a deleted open interval around a. It makes sense that if f and g have limits
at a, then f should have the smaller limit. After all, if f(x) is never larger
than g(x) when x is near a, then there’s no reason that the situation should
suddenly switch in the limit!

More precisely, we have the following theorem, whose proof is outlined in
Exercise 3.4.6:

Theorem 3.34 (Limit Comparison Theorem). Let a ∈ R be given, and
suppose f and g are real functions defined near a. Assume that f(x) ≤ g(x)
for all x near a, and also assume that the limits of f(x) and g(x) exist as
x → a. Then

lim
x→a

f(x) ≤ lim
x→a

g(x)

This theorem is often summarized by saying “limits preserve inequalities” or
by saying “you can take limits in an inequality, if the limits exist.”

It is worth noting, though, that the Limit Comparison Theorem requires
the limits of each side of the inequality to exist. Thus, it cannot be used to
prove a limit exists. To illustrate this, we offer the following example.

Example 3.35:

Consider the following complicated function f : R → R:

∀x ∈ R f(x) =

{

x if x ∈ Q

−x if x 6∈ Q

Because there are infinitely many rationals and infinitely many irrationals
inside every interval, the values of f keep jumping between the curves y = x
and y = −x. Thus, it’s impossible to reliably graph this function!
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Suppose we consider positive values of x. As the values of f(x) jump
between x and −x, the distance jumped, 2x, gets very small as x goes to 0.
This gives us the idea that the function starts “settling down” near x = 0.

Another way to describe the “jumpiness” of the function f is to use in-
equalities. In our case, for x > 0, we have the very convenient inequalities

−x ≤ f(x) ≤ x

Now, if we can take the limit of both sides of an inequality, then we get

lim
x→0

−x ≤ lim
x→0

f(x) ≤ lim
x→0

x

This seems to show that 0 ≤ lim
x→0

f(x) ≤ 0, and hence f(x) → 0 as x →
0. Unfortunately, this work is not justified, because the Limit Comparison
Theorem can only be used IF ALL THE LIMITS ARE KNOWN TO EXIST.
Since we don’t yet know whether lim

x→0
f(x) exists ahead of time, we’re not

allowed to write limits into the inequality. �

hHxL

gHxL

fHxL

Figure 3.8: Squeezing g(x) between f(x) and h(x) as x → a

Despite this technical issue, however, the limit of f(x) does exist as x → 0,
and that limit is 0. We obtain this by using a nice theorem called the Squeeze
Theorem. It applies to functions that have upper and lower bounds with the
same limit as x → a for some a. See Figure 3.8, where g(x) is always between
f(x) and h(x). As x → a, both f(x) and h(x) approach the same value, so
it looks like they “squeeze” g(x) toward the same limit.
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Theorem 3.36 (Squeeze Theorem). Let a ∈ R be given, and let f, g, h
be real functions all defined near a. Suppose that for all x near a, f(x) ≤
g(x) ≤ h(x). If lim

x→a
f(x) and lim

x→a
h(x) both exist and equal the same number

L, then lim
x→a

g(x) = L also.

Strategy. First, let’s perform a useful reduction. We subtract f(x) from all
sides of the given inequality to get

0 ≤ g(x) − f(x) ≤ h(x) − f(x)

By the limit laws and our assumptions on f and h, we know that h(x) −
f(x) → 0 as x → a. We’d now like to show that g(x)−f(x) goes to 0 as well
as x → a. (This is going to be easier than our original task, because we now
have only two functions, g(x)− f(x) and h(x)− f(x), to consider instead of
three.) Once we know g(x)−f(x) → 0 as x → a, we can add f(x) again and
use the limit laws to conclude g(x) → L.

Thus, given ǫ > 0, we’d like to find a control δ > 0 on x which guarantees
|g(x) − f(x)| < ǫ. In this case, since g(x) − f(x) ≥ 0, we just need to show
g(x)−f(x) < ǫ (this is another handy benefit of the earlier reduction). Since
g(x) − f(x) ≤ h(x) − f(x), it suffices to show h(x) − f(x) < ǫ if x is close
enough to a. Since h(x) − f(x) → 0, we just need to use the definition of
limit for h(x) − f(x), and we’ll be done.

Proof. Let a, L, f, g, h be given as described in the theorem. We first prove
that g(x)− f(x) → 0 as x → a. Since g and f are defined near a, so is g− f .
Now, let ǫ > 0 be given. We wish to find δ > 0 so that for all x ∈ dom(g−f),

0 < |x − a| < δ → |g(x) − f(x)| < ǫ

Because f(x) and h(x) both approach L as x → a, we have h(x)− f(x) → 0
as x → a by the limit laws. Thus, we may choose some δ > 0 such that

∀x ∈ dom(h − f) (0 < |x − a| < δ → |h(x) − f(x)| < ǫ)

Furthermore, because f(x) ≤ g(x) ≤ h(x) for all x near a, δ can be chosen
small enough to also guarantee that for all x ∈ R satisfying 0 < |x − a| < δ,
f(x) ≤ g(x) ≤ h(x), so h(x) − f(x) = |h(x) − f(x)| < ǫ.

Also, whenever 0 < |x − a| < δ, we have

|g(x) − f(x)| = g(x) − f(x) < h(x) − f(x) = |h(x) − f(x)| < ǫ
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This finishes the proof that g(x) − f(x) → 0 as x → a.
To end the proof, since g(x) − f(x) and f(x) both have limits as x → a,

we use the limit laws to conclude that

lim
x→a

g(x) = lim
x→a

(g(x) − f(x)) + lim
x→a

f(x) = 0 + L = L

�

With the Squeeze Theorem, we can finally finish the proof that for our
“jumpy” function f from earlier, we have f(x) → 0 as x → 0. Since −x ≤
f(x) ≤ x for all x ∈ R, and both −x and x approach 0 as x → 0, the Squeeze
Theorem immediately tells us f(x) → 0 as well.

Example 3.37:

The Squeeze Theorem is often very useful with trigonometric functions be-
cause sin and cos always produce values between −1 and 1, so they are
convenient for inequalities. As an example, let’s show

lim
x→0

x sin

(

1

x

)

= 0

Note that the product law for limits does NOT apply here because we don’t
know whether sin(1/x) has a limit as x → 0. (The issue is that 1/x has no
limit as x → 0. See Exercise 3.6.8 for more details.) Without the product
law, our next best bet is to find bounds for x sin(1/x) and use the Squeeze
Theorem. This seems promising, because for any x 6= 0, −1 ≤ sin(1/x) ≤ 1.

When x > 0, we can multiply x throughout in the inequalities and get

−x ≤ x sin(1/x) ≤ x when x > 0

When x < 0, multiplying throughout flips the inequalities, giving

x ≤ x sin(1/x) ≤ −x when x < 0

Since −x and x both approach 0 as x → 0, one-sided modifications of the
Squeeze Theorem show that x sin(1/x) → 0 both as x → 0+ and as x → 0−.

An alternate way to handle this, without having two cases for the sign of
x, is to instead note that | sin(1/x)| ≤ 1, and therefore

0 ≤ |x sin(1/x)| ≤ |x|

PREPRINT: Not for resale. Do not distribute without author’s permission.



144 Section 3.5: More Limit Theorems

Since the absolute-value function is continuous everywhere (the only case
which isn’t obvious is when x = 0, and that is handled in Exercise 3.4.2.(a)),
we have |x| → 0 as x → 0. By the Squeeze Theorem, this means that
|x sin(1/x)| → 0. From there, Exercise 3.6.1 shows that x sin(1/x) → 0. �

Example 3.38:

The Squeeze Theorem is also very useful for establishing some basic proper-
ties of the sine and cosine functions. We’ll use it to prove a very important
limit in calculus:

lim
h→0

sin h

h
= 1

We will make use of this limit when we study derivatives in the next chapter.
To prove it, consider the picture in Figure 3.9. This picture shows a unit

O
h

A

B

C

P

O=H0,0L

A=Hcos h, sin hL

B=Hcos h,0L

P=H1,0L

C=H1, sin h � cos hL

Figure 3.9: An angle of measure h in a unit circle

circle (a circle of radius 1) whose center is at the origin (0, 0). We have also
marked an acute angle h on the circle (measured counterclockwise from the
segment OP ), and the point A is placed on the circle so that the angle AOP
has measure h. (Note that h is also the length of the arc from A to P when
we measure h in radians.) Furthermore, the segment OA is extended with
the same slope until it hits a point C with x-coordinate 1. Since the slope
of the segment OA is sin h/ cos h, the slope of OC is also sin h/ cos h, which
tells us the y-coordinate of C.

Remark. The notions of “area”, “length of a curve”, and “angle measure” are
being used informally here. There are formal ways to define all these concepts
(such as by using a system of axioms, as we did in Chapter 2 for the real
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numbers), but the work involved is long, complicated, and is not particularly
interesting for the problem at hand. Similarly, we are not going to introduce
a formal definition of sin and cos, although we may occasionally point out
alternative ways to introduce the trigonometric functions. Upper-level real
analysis courses cover more formal approaches to studying area and length.

Anyway, returning to the task at hand, the picture makes it clear that the
length of AB is less than the arc length from A to P : hence sin h < h (when
h < π/2, i.e. for acute angles). However, it seems that h is not too much
larger than sin h. In fact, if we decrease the angle h, the difference between
the segment and the arc seems to diminish, so we suspect that sin h ≈ h
when h is small. This leads us to guess that (sin h)/h → 1 as h → 0+.

To verify this one-sided limit more formally, let’s figure out some useful
inequalities from the picture. We’ll compare the areas of different figures.
First, the triangle OAB is a right triangle with leg lengths sin h and cos h, so
its area is (sin h)(cos h)/2. Next, the circular sector OAP has area h/2 (this
is because the whole circle has area π, and the whole circle is a sector with
angle 2π, so the ratio of area to angle is 1/2 for any sector). The picture
shows that sector OAP has a bigger area than triangle OAB does. Lastly,
the triangle OCP similarly is a right triangle with area (sin h)/(2 cos h), and
this area is bigger than that of sector OAP . Thus,

(sin h)(cos h)

2
<

h

2
<

sin h

2 cosh

By dividing through by (sin h)/2 (which is positive), we get

cos h <
h

sin h
<

1

cos h

Lastly, by taking reciprocals, the inequalities flip (as all numbers involved
are positive) and we get

cos h <
sin h

h
<

1

cos h

These inequalities are valid for any h with 0 < h < π/2, so we may use
them for the Squeeze Theorem. It turns out that cos is continuous everywhere
(a proof of this is outlined in Exercise 3.6.10), so cos h → cos 0 = 1 as
h → 0+. Thus, cos h and 1/ cos h both approach 1 as h → 0+, and the
Squeeze Theorem shows (sin h)/h → 1 as h → 0+.
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How do we handle the case when h → 0−? Since sin is an odd function, we
have sin(−h) = − sin h, so thus (sin(−h))/(−h) = (sin h)/h for any h 6= 0.
Also, cos is even, so cos(−h) = cos h. Thus, the same inequalities above
work if −π/2 < h < 0, and the Squeeze Theorem shows that (sin h)/h → 1
as h → 0− as well. �

Composition

Recall that if f and g are functions, then their composite g ◦ f satisfies
dom(g ◦ f) = {x ∈ dom(f) | f(x) ∈ dom(g)} and for any x ∈ dom(g ◦ f),
(g ◦ f)(x) = g(f(x)). Many functions can be expressed as composites of
simpler functions, so it is important to have a way to deal with composition
in limits.

We try the following approach: Suppose we’d like to find lim
x→a

g(f(x)). If

f has a limit, say f(x) → L as x → a, then intuivitely f(x) is close to L
when x is close to a. Thus, if we let y = f(x), we’re interested to know what
happens to g(y) as y → L, i.e. we’d like to find lim

y→L
g(y). This leads us to

the guess that

lim
x→a

g(f(x)) = lim
y→L

g(y) where L = lim
x→a

f(x)

Let’s look at an example of this in action.

Example 3.39:

Suppose that g(x) = x2 and f(x) = 2x + 1 for all x ∈ R. Thus, g(f(x)) =
(2x + 1)2. Since g(f(x)) also equals 4x2 + 4x + 1, which is a polynomial, we
already know g ◦ f is continuous everywhere. However, in order to demon-
strate how composition affects limits, let’s try and use the definition of limit
to prove that lim

x→0
(2x + 1)2 = lim

y→1
y2 (so in this case, a = 0 and L = 1). We’ve

already found that lim
y→1

y2 = 1.

Let ǫ > 0 be given. We’d like to find how close x should be to 0 in order
to guarantee |(2x + 1)2 − 1| < ǫ. Let y = 2x + 1, so we’d like to guarantee
|y2−1| < ǫ. (The idea here is we’d like to focus on one function at a time, so
we consider g(y) first, and we’ll replace y with f(x) later.) From the proof
done in Example 3.21, we see that |y2 − 1| < ǫ whenever 0 < |y − 1| < δ1,
where δ1 = min{1/2, 2ǫ/5}. In fact, because y2 = 1 when y = 1, we actually
have |y2 − 1| < ǫ when |y − 1| < δ1 (i.e. we can allow y to be 1).
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Now, we replace y with f(x), so we see that |(2x + 1)2 − 1| < ǫ when
|(2x+1)−1| < δ1. Now, what control δ on x will guarantee |(2x+1)−1| < δ1?
Since |(2x + 1) − 1| = |2x| = 2|x|, we can choose δ = δ1/2. Hence, when
0 < |x| < δ, we have |(2x + 1) − 1| < δ1 and thus |(2x + 1)2 − 1| < ǫ, so we
are done.

Note the key tactic here was the use of the number δ1. This told us how
much to control the input to the outer function g, but it also told us how
accurate we needed the inner function f to be. Basically, one function’s “ǫ”
is another function’s “δ”. �

The previous example shows our guess at a composition law seems quite
plausible. However, unfortunately, our guess at a rule for limits of compo-
sitions doesn’t work in all cases. Suppose a = 0, and consider the following
two functions f, g : R → R, whose values at any x ∈ R are

f(x) = 0 g(x) =

{

1 if x = 0

0 if x 6= 0

Here, for all x ∈ R, g(f(x)) = g(0) = 1, so g(f(x)) → 1 as x → 0. However,
f(x) → 0 as x → 0 (i.e. L = 0), and g(y) → 0 as y → 0. Thus, our guess is
wrong for these functions. (Also, see Exercise 3.2.8.)

Why did our guess fail for these functions? The limit lim
y→0

g(y) ignores

the value of g at 0. However, as f(x) approaches 0 when x → 0, f(x) IS
the value 0, as opposed to just being near 0. Thus, only values of y = 0
are considered, never values of y that are in a deleted open interval around
0. This becomes a problem because g(0) isn’t the same as lim

y→0
g(y), i.e. g is

discontinuous at 0.
The next theorem we’ll present, called the Composition Limit Theorem

(abbreviated as the CLT), fixes our guess by requiring continuity of g at L:

Theorem 3.40 (Composition Limit Theorem). Let a, L ∈ R be given,
and let f and g be real functions where lim

x→a
f(x) = L and g is continuous at

L. Then lim
x→a

g(f(x)) = g(L). In other words,

lim
x→a

g(f(x)) = g
(

lim
x→a

f(x)
)

provided g is continuous at lim
x→a

f(x). This is sometimes described by saying

“you can move a limit inside of a continuous function”.
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Strategy. If ǫ > 0 is given, we want to find how close x should be to a to
guarantee that |g(f(x))−g(L)| < ǫ. We know that g(y) → g(L) as y → L by
continuity, i.e. g(y) gets close to g(L) when the input, y, is close to L. More
precisely, there is some control δ1 > 0 on y which makes |g(y) − g(L)| < ǫ
when |y − L| < δ1 (recall the “0 <” in the limit definition is not needed for
continuity).

In our situation, however, the input y to g is f(x), so we’d like to get
|f(x) − L| < δ1. This is where we use the assumption that f(x) → L as
x → a. This means that by picking a control δ2 > 0 on x, we can guarantee
f(x) is close enough to L, more precisely |f(x) − L| < δ1. Thus, δ2 is the
control we want to use for x to guarantee |g(f(x)) − g(L)| < ǫ.

Proof. Let a, L, f, g be given as described in the theorem. For now, let’s
suppose that g ◦ f is defined near a without proof. (We’ll address this non-
trivial technical detail in the remarks following this theorem.) Let ǫ > 0 be
given. We wish to find δ > 0 so that for all x ∈ dom(g ◦ f),

(0 < |x − a| < δ → |g(f(x)) − g(L)| < ǫ)

By the continuity of g at L, we may choose δ1 > 0 so that

∀y ∈ dom(g) (|y − L| < δ1 → |g(y)− g(L)| < ǫ)

Because f(x) → L as x → a, we may choose δ > 0 so that

∀x ∈ dom(f) (0 < |x − a| < δ → |f(x) − L| < δ1)

Therefore, for any x ∈ dom(g ◦ f) with 0 < |x−a| < δ, we have x ∈ dom(f),
so |f(x) − L| < δ1. Letting y = f(x), because x ∈ dom(g ◦ f), we have
f(x) ∈ dom(g), so from |y − L| < δ1, we obtain |g(y) − g(L)| < ǫ. Thus,
|g(f(x)) − g(L)| < ǫ, as desired. �

Remark. The CLT proof skips one step: it doesn’t prove that g ◦f is defined
near a. This is fairly tricky to show since dom(g ◦ f) depends on dom(g)
and dom(f) in a complicated way. (In contrast, dom(f + g), dom(fg), and
dom(f/g) were all pretty simple to express in terms of dom(f) and dom(g).)
We merely give an outline here, since the proof that g ◦ f is defined near a
is very similar to the CLT proof we just covered.

First, since g is continuous at L, there is some δ1 > 0 such that |y−L| <
δ1 implies that y ∈ dom(g). (See Exercise 3.2.3.) Next, as in the proof
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of the CLT above, we find some δ > 0 so that 0 < |x − a| < δ implies
|y−L| < δ1. Putting these statements together, we find that g ◦ f is defined
on (a − δ, a + δ) − {a}.

Many limits become much easier with the CLT. For instance, we compute

lim
x→1

(x2 + 1)6 =
(

lim
x→1

(x2 + 1)
)6

= (12 + 1)6 = 26 = 64

without having to expand out the entire sixth-degree polynomial or having
to use the product law multiple times. In this calculation, we use the fact
that the function which takes y to y6 for all y ∈ R is continuous everywhere
(so in particular, it is continuous at 2).

Another useful function for compositions is the square root function,
which was shown to be continuous on its domain in Exercise 3.2.12 (ex-
cept at 0, where it is only continuous from the right, but the CLT can be
adapted to still work as long as the inner function is nonnegative). Thus, we
can use this function in the CLT to compute limits like the following:

lim
x→2

√
3x2 − 1 =

√

lim
x→2

(3x2 − 1) CLT

=
√

3(2)2 − 1 Polynomials are continuous.

=
√

11

Example 3.41:

Another important technique for dealing with 0/0 forms is called rational-
ization. Consider the following example:

lim
x→1

√
x − 1

x − 1

This limit is in 0/0 form, so we can’t use the quotient law. However, when
we multiply and divide by

√
x + 1, we get

lim
x→1

(
√

x − 1)(
√

x + 1)

(x − 1)(
√

x + 1)
= lim

x→1

(x − 1)

(x − 1)(
√

x + 1)
=

1√
1 + 1

=
1

2

In general, when something of the form
√

f(x) − g(x) appears in a limit

as x → a, and
√

f(x) 6= g(x) when x 6= a, we can multiply and divide by
√

f(x) + g(x) to get

√

f(x) − g(x) =
(
√

f(x) − g(x))(
√

f(x) + g(x))
√

f(x) + g(x)
=

f(x) − (g(x))2

√

f(x) + g(x)
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This is called rationalizing the expression
√

f(x) − g(x). Rationalization is
frequently useful when the byproduct f(x)− (g(x))2 cancels with something
else. The value

√

f(x) + g(x) which is multiplied and divided is sometimes

called the conjugate of
√

f(x) + g(x).
As another example, it’s certainly possible to rationalize square roots in

a denominator:

lim
x→0

x3

√
x + 4 − 2

= lim
x→0

x3(
√

x + 4 + 2)

(
√

x + 4 − 2)(
√

x + 4 + 2)

= lim
x→0

x3(
√

x + 4 + 2)

(x + 4) − (22)
= lim

x→0

x3(
√

x + 4 + 2)

x

= lim
x→0

x2(
√

x + 4 + 2) = 02(
√

0 + 4 + 2) = 0

�

3.6 Exercises

1. If a ∈ R is given, and f is a real function such that lim
x→a

|f(x)| = 0,

prove that lim
x→a

f(x) = 0. (Hint: Use Lemma 3.2.)

2. Prove that for any a, h ∈ R and any real function f defined near a+h,
lim

x→a+h
f(x) exists iff lim

x→a
f(x + h) exists. If both of these quantities

exist, then show they are the same number.

3. Calculate the following limits, justifying all steps with an appropriate
theorem or limit law:

(a) lim
x→1

√
x + 1

2 −
√

3x − 2
(b) lim

x→0+

√

x +
√

x4 + 1

4. Find the following limits:

(a) lim
x→0

1 −
√

1 − x2

x2

(b) lim
x→2

√
x + 7 − 3

x2 − 3x + 2

(c) lim
x→0

√
x + 1 − 1√
x + 4 − 2
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5. Let a ∈ R be given, and let f and g be real functions such that f
is continuous at a and lim

x→∞
g(x) = a. (For the definition of a limit as

x → ∞, see the exercises in Section 3.4 near Definition 3.30.)

(a) Prove that the composition f ◦ g is defined near infinity.

(b) Prove that lim
x→∞

f(g(x)) = f(a). (This is a variant of the CLT.)

(c) Use the previous parts and the tactic from Exercise 3.4.10 to find

lim
x→∞

√

x3 + x

4x3 + 1
.

(d) Find lim
x→∞

x + 2√
9x2 − 1

. (Hint: Recall 1/x =
√

1/x2 when x > 0.)

6. Find the following limits. You may use Exercise 3.6.2 if necessary.

(a) lim
x→3

sin(x − 3)

x − 3

(b) lim
x→0

sin(5x)

sin(7x)

(c) lim
x→1

sin(x2 − 1)

(x − 1)

(Hint for (b) and (c): Multiply the top and bottom by something to
get two simpler fractions.)

7. Prove that lim
x→0

cos x − 1

x
= 0 in each of the following two ways:

(a) By using the half-angle identity 2 sin2 x = 1 − cos(2x).

(b) By multiplying the top and bottom by cos x + 1 and using an
identity.

8. Let f : R − {0} → R be defined by f(x) = sin(1/x) for all x 6= 0.
The graph of f oscillates, but unlike the graph of sin, the oscillations
become steeper and steeper as x gets close to 0.

Prove that f(x) has no limit as x → 0. This shows that although the
values of f are always between −1 and 1, the function oscillates too
wildly when x is near 0 (this is sometimes called a discontinuity by
oscillation). (Hint: Show that no δ works for the accuracy ǫ = 1 by
analyzing the places where f(x) = 1 or where f(x) = −1.)
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9. Consider the function f : R → R defined before the Squeeze Theorem:

∀x ∈ R f(x) =

{

x if x ∈ Q

−x if x 6∈ Q

We showed using the Squeeze Theorem that f is continuous at 0. Prove
that for all x 6= 0, f is NOT continuous at x. Thus, f is a function
with exactly one continuity point.

10. The following exercise outlines a method for proving that sin and cos
are continuous everywhere. Recall that our proof that (sin h)/h → 1
as h → 0 relied on the assumption that cos is continuous at 0.

(a) The picture in Figure 3.9 showed that sin h < h for all 0 < h <
π/2. Use this to prove that sin h → 0 as h → 0. (Thus, sin is
continuous at 0.)

(b) Next, use the identity sin2 x + cos2 x = 1, true for all x ∈ R, to
prove that cos h → 1 as h → 0. (Thus, cos is continuous at 0.)

(c) Lastly, use the sum identities

sin(x + h) = (sin x)(cos h) + (cos x)(sin h)

and
cos(x + h) = (cos x)(cos h) − (sin x)(sin h)

(valid for all x, h ∈ R) to prove that sin and cos are continuous
everywhere. (Exercise 3.6.2 might be useful.)

3.7 Some Unusual Functions

In this section, we’ll look at some more unusual functions and how they
behave when you take limits. We do this for a couple reasons. First, we
consider these examples as good exercises of proof technique with limits.
Second, and more importantly, these examples help us keep in mind a much
larger variety of functions than those we frequently use. Many functions
you’ve seen in practice are continuous everywhere they are defined, and they
have only a few places where they don’t exist (the polynomials, rational
functions, and trigonometric functions fall into this category, except that
tan and cot have a periodic set of discontinuities). Our examples will all be
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defined everywhere but will have more unusual sets of continuity points. In
fact, it is largely due to examples like these that mathematicians need formal
definitions of limit and continuity, so that results can still be proven even
when studying very non-intuitive functions.

Examples Using Characteristic Functions

To help explain our first examples, we introduce the following:

Definition 3.42. If A ⊆ R, then the characteristic function of A, denoted
χA : R → R (the Greek letter is “chi”), is defined by

∀x ∈ R χA(x) =

{

1 if x ∈ A

0 if x 6∈ A

In some sense, χA is like an on-off switch: it is “on” with value 1 when
its input is in A, and it is “off” with value 0 when its input is not in A.
One famous special case is when A = [0,∞), so that χ[0,∞)(x) = 1 when
x ≥ 0 and χ[0,∞)(x) = 0 when x < 0. χ[0,∞) is frequently called the Heaviside
function and is denoted by H .

A more interesting example is the function χQ, because both Q and R−Q

are dense (see Exercises 2.9.4 and 2.9.6). This means, in particular, that every
open interval contains rational numbers and also contains irrational numbers.
This causes the graph of χQ to continually keep “jumping” between y = 0
and y = 1. Using this idea, in Exercise 3.2.14, it was shown that χQ has no
points of continuity at all. In fact, for any a ∈ R, as x → a, χQ(x) has no
limit! (Also, see Exercise 3.8.2.)

We can also show that the “jumpy” function f : R → R from the last
section, defined by

∀x ∈ R f(x) =

{

x if x ∈ Q

−x if x 6∈ Q

can be defined in terms of χQ. Note that f(x) + x is either 2x when x ∈ Q,
or it is 0 when x 6∈ Q. It follows that f(x)+x = 2xχQ(x) for all x ∈ R. Let’s
define g : R → R by g(x) = xχQ(x) for all x ∈ R, so we get

f(x) = 2g(x) − x and g(x) =
f(x) + x

2

PREPRINT: Not for resale. Do not distribute without author’s permission.



154 Section 3.7: Some Unusual Functions

Since polynomials are continuous everywhere, the two equations above imply
that f and g are continuous at exactly the same points. Combining this with
the last section and Exercise 3.6.9, we see that g is continuous only at 0 and
has no limits anywhere else. Note that in contrast to χQ, the graph of g keeps
jumping between y = x and y = 0, so when x approaches 0, an argument with
the Squeeze Theorem shows that g “settles down” and becomes continuous
at 0.

Example 3.43:

We have now seen an example of a function with no continuity points and
an example of a function g with one continuity point. Let’s make a function
with two continuity points.

Let h : R → R be defined as follows:

∀x ∈ R h(x) =











0 if x 6∈ Q

x if x ∈ Q and x < 1

2 − x otherwise

When x < 1, h(x) = g(x), i.e. h keeps jumping between y = x and y =
0. The “jumpiness” settles down when x = 0, and so x = 0 is a point of
continuity for h. However, for x ≥ 1, h starts jumping between y = 2 − x
and y = 0, i.e. h(x) = (2 − x)χQ(x). Here, the jumpiness settles down when
2 − x = 0, i.e. when x = 2.

The previous paragraph is quite informal, but it can be formalized using
the definition of limit and the Squeeze Theorem (see Exercise 3.8.3). In
addition, you can show more generally in Exercise 3.8.4 that ANY finite
set of real numbers is the set of continuity points for some function. (The
function h is one such function corresponding to the set {0, 2}.) �

The Ruler Function

This next function is also defined separately for rational inputs and for
irrational inputs, but it exhibits much more complicated behavior.

The ruler function (there are plenty of other names for this function) is
the function r : R → R defined as follows:

∀x ∈ R r(x) =







0 if x 6∈ Q
1

q
if x ∈ Q and x = p/q in lowest terms
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Here, “lowest terms” means that p and q have no factors in common and that
q is positive. (Thus, −12/10 is (−6)/5 in lowest terms, 0 is 0/1 in lowest
terms, and so forth.)

0 1

Figure 3.10: A partial picture of the ruler function on [0, 1]

A rough picture of r on rational inputs is given in Figure 3.10. This
picture shows the values of r(x) for x = 0, 1/16, 2/16, and so on up to 1 by
drawing a line with height r(x) from the axis. The markings resemble the
lines on a ruler, hence the name “ruler function”. (However, a more complete
picture of the function would also show the values of r(1/3), r(2/3), and
plenty more points, in addition to also showing that r(x) = 0 for all x 6∈ Q.)

What makes the ruler function different from the previous examples? The
previous examples consisted of functions whose values jump between two
continuous functions (χQ jumps between y = 0 and y = 1, and the function
g from earlier jumps from y = 0 to y = x). While the ruler function does
jump between two possibilities, depending on whether its input is rational
or not, the larger possibility does NOT come from a continuous curve. For
instance, if we consider the function which sends rational numbers p/q in
lowest terms to 1/q, then this function sends 1/2 to 1/2, but it sends all
other rational numbers nearby to values which are at most 1/3.

To see why this property makes such a difference, let’s look at r only on
the interval [0, 1]. There are two points where r(x) = 1: x = 0 and x = 1.
After that, there is only one point with r(x) = 1/2: x = 1/2. There are two
points with r(x) = 1/3: x = 1/3 and x = 2/3. In general, for any n ∈ N∗,
there are at most n points in [0, 1] for which r(x) = 1/n. It follows that only
finitely many values of x in [0, 1] satisfying r(x) ≥ 1/n. This suggests that,
with “few” (i.e. finitely many) exceptions, the ruler function takes values
close to 0, since 1/n gets as close to 0 as we’d like when n is large enough.
This is proven formally in the following theorem:
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Theorem 3.44. For all a ∈ R, the ruler function r satisfies lim
x→a

r(x) = 0.

Therefore, the ruler function is continuous precisely at the irrational num-
bers.

Strategy. If ǫ > 0, we want to find a control δ > 0 on x which guarantees
that |r(x)| < ǫ. Hence, we ask the opposite question: which points x ∈ R do
NOT satisfy |r(x)| < ǫ? We need to take δ small enough so that if |r(x)| ≥ ǫ,
then we do not have |x − a| < δ.

Any such x is rational of the lowest-terms form p/q with 1/q ≥ ǫ. Since
only finitely many possible values of q ∈ N∗ satisfy 1/q ≥ ǫ, and there are
only finitely many points near a of the form p/q for each q (there are infinitely
many points overall, but only finitely many are within a short distance of a),
there are only finitely many points x that we DON’T want to have within
distance δ of a. Thus, for each x with |r(x)| ≥ ǫ, we want δ to be smaller
than |x − a|. This suggests we take δ to be something like the minimum of
|x−a| for finitely many values of x. (This is valid because all finite sets have
minimum elements.)

Proof. Let a, ǫ ∈ R with ǫ > 0 be given. We wish to find δ ∈ R with δ > 0
and so that

∀x ∈ R (0 < |x − a| < δ → |r(x)| < ǫ)

Let’s analyze the set S defined as

S = {x ∈ R | x ∈ ((a − 1, a + 1) − {a}) and |r(x)| ≥ ǫ}

Since r(x) = 0 for all x 6∈ Q, every member of S is rational. If x ∈ S and
x = p/q in lowest terms, then 1/q ≥ ǫ. Therefore, q ≤ 1/ǫ.

For each q ∈ N∗ with q ≤ 1/ǫ, there are at most 2q different x ∈ S with
r(x) = 1/q (this is because any two such points have distance at least 1/q,
so at most 2q of them fit in the interval (a−1, a+1) of length 2). Therefore,
as every member x of S has the form p/q with q ≤ 1/ǫ, the size of S is at
most

⌊1/ǫ⌋
∑

q=1

2q ≤ 2

(

1

ǫ

)2

(note that the summation consists of at most 1/ǫ terms, each at most 2(1/ǫ)).
Hence, S is a finite set.
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Now, choose δ as

δ =
1

2
min{1, min{|x − a| | x ∈ S}}

(if S is empty, then we take δ = 1/2). Because S is finite, the minima are all
well-defined, and because a 6∈ S, we have δ > 0.

Let x ∈ R be given with 0 < |x − a| < δ. As δ < 1, this shows that
0 < |x − a| < 1 and hence x ∈ ((a − 1, a + 1) − {a}). We must have x 6∈ S,
or otherwise we would have |x − a| < δ < |x − a| (because x ∈ S), which is
a contradiction. Therefore, as x ∈ ((a − 1, a + 1)− {a}) and x 6∈ S, we have
|r(x)| < ǫ, as desired. �

We have now seen that the ruler function is continuous precisely at the
irrational numbers. One natural question to ask is: is there a function de-
fined on all of R whose continuity points are precisely the rational numbers?
Interestingly, it is possible to prove that no such function exists, but the
proof is beyond the scope of this book. (The proof is sometimes covered in
upper-level analysis courses.)

Enumerating Q

In order to prove the ruler function has limit 0 everywhere, we found
ourselves arguing that a specific set S of rational numbers is finite. To do
this, we found ourselves listing the possible members of S in a very methodical
way, in order of increasing denominators. Since the members of S were at
most distance 1 from a, and the denominators were bounded by 1/ǫ, we found
that S had only finitely many members.

Now, Q is certainly not finite. However, we can still list out the elements
of Q methodically. More formally, let’s now show that Q can be enumerated,
meaning that we can list the members of Q in an infinite sequence r1, r2,
r3, and so forth, with no value being repeated. (Equivalently, the function
which maps n ∈ N∗ to rn ∈ Q is a bijection from N∗ to Q.)5 We will need
this enumeration for our last example in this section.

5In general, whenever there exists a bijection from N∗ to a set S, we say that S is a
countably infinite set, because it can be similarly enumerated. We will not have need to
talk about countably infinite sets in general, but we will use the fact that Q is countably
infinite several times in this book.
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To start our sequence, we first list all the rational numbers which can
be written in lowest terms p/q where |p|, |q| ≤ 1. There are only three such
fractions: −1

1
,
0

1
,
1

1

These will be the first three rational numbers in our sequence: r1 = −1,
r2 = 0, and r3 = 1. Next, we list the rational numbers with lowest-terms
form p/q which haven’t already been listed and which satisfy |p|, |q| ≤ 2:

−2

1
,
−1

2
,
1

2
,
2

1

This makes the next four numbers in the sequence, r4 through r7. After this,
we list the rationals of the form p/q which haven’t been previously listed and
which satisfy |p|, |q| ≤ 3:

−3

1
,
−3

2
,
−2

3
,
−1

3
,
1

3
,
2

3
,
3

2
,
3

1

This yields the next eight terms of the sequence, r8 through r15.
We continue this process, where for each n ∈ N∗, in the nth stage of

the construction, we list all previously-unlisted lowest-terms fractions of the
form p/q with |p|, |q| ≤ n. By design, we never list a rational number
twice. Also, any rational number of the form p/q appears in our list by
stage max{|p|, |q|}). Thus, every member of Q appears exactly once in our
final list.

Remark. In contrast, it is NOT possible to list all the irrational numbers in
a sequence; any attempt at making a sequence of irrational numbers must
leave some out. Equivalently, there is no surjection from N∗ to R − Q. (In
other words, R − Q is not countably infinite.) For more details, search for
the “diagonalization argument” by Cantor.

Definition of the Staircase Function

For our last major example of this section, we will build another function
which has interesting behavior at rational inputs. However, this example will
be built in a different manner from the earlier examples. We will build this
function s by first defining a sequence of approximations g1, g2, g3, and so
forth. Informally, the graph of gn will have “steps” in it located at the first
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n rationals of our enumeration, r1 through rn. As n gets larger, the number
of steps increases, and the graph of gn becomes more jagged since it “jumps”
at more rational numbers. For each x ∈ R, we will take s(x) to be the limit
of gn(x) as n → ∞.6

More precisely, we will build s(x) as a supremum: s(x) will be sup{gn(x) |
n ∈ N∗}. In order for this supremum to have the properties we want, we
will guarantee two important things about the gn(x) sequence. The first
guarantee is that gn grows as n grows, i.e. for each n ∈ N and x ∈ R,
gn+1(x) ≥ gn(x). The second guarantee is that our “steps” will become
smaller as n gets larger to ensure that {gn(x) | n ∈ N} remains bounded. In
essence, for each x ∈ R, the values of gn(x) keep rising as n grows larger,
until eventually they hit the limit value s(x).

Now, we introduce a formal definition of what we want a “step” to be.
For each i ∈ N∗, we choose the ith step to be the function taking x ∈ R to
(1/2)iH(x − ri), where H is the Heaviside function mentioned in Definition
3.42. This function equals 0 when x− ri < 0, i.e. when x < ri, and it equals
(1/2)i when x ≥ ri. Essentially, this function “turns on” with value (1/2)i

once x gets as large as ri, i.e. its graph looks like it jumps upward by 2−i at
x = ri.

Now that we have introduced what a step is, we define our nth approxi-
mation gn : R → R for n ∈ N∗ as the sum of the first n steps:

∀x ∈ R gn(x) =

n
∑

i=1

(

1

2

)i

H(x − ri)

(summation notation using
∑

was defined in Example 3.28). Thus, the n
steps in gn, at the first n rationals, have sizes ranging from 1/2 to 2−n. Note
that gn(x) grows as n grows, since gn+1(x) − gn(x) = (1/2)n+1H(x − rn+1)
(all other terms from the sums cancel), and this difference is nonnegative. In
essence, as we go from n to n + 1, we throw in one more step of size 2−(n+1)

at x = rn+1.

Remark. This (n + 1)st step doesn’t have to appear to the right of all the
previously-added steps! That would only happen if rn+1 were greater than
all of r1 through rn. In general, for an arbitrary n ∈ N∗, there’s very little we
can guarantee about where rn+1 lies compared to all the previous ri values.

6Since n can only take values in N∗, this notion of limit is not quite the same as the
definition of a limit of lim

x→∞

from Definition 3.30 in the exercises of Section 3.4. We will

revisit this type of limit more formally in Chapters 9 and 10.
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160 Section 3.7: Some Unusual Functions

It may be helpful to think of the graph of gn as a stack of n blocks placed
on top of each other, where the blocks have sizes from 1/2 to 2−n. The blocks
are shifted so that the left edge of the ith block lies at ri, for each i from 1 to
n, and blocks extend infinitely far to the right. When we add the (n + 1)st

step, we slide the (n + 1)st block into place, and this may require us to lift
other blocks upward to make room for the (n + 1)st block.

At this point, we have fulfilled one of our guarantees: we made gn grow
when n grows. Now we address the second guarantee: how large can gn(x)
get when x ∈ R and n ∈ N∗? To answer this, we know that for each x ∈ R

and each i ∈ N∗, H(x− ri) is either 0 or 1. Therefore the ith step is either 0
or 2−i, and thus gn(x) is somewhere from 0 to 1/2 + 1/4 + · · ·+ 2−n. We use
Exercise 1.9.2 to bound this sum:

n
∑

i=1

(

1

2

)i

=

(

1 +

(

1

2

)

+

(

1

2

)2

+ · · ·+
(

1

2

)n
)

− 1

=

(

1
2

)n+1 − 1
1
2
− 1

− 1 =
1 −

(

1
2

)n+1

1 − 1
2

− 1

<
1

1 − 1
2

− 1 = 1

Therefore, gn(x) < 1.
Therefore, for all x ∈ R, {gn(x) | n ∈ N∗} is nonempty and bounded

above by 1. We may now define the staircase function s : R → R by

∀x ∈ R s(x) = sup{gn(x) | n ∈ N∗}

Our work above shows that 0 ≤ s(x) ≤ 1 for all x ∈ R. In fact, you can
prove in Exercise 3.8.9 that s(x) never equals 0 or 1, although the range does
have infimum 0 and supremum 1. In other words, the range gets arbitrarily
close to 0 and 1.

Some Properties Of The Staircase Function

The staircase function s has an important property that none of the earlier
examples in this section have; the graph of s never falls as you move to the
right. To be more precise, we introduce the following definitions: introduce
the following definitions:
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Definition 3.45. Let f be a real function, and let I ⊆ dom(f) be given.
We say that f is increasing on I if, for all x, y ∈ I with x ≤ y, we have
f(x) ≤ f(y). If we have the stronger property that when x, y ∈ I satisfy
x < y, we also have f(x) < f(y), we say f is strictly increasing on I.

Similarly, f is decreasing on I if x ≤ y implies f(x) ≥ f(y) for all x, y ∈ I,
and f is strictly decreasing on I if x < y implies f(x) > f(y) for all x, y ∈ I.

If f is increasing or decreasing on I, it is called monotone on I, and f is
strictly monotone on I if f is either strictly increasing or strictly decreasing.
In essence, a monotone function never “changes direction” on I.

In all of these definitions, we will often omit the phrase “on I” when I is
dom(f), e.g. we will just say “f is (strictly) increasing”.

Example 3.46:

Many of the continuous functions with which you are familiar are monotone
or can be broken into monotone pieces. For example, when n ∈ N∗ is odd,
the function mapping x ∈ R to xn is strictly increasing. Also, if n ∈ N∗

is even, the function mapping x ∈ R to xn is strictly decreasing on the
domain (−∞, 0] and strictly increasing on the domain [0,∞). (See Exercise
3.8.6.(a).) However, χQ and the ruler function are not monotone on ANY
interval, because their values keep jumping between 0 and some positive
numbers infinitely often in any interval. �

We claim that the staircase function s is increasing. Informally, this result
is proven in stages, corresponding to the process we used to create s. First, we
will show that each step is an increasing function. Second, we will show that
each gn is increasing, since it is a sum of increasing steps. Lastly, Exercise
3.8.8 shows that a supremum of increasing functions is also increasing.

To help with the first two steps, we have the following intuitive lemma:

Lemma 3.47. Suppose that f and g are increasing functions, and let a, c ∈
R be given with a ≥ 0. Then the functions f +g and af are increasing. Also,
the function which takes x ∈ R to f(x− c) (provided that x− c ∈ dom(f)) is
also increasing. In other words, we may add increasing functions, multiply
increasing functions by nonnegative constants, or shift increasing functions
horizontally to yield increasing functions.

Strategy. The proof of this lemma really just consists of using the definition
of increasing. The only subtle point is that we need a ≥ 0 to show that af
is increasing, because multiplying by a nonnegative number does not flip an
inequality.
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162 Section 3.7: Some Unusual Functions

Proof. Let a, c, f, g be given as described in the theorem. Let x, y ∈ R be
given with x ≤ y.

First, if x, y ∈ dom(f), then f(x) ≤ f(y) because f is increasing. Sim-
ilarly, if x, y ∈ dom(g), then g(x) ≤ g(y). Thus, if x, y ∈ dom(f + g) =
dom(f) ∩ dom(g), then (f + g)(x) = f(x)+ g(x) ≤ f(y)+ g(y) = (f + g)(y),
showing that f + g is increasing.

Second, if x, y ∈ dom(f), then multiplying a to both sides of f(x) ≤ f(y)
does not flip the inequality because a ≥ 0. We thus obtain af(x) ≤ af(y),
showing af is increasing.

Lastly, suppose x− c, y − c ∈ dom(f). Then x ≤ y implies x− c ≤ y − c,
and therefore f(x − c) ≤ f(y − c) because f is increasing. �

Remark. There is an analogous lemma which shows that adding decreasing
functions, multiplying decreasing functions by nonnegative constants, and
shifting decreasing functions still yield decreasing functions. The proof is
almost exactly the same.

Now, to start our proof that s is increasing, it is easy to show that H is
increasing (but not strictly increasing). Thus, by the lemma, H(x − ri) is
also increasing for each i, and so is 2−iH(x − ri). This means each step is
increasing. By the lemma again, gn is a sum of n steps, so it is also increasing.
For the last step, see Exercise 3.8.8.

In fact, although none of the gn functions are strictly increasing (they
are constant in between their steps), s IS strictly increasing! Intuitively,
this happens because whenever x, y ∈ R are distinct, there is some rational
number between x and y, so some step fits in between x and y. More formally,
the proof that s is strictly increasing is outlined in Exercise 3.8.10.

Another interesting property of s that we’ll mention here is that, like the
ruler function, s is continuous at the irrational numbers and discontinuous
at the rational numbers. Most of the work of this proof is left to Exercise
3.8.11, but we can still mention the basic motivation here. Each gn is the
sum of steps, where the ith step is discontinuous at ri. This suggests that
gn is discontinuous precisely at the first n rationals r1 through rn, so as n
gets larger, gn is discontinuous at more rationals. Eventually, in the limit as
n → ∞, s is discontinuous at all the rationals.

Monotonicity and One-Sided Limits
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Montone functions are often quite well-behaved compared to other func-
tions. Intuitively, a monotone function can’t oscillate. In the worst case, a
monotone function can only “jump” upwards or downwards. For instance,
the floor function ⌊x⌋ jumps up by 1 unit at each integer. On the other
hand, the staircase function’s graph has jumps at each rational number; see
Exercise 3.8.11.

To make this idea more precise, we prove that all one-sided limits exist
for a monotone function. The proof is a useful application of using suprema
and infima to define limits. We will only state and prove the result for in-
creasing functions, because the corresponding result for decreasing functions
follows easily by regarding decreasing functions as the negations of increasing
functions.

Theorem 3.48. Let f be an increasing function on an open interval I. Then
for all a ∈ I, lim

x→a−

f(x) and lim
y→a+

f(y) exist, and

lim
x→a−

f(x) ≤ f(a) ≤ lim
y→a+

f(y)

The difference

lim
y→a+

f(y) − lim
x→a−

f(x)

is called the gap of f at a. (With this terminology, we note that the two-
sided limit lim

x→a
f(x) exists iff the gap at a is 0, in which case the limit must

be f(a).)

Strategy. Let’s suppose that a ∈ I. What should lim
x→a−

f(x) be? Since f is

increasing, for any x < a, we have f(x) ≤ f(a), and furthermore as x gets
larger, the values of f(x) grow as well. Thus, the one-sided limit lim

x→a−

f(x)

should be an upper bound of the f(x) values. (The function is “climbing
upwards” toward some peak, which represents the limit.) Furthermore, the
limit should be as close to the f(x) values as possible; after all, the f(x)
values should “approach” the limit. This suggests that the limit should be
the strictest upper bound of the f(x) values, i.e. the supremum. Note that
since f(a) is an upper bound, the supremum will be at most f(a).

However, how will we actually show formally that this is the one-sided
limit? Let’s say L− is the sup of the f(x) values; for any ǫ > 0, we want
to find how close x should be to a to guarantee |f(x) − L−| < ǫ. Since L−
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fHaL

c

L+

L-

L-- Ε

Figure 3.11: An increasing function f with one-sided limits to a

is an upper bound of the f(x) values, we know L− ≥ f(x), so we want to
guarantee L− − f(x) < ǫ, i.e. f(x) > L− − ǫ. However, the value L− − ǫ is
smaller than the LEAST upper bound of the f(x) values, so it is NOT an
upper bound. Hence, there is some point c < a where f(c) is greater than
the sup minus ǫ. As f is increasing, ALL values of x greater than c will have
f(x) ≥ f(c) > L− − ǫ. See Figure 3.11.

The one-sided limit from the right will use a similar idea. If we consider
values y which are greater than a, then f(a) ≤ f(y), and the values of f(y)
decrease as y decreases. Thus, we want a lower bound instead, and the limit
will be the greatest lower bound L+ (the infimum). Since f(a) is also a lower
bound, and L+ is the greatest lower bound, we have L+ ≥ f(a).

Proof. Suppose f, I are given as described in the theorem, and let a ∈ I be
given. Therefore, as I is an open interval containing a, and f is defined on
I, f is defined near a.

Let’s define

S− = {f(x) | x ∈ I and x < a} S+ = {f(y) | y ∈ I and y > a}

Because I is open, it has no least or greatest member, so S− and S+ are both
nonempty. Since f is increasing, whenever x < a, we have f(x) ≤ f(a), so
S− is bounded above by f(a). Also, whenever y > a, we have f(y) ≥ f(a),
so S+ is bounded below by f(a).

This shows that sup S− and inf S+ both exist. Define L− = sup S− and
L+ = inf S+. Because f(a) is an upper bound of S− and a lower bound of
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S+, we have L− ≤ f(a) ≤ L+. We first prove that lim
x→a−

f(x) = L−. Let

ǫ > 0 be given. We wish to find δ > 0 so that for all x ∈ I,

0 < a − x < δ → |f(x) − L−| < ǫ

It is helpful to note that since L− is an upper bound of S−, and f(x) ∈ S− for
each x ∈ I less than a, we know L− ≥ f(x), so |f(x)− L−| < ǫ is equivalent
to L− − f(x) < ǫ, which means the same as f(x) > L− − ǫ.

Because L−−ǫ is NOT an upper bound of S− (it is smaller than the least
upper bound), there is some member of S− larger than L− − ǫ, i.e. there is
some c ∈ I with c < a and f(c) > L− − ǫ. Let δ = a − c, so δ > 0. Now
suppose x ∈ I is given with 0 < a−x < δ. Thus, a−δ < x < a, so c < x < a
by the choice of δ. As f is increasing, f(c) ≤ f(x). Since f(c) > L− − ǫ and
f(x) ≥ f(c), we have f(x) > L− − ǫ, as desired. This proves the statement
for the one-sided limit from the left.

For the other side, we claim that lim
y→a+

f(y) = L+. Let ǫ > 0 be given.

We wish to find δ > 0 so that for all y ∈ I,

0 < y − a < δ → |f(y) − L+| < ǫ

As in the other case, since L+ is a lower bound of S+, and f(y) ∈ S+ for all
y ∈ I greater than a, we have L+ ≤ f(y), so |f(y)− L+| < ǫ is equivalent to
f(y) − L+ < ǫ, i.e. f(y) < L+ + ǫ.

Because L+ +ǫ is not a lower bound of S+, there is some d ∈ I with d > a
and f(d) < L+ + ǫ. Let δ = d−a, so δ > 0. For all y ∈ I with 0 < y−a < δ,
we have a < y < a + δ, so a < y < d by the choice of δ. As f is increasing,
f(y) ≤ f(d), and f(d) < L+ + ǫ. This shows f(y) < L+ + ǫ, as desired. �

This theorem gives some insight as to why we call s the staircase function,
instead of giving that name to the floor function (whose graph certainly looks
like a staircase). First of all, the floor function already has a well-established
name. Secondly, in Exercise 3.8.11, you can show that for each n ∈ N∗, the
staircase function has gap 1/2n at rn. Hence, unlike the floor function, s
has a positive gap at each rational, so EVERY open interval contains gaps!
However, the gap sizes approach 0 very quickly, so the staircase function
remains bounded. In essence, the graph of s has more densely-packed tiny
“stairs” than the graph of the floor function does. Unfortunately, this makes s
very difficult to graph, although its approximations gn can be graphed pretty
easily.
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3.8 Exercises

1. This exercise will introduce some simple calculations with characteristic
functions. Let A, B ⊆ R be given.

(a) Prove that χR−A = 1 − χA.

(b) Prove that if A ⊆ B, then χA(x) ≤ χB(x) for every x ∈ R. Is the
converse true? Either prove it is true, or give a counterexample.

(c) Prove that χA∪B = max{χA, χB}.
(d) Prove that if A and B are disjoint, then χA∪B = χA + χB.

(e) How can you write χA∩B in terms of χA and χB? Prove that your
answer is correct.

(f) How can you write χA−B in terms of χA and χB? Prove that your
answer is correct.

2. Let A ⊆ R be given.

(a) Prove that for all a ∈ R, lim
x→a

χA(x) = 1 iff A contains a deleted

open interval around a.

(b) Prove that for all a ∈ R, lim
x→a

χA(x) = 0 iff R−A contains a deleted

open interval around a. (Hint: The previous exercise might help.)

(c) Prove that the previous two parts describe all possibilities for
limits of χA. In other words, prove that if a ∈ R is given and
lim
x→a

χA(x) exists, then that limit must be 0 or 1.

3. Suppose that q : R → R is a function which is continuous everywhere.
Prove that for all a ∈ R, the function qχQ is continuous at a iff q(a) = 0.
As an example, the function in Example 3.43 is the special case where

q(x) =

{

x if x < 1

2 − x if x ≥ 1

for all x ∈ R.

(Hint: If q(a) = 0, then the proof is pretty short and uses the Squeeze
Theorem. If q(a) 6= 0, then WLOG we may suppose q(a) > 0, since the
case where q(a) < 0 is handled by working with −q instead of q. The
continuity of q guarantees that for x close enough to a, q(x) is between
q(a)/2 and 3q(a)/2. Use this idea to show that when ǫ = q(a)/2, no
choice of δ works for the function qχQ.)
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4. For any finite S ⊆ R, make a function hS : R → R such that the set of
continuity points of hS is precisely S. Prove that your function hS has
this property. (Hint: Use Exercise 3.8.3.)

5. Consider a variant on the ruler function, r2 : R → R, defined as follows.
If x ∈ R is irrational, then r2(x) = 0. If x ∈ Q and has lowest-terms
form p/q, then r2(x) = 1/q2.

Prove that for all a ∈ R, lim
x→a

r2(x) = 0. (Hint: It is possible to imitate

the proof of Theorem 3.44, but there’s a much quicker proof reusing
what we know about the ruler function.)

6. (a) Prove that for any n ∈ N∗, the nth power function, which takes
x ∈ R to xn, is strictly increasing on [0,∞). (Hint: If 0 ≤ x < y,
then prove xn < yn by induction on n. See Exercise 2.4.4.(d) as
well.)

(b) Prove by induction on n ∈ N∗ that n < 2n. This shows that the
powers of 2 are unbounded above (because the natural numbers
are unbounded above).

7. When defining the ruler function, we showed that for any n ∈ N∗,
n
∑

i=1

1

2i
< 1. This exercise establishes something stronger.

(a) Prove that

sup

{

n
∑

i=1

1

2i
| n ∈ N∗

}

= 1

(Hint: Exercise 1.9.2 gives the exact value of each sum in that set.
How close do those sums get to 1? Exercise 3.8.6.(b) might help
too.)

(b) Use part (a) to prove that for each ǫ > 0, there is some N ∈ N∗

such that

sup

{

n
∑

i=N

1

2i
| n ∈ N∗

}

< ǫ

In essence, this is saying that if we throw out the first N −1 terms

from the sums

n
∑

i=1

1

2i
for n ∈ N∗, what remains can be made very

small.
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8. Suppose that S is a nonempty set of functions from R to R, and every
g ∈ S is increasing.

(a) If sup{g(b) | g ∈ S} exists for some b ∈ R, then prove that
sup{g(a) | g ∈ S} exists for every a ∈ R with a ≤ b. (Hint: If
a ≤ b, then what is one number which serves as an upper bound
for EVERY g(a)?)

(b) Now assume that sup{g(x) | g ∈ S} exists for every x ∈ R, and
call it f(x). Thus, f is a function from R to R. Prove that f is
increasing. (This implies that the staircase function s is increas-
ing.)

(c) Find an example of a set S of STRICTLY increasing functions
such that f(x) = sup{g(x) | g ∈ S} exists for every x ∈ R but f
is not strictly increasing.

9. (a) Prove that for all x ∈ R, the staircase function s satisfies 0 <
s(x) < 1. (Hint: There must exist some rational numbers ri, rj

with ri < x < rj . When n is large enough, can you come up with
bounds on gn(x) based on i and j?)

(b) Prove that for any ǫ > 0, there exist x1, x2 ∈ R such that s(x1) < ǫ
and s(x2) > 1 − ǫ. Thus, inf(ran(s)) = 0 and sup(ran(s)) = 1.
(Both parts of Exercise 3.8.7 should be useful.)

10. This exercise outlines a proof that the staircase function is strictly
increasing.

(a) Let j ∈ N∗ be given, and suppose that x ∈ R is given with x < rj .
Prove that gn(x) + 1/2j ≤ gn(rj) for all n ∈ N∗ with n ≥ j.

(b) If j, x are given as in part (a), prove that s(x) + 1/2j ≤ s(rj).
(Hint: This proof uses a lot of the same ideas as Exercise 2.7.8.)

(c) Use the previous parts to prove that whenever x, y ∈ R are given
with x < y, then s(x) < s(y).

11. The following exercise outlines a proof that the staircase function is
continuous at each irrational number and has jump 1/2j at rj for each
j ∈ N∗.

(a) Prove that for all a ∈ R, then s is continuous from the right at
a. (Hint: The main idea was used in the proof of Theorem 3.44,
which chooses δ based on excluding a certain finite set of points.
Use this together with Exercise 3.8.7.(b).)
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(b) Next, prove that if a ∈ R − Q, then s is continuous from the left
at a.

(c) Lastly, prove that for all j ∈ N∗, lim
x→r−j

s(x) = s(rj) − 1/2j. (Hint:

If you try the proof of part (b) here, what makes the proof fail?
Use that to adjust the proof of part (b) accordingly.)

3.9 Consequences of Continuity: Part 1

Up until now in this chapter, we have seen definitions of limits and continuity,
we’ve proven some theorems about how to compute limits, and we’ve looked
at a variety of examples. However, apart from drawing a few graphs and
talking intuitively about “jumps” in a function and such, we haven’t yet
explained why continuity is a desirable property of a function. Therefore, the
goal of the rest of this chapter is to present some important properties that
continuous functions have. These properties are among the major reasons
that the definition of continuity was created in the first place.

Our properties will be split into two sections. This section will introduce
the Intermediate Value Theorem, which tells us roughly that the graph of
a continuous function does not “skip over values”. This theorem will also
be applied to argue that certain continuous functions have inverses, and
we will prove the continuity of those inverses as well. The second section
will introduce the Extreme Value Theorem, which says that any continuous
function attains maximum and minimum values when its domain is a closed
interval. That section will also introduce a sharper version of continuity
called uniform continuity, which will be especially useful when we study
integrals.

Intermediate Value Theorem

The Intermediate Value Theorem (or the IVT for short) is essentially a
formal way of stating “to draw a continuous function f , you never need to lift
your pencil off the paper.” Roughly, if you start drawing the graph of f from
x = a to x = b (where a, b ∈ R with a < b), you won’t skip over any value in
between f(a) and f(b). For instance, take a look back at the speed function
v from the introduction of this chapter, where v(t) measures the speed of our
car t seconds after the start of a trip. If v(0) = 0 and v(10) = 60 (roughly
corresponding to accelerating up to highway speeds in 10 seconds), then at
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some time between 0 and 10 seconds, your speed must have been 20mph
(which is, of course, the time when people behind you get impatient).

To prove the IVT, we’ll first prove a special case of it called Bolzano’s
Theorem (which is an interesting theorem in its own right), and then we’ll
prove the IVT as a corollary. Bolzano’s Theorem says that if a continuous
function switches its sign as its input goes from a to b, then the function
must cross the x-axis somewhere in between a and b.

Theorem 3.49 (Bolzano’s Theorem). Let f be a real function which is
continuous on a closed interval [a, b] (where a < b). If f(a) and f(b) have
different signs, then there is some c ∈ (a, b) with f(c) = 0.

Remark. It turns out that we don’t need two-sided continuity at the end-
points of the interval [a, b]: we only need continuity from the right at a and
continuity from the left at b. When people say a function is continuous on
a closed interval [a, b], they frequently mean to say that the endpoints only
need one-sided continuity. (In fact, f may only be defined on [a, b], so a
two-sided limit at a or at b wouldn’t even make sense!)

Many proofs of results assuming continuity on the closed interval [a, b]
still work with minor modifications when we have only one-sided continuity
at the endpoints. However, since the modifications of the proofs involve
introducing special cases for a and b, and thus they are more difficult to read
without being any more instructive, we will assume two-sided continuity at
a and b to make life simpler.

Strategy. We know that f(a) and f(b) have different signs, so either f(a) <
0 < f(b) or f(b) < 0 < f(a). To make our work simpler, let’s only handle the
case when f(a) < 0 < f(b). In the other case, we have −f(a) < 0 < −f(b),
and −f is continuous on [a, b], so we can use the argument for the first case
with the function −f .

Let’s imagine we’re walking along the graph of f as we go from a to b.
As f(a) < 0, we can think of this as starting our walk below the x-axis,
and since f(b) > 0, eventually we end above the x-axis. Thus, we can’t stay
below the axis forever. A good informal question to ask is: how long can we
walk before we have to stay above the axis? In other words, how large can x
get before f(x) has to be positive?

This leads us to consider something like “the largest x for which f(x) < 0”
(i.e. x is the last point on the walk which is below the axis). Thus, let’s let
S be the set {x ∈ [a, b] | f(x) < 0}. However, S doesn’t have to have a
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maximum element, even though S is bounded. Thus, we’ll consider the next
best thing: the supremum. This leads us to consider the guess that we can
take c to be sup S.

How can we show that f(c) = 0? We’ll try a proof by contradiction, i.e.
we’ll show that f(c) 6= 0 is impossible. The main idea is we’d like to show
that for all x sufficiently close to c, f(x) and f(c) have the same sign. Thus,
if f(c) < 0, then f(x) < 0 for some x a little bigger than c, showing that
there is a member of S bigger than c. This contradicts that c is an upper
bound of S. On the other hand, if f(c) > 0, then f(x) > 0 for some x a little
smaller than c, which suggests that x is a better upper bound for S than c
is. This contradicts that c is a least upper bound for S.

(Note that the two cases each produce a contradiction: one contradicts
that c is an upper bound, and one contradicts that c is “least”. This occurs
rather commonly in arguments with suprema.)

The last point to consider is: how can we show that f(x) and f(c) have
the same sign if x is close to c? This is where we have to use the continuity
of f . We can choose ǫ > 0 to be small enough so that, for x close enough to
c, f(x) is at most ǫ away from f(c), and this forces f(x) and f(c) to have
the same sign. One such choice for ǫ is half the distance from f(c) to 0, i.e.
|f(c)|/2.

Proof. Let f, a, b be given as described. We may assume WLOG that f(a) <
0 < f(b) (the other case follows by applying this argument to −f).

Let S = {x ∈ [a, b] | f(x) < 0}. Since a ∈ S by assumption, and b is
an upper bound of S (since S ⊆ [a, b]), S is nonempty and bounded above.
Thus, S has a supremum. Define c = sup S. Clearly c ≥ a since a ∈ S, and
c ≤ b since b is an upper bound of S, so f is continuous at c. We’ll show
that f(c) = 0 by showing that f(c) > 0 and f(c) < 0 are each impossible.

For the first case, suppose f(c) > 0 for a contradiction. Let ǫ = |f(c)|/2,
so ǫ > 0. By continuity of f at c, there is some δ > 0 so that for all
x ∈ dom(f), if |x−c| < δ then |f(x)−f(c)| < |f(c)|/2. It follows that for all
x ∈ (c−δ, c+ δ) ∩ dom(f), f(x) is between f(c)/2 and 3f(c)/2, so f(x) > 0.

Therefore, no member of (c−δ, c] belongs to S. Since no value of x greater
than c belongs to S (as c is an upper bound of S), this shows c − δ is an
upper bound of S. However, this contradicts that c is the least upper bound.
Thus, we cannot have f(c) > 0.

For the second case, suppose f(c) < 0 for a contradiction. By the same
reasoning as the first case, there is some δ > 0 so that for all x ∈ dom(f),
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if x ∈ (c − δ, c + δ), then |f(x) − f(c)| < |f(c)|/2. Thus, for any x ∈
(c − δ, c + δ) ∩ dom(f), f(x) is between f(c)/2 and 3f(c)/2, so f(x) < 0.

In particular, when x = c + (δ/2), f(x) < 0 and hence x ∈ S. However,
x > c, so this contradicts that c is an upper bound of S. Hence, we cannot
have f(c) < 0 either.

Thus, since f(c) > 0 and f(c) < 0 are each impossible, we must have
f(c) = 0. We already showed c ∈ [a, b], and since f(a) < 0 < f(b), we
cannot have c equal to a or b, so c ∈ (a, b). �

From Bolzano’s Theorem, the IVT follows quickly:

Corollary 3.50 (Intermediate Value Theorem). Let f be a real func-
tion which is continuous on a closed interval [a, b] (where a < b). For every
value k ∈ R between f(a) and f(b), there is some c ∈ (a, b) with f(c) = k.

Strategy. Let’s say f is continuous on [a, b] and k is between f(a) and f(b).
We’d like to find some value c ∈ (a, b) with f(c) = k, or equivalenty, some
c ∈ (a, b) satisfying f(c)−k = 0. In other words, if g is the function satisfying
g(x) = f(x) − k for all x ∈ dom(f), we’re looking for a value c ∈ (a, b) with
g(c) = 0. Bolzano’s Theorem is well-suited for this task, because g is a
difference of continuous functions and is thus continuous.

Proof. Let f, a, b, k be given as described. We define a real function g with
dom(g) = dom(f) as follows: for all x ∈ dom(f), g(x) = f(x)−k. Note that
g is continuous on [a, b] (as a difference of continuous functions) and that
g(a) and g(b) have different signs because k is between g(a) and g(b). By
Bolzano’s Theorem applied to g, there is some c ∈ (a, b) with g(c) = 0, i.e.
f(c) = k. �

Example 3.51:

The assumption of continuity in the ENTIRE interval [a, b] is absolutely nec-
essary for the IVT (or Bolzano’s Theorem) to work. A single discontinuity,
even at an endpoint of the interval, can make the theorem fail. As an ex-
ample, consider the Heaviside function shifted down by 1/2, i.e. we consider
the function f : R → R defined by

∀x ∈ R f(x) =

{

1/2 if x ≥ 0

−1/2 if x < 0
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When a = −1, b = 1, and k = 0, we have f(−1) < 0 and f(1) > 0, but there
is no value c ∈ (−1, 1) with f(c) = 0. Alternatively, if a = −1 and b = 0,
then we still have f(−1) < 0 < f(0) without having any value c ∈ (−1, 0)
satisfying f(c) = 0.

This shows that even a single discontinuity in [a, b] (even at an endpoint)
can make the IVT fail to apply. If you look at f on any interval which does
not contain 0, then the IVT does apply. (However, this is trivial for f because
f is constant on any interval not containing 0.) �

Example 3.52:

Although Bolzano’s Theorem only tells you that a zero of a function exists
(it doesn’t say how many there are, nor does it give more information about
how to find them), repeated use of Bolzano’s Theorem can help us find more
information about zeroes. Let’s demonstrate how we can approximate the
zeroes of a cubic polynomial using Bolzano’s Theorem.

Remark. A zero of a function f is an input x such that f(x) = 0. This is
often called a root, but technically, a root is a solution to an equation. For
example, we can either say “the polynomial x2−1 has the two zeroes −1 and
1” or “the equation x2 − 1 = 0 has the two roots −1 and 1”. However, in
common practice, the words “zero” and “root” are used interchangeably.

For example, consider the polynomial f : R → R defined by f(x) =
x3 − 5x + 1 for x ∈ R. As a cubic polynomial, f has at most 3 zeroes. By
taking a look at a graph, it seems that there should be zeroes in the intervals
(−3,−2), (0, 1), and (2, 3).

Bolzano’s Theorem can confirm that these intervals do in fact contain
zeroes as follows. Note that f is continuous everywhere. Also, f(−3) =
−11 < 0 < 3 = f(−2), so there is some c1 ∈ (−3,−2) with f(c1) = 0. Next,
f(0) = 1 > 0 > −3 = f(1), so there is some c2 ∈ (0, 1) with f(c2) = 0.
Lastly, f(2) = −1 < 0 < 13 = f(3), so there is some c3 ∈ (2, 3) with
f(c3) = 0.

Because the intervals we used in our applications of Bolzano’s Theorem
are each disjoint from the others, we know our three zeroes c1, c2, and c3

are all distinct. As f has at most 3 zeroes, we now know the set of zeroes
is precisely {c1, c2, c3}. We sometimes say we’ve isolated the zeroes from one
another (by finding a system of disjoint intervals, each containing a zero).
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However, we can get better information about where the zeroes lie. Con-
sider c2 for instance: we currently only know that c2 ∈ (0, 1), which isn’t a
very accurate estimate for c2. By looking at x = 0.5, the midpoint of (0, 1),
we see that f(0.5) = −1.375, so f changes sign on the interval [0, 0.5] and
must therefore have a zero in (0, 0.5). Thus, as this zero must be c2, we
now have better information about c2 than before. Trying this tactic again
with the midpoint of (0, 0.5), we find that f(0.25) ≈ −0.234, so we find that
actually c2 ∈ (0, 0.25).

This suggests the following useful algorithm for trying to find zeroes of
continuous functions f :

1. Find initial values a0, b0 ∈ R where f(a0) and f(b0) have different signs
(a graph usually helps for this). Also, we let i = 0 to start our algorithm
(i will increase as the algorithm continues).

2. We now know there is a zero of f on the interval (ai, bi) (by the IVT).
Let c = (ai + bi)/2, the midpoint of (ai, bi). If f(c) = 0, we have found
our zero and may stop the algorithm.

3. Otherwise, we have two cases. If f(c) has the same sign as f(bi), then
let ai+1 = ai and bi+1 = c. Otherwise, if f(c) has the same sign as
f(ai), then let ai+1 = c and bi+1 = bi.

4. Increase i by one and go back to Step 2. We repeat this process until
the distance bi − ai is as small as we want it to be. (For instance, if
you want to approximate the zero up to n decimal places of accuracy,
you run this algorithm until bi − ai < 10−n.)

As the distance bi − ai gets cut in half each time Step 3 is performed, the
distance bi−ai gets close to 0 quite quickly. When we run this algorithm with
the initial values of a0 = 0 and b0 = 1, it produces a1 = 0 and b1 = 0.5 in
Step 3. The next time Step 3 is performed, it produces a2 = 0 and b1 = 0.25.
The next time, we get a3 = 0.125 and b3 = 0.25. After more steps, we obtain
a7 = 0.1953125 and b7 = 0.203125. Therefore, we now know that c2, rounded
to the first two decimal places, is 0.20. If we want more digits of accuracy,
we need only run the algorithm longer.

This basic process of splitting our interval in half, finding out which half
has our solution, and then continuing our search in a new interval of half the
size, is a useful process called binary search or bisection. See Exercise 3.10.1
for more practice with isolating roots and using binary search. �

nth Roots
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Back in Theorem 2.29, we claimed that every nonnegative number has a
nonnegative square root, i.e. for each a ∈ R+∪{0} there is some x ∈ R+∪{0}
with x2 = a (uniqueness of x was left as an exercise). Now that we have the
Intermediate Value Theorem, we can make a rather simple proof of this
theorem. In fact, we’ll even generalize to nth roots where n ∈ N∗ as follows:

Theorem 3.53. For all a ≥ 0 and all n ∈ N∗, there is a unique x ≥ 0 with
xn = a. This value x is called the nth root of a and is denoted either by n

√
a

or by a1/n.

Strategy. As is common with proving existence of unique objects, let’s first
show that an nth root exists, and then we’ll show uniqueness.

We’d like to find some x ≥ 0 satisfying xn = a. This is where the
IVT becomes useful, because the nth power function taking x ∈ R to xn is
continuous everywhere. This means we want to find values a1, b1 ∈ R such
that an

1 < a < bn
1 , and then it follows that for some x ∈ (a1, b1), we have

xn = a.
To argue uniqueness, we note that the nth power function is strictly in-

creasing on [0,∞) (this was shown in Exercise 3.8.6.(a)). Thus, no two nth

powers of distinct numbers in [0,∞) are the same.

Proof. Let a ≥ 0 and n ∈ N∗ be given. Let f : R → R be defined by
f(x) = xn for all x ∈ R. We have seen that f is continuous everywhere.

First, we prove existence of an nth root. If a = 0, then we choose x = 0;
since 0n = 0, we are done. Otherwise, we note that f(0) = 0 < a and
f(1 + a) = (1 + a)n ≥ 1 + a > a (because xn ≥ x whenever x ≥ 1). Thus, by
the IVT, there is some x ∈ (0, 1 + a) with f(x) = a, i.e. xn = a as desired.

Second, to prove uniqueness, note that f is strictly increasing on [0,∞).
Thus, whenever x, y ≥ 0 are distinct, say WLOG that x < y, then xn < yn.
This means that no two nth powers of nonnegative numbers are equal, so
there can be at most one nonnegative nth root of a. �

The above theorem is really in some sense a definition and a theorem
at the same time (a “definitheorem”, if you will). This occurs commonly in
mathematics, where a theorem asserts the existence and uniqueness of some
object with a defining property.

How do we handle nth roots of negative numbers? When n is even, we
must have xn ≥ 0 for all x ∈ R, so there is no such thing as an nth root in
R of a negative number. However, when n is odd, for every a ∈ R there is
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exactly one x ∈ R satisfying xn = a. (When a is negative, that choice of x
is precisely −((−a)1/n).) That unique x is also called the nth root of a, and
the proof of its existence and uniqueness follows quickly from Theorem 3.53.

From nth roots, you can make rational powers as follows. In Exercise
3.10.6, you will prove that when a ≥ 0 and m, n ∈ N∗, the quantities (am)1/n

and (a1/n)m are the same (this is NOT the case when a < 0 for certain values
of m and n). Furthermore, the quantity (am)1/n only depends on the ratio
m/n, in the sense that if p, q ∈ N∗ satisfy m/n = p/q, then (am)1/n = (ap)1/q.
Thus, we may define am/n by (am)1/n, and the usual algebraic laws of powers
will hold. By also making the definitions a0 = 1 and a−y = 1/(ay) when
a, y > 0, we obtain definitions of all rational powers (but this requires a > 0
as opposed to just a ≥ 0, since negative powers involve reciprocals).

Note that we have NOT YET made any definition of what ax means when
x is irrational. We will have to wait until much later, when we cover expo-
nential functions in Chapter 7, to have a proper treatment of the expression
ax for arbitrary x ∈ R and a > 0.

Continuity of Inverses

Although we’ve now defined nth roots, we don’t yet know whether the
nth root functions are continuous. None of our current limit laws apply for
showing nth roots are continuous, as we didn’t build nth roots out of the
operations we’ve studied so far (adding, multiplying, composition, etc.). We
need a new kind of proof if we want to show that the nth roots are continuous.

Our main approach will be to look at the nth root function as the inverse
of the nth power function (inverse functions were defined in Chapter 1). More
precisely, when n ∈ N∗, let’s consider the nth power function f : [0,∞) →
[0,∞) defined by f(x) = xn for all x ∈ R. We’ve seen that f is strictly
increasing (because we are restricting ourselves to the domain [0,∞)), hence
it is injective. Furthermore, Theorem 3.53 proved that every a ∈ [0,∞) is
in the range of f , namely f(a1/n) = (a1/n)n = a. Thus, f is also surjective,
so f has an inverse function, the nth root function taking x ∈ [0,∞) to x1/n.
(In fact, when n is odd, the nth power function is also a strictly increasing
bijection from R to R.)

It turns out that reasoning like the proof of Theorem 3.53 can prove
that any strictly increasing continuous function f on an interval [a, b] is a
bijection from [a, b] to [f(a), f(b)]; see Exercise 3.10.8. Thus, there is an
inverse function g : [f(a), f(b)] → [a, b]. The graph of g is obtained from the
graph of f by reflecting over the line y = x.
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Because of this reflection property, and because we associate continuous
functions with connected graphs, we suspect that g is also strictly increasing
and continuous. Exercise 1.7.6 proved that g is strictly increasing. We now
prove the continuity of g:

Theorem 3.54. Let f be a real function which is continuous on a closed
interval [a, b]. Assume that f is strictly increasing, so Exercise 3.10.8 ensures
that f is a bijection from [a, b] to [f(a), f(b)]. Let g : [f(a), f(b)] → [a, b] be
the inverse of f , so g is also strictly increasing. Then g is continuous on
[f(a), f(b)].

Strategy. We aim to take advantage of the symmetric relationship between f
and g, as displayed in Figure 3.12; the graphs of f and g are reflections of one
another over the dashed line. Let’s say we’re trying to show g is continuous
at d ∈ [f(a), f(b)]. Since f and g are inverses, we know that we can write d
as f(c) for some unique c ∈ [a, b]. In fact, c = g(d). Thus, on our figure, we
draw two mirror-image points: one at (d, c) on the graph of g, and one at
(c, d) on the graph of f .

f

g

Ε

Ε

∆

∆

Figure 3.12: Two continuous inverses f and g with f(c) = d and g(d) = c

Now, let’s say ǫ > 0 is given. For simplicity, we deal with the two one-
sided limits of g separately. Let’s look at the right-hand limit first. We want
the graph of g to lie below the dashed horizontal line near (d, c), provided y
stays close enough to d. (The dashed vertical line displays how close y should
stay to d.) More precisely, we want to find some δ > 0 so that y < c + δ
implies g(y) < g(c) + ǫ. We have labeled ǫ and δ on Figure 3.12.
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Since f and g are mirror images, we can make mirror images of these
dashed lines as well! When we do so, we find that ǫ now represents a HOR-
IZONTAL distance for the graph of f , as labeled in the figure. Also, δ now
represents a vertical distance for the graph of f . In fact, we can read off the
value of δ from this picture: since the horizontal dashed line for f is at the
height of f(c + ǫ), we see that δ should be f(c + ǫ) − d = f(c + ǫ) − f(c).

Now, for any x ∈ [a, b], we have c < x < c + ǫ iff f(c) < f(x) < f(c + ǫ)
since f is strictly increasing. Note that f(c + ǫ) = f(c) + δ by the choice of
δ. Thus, c < x < c + ǫ iff f(c) < f(x) < f(c) + δ. When we set y = f(x) (so
that x = g(y)) and d = f(c) (so that c = g(d)), we find that d < y < d+ δ iff
g(d) < g(y) < g(d) + ǫ, which is exactly what we wanted for the right-hand
limit!

The left-hand limit works similarly, except that we choose δ = f(c) −
f(c − ǫ) instead (draw the appropriate dashed lines to see this).

Proof. Let f, a, b, g be given as described. Let d ∈ [f(a), f(b)] be given.
First, we prove that if d < f(b), then g is continuous from the right at d, i.e.
g(y) → g(d) as y → d+. Let ǫ > 0 be given; we must find some δ > 0 so that
all y ∈ (d, d+δ) satisfy |g(y)−g(d)| < ǫ. In fact, since g is strictly increasing,
when d < y, we know g(y) > g(d), so it will suffice to prove g(y) < g(d) + ǫ.

Let’s define c = g(d); since d < f(b), we have c = g(d) < g(f(b)) = b.
WLOG, we may suppose ǫ is small enough to satisfy c + ǫ ≤ b. Therefore,
f(c + ǫ) is defined, and we choose

δ = f(c + ǫ) − f(c)

Note that δ > 0 because f is strictly increasing.
To show that this choice of δ works for the right-hand limit, let y ∈ dom(g)

be given satisfying d < y < d + δ; we must show g(d) < g(y) < g(d) + ǫ.
Because c = g(d) and f is the inverse of g, f(c) = d, our choice of δ implies

d + δ = f(c) + (f(c + ǫ) − f(c)) = f(c + ǫ)

Therefore, f(c) < y < f(c + ǫ). Because g is strictly increasing, we may
apply it to all the parts of this inequality and conclude that g(f(c)) < g(y) <
g(f(c + ǫ)). Because g is the inverse of f , this means c < g(y) < c + ǫ, i.e.
g(d) < g(y) < g(d) + ǫ, as desired. This proves g is continuous from the
right.

Next, we prove that if d > f(a), then g is continuous from the left at
d. Let ǫ > 0 be given; we will find δ > 0 so that d − δ < y < d implies
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g(d) − ǫ < g(y) < g(d). To do this, we once again set c = g(d); since
d > f(a), we have c > g(f(a)) = a. We may suppose WLOG that ǫ is small
enough to satisfy c − ǫ ≥ a, and we choose

δ = f(c) − f(c − ǫ)

To show that this choice of δ works, let y ∈ dom(g) be given satisfying
d − δ < y < d. Our choice of δ implies that

d − δ = f(c) − (f(c) − f(c − ǫ)) = f(c − ǫ)

Thus, f(c− ǫ) < y < f(c), and applying g to all sides yields c− ǫ < g(y) < c.
In other words, we have g(d) − ǫ < g(y) < g(d), as desired. �

Remark. Theorem 3.54 was just proven for strictly increasing functions. It
is also true that the inverse of a continuous strictly decreasing function is
strictly decreasing and continuous. The proof of this can be reduced to the
theorem just proven; see Exercise 3.10.9.

You might be wondering why we restrict our attention to strictly increas-
ing or strictly decreasing functions. It turns out that a continuous bijection
HAS to be strictly monotone; see Exercise 3.10.7.

Also, although the theorem was stated for functions defined on a closed
bounded domain [a, b], with appropriate modifications it also applies to func-
tions defined on any kind of interval (even unbounded intervals like [0,∞)).
The details of the proof involve generalizing Theorem 3.48 as well; you should
try to work out the details yourself.

Theorem 3.54 proves that the nth root functions are continuous, because
they are the inverses of the nth power functions. It follows by the CLT that
all rational power functions are continuous (since the function taking x ∈ R

to xm/n is the composition of the mth power and the nth root functions).

Example 3.55:

Several other useful continuous functions are defined as inverses of strictly
montone continuous functions. Some of the most famous examples are the
inverse trigonometric functions, which we’ll introduce now.

First, let’s consider the sine function. sin is not strictly monotone on
all of R, but we can restrict our attention to an interval where it is strictly
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monotone, like [−π/2, π/2]. Thus, since sin is a continuous increasing bijec-
tion from [−π/2, π/2] to [−1, 1], it has a continuous increasing inverse from
[−1, 1] to [−π/2, π/2]. This inverse is written as sin−1 or as arcsin.

With the cosine function, cos is strictly decreasing on [0, π]. Thus, cos
is a continuous strictly decreasing bijection from [0, π] to [−1, 1], so it has a
continuous strictly decreasing inverse from [−1, 1] to [0, π]. This is written
as cos−1 or as arccos.

Lastly, the tangent function, being the ratio of sine and cosine, is con-
tinuous and strictly increasing from (−π/2, π/2) to (−∞,∞). Its inverse,
denoted by tan−1 or by arctan, is continuous and strictly increasing from
(−∞,∞) to (−π/2, π/2). Therefore, much like the staircase function, arctan
is defined everywhere, is strictly increasing, and has bounded range, but
unlike the staircase function, arctan is continuous everywhere. �

3.10 Exercises

1. In Example 3.52, we demonstrated how to take a continuous function,
isolate its zeroes, and try and approximate one of its zeroes using the
binary search algorithm. Perform these same steps on each of the
following functions f : R → R. For each, give your approximation of a
zero accurate to two decimal places:

(a) f(x) = x3 + 5x2 + x − 2

(b) f(x) = x5 − 4x3 + 3x + 1
(c) f(x) =

x

2
− sin x + 1

2. Prove that for all a, b ∈ R with a < b and all continuous functions
f : [a, b] → [a, b], there is some x ∈ [a, b] with f(x) = x. We say that
this x is a fixed point of f . (Hint: Consider f(x) − x.)

3. Although tan(π/4) = 1 and tan(3π/4) = −1, prove that there is no
c ∈ (π/4, 3π/4) satisfying tan c = 0. Why doesn’t this contradict the
IVT?

4. Let n ∈ N∗ be given. If f : R → R is a polynomial function of
degree n, then we say f is monic if it can be written with a leading
coefficient of 1, i.e. there exist a0, a1, . . . , an−1 ∈ R so that for all
x ∈ R, f(x) = xn + an−1x

n−1 + · · ·+ a1x + a0. Prove that every monic
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polynomial of ODD degree has a real zero, and use that to show that
all polynomials of odd degree have real zeroes.

(Hint: You want to show that when |x| is large enough, x and f(x)
have the same sign. Let C = max{|a0|, |a1|, . . . , |an−1|}. Can you make
a bound on |an−1x

n−1 + · · · + a1x + a0| in terms of C, n, |x|?)

5. Define f : R−{0} → R by f(x) =
sin x

x
for all x 6= 0. Prove that there

is some c ∈ (0, 2) such that f(c) = 0.95. (Hint: f is not defined at 0,
so it is not continuous at 0, but you can extend f to a new function
F defined on all of R by specifying a value for F (0). Which choice of
value for F (0) is the most helpful?)

6. This exercise addresses the formal details of verifying that rational
powers am/n are well-defined when a ≥ 0 and m, n ∈ N∗.

(a) Let a ≥ 0 and m, n ∈ N∗ be given. Since am and an are both
nonnegative, (am)1/n and (a1/n)m both exist. Prove that (am)1/n =
(a1/n)m. (Hint: Be strict about using the definition of nth root
correctly.)

(b) Find some a < 0 and some m, n ∈ N∗ such that (am)1/n exists but
(a1/n)m does not exist.

(c) Let a ≥ 0 and m, n, p, q ∈ N∗ be given. Prove that if m/n = p/q,
then (am)1/n = (ap)1/q. (Hint: Raise both sides to an appropriate
power.)

(d) Find some a < 0 and some m, n, p, q ∈ N∗ such that (am)1/n and
(ap)1/q both exist, and m/n = p/q, but (am)1/n 6= (ap)1/q.

7. This exercise outlines a proof that a continuous injective function on a
closed interval [a, b] is strictly monotone on [a, b]. More specifically, we
aim to prove

Theorem 3.56. Let a, b ∈ R be given with a < b, and let f be a real
function which is continuous and injective on [a, b]. Also, suppose that
f(a) < f(b) (note that f(a) cannot equal f(b) when f is injective).
Then f is strictly increasing on [a, b].

Analogously, if f(a) > f(b), then f is strictly decreasing on [a, b]; the
proof of this claim is very similar to the proof of Theorem 3.56.
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(a) First, prove the following lemma:

Lemma 3.57. Let a, b, f be given as described in Theorem 3.56,
and let a1, b1, x1 ∈ [a, b] be given satisfying a1 < x1 < b1. If
f(a1) < f(b1), then f(a1) < f(x1) < f(b1).

(Hint: If f(x1) is not in (f(a1), f(b1)), then there are two cases to
consider. In each case, the IVT should yield a contradiction.)

(b) Now, let a, b, f be given as described in Theorem 3.56. Let x, y ∈
[a, b] be given satisfying x < y. Use Lemma 3.57 twice (with
possibly different values of a1, b1, and x1 each time) to prove that
f(x) < f(y). This proves that f is strictly increasing on [a, b].

8. Assume that f is a real function which is continuous on a closed interval
[a, b]. Prove that if f is strictly increasing, then f is a bijection from
[a, b] to [f(a), f(b)], and if f is strictly decreasing, then f is a bijection
from [a, b] to [f(b), f(a)].

9. Prove an analogous version of Theorem 3.54 for strictly decreasing con-
tinuous functions. You may use the fact that the inverse of a strictly
decreasing function is strictly decreasing, as shown in Exercise 1.7.6.

10. This exercise generalizes Theorem 3.54. Let f : A → B be a strictly
increasing bijection, where A, B ⊆ R. Let g : B → A be the inverse
function of f . We know that g is strictly increasing.

Let a ∈ A be given, and let b = f(a). Recall that in order for lim
x→a

f(x)

to exist, f must be defined near a, i.e. A must contain an open interval
around a. Similarly, in order for lim

y→b
g(y) to exist, g must be defined

near b, i.e. B must contain an open interval around b.

(a) Prove that if A contains an open interval around a and B contains
an open interval around b, then g is continuous at b.

(b) Prove that under the same hypotheses as part (a), f is continuous
at a. (Hint: There is a quick way to do this by reusing part (a)!)

Remark. The conditions in the exercise imply continuity of the inverse
g at b, i.e. they are sufficient for continuity. Furthermore, they actually
imply continuity of both the original function f at a AND the inverse
g at b, as part (b) shows.
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However, these conditions are not necessary for continuity of g at b.
For example, consider when g : B → A is the staircase function s,
where B = R and A = ran(s) ⊆ (0, 1). Let f = g−1, so f : A → B and
g = f−1. Then f and g are both strictly increasing, and g is continuous
at all irrational inputs. However, it can be shown that for all a ∈ A, A
does not contain ANY open interval around a at all!

We describe this by saying that A is nowhere dense. In some sense, this
means that the range of s is very “sparse” in the interval (0, 1). The
properties of nowhere dense sets are studied more in upper-level real
analysis courses.

3.11 Consequences of Continuity: Part 2

Extreme Value Theorem

The previous section presented the Intermediate Value Theorem, which
says that as x goes from a to b, f(x) goes from f(a) to f(b) without skipping
anything, provided that f is continuous on [a, b]. This section shows that the
range of f on [a, b] is also bounded (so f doesn’t have any “infinite jumps”).
In fact, not only is f bounded on [a, b], but f also attains maximum and
minimum values, i.e. there exist c, d ∈ [a, b] such that

f(c) = max{f(x) | x ∈ [a, b]} f(d) = min{f(x) | x ∈ [a, b]}

We say that the value f(c) is the absolute maximum for f on [a, b], and we
say that c is a point where the maximum is attained (there might be more
than one such value for c). Similarly, we say f(d) is the absolute minimum,
attained at d. The values f(c) and f(d) are called absolute extreme values
(or absolute extrema) for f on [a, b].

First, we’ll prove that a continuous function f is bounded on a closed
interval [a, b]. Note that this is not the same thing as saying “a continuous
function has a bounded range”; in fact, not all continuous functions have
bounded range. For example, the identity function idR which maps any
x ∈ R to itself is continuous and is unbounded on R (certainly R is not a
bounded interval!). For another example, the function which takes a nonzero
x ∈ R and produces its reciprocal 1/x is unbounded on the interval (0, 1).
However, in each of these examples, the domain is not a closed bounded
interval.
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Lemma 3.58. Let f be a real function which is continuous on a closed in-
terval [a, b]. Then f is bounded on [a, b], i.e. {f(x) | x ∈ [a, b]} is a bounded
set.

Strategy. We start with a simple remark: if c is the midpoint of [a, b], and
f is bounded both on [a, c] and on [c, b], then f is also bounded on [a, b].
Why is this true? If f is bounded on [a, c], then there is some M ∈ R such
that |f(x)| ≤ M for all x ∈ [a, c]. (Hence, M is an upper bound, and −M
is a lower bound.) Similarly, if f is bounded on [c, b], then there is some
N ∈ R so that |f(x)| ≤ N for all x ∈ [c, b]. Therefore, for all x ∈ [a, b],
|f(x)| ≤ max{M, N}, showing that f is bounded on [a, b].

However, our remark is especially useful when we look at its contraposi-
tive: if f is unbounded on [a, b], then it must be unbounded on at least one
of [a, c] or [c, b]. In other words, if f is unbounded on a closed interval, then
f is unbounded on one of its halves. This gives us the idea to do a modified
binary search tactic, which in this context is frequently called a bisection
argument.

Thus, let’s suppose f is unbounded on [a, b], and we’ll aim to get a con-
tradiction. Let a0 = a and b0 = b. Next, let [a1, b1] be some half of [a0, b0] on
which f is unbounded. Then, let [a2, b2] be some half of [a1, b1] on which f
is unbounded. Continuing this process, we keep subdividing intervals in half
to get a sequence of intervals [an, bn] on which f is unbounded. Note also
that since the lengths of these intervals keep getting divided in half, we have
bn − an = (b − a)/2n, which gets close to 0 when n is large.

In essence, the intervals are “zooming in” toward a location where f is
unbounded. To be more precise about where the zooming occurs, let’s take
a look at the sequence of an values. Because an+1 ∈ [an, bn] for each n,
an+1 ≥ an, so the sequence is increasing. The sequence is also bounded
above by b. Thus, the values of the sequence have a supremum; let’s say we
denote sup{an | n ∈ N} by α. (Basically, the [an, bn] intervals are zooming
in on α. To develop this idea more fully, see Exercise 3.12.1.)

Now, since α ≥ a0 = a, and α ≤ b, we know that f is continuous at α.
Thus, when x is near α, f(x) is near f(α), which tells us that f is bounded
near α. To be more precise, if we take ǫ = 1 (any positive number works
here, so we’ll use 1 for convenience), there is some δ > 0 such that whenever
|x−α| < δ, |f(x)− f(α)| < ǫ = 1. This implies that |f(x)| < |f(α)|+ 1 (via
a calculation with the Triangle Inequality), so f is bounded on the interval
(α − δ, α + δ).

PREPRINT: Not for resale. Do not distribute without author’s permission.



Chapter 3: Limits and Continuity 185

However, we’ll show that for some n large, [an, bn] is contained in (α −
δ, α + δ), which gives our contradiction since f is bounded on (α − δ, α + δ)
and unbounded on [an, bn]. An argument similar to the one in Theorem 3.48
shows that the values of the an’s get arbitrarily close to α when n is large
enough. Thus, for all n large enough, an > α − δ. Also, since the difference
bn−an gets very close to 0 as n grows large, we can also guarantee bn < α+δ
for n large. Thus, [an, bn] ⊆ (α − δ, α + δ).

Proof. Let f, a, b be given as described, and assume for contradiction that f
is unbounded on [a, b]. It follows that if c = (a+ b)/2 (so c is the midpoint of
[a, b]), then f is either unbounded on [a, c] or on [c, b]. Why is this? Assume
otherwise, so there exist M, N ∈ R such that |f(x)| ≤ M for all x ∈ [a, c]
and |f(x)| ≤ N for all x ∈ [c, b]. It follows that |f(x)| ≤ max{M, N} for all
x ∈ [a, b], which contradicts the assumption that f is unbounded on [a, b].

Now, we create a sequence [an, bn] of closed intervals on which f is un-
bounded as follows. We start by letting a0 = a and b0 = b. Next, by the
previous paragraph, f must be unbounded on at least one of the two halves
[a0, (a0 + b0)/2] or [(a0 + b0)/2, b0] of the interval [a0, b0]. Choose a1, b1 ∈ R

so that [a1, b1] is a half of [a0, b0] on which f is unbounded (if both halves
satisfy that property, choose [a1, b1] to be the left half).

In general, for any n ∈ N, once [an, bn] has been defined such that f
is unbounded on [an, bn], let [an+1, bn+1] be a half of [an, bn] on which f is
unbounded (if both halves satisfy that property, then pick the left half). Note
that an+1 ≥ an, so the sequence of an values is increasing. Also, because
the length of [an+1, bn+1] is half the length of [an, bn], a routine induction
argument shows that bn − an = (b − a)/2n.

Let α = sup{an | n ∈ N}; this sup exists because an ≤ b for every n ∈ N.
Thus, α ≤ b and α ≥ a0 = a, so α ∈ [a, b] and f is continuous at α. This
means there is some δ > 0 such that for all x ∈ [a, b], if |x − α| < δ then
|f(x) − f(α)| < 1; in particular, by the Triangle Inequality,

|f(x)| = |(f(x) − f(α)) + f(α)| ≤ |f(x) − f(α)| + |f(α)| < 1 + |f(α)|

This shows that f is bounded on (α − δ, α + δ) ∩ [a, b].
Next, as α−δ is less than α, α−δ is not an upper bound of {an | n ∈ N},

so there is some n0 ∈ N such that an0
> α − δ. Choose n ≥ n0 large enough

so that (b−a)/2n < δ (this is possible because Exercise 3.8.6.(b) ensures that
the powers of 2 are unbounded). Therefore, as the an sequence is increasing
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with upper bound α, we know

α − δ < an0
≤ an ≤ α

and

bn = an +
b − a

2n
< an + δ ≤ α + δ

This implies that [an, bn] ⊆ (α − δ, α + δ). We also know [an, bn] ⊆ [a, b].
Therefore, as f is bounded on (α− δ, α+ δ) ∩ [a, b], f is bounded on [an, bn].
However, this contradicts the choice of [an, bn] as an interval on which f is
unbounded. �

Remark. Where did the assumption of continuity actually get used in the
previous proof? We note that we only used the continuity of f for one
purpose: to show that f was bounded in some open interval containing α.
However, the bound given there only works for inputs near α.

In general, whenever a real function f is continuous at some value x, then
f is bounded in an open interval around x. However, the bound for f on
that open interval won’t necessarily be valid for inputs that are too far away
from x. Thus, if you stay close to x, i.e. you stay in x’s “neighborhood”,
f is bounded. This is sometimes summarized by saying that a continuous
function f is locally bounded. (Sometimes, for contrast, when f is bounded
on an entire interval, we say f is “globally bounded”.)

Thus, the previous theorem says in essence that if a function f is lo-
cally bounded for every point in a closed interval [a, b], then f is “globally”
bounded, i.e. there is a bound on |f(x)| that works for ALL x ∈ [a, b]. The
bisection argument is one approach used to take a “local” property of a func-
tion and make it a “global” property of a function. We’ll see another example
of a bisection argument soon.

Lemma 3.58 tells us that if f is continuous on [a, b], then sup{f(x) | x ∈
[a, b]} and inf{f(x) | x ∈ [a, b]} exist. Let’s now prove that the sup and
inf are actually max and min respectively. This famous result is called the
Extreme Value Theorem, or the EVT for short.

Theorem 3.59 (Extreme Value Theorem). Let f : [a, b] → R be a con-
tinuous function on [a, b]. Then f attains an absolute maximum and absolute
minimum on [a, b].
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Strategy. Let’s first consider the case where f is a continuous function on [a, b]
with inf(ran(f)) = 0. To show that f attains a minimum value, we want to
show that 0 is actually min(ran(f)). Assume 0 6∈ ran(f) for a contradiction.
This means that the values of f are all positive, and they get arbitrarily close
to 0, but they never actually attain 0.

We can then apply the following nice trick: if a continuous function is
always positive on [a, b], then its reciprocal is continuous on [a, b], and hence
Lemma 3.58 tells us that the reciprocal is bounded on [a, b]. Thus, for our
function f , 1/f should be bounded on [a, b]. However, since f takes values
arbitrarily close to 0, 1/f should also be unbounded, which is a contradiction.

This proves that if a continuous function on [a, b] has 0 as the inf of its
range, then 0 has to actually be in the range. For all other values of the inf,
those cases can be reduced to the case of the inf being 0 by doing vertical
shifts. This shows that f attains an absolute minimum. To show that f
attains an absolute maximum, we merely need to find an absolute minimum
of −f .

Proof. Let f, a, b be given as described. We will show that f attains an
absolute minimum, i.e. min(ran(f)) exists. It will then follow that f has
an absolute maximum because max(ran(f)) = min(ran(−f)), and −f is
continuous on [a, b] as well.

By Lemma 3.58, we may declare m = inf(ran(f)). Suppose for contradic-
tion that m 6∈ ran(f). Therefore, f(x) > m for all x ∈ [a, b], so f(x)−m > 0
for all x ∈ [a, b]. If g : [a, b] → R is defined by g(x) = f(x) − m for all
x ∈ [a, b], then g is continuous on [a, b], inf(ran(g)) = 0, and g(x) > 0 for all
x ∈ [a, b]. Therefore, 1/g is continuous on [a, b].

By Lemma 3.58, 1/g is bounded on [a, b], so there exists some M > 0
such that for all x ∈ [a, b], 1/g(x) ≤ M . Thus, g(x) ≥ 1/M for all x ∈ [a, b]
(because M and g(x) are positive). However, since 1/M is greater than
inf(ran(g)), i.e. 1/M is greater than the greatest lower bound of ran(g),
there exists some member of ran(g) less than 1/M . Thus, there is some
x ∈ [a, b] with g(x) < 1/M . This contradicts the statement that g(x) ≥ 1/M
for all x ∈ [a, b], and thus we must have m ∈ ran(f), as claimed. �

Example 3.60:

Consider the function g : [π/2, 5π/2] → R defined by g(x) = sin x for all
x ∈ [π/2, 5π/2]. (Thus, g is the restriction of sin to [π/2, 5π/2].) We know
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|sin(x)| ≤ 1 for all x ∈ R, so this tells us inf(ran(g)) ≥ −1 and sup(ran(g)) ≤
1. Furthermore, g(π/2) = 1 and g(3π/2) = −1, showing that the absolute
maximum is 1 and the absolute minimum is −1. Note as well that g(5π/2) =
g(π/2) = 1 because sin is periodic with period 2π. This shows that an
absolute maximum can be attained at more than one point. �

Unfortunately, while the Extreme Value Theorem guarantees the exis-
tence of absolute extrema for continuous functions f on [a, b], it does not
provide a way to find the locations of these extrema. A binary search tech-
nique doesn’t work for finding maximum values, because the EVT provides
no way of knowing which half of [a, b] contains a maximum for f (whereas
in contrast, the IVT can determine which half of [a, b] contains a zero of f if
f changes signs). Nevertheless, the EVT is a useful theoretical tool, and we
will need it when we study derivatives in the next chapter.

Extent: From Top To Bottom

Since the EVT shows us that continuous functions are bounded on closed
intervals, we’d now like to see what we can say about the bounds. If the
bounds are far apart, it says that the function rises or falls a lot. This
suggests the following definition:

Definition 3.61. If a real function f is bounded on a set S ⊆ dom(f), then
we’ll define the extent7 of S for f , extent(f, S), by the equation

extent(f, S) = sup{f(x) | x ∈ S} − inf{f(x) | x ∈ S}

extent(f, S) measures the distance from the top of f ’s range on S to the
bottom.

The notion of extent helps simplify some of our definitions. For instance,
when f is continuous at a, f(x) is close to f(a) when x is close to a, so this
suggests that the values of f(x) aren’t far away from one another when x
comes from a sufficiently small open interval containing a. More formally,
in Exercise 3.12.5.(a), you can prove that for all real functions f and all
a ∈ dom(f), saying that f is continuous at a is equivalent to saying

∀ǫ > 0 ∃δ > 0 (extent(f, (a − δ, a + δ)) < ǫ)

7This can also be called the span of f on S, but the word “span” frequently means
something different in linear algebra. Sometimes, the phrase “the oscillation of f on S” is
also used instead of “extent”.
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We will make use of this fact later.

As an illustration of the notion of extent, let’s return to the hypothet-
ical situation where you’re driving a car. However, instead of doing a 20
minute trip, your trip is expected to take 8 hours. We’ll use a function f(t)
to model the total amount of fuel used by the car (measured in gallons of
gas) after t hours of driving, so f : [0, 8] → [0,∞). Intuitively, f is an in-
creasing continuous function. Therefore, for any subinterval [a, b] of [0, 8],
extent(f, [a, b]) = f(b)− f(a), meaning that as time progresses from t = a to
t = b, the car consumes f(b) − f(a) gallons of gas.

Now, let’s suppose that your car doesn’t have a large enough gas tank
to make the entire 8 hour trip with no breaks. Therefore, your trip has to
be broken into segments to allow for refueling. (Let’s assume that we can
refuel the car without having to stop, which is not currently practical for
most cars but will make our explanation simpler.) If you have a car with
a 15-gallon tank of gas, then you want each segment of the trip to burn at
most 15 gallons. In other words, the extent of each segment [a, b] of the trip
should be at most 15. After analyzing your trip, perhaps you find that you
should break the trip into 5 segments, each lasting 1.6 hours.

However, if your car has a smaller tank that only holds 10 gallons of gas,
then you need to break your trip into more segments, each having an extent
of at most 10. In fact, no matter how small your tank is, you can always
complete your 8-hour trip, provided you break the trip into enough segments.
Clearly the number of segments needed is going to be related to how fast your
car burns gas at different points in the trip: if the car is accelerating very
quickly in one portion of the trip and thus going through fuel quickly, then
that portion probably needs to be broken down into more segments in order
for each segment to have a small extent of fuel consumption. Thus, we get
detailed information about how quickly the car burns gas by examining the
relationship between the number of segments of the trip and the extent of
fuel consumption of each segment.

To put this example in more conventional terms, suppose we have a real
function f which is continuous on a closed bounded interval [a, b]. We’d
like to get a better picture of how much f rises or falls. To do this, we’ll
chop [a, b] into equal-width subintervals, each having a small extent. Let’s
illustrate this idea with another example.

Example 3.62:
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Consider f : [1, 3] → R given by f(x) = x2 for all x ∈ [1, 3]. Since f is strictly
increasing on [1, 3], for all a, b ∈ R with [a, b] ⊆ [1, 3], we have sup{x2 | x ∈
[a, b]} = b2 and inf{x2 | x ∈ [a, b]} = a2. Thus, extent(f, [a, b]) = b2 − a2.

This shows that extent(f, [1, 3]) = 32 − 12 = 8. If we cut up [1, 3] into
the two equal-width subintervals [1, 2] and [2, 3], then extent(f, [1, 2]) =
3 and extent(f, [2, 3]) = 5. Here, the largest extent for a subinterval is
at most 5. If we cut [1, 3] into four equal-width pieces [1, 1.5], [1.5, 2],
[2, 2.5], and [2.5, 3], we find extent(f, [1, 1.5]) = 1.25, extent(f, [1.5, 2]) =
1.75, extent(f, [2, 2.5]) = 2.25, and extent(f, [2.5, 3]) = 2.75. Now, the largest
extent we have is 2.75. The following table shows for different values of n
how large the extents become if we cut [1, 3] into n equal-width pieces:

n Largest extent when breaking into n equal-width subintervals
1 8
2 5
3 ≈ 3.56
4 2.75
8 1.4375
10 1.16
12 ≈ 0.972

In fact, it can readily be shown that for any n, when [1, 3] is broken into
n equal-width pieces, the subinterval with the largest extent is [3 − 2/n, 3],
with

extent(f,

[

3 − 2

n
, 3

]

) = 9 −
(

3 − 2

n

)2

= 9 −
(

9 − 12

n
+

4

n2

)

=
12

n
− 4

n2

and this extent can be made arbitrarily close to 0 by choosing n large enough.
�

In our example, we see that when we break [1, 3] into more pieces, the
extents of the pieces decrease. In general, a smaller set has a smaller extent,
as is shown in the following lemma:

Lemma 3.63. Let f be a real function, and let S, T ⊆ dom(f) be given. If
S ⊆ T and f is bounded on T (so it is also bounded on S), then extent(f, S) ≤
extent(f, T ).

The proof of this lemma is Exercise 3.12.6.
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Going back to Example 3.62, we saw that for any ǫ > 0, by dividing the
domain [1, 3] into enough pieces, the extents of the function f could all be
made smaller than ǫ. Let’s give this property a name:

Definition 3.64. Let f be a real function and let ǫ > 0 be given. Let’s say
that a closed interval [a, b] has the ǫ-extent property (for f) if [a, b] ⊆ dom(f)
and there exists an n ∈ N∗ such that when [a, b] is broken into n equal-width
subintervals

[

a +
b − a

n

]

,

[

a +
b − a

n
, a +

2(b − a)

n

]

, . . . ,

[

a +
(n − 1)(b − a)

n
, b

]

the extent of f on each subinterval is less than ǫ.

We’d like to prove that, in general, for any continuous function, each
closed interval [a, b] has the ǫ-extent property for every ǫ > 0. We’ll use a
bisection argument to do this, where we assume that the interval [a, b] doesn’t
have the ǫ-extent property, and then we keep picking halves of intervals in
order to “zoom in” on one point. The following lemma will help us do this:

Lemma 3.65. If f is a real function defined on a closed bounded interval
[a, b], then let c = (a + b)/2 be the midpoint of [a, b]. For any ǫ > 0, if [a, c]
and [c, b] both have the ǫ-extent property, then [a, b] has the ǫ-extent property.

Strategy. To see this, suppose that [a, c] can be split into n1 equal-width
pieces, each with extent less than ǫ, and [c, b] can be split into n2 equal-
width pieces, each with extent less than ǫ. Upon doing this, [a, b] is broken
into n1 pieces of width (b − a)/(2n1) and n2 pieces of width (b − a)/(2n2).
See Figure 3.13 for an example, which uses solid lines to break up the left
half [a, c] into 2 pieces and to break up the right half [c, b] into 3 pieces.

However, we’d like to make all our subdivisions the same width. Thus,
we further divide each piece of the left half in n2 pieces, and we divide each
piece of the right half in n1 pieces. (Figure 3.13 uses dashed lines to represent
these further subdivisions.) By Lemma 3.63, the extents of these new pieces
have not grown any bigger, so they are all still less than ǫ. Now, each half
has now been broken into n1n2 pieces, all of the same width. Thus, we have
broken up [a, b] into 2n1n2 pieces, all with extent less than ǫ.

Proof. Let f, a, b, c be given as described. Let ǫ > 0 be given, and assume that
[a, c] and [c, b] have the ǫ-extent property. Thus, we may choose n1, n2 ∈ N∗
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Figure 3.13: Splitting [a, c] in n1 = 2 pieces and [c, b] in n2 = 3 pieces

such that when [a, c] is broken into n1 equal-width subintervals, and [c, b]
is broken into n2 equal-width subintervals, then all these subintervals have
extent less than ǫ. To be more precise, when i is an integer from 1 to n1,
let Si be the ith subinterval of [a, c] (counting from the left). Si has width
(c − a)/n1 = (b − a)/(2n1). Similarly, if j is an integer from 1 to n2, then
let Tj be the jth subinterval of [c, b] (counting from the left). Tj has width
(b − c)/n2 = (b − a)/(2n2).

Now, for each i from 1 to n1, by the choice of Si, we have extent(f, Si) < ǫ.
Divide Si into n2 equal-width subintervals, called Si,1, Si,2, and so on up to
Si,n2

. For each k from 1 to n2, since Si,k ⊆ Si, Lemma 3.63 ensures that
extent(f, Si,k) ≤ extent(f, Si) < ǫ. Also, the length of Si,k is the length of Si

divided by n2, i.e. (b − a)/(2n1n2).
Similarly, for each j from 1 to n2, we may divide Tj into n1 equal-width

subintervals, called Tj,1, Tj,2, and so on up to Tj,n1
. We have extent(f, Tj,l) ≤

extent(f, Tj) < ǫ for each l from 1 to n1, and the length of Tj,l is the length
of Tj divided by n1, i.e. (b − a)/(2n1n2).

Hence, [a, b] is the union of all the Si,k and Tj,l intervals (where i and l are
from 1 to n1, and j and k are from 1 to n2), each subinterval having length
(b−a)/(2n1n2) and extent less than ǫ. Thus, [a, b] has the ǫ-extent property.
�

With the aid of Lemma 3.65, we can now prove the following:

Theorem 3.66. Let f be a real function continuous on a closed interval
[a, b]. Then for all ǫ > 0, [a, b] has the ǫ-extent property for f .

Strategy. Let’s assume that [a, b] does not have the ǫ-extent property and try
to get a contradiction. By Lemma 3.65, we know that if [a, b] does not have
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the ǫ-extent property, then one of its halves does not either. Let’s choose
[a1, b1] to be some half of [a, b] which does not have the ǫ-extent property.
After that, some half of [a1, b1] doesn’t have the ǫ-extent property: call that
half [a2, b2]. In this manner, we generate smaller and smaller subintervals
[an, bn] for each n ∈ N∗ which don’t have the ǫ-extent property.

As in the proof of Lemma 3.58, the intervals [an, bn] “zoom in” on the value
α = sup{an | n ∈ N∗}. Since f is continuous at α, we have seen that there is
some δ > 0 such that extent(f, (α − δ, α + δ)) < ǫ. However, as in the proof
of Lemma 3.58, when n is large, we’ll actually have [an, bn] ⊆ (α − δ, α + δ).
Hence, Lemma 3.63 implies that extent(f, [an, bn]) ≤ extent(f, (α − δ, α +
δ)) < ǫ, so [an, bn] has the ǫ-extent property (just break it into 1 subinterval!).
This contradicts the choice of [an, bn].

Proof. Let f, a, b be given as described. Let ǫ > 0 be given, and assume for
contradiction that [a, b] does not have the ǫ-extent property. We create a
sequence [an, bn] of closed intervals which do not have the ǫ-extent property
as follows. We start by letting a0 = a and b0 = b. Next, by Lemma 3.65, at
least one of the two halves [a0, (a0 + b0)/2] or [(a0 + b0)/2, b0] of the interval
[a0, b0] does not have the ǫ-extent property. Choose [a1, b1] to be such a half
(if both halves fail to have the ǫ-extent property, then choose [a1, b1] to be
the left half).

In general, for any n ∈ N, once [an, bn] has been defined such that [an, bn]
does not have the ǫ-extent property, let [an+1, bn+1] be a half of [an, bn] without
the ǫ-extent property (if both halves fail to have the ǫ-extent property, then
pick the left half). Note that an+1 ≥ an, so the sequence of an values in
increasing. Also, because the length of [an+1, bn+1] is half the length of [an, bn],
we see that bn − an = (b − a)/2n.

Let α = sup{an | n ∈ N}; this sup exists because an ≤ b for every n ∈ N.
Thus, α ≤ b and α ≥ a0 = a, so α ∈ [a, b] and f is continuous at α. This
means there is some δ > 0 such that extent(f, (α − δ, α + δ)) < ǫ.

As α − δ is less than α, α− δ is not an upper bound of {an | n ∈ N∗}, so
there is some n0 ∈ N such that an0

> α − δ. Choose n ≥ n0 large enough so
that (b − a)/2n < δ. Therefore, as the an sequence is increasing with upper
bound α, we know

α − δ < an0
≤ an ≤ α

and

bn = an +
b − a

2n
< an + δ ≤ α + δ
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This implies that [an, bn] ⊆ (α−δ, α+δ). Thus, by Lemma 3.63, we know that
extent(f, [an, bn]) ≤ extent(f, (α − δ, α + δ)) < ǫ. However, this means that
[an, bn] has the ǫ-extent property (just break it into 1 piece!), contradicting
the choice of [an, bn]. �

Uniform Continuity

For the last topic of this chapter, let’s take a closer look at the definition
of continuity. If a real function f is continuous at some point a, then it
means for any accuracy ǫ > 0 we want, there is some δ > 0 guaranteeing
that |f(x) − f(a)| < ǫ when |x − a| < δ. δ tells us how much we have to
control the inputs to our function if we want the function values f(x) and
f(a) to stay close together.

However, δ also depends on a. In some sense, δ measures how rapidly
the function f is changing near a: the faster f is rising or falling near a, the
tighter a control we need for δ. We illustrate this with an example.

Example 3.67:

Consider the function f : (0,∞) → R defined by f(x) = x2 for all x > 0.
Back in Example 3.21, we showed that x2 → 1 as x → 1 by showing, for each
ǫ > 0, what to choose for the corresponding δ > 0. We’ve seen since then
that x2 → a2 as x → a for any a > 0. Let’s go back over the formal proof of
this limit, so that we can study how the value of δ depends on a.

Let a > 0 and ǫ > 0 be given; we wish to find δ > 0 so that whenever
x ∈ (0,∞) and |x−a| < δ, then |x2−a2| < ǫ. Writing |x2−a2| as |x+a||x−a|,
we want to first find an appropriate bound for |x+a|, and then we’ll use that
bound to figure out how small to make |x−a|. Using the Triangle Inequality,
we find

|x + a| = |x − a + 2a| ≤ |x − a| + |2a| = |x − a| + 2a

since a > 0. Thus, if we make sure that |x−a| is at most a, then |x+a| ≤ 3a.
Therefore,

|x2 − a2| = |x + a||x − a| ≤ 3a|x − a|
In order to make this less than ǫ, we’d like |x − a| to be at most ǫ/(3a).
This means that we want to guarantee both |x− a| less than a and less than
ǫ/(3a), so we take

δ = min
{

a,
ǫ

3a

}
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Notice that when a is large enough (specifically, larger than
√

ǫ/3), δ is
ǫ/(3a). Thus, as a gets bigger and bigger, our control will become smaller
and smaller, suggesting that we need tighter control on our input to achieve
the same accuracy. This makes sense, since the graph of f rises faster and
faster the more you move to the right, with no apparent bound on the “speed”
of f ’s ascent (we will make this more precise in the next chapter when we
study derivatives).

A good question to ask is: for a given ǫ > 0, is it possible to pick one
value of δ which works for ALL values of a > 0 at the same time? It seems
that any such value of δ would have to be less than ǫ/(3a) for every a, but
ǫ/(3a) can be made arbitrarily close to 0 by taking a large enough. This
suggests that it is impossible to pick one value of δ which works for all a at
the same time. To prove this statement more rigorously, see Exercise 3.12.7.

However, if we choose to restrict our choices of a to a closed bounded
interval, then it IS possible to take one value of δ that works for all a in that
interval. For instance, suppose we only want to consider values of a from
[1, 3]. In that case, a ≤ 3, and ǫ/(3a) ≤ ǫ/(3 · 1) = ǫ/3. Thus, the choice of
δ = min{3, ǫ/3} works for all values of a in [1, 3], and it only depends on ǫ
(as opposed to depending on ǫ and a). �

The previous example motivates the following definition:

Definition 3.68. Let f be a real function, and let S be an interval contained
in dom(f) (it can be unbounded). We say that f is uniformly continuous on
S if the following holds:

∀ǫ > 0 ∃δ > 0 ∀x, y ∈ S (|x − y| < δ → |f(x) − f(y)| < ǫ)

Thus, if f is uniformly continuous on S, then f is continuous at each
point a of S (just plug in a for y). However, the choice of δ only depends on
ǫ, not on any particular point where the limit is computed (here, δ is chosen
BEFORE x or y is given).

To summarize Example 3.67, we have shown that the function f from the
example is uniformly continuous on [1, 3], but it is NOT uniformly continuous
on (0,∞). In some sense, this is because there is no bound to how fast f
rises when you look at all values in (0,∞), but there is such a bound on
[1, 3]. This shows that the notion of uniform continuity on S depends highly
on the set S.
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To illustrate the idea behind uniform continuity, let’s return to the gas
tank example we discussed after the definition of extent. In that example,
our gas consumption function f : [0, 8] → [0,∞) is increasing and continuous.
At any specific point a of the trip, because f is continuous at a, no matter
how small the size ǫ of our gas tank is, there will always be some δ > 0 which
guarantees that extent(f, (a− δ, a + δ)) < ǫ, i.e. at most ǫ gallons of gas are
burned between the times a−δ and a+δ. Thus, your car can successfully run
for 2δ hours without needing to refuel a tank of size ǫ. However, δ normally
depends on a: this makes sense, since the faster the car is burning gas at
time a, the less time the car can run without refueling.

However, if f is uniformly continuous on [0, 8], that means that some
value of δ works for EVERY a. Thus, no matter what point in the trip
you’ve reached, you can always run the car for 2δ hours before refueling an ǫ-
sized tank. This allows you to conveniently break up your trip into segments
that are 2δ hours long, rather than having to refuel more frequently during
the faster portions of your trip. This suggests that uniform continuity is
related to the ǫ-extent property.

In general, there is a connection between the ǫ-extent property and uni-
form continuity, and we will use this connection to prove that all continuous
functions are uniformly continuous on closed bounded intervals (i.e. when the
domain has the form [a, b]). Recall that continuity of a function f at a means
that for all ǫ > 0, there is some δ > 0 such that extent(f, (a − δ, a + δ)) < ǫ.
In contrast, you can prove in Exercise 3.12.5.(b) that uniform continuity of
f on an interval S, when S ⊆ dom(f), is equivalent to saying that for all
ǫ > 0, there is a δ > 0 such that ALL intervals of length δ contained in
S have extent less than ǫ. (You can check that two points x and a satisfy
|x− a| < δ iff the two points belong to the open interval of length δ centered
at (x + a)/2.) Therefore, the result from Theorem 3.66, which allows us to
break [a, b] into subintervals of small extent, will be helpful to us in proving
the following:

Theorem 3.69. Let f be a real function continuous on a closed interval
[a, b]. Then f is uniformly continuous on [a, b].

Strategy. Theorem 3.66 tells us that we can break up the interval [a, b] into
some number of equal-width subintervals, say n of them, each having extent
less than ǫ. Thus, if x and y are any two points belonging to the same
subinterval S, then

f(x) − f(y) ≤ sup{f(z) | z ∈ S} − inf{f(z) | z ∈ S} = extent(f, S) < ǫ
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Similarly, we also find that f(y) − f(x) < ǫ, so |f(x) − f(y)| < ǫ. Since
each subinterval has length (b − a)/n, this suggests that we should pick
δ = (b − a)/n.

However, if x, y ∈ [a, b] are within distance (b−a)/n from each other, that
doesn’t mean they have to be in the same subinterval of [a, b]. There are two
cases: either x and y belong to the same subinterval of [a, b], or they belong to
adjacent subintervals. In the second case, how can we estimate the distance
|f(x) − f(y)|? Let’s suppose that c is the common boundary between the
two subintervals. Thus, as x and c belong to a common subinterval, |f(x)−
f(c)| < ǫ, and as c and y belong to a common subinterval, |f(c)− f(y)| < ǫ.
We can use the Triangle Inequality to obtain

|f(x) − f(y)| ≤ |f(x) − f(c)| + |f(c) − f(y)| < 2ǫ

Therefore, whether or not x and y lie in the same subinterval of [a, b], we
know the distance |f(x) − f(y)| is less than 2ǫ. This means we should have
broken up [a, b] into subintervals with extent ǫ/2 instead of extent ǫ.

Proof. Let f, a, b be given as described. Let ǫ > 0 be given. We wish to find
δ > 0 so that

∀x, y ∈ [a, b] (|x − y| < δ → |f(x) − f(y)| < ǫ)

By Theorem 3.66, there is some n ∈ N∗ such that if we break [a, b] into n
equal-width subintervals (name them S1, S2, and so on up to Sn going from
left to right), each subinterval has extent less than ǫ/2 for f . Let δ be the
width of a subinterval, so δ = (b − a)/n.

Now, let x, y ∈ [a, b] be given satisfying |x − y| < δ. (WLOG we may
assume x < y.) Let’s say that x lies in the subinterval Si where i is from
1 to n (if x is an endpoint between two subintervals, choose i to be the left
one). If i = n, then y > x implies that y ∈ Sn as well (Sn is the rightmost
subinterval). Otherwise, we note that x + δ ∈ Si+1, so as y < x + δ, y is in
either Si or Si+1. This gives us two cases to consider.

For the first case, suppose y ∈ Si. Then because x, y ∈ Si, we have
f(x) ≤ sup{f(z) | z ∈ Si} and f(y) ≥ inf{f(z) | z ∈ Si}, so f(x) − f(y) ≤
extent(f, Si) < ǫ/2. The same reasoning, but with the roles of x and y
interchanged, shows that f(y) − f(x) ≤ extent(f, Si) < ǫ/2 as well. Thus,
|f(x) − f(y)| < ǫ/2 < ǫ.

For the second case, suppose y ∈ Si+1. Let c be the endpoint shared by
Si and Si+1. Because x and c are both in Si, |f(x)−f(c)| < ǫ/2 by the proof
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of the first case. Also, because c and y are both in Si+1, |f(c)− f(y)| < ǫ/2.
Therefore, by the Triangle Inequality,

|f(x) − f(y)| ≤ |f(x) − f(c)| + |f(c) − f(y)| < 2(ǫ/2) = ǫ

In either case, we have shown |f(x) − f(y)| < ǫ, as desired. �

3.12 Exercises

1. In the proof of Lemma 3.58, we created a sequence of closed intervals
[an, bn], where for every n ∈ N, [an+1, bn+1] is always one of the two
halves of [an, bn]. We saw that the an values have a supremum α. This,
in essence, says that the left endpoints of the intervals converge. This
exercise will address the right endpoints.

(a) Prove that bn+1 ≤ bn for each n ∈ N, and also show that {bn | n ∈
N} is bounded below.

(b) By part (a), inf{bn | n ∈ N} exists; call it β. Prove that α = β.
(Hint: If α were smaller than β, then we could find n large enough
so that (b− a)/2n < β − α. How big can bn be?) This shows that
the right endpoints also converge to the same limit as the left
endpoints.

(c) Prove that if x belongs to [an, bn] for every n ∈ N, then x = α = β.

2. If we try the proof from Lemma 3.58 to the function which sends x ∈
(0, 1) to 1/x, where does the proof fail? (Hint: For each n ∈ N, you
should be able to figure out what [an, bn] will be.)

3. Prove that if f is continuous on a closed bounded interval [a, b], then
the set {f(x) | x ∈ [a, b]} is also a closed bounded interval. (Hint: Use
both the IVT and the EVT.)

4. In each part of this problem, a function f from R to R, an interval
[a, b], and a positive number ǫ is specified. For each part, show that
the interval has the ǫ-extent property by giving a number n of equal-
width subintervals so that each subinterval has extent less than ǫ. Show
your steps.

(a) f(x) = x, [a, b] = [0, 2], ǫ = 1.
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(b) f(x) = x2 − x, [a, b] = [−1, 1], ǫ = 0.5.

(c) f(x) = sin x, [a, b] = [0, 2π], ǫ = 0.5.

(d) f(x) =
√

x, [a, b] = [0, 3], ǫ = 1.

5. (a) Let f be a real function and let a ∈ dom(f) be given. Prove that
f is continuous at a iff for all ǫ > 0, there is some δ > 0 so that
extent(f, (a − δ, a + δ)) < ǫ.

(b) Let f be a real function and let S be an interval contained in
dom(f). Prove that f is uniformly continuous on S iff for all
ǫ > 0, there is some δ > 0, such that for every interval I ⊆ S of
length less than δ, extent(f, I) < ǫ.

6. Prove Lemma 3.63.

7. Prove that the function f : (0,∞) → R, defined by f(x) = x2 for all
x ∈ (0,∞), is not uniformly continuous on (0,∞). More specifically,
show that when ǫ = 1, no choice of δ satisfies the definition of uniform
continuity.

8. Let f be a real function, and let S be an interval contained in dom(f).
We say that f is Lipschitz-continuous on S with Lipschitz constant
L > 0 if the following holds:

∀x, y ∈ S |f(x) − f(y)| ≤ L|x − y|

Thus, for a Lipschitz-continuous function, the distance between outputs
is directly proportional to the distance between inputs.

(a) Prove that if f is Lipschitz-continuous on S (i.e. if it has a Lip-
schitz constant L), then f is uniformly continuous on S. Thus,
Lipschitz continuity is a stronger property than uniform continu-
ity.

(b) Prove that the function f : [0, 1] → R, defined by f(x) =
√

x for
all x ∈ R, is not Lipschitz-continuous on [0, 1]. As Theorem 3.69
proves that f is uniformly continuous on [0, 1], this proves that
uniform continuity does not imply Lipschitz continuity. (Hint: If
L > 0 is given, how do you pick x, y ∈ [0, 1] such that x < y and√

y −√
x

y − x
> L?)
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9. Prove that sin and cos are uniformly continuous on all of R in each of
the following two ways:

(a) Theorem 3.69 shows that sin and cos are uniformly continuous on
[−2π, 2π]. Use this and the fact that sin and cos have period 2π
to prove uniform continuity on all of R. (Hint: If x, y ∈ R are
close together, then find a multiple of 2π that can be subtracted
from both x and y to make them both lie in [−2π, 2π].)

(b) For the second proof, use the trigonometric identities

sin x − sin y = 2 sin

(

x − y

2

)

cos

(

x + y

2

)

and

cos x − cos y = −2 sin

(

x − y

2

)

sin

(

x + y

2

)

which are valid for all x, y ∈ R, and the inequality | sin θ| ≤ |θ|
for θ ∈ (−π/2, π/2), to prove that both sin and cos are Lipschitz-
continuous on R with Lipschitz constant 1 (see Exercise 3.12.8).

10. Suppose that f is uniformly continuous on an open interval (a, b) with
a < b. Prove that f is bounded on (a, b).

(Hint: Suppose that, in the definition of uniform continuity, ǫ = 1, and
δ is chosen correspondingly. Let c = (a+b)/2 be the midpoint of (a, b).
Suppose we break up (a, c) and (c, b) into n subintervals, where n is
chosen so that each subinterval has width less than δ. If x is a point in
(a, b) which is k subintervals away from c, where 0 ≤ k ≤ n, then how
large can |f(x) − f(c)| be in terms of k?)

Remark. It turns out that the hypotheses of this exercise imply that
lim

x→a+
f(x) and lim

x→b−
f(x) both exist, so f can be extended to a contin-

uous function g defined on [a, b]. However, the proof of that is better
suited for an upper-level real analysis course.
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Chapter 4

Derivatives

In calculus, the derivative is used to study rates of change. Rates of change
appear in many different situations. For instance, the slope of a line measures
the rate of change of vertical position with respect to horizontal position
(this is more casually called “change in y over change in x” or “rise over
run”). When an object is moving, its velocity measures the rate of change
of its position with respect to time. Also, acceleration measures the rate of
change of velocity with respect to time. For all these applications and more,
derivatives come in handy. Let’s illustrate the main idea with an example.

Example 4.1:

Suppose that we watch an apple fall from a tree which is 10 meters tall.
After t seconds of falling, let’s say the apple is f(t) meters above the ground.
Newton found that f(t) = 10− 4.9t2 for any time t until the apple lands. To
find out when the apple lands, we set f(t) = 0, i.e. 10 − 4.9t2 = 0, and we
solve for t to get t = ±

√

10/4.9 = ±
√

100/49 = ±10/7. Since we’re more
interested in the positive answer (a negative number for time could make
sense in other situations, referring to the past, but f(t) wouldn’t make sense
for negative t in this context), we conclude that the apple hits the ground
after 10/7 seconds. This tells us that f is a function from [0, 10/7] to [0, 10];
let’s call f the position function for the apple.

That apple falls quite quickly; it falls 10 meters in 10/7 seconds, so the
average velocity of the apple during the entire fall is

change in height

change in time
=

(0 − 10) meters

(10/7 − 0) sec
= −7 meters/sec
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(Here, velocity measures speed AND direction, so the negative sign means
that the apple is falling, rather than rising.) More generally, for any a, b ∈
[0, 10/7] with a < b, the average velocity from time t = a to time t = b is
the change in position f(b) − f(a) divided by the change in time b − a. We
compute

f(b) − f(a)

b − a
=

(10 − 4.9b2) − (10 − 4.9a2)

b − a

= −4.9
b2 − a2

b − a

= −4.9
(b − a)(b + a)

b − a
= −4.9(b + a)

Frequently, in science, the capital Greek letter Delta, written as ∆, is used to
denote changes. Thus, by using ∆t to represent the change in time (i.e. ∆t =
b − a) and ∆f to represent the change in position (i.e. ∆f = f(b) − f(a)),
we can write the average velocity as

∆f

∆t
= −4.9(b + a)

This form of writing the velocity shows more clearly that velocity is a rate
of change of position with respect to time.

Now, we’d like to know about the apple’s instantaneous velocity : at any
time a ∈ [0, 10/7], how fast is the apple falling exactly at time a? In fact,
how do we even assign meaning to the notion of instantaneous velocity at
one point, rather than average velocity between two points?

We try the following approach. Let’s suppose a ∈ [0, 10/7] is given. If b is
any time close to a, then the velocity of the apple at time a should be pretty
close the average velocity from time a to time b. We found that this average
velocity is −4.9(b + a) meters per second. (Although we did our earlier
calculations assuming that a < b, the calculations also work if b < a.) As b
gets closer to a, the average velocity should become a better approximation
to the instantaneous velocity at a. This suggests that we should take a limit
of the average velocity as b → a, and we find that

lim
b→a

−4.9(b + a) = −9.8a

(Technically, if a = 0 or a = 10/7, then this limit is a one-sided limit, because
we did not define f outside of the interval [0, 10/7].)
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This suggests that if we use v : [0, 10/7] → R to represent a velocity func-
tion, where v(a) is the instantaneous velocity at time a for each a ∈ [0, 10/7],
then we should let v(a) = −9.8a. The function v has some properties that
we would expect a velocity function to have. For instance, when a = 0, i.e.
the apple has only just started falling, we have v(a) = 0, signifying that the
apple has not yet built up any speed. We see that v is a strictly decreasing
function; this makes sense, as the apple falls faster with more time, since
gravity makes the apple accelerate. As a approaches 10/7, i.e. when the
apple is close to landing, the velocity of the apple approaches lim

a→10/7−
v(a),

which is −9.8(10/7) = −14 meters per second. Thus, this apple has a lot of
momentum when it lands, so you definitely don’t want this apple to land on
your foot. �

In calculus terminology, we say that v is the derivative of f . The value
v(a) is obtained by taking an average rate of change of f from a to b and
then letting b approach a in a limit. We will study this process in general,
trying to find out how properties of a derivative relate to properties of the
original function used to construct it.

4.1 The Definition of Derivative

Example 4.1 motivates the following definition:

Definition 4.2. Suppose that f is a real function and a ∈ dom(f) is given.
For any x ∈ dom(f) satisfying x 6= a, we call the ratio

f(x) − f(a)

x − a

the difference quotient of f from a to x. (This is also a rate of change: it
is the ratio of change in output to change in input from a to x.) We say
that f has a derivative at a, or is differentiable at a, if the difference quotient
attains a limit as x → a, i.e. if the limit

lim
x→a

f(x) − f(a)

x − a

exists.1 This limit is called the derivative of f at a (with respect to the
variable x) and is written f ′(a) (the notation is pronounced as “f prime at

1Note that in order for this limit to exist, we require f to be defined in an open interval
around a.
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a”). If S is the set of points a ∈ R where f ′(a) exists, then the function
f ′ : S → R which maps each point a ∈ S to f ′(a) is called the derivative of
f .

Thus, in Example 4.1, another name for v is f ′. Technically, since the
domain of f in the example is a closed interval [0, 10/7], the values v(0) and
v(10/7) are really one-sided limits of the difference quotient. In other words,
we say that v(0) and v(10/7) are one-sided derivatives, where v(0) is the
derivative from the right of f at 0, and v(10/7) is the derivative from the left
of f at 10/7.

Remark. As another way to calculate the derivative, if we use the letter h to
represent the change from a to x, i.e. h = x − a, then we get x = a + h and
the difference quotient becomes

f(a + h) − f(a)

h

Therefore, f ′(a) is also equal to

lim
h→0

f(a + h) − f(a)

h

when this limit exists. This form of the derivative is frequently easier to
calculate.

Remark. Note that instead of writing f(x) = 10− 4.9x2 and f ′(x) = −9.8x,
we will sometimes write (10 − 4.9x2)′ = −9.8x. This is technically an abuse
of notation, as we blur the distinction between the function f and its value
at an arbitrary x. However, when we write an expression like this, it should
not cause confusion as long as we make clear which letter denotes the input
variable to the function and which quantities depend on that variable.

Examples and Tangent Lines

Let’s compute some derivatives of simple functions, and we’ll see what
the derivatives tell us about their graphs.

Example 4.3:

PREPRINT: Not for resale. Do not distribute without author’s permission.



Chapter 4: Derivatives 205

Let’s consider when f : R → R is the constant function f(x) = c, where c is
some real number. Since the graph of the function never rises nor falls, i.e.
the output values always have zero change, it makes sense that the rate of
change of the function should be zero. Indeed, for any a ∈ R, we compute

f ′(a) = lim
h→0

f(a + h) − f(a)

h
= lim

h→0

c − c

h
= 0

Now, here’s a good question to ponder: is the converse true? In other
words, if a function’s derivative is always zero, does that mean that the
function is constant? This turns out to be surprisingly subtle! For instance,
consider the Heaviside function H defined in Definition 3.42:

H(x) =

{

0 if x < 0

1 if x ≥ 0

When a < 0, then H(x) = H(a) for all x < 0, so the difference quotient
(H(x) − H(a))/(x − a) is zero for all x < 0. Thus, H ′(a) = 0 when a < 0.
Similarly, if a, x > 0, then H(x) = H(a), so H ′(a) = 0 as well. Thus, H ′(a)
is zero for all a 6= 0, but clearly H is not a constant function on R.

The issue here is that H is not continuous at 0; its values jump from 0 to
1 at that point. We’ll soon show that this implies H is not differentiable at 0
(or see Exercise 4.2.7.(a)). It turns out that if a function has derivative zero
IN AN ENTIRE INTERVAL, then the function is constant on that entire
interval. We will prove this surprisingly deep result later in the chapter. �

Example 4.4:

Now, let’s consider a linear function f : R → R, defined by f(x) = mx + b
where x, m, b ∈ R. When we graph this line with the equation y = mx + b,
the slope of this line is m. This means that for every 1 unit the line moves
to the right, the line moves m units upward (if m is negative, then moving
m units upward is the same as moving |m| units downward). In other words,
the rate of change of the y-position with respect to the x-position is m.

Thus, we’d expect our derivative to equal m. Indeed, we compute

f ′(x) = lim
h→0

(m(x + h) + b) − (mx + b)

h
= lim

h→0

mh

h
= m

for all x ∈ R. It is because of this that the derivative f ′(x) is sometimes
called the instantaneous slope. �
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Let’s look at the notion of instantaneous slope a little more carefully,
going back to the apple falling in Example 4.1. Here, the position function
is f(t) = 10 − 4.9t2 for t ∈ [0, 10/7]. If a, b ∈ [0, 10/7] are given with a 6= b,
then the average velocity of the apple from time a to time b was found to be
−4.9(b+a). In other words, the average slope of f from a to b is −4.9(b+a),
representing the slope of the solid line segment connecting the two points in
Figure 4.1.

a b
t

y

Figure 4.1: Average and instantaneous slopes

The line through the two points (a, f(a)) and (b, f(b)) is called a secant
line to the graph of f . This secant line goes through (a, f(a)) and has slope
−4.9(b+a). As b approaches a, the slope of this line approaches −9.8a, which
is the value of f ′(a). Thus, the secant lines start to look more like the line
through (a, f(a)) with slope −9.8a as the second point (b, f(b)) on the line
approaches (a, f(a)). (This line is the dashed line in Figure 4.1.) In essence,
the line through (a, f(a)) with slope −9.8a goes “in the same direction” as f
when t = a. This line is given a special name:

Definition 4.5. Suppose f is a real function, and a ∈ R is given such that
f is differentiable at a. Therefore, the point (a, f(a)) is on the graph of f ,
and the instantaneous slope there is f ′(a). The tangent line to f at a is the
line through (a, f(a)) with slope f ′(a). In point-slope form, this line has the
equation

y − f(a) = f ′(a)(x − a)
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Thus, in our example, at any a ∈ [0, 10/7], the tangent line has the
equation

y − (10 − 4.9a2) = −9.8a(t − a)

for the height y as a function of the time t. Here, the tangent line has a phys-
ical meaning. If, at the time t = a, gravity stops pulling on the apple, then
Newton’s laws of motion say that the apple will continue moving according
to its current velocity until some other force acts on it. Thus, from the point
(a, f(a)), the apple would fall downward at its current instantaneous speed
of 9.8a meters per second. In other words, the position function of the apple
without gravity’s influence will follow the tangent line!

Remark. You may have heard of the terminology “tangent line” before in
geometry, where a tangent line to a circle is a line touching the circle at
exactly one point. For graphs other than circles, it’s not as important whether
a line touches the graph at exactly one point. For instance, the vertical line
through the point (a, f(a)) touches the graph of f exactly once, but that line
tells us practically nothing about the behavior of f overall! That is why the
tangent line is instead defined using instantaneous slope, since that line has
the same trajectory as the graph it is touching.

However, the two notions of tangent line are related. In Section 4.5, when
we have more techniques for computing derivatives, we will find tangent lines
to circles using our definition of a tangent line, and we’ll see that our tangent
lines touch the circle in exactly one spot.

Example 4.6:

Let’s see another example of computing tangent lines, and we’ll find another
use for tangent lines as good approximations to a function.

Let’s consider the function f : [0,∞) → [0,∞) defined by f(x) =
√

x
for all x ∈ [0,∞). Where is this function differentiable? First, let’s suppose
a ∈ (0,∞) is given. By rationalizing, we compute

f ′(a) = lim
h→0

√
a + h −√

a

h
·
√

a + h +
√

a√
a + h +

√
a

= lim
h→0

(a + h) − a

h(
√

a + h +
√

a)

= lim
h→0

1√
a + h +

√
a

=
1

2
√

a
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(This is valid because
√

a is not zero when a > 0.) Thus, the tangent line at
a has the equation

y −√
a =

1

2
√

a
(x − a)

We draw one such tangent line in Figure 4.2. The picture shows that
the tangent line seems to be following the general trajectory of the graph
of f at the point (a, f(a)). One way to think of this is to imagine yourself
riding in a rollercoaster car, and the track is shaped like the graph of f .
If you always keep your vision parallel with the coaster, then when the car
reaches the point (a, f(a)), the tangent line shows your line of vision. Notice
that you get the same line of vision whether you ride the car towards the
right (i.e. forwards on the track) or if you ride the car towards the left (i.e.
backwards). The line also shows the trajectory that the coaster would take
if the car detached from the track and flew in a straight line unaffected by
gravity.

Ha,fHaLL

Figure 4.2: A tangent line to y =
√

x at x = a

Because the tangent line seems to be “following the graph of f ” at x = a,
the line provides a decent way to approximate values of

√
x when x is close

to a. For instance, let’s consider when a = 1. Then the tangent line has
equation y − 1 = (1/2)(x− 1), i.e. y = x/2 + 1/2. When x is close to 1, the
y-coordinates of the graph y =

√
x and y = x/2+1/2 shouldn’t be far apart.

Thus, when x = 1.001, we have

√
1.001 ≈ (1.001)/2 + 1/2 = 1.0005

A calculator gives
√

1.001 ≈ 1.000499875, so our estimate of
√

1.001 using
the tangent line was pretty accurate. This method of using the tangent
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line to make approximations for a curve is often called the process of linear
approximation.

Another thing to notice about this function is that it is not differentiable
at 0. If we try and compute the derivative there, we find

lim
h→0+

√
0 + h −

√
0

h
= lim

h→0+

1√
h

= ∞

(The definition of an infinite limit was given in the exercises in Section 3.4.)
We should note that just saying “the formula 1/(2

√
a) is undefined when

a = 0” is NOT enough to prove that f ′(0) doesn’t exist. This is because in
our calculation for f ′(a) when a > 0, we used the quotient rule for limits in the
last step. The quotient rule doesn’t apply to limits where the denominator
approaches 0, so we aren’t allowed to use it when a = 0. This means a
separate calculation of the limit for a = 0 is necessary, and this calculation
gives the answer of ∞.

Thus, the difference quotients from a = 0 approach ∞ as h → 0, so
intuitively the graph is rising infinitely fast at a = 0. We say that f has a
vertical tangent at a = 0. Indeed, if you imagine yourself in the rollercoaster
that travels along the graph of f , at the very start of your trip, you will be
facing straight up. �

Two Notations

The notation f ′ for the derivative of f is often called Newton notation
for the derivative. There is another common notation for derivatives called
Leibniz notation which writes df

dx
for the derivative of f with respect to the

input variable x. The idea behind this notation is as follows: if we write ∆f
to denote f(x) − f(a), i.e. the change in f from x to a, and we write ∆x
to denote x − a, i.e. the change in the input variable x, then the difference
quotient of f from a to x becomes

f(x) − f(a)

x − a
=

∆f

∆x

As x → a, we have ∆x → 0, and thus

df

dx
= lim

∆x→0

∆f

∆x
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(so essentially, the “Greek letter d”, ∆, becomes a “Roman letter d” after the
limit is taken). The derivative df

dx
in Leibniz notation is frequently pronounced

“d f d x”, i.e. you pronounce the four letters separately. Also, the word “over”
is not said when reading the symbol df

dx
, as the symbol is not technically a

fraction. If our input variable is t instead of x, we write dt instead of dx, and
so forth.

In this notation, here are some of the derivatives we have found, where
c, m, b ∈ R are constants:

dc

dx
= 0

d

dt
(10 − 4.9t2) = −9.8t

d

dx
(mx + b) = m

The second of these is read as “d d t of 10 − 4.9t2 is −9.8t”, where the
derivative is now with respect to t. In essence, the symbol d

dx
represents the

operation of taking a derivative with respect to x.
To denote the value of the derivative at a point a in Leibniz notation, we

write
df

dx

∣

∣

∣

∣

x=a

Many formulas will be quicker to write in Newton notation. However, we’ll
see several formulas later in this chapter which become clearer when written
in Leibniz notation. This is primarily because the Leibniz notation writes
the derivative to look like a quotient, reminding us that a derivative arises as
a limit of a difference quotient. Also, the Leibniz notation’s “denominator”
reminds us what the input variable is, which can help avoid confusion in
problems with multiple variables.

Higher-Order Derivatives

Since the derivative of a real function is another real function, we can cer-
tainly consider taking derivatives again. In fact, we can try taking derivatives
as many times as desired.

Definition 4.7. If f is a real function and n ∈ N, the nth derivative f (n) of
f (also called the nth-order derivative) is the function obtained by differen-
tiating f a total of n times. More formally, we define f (n) by recursion on n.
As a base case, f (0) is f . Next, if f (n) has been created, then f (n+1) is (f (n))′.
For example,

f (3) = (f (2))′ = ((f (1))′)′ = (((f (0))′)′)′ = ((f ′)′)′
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For any a ∈ R, if f (n)(a) exists, we say that f is n-times differentiable at a.
Note that the parentheses around n in the superscript are REQUIRED:

the phrase fn(a) is interpreted as the nth power of f at a instead of being
interpreted as the nth derivative. For convenience, f (2) is frequently written
f ′′, and f (3) is written f ′′′. The notation f (n) is Newton notation for the nth

derivative. In Leibniz notation, the nth derivative of f is written as

dnf

dxn
where

dn+1f

dxn+1
=

d

dx

(

dnf

dxn

)

Thus, in Leibniz notation, the nth derivative is written like the “nth power”
of the operation d

dx
.

Lastly, when a ∈ R and f (n)(a) exists for every n ∈ N, we say that f is
infinitely differentiable at a.

Example 4.8:

With the apple in Example 4.1, when f(t) = 10 − 4.9t2, we found f ′(t) =
−9.8t. Taking a second derivative is easy, because f ′ is a linear function,
and we get f ′′(t) = −9.8. This shows that the second derivative of f is a
constant.

What physical meaning does the second derivative have? We saw that
the first derivative of f , i.e. the first derivative of the apple’s position, corre-
sponds to velocity. The second derivative measures rate of change of velocity,
or how fast velocity changes with respect to time. This is called acceleration.
Thus, since f ′′(t) = −9.8, we see that the apple is accelerating downward
at the constant rate of −9.8 meters per seconds squared. This is the com-
monly accepted value of gravitational attraction for objects near the surface
of Earth: it is historically denoted by g = 9.8 meters/sec2.

Remark. Historically, none of Newton’s Laws actually gives a formula for
the position of a falling object. Instead, Newton’s famous Law of Universal
Gravitation says that

F = G
Mm

R2

where F is the magnitude of the force due to gravity, G is a constant, M
and m are the masses of two objects drawn together by gravity, and R is the
distance between the objects. For objects near Earth’s surface, the distance
R is roughly the radius of Earth, so if we let M be the mass of Earth and
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let g = GM/R2, then we get the approximation F ≈ mg for describing the
force of gravity that pulls an object of mass m towards Earth.

Since force is mass times acceleration, this shows that near Earth’s sur-
face, gravitational acceleration is roughly the constant value −g (the nega-
tive sign indicates a downward direction). In other words, we first find that
f ′′(t) = −9.8. From that, we will later be able to show that if v0 is the initial
velocity of the apple (in our case, v0 = 0, meaning the apple has not built
up any speed yet), then f ′ must satisfy the formula f ′(t) = v0 − 9.8t. After
that, we’ll also see that if f0 is the initial height of the apple (so in our case,
f0 = 10), then f must satisfy the formula f(t) = f0 + v0t − 4.9t2.

It is not hard to check that if f is defined by the formula f(t) = f0 +v0t−
4.9t2, then f(0) = f0, f ′(0) = v0, and f ′′(t) = −9.8. The hard part is knowing
that this is the UNIQUE function f to have all those properties. This ends
up being related to our earlier question about whether a function with zero
derivative must be a constant function. Later in the chapter, we’ll prove
some powerful theorems that will address the uniqueness of the function f
above.

Returning to the example of the apple falling from the tree, since the
second derivative is constant, the third derivative is f (3)(t) = 0 for all t ∈
dom(f). Thus, since the third derivative is constant, the fourth derivative
is also zero, and so forth. In summary, f is infinitely differentiable at every
value in [0, 10/7], but only f (0), f (1), and f (2) are not constantly zero. �

4.2 Exercises

1. Find each of the following derivatives in terms of the input variable x.
For example, (10 − 4.9x2)′ is −9.8x, as we showed earlier. Show your
calculations using the definition of derivative.

(a) (x2 + x + 1)′.

(b) (x3)′.

(c) (1/x)′ where x 6= 0. (Hint: Use
a common denominator.)

2. For each part, find the tangent line to the function f at the specified
value of a. Also, find all points where the tangent line is horizontal.
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(a) f(x) = x3, a = 2.

(b) f(x) = x +
√

x, a = 1.
(c) f(x) =

1 − x

2 + x
, a = −1.

3. By using a linear approximation (see Example 4.6) to the graph of
y = x4 near a = 2, find approximate values for (2.001)4 and (1.999)4.

4. Find the following second derivatives in terms of x.

(a) ((x + 1)2)′′ (b) (
√

x)′′

5. For each n ∈ N∗, define fn : R → R by fn(x) = xn for each x ∈ R.
Thus, fn is the nth power function. This problem will find f ′

n.

(a) Prove that for all x, a ∈ R and all n ∈ N∗,

xn − an = (x − a)
n−1
∑

i=0

xian−1−i

(b) Let n ∈ N∗ and a ∈ R be given. Use part (a) to prove that
f ′

n(a) = nan−1.

(c) Let n ∈ N∗ and x ∈ R be given. The Binomial Theorem says that
for all h ∈ R,

(x + h)n =

n
∑

i=0

(

n

i

)

xihn−i

where
(

n
i

)

, pronounced “n choose i”, is the number

(

n

i

)

=
n(n − 1)(n − 2) . . . (n − i + 1)

i!
=

n!

(n − i)! i!

(this is frequently proven in discrete mathematics courses). As-
suming the Binomial Theorem, prove f ′

n(x) = nxn−1. (You are
not required to prove the Binomial Theorem, though an induction
proof is possible; look up Pascal’s Identity.) This provides another
way to find the derivative of the nth power function.

6. Let n ∈ N∗ be given. Let f : R−{0} → R be defined by f(x) = x−n =
1/(xn) for all x 6= 0. Use Exercise 4.2.5 to prove that f ′(x) = −nx−n−1

for all x 6= 0. (Hint: After making a common denominator, group the
terms so that the difference quotient for the nth power appears.)
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Remark. Therefore, since (x0)′ = 1′ = 0 = 0x−1, this exercise and
Exercise 4.2.5 prove that for all n ∈ Z, (xn)′ = nxn−1 at all x ∈ R

where xn is defined.

7. (a) Prove, using the definition of derivative, that the Heaviside func-
tion H is not differentiable at 0 (H is defined in Definition 3.42).

(b) Prove, using the definition of derivative, that for all a ∈ R, χQ

is not differentiable at a, where χQ is defined in Definition 3.42.
(Hint: Show that when |h| < 1, the difference quotient from a to
a + h is either 0 or has absolute value greater than 1. Why does
that mean the difference quotient has no limit?)

4.3 Arithmetic Derivative Rules

Now that we’ve introduced the definition of derivative, we’d like some rules,
much like with limits, that will make derivatives easier to compute. Some of
the derivative rules are just as simple as the corresponding limit rules, but
some of the derivative rules are more complicated.

How Far Off Is The Tangent Line?

Before introducing any derivative rules, let’s first examine the connection
between functions and tangent lines a little more closely. There are a couple
good reasons for doing this. First, whenever making any kind of approxi-
mation, it is always worthwhile to make precise statements concerning how
close the approximation actually is. This is what makes estimation practi-
cal and insightful, as opposed to just wishful thinking. Second, our study
here generalizes in some very handy ways. One generalization, which we
will study extensively in Chapter 8, deals with approximating functions by
polynomials of arbitrary degree. Another generalization arises in multivari-
ate calculus, where we take functions from Rn to Rm (where n, m ∈ N∗) and
compute something called the “total derivative” by analyzing approximations
by a suitable generalization of a linear function. This study is beyond the
scope of this book.2

2However, after completing this book, you should study this topic, and more, in a
formal multivariate calculus course.

PREPRINT: Not for resale. Do not distribute without author’s permission.



Chapter 4: Derivatives 215

Let’s suppose f is a real function which is differentiable at a ∈ R. There-
fore, the instantaneous slope of f at a is f ′(a), meaning that the graph
roughly follows the line with slope f ′(a) through the point (a, f(a)) on the
graph of f . In other words, using the formula for the tangent line, we have

f(x) ≈ f(a) + f ′(a)(x − a)

when x is close to a. We’d like to analyze how far apart the tangent line and
the original function are. Thus, we define

E(x) = f(x) − (f(a) + f ′(a)(x − a))

for all x ∈ dom(f), so E is a real function with dom(E) = dom(f). We’ll
call E the error of the linear approximation f(a) + f ′(a)(x − a) (or, more
specifically, the error with respect to the function f at the value a).

Note that E(a) = 0; this makes sense because both the function f and
the tangent line go through the point (a, f(a)), so there is no error when
x = a. We’d like to show that, in addition, E(x) → 0 as x → a. In other
words, we can make the error as close to 0 as we’d like by taking x close
enough to a.3 After all, we don’t use approximations to estimate the value
of f at a; we use them instead to estimate the values of f NEAR a.

To show this, we first note that when x 6= a, we can divide by x − a and
obtain

E(x)

x − a
=

f(x) − f(a) − f ′(a)(x − a)

x − a
=

f(x) − f(a)

x − a
− f ′(a)

Since f ′(a) is, by definition, the limit of the difference quotient (f(x) −
f(a))/(x − a) as x approaches a, this tells us that

lim
x→a

E(x)

x − a
= f ′(a) − f ′(a) = 0

Using this limit, we readily find that

lim
x→a

E(x) = lim
x→a

(

E(x)

x − a

)

(x − a) = 0(a − a) = 0

as desired.
Using this limit, we obtain a useful connection between the notions of

differentiability (i.e. the notion of having a derivative) and continuity:

3In Chapter 8, when we study Taylor polynomials, we’ll be able to obtain estimates for
the size of E(x). Another estimate is found in Exercise 4.10.17.
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Theorem 4.9. If a ∈ R and f is a real function which is differentiable at a,
then f is continuous at a.

Strategy. Using the notation from earlier, we write

f(x) = f(a) + f ′(a)(x − a) + E(x)

We’d like to show that f(x) → f(a) as x → a. The work we did earlier helps
us find the limit of the right-hand side.

Proof. Let f, a be given as described. Let E : dom(f) → R at a be the error
function described earlier. We have previously shown that

f(x) = f(a) + f ′(a)(x − a) + E(x)

for all x ∈ dom(f), and also E(x) → 0 as x → a. Therefore,

lim
x→a

f(x) = lim
x→a

(f(a) + f ′(a)(x − a) + E(x))

= f(a) + f ′(a)(a − a) + 0 = f(a)

which proves that f is continuous at a. �

Example 4.10:

While differentiability implies continuity, the converse is NOT true. Con-
sider when f is the absolute-value function and a = 0. We know that f is
continuous at 0. However, we compute the one-sided limits of the difference
quotient at a = 0:

lim
h→0+

|0 + h| − |0|
h

= lim
h→0+

h

h
= 1

and

lim
h→0−

|0 + h| − |0|
h

= lim
h→0−

−h

h
= −1

which show that the two-sided limit, i.e. f ′(0), does not exist.
Basically, from the left, the graph looks like it has slope −1, and from the

right, the graph looks like it has slope 1. Recall the rollercoaster analogy we
developed, where we imagine ourselves riding on a rollercoaster shaped like
the graph of the function. With that analogy, tangent lines correspond to
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lines of vision when we face parallel to the track. However, if a rollercoaster
were riding a track shaped like the absolute-value function, then the rider
would be severely whipped around at x = 0, rapidly switching from a diagonal
downward-pointing line of vision to a diagonal upward-pointing line of vision.

This situation is frequently described by saying that the graph has a sharp
corner. Sharp corners are one of the ways that a continuous function can fail
to be differentiable. Another way is for the graph to have a vertical tangent,
as we’ve seen with the square-root function near 0. �

At this point, we’ve seen that the tangent line to a function f at a is a
suitable approximation to f , because it produces small errors E(x) for points
x near a. In fact, we know more than just E(x) → 0; we’ve actually shown
the stronger property that E(x)/(x−a) → 0. This tells us that E(x) is NOT
proportional to x − a, since if E(x) were roughly r(x − a) for some nonzero
ratio of proportion r, then the limit E(x)/(x − a) would come out to r, not
to 0. Instead, in some sense, E(x) is significantly smaller than x − a. Thus,
we sometimes describe E(x)/(x − a) → 0 by saying that the error is “better
than linear”.

This raises the question: are there any other linear approximations to f
which produce “better than linear” errors? Suppose we’d like to approximate
f(x) for x near a with a line of slope m going through the point (a, f(a)) on
the graph of f . Thus, the line we use for approximation has the formula

y = f(a) + m(x − a)

and we use E again to stand for the error in the approximation:

E(x) = f(x) − (f(a) + m(x − a))

Our question now becomes: which choices of m make E(x)/(x−a) approach
0 as x → a? This useful lemma shows that the tangent line slope f ′(a) is the
only choice:

Lemma 4.11. Let a, m ∈ R be given, and let f be a real function defined in
an interval around a. Define E : dom(f) → R by

E(x) = f(x) − (f(a) + m(x − a))

for all x ∈ dom(f), so E represents the error in approximating f(x) by the
line through (a, f(a)) with slope m. Then E(x)/(x − a) → 0 as x → a iff f
is differentiable at a and m = f ′(a).
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Strategy. The right-to-left direction of proof was done earlier, where we
showed that using m = f ′(a) produces an approximation with a “better
than linear” error. For the other direction, we find that

E(x)

x − a
=

f(x) − (f(a) + m(x − a))

x − a
=

f(x) − f(a)

x − a
− m

This gives us a way to calculate the limit of the difference quotient, i.e. the
derivative.

Proof. Let f, a, m, E be given as described. The right-to-left direction of
proof was done in this section, so let’s do the other direction. Assume that

lim
x→a

E(x)

x − a
= 0

The definition of E also shows that for all x ∈ dom(f) with x 6= a,

E(x)

x − a
=

f(x) − f(a)

x − a
− m

Therefore, we compute

f ′(a) = lim
x→a

f(x) − f(a)

x − a

= lim
x→a

E(x)

x − a
+ m

= 0 + m = m

as desired. �

Lemma 4.11 gives a formal way of saying that the tangent line is the
best approximating line at a. In fact, in some situations, we can use this
lemma to prove that f ′(a) exists: we find a linear approximation for f near
a, and if the error is better than linear, then f ′(a) is the line’s slope. This
is esepcially handy when f is built out of simpler functions, so that a linear
approximation for f can be built out of approximations for the simpler pieces.
We will illustrate this process with some of our derivative laws.

Linearity of Differentiation
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For our first rule for calculating derivatives, we’ll show that the operation
of taking derivatives is linear:

Theorem 4.12 (Linearity Rule). For any real functions f, g and any real
numbers a, c1, c2, if f and g are both differentiable at a, then so is the linear
combination c1f + c2g. Furthermore,

(c1f + c2g)′(a) = c1f
′(a) + c2g

′(a)

Recall that in Chapter 3, we showed that the operation of taking a limit is a
linear operation as well, i.e.

lim
x→a

(c1f + c2g)(x) = c1 lim
x→a

f(x) + c2 lim
x→a

g(x)

when the limits on the right side exist.

Remark. From the general “linearity rule”, we get similar rules for constant
multiples, addition, and subtraction by plugging in specific choices for the
functions and constants. For instance, if we choose g to be the constant zero
function, then Theorem 4.12 shows us that (c1f)′(a) = c1f

′(a), which gives
us a constant multiple rule. On the other hand, if we let g stay arbitrary but
instead choose c1 = 1 and c2 = 1, then we get (f + g)′(a) = f ′(a) + g′(a),
which gives us an addition law. Similarly, we get (f − g)′(a) = f ′(a) − g′(a)
by choosing c1 = 1 and c2 = −1.

Strategy. The definition of derivative says that

(c1f + c2g)′(a) = lim
x→a

(c1f(x) + c2g(x)) − (c1f(a) + c2g(a))

x − a

By using some algebra to group the terms with f together and the terms
with g together, we readily obtain the difference quotients for f and g.

Proof. Let f, g, a, c1, c2 be given as described. By definition, we have

(c1f + c2g)′(a) = lim
x→a

(c1f(x) + c2g(x)) − (c1f(a) + c2g(a))

x − a

= lim
x→a

(

c1 ·
f(x) − f(a)

x − a
+ c2 ·

g(x) − g(a)

x − a

)

Because f is differentiable at a, the quotient involving f has the limit f ′(a)
as x → a. Similarly, the quotient involving g has the limit g′(a). Thus, by
the limit laws, we find (c1f + c2g)′(a) = c1f

′(a) + c2g
′(a), as desired. �
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Remark. It’s also instructive to see how we could have used our results about
linear approximations to prove this theorem. The main idea is: if we have

f(x) ≈ f(a) + f ′(a)(x − a) and g(x) ≈ g(a) + g′(a)(x − a)

then we also should have

c1f(x) + c2g(x) ≈ (c1f(a) + c2g(a)) + (c1f
′(a) + c2g

′(a))(x − a)

More formally, let Ef be the better-than-linear error for f at a, and let
Eg be the better-than-linear error for g at a. Some algebra shows that

c1f(x) + c2g(x) = (c1f(a) + c2g(a)) + (c1f
′(a) + c2g

′(a))(x − a)

+(c1Ef(x) + c2Eg(x))

This yields a linear approximation for c1f + c2g with slope c1f
′(a) + c2g

′(a)
whose error E(x) is c1Ef (x) + c2Eg(x). To apply Lemma 4.11, it remains to
show that E is better than linear, i.e. that E(x)/(x − a) → 0. This follows
quickly from the fact that Ef(x)/(x − a) and Eg(x)/(x − a) approach 0.

This alternate argument can be summarized very nicely: if f and g both
have good lines approximating them, then we can get a good line for c1f +c2g
by just scaling and adding our previous lines!

Theorem 4.12 shows that it is quite easy to take derivatives of sums
and differences: we merely take the derivative of each piece individually and
combine the results. For example, if we consider f : R → R defined by
f(x) = x2 + x + 1 for all x ∈ R, then f ′(x) = (x2)′ + (x)′ + (1)′. Using
Exercise 4.2.5, which proves that (xn)′ = nxn−1 for all n ∈ N, we therefore
find that f ′(x) = 2x + 1.

Another example to consider is Example 4.1, featuring the apple falling
from the tree. The apple’s height is f(t) = 10 − 4.9t2 after t seconds. We
can quickly find that the velocity of the apple, f ′(t), is −4.9(t2)′, or −9.8t,
without having to write a difference quotient!

Example 4.13:

Using Theorem 4.12 together with the formula (xn)′ = nxn−1, we can com-
pute derivatives of all polynomials quite easily. Let’s say that p is a degree n
polynomial where n ∈ N∗, so p has the form p(x) = anx

n + an−1x
n−1 +

· · · + a1x + a0, i.e p(x) =

n
∑

i=0

aix
i, for all x ∈ R and some coefficients
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an, an−1, · · · , a0 ∈ R with an 6= 0. (Recall that the degree of a polynomial is
the highest power associated with a nonzero coefficient.) We find that

p′(x) =

(

n
∑

i=0

aix
i

)′

=

n
∑

i=0

ai(x
i)′ =

n
∑

i=0

iaix
i−1

In this derivative, the term corresponding to i = 0 has a coefficient of
zero, so it can be removed from the sum. Hence,

p′(x) =

n
∑

i=1

iaix
i−1 = nanxn−1 + (n − 1)an−1x

n−2 + · · ·+ 2a2x + a1

This shows that p′ is itself a polynomial. Since nan 6= 0, p′ is a polynomial
of degree n − 1. Thus, taking a derivative of a nonconstant polynomial (i.e.
a polynomial with degree at least 1) lowers its degree by 1.

If n−1 is at least 1, then we can take another derivative to get p′′, and p′′

is a polynomial of degree (n−1)−1, or n−2. Once again, if n−2 ≥ 1, then
we can take a third derivative p′′′ to get a polynomial with degree n− 3, and
so forth. You can do a short induction proof to show that for any n, k ∈ N∗

with k ≤ n, the kth derivative of an nth degree polynomial is a polynomial of
degree n − k.

However, what happens if you take more than n derivatives of an nth

degree polynomial? Well, the nth derivative of an nth degree polynomial has
degree 0, i.e. it’s a constant function. Thus, the next derivative after that
is constantly zero. This shows that the (n + 1)st derivative of an nth degree
polynomial, and all other derivatives after that, are constantly zero.

It turns out that, in fact, the ONLY functions whose (n+1)st derivatives
are zero everywhere are the polynomials whose degree is at most n. (When
we use n = 0, this fact implies that the only functions whose derivative is
zero everywhere are the constant functions.) This follows from a deep result
called the Mean Value Theorem, which will come in a later section of this
chapter. �

Products and Quotients

Next, we would like to find a way to take derivatives of products. Here,
derivatives behave rather differently from limits: if f and g are differentiable
at some value a, then (fg)′(a) usually is NOT the same as f ′(a)g′(a). For
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instance, (x2)′ = 2x, but (x)′ · (x′) = 1 · 1 = 1. What should the formula for
(fg)′(a) be instead?

To gain some ideas, we can use linear approximations. If we say that

f(x) ≈ f(a) + f ′(a)(x − a) g(x) ≈ g(a) + g′(a)(x − a)

then multiplying these expressions suggests that

f(x)g(x) ≈ f(a)g(a)+f ′(a)g(a)(x−a)+f(a)g′(a)(x−a)+f ′(a)g′(a)(x−a)2

This result doesn’t give us a line because of the presence of the term with
(x− a)2. However, (x − a)2 goes to 0 faster than x − a does as x → a, since
(x−a)2/(x−a) → 0. This suggests that the term with (x−a)2 gets counted
as part of the linear error, and what remains is

f(a)g(a) + (f ′(a)g(a) + f(a)g′(a))(x − a)

Thus, we are led to the following theorem:

Theorem 4.14 (Product Rule). Let a ∈ R be given, and let f and g be
real functions which are each differentiable at a. Then fg is differentiable at
a, and

(fg)′(a) = f ′(a)g(a) + f(a)g′(a)

Remark. Here is a fun mnemonic device you may want to use to help remem-
ber this formula4. Let’s call one of the functions “hi” and the other function
“ho”. If you use a “d” to represent derivative, the Product Rule becomes

d(hi ho) = ho d(hi) + hi d(ho)

This is intended to be pronounced “d hi ho is ho d hi plus hi d ho”, sounding
almost like a yodel. There will be an analogous device for remembering how
to differentiate quotients later.

Strategy. We want to compute the limit

(fg)′(a) = lim
x→a

f(x)g(x) − f(a)g(a)

x − a

4Warning: Many mnemonic devices may feel silly or embarassing to repeat to yourself,
especially this one. Use this with caution.
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It is not clear how to get difference quotients for f and g to appear in this
expression. However, note that if the second term in the numerator were
f(a)g(x) instead of f(a)g(a), then we could factor out g(x) and get (f(x) −
f(a))g(x) in the numerator. This suggests that having a “mixed term” in the
numerator, where one factor uses x and the other uses a, would be helpful.

To make a “mxed term” appear in the numerator, we use an old algebra
trick: we add and subtract the term! Let’s say, for instance, that we add and
subtract f(a)g(x). This turns our fraction into

f(x)g(x) − f(a)g(x) + f(a)g(x) − f(a)g(a)

x − a

Thus, in the first two terms, we can factor out g(x), and in the last two
terms, we can factor out g(a). This makes difference quotients for f and g
appear!

Proof. Let f, g, a be given as described. By adding and subtracting f(a)g(x),
we find that

(fg)′(a) = lim
x→a

f(x)g(x) − f(a)g(a)

x − a

= lim
x→a

(f(x)g(x) − f(a)g(x)) + (f(a)g(x) − f(a)g(a))

x − a

= lim
x→a

(

f(x) − f(a)

x − a
g(x) + f(a)

g(x) − g(a)

x − a

)

The difference quotient with f approaches f ′(a), and the difference quo-
tient with g approaches g′(a). Also, since g is differentiable at a, it is
also continuous at a by Theorem 4.9, so g(x) → g(a). This proves that
(fg)′(a) = f ′(a)g(a) + f(a)g′(a), as desired. �

Example 4.15:

Theorem 4.14 allows us to obtain another proof of the derivative formula for
powers, (xn)′ = nxn−1 (where n ∈ N∗), which does not require knowing any
summation identities (unlike the proofs suggested in Exercise 4.2.5). We will
use induction on n.

As a base case, when n = 1, we have proven earlier that x′ = 1. Now,
let n ∈ N∗ be given, and we assume that (xn)′ = nxn−1 as an induction
hypothesis. We find the derivative of (xn+1)′ using the product rule as follows:

(xn+1)′ = (xn)′ · x + x′ · xn = nxn−1x + xn = (n + 1)xn
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This finishes the inductive step and proves our result.
This approach can be generalized to find a formula for the derivative of

the nth power of any differentiable function: see Exercise 4.4.7. �

Example 4.16:

In the last section, we found that (
√

x)′ = 1/(2
√

x) at all x > 0 using the
definition of derivative. Let’s see how we can use the product rule to obtain
this formula with less calculation. Let f be the square-root function, and
therefore f satisfies the equation f 2(x) = x for all x ≥ 0. We take the
derivative of each side with respect to x, treating the left side as the product
of f(x) with itself, and we get

f ′(x)f(x) + f(x)f ′(x) =
d

dx
(f 2(x)) =

d

dx
(x) = 1

(We used Leibniz notation here for the derivative of f 2 because it looks a
little cleaner than (f 2(x))′.) When x > 0, we have f(x) > 0, and therefore
we may solve for f ′(x) to obtain

f ′(x) =
1

2f(x)
=

1

2
√

x

The main tactic used here is to write an equation involving f (where
the equation is simpler-looking than the formula for f itself) and then take
derivatives of each side, solving for f ′ at the end. The equation involving
f is said to define f implicitly, so this technique is often called implicit
differentiation. (In contrast, a formula giving the exact values of f outright is
an explicit definition.) We will have more to say about implicit differentiation
in the next section.

The tactic of implicit differentiation works quite well with any rational
power. If we let n, m ∈ Z be given with n > 0, and we let f be defined by
f(x) = xm/n for all x > 0, then fn(x) = xm for all x > 0. You can work out
the rest of the details in Exercise 4.4.8. �

Remark. There is a technical issue involved with using implicit differentia-
tion. Consider what happens when trying to find the derivative of f(x) =
xm/n. When we write fn(x) = xm and try to take the derivative of fn(x)
using the product rule, one of the hypotheses of the product rule is that we
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have to ALREADY KNOW that f is differentiable. Therefore, we cannot
actually prove that f is differentiable using implicit differentation.

Later in this chapter, we will introduce a theorem that lets us show that
f ′ exists. Once we have that theorem, implicit differentiation provides a
convenient way to obtain a formula for f ′.

Now that we have analyzed derivatives of products, we’d also like deriva-
tives of quotients. To make our calculations simpler, we’ll first show how to
find the derivative of a reciprocal. After this, if f and g are differentiable
functions, then we will compute (f/g)′ by writing f/g as f · (1/g) and using
the product rule.

In Exercise 4.2.6, we saw that (1/x)′ = (x−1)′ = −1/x2 for all x 6= 0.
A similar-looking law holds for arbitrary reciprocals, and fortunately the
algebra is more straightforward than it was for the product rule:

Lemma 4.17 (Reciprocal Rule). Let a ∈ R be given, and let g be a real
function. If g is differentiable at a, and g(a) 6= 0, then 1/g is differentiable
at a, with

(

1

g

)′
(a) =

−g′(a)

g2(a)

Strategy. As with our other proofs, we start with the definition:

(

1

g

)′
(a) = lim

x→0

1/g(x) − 1/g(a)

x − a

To get rid of nested fractions, we will multiply and divide by something
to clear out the fractions, such as g(x)g(a). A little more work makes a
difference quotient for g appear.

Proof. Let a, g be given as described. Since g′(a) exists, g is continuous at
a. Also, g(a) 6= 0, so g(x) is not zero when x is close enough to a.

We use the definition of derivative and multiply and divide by g(a)g(x)
(which is valid since g(x) 6= 0 when x is near a) to compute

(

1

g

)′
(a) = lim

x→a

1/g(x) − 1/g(a)

x − a
= lim

x→a

g(a) − g(x)

g(a)g(x)(x − a)

= lim
x→a

1

g(a)g(x)
· −(g(x) − g(a))

x − a
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The second fraction approaches −g′(a), and the first fraction approaches
1/g2(a) because g is continuous and nonzero at a. Thus, we have shown
(1/g)′(a) = −g′(a)/g2(a). �

Using Lemma 4.17, we obtain a rule for derivatives of quotients:

Corollary 4.18 (Quotient Rule). Let a ∈ R be given, and let f and g be
real functions which are both differentiable at a. If g(a) 6= 0, then f/g is
differentiable at a, and

(

f

g

)′
(a) =

f ′(a)g(a) − f(a)g′(a)

g2(a)

Remark. This “quotient rule” also has a fun mnemonic device to help remem-
ber it. If we call the numerator function “hi” and the denominator function
“lo”, and we use “d” to stand for derivative, then we get

d

(

hi

lo

)

=
lo d(hi) - hi d(lo)

lo lo

which is pronounced “d (lo over high) is lo d hi minus hi d lo over lo lo”.

Strategy. We just need to put together our rules for products and reciprocals.

Proof. Let a, f, g be given as described. By Lemma 4.17, 1/g is differentiable
at a, so using that in conjunction with Theorem 4.14,

(

f

g

)′
(a) =

(

f · 1

g

)′
(a)

= f ′(a) · 1

g(a)
+ f(a) ·

(

1

g

)′
(a)

=
f ′(a)g(a)

g2(a)
− f(a)g′(a)

g2(a)

as desired. �

Example 4.19:
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With the aid of the quotient rule, we can easily find a formula for the deriva-
tive of x−n where n ∈ N∗. Lemma 4.17 tells us that

(

x−n
)′

=

(

1

xn

)′
=

−nxn−1

x2n
= −nx−n−1

for all x ∈ R − {0}. This formula was previously found in Exercise 4.2.6
using the definition of derivative, but this approach is much quicker.

In fact, let’s be more general. We’ve already seen that the derivative of
a polynomial is another polynomial. Also, the sum, difference, or product of
two polynomials is a polynomial. However, the quotient of two polynomials
is not necessarily a polynomial (e.g. 1/x): it is instead called a rational
function. It is not hard to show that any sum, difference, product, or quotient
of rational functions is also a rational function.

Using the quotient rule, we can show that the derivative of any rational
function is also rational. To see this, suppose we take an arbitrary rational
function and express it in the form p/q, where p and q are polynomials with
no common zeroes. (This is similar to how we can always express rational
numbers as fractions of integers with no common factors.) Because p and q
have no common zeroes, the values x where q(x) = 0 are discontinuities of
p/q (i.e. we don’t get a “0/0” form by plugging in x). For all other values of
x, we find

(

p

q

)′
(x) =

p′(x)q(x) − p(x)q′(x)

q2(x)

The numerator and denominator of this expression are both polynomials,
which shows us that the derivative of p/q is also a rational function.

Here are some more concrete examples of derivatives of rational functions:
(

x

x + 1

)′
=

(x + 1)x′ − x(x + 1)′

(x + 1)2
=

(x + 1) − x

(x + 1)2
=

1

(x + 1)2
if x 6= −1

(

x

1 − x2

)′
=

(1 − x2)(1) − x(−2x)

(1 − x2)2
=

1 + x2

(1 − x2)2
if x 6= −1, 1

�

Trigonometric Derivatives

Up to this point, we’ve only found derivatives of polynomials, rational
functions, and a few other related functions like the square-root function.
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228 Section 4.3: Arithmetic Derivative Rules

Let’s find a couple other useful derivatives: the derivatives of the sine and
cosine functions. Since these trigonometric functions don’t arise by combin-
ing the other functions we’ve studied so far, we’ll have to find these derivatives
by using the definition of derivative.

Example 4.20:

Let a ∈ R be given; let’s first find the derivative of sin at a, which is

d

dx
(sin x)

∣

∣

∣

∣

x=a

= lim
h→0

sin(a + h) − sin a

h

(We use Leibniz notation here to avoid writing sin′(a), which looks awkward
because it’s easy to miss seeing the ’ symbol in that location. Also, right now,
we want to make the distinction between the variable x of differentiation and
the position a where this derivative is taking place.)

In order to rewrite the numerator of our limit in a more usable form, we’ll
use the following identity which is valid for all x, y ∈ R:

sin y − sin x = 2 sin

(

y − x

2

)

cos

(

y + x

2

)

(One way to prove this identity is outlined in Exercise 4.4.9.) When we apply
this identity to the difference quotient, where y = a + h and x = a, we get

lim
h→0

sin(a + h) − sin a

h
= lim

h→0

2

h
sin

(

h

2

)

cos

(

a +
h

2

)

Now, we notice that h/2 → 0 as h → 0, so we can let t = h/2 and rewrite
the limit as

lim
t→0

1

t
(sin t) cos(a + t)

(Technically, this uses the Composition Limit Theorem, where t is the inner
function depending on h.) Now, we can use the limit

lim
t→0

sin t

t
= 1

which we found in Example 3.38, along with the fact that cos is continuous,
to finish the computation:

d

dx
(sin x)

∣

∣

∣

∣

x=a

= lim
t→0

(

sin t

t

)

cos(a + t) = (1) cos(a + 0) = cos a
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To summarize, we have found that sin is differentiable everywhere, and
(sin x)′ = cos x. �

Example 4.21:

The steps used to find the derivative of cos are quite similar. We start with
the identity

cos y − cos x = −2 sin

(

y − x

2

)

sin

(

y + x

2

)

which is valid for all x, y ∈ R. (Exercise 4.4.9 also outlines a proof of this
identity.) We use this to find

d

dx
(cos x)

∣

∣

∣

∣

x=a

= lim
h→0

cos(a + h) − cos a

h
= lim

h→0

−2

h
sin

(

h

2

)

sin

(

a +
h

2

)

We let t = h/2, so t → 0 as h → 0. By using the fact that (sin t)/t → 1 as
t → 0, as well as the fact that sin is continuous, we obtain

d

dx
(cos x)

∣

∣

∣

∣

x=a

= lim
t→0

−
(

sin t

t

)

sin(a + t) = −(1) sin(a + 0) = − sin a

Therefore, cos is differentiable everywhere, and (cos x)′ = − sin x. �

From the derivatives of sin and cos, we can obtain the derivatives of all
the other common trigonometric functions by using our derivative laws. For
example, we use the quotient rule to find the derivative of tan:

(tanx)′ =

(

sin x

cos x

)′
=

(cos x)(sin x)′ − (sin x)(cos x)′

cos2 x

=
cos2 x + sin2 x

cos2 x
=

1

cos2 x
= sec2 x

because cos2 x + sin2 x = 1. You can compute the rest of the trigonometric
derivatives in Exercise 4.4.10. For reference, we list the remaining derivatives
here:

• (sec x)′ = sec x tan x
• (cot x)′ = − csc2 x

• (csc x)′ = − csc x cot x
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4.4 Exercises

1. Use linear approximations and Lemma 4.11 to make another proof of
the Product Rule. Your proof should use techniques similar to the
argument in the remark following Theorem 4.12. (Hint: Your error
E(x) should be a sum of six different terms, each of which goes to zero
faster than x − a.)

2. Compute the derivatives of the following functions of x, using any for-
mulas and rules presented so far. Also, for each part, state where your
derivative formula is valid.

(a)

(

1

x2 + 1

)′

(b)

(

x2 + 3x + 2

x4 + x2 + 1

)′

(c) ((x + 1)
√

x − sin x)′

(d) (x5 cos x)′

(e) (sin2 x cos2 x)′

(f)

(

x sin x

1 + x2

)′

(g)

(

2 − sin x

2 − cos x

)′

3. Suppose that f : R → R is defined by

f(x) =

{

x2 − ax if x < 1

bx3 if x ≥ 1

for all x ∈ R, where a, b ∈ R are constants. Which values of a and b
make f differentiable at 1, and what is f ′(1) in that case? (You may
assume that the derivative laws from this section work with one-sided
derivatives; the proofs are almost exactly the same.)

4. Let’s suppose that instead of dropping an apple from 10 meters high,
we throw an apple upwards from the ground with some initial velocity
v0, where v0 > 0. If T is the time in seconds when the apple returns
to the ground, then we get a function f : [0, T ] → R to describe the
height of the apple from the ground, defined by

f(t) = v0t − 4.9t2

for all t ∈ [0, T ], where t is measured in seconds and f(t) is measured
in meters.
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(a) Find T as a function of v0.

(b) What should v0 be if the apple lands after 5 seconds?

(c) Find the time t ∈ (0, T ) at which f ′(t) = 0. At this time, the
apple is neither falling nor rising, since the instantaneous velocity
of the apple at this moment is 0. Using that information, explain
why your answer for t makes sense physically.

(d) Just before the apple hits the ground, it is approaching the ground
with a velocity of lim

t→T−

f ′(t). Find this limiting velocity as a func-

tion of v0 only (i.e. T should not be in your final answer). Why
does your answer make sense physically?

5. Prove the following generalization of the product rule by induction on
n ∈ N∗: if n ∈ N∗, a ∈ R, and f1, f2, . . . , fn are real functions which
are differentiable at a, then

(f1f2 · · · fn)′(a)

(f1f2 · · · fn)(a)
=

f ′
1(a)

f1(a)
+

f ′
2(a)

f2(a)
+ · · ·+ f ′

n(a)

fn(a)

provided that none of the values f1(a), f2(a), . . . , fn(a) are zero.

6. Recall that for n, i ∈ N with i ≤ n, the number “n choose i”, written
(

n
i

)

, was defined in Exercise 4.2.5.(c) by

(

n

i

)

=
n(n − 1) · · · (n − i + 1)

i!

(This has the name “n choose i” because, in discrete math classes, you
can show that this number counts how many ways to choose i objects
out of a collection of n distinguishable objects to form a subset.)

It is possible to prove (although you do not need to do so) that for any
n, i ∈ N with 1 ≤ i ≤ n, we have Pascal’s Identity

(

n + 1

i

)

=

(

n

i − 1

)

+

(

n

i

)

You might also want to note that for any n ∈ N, we have

(

n

0

)

=

(

n

n

)

= 1
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Using these facts, prove the following “nth derivative” version of the
product law by induction: if a ∈ R and f and g are any real functions
which are n times differentiable at a (i.e. f (n)(a) and g(n)(a) exist),
then

(fg)(n)(a) =

n
∑

i=0

(

n

i

)

f (i)(a)g(n−i)(a)

7. Suppose that a ∈ R and that f is a real function differentiable at a. For
each n ∈ N∗, find a formula for (fn)′(a), i.e. the derivative of the nth

power at a, and prove by induction on n that your formula is correct.

8. Suppose m, n ∈ Z are given with n > 0. Let f : (0,∞) → (0,∞) be
the (m/n)-th power function, i.e. we have f(x) = xm/n for all x > 0.
Therefore, for any x > 0, we have

fn(x) = xm

Assume that f is differentiable on (0,∞), and use implicit differentia-
tion (as introduced in Example 4.16), along with the result of Exercise
4.4.7, to find that

f ′(x) =
m

n
x(m/n)−1

This shows that for all q ∈ Q, we have (xq)′ = qxq−1. (However, we
have not yet defined what it means to take a power with an IRRA-
TIONAL exponent; that topic will wait until Chapter 7 when we study
exponentiation.)

9. This exercise will outline how to come up with the key identities used
to compute the derivatives of sin and cos. Our main starting point will
be the angle-addition identities

sin(x + y) = sin x cos y + cos x sin y

and
cos(x + y) = cos x cos y − sin x sin y

which are valid for all x, y ∈ R.

(a) By using the fact that sin(−x) = − sin x and cos(−x) = cos x for
all x ∈ R (i.e. sin is an odd function, and cos is an even function),
find formulas for sin(x − y) and cos(x − y), where x, y ∈ R are
given.
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(b) Using the identities from the beginning of this problem and the
results of part (a), derive the following identities for all a, b ∈ R:

sin(a + b) − sin(a − b) = 2 cos a sin b

and
cos(a + b) − cos(a − b) = −2 sin a sin b

(c) Use the identities from part (b) to conclude that for all x, y ∈ R,

sin x − sin y = 2 cos

(

x + y

2

)

sin

(

x − y

2

)

and

cos x − cos y = −2 sin

(

x + y

2

)

sin

(

x − y

2

)

(Hint: Which values of a and b should you use with part (b)?)

10. Recall that

cotx =
cos x

sin x
sec x =

1

cos x
csc x =

1

sin x

Use these definitions to prove the following derivative formulas for all
x ∈ R where the functions are defined:

(a) (cotx)′ = − csc2 x

(b) (sec x)′ = sec x tan x

(c) (csc x)′ = − csc x cot x

11. Use the previous exercise to compute

(tan2 x)′ and (sec2 x)′

Give a simple reason explaining why your two answers are equal.

4.5 The Chain Rule

At this point, we have seen rules for computing derivatives with the major
arithmetic operations. In this section, we address how to take the derivative
of a composite function, i.e. a function of the form f ◦ g. This leads us to
a theorem called the Chain Rule, which will aid us tremendously in finding
derivatives. The Chain Rule also is very practical for relating rates of change
of different quantities, as we’ll see later in this section.
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Example 4.22:

Suppose that I’m eating candy. As I eat candy, my waistline expands, which
causes my belly to get bigger. In essence, we have a chain of events, starting
with the consumption of candy and ending with the growth of my belly.

I’d like to know: how fast is my belly growing as a function of the amount
of candy I eat? In other words, I’d like to know what happens to the difference
quotient

change in belly size

change in candy consumption

especially as my change in candy consumption approaches 0. We can write
this as

change in belly size

change in candy consumption

=
change in belly size

change in waistline
· change in waistline

change in candy consumption

This is helpful because eating candy doesn’t directly cause my belly to grow:
it instead directly affects my waistline, and my waistline directly affects my
belly weight. Thus, we write our quotient in a way that treats each step in
the chain of events separately.

Let’s say that x denotes the amount of candy I’ve eaten, measured in
pounds. Also, let’s write w(x) for the size of my waistline, measured in
inches, as a function of x. Lastly, let’s write S(w) to represent the size of
my belly, measured in pounds, as a function of w (so here, w is being viewed
as a variable). This means that as my candy consumption changes from a
pounds to x pounds, the average speed at which my belly grows is

change in belly size

change in candy consumption
=

S(w(x)) − S(w(a))

x − a

=
S(w(x)) − S(w(a))

w(x) − w(a)
· w(x) − w(a)

x − a

In the first fraction, let’s say we think of w as a variable of input to the size
function, rather than being a function itself, and let’s use b to denote w(a)
(so b is a constant). Then our expression becomes

S(w) − S(b)

w − b
· w(x) − w(a)

x − a
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As x → a, i.e. as the change in candy consumption goes to 0, the second
fraction approaches w′(a), which is the speed of waistline growth with respect
to amount of candy eaten. Also, w approaches b as x → a, so the first
fraction approaches S ′(b), the speed of belly growth with respect to waistline
size. Thus, with respect to candy consumption, my belly grows at the speed
of S ′(b)w′(a), which is S ′(w(a))w′(a).

To get some more concrete numbers, let’s say I do some measurements.
(Note that these measurements are fabricated for the sake of the example
and do not necessarily represent the author’s true proportions!) I start with
a = 0 pounds of candy. Next, I find that w(x) is (x/8) + 12 when x is small,
so b = w(a) = 12. Also, I assume that my belly looks like half a sphere, where
my waistline is the radius. From this, I find that S(w) = (2πw3)/360, since
my belly size is proportional to the volume (2πw3)/3 of my semispherical
belly. With these numbers, we get w′(a) = 1/8 and S ′(b) = (6πb2)/360, so
my belly growth speed is

6π · 122

360
· 1

8
=

3π

10

pounds of belly added per pound of candy eaten. �

Now, let’s try to apply the reasoning in Example 4.22 more generally.
Let’s say that f and g are real functions, and a ∈ R is given, such that g ◦ f
is defined around a. We want to find

(g ◦ f)′(a) = lim
x→a

g(f(x)) − g(f(a))

x − a

We multiply the top and bottom by f(x) − f(a) to get

lim
x→a

g(f(x)) − g(f(a))

f(x) − f(a)
· f(x) − f(a)

x − a

The second fraction is a difference quotient of f from a to x. We want
the first fraction to be a difference quotient as well, where the input is f(x)
instead of x. To make this clearer, let’s say y = f(x) and b = f(a). Thus,
instead of thinking as g as the outer layer of a composition, we think of g as
a function of y alone. Since y → b as x → a, our calculation becomes

(g ◦ f)′(a) = lim
y→b

g(y) − g(b)

y − b
· lim

x→a

f(x) − f(a)

x − a

From here, we see that if f and g are differentiable, our answer becomes
g′(b)f ′(a), which is the same as g′(f(a))f ′(a). This suggests the following:
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Theorem 4.23 (Chain Rule). Let a ∈ R be given, and let f and g be
real functions. Assume that f ′(a) and g′(f(a)) both exist. Then g ◦ f is
differentiable at a, and (g ◦ f)′(a) = g′(f(a))f ′(a).

Remark. In the case where f and g are differentiable on their entire domains,
Leibniz notation gives the Chain Rule the appearance of a simple algebraic
identity:

dg

dx
=

dg

df
· df

dx

However, this way of writing the Chain Rule does not say where each deriva-
tive in the right-hand side is being evaluated.

Strategy. Let’s look back at the work preceding the statement of Theorem
4.23. Most of the major steps can be made more precise with a little work,
but we run into one issue: the fraction (g(f(x)) − g(f(a)))/(f(x) − f(a))
doesn’t make sense when f(x) = f(a). Let’s call a choice of x which makes
f(x) equal to f(a) a “forbidden input”. This raises the question: how many
choices of x are forbidden? After all, in order for the expression

lim
x→a

g(f(x)) − g(f(a))

f(x) − f(a)

to be defined, we need the body of the limit to be defined for x near a. In
other words, we’d like there to exist some distance δ > 0 so that no value of
x within distance δ of a is forbidden, except for possibly x = a.

Unfortunately, certain choices for the function f can rule out enough
options for x that no such δ exists. Consider when f : R → R is defined
by f(x) = x2 sin(1/x) when x 6= 0, and f(0) = 0. An argument using the
Squeeze Theorem shows that f is continuous at 0. In fact, it is possible
to show that f ′(0) exists and equals 0; we’ll study this example in a later
section. However, there are lots of inputs x where f(x) = 0; for any integer
n 6= 0, we have f(1/(nπ)) = 0. In essence, f oscillates quite wildly near 0,
so when a = 0, there are forbidden inputs arbitrarily close to a.

To get around this difficulty, we need a way of writing the difference
quotient which makes sense even for the forbidden values of x. To do this,
let’s first consider the simpler difference quotient (g(y)−g(b))/(y− b), where
b = g(a). This quotient is valid for all values of y except for b, and as y →
b, this quotient approaches g′(b). Thus, intuitively, the difference quotient
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“should be” g′(b) when y = b. To formalize this, we’ll make a new function
D, standing for “difference quotient”, defined as follows:

D(y) =

{

g(y)−g(b)
y−b

if y 6= b

g′(b) if y = b

For all values of y except for b, D(y) is the difference quotient, but unlike the
difference quotient, D is continuous at b! (In essence, the difference quotient
had a “hole” at y = b, and D has “patched up the hole”.) Therefore, we may
safely write

g(y)− g(b) = D(y)(y − b)

for all values of y. When we plug in y = f(x) and b = f(a), we therefore
obtain

g(f(x)) − g(f(a)) = D(f(x))(f(x) − f(a))

which is valid for ALL x, even the “forbidden” values! This means that, in the
proof steps outlined before the statement of Theorem 4.23, instead of taking
the fraction (g(f(x)) − g(f(a)))/(x − a) and multiplying and dividing by
f(x)− f(a), we instead replace the numerator with the expression involving
D. Thus, (f(x)−f(a))/(x−a) appears in our work, like we wanted, without
the risk of performing any forbidden divisions, and we may safely take limits
as x → a.

Proof. Let a, f, g be given as described. First, we define a function D :
dom(g) → R by saying

D(y) =

{

g(y)−g(f(a))
y−f(a)

if y 6= f(a)

g′(f(a)) if y = f(a)

for all y ∈ dom(g). Notice that when y ∈ dom(g) and y 6= f(a), D(y) is
just the difference quotient of g from f(a) to y. Also, by definition of the
derivative g′(f(a)), D is continuous at f(a).

The equation

g(f(x)) − g(f(a)) = D(f(x))(f(x) − f(a))

is valid for all x ∈ dom(f): when f(x) = f(a), both sides are just 0, and
when f(x) 6= f(a), both sides are equal by the definition of D. Therefore,

(g ◦ f)′(a) = lim
x→a

g(f(x)) − g(f(a))

x − a

= lim
x→a

D(f(x)) · f(x) − f(a)

x − a
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Because f ′(a) exists, f is continuous at a, and we’ve also seen that D is
continuous at f(a). Therefore, by the Composition Limit Theorem, D ◦ f is
continuous at a, so we get

(g ◦ f)′(a) = D(f(a))

(

lim
x→a

f(x) − f(a)

x − a

)

= g′(f(a))f ′(a)

as desired. �

Example 4.24:

With the Chain Rule, many derivatives become easier to calculate. For
example, if we consider the function mapping x ∈ R to

√
x2 + 1, this is

the composition of an inner function f(x) = x2 + 1 and an outer function
g(y) =

√
y. Since g′(y) = 1/(2

√
y) for all y > 0, and f ′(x) = 2x, and we note

that f(x) ≥ 1 always, we find that

(
√

x2 + 1)′ =
1

2
√

(x2 + 1)
(x2 + 1)′ =

2x

2
√

x2 + 1
=

x√
x2 + 1

As another simple example, if we return to the function from Example
4.22, we compute

(

(x2 + 1)10
)′

= 10(x2 + 1)9 · (2x) = 20x(x2 + 1)9

It’s much easier to compute this derivative with the Chain Rule instead of
by expanding out the 10th power. �

Example 4.25:

For something more complicated, let’s consider the function which takes
x ∈ R to sin(sin(sin x)). This function is really a composition of three
sin functions. However, the Chain Rule only handles a composition of two
functions. Therefore, to find this derivative, we first treat sin ◦ sin ◦ sin as
sin ◦(sin ◦ sin) and get

(sin(sin(sin x)))′ = cos(sin(sin x))(sin(sin x))′

(so here, in the notation of the Chain Rule, g is sin and f is sin ◦ sin). After
this step, what remains is the derivative of a composite of two functions, and
the Chain Rule gives us the final answer of

(sin(sin(sin x)))′ = cos(sin(sin x)) cos(sin x) cos x
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In general, the rule of thumb to remember is “take derivatives from the
outside going in”. Each time you apply the Chain Rule, you “peel off” one
layer from the outside of the composition, which is hopefully simple to dif-
ferentiate, and then you handle the remaining layers with more applications
of the Chain Rule if necessary or other such rules. For instance, here is a
derivative which uses the Chain Rule three times to handle a composition of
four functions:

(sin(cos(x2))3)′ = 3(sin(cos(x2))2 · cos(cos(x2)) · (− sin(x2)) · 2x

(The outermost layer is the cubing function, followed by sin, followed by cos,
and ending with the squaring function. We’ve only written the final answer
here; the intermediate steps take a long time to write and are not generally
required.) Here is a different example, which uses the Chain Rule once, then
uses the product rule, and one of the parts of the product uses the Chain
Rule again:

(
√

x sin(1 − x))′ =
1

2
√

x sin(1 − x)
· (sin(1 − x) + x (cos(1 − x) · −1))

For some of these long calculations, it is useful to simplify the final result,
but frequently there is rather little simplification possible. �

Implicit Differentiation

Implicit differentiation was introduced in Example 4.16. The main idea
is that if f is a function of x, then sometimes it is easier to find an equation
involving f(x), rather than finding an explicit formula for f(x). Implicit
differentiation works by taking derivatives of both sides of the equation.

For instance, in Example 4.16, we saw that the square root function f
satisfies the equation

f 2(x) = x

for all x ≥ 0. We took derivatives of both sides to get

2f(x)f ′(x) = 1

and we used that to solve for f ′(x). We say that the equation f 2(x) = x im-
plicitly defines f . (We’ll sometimes call that equation an “implicit equation”
for f .) In that example, we used the product rule to find the derivative of
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f 2. Another option is to use the Chain Rule, looking at f 2 as a composition
of the squaring function with f . Frequently, in implicit equations, the Chain
Rule becomes very handy for computing derivatives, as we’ll demonstrate
with a couple of examples.

Example 4.26:

This example will show how to find tangent lines to a circle. We start with
the equation for a circle with radius r, centered at the origin, which is

x2 + y2 = r2

This implicit equation can be solved for y to obtain the solutions

y = ±
√

r2 − x2

which are valid when x ∈ [−r, r]. Thus, if we want to view y as a function
of x, then there are two natural solutions for y.

In order to find tangent lines to the circle, we want the slope of the tangent

line, which is given by the derivative
dy

dx
. We can compute

dy

dx
for either of

the two solutions for y written above, but we get an ugly and non-intuitive
expression. Instead, let’s use implicit differentiation to get a much simpler
expression.

When we take the implicit equation for the circle and take the derivative
with respect to x of each side, we get

d

dx
(x2 + y2) =

d

dx
(r2)

2x + (2y)
dy

dx
= 0

dy

dx
=

−x

y

Note that, as a function of x, y2 is the composition of y and squaring, and
that r2 is a constant with respect to x. Using Leibniz notation here helps
remind us that the variable of differentiation is x and not y or r (so that we

don’t accidentally write the derivative of y2 as 2y instead of 2y
dy

dx
).

Our equation for
dy

dx
is valid at all points where y 6= 0. What do we do

when y = 0, i.e. when x = r or x = −r? We notice that as x gets closer to
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Tangent slope=-x�y
Radial slope=y�x

Hx,yL

H-r,0L

Figure 4.3: A circle and tangent lines to it

r or −r, y gets closer to 0, so the ratio −x/y approaches either ∞ or −∞.
Hence, the points where y = 0 have vertical tangents. See Figure 4.3.

What are the benefits of using implicit differentiation with this example?
The first is that the calculations are simple. Second, the equation

dy

dx
=

−x

y

works for EITHER solution for y in terms of x! Thus, we don’t have to
compute derivatives separately for each of the two solutions; we just find one
answer in terms of x and y and then plug in the appropriate y.

Third, when using implicit differentiation, we find that our answer has
a nice geometrical meaning. We found that the slope of the tangent line
through (x, y) on the circle is −x/y. If you consider a radial segment that
connects the center of the circle to the point (x, y), the slope of that segment
is y/x, i.e. rise over run. If neither x nor y is 0, then y/x and −x/y are
negative reciprocals! That means that the tangent line and radial segment
are perpendicular. Thus, our notion of tangent line in calculus agrees with
the notion of tangent line to a circle in Euclidean geometry. �

Example 4.27:

For a longer example of implicit differentation, let’s suppose that y is a
function of x implicitly defined by the equation

y sin y + 20x3y2 =
√

x
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The derivative of the left side with respect to x is the following (broken down
into smaller steps for clarity):

d

dx
(y sin y + 20x3y2) =

dy

dx
sin y + y

d

dx
(sin y)

+ 20

((

d

dx
(x3)

)

y2 + x3 d

dx
(y2)

)

=
dy

dx
sin y + y cos y

dy

dx
+ 20

(

3x2y2 + x3

(

2y
dy

dx

))

=
dy

dx

(

sin y + y cos y + 40x3y
)

+ 60x2y2

The right side of our implicit equation is much simpler, with derivative
1/(2

√
x). Therefore, by setting the two derivatives equal to each other and

solving for
dy

dx
, we get

dy

dx
=

1
2
√

x
− 60x2y2

sin y + y cos y + 40x3y

Going back to the implicit equation, we notice that choosing x = 0 and
y = 0 satisfies the equation, but then our expression for the slope is undefined.
Another point that satisfies the implicit equation is given by

y = π x =

(

1

20π2

)2/5

At this point, the slope of the tangent line is

m =

(

1
20π2

)−1/5 − 60
(

1
20π2

)4/5
π2

0 + π(−1) + 40
(

1
20π2

)6/5
π

(simplify this if you dare!), and thus we find that the tangent line through
the point has the equation

y − π = m

(

x −
(

1

20π2

)2/5
)

�
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Remark. There are a couple subtle points worth mentioning in these exam-
ples. First of all, when writing an implicit equation, we’re assuming that
there really ARE solutions for y as functions of x. In our first example with
the circle, we can find two solutions explicitly, but for the second example, we
aren’t necessarily sure whether any solutions exist or what their domains are.
There are powerful theorems in three-dimensional calculus which address the
question of whether implicit equations have solutions, but they are beyond
the scope of this book.

The other subtle point we should note is that in order to take the deriva-
tive of both sides of the equation, we have to already know that both sides
are differentiable. In our circle example, we had explicit solutions for y, so
we already knew y was differentiable, but in many other examples, we have
to assume that y is differentiable. This means that implicit differentiation
will not work for EVERY solution of y in an equation, but it will work for
the differentiable solutions. Since differentiability is a nice property for a
function to have, in many cases this assumption is justified in practice.

Implicit equations can pop up in many different problems, allowing us
to define complicated functions in terms of simpler-looking equations. For
the rest of this section, we’ll demonstrate two major applications of implicit
differentiation: related rates and derivatives of inverse functions.

Related Rates

In many physical situations, we’d like to know the relationship between
different rates of change. Some examples include: if a spherical balloon is
being filled with air at some fixed rate, then how fast is its radius growing?
If the top of a ladder slides down a wall at some fixed speed, then how fast
is the bottom of the ladder sliding away from the wall? If I open my eyes
at some fixed angular speed (i.e. my vision angle is increasing at some fixed
speed), then how quickly is my total area of vision increasing?

All of these questions, and more, are called related rates problems. By
using the Chain Rule and implicit differentiation, we can solve many dif-
ferent related rates problems. In this section, we’ll show how to solve the
examples we mentioned in the last paragraph, and some other problems will
be provided as exercises.

Example 4.28:
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Let’s suppose that we’re blowing air into a balloon, which always takes the
shape of a sphere as we inflate it. At some point in time, the balloon has a 10
cm radius, and we are inflating it with air at the rate of 3 cubic centimeters
per second. At that moment, how fast is the radius of the balloon growing?

To attack this problem, let’s first decide on some notation to describe the
problem. Let’s say the balloon’s volume is V (measured in cubic centimeters),
the radius is r (measured in cm), and time is t (measured in seconds). With
this notation, we are given that at some fixed time, we have r = 10 and
dV

dt
= 3. We would like to know

dr

dt
.

V and r are both functions of time, but V is also a function of r, according
to the standard volume formula for a sphere:

V (t) =
4

3
πr3(t)

(We write V as V (t) and r as r(t) for now to remind ourselves that V and r
depend on t. In later problems, we won’t bother to write (t) everywhere.)

To find
dr

dt
, we should take derivatives of both sides of this equation with

respect to t, and we use the Chain Rule:

dV

dt
= (4πr2(t))

dr

dt

(Technically, this assumes that r is a differentiable function of t, but that
assumption is generally considered acceptable in related rates problems.)

From this, we plug in our given information to get

3 = 4π(10)2dr

dt

which leads us to
dr

dt
=

3

400π

Thus, the radius is currently growing at the speed of 3/(400π) centimeters
per second.

Note that for this problem, we didn’t even need to know how r behaves
as a function of time. All we needed was the simple relationship between the
two quantities V and r, which both depend on t. �

Example 4.28 illustrates a useful sequence of steps we can take when
presented with a related rates problem:
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1. Identify the relevant quantities for the problem, and give them names
and units. Usually, most of your quantities are functions of time.

2. Find out which quantity you’re trying to get as your answer.

3. Find some equation(s) describing how your quantities relate to one
another. In many cases, drawing a picture will help.

4. Take derivatives of each side of your equations, and solve for your
unknown values. The Chain Rule frequently comes in handy with the
derivatives.

Let’s try out these steps with the next example.

Example 4.29:

Let’s suppose that we have a 10-foot ladder which is leaning against a wall as
in Figure 4.4. The top of the ladder is sliding down the wall at the constant
speed of 1 foot per second, which causes the bottom of the ladder to slide
away from the wall as well. We’d like to answer the following question: when
the top of the ladder is 6 feet off the ground, how fast is the bottom sliding
away from the wall?

y=6 ft

x ft

10 ft
1 ft�s

? ft�s

Figure 4.4: A ladder sliding down a wall

For our first step, let’s label some relevant quantities. Let’s say that t
represents time in seconds. We’ll use y to denote the height of the top of the
ladder from the ground, and we’ll use x to denote the distance of the bottom
of the ladder from the wall. We are given that at this moment, y = 6 and
dy

dt
= −1. (The negative sign is needed, since y is decreasing as time passes.)

We’d like to know
dx

dt
.

PREPRINT: Not for resale. Do not distribute without author’s permission.



246 Section 4.5: The Chain Rule

The key relationship we need is that the ladder forms a right triangle
with the wall and the floor, so the Pythagorean Theorem tells us that

x2 + y2 = 10

We can solve for x in terms of y before differentiating, or we can differentiate
implicitly. Let’s try implicit differentation with respect to t, giving us

2x
dx

dt
+ 2y

dy

dt
= 0

When we plug in our known values and solve, we get

dx

dt
=

(6)(1)

x

Thus, to finish this problem, we need to know the value for x at this mo-
ment. To do this, we go back to the relationship between x and y. Plugging
in 6 for y, we find x2 = 64, or x = ±8. For this problem, only the positive
solution makes sense physically, so x = 8. Plugging this in to our expression

for
dx

dt
, we have the answer that the bottom is sliding away at a speed of 3/4

feet per second. �

Remark. Suppose we take the previous example and try to generalize it by
considering the same situation, but instead of the top of the ladder starting
6 feet high, it starts h feet high. We’ll still treat h as a constant with respect

to time, but we’d like to see how our final answer for
dx

dt
depends on h. You

can do mostly the same steps as in Example 4.29, and you find that

dx

dt
=

h√
100 − h2

When we plug in h = 0 (i.e. the ladder is already lying flat on the
ground), this gives us an answer of 0, which makes sense since the ladder
is done sliding. However, if we plug in values of h that are near 10, then
our answer becomes very large, even larger than the speed of light! This is
clearly an impractical answer.

The issue is that to model this problem, we assumed that the top of the
ladder is falling at a constant speed of 1 foot per second. This is a reasonable
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assumption when the ladder has already slid down the wall a fair amount,
like in Example 4.29. However, when h is close to 10, the ladder is nearly
vertical, and then a falling speed of 1 foot per second is inaccurate. This goes
to show that when modeling the real world with mathematics, it is important
to know when your model is actually an accurate approximation of reality.

Example 4.30:

In this example, suppose I was sleepwalking, but I slowly wake up, opening
my eyes. As I open my eyes, my angle of vision becomes greater, at the rate
of 0.8 radians per second. To simplify matters, let’s suppose I have such bad
tunnel vision that I cannot see to the sides, so my field of vision is essentially
a two-dimensional area.

I’d like to know: if I’m standing 10 feet away from a wall, facing that
wall, and my eyes are currently open at the angle of π/6, then how fast
is the area of my field of vision growing? Assume that the ceiling is high
enough that my field of vision is not reaching the ceiling. This situation
is depicted in Figure 4.5, where the triangle represents my area of vision.
(In case you are concerned about your artistic ability when drawing figures,
drawings for calculus problems frequently don’t have to be very artistic if
you don’t want to be artistic! It is important, however, that your drawing
convey the essential details of the problem.)

0.8 rad�s

10 ft

Θ=Π�6
h

Figure 4.5: A sketch of my field of vision as I open my eyes

We’ll use t to represent time in seconds again. We’d like a variable to
stand for my current vision angle; let’s use θ. The last relevant variable is the
area of my current field of vision, which we’ll call A. If we wish, we may also
use a variable, like h, to represent the height of my field of vision along the
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wall. (However, note that my height is not relevant to computing the area
of my field of vision, because we’ve assumed that my top “vision boundary”

doesn’t hit the ceiling.) Thus, we are given that θ =
π

6
and

dθ

dt
= 0.8. We’d

like to know
dA

dt
.

Now we need to find relationships between our quantities. First, we note
that A is the area of a right triangle with height h and base length 10, so

A =
(10)h

2
= 5h

However, since we don’t care about
dh

dt
, we’d like to replace h with a function

of θ. To do this, we use familiar facts about the trigonometric functions. In
this case, h is the side length opposite θ, and 10 is the adjacent side length,
and tan θ is the ratio of the two sides. Thus,

tan θ =
h

10

By solving this equation for h and putting the result in the area equation,
we find

A = 50 tan θ

(You may not bother to introduce h as a variable, preferring to immediately
write the relationship of A and θ. This is fine, provided that people can
follow along with your work.)

We are now in a good position to take derivatives with respect to t. We
obtain

dA

dt
= (50 sec2 θ)

dθ

dt

Plugging in our known values, we find sec(π/6) = 1/(cos(π/6)) = 2/
√

3 and
thus

dA

dt
= 50

(

2√
3

)2

(0.8) =
160

3

The area is growing at the speed of 160/3 feet squared per second. �

It turns out that the speed we found at the end of Example 4.30 can also
help us approximate how much the area of my field of vision changes after

small amounts of time pass. The main idea is to think of
dA

dt
as a fraction,

PREPRINT: Not for resale. Do not distribute without author’s permission.



Chapter 4: Derivatives 249

where dA and dt are respectively small changes in area and time. Thus, we
get

dA =
160

3
dt

For instance, if 1 second passes (i.e. dt = 1), then the area grows by roughly
160/3 feet squared (the change is not EXACTLY 160/3, because the speed
is only 160/3 at a specific instant, as opposed to having that constant speed
for the entire second). At the current time, the area is 50 tan(π/6), which is
50/

√
3, so in one second the area will be roughly 50/

√
3 + 160/3.

When dA and dt are treated in this way, as small changes, they are
called differentials. In general, for any function f and a number a, the

derivative
df

dx
(a) can be thought of as a ratio of differentials, saying how

much a small change dx in x causes an approximate change df in the value
of f(x). (Technically, df is really the change in the linear approximation of
f at a, which is almost the same as the actual change in f ’s value if dx is
small.)

It is also possible to think of differentials as errors in measurement. To
illustrate this, let’s look back at Example 4.28, involving the volume of a
balloon. We know V = (4/3)πr3, which yields

dV

dr
= 4πr2 i.e. dV = 4πr2dr

This can be interpreted as follows. Let’s say the true radius of the balloon is r,
but instead our measurement of the radius has an error of dr (so we measured
something between r − dr and r + dr). In other words, our measurement
yielded a change of dr in radius from the true value of r. This causes the
volume to change by approximately dV , so dV roughly represents the error
we’ll get when trying to measure the true volume of the balloon. Note that
dV increases as r increases, signifying that even if you only make a small
error dr in measuring the radius, the corresponding error dV in measuring
the volume can be quite significant if the radius is large.

Inverse Functions: Flipping
dy

dx
Upside-Down

For our last major application of the Chain Rule and implicit differentia-
tion, let’s look at the problem of finding the derivative of an inverse function.
Suppose that f is a differentiable function with an inverse g: how do we find
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g′? One of our first results about inverse functions, Lemma 1.49, gives us an
idea: it tells us that for all x ∈ dom(f) and y ∈ ran(f),

f(x) = y ↔ x = g(y)

Thus, if we think of f as taking x to y, then the inverse g takes y back to x.
This gives us an equation which implicitly defines g, namely:

f(g(y)) = y

Hence, y is now our variable of interest.
We’d like to find g′(y). If we take the equation f(g(y)) = y, and we

differentiate both sides with respect to y, the Chain Rule gives us

f ′(g(y))g′(y) = 1

which we solve to get g′(y) = 1/f ′(g(y)) when f ′(g(y)) is not zero.
Unfortunately, while this method works well to calculate g′, it doesn’t

actually prove that g′ exists, since we had to assume g was differentiable to
use the Chain Rule. However, we still have the following theorem:

Theorem 4.31. Let a ∈ R be given, and let f be a real function defined in
an open interval around a. Assume that f is invertible, with inverse g, and
let b = f(a). If f ′(a) exists and is not zero, then g′(b) exists, and

g′(b) =
1

f ′(a)
=

1

f ′(g(b))

Remark. If we think of f as taking x to y and g as taking y back to x, then
in Leibniz notation, this theorem says

dx

dy
=

1
(

dy
dx

)

which looks like a simple algebraic identity.

Strategy. We’d like to find the following limit:

lim
y→b

g(y)− g(b)

y − b
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Since f and g are inverse functions, we know that g(b) = a. Using the idea
from Lemma 1.49, let’s set x = g(y), so f(x) = y and our fraction becomes

x − a

f(x) − f(a)

In essence, we have just flipped the roles of “input” and “output” (which is
what inverse functions do anyway). This new fraction is the reciprocal of the
difference quotient for f from x to a.

However, let’s keep in mind that our limit is letting y approach b. In
order for the difference quotient for f from x to a to be useful for us, we’d
like x to approach a. How will we show this?

In terms of the original variable y with which we started, saying that
x approaches a is the same as saying that g(y) approaches g(b), i.e. that
g is continuous at b. Since f is differentiable at a, f is also continuous at
a, and the proof of Theorem 3.54 can be adapted to show that therefore
g is continuous at b. (That theorem shows that if f is continuous on an
INTERVAL, then g is continuous on an interval as well, but the same idea
works if f is only continuous at a single point.)

Proof. Let a, b, f, g be given as described. Let y ∈ dom(g) with y 6= b be
given, and define x = g(y). Because f and g are inverse functions, we know
that y = f(x) and a = g(b). Therefore,

g(y) − g(b)

y − b
=

x − a

f(x) − f(a)

Since y 6= b and g is injective (because it is invertible), g(y) 6= g(b), i.e.
x 6= a, so we may write our difference quotient as

1
(

f(x)−f(a)
x−a

)

Because f is continuous at a (because f is differentiable at a), g is continu-
ous at b by a minor modification of Theorem 3.54. Thus, by the Composition
Limit Theorem, as y → b, we have g(y) → g(b), i.e. x → a, and thus

g′(b) = lim
y→b

g(y)− g(b)

y − b
= lim

x→a

1
(

f(x)−f(a)
x−a

)
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Because the denominator approaches f ′(a), which is not zero, the quotient
rule for limits tells us that g′(b) = 1/f ′(a), as desired. �

Remark. To see another reason why this theorem makes sense, recall that
the graphs of inverse functions look like mirror images reflected over the line
y = x. Thus, if we look at a tangent line to f , and we take its mirror
image, the tangent slope gets reflected as well. See Figure 4.6, which depicts
f(x) = x3 − 1 and its inverse g(x) = (x + 1)1/3, with tangent lines touching
each. (We write g as a function of x here, to make it less confusing for us to
graph it.)

fHxL

gHxL

x

y

Figure 4.6: A function and its inverse, with tangent lines

This picture also suggests that whenever f ′(a) is zero, yielding a horizon-
tal tangent, then g′(b) has a vertical tangent. To see this, we can perform
most of the same calculations as in the proof of Theorem 4.31, but this time
we find that

lim
y→b

g(y) − g(b)

y − b
= lim

x→a

1
(

f(x)−f(a)
x−a

)

is a limit of the form 1/0. This goes to either ∞ or −∞, based on whether the
difference quotient for f approaches 0 from positive values or from negative
values. Either way, this means that the tangent line is infinitely steep, i.e.
vertical.
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Example 4.32:

Using Theorem 4.31, we can finally determine where the nth root functions
are differentiable, for any n ≥ 2. We note that the nth root function is
the inverse of the nth power function: if f(x) = xn and g(y) = y1/n (valid
for x, y ∈ [0,∞) when n is even, and valid for x, y ∈ R when n is odd),
then f and g are inverses. We know that f ′(x) = nxn−1, which is zero only
when x = 0, which means that g has a vertical tangent when y = 01/n = 0.
Otherwise, for all other y ∈ dom(g), we have

g′(y) =
1

f ′(g(y))
=

1

n(y1/n)n−1
=

1

n
y(1/n)−1

This shows that nth roots are differentiable. After that, it follows that
any rational power function is differentiable. This is because if m/n is a
rational number (where m ∈ Z and n ∈ N∗), then xm/n = (x1/n)m, i.e. the
m/nth power is the composition of nth root and mth power. This finally fills
in the gap in the proof from Exercise 4.4.8. �

Example 4.33:

We’ve also seen another useful collection of inverse functions by this point:
the inverse trigonometric functions. We’ll show how to differentiate the in-
verse sine function here, and we’ll leave the rest of the inverse trigonometric
derivatives as exercises.

Let f be the sine function restricted to the domain [−π/2, π/2], i.e. f =
sin ↾ [−π/2, π/2]. This is the domain we used when we defined arcsin in
Chapter 3: arcsin has domain [−1, 1] and range [−π/2, π/2]. We see that f
is differentiable on (−π/2, π/2) (f does not have a TWO-sided derivative at
the endpoints), and f ′ = (sin)′ = cos. Thus, for any y ∈ (f(−π/2), f(π/2)),
i.e. y ∈ (−1, 1), we have

(arcsin y)′ =
1

cos(arcsin y)

This is well-defined because when y ∈ (−1, 1), cos(arcsin y) > 0.
It turns out that we can find a much better formula for the derivative by

using some trigonometric identities. We’d like to write cos(arcsin y) in terms
of sin(arcsin y), so that the sin and arcsin cancel. To do this, we know that

cos(arcsin y) = ±
√

1 − sin2(arcsin y)
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Since cos(arcsin y) > 0 for y ∈ (−1, 1), we take the positive square root.
Thus, we obtain the simpler formula for the derivative of arcsin:

(arcsin y)′ =
1

√

1 − (sin(arcsin y))2
=

1
√

1 − y2

�

Using similar methods, you can prove the following formulas in Exercise
4.6.21:

(arccos y)′ =
−1

√

1 − y2
(arctan y)′ =

1

1 + y2

The first formula is valid when |y| < 1, and the second is valid for all y ∈ R.

4.6 Exercises

For the first two exercises, we’ll develop another proof of the Chain Rule using
linear approximations. Recall that in Lemma 4.11, the error function E for
approximating f at a satisfies the property that E(x)/(x−a) → 0 as x → a.
Because the fraction E(x)/(x−a) is not defined when x = a, we can run into
difficulties like we had with the fraction (f(g(x))− f(g(a)))/(g(x)− g(a)) in
our proof of the Chain Rule. We can fix this issue using a similar tactic that
the function D was used for in the proof of the Chain Rule.

1. Prove the following alternate form of Lemma 4.11:

Lemma 4.34. Let a ∈ R be given, and let f be a real function defined
in an interval around a. Then f is differentiable at a if and only if there
exists an m ∈ R and a function Ê : dom(f) → R for which Ê(a) = 0,
Ê is continuous at a, and

f(x) = f(a) + m(x − a) + Ê(x)(x − a)

is true for all x ∈ dom(f). In this case, m = f ′(a).

(Hint: Use Lemma 4.11. For the left-to-right direction, if E is the error
function from Lemma 4.11, then it’s not hard to find a formula for Ê(x)
when x 6= a. How do you “patch up” that formula to make sense for all
x ∈ dom(f)?)

PREPRINT: Not for resale. Do not distribute without author’s permission.



Chapter 4: Derivatives 255

2. Using Lemma 4.34, give another proof of the Chain Rule using linear
approximations.

For the next seven exercises, compute the following derivatives. You may
assume that you are only considering values of x ∈ R which satisfy the
requirements of our derivative rules.

3. (sin(2x))′

4. (
√

1 − x2)′

5. (x
√

1 + x2)′

6.

(

sin2 x

sin(x2)

)′

7. (cos(1 − sin(3x)))′

8. (sin(cos2 x) · cos(sin2 x))′

9.

(

(

1 − x2

1 + x2

)3
)′

For the next three exercises, assume that y is a differentiable function of

x, and use the provided implicit equation to find
dy

dx
in terms of x and y.

10. x3 + y3 = 1 11. sin x cos y = cos x sin y

12. (xy + 1)2 =
√

y

13. In Exercise 4.6.10, assume y′′ exists, and find it in terms of x and y.

14. Let k, M ∈ R be given with k, M > 0, and suppose that P : R → R is
a differentiable function which satisfies the equation

dP

dt
= kP (t)(M − P (t))

for all t ∈ R. (This kind of equation involving a derivative of an un-
known function is called a differential equation. This particular equa-
tion is called the logistic equation, though it has other names as well,
and it arises in situations where P (t) is supposed to represent the pop-
ulation of a species at time t.)

From this equation, find the second derivative
d2P

dt2
in terms of P (t), k,

and M . For which values of P (t) is the second derivative equal to 0?
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15. Each edge of a cube is expanding at the rate of 1 cm per second. At a
specific moment, all the side lengths are s.

(a) How fast is the volume of the cube changing at this time? Express
your answer as a function of s.

(b) How fast is the surface area changing? Express your answer as a
function of s.

(c) Let’s say we’re measuring the side length of this cube, and instead
of getting the true side length of s, we have a measurement error
of ds = 0.1 cm. (See the remarks about differentials following
Example 4.30.) What are the approximate errors we’ll obtain
measuring the volume and the surface area?

16. A particle is traveling along the curve y = x2, where its position (x, y)
starts at the origin (0, 0). The particle moves rightward with the speed

of
dx

dt
= 1 unit per second. When the particle is at (2, 4) (i.e. when

x = 2 and y = 4), how fast is the particle’s distance to the origin
changing?

17. A large weight is hanging from a rope that is supported at two corners,
as shown in Figure 4.7 (the rope is drawn with dashed lines). The
weight dangles 10 feet below the ceiling and is slowly being slid along
the rope to the right, at the rate of 1 foot per minute. As the weight
slides, it always stays 10 feet below the ceiling. Eventually, the two
angles α and β in the drawing are both equal to π/4. At that moment,
how fast are α and β changing?

10 ft
Α Β

1 ft�min

Figure 4.7: A weight hanging from a rope
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18. A boat is currently 5 miles north of the shoreline, and the boat sails due
east at 40 miles per hour, parallel to the shoreline. There is a lighthouse
on this shoreline. When the boat is 12 miles west and 5 miles north
of the lighthouse, how fast is the distance between the boat and the
lighthouse changing?

19. A paper cup is shaped like a circular cone with radius 3 inches and
height 6 inches. The cup is being filled with water at the rate of 0.5
cubic inches per second, as drawn in Figure 4.8 (the dashes represent
the top of the water in the cup). At the point when the water is filled
3 inches deep, how fast is the depth changing?

3in

6 in

3 in

Figure 4.8: A cup being filled with water

In case you need it, the volume V of a circular cone with radius r and
height h is V = πr2h/3. (Hint: What is the ratio of the radius of the
water to the depth of the water?)

20. Consider Example 4.29, where the 10-foot ladder is sliding down a wall
at a constant rate of 1 foot per second. In that example, we calculated

the speed
dx

dt
at which the ladder’s bottom slides away from the wall.

At that moment, what is the acceleration of the ladder’s bottom away
from the wall? (In other words, what’s the second derivative?)

Hint: When solving for
dx

dt
in the example, do not plug in known values

yet! After differentiating with respect to t one more time, you may plug
in your known values.
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21. Prove that the following derivative formulas are correct using Theorem
4.31 and trigonometric identities:

(a) (arccos y)′ =
−1

√

1 − y2
for all y ∈ (−1, 1)

(b) (arctan y)′ =
1

1 + y2
for all y ∈ R

4.7 Some Unusual Functions II

At this point, now that we are studying differentiability, we’d like to return
to the examples from the Some Unusual Functions section in the previous
chapter and analyze the differentiability of those functions. We will also
introduce some new examples with surprising behavior.

Examples with χQ

Recall that in the previous chapter, we defined the characteristic function
of the rationals, χQ, as follows: for all x ∈ R, χQ(x) = 1 if x ∈ Q, and
otherwise χQ(x) = 0. We saw that this function is discontinuous everywhere.
However, if we multiply χQ by a continuous function f , then the result can
have continuity points. For example, when f : R → R is the identity function
mapping each x ∈ R to itself, then we’ve seen that (fχQ), which takes x ∈ R

to xχQ(x), is continuous at 0.
Is this function differentiable at 0? Because χQ is not differentiable any-

where (because it is not continuous anywhere), we can’t use the product rule
to help us. Instead, we use the definition of derivative and find

(fχQ)′(0) = lim
x→0

xχQ(x) − 0χQ(0)

x − 0
= lim

x→0
χQ(x)

Since this limit doesn’t exist, fχQ is not differentiable at 0. However, if we
instead consider the function g : R → R defined by g(x) = x2 for all x ∈ R,
then we find

(gχQ)′(0) = lim
x→0

x2χQ(x) − 02χQ(0)

x − 0
= lim

x→0
xχQ(x) = 0

Thus, this function is differentiable at 0, with the value of 0. This gives us
an example of a function with exactly one differentiability point.
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To better understand the difference between these two functions (fχQ

and gχQ), we can draw a rough picture. In Figure 4.9, we draw dashes
representing the curves y = x, y = x2, and y = 0. The basic idea is that the
values of fχQ keep jumping between the curves y = x and y = 0, and the
values of gχQ keep jumping between the curves y = x2 and y = 0.

Figure 4.9: A rough picture of xχQ(x) and x2χQ(x)

From the picture, we see why our two functions are continuous at 0: as
x → 0, all three curves tend to the value 0. (The actual proof of continuity
here uses the Squeeze Theorem.) For the function fχQ, the graph keeps
jumping between a curve of slope 1 and a curve of slope 0, so there is no
“limit slope” (i.e. no derivative). However, for gχQ, the graph keeps jumping
between slope 2x and slope 0 (since (x2)′ = 2x), and as x → 0, both 2x and
0 approach 0. This shows why fχQ is not differentiable at 0 but gχQ is.

Our picture suggests that any function of the form fχQ, where f is any
function, keeps jumping between slope f ′(x) (where f ′(x) exists) and slope
0. (You can explore this further in Exercise 4.8.2.) Although fχQ isn’t
necessarily a constant function, it “looks like” the constant function 0 for
each irrational input (and since the irrationals are dense, there are infinitely
many irrationals in any interval). This suggests that if fχQ is differentiable
anywhere, then its derivative should be the derivative of a constant, which
is 0. Thus, we have

Lemma 4.35. Let a ∈ R be given and f be a real function defined around
a. If fχQ is differentiable at a, and (fχQ)(a) = 0, then (fχQ)′(a) = 0.

Strategy. One way to show (fχQ)′ is 0 is to show that it can’t be anything else.
Let’s say L = (fχQ)′(a), and let’s assume that L 6= 0 and find a contradiction.
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Since the difference quotient of fχQ from a to x approaches L, these difference
quotients must also be nonzero when x is close enough to a. More specifically,
eventually the difference quotients have to be within distance ǫ = |L|/2 of L,
i.e. their values have to lie in the interval (L − |L|/2, L + |L|/2).

However, the difference quotient of fχQ from a to x is

f(x)χQ(x) − f(a)χQ(a)

x − a

Since we assumed that f(a)χQ(a) = 0, this shows that for any x ∈ R − Q,
the difference quotient is 0. Since 0 6∈ (L − |L|/2, L + |L|/2), and there are
irrational numbers x arbitrarily close to a, we have our contradiction.

Note: As shown by the example when a is 0 and f(x) is x, the assumption
of (fχQ)(a) = 0 is NOT enough to prove that (fχQ)′(a) exists! This is why
our proof needs to use the assumption that (fχQ)′(a) exists. (The tactic we
used, which shows that a limit is 0 by assuming it is nonzero and using half
its absolute value as ǫ, is quite common in analysis.)

Proof. Let a, f be given as described. Let L = (fχQ)′(a). Assume that
L 6= 0, and we will obtain a contradiction.

Since, by definition, we have

L = lim
x→a

f(x)χQ(x) − f(a)χQ(a)

x − a
= lim

x→a

f(x)χQ(x)

x − a

(because we assumed (fχQ)(a) = 0), this means that when ǫ = |L|/2, there
is some δ > 0 such that

∀x ∈ dom(f)

(

0 < |x − a| < δ →
∣

∣

∣

∣

f(x)χQ(x)

x − a
− L

∣

∣

∣

∣

< |L|/2

)

(In fact, because f is defined around a, we may assume that δ is small enough
so that the entire interval (a − δ, a + δ) is contained in dom(f).)

Because the irrational numbers are dense, we may choose some x ∈ R−Q

which belongs to (a, a+ δ). Thus, χQ(x) = 0 and 0 < |x− a| < δ, so we have

∣

∣

∣

∣

f(x) · 0
x − a

− L

∣

∣

∣

∣

< |L|/2

However, this tells us that |L| < |L|/2, which is a contradiction. �
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Because Lemma 4.35 requires that you assume your function fχQ is dif-
ferentiable at a, it cannot be used to prove that (fχQ)′(a) exists. However,
it is useful sometimes for showing that (fχQ)′(a) does NOT exist, because
all you have to do is show that the derivative cannot be 0. We will use this
to our advantage soon.

Oscillating Examples

The examples involving χQ are interesting because the function values
keep “jumping” between two different curves. Thus, for those functions, many
limits fail to exist. Another way to produce limits that fail to exist is by
having a function oscillate quite rapidly, such as the function taking x ∈
R − {0} to sin(1/x). As x approaches 0, the values of this function keep
wavering between −1 and 1, and Exercise 3.6.8 proves more formally that
the function has no limit at 0. However, the function is differentiable at every
other value of x, and the Chain Rule yields

(

sin

(

1

x

))′
= cos

(

1

x

)

· −1

x2

However, just like we did with χQ, maybe we can multiply sin(1/x) by a
function that helps “smooth it out”. As one such example, consider x sin(1/x).
Since 0 ≤ |x sin(1/x)| ≤ |x|, the Squeeze Theorem shows that |x sin(1/x)|
approaches 0 as x → 0. That means that the following function g : R → R

is continuous everywhere:

∀x ∈ R g(x) =

{

x sin
(

1
x

)

if x 6= 0

0 if x = 0

In essence, by multiplying by x, we squeeze the graph between the curves
y = x and y = −x, which causes it to have a limit at 0. See the left graph of
Figure 4.10 (the dashed lines represent the curves y = x and y = −x).

Now that we know g is continuous at 0, we’d like to know if g is differ-
entiable at 0. Because sin(1/x) is not differentiable at 0, we cannot use the
product rule, so we must use the definition of derivative again. We compute

g′(0) = lim
x→0

x sin
(

1
x

)

− 0

x − 0
= lim

x→0
sin

(

1

x

)

and this limit does not exist. Therefore, g is not differentiable at 0.

PREPRINT: Not for resale. Do not distribute without author’s permission.



262 Section 4.7: Some Unusual Functions II

Figure 4.10: The graphs of g(x) = x sin(1/x) (left) and h(x) = x2 sin(1/x)
(right)

What if we instead try multiplying sin(1/x) by a different function, like
x2? As with the function g above, we can define h : R → R by h(x) =
x2 sin(1/x) when x 6= 0 and h(0) = 0, and we can show that h is continuous
everywhere. In this situation, however, we have

h′(0) = lim
x→0

x2 sin
(

1
x

)

− 0

x − 0
= lim

x→0
x sin

(

1

x

)

= 0

The function h is displayed in the right graph of Figure 4.10.
The function h has a rather interesting property. If we compute h′(x) for

nonzero values of x, we get

(

x2 sin

(

1

x

))′
= 2x sin

(

1

x

)

+ x2

(

cos

(

1

x

)

· −1

x2

)

= 2x sin

(

1

x

)

− cos

(

1

x

)

Therefore,

h′(x) =

{

2x sin
(

1
x

)

− cos
(

1
x

)

if x 6= 0

0 if x = 0

Now, as x → 0, x sin(1/x) approaches 0, but cos(1/x) does not have a limit
(the proof is nearly the same as with sin(1/x)). We claim this implies that
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h′(x) cannot have a limit as x → 0. If such a limit existed, we could write

cos

(

1

x

)

= 2x sin

(

1

x

)

− h′(x)

for all x 6= 0 and take the limit of the right-hand side using the difference
rule for limits. This would mean that cos(1/x) has a limit as x → 0, which
is not true.

Therefore, h is a function which is differentiable everywhere, but whose
DERIVATIVE is discontinuous at 0. The lesson here is rather subtle: if you
want to take a derivative of some function f at a, but your derivative rules
don’t work at a, then you are NOT guaranteed to get the correct answer
by finding f ′(x) for other values of x and then taking a limit as x → a.
(However, under certain conditions, this approach does work: see Exercise
4.10.19.) For these situations, you should use the definition of derivative.
Later, in Chapter 8, we’ll see that in some cases, we can find derivatives
much more easily by approximating the function we’d like to differentiate.

The Ruler Function, Revisited

Let’s return to another example we defined in the Some Unusual Func-
tions section from Chapter 3: the ruler function r : R → R, defined by

∀x ∈ R r(x) =

{

0 if x 6∈ Q

1/q if x = p/q in lowest terms, q > 0

In Theorem 3.44, we saw that for all a ∈ R, r(x) → 0 as x → a. Therefore,
r is continuous at precisely the irrational numbers.

We’d like to answer the question: is r differentiable at any irrational
inputs? It turns out the answer is “no”: we present a rather recent proof. 5

Theorem 4.36. The ruler function is not differentiable anywhere.

Strategy. Suppose that r′(a) exists for a contradiction, where a is some real
number. Since the ruler function is only continuous at irrational numbers, a
must be irrational. Therefore, r(a) = 0.

5Credit goes to the article “Nondifferentiability of the Ruler Function” by William
Dunham, available through http://www.jstor.org, for the major ideas of the proof.
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Also, because r(x) is zero for every x 6∈ Q, it follows that r = rχQ. This
means that Lemma 4.35 is applicable to r. From the lemma, we find that
since we assume r′(a) exists, it must be zero. Thus, no matter what distance
ǫ we specify, there exists some δ such that all x within distance δ of a satisfy

∣

∣

∣

∣

r(x) − r(a)

x − a

∣

∣

∣

∣

< ǫ

In other words, the difference quotients near a have small magnitude, signi-
fying r has arbitrarily small slopes near a.

To obtain a contradiction, let’s try to find a difference quotient with large
magnitude (i.e. larger than ǫ) by finding a suitable value of x within distance
δ of a. Note that if x is irrational, then r(x) = 0, which makes the difference
quotient 0; hence we are interested in looking for a rational value of x.

This raises the question: which rational numbers can be found within
distance δ of a? As the definition of the ruler function indicates, the de-
nominator of our rational number is particularly important. Thus, for each
n ∈ N∗, let’s consider the rational numbers whose denominator is n: does
such a number lie in the interval (a − δ, a + δ)?

The rational numbers with denominator 1/n are spaced at distance 1/n
from each other. Thus, since a is irrational, a is strictly between two consec-
utive multiples of 1/n, say m/n < a < (m + 1)/n. (A formula for m can be
found in terms of the floor function.) In particular, we have a−m/n < 1/n,
so a−1/n < m/n < a. To guarantee that m/n is in the interval (a−δ, a+δ),
we choose n large enough to satisfy 1/n < δ. Let’s take x = m/n.

Now, m/n might not be a representation in lowest terms. If we write m/n
in lowest terms as p/q, then r(m/n) = 1/q. Since q is a divisor of n, q ≤ n,
so 1/q ≥ 1/n. Since m/n is within distance 1/n of a, |m/n − a| ≤ 1/n, and
thus

∣

∣

∣

∣

∣

f
(

m
n

)

− f(a)
m
n
− a

∣

∣

∣

∣

∣

=

∣

∣

∣

1
q
− 0
∣

∣

∣

∣

∣

m
n
− a
∣

∣

≥ 1/n

1/n
= 1

This shows that when x is m/n, the difference quotient has magnitude at
least 1. This causes a contradiction when ǫ is less than or equal to 1.

Proof. Let a ∈ R be given, and assume for contradiction that the ruler
function r is differentiable at a. By Theorem 3.44, because r is continuous
at a, a must be irrational. Therefore, r(a) = 0.
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Because r is zero at all irrationals, we see that r = rχQ. Hence, since
r(a) = 0, Lemma 4.35 tells us that r′(a) = 0. By the definition of derivative,
this means that when ǫ = 1, there is some δ > 0 such that

∀x ∈ R

(

0 < |x − a| < δ →
∣

∣

∣

∣

r(x) − r(a)

x − a

∣

∣

∣

∣

< 1

)

To obtain a contradiction, we will find some x ∈ (a − δ, a + δ) for which
|r(x)−r(a)|/|x−a| ≥ 1. Since r(a) = 0, this is equivalent to |r(x)| ≥ |x−a|.

First, choose n ∈ N∗ large enough to satisfy 1/n < δ. Take m = ⌊na⌋. By
the definition of the floor function, m ≤ na < m+1, so m/n ≤ a < (m+1)/n,
which implies that a − m/n < 1/n. (Also, since a is irrational, m/n 6= a.)
Thus, m/n > a − 1/n > a − δ, showing that |m/n − a| < δ.

Let’s take x = m/n. If x has the lowest-terms form p/q, then we must
have q ≤ n (since q is a divisor of n), so

r(x) =
1

q
≥ 1

n
≥ a − m

n
= |x − a|

Thus, we have found a value x ∈ (a− δ, a + δ) satisfying |r(x)| ≥ |x− a|. �

The examples we considered using χQ had only finitely many points of
continuity. In contrast, Theorem 4.36 tells us that the ruler function, a func-
tion with infinitely many continuity points, has no points of differentiability!
The proof basically shows that no matter which a ∈ R − Q you consider, as
x approaches a, the average slopes jump between having value 0 (as shown
in Lemma 4.35) and magnitudes greater than or equal to 1, so they do not
settle down to any limit.

The Staircase Function, Revisited

Given our analysis of the ruler function, you may be curious about where
the staircase function s from Chapter 3 is differentiable. Exercise 3.8.11
shows that s is continuous at the irrational numbers. However, as of the
writing of this book, the author does not know whether anyone has been
able to discover where s is differentiable!6 It turns out that there is a the-
orem due to Lebesgue that says that, roughly, any monotone function must

6If you manage to solve this problem, then the author would love to hear your answer!
Of course, you will get credit for your answer.
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be differentiable “almost everywhere”, but this theorem doesn’t tell us specif-
ically where the differentiability occurs.

To illustrate the main challenge in solving this problem, recall that the
staircase function was built out of approximation functions; we named the
nth such approximation gn. The function gn has jumps at n different rationals
and is flat everywhere else, so g′

n(x) = 0 at all x ∈ R − Q. As n gets larger,
the functions gn get closer to s, in the sense that at every x ∈ R, gn(x) gets
arbitrarily close to s(x). However, this does NOT necessarily imply that the
values g′

n(x) become arbitrarily close to s′(x). We’ll demonstrate why this is
the case with a simpler example that we consider next.

Another Function Defined By Approximations

At this point, let’s show how we can build a function f which is the sup
of a set of approximating functions fn, i.e. f(x) = sup{fn(x) | n ∈ N∗} for
each x ∈ R, but f ′(x) will not be the sup of the values {f ′

n(x) | n ∈ N∗}.
This cautionary example demonstrates that even when fn is arbitrarily close
to f , that does not mean that f ′

n is arbitrarily close to f ′.
In Chapter 3, we demonstrated a way we could list the rational numbers

as r1, r2, r3, and so forth, so that Q = {rn | n ∈ N∗}. Define hn : R → R by
hn(x) = 1 − |x − rn|. The graph of hn is a “spike” with the tip at rn. We’ll
define fn : R → R by

∀x ∈ R fn(x) = sup{h1(x), h2(x), . . . , hn(x)}

(since we are taking a sup of a finite set, we could also write max instead of
sup if we want). A graph of h1, h2, h3, and f3 is provided in Figure 4.11,
where the first three rationals in our list are r1 = −1, r2 = 0, and r3 = 1.
(Here, the solid graph is the graph of f3, and the dashed sections represent
the portions of the h1 through h3 graphs which are not part of the graph of
f .) The idea is that after drawing the graphs of h1 through hn, the function
fn takes the “top edge” of all the graphs when drawn on the same axes.

Note that for all n ∈ N∗ and all x ∈ R, fn+1(x) ≥ fn(x), because fn+1(x)
takes the max of a bigger set than fn(x) does. Also, we have fn(x) ≤ 1.
Thus, as n grows, the fn(x) values increase but remain bounded, so they
have a supremum. In fact, the values of fn(x) become arbitrarily close to the
supremum (as was also the case with the staircase function and its approxi-
mations).
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Figure 4.11: The function f3, made up of spikes h1 through h3

We define f(x) = sup{fn(x) | n ∈ N∗}. You can verify that this means
the same thing as saying f(x) = sup{hn(x) | n ∈ N∗}: see Exercise 4.8.5.
Thus, in a sense, f represents the “top edge” after we add infinitely many
spikes, one for each rational number. Let’s call f the “sup of spikes” function.

Now, how do f and the fn functions relate to each other? Each spike has
one sharp corner where it is not differentiable, but every other point on the
spike has derivative 1 or −1. Using this, you can show in Exercise 4.8.6 that
fn has 2n−1 sharp corners, but everywhere else, the derivative is either 1 or
−1. In fact, all the sharp corners will occur at rational points, so for every
irrational number x, f ′

n(x) is either 1 or −1. In essence, as n grows larger,
the graph of fn becomes more and more jagged.

However, when we look at the limit function f(x), we find that f is quite
simple indeed:

Theorem 4.37. The “sup of spikes” function f is the constant function 1.

You can prove this theorem in Exercise 4.8.7. The basic idea is that for
any fixed x ∈ R, as we add in more and more spikes, we find rationals rn

which are arbitrarily close to x, so |x−rn| can become as small as we want. In
essence, although the fn’s become more and more jagged, any jagged section
of the graph is pushed closer and closer to the line y = 1, so in the limit, the
graph becomes completely smooth.

In particular, Theorem 4.37 implies that for all x ∈ R, f ′(x) = 0, which is
NOT a limit of numbers which are either 1 or −1. This shows that the f ′

n(x)
values do not approach f ′(x) as n grows large, which is what we wanted to
demonstrate.
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For another nice example of a function that is a limit of approximations,
and which is smoother than its approximations, see Exercise 4.8.8.

4.8 Exercises

1. Let A ⊆ R be given. Using Exercise 3.8.2, prove that χA has derivative
0 at every point of continuity. By looking at the graph of χA, explain
why this result makes sense.

2. Let f : R → R be a function which is differentiable everywhere. By
Exercise 3.8.3, for each a ∈ R, fχQ is continuous at a iff f(a) = 0.

Thus, let a ∈ R be given which satisfies f(a) = 0. Prove that (fχQ)′(a)
exists iff f ′(a) = 0. (Hint: How can you write the difference quotient
for fχQ from a to x in terms of the difference quotient for f? Can you
reuse the result of Exercise 3.8.3?)

3. (a) Suppose that p : R → R is a polynomial, and a ∈ R is a zero of
p (i.e. p(a) = 0). Factor as many powers of x − a out of p(x) as
possible, so that for some r ∈ N∗, we obtain

p(x) = (x − a)rq(x)

where q(x) is a polynomial satisfying q(a) 6= 0. (We say that a is
a root of multiplicity r.) Prove that p′(a) = 0 iff r ≥ 2.

(Thus, a zero of p is also a zero of p′ iff the zero is repeated in p.)

(b) Use the previous part, as well as the results of Exercises 4.8.2 and
3.8.3, to prove the following: If S and T are any finite subsets of
R with S ⊆ T , then there exists a function fS,T : R → R such that
fS,T is continuous precisely at the points of T and differentiable
precisely at the points of S.

(For example, xχQ(x) is a valid choice for f∅,{0}, and x2χQ(x) is a
valid choice for f{0},{0}.)

4. Prove that the square root of the ruler function, which maps any x ∈ R

to
√

r(x), is not differentiable anywhere. (Hint: Note that
√

r(x) ≥
r(x) and imitate the proof of Theorem 4.36.)

5. Using the definitions of hn, fn, and f from the “sup of spikes” section,
prove that for all x ∈ R, f(x) = sup{hn(x) | n ∈ N∗}.
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6. This exercise proves some properties of the fn functions from the “sup
of spikes” section. Let n ∈ N∗ be given. For this particular n, the
definition of fn uses the rational numbers r1 through rn. Let’s say we
write that list of n rational numbers in increasing order as rn,1 through
rn,n, so rn,1 is the smallest of them, rn,2 is the second smallest, etc.
Thus, rn,i is the ith smallest rational in the list r1 through rn, where
i ∈ N∗ and i ≤ n.

(a) Prove that the graph of fn is piecewise linear, which means that
fn can be written with a piecewise definition where each piece is
a linear function.

(b) Explain why fn is continuous everywhere.

(c) Where are the sharp corners of fn?

(d) Where is the derivative f ′
n equal to 1? Where is the derivative

equal to −1?

7. Prove Theorem 4.37. (Hint: The result of Exercise 4.8.5 might be
helpful, but it is not necessary.)

8. For each n ∈ N∗, define gn : R → R by

∀x ∈ R gn(x) =
⌊nx⌋

n

(a) Graph g2, g3, and g4.

(b) For each n ∈ N∗, note that gn is monotone increasing. Where are
its discontinuities? What are the gaps at those discontinuities?

(c) For each n ∈ N∗, where is gn differentiable? What is the derivative
at those points?

(d) Prove that for all n ∈ N∗, |x − gn(x)| ≤ 1/n.

Remark. From part (d), it follows that as n gets larger, the values of
gn(x) become arbitrarily close to x. Therefore, the “limit” function g
for this example is the identity function, with derivative 1 everywhere.
Notice that this is NOT a limit of the derivative you find in part (c).

4.9 Extreme Values and the MVT

At this point, we have introduced useful rules for calculating derivatives, and
we’ve seen some interesting examples. However, we still have not addressed
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the question: what does a function’s derivative tell us about the function?
Similarly, what do the tangent lines to a function tell us about the graph of
the function?

Figure 4.12: A graph with tangent lines drawn at several places

To illustrate the main ideas, see Figure 4.12. In this figure, we have
the graph of a function f , together with a few dashed tangent lines drawn
touching the graph. Intuitively, the tangent lines “follow the direction” of the
graph. It makes sense to conjecture that when the tangent lines go upward
(i.e. f ′ is positive), f is also going upward (i.e. f is strictly increasing),
and when the tangent lines go downward (i.e. f ′ is negative), f is strictly
decreasing. This gives us an important relationship between a function and
its derivative.

This drawing also points out an important component of this graph: the
graph has a few different “peaks”, where the curve stops rising and turns
around, as well as a few “valleys”, where the curve stops falling and turns
around. One of these valleys is the sharp corner, but apart from that, it
looks like the graph “flattens out” at a peak or a valley. This leads us to
conjecture that if f is differentiable at a peak or a valley, then the tangent
line is horizontal. Let’s first study this conjecture more carefully.

Peaks and Valleys: Relative Extrema

In Chapter 3, when we studied the Extreme Value Theorem (or the EVT),
we were introduced to the notion of absolute extreme values, which represent
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the largest and smallest values that a function’s range takes. However, as
Figure 4.12 indicates, most peaks do not attain the absolute maximum value
of the function; instead, the function merely “tops out” there briefly. Simi-
larly, not all valleys correspond to absolute minimum values.

This definition is a more formal way to talk about peaks and valleys:

Definition 4.38. Let f be a real function, and let a ∈ dom(f) be given.
We say that f attains a relative maximum at a if there is some open interval
I ⊆ dom(f) such that a ∈ I and f(a) = max{f(x) | x ∈ I}. Similarly, we
say that f attains a relative minimum at a if there is some open interval
I ⊆ dom(f) such that a ∈ I and f(a) = min{f(x) | x ∈ I}. If f attains
either a relative maximum or relative minimum at a, then f(a) is called a
relative extreme value or relative extremum.

When f attains a relative extremum at a, f(a) is the biggest or smallest
value in the range among inputs that are near a, as opposed to among all
inputs. To use the rollercoaster analogy for tangent lines, the coaster is about
to turn around at these extreme values.7

Remark. You may be tempted to say that any absolute extremum is auto-
matically a relative extremum, but there is an important scenario where that
statement is false. Suppose that f : [a, b] → R has a closed bounded inter-
val as its domain. Any open interval that contains a cannot be contained
in [a, b], because such an interval necessarily contains points smaller than a.
Similarly, there is no open interval which contains b and is contained inside
[a, b]. Thus, the endpoints of [a, b] cannot yield relative extrema.8

This means that when the domain is a closed bounded interval [a, b], the
endpoints of the interval could yield absolute extrema without yielding rela-
tive extrema. This becomes useful to keep in mind when finding maximum
or minimum values of functions, as we’ll see in some examples a little later.

Now, we’ll prove that at any relative extremum of a function, either the
function flattens out or the function fails to be differentiable (e.g. a sharp
corner):

7Chances are, somebody is screaming at those points. This definitely gives a new
meaning to the word “extreme” used to describe these points!

8However, a and b could be one-sided relative extrema. We encourage you to formulate
a precise definition of this concept.
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Theorem 4.39 (Fermat’s Theorem). Let a ∈ R be given, and let f be a
real function defined around a. If f attains a relative extreme value at a, and
f ′(a) exists, then f ′(a) = 0.

Strategy. If f attains a relative extremum at a, then the function can’t be
rising on both sides of a, nor can it be falling on both sides. This gives us
the idea to show, via a proof by contradiction, that each of the statements
“f ′(a) > 0” and “f ′(a) < 0” is impossible.

First, suppose that f ′(a) > 0 were true. In that case, since the difference
quotients of f from a to x approach f ′(a), the difference quotients must be
positive if x is close enough to a, i.e. there is some δ > 0 so that

f(x) − f(a)

x − a
> 0 if 0 < |x − a| < δ

This implies that for x close enough to a, f(x) > f(a) when x > a (which is
impossible if f has a relative maximum at a), and f(x) < f(a) when x < a
(which is impossible if f has a relative minimum at a). This finishes the
contradiction when f ′(a) > 0. The case where f ′(a) < 0 can be handled
similarly.

Proof. Let a, f be given as described. Since f attains a relative extremum
at a, we may choose some open interval I ⊆ dom(f) so that a ∈ I and either
f(a) = max{f(x) | x ∈ I} or f(a) = min{f(x) | x ∈ I}. Furthermore,
we assume that f ′(a) exists, so to prove f ′(a) = 0, it suffices to show that
“f ′(a) > 0” and “f ′(a) < 0” are each impossible.

For the first case, let’s assume that f ′(a) > 0. By the definition of
derivative, when ǫ = f ′(a)/2, there exists some δ > 0 so that

∀x ∈ dom(f)

(

0 < |x − a| < δ →
∣

∣

∣

∣

f(x) − f(a)

x − a
− f ′(a)

∣

∣

∣

∣

<
f ′(a)

2

)

In fact, we may choose such a value for δ small enough so that (a−δ, a+δ) ⊆ I
(because I is an open interval). Thus, for any x ∈ I, we have

f(x) − f(a)

x − a
∈
(

f ′(a)

2
,
3f ′(a)

2

)

so that, in particular, the difference quotient is positive. This means that
for all x ∈ I, f(x) > f(a) is true iff x > a is true. In particular, when
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x = a + δ/2, f(x) > f(a) (which is a contradiction if f attains a relative
maximum at a), and when x = a−δ/2, f(x) < f(a) (which is a contradiction
if f attains a relative minimum at a). This finishes the first case.

For the second case, when f ′(a) < 0, we could either use a similar style
of proof as in the first case. or we could merely apply the argument for the
first case to the function −f (because −f also has a relative extremum at a,
and (−f)′(a) > 0). �

Note that Theorem 4.39 says that IF f ′(a) exists at a relative extremum,
THEN f ′(a) = 0. It is easy to mix this up with the converse statement, which
says that if f ′(a) = 0, then f has a relative extremum at a. This converse is
false: see Exercise 4.10.1. To help distinguish between points where f ′ is 0
and points where a relative extremum is obtained, we use the term critical
value to denote a value a ∈ R where either f ′(a) = 0 or where f ′(a) does not
exist.

The critical values represent the POSSIBLE places where one could find
a relative extremum, but not all critical values necessarily yield relative ex-
trema. Nevertheless, for many functions, Theorem 4.39 is still very useful for
finding extreme values of a function, as the following example indicates.

Example 4.40:

Suppose that f : [1, 2] → R is defined by f(x) = (x3 −6x)−2 for all x ∈ [1, 2].
Note that f is continuous on [1, 2]: the denominator x3−6x is zero when x = 0
or when x = ±

√
6, and none of these values are in the interval [1, 2]. Thus,

the Extreme Value Theorem asserts that f attains an absolute maximum
and an absolute minimum. Using Theorem 4.39, we can determine where
those absolute extremes are located.

To do this, we find the critical values. For any x ∈ (1, 2), the Chain Rule
tells us that

f ′(x) = −2(x3 − 6x)−3 · (3x2 − 6) =
−6(x2 − 2)

(x3 − 6x)3

Since this derivative is defined for all x ∈ (1, 2), the critical values occur
when f ′(x) = 0, i.e. x2 − 2 = 0, or x = ±

√
2. Since −

√
2 is not in the

interval (1, 2), x =
√

2 is our only critical value.

Now, according to the remark following Definition 4.38, the absolute ex-
treme values of the function either occur at the endpoints of [1, 2] or they
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occur at relative extrema. Therefore, we check the values of f at our end-
points and at our critical values and see that

f(1) =
1

(1 − 6)2
=

1

25

f(
√

2) =
1

(2
√

2 − 6
√

2)2
=

1

32

f(2) =
1

(8 − 12)2
=

1

16

Hence, the absolute maximum is at x = 2, and the absolute minimum is at
x =

√
2. �

The previous example illustrates a general strategy called the closed in-
terval method for finding extrema of a continuous function f defined on a
closed bounded interval:

1. Determine where f ′ fails to exist.

2. For the values where f ′ exists, determine which values x ∈ dom(f ′)
satisfy f ′(x) = 0.

3. Plug all the crticial values from Steps 1 and 2 into f , as well as plugging
in the endpoints of dom(f), to find the largest and smallest values of
ran(f).

Remark. At this point, you might be wondering: “Can’t I just find maximum
and minimum values by drawing a graph?” In some cases, drawing a graph
is a pretty good way to analyze how a function behaves and to see where the
function takes large or small values.

However, there are several issues with drawing a graph to find extrema.
One issue is precision: any drawing of a graph only plots finitely many points
of the graph and then approximates the rest by a smooth curve, so if your
drawing doesn’t use enough points, then your drawing might miss some key
features of the function. Another related issue is that a graph is an approx-
imation: usually a graph will not tell you the EXACT value of x where f
attains an extremum. (In the previous example, especially, you might be
able to use a graph to find that the minimum is attained when x ≈ 1.4142,
but the graph would not tell you that the exact value of x is

√
2.)

When using derivatives, however, we are often able to find the peaks and
valleys of a function easily and accurately. We will soon prove a theorem
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that will help us decide whether a critical value is a relative extremum, and
this theorem will be very helpful to us in analyzing functions.

In many practical problems, we would like to find the largest or smallest
value possible for some quantity. Examples include determining which shape
a gallon of water should take in order to minimize surface area, determining
how light should travel from a point in the sky to a point in a pool to minimize
travel time, or determining how many toys a factory should produce to obtain
the maximum profit. These are called optimization problems, and these are
solved by finding absolute extremes of functions. We’ll go over a simple
example here, and we’ll provide other problems as exercises.

Example 4.41:

Suppose that you have 40 yards of fence, and you’d like to use that fence
to enclose a rectangular area. We’d like to know: which dimensions of this
rectangle will produce the largest area possible?

First, just like we did with related rates problems, we should identify the
relevant quantities of the problem. A rectangle is specified by its width w
and height h, which we’ll measure in yards. We would like to maximize the
area A of the rectangle, measured in square yards.

Second, we need to know some relationships between these quantities.
For a rectangle, we know that A = wh. However, this writes A as a function
of two variables, w and h, and in order to use the closed interval method,
we need A to be a differentiable function of one variable. Thus, we need
to rewrite one variable in terms of the other. To do this, we use the fact
that the perimeter of the rectangle should use up all 40 yards of fence, i.e.
2w + 2h = 40. Therefore, h = 20 − w, and thus A(w) = w(20 − w) is now
a function of w. We treat A as having domain [0, 20]. (Arguably, the values
0 and 20 may not make much sense as possible values of w, since length
measurements should normally be positive, but it makes our life easier to
have a closed interval domain for A, and furthermore we can think of the
values of 0 and 20 as producing a rectangle of no thickness, i.e. 0 area.)

Since A(w) = w(20 − w) = 20w − w2, we find that A′(w) = 20 − 2w
for all w ∈ (0, 20). The only critical value occurs when 20 − 2w = 0, i.e.
when w = 10. Plugging in our endpoints and critical value to A, we find
A(0) = A(20) = 0 and A(10) = 100. Therefore, the maximum area of 100
square yards is obtained by choosing w to be 10 yards and h to be 20 − 10,
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or 10, yards. In other words, a square yields the maximum area out of all
the possible rectangles. �

Rolle’s Theorem and the Mean Value Theorem

Now that we have the closed interval method, we should take a closer
look at functions of the form f : [a, b] → R, where the domain is a closed
bounded interval. In the last chapter, we considered when f is continuous
on [a, b] and proved some useful theorems, such as the Intermediate Value
Theorem, the Extreme Value Theorem, and a uniform continuity theorem.
Now, let’s consider when f is continuous on [a, b] and differentiable on (a, b)
(remember that we only have one-sided derivatives at the endpoints), and
let’s see what we can infer from the differentiability assumption.

a b

Figure 4.13: A function f with f(a) = f(b) and a flat tangent line

As a starting point in our analysis, Theorem 4.39 gives us a way to find
places where the derivative is 0 by looking for relative extrema. Note that
not all continuous and differentiable functions from [a, b] to R have relative
extrema: if the function is strictly monotone, then it obtains its absolute
extrema at the endpoints of [a, b] and has no relative extrema in the interior
(a, b). However, if the function satisfies f(a) = f(b), then the function cannot
be strictly monotone, and intuitively if such a function’s graph rises or falls,
then it must eventually “turn around” to get back to the value of f(b). This
point where the graph turns around is a relative extremum, as pictured in
Figure 4.13. This suggests the following theorem:

Theorem 4.42 (Rolle’s Theorem). Let a, b ∈ R with a < b be given, and
let f : [a, b] → R be a function which is continuous on [a, b] and differentiable
on (a, b). If f(a) = f(b), then there exists some c ∈ (a, b) such that f ′(c) = 0.
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Strategy. We’d like to find some place where f ′(c) = 0. One way to do this
is to find a relative extremum of f , since Theorem 4.39 says that if f has a
relative extremum at c, where c ∈ (a, b), then f ′(c) = 0. However, does any
relative extremum exist?

We know that ABSOLUTE extrema exist by the EVT, because f is con-
tinuous on [a, b]. If either an absolute minimum or an absolute maximum
occurs in (a, b), then that point will also be a relative extremum and we’ll
be done. If this is not the case, then both absolute extrema occur at the
endpoints. However, since f(a) = f(b), this means that the maximum and
minimum values of the range are the same, so the function is constant! In
this case, we trivially have f ′(c) = 0 for EVERY c ∈ (a, b).

Proof. Let a, b, f be given as described. Because f is continuous on [a, b], by
the Extreme Value Theorem (Theorem 3.59), f attains an absolute maximum
and an absolute maximum. There are two cases to consider.

In the first case, both absolute extrema occur at the endpoints. Hence,
either f(a) = min(ran(f)) and f(b) = max(ran(f)) or vice versa, but in
either case, since f(a) = f(b), we have min(ran(f)) = max(ran(f)). This
means that f is a constant function, so f ′(c) = 0 for any c ∈ (a, b).

In the second case, the first case does not hold, so some absolute ex-
tremum c must occur in (a, b). That absolute extremum is also a relative
extremum. Because f is differentiable on (a, b), f is differentiable at c, so
Theorem 4.39 implies that f ′(c) = 0. �

Rolle’s Theorem tells us that if a differentiable function repeats values,
then the function must have a derivative of 0 at some point. The contrapos-
itive of this statement is useful: it says that if the derivative is never 0, then
the function never repeats values, i.e. it is injective. Here is an application
of this.

Example 4.43:

Let f : R → R be defined by f(x) = x5 − x3 + x + 2 for all x ∈ R, so f is a
polynomial of degree 5. This means that f can have at most 5 different real
roots. We’ll prove that f has exactly one real root.

First, why does f have any roots at all? We note that f(x) < 0 if x
is a negative number with large magnitude; for instance, f(−10) = −105 +
103 − 10 +2 = −100000+ 1000− 10+ 2, which is clearly negative. Similarly,
f(x) > 0 if x is positive and has large magnitude; for instance, f(10) =
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a

b

Figure 4.14: A secant line from (a, f(a)) to (b, f(b)) and parallel tangent
lines

105 − 103 + 10 + 2, which is clearly positive. Thus, since f is continuous on
[−10, 10], Bolzano’s Theorem (or the Intermediate Value Theorem) says that
f has a root in (−10, 10).

Second, why does f have only one root? If we assume that f has two roots,
say f(a) = f(b) = 0 with a < b, then since f is differentiable everywhere (and
thus on (a, b)), Rolle’s Theorem implies that f ′(c) = 0 for some c ∈ (a, b).
However, for all x ∈ R,

f ′(x) = 5x4 − 3x2 + 1 = 5(x2)2 − 3(x2) + 1

so f ′ is a quadratic function in x2. Applying the quadratic formula, we find
no real solutions for x2, because (−3)2 −4(5)(1) < 0. Thus, f ′ has no zeroes,
and the statement f ′(c) = 0 is impossible.

(In fact, Exercise 4.8.3.(a) implies that the unique root of f must be a
single root, i.e. it has multiplicity 1.) �

As Figure 4.13 indicates, another way we can view Rolle’s Theorem is
that it says somewhere in (a, b), the tangent line is parallel to the secant line
which connects (a, f(a)) to (b, f(b)), when that secant line is flat. In other
words, the average rate of change from a to b equals the instantaneous rate
of change somewhere in (a, b). This raises the question: if the secant line
from a to b is not flat, is there still some tangent line parallel to it?

As Figure 4.14 indicates, it seems plausible that there exists some tangent
line parallel to the secant line. In other words, the average slope from a to
b is equal to the instantaneous slope somewhere in (a, b). For instance, if
you drive a car 90 miles over the course of 2 hours, so your average speed
is 45mph, then at some point in the trip your speedometer must have read
45mph; after all, you couldn’t have been going slower than 45mph the whole
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time, nor could you have been faster the whole time! The next theorem,
often abbreviated as the MVT, makes this idea precise:

Theorem 4.44 (Mean Value Theorem). Let a, b ∈ R with a < b be
given, and let f : [a, b] → R be a function which is continuous on [a, b]
and differentiable on (a, b). Then there exists some c ∈ (a, b) satisfying

f ′(c) =
f(b) − f(a)

b − a

or equivalently f(b) − f(a) = f ′(c)(b − a).

Remark. When looking at linear approximations, we established that f(x)−
f(a) ≈ f ′(a)(x − a), where the error in the approximation is “better than
linear”. The MVT says that f(x)− f(a) = f ′(c)(x− a) for some c between a
and x. This has the same form as f ′(a)(x−a), but the derivative is evaluated
at a different point. This means that the error of the linear approximation
is proportional to how far apart f ′(a) and f ′(c) are: see Exercise 4.10.17 for
a deeper study of this.

Strategy. The secant line from a to b has the following equation in point-slope
form:

y − f(a) =
f(b) − f(a)

b − a
(x − a)

We’d like to find a point where the graph of f has the same slope as this line.
In essence, at such a point, the graph of f and the secant line are moving
side by side, rather than approaching or retreating from each other. Another
way to look at this is: we’d like to find a point where the distance between
the graph of f and the secant line is not changing. This gives us the idea to
consider the function

h(x) = f(x) −
(

f(a) +
f(b) − f(a)

b − a
(x − a)

)

which is the difference between the function f and the secant line. By design,
the secant line goes through (a, f(a)) and (b, f(b)), so we have h(a) = h(b) =
0. This means we can apply Rolle’s Theorem to h, and the rest follows
quickly.
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Proof. Let a, b, f be given as described. Define the function h : [a, b] → R by

h(x) = f(x) −
(

f(a) +
f(b) − f(a)

b − a
(x − a)

)

for all x ∈ [a, b]. Since h is just the difference of f and a linear function, h is
continuous on [a, b] and differentiable on (a, b). Furthermore, h(a) = h(b) =
0, so by Rolle’s Theorem, there exists some c ∈ (a, b) satisfying h′(c) = 0.
Since

h′(c) = f ′(c) − f(b) − f(a)

b − a
= 0

we have f(b) − f(a) = f ′(c)(b − a), as desired. �

Applications of the MVT

Because the Mean Value Theorem relates average slopes and instanta-
neous slopes, it is probably the most important theorem that indicates how
properties of the derivative relate to properties of the original function. For
instance, inequalities involving f ′ can be used to find inequalities involving
f , as the following indicates:

Example 4.45:

Suppose that f : R → R is differentiable everywhere and satisfies |f ′(x)| < 1
for all x ∈ R. Let’s consider the question: if f(−1) = 2, then what can we
conclude about the value of f(1)?

Since we have information about f ′, we have information about how fast
the function f changes. This gives us the idea to consider the CHANGE in f
from −1 to 1, i.e. f(1)− f(−1). By the MVT, there exists some c ∈ (−1, 1)
which satisfies f(1) − f(−1) = f ′(c)(1 − (−1)). By plugging in f(−1) = 2
and taking absolute values, we therefore find

|f(1) − 2| = 2|f ′(c)| < 2 · 1
This means that f(1) is less than 2 units away from 2, so f(1) ∈ (0, 4).

One way to think of this is that the condition |f ′(x)| < 1 imposes a “speed
limit” on f : the speed at which f rises or falls must be less than 1. In fact,
by doing similar steps to what we did above, we find that for any x ∈ R,
f(x) lies between 2−|x+1| and 2+ |x+1|. This situation is drawn in Figure
4.15, where the dashed lines represent 2 − |x + 1| and 2 + |x + 1|, and the
graph of f must travel “between the speed limits”. �
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Figure 4.15: A function f with f(−1) = 2 and |f ′(x)| < 1 for all x

Example 4.46:

We’ve seen in Example 3.38 that for all x ∈ (0, π/2), sin x < x. We can
prove something more general with the Mean Value Theorem. Suppose that
a, b ∈ R are given with a < b; let’s see how much the sin function changes
from a to b. Using the MVT, there is some c ∈ (a, b) such that

|sin b − sin a| = |(cos c)(b − a)| ≤ |b − a|

If we restrict the domain of sin, we can say even more. For instance,
if we take a and b from the interval [0, 1], then we have |sin b − sin a| =
|cos c| |b − a| < |b − a| since 0 < cos c < 1 for any c ∈ (0, 1). Also, sin a and
sin b are in [0, 1] as well, so we may apply sin to them (treating them as the
“new” a and b) and conclude |sin(sin b) − sin(sin a)| < |sin b − sin a|. Doing
this repeatedly yields

|b − a| > |sin b − sin a|
> |sin(sin b) − sin(sin a)|
> |sin(sin(sin b)) − sin(sin(sin a))| > · · ·

In essence, every time sin is applied to two values in [0, 1], the distance
between the values goes down. This is sometimes described by saying that sin
is a contraction on [0, 1]. There is a theorem proven in upper-level analysis
courses that says if f is a contraction on a closed bounded interval, and x
is given in that interval, then the sequence x, f(x), f(f(x)), . . . (obtained by

PREPRINT: Not for resale. Do not distribute without author’s permission.



282 Section 4.9: Extreme Values and the MVT

repeatedly applying f) approaches a limit L satisfying f(L) = L. In our
case, the sequence a, sin a, sin(sin a), . . . approaches the limit 0 (since 0 is the
only value L ∈ [0, 1] satisfying sin L = L).

0 1

1

a=0.8

y=x

y=sin x

x

y

Figure 4.16: Repeatedly applying sin to a = 0.8

To illustrate how a contraction works, look at Figure 4.16. Here, we have
graphs y = sin x and y = x on [0, 1]. In this figure, suppose that a = 0.8,
which we illustrate by positioning ourselves at (0.8, 0). Next, to apply sin,
we move up to the graph of sin, making our y-coordinate equal to sin(0.8).
Next, we move left to the graph of y = x, so that our x-coordinate is now
sin(0.8). Then, we move back to the graph of sin, so our y-coordinate is now
sin(sin(0.8)), and so on. Our path of motion is displayed in the figure by a
collection of dashed line segments starting at (a, 0).

The picture conveys that the dashed lines are repeatedly “bouncing” be-
tween the two graphs, moving down and left. Because sin is a contraction
on [0, 1], the vertical distance between the two graphs is shrinking as we
move more to the left, so eventually the bouncing settles down at the origin.
This illustrates the fact that repeatedly applying sin to a makes the values
approach 0. �

The previous examples show how the Mean Value Theorem can be used
to study changes in distance. Another very important use of the MVT is to
help us determine whether a function rises or falls, as this theorem shows:

Theorem 4.47. Let a, b ∈ R be given, and suppose that f : [a, b] → R is
continuous on [a, b] and differentiable on (a, b). Then the following holds:
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1. If f ′(x) > 0 for all x ∈ (a, b), then f is strictly increasing on [a, b].

2. If f ′(x) < 0 for all x ∈ (a, b), then f is strictly decreasing on [a, b].

3. If f ′(x) = 0 for all x ∈ (a, b), then f is constant on [a, b].

Strategy. If x, y ∈ [a, b] are given with x < y, we’d like to know whether
f(x) < f(y), f(x) > f(y), or f(x) = f(y). We can use the MVT with the
difference f(y)−f(x) to find out whether that difference is positive, negative,
or zero.

Proof. Let a, b, f be given as described in the first sentence of the theorem.
Let x, y ∈ [a, b] with x < y be given. By the MVT, there exists c ∈ (x, y)
such that f(y) − f(x) = f ′(c)(y − x). Since y − x is positive, we find that
f(y) > f(x) if f ′(c) > 0, f(y) < f(x) if f ′(c) < 0, and f(y) = f(x) if
f ′(c) = 0, proving all three parts of the theorem. �

We already used the closed interval method to find out relative extrema
of functions. Now, equipped with Theorem 4.47, we may also find out where
a function rises and falls, as shown in the next example.

Example 4.48:

Let f : R → R be defined by f(x) = x/(x2 + 1) for all x ∈ R. Note that
the domain of this function is not a closed bounded interval, so the closed
interval method does not tell us where the function obtains maximum or
minimum values. However, we can still obtain useful information from the
derivative. We compute, for all x ∈ R,

f ′(x) =
(x2 + 1)(1) − (2x)(x)

(x2 + 1)2
=

1 − x2

(x2 + 1)2

We have f ′(x) = 0 when x = ±1. These roots of the derivative split the
real line into three intervals: (−∞,−1), (−1, 1), and (1,∞). We note that
f ′(x) < 0 for x ∈ (−∞,−1) ∪ (1,∞) and f ′(x) > 0 for x ∈ (−1, 1). There-
fore, by Theorem 4.47, f is strictly decreasing on (−∞,−1] ∪ [1,∞) and
strictly increasing on [−1, 1]. (Technically, the theorem should be modified
to account for infinite intervals, but you should be able to perform this mod-
ification yourself.) Since f is decreasing to the left of x = −1 and increasing
to the right, f has a relative minimum at x = −1. Similarly, f is increasing
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to the left of x = 1 and decreasing to the right, so f has a relative maximum
at x = 1.

It also helps to note a few useful things about f before we draw its
graph. First of all, the denominator of f(x) is always positive, so f(x) < 0
when x < 0 and f(x) > 0 when x > 0. At the relative extrema, we have
f(−1) = −1/2 and f(1) = 1/2. There is a zero of f at x = 0. Since
f(−x) = −f(x) for all x ∈ R, f is an odd function, so its graph is rotationally
symmetric about the origin. Lastly, as x goes to either ∞ or −∞ (as defined
in the Exercises of Section 3.4), we have f(x) → 0. All of this leads to the
drawing in Figure 4.17.

-4 -2 2 4

-0.4

-0.2

0.2

0.4

Figure 4.17: A sketch of f(x) =
x

x2 + 1

In fact, since f is increasing on [0, 1], decreasing on [1,∞), and takes
negative values on (−∞, 0], we see that f obtains its ABSOLUTE maximum
at x = 1. Similarly, f attains its absolute minimum at x = −1. �

In that example, we made use of the sign of f ′ to determine which critical
values were relative maxima and which were relative minima. That process
can be summarized in the following theorem, which you can prove as Exercise
4.10.22:

Theorem 4.49 (First Derivative Test). Let a ∈ R be given, and let f be
a real function which is continuous on an open interval I containing a.

1. If for all x ∈ I, f ′(x) > 0 when x < a and f ′(x) < 0 when x > a, then
f has a relative maximum at a.
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2. If for all x ∈ I, f ′(x) < 0 when x < a and f ′(x) > 0 when x > a, then
f has a relative minimum at a.

Therefore, armed with Theorem 4.39 to tell us about critical values and
Theorems 4.47 and 4.49 to tell us about where a function rises and falls,
we can easily find important features of a function’s graph. These theorems
address the question we posed at the beginning of this section, asking how
the derivative of a function influences the function itself.

In the exercises, you can analyze another useful tool: the second derivative
f ′′. Whereas the first derivative tells us whether the original function rises
or falls, the second derivative tells us whether the first derivative rises or
falls. In other words, the second derivative tells us whether the function
becomes steeper or shallower, and thus it tells us information about the way
the function “curves”. More details are in the exercises.

4.10 Exercises

1. Give an example of a function f : R → R and a number a ∈ R such
that f is differentiable everywhere, f ′(a) = 0, but f does not attain a
relative extremum at a.

For the next three exercises, use the closed interval method to find all
critical values, the absolute maximum of the function, and the absolute min-
imum.

2. f : [−5, 5], f(x) =
1

4
x4 + x3 − 2x2

3. f : [0, 2], f(x) = x −√
x

4. f : [−π, π], f(x) =
sin x

2 + cos x

For the next three exercises, solve the given optimization problem. You
may use the closed interval method where it applies, or you may use Theorems
4.47 and 4.49.

5. A can is shaped like a circular cylinder, with a base of radius r and a
height of h. If the volume of the can is one cubic meter, then which
choices of h and r make the surface area smallest?
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6. Let’s suppose you are walking from the beach back to your car. You
start 100 feet west and 20 feet south of your car. The northernmost
border of the beach is road, but everything else is sand. You can walk
6 feet per second on the road, but on the sand, you can only walk 3
feet per second.

6 ft�s Road

3 ft�s Sand
You

Car
20 ft

100 ft

Figure 4.18: Walking from the beach to your car

You would like to arrive at your car as quickly as possible. Thus, as
drawn in Figure 4.18 by the paths with the arrows, you need to decide
how far you wish to walk on the sand before walking the rest of the
distance on the road. Which path should you take to minimize the
time you need to walk to your car?

7. Suppose you would like to build a cone-shaped drinking cup out of a
circular piece of paper of radius r. To do this, you cut out a circular
sector from the paper with angle θ, and then you tape the two edges
together that you just cut. In Figure 4.19, the picture on the left
shows the circle (with the sector that you cut out), and the picture on
the right shows the resulting cone. Note that the radius of the circle
becomes the slant height of the cone.

Which choice of θ yields the maximum volume of your cone-shaped
cup? (Hint: The top of your cone is a circle. Find the circumference
of that circle first, from which you can get the cone’s radius, labeled in
the figure as w.)

8. This exercise outlines an informal proof of Snell’s Law in physics. The
main idea is that when light moves from one medium (like air), to
another medium (like water), the path of the light bends because the
speed of light is different in the two media. Let’s consider the situation
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r
r

Θ
w

r

Figure 4.19: Making a cone out of a circle

drawn in Figure 4.20, where light passes through the air with speed
v1 at an angle of α1, and then the light proceeds through the water
with speed v2 at an angle of α2. We suppose that the light travels L
feet horizontally in total from the top-right corner to the bottom-left
corner. Since light travels along the path that minimizes total travel
time, we want to find which path the light will take in order to minimize
its total time T of travel.

Air

Water

x
L-x

v1

v2

Α1

Α2

Figure 4.20: Snell’s Law

(a) Suppose that x is the horizontal distance from the left end to the
point where the light crosses the water. Find a formula for T in
terms of x, v1, v2, α1, α2, and L.

(b) Find T ′(x), and show that it equals 0 when

sin α1

v1
=

sin α2

v2

(Note that all our variables except T and x are constants with
respect to x.)

The formula at the end of part (b) is Snell’s Law.
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9. Prove that the function f : R → R, defined by f(x) = 1.1x − sin x + 2
for all x ∈ R, has exactly one root.

10. Suppose f : R → R is defined by f(x) = 1 − x2/3 for all x ∈ R. Show
that f(−1) = f(1) = 0, but there is no c ∈ (−1, 1) such that f ′(c) = 0.
Why doesn’t this contradict Rolle’s Theorem (Theorem 4.42)?

11. Prove the following by induction on n ∈ N∗: if f : R → R is n-times
differentiable everywhere (i.e. f (n) exists), and f has at least n + 1
distinct roots, say a1 < a2 < · · · < an+1 satisfy f(a1) = f(a2) = · · · =
f(an+1) = 0, then there exists some c ∈ (a1, an+1) satisfying f (n)(c) = 0.

12. Suppose that f : [a, b] → R is continuous on [a, b] and twice differen-
tiable (i.e. f ′′ exists) on (a, b). Suppose that the line from (a, f(a))
to (b, f(b)) (in other words, the secant line from a to b) intersects the
graph of f at (c, f(c)) for some c ∈ (a, b). (For example, see the picture
from Figure 4.14.) Prove that there exists some t ∈ (a, b) satisfying
f ′′(t) = 0. (Hint: Use the MVT multiple times.)

13. This exercise outlines a proof of the following result, called the inter-
mediate value property for derivatives (and is also known as Darboux’s
Theorem):

Theorem 4.50. Suppose that f is a real function which is differen-
tiable on an open interval I. For any a, b ∈ I with a < b, f ′ at-
tains every value between f ′(a) and f ′(b) somewhere in (a, b). In other
words, if k is any number between f ′(a) and f ′(b) then there exists some
c ∈ (a, b) so that f ′(c) = k.

Note that this theorem does NOT assume that f ′ is continuous, so
this theorem is not the same as the Intermediate Value Theorem. In
this exercise, we provide a five-step proof outline. (Also, see the next
exercise.)

(a) First, define g : [a, b] → R by

g(x) =

{

f(x)−f(a)
x−a

if x 6= a

f ′(a) if x = a

Thus, g calculates difference quotients of f which use the left
endpoint a. Prove that g attains every value between f ′(a) and
g(b) somewhere in (a, b).
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(b) Suppose that k ∈ R is between f ′(a) and g(b). Therefore, by part
(a), there is some d ∈ (a, b) such that g(d) = k. Use the MVT to
show that there exists some c ∈ (a, d) such that f ′(c) = k.

(c) Next, define h : [a, b] → R by

h(x) =

{

f(x)−f(b)
x−b

if x 6= b

f ′(b) if x = b

Thus, h calculates difference quotients of f which use the right
endpoint b. Prove that for all values k between f ′(b) and h(a),
there is some d ∈ (a, b) such that h(d) = k.

(d) Using the MVT and the choice of d from part (c), prove that there
exists c ∈ (d, b) such that f ′(c) = k.

(e) Note that g(b) = h(a). Using this fact, finish the proof of Theorem
4.50.

14. In this exercise, we outline another proof of the IVT for derivatives, as
mentioned in the previous exercise. Let f, I, a, b, k be given as described
in that theorem. Suppose WLOG that f ′(a) < k < f ′(b) (otherwise,
we consider −f instead of f).

We define g : I → R as follows for all x ∈ I:

g(x) = f(x) − kx

Note that g is differentiable on I, g′(a) = f ′(a) − k < 0 and g′(b) =
f ′(b)− k > 0. Hence, to prove our theorem, we need only show that g′

has a root in (a, b).

(a) Explain why g attains an absolute minimum on [a, b]. Let’s sup-
pose this minimum is attained at (c, g(c)).

(b) Using the fact that g′(a) < 0, prove that c 6= a. (Hint: Theorem
4.39 doesn’t technically apply, but its main idea does.)

(c) Using the fact that g′(b) > 0, prove that c 6= b.

(d) From the previous parts, we see c ∈ (a, b). Explain why g′(c) = 0.
This finishes the proof.

15. Suppose that f : [a, b] → R is continuous on [a, b]. Recall from Exercise
3.12.8 that f is Lipschitz-continuous on [a, b] if there exists some L > 0
such that for all x, y ∈ [a, b], |f(x) − f(y)| ≤ L|x − y|.
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(a) Prove that if f is differentiable on (a, b), and the derivative is
bounded on (a, b), then f is Lipschitz-continuous on [a, b].

(b) Give an example to show that if f is Lipschitz-continuous on [a, b],
then that does not imply that f is differentiable on (a, b).

(c) Show that if f is Lipschitz-continuous on [a, b], and f is differen-
tiable on (a, b), then f ′ is bounded on (a, b).

16. Let f : R → R be a function with the following property: there exists
some r > 1 and some L > 0 such that for all x, y ∈ R,

|f(x) − f(y)| ≤ L|x − y|r

Certainly f is Lipschitz-continuous on R. However, we can show a
stronger property. Prove that f is a constant function!

17. This exercise analyzes the error from a linear approximation more
closely. Let a ∈ R be given, and let f be a real function which is
twice differentiable (i.e. f ′′ exists) around a. For all x ∈ dom(f),
define L : dom(f) → R by

L(x) = f(a) + f ′(a)(x − a)

so that L is the linear approximation of f at a. Therefore, the error
function E in the linear approximation is E = f − L.

(a) Let x near a be given (i.e. x is close enough to a so that f ′′

exists for all values from x to a). Prove that there exists some
c ∈ dom(f) between x and a such that

E(x) = (f ′(c) − f ′(a))(x − a)

(b) Use part (a) to prove that for all x near a, there exists some
d ∈ dom(f) between x and a such that

|E(x)| ≤ |f ′′(d)||x − a|2

Therefore, if M is an upper bound on the values |f ′′(d)| for all d
between x and a, then |E(x)| ≤ M |x − a|2.

(c) Suppose that f is the square root function and a = 1. Use a
linear approximation to estimate

√
1.001, and use part (b) to find

a bound on the error of this approximation.
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Remark. In Chapter 8, we’ll show that if a function has an (n + 1)st

derivative near a, then we can approximate the function with a poly-
nomial of degree n, and the error will be bounded by something of the
form

|f (n+1)(d)| |x− a|n+1

(n + 1)!

18. Let’s consider the following generalization of the MVT, which will be
useful when we study L’Hôpital’s Rule in Chapter 7:

Theorem 4.51 (Cauchy’s Mean Value Theorem). Let a, b ∈ R

be given with a < b, and let f, g : [a, b] → R be given. Assume that
f and g are both continuous on [a, b] and differentiable on (a, b). Also
assume that g′ is nonzero on (a, b) (thus, by Rolle’s Theorem, g(a) can’t
equal g(b)). Then there is some c ∈ (a, b) satisfying

f ′(c)

g′(c)
=

f(b) − f(a)

g(b) − g(a)

or equivalently (f(b) − f(a))g′(c) = (g(b) − g(a))f ′(c).

Note that the MVT is a special case of Theorem 4.51 where g(x) = x
for all x ∈ [a, b].

(a) Here is an attempt at a proof of Theorem 4.51:

Proof. Let a, b, f, g be given as described. By the MVT, there
exists some c ∈ (a, b) such that f(b)− f(a) = f ′(c)(b− a). By the
MVT again, there exists some c ∈ (a, b) such that g(b) − g(a) =
g′(c)(b − a). Since g′(c) 6= 0, some algebra shows that

f ′(c)

g′(c)
=

f ′(c)(b − a)

g′(c)(b − a)
=

f(b) − f(a)

g(b) − g(a)

�

What mistake does this proof make?

(b) Give a correct proof of Cauchy’s Mean Value Theorem. (Hint:
Use the approach that the proof of the MVT uses, but modify the
h function to use g(x) instead of x in certain places.)
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19. (a) Suppose that f is differentiable on an open interval (a, b) and that
f is continuous on [a, b]. Prove that if f ′(x) approaches a limit L
as x → a+, then

lim
x→a+

f(x) − f(a)

x − a
= L

(Hint: Use the MVT and the Squeeze Theorem.)

(b) Come up with an analogous left-handed version of part (a), and
prove it.

(c) Use parts (a) and (b) to prove the following: if a ∈ R and f is a
real function which is continuous around a and differentiable near
a, and if f ′(x) has a limit as x → a, then f ′(a) exists and is that
limit.

20. Show that for all distinct a, b ∈ [1, 2], |
√

b − √
a| < |b − a|. In other

words, the square root function is a contraction on [1, 2] (see Example
4.46).

21. Suppose that f : [a, b] → [a, b] is a contraction, so for all x, y ∈ [a, b]
distinct, |f(y) − f(x)| < |y − x|. Show that there cannot exist two
distinct values L1, L2 ∈ [a, b] such that f(L1) = L1 and f(L2) = L2.
(A value of x satisfying f(x) = x is said to be a fixed point of f , so this
exercise shows contractions have at most one fixed point.)

22. Prove the First Derivative Test (Theorem 4.49). (Hint: Take any c, d ∈
I so that c < a < d, and consider how f rises or falls on the intervals
[c, a] and [a, d].)

For the next three exercises, a real function is given. Use the techniques used
in Example 4.48 to draw a graph of the function, making sure to indicate
where the function is rising or falling as well as labelling any relative extrema.

23. f : R → R, f(x) = (x − 1)2(x + 2)

24. f : R − {0} → R, f(x) = x +
1

x2

25. f : R − {−3, 3} → R, f(x) =
x2 − 4

x2 − 9
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For the rest of the exercises in this section, we’ll discuss the use of the
second derivative f ′′. The sign of f ′′ tells us whether f ′ is increasing or
decreasing. When f ′ is increasing on an open interval (a, b), the graph of
f rises faster, forming an upward-cup shape, and we say that f ′ is concave
up on (a, b). Similarly, if f ′ is decreasing on (a, b), then the graph cups
downwards, and we say f is concave down9 on (a, b). Lastly, if f ′ has a
relative extremum at a, so that the concavity of f changes at a, then we say
that a is an inflection point of f .

For example, the function defined by y = x2 satisfies y′′ = 1, so it is
always concave up, producing the distinctive “cup” shape that we associate
with parabolas. In contrast, the cubic function y = x(x− 1)(x + 1) = x3 − x
has y′′ = 6x, so it is concave down when x < 0 and concave up when x > 0,
with an inflection point at x = 0. The graph of y = x3−x is shown in Figure
4.21.

-2 -1 1 2

-3

-2

-1

1

2

Figure 4.21: A graph of y = x(x − 1)(x + 1) = x3 − x

26. Prove that if f is a real function which is twice differentiable on (a, b),
and f ′′(x) > 0 for all x ∈ (a, b), then f is concave up on (a, b). Similarly,
prove that if f ′′(x) < 0 for all x ∈ (a, b), then f is concave down on
(a, b).

27. Prove this theorem, which sometimes is useful for determining relative
extrema:

9Sometimes the term convex is used instead of “concave up”, so that the term concave

means “concave down”.
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Theorem 4.52 (Second Derivative Test). Let a ∈ R be given, let
an open interval I containing a be given, and let f be a real function
which is twice differentiable on I. Suppose that f ′(a) = 0.

(a) If f ′′(a) > 0, then f has a relative minimum at a.

(b) If f ′′(a) < 0, then f has a relative maximum at a.

(Hint: Use the First Derivative Test.)

28. Go back to all the previous exercises in this section involving sketching
graphs, and find out where the functions are concave up and concave
down. Incorporate that information into your drawings.

29. Suppose that p : R → R is a cubic polynomial with three distinct real
zeroes r1, r2, r3. Show that p has an inflection point at the average of
the three zeroes (r1 + r2 + r3)/3. (Hint: Write p(x) in factored form.)

30. Define f(x) =
√

x for all x > 0. Thus, the tangent line at a = 1 is
L(x) = 1 + (1/2)(x− 1), and the error is E(x) = f(x)−L(x). Use the
First Derivative Test to find the absolute maximum of E(x), and use
this to prove that f(x) ≤ L(x) for all x > 0.

(Remark: This result can be generalized to show that when f is concave
down, the tangent line lies above the graph.)

31. Suppose that f is continuous on [a, b], twice-differentiable on (a, b), and
f ′′(x) > 0 for all x ∈ (a, b). Let L be the secant line from (a, f(a)) to
(b, f(b)). Let E be the linear error, so E(x) = f(x) − L(x) for all
x ∈ [a, b].

(a) Where is E(x) maximized? How does this relate to the MVT?
(Hint: How many roots can E ′ have?)

(b) Use part (a) to prove that f(x) < L(x) for all x ∈ (a, b).

This proves that a concave-upwards graph lies below its secant line.
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Chapter 5

Integrals

There are three major operations that are performed in calculus, and at
this point we’ve seen two of them: limits and derivatives. We use limits
to determine what values a function approaches, which leads to the notion
of continuity. We use derivatives, which are based on limits, to determine
how fast a function is changing, which lets us study velocities and relative
extrema. In this chapter, we’ll study the third operation, the integral, which
determines the area that a function’s graph encloses. Limits will also be
useful for the definition of an integral, though we will mainly use the related
notions of suprema and infima in our definition.

We will introduce the integral so that we can answer the following ques-
tion: if f : [a, b] → R is given, and f(x) ≥ 0 for all x ∈ [a, b], then how
do we find the area between the graph of f and the x-axis on [a, b]? In this
situation, we say that we are finding the area under the graph of f on [a, b],
and we will temporarily denote this quantity by A(f ; [a, b]). When the graph
of f is just a collection of line segments, then the region under the graph is
a polygon, and the area becomes straightforward to calculate. On the other
hand, when the graph f is irregularly curved, it’s not clear how exactly how
to measure A(f ; [a, b]). We’ll demonstrate our main strategy in an example.

Example 5.1:

Let’s say that f : [0, 1] → R is defined by f(x) = x2 for all x ∈ [0, 1]. How
would we determine A(f ; [0, 1]), as displayed in the leftmost graph in Figure
5.1? To solve this problem, we will approximate A(f ; [0, 1]) by using shapes
with which we are familiar, like rectangles. The idea is that just like we com-
puted derivatives by approximating the instantaneous slope with difference
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quotients and taking a limit, we will compute the area by approximating
with collections of rectangles and taking a limit. In essence, we’ll chop up
the domain [0, 1] into pieces to try and approximate each piece of the graph
of f with a rectangle.

Shaded Under Over

Figure 5.1: The area under the graph of f(x) = x2 and two estimates

To see how this works, look at the middle and rightmost graphs in Figure
5.1. In the middle graph, we have approximated A(f ; [0, 1]) by using four
rectangles, each having the same width of 1/4 and having their upper-left
corner on the graph of f . Since f is a strictly increasing function, the total
area of these four rectangles is smaller than A(f ; [0, 1]), as the picture makes
evident. In the rightmost graph, we use rectangles with the same width, but
now their upper-right corners are on the graph of f . In this scenario, the
total area of these four rectangles is larger than A(f ; [0, 1]).

In the middle picture, the heights of the four rectangles are f(0), f(1/4),
f(1/2), and f(3/4) (using the fact that the rectangle’s height is measured
from its upper-left corner). In the rightmost picture, the heights of the four
rectangles are f(1/4), f(1/2), f(3/4), and f(1). Therefore, using the formula
f(x) = x2, and the fact that each rectangle has width 1/4, we have
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which simplifies to 7/32 < A(f ; [0, 1]) < 15/32. This gives us the estimate
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that A(f ; [0, 1]) ≈ 11/32 (the midpoint of the interval (7/32, 15/32)), with
error at most 4/32, or 1/8.

Note that the maximum possible error of 1/8 is a pretty large proportion
of our estimate 11/32. This means that our estimate, using approximations
with four rectangles, might not be very precise. After all, as Figure 5.1
shows, you can see plenty of extra area covered by the rectangles in the
bottom-left graph, as well as plenty of uncovered area in the bottom-right
graph. This suggests that in order to get a better estimate, we should chop
up the domain [0, 1] into more pieces, so we use thinner rectangles. Let’s
try using eight rectangles, each with width 1/8, instead of 4 rectangles with
width 1/4, from which we get the picture in Figure 5.2.

Under Over

Figure 5.2: Approximating the area under the graph of f(x) = x2 with eight
rectangles

This picture suggests that using eight rectangles will yield a better ap-
proximation. Indeed, by computing the area under these rectangles in a
similar manner, we find
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which simplifies to 35/128 < A(f ; [0, 1]) < 51/128. This gives us the new
estimate of A(f ; [0, 1]) ≈ 43/128, with maximum error at most 8/128, or
1/16. This error is twice as small as the error when we used four rectangles.
In essence, our approximation using eight rectangles was twice as good.
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You may suspect that if we use more rectangles, then the approximation
will be even better. This raises the question: if we use an arbitrary number of
rectangles, say n of them, then what estimate do we obtain as a function of n?
With that in mind, for each n ∈ N∗, let’s use Ln to denote the underestimate
obtained when we make n rectangles, each of width 1/n, with their upper-left
corners on the graph of f (L stands for “lower estimate”), and we’ll use Un to
denote the overestimate from n equal-width rectangles with their upper-right
corners on the graph of f (U stands for “upper estimate”).

For each i from 1 to n, the ith rectangle from the left in the overestimate
has height f(i/n), and the ith rectangle in the underestimate has height
f((i − 1)/n). Since each rectangle has width 1/n, we obtain the following:

Ln =
1

n

n
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(

i − 1

n

)2

< A(f ; [0, 1]) < Un =
1
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n
∑
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(

i

n

)2

To simplify this, we may pull 1/n2 out of each sum, and we can also throw
out the i = 1 term from the left sum (because when i = 1, ((i − 1)/n)2 is
zero). After this, we also reindex the left sum to start from 1, giving us

1

n3

n−1
∑
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i2 < A(f ; [0, 1]) <
1

n3

n
∑

i=1

i2

In order to find out what Un and Ln approach as n grows large, we should
find a better way to write the sum of the first n squares. In Exercise 1.9.1.(a),
you were asked to prove

n
∑

i=1

i2 =
n(n + 1)(2n + 1)

6

by induction on n ∈ N∗. Using this formula, our inequalities now become

(n − 1)(n)(2n − 1)

6n3
< A(f ; [0, 1]) <

(n)(n + 1)(2n + 1)

6n3

By splitting the three powers of n in the denominator between the three
factors, we can rewrite this as
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As n grows arbitrarily large, 1/n goes to zero, so both the lower and upper
bound approach the value 1/3. By the Squeeze Theorem, we must have
A(f ; [0, 1]) = 1/3. �

Example 5.1 suggests a strategy for finding the area A(f ; [a, b]). We make
approximations to the area, both from below and from above, with collections
of rectangles. We choose the approximations so that we can find upper and
lower estimates as close as we’d like to each other, i.e. they approach a
common limit. That value of the limit is the area under the function. We
will call that area the integral of f from a to b. In this chapter, our aim is to
develop a formal definition which explains this process, as well as to prove
useful properties of the integral, culminating with the Fundamental Theorem
of Calculus which explains the relationship between derivatives and integrals.

5.1 Step Functions

First, we’d like to describe more specifically what kinds of collections of rect-
angles we will use when approximating area. We are interested in rectangles
whose base is on the x-axis. The bases should not overlap (though they may
touch at their boundaries), and the entire interval [a, b] should be covered.
One convenient way to describe where the bases of the rectangles lie is with
the following definition:

Definition 5.2. Let a, b ∈ R be given with a ≤ b. A partition of [a, b] is a
finite subset of [a, b] which includes a and b. For convenience, when we write
a partition P as {x0, x1, . . . , xn} for some n ∈ N, we implicitly assume that

a = x0 < x1 < x2 < · · · < xn = b

unless otherwise specified.
In this notation, we say that x1 through xn−1 are the subdivision points

of the partition, and x0 and xn are the endpoints. (The members of P are
called partition points.) For each i ∈ N from 1 to n, the interval (xi−1, xi)
is called the ith open subinterval of P , and [xi−1, xi] is called the ith closed
subinterval of P . (We also say that P partitions [a, b] into n subintervals.)
The width of the ith subinterval is xi − xi−1, sometimes denoted as ∆xi (i.e.
as the ith change in x of the partition).

With this definition, we can say that we want the bases of our rectan-
gles to be the closed subintervals of a partition on [a, b]. In Example 5.1,
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when n rectangles are used, the bases of the rectangles correspond to the
partition {0, 1/n, 2/n, . . . , 1}. In these partitions, every subinterval has the
same width, but in general, we might want to allow the subintervals to have
different widths. That way, if one particular part of the graph needs to be
subdivided into thinner rectangles, we can use thin rectangles in that one
part without requiring the rest of the rectangles to be as thin.

This next definition helps us describe the heights of our rectangles:

Definition 5.3. Let a, b ∈ R be given with a ≤ b, and suppose that P =
{x0, x1, . . . , xn} is a partition of [a, b]. We say that a real function s is a step
function with respect to the partition P if s is defined on [a, b] − P and, for
each i ∈ N from 1 to n, s is constant on the open subinterval (xi−1, xi). In
other words, there is some ai ∈ R such that for every x ∈ (xi−1, xi), we have
s(x) = ai.

In Example 5.1 with n subintervals, our underestimate and overestimate
each correspond to step functions with respect to {0, 1/n, 2/n, . . . , 1}. For
the underestimate, we use the step function sn : [0, 1] → R whose value on
the ith subinterval is ((i−1)/n)2 for each i from 1 to n. For the overestimate,
we use the step function tn : [0, 1] → R whose value on the ith subinterval is
(i/n)2 for each i. Thus, the area of the underestimate is the area under the
graph of sn, i.e. A(sn; [0, 1]), and the area of the overestimate is A(tn; [0, 1]).

Remark. In general, whenever a function is changed at a single point, the
region under the function’s graph either gains or loses a vertical line segment.
Line segments have zero width, so they have zero area. Applying this rea-
soning inductively, we see that if we change a function at FINITELY many
points, then the area does not change.

This is why our definition of step function does not require the function
to be defined at the partition points: the area under the graph is unaffected
by the values at the partition points, so those points have little relevance.
(This is also why partitions are required to be FINITE subsets of [a, b].)

In our definition of step function, we allow a step function to take neg-
ative values. When a step function is negative on an open subinterval, our
convention is to give the area of the corresponding rectangle a negative sign.
Note the following example:

Example 5.4:
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If s : [0, 10] → R is the step function defined by

∀x ∈ [0, 1] s(x) =











1 if x ∈ [0, 3)

−2 if x ∈ [3, 7)

3 if x ∈ [7, 10]

pictured in Figure 5.3, then s is a step function with respect to {0, 3, 7, 10},
with three subintervals, and the total area under the step function is

(1)(3 − 0) + (−2)(7 − 3) + (3)(10 − 7) = 4

+

-

+

Figure 5.3: A step function s on [0, 1] with positive and negative areas marked

This quantity we computed, which counts rectangles below the x-axis
as having negative area, could be called “signed area” of s, as opposed to
“unsigned area” of s which counts all rectangles as having positive area.
(The “unsigned area” is 1(3)+2(4)+3(3) = 20.) Note that the unsigned area
of s is just the signed area of |s|, the absolute value of s. Thus, in general,
we will focus on computing signed areas. �

Rather than use the term “signed area”, we instead use the following
special name:

Definition 5.5. Let a, b ∈ R be given with a ≤ b, and suppose that P =
{x0, x1, . . . , xn} is a partition of [a, b] and s is a step function with respect to
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P . The integral of s from a to b (with respect to P ), also called the integral
of s over [a, b] with respect to P , is

n
∑

i=1

ai(xi − xi−1) =

n
∑

i=1

ai · ∆xi

where ai is the value taken by s on the open subinterval (xi−1, xi), and ∆xi

is the width of the ith subinterval. The function s is called the integrand,
the endpoint a is called the lower limit of integration, and the endpoint b is
called the upper limit of integration.

For the time being, we will write the integral as
∫

P

s or

∫

P

s(x) dx

and we read this second notation as “the integral of s(x) dx from a to b (with
respect to P )”. The “dx” is a symbol we include to tell us that we are using
the variable x as an input variable to s. The variable x is a dummy variable,
and we can just as easily write

∫

P

s(t) dt or

∫

P

s(z) dz

or use any other variable in place of x, so long as that variable is not currently
being used somewhere else.

Remark. The symbol used to denote the integral is a stretched letter “S”,
standing for “summation”. The notation is intended to look similar to the
summation that is used to define the integral of a step function. For instance,
the dx symbol is analogous to the width ∆xi of the ith subinterval. Once we
define the integral more generally later in this chapter, and when we study
techniques of integration in Chapter 6, the dx symbol will be more useful.

With this notation, when s is the function defined in Example 5.4, we

showed that

∫

P

s(x) dx = 4 where P = {0, 3, 7, 10}. In Example 5.1, if we

let sn and tn refer to respectively the underestimating and overestimating
step functions, and we let Pn be the partition {0, 1/n, 2/n, . . . , 1}, then we
showed that

∫

Pn

sn(x) dx = Ln =
(n − 1)(n)(2n − 1)

6n3

PREPRINT: Not for resale. Do not distribute without author’s permission.



Chapter 5: Integrals 303

and
∫

Pn

tn(x) dx = Un =
(n)(n + 1)(2n + 1)

6n3

Remark. Note that the definition of the integral only uses the values ai that
the step function takes on open subintervals; the values s(xi) of the step
function at partition points do not appear in the definition. This makes
sense, since as we’ve remarked earlier, the values s(x0), s(x1), etc. through
s(xn) do not affect the area under the graph of s.

Example 5.6:

The floor function, defined in Theorem 2.37, is constant on any interval of
the form (z, z + 1) where z ∈ Z. Thus, for any a, b ∈ R with a ≤ b, the floor
function is a step function on [a, b].1 For example, let’s say that f is the floor
function restricted to [0, π]. Then f is a step function with respect to the
partition P = {0, 1, 2, 3, π}, and

∫

P

f =

∫

P

⌊x⌋ dx = (0)(1 − 0) + (1)(2 − 1) + (2)(3 − 2) + (3)(π − 3)

= 3π − 6

Similarly, suppose g : [0, π] → R is defined by g(x) = ⌊x + 0.5⌋ for any
x ∈ [0, π] (so g is a shifted version of the floor function, restricted to [0, π]).
g is also a step function, but not with respect to P . (We will also say that
g is not compatible with P .) Instead, g is a step function with respect to
Q = {0, 0.5, 1.5, 2.5, π}, and we have

∫

Q

g =

∫

Q

⌊x + 0.5⌋ dx

= (0)(0.5 − 0) + (1)(1.5 − 0.5) + (2)(2.5 − 1.5) + (3)(π − 2.5)

= 3π − 4.5

If we consider the sum f + g, then f + g is a step function, but it’s
not compatible with P or with Q. Instead, f + g rises by 1 every half
a unit, and we see that f + g is compatible with the partition P ∪ Q =

1Sometimes we extend our definitions to say that a function is a step function on R

when it is a step function on all closed bounded intervals.
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{0, 0.5, 1, 1.5, 2, 2.5, 3, π}. Since every subinterval of this partition has width
0.5 except the last one, which has width π − 3, we find that

∫

P ∪Q

(f + g) =

∫

P ∪Q

⌊x⌋ + ⌊x + 0.5⌋ dx

= (0 + 1 + 2 + 3 + 4 + 5)(0.5) + (6)(π − 3)

= 6π − 10.5

Note that 6π − 10.5 is the sum of 3π − 6 and 3π − 4.5, so we found that the
integral of the sum of our two step functions equals the sum of their integrals.
We’ll prove this property in general soon. �

How Much Does The Partition Matter?

As Example 5.6 indicates, it seems that the integral of a sum of step
functions should be the sum of the corresponding integrals. This is a very
plausible property for the integral to have, because we designed the integral to
measure area, and when we add two functions, the areas under the functions
should also be added. However, there is a cumbersome technical concern:
to make this property precise, and to prove it, our definition of the integral
requires that we specify partitions for each step function.

This raises the question: if a step function is compatible with multi-
ple partitions, then does the choice of partition affect the integral? After
all, the choice of partition corresponding to a step function is not unique.
For instance, in Example 5.4, the step function s is compatible with P =
{0, 0.3, 0.7, 1}, but it is also compatible with Q = {0, 0.2, 0.3, 0.5, 0.7, 0.9, 1}.
This is because each open subinterval of Q is contained in an open subin-
terval of P , and s is constant on each open subinterval of P . In fact, the
same reasoning shows that s is compatible with any partition that contains
{0, 0.3, 0.7, 1} as a subset.

This leads to the following definition:

Definition 5.7. Let a, b ∈ R with a ≤ b be given, and suppose P and P2

are partitions of [a, b]. We say that P2 refines P , or is a refinement of P ,
if P ⊆ P2. Sometimes we also say that P2 is finer than P , or P is coarser
than P2. (Think of P as chopping [a, b] into pieces, and then P2 chops up
the pieces of P even more.)
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If P2 is finer than P , then every subinterval of P2 is a subset of a subinter-
val of P . Therefore, if f is a step function which is compatible with P , then
f is also compatible with P2. In particular, if f and g are step functions,
where f is compatible with P and g is compatible with Q, then f + g is a
step function compatible with P ∪ Q because P ∪ Q refines both P and Q.
We call P ∪ Q the least common refinement of P and Q.

As our main lemma for analyzing how the choice of partition affects an
integral, we have the following property:

Lemma 5.8. Let a, b ∈ R with a ≤ b be given, and let s be a step function
with respect to some partition P of [a, b]. If c ∈ [a, b] − P , then

∫

P

s =

∫

P ∪{c}
s

In other words, the value of an integral does not change if we refine the
partition by adding one more point.

Strategy. Let’s say that P = {x0, x1, . . . , xn}, where a = x0 < x1 < · · · <
xn = b. Because c is in [a, b] but not in P , there must be some k from 1 to
n such that c ∈ (xk−1, xk), i.e. c belongs to the kth open subinterval of P .
Let’s say that s(x) = ak for all x ∈ (xk−1, xk).

If we compare the summations used in the definitions of our two integrals,
then they are the same for every subinterval of P except for the kth subinter-
val. In the integral with respect to P , the sum uses the term ak(xk − xk−1),
and in the integral with respect to P ∪ {c}, the sum uses ak(c − xk−1) and
ak(xk − c). (In other words, in the refinement, (xk−1, xk) is broken into the
two pieces (xk−1, c) and (c, xk), each of which creates a term in the sum.)
However, since

ak(c − xk−1) + ak(xk − c) = ak(xk − xk−1)

both integrals compute the same value.

Proof. Let a, b, s, P, c be given as described. The strategy described is a valid
proof of this lemma. However, for the readers who feel that the strategy is
too handwavy about specifying where the two summations differ, we provide
a more pedantic approach to the proof here.

Let’s write P in the form {x0, x1, . . . , xn} for some n ∈ N, where

a = x0 < x1 < · · · < xn−1 < xn = b
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Because c ∈ [a, b] − P , there exists a unique k ∈ {1, 2, . . . , n} such that
c ∈ (xk−1, xk). (This is because if you consider the set of all i from 1 to n
such that xi > c, then this set is finite and nonempty, so it has a minimum
element k.) We write P ∪ {c} as {y0, y1, . . . , yn+1} by defining yj for each j
from 1 to n + 1 as follows:

yj =











xj if j < k

c if j = k

xj−1 if j > k

Therefore, we have a = y0 < y1 < · · · < yn+1 = b, where yk = c.
For each i from 1 to n, let ai be the value that s takes on (xi−1, xi). For

each j from 1 to n + 1, let bj be the value that s takes on (yj−1, yj). When
j < k, we have bj = aj , and when j > k + 1, bj = aj−1. Also, we have
bk = bk+1 = ak because c is in (xk−1, xk). By the definition of the integral of
a step function, we have

∫

P ∪{c}
s(y) dy =

n+1
∑

j=0

bj(yj − yj−1)

=

k−1
∑

j=0

bj(yj − yj−1) + bk(yk − yk−1)

+bk+1(yk+1 − yk) +
n+1
∑

j=k+2

bj(yj − yj−1)

Now, we change the variable used in the summations to i instead of j (this is
purely for cosmetic reasons, but it helps us avoid getting the two partitions
confused), we replace the bj and yj values with the corresponding ai and xi

values (as we defined earlier), and we also shift the last summation down by
one. This gives us

k−1
∑

i=0

ai(xi − xi−1) + ak(c − xk−1)

+ak(xk − c) +

n
∑

i=k+1

ai(xi − xi−1)

=

n
∑

i=0

ai(xi − xi−1) =

∫

P

s(x) dx
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as desired. �

From this lemma, you can prove the following corollary as Exercise 5.2.7:

Corollary 5.9. Let a, b ∈ R with a ≤ b be given, and let P and P2 be
partitions of [a, b] such that P2 refines P . If s is a step function with respect
to P (so that it is also a step function with respect to P2), then

∫

P

s =

∫

P2

s

Remark. From this corollary, it follows that if s is a step function which is
compatible with two partitions P and Q of [a, b], then

∫

P

s =

∫

P ∪Q

s =

∫

Q

s

because P ∪ Q refines both P and Q. Therefore, the integral of a step
function s on [a, b] does NOT depend on which compatible partition of [a, b]
is used to evaluate the integral. Because of this, the limits of integration, a
and b, are usually written in the integral notation instead of the partition
itself, and we will write

∫ b

a

s or

∫ b

a

s(x) dx

instead of writing

∫

P

s as before.2

Properties of Step Function Integrals

Now that we have shown that the value of a step function integral doesn’t
depend on which compatible partition is used, we are able to prove some
useful results related to integrals of step functions. First, as Example 5.6
suggests, we’d like to prove that the integral of a sum of step functions
equals the sum of the integrals. In fact, we’ll prove the stronger property
that integration is a linear operation, just like the operations of limit and
derivative:

2In fact, most books on calculus don’t introduce any notation like

∫

P

, preferring instead

to make a short remark about how the partition “doesn’t matter”, but we wanted to give
this subtle point about partitions more careful attention.
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Theorem 5.10 (Linearity property). Let a, b, c, d ∈ R with a ≤ b be
given, and let s, t be step functions on [a, b]. Then

∫ b

a

(cs + dt) = c

∫ b

a

s + d

∫ b

a

t

Strategy. Normally, it is tricky to add two step functions because they may
have been defined with respect to different partitions. However, because of
the remark after Corollary 5.9, we may use one partition for both functions
(the common refinement). After that, the rest is straightforward calculation.

Proof. Let a, b, c, d, s, t be given as described. We may suppose that s and
t are both compatible with a partition P = {x0, x1, . . . , xn} of [a, b]. Let’s
say that for each i from 1 to n, s takes the constant value ai on the ith

subinterval of P , and t takes the constant value bi on the ith subinterval.
Therefore, cs + dt takes the constant value cai + dbi on the ith subinterval of
P , and we compute

∫ b

a

(cs + dt) =

n
∑

i=1

(cai + dbi)(xi − xi−1)

= c

n
∑

i=1

ai(xi − xi−1) + d

n
∑

i=1

bi(xi − xi−1)

= c

∫ b

a

s + d

∫ b

a

t

as desired. �

As another useful property of integrals, you can prove in Exercise 5.2.9
that a larger step function has more area underneath it:

Theorem 5.11 (Comparison property). Let a, b ∈ R be given satisfying
a ≤ b, and let s, t be step functions on [a, b]. If s(x) ≤ t(x) for all x ∈ [a, b],
then

∫ b

a

s ≤
∫ b

a

t

(We say that integrals preserve inequalities.) In fact, this is also true for
strict inequalities: if a < b and s(x) < t(x) for all x ∈ [a, b], then

∫ b

a

s <

∫ b

a

t
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Another useful property of the integral is motivated by Figure 5.4. If we
take an interval [a, b] and split it into two pieces at the point c, then this
splits the area into two pieces whose sum is the total area under [a, b]. More
formally, you can prove this property in Exercise 5.2.10:

a c b

Figure 5.4: Demonstration of

∫ b

a

s =

∫ c

a

s +

∫ b

c

s

Theorem 5.12 (Interval addition property). Let a, b, c ∈ R be given
satisfying a ≤ c ≤ b, and let s be a step function on [a, b]. Then

∫ b

a

s =

∫ c

a

s +

∫ b

c

s

Remark. One subtlety we have not addressed yet, but which is useful now,
is what happens when you integrate with the same upper and lower limit.

When you apply the definition of integral to compute

∫ a

a

s, you have only

one possible partition of [a, a] ([a, a] is the same thing as {a}), and that
partition has a single interval of width zero. Thus,

∫ a

a

s = 0

This result is also obtained by plugging in c = a into Theorem 5.12.

Furthermore, Theorem 5.12 suggests a way to define

∫ b

a

s when a > b,

i.e. when the ends are “in the wrong order”. If we ignore the restriction on
the ordering of a, b, and c in the theorem, and we replace b with a and c with
b, we obtain

0 =

∫ a

a

s =

∫ b

a

s +

∫ a

b

s
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Because of this, we DEFINE

∫ b

a

s to be −
∫ a

b

s. In essence, when we write

the endpoints in the other order, we flip the sign of the integral, as we’re
“measuring the area backwards.” Furthermore, with this definition, you can
prove as part of Exercise 5.2.11 that the formula

∫ b

a

s =

∫ c

a

s +

∫ b

c

s

holds for ALL choices of a, b, c ∈ R so long as s is a step function on
[min{a, b, c}, max{a, b, c}] (so that all three integrals are defined). In fact,
all of the integral properties in this section, except for the comparison prop-
erty, are valid when the ends are “in the wrong order”, as you can verify.

One last property we’ll present here deals with the area under a step
function reflected horizontally. In Figure 5.5, we see a step function s on [a, b]
as well as the graph of its horizontal reflection which takes each x ∈ [−b,−a]
to s(−x). It seems quite plausible that the two graphs have the same area
underneath, and you can prove this in Exercise 5.2.12:

-b -a 0 a b

Figure 5.5: A step function and its horizontal reflection

Theorem 5.13 (Horizontal reflection property). Let a, b ∈ R be given
with a ≤ b, and let s be a step function on [a, b]. If t : [−b,−a] → R is
defined by t(x) = s(−x) for all x ∈ [−b,−a], then t is a step function on
[−b,−a] and

∫ b

a

s =

∫ −a

−b

t i.e.

∫ b

a

s(x) dx =

∫ −a

−b

s(−x) dx

There are a few other properties of the integral of a step function which
you can prove in the exercises.
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5.2 Exercises

1. Using the same approach as Example 5.1, find the area under the graph
of y = x2 from 0 to b for any b > 0.

2. Using the same approach as Example 5.1, find the area under the graph
of y = x3 from 0 to b for any b > 0. You may use the following
identity without proof (although its proof is quite simple and is done
by induction): for any n ∈ N∗,

n
∑

i=1

i3 =

(

n(n + 1)

2

)2

3. In each part of this exercise, a formula defining a step function s is
given, and an interval [a, b] is given. For each, give a partition of [a, b]
with which s is compatible.

(a) s(x) = ⌊x + π⌋, [a, b] = [0, π]

(b) s(x) = ⌊x2⌋, [a, b] = [0, 2]

(c) s(x) = ⌊x2 + 2x⌋, [a, b] = [−3, 1]

(d) s(x) = ⌊x⌋ + ⌊3x⌋, [a, b] = [−1, 1]

4. For each of the functions in the previous exercise, compute its integral
over the specified interval [a, b].

5. Prove by induction that for all n ∈ N∗,

∫ n2

0

⌊√x⌋ dx =
n(n − 1)(4n + 1)

6

6. Prove that for all n ∈ N∗ and all x ∈ R,

⌊nx⌋ =

n−1
∑

i=0

⌊

x +
i

n

⌋

(Hint: Consider the fractional part of x, namely x − ⌊x⌋. By studying
this fractional part, determine which terms of the sum are one larger
than the other terms.)
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7. Using Lemma 5.8, prove Corollary 5.9. (Hint: Use induction on the
size of P2 − P .)

8. Use Corollary 5.9 to prove that if s and t are two step functions on

[a, b] which differ at only finitely many inputs, then

∫ b

a

s =

∫ b

a

t.

9. Prove Theorem 5.11.

10. Prove Theorem 5.12. (Hint: If s is compatible with a partition P of
[a, c] and with a partition Q of [c, b], then what is a partition of [a, b]
with which s is compatible?)

11. Recall that in the remark following Theorem 5.12, we defined the inte-
gral from a to b of a step function when a > b.

(a) Use Theorem 5.12 to prove that for any a, b, c ∈ R, if s is a step
function on [min{a, b, c}, max{a, b, c}], then

∫ b

a

s =

∫ c

a

s +

∫ b

c

s

(b) Give a counterexample to show that Theorem 5.11 does not hold
if a > b, i.e. find values a, b ∈ R with a > b, as well as step
functions s, t : [b, a] → R such that s(x) < t(x) for all x ∈ [b, a]

but

∫ b

a

s ≥
∫ b

a

t.

(c) Based on your counterexample from part (b), modify Theorem
5.11 so that it is true for any a, b ∈ R, and prove your modified
version.

12. Prove Theorem 5.13. (Hint: If s is compatible with a partition P of
[a, b], then what is a partition of [−b,−a] with which t is compatible?)

13. This theorem says that the area under a step function does not change
if you shift the function horizontally:

Theorem 5.14 (Shifting property). Let a, b, c ∈ R with a ≤ b be
given, and let s be a step function on [a, b]. If t : [a − c, b − c] → R
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is defined by t(x) = s(x + c) for all x ∈ [a − c, b − c], then t is a step
function on [a − c, b − c] and

∫ b

a

s =

∫ b−c

a−c

t i.e.

∫ b

a

s(x) dx =

∫ b−c

a−c

s(x + c) dx

Prove this theorem.

14. This theorem says that if you stretch a function horizontally by a factor
of k, the area grows by a factor of k:

Theorem 5.15 (Stretching property). Let a, b, k ∈ R be given with
a ≤ b and k > 0 be given, and let s be a step function on [a, b]. If
t : [ka, kb] → R is defined by t(x) = s(x/k) for all x ∈ [ka, kb], then t
is a step function on [ka, kb] and

∫ b

a

s =
1

k

∫ kb

ka

t i.e.

∫ b

a

s(x) dx =
1

k

∫ kb

ka

s
(x

k

)

dx

(a) Prove this theorem.

(b) State an analogous version of this theorem for k < 0, and prove
it. (Hint: Theorem 5.13 might be useful.)

15. Suppose that we defined the integral of a step function s on [a, b] by
instead using the formula

∫ b

a

s =

n
∑

i=1

a2
i (xi − xi−1)

You may take for granted that this formula gives the same value for
any partition {x0, x1, . . . , xn} of [a, b] with which s is compatible. Using
this altered definition, which theorems from Theorem 5.10 to Theorem
5.15 are true? Prove the true theorems, and provide counterexamples
for the false theorems.

16. Do the same as the previous exercise, except use the definition

∫ b

a

s =

n
∑

i=1

ai(x
3
i − x3

i−1)
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5.3 The General Definition of Integral

Now that we have introduced the integral of a step function, which tells us
how much area lies underneath the graph of a step function, we’d like to
make a definition that works for other real functions. Let’s suppose that we

have a real function f defined on [a, b], and we’d like to formally define

∫ b

a

f

to measure what A(f ; [a, b]) should be. (More precisely, we’d like to measure
the “signed area” if f takes negative values.) We’d like our definition to
exhibit the properties of area that we proved as theorems in the last section,
such as the comparison property, the linearity property, the interval addition
property, and the horizontal reflection property. This raises the question:
what do those properties tell us about how to define the integral?

Upper And Lower Integrals

sHxL

tHxL

fHxL

Figure 5.6: A function f between two step functions s (dotted) and t (dashed)

We’ll use the strategy outlined at the beginning of this chapter in Example
5.1. Consider the picture in Figure 5.6. In this picture, we have drawn
a real function f on [a, b], as well as two step functions s and t. Here,
s(x) ≤ f(x) ≤ t(x) for all x ∈ [a, b], which we describe by saying that s is a
lower step function for f on [a, b] and that t is an upper step function for f
on [a, b]. Therefore, the comparison property indicates that

∫ b

a

s ≤
∫ b

a

f ≤
∫ b

a

t

should be true. In other words, the step function s gives us an underestimate
of the area, and the step function t gives us an overestimate of the area.
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We can apply this reasoning with ANY lower and upper step functions.
More precisely, if we write S to denote the set of lower step functions for f
on [a, b], and we write T to denote the set of upper step functions for f on
[a, b], then for all s ∈ S and all t ∈ T ,

∫ b

a

s ≤
∫ b

a

f ≤
∫ b

a

t

Which choices of s and t give us the best possible estimates? We obtain the

best estimate when

∫ b

a

s is as large as possible and when

∫ b

a

t is as small

as possible. However, there might not exist a choice of s which yields a

maximum value of

∫ b

a

s, nor might there exist a choice of t which yields a

minimum value of

∫ b

a

t. In other words, if we write

L =

{
∫ b

a

s | s ∈ S

}

U =

{
∫ b

a

t | t ∈ T

}

so that L is the set of underestimates from lower step functions, and U is
the set of overestimates from upper step functions, then we’re not guaranteed
that max L or min U exist. After all, if f isn’t a step function, then we would
not expect a perfect estimate by a step function when measuring area, and
we’d also expect that every estimate by a step function can be made better
by using a finer partition.

Instead of using max L and min U for our best estimates, what’s our next
best option? We can try using least upper bound and greatest lower bound,
i.e. we can use sup L and inf U . One advantage of using suprema and infima
is that in Chapter 2, we introduced simple conditions for determining if a set
has a supremum or an infimum. Let’s see if L and U satisfy these conditions.

First, we need L and U to be nonempty sets. In other words, we need f
to have a lower step function and an upper step function, i.e. we want S and
T to be nonempty. This may sound trivial, but there is a very important
situation where L or U can be empty: when f is unbounded. Since a step
function can only take finitely many values in its range, any step function
must be a bounded function. Therefore, in order for f to have lower and
upper step functions, f must be bounded. Conversely, if f is bounded, say
there is some M > 0 so that |f(x)| ≤ M for all x ∈ [a, b], then the constant
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function with value M is an upper step function for f , and similarly the
constant function with value −M is a lower step function for f , showing that
L and U are nonempty.

Second, let’s suppose f is bounded, and let’s find out if L has an upper
bound and if U has a lower bound. We’ve shown above that

∫ b

a

s ≤
∫ b

a

t

for all s ∈ S and all t ∈ T . This means that every member of L is less than
or equal to every member of U . In particular, since we know that L and
U are nonempty, each member of L is a lower bound for U , and also each
member of U is an upper bound for L.

Therefore, sup L and inf U exist. In fact, the inequality above implies,
via Theorem 2.33, that sup L ≤ inf U . We summarize the discussion with
the following definitions:

Definition 5.16. Let a, b ∈ R satisfying a ≤ b be given, and let f be a real
function whose domain contains [a, b]. When f is bounded on [a, b], we define

L(f ; [a, b]) = sup

{
∫ b

a

s

∣

∣

∣

∣

s is a step function on [a, b],
∀x ∈ [a, b] s(x) ≤ f(x)

}

to be the lower integral of f on [a, b], and we define

U(f ; [a, b]) = inf

{
∫ b

a

t

∣

∣

∣

∣

t is a step function on [a, b],
∀x ∈ [a, b] t(x) ≥ f(x)

}

to be the upper integral of f on [a, b].

Thus, L(f ; [a, b]) is, in some sense, the best lower estimate of the area
that we can obtain from step functions, and U(f ; [a, b]) is the best upper
estimate of the area. Ideally, these two estimates are the same, which means
that the area under the curve HAS to be that common value. In that case,
we use their common value as the definition of our integral:

Definition 5.17. Let a, b ∈ R with a ≤ b be given, and let f be a real
function with dom(f) ⊇ [a, b], and suppose f is bounded on [a, b]. We say
that f is integrable on [a, b] if L(f ; [a, b]) = U(f ; [a, b]), in which case we
define the integral of f on [a, b] as

∫ b

a

f = L(f ; [a, b]) = U(f ; [a, b])
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We also write
∫ b

a

f(x) dx

to represent the integral of f on [a, b], much like we did for integrals of step
functions. If L(f ; [a, b]) 6= U(f ; [a, b]), we say that f is not integrable on [a, b].

(Note that if f is a step function, then f is both a lower and an upper
step function for itself, so this definition of integral yields the same result as
the previous definition for step functions.)

Remark. The integral which we have defined is often called the Riemann
integral. It requires that the function f be bounded on a closed bounded
interval and that its lower and upper integral be equal. There are more
general definitions of integration which allow us to integrate more functions,
such as Lebesgue integration, but those topics are more complicated and are
often covered in graduate courses. We will revisit this topic when we study
improper integration in Chapter 9.

Calculating An Integral By Definition

The definition of the integral is rather hard to use, because it involves
showing that a supremum of a set of integrals of step functions is equal to
an infimum of another set of integrals of step functions. To make our job
more manageable, we’d like a way to find these suprema and infima without
analyzing every single lower and upper step function. One approach is to
make a sequence of lower and upper step functions and take a limit, as the
following examples show:

Example 5.18:

Let’s return to the process we used at the beginning of this chapter in Exam-
ple 5.1. In that example, we were trying to find the area under the function
f : [0, 1] → R defined by f(x) = x2 for each x ∈ [0, 1]. To do this, for each
n ∈ N∗ we made a lower step function sn : [0, 1] → R and an upper step
function tn : [0, 1] → R by breaking the interval [0, 1] into n pieces of width
1/n and picking appropriate heights for the step functions. When we did
this, we found

∫ 1

0

sn =
(n − 1)n(2n − 1)

6n3
=

1

6

(

1 − 1

n

)(

2 − 1

n

)
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and
∫ 1

0

tn =
n(n + 1)(2n + 1)

6n3
=

1

6

(

1 +
1

n

)(

2 +
1

n

)

Therefore, since L(f ; [0, 1]) is, by definition, an upper bound on the integrals
of lower step functions, and U(f ; [0, 1]) is a lower bound on the integrals of
upper step functions, we have

1

6

(

1 − 1

n

)(

2 − 1

n

)

≤ L(f ; [0, 1]) ≤ U(f ; [0, 1]) ≤ 1

6

(

1 +
1

n

)(

2 +
1

n

)

Note that as n grows arbitrarily large, the outer parts of this inequality both
approach the limit of 1/3. Therefore, by the Squeeze Theorem, we must have

L(f ; [0, 1]) = U(f ; [0, 1]) = 1/3, which proves that

∫ 1

0

x2 dx = 1/3.

This illustrates that we don’t have to look at all lower or upper step
functions to find the values of L(f ; [0, 1]) and U(f ; [0, 1]); we just need to
look at enough step functions so as to “squeeze” the values of L(f ; [0, 1]) and
U(f ; [0, 1]) together. �

Example 5.19:

Suppose that b ∈ R with b > 0 is given, and let’s define f : [0, b] → R by
f(x) = x for each x ∈ [0, b]. Let’s use the definition of integral to find

∫ b

0

f =

∫ b

0

x dx

Since the region under f is a triangle with the base length and height equal
to b, we should expect that the answer is the area of that triangle, b2/2.

Just as in the previous example, for each n ∈ N∗ we’ll make a lower step
function sn and an upper step function tn which are compatible with the
partition of [0, b] broken into n equal-width pieces. The open subintervals of
this partition have the form ((i − 1)b/n, ib/n) where i is an integer from 1
to n. On this subinterval, the minimum value that f takes is (i− 1)b/n (i.e.
the value at the left endpoint) and the maximum value that f takes is ib/n
(i.e. the value at the right endpoint), so therefore for all x in this interval,
we define

sn(x) =
(i − 1)b

n
tn(x) =

ib

n
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It doesn’t matter what we assign for values of sn and tn at the partition
points, so long as sn stays a lower step function for f and tn stays an upper
step function for f .

Since each subinterval has width b/n, we use the definition of the integral
of a step function, as well as the formula for the sum of the first n positive
integers, to obtain

∫ 1

0

tn(x) dx =
n
∑

i=1

(

ib

n

)(

b

n

)

=
b2

n2

n
∑

i=1

i =
b2

n2
· n(n + 1)

2
=

b2

2
(1)

(

1 +
1

n

)

A similar computation yields

∫ 1

0

sn(x) dx =
b2

2

(

1 − 1

n

)

(1)

Therefore,

b2

2

(

1 − 1

n

)

≤ L(f ; [0, b]) ≤ U(f ; [0, b]) ≤ b2

2

(

1 +
1

n

)

As n grows arbitrarily large, L(f ; [0, b]) and U(f ; [0, b]) are squeezed to
equal b2/2, as expected. �

These examples suggest that there is a more “limit-like” definition of in-
tegral we can use to compute integrals. The following theorem provides such
a definition, which imitates the ǫ-δ style of the definition of limit:

Theorem 5.20. Let a, b, I ∈ R with a ≤ b be given, and let f be a real
function defined and bounded on [a, b]. Then f is integrable on [a, b] with
∫ b

a

f = I iff for every ǫ > 0, there exists a lower step function s and an

upper step function t for f on [a, b] such that

I − ǫ <

∫ b

a

s ≤
∫ b

a

t < I + ǫ

Strategy. Our goal is to prove is an “iff” statement, so we have to provide
two directions of proof. For the first direction, suppose that f is integrable.
In that case, we know that L(f ; [a, b]) = U(f ; [a, b]). Since L(f ; [a, b]) is the
least upper bound of the integrals of lower step functions, there exist lower
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step functions s whose integrals are arbitrarily close to L(f ; [a, b]). A similar
argument works for U(f ; [a, b]) to produce an upper step function t.

For the other direction, we get to assume that we can “squeeze” upper
and lower step function integrals between I − ǫ and I + ǫ for every ǫ. Since
L(f ; [a, b]) is no smaller than any lower step function integral, and U(f ; [a, b])
is no larger than any upper step function integral, these values are also
squeezed between I − ǫ and I + ǫ. We can just let ǫ approach 0 to show
L(f ; [a, b]) = U(f ; [a, b]).

Proof. Let a, b, I, f be given as described. For convenience, let’s say that L is
the set of integrals of lower step functions for f on [a, b] and that U is the set
of integrals of upper step functions for f on [a, b]. Thus, L(f ; [a, b]) = sup L
and U(f ; [a, b]) = inf U .

For the first direction of the proof, assume that

∫ b

a

f = I. Therefore, by

definition of the integral, we have L(f ; [a, b]) = U(f ; [a, b]) = I. Let ǫ > 0 be
given. By definition of L(f ; [a, b]), L(f ; [a, b]) − ǫ is smaller than sup L, so
there must exist some value in L greater than L(f ; [a, b]) − ǫ. In particular,
there is some lower step function s for f on [a, b] such that

L(f ; [a, b]) − ǫ <

∫ b

a

s ≤ L(f ; [a, b])

Similarly, since U(f ; [a, b]) + ǫ is greater than inf U , there exists a value in U
less than U(f ; [a, b]) + ǫ, so there is some upper step function t for f on [a, b]
such that

U(f ; [a, b]) ≤
∫ b

a

t < U(f ; [a, b]) + ǫ

Since L(f ; [a, b]) = U(f ; [a, b]) = I by assumption, we put this all together
and obtain

I − ǫ <

∫ b

a

s ≤ I ≤
∫ b

a

t < I + ǫ

as desired.
For the other direction of the proof, suppose that for each ǫ > 0, we can

find a lower step function s and an upper step function t satisfying

I − ǫ <

∫ b

a

s ≤
∫ b

a

t < I + ǫ
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By the definitions of L(f ; [a, b]) and U(f ; [a, b]), we also know that

∫ b

a

s ≤ L(f ; [a, b]) ≤ U(f ; [a, b]) ≤
∫ b

a

t

Putting this all together, we have

I − ǫ < L(f ; [a, b]) ≤ U(f ; [a, b]) < I + ǫ

Furthermore, L(f ; [a, b]) and U(f ; [a, b]) do not depend on ǫ (whereas s
and t do). Thus, we may take the limit as ǫ → 0 of all sides of the inequality
to obtain

I ≤ L(f ; [a, b]) ≤ U(f ; [a, b]) ≤ I

(note that when taking limits, inequalities may not be strict anymore). Thus,
L(f ; [a, b]) = U(f ; [a, b]) = I, proving that f is integrable with integral I. �

A small variant on this theorem, which resembles the tactics we’ve used
so far, can be proven as Exercise 5.4.1:

Corollary 5.21. Let a, b, I ∈ R with a ≤ b be given, and let f be a real
function defined and bounded on [a, b]. Then f is integrable on [a, b] with
∫ b

a

f = I iff there exists a sequence s1, s2, . . . of lower step functions for f

on [a, b] and a sequence t1, t2, . . . of upper step functions for f on [a, b] such
that

lim
n→∞

∫ b

a

sn = lim
n→∞

∫ b

a

tn = I

In other words, when n is a sufficiently large integer, the integrals of sn and
tn are as close to I as desired.

One last remark is appropriate in this section about computing integrals
by definition. When trying to write a proof, it can be useful to know whether
a function is integrable, without knowing what the value of the integral is.
The basic idea is that for an integrable function, the lower and upper step
functions can be chosen so that their integrals are arbitrarily close to each
other. The following “limit-like” theorem makes this more formal, and you
can prove it in Exercise 5.4.2:
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Theorem 5.22. Let a, b ∈ R with a ≤ b be given, and let f be a real function
defined and bounded on [a, b]. Then f is integrable on [a, b] iff for all ǫ > 0,
there exists a lower step function s for f on [a, b] and an upper step function
t for f on [a, b] such that

∫ b

a

(t − s) =

∫ b

a

t −
∫ b

a

s < ǫ

(Note that since s(x) ≤ t(x) on [a, b], the integral of (t− s) must be nonneg-
ative.)

To illustrate what Theorem 5.22 is saying, we take the picture from Figure
5.6 and shade the region between the upper and lower step functions, as you
can see in Figure 5.7. The shaded region, whose area is the integral of
t − s, represents how “far apart” s and t are in measuring the area of f .
Thus, Theorem 5.22 says that this “error area” between the upper and lower
estimates can be made arbitrarily small for an integrable function.

Figure 5.7:

∫ b

a

(t − s) shaded

Revisiting Properties Of The Integral

Since the general definition of the integral is, in essence, a limit of integrals
of step functions, it should be no surprise that the properties of integrals that
we proved for step functions still hold. This also makes sense, because the
properties we proved for step function integrals are properties that we expect
the area under a graph to have. You can prove most of these theorems in the
exercises, though we will present the proof of the interval addition property to
demonstrate how we put our most recent theorems about computing integrals
to good use.
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Theorem 5.23 (Linearity). Let a, b, c, d ∈ R with a ≤ b be given, and let
f, g be two real functions which are both integrable on [a, b]. Then cf + dg is
also integrable on [a, b], with

∫ b

a

(cf + dg) = c

∫ b

a

f + d

∫ b

a

g

Remark. The linearity property shows that the sum or difference of integrable
functions on an interval [a, b] produces an integrable function on [a, b]. It is
also true that the product of two integrable functions is integrable, but it is
NOT the case in general that

∫ b

a

(fg) =

(
∫ b

a

f

)(
∫ b

a

g

)

(For example, when a = 0, b = 1, and f(x) = g(x) = x for all x ∈ [0, 1], then
∫ 1

0

x2 dx = 1/3 and

(
∫ 1

0

x dx

)2

= 1/4.) It is also true that if an integrable

function has a positive lower bound for its range, then the reciprocal of the
function is also integrable. You can prove these results in the exercises in
Section 5.8.

Theorem 5.24 (Comparison). Let a, b ∈ R with a ≤ b be given, and let
f, g be two real functions which are both integrable on [a, b]. If f(x) ≤ g(x)
for all x ∈ [a, b], then

∫ b

a

f ≤
∫ b

a

g

Remark. Suppose we consider a “strict-inequality version” of the comparison
property, where we assume that f(x) < g(x) for all x ∈ [a, b] (where a < b)

and conclude that

∫ b

a

f <

∫ b

a

g. This is much harder to prove than for

step functions, because inequalities that are strict for lower and upper step
functions might no longer remain strict when limits are taken. In general,
the process of taking limits can destroy strict inequalities: for instance, for
every n ∈ N∗, we know that −1/n is strictly smaller than 1/n, but as n grows
arbitrarily large, −1/n and 1/n both approach 0.

In the exercises, you will be able to prove that this strict-inequality version
is true when g − f has a point of continuity in [a, b]. It turns out to be true
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that any integrable function must have a point of continuity, but the author is
not aware of any short proof of this which uses the material we’ve covered so
far. In many applications, when we want to make use of the strict-inequality
version, our integrands f and g will be continuous, so we will not have to
prove the strict-inequality version in complete generality.

Theorem 5.25 (Interval Addition). Let a, b, c ∈ R be given with a ≤ c ≤
b, and let f be a real function. If f is integrable on [a, c] and also integrable
on [c, b], then f is integrable on [a, b], and

∫ b

a

f =

∫ c

a

f +

∫ b

c

f

Remark. As with the integral of step functions, Theorem 5.25 motivates the
following definitions for “out-of-order” limits of integration when f is inte-
grable on [min{a, b}, max{a, b}]:

∫ a

a

f = 0

∫ b

a

f = −
∫ a

b

f when a > b

Also, all the properties in this section, except for the comparison property,
are still true if we drop the hypotheses that say the limits of integration have
to be in “the correct order”. This is proven in the exact same way it was
proven for integrals of step functions.

Strategy. Since we’d like to prove that f is integrable on [a, b], and further-
more we know which value the integral should equal, Theorem 5.20 works
quite well. Let ǫ > 0 be given. We’d like to make a lower step function s
and an upper step function t whose integrals over [a, b] are less than ǫ away

from

∫ c

a

f +

∫ b

c

f .

Since f is integrable on [a, c], we can use Theorem 5.20 to find lower and
upper step functions for f on [a, c], say s1 and t1, whose integrals are as

close to

∫ c

a

f as we want. We can do the same thing with f on [c, b] to get

another lower and upper step function, say s2 and t2. Thus, in some sense,
we’ve found step functions which approximate f quite well on [a, c], as well
as some other step functions which approximate f well on [c, b].

How do we make step functions which approximate f well on [a, b]? We
stick our other functions together! More formally, we can make s(x) = s1(x)

PREPRINT: Not for resale. Do not distribute without author’s permission.



Chapter 5: Integrals 325

when x < c and s(x) = s2(x) when x > c, so that s is a lower step function for
f on [a, b]. (It doesn’t matter what we pick for the value of s(c).) Similarly,
we make an upper step function t.

Since s is built out of s1 and s2, it makes sense to use the interval addition

property for integrals of step functions to analyze

∫ b

a

s to see how close it

is to

∫ c

a

f +

∫ b

c

f . After that, we have some simple calculations using the

Triangle Inequality. The same steps work for the upper step function as well.

Proof. Let a, b, c, f be given as described. Because f is integrable on [a, c]
and on [c, b], f is bounded on [a, c] and [c, b], so f is also bounded on [a, b].
Therefore, if we let

I =

∫ c

a

f +

∫ b

c

f

we may use Theorem 5.20 to prove that f is integrable on [a, b] with

∫ b

a

f = I.

Hence, let ǫ > 0 be given; we wish to find a lower step functions s for f on
[a, b] and an upper step function t for f on [a, b] so that

I − ǫ <

∫ b

a

s ≤
∫ b

a

t < I + ǫ

First, because f is integrable on [a, c], by Theorem 5.20, we may choose
a lower step function s1 for f on [a, c] and an upper step function t1 for f on
[a, c] such that

∫ c

a

f − ǫ

2
<

∫ c

a

s1 ≤
∫ c

a

t1 <

∫ c

a

f +
ǫ

2

Similarly, we may choose a lower step function s2 for f on [c, b] and an upper
step function t2 for f on [c, b] such that

∫ b

c

f − ǫ

2
<

∫ b

c

s2 ≤
∫ b

c

t2 <

∫ b

c

f +
ǫ

2

Now, we define functions s, t : [a, b] → R for all x ∈ [a, b] as follows:

s(x) =











s1(x) if x ∈ [a, c)

f(c) if x = c

s2(x) if x ∈ (c, b]

t(x) =











t1(x) if x ∈ [a, c)

f(c) if x = c

t2(x) if x ∈ (c, b]
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You may check that s is a lower step function for f on [a, b] and t is an upper
step function for f on [a, b].

By adding our inequalities together concerning s1, s2, t1, and t2, we get

∫ c

a

f +

∫ b

c

f −
( ǫ

2
+

ǫ

2

)

<

∫ c

a

s1 +

∫ b

c

s2

≤
∫ c

a

t1 +

∫ b

c

t2 <

∫ c

a

f +

∫ b

c

f +
( ǫ

2
+

ǫ

2

)

Since s(x) = s1(x) for all x ∈ (a, c), we have

∫ c

a

s =

∫ c

a

s1. Similar state-

ments hold for the interval (c, b) and for the upper step functions. Thus, by
the interval addition property for integrals of step functions, and our choice
of I, we see that

I − ǫ <

∫ b

a

s ≤
∫ b

a

t < I + ǫ

as desired. �

Theorem 5.26 (Horizontal reflection). Let a, b ∈ R with a ≤ b be given,
and let f be a real function integrable on [a, b]. If we define g : [−b,−a] → R

by g(x) = f(−x) for all x ∈ [−b,−a], then g is integrable on [−b,−a], and
we have

∫ b

a

f =

∫ −a

−b

g i.e.

∫ b

a

f(x) dx =

∫ −a

−b

f(−x) dx

5.4 Exercises

1. Prove Corollary 5.21. (Hint: For one direction of the proof, to find sn

and tn, apply Theorem 5.20 with a choice of ǫ depending on n.)

2. Prove Theorem 5.22. (Hint: It will help to show that for any lower
step function s and upper step function t, we have 0 ≤ U(f ; [a, b]) −
L(f ; [a, b]) ≤

∫ b

a

t −
∫ b

a

s.)

3. This theorem is sometimes helpful when we want to cut an interval up
into pieces:
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Theorem 5.27 (Subinterval property). Let a, b, c, d ∈ R be given
such that a ≤ c ≤ d ≤ b. Thus, [c, d] ⊆ [a, b]. If f is a real function
which is integrable on [a, b], then f is also integrable on [c, d].

Use Theorem 5.22 to prove this theorem. (Hint: Suppose that the step
functions s and t approximate f well on [a, b]. How would you make
step functions that approximate f well on [c, d]? You’ll also want to
use the interval addition and comparison properties for step function
integrals.)

4. Consider the function f : [0, 1] → R defined as follows for any x ∈ [0, 1]:

f(x) =











1 if 1/n < x ≤ 1/(n − 1), where n ∈ N∗ and n is even

0 if 1/n < x ≤ 1/(n − 1), where n ∈ N∗ and n is odd

0 if x = 0

Thus, f is almost like a step function, but instead of being constant
on finitely many subintervals, f is constant on each of the intervals
(1/2, 1], (1/3, 1/2], and so on. In some sense, f is a “step function with
an infinite partition”, and f(x) oscillates rapidly between 0 and 1 as
x approaches 0. A rough graph of f , with some parts left out and
replaced with ellipses, is in Figure 5.8.

0
0

1

1
1

2

1

3

1

4

1

5

...

...

Figure 5.8: A partial picture of f from Exercise 5.4.4

Prove, using Theorem 5.22, that f is integrable on [0, 1]. (The value
of its integral ends up being rather interesting! However, that value
doesn’t make the proof easier.)
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5. Prove the linearity property, Theorem 5.23, by proving these three
special cases:

(a) First, prove the special case where c = d = 1, so that you have to
show

∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g

(b) Next, prove the special case where d = 0 and c ≥ 0, so that you
have to show

∫ b

a

(cf) = c

∫ b

a

f

(c) Last, prove the special case where d = 0 and c < 0. The linearity
property follows from applying these three cases.

6. Prove the comparison property, Theorem 5.24. (Hint: You might find
Exercise 2.7.8 useful.)

7. Prove the horizontal reflection property, Theorem 5.26.

8. Let b ∈ R be given with b ≥ 0, and let f be a real function which
is integrable on [−b, b]. Using the horizontal reflection and interval
addition properties, prove the following:

(a) If f is an odd function, meaning that f(−x) = −f(x) for all

x ∈ dom(f), then

∫ b

−b

f = 0.

(b) If f is an even function, meaning that f(−x) = f(x) for all x ∈
dom(f), then

∫ b

−b

f = 2

∫ b

0

f .

Also, explain why these results are plausible geometrically.

9. Prove that if a, b ∈ R are given with a ≤ b, and f is a real function
such that f and |f | (i.e. the absolute-value function composed with f)
are both integrable on [a, b], then

∣

∣

∣

∣

∫ b

a

f(x) dx

∣

∣

∣

∣

≤
∫ b

a

|f(x)| dx

Note that when f is a step function, this result is equivalent to the
Triangle Inequality, so this result can be considered more general than
the Triangle Inequality. (Hint: You might want to use Lemma 3.2.)
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Note: In Exercise 5.6.5, you’ll see that the integrability of f implies
the integrability of |f |.

10. For any a, b ∈ R, use the result of Example 5.19 to prove that

∫ b

a

x dx =
b2

2
− a2

2

Also, explain why this is plausible geometrically. (Hint: First handle
the special case when a = 0 and b < 0 using the horizontal reflection
property.)

11. In Theorem 5.14, the shifting property for integrals of step functions,
we showed that shifting a step function horizontally does not change
the area underneath it.

(a) Prove the shifting property for arbitrary integrable functions:

Theorem 5.28 (Shifting). Let a, b, c ∈ R with a ≤ b be given,
and suppose that f is a real function which is integrable on [a, b].
If we define g : [a + c, b + c] → R by g(x) = f(x − c) for all
x ∈ [a + c, b + c], then g is integrable on [a + c, b + c], and

∫ b

a

f =

∫ b+c

a+c

g i.e.

∫ b

a

f(x) dx =

∫ b+c

a+c

f(x − c) dx

(b) Let’s say that f : R → R is given and p > 0 is given such that f
is periodic with period p, meaning that for all x ∈ R, f(x + p) =
f(x). Also assume that f is integrable on [0, p]. Using the shifting
property and the subinterval property (from Theorem 5.27), prove
that for any a ∈ R, f is integrable on [a, a + p] and

∫ a+p

a

f =

∫ p

0

f

Thus, when a function is periodic, you obtain the same integral
when you integrate over any periodic interval.

12. In Theorem 5.15, the stretching property, we showed that stretching a
step function by a factor of k horizontally makes the area multiply by
a factor of k.
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(a) Prove the stretching property for arbitrary integrable functions:

Theorem 5.29 (Stretching). Let a, b, k ∈ R be given with a ≤ b
and k > 0, and suppose that f is a real function integrable on [a, b].
If we define g : [ka, kb] → R by g(x) = f(x/k) for all x ∈ [ka, kb],
then g is integrable on [ka, kb] and
∫ b

a

f =
1

k

∫ kb

ka

g i.e.

∫ b

a

f(x) dx =
1

k

∫ kb

ka

f
(x

k

)

dx

(b) State a version of the stretching property for k < 0, and prove it.

(c) Use properties of the integral, including the stretching property,

along with the result

∫ 1

0

x2 dx =
1

3
from Example 5.18, and prove

that for all a, b ∈ R,
∫ b

a

x2 dx =
b3

3
− a3

3

(d) Let r > 0 be given. Assuming that all functions involved in this
problem are integrable, prove that

∫ r

−r

√
r2 − x2 dx = r2

∫ 1

−1

√
1 − x2 dx

Also answer the following question: in terms of areas under func-
tions, what is this result saying geometrically?

13. This exercise will outline a proof of a strict-inequality version of the
comparison property for continuous functions. Let a, b ∈ R with a < b
be given.

(a) Suppose that h is a real function which is integrable on [a, b]. Also
assume that h(x) > 0 for all x ∈ [a, b]. If there exists some c ∈
[a, b] such that h is continuous at c, then

∫ b

a

h > 0. (Hint: First,

show that if x is close enough to c, say |x− c| < δ for some δ > 0,
then h(x) ≥ h(c)/2. Consider integrating h on [c−δ, c+δ] ∩ [a, b].)

(b) Now, suppose that f and g are real functions which are integrable
on [a, b]. If f and g are continuous on [a, b] and f(x) < g(x) for all

x ∈ [a, b], then use the previous part to prove that

∫ b

a

f <

∫ b

a

g.
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5.5 Some Unusual Functions III

Let’s return to some of the examples we have seen in Some Unusual Functions
and Some Unusual Functions II, but now we’d like to discover the intervals
over which these functions are integrable. We continue to study these exam-
ples because they present good exercises in using the formal definition of the
integral, as well as keeping us open-minded about the kinds of functions we
can study. We’ll also end this section with a very useful theorem about inte-
grating monotone functions, which will allow us to compute some integrals
more easily.

Characteristic Functions

Recall that if A ⊆ R, then the function χA, the characteristic function of
A, gives the value 1 on inputs that belong to A and gives 0 on inputs that
do not belong to A. Some characteristic functions are quite simple, such as
χ[0,1], which is a step function on any interval [a, b]. In fact, step functions
are nothing more than linear combinations of characteristic functions of in-
tervals: if s : [a, b] → R is a step function compatible with the partition
P = {x0, x1, . . . , xn} of [a, b], with the property that for each i from 1 to n, s
takes the value ai on the ith open subinterval of P , then you can check that

s =

n
∑

i=1

aiχ(xi−1,xi) +

n
∑

i=0

s(xi)χ[xi,xi]

(the second part of the sum handles the values at partition points).
These are not the only types of characteristic functions which are inte-

grable on an interval [a, b]. For example, in Exercise 5.4.4, you proved that
the characteristic function

χ(1/2,1]∪ (1/4,1/3] ∪ (1/6,1/5]∪ ···

is integrable on [0, 1]. Intuitively, although this characteristic function is not
a step function, it is very close to being a step function. However, some
characteristic functions bounce between 0 and 1 so wildly that we cannot
approximate them well by step functions:

Theorem 5.30. The characteristic function of the rationals, χQ, is not in-
tegrable on [a, b] for any a, b ∈ R with a < b.
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Strategy. To show that χQ is not integrable on [a, b], we need to show that
L(χQ, [a, b]) 6= U(χQ, [a, b]). This means that the lower step functions for χQ

cannot produce integrals arbitrarily close to the integrals for the upper step
functions for χQ.

Suppose that s is a lower step function for χQ on [a, b], and that t is an
upper step function for χQ on [a, b]. How large can the values of s be, and
how small can the values of t be? In any subinterval, there are rational points
and there are also irrational points, because both Q and R − Q are dense.
Thus, χQ takes each of the values 0 and 1 in that subinterval. This means
that the lower step function must take values no larger than 0, and the upper
step function must take values no smaller than 1. This tells us that

∫ b

a

s ≤
∫ b

a

0 = 0 and

∫ b

a

t ≥
∫ b

a

1 = b − a

Proof. Let a, b be given as described. Let s be an arbitrary lower step func-
tion for χQ on [a, b], and let t be an arbitrary upper step function for χQ

on [a, b]. Suppose that s and t are both compatible with the partition
{x0, x1, . . . , xn} of [a, b].

For any i from 1 to n, let’s say that s takes the value ai on (xi−1, xi), and
t takes the value bi on (xi−1, xi). This subinterval contains both rational and
irrational points. Therefore, on (xi−1, xi), χQ takes the values 0 and 1. Thus,
we must have ai ≤ 0 and bi ≥ 1, meaning that

∫ b

a

s =
n
∑

i=1

ai(xi − xi−1) ≤
n
∑

i=1

0(xi − xi−1) = 0

and
∫ b

a

t =

n
∑

i=1

bi(xi − xi−1) ≥
n
∑

i=1

1(xi − xi−1) = b − a

Since this is true for all choices of s and t, this means that L(χQ; [a, b]) ≤ 0
and U(χQ; [a, b]) ≥ b − a, so we must have L(χQ; [a, b]) 6= U(χQ; [a, b]). (In
fact, you can easily show that the lower integral is 0, and the upper integral
is b − a, but we do not need those specific values.) �

This theorem gives us our first major example of a non-integrable func-
tion. Note that χQ is discontinuous everywhere, so what happens if we mul-
tiply χQ by a continuous function, which gives the product some continuity
points? We’ll present an example here, and you can handle this question
more generally in Exercise 5.6.3.
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Example 5.31:

Let’s suppose that f : [0, 1] → R is defined by f(x) = xχQ(x) for all x ∈ [0, 1].
We have seen in Chapter 3 that f is continuous at 0 but not continuous
anywhere else. Let’s address the question of whether f is integrable on [0, 1].

We’d like to use the strategy of the proof of Theorem 5.30, but we need to
modify the argument because f is not constant at rational inputs. Intuitively,
since f jumps between the values 0 and x, we’d like to say that lower and
upper step functions have to respectively take values below 0 and above x.
Let’s show this more formally. Suppose we have a lower step function s and
an upper step function t, compatible with the partition {x0, x1, . . . , xn} of
[0, 1], and let’s look at the ith subinterval (xi−1, xi), where i is from 1 to n.

On this subinterval, the range of f consists of 0 and the rational numbers
between xi−1 and xi. Thus, 0 is the infimum of the range on this interval,
and xi is the supremum of the range on this interval. Thus, s must take a
value not exceeding 0, and t must take a value at least as large as xi. Since
xi ≥ x for all x ∈ (xi−1, xi), this shows that at any x ∈ [0, 1] which is not a
partition point, t(x) ≥ x and s(x) ≤ 0. Thus,

∫ 1

0

s ≤ 0 and

∫ 1

0

t ≥
∫ 1

0

x dx =
1

2

This shows that L(f ; [0, 1]) ≤ 0 and U(f ; [0, 1]) ≥ 1/2, so f is not integrable
on [0, 1]. �

The Ruler Function

Although the ruler function takes different values at rational and irra-
tional inputs, the ruler function is continuous at all irrational numbers. In
fact, at every a ∈ R, we found that r(x) → 0 as x → a. The proof of this that
we gave uses the fact that no matter which ǫ > 0 is specified, only finitely
many inputs near a cause the ruler function to attain a value larger than ǫ.
This same tactic leads to the following result:

Theorem 5.32. For all a, b ∈ R with a < b, the ruler function r is integrable
on [a, b], and

∫ b

a

r = 0
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Strategy. Theorem 5.20 is a good tool to use: for each ǫ > 0, we need to
find a lower step function s for r and an upper step function t for r whose
integrals on [a, b] are less than ǫ away from 0. For the lower step function,
this is easy: the function which is constantly zero suffices. However, how do
we pick an upper step function whose integral is less than ǫ?

The simplest idea is to pick t to be nearly a constant function. If t has
the value ǫ/(b − a) at all points except for finitely many partition points,
then its integral over [a, b] will have the value ǫ. This raises the question:
which values of x in [a, b] satisfy r(x) ≥ ǫ/(b − a)? These values must be
rational and have the lowest-terms form p/q where 1/q ≥ ǫ/(b − a), so that
q ≤ (b− a)/ǫ. This means that only finitely many values of x in [a, b] satisfy
r(x) ≥ ǫ/(b − a), and the value of an integral doesn’t change if you alter
finitely many values of a function.

Proof. Let a, b be given as described. Since for all x ∈ [a, b], 0 ≤ r(x) ≤ 1,
r is bounded on [a, b]. We will use Theorem 5.20 with the value I = 0, so it
suffices to let ǫ > 0 be given and find a lower step function s for r on [a, b]
and an upper step function t for r on [a, b] such that

−ǫ <

∫ b

a

s ≤
∫ b

a

t < ǫ

First, define s to be constantly zero on [a, b], so that clearly s is a lower
step function for r and has integral zero on [a, b]. To define t, let P =
{

x ∈ [a, b] | r(x) ≥ ǫ
2(b−a)

}

∪ {a, b}. Clearly P only contains a, b, and some

rational numbers. If P contains a rational number which has the form p/q in
lowest terms, then we must have r(p/q) = 1/q ≥ ǫ/(2(b − a)). Only finitely
many positive integers q have that property, and for each such q, only finitely
many integers p have the property that p/q ∈ [a, b]. (In fact, there are at
most q(b−a) choices for p.) Thus, P is a finite set and is a partition of [a, b].

If we define t to have the constant value ǫ/(2(b − a)) on the open subin-
tervals of P , and define t(x) = 1 for all x ∈ P , then t is, by definition of P ,
an upper step function for r on [a, b]. Furthermore,

∫ b

a

t =

∫ b

a

ǫ

2(b − a)
dx =

(

ǫ

2(b − a)

)

(b − a) =
ǫ

2
< ǫ

which finishes the proof. �
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Note that in this proof, in order to make the integral of t− s on [a, b] less
than ǫ, we chose s and t so that t(x) − s(x) is less than ǫ/(b − a) at every
x ∈ [a, b]. This is a common trick for proofs involving integration.

The Staircase Function

The staircase function s is an interesting example to consider for several
reasons. First, like the ruler function, the staircase function is continuous at
each irrational number and discontinuous at each rational number. Second,
the staircase function is strictly increasing. Third, the staircase function is a
limit of approximations: recall that for each x ∈ R we defined

s(x) = sup
n∈N∗

gn(x) = lim
n→∞

gn(x)

where the nth approximation gn(x) is

gn(x) =
n
∑

i=1

(

1

2

)i

H(x − ri)

(H is the Heaviside function χ[0,∞), and ri is the ith rational number in our
enumeration).

Note that for each n ∈ N and for any closed and bounded interval [a, b],
gn is a step function, because H is a step function and thus gn is a linear
combination of step functions. Also, s(x) ≥ gn(x) for all x ∈ [a, b], so each
gn is a lower step function for s on [a, b]. What would be a corresponding
sequence of upper step functions for s on [a, b]? One possibility is to use the
constant function with value 1 as an upper step function, but that’s a poor
choice because it doesn’t become arbitrarily close to the values of s. Instead,
to get a better choice, let’s analyze how well gn approximates s.

To do this, let’s ask: how large is s(x) − gn(x)? Note that s(x) − gn(x)
is the limit as m → ∞ of gm(x) − gn(x). When m ∈ N∗ and m ≥ n, we
obtain the following by canceling terms in a summation and noting that the
function H is bounded above by 1:

gm(x) − gn(x) =
m
∑

i=1

(

1

2

)i

H(x − ri) −
n
∑

i=1

(

1

2

)i

H(x − ri)

=

m
∑

i=n+1

(

1

2

)i

H(x − ri) ≤
m
∑

i=n+1

(

1

2

)i
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To compute this sum, we pull out n + 1 factors of 1/2 from each term in the
sum, and then we use Exercise 1.9.2 to find

(

1

2

)n+1 m
∑

i=n+1

(

1

2

)i−n−1

=

(

1

2

)n+1 n−m−1
∑

i=0

(

1

2

)i

=

(

1

2

)n+1 1 −
(

1
2

)n−m

1 − 1
2

<

(

1

2

)n+1
1

1 − 1
2

=

(

1

2

)n

Thus, since this inequality is true for all m ≥ n, in the limit as m → ∞,
we have s(x) − gn(x) ≤ (1/2)n. Note that this inequality depends only on
n and not on x. We describe this situation by saying that the gn functions
approach s uniformly ; we’ll study this situation more in Chapter 10.

This inequality helps us, because we can express it in the equivalent form
gn(x) + (1/2)n ≥ s(x). In other words, if we define tn(x) = gn(x) + (1/2)n

for each x ∈ R and n ∈ N∗, then tn is an upper step function for s on [a, b].
Furthermore, the difference between our lower and upper step functions,
tn − gn, approaches 0 as n grows arbitrarily large.

We are now ready to prove that s is integrable on [a, b] by using Theorem
5.22. Let ǫ > 0 be given. We’ll use the tactic that we used when analyzing
the ruler function: we’ll look for upper and lower step functions whose values
differ by less than ǫ/(b−a). Thus, pick n ∈ N∗ large enough so that (1/2)n <
ǫ/(b−a), and we’ll use the lower step function gn and the upper step function
tn. Therefore, we have

∫ b

a

(tn − gn) =

∫ b

a

(

1

2

)n

dx <

∫ b

a

ǫ

b − a
dx = ǫ

as desired. As a byproduct of this proof, we also find that the integral

∫ b

a

s

is the limit of

∫ b

a

gn, because for all n ∈ N∗,

0 ≤
∫ b

a

(s − gn) ≤
∫ b

a

(tn − gn) = 2−n(b − a)

which approaches 0 as n → ∞. (Unfortunately, this doesn’t give us an easy-
to-compute formula for the value of the integral, but it does give us a way
to find good approximations to the value of the integral.)
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A similar process can be used whenever a function is a uniform limit of
step functions, as you will be asked to show in Exercise 5.6.6.

Integrability Of Monotone Functions

We have another approach available for showing that the staircase func-
tions is integrable on any interval. Unlike the other examples we have ana-
lyzed in this section, the staircase function is increasing. Increasing functions
are rather easy to approximate with step functions, because if you use the
partition with ith open subinterval (xi−1, xi), then you know that the func-
tion’s value at xi−1 will be a lower bound, and the function’s value at xi will
be an upper bound. In other words, we know that the left endpoint of the
subinterval always can be used to make a lower step function, and the right
endpoint can be used to make an upper step function.

We can use this idea to prove the following theorem:

Theorem 5.33. Let a, b ∈ R be given with a ≤ b, and let f be a real function
which is defined on [a, b]. If f is monotone on [a, b] (so therefore it is bounded
by the values f(a) and f(b)), then f is integrable on [a, b].

Strategy. Let’s consider the case when f is increasing, because in the case
when f is decreasing, −f is increasing. We’d like to use Theorem 5.22 by
showing that for any ǫ > 0, we can find an upper step function t and a lower
step function s for f on [a, b] whose integrals on [a, b] are less than ǫ apart.
To do this, we’ll use the approach we used when calculating the integrals of
x and x2: using equal-width partitions and left endpoints or right endpoints.

Thus, suppose n ∈ N∗, and we make the partition consisting of n equal-
width subintervals, so each subinterval has width (b− a)/n. Let’s say the ith

subinterval is [xi−1, xi] for each i from 1 to n. For any x ∈ [xi−1, xi], since f
is increasing, we have f(xi−1) ≤ f(x) ≤ f(xi). This means that if we make t
have the value f(xi) and s have the value f(xi−1) on (xi−1, xi), then t is an
upper step function and s is a lower step function.

When we calculate the integral of t−s, the width of the partition intervals
can be factored out of the sum (because all the widths are equal). Thus, we
have

∫ b

a

(t − s) =
b − a

n

n
∑

i=1

(f(xi) − f(xi−1))
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In this sum, lots of cancelation occurs (this kind of sum is called a telescoping
sum). You should check for yourself that this simplifies to

b − a

n
(f(xn) − f(x0))

Since b = xn and a = x0, this integral of t−s can be made as small as desired
by choosing a large enough value of n.

Proof. Let a, b, f be given as described. WLOG, we may assume that f is
increasing. This is because when f is decreasing, we can apply the proof for
the increasing case to −f and use the linearity property.

Since f is increasing on [a, b], we have f(a) ≤ f(x) ≤ f(b) for all x ∈ [a, b],
so f is bounded on [a, b]. We shall use Theorem 5.22, so let ǫ > 0 be given.
We wish to construct a lower step function s and an upper step function t
for f on [a, b] so that the integral of t − s on [a, b] is less than ǫ.

Choose n ∈ N∗ large enough so that

(f(b) − f(a))(b − a)

n
< ǫ

(which is possible because the left fraction goes to 0 as n → ∞). Let P
be the partition {x0, x1, . . . , xn} of [a, b] which uses equal-width subintervals:
more precisely, for each i from 0 to n, xi = a + i(b − a)/n. Now, for each i
from 1 to n, we define s and t for each x in the ith open subinterval (xi−1, xi)
of P by

s(x) = f(xi−1) t(x) = f(xi)

Because f is increasing, we have s(x) ≤ f(x) ≤ t(x) for all x ∈ (xi−1, xi).
Also, define s(x) = t(x) = f(x) for each x ∈ P , so that s is a lower step
function and t is an upper step function for f on [a, b].

By our choice of n, s, and t, we have

∫ b

a

(t − s) =
n
∑

i=1

(f(xi) − f(xi−1))

(

b − a

n

)

=
b − a

n

n
∑

i=1

(f(xi) − f(xi−1))

=
b − a

n
(f(xn) − f(x0))

=
(f(b) − f(a))(b − a)

n
< ǫ
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as desired. �

In fact, not only does this theorem prove that monotone functions are
integrable, it gives us a good way to find the integral of a monotone function.
In the process of proving the theorem, we created a lower and upper step
function, and we showed that the integral of the difference approaches 0.

Thus, the value

∫ b

a

f should be the only number between the integrals of

these upper and lower estimates. You can use this strategy to prove the
following corollary in Exercise 5.6.7:

Corollary 5.34. Let a, b, I ∈ R with a ≤ b be given, and let f be a real
function defined and bounded on [a, b]. For each n ∈ N∗ and each i from 0
to n, define

xi,n = a +
i(b − a)

n

(i.e. xi,n is the ith partition point in an equal-widths partition of [a, b] using
n subintervals). If f is increasing on [a, b] and

n
∑

i=1

f(xi−1,n)

(

b − a

n

)

≤ I ≤
n
∑

i=1

f(xi,n)

(

b − a

n

)

is true for every n ∈ N∗, then

∫ b

a

f = I. Similarly, if f is decreasing on [a, b]

and
n
∑

i=1

f(xi,n)

(

b − a

n

)

≤ I ≤
n
∑

i=1

f(xi−1,n)

(

b − a

n

)

is true for every n ∈ N∗, then

∫ b

a

f = I.

Normally, when computing integrals, we have to find the candidate num-
ber I between the upper and the lower estimates, and we also have to prove
that the difference of the estimates has an integral going to 0. With the aid
of Corollary 5.34, we can skip showing that the difference goes to 0, and we
only have to find the number I which satisfies the inequalities of the corol-
lary. This makes computing some integrals much easier, as you’ll see with
some of the following exercises.
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5.6 Exercises

1. Consider the function f : R → R defined for all x ∈ R by

f(x) =

{

x if x ∈ Q

−x if x ∈ R − Q

Prove that f is not integrable on [0, 1]. (Note: There is a quick way
to solve this problem using the linearity property with a previously
studied example.)

2. Consider the function f : R → R defined for all x ∈ R by

f(x) =

{

x if x ∈ Q

x2 if x ∈ R − Q

Prove that f is not integrable on [0, 1].

3. Let a, b ∈ R with a < b be given, and suppose that f : [a, b] → R

is given. If there exists some c ∈ [a, b] such that f(c) 6= 0 and f is
continuous at c, then prove that fχQ is not integrable on [a, b]. (Hint:
WLOG you may suppose f(c) > 0. Try to use the main idea from
Exercise 5.4.13.)

4. Show that for any k ∈ Q with k > 0, the kth power of the ruler function

rk is integrable on any interval [a, b], with

∫ b

a

rk(x) dx = 0.

5. Let a, b ∈ R with a ≤ b be given, and let f be a real function which is
integrable on [a, b]. Therefore, since f is bounded on [a, b], |f | is also
bounded on [a, b]. This exercise outlines a proof that |f | is integrable
on [a, b]. (Using the interval addition property, this is easy to prove if
f only changes sign finitely many times, but this proof will work even
for oscillating integrable functions!)

(a) Define the positive part f+ : dom(f) → R of f (this is read “f
plus”) by f+(x) = max{f(x), 0} for all x ∈ dom(f). Thus, when
f(x) is nonnegative, f+(x) = f(x), but when f(x) is negative,
f+(x) is zero. Prove that f+ is integrable on [a, b].
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(Hint: If t and s are respectively upper and lower step functions
for f on [a, b], compatible with a partition P , then you want to
make upper and lower step functions t2 and s2 for f+ on [a, b] such
that t2 − s2 ≤ t− s. Define t2 and s2 by cases for each subinterval
of P based on whether t is positive on that subinterval.)

(b) Define the negative part f− : dom(f) → R of f (this is read “f
minus”) by f−(x) = max{−f(x), 0} for all x ∈ dom(f). Thus,
when f(x) is nonpositive, f−(x) = |f(x)| (the absolute value is
used by convention), but when f(x) is positive, f−(x) = 0. Prove
that f− is integrable on [a, b].

(Hint: It’s possible to reuse the work from part (a).)

(c) Note that for all x ∈ dom(f), f(x) = f+(x)−f−(x) (which is easily
proven by cases). Find a similar expression for |f(x)| in terms of
f+(x) and f−(x), and use it to prove that |f | is integrable on [a, b].

6. Let a, b ∈ R with a ≤ b be given. Let f : [a, b] → R be given. Suppose
that for each ǫ > 0, there is a step function gǫ : [a, b] → R on [a, b]
satisfying

|f(x) − gǫ(x)| ≤ ǫ

for all x ∈ [a, b] (i.e. we say the difference f − gǫ is bounded uniformly,
since the bound doesn’t depend on x). Prove that f is integrable on
[a, b]. (Hint: gǫ may not be an upper or a lower step function, but there
are upper and lower step functions for f which are close to gǫ.)

7. Prove Corollary 5.34.

8. Let a, b ∈ R and p ∈ N be given. This exercise will outline how to use
Corollary 5.34 to find the integral of xp on [a, b]. From this, we can use
linearity to integrate any polynomial.

(a) Note that for any x, y ∈ R, the following identity holds:

yp+1 − xp+1 = (y − x)

p
∑

i=0

yixp−i

(You can verify this by distributing y−x through the summation
and seeing what cancels.) Use this to show that when 0 ≤ x < y,
we have

(p + 1)xp ≤ yp+1 − xp+1

y − x
≤ (p + 1)yp

PREPRINT: Not for resale. Do not distribute without author’s permission.



342 Section 5.6: Exercises

(b) Using part (a), show that for any n ∈ N∗ and any i from 1 to n,

(

i − 1

n

)p

· 1

n
≤ 1

p + 1
·
(

(

i

n

)p+1

−
(

i − 1

n

)p+1
)

≤
(

i

n

)p

· 1

n

(c) For each n ∈ N∗, by adding up the inequalities in part (b) for each
i from 1 to n, show that

n
∑

i=1

(

i − 1

n

)p

· 1

n
≤ 1

p + 1
≤

n
∑

i=1

(

i

n

)p

· 1

n

Therefore, by Corollary 5.34, we have

∫ 1

0

xp dx =
1

p + 1
(because

the function taking x ∈ [0, 1] to xp is increasing).

(d) Use the properties of the integral with part (c) to show that for
all a, b ∈ R,

∫ b

a

xp dx =
bp+1 − ap+1

p + 1

9. Let a, b ∈ R be given with 0 < a < b. Therefore, if f : [a, b] → R is
defined by f(x) = 1/

√
x for all x ∈ [a, b], then f is decreasing on [a, b].

(a) By performing a rationalization, show that whenever x, y ∈ R

satisfy 0 < x < y,

1

2
√

y
≤

√
y −√

x

y − x
≤ 1

2
√

x

(b) Use part (a) to show that for any n ∈ N∗ and any i from 1 to n,

1
√

xi,n

(

b − a

n

)

≤ 2(
√

xi,n −√
xi−1,n) ≤ 1

√
xi−1,n

(

b − a

n

)

where xi,n = a +
i(b − a)

n
.

(c) Use part (b) and Corollary 5.34 to prove that

∫ b

a

1√
x

dx = 2(
√

b −
√

a)
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10. This exercise will find the integral of cos. It will also demonstrate how
the Mean Value Theorem can be useful in computing integrals.

(a) Use the MVT to show that if x, y ∈ [0, π] satisfy x < y, then

cos y <
sin y − sin x

y − x
< cos x

(b) Use part (a) and Corollary 5.34 to prove that for all a, b ∈ [0, π]
with a ≤ b,

∫ b

a

cos x dx = sin b − sin a

(c) Using a similar approach to parts (a) and (b), prove that for all
a, b ∈ [π, 2π] with a ≤ b,

∫ b

a

cos x dx = sin b − sin a

11. The previous exercise established the validity of the formula

∫ b

a

cos x dx = sin b − sin a

whenever a < b and a, b ∈ [0, π] or a, b ∈ [π, 2π]. This exercise shows
that this formula is valid for ANY a, b ∈ R.

(a) First, use the periodicity of sin and cos to show that the formula
is valid whenever a < b and a and b lie between the same multiples
of π, i.e. there is some k ∈ Z so that a, b ∈ [kπ, (k + 1)π].

(b) Next, use interval addition and part (a) to prove that the formula
is valid for any a, b ∈ R with a < b.

(c) Lastly, prove that the formula is valid when a ≥ b (i.e. when the
integral limits are out of order).

5.7 Continuity and Integrals

In this section, we’ll explore the relationship between integrability and con-
tinuity. As we’ve seen in Some Unusual Functions III, for each a, b ∈ R with
a < b, there are integrable functions on [a, b] which are not continuous on
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[a, b]. The ruler function and the staircase function are two such examples,
which are both continuous at irrational points and discontinuous at rational
points. In contrast, χQ is discontinuous everywhere and is not integrable on
any interval [a, b] with a < b. These examples suggest the question: does a
continuous function have to be integrable?

To answer this question, let’s see what properties of continuous functions
might be useful for proving integrability. To get ideas, let’s analyze an inte-
grability proof we’ve already done. Consider the proof we gave of Theorem
5.33, which shows that an increasing function f on [a, b] is integrable on [a, b].
The main goal of that proof is to find upper and lower step functions t and
s so that the integral of t − s is less than ǫ. It can be helpful to note that
the integral of t − s corresponds to the area between the graphs of t and s,
as you can see in Figure 5.9.

a b

tHxL
sHxL

fHxL

fHbL-fHaL

tHxL-sHxL

Figure 5.9: Illustrating

∫ b

a

(t − s) for a monotone function

In the proof of Theorem 5.33, we showed that no matter how many pieces
n we use in our partition defining t and s, the integral of t − s is equal to
(f(b) − f(a)) times the width of a partition subinterval. In other words,
for all our partitions, when we add up the heights of the rectangles which
represent the area between t and s, we always get the same total height of
f(b) − f(a). In Figure 5.9, f(x), t(x), and s(x) are drawn, and rectangles
representing the area between t and s are also drawn with solid lines.

In that proof, because the total height of our rectangles never changes,
we may make the total area between t and s small by adjusting the widths
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of the rectangles used. Hence, by choosing a large enough n, we make the
partition width small enough so that the total area between t and s, which
is (f(b)−f(a))(b−a)/n, becomes as close to 0 as desired. In other words, in
order to make the total area between t and s small, the proof for monotone
functions makes the rectangles “thin”.

Now, there are two ways to make a rectangle with small area: the rectan-
gle can be “thin” (i.e. have small width), or it can be “short” (i.e. have small
height). The proof for monotone functions made rectangles as thin as desired;
maybe we can make a proof that makes rectangles as short as desired. This
means we should try to establish some bound on the height between t and
s. In general, when we are trying to define t and s on some open subinterval
(xi−1, xi) of a partition, we know that we must have s(x) ≤ f(x) ≤ t(x) for
all x ∈ (xi−1, xi). Thus, if we give t(x) the constant value bi on (xi−1, xi),
and we give s(x) the constant value ai, we must have

ai ≤ inf{f(x) | x ∈ (xi−1, xi)} ≤ sup{f(x) | x ∈ (xi−1, xi)} ≤ bi

Hence,

bi − ai ≥ sup{f(x) | x ∈ (xi−1, xi)} − inf{f(x) | x ∈ (xi−1, xi)}

This says that the height between t and s on this subinterval, which is
bi−ai, cannot be smaller than extent(f, (xi−1, xi)). Hence, if we want to make
our rectangles short, then we need our function to have some kind of property
where the partition subintervals have small extents. One such property is the
ǫ-extent property, as defined in Definition 3.64, and we showed in Theorem
3.66 that if f is continuous on [a, b], then [a, b] has that property for f . This
leads us to the following statement:

Theorem 5.35. Let a, b ∈ R with a ≤ b be given, and let f be a real function
such that for every ǫ > 0, [a, b] has the ǫ-extent property for f . Then f
is integrable on [a, b]. In particular, if f is continuous on [a, b], then f is
integrable on [a, b].

Strategy. Most of the strategy has been mentioned already, but we’ll point
out here how to convert that intuition into a proof. Our aim is to take an
arbitrary ǫ > 0 and make the integral of t − s less than ǫ. As we’ve seen
before, one way to do this is to make t(x)− s(x) less than ǫ/(b− a) for each
x ∈ [a, b]. Since we’ve seen that t(x)−s(x) can be, at its smallest, the extent
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of f on a partition subinterval, we wish to make a partition of [a, b] such that
for each subinterval (xi−1, xi), we have extent(f, (xi−1, xi)) < ǫ/(b− a). This
is precisely what the ǫ/(b − a)-extent property gives us.

Proof. Let a, b, f be given as described. We will use Theorem 5.22 to prove
that f is integrable on [a, b]. Thus, let ǫ > 0 be given, and we’ll find an
upper step function t for f on [a, b] and a lower step function s for f on [a, b]
satisfying

∫ b

a

(t − s) < ǫ

(Note that finding an upper and lower step function for f on [a, b] implies
that f is bounded on [a, b].)

Because [a, b] has the ǫ/(b−a)-extent property for f , there exists some n ∈
N∗ such that when [a, b] is broken into n equal-width subintervals, each closed
subinterval has extent less than ǫ/(b − a) for f . Let P = {x0, x1, . . . , xn} be
the partition of [a, b] into n equal-width subintervals. For each i from 1 to n,
we define

ai = inf{f(x) | x ∈ [xi−1, xi]} bi = sup{f(x) | x ∈ [xi−1, xi]}

Then, define s(x) = ai and t(x) = bi for all x ∈ (xi−1, xi). Also, we define
s(x) = t(x) = f(x) for each x ∈ P . Therefore, s is a lower step function for
f on [a, b] and t is an upper step function for f on [a, b].

Now, we claim that for all x ∈ [a, b], t(x) − s(x) < ǫ/(b − a). This is
certainly true when x ∈ P . Otherwise, if x ∈ (xi−1, xi) for some i from 1 to
n, we have

t(x) − s(x) = bi − ai

= sup{f(x) | x ∈ [xi−1, xi]} − inf{f(x) | x ∈ [xi−1, xi]}
= extent(f, [xi−1, xi])

<
ǫ

b − a

by the definition of extent and by the choice of n.
Therefore,

∫ b

a

(t − s) <

∫ b

a

ǫ

b − a
dx = ǫ

as desired. �
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Example 5.36:

Theorem 5.35 says that if a function f is continuous on a closed bounded
interval [a, b], then it is integrable on [a, b]. It is important that f be con-
tinuous on a closed interval. If we only know that f is continuous on (a, b),
then f might not be bounded on (a, b)!

For instance, consider f : [0, 1] → R, defined for all x ∈ [0, 1] by

f(x) =

{

1/
√

x if x > 0

0 if x = 0

Since f(x) → ∞ as x → 0+, f is not continuous at 0, but it is continuous
on (0, 1]. Also, f is not bounded on [0, 1], so f is not integrable on [0, 1].
However, for any a ∈ (0, 1], f is integrable on [a, 1], and Exercise 5.6.9 shows
that

∫ 1

a

f =

∫ 1

a

1√
x

dx = 2(
√

1 −
√

a)

As a → 0+, this quantity approaches 2. This limit of 2 is called the improper
integral of f on [0, 1], obtained by taking a limit of “proper” integrals. We’ll
revisit this topic in Chapter 9. �

Example 5.37:

In the previous example, our function is unbounded. It turns out that if a
function f : [a, b] → R is continuous everywhere except one point, AND if
f is bounded, then f is integrable on [a, b]. You can prove this in Exercise
5.8.1, but we’ll illustrate the basic idea with an example here.

Define f : [0, 1] → R by

f(x) =

{

sin(1/x) if x 6= 0

0 if x = 0

for all x ∈ [0, 1]. Therefore, f(x) has no limit as x → 0+, because f oscillates
wildly. However, unlike the previous example, f is bounded: |f(x)| ≤ 1 for
all x ∈ [0, 1]. We’ll show that f is integrable on [0, 1] by using Theorem 5.22.
Thus, we let ǫ > 0 be given, and we find upper and lower step functions t
and s such that the area between t and s is less than ǫ.

Because f is continuous on (0, 1], we know that f is integrable on intervals
that don’t contain 0. In other words, as long as we stay some distance δ > 0
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away from 0, f is integrable on [δ, 1]. This suggests that our proof should
handle the intervals [0, δ] and [δ, 1] separately, i.e. the “points near 0” and
the “points away from 0”. More formally, we’ll find t, s, and δ so that

∫ δ

0

(t − s) <
ǫ

2
and

∫ 1

δ

(t − s) <
ǫ

2

so that
∫ 1

0

(t − s) =

∫ δ

0

(t − s) +

∫ 1

δ

(t − s) <
ǫ

2
+

ǫ

2
= ǫ

(This is yet another form of “ǫ/2” argument.)
On [δ, 1], because f is integrable on [δ, 1], we know we can find upper

and lower step functions t1 and s1 for f on [δ, 1] with less than ǫ/2 area
between them. However, what can we do about the interval [0, δ]? Since
f(x) oscillates wildly between −1 and 1 as x gets near 0, it seems that we
can’t do much better than an upper step function which is constantly 1, and
similarly we’ll use a lower step function which is constantly −1. Thus, we
define, for all x ∈ [0, 1],

s(x) =

{

−1 if x ∈ [0, δ)

s1(x) if x ∈ [δ, 1]
t(x) =

{

1 if x ∈ [0, δ)

t1(x) if x ∈ [δ, 1]

From this, we obtain
∫ 1

0

(t(x) − s(x)) dx =

∫ δ

0

(1 − (−1)) dx +

∫ 1

δ

(t1(x) − s1(x)) dx < 2δ +
ǫ

2

Since we want 2δ to be less than ǫ/2, we shall choose δ = ǫ/4. This completes
the proof. �

Average Value Of A Function

One useful application of the integral, apart from measuring area, is to
make a meaningful definition of the average value of a real function. To see
how this works, let’s look at the usual notion of the average of a collection
of numbers, and we’ll see how the average can be viewed in terms of areas.

If a1 through an are n real numbers, where n ∈ N∗, then the average of
a1 through an is

1

n

n
∑

i=1

ai
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In other words, we add up all the numbers, and then we divide by our count
of how many numbers there are. Another way to look at this is to make a step
function s on [0, 1] compatible with the partition Pn = {0, 1/n, 2/n, . . . , 1}
such that for each i from 1 to n, our step function takes the value ai on
((i − 1)/n, i/n). Then

∫ 1

0

s =
n
∑

i=1

ai ·
1

n

so the area under s is the same as the average value of the ai’s. In this case,
the interval widths of 1/n represent the condition that each ai has equal
weight when computing the average.

Another way to look at this quantity is that it measures the average height
of the step function s on [0, 1]. In essence, if we take the area under s and
smooth it out to form one rectangle of width 1, then the average of the ai’s
is the height of that rectangle. See the left picture in Figure 5.10, where the
average value is conveyed by the dashed horizontal line.

0 1

Avg

a1

a2
a3

a4

a b

fHxL

Avg

Figure 5.10: The average value of a function in terms of area

We can apply this “smoothing out” idea to continuous functions on a
closed interval [a, b]. If f is a real function which is continuous on [a, b], then
∫ b

a

f is the area under f . If we smooth that area out to form one rectangle

of width b− a, then the height of that rectangle should be the average value
of the function. See the right picture in Figure 5.10, where it seems like the
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area above the dashed line under f can be “shoved” into the space below the
dashed line and above f .

This discussion motivates the definition:

Definition 5.38. Let a, b ∈ R with a < b be given, and let f be a real
function which is continuous on [a, b]. The average value of f on [a, b] is

Ab
a(f) =

1

b − a

∫ b

a

f

In general, when taking an average of finitely many numbers, the average
value does not have to equal any of the numbers. However, when averaging
a continuous function, since continuous functions don’t jump values, we can
show that the average value IS attained by the function:

Theorem 5.39 (Mean Value Theorem for Integrals). Let a, b ∈ R be
given satisfying a < b, and let f be a real function which is continuous on
[a, b]. Then for some c ∈ [a, b], we have

Ab
a(f) =

1

b − a

∫ b

a

f(x) dx = f(c)

Strategy. Intuitively, the average value Ab
a(f) should be between the largest

and smallest values that f takes on the interval [a, b]. (Note that such max-
imum and minimum values exist because of the Extreme Value Theorem.)
We can do a simple calculation to verify that this intuition is correct; namely,
if f(m) is the minimum value of f and f(M) is the maximum value of f ,
then f(m) ≤ Ab

a(f) ≤ f(M). From that, the Intermediate Value Theorem
should give us our value of c.

Proof. Let a, b, f be given as described. By the Extreme Value Theorem,
f attains an absolute maximum and absolute minimum on [a, b]. Suppose
that f attains its absolute minimum at m ∈ [a, b] and attains its absolute
maximum at M ∈ [a, b]. Therefore, for all x ∈ [a, b], f(m) ≤ f(x) ≤ f(M),
and the comparison property of integrals gives us

f(m)(b − a) ≤
∫ b

a

f(x) dx ≤ f(M)(b − a)

Dividing throughout by b − a, we find that Ab
a(f) is in [f(m), f(M)]. If

Ab
a(f) is equal to f(m), then we take c = m and are done. If Ab

a(f) is equal
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to f(M), then we take c = M and are done. Otherwise, Ab
a(f) is between

f(m) and f(M), so the Intermediate Value Theorem tells us that there is
some c between m and M such that Ab

a(f) = f(c). �

As a quick example, we have previously shown that

∫ 1

0

x dx =
1

2
and

∫ 1

0

x2 dx =
1

3

This means that the average value of x on [0, 1] is 1/2 and the average value
of x2 on [0, 1] is 1/3. (Intuitively, more of the area under x2 is close to 0, but
then the graph rises quickly.)

Example 5.40:

You were asked to show in Exercise 5.6.10 that for any a, b ∈ R with a < b,

∫ b

a

cos x dx = sin b − sin a

Therefore, by the MVT for integrals, we know that for some c ∈ [a, b],

sin b − sin a

b − a
= cos c

Since cos is the derivative of sin, the conclusion we reached looks like the
conclusion of the Mean Value Theorem for derivatives. Indeed, this is only
the beginning of the relationship between integrals and derivatives. We’ll
establish a much stronger connection, called the Fundamental Theorem of
Calculus, at the end of this chapter. �

There is another notion of average that we shall consider here, which is
the notion of weighted average. If we have n real numbers a1 through an,
where n ∈ N∗, and we have n positive real numbers w1 through wn called
weights, then the weighted average of the ai’s with respect to the weights wi

is
n
∑

i=1

aiwi

n
∑

i=1

wi
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The usual average of n numbers is the same as the weighted average where
each weight is 1/n. The idea here is that a number with higher weight has a
greater effect in computing the weighted average.

One useful application of weighted average is the famous Law of the
Lever. Suppose that we have a seesaw whose center is located at x = 0. We
have n objects placed at positions a1 through an, where negative positions
correspond to the left side of the seesaw and positive positions correspond
to the right. If for each i from 1 to n, the ith object weighs wi pounds,
then the ith object exerts torque aiwi on the seesaw. (If this number is
positive, then the torque rotates the seesaw clockwise, otherwise the rotation
is counterclockwise.) The Law of the Lever states that the seesaw is perfectly
balanced iff

n
∑

i=1

aiwi = 0

In general, the weighted average A of the ai’s determines the average
position of an object on the seesaw. Thus, the seesaw is balanced only if the
average position is directly centered on the center. Otherwise, if W is the
total weight of all the objects, then the seesaw behaves the same as if one
object of weight W sits on the seesaw at position A, because

n
∑

i=1

aiwi = AW

We can generalize the definition of weighted average to continuous func-
tions as follows:

Definition 5.41. Let a, b ∈ R with a < b be given, and suppose that f
and w are real functions which are continuous on [a, b]. Also suppose that

w(x) ≥ 0 for all x ∈ [a, b] and

∫ b

a

w(x) dx > 0. Then the weighted average of

f with respect to the weight function w on [a, b] is

Ab
a(f, w) =

∫ b

a

f(x)w(x) dx

∫ b

a

w(x) dx

Think of the integral of w as the “total weight” of the function f distributed
over the interval [a, b].
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You can also show a weighted version of the MVT for integrals is true in
Exercise 5.8.4:

Theorem 5.42 (Weighted MVT for Integrals). Let a, b ∈ R with a < b
be given, and let f and w be real functions which are continuous on [a, b].

Suppose also that w is nonnegative on [a, b] and that

∫ b

a

w(x) dx > 0. Then

the weighted average of f with respect to w on [a, b] is attained by f , i.e.
there exists some c ∈ [a, b] such that

Ab
a(f, w) =

∫ b

a

f(x)w(x) dx

∫ b

a

w(x) dx

= f(c)

The weighted MVT for integrals is a useful tool for bounding the values of
some integrals, by writing them as a product of two functions f and w where
w is easy to integrate. We give one example here and leave some others as
exercises.

Example 5.43:

Let’s define f, w : [0, 1] → R by f(x) = 1/
√

1 + x and w(x) = x9 on [0, 1].
Note that on [0, 1], w(x) ≥ 0, and in Exercise 5.6.8, we showed that the
integral of w on [0, 1] is 1/10. Therefore, for some c ∈ [0, 1], the weighted
MVT tells us that

∫ 1

0

x9

√
1 + x

dx =
1√

1 + c

∫ 1

0

x9 dx =
1

10
√

1 + c

Since 0 ≤ c ≤ 1, we conclude

1

10
√

2
≤
∫ 1

0

x9

√
1 + x

dx ≤ 1

10

�

5.8 Exercises

For these exercises, it will be helpful to recall these formulas for integration
found in the last exercises: for all a, b ∈ R and all p ∈ N,

∫ b

a

xp dx =
bp+1 − ap+1

p + 1

∫ b

a

cos x dx = sin b − sin a
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1. Let a, b ∈ R with a ≤ b be given, and suppose that f is a real func-
tion bounded on [a, b]. Assume that f is discontinuous at only finitely
many points in [a, b], i.e. for some k ∈ N∗ the discontinuities are
{x1, x2, . . . , xk}. Prove that f is integrable on [a, b].

(Hint: Consider modifying the strategy used in Example 5.37 by placing
an interval of width δ around each discontinuity. Define your upper and
lower step functions in pieces, like the example did. At the end, you
should be able to discover a value of δ which makes the proof work.)

Remark. There is a theorem which says that a bounded function on an
interval [a, b] is integrable iff its set of discontinuities has measure 0.
The precise definition of measure 0, as well as the proof, is beyond the
scope of this book, but the main idea is that a measure 0 set has “no
length”.

2. Let a, b ∈ R with a ≤ b be given, and suppose that f and g are
continuous functions on [a, b]. Prove the following properties of the
average value, as defined by Definition 5.38:

(a) Ab
a(f + g) = Ab

a(f) + Ab
a(g).

(b) For any real number k, Ab
a(kf) = kAb

a(f).

(c) If f(x) ≤ g(x) for all x ∈ [a, b], then Ab
a(f) ≤ Ab

a(g).

3. Let a, b ∈ R with a ≤ b be given, and let f and w be continuous
functions on [a, b]. Also assume that w(x) > 0 for all x ∈ [a, b], so that
∫ b

a

w > 0. Let c ∈ (a, b) be given.

(a) Find real numbers M, N which do not depend on f (but they may
depend on c) so that

Ab
a(f) = MAc

a(f) + NAb
c(f)

and prove that your answer is correct.

(b) Find real numbers M, N which do not depend on f (but they may
depend on c and w) so that

Ab
a(f, w) = MAc

a(f, w) + NAb
c(f, w)

where Ab
a(f, w) is the weighted average defined in Definition 5.41.
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Thus, in essence, the average from a to b is a weighted average of the
averages from a to c and from c to b.

4. Prove the weighted MVT for integrals, Theorem 5.42.

5. Use the strategy in Example 5.43, as well as the fact that
√

1 − x2 =
(1 − x2)/

√
1 − x2 for all x ∈ (−1, 1), to show that

11

24
≤
∫ 1/2

0

√
1 − x2 dx ≤ 11

24

√

4

3

(Hint: You should choose w(x) to be a polynomial!)

6. Use the strategy in Example 5.43, and the fact that (1 + x6) = (1 +
x2)(1 − x2 + x4) for all x ∈ R, and show that for every b > 0,

1

1 + b6

(

b − b3

3
+

b5

5

)

≤
∫ b

0

dx

1 + x2
≤ b − b3

3
+

b5

5

7. (a) Use the weighted MVT for integrals to prove that there is some
c ∈ [0, π/2] satisfying

∫ π/2

0

x3 cos x dx = c3

(b) By using different choices for f and w from what you used in part
(a), prove that there is some d ∈ [0, π/2] satisfying

∫ π/2

0

x3 cos x dx =
π4 cos d

64

(c) In the next chapter, we will develop techniques for showing that

∫ π/2

0

x3 cos x dx =
π3

8
− 3π + 6

(You do not yet need to know how to obtain this number.) Using
this number, find the values of c and d from parts (a) and (b).
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8. Let a, b ∈ R with a ≤ b be given, and let f and g be two functions
which are nonnegative and integrable on [a, b]. This exercise outlines a
proof that fg is integrable on [a, b]. (Note that this exercise does not
assume that f and g are continuous!)

The proof will use Theorem 5.22. Let ǫ > 0 be given. Since f and g are
nonnegative and integrable on [a, b], they are bounded on [a, b], so there
exist constants M, N > 0 such that for all x ∈ [a, b], 0 ≤ f(x) ≤ M
and 0 ≤ g(x) ≤ N .

(a) Since f is integrable on [a, b], we know that for any δ > 0, there
exists an upper step function t1 for f on [a, b] and a lower step
function s1 for f on [a, b] satisfying

∫ b

a

(t1 − s1) < δ

Prove that such a choice for t1 and s1 exists which also satisfies

0 ≤ s1(x) ≤ t1(x) ≤ M

for every x ∈ [a, b]. (Hint: If you make an upper step function
smaller and a lower step function larger, then what happens to
the integral of their difference?)

(b) Similarly to part (a), for each δ > 0, we find an upper step function
t2 for g on [a, b] and a lower step function s2 for g on [a, b] such
that

0 ≤ s2(x) ≤ t2(x) ≤ N

for every x ∈ [a, b], and also

∫ b

a

(t2 − s2) < δ

Therefore, s1s2 is a lower step function for fg on [a, b], and t1t2
is an upper step function for fg on [a, b]. Show that for every
x ∈ [a, b],

t1(x)t2(x) − s1(x)s2(x) ≤ M(t2(x) − s2(x)) + N(t1(x) − s1(x))

(Hint: Add and subtract t1(x)s2(x).)
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(c) By using the results of parts (a) and (b) with appropriate choices
of δ (the choices will depend on ǫ, M , and N), show that

∫ b

a

(t1t2 − s1s2) < ǫ

which finishes the proof.

9. Using Exercise 5.8.8, we can prove that the product of ANY two inte-
grable functions on [a, b] is also integrable on [a, b]. The proof starts
as follows. Let a, b ∈ R with a ≤ b be given, and suppose f and g
are real functions which are integrable on [a, b]. Therefore, f and g are
bounded, so there exist constants M, N > 0 such that for all x ∈ [a, b],
|f(x)| ≤ M and |g(x)| ≤ N .

Hence, f +M and g +N are nonnegative integrable functions on [a, b],
by the linearity property. By writing fg in terms of (f +M)(g+N), use
Exercise 5.8.8 and the linearity property to prove that fg is integrable
on [a, b].3

10. Let a, b ∈ R with a ≤ b be given. Let f be a nonnegative real function
which is integrable on [a, b], and assume that 1/f is bounded on [a, b].
This exercise outlines a proof that 1/f is integrable on [a, b].

We will use Theorem 5.22. Let ǫ > 0 be given. Since f and 1/f are
both nonnegative and bounded, there exist constants M, N > 0 so that
for all x ∈ [a, b], 0 ≤ f(x) ≤ M and 0 ≤ 1/f(x) ≤ N .

(a) Prove that for any δ > 0, there exists an upper step function t1
for f on [a, b] and a lower step function s1 for f on [a, b] which
satisfy

1

N
≤ s1(x) ≤ t1(x) ≤ M

for every x ∈ [a, b], and

∫ b

a

(t1 − s1) < δ

(The steps will be quite similar to part (a) of Exercise 5.8.8.)

3An alternate proof involves breaking up f and g into their positive and negative parts,
as defined in Exercise 5.6.5.
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(b) From part (a), it follows that 1/s1 is an upper step function for
1/f on [a, b], and 1/t1 is a lower step function for 1/f on [a, b].
Show that for any x ∈ [a, b],

1

s1(x)
− 1

t1(x)
≤ N2(t1(x) − s1(x))

(c) By using the results of parts (a) and (b) with an appropriate choice
of δ, show that

∫ b

a

(

1

s1
− 1

t1

)

< ǫ

which finishes the proof.

11. Let f be the function from Exercise 5.4.4, and let r be the ruler function.
We have seen that f and r are integrable on [0, 1]. Prove that f ◦ r
is not integrable on [0, 1], thus the composition of integrable functions
does not have to be integrable. (Hint: Note that f(r(x)) = 1 iff x is a
rational number which can be written with an odd denominator. Prove
that the set of all such rational numbers is dense.)

5.9 Area Functions and the FTC

In this section, we will introduce the Fundamental Theorem of Calculus (or
FTC for short). This theorem gives us a connection between all three of
the major definitions of calculus: continuity, differentiation, and integration.
The FTC also provides an extremely useful tool for calculating integrals,
which we will use extensively in the next chapter to develop techniques for
integration.

In essence, the FTC tells us that differentation and integration are inverse
operations. For example, we have found that for any a, b ∈ R,

∫ b

a

cos x = sin b − sin a

ie. the integral of cos is in terms of sin, and the derivative of sin is cos.
Similarly,

∫ b

a

x2 dx =
b3

3
− a3

3
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i.e. the integral of x2 is in terms of x3/3, and the derivative of x3/3 is
x2. However, we are treating these examples quite informally: when a and
b are constants, the integral from a to b is a number, not a real function
which can be differentiated. In order to obtain a real function which can be
differentiated, we will introduce the idea of an area function.

Area Functions

We have developed the definition of the integral to measure area under
a function from a to b. If a and b are held constant, then the area is also
a constant number. However, we can make a new function by making the
upper limit of integration a variable. In other words, if f is a real function
and a ∈ R, we can make a new function g by defining

g(x) =

∫ x

a

f =

∫ x

a

f(t) dt

which is defined whenever f is integrable on [min{a, x}, max{a, x}]. We’ll
call g an area function of f (more specifically, it is the area function starting
from a). We can think of g(x) as measuring the area under f from a to x
when x ≥ a (when x < a, we “measure the area backwards” and introduce a
minus sign).

Example 5.44:

As a simple example, suppose that you have a triangular lawn, which is
shaped like the area under the graph of y = t for t ∈ [0, 100], where y and
t are measured in feet. Thus, the total area of your lawn is 1002/2 = 5000
square feet. Let’s say that you mow your lawn for 100 minutes in a way such
that for each x ∈ [0, 100], after x minutes you have mowed from t = 0 up to
t = x. (In other words, you are approximately mowing the lawn in vertical
stripes going from left to right.) Thus, if g is the area function of y = t
starting from 0, then after x minutes you have mowed

g(x) =

∫ x

0

t dt =
x2

2

square feet of area for each x ∈ [0, 100].
Note that we are not cutting our lawn in the usual way that most people

cut their lawns. Most people cut their lawns in a way so that they cover the
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area of their lawn at a constant rate, i.e. every minute they cut 10 square
feet of lawn. In contrast, we are cutting our lawn in a way so that we move
from left to right at the constant rate of 1 foot per minute! Hence, as we
move farther to the right, the lawn gets wider, so we have to cut area more
quickly in order to keep moving right at the same pace.

In fact, we can measure how fast we are mowing the lawn by taking the
derivative of g: g′(x) = x for each x ∈ (0, 100). Near the left side of the lawn,
i.e. when x is close to 0, we are cutting so slowly that we’re hardly cutting
any grass at all. However, as we approach the right side of the lawn, i.e. as
x approaches 100, we are cutting lawn at 100 square feet a minute! �

As illustrated by the lawn-mowing example, it can be helpful to think of
area functions as describing how much area is covered as a function of the
amount of time elapsed. This analogy suggests a few properties that area
functions should have. For instance, the area under a positive function is
increasing as we move from left to right. One way to formalize this is as
follows: if f(x) ≥ 0 for all x ∈ [x1, x2], and g is an area function of f , then
we use the interval addition property to find

g(x2) − g(x1) =

∫ x2

a

f −
∫ x1

a

f =

∫ x2

x1

f ≥ 0

i.e. g is increasing from x1 to x2. (You can similarly show that if f is negative
on an interval, then area functions decrease on that interval.) Here’s another
plausible property: the area under a large function grows faster than the area
under a small function. For instance, we saw in our lawn-mowing example
that the right side of the lawn is being mowed more quickly than the left
side.

As a first property that we can prove to get started, we’ll show that area
functions don’t “jump values”, i.e. they are continuous:

Theorem 5.45. Let a, b, c ∈ R be given with b ≤ a ≤ c, and suppose that
f is a real function which is integrable on [b, c]. Thus, by the subinterval
property (Theorem 5.27), f is integrable on every subinterval of [b, c]. Define
g : [b, c] → R for all x ∈ [b, c] by

g(x) =

∫ x

a

f(t) dt

i.e. g is the area function of f starting from a. Then g is continuous on
[b, c].
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Strategy. We want to show that g(y) → g(x) as y → x. Equivalently, we
want to show that g(y)− g(x) → 0 as y → x. Thus, we want to estimate

|g(y)− g(x)| =

∣

∣

∣

∣

∫ y

a

f(t) dt −
∫ x

a

f(t) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ y

x

f(t) dt

∣

∣

∣

∣

Because f is integrable on [b, c] (and hence on [min{x, y}, max{x, y}]), f is
bounded on [b, c], so we can use that bound to estimate g(y)− g(x) in terms
of y and x.

Proof. Let a, b, c, f, g be given as described. Because f is integrable on [b, c],
it is bounded on [b, c], so choose some M > 0 so that for all x ∈ [b, c],
|f(x)| ≤ M . Now, let x, y ∈ [b, c] be given with x ≤ y. We compute

|g(y)− g(x)| =

∣

∣

∣

∣

∫ y

a

f(t) dt −
∫ x

a

f(t) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ y

x

f(t) dt

∣

∣

∣

∣

≤
∫ y

x

|f(t)| dt

≤
∫ y

x

M dt = M(y − x)

where we used Exercise 5.4.9 in the first inequality.
We can do the same style of calculation when y < x to obtain |g(y) −

g(x)| ≤ M |y − x|, so we have

|g(y) − g(x)| ≤ M |y − x|

for all x, y ∈ [b, c]. Because M |y − x| → 0 as y → x, the Squeeze Theorem
implies that g(y) → g(x) as y → x. Thus, g is continuous at x. �

Remark. The proof above actually shows that when we consider an area
function on a closed bounded interval [b, c], the area function is actually
Lipschitz-continuous, as defined in Exercise 3.12.8. This can be useful, be-
cause Lipschitz continuity is a stronger property than uniform continuity.

Also, the proof demonstrated a couple useful tricks when dealing with
area functions. First, the result from Exercise 5.4.9 is often quite helpful
for moving absolute-value bars inside of an integral. Second, in order to use
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that result most effectively, we simplified the subtraction g(y)−g(x) into one
integral, rather than using the Triangle Inequality to split into a sum of two
separate absolute values. We will use these tricks again quite soon.

First Part of the FTC: The Derivative of An Area Function

Now, we have seen that intuitively, there is a relationship between the
height of a function f and how fast the area under f grows as we move from
left to right. In fact, we’ll be able to show that under certain hypotheses, if
g is ANY area function of f , then the derivative of g IS f ! This makes sense,
since when our function is f(x) units high, g should intuitively be increasing
at f(x) square units per unit of time.

More formally, let’s compute a difference quotient

g(x + h) − g(x)

h
=

1

h

(
∫ x+h

a

f(t) dt−
∫ x

a

f(t) dt

)

=
1

h

∫ x+h

x

f(t) dt

When h > 0 and f is continuous on [x, x + h], this expression is just our
definition of the average value Ax+h

x (f). By the MVT for integrals, we know
that this average value is attained at some c ∈ [x, x+h], i.e. Ax+h

x (f) = f(c).
As h → 0+, we will have c → x because x ≤ c ≤ x + h, so f(c) → f(x). A
similar argument applies when h < 0 and h → 0−.

The argument above is a formal proof that g′(x) = f(x) when f is con-
tinuous on an open interval which contains x (because we need continuity on
[x, x+h] to use the MVT for integrals). However, it would be nice to be able
to deduce g′(x) = f(x) when f is continuous at x but not necessarily any-
where else. It turns out that a modification of the proof, using tactics from
the proof we gave of Theorem 5.45, can prove this slightly stronger result:

Theorem 5.46 (Fundamental Theorem of Calculus, Part 1). Let a,
b, c ∈ R be given with b ≤ a ≤ c, and let f be a real function which is
integrable on [b, c]. Thus, f is integrable on every subinterval of [b, c], and
we may define g : [b, c] → R by

g(x) =

∫ x

a

f(t) dt

for all x ∈ [b, c]. Then for any x ∈ (b, c), if f is continuous at x, then g is
differentiable at x with g′(x) = f(x). (Recall that g can’t have a two-sided
derivative at b or at c.)
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Strategy. To show that the difference quotient of g from x to x+h approaches
f(x), we want to show that for any ǫ > 0,

∣

∣

∣

∣

g(x + h) − g(x)

h
− f(x)

∣

∣

∣

∣

< ǫ

provided h is close enough to 0. (Let’s assume h > 0 for now... the proof for
h < 0 is similar.) To be able to simplify the absolute value, let’s manipulate
things to produce one integral, like we did in our proof of Theorem 5.45.
First, by making a common denominator of h, we obtain

g(x + h) − g(x)

h
− f(x) =

1

h

(
∫ x+h

x

f(t) dt − hf(x)

)

Now, how can we rewrite this difference as one integral from x to x + h?
We note that

hf(x) =

∫ x+h

x

f(x) dt

(note that t is the variable of integration here, not x, so this is the integral
of a constant function). Therefore, we obtain

g(x + h) − g(x)

h
− f(x) =

1

h

∫ x+h

x

(f(t) − f(x)) dt

To show that this quantity has an absolute value less than ǫ, we want
a bound for |f(t) − f(x)| when t ∈ [x, x + h]. In other words, we’d like to
know: how close are f(t) and f(x)? This is where we use the assumption
that f is continuous at x: so long as t is picked close enough to x, we can
make |f(t) − f(x)| as small as desired.

Proof. Let a, b, c, f, g be given as described. Let x ∈ (b, c) be given, and
assume that f is continuous at x. We will use the definition of derivative to
show that g′(x) = f(x). Thus, let ǫ > 0 be given, and we need to find δ > 0
so that whenever h ∈ R satisfies 0 < |h| < δ, we have

∣

∣

∣

∣

g(x + h) − g(x)

h
− f(x)

∣

∣

∣

∣

< ǫ

Because f is continuous at x, we may choose δ > 0 so that for all t ∈
dom(f) satisfying |t−x| < δ, we have |f(t)−f(x)| < ǫ/2. Since x ∈ (b, c), we
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may suppose that δ is small enough so that (x− δ, x + δ) ⊆ [b, c]. Therefore,
for any h ∈ R satisfying 0 < |h| < δ, g(x) and g(x + h) are both defined.

For any h ∈ (0, δ), since g(x + h)− g(x) is the integral from x to x + h of
f , the calculations in the strategy show that

∣

∣

∣

∣

g(x + h) − g(x)

h
− f(x)

∣

∣

∣

∣

=
1

h

∣

∣

∣

∣

∫ x+h

x

(f(t) − f(x)) dt

∣

∣

∣

∣

≤ 1

h

∫ x+h

x

|f(t) − f(x)| dt

≤ 1

h

∫ x+h

x

ǫ

2
dt

=
1

h

(

hǫ

2

)

< ǫ

where we used the result from Exercise 5.4.9 in the first inequality. When
h ∈ (−δ, 0), we obtain the same result using almost exactly the same steps,
except that we must swap the order of the integral limits to use Exercise
5.4.9. Thus, we obtain

∣

∣

∣

∣

g(x + h) − g(x)

h
− f(x)

∣

∣

∣

∣

=
1

|h|

∣

∣

∣

∣

∫ x+h

x

(f(t) − f(x)) dt

∣

∣

∣

∣

=
1

|h|

∣

∣

∣

∣

−
∫ x

x+h

(f(t) − f(x)) dt

∣

∣

∣

∣

≤ 1

|h|

∫ x

x+h

|f(t) − f(x)| dt

≤ 1

|h|

( |h|ǫ
2

)

< ǫ

as desired. �

Remark. Note that in the proof above, g(x + h) − g(x) doesn’t depend on
a, the starting point used for the area function g. In fact, if h is another
area function for f which is defined on [b, c], let’s suppose that h starts from
d ∈ [b, c]. Then for all x ∈ [b, c],

g(x) − h(x) =

∫ x

a

f(t) dt−
∫ x

d

f(t) dt =

∫ a

d

f(t) dt
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This difference does not depend on x, i.e. it is a constant. Thus, any two
area functions for f differ by a constant, which implies that they have the
same derivative: g′(x) = h′(x) = f(x).

Example 5.47:

The first part of the FTC can also be used to compute derivatives of variants
of area functions. For instance, consider an expression of the form

h(x) =

∫ 0

x

f(t) dt

In this expression, the variable x is the lower limit instead of the upper limit.
To find h′, we should rewrite h with the variable in the upper limit. We flip
the bounds by using a minus sign, and thus we find

h′(x) =

(

−
∫ x

0

f(t) dt

)′
= −f(x)

by Part 1 of the FTC.
Another variant to consider is something like

h(x) =

∫ x2

0

f(t) dt

Here, instead of having x as the upper limit, we have x2. If g represents the

area function of f starting from 0, i.e. g(x) =

∫ x

0

f(t) dt, then h(x) = g(x2).

Thus, to find h′, we can use the Chain Rule, where g is the outer function
and the squaring funtion is the inner function. This gives us

h′(x) = g′(x2)(x2)′ = 2xf(x2)

Putting these ideas all together, we can differentiate more complicated
examples:

d

dx

(

∫ x2

x

f(t) dt

)

=
d

dx

(

∫ x2

0

f(t) dt−
∫ x

0

f(t) dt

)

= 2xf(x2) − f(x)

In the first step, we had to use interval addition to split up the integral into
two integrals, because Part 1 of the FTC requires the lower limit to be a
constant. �
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Example 5.48:

Part 1 of the FTC can also be used in certain problems to solve for unknown
functions. For instance, let’s consider the problem of finding functions f :
R → R which satisfy the following equation for all x ∈ R:

∫ 2x

0

f(t) dt = 2

∫ x

0

f(t) dt

(We assume that f is integrable on every closed bounded interval.) One
kind of solution is to choose f to be a function which has integral 0 on
every interval: the ruler function, for instance, is one such solution, as is
the function which is constantly 0. However, these solutions may not very
satisfactory, especially since the ruler function has lots of discontinuities.
Let’s see what the continuous solutions for f are.

If we assume f is continuous, then we can take the derivative with respect
to x of each side of our original equation and get

2f(2x) = 2f(x)

(In essence, the derivative is “canceling out” the integrals). Therefore, any
continuous solution must satisfy f(2x) = f(x) for EVERY x ∈ R.

This suggests that f should be a constant function. If we take f to be
the function which is constantly C, for some C ∈ R, then

∫ 2x

0

C dt = 2xC and 2

∫ x

0

C dt = 2xC

which shows that constant functions are solutions to our problem. In fact,
when f is continuous, you can show in Exercise 5.10.6 that f MUST be a
constant function! �

Second Part of the FTC: Antiderivatives

Part 1 of the FTC tells us an important property about area functions,
but it also tells us an important property about derivatives. Namely, we now
have an answer to the following problem: if f is a continuous function on
[a, b], then does there exist a function g : [a, b] → R with g′ = f on (a, b)?
We say that such a function g is an antiderivative of f on (a, b). Thanks to
the FTC, we now know that any area function of f is an antiderivative.
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This suggests the question: what are ALL the antiderivatives of f on
(a, b)? Because the derivative of a constant is always zero, if g is one antider-
ative for f , then so is g + C for any constant C. In fact, the converse holds
as well: if g and h are two antiderivatives for f on (a, b), then g and h must
differ by a constant! Why is this? Since h′ = g′ = f on (a, b), and h − g is
continuous on [a, b], we have (h − g)′(x) = 0 for all x ∈ (a, b), so Theorem
4.47 tells us that h − g is constant on [a, b].

We summarize this discussion with the following theorem, which we have
just proven:

Theorem 5.49. Let a, b ∈ R with a < b be given, and let f be a continuous
function on [a, b]. If we define g : [a, b] → R by

g(x) =

∫ x

a

f(t) dt

for all x ∈ [a, b], then g is continuous on [a, b] and g′(x) = f(x) for all
x ∈ [a, b], so g is an antiderivative of f on (a, b). Furthermore, any other
continuous function h on [a, b] is an antiderivative of f on (a, b) iff h − g is
constant on [a, b].

Because of this theorem, we frequently write the statement “g is an an-
tiderivative of f ” using the following notation:

∫

f(x) dx = g(x) + C

This is meant to state that all antiderivatives of f are obtained by adding a
suitable constant C to g. (The letter used for the constant does not have to be
“C”, but it is often some capital letter early in the alphabet for convention’s
sake.) The limits of integration are not written, because changing the lower
limit still produces an antiderivative of f . We say that g(x) + C is the
indefinite integral of f , which is understood to be true on any closed intervals
where f is continuous. In contrast, the usual integral notation with limits is
sometimes called the definite integral.

For example, we know that for all x > 0 and p ∈ Q with p 6= −1, we have
(xp+1)′ = (p + 1)xp. Thus,

∫

xp dx =
xp+1

p + 1
+ C where p ∈ Q, p 6= −1
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Since sin has derivative cos, and cos has derivative − sin, we have
∫

cos x dx = sin x + C

∫

sin x dx = − cos x + C

Similarly, we obtain
∫

1√
1 − x2

dx = arcsin x + C

This last formula is only supposed to be used on closed intervals which are
contained in (−1, 1), because 1/

√
1 − x2 is continuous on (−1, 1).

Remark. When using indefinite integral notation, the “+C” is really meant
to convey an entire family of functions, as opposed to specifying one partic-
ular value of C. Mistakes can arise if this distinction is forgotten when two
antiderivatives are computed. For example, since (x)′ = (x + 1)′ = 1 for all
x ∈ R, we can say

∫

1 dx = x + C and

∫

1 dx = x + 1 + C

from which we find “x + C = x + 1 + C”. However, it is NOT allowed to
cancel C from each side and obtain “x = x + 1”. This is because the symbol
C does not represent one number; it instead is shorthand for representing all
possible constants.

We have seen, from Part 1 of the FTC, that we can use definite integrals
to find antiderivatives (by using area functions). For Part 2 of the FTC, we
would like to show that conversely, you can obtain definite integrals from
antiderivatives. As suggested by previously proven formulas like

∫ b

a

x2 dx =
b3

3
− a3

3

∫ b

a

cos x dx = sin b − sin a

it seems that we should plug in the values a and b into an antiderivative and
subtract the results.

Theorem 5.50 (Fundamental Theorem of Calculus, Part 2). Let a,
b ∈ R be given with a < b, and let f be a continuous function on [a, b].
Suppose that F is any continuous function on [a, b] which is an antiderivative
of f on (a, b). Then

∫ b

a

f(x) dx = F (b) − F (a)
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Strategy. If we let g be the area function of f starting from a, then we know
that g is also an antiderivative of f on (a, b). Thus, F and g differ by a
constant. By plugging in a, we can find out what that constant is.

Proof. Let a, b, f, F be given as described. Because f is continuous on [a, b],
we may define g : [a, b] → R by

g(x) =

∫ x

a

f(t) dt

for all x ∈ [a, b]. By Theorem 5.45, g is continuous on [a, b]. By Part 1 of the
FTC, Theorem 5.46, g is an antiderivative of f on (a, b).

Therefore, by Theorem 5.49, F and g differ by a constant, i.e. there is
some C ∈ R such that F (x) − g(x) = C for all x ∈ [a, b]. When x = a, we
know that g(a) = 0, which tells us that C = F (a). Thus,

g(b) =

∫ b

a

f(x) dx = F (b) − C = F (b) − F (a)

as desired. �

As a result of Part 2 of the FTC, we frequently use the notation

∫ b

a

f(x) dx = F (x)|ba

where the vertical bar on the right represents the expression F (b) − F (a)
obtained by plugging in b, plugging in a, and subtracting. We read this as
“the integral from a to b of f(x) dx is F (x) evaluated at a and b”. For instance,

∫ b

a

sin x dx = − cos x|ba = −(cos b − cos a)

and
∫ 1

0

(x4 + x2) dx =

(

x5

5
+

x3

3

)
∣

∣

∣

∣

1

0

=
1

5
+

1

3

Remark. In order to use Part 2 of the FTC, you need the integrand to be
continuous on [a, b]. For instance, you might be tempted to use the fact that
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1/(−2x2) has derivative 1/x3 whenever x 6= 0, which leads you to try using
the FTC to conclude that

∫ 1

−1

dx

x3
=

1

−2x2

∣

∣

∣

∣

1

−1

=
1

−2
− 1

−2
= 0

However, this is invalid because the function taking x to 1/x3 is not continu-
ous at 0. In fact, that function is unbounded on [−1, 1]−{0}, so the function
is not integrable on [−1, 1].

In summary, the two parts of the FTC say roughly that the derivative
of an integral is the original function, and that integrating a derivative gives
you back the original function evaluated at two points. This is formally what
people mean when they say that integration and differentiation are inverse
operations. What this also means is that the problem of integrating functions
usually turns into the problem of finding antiderivatives of functions. Since
we have computed many useful derivatives, and we have also proven some
useful rules for computing derivatives, we should be able to use these things
to our advantage when computing antiderivatives. That will be the focus of
the next chapter.

5.10 Exercises

1. Define g : R → R for all x ∈ R by

g(x) =

∫ x

0

⌊t⌋ dt

In other words, g is the area function corresponding to the floor function
and the starting point of 0.

(a) For each n ∈ N, what is g(n)? Prove your answer.

(b) Since the floor function is continuous precisely at the real numbers
which are not integers, Part 1 of the FTC says that g′(x) = ⌊x⌋
for all x 6∈ Z. When x ∈ Z, however, what is g′(x)?

(c) Define h : R → R for all x ∈ R by

h(x) =

∫ x

0

g(t) dt =

∫ x

0

(
∫ t

0

⌊s⌋ ds

)

dt

and find h(2) and h(−2).

2. Find the following derivatives for all x ∈ R:
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(a)
d

dx

∫ 1

−x

cos(t3) sin(t) dt

(b)
d

dx

∫ x2

x3

t6

1 + t4
dt

(c)
d

dx

∫ x

0

x sin t dt

(Note: Part 1 of the FTC only
applies to integrands which do
not depend on x!)

3. Suppose that g : R → R is continuous everywhere. Prove that

d

dx

∫ x

0

x2g(t) dt = 2x

∫ x

0

g(t) dt + x2g(x)

4. Find a continuous function f : R → R satisfying the following equations
for all x ∈ R. Make sure to plug your function back into the equation
and verify that it is actually a solution to the equation.

(a)

∫ x

0

f(t) dt = x2(1 + x) (b)

∫ f(x)

0

t2 dt = x2(1 + x)

(c)

∫ x

0

f(t) dt =

∫ 1

x

t2f(t) dt +
x16

8
+

x18

9
+ c, where c is a constant.

Also, find the value of c.

5. Find a continuous function f : R → R and a value a ∈ R which satisfies
∫ x2

a

f(t) dt =
x6

3
− 9

for all x ∈ R.

6. In Example 5.48, we showed that constant functions are solutions to
the equation

∫ 2x

0

f(t) dt = 2

∫ x

0

f(t) dt

for all x ∈ R. Prove that if f : R → R is a continuous solution to the
above equation, then f is a constant function! (Hint: For any x ∈ R,
show that f(x) = f(0) by considering f(x/2), f(x/4), f(x/8), . . . .)

7. In this exercise, we will find the continuous functions f : (0,∞) → R

which satisfy
∫ kx

x

f(t) dt =

∫ k

1

f(t) dt for all x, k > 0
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(a) For each constant C ∈ R, use the stretching property from Theo-
rem 5.29 to prove that if f(x) = C/x for all x > 0, then f satisfies
the equation above.

(b) Show that if f : (0,∞) → R is a continuous solution to the equa-
tion above, then for some C ∈ R, we must have f(x) = C/x for
all x > 0.

8. Find the following indefinite integrals, using the notation we introduced
before Part 2 of the FTC:

(a)

∫

3x3 − x dx

(b)

∫

x4 + x − 3

x3
dx

(Assume x 6= 0.)

(c)

∫

sec x tan x + sec2 x dx

(Assume x 6= π/2 + kπ for any
k ∈ Z.)

(d)

∫

sin2
(x

2

)

dx

(Hint: Half-angle identity)

9. Using the answers from the previous exercise, compute the following
definite integrals:

(a)

∫ 4

2

3x3 − x dx

(b)

∫ −1

−2

x4 + x − 3

x3
dx

(c)

∫ π/4

0

sec x tan x + sec2 x dx

(d)

∫ π

0

sin2
(x

2

)

dx

10. This exercise outlines an alternate proof of Part 2 of the FTC which
doesn’t use Part 1. The approach we will use is quite similar to the
approach outlined for computing the integral of cos in Exercise 5.6.10.

Let a, b ∈ R with a < b be given, and let f be a real function which
is continuous on [a, b]. Suppose that F : [a, b] → R is continuous and
satisfies F ′(x) = f(x) for all x ∈ (a, b), so F is an antiderivative of f
on (a, b). Since f is continuous on [a, b], f is integrable on [a, b], so we
know that there exists only one number I ∈ R which satisfies

∫ b

a

s ≤ I ≤
∫ b

a

t

for all upper step functions t for f on [a, b] and all lower step functions s

for f on [a, b]. In particular, I =

∫ b

a

f . To show that I = F (b)−F (a),
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we will show that F (b) − F (a) satisfies the inequality above for every
suitable t and s.

(a) Let t and s be respectively upper and lower step functions for f on
[a, b], compatible with a common partition P = {x0, x1, . . . , xn}.
Let i be given from 1 to n, and suppose that s(x) = ai and t(x) =
bi for all x ∈ (xi−1, xi). Use the MVT for derivatives to prove that
for all i from 1 to n,

ai(xi − xi−1) ≤ F (xi) − F (xi−1) ≤ bi(xi − xi−1)

(b) Use part (a) to show that

∫ b

a

s ≤ F (b) − F (a) ≤
∫ b

a

t

for all s and t as described in Part (a). Thus, we have proven

I =

∫ b

a

f(x) dx = F (b) − F (a)
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Chapter 6

Techniques of Integration

At the end of the last chapter, we introduced the Fundamental Theorem of
Calculus (FTC), which proves in essence that derivatives and integrals “undo
each other”. Most importantly, it means that we have an easier way of finding
integrals: when f is continuous on [a, b], rather than computing

∫ b

a

f(x) dx

with upper and lower integrals, we instead look for an antiderivative F such
that F ′ = f on [a, b] and compute F (b) − F (a).

For instance, if F (x) = x sin x for all x ∈ R, then F ′(x) = x cos x + sin x
by the Product Rule. It follows that

∫ b

a

(x cos x + sin x) dx = x sin x|ba = b sin b − a sin a

for any a, b ∈ R. We can also summarize this with Leibniz notation by
writing

∫

(x cos x + sin x) dx = x sin x + C

where C is an arbitrary constant.
In Chapter 4, we proved many laws for computing derivatives, such as the

Product Rule and the Chain Rule. In order to compute integrals, i.e. find
antiderivatives, we want to develop techniques which “undo” the derivative
laws. Unfortunately, it is harder to undo the derivative laws than to apply
those laws. For instance, suppose we want to integrate

f(x) = x cos x + sin x

PREPRINT: Not for resale. Do not distribute without author’s permission.



376 Section 6.1: The Substitution Rule

to get an antiderivative F . Perhaps we suspect that the Product Rule was
used to obtain F ′. Hence, F has the form gh for some functions g and h,
and f = F ′ = g′h + gh′. However, it’s quite tricky to determine what g and
h could be. Also, if you try to determine F by integrating x cos x and sin x
separately, then you probably won’t be able to obtain x cos x via the Product
Rule for derivatives.

In fact, it turns out that there are functions which are continuous at
almost every point, and thus the FTC guarantees that they have antideriva-
tives, but the antiderivatives cannot be built out of the functions commonly
used in mathematics. Informally, we say that such functions don’t have ele-
mentary antiderivatives1. A couple well-known examples of functions which
have been proven to not have elementary antiderivatives are

sin x

x
and cos(x2)

Although we know antiderivatives of sin x and x, namely − cos x and (1/2)x2

respectively, there is no “Quotient Rule” for antiderivatives that lets us ob-
tain an elementary antiderivative of (sin x)/x out of antiderivatives for the
individual parts.

In summary, integration is a much harder task than differentiation. We
will develop some techniques/rules for finding antiderivatives, but these tech-
niques will not be foolproof, and several techniques may need to be tried be-
fore one is found that works. These techniques tend to work quite well with
some specific types of integrals which occur frequently, such as products of
trigonometric functions, so we will also devote attention to some of those
types of integrals.

6.1 The Substitution Rule

For our first major rule of integration, we aim to undo the Chain Rule. The
Chain Rule tells us how to differentiate composite functions. For instance, if
f(x) =

√
x for x ≥ 0 and g(x) = 3x+1 for x ∈ R, then (f ◦g)(x) =

√
3x + 1,

and
d

dx

(√
3x + 1

)

= (f ◦ g)′(x) = f ′(g(x))g′(x) =
3

2
√

3x + 1

1Proofs of this use the theory of differential fields, which will not be covered here.
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Therefore,
√

3x + 1 is an antiderivative of
3

2
√

3x + 1
, and in Leibniz notation

we write this as
∫

3

2
√

3x + 1
dx =

√
3x + 1 + C

More generally, suppose that F is an antiderivative of f , which means
F ′ = f . Thus, (F ◦ g)′(x) = F ′(g(x))g′(x) = f(g(x))g′(x). Therefore, we
have

∫

f(g(x))g′(x) dx = F (g(x)) + C

For another way to see this, let’s denote g(x) by a separate variable, say

we write u = g(x). Then
du

dx
= g′(x). By treating du and dx as differentials

(see Section 4.5), informally we can write du = g′(x) dx. Hence, we informally
replace g(x) by u and g′(x) dx by du in our integration problem, yielding

∫

f(g(x))g′(x) dx =

∫

f(u) du

Now, this looks like an integration problem in u! As f has antiderivative F ,
we have

∫

f(u) du = F (u) + C

which equals F (g(x)) + C when we put the result back in terms of x.
This is the idea of the Substitution Rule: substitute a new variable u in

place of g(x). When we do this, we turn our problem of integrating (f ◦g) ·g′

into the simpler problem of integrating f ! After we are done integrating
f , we plug g(x) back in place of u to obtain a final answer in terms of the
original variable x. Sometimes, this method is called “u-substitution” since
the letter u traditionally denotes the function used in the substitution.

Example 6.1:

To see an example of substitution in practice, let’s compute

∫

2x sin
(

x2
)

dx

Since our integrand involves the composition of sin and x2, we try letting
u equal the inner part of the composition, i.e. u = x2. Then du = 2x dx.
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Therefore,

∫

2x sin
(

x2
)

dx =

∫

sin
(

x2
)

(2x dx) =

∫

sin u du

At this point, our problem reduces to finding an antiderivative for sin.
Since − cos u has derivative sin u, we find

∫

sin u du = − cos u + C = − cos
(

x2
)

+ C

Note that we can check our answer quite easily: to see that − cos(x2) is
an antiderivative of 2x sin(x2), we compute

d

dx

(

− cos
(

x2
))

= −
(

− sin
(

x2
))

· (2x) = 2x sin
(

x2
)

as desired. �

More formally, using the remarks at the beginning of this section, you
can prove the following theorem to justify our work:

Theorem 6.2 (Substitution Rule). Let f, g be real functions such that f
is continuous and g′ exists and is continuous. Let F be an antiderivative of
f . Then

∫

f(g(x))g′(x) dx =

∫

f(u) du = F (u) + C = F (g(x)) + C

where we perform the substitution u = g(x) and du = g′(x) dx.

The substitution rule is a good technique to try when integrating compo-
sitions, if we can write the composition in the form f(g(x))·g′(x). Sometimes
this takes a little extra work, as this example shows:

Example 6.3:

Let’s try to find
∫ √

2x + 4 dx

This integrand is a composition of f(x) =
√

x and g(x) = 2x + 4. Since
it’s easier to integrate f on its own, we try letting u = 2x+4. Then du = 2 dx.
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Technically, substitution tells us how to integrate f(g(x))g′(x), which is
2
√

2x + 4, but our current integrand does not have that factor of 2 present.
To fix this, we can multiply and divide by 2 and pull a 1/2 factor outside of
the integral. This gives us

1

2

∫

2
√

2x + 4 dx =
1

2

∫ √
u du =

1

2

u3/2

3/2
+ C =

1

3
(2x + 4)3/2 + C

Commonly, instead of multiplying and dividing by 2, we instead write
du = 2 dx as dx = du/2 and compute

∫ √
2x + 4 dx =

∫ √
u

(

du

2

)

=
1

2

∫ √
u du

as before. Formally, this computation is shorthand for the multiplying and
dividing by 2 that occurs above. �

Example 6.4:

Here, let’s compute
∫

cos2 x sin x dx

In this problem, you may view cos2 x as a composition where cos is the
inner function. Also, you can notice that the derivative of cos is − sin, which
is a constant times the sin x term we have in our integrand. Thus, we choose

u = cos x du = − sin x dx dx =
−du

sin x

This gives us
∫

cos2 x sin x dx =

∫

u2 sin x

(−du

sin x

)

=

∫

−u2 du =
−u3

3
+ C =

− cos3 x

3
+ C

where we once again use shorthand instead of first multiplying and dividing
our integrand by −1. �

When performing a substitution of u = g(x), we need the new integrand
to be a function of u alone. However, sometimes when we try a u-substitution,
we still have copies of x left over after plugging in u and du. The substitution
rule can still apply if we manage to convert those remaining x’s into an
expression in terms of u, as the following example shows:
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Example 6.5:

Let’s try and compute
∫

x(x + 2)5/2 dx

To handle the composition, we try u = x + 2 and du = dx. However, when
we plug in u and du, we obtain the expression

∫

xu5/2 du

This expression isn’t well-defined by our definition of
∫

.
In this situation, we note that x can be written in terms of u: x = u− 2.

When we plug that into our previous expression using both x’s and u’s, we
obtain

∫

(u − 2)u5/2 du =

∫

(u7/2 − 2u5/2) du

=
u9/2

9/2
− 2

(

u7/2

7/2

)

+ C

=
2

9
(x + 2)9/2 − 4

7
(x + 2)7/2 + C

More formally, to justify this process by the substitution rule, we are
writing our original integrand in the form

∫

x(x + 2)5/2 dx =

∫

((x + 2) − 2)(x + 2)5/2 dx =

∫

f(g(x))g′(x) dx

where f(u) = (u− 2)u5/2 and g(x) = x + 2. However, as shorthand, we may
“solve for x in terms of u” like we did above. �

Substitution can be used to simplify many integrals or manipulate them
into alternate useful forms. As with any skill, you will become better at
recognizing how to use it through practice.

Substitution and Definite Integrals

Since the substitution technique helps find antiderivatives, it can also be
used to help calculate definite integrals. For instance, in Example 6.4, we
found

∫

cos2 x sin x dx =
− cos3 x

3
+ C

PREPRINT: Not for resale. Do not distribute without author’s permission.



Chapter 6: Techniques of Integration 381

and thus, by the Fundamental Theorem,

∫ π/2

0

cos2 x sin x dx =
− cos3 x

3

∣

∣

∣

∣

π/2

0

=
cos3 0 − cos3(π/2)

3
=

1

3

However, if we try to perform the substitution u = cos x in the definite
integral leaving the limits alone, then we end up with the incorrect statement

∫ π/2

0

cos2 x sin x dx =

∫ π/2

0

−u2 du =
−u3

3

∣

∣

∣

∣

π/2

0

=
−π3

24

The problem here is that the limit values are values for x, not values for u.
How should we perform this calculation instead? One way is to write the

limits of integration in a way that reminds us they are limits for x, not u.
This would be written as

∫ π/2

0

cos2 x sin x dx =

∫ x=π/2

x=0

−u2 du

=
−u3

3

∣

∣

∣

∣

x=π/2

x=0

=
− cos3 x

3

∣

∣

∣

∣

π/2

0

By writing “x =” in the limits, we remind ourselves that we cannot plug
in those values until we have returned our expression to a function of x.
However, this is clumsy notation, and we have to do the extra work to going
back to x.

Instead, when we change variables from x to u, we should also change the
limit values to values for u! When x = 0, we have u = cos 0 = 1, and when
x = π/2, u = cos(π/2) = 0. Thus, we write our work as

∫ π/2

0

cos2 x sin x dx =

∫ 0

1

−u2 du =
−u3

3

∣

∣

∣

∣

0

1

Note that we never even have to return to the original variable x!
To justify this limit change more formally, we have this theorem:

Theorem 6.6 (Substitution with Definite Integrals). Let a, b ∈ R be
given with a ≤ b, and let f, g be real functions. If S is the range of g on
[a, b], then suppose that f is continuous on S and g′ exists and is continuous
on [a, b]. Let F be an antiderivative of f on S. Then

∫ b

a

f(g(x))g′(x) dx =

∫ g(b)

g(a)

f(u) du = F (u)|g(b)
g(a) = F (g(b)) − F (g(a))
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where we perform the substitution u = g(x) and du = g′(x) dx.

Strategy. Essentially, we are just saying that when you change from x to
u = g(x), you change the limits a and b to g(a) and g(b) respectively. To see
why this is valid, we will evaluate the integrals of (f ◦ g) · g′ and of f using
the Fundamental Theorem. We already have an antiderivative of f : F . The
Substitution Rule shown previously gives us an antiderivative of (f ◦ g) · g′:
F ◦ g. Using these antiderivatives, we can check that we get the same answer
either way we compute this integral.

Proof. Let a, b, f, g, F be given as described. First, we address some subtle
details concerning where our functions are continuous (i.e. we check to see
whether the FTC is allowed). Since g is continuous on [a, b], S is a closed
bounded interval containing g(a) and g(b). (See Exercise 3.12.3.) Thus, by
the Composition Limit Theorem, (f ◦g) ·g′ is continuous on [a, b]. Also, since
f is continuous on S, in particular it is continuous from g(a) to g(b).

Therefore, we may use the FTC to compute each of the integrals

∫ b

a

f(g(x))g′(x) dx and

∫ g(b)

g(a)

f(u) du

Since F is an antiderivative of f , the integral on the right equals

F (u)|g(b)
g(a) = F (g(b)) − F (g(a))

By the Chain Rule, (F ◦ g)′ = (F ′ ◦ g) · g′ = (f ◦ g) · g′, so F ◦ g is an
antiderivative of (f ◦ g) · g′. Therefore, the integral on the left equals

F (g(x))|ba = F (g(b)) − F (g(a))

Our two expressions are equal. �

Example 6.7:

Let’s compute
∫ π2

π2/4

sin
√

x√
x

dx

Since there is a composition of sin and square root, we try u =
√

x, so

du =
1

2
√

x
dx. Let’s rewrite this as dx = 2

√
x du to make it easy to plug in
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for dx. Also, when x = π2/4, u = π/2, and when x = π2, u = π. Thus, we
compute

∫ π2

π2/4

sin
√

x√
x

dx =

∫ π

π/2

sin u√
x

(2
√

x du)

=

∫ π

π/2

2 sin u du = −2 cos u|ππ/2

= −2(sin π − sin(π/2)) = 2

Note that the dx or du term tells us which variable is being used for the
limits, and it helps us perform substitution correctly. �

As a final note on substitution, we can even use substitution to prove
some theorems, because substitution gives us a way of writing integrals in
other forms. For instance, if f is continuous on [a+ c, b+ c], then we see that

∫ b

a

f(x + c) dx =

∫ b+c

a+c

f(u) du

by substituting u = x + c! This gives us a quick and easy proof of the
Shifting Property for integrals (Theorem 5.28) when f is continuous. We
provide another example.

Example 6.8:

Let’s suppose that f : R → R is continuous and odd, meaning that f(−x) =
−f(x) for all x ∈ R. Define F : R → R by F (x) =

∫ x

0
f(t) dt. The Funda-

mental Theorem shows that F is an antiderivative of f . Let’s prove that F
is even, i.e. F (−x) = F (x) for all x ∈ R.

Let x ∈ R be given. We’d like to rewrite

F (−x) =

∫ −x

0

f(t) dt

in terms of F (x). Since we know that f is odd, how can we use this fact
to our advantage? To do so, we’d like an expression where f is applied to
something with a minus sign. Because of this, we try the substitution u = −t
and du = −dt. When t = 0, we have u = 0, and when t = −x, we have
u = x. Also, we have t = −u and dt = −du, so we find

∫ −x

0

f(t) dt =

∫ x

0

f(−u)(−du)
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Because f is odd, f(−u) = −f(u), so we obtain

∫ x

0

f(−u)(−du) =

∫ x

0

f(u) du

Recall that the variable of integration can be anything which isn’t already
used somewhere else. Thus, by the definition of F , our final integral is equal
to F (x), proving F (−x) = F (x). �

6.2 Integration By Parts

Our next rule for integration aims to undo the Product Rule. As an example,
if f(x) = x and g(x) = sin x for x ∈ R, then (fg)(x) = x sin x and

d

dx
(x sin x) = f ′(x)g(x) + f(x)g′(x) = sin x + x cos x

Since sin x has antiderivative − cos x, this means

d

dx
(x sin x − cos x) = x cos x

and therefore
∫

x cos x dx = x sin x − cos x + C

More generally, suppose that f and g are differentiable functions. The
Product Rule tells us that (fg)′(x) = f ′(x)g(x) + f(x)g′(x). Therefore, by
integrating, we have

f(x)g(x) + C =

∫

f ′(x)g(x) dx +

∫

f(x)g′(x) dx

This is useful because this formula allows us to write the integral of fg′ in
terms of the integral of f ′g and vice versa. More specifically, we have

∫

f(x)g′(x) dx = f(x)g(x) −
∫

f ′(x)g(x) dx

Hence, we have turned the problem of integrating fg′ into the problem of
integrating f ′g. (There is no need to write the arbitrary constant of integra-
tion C here, because that constant will appear after integrating f ′g. We only
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need to write that constant after we have finished finding an antiderivative
of fg′.)

This is the main formula underlying the technique called integration by
parts. When performing integration by parts, we try to integrate a product by
expressing it in the form fg′ (we say f and g′ are the parts of the integrand)
and using the formula above. This can be very useful when the form of f ′g
is simpler than that of fg′. For instance, in the example above, (fg′)(x) is
x cos x and (f ′g)(x) is sin x, so f ′g has an antiderivative we already know.

Example 6.9:

To see this technique in practice, let’s compute

∫

x(x + 2)5/2 dx

We showed how to use substitution to evaluate this in Example 6.5, but we
can also use parts to evaluate this. We’d like to write this integrand in the
form fg′, such that the form of f ′g is much simpler. This suggests that we
choose f and g so that

f(x) = x g′(x) = (x + 2)5/2

For g, we can take any antiderivative g′, which can be found by a simple
substitution of u = x + 2 (we leave out the details). Thus, we have

f ′(x) = 1 g(x) =
2

7
(x + 2)7/2

(Note that substitutions which are this simple are not usually shown with
all details, because it is very easy to differentiate g to check your answer.)
Note that f ′ is much simpler than f (at the very least, it’s a polynomial of
smaller degree than f), and g has about the same level of complexity as g′.
Hence, it is easier to integrate f ′g.

By integration by parts, we have

∫

x(x + 2)5/2 dx = f(x)g(x) −
∫

f ′(x)g(x) dx

=
2

7
x(x + 2)7/2 − 2

7

∫

(x + 2)7/2 dx
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This last integral can be computed by a substitution of u = x + 2, which
gives us the final answer of

2

7
x(x + 2)7/2 − 2

7

(

2

9
(x + 2)9/2

)

+ C =
2

7
x(x + 2)7/2 − 4

63
(x + 2)9/2 + C

(Note that we only need to include the arbitrary constant C of integration at
the very end, once we have found some antiderivative of our original integrand
x(x + 2)5/2.)

This answer looks quite different from the answer in Example 6.5:

2

9
(x + 2)9/2 − 4

7
(x + 2)7/2 + C

However, it turns out to be the same function. If we take the answer from
Example 6.5 and subtract the answer we found in this example, and we pull
out common factors, then we get

2

7
(x + 2)9/2 − 4

7
(x + 2)7/2 − 2

7
x(x + 2)7/2 =

2

7
(x + 2)7/2 ((x + 2) − 2 − x) = 0

This illustrates that integration problems can show two quantities are equal,
despite them not looking very similar at first glance. �

Remark. When performing integration by parts, it can make a big difference
how the parts are chosen. If we try to perform integration by parts in the
previous example with the choices

f(x) = (x + 2)5/2 g′(x) = x

leading to

f ′(x) =
5

2
(x + 2)3/2 g(x) =

x2

2

then it is harder to integrate f ′g than to integrate fg′. In essence, we chose
our parts in the previous example so as to “eliminate the x’s” and only have
powers of (x + 2) left over.

Here is the formal theorem justifying our steps, which you should try to
prove for yourself.
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Theorem 6.10 (Integration By Parts). Let f, g be real functions such
that f ′ and g′ exist and are continuous. If H is an antiderivative of f ′g, then
∫

f(x)g′(x) dx = f(x)g(x) −
∫

f ′(x)g(x) dx = f(x)g(x) − H(x) + C

In particular, if f ′ and g′ are continuous on an interval [a, b], then

∫ b

a

f(x)g′(x) dx = f(x)g(x)|ba −
∫ b

a

f ′(x)g(x) dx

= (f(x)g(x) − H(x))|ba
Frequently, a notation similar to that for u-substitution is used with in-

tegration by parts. We write

u = f(x) v = g(x) du = f ′(x) dx dv = g′(x) dx

(Hence, like in u-substitution, we treat du and dv as if they are differentials.)
With this notation, the formula for integration by parts becomes

∫

u dv = uv −
∫

v du

This notation helps make clear that when performing integration by parts,
one part (the “u” part) is differentiated and the other (the “dv” part) is
integrated.

Example 6.11:

Here, let’s try and compute
∫

x2 sin x dx

This is a good candidate for integration by parts because there is a product
of terms, where one of them (x2) becomes simpler when differentiated and
the other (sin x) doesn’t become uglier when integrated. We choose

u = x2 dv = sin x dx

so that
du = 2x dx v = − cos x
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Hence, our problem becomes

uv −
∫

v du = −x2 cos x + 2

∫

x cos x dx

The integral of x cos x was done at the beginning of this section, using parts
with u = x and dv = cos x dx. Our final answer is

−x2 cos x + 2 (x sin x − cos x) + C = −x2 cos x + 2x sin x − 2 cos x + C

�

As Example 6.11 shows, if a polynomial is present in the integrand, then
we frequently choose it to be u. This is because differentiating a polynomial
lowers its degree. In fact, for degree d polynomials, you often find yourself
performing integration by parts d times. However, this is only a guideline
and not a strict requirement, because after all, you still need to make sure
to choose dv to be something you can actually integrate.

Example 6.11 also shows that sometimes integration by parts should be
performed multiple times. This is a worthwhile thing to try as long as each
time integration by parts is performed, the resulting problem does not look
worse. Here’s an example where this is useful.

Example 6.12:

Let’s integrate
∫

sin(2x) cos x dx

This is not well-suited for substitution, because if we try to substitute u = 2x,
then the cos x term becomes cos(u/2), so we don’t make our problem any
simpler. However, we can try parts with

u = sin(2x) dv = cos x dx

This gives us du = 2 cos(2x) dx and v = sin x, so
∫

sin(2x) cos x dx = sin(2x) sin x − 2

∫

cos(2x) sin x dx

This new integration problem is like the old one, but the roles of cos and
sin are switched. If we try parts again with

u = cos(2x) dv = sin x dx
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then du = −2 sin(2x), v = − cos x, and thus
∫

sin(2x) cos x dx = sin(2x) sin x

− 2

(

− cos(2x) cos x − 2

∫

sin(2x) cos x dx

)

= sin(2x) sin x + 2 cos(2x) cosx + 4

∫

sin(2x) cos x dx

We have now returned full-circle to our original problem. This is useful,
because we can collect the terms of

∫

sin(2x) cos x dx to the same side, and
we get

(−3)

∫

sin(2x) cos x dx = sin(2x) sin x + 2 cos(2x) cos x

By dividing by −3 and adding in our arbitrary constant of integration, we
find

∫

sin(2x) cos x dx =
1

3
sin(2x) sin x +

2

3
cos(2x) cos x + C

�

Remark. Unfortunately, there are times when you return to the original inte-
gral when doing integration by parts, but this doesn’t help you. For instance,
suppose we try to integrate

∫

1

x
dx

by parts, using u = 1/x and dv = dx. We obtain du = −1/x2 dx and v = x,
leading to

∫

1

x
dx = 1 +

∫

x

x2
dx = 1 +

∫

1

x
dx

At this point, it is tempting to cancel the integral from each side and
obtain 0 = 1, but that isn’t valid. The issue is that when integrating by
parts, there is an integration constant C behind the scenes, which must be
introduced when we finally obtain an antiderivative. To be precise, let’s
suppose A(x) is an antiderivative of 1/x. Thus, the integral on the left is
A(x) + C for some constant C, and the integral on the right is A(x) + D for
some constant D (which doesn’t have to equal C). Hence, we have

A(x) + C = 1 + A(x) + D ↔ C = 1 + D
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This equation isn’t a contradiction, since it can be satisfied for any arbitrary
choice of C by picking D = C − 1. However, this doesn’t give us any infor-
mation about A(x), so we didn’t learn anything about an antiderivative of
1/x.

If we try to solve this problem with definite integrals instead, say from a
to b where 0 < a < b (hoping to get rid of issues involving constants like C),
then we get

∫ b

a

1

x
dx = 1|ba +

∫ b

a

1

x
dx

Note that 1|ba is equal to 1 − 1, which is 0. Thus, once again, we don’t get a
contradiction, but we also don’t learn anything useful.

You can try other choices of parts by writing 1/x as (xn)(x−(n+1)) for any
n ∈ N∗, but all of these choices will run into the same problem. In fact,
in the next chapter, we’ll study an antiderivative of 1/x called the natural
logarithm of x, and we’ll discover important properties of the logarithm that
set it apart from other functions we have studied so far.

Example 6.13:

As one last example of the use of integration by parts, we consider integrating
∫

sinn x dx

when n ∈ N∗ and n ≥ 2. (We already know antiderivatives when n = 0 or
n = 1.)

Since sinn x is a product of n sines, and we only know how to integrate
one power of sin x, let’s make dv = sin x dx, so that u = sinn−1 x has all the
other powers. Thus, v = − cos x and du = (n − 1) sinn−2 x cos x dx by the
Chain Rule. This gives

∫

sinn x dx = − sinn−1 x cos x + (n − 1)

∫

sinn−2 x cos2 x dx

At first, this looks worse than the original problem with which we started.
However, we know that we can write cos2 x as 1 − sin2 x, so that we get

∫

sinn x dx = − sinn−1 x cos x + (n − 1)

∫

sinn−2 x(1 − sin2 x) dx

= − sinn−1 x cos x + (n − 1)

∫

sinn−2 x dx

− (n − 1)

∫

sinn x dx
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By collecting the integrals of sinn x dx on the same side, and dividing by n,
we obtain

∫

sinn x dx = −sinn−1 x cos x

n
+

n − 1

n

∫

sinn−2 x dx

Therefore, we have shown how to integrate sinn x in terms of the integral
for sinn−2 x dx. By repeating this process, i.e. using this formula recursively,
we can eventually reduce our problem down to integrating the 0th or 1st power
of sin x. Hence, this kind of formula is often called a reduction formula, since
it is an inductive formula for reducing the complexity of an integral. �

6.3 Exercises

Compute the indefinite or definite integrals in Exercises 1 through 12 by
using substitution.

1.

∫

x

(x2 + 1)2
dx

2.

∫ π

0

sin x
√

cos x + 3 dx

3.

∫

sin(x1/3)

x2/3
dx

4.

∫ 4

−1

x
√

x + 5 dx

5.

∫

x3
√

x2 + 5 dx

(Hint: Use the same idea as the previous problem.)

6.

∫ 1

0

x + 1

(x2 + 2x + 2)3
dx 7.

∫

sin x cos2 x dx

8.

∫ π

0

sin3 x dx

(Hint: Relate this to the previous problem.)

9.

∫

sin(3x) cos(3x) dx 10.

∫

sin x + cos x

(sin x − cos x)2
dx

11.

∫

1
√

(1/x2) − 1
dx

(Hint: Make a common denominator.)
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12.

∫

√
3

0

(x2 + 1)−3/2 dx

(Hint: Use u = (x2 + 1)−1/2, solve for x in terms of u, and relate this
to the previous problem. Also, note that x ≥ 0.)

Compute the integrals in Exercises 13 through 17 by using parts (occa-
sionally substitution will also be useful to help integrate a part).

13.

∫ π

0

(x − 2)2 cos x dx 14.

∫

(3x + 1)
√

x + 4 dx

15.

∫

x sin x cos x dx

16.

∫

sin(ax) cos(ax) dx where a is a nonzero constant

17.

∫

sin(ax) cos(bx) dx where a, b are distinct nonzero constants

For Exercises 18 through 20, let L(x) =

∫ x

1

dt

t
. Thus, L(x) is an an-

tiderivative of 1/x.

18. (a) Show that
∫

tanx dx = −L(cos x) + C

(Hint: Write things in terms of sin x and cos x.)

(b) Show that
∫

cot x dx = L(sin x) + C

19. (a) Compute

∫

sec x dx in terms of L. (Hint: Multiply and divide by

sec x + tan x and use Exercise 4.4.10 to help with a substitution.)

(b) Compute

∫

csc x dx.
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20. By using integration by parts and substitution, show that

∫

arctan x dx = x arctan x − 1

2
L(x2 + 1) + C

Exercise 4.6.21 will probably be useful.

21. Use the reduction formula from Example 6.13 to compute the following
integrals:

∫ π/2

0

sin2 x dx

∫ π/2

0

sin3 x dx

∫ π/2

0

sin4 x dx

22. Use parts to prove the reduction formula

∫

cosn x dx =
cosn−1 x sin x

n
+

n − 1

n

∫

cosn−2 x dx

for all n ∈ N with n ≥ 2.

23. Use the result from the previous exercise to compute the following:

∫ π/2

0

cos2 x dx

∫ π/2

0

cos3 x dx

∫ π/2

0

cos4 x dx

24. This problem shows five distinct ways of computing

∫

sin x cos x dx!

(a) Show two different ways of evaluating this integral using substi-
tution.

(b) The two answers from part (a) don’t look the same, but they differ
by a constant. What is that constant?

(c) Show two different ways of evaluating our integral by parts.

(d) Using an identity for sin 2x, show a fifth way of evaluating our
integral.

25. (a) Use integration by parts to show that

∫ √
1 − x2 dx = x

√
1 − x2 +

∫

x2

√
1 − x2

dx
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(b) In the second integral from the previous part, write x2 as (x2 −
1) + 1 and show that

∫ √
1 − x2 dx =

1

2
x
√

1 − x2 +
1

2

∫

1√
1 − x2

dx

(Note that by Example 4.33, the last integral is arcsin x + C).

26. Use substitution to prove that for all b > 0,
∫ 1

b

dx

1 + x2
=

∫ 1/b

1

dx

1 + x2

(You do not need to know an antiderivative of 1/(1 + x2) to do this
problem, although it turns out that arctan x is one such antiderivative.)

27. If m, n ∈ N∗, then show that
∫ 1

0

xm(1 − x)n dx =

∫ 1

0

xn(1 − x)m dx

(This integral occurs in statistics in connection with the Beta distribu-
tion.)

28. (a) Show that if f is any continuous function on [0, 1], then
∫ π

0

xf(sin x) dx =
π

2

∫ π

0

f(sin x) dx

(Hint: Choose u = π − x.)

(b) Use part (a) to prove that
∫ π

0

x sin x

1 + cos2 x
dx = π

∫ 1

0

dx

1 + x2

29. (a) Let a ∈ R be given with a > 0. The integral

∫ a

0

√
a2 − x2 dx

represents the area of a shape. What is that shape, and what is
the area?

(b) Prove the reduction formula
∫

(a2 − x2)n dx =
x(a2 − x2)n

2n + 1
+

2a2n

2n + 1

∫

(a2 − x2)n−1 dx

for all n > 1. (Hint: After using parts, write x2 as (x2 − a2)+ a2.)

(c) Use parts (a) and (b) to compute

∫ a

0

(a2 − x2)5/2 dx.
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6.4 Trigonometric Integrals

In this section, we’ll present some strategies for dealing with integrals involv-
ing trigonometric functions. These kinds of integrals occur frequently (as
we’ll see in the next section). In most of these problems, the overall idea is
to apply identities in order to eventually make a u-substitution.

Sines and Cosines

First, let’s consider integrands consisting of products of sines and cosines.

Example 6.14:

As an example to illustrate the main idea, let’s consider

∫

cos3 x dx

In the exercises from the last section, we showed one way to integrate this
by using parts, but it involves a complicated reduction formula. Let’s show
a quicker way to integrate this by substitution.

Since we have a composition (a power of cos x), we could consider sub-
stituting u = cos x. That doesn’t currently seem applicable, because we get
du = − sin x dx, and there is no factor of sin x lying around to be used for
du. However, this gives us the idea that we’d like to have a mixture of sine
and cosine factors in our integrand, so that we have something to take care
of du. To accomplish this, we use the Pythagorean identity

sin2 x + cos2 x = 1

to rewrite our integrand as

∫

cos3 x dx =

∫

cos x(1 − sin2 x) dx

By doing this, we now have two powers of sin x, suggesting u = sin x
instead, and fortunately we have a factor of cos x available to take care of
du = cos x dx. Thus,

∫

cos x(1 − sin2 x) dx =

∫

(1 − u2) du = u − u3

3
+ C = sin x − sin3 x

3
+ C
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�

To summarize the tactic from Example 6.14, when we have powers of sine
and/or cosine, we want to use one of the substitutions

u = sin x or u = cos x

to evaluate the integral. In order to do this, we need a spare factor of sin x
or cos x available for du. We then want to write the rest of the integrand in
terms of u, and we use the Pythagorean identity to convert between pairs of
sines and pairs of cosines as necessary.

Example 6.15:

As another example, consider

∫ π/2

0

cos2 x sin5 x dx

We want to substitute either u = sin x or u = cos x. If we try u = sin x, then
we set aside one cos x for du and convert the remaining factor of cos x into

terms of sin x by writing cos x =
√

1 − sin2 x. However, this means that we
get

∫ π/2

0

sin5 x
√

1 − sin2 x cos x dx =

∫ 1

0

u5
√

1 − u2 du

and that square root is difficult to integrate.
However, if we try u = cos x instead, then we set aside one sin x for du

and convert the remaining four factors of sin x into terms of cos x. Since
sin4 x = (sin2 x)2 = (1− cos2 x)2, this conversion does not involve any square
roots. After substitution of u = cos x, we obtain

∫ π/2

0

cos2 x(1 − cos2 x)2 sin x dx = −
∫ 0

1

u2(1 − u2)2 du

This is easy to integrate by distributing, and we get

∫ 1

0

u2 − 2u4 + u6 du =

(

u3

3
− 2u5

5
+

u7

7

)
∣

∣

∣

∣

1

0

=
1

3
− 2

5
+

1

7
=

8

105

This goes to show that when choosing whether to substitute for sin x
or for cos x, it is easier to set aside a factor from an ODD power and then
convert the remaining even number of factors to the other type. �
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Occasionally, this tactic of leaving aside one factor and converting pairs
to the other type applies to integrands which don’t look like powers of sine
times powers of cosine. To make this tactic apply, we try writing other
trigonometric functions in terms of sine and cosine, as the following example
demonstrates.

Example 6.16:

For example, consider
∫

sec5 x

csc3 x
dx

Since sec x = 1/(cos x) and csc x = 1/(sin x), our integral is the same as

∫

sin3 x

cos5 x
dx

Here, we want to substitute u = cos x. (This is because we can only set aside
a factor from the numerator to help with du = − sin x dx. A factor of cos x
from the denominator doesn’t help.) Setting one power of sin x aside and
converting the rest to cosines, we get

∫

1 − cos2 x

cos5 x
sin x dx = −

∫

1 − u2

u5
du =

∫

u−3 − u−5 du

=
u−2

−2
− u−4

−4
+ C =

−1

2 cos2 x
+

1

4 cos4 x
+ C

�

Our tactic of setting one factor aside won’t work if we have even powers
of sine and of cosine. In this case, we can use the half-angle identities

sin2 x =
1

2
(1 − cos(2x)) cos2 x =

1

2
(1 + cos(2x))

By doing this, we obtain a problem with smaller powers of cos(2x), and the
2x can easily be handled by a substitution. We demonstrate with an example.

Example 6.17:

Let’s solve
∫ 2π

π

cos4 x dx
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without using the complicated reduction formula. Since cos4 x = (cos2 x)2,
we can use the half-angle identities to rewrite our integral as

∫ 2π

π

(

1

2
(1 + cos(2x))

)2

dx =

∫ 2π

π

1

4
+

cos(2x)

2
+

1

4
cos2(2x) dx

We can certainly integrate constants, and we can integrate cos(2x) easily
as well with a substitution for 2x (that substitution is frequently done with-
out writing full details for convenience). To handle cos2(2x), we treat it as
another even power of cosine and use a half-angle identity again to obtain

cos2(2x) =
1

2
(1 + cos(4x))

Putting this all together, and using a little mental math to perform sub-
stitutions of 2x and 4x, we get

∫ 2π

π

1

4
+

cos(2x)

2
+

1

8
(1 + cos(4x)) dx

=

(

x

4
+

sin(2x)

4
+

1

8

(

x +
sin(4x)

4

))
∣

∣

∣

∣

2π

π

=

(

3x

8
+

sin(2x)

4
+

sin(4x)

32

)
∣

∣

∣

∣

2π

π

Note that when plugging in π and 2π to the parts of the antiderivatives
with the sines, we’ll obtain 0. Thus, the only part that remains is 3x/8
evaluated at π and 2π, and our answer is 3π/8. �

Secants and Tangents

Another commonly-occurring type of trigonometric integral involves pow-
ers of secant times powers of tangent. These two types of trigonomet-
ric functions go well together because their derivatives involve each other:
(tanx)′ = sec2 x and (sec x)′ = sec x tanx. We can also convert between
pairs of tangents and pairs of secants using the identity

sec2 x = tan2 x + 1

These formulas tell us how to perform substitutions, as the following two
examples show:
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Example 6.18:

Let’s compute
∫

tan2 x sec4 x dx

Suppose that instead of using our formulas above with secants and tan-
gents, we instead tried to express this in terms of sines and cosines. We
would obtain

∫

sin2 x

cos6 x
dx

We’d use a half-angle identity in the numerator and denominator, obtaining
a denominator of

cos6 x = (cos2 x)3 =
1

8
(1 − 3 cos(2x) + 3 cos2(2x) − cos3(2x))

After substituting for cos(2x), the resulting integral will still have a com-
plicated polynomial in its denominator, and we do not have techniques for
integrating a function like that. Hence, instead of using sines and cosines,
let’s use our formulas for secants and tangents.

We would like to either use u = sec x and set aside sec x tanx for du, or
we would like to use u = tan x and set aside sec2 x for du. Since we have an
even number of secants, let’s use u = tanx and set aside du = sec2 x dx. We
have two secants left over, which we can convert to tan2 x + 1. This gives us

∫

tan2 x(tan2 x + 1) sec2 x dx =

∫

u2(u2 + 1) du =

∫

u4 + u2 du

=
u5

5
+

u3

3
+ C =

tan5 x

5
+

tan3 x

3
+ C

In general, this approach of using u = tan x works well when you have an
even number of secants. �

Example 6.19:

Let’s integrate
∫ π/4

0

tan3 x sec x dx

Since we don’t have an even number of secants, we can’t set aside sec2 x
for a substitution of u = tan x. Instead, we try u = sec x and set aside
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du = sec x tan x dx. After doing this, we have two tangents left over, which
can be converted to sec2 x − 1. This gives

∫ π/4

0

(sec2 x − 1) sec x tanx dx =

∫

√
2

1

u2 − 1 du =

(

u3

3
− u

)
∣

∣

∣

∣

√
2

1

=

(

2
√

2

3
−
√

2

)

−
(

1

3
− 1

)

=
2 −

√
2

3

In general, this approach works well when you have a positive number of
secants and an odd number of tangents. �

The previous two examples show general tactics for handling integrands
with an even number of secants or an odd number of tangents. There are two
cases that can’t be handled by these tactics. The first is integrating tan x on
its own: this is handled by Exercise 6.3.18. The other is when there are an
odd number of secants (or zero) and an even number of tangents. To handle
this, usually the tangents are all converted to secants, and then a reduction
formula is used to integrate the secants. See Exercises 6.3.19 and 6.6.11.

Cosecants and Cotangents

Integrands involving csc x and cotx are handled in the same way as inte-
grals with secants and tangents, using the formulas

(cotx)′ = − csc2 x (csc x)′ = − csc x cot x csc2 x = cot2 x + 1

You can practice integrals with csc x and cot x in the exercises.

6.5 Trigonometric Substitutions

In this section, we will handle several new kinds of integrands by turning
them into integrals of trigonometric functions. To illustrate how this is done,
and why it is useful, let’s consider the integral

∫ √
1 − x2 dx

This kind of integral appears when dealing with circles, since the circle x2 +
y2 = 1 can be represented by the two functions y = ±

√
1 − x2. If this were
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the integral of x
√

1 − x2, then a substitution of u = 1 − x2 would work
perfectly. However, without that factor of x, we need to do more work. (It
is still possible to solve this problem with substitution, in a manner similar
to the solution to Exercise 6.3.12, but the approach we will present is more
elegant.)

We can get some intuition by thinking about circles. If (x, y) forms an
angle of θ with the positive x-axis on the circle x2 + y2 = 1, then x = cos θ
and y = sin θ. Thus, if we try to replace x with cos θ in our integral, then we
get √

1 − x2 =
√

1 − cos2 θ =
√

sin2 θ = | sin θ|
Note that by replacing x with a trigonometric function, we can use an identity
to simplify the square root greatly. This suggests that we should substitute
x = cos θ to replace the integral with respect to x by an integral with respect
to θ.

For now, let’s proceed informally (we’ll justify all the details later). Sup-
pose we make x = cos θ, so that dx = − sin θ dθ (once again treating dx and
dθ as differentials). Also, let’s temporarily ignore the absolute-value bars we
obtained in our last calculation (this is also justified later), and we get

∫ √
1 − x2 dx = −

∫ √
1 − cos2 θ sin θ dθ = −

∫

sin2 θ dθ

We learned how to solve this in the last section by using a half-angle identity.
We obtain

−1

2

∫

1 − cos(2θ) dθ =
sin(2θ)

4
− θ

2
+ C =

(sin θ)(cos θ)

2
− θ

2
+ C

(We used a double-angle identity in the last step.)
At this point, we need to return to the original variable of integration,

which is x. We know cos θ = x, so sin θ =
√

1 − cos2 θ =
√

1 − x2. Also,
θ = arccos x, the inverse of the cosine function. Thus, our final answer is

∫ √
1 − x2 dx =

x
√

1 − x2

2
− arccos x

2
+ C

(You should differentiate the answer to check that it is correct!) Note that,
in particular, this formula lets us compute
∫ 1

0

√
1 − x2 dx =

(

1
√

1 − 12

2
− arccos 1

2

)

−
(

0
√

1 − 02

2
− arccos 0

2

)

=
π

4
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Hence, using calculus, we can prove that the area under a quarter circle of
radius 1 really is π/4, and thus the area of a circle of radius 1 is π. (Also see
Exercise 6.6.21.)

Ignoring the formalities for now, let’s show how we can compute other
integrals with similar tactics which replace x with a trigonometric function.
There are three main types of situations where these tactics are frequently
used, and we’ll present one example of each.

Example 6.20:

Let’s compute
∫ 1/2

0

x3
√

1 − x2 dx

Because the expression
√

1 − x2 simplifies greatly when x is sin θ or cos θ,
let’s try setting x = sin θ and dx = cos θ dθ. When x = 0, we have θ =
arcsin 0 = 0, and when x = 1/2, we have θ = arcsin(1/2) = π/6. Thus,

∫ 1/2

0

x3
√

1 − x2 dx =

∫ π/6

0

sin3 θ
√

1 − sin2 θ cos θ dθ =

∫ π/6

0

sin3 θ cos2 θ dθ

We can find this integral by setting one copy of sin θ aside for a u-
substitution of u = cos θ. When θ = 0, we have u = 1, and when θ = π/6,
we have u =

√
3/2. We get

∫ π/6

0

(1 − cos2 θ) cos2 θ sin θ dθ = −
∫

√
3/2

1

(1 − u2)u2 du

=

∫

√
3/2

1

u4 − u2 du

=

(

u5

5
− u3

3

)
∣

∣

∣

∣

√
3/2

1

=

(

32
√

3

25 · 5 − 3
√

3

23 · 3

)

−
(

1

5
− 1

3

)

=
2

15
− 11

√
3

160

Notice that unlike the previous example, we were solving a definite inte-
gral, so we could change limits and not have to return to the original variable
x. �

PREPRINT: Not for resale. Do not distribute without author’s permission.



Chapter 6: Techniques of Integration 403

Example 6.21:

Let’s compute
∫

1

x2
√

x2 + 1
dx

In this situation, we’d like to replace x with a trigonometric function so that
x2 + 1 becomes a perfect square. Since tan2 θ + 1 = sec2 θ, we try x = tan θ,
so dx = sec2 θ dθ. As before, let’s just write

√
tan2 θ + 1 as sec θ, ignoring

absolute-value bars. This gives us

∫

1

tan2 θ
√

tan2 θ + 1
sec2 θ dθ =

∫

sec θ

tan2 θ
dθ

Since this is a fraction, as opposed to a power of secant times a power
of tangent, we try the tactic of expressing everything in terms of sines and
cosines. This gives us

∫

cos θ

sin2 θ
dθ

which can be easily solved by substituting u = sin θ. Thus, our problem
becomes

∫

1

u2
du =

−1

u
+ C =

−1

sin θ
+ C

It remains to write this expression in terms of x again. The easiest way
to do this is to use a “right triangle method” as follows. Since x = tan θ, and
the tangent gives us the length of the opposite side of a right triangle over
the length of the adjacent side, let’s draw a right triangle with opposite side
x and adjacent side 1. See Figure 6.1.

1

x

Θ

x2 + 1

Figure 6.1: A right triangle illustrating x = tan θ
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Now, sin θ is the opposite side over the hypotenuse. The hypotenuse is
found by the Pythagorean theorem to be

√
x2 + 1, so we obtain

−1

sin θ
+ C =

−
√

x2 + 1

x
+ C

as our final answer. �

Example 6.22:

Let’s integrate
∫ 2

√
2

x3

√
x2 − 1

dx

We’d like to pick a substitution for x which turns x2 − 1 into a perfect
square. Since we know that sec2 θ − 1 = tan2 θ, we try setting x = sec θ and
dx = sec θ tan θ dθ. This will give us

√
sec2 θ − 1 = tan θ (as before, we ignore

absolute-value bars for now.) When x =
√

2, we have sec θ = 1/(cos θ) =
√

2,
so θ = π/4, and when x = 2, we have θ = π/3. This gives us

∫ 2

√
2

x3

√
x2 − 1

dx =

∫ π/3

π/4

sec3 θ√
sec2 θ − 1

sec θ tan θ dθ =

∫ π/3

π/4

sec4 θ dθ

In the last section, we learned that to integrate an even power of secant,
you separate out sec2 θ, convert the remaining secants to tangents, and make
the substitution u = tan θ. This gives us

∫ π/3

π/4

(tan2 θ + 1) sec2 θ dθ =

∫

√
3

1

u2 + 1 du

=

(

u3

3
+ u

)
∣

∣

∣

∣

√
3

1

=

(

3
√

3

3
+
√

3

)

−
(

1

3
+ 1

)

= 2
√

3 − 4

3

�

The Formal Details
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At this point, let’s be more formal about the technique we have been
using. Suppose that we are trying to compute

∫ b

a

f(x) dx

where f is continuous on [a, b]. (We choose to analyze definite integrals here,
so that we can be more precise about the values our variables take.) When
we do a trigonometric substitution, we set x = g(θ) and dx = g′(θ) dθ for
some trigonometric function g. We require g to be invertible, so that we
may change our limits from x = a and x = b to θ = g−1(a) and θ = g−1(b)
respectively. Hence, we get

∫ b

a

f(x) dx =

∫ g−1(b)

g−1(a)

f(g(θ))g′(θ) dθ

Essentially, we are performing substitution in reverse, since technically
the substitution rule specified in Theorem 6.6 is used to go from the integral
in terms of θ to the integral in terms of x. In order for this theorem to apply,
we need f(g(θ)) to be continuous from g−1(a) to g−1(b), which is guaranteed
by the Composition Limit Theorem as long as g is continuous from g−1(a) to
g−1(b). We also need g to have a continuous derivative between g−1(a) and
g−1(b) in order to apply substitution.

In summary, we have proven the following theorem:

Theorem 6.23 (Inverse Substitution). Let a, b ∈ R be given with a ≤ b.
Let f and g be real functions satisfying:

• f is continuous on [a, b]

• g is invertible and g−1 is continuous on [a, b] (thus g is continuous on
some closed interval containing g−1(a) and g−1(b))

• g′ exists and is continuous between g−1(a) and g−1(b)
Then

∫ b

a

f(x) dx =

∫ g−1(b)

g−1(a)

f(g(θ))g′(θ) dθ

In our previous examples, we used this theorem with g being either sine,
cosine, tangent, or secant. In order for the theorem to apply, we need g
to be restricted to a domain on which it is invertible. Hence, we use the
same domain for g that we used when defining the inverse trigonometric
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functions in Chapter 3 when g is sine, cosine, or tangent. (When g is secant,
we traditionally choose the domain of [0, π] − {π/2}.) This leads to the
following guidelines of which substitutions to pick2:

When integrating this form Try this Values for θ (i.e. domain of g)√
1 − x2 x = sin θ [−π/2, π/2]√
x2 + 1 x = tan θ (−π/2, π/2)√
x2 − 1 x = sec θ [0, π/2) ∪ [π, 3π/2)

There is another useful thing to notice about the table above. Suppose
we are in a situation where we want to substitute x = sin θ, as the first
row of the table describes. Since θ ∈ [−π/2, π/2], we have cos θ ≥ 0, so
√

1 − sin2 θ = cos θ. A similar remark holds for the other two rows of the
table. This is why we were able to avoid writing absolute-value bars in
our examples, because θ came from a range of values which made them
unnecessary. This fully justifies the computations we have done earlier, and
the process of using the substitutions from this table to help integrate square
roots is often called the technique of trigonometric substitution.

Also, trigonometric substitutions can be used with some forms which
are not listed in the table. In general, anything involving squared variables
under a square root probably works well with trigonometric substitutions.
We provide one example, and you can practice others in the exercises.

Example 6.24:

Let’s integrate
∫

x3(4x2 + 9)3/2 dx

Since (4x2+9)3/2 can be written as (
√

4x2 + 9)3, a trigonometric substitution
is probably useful. We want to pick a substitution for x so that 4x2 + 9
becomes a perfect square. We note that if 4x2 = 9 tan2 θ, then 4x2 + 9 =
9 tan2 θ + 9 = 9 sec2 θ.

Because of this, we set x = (3/2) tan θ and dx = (3/2) sec2 θ dθ. With
this choice of x, (4x2 + 9)3/2 becomes (

√
9 sec2 θ)3 = 27 sec3 θ. (Note that

2It is also possible to choose cos θ instead of sin θ in the first row, and so on, but doing
this changes the values that θ can take and tends to introduce more minus signs than
when sin θ is used. Thus, we suggest using sin θ. This is also why we don’t suggest using
cot θ in the second row or csc θ in the third row.
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according to our table, we choose θ to be in (−π/2, π/2), so it follows that
sec θ ≥ 0.) We hence obtain

∫

x3(4x2 + 9)3/2 dx =

∫
(

27

8
tan3 θ

)

(

27 sec3 θ
)

(

3

2
sec2 θ

)

dθ

At this point, since we have an odd number of tangents, we set aside
sec θ tan θ, convert the remaining tangents to secants, and substitute u =
sec θ. Thus,

2187

16

∫

(sec2 θ − 1) sec4 θ(sec θ tan θ) dθ

=
2187

16

∫

(u2 − 1)u4 du =
2187

16

∫

u6 − u4 du

=
2187

16

(

u7

7
− u5

5

)

+ C =
2187

16

(

sec7 θ

7
− sec5 θ

5

)

+ C

To finish this problem, we need to return to the original variable x. Since
x = (3/2) tan θ, we have tan θ = (2x)/(3), so we may picture a right triangle
with θ as one of its angles, opposite side length 2x, and adjacent side length
3. Thus, the hypotenuse has length

√

(2x)2 + 32 =
√

4x2 + 9. This tells us

that sec θ is hypotenuse over adjacent, i.e. sec θ = (
√

4x2 + 9)/3. Hence, our
final answer (left somewhat unsimplified) is

2187

16

(

(4x2 + 9)7/2

37 · 7 − (4x2 + 9)5/2

35 · 5

)

+ C

�

6.6 Exercises

For Exercises 1 through 10, evaluate the indefinite or definite integrals.

1.

∫

sin2 x cos3 x dx

2.

∫ π/2

0

sin4 x dx

3.

∫

sin x sec2 x dx

4.

∫

(1 + cos θ)2 dθ
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5.

∫ π

0

cos2 x sin(2x) dx

(Hint: First use a double-angle identity.)

6.

∫ π/3

0

tan x sec4 x dx

7.

∫

tan2(3x) dx

8.

∫

sec6 x dx

9.

∫

cot x csc3 x dx

10.

∫

cot4 x csc4 x dx

11. (a) Prove that for all n ≥ 2, we have the following reduction formula:
∫

secn x dx =
1

n − 1
tan x secn−2 x +

n − 2

n − 1

∫

secn−2 x dx

This formula can be used to integrate any odd power of secant.

(b) Prove that for all n ≥ 2,
∫

cscn x dx =
−1

n − 1
cotx cscn−2 x +

n − 2

n − 1

∫

cscn−2 x dx

12. (a) Using the identity

sin a sin b =
1

2
(cos(a − b) − cos(a + b))

which is true for all a, b ∈ R, evaluate

∫

sin(2x) sin(5x) dx.

(b) Using the identity

sin a cos b =
1

2
(sin(a − b) + sin(a + b))

which is true for all a, b ∈ R, evaluate

∫

sin(3x) cos x dx.

13. This exercise uses the identities from the previous exercise, along with
the identity

cos a cos b =
1

2
(cos(a + b) + cos(a − b))

which is true for all a, b ∈ R.
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(a) Show that for all m, n ∈ N∗, we have

∫ π

−π

sin(mx) cos(nx) dx = 0

∫ π

−π

sin(mx) sin(nx) dx =

{

0 if m 6= n

π if m = n
∫ π

−π

cos(mx) cos(nx) dx =

{

0 if m 6= n

π if m = n

(Note: You will want to use the fact that m + n 6= 0 since m and
n are positive.)

(b) A trigonometric polynomial is a function f : R → R of the form

f(x) = C +

n
∑

k=1

(ak sin(kx) + bk cos(kx))

where C, ak, and bk are constants for each k from 1 to n. (These
are important in the theory of Fourier series.) Use part (a) to
show that for each k from 1 to n,

ak =
1

π

∫ π

−π

f(x) sin(kx) dx bk =
1

π

∫ π

−π

f(x) cos(kx) dx

as well as

C =
1

2π

∫ π

−π

f(x) dx

For Exercises 14 through 18, evaluate the following integrals. Remember
that for indefinite integrals, the final answer needs to be in terms of the
original variable (so drawing a right triangle might help with trigonometric
substitutions).

14.

∫

1

x2
√

25 − x2
dx

15.

∫

√
x2 − 1

x4
dx

16.

∫

√
3

1

√
x2 + 1

x4
dx

17.

∫

(16 − x2)5/2 dx
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18.

∫ 1

0

x
√

1 − x4 dx

(Hint: The x on the outside goes with dx.)

19. Compute the integral
∫ 2

1

√
2x − x2 dx

by first completing the square.

20. By using the same tactic as the last problem, compute
∫

dx

4x2 + 4x + 2

21. When a and b are positive constants, the points (x, y) ∈ R2 which
satisfy

x2

a2
+

y2

b2
= 1

form an ellipse centered at the origin, whose horizontal semiaxis has
length a and whose vertical semiaxis has length b. Therefore, the top
curve of this ellipse satisfies

y = b

√

1 − x2

a2

Compute
∫

b

√

1 − x2

a2
dx

and use this to show that the total area enclosed by the ellipse is πab.
When a = b, so that the ellipse is a circle, this proves that a circle with
radius r has area πr2.

6.7 Computing Some Areas

In the last chapter, our main motivation for the definition of the integral was
to establish a way to compute areas. More precisely, when f is a nonneg-

ative function which is integrable on [a, b], the value

∫ b

a

f(x) dx is the area
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between the x-axis and the graph of f on [a, b]. To develop this definition,
we approximated the area from above and below by step functions. This
led to the lower integral L(f ; [a, b]) as the supremum of lower estimates by
step functions and the upper integral U(f ; [a, b]) as the infimum of upper
estimates by step functions. In some sense, L(f ; [a, b]) and U(f ; [a, b]) are
respectively the “ideal” lower and upper estimates, so when they are equal,
that should be the exact value of the area.

It turns out that there are many problems where an answer can be ob-
tained in a similar manner: you define a simpler kind of problem (such as the
area of a step function), you use this simple kind to make approximations,
and then you see whether lower and upper estimates agree on one value.
For example, in physics, integrals are used to compute the total distance an
object travels if its speed function is known (where in the simpler problem,
we consider constant speeds), as well as the total work done by a force over
a distance (where in the simpler problem, we consider constant forces). In
statistics, an event is described by a certain probability density, and the total
probability that the event occurs is found by integrating the density (where
in the simpler problem, we consider constant densities, which correspond to
all outcomes being equally likely).

Many of these applications are well-addressed in books specific to the
subject matter in question, so we will not treat them here. Instead, we
will focus on computing areas and volumes in the next two sections. These
problems are quite similar to what we’ve already done, and they illustrate
how to use integration to approach physical problems.

Example 6.25:

As a demonstration, let’s try and compute the area of the region between
the y-axis and the curve x = 1 − y2. This region is pictured in Figure 6.2.
(We will explain the vertical lines in the figure in a second.)

Clearly the y-axis and x = 1 − y2 intersect when x = 0, i.e. 1 − y2 = 0.
Thus, an equivalent way to state our problem is that we’d like to compute
the area to the left of x = 1 − y2 and to the right of the y-axis from y = −1
to y = 1. If we take our figure and swap the roles of x and y (which amounts
to performing a reflection over the line y = x), then the area we want to
compute should be the same as the area under y = 1 − x2 and above the
x-axis from x = −1 to x = 1, which we know is

∫ 1

−1

1 − x2 dx

PREPRINT: Not for resale. Do not distribute without author’s permission.



412 Section 6.7: Computing Some Areas

x=fHyL

x

y

Figure 6.2: x = f(y) = 1− y2, with step functions s(y) and t(y) (s is on the
left and t is on the right)

Intuitively, this integral should give the area we want, because a reflection
will take the region to the left of x = 1−y2 and map it to a congruent region
under y = 1 − x2. Another more formal way of justifying this, though, is
to use the approach described earlier, which involves approximations. Let
f(y) = 1− y2 for all y ∈ [−1, 1], and say that s and t are step functions such
that s(y) ≤ f(y) ≤ t(y) for all y ∈ [−1, 1]. (The vertical lines in the figure
represent the graphs of s and t as functions of y.)

We can approximate the area to the left of f(y) by saying that it is
underestimated by the area to the left of s(y) and overestimated by the area
to the left of t(y). Say that s and t are both compatible with a partition
{y0, y1, . . . , yn} of [−1, 1], where for each i from 1 to n, s takes the value si

and t takes the value ti on the ith open subinterval. Then, for each i, the
region to the left of the ith part of s is a rectangle with height yi − yi−1 and
width si. (Think of each rectangle as being a small horizontal strip of area,
as shown in Figure 6.2 surrounded by dashed lines.) A similar statement
holds for t. This means that if A is the area of our region, then A satisfies

n
∑

i=1

si(yi − yi−1) ≤ A ≤
n
∑

i=1

ti(yi − yi−1)

In other words,
∫ 1

−1

s(y) dy ≤ A ≤
∫ 1

−1

t(y) dy

for every lower step function s and upper step function t for f . This means
A ≥ L(f ; [−1, 1]) and A ≤ U(f ; [−1, 1]). Because f is integrable, the only
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choice for A satisfying this is precisely

∫ 1

−1

f(y) dy =

∫ 1

−1

1 − y2 dy =

(

y − y3

3

)
∣

∣

∣

∣

1

−1

=
4

3

�

Remark. Another way to do the problem in the previous example is to say
that the region we are measuring has a top curve of y =

√
x + 1 and a bottom

curve of y = −
√

x + 1 from x = 0 to x = 1. This produces a slightly more
complicated integral for our answer. In general, it’s useful to keep in mind
that some regions are best measured by using integrals with respect to x, i.e.
slicing the region into vertical strips, and some regions are best measured by
using integrals with respect to y, i.e. slicing the region into horizontal strips.

Area Between Curves

We have seen how to use integrals to find the area underneath one curve.
How would we compute the area between two curves? The following example
demonstrates the main idea:

Example 6.26:

Let f(x) = x2 and g(x) = 2x − x2 for all x ∈ R. When we draw the graphs
of f and g, we see that they enclose a small region, as shown in Figure 6.3.
How can we find the area of that region?

First, we note that the two graphs intersect when x2 = 2x−x2, i.e. when
2x2 − 2x = 2x(x− 1) = 0. Thus, the intersections occur at x = 0 and x = 1.
Between x = 0 and x = 1, we have g(x) > f(x), so we can obtain the area
between the curves by taking the area under g on [0, 1] and subtracting the
area under f on [0, 1]. (This is because the area under both curves will cancel
in the subtraction.) This gives us

∫ 1

0

2x − x2 dx −
∫ 1

0

x2 dx =

∫ 1

0

2x − 2x2 dx =

(

x2 − 2x3

3

)
∣

∣

∣

∣

1

0

= 1 − 2

3
=

1

3

�

The previous example indicates that if you want to find the area between
f and g on [a, b], when 0 ≤ f(x) ≤ g(x) for all x ∈ [a, b], then you take
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fHxL

gHxL

x

y

Figure 6.3: The region between f(x) = x2 and g(x) = 2x − x2

the area under the larger function and subtract the area under the smaller

function, i.e. you compute

∫ b

a

g(x) dx−
∫ b

a

f(x) dx. This is the same as
∫ b

a

(g(x) − f(x)) dx.

It turns out that this formula works even when f and g are allowed to
take negative values on [a, b]. One way to see this is to take the graphs
of f and g and shift them upwards by a large enough constant C so that
f(x) + C, g(x) + C ≥ 0 for all x ∈ [a, b]. (This is always possible because f
and g are bounded functions if they are integrable.) Shifting upwards doesn’t
change the area between the curves, so the area is

∫ b

a

(g(x) + C) − (f(x) + C) dx =

∫ b

a

g(x) − f(x) dx

We’d like to demonstrate another argument for why this formula works,
since this argument can be generalized to other situations. In this argument,
we make approximations for the area between f and g using step functions.
Suppose that s is a step function below f , and t is a step function above g.
Thus, if s is close to f and t is close to g, then the area between s and t is
approximately the area between f and g. (See Figure 6.4.)

Let’s say that s and t are compatible with a partition {x0, x1, · · · , xn} of
[a, b], and for each i from 1 to n, s takes the value si and t takes the value
ti on the ith subinterval. The region between s and t on the ith subinterval
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gHxL

fHxL

Figure 6.4: Using step functions to approximate area between curves

is a rectangle with height ti − si and width xi − xi−1. (This vertical strip
is surrounded by dashed sides in Figure 6.4). Thus, adding this up for all
subintervals, the area between s and t is

n
∑

i=1

(ti − si)(xi − xi−1) =

∫ b

a

t(x) − s(x) dx

This yields an overestimate of the true area between f and g, i.e. t − s
is a lower step function for g − f . This means that the area between f
and g is at most U(g − f ; [a, b]). Similarly, with some care, you can obtain
underestimates by using upper step functions for f and lower step functions
for g, showing that the area between f and g is at least L(g − f ; [a, b]).
Therefore, when g − f is integrable, the area is the integral of g − f , which
is the answer we expected.

Intuitively, when we are computing the area between two curves, we are
taking infinitesimal vertical slices of height g(x)− f(x) and adding them up
on [a, b]. The same kind of argument we just did also works for functions
of y, which corresponds to taking horizontal slices of width g(y) − f(y) and
adding them up. This next example shows a problem which can be done
either with vertical or horizontal slices.

Example 6.27:

We define f, g : [0, 4] → [0, 2] by

f(x) =
√

x g(x) =

{

0 if x < 2

x − 2 if x ≥ 2
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We would like to find the area between f and g. To do that, we should first
find out where the curves intersect. When x < 2, we have

√
x = 0 only when

x = 0. When x ≥ 2, we have
√

x = x − 2 iff x = (x − 2)2 = x2 − 4x + 4
iff x2 − 5x + 4 = (x − 1)(x − 4) = 0. Since (x − 1)(x − 4) = 0 when x = 1
or x = 4, the only choice satisfying x ≥ 2 is x = 4. Thus, the two curves
intersect at (0, 0) and (4, 2).

One way to find the area between these curves is to note that we always
have f(x) ≥ g(x) on [0, 4]. Thus, the area is the integral from 0 to 4 of
f(x)− g(x). Since g is defined piecewise, we need to compute our integral in
two pieces as

∫ 2

0

√
x − 0 dx +

∫ 4

2

√
x − (x − 2) dx

=

(

2

3
x3/2

)
∣

∣

∣

∣

2

0

+

(

2

3
x3/2 + 2x − x2

2

)
∣

∣

∣

∣

4

2

=
2

3
(4)3/2 + 2(4 − 2) − 1

2
(42 − 22) =

10

3

Another way to do this to view our curves as functions of y, i.e. slice the
problem horizontally. When y =

√
x, we have x = y2, and when y = x − 2

for x ∈ [2, 4], we have x = y +2. Thus, the area we want is the area between
y + 2 and y2 as y goes from 0 to 2. (Note that y + 2 ≥ y2 for y ∈ [0, 2].) We
compute

∫ 2

0

(y + 2) − y2 dy =

(

y2

2
+ 2y − y3

3

)
∣

∣

∣

∣

2

0

=
22

2
+ 2(2) − 23

3
=

10

3

For this problem, the horizontal approach is a little easier because it does not
involve splitting an integral into two parts, and the integrand is a polynomial.
�

Area in Polar Coordinates

The functions that we have seen in this section have either specified y as
a function of x or the other way around. In other words, we have specified
points on curves by horizontal and vertical positions. This is not the only
way to describe points in the real plane, however. As shown in Figure 6.5,
another way of specifying a point P in the plane is to give P ’s distance r to
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O

P

Θ

r r sin Θ

r cos Θ x

y

Figure 6.5: A point P in polar coordinates

the origin O and to give an angle θ that the segment OP makes with the x-
axis. We say that the pair (r, θ) is a representation of P in polar coordinates,
where θ is a polar angle of P .

In general, polar angles are not unique, because if P = (r, θ) in polar
coordinates, then P also equals (r, θ +2π) and so forth. For any point which
isn’t the origin, there is a unique way to write P as (r, θ) with r > 0 and
θ ∈ [0, 2π). (The origin can have any polar angle.) By convention, if r < 0,
then (r, θ) is the same as (−r, θ + π): intuitively, to walk a negative distance
in the direction of θ, you walk a positive distance in the direction opposite
to θ.

Example 6.28:

Polar coordinates allow us to specify curves by making r a function of θ. For
example, the curve r(θ) = a, where a is a positive constant, yields a circle of
radius a.

As a more interesting example, consider the function r(θ) = sin θ for
θ ∈ [0, π]. Evaluating r at some simple values, we find that r(0) = 0,
r(π/2) = 1, and r(π) = 0. Also, r increases on [0, π/2] and decreases on
[π/2, π], leading to the graph on the left of Figure 6.6.

What happens if we take this function r and extend its domain to [0, 2π]?
Recall sin θ = − sin(θ − π) for any θ ∈ R. Thus, we find that for any θ ∈
[π, 2π], the point (r(θ), θ) in polar coordinates is the same as (−r(θ − π), θ).
According to our convention for negative radii, this point is the same as
(r(θ − π), θ + π), which is the same as (r(θ − π), θ − π) since changing a
polar angle by 2π does not affect the point being plotted. This means that
the graph of r on [π, 2π] is the SAME as on [0, π], so if we draw r on [0, 2π],
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x

y

x

y

Figure 6.6: The graphs of r = sin θ (left) and r = sin(2θ) (right)

then we end up tracing the curve twice! (Try this with a graphing calculator
using its polar mode.)

From the graph, it seems that the curve r = sin θ produces a circle of
radius 1/2 centered at (0, 1/2). We can prove this as follows. In general,
when a point is represented as (x, y) in the usual Cartesian coordinates or
as (r, θ) in polar coordinates, we know x = r cos θ and y = r sin θ. (Also,
r2 = x2 + y2 by the distance formula.) The circle centered at (0, 1/2) of
radius 1/2 has the equation x2 + (y − 1/2)2 = 1/4. Therefore, we have

x2 +

(

y − 1

2

)2

= (x2 + y2) − y +
1

4

= r2 − r sin θ +
1

4
= r(r − sin θ) +

1

4

This shows that x2 + (y − 1/2)2 = 1/4 iff r = 0 or r = sin θ, and the only
point with r = 0 is the origin. This proves that the graph of r = sin θ is the
circle of radius 1/2 centered at (0, 1/2).

For another example, consider the curve r = sin(2θ) for θ ∈ [0, 2π] as
pictured in the graph of the right of Figure 6.6. Here, we see that r = 0
whenever θ is a multiple of π/2, so the curve touches the origin four times.
On [0, π/2], the curve traces out the upper-right shape looking a little like
a rose petal. Next, on [π/2, π], we have sin(2θ) = − sin(2(θ − π/2)), and
you find that the curve traces out the same shape but rotated, making the
lower-right rose petal. Similarly, on each of [π, 3π/2] and [3π/2, 2π], another
petal is drawn. Thus, this graph is commonly called the four-leaf rose. (You
should experiment with the graphs of sin(kθ) for different constant values of
k ∈ N∗!) �
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Suppose f is a real function on [a, b] for some a, b ∈ R with a ≤ b. we
would like to know: how do you measure the area swept out by the curve
r = f(θ) in polar coordinates as θ ranges from a to b? To approach this
problem, we will use our tactic of approximating f by step functions s, t such
that s(θ) ≤ f(θ) ≤ t(θ) for all θ ∈ [a, b]. To make our explanation a little
simpler, let’s suppose that s(θ) ≥ 0 for all θ ∈ [a, b]. Suppose that s and t are
both compatible with a partition {θ0, θ1, . . . , θn} of [a, b], and for each i from
1 to n, let’s say s takes value si and t takes value ti on the ith subinterval.

f
s t

x

y

Figure 6.7: Approximating the area swept by f(θ) with s(θ) and t(θ)

How do we use s and t to approximate the area swept out by f? On
each subinterval of our partition, s and t are constant, so they sweep out
curves of constant radius, i.e. circular sectors. (See Figure 6.7, which uses
a partition into 2 pieces. The dashed sides represents the boundaries of a
circular sector.) For each i, the ith subinterval covers an angle of θi − θi−1,
and thus the area of s’s circular sector is s2

i (θi − θi−1)/2, while t’s sector
has area t2i (θi − θi−1)/2. (You can think of each circular sector as being a
“radial strip” of area, as opposed to the vertical and horizontal strips we have
previously used.) Adding these up for all i, if A represents the area swept
out by f , then as s underestimates the area and t overestimates the area, we
have

n
∑

i=1

1

2
s2

i (θi − θi−1) ≤ A ≤
n
∑

i=1

1

2
t2i (θi − θi−1)
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i.e.
∫ b

a

1

2
s2(θ) dθ ≤ A ≤

∫ b

a

1

2
t2(θ) dθ

When f 2 is integrable, the only choice for A which satsfies this inequality
for all s and t is

A =

∫ b

a

1

2
f 2(θ) dθ

Example 6.29:

Using the formula we just derived, we can return to the curves from Example
6.28 and find the areas associated with each. If r = sin θ for θ ∈ [0, π], then
the area swept out on [0, π] is

∫ π

0

1

2
sin2 θ dθ =

1

4

∫ π

0

1 − cos(2θ) dθ =
1

4

(

θ − sin(2θ)

2

)
∣

∣

∣

∣

π

0

=
π

4

Note that if we integrate this from 0 to 2π instead, then we get π/2 as our
answer, which is twice the value of π/4. This makes sense, because when we
graph r = sin θ from 0 to 2π, we trace the curve twice, so we trace out its
area twice as well.

To find the area enclosed by the four-leaf rose, it is not hard to see that
we need to only compute the area enclosed by one leaf and multiply by 4.
By using the substitution u = 2θ, and the work we just did above, we find

∫ π/2

0

1

2
sin2(2θ) dθ =

1

4

∫ π

0

sin2 u du =
1

8

(

u − sin(2u)

2

)
∣

∣

∣

∣

π

0

=
π

8

and thus the total area enclosed by the four-leaf rose is π/2. �

6.8 Some Basic Volumes

We can extend the ideas we have developed about computing areas to help
us compute volumes of three-dimensional solids. The main idea is to start
with shapes that have very simple volumes, and then we use those shapes to
approximate others. In two dimensions, we approximated the area of regions
by using rectangles, because a rectangle has a constant height, i.e. every
vertical slice through a rectangle has the same length. In contrast, if we slice

PREPRINT: Not for resale. Do not distribute without author’s permission.



Chapter 6: Techniques of Integration 421

a three-dimensional solid vertically (i.e. we slice it with a plane whose x-
coordinate never changes, i.e. a translate of the yz-plane), then we obtain a
two-dimensional shape called a cross section. The simplest three-dimensional
shapes are those for which every cross section has the same area.

a
b

x

y

z

Figure 6.8: A solid with constant cross sections

First, for simplicity, consider a solid like in Figure 6.8, where every cross
section is the same. When the cross sections are all translates of one another,
as in this figure (where each cross section is roughly heart-shaped), we say
that the solid is a cylindrical solid. Our solid lies from x = a to x = b. Let’s
say A(x) represents the area of the cross section we obtain when we take a
slice at x. Because all the cross sections are the same, A(x) is a constant,
say A(x) = C for all x ∈ [a, b]. Therefore, the volume of this solid should be
C times the width of the solid, i.e. V = C(b − a).

A few examples of cylindrical solids are especially well-known. When the
cross sections are all congruent rectangles, and the sections are translated in
the direction of the x-axis, our solid is a rectangular box! The volume of a
box with dimensions l, w, and h is the product of the base area (the bases
are the cross sections at the ends) times the third dimension, i.e. V = lwh.
As another example, when the cross sections are all congruent circles, the
solid is a circular cylinder (like a can). If the base has radius r and the can
has height h (think of standing the can straight up), then the volume of the
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can is h times the area of the base, i.e. πr2h. As another example, when the
cross sections are all congruent copies of one polygon, like a triangle, we also
call the solid a prism.

Remark. It turns out that we don’t need the cross sections to be EXACTLY
the same to use the C(b − a) formula for volume. All that matters is the
area of the cross sections, not their specific shapes. Thus, any shape with
every cross section having area C from x = a to x = b will also have volume
C(b − a).

Once we know how to compute the volume of cylindrical solids, it is
straightforward to compute the volume of a solid which can be broken into
finitely many cylindrical solids. More formally, let’s say we have a solid and a
partition {x0, . . . , xn} of [a, b] such that for each i from 1 to n, from x = xi−1

to x = xi, the solid looks like a cylindrical solid. (You can think of the solid
as being n slices of bread stuck together, where the different slices may have
different shapes and areas.) Let’s say that A(x) represents the area of the
cross section we obtain by slicing at x for each x ∈ [a, b]. For each i, on
(xi−1, xi), our solid is a cylindrical solid, so A(x) equals some constant Ai

on (xi−1, xi), i.e. A is a step function compatible with our partition. The
volume of that ith solid is Ai(xi − xi−1). Adding these up for all i, we find
that the total volume of the solid from x = a to x = b is

n
∑

i=1

Ai(xi − xi−1) =

∫ b

a

A(x) dx

Now, let’s consider an arbitrary solid whose cross sections lie from x = a
to x = b, and let’s say A(x) is the area of the cross section we get by slicing at
x for each x ∈ [a, b]. As the previous calculation suggests, let’s approximate
A with step functions s and t such that s(x) ≤ A(x) ≤ t(x) for all x ∈ [a, b].
Corresponding to s, we can imagine a cylindrical solid whose cross sections
have area s(x) at each x, and we can do something similar for t. Because
s ≤ A ≤ t on [a, b], it’s plausible that the volume V of our arbitrary solid
should be between the volumes of the solids corresponding to s and t. Thus,

∫ b

a

s(x) dx ≤ V ≤
∫ b

a

t(x) dx

Since this is the case for all lower step functions s and upper step functions
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t, this means that when A is integrable, we have

V =

∫ b

a

A(x) dx

Intuitively, this means that to compute the volume, you “add up” all the cross-
sectional areas obtained by slicing from x = a to x = b. We demonstrate
with a couple examples.

Example 6.30:

Let’s use our volume formula above to compute the volume of a square pyra-
mid whose base has side lengths of L and whose height is h. To obtain
convenient cross sections, let’s orient the pyramid on its side, as shown in
Figure 6.9. Thus, the tip of the pyramid is at O = (0, 0, 0) and the base is
at x = L. Note the OP segment in particular: in the xz-plane (so y = 0
throughout), it has slope L/h, so its equation is z = Lx/h.

O

P

h
LL

x

y

z

Figure 6.9: A square pyramid on its side with cross sections in two directions

For each x ∈ [0, L], we need to figure out the area A(x) of the cross section
obtained by slicing vertically at x. These cross sections are squares, so we
need to find the side length of the square. To do this, consider the point P
in the figure, which is a corner of the cross section (outlined by black lines in
the yz-plane). The z-coordinate of P is the side length of the square cross
section. As z = Lx/h on that line, we have

A(x) =

(

Lx

h

)2

=
L2

h2
x2
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and therefore

V =

∫ h

0

L2

h2
x2 dx =

L2

h2
· h3

3
=

L2h

3

In other words, the volume of this pyramid is the base area (L2) times
h/3. This formula can be proven in general for a pyramid with a base of any
shape. In general, if the base of a pyramid of height h has area B, then for
any x ∈ [0, h], the cross section at x is geometrically similar to the base, with
all side lengths being proportional with ratio x/h. Thus, A(x) = B(x/h)2,
and the same calculations show V = Bh/3. A special case of this is a cone
where the base has radius r, in which case we have V = πr2h/3. �

Remark. This is not the only way to compute the volume of the square
pyramid. The way we used involves taking vertical slices, i.e. at constant
values of x. Just like how we can compute areas by integrating by x or by y,
we can compute the square pyramid’s volume by taking slices in a different
direction. Let’s say we instead take slices at constant values of z: one such
“horizontal slice” in the xy-plane is outlined in Figure 6.9.

Therefore, we want to compute a cross-sectional area A(z) for each z ∈
[0, L]. The cross sections are trapezoids; let’s say the point P = (x, 0, z) in
the figure is the lower-left corner of the cross section (it has the smallest x
and y values of that section). The two bases run parallel to the y-axis. The
base on the right (with the larger x-coordinate) has length L. The other base
has length proportional to z. When z = 0 at the very bottom of the pyramid,
that base has length 0 (i.e. the trapezoid becomes a triangle). When z = L
at the very top of the pyramid, that base has length L (i.e. the trapezoid
becomes a line segment). Thus, the base on the left has length z.

Lastly, the width of the trapezoid is the length of the segment parallel
to the x axis, h − x. As we found in the previous example, z = Lx/h, so
x = hz/L. Since the area of a trapezoid is the average of its base lengths
times the width, we have

A(z) =
1

2
(L + z)

(

h − hz

L

)

=
1

2

(

Lh − hz + hz − hz2

L

)

=
1

2

(

Lh − hz2

L

)

and so

V =
1

2

∫ L

0

Lh − hz2

L
dz =

1

2

(

Lhz − hz3

3L

)
∣

∣

∣

∣

L

0

=
1

2

(

L2h − L3h

3L

)

=
L2h

3
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We obtain the same answer we got in the example. However, this approach
took more work. This shows that much like with area problems, volume
problems can be sliced in several different ways, and some ways are easier
than others.

Example 6.31:

Let’s calculate the volume of a sphere of radius r. If we place the center of
the sphere at the origin for simplicity, then the points (x, y, z) of the sphere
satisfy the equation x2 + y2 + z2 = r2, and we have cross sections for each
x ∈ [−r, r].

For any x ∈ [−r, r], we have y2 + z2 = r2 − x2, where we think of x as
a constant for this section (i.e. this cross section lies in a translate of the
yz-plane). This means that when we slice at x, the cross section is a circle
of radius

√
r2 − x2. Thus, A(x) = π(

√
r2 − x2)2 and

V =

∫ r

−r

π(r2 − x2) dx = π

(

r2x − x3

3

)
∣

∣

∣

∣

r

−r

=
4

3
πr3

�

Solids of Revolution

A sphere is a special case of a type of solid called a solid of revolution. A
solid of revolution is obtained by taking a two-dimensional shape and then
rotating it about an axis. For instance, the sphere x2 + y2 + z2 = r2 can be
obtained by taking the circle x2 + y2 = r2 and spinning it about the x-axis.
Since solids of revolution are obtained by spinning, they tend to produce
circular cross sections, so it is not hard to compute their volumes.

Example 6.32:

Let’s take the region under y = x2 from x = 0 to x = 1 and rotate it about
the x-axis. To find the volume of this shape, for each x ∈ [0, 1] we want to
know the cross-sectional area A(x) that is produced when we slice at x. The
cross section is a solid circle produced by taking the segment from (x, 0) to
(x, x2) and spinning it, so the radius of that circle is x2. Therefore,

A(x) = π(x2)2 = πx4
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and thus

V =

∫ 1

0

πx4 dx =

(

πx5

5

)
∣

∣

∣

∣

1

0

=
π

5

�

As in the previous example, when a two-dimensional region is spun about
an axis that it touches, we get solid circles as our cross sections. Imagining
these sections as little disks of volume, this approach for computing the
volume is sometimes called the disk method. Some solids of revolution do not
have disk-shaped cross sections, as this next example demonstrates:

Example 6.33:

Let’s take the region between y = x and y =
√

x (we’ve seen that these
intersect at (0, 0) and (1, 1)) and rotate it about the y-axis. Since the axis
of rotation is the y-axis, instead of the x-axis, it makes sense to slice cross
sections in terms of y. Hence, we rewrite our curves in terms of y as x = y
and x = y2.

x

y

Figure 6.10: Rotating x = y and x = y2 about the y-axis (3D figure on right)

Now, for any y ∈ [0, 1], we want a cross-sectional area A(y). We obtain
our cross section by rotating the segment from (y2, y) to (y, y) about the
y-axis (recall that y2 ≤ y for y ∈ [0, 1], so the point (y2, y) is further to
the left). The shape which is obtained is a “doughnut” whose inner circle
has radius y2 and whose outer circle has radius y. See Figure 6.10 for an
illustration, where the dashed curves denote the inner and outer circles of
our cross section. (The figure also has a curved arrow denoting the axis
of rotation.) Frequently, this kind of cross section is called a washer, since
it looks like washers which are used in construction, and this method of
computing volume is called the washer method.
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The area of our washer is the area of the outer circle minus the area of
the inner circle, so

A(y) = πy2 − π(y2)2 = π(y2 − y4)

We thus have

V =

∫ 1

0

π(y2 − y4) dy = π

(

y3

3
− y5

5

)
∣

∣

∣

∣

1

0

=
2π

15

�

Example 6.34:

Let’s take the region between y = x and y = sin x on [0, π/2] and rotate it
about the axis y = 2. Because we are rotating about a horizontal axis, let’s
cut our region into vertical cross sections, so for each x ∈ [0, π/2], we want
the area of a cross section A(x). The region we are rotating to form the cross
section lies in between (x, x) and (x, sin x), so we will obtain washers as cross
sections. See Figure 6.11.

Note that for all x ∈ [0, π/2], sin x ≤ x ≤ 2 (we showed this while proving
that (sin x)/x → 1 as x → 0). This means that the point (x, x) is closer to
the axis y = 2 (its distance from that axis is 2 − x) than the point (x, sin x)
(whose distance is 2 − sin x). Therefore, the washer has inner radius 2 − x
and outer radius 2 − sin x, so

A(x) = π(2 − sin x)2 − π(2 − x)2 = π(4 sinx + sin2 x + 4x − x2)

We can therefore compute the volume as

V = π

∫ 2

0

4 sin x + sin2 x + 4x − x2 dx

= π

(

−4 cos x + 2x2 − x3

3

)
∣

∣

∣

∣

2

0

+ π

∫ 2

0

sin2 x dx

= π

(

−4 cos 2 + 8 − 8

3

)

− π (−4) +
π

2

∫ 2

0

1 − cos(2x) dx

=
28π

3
− 4π cos 2 +

π

2

(

x − sin(2x)

2

)
∣

∣

∣

∣

2

0

=
28π

3
− 4π cos 2 + π − π sin 4

4
= π

(

31

3
− 4 cos 2 − sin 4

4

)

�
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x

y

Figure 6.11: A solid of revolution rotated about y = 2 (3D figure on right)

Volumes of Revolution with Shells

Sometimes, it is difficult to use disks or washers to compute the volume
of a solid of revolution. For instance, suppose we want to find the volume
when the region under the graph of y = 2x + x3 on [0, 1] is rotated about
the y-axis. Hence, the cross sections are sliced horizontally, and in order to
find the area of one, we need to be able to solve for x in terms of y. This is
quite difficult to do for the curve y = 2x + x3. Hence, we’d like an alternate
method for volumes of revolution which will not require us to solve for x in
terms of y.

Before describing the method in general, let’s consider the simplified prob-
lem of rotating the region under a constant function f(x) = C from x = a to
x = b about the y-axis (we may suppose 0 ≤ a < b). The three-dimensional
shape we obtain is called a cylindrical shell (similar to the outer layers of a
can). We can find the volume of this shell by using washers. For each y from
0 to C, if we make a horizontal slice at y, then our cross section is a washer
with outer radius b and inner radius a. Thus, we have A(y) = π(b2 −a2) and
thus the volume is πC(b2 − a2). We can rewrite that as

V = πC(b2 − a2) = πC(b + a)(b − a) = 2πC

(

b + a

2

)

(b − a)

This form of the answer has an intuitive physical explanation, as is illus-
trated in Figure 6.12. Let’s say we denote (b + a)/2, the average of a and b,
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C

a bx x

y

C

2Π x b-a

Figure 6.12: A cylindrical shell (left), and an unrolled shell (right)

by x. Looking down from the top, our shell looks like a bunch of concentric
circles, and the average radius of these circles is x. If we cut the shell and
unroll it flat, then when b−a is small, our shell roughly looks like a box whose
length is the circumference of the circle with radius x.3 Thus, C(2πx)(b− a)
represents the volume of that unrolled shell.

Now that we know how to obtain the volume of one shell, corresponding to
a function of constant height, we can find the volume obtained from rotating
a step function. Suppose s is a step function on [a, b] compatible with a
partition {x0, x1, . . . , xn}, where s takes the value si on (xi−1, xi) (we may
once again suppose 0 ≤ a < b). For each i from 1 to n, if we rotate the region
in the ith subinterval about the y-axis, then our previous calculations show
that we obtain a shell of volume 2πxisi(xi − xi−1), where xi = (xi + xi−1)/2.
Thus, the total volume of the rotated solid is the sum of the volumes of these
n shells:

V =
n
∑

i=1

2πxisi(xi − xi−1)

Unfortunately, this is NOT the same as the integral

V =

∫ b

a

2πxs(x) dx

3We will not prove this, but it is shown in many other books how to use integrals to
compute the lengths of curves, and this is used to prove the circumference of a circle of
radius r is 2πr.
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because xs(x) is usually not a step function. However, the summation and
the integral are pretty close when the subintervals have small length, because
if xi − xi−1 is small, then xi is pretty close to any value in (xi−1, xi). We will
not go through the details, but it can be shown that for any desired accuracy
ǫ > 0, there is some δ > 0 (depending on ǫ and s) such that whenever we
refine the partition used for s so that each subinterval has width at most
δ > 0, and we compute the si and xi values accordingly, we have

∣

∣

∣

∣

∣

∫ b

a

2πxs(x) dx −
n
∑

i=1

2πxisi(xi − xi−1)

∣

∣

∣

∣

∣

< ǫ

Thus, the volume can be approximated as well as we like by an integral.
We are now ready to handle arbitrary functions. Suppose that f is a

real function on [a, b] with 0 ≤ a < b. When f is continuous on [a, b], we
know that f is integrable on [a, b] by Theorem 5.35, and in fact the proof of
that theorem shows that f can be approximated as well as we like by step
functions. More specifically, for any ǫ > 0, there is a step function s on [a, b]
such that |f(x) − s(x)| < ǫ for all x ∈ [a, b]. It follows that the integrals

∫ b

a

2πxs(x) dx and

∫ b

a

2πxf(x) dx

can be made arbitrarily close to one another (we omit the details). Using
those ideas, it can therefore be proven that the volume obtained by rotating
the region under f about the y-axis is

V =

∫ b

a

2πxf(x) dx

When we use this formula to compute volume, we say we are using the shell
method. The shell method is useful when it is difficult to solve the equation
y = f(x) for x in terms of y. When using the shell method, think of x as
being the radius of a typical shell, f(x) as being the height of a shell, and
dx as being the infinitesimal thickness of a shell (fulfilling the same role as
xi − xi−1 for step functions).

Example 6.35:

Now that we have developed the shell method, let’s use it to find the volume
obtained by rotating the region under y = 2x + x3 on [0, 1] about the y-axis.
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We compute

V =

∫ 1

0

2πx(2x + x3) dx = 2π

∫ 1

0

2x2 + x4 dx = 2π

(

2

3
x3 +

1

5
x5

)
∣

∣

∣

∣

1

0

=
26π

15

�

As with other volume calculations, the shell method does not have to
solely be used with a function of x being rotated about the y-axis. In general,
when we rotate a region about an axis, the shell method is convenient when
we want to slice a region in a direction parallel to the axis of rotation (whereas
with the washer method, we slice the region perpendicular to the axis of
rotation).

Example 6.36:

Let’s consider the region between the graph of y =
√

x and the x-axis on
[0, 1] and rotate it about the axis y = −1. We can find the volume of this
solid by using both washers and shells. A picture is shown in Figure 6.13,
where a typical point (x, y) on the curve y =

√
x (or x = y2) is marked, and

vertical and horizontal slices are both drawn with some lengths marked.

Hx,yL H1,1L

y+1

1 1-x
x

y

Figure 6.13: The region under y =
√

x (i.e. x = y2) rotated about y = −1,
using washers and shells

If we use washers, then since our axis is horizontal, we want to slice our
region vertically. If we slice at x ∈ [0, 1], then we obtain a washer whose
outer radius is y + 1 =

√
x + 1 and whose inner radius is 1. Thus, we obtain

V =

∫ 1

0

π(
√

x + 1)2 − 12 dx = π

∫ 1

0

x + 2
√

x dx

= π

(

x2

2
+

2x3/2

3/2

)
∣

∣

∣

∣

1

0

=
11π

6
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If we use shells, however, then we are slicing our region horizontally, so
we should solve for x in terms of y to get x = y2 for y ∈ [0, 1]. When we slice
at y, we obtain a shell with radius y + 1 (the vertical distance between our
slice and the axis) and of width 1 − x = 1 − y2. Thus, the volume of a shell
is 2π(y + 1)(1 − y2) dy where we think of dy as being a negligible thickness.
Integrating, we obtain

V =

∫ 1

0

2π(y + 1)(1 − y2) dy = 2π

∫ 1

0

1 + y − y2 − y3 dy

= 2π

(

y +
y2

2
− y3

3
− y4

4

)
∣

∣

∣

∣

1

0

=
11π

6

so we get the same answer this way as well. �

6.9 Exercises

For Exercises 1 through 5, find the area enclosed between the following curves
by slicing with respect to x or y. In these problems, it’s a good idea to make
a rough sketch and find points of intersection.

1. y = x sin x and y = x for x ∈ [0, π/2]

2. y =
√

1 − x2 and y = |x| (See also Exercise 6.9.12.)

3. x = y1/3 and x =
√

y

4. y = arcsin x and y = x for x ∈ [0, 1] (Hint: Use integration by parts.)

5. y = sin x and y = cos x for x ∈ [0, 2π] (Hint: You’ll want to break this
into three regions.)

6. For each c > 0, the curves y = x2 and y = cx3 intersect when x = 0
and x = 1/c. Find the value of c if the area between these curves is
2/3.

7. Redo Exercises 2 through 4 above, except use a different direction of
slicing the area from the one you used the first time. (Your integral
may need to be computed in two pieces.)
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8. Suppose 0 < r < R. Consider the circle C1 given by the equation
x2 + y2 = R2, and we make a second circle C2 of radius r such that
C2’s center is inside C1 and C1 intersects C2 when x = ±r. (See Figure
6.14.) The crescent-shaped region inside C2 but outside C1 is called a
lune. Find the area of the lune.

r

RC1

C2

Figure 6.14: A lune between circles of radii r and R

For Exercises 9 through 11, compute the areas enclosed by the following
curves in polar form where θ goes from 0 to 2π:

9. r = 2 |cos θ|
10. r = 1 + cos θ

11. r =
√

| cos θ|

12. Solve Exercise 6.9.2 by writing the region in polar form and finding its
area that way.

13. A solid has, as a base in the xy-plane, the circle x2 + y2 = 1. For each
x ∈ [−1, 1], the cross section is a square perpendicular to the x-axis
(i.e. in a translate of the yz-plane). Find the volume of the solid.

14. A solid has, as a base in the xy-plane, the points (x, y, 0) satisfying
0 ≤ y ≤ 4 − x2. (In other words, the base is the region under the
parabola 4 − x2 and above the x-axis.) For each x, the vertical cross
section is an equilateral triangle. Find the volume of the solid.

15. For the sphere x2 +y2 +z2 = r2, where r > 0, the cap of height h is the
set of points (x, y, z) inside the sphere with z ≥ r−h, where 0 < h < r.
Find the volume of this cap.
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16. If 0 < r < R and h > 0, then a frustrum of a cone with top radius
r, bottom radius R, and height h is the solid obtained by taking a
circular cone of base radius R and removing from the top a circular
cone of base radius r, where h is the perpendicular distance between
the bases. (See Figure 6.15.) Find the volume of the frustrum. (You
should double-check that your answer gives the volume of a cone of
base radius R when r = 0).

R

r

h

Figure 6.15: A frustrum of a cone with top radius r, bottom radius R, and
height h

17. Suppose 0 < h < r, and a solid is created by taking a sphere of radius
r and drilling out a circular hole throughout the sphere of radius h.
(More precisely, remove the portion of the sphere which intersects a
circular cylinder of base radius h and length 2r which has the same
center as the center of the sphere.) What is the volume of the solid?

For Problems 18 through 20, find the volume of the given solid of revolu-
tion using either washers or shells.

18. The solid obtained by rotating the region between y = sin x and y =
cos x for x ∈ [0, π/4] about the x-axis

19. The solid obtained by rotating the region between y = 1 − cos x and
y = 0 for x ∈ [0, π/2] about the y-axis

20. The solid obtained by rotating the region between y = x and y =
√

x
about x = −1
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21. Let 0 < r < R be given. The torus with radii r and R is the solid
created by taking the circle (x − R)2 + z2 = r2 in the xz-plane (i.e.
where y = 0) and rotating it about the z-axis. A torus looks like a
three-dimensional bagel or doughnut.

(a) Show that the torus consists of the points (x, y, z) satisfying the
equation

z2 +
(

√

x2 + y2 − R
)2

≤ r2

(b) Using the equation from part (a), compute the volume of the torus
by taking cross sections for each value of z. This is essentially
computing the volume by using washers.

(c) Compute the volume of the torus by using shells.

(d) A theorem of Pappus says that the volume of a solid of revolution
is equal to Ad, where A is the area of the two-dimensional region
being rotated and d is the distance traveled by that region’s cen-
ter of mass as it completes a full rotation. Use this theorem to
compute the volume of the torus. You may use the formula for
the circumference of a circle to find d.

6.10 Approximating Integrals

In this section, we mention some ways in which we can approximate the value

of a definite integral

∫ b

a

f(x) dx where f is continuous on [a, b]. There are

several reasons why this is useful. First of all, when we are integrating a
function without an elementary antiderivative, frequently we can’t obtain an
exact value of the integral, so an approximation may be the next best bet.
Second, integral approximations can be computed quickly, by hand or by
machine, whereas finding antiderivatives requires more ingenuity (by guessing
the correct substitution, for instance). Third, if you don’t know an exact
formula for your function, but you know a few points on that function’s graph,
then you can still use those points to produce a numerical approximation.
This is especially useful when the points come from experimentally-measured
data.

Riemann Sums
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As a starting point for approximating the integral of f , the simplest kind of
approximation is obtained by replacing f with a constant. Recall that the
Mean Value Theorem for Integrals says that

∫ b

a

f(x) dx = f(c)(b − a) for some c ∈ [a, b]

i.e. f(c) is the average value of f on [a, b]. This means that the best constant
to use when approximating f is f(c). However, since we might not know
exactly where c is, we can try using some other point in [a, b] to obtain a
guess at the average value. This gives us the approximation

∫ b

a

f(x) dx ≈ f(x∗)(b − a)

where x∗ is some point we choose in [a, b] called a sample point. Different
approximation schemes pick different choices of x∗.

However, f(x∗) will not usually be equal to the average value f(c). Do we
have any guarantee of how apart f(x∗) and f(c) are? In the worst case, the
distance between them is the distance between the maximum and minimum
values of f on [a, b], which we defined as extent(f, [a, b]). This shows that
the approximation tends to be worse for functions which span a large extent.
Furthermore, that error will be multiplied by b−a, the width of the interval,
so approximations over large intervals tend to be worse than approximations
over small intervals.

To address these issues, rather than use one value from f for the WHOLE
interval [a, b], we break up [a, b] into pieces and use a value from f for each
piece. Let’s say that we partition [a, b] as {x0, x1, . . . , xn}, and for each i from
1 to n, let’s write ∆xi to denote the width xi − xi−1 of the ith subinterval.
On the ith subinterval, we choose some sample point x∗

i in [xi−1, xi]. This
gives us the approximation

∫ b

a

f(x) dx ≈
n
∑

i=1

f(x∗
i )∆xi

A sum of this form is often called a Riemann sum for f on [a, b]. Frequently,
to simplify calculations, all of the widths are chosen to be the same, yielding
the approximation

b − a

n

n
∑

i=1

f(x∗
i )
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Theorem 3.66 guarantees that by making n large enough, the extent of f
on each piece will become arbitrarily small, and it follows that the Riemann
sum will become arbitrarily close to the exact value of the integral. Now, we
define a few approximation schemes based on this idea.

Definition 6.37. Let a, b ∈ R with a < b, f : [a, b] → R, and n ∈ N∗ be
given. Suppose we partition [a, b] as {x0, x1, . . . , xn} where for each i from 0
to n, xi = a + i(b − a)/n (so the widths are all (b − a)/n).

The left-endpoint approximation to the integral of f on [a, b] is

Ln(f ; [a, b]) =
b − a

n

n
∑

i=1

f(xi−1)

i.e. x∗
i = xi−1, the left endpoint of the ith subinterval. When we use this

formula, we frequently say we are using the Left-Endpoint Rule for approxi-
mating.

The right-endpoint approximation is

Rn(f ; [a, b]) =
b − a

n

n
∑

i=1

f(xi)

i.e. x∗
i = xi, the right endpoint of the ith subinterval. We similarly say that

we are using the Right-Endpoint Rule when we use this method.
The midpoint approximation is

Mn(f ; [a, b]) =
b − a

n

n
∑

i=1

f

(

xi−1 + xi

2

)

i.e. x∗
i is the midpoint of the ith subinterval. We say we are using the Midpoint

Rule when we use this method.
Sometimes we will just write Ln, Rn, or Mn for these quantities if f and

[a, b] are understood by context.

Example 6.38:

Let’s estimate
∫ 2π

π

sin x

x
dx
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It is known that this integrand does not have an elementary antiderivative.
Using n = 4, we compute

L4 =
π

4

(

sin π

π
+

4 sin(5π/4)

5π
+

2 sin(3π/2)

3π
+

4 sin(7π/4)

7π

)

= −1

4

(

24
√

2

35
+

2

3

)

≈ −0.409103

and

R4 =
π

4

(

4 sin(5π/4)

5π
+

2 sin(3π/2)

3π
+

4 sin(7π/4)

7π
+

sin(2π)

2π

)

= L4 ≈ −0.409103

and

M4 =
π

4

(

8 sin(9π/8)

9π
+

8 sin(11π/8)

11π
+

8 sin(13π/8)

13π
+

8 sin(15π/8)

15π

)

≈ −0.446179

Note that L4 and R4 are the same because sin π = sin(2π) = 0. In fact,
in this example, we will have Ln = Rn for all values of n. To see how the
approximations behave with increasing values of n, here is a table giving
some more approximations:

n Ln Mn

4 −0.409103 −0.446179
8 −0.427641 −0.436861
16 −0.432251 −0.434553
32 −0.433402 −0.433977

Further testing suggests that the correct value to six decimal places is A ≈
−0.433785. This gives us a way of estimating the error of these approx-
imations as a function of n. Let’s define ELn

= A − Ln, and similarly
ERn

= A − Rn and EMn
= A − Mn. Thus, ELn

is the amount you need to
add to Ln to get the exact value, i.e. the error of using Ln as an approxima-
tion. We have the following table:

n ELn
EMn

4 −0.024682 0.012394
8 −0.006144 0.003076
16 −0.001534 0.000768
32 −0.000383 0.000192
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Note that every time n doubles, the errors are divided roughly by 4. This
suggests that the error for these schemes is proportional to 1/n2. In numerical
analysis courses, it is possible to prove this conjecture, but the proof will not
be covered here. �

Example 6.39:

For another example, let’s consider approximating
∫ 1

0

1

1 + x2
dx

In this case, we know the exact value of this integral is arctan(1)−arctan 0 =
π/4. Thus, by approximating this integral, we can obtain estimates for the
value of π.

We have

L4 =
1

4

(

1

1
+

1

1 + (1/4)2
+

1

1 + (1/2)2
+

1

1 + (3/4)2

)

≈ 0.845294

and

R4 =
1

4

(

1

1 + (1/4)2
+

1

1 + (1/2)2
+

1

1 + (3/4)2
+

1

2

)

≈ 0.720294

and

M4 =
1

4

(

1

1 + (1/8)2
+

1

1 + (3/8)2
+

1

1 + (5/8)2
+

1

1 + (7/8)2

)

≈ 0.786700

It is known that π/4 is roughly 0.785398, so the midpoint approximation
is by far the most accurate. This makes sense since the function 1/(1 + x2)
is decreasing on [0, 1], so when we pick a sample point to guess where the
average value is obtained on a subinterval, the midpoint is a better guess
than each endpoint. �

As the previous example shows, when a function is monotone, the left and
right endpoint rules perform rather poorly. In fact, you can show in Exercise
6.11.7 that one endpoint is guaranteed to overestimate the exact value of the
integral and the other is guaranteed to underestimate the exact value. Thus,
perhaps the average of the two estimates does a better job. This leads to the
following approximation scheme:
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Definition 6.40. Suppose that a, b, f , n, and a partition {x0, x1, . . . , xn}
are given the same as in Definition 6.37. The trapezoid approximation is

Tn(f ; [a, b]) =
Ln(f ; [a, b]) + Rn(f ; [a, b])

2

=
b − a

2n
(f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn))

When we use this formula, we say we are using the Trapezoid Rule.

Figure 6.16 illustrates why Tn is called the trapezoid approximation.
While a Riemann sum uses a rectangle of height f(x∗

i ) to approximate the
integral for the ith subinterval, where x∗

i is some sample point, the trapezoid
approximation uses a trapezoid with the two bases f(xi−1) and f(xi). Thus,

the ith subinterval is approximated with the area
b − a

2n
(f(xi−1) + f(xi)), and

adding this up for all values of i gives us the value of Tn.

a bxi-1 xi
x

y

Figure 6.16: Using trapezoids to approximate the area under f

If we go back to Example 6.39, then we have

T4 =
1

8

(

1

1
+

2

1 + (1/4)2
+

2

1 + (1/2)2
+

2

1 + (3/4)2
+

1

2

)

≈ 0.782794

This is a much better estimate of π/4 than either Ln or Rn, though the
midpoint approximation is still better. In fact, note that |EMn

| ≈ 0.001302
is roughly half of |ETn

| ≈ 0.002604. It can also be shown in numerical analysis
courses that in general, you can expect the midpoint approximation to be
twice as good as the trapezoid approximation, and also that the trapezoid
error is proportional to 1/n2. A partial proof of this is outlined in Exercise
6.11.13.
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Example 6.41:

Suppose we want to measure the area of an irregularly-shaped pond. Let’s
say the pond stretches 100 feet from its west end to its east end. We start
at the west end of the pond, we walk east, and for every 10 feet we walk,
we make a measurement of the distance between the north and south shores
of the pond. In other words, if we think of the pond as occupying a region
in the xy-plane from x = 0 to x = 100, then we measure the height of that
region for each x coordinate which is a multiple of 10.

Let’s say that f(x) is the distance between the shores as we move x feet
east. We summarize all our data in this table, where all measurements are
in feet:

x f(x) x f(x) x f(x)
0 25 40 50 80 24
10 37 50 45 90 15
20 45 60 46 100 10
30 53 70 25

The exact area of the pond is

∫ 100

0

f(x) dx, measured in square feet. We

cannot find this exact integral because we only have finitely many values of
f(x) at our disposal. However, we can use approximation techniques. For
instance, if we break the interval [0, 100] into pieces of width 20, then we can
use either midpoint or trapezoid approximations. We get

M5 = 20 (f(10) + f(30) + f(50) + f(70) + f(90)) = 3500

and

T5 =
20

2
(f(0) + 2f(20) + 2f(40) + 2f(60) + 2f(80) + f(100)) = 3650

We can also compute

T10 =
10

2

(

f(0) + 2

9
∑

i=1

f(10i) + f(100)

)

= 3575

(We cannot compute M10 with this data because we would need the midpoints
of intervals of width 10, so we’d need data for x = 5, 15, and so forth.) Thus,
we estimate that the area of the pond is 3575 square feet. To make better
approximations, we need to collect more data points. �
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Simpson’s Rule

While the trapezoid and midpoint rules generally work well and are easy
to compute, because they use straight line segments to approximate the graph
of f on each subinterval, they tend to perform poorly for functions which are
highly curved. There is another approximation rule which tends to work
better for highly-curved functions. It is called Simpson’s Rule, named after
the English mathematician Thomas Simpson. His main idea was to use
parabolas instead of trapezoids to approximate the area under subintervals.

Since a parabola is the graph of a quadratic function, we need three points
to specify a parabola. To be more precise, let’s say we break [a, b] into 2n
pieces with the partition {x0, x1, . . . , x2n}. We can use the points at x0, x1,
and x2 on f ’s graph to make one parabola. We can use the points at x2, x3,
and x4 to make another parabola. Continuing in this manner, for each i from
1 to n, we make a parabola using the points at x2i−2, x2i−1, and x2i. (This
is why our partition uses an even number of subintervals.) See Figure 6.17.

a bx2i-2 x2i
x

y

Figure 6.17: An area approximated with three parabolas

To obtain Simpson’s Rule, we first want to discover the area under one
parabola. We show one way of doing this: another way is outlined in Exercise
6.11.12. To make our calculations simpler, we may suppose that we are
finding the area under the parabola through x0, x1, and x2, where x1 = 0
(this is a safe assumption because translating the parabola horizontally does
not change the area underneath it). Thus, let’s say that x2 = h and x0 = −h.
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We want to find an equation for a parabola, i.e. a function p(x) of the form
ax2 +bx+c for some constants a, b, c, such that p(−h) = f(x0), p(0) = f(x1),
and p(h) = f(x2). This gives us the three equations

a(−h)2 + b(−h) + c = ah2 − bh + c = f(x0)

a(0)2 + b(0) + c = c = f(x1)

a(h)2 + b(h) + c = ah2 + bh + c = f(x2)

By subtracting the first equation from the third, we obtain

2bh = f(x2) − f(x0)

so

b =
f(x2) − f(x0)

2h
We plug the values of b and c into the first equation and find

ah2 −
(

f(x2) − f(x0)

2h

)

h + f(x1) = f(x0)

so

a =
f(x0) − 2f(x1) + f(x2)

2h2

Now we want to integrate p(x) from −h to h. Since the bx term of p(x) is
an odd function, its integral on the interval [−h, h] vanishes. Also, ax2 and c
are even functions, so their integral on [−h, h] is twice their integral on [0, h].
Thus, we get

∫ h

−h

p(x) dx =

∫ h

−h

ax2 + bx + c dx

= 2

∫ h

0

(

f(x0) − 2f(x1) + f(x2)

2h2

)

x2 + f(x1) dx

=

(

f(x0) − 2f(x1) + f(x2)

h2

)

h3 − 03

3
+ 2f(x1)(h − 0)

=
h

3
(f(x0) + 4f(x1) + f(x2))

Since h is the width of a subinterval, (b − a)/(2n) (since we have 2n
subintervals in our partition), the same steps show that the area under the
ith parabola is

b − a

6n
(f(x2i−2) + 4f(x2i−1) + f(x2i))
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for each i from 1 to n. Adding these up for all i gives us the following:

Definition 6.42. Let a,b,f ,n be given as in Definition 6.37, and we break
[a, b] into 2n equal-width subintervals with the partition {x0, x1, . . . , x2n}.
Then Simpson’s Rule gives us the approximation

S2n(f ; [a, b])

=
b − a

6n
((f(x0) + 4f(x1) + f(x2)) + (f(x2) + 4f(x3) + f(x4)) + · · ·

+ (f(x2n−2 + 4f(x2n−1) + f(x2n)))

=
b − a

6n
(f(x0) + 4f(x1) + 2f(x2) + · · · + 4f(x2n−1) + f(x2n))

In other words, the width (b− a)/(2n) is divided by 3, f(x0) and f(x2n) get
coefficients of 1, and the rest of the coefficients alternate between 4 and 2.

Simpson’s Rule often works very well. For instance, if we go back to
Example 6.39, then with 2n = 4, we get

S4 =
1

12

(

1

1
+

4

1 + (1/4)2
+

2

1 + (1/2)2
+

4

1 + (3/4)2
+

1

2

)

≈ 0.785392

which has an error of ES4
≈ 0.000006. This is a very small error for only

using four subintervals! If we try Simpson’s Rule with 2n = 10 in Example
6.41, then we obtain the estimate of

S10 =
10

3

(

f(0) + 4
4
∑

i=0

f(20i + 10) + 2
4
∑

i=1

f(20i) + f(100)

)

= 3550

It turns out that the error with Simpson’s Rule is proportional to 1/n4, so
the error decreases much more rapidly with Simpson’s Rule than with the
Midpoint Rule as n grows large, but we will not prove this here.

6.11 Exercises

For Exercises 1 through 5, a real function f and an interval [a, b] are provided.
Using those, compute Ln(f ; [a, b]), Rn(f ; [a, b]), Mn(f ; [a, b]), Tn(f ; [a, b]),
and Sn(f ; [a, b]) for n = 6 and n = 12.
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1. f(x) = 2x + 1, [a, b] = [0, 6]

2. f(x) =
√

1 − x2, [a, b] = [−1, 1]

3. f(x) = sin(x2), [a, b] = [0,
√

π]

4. f(x) = (1 + x2)1/3, [a, b] = [0, 6]

5. f(x) = 5x3 − 4x + 1, [a, b] = [−3, 3]

6. For Exercises 1, 2, and 5 above, compute the exact values of

∫ b

a

f(x) dx

and find the errors of your approximations from those exercises.

7. Suppose that f is a real function which is increasing on [a, b]. Prove
that for all n ∈ N∗,

Ln(f ; [a, b]) ≤
∫ b

a

f(x) dx ≤ Rn(f ; [a, b])

What do you conclude instead if f is decreasing on [a, b]?

8. Certain approximations can do a very poor job if sample points are
chosen poorly. Consider approximating the integral

∫ 20

0

cos(πx) dx

Find the exact value for this integral, and also find L10, R10, and T10.
Can you explain why the error is so large?

9. Suppose that for some m, c ∈ R, we have f(x) = mx+c for all x ∈ [a, b].
In other words, f is a linear (or constant) function on [a, b]. Prove that
for all n ∈ N∗,

EMn
(f ; [a, b]) = ETn

(f ; [a, b]) = 0

so the midpoint and trapezoid rules produce zero error. (Suggestion:
Prove this for n = 1 first, and then use that result to prove the error is
0 for any n.)

10. Suppose that f is a polynomial of degree at most 3 on [a, b]. Prove that
for all n ∈ N∗,

ES2n
(f ; [a, b]) = 0
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11. Show that for any a, b ∈ R with a < b, f : [a, b] → R and any n ∈ N∗,

S2n(f ; [a, b]) =
1

3
Tn(f ; [a, b]) +

2

3
Mn(f ; [a, b])

Thus, Simpson’s Rule gives a weighted average of the Trapezoid and
Midpoint Rules.

12. This exercise shows another way to obtain the formula for Simpson’s
Rule. As we did with our previous derivation, let’s suppose for sim-
plicity that we are obtaining Simpson’s Rule for n = 1, and for some
h > 0 we have x0 = −h, x1 = 0, and x2 = h. (Thus, h is the interval
width.)

We would like to approximate the average value of f on [−h, h] with a
linear combination of f(x0), f(x1), and f(x2). This means we want to
say

1

2h

∫ h

−h

f(x) dx ≈ αf(−h) + βf(0) + γf(h)

for some constants α, β, γ ∈ R. In order to pick these constants, we
impose the requirement that whenever f is a polynomial of degree at
most 2, i.e. f(x) has the form ax2 + bx + c for some a, b, c ∈ R, then

1

2h

∫ h

−h

f(x) dx = αf(−h) + βf(0) + γf(h)

In other words, we require that our approximation have zero error for
quadratic polynomials.

Prove that this requirement is satisfied iff α = γ = 1/6 and β = 2/3.
Thus, we obtain

∫ h

−h

f(x) dx ≈ h

3
(f(x0) + 4f(x1) + f(x2))

as desired.

13. In this exercise, we outline a proof of the following bound on the error
from the Trapezoid Rule:
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Theorem 6.43. Let a, b ∈ R be given, and suppose f is a real function
such that f ′′ is continuous on [a, b]. Let K be any number such that
|f ′′(x)| ≤ K for all x ∈ [a, b]. Then for all n ∈ N∗,

|ETn
(f ; [a, b])| ≤ K(b − a)3

12n2
=

Kn

12

(

b − a

n

)3

Hence, our error bound is proportional to 1/n2 and also proportional
to the size of the second derivative. This makes sense, since the second
derivative measures the concavity of f , i.e. how “curved” the graph of
f is.

Our approach will be to first prove this bound for n = 1 by approx-
imating f with a linear function, and then we will use that result to
finish the proof for all n.4

(a) First, let’s consider n = 1 for now. Let P : [a, b] → R be defined
by

P (x) = f(a)
x − b

a − b
+ f(b)

x − a

b − a

for all x ∈ [a, b]. (This is called the Lagrange polynomial of order
1 through the points (a, f(a)) and (b, f(b)).) Note that P is a
linear function. Prove that P (a) = f(a) and P (b) = f(b).

(b) In the next few parts, we prove the following claim: for any x ∈
[a, b], there is some ξ ∈ [a, b] (ξ, the Greek letter “xi”, depends on
x) such that

f(x) − P (x) =
f ′′(ξ)

2
(x − a)(x − b)

This claim is trivial if x = a or x = b (by part (a)), so suppose
x 6= a and x 6= b. Define

Φ(x) =
f(x) − P (x)

(x − a)(x − b)

and define

g(t) = f(t) − P (t) − (t − a)(t − b)Φ(x)

4This proof is adapted from the arguments found at http://math.fullerton.edu/ math-
ews/n2003/trapezoidalrule/TrapezoidalRuleProof.pdf and
http://www.math-linux.com/spip.php?article71.
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for all t ∈ [a, b].

Prove that for all t ∈ [a, b],

g′′(t) = f ′′(t) − 2Φ(x)

(Recall that x is a constant with respect to t.) Thus, g′′ is contin-
uous on [a, b].

(c) From parts (a) and (b), note that g(a) = g(b) = 0, and also
g(x) = 0 by the definition of Φ(x). Use Rolle’s Theorem three
times to prove that for some ξ ∈ (a, b), g′′(ξ) = 0. (You’ll want to
use the same idea as in Exercise 4.10.11.) From this, prove that

f(x) − P (x) =
f ′′(ξ)

2
(x − a)(x − b)

finishing our claim from part (b).

(d) Since ξ depends on x in part (b), let’s write ξ(x) instead of ξ.
From the earlier parts, we know that

∫ b

a

f(x) dx =

∫ b

a

P (x) dx +

∫ b

a

f ′′(ξ(x))
(x − a)(x − b)

2
dx

(the second integral exists because f and P are both integrable
on [a, b]). Show that

∫ b

a

P (x) dx =
b − a

2
(f(b) + f(a))

which equals T1(f ; [a, b]).

(e) By using the fact that |f ′′| is bounded by K, prove that

∣

∣

∣

∣

∫ b

a

f ′′(ξ(x))
(x − a)(x − b)

2
dx

∣

∣

∣

∣

≤ K

∫ b

a

(x − a)(b − x)

2
dx

Compute this integral on the right and show that it equals

K(b − a)3

12

(Suggestion: To make the work look better, substitute u = (x−a),
so that b − a occurs in the integrand. You could also use u =
(x − a)/(b − a).)
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(f) It follows from part (e) that

|ET1
(f ; [a, b])| =

∣

∣

∣

∣

∫ b

a

f(x) dx − T1(f ; [a, b])

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ b

a

f ′′(ξ(x))
(x − a)(x − b)

2
dx

∣

∣

∣

∣

≤ K(b − a)3

12

which proves Theorem 6.43 when n = 1.

Now, we let n ∈ N be given. Let {x0, x1, . . . , xn} be the partition
of [a, b] used in computing Tn. Apply the above result about ET1

to each subinterval, and prove that

|ETn
| ≤ Kn

12

(

b − a

n

)3

=
K(b − a)3

12n2

finishing the proof of Theorem 6.43. (Hint: Think of each subin-
terval as its own subproblem of approximating with T1 where the
width is (b − a)/n.)
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Chapter 7

Log, e, and Related Results

At this point, we have studied many different kinds of real functions. Starting
with the basic arithmetic operations, we developed polynomials and rational
functions. We proved the existence of nth roots of positive numbers for any
n ∈ N, and we used that to develop rational exponents. We also worked
with the trigonometric functions. These functions all go under the category
of elementary functions because of their simplicity and their widespread use.
(We have also analyzed some more esoteric examples, like χQ and the ruler
function, though these are not considered elementary.)

In this chapter, we introduce and develop important properties of two
more types of elementary functions: logarithms and exponentials. You have
probably seen these kinds of functions before. Suppose that b is a constant
greater than 1. Informally, the exponential function with base b is bx where b
is a positive constant. Also, the logarithm to the base b of x, written logb x,
is the value y such that by = x. In other words, the function logb x is the
inverse of the function bx.

As a practical example, exponential functions play a role when accumu-
lating interest in a bank account. Suppose that an account starts with P
dollars (P standing for Principal), and every month the account earns 3%
interest. Thus, after one month, 1.03P dollars are in the account, and after
two months, 1.03(1.03P ) = (1.03)2P dollars are in the account. In general,
for any n ∈ N, 1.03nP dollars are in the account after n months. If we want
to consider interest as being slowly built up over time, rather than being
computed all at once at the end of the month, then we may say that for any
positive number of months x (so x = 1.5 would mean a month and a half,
and so forth), the account has 1.03xP dollars after x months. In particular,
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if we want to know how long it takes for our money to double, i.e. we want to
know the value of x for which 1.03xP = 2P , then 1.03x = 2 and x = log1.03 2
by the definition of logarithm. (It turns out log1.03 2 ≈ 23.45, so you’d have
to wait roughly two years to double your money!)

Logarithms and exponentials are also widely used because of some key
properties they possess. For exponentials, we have

bx+y = bxby (bx)y = bxy (ab)x = axbx

whenever x, y > 0 and a, b > 1. Also, for logarithms, we have

logb(xy) = logb x + logb y logb(a
x) = x logb a

Essentially, logarithms can be used to turn multiplication problems into ad-
dition problems, which is helpful since addition is usually easier to compute.
Before computers were popular, and books consisting of tables with values
of logarithms were in widespread use, one fast and accurate way to multiply
two large numbers x and y would be to look up log10 x and log10 y in a loga-
rithm table, add the results to get log10 x + log10 y = log10(xy), and then use
a logarithm table to convert back to xy.

For another application of this identity, consider a slide rule, which is
essentially a ruler-like stick where the number x is marked log2 x inches away
from the end of the stick. (Obviously, you can’t mark EVERY real number
on a slide rule, but many numbers can be marked from 1 up to 2L, where L
is the total length in inches of the rule.) To multiply x and y using a slide
rule, you would look up x on the rule at distance dx = log2 x, look up y at
distance dy = log2 y, and add the distances. After that, you look at distance
dx + dy = log2 x + log2 y = log2(xy), and the number xy is marked at that
spot on the rule. In fact, slide rules come with two marked sticks which can
slide over each other, making it easy to add distances on the rules.

Before we can use logarithms and exponentials satisfactorily, however,
we should have a more formal definition. The main issue with our current
attempt at a definition is that if we say f(x) = bx, then up to this point we
have only defined f when x is rational. Now f is a strictly increasing function
on Q (as you can show with a little work), so a modification of Theorem 3.48
suggests that we define

bx = sup{by | y ∈ Q, y < x}
when x is irrational. While it is possible to use this definition to prove all the
usual properties of exponential functions, including that f is a continuous
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bijection (so that it has a well-defined continuous inverse logb x), this process
is tedious and unenlightening.

Instead, we will see that using techniques from calculus, we can first ob-
tain a very simple and elegant definition of logarithms. From this definition,
we will define exponential functions as inverses of logarithms. This method
will quickly yield proofs of the main properties of these functions, and we
will also have easy computations of derivatives and antiderivatives of these
functions. Furthermore, this method leads us naturally to an important con-
stant which is traditionally called e, and we will some places where e plays a
crucial role.

7.1 The Definition Of The Logarithm

In order to define logarithmic functions, our approach will be based on the
following question: what are the main properties we want logarithms to
have? After all, new functions are introduced and made popular because
of important properties they have. In particular, let’s focus on finding real
functions f which satisfy the functional equation

f(xy) = f(x) + f(y)

whenever x, y, and xy are in dom(f). As we’ve seen, this property is useful,
for instance, for slide rules and for computing multiplications in terms of
additions.

The first thing we notice is that if 0 ∈ dom(f), then by taking y = 0, we
obtain f(0) = f(x) + f(0), i.e. f(x) = 0 for every x ∈ dom(f). Thus, the
only function f satisfying our functional equation which has 0 in its domain is
the constant zero function. Since this function is not particularly interesting,
let’s consider solutions for f for which dom(f) = R − {0}.

The next simple number we can try is 1. When we plug in x = y = 1 into
the functional equation, we get f(1) = f(1) + f(1), so f(1) = 0. Similarly,
when we plug in x = y = −1, we get f(1) = f(−1)+ f(−1), so f(−1) = 0 as
well. Now that we know f(−1) = 0, we find that f(−x) = f(−1) + f(x) =
f(x) for any x ∈ R−{0}. Thus, any solution to our functional equation must
be an even function. Lastly, when y = 1/x, we have f(1) = f(x)+f(1/x) = 0,
so f(1/x) = −f(x).

At this point, there aren’t any more really useful numbers we can plug in,
so there’s not much more we can say about arbitrary solutions to f(xy) =
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f(x) + f(y). However, if we restrict our attention to differentiable solutions
for f , then we can say more. (Besides, in practical situations, we’d like to
work with differentiable functions anyway.) Let’s suppose that f ′(x) exists
for all x 6= 0. Therefore, if we think of y as a fixed constant and differentiate
both sides of our functional equation with respect to x, then we get

d

dx
f(xy) =

d

dx
(f(x) + f(y)) i.e. yf ′(xy) = f ′(x)

by the Chain Rule. In particular, when we take x = 1, we get

f ′(y) =
f ′(1)

y
for all y 6= 0

We now know f ′, so we can obtain f by integrating. More specifically,
when x > 0, our calculations show that f ′ is continuous between 1 and x, so
the FTC says

f(x) = f(x) − f(1) =

∫ x

1

f ′(t) dt = f ′(1)

∫ x

1

dt

t

(since f(1) = 0). This tactic does not work for computing f(x) when x < 0
since f ′ is not continuous between x and 1 (in particular, neither f nor f ′

are defined at 0). However, when x < 0, since f is even, we know −x > 0
and

f(x) = f(−x) = f ′(1)

∫ −x

1

dt

t

by the previous calculation. Combining these results into one formula, and
relabeling f ′(1) as a constant C, we find

f(x) = C

∫ |x|

1

dt

t

for all x ∈ R − {0}.
In summary, we have proven that IF the functional equation f(xy) =

f(x)+ f(y) has any differentiable solutions on R−{0}, THEN f(x) must be
a constant multiple of the integral of 1/t dt from 1 to |x|. (Don’t forget this
includes the constant zero function.) However, we have not yet shown that
this integral actually IS a solution to the functional equation. We will do so
shortly.
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The Natural Logarithm

The previous work leads us to the following choice of definition:

Definition 7.1. For all x ∈ (0,∞), the natural logarithm of x is

log x =

∫ x

1

dt

t

This is called the natural logarithm since it uses the “most natural” choice of
C = 1 in the equation we found above. (We will explain other logarithms a
little later.)

Remark. For technical reasons, we restrict log to the domain of (0,∞). This
is because if we were to define log on R − {0} using the formula we found
earlier, then log(−x) = log x for all x 6= 0, so log would not be a bijection.
We want log to be a bijection so we can find its inverse later.

From this definition, we immediately find log 1 = 0 and (log x)′ = 1/x
for all x > 0 by the first part of the FTC. (Note that for all n ∈ N with
n 6= 1, we already know that an antiderivative of 1/xn dx is 1/(n − 1)xn−1,
but this formula is invalid when n = 1.) Thus, log is differentiable and hence
continuous on (0,∞). Also, since this derivative is positive, log is strictly
increasing on (0,∞). Furthermore, (log x)′′ = −1/x2, which is negative, so
log is always concave downward. (See the discussion before Exercise 4.10.26.)

Now, we need to verify that our important property actually holds for
the log function:

Theorem 7.2. For all x, y > 0, log(xy) = log x + log y.

Strategy. We want to show
∫ xy

1

dt

t
=

∫ x

1

dt

t
+

∫ y

1

dt

t

By subtracting the integral from 1 to x from each side, and using the interval
addition property, this is equivalent to showing

∫ xy

x

dt

t
=

∫ y

1

dt

t

Since the only difference between these integrals is a change of lower and
upper limits, this suggests that we can use substitution to show these are
equal.
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Proof. Let x, y > 0 be given. As shown in the strategy, we need only prove
∫ xy

x

dt

t
=

∫ y

1

dt

t

By either substituting u = t/x (remember that t is the variable of integration
and x is a constant), or by using the Stretching Property of Theorem 5.29,
we find

∫ xy

x

dt

t
=

∫ y

1

x

xu
du =

∫ y

1

du

u

as desired. �

Since (log x)′ = 1/x, the graph of the natural logarithm rises very steeply
near x = 0 and “flattens out” as x → ∞. Also, log is strictly increasing and
continuous. This raises the question: is log bounded? We can use the “ log of
a product” property from Theorem 7.2 to show that log is unbounded above
and below, as follows.

Since log is strictly increasing and log 1 = 0, we have log 2 > 0. Now,
log(22) = log 2 + log 2 = 2 log 2, and log(23) = log(22) + log 2 = 3 log 2 using
our product property. This is easily generalized by induction to log(2n) =
n log 2 for all n ∈ N. (In fact, the same argument easily shows log(xn) =
n log x for all x > 0 and all n ∈ N.) Since N has no upper bound, neither
does the set of numbers of the form n log 2 for n ∈ N, so the range of the log
function is unbounded above.

Next, for any x > 0, we can use the product property with x and 1/x and
obtain log 1 = 0 = log x + log(1/x). Thus, log(x−1) = − log x for all x > 0.
(In fact, it follows from this and our previous work that log(xz) = z log x for
all z ∈ Z.) This shows that the range of log is also unbounded below, and in
fact, the set of numbers of the form log(1/2n) for n ∈ N is unbounded below!
We may conclude that

lim
x→∞

log x = ∞ lim
x→0+

log x = −∞

(See the discussion surrounding Definition 3.30.)
As a result, for any y ∈ R, because the range of log is unbounded above

and below, there exist a, b > 0 with log a < y < log b. Because log is
continuous, the Intermediate Value Theorem says there is some x ∈ (a, b)
with log x = y. This means that log has R as its range. Since log is also
strictly increasing, and hence injective, we summarize our results with the
following theorem:
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Theorem 7.3. log is a strictly increasing continuous bijection from (0,∞)
to R.

In particular, there is exactly one x > 0 with log x = 1. This number
is denoted by e. In the exercises, you can obtain some estimates for e; it is
known that e ≈ 2.71828. (In the next chapter, we will also be able to prove
that e is irrational.)

Other Logarithm Functions

We developed the log function by focusing on functions with the product
property from Theorem 7.2. From the work at the beginning of this sec-
tion, we can show that on (0,∞), the only differentiable functions with this
product property have the form

f(x) = C log x

for some constant C. The choice of C = 0 is boring, as it produces the zero
function. However, when C 6= 0, f is easily shown to be a strictly monotone
continuous bijection from (0,∞) to R. Thus, when C 6= 0, we will also call
C log x a logarithm function (whereas log is the natural logarithm function).

There is a more useful way of describing different logarithm functions.
If f is a logarithm function, then there is a unique b ∈ (0,∞) such that
f(b) = 1 because f is a bijection with range R. By the product property, it
follows that f(b2) = f(b)+f(b) = 2, f(b3) = f(b2)+f(b) = 3, and so on. For
this reason, b is called the base of the logarithm, and we write f(x) = logb x.
If we also write f(x) = C log x, then f(b) = 1 = C log b. Hence, we must
have log b 6= 0, so b 6= 1 and C = 1/ log b. We summarize with the following
definition:

Definition 7.4. For any b > 0 with b 6= 1, we define the logarithm to the
base b by

logb x =
log x

log b

for any x > 0. (On the right side, the log function without a subscript means
natural logarithm.)

Thus, the natural logarithm is the same as the logarithm to the base e.
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Remark. In different disciplines, people have different standards for what log
without a subscript means. In mathematics, log usually means loge, because
the derivative of loge x is just 1/x. (You can see that (logb x)′ = 1/(x loge b).)
However, in computer science, since binary numbers are very common, log
often means log2, the binary logarithm. It is also common, especially on many
calculators, to use log to represent log10, the decimal logarithm, because we
write numbers in base 10.

For our purposes, we will write log to represent the natural logarithm. It
is useful to note, however, that when people use different bases for log, the
notation “ lnx” is commonly used to represent the natural logarithm. This
notation is especially popular on calculators.

1

b=2
b=e
b=4

b=0.3
b=1�e

x

y

Figure 7.1: Graphs of logb x for several values of b

The graphs of several different logarithm functions are shown in Figure
7.1. Several useful properties of logarithms are made more evident from the
graphs. When b > 1, we have log b > 0, so logb x is strictly increasing and
concave downward. When 0 < b < 1, we have log b < 0, so logb x is strictly
decreasing and concave upward. (In fact, because log(1/b) = − log b when
b > 1, the functions logb x and log1/b x are negations of each other.) All
the logarithms have the same root of x = 1. When 1 < b1 < b2, we have
0 < log b1 < log b2 and hence logb2 x < logb1 x, so a larger base yields a
smaller logarithm. Lastly, all of these functions are unbounded above and
below.
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7.2 Exercises

1. Prove that for all x, y > 0, log(x/y) = log x − log y.

2. Prove that for all x > 0 and all r ∈ Q, log(xr) = r log x by using the
following steps:

(a) Prove this result when r ∈ N.

(b) Prove this result when r ∈ Z.

(c) Prove this result when r = 1/n for some n ∈ N∗.

(d) Finally, prove this result for all r ∈ Q.

3. (a) Define

f(x) =
log x

x

for all x > 0. Determine where f is increasing and where f is
decreasing. (If you’d like, to aid part (b), you can also determine
where f is concave up, and where f is concave down, but this is
not required.)

(b) Use the results from part (a) to sketch a graph of f .

(c) From the results of part (a), prove that log x ≤ x/e for all x > 0.

4. For any a, b > 0 with a, b 6= 1, prove the Change of Base formula:

loga x =
logb x

logb a

Note that this also implies the useful result

loga b =
1

logb a

which allows us to switch the base and argument in a logarithm.

5. Let f(x) = 1 − (1/x) and g(x) = x − 1 for all x > 0. Note that
f(1) = log 1 = g(1) = 0. Prove that for all x > 0 with x 6= 1,

f(x) < log x < g(x)

In particular, when x = e, we get the estimate 1 − (1/e) < 1 < e − 1,
so e > 2. (Hint: Compare the derivatives of f , log, and g, and use the
Mean Value Theorem.)
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6. For any n ∈ N∗, define the nth harmonic number by

Hn =

n
∑

i=1

1

i

By using integral approximations, prove that for all n ∈ N∗ with n > 1,

Hn − 1 < log n < Hn−1

In particular, this implies 1/2 < log 2 < 1 and 13/12 < log 4 < 11/6,
so e must be between 2 and 4.

7. (a) Use the Trapezoid Rule with n = 5 to approximate

log 3 =

∫ 3

1

dt

t

(b) Theorem 6.43 with a = 1, b = 3, and n = 5 implies that

|ET5
| ≤ K(3 − 1)3

12(5)2
=

2K

75

where K is a bound on |(1/x)′′| for all x ∈ [1, 3]. Find one such
bound, and use the error estimate with your value from (a) to
prove that log 3 > 1. Hence, e < 3.

(c) Use T5 to approximate log 2.5, find an error estimate as in part
(b) using Theorem 6.43, and use it to prove that e > 2.5.

8. Define f : R − {0} → R by f(x) = log |x| for all x ∈ R − {0}. Prove
that for all x ∈ R−{0}, f ′(x) = 1/x. As a result, we have the following
formula, valid on intervals which do not contain 0:

∫

dx

x
= log |x| + C

9. Let f : (0,∞) → R be a continuous function, and define F : (0,∞) →
R for all x ∈ (0,∞) by

F (x) =

∫ x

1

f(t) dt
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Thus, F ′(x) = f(x) for all x > 0.

Now, assume that f has the following two properties: first, f(2) = 2,
and second, for all y > 0, the integral

∫ xy

x

f(t) dt

is the same for every value of x ∈ (0,∞). (In other words, this quantity
is only a function of y.) More precisely, for all positive x1, x2, y, we have

∫ x1y

x1

f(t) dt =

∫ x2y

x2

f(t) dt

Under these assumptions, find the value of F (x) for each x > 0, and
prove your answer is correct. (Hint: Start by writing a functional
equation that F satisfies.)

10. Suppose that f : (0,∞) → R is continuous and satisfies

∫ xy

1

f(t) dt = y

∫ x

1

f(t) dt + x

∫ y

1

f(t) dt

for all x, y > 0. Assume also that f(1) = 3. Let F (x) =

∫ x

1

f(t) dt for

all x > 0. Prove that for some C > 0 and all x > 0, F (x) = Cx log x,
and use this to find f(x). (Hint: Consider what property F (x)/x
satisfies.)

7.3 The Exponential Function

At this point, we have introduced the natural logarithm function, log. This
function satisfies the following useful properties for all x, y > 0 and all q ∈ Q:

log(xy) = log x + log y log

(

x

y

)

= log x − log y log(xq) = q log x

Also, log is a strictly increasing bijection from (0,∞) to R, so it has a strictly
increasing inverse from R to (0,∞). This function gets a special name:

PREPRINT: Not for resale. Do not distribute without author’s permission.



462 Section 7.3: The Exponential Function

Definition 7.5. The (natural) exponential function exp : R → (0,∞) is the
inverse of log. Therefore, for all x ∈ R and all y > 0, we have

y = exp(x) ↔ log y = x

In particular, we have exp(0) = 1 and exp(1) = e.

The function exp satisfies some properties which mirror the properties
that log satisfies:

Theorem 7.6. For all x, y ∈ R and all q ∈ Q, we have

exp(x+y) = exp(x) exp(y) exp(x−y) =
exp(x)

exp(y)
exp(qx) = (exp(x))q

Strategy. Since exp is the inverse of log, we know that for all x ∈ R and
a > 0, a = exp(x) iff log a = x. Therefore, we can write x as log a and y as
log b for some a, b > 0. After that, we can use the properties of log.

Proof. We only prove the first of our three properties; the others are left for
Exercise 7.4.1. Let x, y ∈ R be given, and define a = exp(x) and b = exp(y).
Therefore, x = log a and y = log b. Thus,

x + y = log a + log b = log(ab)

Applying exp to both sides, we get exp(x + y) = ab because exp and log are
inverses, so exp(x + y) = exp(x) exp(y). �

It is also worth noting that since log x → −∞ as x → 0+, by letting
y = log x, we have

lim
y→−∞

exp(y) = lim
x→0+

exp(log x) = lim
x→0+

x = 0

by a variant of the Composition Limit Theorem (note that since exp is the
inverse of a continuous function, it is continuous by a variant of Theorem
3.54). Thus, exp has the x-axis as a horizontal asymptote. Similarly, since
log x → ∞ as x → ∞, we find that

lim
y→∞

exp(y) = ∞

These limits could have also been proven from the fact that exp is strictly
increasing and has (0,∞) as its range.
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Irrational Powers and Other Exponential Functions

One consequence of Theorem 7.6 is that whenever x ∈ Q, we have

exp(x) = exp(x · 1) = (exp(1))x = ex

Based on this formula, we choose to define irrational powers of e by defining

ex = exp(x) for ALL x ∈ R

This is the most logical way to extend the notation ex to irrational values of
x, since exp is continuous.

Remark. We will still occasionally write exp(x) instead of ex to denote the
natural exponential function. For instance, writing exp is often preferred
with complicated exponents: below, the left expression is easier to read.

exp(x2 + 5) ex2+5

Now, we can use our definition with base e to define arbitrary powers with
ANY positive base. Suppose b > 0 is given. We know that b = exp(log b), so
for any x ∈ Q, Theorem 7.6 tells us

exp(x log b) = (exp(log b))x = bx

This suggests that we define

bx = exp(x log b) = ex log b for all x ∈ R and b > 0

We say that this is the exponential function with base b.
The function taking x ∈ R to bx is continuous at all values of x ∈ R. For

any b > 0, we have b0 = 1, so every exponential function has a graph pass-
ing through (0, 1) (much like every logarithm function has a graph passing
through (1, 0)). When b = 1, we have log b = 0, so 1x = ex·0 = e0 = 1 for all
x ∈ R. Otherwise, we have log b > 0 iff b > 1, so bx is strictly increasing iff
b > 1, and bx is strictly decreasing iff b < 1. See Figure 7.2.

Because of the monotonicity of bx, we say that bx grows exponentially
when b > 1, and we say bx decays exponentially when b < 1. Whenever
b 6= 1, the function bx is also a bijection from R to (0,∞) with the x-axis as a
horizontal asymptote. It is also useful to note that the exponential functions
with b > 1 are all horizontal contractions / expansions of each other, and the
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exponential functions with b < 1 are reflections of the exponential functions
with b > 1 over the y-axis because

bx = exp(x log b) = exp(−x log(1/b)) =

(

1

b

)−x

As the figure shows, 2x and (1/2)x are reflections of one another over the
y-axis.

ex

2x

H1�2Lx
x

y

Figure 7.2: Graphs of some exponential functions

For every b > 0 with b 6= 1, the functions bx and logb x are inverses of
each other. This is because for any a > 0 and any x ∈ R,

a = bx ↔ a = ex log b ↔ log a = x log b ↔ x =
log a

log b
= logb a

Thus, logb(b
x) = x for every x ∈ R, and blogb x = x for every x > 0. You can

prove a few more useful properties of exponential functions and logarithms
in the exercises.

The Derivative of exp

Next, we find the derivative of exp, since after all, we originally defined
log in terms of its derivative. Recall that by Theorem 4.31, the inverse of a
differentiable function f is differentiable and satisfies

(f−1)′(x) =
1

f ′(f−1(x))
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for all x ∈ dom(f−1) with f ′(f−1(x)) 6= 0. As exp has domain R, we find
that for any x ∈ R,

d

dx
ex =

1
d log
dx

(ex)
=

1

1/ex
= ex

(since ex 6= 0 for all x). More generally, for any b > 0, the Chain Rule yields

d

dx
bx =

d

dx
ex log b = ex log b log b = bx log b

for all x ∈ R. This means that exponential functions are proportional to
their own derivatives, which makes them very useful for modeling physical
situations in which a quantity grows at a rate proportional to its size. (For
instance, at the beginning of this chapter, we used (1.03)x to measure the
amount of money in a bank account after x months. When accumulating
interest, having more money means you accumulate money faster.)

Remark. Using the derivative of the exponential function, we can finally
prove that (xr)′ = rxr−1 for ALL r ∈ R and all x > 0. See Exercise 7.4.17.

We present some examples using this derivative:

Example 7.7:

Consider the function f : R → R defined for all x ∈ R by

f(x) = ex2

= exp(x2)

Using the Chain Rule, we find

f ′(x) = exp(x2)
d

dx
(x2) = 2xex2

As a side note, it is known that f does not have an elementary antiderivative.
�

Example 7.8:

Consider f : (0,∞) → R defined by

f(x) = xx
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for all x > 0. We would like to compute f ′(x) for all x > 0. Note that
the expression xx is neither an exponential function of the form bx for some
constant b > 0, nor is it a power function of the form xr for some constant
r ∈ R, so our previous derivative formulas do not immediately apply.

As a result, we must return to the definition of xx as exp(x log x). Once
we write our function this way, however, it is clear that the Chain Rule can
be used to find the derivative:

f ′(x) = exp(x log x)
d

dx
(x log x) = xx(log x + 1)

This shows that when we have an irrational power, especially one where
neither the base nor the exponent is constant, it is often very useful to write
the power in terms of the exp function.1 This is how we formally establish
where many powers are differentiable. �

The fact that exp is its own derivative is not just coincidence. In fact,
the exponential and the constant-zero functions are essentially the only types
of functions which are proportional to their derivatives. More precisely, we
have the following result:

Theorem 7.9. Let c 6= 0 be given, and let f : R → R be a function which is
differentiable everywhere, never equal to zero, and satisfies

f ′(x) = cf(x)

for all x ∈ R. Then for some constant A ∈ R − {0}, we have f(x) = Aecx

for all x ∈ R.

Remark. The equation
f ′(x) = cf(x)

involves f as an unknown function. Any equation involving an unknown
function and some of its derivatives is called a differential equation. There
are many tricks and theorems known for solving differential equations, but
we will not focus on them in this book.2 However, we will mention that
the strategy we present in this theorem’s proof can be adapted to solve any

1You can also use the technique of logarithmic differentiation, which is introduced in a
later section of this chapter.

2There are some more remarks on differential equations near the end of Chapter 10,
when we use power series to solve some equations.
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differential equation in which all the occurrences of the unknown f end up on
the same side and all the occurrences of x end up on the opposite side (these
are called separable differential equations). For a quite different strategy, see
Exercise 7.4.19.

Strategy. Suppose we write our differential equation with Leibniz notation
as

df

dx
= cf

Since f 6= 0, it is tempting to treat dx as a differential and solve to obtain

df

f
= c dx

(essentially “separating” f and x on opposite sides of the equation). Still
working informally, since there is a differential on each side, we write integral
signs on each side to get

∫

df

f
=

∫

c dx i.e. log |f | + C1 = cx + C2

where C1 and C2 are constants of integration. From here, we can solve for f .
Let’s take this informal approach and make it more formal. We know

f ′(x)

f(x)
= c

since f(x) 6= 0. By the Chain Rule, we see that the left side is the derivative
of log |f(x)|. Hence, we integrate both sides in order to solve for f(x).

Proof. Let c, f be given as described. As the strategy mentions, we suppose
that f(x) 6= 0 for all x ∈ R. It follows that since f is differentiable and hence
continuous, f never changes sign. Also, we know

f ′(x)

f(x)
= c

for all x ∈ R.
Since log |f(x)| has derivative f ′(x)/f(x) by the Chain Rule, we can in-

tegrate each side of our equation and obtain
∫

f ′(x)

f(x)
dx =

∫

c dx → log |f(x)| + C1 = cx + C2
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for some constants C1 and C2. Writing D = C2 − C1 for convenience, and
using the fact that log and exp are inverses, we get

log |f(x)| = cx + D → |f(x)| = ecx+D = ecxeD

Since f never changes sign, exactly one of the following is true for all x ∈ R:

f(x) = eDecx or f(x) = −eDecx

Hence, our theorem is proven by choosing A = eD or A = −eD (note that
A 6= 0). �

Integrals With exp

Because exp′(x) = exp(x) for all x ∈ R, we immediately find that

∫

ex dx = ex + C

This makes exponentials very useful when integrating by substitution or by
parts. We give some examples.

Example 7.10:

Let’s integrate
∫ 1

0

x2ex3

dx

Because of the composition exp(x3) present in the integrand, we try substi-
tuting u = x3 and du = 3x2 dx. This gives

∫ 1

0

1

3
eu du =

(

eu

3

)
∣

∣

∣

∣

1

0

=
e − 1

3

�

Example 7.11:
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Let’s compute
∫

xe2x dx

Here, we try integration by parts with u = x and dv = e2x dx. This is because
du = dx, so du is much simpler than u, and v = e2x/2 (found by a mental
substitution), so v is not more complicated than dv. (In general, exponentials
are usually good choices for dv when integrating by parts because the integral
of an exponential is not more complicated than the original function.) This
gives

∫

xe2x dx =
xe2x

2
− 1

2

∫

e2x dx =
xe2x

2
− e2x

4
+ C

�

Example 7.12:

Let’s compute
∫

ex sin x dx

Here, we try integration by parts. Either choice of ex or sin x works fine
for u, since when the other is picked as dv, the antiderivative v is not more
complicated than dv. We will try u = sin x and dv = ex dx, so that du =
cos x dx and v = ex. Thus,

∫

ex sin x dx = ex cos x −
∫

ex cos x dx

This does not look any simpler than our original problem, but we have
seen before that sometimes performing integration by parts multiple times in
these situations can help us solve for our final integral as an unknown. Hence,
we’ll try integration by parts again with u = cos x and dv = ex dx. (Note:
If I were to pick u = ex and dv = cos x dx this time, I would merely undo
the previous use of integration by parts and arrive where I started. Hence, I
need to keep ex as the dv part.) This gives du = − sin x dx and v = ex, so

∫

ex sin x dx = ex cos x −
∫

ex cos x dx

= ex cos x −
(

−ex sin x +

∫

ex sin x dx

)
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We have obtained the integral of ex sin x on both sides of our equation,
so by some algebra, we get

∫

ex sin x =
ex

2
(cos x + sin x) + C

�

7.4 Exercises

1. Finish the proof of Theorem 7.6 (we only proved the first of the three
properties). You may use the first property if you wish.

For Exercises 2 through 8, prove the following properties of exponential
functions for all a, b > 0 and all x, y ∈ R. When solving these exercises, you
may use the results of earlier exercises.

2. ax+y = axay.

3. ax−y =
ax

ay

(In particular, a−x = 1/ax).

4. (ab)x = axbx.

5.
(a

b

)x

=
ax

bx
.

6. logb(a
x) = x logb a when b 6= 1.

7. axy = (ax)y.

8. If a < b, then ax < bx when x > 0 and ax > bx when x < 0.

For Exercises 9 through 16, an expression defining f(x) is given. De-
termine all x for which the function is differentiable, and compute f ′(x) for
those values of x.

9. f(x) = e1/x

10. f(x) = 2x2

(i.e. the exponent of 2 is x2)

11. f(x) = eex

12. f(x) = xlog x

13. f(x) = (log x)x

14. f(x) = (sin x)cos x

15. f(x) = xxx

(i.e. the exponent of x is xx)

16. f(x) = x1/(log x)
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17. The formula (xr)′ = rxr−1 was proven earlier for r ∈ Q−{0}. Prove it
for all r ∈ R − {0} and all x > 0.

18. Let f : R → R be a function which is differentiable everywhere and
satisfies

f(x + y) = f(x)f(y)

for all x, y ∈ R. We will prove that f must be an exponential function,
or constantly one or constantly zero, by performing the following steps
(these steps are similar to how we arrived at our definition of log):

(a) Prove that if f(t) = 0 for any t ∈ R, then f(x) = 0 for all x ∈ R.

(b) Part (a) shows that the constant-zero function is the only possi-
bility for f with any zeroes, so for the remainder of the problem,
suppose that f(x) 6= 0 for all x ∈ R. Now prove that f(0) = 1.

(c) Prove that ran(f) ⊆ R+. (Hint: f is continuous.)

(d) Prove that there is some c ∈ R such that for all x ∈ R, f ′(x) =
cf(x).

(e) Use part (d) to prove that if f is not the constant-one function,
then c 6= 0. It now follows by Theorem 7.9 that for some A 6= 0,
we have f(x) = Aecx for all x ∈ R. Part (b) implies that A = 1,
finishing the proof.

19. Give a different proof of Theorem 7.9 by defining g(x) = f(x)/ecx =
f(x)e−cx and proving that g is a constant function.

For Exercises 20 through 23, compute the integral in the problem.

20.

∫ log 2

0

ex

ex + 1
dx 21.

∫

ecos x sin x dx

22.

∫

e
√

x dx (Hint: Use a substitution followed by parts.)

23.

∫ 1

0

x3ex2

dx (Hint: This is similar to the previous problem.)

For Exercises 24 and 25, suppose a and b are nonzero constants, and
compute the integral.
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24.

∫

eax sin(bx) dx 25.

∫

eax cos(bx) dx

26. Prove the following reduction formula for all a, n ∈ R − {0}:
∫

xneax dx =
xneax

a
− n

a

∫

xn−1eax dx

27. (a) For all t > 0, since exp is strictly increasing, we know that

et > 1 > e−t

Integrate to prove that for all x > 0,

ex > 1 + x and e−x > 1 − x

(b) Using the idea and result of part (a), prove

ex > 1 + x +
x2

2
and e−x < 1 − x +

x2

2

for all x > 0.

(c) More generally, prove that for all n ∈ N∗ and all x > 0, we have

ex >

n
∑

i=0

xi

i!

and

e−x >

n
∑

i=0

(−1)ixi

i!
if n is odd e−x <

n
∑

i=0

(−1)ixi

i!
if n is even

7.5 Derivatives and Integrals with Logs

Logarithms are useful in many calculus problems because of their product
property and the simple form of their derivative. In this section, we will
demonstrate some examples of working with logarithms in calculus problems.
We start with a few examples of differentiating with logarithms.

Example 7.13:
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Consider the expression
log(log x)

defined when log x > 0, i.e. when x > 1. Using the Chain Rule, for any
x > 1, we compute

d

dx
(log(log x)) =

1

log x

(

1

x

)

=
1

x log x

�

Example 7.14:

Consider the expression
log

√
4 − x2

defined when x2 < 4, i.e. when x ∈ (−2, 2). One way to compute this
derivative is with the Chain Rule twice, yielding

d

dx
log

√
4 − x2 =

1√
4 − x2

(

1

2
(4 − x2)−1/2

)

(−2x) =
−x

4 − x2

However, an easier way is to use Exercise 7.2.2 (the so-called “ log of a power”
property) to note that

log
√

4 − x2 = log
(

(4 − x2)1/2
)

=
1

2
log(4 − x2)

and therefore we compute

d

dx

(

1

2
log(4 − x2)

)

=
1

2

(

1

4 − x2

)

(−2x) =
−x

4 − x2

as before. �

Logarithmic Differentiation

As Example 7.14 indicates, using properties of logarithms can help sim-
plify calculations of derivatives. In fact, for some functions f , the product
property of log makes it so that log f(x) is easier to differentiate than f(x)!
We demonstrate with the following example.

Example 7.15:
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Suppose that f : R → R is defined by

f(x) = x2(x − 1)3 sin x

We’d like to compute f ′. Clearly the Product Rule proves f ′ exists, but it is
messy to use the Product Rule to compute f ′ since we have to use that rule
twice (because there are three simple functions being multiplied). However,
because of the product property of logarithms, as well as the power property
from Exercise 7.2.2, we note that log |f(x)| is fairly simple whenever f(x) 6= 0:

log |f(x)| = log |x|2 + log |x − 1|3 + log |sin x|
= 2 log |x| + 3 log |x − 1| + log |sin x|

(We take absolute values with f so that the logarithm will be defined at
all points where f(x) is not 0, as opposed to only the points where f(x) is
positive.)

Suppose we write g(x) = log |f(x)| when f(x) 6= 0. Since f is known to
be differentiable, by the Chain Rule and the result of Exercise 7.2.8, we get

g′(x) =
2

x
+

3

x − 1
+

1

sin x
(cos x) =

2

x
+

3

x − 1
+

cos x

sin x

However, the Chain Rule also tells us that

g′(x) =
d

dx
(log |f(x)|) =

1

f(x)
f ′(x)

Therefore, by setting our expressions for g′ equal and multiplying by f(x),
we obtain

f ′(x) = f(x)

(

2

x
+

3

x − 1
+

cos x

sin x

)

= x2(x − 1)3 sin x

(

2

x
+

3

x − 1
+

cos x

sin x

)

= 2x(x − 1)3 sin x + 3x2(x − 1)2 sin x + x2(x − 1)3 cos x

Although we derived this formula when f(x) 6= 0, you can check with the
Product Rule that this formula is also correct when f(x) = 0. �

The approach used in Example 7.15 is called logarithmic differentiation.
It finds the derivative f ′ by computing g(x) = log |f(x)|, finding g′, noticing
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that g′ = f ′/f by the Chain Rule, and thus concluding f ′ = f · g′. This
approach is useful whenever g is simpler than f because of properties of log.
In particular, logarithmic differentiation tends to work well with products,
quotients, and powers (using the results of Exercises 7.2.1 and 7.2.2).

Remark. There are a couple technical points that should be noted. First, you
need to already know f is differentiable in order to use the Chain Rule with
log |f(x)|. However, in many cases, it is easy to show that f is differentiable
by using the rules we have proven before. Logarithmic differentiation does
not prove that f ′ exists: it provides a convenient way to compute f ′.

Second, since g(x) = log |f(x)| is only defined when f(x) 6= 0, logarithmic
differentiation only produces the derivative f ′(x) = f(x)g′(x) at points where
f(x) 6= 0. However, even if a ∈ R satisfies f(a) = 0, we can still compute

lim
x→a

f ′(x) = lim
x→a

f(x)g′(x)

provided that f(x) 6= 0 when x is close enough to a but not equal to a.
If this limit exists, then by Exercise 4.10.19, f ′(a) is that limit. In many
situations, when you multiply f and g′, cancelation occurs, and after the
cancelation the resulting expression is frequently continuous at a anyway! In
those situations, you may safely plug a into the expression to get f ′(a), even
when f(a) = 0.

Example 7.16:

Suppose f is defined by

f(x) =
x tan2 x

1 + x2

at all x ∈ R where tan x is defined. For any such x, we would like to compute
f ′(x). Because f is built out of products, quotients, and powers of simpler
functions, logarithmic differentiation is a good approach to use.

Using our logarithm properties for products, powers, and quotients, we
obtain

g(x) = log |f(x)| = log |x| + 2 log |tanx| − log |1 + x2|
(Note that we do not have a property that allows us to simplify log |1+x2|.)
Therefore,

g′(x) =
1

x
+

2

tan x
(sec2 x) − 1

1 + x2
(2x)
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and thus

f ′(x) = f(x)g′(x)

=

(

x tan2 x

1 + x2

)(

1

x
+

2 sec2 x

tan x
− 2x

1 + x2

)

=
tan2 x

1 + x2
+

2x sec2 x tan x

1 + x2
− 2x2 tan2 x

(1 + x2)2

Since this expression is continuous at all x where tanx is defined, the earlier
remark shows that this formula works for all x where tan x is defined. �

Logarithms in Substitutions

There are plenty of substitution problems which cause the final integrand
to resemble 1/u. In these problems, we can use log to obtain an antideriva-
tive. In fact, the result of Exercise 7.2.8 shows that

∫

1

x
dx = log |x| + C

whenever we integrate over an interval which does not contain 0. Here are
some examples of this.

Example 7.17:

Let’s compute
∫ 1

0

x

1 + x2
dx

When we use the substitution u = 1 + x2, we get du = 2x dx, and the limits
change to 1 and 2. This yields

∫ 1

0

x

1 + x2
dx =

1

2

∫ 2

1

du

u
=

1

2
log |u|

∣

∣

∣

∣

2

1

=
1

2
(log 2 − log 1) =

log 2

2

�

Remark. When we use the FTC to integrate 1/x, we need 1/x to be contin-
uous on the interval of integration. Thus, when we obtain the antiderivative
log |x|, we can only plug in limits if our interval of integration doesn’t have 0
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in it. To see what can go wrong if this restriction is forgotten, consider the
expression

∫ 1

−3

1

x
dx

It is tempting to say that this equals log |1|− log |−3| = − log 3. However, in
fact, 1/x is unbounded on [−3, 1], so it is not integrable on [−3, 1]! (This ex-
pression is an improper integral, since the integrand has a vertical asymptote.
We will study improper integrals in Chapter 9.)

Example 7.18:

Let’s compute
∫

dx

x log x log(log x)

In order for this denominator to be defined and nonzero, we need x and log x
to be positive (so that log x and log(log x) is defined) and also x, log x 6= 1
(so log x, log(log x) 6= 0). As log x > 0 when x > 1, and log x = 1 when
x = e, this integral is well-defined over any closed bounded subinterval of
(1,∞) which does not contain e.

The presence of the composition log(log x) suggests trying u = log x. As
du = dx/x, this gives us

∫

dx

x log x log log x
=

∫

du

u log u

The presence of the 1/u in the integrand suggests that a substitution for
log u will work. If we substitute v = log u, we get dv = du/u and thus

∫

du

u log u
=

∫

dv

v
= log |v| + C = log |log u| + C = log |log log x| + C

Alternately, if we chose the substitution u = log log x in the first place,
then we would immediately obtain the integral of 1/u, which gives us log |u|+
C = log |log log x| + C. �

It’s worth noting that we have actually used logarithms in substitutions
before now, but we had to express the results in terms of a function

L(x) =

∫ x

1

dt

t
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for which we did not have an alternate name. For instance, see Exercises
6.3.18 and 6.3.19, where we integrated tan x and sec x respectively. From
those exercises, you can find

∫

tan x dx = log |sec x| + C

∫

cot x dx = − log |csc x| + C

and
∫

sec x dx = log |sec x + tanx|+C

∫

csc x dx = − log |csc x + cot x|+C

Logarithms with Parts

Because log x has derivative 1/x, which is simpler than log x, logarithms
can also appear in problems with integration by parts. For instance:

Example 7.19:

Let’s compute
∫

log x dx

The only tool we can really try here is integration by parts. Thus, one part
needs to be chosen as u, which gets differentiated, and the rest is chosen as
dv, which gets integrated. We try u = log x and dv = dx, so that du = dx/x
and v = x. Thus,

∫

log x dx = x log x −
∫

dx = x log x − x + C

In fact, by performing nearly the same steps, you can also show
∫

log |x| dx = x log |x| − x + C

�

Frequently, when performing integration by parts with logarithms, the
logarithm is chosen to be the differentiated part u. Doing this frequently
makes the resulting integrand much simpler. (This is similar to why when
we see an inverse trigonometric function, it is usually chosen as u.)

Example 7.20:
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We compute the integral
∫ e

1

x2 log x dx

Since a logarithm is present, and no substitution seems useful, we do parts
with u = log x and dv = x2 dx. Thus, du = dx/x and v = (x3)/3, yielding
∫ e

1

x2 log x dx =
x3 log x

3

∣

∣

∣

∣

e

1

− 1

3

∫ e

1

x2 dx =

(

x3 log x

3
− x3

9

)
∣

∣

∣

∣

e

1

=
2e3 + 1

9

For contrast, suppose we switch the roles of our two parts, choosing u = x2

and dv = log x dx (since we frequently pick polynomials as u in other parts
problems). We get du = 2x dx and v = x log x−x from the result of Example
7.19. Thus,

∫ e

1

x2 log x dx = x2(x log x − x)
∣

∣

e

1
−
∫ e

1

2x(x log x − x) dx

= x2(x log x − x)
∣

∣

e

1
− 2

∫ e

1

x2 log x +

∫ e

1

2x2 dx

At this point, we can compute the integral of 2x2 easily, and we can collect
the terms with our unknown integral on the same side. This gives us

3

∫ e

1

x2 log x dx =

(

x2(x log x − x) +
2x3

3

)
∣

∣

∣

∣

e

1

=
2e3

3
−
(

−1 +
2

3

)

=
2e3 + 1

3

so we get the same answer as in the other approach. However, this approach
is much harder, and we already needed to know how to integrate log x for
this approach to work. �

7.6 Partial Fractions

As a very useful application of logarithms in calculus, we will show how we
can obtain antiderivatives for every rational function (recall that rational
functions are fractions of polynomials). The technique we will use is called
integration by partial fractions. This technique works by breaking up a frac-
tion into simpler pieces, based on the factors of the denominator.

More precisely, suppose that p and q are polynomials, and we would like
to compute

∫

p(x)

q(x)
dx
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for intervals where q is not zero. We want to find polynomials f1, f2, . . . , fm

and g1, g2, . . . , gm so that

p(x)

q(x)
=

f1(x)

g1(x)
+

f2(x)

g2(x)
+ · · · + fm(x)

gm(x)

where, for each i from 1 to m, gi(x) is a factor of q(x). In fact, we’ll be able
to make sure that each gi is either a power of a linear function or a power
of a quadratic function. We call the fraction fi/gi a partial fraction, and we
call the sum of these fractions a partial-fraction decomposition for p/q. This
decomposition is useful because each partial fraction is simpler to integrate.

Here is the main theorem guiding our work, which we will not prove: 3

Theorem 7.21. Suppose that p and q are polynomials with deg(p) < deg(q).
For some m ∈ N∗, there exist polynomials f1, f2, . . . , fm, g1, g2, . . . , gm such
that

p(x)

q(x)
=

m
∑

i=1

fi(x)

gi(x)

for every x ∈ R where q(x) 6= 0. Furthermore, for each i from 1 to m, gi(x)
is a divisor of q(x), and exactly one of these two statements holds:

1. fi and gi have the form

fi(x) = A gi(x) = (ax + b)r

for all x ∈ R, where A, a, b ∈ R, a 6= 0, and r ∈ N∗. We say gi is a
linear factor if r = 1 or a repeated linear factor if r > 1.

2. fi and gi have the form

fi(x) = Ax + B gi(x) = (ax2 + bx + c)r

for all x ∈ R, where A, B, a, b, c ∈ R, a 6= 0, r ∈ N∗, and b2 − 4ac < 0.
(Thus, the equation ax2 + bx + c = 0 has no real solutions.) We say
gi is an irreducible quadratic factor if r = 1 or a repeated irreducible
quadratic factor if r > 1.

3For the interested reader, to prove this theorem, you need the Fundamental Theorem
of Algebra and some results concerning the Euclidean Algorithm (for polynomials) for
computing greatest common divisors. The Fundamental Theorem of Algebra is gener-
ally proven in graduate-level algebra courses, and while the results about the Euclidean
Algorithm are not particularly difficult, they are outside the scope of this book.
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Furthermore, if g1 through gm are all distinct, then there is a unique way
to pick f1 through fm satisfying the above properties.

Example 7.22:

As an example, let’s show how to compute
∫

dx

x2 − 1

by using partial fractions. Since x2 − 1 factors as (x− 1)(x +1) (i.e. g1(x) =
x − 1 and g2(x) = x + 1), Theorem 7.21 guarantees that there exist unique
constants f1(x) = A and f2(x) = B satisfying

1

x2 − 1
=

A

x − 1
+

B

x + 1

(The theorem doesn’t rule out the case that A or B is zero.)
We would like to solve for A and B. First, we multiply x2 − 1 = (x −

1)(x + 1) to both sides of our equation, and we obtain

1 = A(x + 1) + B(x − 1)

(However, see Exercise 7.7.26 for a subtlety concerning this step.) At this
point, we have two ways to proceed. One way is to collect similar terms
together on each side, so we write our equation in the form

0x + 1 = (A + B)x + (A − B)

In order for these two polynomials to be equal for all x ∈ R (technically, they
only need to be equal for two values of x, since two points determine a line),
we need the coefficients to match. Thus, A + B = 0 and A − B = 1. When
we add these equations, we get 2A = 1, so A = 1/2, and when we subtract
the equations, we get 2B = −1, so B = −1/2.

The other way to find A and B is to plug in convenient values of x. If we
plug in x = −1, then the equation 1 = A(x+1)+B(x−1) becomes 1 = −2B,
so B = −1/2. If we plug in x = 1, then we get 1 = 2A, so A = 1/2.

Using either approach, we have successfully rewritten our original integral
using two partial fractions. By applying some simple substitutions, we readily
find that
∫

dx

x2 − 1
=

1

2

(
∫

dx

x − 1
−
∫

dx

x + 1

)

=
1

2
(log |x − 1| − log |x + 1|) + C
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This can also be written as (1/2) log |(x−1)/(x+1)|+C. When (x−1)/(x+1)
is positive, i.e. when |x| > 1, we can use the power property from Exercise
7.2.2 and write this as

log

∣

∣

∣

∣

∣

√

x − 1

x + 1

∣

∣

∣

∣

∣

+ C

�

Improper Rational Functions and Long Division

It is important to note that Theorem 7.21 applies only to rational func-
tions for which the numerator has a smaller degree than the denominator,
i.e. fractions of the form p(x)/q(x) with deg(p(x)) < deg(q(x)). These kinds
of rational functions are called proper rational functions. When deg(p(x)) ≥
deg(q(x)), we instead say the function is an improper rational function.

How do we integrate an improper rational function p(x)/q(x)? The first
thing we do is divide p(x) by q(x) to obtain a quotient and remainder. One
convenient way of doing this is by using long division for polynomials. We
will demonstrate the process of long division with an example; this will also
illustrate the process better than a long step-by-step list of instructions.

Example 7.23:

As a demonstration, suppose we’d like to divide p(x) = x4 − x3 by q(x) =
x2 + 2. We set up our problem with a notation similar to long division of
whole numbers:

x2 + 0x + 2
)

x4 − x3 + 0x2 + 0x + 0

(We have also added terms with coefficients of 0, so that p(x) has a term for
each power of x up to the leading term. This will make the work simpler.)

For the first step of long division, we divide the leading term of our
dividend p(x) with the leading term of our divisor q(x). In this case, we
divide x4 by x2 to obtain x2. We think of this as saying “x2 copies of q(x) go
into x4”. We write this quotient, x2, above the x4 term, and then we subtract
x2q(x) from the dividend. This gives us

x2

x2 + 0x + 2
)

x4 − x3 + 0x2 + 0x + 0

−x4 − 0x3 − 2x2

− x3 − 2x2 + 0x + 0

PREPRINT: Not for resale. Do not distribute without author’s permission.



Chapter 7: Log, e, and Related Results 483

Now, we think of −x3 − 2x2 + 0x + 0 as being the new dividend, and
we repeat the previous step. Thus, −x3 divided by x2 is −x, so we write
−x above the x3 term and we subtract −xq(x) from our dividend. (In other
words, we add xq(x).) This gives

x2 − x

x2 + 0x + 2
)

x4 − x3 + 0x2 + 0x + 0

−x4 − 0x3 − 2x2

− x3 − 2x2 + 0x + 0
x3 + 0x2 + 2x

− 2x2 + 2x + 0

Doing this one more time, with our new dividend of −2x2 + 2x + 0, we
write −2 up above the x2 term (this shows why it was useful to write 0x2 in
p(x), so that we have a convenient place to write this −2) and we subtract
−2q(x) from our dividend. This yields

x2 − x − 2

x2 + 0x + 2
)

x4 − x3 + 0x2 + 0x + 0

−x4 − 0x3 − 2x2

− x3 − 2x2 + 0x + 0
x3 + 0x2 + 2x

− 2x2 + 2x + 0
2x2 + 0x + 4

2x + 4

At this point, we notice that the leading term of our dividend has smaller
degree than the leading term of q(x), so we stop. We conclude that x2 + 2
goes into x4 − x3 a total of x2 − x− 2 times (this is the polynomial we wrote
at the top), with a remainder of 2x + 4. You can check this result by seeing
that

x4 − x3 = (x2 + 2)(x2 − x − 2) + (2x + 4)

and thus
x4 − x3

x2 + 2
= x2 − x − 2 +

2x + 4

x2 + 2

�

Note that at the end of the previous example, we were able to write our
improper rational function p(x)/q(x) as a polynomial plus a proper rational
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function. This is the reason we do long division. We can integrate the
polynomial easily, and then we break the proper rational function into partial
fractions. Sometimes, however, the proper rational function is already in
partial-fractions form, as this example shows:

Example 7.24:

Let’s compute
∫

2x2 − 2x + 1

2x − 1
dx

Because this is an improper rational function, we first perform long division.
This gives us

x − 1
2

2x − 1
)

2x2 − 2x + 1

−2x2 + x
− x + 1

x − 1
2
1
2

(Note that in the second step, −x divided by 2x yields −1/2; the quotients
don’t have to be integers!) Thus, our quotient is x−(1/2) and our remainder
is 1/2. This means that

∫

2x2 − 2x + 1

2x − 1
dx =

∫

x − 1

2
+

1/2

2x − 1
dx

We integrate the polynomial x − (1/2) easily, and we perform a mental
substitution of u = 2x−1 for the proper rational function. Thus, our integral
is

x2

2
− x

2
+

1

4
log |2x − 1| + C

�

The Different Types of Partial Fractions

We now turn our attention to integrating proper rational functions. The-
orem 7.21 states that our partial fractions can come either from linear fac-
tors (possibly repeated) or irreducible quadratic factors (possibly repeated).
When trying to decompose a proper rational function into partial fractions,
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we usually factor the denominator completely, write down all the forms that
a partial fraction can take with some unknown coefficients, and then we solve
for those unknowns. Let’s take a look at a few examples concerning different
types of partial-fraction decompositions.

Example 7.25:

Our first example will use only non-repeated linear factors. Let’s integrate
∫

6x2 − 7x − 10

x3 − 3x2 − 10x

Note that this is proper, so we do not need to do long division. First, the
denominator can be written as x(x2 −3x−10) = x(x+2)(x−5). Therefore,
each of our partial fractions comes from a linear factor, and we can write

6x2 − 7x − 10

x(x + 2)(x − 5)
=

A

x
+

B

x + 2
+

C

x − 5

for some constants A, B, C. (Note that these constants might not be the
same, so we need to use different names to represent each one.) To solve for
these constants, we first multiply both sides by x(x + 2)(x − 5) to get

6x2 − 7x − 10 = A(x + 2)(x − 5) + Bx(x − 5) + Cx(x + 2)

As in Example 7.22, there are two methods we can use to solve for these
coefficients. In the first method, we expand out the right side and collect
powers of x together. This gives us

6x2 − 7x − 10 = A(x2 − 3x − 10) + B(x2 − 5x) + C(x2 + 2x)

= (A + B + C)x2 + (−3A − 5B + 2C)x + (−10A)

Therefore, we set the coefficients equal and obtain

6 = A + B + C − 7 = −3A − 5B + 2C − 10 = −10A

The last equation immediately yields A = 1. Plugging that into the others
gives

5 = B + C − 4 = −5B + 2C

By doubling the first of these equations and subtracting the second, we get

14 = 7B
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so B = 2. Plugging that in to 5 = B + C, we find C = 3.
The other way to find A, B, C is to plug values of x into the equation

6x2 − 7x − 10 = A(x + 2)(x − 5) + Bx(x − 5) + Cx(x + 2)

We plug in values which cause the linear factors to become zero. For instance,
when we plug in x = 0, we get −10 = −10A, so A = 1. When we plug in
x = −2, we get 28 = 14B, so B = 2. When we plug in x = 5, we get
105 = 35C, so C = 3. As you can see, this second method works very
quickly for non-repeated linear factors (though as we’ll soon see, it causes
some difficulties for other types of factors).

We have now shown that
∫

6x2 − 7x − 10

x(x + 2)(x − 5)
dx =

∫

1

x
dx +

∫

2

x + 2
dx +

∫

3

x − 5
dx

= log |x| + 2 log |x + 2| + 3 log |x − 5| + C

(Note that the C here is a constant of integration, not the same C we used for
partial-fraction decomposition. Sometimes, to avoid this confusion, people
write A1, A2, etc. to denote the constants in the decomposition.) �

Example 7.26:

In this example, we consider an integral where we have a repeated linear
factor. Let’s integrate

∫

3x3 − 4x2 + 3x − 6

x4 − 2x3
dx =

∫

3x3 − 4x2 + 3x − 6

x3(x − 2)
dx

Here, the x3 is a repeated factor. Its divisors include x, x2, and x3. Theorem
7.21 tells us to consider partial fractions of the form A/xr, where r could be
1, 2, or 3. Therefore, we put in one partial fraction for each possibility of r,
each with their own constant, and write

3x3 − 4x2 + 3x − 6

x4 − 2x3
=

A

x
+

B

x2
+

C

x3
+

D

x − 2

(In general, when you have a repeated factor with a power of r, make one
partial fraction for EACH power up to r, and give each fraction its own
unknown constants.)
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Once again, we multiply x4 − 2x3 = x3(x − 2) to both sides and get

3x3 − 4x2 + 3x − 6 = Ax2(x − 2) + Bx(x − 2) + C(x − 2) + Dx3

If we try the second method from the previous example, then plugging in
x = 0 gives us −6 = −2C, so C = 3, and plugging in x = 2 gives us 8 = 8D,
so D = 1. After that, there is no value left to plug in which immediately
tells us A or B in the same manner.

However, we can still plug in some other simple values of x to get equa-
tions involving the constants. Since we have two constants left to determine,
we should plug in two values of x to get two equations. Suppose we plug in
x = 1 and x = −1, giving us

−4 = −A − B − C + D and − 16 = −3A + 3B − 3C − D

After plugging in our known values of C = 3 and D = 1 to this, this system
becomes

−2 = −A − B and − 6 = −3A + 3B

At this point, we can triple the equation −2 = −A − B and add it to
−6 = −3A + 3B to get −12 = −6A, so A = 2. Using that in the equation
−2 = −A − B, we get B = 0.

Thus, even when you have factors other than non-repeated linear factors,
you can still use the “plug in values of x” method to obtain simple equations
involving your constants. In this example, we saw that two values of x, 0
and 2, immediately gave us two of our constants; this is because we had
two types of linear factors. However, the other two constants had to be
found by plugging in two more values and getting two equations involving
the remaining unknowns, so this method resembles the “expand and collect
powers” method when you have factors with large values of r. (Note that
the “expand and collect powers” method also works on this example, as you
should check for yourself.)

We have now found that
∫

3x3 − 4x2 + 3x − 6

x3(x − 2)
dx =

∫

2

x
dx +

∫

3

x3
dx +

∫

1

x − 2
dx

= 2 log |x| − 3

2x2
+ log |x − 2| + C

�

PREPRINT: Not for resale. Do not distribute without author’s permission.



488 Section 7.6: Partial Fractions

Our remaining examples involve irreducible quadratic factors. Partial
fractions involving irreducible quadratic factors are not as easy to integrate
as those involving linear factors. Our approach for integrating

∫

Ax + B

(ax2 + bx + c)r
dx

depends on whether or not b is zero.
If b = 0, then we split the integral into two pieces as

∫

Ax

(ax2 + c)r
dx +

∫

B

(ax2 + c)r
dx

The first piece is computed by making the substitution u = ax2 + c. The
second piece is integrated by a trigonometric substitution involving tangent.
(See Exercise 7.7.27, or see Exercise 7.7.28 for an alternate approach.)

On the other hand, if b 6= 0, then we complete the square for ax2 + bx+ c
and write it in the form a(x + p)2 + q for some p, q ∈ R. This yields

∫

Ax + B

(a(x + p)2 + q)r

We perform the substitution u = x + p, and then the resulting integral in u
is solved by using the tactics we gave for the case where b = 0.

Example 7.27:

In this problem, let’s compute

∫

3x2 + 5x + 4

x3 + 2x2 + 2x
dx =

∫

3x2 + 5x + 4

x(x2 + 2x + 2)
dx

(Note that x2 +2x+2 has discriminant 22 −4(1)(2) < 0, so it is irreducible.)
We express the partial-fraction decomposition as

3x2 + 5x + 4

x(x2 + 2x + 2)
=

A

x
+

Bx + C

x2 + 2x + 2

for some unknown constants A, B, C. Multiplying x(x2 + 2x + 2) to both
sides, we get

3x2 + 5x + 4 = A(x2 + 2x + 2) + (Bx + C)x
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In this problem, it is easier to collect powers of x. We get 3x2 + 5x + 4 =
(A + B)x2 + (2A + C)x + (2A), so we have

3 = A + B 5 = 2A + C 4 = 2A

The last equation yields A = 2. Plugging that into the other equations, we
immediately find B = 1 and C = 1. Therefore, we have found

∫

3x2 + 5x + 4

x(x2 + 2x + 2)
dx =

∫

2

x
dx +

∫

x + 1

x2 + 2x + 2
dx

= 2 log |x| +
∫

x + 1

x2 + 2x + 2
dx

To handle the remaining partial fraction, we complete the square to get

x2 + 2x + 2 = (x2 + 2x + 1) + 1 = (x + 1)2 + 1

Thus, we substitute u = x + 1, so du = dx and we get

∫

(x + 1)

(x + 1)2 + 1
dx =

∫

u

u2 + 1
du

We solve this by substituting v = u2 + 1, so dv = 2u du and we get

∫

1

2v
dv =

1

2
log |v| + C

Going back to the original variable of x and putting everything together, our
final answer is

2 log |x| + 1

2
log |(x + 1)2 + 1| + C = 2 log |x| + 1

2
log |x2 + 2x + 2| + C

�

Example 7.28:

Let’s integrate
∫

x4 + 2x2 + x

(x − 1)(x2 + 1)2
dx
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Here, (x2 + 1)2 is a repeated irreducible quadratic factor with r = 2, so we
will have a partial fraction with (x2 + 1)1 and one with (x2 + 1)2 in our
decomposition. This gives

x4 + 2x2 + x

(x − 1)(x2 + 1)2
=

A

x − 1
+

Bx + C

x2 + 1
+

Dx + E

(x2 + 1)2

We multiply (x − 1)(x2 + 1)2 to both sides and we get

x4 + 2x2 + x = A(x2 + 1)2 + (Bx + C)(x − 1)(x2 + 1) + (Dx + E)(x − 1)

For variety, let’s try the method of plugging in values of x. When we plug
in x = 1, we get 4 = 4A, so A = 1. However, no other value of x immediately
gives us any other constants. We try plugging in x = 0, x = −1, x = 2, and
x = −2, and we get the four equations

0 = A + (C)(−1)(2) + (E)(−1)

= A − 2C − E

2 = 4A + (−B + C)(−2)(2) + (−D + E)(−2)

= 4A + 4B − 4C + 2D − 2E

26 = 25A + (2B + C)(1)(5) + (2D + E)(1)

= 25A + 10B + 5C + 2D + E

22 = 25A + (−2B + C)(−3)(5) + (−2D + E)(−3)

= 25A + 30B − 15C + 6D − 3E

By plugging in our known value of A = 1, we get the equations

−1 = −2C − E

−2 = 4B − 4C + 2D − 2E

1 = 10B + 5C + 2D + E

−3 = 30B − 15C + 6D − 3E

First, we eliminate E from these equations by adding the first and third
equations, adding twice the third equation to the second, and adding three
times the third equation to the fourth. This yields

0 = 10B + 3C + 2D

0 = 24B + 6C + 6D

0 = 60B + 12D
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(At this point, you can see that these equations are satisfied with B =
C = D = 0, but let’s show the rest of the steps for completeness.) Next,
we eliminate C from the equations by subtracting twice the first of these
equations from the second. We get

0 = 4B + 2D

0 = 60B + 12D

By subtracting 6 times the first of these equations from the second, we get
0 = 36B, so B = 0. Putting that into 0 = 4B + 2D, we get D = 0. Putting
B = 0 and D = 0 into 0 = 10B + 3C + 2D, we get C = 0. Lastly, putting
all these values into −1 = −2C − E yields E = 1.

Therefore, we have found
∫

x4 + 2x2 + x

(x − 1)(x2 + 1)2
=

∫

1

x − 1
dx +

∫

1

(x2 + 1)2
dx

The first integral is log |x − 1| + C. For the second integral, we substitute
x = tan θ, so dx = sec2 θ dθ and thus

∫

1

x − 1
dx +

∫

1

(x2 + 1)2
dx = log |x − 1| +

∫

sec2 θ

(tan2 θ + 1)2
dθ

= log |x − 1| +
∫

sec2 θ

sec4 θ
dθ

= log |x − 1| +
∫

cos2 θ dθ

= log |x − 1| + 1

2

∫

1 + cos(2θ) dθ

= log |x − 1| + θ

2
+

sin(2θ)

4
+ C

= log |x − 1| + θ

2
+

sin θ cos θ

2
+ C

At this point, we need to return to the original variable of x. Since
x = tan θ, we have θ = arctanx. Also, imagining a right triangle with an
angle of θ with opposite side x and adjacent side 1 (so that tan θ = x), we
find that the hypotenuse has length

√
x2 + 1. Thus, sin x = x/

√
x2 + 1 and

cos x = 1/
√

x2 + 1, so our final answer is

log |x − 1| + arctanx

2
+

x

2(x2 + 1)
+ C
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�

Although integration by partial fractions tends to involve a lot of compu-
tation, most of the computation should be pretty mechanical, i.e. the steps
don’t require ingenuity. The main steps are to perform long division if neces-
sary, identify the types of partial fractions needed (making sure to represent
a repeated factor of power r with r different fractions, one for each power
up to r), solve for some constants, and then integrate each partial fraction
using the methods we have discussed. In fact, many computer programs can
integrate by partial fractions automatically, as long as they can factor the de-
nominator. Also, some integration problems can be handled by turning them
into partial-fractions problems via substitution: for instance, see Exercises
7.7.29 and 7.7.30.

7.7 Exercises

For Exercises 1 through 8, an expression defining a function f is given in
terms of x. Determine the set of x ∈ R for which this function is well-
defined. Also, determine where the function is differentiable and compute its
derivative, using logarithmic differentiation if desired.

1. f(x) = log(1 − x2)

2. f(x) = log

(

1 − x

1 + x

)

3. f(x) = log |sec x + tanx|

4. f(x) = log(x2 log x)

5. f(x) = sin(log x) − cos(log x)

6. f(x) = −x log x−(1−x) log(1−x)

7. f(x) =
x1/3 log x

(sin x + 2)2

8. f(x) = x(x + 1)2(x − 2)3(x + 3)4

For Problems 9 through 13, evaluate the integral.

9.

∫ 2

1

3x2 + 2x

x3 + x2
dx

10.

∫

log |x|
x
√

1 + log |x|
dx

11.

∫ e

1

xn log x dx where n ∈ R − {0}

12.

∫

log x

x
dx

13.

∫

log x

xn
dx where n ∈ R − {1}
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14. Prove the following reduction formula for all m, n ∈ R with n 6= 0 and
m 6= −1 (you may assume log x > 0):

∫

xm logn x dx =
xm+1 logn x

m + 1
− n

m + 1

∫

xm logn−1 x dx

For Exercises 15 through 22, evaluate the integral using the method of
partial fractions. Sometimes you will need to perform long division as part
of the process.

15.

∫

x2

x − 1
dx

16.

∫ 3

1

x3 + x2 + 2x + 1

x2 + x
dx

17.

∫

ax + 1

x2 − bx
dx

for any a, b ∈ R − {0}

18.

∫ 4

2

3.5x2 + 0.5x − 1

x2(x − 1)2
dx

19.

∫

4x2 + 5x + 16

x3 + 4x
dx

20.

∫

3x2 + x + 3

(2x − 1)(x2 − 2x + 5)
dx

21.

∫

√
3

1

3

x4 + 5x2 + 4
dx

22.

∫

2x4 + 35x2 + 162

x(x2 + 9)2
dx

23. We computed the integral in Example 7.22 by using partial fractions.
Compute that integral by using a trigonometric substitution instead,
and show that you get the same answer when |x| > 1.

24. Compute

∫

1

1 + ex
dx in each of the following three ways (you should

also check to see that you get the same answer each way, even if the
answers don’t look the same at first):

(a) By multiplying the numerator and denominator by e−x

(b) By writing
1

1 + ex
as 1 − ex

1 + ex

(c) By substituting u = ex and performing integration by partial frac-
tions

25. Rational functions in ex (i.e. fractions whose numerators and denom-
inators consist of linear combinations of integer powers of ex) can be
integrated by using the substitution u = ex and du = ex dx = u dx
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to turn the problem into an integration by partial fractions. Use this
approach to compute the following integrals:

(a)

∫

1

1 + e2x
dx

(b)

∫ log 3

log 2

ex + 1

ex − 1
dx

(c)

∫

e4x + e3x

ex + 2
dx

26. When trying to solve for a partial-fraction decomposition of the form

p(x)

q(x)
=

n
∑

i=1

fi(x)

gi(x)

as Theorem 7.21 guarantees, we frequently start by multiplying q(x) to
both sides to get rid of denominators. In particular, for each i from 1
to n, let’s say hi is the unique polynomial satisfying gihi = q (such an
hi exists because gi is a divisor of q). We get

p(x)

q(x)
=

n
∑

i=1

fi(x)

gi(x)
↔ p(x) =

n
∑

i=1

fi(x)hi(x)

This turns our rational equation above into a polynomial equation.
However, the rational equation is only defined for values of x ∈ R for
which q(x) 6= 0, and the polynomial equation is defined for all x ∈ R.
Thus, it is not clear whether the rational equation and the polynomial
equation are logically equivalent at values of x ∈ R satisfying q(x) = 0.

Prove that if the rational equation is satisfied for all x ∈ R with
q(x) 6= 0, then the corresponding polynomial equation is satisfied for all
x ∈ R. This allows us to plug in whatever value of x we wish into the
polynomial equation when solving for the unknown coefficients. (Hint:
You should use the fact that a polynomial of degree d is uniquely de-
termined by its values at any d + 1 points.)

27. Recall the reduction formula for powers of cosine from Exercise 6.3.22,
valid for all n ≥ 2:

∫

cosn x dx =
cosn−1 x sin x

n
+

n − 1

n

∫

cosn−2 x dx
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Use this formula and a trigonometric substitution to compute

∫

1

(x2 + 1)3
dx

28. This exercise develops a reduction formula for integrating repeated ir-
reducible quadratic factors.

(a) By integrating by parts with dv = dx, prove that for all a ∈ R

and all n 6= −1/2,

∫

(x2 + a2)n dx =
x(x2 + a2)n

2n + 1
+

2na2

2n + 1

∫

(x2 + a2)n−1

(Hint: After one step, you will want to write x2 as (x2 +a2)−a2.)

(b) Use part (a) to conclude that for all a ∈ R and all r ∈ R −
{−3/2, 1},

∫

1

(x2 + a2)r
dx =

x(x2 + a2)−(r−1)

2(r − 1)a2

+
2r − 3

2(r − 1)a2

∫

1

(x2 + a2)r−1
dx

(Hint: Note that the formula from part (a) reduces the power on
(x2 + a2). This should suggest which value to use for n.)

(c) Use part (b) to compute

∫

1

(x2 + 1)3
dx

29. By using integration by parts, followed by integration by partial frac-
tions if necessary, evaluate

∫

log |x2 + x| dx

and
∫

log

∣

∣

∣

∣

1 + x

1 − x

∣

∣

∣

∣

dx
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30. In this exercise, we introduce a useful trick called the Weierstrass sub-
stitution (named after Karl Weierstrass) for turning fractions with sin x
and cos x into rational functions.4 The Weierstrass substitution is

t = tan
(x

2

)

where |x| < π. Thus, x = 2 arctan t and hence

dx =
2

1 + t2
dt

(a) By using double-angle identities, prove that

sin x = sin
(

2
(x

2

))

=
2t

1 + t2

and

cos x = cos
(

2
(x

2

))

=
1 − t2

1 + t2

(Hint: Note that 1 + t2 = sec2(x/2).)

(b) Use the Weierstrass substitution and the results from part (a) to
evaluate

∫

sin x

1 + cos x
dx

(Don’t forget to return to the original variable x in your final
answer!)

(c) Use the Weierstrass substitution to evaluate

∫

1

1 + cos2 x
dx

(Hint: t4 + 1 = (t2 + t
√

2 + 1)(t2 − t
√

2 + 1).)

4For the curious reader, the Weierstrass substitution historically arises from the prob-
lem of trying to describe all points with rational coordinates on the unit circle. It turns
out that except for (−1, 0), they all have the form

(cosx, sin x) =

(

1 − t2

1 + t2
,

2t

1 + t2

)

for |x| < π and t ∈ Q.
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7.8 How Quickly log and exp Grow

We have seen that logarithms and exponentials both go to ∞ as their argu-
ment goes to ∞ (when their bases are greater than 1). However, as Figures
7.1 and 7.2 seem to indicate, logarithms grow rather slowly and exponentials
grow rather quickly. This raises the question: among exponentials, power
functions, and logarithms, which of these functions go to ∞ the fastest as
their input grows large, and which go to ∞ the slowest?

To answer these questions, we want to develop inequalities between ex-
ponentials, logarithms, and power functions. One such inequality is proven
in Exercise 7.4.27:

Theorem 7.29. For all x > 0 and all n ∈ N, we have

ex >
xn

n!

The main idea behind the proof of this theorem, as is the case with many
proofs of inequalities relating exponentials and polynomials, is to start with
ex > 1 when x > 0 and repeatedly integrate. (This approach is especially use-
ful for exponentials since ex is its own derivative.) We can use this inequality
to prove

Theorem 7.30. For all a > 0 and all b > 1, we have

lim
x→∞

xa

bx
= 0

This is informally described as saying that “exponentials dominate powers”
(i.e. bx approaches ∞ much faster than any xa does).

Strategy. To show that the fraction xa/bx goes to 0, we find something larger
which also approaches 0. Since bx = ex log b, Theorem 7.29 roughly says that
bx is larger than a constant times xn for any n ∈ N. Thus, xa/bx is less than
something like xa/xn. When n is larger than a, this bound approaches 0.

Proof. Let a > 0 and b > 1 be given. Choose some n ∈ N larger than a.
Thus, for any x > 0, since bx = exp(x log b) and log b > 0, Theorem 7.29
yields

0 <
xa

bx
<

n! xa

(x log b)n
=

n!

(log b)n
xa−n
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Note that n!/(log b)n is a constant with respect to x. Also, since n > a,
xa−n → 0 as x → ∞. Therefore, by the Squeeze Theorem, xa/bx → 0 as
x → ∞ as well. �

As a result of this theorem, any exponential of the form bx with b > 1,
no matter how close b is to 1, grows much faster than any power of x of the
form xa, no matter how large a is. Many limits involving exponentials can be
manipulated to a form for which Theorem 7.30 apples, as we shall see with
a couple of examples.

Example 7.31:

Let’s analyze

lim
x→∞

x2 2x

ex

Since 2x/ex = (2/e)x = 1/(e/2)x, and e > 2, we can apply Theorem 7.30
with a = 2 and b = e/2 to conclude that the limit is 0. �

Our next example makes use of a very simple but handy tactic. Any limit
of the form

lim
t→0+

f(t)

is the same as
lim

x→∞
f(1/x)

by setting x = 1/t. This can often be useful for altering the form of a limit,
as we see in this example:

Example 7.32:

Consider the following limit

lim
t→0+

e−1/t

t

This limit has a 0/0 form, because −1/t → −∞ as t → 0+, and exp ap-
proaches 0 as its argument approaches −∞. Using our tactic described above,
we let x = 1/t, so x → ∞ as t → 0+. Our limit becomes

lim
x→∞

e−x

1/x

by a variant of the Composition Limit Theorem. We simplify this to get

lim
x→∞

x

ex
= 0
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�

Now, we would like to develop some similar theorems concerning loga-
rithms and powers, where we aim to show that logarithms grow much more
slowly than powers. We have already shown in Exercises 7.2.3 and 7.2.5 that
log x < x − 1 and log x < x/e for all x > 1. We can also try to take the
inequality from Theorem 7.29 and take logarithms of both sides, yielding

x > log

(

xn

n!

)

= n log x − log(n!)

so that

log x <
x

n
+

log(n!)

n

However, this formula is not very useful for us, since it only compares log x
to a linear function, whereas we’d like a comparison of log x with arbitrary
powers of x.

We will prove an inequality comparing logarithms with arbitrary powers
a little later, but even without such an inequality, we can still show that
logarithms grow more slowly than powers:

Theorem 7.33. For any a > 0 and b > 1, we have

lim
x→∞

logb x

xa
= 0

We sometimes describe this by saying “powers dominate logarithms”.

Strategy. The key idea is to make a change of variable to turn this limit into a
limit involving exponentials. Namely, if u = logb x, then x = bu, and u → ∞
as x → ∞. The new limit with respect to u can be found by Theorem 7.30.

Proof. Let a > 0 and b > 1 be given. If we let u = logb x, then x = bu and
u → ∞ as x → ∞. Therefore, we have

lim
x→∞

logb x

xa
= lim

u→∞
u

(bu)a

Since (bu)a = bau = (ba)u, and ba > 1, our limit is 0 by Theorem 7.30. �
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Remark. It immediately follows from this theorem that powers of logarithms
are also dominated by powers. This is because when a, c > 0 and b > 1, we
have

lim
x→∞

(logb x)c

xa
= lim

x→∞

(

logb x

xa/c

)c

= 0c = 0

because the function which takes cth powers is continuous on [0,∞).

Because logarithms have many useful algebraic properties, allowing us to
simplify many powers with them (such as xx, for instance), Theorem 7.33
can be useful in a variety of limits. We give a couple examples.

Example 7.34:

We consider the limit

lim
x→0+

x log x

As x → 0+, we have log x → −∞, so our limit has the form 0 · (−∞). Since
the factor with limit 0 makes our product smaller in magnitude, and the
factor with limit −∞ makes our product larger in magnitude, it is unclear
what the limit should be. (This is similar to why the limit of a 0/0 form
cannot be found without some rewriting; in fact, our limit can be written as
a 0/0 form by writing x/(1/ log x).)

To handle this limit, we use a tactic from earlier: we let u = 1/x, so that
u → ∞ as x → 0+. Therefore, x = 1/u, and we get

lim
u→∞

1

u
log

(

1

u

)

To make this simpler, a logarithm property lets us write this as

= lim
u→∞

− log u

u

which is 0 by our theorem. (See Exercise 7.10.4 as well.) �

Example 7.35:

Now, let’s compute

lim
x→0+

xx
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It is useful to rewrite xx as exp(x log x), like we did when computing the
derivative of xx. In this form, since exp is continuous, we see that we are
really trying to compute

exp

(

lim
x→0+

x log x

)

By the previous example, this equals e0 = 1. �

Although we now have proven a useful limit involving powers and log-
arithms in Theorem 7.33, it is still useful to have a convenient inequality
relating powers and logarithms. The following inequality is usually adequate
for many computations:

Theorem 7.36. For all a > 0 and all x > 1, we have

log x <
xa

a

Strategy. There are a couple of useful ways to prove this theorem. One way
involves showing that log x grows more slowly than xa/a; you can develop
such a proof yourself in Exercise 7.10.9. Another way returns to the definition
of the logarithm as an integral:

log x =

∫ x

1

1

t
dt

By replacing 1/t by a larger quantity, we obtain a larger integral. In
particular, we can replace 1/t by any power of t with exponent greater than
−1. This is useful since it is easy to integrate every power of t except for the
−1st power.

Proof. Let a > 0 and x > 1 be given. For any t ∈ (1, x), we have

1

t
≤ ta

t
= ta−1

because t > 1 and a > 0. Since x ≥ 1, we may use the Comparison Property
for integrals to state that

log x =

∫ x

1

1

t
dt ≤

∫ x

1

ta−1 dt =
ta

a

∣

∣

∣

∣

x

1

=
xa − 1

a
<

xa

a

as desired. �
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Remark. The inequality from Theorem 7.36 becomes less precise for small
values of a, because when x is fixed and a → 0+, xa/a → ∞. However, when
a is constant and x grows large, the theorem is very useful. For instance, see
Exercise 7.10.8.

At this point, we have introduced useful inequalities and limits explaining
how log and exp behave as their arguments go to ∞. (We have also seen
a little bit about how log x behaves as x → 0+ and how ex behaves as
x → −∞.) In other words, we now have some useful information about the
asymptotes of log and exp. However, there are many simple limits involving
log and exp which do not involve their asymptotes, such as the following:

lim
x→1

log x

x − 1
lim
x→0

ex − 1

x

We have not yet developed any general tactics for analyzing these types of
limits. (It turns out that each of these two limits is actually a difference
quotient, so the limits are respectively the derivative of log at 1 and the
derivative of exp at 0, but there are similar limits which cannot be computed
this easily without better tools.) In the next section, we will introduce a
powerful technique for handling limits in 0/0 form, which can be used to
evaluate the two limits above (as well as many other limits).

7.9 L’Hôpital’s Rule and Indeterminate Forms

In this section, we present L’Hôpital’s Rule5, which relates the limit of a
fraction f/g to the limit of derivatives f ′/g′. However, before presenting this
rule, it’s worth asking: if f(x)/g(x) is a 0/0 form as x → a, then why should
f/g and f ′/g′ be related in the first place?

Let’s suppose f and g are real functions defined near a ∈ R, and let’s also
suppose for now that f and g are also defined at a with f(a) = g(a) = 0.
Recall from Chapter 4 (especially Lemma 4.11) that f can be approximated
by a linear function going through the point (a, f(a)) whose slope is the
derivative at a. This means

f(x) ≈ f(a) + f ′(a)(x − a) = f ′(a)(x − a)

5The rule is named after the Marquis de L’Hôpital, a French nobleman who wrote a text-
book which popularized differential calculus. His book included this theorem, though most
of the proof of the theorem was actually done by L’Hôpital’s teacher, Johann Bernoulli.
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for x close to a. Furthermore, the error Ef of this approximation, defined by
Ef (x) = f(x)−f ′(a)(x−a), is “better than linear”, meaning that Ef (x)/(x−
a) goes to 0 as x → a, so Ef (x) also goes to 0 as x → a. Similar statements
can also be made for g with an error function Eg.

From all this, we find that if f(x) and g(x) both approach 0 as x → a,
and if f and g are both differentiable at a, then we have

f(x)

g(x)
≈ f ′(a)(x − a)

g′(a)(x − a)
=

f ′(a)

g′(a)

for x close to a. More precisely, when x → a and g′(a) 6= 0,

f(x)

g(x)
=

f ′(a)(x − a) + Ef (x)

g′(a)(x − a) + Eg(x)
→ f ′(a)

g′(a)

Informally, this happens because if you zoom in on the graphs of f and g
near a, then the graphs look a lot like straight lines with slopes f ′(a) and
g′(a) respectively.

However, this argument requires knowing that f ′(a) and g′(a) exist. We
can make a more general argument by looking at average slopes near a instead
of instantaneous slopes. Let’s say that for each x 6= a, we write ∆x = x− a,
∆f = f(x) − f(a), and ∆g = g(x) − g(a). Since f(a) = g(a) = 0, we have

f(x)

g(x)
=

∆f

∆g
=

∆f/∆x

∆g/∆x

It is plausible that ∆f/∆x is close to
df

dx
, i.e. f ′(x), and similarly for g.

This suggests that f(x)/g(x) ≈ f ′(x)/g′(x), so if f ′/g′ approaches a limit
as x → a, then f/g should approach that same limit. This leads us to the
statement of L’Hôpital’s Rule (though L’Hôpital’s Rule is even more general
since it doesn’t assume f or g is defined at a).

Theorem 7.37 (L’Hôpital’s Rule for 0/0). Let a ∈ R be given, and let
f and g be real functions defined near a. Suppose that f(x), g(x) → 0 as
x → a. Also assume that f and g are differentiable near a, and suppose that
for some L ∈ R,

lim
x→a

f ′(x)

g′(x)
= L
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(so, in particular, g′ is nonzero near a). Then f(x)/g(x) has a limit as
x → a, and

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
= L

Remark. L’Hôpital’s Rule also works for one-sided limits, and it also works
when a is ∞ or −∞. (You can prove the a = ±∞ case in Exercise 7.10.30.)
In fact, a small modification of the proof we present here will also prove
L’Hôpital’s Rule works even if L is ∞ or −∞! (See Exercise 7.10.31.)

Strategy. To simplify our work, we will actually prove the theorem for the
right-hand limit, i.e. as x → a+. This is because a right-hand limit will
consider intervals (a, a + δ) with a as an endpoint (as opposed to sets of the
form (a− δ, a + δ)−{a} which have a missing from the middle). It is simple
to modify our argument to work for left-hand limits as well. Note that f
and g might not be defined at a, but since the limit of f/g doesn’t depend
on whether f(x)/g(x) is defined at x = a, we may WLOG redefine f(a) and
g(a) to be 0. This makes f and g continuous at a from the right.

Now, using the notation we introduced before L’Hôpital’s Rule, we have

f(x)

g(x)
=

∆f

∆g
=

∆f/∆x

∆g/∆x

for any x > a which is close to a. The numerator and the denominator of this
fraction are average changes of f and g. To connect these average changes
with instantaneous changes, the Mean Value Theorem is very helpful. In
particular, if x is close enough to a, then f and g are differentiable on (a, x)
and continuous on [a, x], so therefore ∆f/∆x = f ′(c) for some c ∈ (a, x),
and ∆g/∆x = g′(d) for some d ∈ (a, x). Thus,

f(x)

g(x)
=

f ′(c)

g′(d)

Unfortunately, although c and d both approach a as x → a (since c and d
are between a and x), we cannot say that f ′(c)/g′(d) will approach L unless
we know whether c and d can be chosen equal for every x close enough to a.
To handle this, in Exercise 4.10.18, we introduced a stronger version of the
MVT called Cauchy’s Mean Value Theorem (Theorem 4.51). It tells us that
some c ∈ (a, x) can always be picked to satisfy

∆f

∆g
=

f ′(c)

g′(c)
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Thus, as x → a+, we will have c → a+, so that f ′(c)/g′(c) and f(x)/g(x) will
approach L.

(In the formal argument, we will use the definition of limit instead of
saying the casual-sounding phrase “c approaches a as x approaches a”. Al-
though the proof can be completed using this phrase with the Composition
Limit Theorem, treating c as a function of x, an argument in the δ-ǫ style
feels more rigorous.)

Proof. Let a, f, g, L be given as described. We will prove the right-hand
version of L’Hôpital’s Rule here, as previously mentioned. Let ǫ > 0 be
given; we wish to find δ > 0 so that

∀x ∈ (a, a + δ)

∣

∣

∣

∣

f(x)

g(x)
− L

∣

∣

∣

∣

< ǫ

We may redefine f(a) = g(a) = 0 without affecting whether our desired
conclusion is true; this choice of f(a) and g(a) means that f(x) → f(a) and
g(x) → g(a) as x → a+, i.e. f and g are continuous from the right at a.

Since f ′(x)/g′(x) → L as x → a+, there is some δ > 0 such that

∀t ∈ (a, a + δ)

∣

∣

∣

∣

f ′(t)

g′(t)
− L

∣

∣

∣

∣

< ǫ

In particular, this means that f ′(t)/g′(t) is defined for all t ∈ (a, a + δ), so
f ′ and g′ exist with g′ 6= 0 on (a, a + δ). Let x ∈ (a, a + δ) be given. Thus,
f and g are differentiable on (a, x) and continuous on [a, x].

We should check that g(x) 6= 0, so that f(x)/g(x) is defined. If it were
0, then since g(x) = g(a) = 0, Rolle’s Theorem (or the MVT) would imply
that for some t ∈ (a, x), g′(t) = 0. Since no such t exists, we know g(x) 6= 0.

Now, since f and g are continuous on [a, x] and differentiable on (a, x),
Cauchy’s MVT (Theorem 4.51) implies that there exists some t ∈ (a, x) such
that

f(x) − f(a)

g(x) − g(a)
=

f ′(t)

g′(t)

Since x ∈ (a, a + δ), we have t ∈ (a, a + δ) as well. It follows that since
f(a) = g(a) = 0,

∣

∣

∣

∣

f(x)

g(x)
− L

∣

∣

∣

∣

=

∣

∣

∣

∣

f(x) − f(a)

g(x) − g(a)
− L

∣

∣

∣

∣

=

∣

∣

∣

∣

f ′(t)

g′(t)
− L

∣

∣

∣

∣

< ǫ

as desired. �
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Example 7.38:

L’Hôpital’s Rule can be used to find the limits mentioned at the end of the
previous section. For the first limit, if f(x) = log x and g(x) = x − 1 for all
x > 0, then f ′(x) = 1/x and g′(x) = 1, so that

lim
x→1

log x

x − 1
= lim

x→1

1/x

1
= 1

For the second limit, we can use L’Hôpital’s Rule to conclude

lim
x→0

ex − 1

x
= lim

x→0

ex

1
= e0 = 1

Note that we write these calculations as if the work flows from left to
right. However, you need to know if the limit of f ′/g′ exists before you can
use L’Hôpital’s Rule, so the very first = sign in these calculations is actually
the LAST step. Sometimes, to keep this in mind and make our work easier
to follow, we will sometimes write “L’H” over an = sign whose justification
comes from L’Hôpital’s Rule. Thus, our last computation can be written as

lim
x→0

ex − 1

x
L’H

= lim
x→0

ex

1
= e0 = 1

�

Example 7.39:

Some limits we found in Chapter 3 are particularly simple to calculate with
L’Hôpital’s Rule. For instance,

lim
x→0

sin x

x
L’H

= lim
x→0

cos x

1
= cos 0 = 1

To be technical, we used the (sin x)/x limit to find the derivative of sin in the
first place. Thus, we cannot use only L’Hôpital’s Rule to calculate this limit,
or else we have circular reasoning. We still need the work we did in Chapter
3, using the Squeeze Theorem, to compute this limit in the first place. �

Remark. Note that L’Hôpital’s Rule says that if f ′/g′ approaches a limit, and
f/g is a 0/0 form, then f/g approaches that same limit. The converse does
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not necessarily hold: namely, f/g might have a limit where f ′/g′ doesn’t.
For instance, consider the function f : R → R defined by

f(x) =

{

x2 sin(1/x) if x 6= 0

0 if x = 0

Back in Chapter 4 (see Figure 4.10), we saw that f ′(0) = 0 but f ′(x) has no
limit as x → 0. Therefore,

lim
h→0

f(h) − f(0)

h
exists, but lim

h→0

f ′(h)

1
does not exist.

Hence, L’Hôpital’s Rule cannot be used here to determine the limit of (f(h)−
f(0))/h.

It is also important to make sure that your original limit really has a 0/0
form before applying L’Hôpital’s Rule. For instance, if we apply L’Hôpital’s
Rule without checking this condition, then we obtain

lim
x→1

x2 − 1

x3 − 3x2 + 1
L’H

= lim
x→1

2x

3x2 − 6x
=

2

3 − 6
=

−2

3

but the correct value of the first limit is 0.

Example 7.40:

Occasionally, we can use L’Hôpital’s Rule multiple times to find a limit.
This is useful when each use of L’Hôpital’s Rule looks like it is simplifying
the fraction at hand. For instance, let’s compute

lim
x→0

sin x − x

x2

Because this is a 0/0 form, L’Hôpital’s Rule suggests that we consider the
limit

lim
x→0

cos x − 1

2x

This limit is still in 0/0 form, but the denominator is simpler than before.
Using L’Hôpital’s Rule one more time, we get

lim
x→0

− sin x

2
= 0

PREPRINT: Not for resale. Do not distribute without author’s permission.



508 Section 7.9: L’Hôpital’s Rule and Indeterminate Forms

These steps can be put together and written as

lim
x→0

sin x − x

x2

L’H

= lim
x→0

cos x − 1

2x
L’H

= lim
x→0

− sin x

2
= 0

�

Remark. When using L’Hôpital’s Rule multiple times, it’s a good idea to see
if your limits are becoming simpler with each step. If not, then you should
probably use some other tactics before trying L’Hôpital’s Rule. For instance,
consider the limit from Example 7.32:

lim
x→0+

e−1/x

x

If we try L’Hôpital’s Rule with this, the limit becomes

lim
x→0+

(1/x2)e−1/x

1
= lim

x→0+

e−1/x

x2

which looks worse. In fact, for any n > 0, we find that trying L’Hôpital’s
Rule with exp(−1/x)/(xn) yields

lim
x→0+

(1/x2)e−1/x

nxn−1
= lim

x→0+

e−1/x

nxn+1

which has a worse denominator. Therefore, applying L’Hôpital’s Rule over
and over will never get rid of the 0/0 form here.

Example 7.41:

There are situations in which L’Hôpital’s Rule applies but where using it
may take longer to find a solution. For instance, consider

lim
x→0

x − tanx

x − sin x

If we take derivatives of the top and bottom to use L’Hôpital’s Rule, we get

lim
x→0

1 − sec2 x

1 − cos x
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At this point, we still have a 0/0 form. One way to proceed is to use
L’Hôpital’s Rule again, giving

lim
x→0

−(2 sec x)(sec x tanx)

sin x
= lim

x→0

−2 sec2 x sin x

sin x cos x
=

−2 sec2(0)

cos 0
= −2

Note that we make sure to rewrite the expression and get sin x to cancel. If we
didn’t bother to do that, then the result after yet another use of L’Hôpital’s
Rule would look even more complicated and would be harder to solve for the
final answer!

An alternative to a second use of L’Hôpital’s Rule is to multiply numer-
ator and denominator by cos2 x (to cancel out the sec2 x) and then factor a
difference of squares:

1 − sec2 x

1 − cos x
· cos2 x

cos2 x
=

cos2 x − 1

(1 − cos x) cos2 x

=
(cos x − 1)(cos x + 1)

(1 − cos x) cos2 x

=
−(cos x + 1)

cos2 x

(An equivalent way to do this algebra is to write sec2 x as 1/(cos2 x) and sim-
plify the resulting nested fraction.) This also gives us the limit of −2 as x →
0, and arguably this approach is easier than a second use of L’Hôpital’s Rule.
(After all, you should frequently simplify expressions, especially trigonomet-
ric expressions, before using L’Hôpital’s Rule again.) �

Other Kinds of Indeterminate Forms

We have spent a lot of time discussing how to attack limits which attain
a 0/0 form. This kind of form is often called an indeterminate form, because
the form tells you no information about what the limit actually is. For
instance, for each A ∈ R, the limit

lim
x→0

Ax

x

is a 0/0 indeterminate form, and its limit is A, so the limit of a 0/0 form
could be any real number. There isn’t even any guarantee that an expression
with an indeterminate form has a limit at all: looking at

lim
x→0

x

x2
and lim

x→0

x sin(1/x)

x
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the expression on the left diverges to ±∞, and the expression on the right
oscillates wildly.

Another indeterminate form is the ∞/∞ form, i.e. a fraction where the
numerator and denominator each approach either ∞ or −∞ (conventionally,
signs are ignored when writing types of forms). You can construct examples
similar to the ones above which show that an ∞/∞ form could produce any
possible limit. It turns out that L’Hôpital’s Rule also applies to ∞/∞ forms,
though the proof is rather different and is outlined in Exercise 7.10.32:

Theorem 7.42 (L’Hôpital’s Rule for ∞/∞). Let a ∈ R be given, and
let f, g be real functions defined near a. Suppose that f(x) and g(x) each
approach ∞ or −∞ as x → a. Also assume that f and g are differentiable
near a, and suppose that for some L ∈ R,

lim
x→a

f ′(x)

g′(x)
= L

Then f(x)/g(x) has a limit as x → a, and

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
= L

Similar versions of this theorem also hold for one-sided limits, when a is
∞ or −∞, as well as when L is ∞ or −∞. Proofs for these versions are
constructed by the same modifications as with the 0/0 theorem.

Example 7.43:

With L’Hôpital’s Rule for ∞/∞, there is a trivial proof of Theorem 7.33: for
any a > 0 and b > 1,

lim
x→∞

logb x

xa

L’H

= lim
x→∞

1/(x log b)

axa−1
= lim

x→∞
1

axa log b
= 0

because our original limit is an ∞/∞ form. There is a similar simple proof
of Theorem 7.30 for computing

lim
x→∞

xa

bx
= 0

when b > 1 and a ∈ N: you use L’Hôpital’s Rule a times. (L’Hôpital’s Rule
does not prove this theorem when a is not a natural number, but once you
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know this theorem for natural numbers, it is not hard to prove it for arbitrary
positive real numbers a.) �

We can switch between 0/0 and ∞/∞ forms by noting that

f

g
=

1/g

1/f

so that if f and g both approach 0, then 1/g and 1/f both approach ±∞,
and vice versa. Sometimes this, or other ways of rewriting, helps simplify a
calculation, as the following example shows:

Example 7.44:

Consider

lim
x→∞

1/x

1/ logx

This is currently written as a 0/0 form. Trying L’Hôpital’s Rule on this
yields

lim
x→∞

−1/x2

−1/(x(log x)2)
= lim

x→∞
(log x)2

x

If we don’t use Theorem 7.33 here, and instead we keep applying L’Hôpital’s
Rule, then you can check that we need two more applications of the rule.
You also need to do a fair bit of work computing these derivatives.

Instead of doing these complicated steps, we rewrite our original limit as

lim
x→∞

log x

x

which is an ∞/∞ form. We have seen that L’Hôpital’s Rule works much
better with this expression and gives the limit 0.

For a similar example, recall the limit

lim
x→0+

e−1/x

x

We have seen that in this 0/0 form, L’Hôpital’s Rule does not help. However,
if we set u = 1/x, then we get

lim
u→∞

e−u

1/u
= lim

u→∞
u

eu
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which is an easy ∞/∞ form to which you can apply L’Hôpital’s Rule. �

A related indeterminate form is the 0 ·∞ form, which describes a product
of the form fg where f approaches 0 and g approaches ∞ or −∞. By writing

fg =
f

1/g
=

g

1/f

we can turn 0 ·∞ forms into either 0/0 forms or ∞/∞ forms (pick whichever
form makes the rest of the work easier). We present one example.

Example 7.45:

We previously found the limit

lim
x→0+

x log x

by substituting u = 1/x and doing some rewriting to use Theorem 7.33. We
can also rewrite this 0 · ∞ form (note that log x goes to −∞) as an ∞/∞
form as follows:

lim
x→0+

log x

1/x
L’H

= lim
x→0+

1/x

−1/x2
= lim

x→0+
−x = 0

We can describe this tactic by saying that we moved x into the denom-
inator as 1/x to apply L’Hôpital’s Rule. If we instead try to move log x to
the denominator, to obtain

lim
x→0+

x

1/ log x

then the limit we obtain from L’Hôpital’s Rule is

lim
x→0+

1

−1/(x(log x)2)
= lim

x→0+
−x(log x)2

which is worse than our original problem. In general, you should move poly-
nomials into the denominator instead of logarithms, because 1/ logx has a
more complicated derivative than 1/x. �

The next type of indeterminate form we will mention is the ∞−∞ form.
This is obtained by subtracting two functions which both tend to ∞, or
equivalently, by adding two functions which tend to opposite signs of ∞.
When trying to handle a limit with this form, we usually try and write our
limit as a product or quotient, such as by making a common denominator,
factoring, or rationalizing. Here are some examples.
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Example 7.46:

Consider the limit

lim
x→0

1

x
− 1

sin x

This has the form ∞ − ∞. Since we are subtracting fractions here, we try
making a common denominator:

lim
x→0

sin x − x

x sin x

This has changed our limit to a 0/0 form, and L’Hôpital’s Rule yields

lim
x→0

cos x − 1

sin x + x cos x

This is still in 0/0 form, and we try L’Hôpital’s Rule once more to get the
answer:

lim
x→0

− sin x

cos x + cos x − x sin x
=

− sin 0

2 cos 0 − 0 sin 0
= 0

�

Example 7.47:

Consider the limit
lim
x→∞

x −√
x

which has the form ∞−∞. To handle this, we factor
√

x out of both terms
to get

√
x(
√

x−1). Written this way, both factors tend to ∞, so the product
tends to ∞. �

Example 7.48:

Consider the limit
lim

x→∞

√
x2 + 1 − x

Here, because of the square root, we try rationalization. Thus, we multiply
and divide by

√
x2 + 1 + x and get

lim
x→∞

(x2 + 1) − (x)2

√
x2 + 1 + x

= lim
x→∞

1√
x2 + 1 + x

= 0

because the denominator tends to ∞. �
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Lastly, we will consider some indeterminate forms involving exponentials.
Consider an expression of the form f g. When f tends to ∞ and g tends to 0,
we say f g is an ∞0 form. Informally, this is an indeterminate form because
the base is trying to make the expression large, but the power is trying to
make the expression small, so it’s not clear what the final limit is. To be
more precise, for any r > 0, we can make an ∞0 form with limit r as follows:

lim
x→∞

xlog r/ log x = lim
x→∞

e(log r/ log x) log x = elog r = r

Another indeterminate form involving exponentials is the 00 form. The
base tends to 0, so the base is trying to make the exponential small, but the
power is also tending to 0, so the power is trying to make the exponential
close to 1. We have seen an example of this before in Example 7.35: there,
we showed

lim
x→0+

xx = lim
x→0+

exp(x log x) = e0 = 1

However,
lim

x→0+
0x

is another 00 form with limit 0.
One more type of indeterminate form is the 1∞ form, which looks like

f g where f tends to 1 and g tends to ∞. Informally, this is indeterminate
because a base of 1 causes all powers to yield 1, but the power is also tending
to ∞. Consider the following example:

Example 7.49:

For any a ∈ R, consider the limit

lim
x→0

(1 + ax)1/x

which has the form 1∞. Since this is a power whose base and exponent both
depend on x, we first rewrite it with a base of e by the definition of irrational
exponents. Our expression becomes

lim
x→0

exp((1/x) log(1 + ax)) = exp

(

lim
x→0

log(1 + ax)

x

)

The limit inside the exp is a 0/0 form and can be evaluated easily with
L’Hôpital’s Rule. We get

exp

(

lim
x→0

a

1 + ax

)

= ea
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Another way we could find this limit is to let f(x) = (1 + ax)1/x for all
x > 0, and then we take a logarithm to bring the exponent down:

log f(x) =
log(1 + ax)

x

As before, we then show that log f(x) → a as x → 0, so that f(x) approaches
ea. �

Remark. The limit in the previous example can be expressed in several dif-
ferent forms by changing the variable. For instance, if a 6= 0 and we let
t = ax, so that 1/x = a/t and t → 0 as x → 0, then our limit becomes

lim
t→0

(1 + t)a/t = ea

Also, if we let u = 1/x in the limit from the example (or u = 1/t in the limit
above), we obtain

lim
u→∞

(

1 +
a

u

)u

= lim
u→∞

(

1 +
1

u

)au

= ea

In particular, we obtain

lim
n→∞

(

1 +
1

n

)n

= e

These forms of the limit are very useful when calculating compound in-
terest. To see why, suppose that we are investing P dollars (P stands for
“Principal”) at a rate of interest r (where r = 0.1 means 10%, r = 0.5 means
50%, and so on), but we compound this interest n times a year for t years.
Without compounding, each year we would multiply our current amount of
money by 1 + r, so that after t years we would have P (1 + r)t dollars in the
bank. However, when we compound the interest n times a year, we accrue in-
terest n times as often, but the rate of interest is divided by n to compensate.
Thus, we’d earn

P
(

1 +
r

n

)nt

dollars after t years. (You can show in Exercise 7.10.28 that this is an in-
creasing function of n when t and r are fixed, so compounding more often
gives more money.)
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If we were hypothetically able to compound our interest infinitely often,
i.e. we let n tend to ∞, then our amount of money becomes

lim
n→∞

P
(

1 +
r

n

)nt

= P
(

lim
n→∞

(

1 +
r

n

)n)t

= Pert

This formula (sometimes affectionately called the “Pert formula”) tells
you how much money you make when interest is compounded continuously.
Note that as a function of time t, we have

d

dt
(Pert) = rPert

so that the rate at which you earn money is proportional to how much money
you have.

In general, an indeterminate form with an exponential can be handled
either by writing it in terms of exp or by first taking a logarithm. In either
case, we are left with a limit of 0 · ∞ form, which can be handled using
methods discussed previously. Note that expressions of the form ∞1 and
0∞ are NOT considered indeterminate forms, since you can show that any
expression of the form ∞1 tends to ∞ and any expression of the form 0∞

tends to 0. (After all, an indeterminate form needs to have the property that
the form alone cannot tell you what the limit is.)

We summarize the indeterminate forms we have discussed in the following
table. The simplest kinds, which can frequently be handled by L’Hôpital’s
Rule, are the 0/0 and the ∞/∞ forms. The rest of the forms are usually
turned into simpler forms, as the table indicates:

Form What to change it to Suggested ways to handle it
0/0 ∞/∞ if needed Algebra, L’Hôpital’s Rule, or

∞/∞ 0/0 if needed change to u = 1/x if needed
0 · ∞ 0/0 or ∞/∞ Move something to the denominator

∞−∞ 0/0, ∞/∞, Common denominator, Factoring,
or 0 · ∞ Rationalization, Algebra

00 0 · ∞ Take a logarithm,
∞0 0 · ∞ or write in
1∞ 0 · ∞ terms of exp

You can practice computing many limits with these indeterminate forms in
the exercises.
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7.10 Exercises

For Exercises 1 through 7, use Theorems 7.30 and 7.33 to compute the fol-
lowing limits (i.e. do not use L’Hôpital’s Rule for these problems):

1. lim
x→∞

x3 ex

e3x

2. lim
x→∞

(ex + x)2

e2x

3. lim
x→0+

e−1/x2

xa
for any a > 0

4. lim
x→0+

xa log x for any a > 0

5. lim
x→∞

log log x

x

6. lim
x→0

x5 log

(

1

x2

)

7. lim
x→0+

(2x)3x

8. Give a separate proof of Theorem 7.33 using Theorem 7.36.

9. Give another proof of Theorem 7.36 by using the following steps. First,
let a > 0 be given, and consider the expression

f(x) =
xa

a
− log x

defined for all x > 0. Show that f(1) ≥ 0 and that f ′(t) > 0 for all
t > 1. Lastly, prove that f(x) > 0 for all x > 1, which proves the
theorem.

10. Theorem 7.36 only applies to values of x greater than 1. Prove the
following inequality for all x ∈ (0, 1) and all a > 0:

log x >
−1

axa

Thus, as x → 0+, | log x| tends to ∞ more slowly than any function of
the form 1/xa. (Hint: Let u = 1/x.)

For Exercises 11 through 27, compute the following limits. You may use
L’Hôpital’s Rule for either 0/0 or ∞/∞ forms when applicable, but please
indicate clearly when the rule is being used. Also note that L’Hôpital’s Rule
isn’t always the best way to approach 0/0 or ∞/∞ forms.
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11. lim
x→0

ax − bx

x
for any a, b > 0 with a 6= b

12. lim
x→0+

ex − 1 − x

x2

13. lim
x→0

log(cos(ax))

log(cos(bx))

for any a, b 6= 0

14. lim
x→0

log(x + 1)

x

15. lim
x→0

sin x − x

x3

16. lim
x→0

ex − e−x − 2 sin x

2x3

17. lim
x→1

xx − x

1 − x + log x

18. lim
x→0

sin2 x tan(x + π/2)

19. lim
x→∞

x1/4 sin(1/
√

x)

(Hint: This limit is easier to compute if you make a change of variable.)

20. lim
x→0+

sin x log x

21. lim
x→1−

log x log(1 − x)

(Hint: After a rewrite and one use of L’Hôpital’s Rule, you do not
have to perform L’Hôpital’s Rule a second time on EVERY part of the
fraction you obtain. You can put some terms off to the side first.)

22. lim
x→−∞

xex

23. lim
x→∞

√
x4 + x2 − x2

(Hint: Get this into another form, but don’t use L’Hôpital’s Rule.
Instead, multiply and divide by something.)

24. lim
x→−∞

e−x + x

(Hint: A previous exercise in this section might be useful.)

25. lim
x→∞

x1/x

26. lim
x→0+

(sin x)x

27. lim
x→1

(2 − x)1/(ex−e)
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28. In this exercise, suppose that r and t are positive constants, and we
will prove that the function f : (0,∞) → R defined by

f(n) =
(

1 +
r

n

)nt

for all n > 0

is a strictly increasing function. f(n) represents the amount of money
earned from $1 by compounding n times per year at an interest rate
of r over t years. Intuitively, when n ∈ N∗, n > 1, and you compound
n times per year instead of once per year, the interest earned from
the first compounding accumulates additional interest, which shows
that f(n) > f(1). However, to prove more formally that f is strictly
increasing on its domain, we will show f ′ is positive on its domain.

(a) Show that for all n > 0,

f ′(n) = t
(

1 +
r

n

)nt
(

log
(

1 +
r

n

)

− r

n + r

)

(b) From Exercise 7.2.5, we find that for all x > 0 with x 6= 1,

log x > 1 − 1

x

Use this and part (a) to prove that f ′(n) > 0 for all n > 0.

29. In this exercise, we use the fact that

lim
n→∞

(

1 +
1

n

)n

= e

to approximate e. Let’s use the definition of f from the previous exer-
cise with r = t = 1. Because f is strictly increasing, we know that

f(1) ≤ f(2) ≤ f(3) ≤ · · · ≤ e = sup{f(n) | n ∈ N∗}

(a) Using the Binomial Theorem (which can be found in Exercise
4.2.5.(c)), prove that for all n ∈ N∗,

f(n) =

(

1 +
1

n

)n

=

n
∑

i=0

(

1

i!

i−1
∏

j=0

(

1 − j

n

)

)
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Note that when i = 0, the product has no terms in it and is
considered to be 1, so we can also write this

f(n) = 1 +

n
∑

i=1

1
(

1 − 1
n

)

· · ·
(

1 − i−1
n

)

i!

(b) Use part (a) to conclude that for all n ∈ N∗,

f(n) ≤
n
∑

i=0

1

i!

NOTE: It follows from Exercise 7.4.27 that

n
∑

i=0

1

i!
< e

Therefore, since f(n) → e as n → ∞, the Squeeze Theorem tells
us that this summation approaches e as n → ∞. We will also see
a different proof of this limit in the next chapter.

(c) In Example 1.59, we showed that n! > 2n when n ∈ N∗ and n ≥ 4.
Use this and a geometric series with part (b) to prove that for all
n ∈ N∗ with n ≥ 4, f(n) < 2.8. Therefore, e < 2.8.

30. Prove L’Hôpital’s Rule for 0/0, Theorem 7.37, in the case where a is
∞ or −∞. (Hint: Make a change of variable.)

31. Prove L’Hôpital’s Rule for 0/0, Theorem 7.37, in the case where L is
∞ or −∞. (This will involve small modifications of the original proof.)

32. This exercise will outline a proof for L’Hopital’s Rule for ∞/∞, Theo-
rem 7.42. For simplicity, we will consider the case where a, L ∈ R (i.e.
neither is ±∞) and we approach a from the right. The proofs of the
other cases can be done in the same manner as the previous two exer-
cises. We can also suppose WLOG that f(x), g(x) → ∞ as x → a+.
(This is because if a function approaches −∞, then its negation ap-
proaches ∞, and we can factor out minus signs.)

First, we present the main strategy (you will prove the formal details in
the parts following this strategy). We want to prove that f(x)/g(x) →
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L by the definition of limit, so for all ǫ > 0, we want to find δ > 0 so
that

∀x ∈ (a, a + δ)

(
∣

∣

∣

∣

f(x)

g(x)
− L

∣

∣

∣

∣

< ǫ

)

To do this, suppose that z is some value greater than a but close to
a. Let ∆f = f(x) − f(z) and ∆g = g(x) − g(z). We will make sure
that ∆f, ∆g 6= 0 provided x is close enough to a. Then the Triangle
Inequality guarantees

∣

∣

∣

∣

f(x)

g(x)
− L

∣

∣

∣

∣

≤
∣

∣

∣

∣

f(x)

g(x)
− ∆f

∆g

∣

∣

∣

∣

+

∣

∣

∣

∣

∆f

∆g
− L

∣

∣

∣

∣

so we will aim to make each absolute value on the right side less than
ǫ/2. We can show ∆f/∆g is close to L by using the MVT, and we can
also note that

f(x)

g(x)
− ∆f

∆g
=

(

∆f

∆g
· f(x)

∆f
· ∆g

g(x)

)

− ∆f

∆g
=

∆f

∆g

(

f(x)

∆f
· ∆g

g(x)
− 1

)

It remains to show this expression is less than ǫ/2. Because f and g
tend to ∞, we can show that f(x)/∆f and g(x)/∆g are close to 1. We
will also use the fact that ∆f/∆g is close to L.

Now, we start the proof.

(a) Let ǫ > 0 be given. Because we assume f ′(x)/g′(x) → L as
x → a+, there is some δ1 > 0 so that

∀x ∈ (a, a + δ1)

(
∣

∣

∣

∣

f ′(x)

g′(x)
− L

∣

∣

∣

∣

<
ǫ

2

)

Let z = a + δ1. Prove that there exists δ2 ∈ (0, δ1) such that for
all x ∈ (a, a + δ2), f(x) > |f(z)| and g(x) > |g(z)|.

(b) Now let x ∈ (a, a + δ2) be given. Let ∆f = f(x) − f(z) and
g(x) − g(z). By part (a), ∆f, ∆g 6= 0. Prove that

∣

∣

∣

∣

∆f

∆g
− L

∣

∣

∣

∣

<
ǫ

2

Also prove the following consequence:
∣

∣

∣

∣

∆f

∆g

∣

∣

∣

∣

< |L| + ǫ

2
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(c) Now, as suggested by the strategy, we can write

∣

∣

∣

∣

f(x)

g(x)
− ∆f

∆g

∣

∣

∣

∣

=

∣

∣

∣

∣

∆f

∆g

∣

∣

∣

∣

∣

∣

∣

∣

f(x)

∆f
· ∆g

g(x)
− 1

∣

∣

∣

∣

(Since f(x) > |f(z)| and g(x) > |g(z)| by part (a), it follows that
f(x), g(x) 6= 0.) Prove that

lim
x→a+

f(x)

∆f
= lim

x→a+

∆g

g(x)
= 1

Recall that z is constant with respect to x. (Hint: For each frac-
tion, multiply and divide by something.)

(d) From part (c) and the Product Rule for limits, it follows that there
exists δ3 ∈ (0, δ2) such that

∀x ∈ (a, a + δ3)

(
∣

∣

∣

∣

f(x)

∆f
· ∆g

g(x)
− 1

∣

∣

∣

∣

<
ǫ/2

|L| + ǫ/2

)

Let δ = δ3. Use the previous parts to show that

∀x ∈ (a, a + δ)

(
∣

∣

∣

∣

f(x)

g(x)
− L

∣

∣

∣

∣

< ǫ

)

finishing the proof.
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Chapter 8

Approximating with Taylor

Polynomials

Up to this point, we’ve seen that we can use lines to approximate smooth
functions. This raises a few questions. For instance, could we use parabolas
for approximation? What about cubic functions? If so, then how well do
these approximations work? Does a parabola produce better approximations
than a line?

To illustrate these ideas, let’s revisit the idea of a tangent line. More
specifically, if f is a real function which is differentiable at some a ∈ R, then
the tangent line to f at a is defined by the equation

y − f(a) = f ′(a)(x − a)

Let’s call this function f1, so f1(x) = f(a)+f ′(a)(x−a) for all x ∈ R. Thus,
f1 is a linear function (or constant function if f ′(a) = 0) which seems to be
a good approximation for f near a, i.e.

f(x) ≈ f1(x) = f(a) + f ′(a)(x − a)

when x is close to a. Intuitively, this is because at a, f1 and f have the same
value and the same slope, so their graphs are “going in the same direction.”
Linear approximations are very useful because linear functions are easy to
use in calculations.

As an example, consider when f(x) = ex for all x ∈ R and a = 0. We have
f ′ = f , so f ′(0) = f(0) = e0 = 1, so f1(x) = 1 + x for all x ∈ R. You can see
graphs of f and f1 in Figure 8.1 (we will introduce the function f2 shortly).
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We see that the graphs of f1 and f are close for values of x near 0, but they
grow farther apart as x gets further from 0. This makes sense, because f1 is
a line whereas f is always concave upward: we have f ′′(x) = ex > 0 for all
x ∈ R.

f2

f2

f1

f1
f

f

x

y

x

y

Figure 8.1: Graphs of f(x) = ex, f1(x) = 1 + x, f2(x) = 1 + x + x2/2 (left),
and a zoomed-in graph of the dashed box (right)

This suggests that in order to make a better approximation to f which
is still easy to calculate, we should use a function with the same value, the
same slope, AND the same concavity as f at 0. Hence, we find a quadratic
polynomial f2 such that f2(0) = f(0), f ′

2(0) = f ′(0), and f ′′
2 (0) = f ′′(0).

Since f ′′(0) = f ′(0) = f(0) = e0 = 1, you can readily check that the function
defined by

f2(x) = 1 + x +
x2

2

for all x ∈ R is a quadratic polynomial satisfying these conditions. The
graph of f2 is included as well in Figure 8.1, from which you see that f2

does a better job than f1 at approximating f . Also, since f2 is a quadratic
polynomial, it is still easy to use in calculations.

Continuing this train of thought, we can make a cubic polynomial f3

such that f3(0) = f(0), f ′
3(0) = f ′(0), f ′′

3 (0) = f ′′(0), and f ′′′
3 (0) = f ′′′(0).

f3 should provide an even better approximation to f than f2. (Although we
have not assigned any physical meaning to the third derivative of a function,
like we did with the first and second derivatives, it should still be plausible
that f3 “behaves more like f at 0” than f2 does, because it agrees with f
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at one more derivative.) In fact, you can check by induction that for each

n ∈ N, there is a unique polynomial fn of degree n satisfying f
(k)
n (0) = f (k)(0)

for all k from 0 to n: it is defined by

fn(x) =

n
∑

i=0

xi

i!

for all x ∈ R. Some basic inequalities relating these fn polynomials to f were
given in Exercise 7.4.27.

Since polynomials are easy to differentiate and integrate, and they are
fairly easy to use in calculations, these fn polynomials are convenient ap-
proximations to the exponential function f . Intuitively, when we approxi-
mate f(x) with fn(x), our approximation becomes more accurate either when
x gets closer to 0 or when n gets larger. Hence, there is a tradeoff: for values
of x which are very close to a, a small value of n (i.e. a low-degree poly-
nomial) will suffice for a good approximation, but as x gets further from a,
you need to use higher values of n (i.e. more complicated polynomials) to
maintain the same level of accuracy.

In general, for any real function f and any a ∈ R, as long as f has enough
derivatives at a (we will formalize “enough” soon), we can introduce approx-
imation polynomials in a similar manner, by making our approximations
agree with f and its first few derivatives at a. These polynomials are called
Taylor polynomials1. Our aim for this chapter is to explain this process of
computing Taylor polynomials, formalize the notion of “good approximation”
by finding bounds on the error obtained by using Taylor polynomials, and to
demonstrate applications of Taylor polynomials.

8.1 Computing Taylor Polynomials

Let’s show how we can build Taylor polynomials. Suppose that a ∈ R, n ∈ N,
and f is a real function with n derivatives at a, i.e. f (k)(a) exists for all k from
0 to n. For simplicity, let’s first work with the case when a = 0. We would
like to find a polynomial p of degree at most n such that f (k)(0) = p(k)(0) for
all k from 0 to n.

1Taylor polynomials are named after Brook Taylor, an English mathematician who
popularized their use.
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Since p has degree at most n, there exist some a0, a1, . . . , an ∈ R with

p(x) = a0 + a1x + · · ·+ anxn =
n
∑

i=0

aix
i

for all x ∈ R. (To simplify our writing, we will use the convention that x0

is always 1, even when x is 0.) We would like to solve for the ai constants.
To start, since p(0) must equal f(0), and p(0) = a0 (all the other terms
disappear), we must have a0 = f(0). Next, since p′(0) must equal f ′(0), we
compute

p′(x) = a1 + 2a2x + · · · + nanx
n−1 =

n
∑

i=1

iaix
i−1

so that p′(0) = a1 = f ′(0). Similarly, to obtain a2, we take another derivative
to get

p′′(x) = 2a2 + 3(2)a3x + · · · + n(n − 1)anxn−2 =

n
∑

i=2

i(i − 1)aix
i−2

yielding p′′(0) = 2a2 = f ′′(0) and a2 = f ′′(0)/2.
In general, you can prove by induction on k from 0 to n that

p(k)(x) =

n
∑

i=k

i(i − 1) · · · (i − k + 1)aix
i−k

When we plug in x = 0, every term disappears except for the i = k term,
yielding p(k)(0) = k(k − 1) · · · (1)ak = k! ak. Therefore, in order for this
to equal f (k)(0), we must choose ak = f (k)(0)/k!. This proves that there is
exactly one polynomial p of degree at most n which agrees with the first n
derivatives of f at 0, and it is defined by

p(x) =
n
∑

i=0

f (i)(0)

i!
xi

for all x ∈ R. (This polynomial will have degree less than n if f (n)(0) = 0.)
Now, what do we do if a is not zero? We reduce to the case where a is

zero by shifting everything over by a units horizontally. More precisely, if f
is n-times differentiable at a, then define g(x) = f(x + a). The Chain Rule
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shows that g is n-times differentiable at 0, and g(k)(0) = f (k)(a) for all k from
0 to n. Thus, applying our previous result to g, we find that the polynomial

q(x) =
n
∑

i=0

g(i)(0)

i!
xi

satisfies q(k)(0) = g(k)(0) for each k from 0 to n. If we set p(x) = q(x − a),
then we have

p(x) =
n
∑

i=0

f (i)(a)

i!
(x − a)i

and p(k)(a) = f (k)(a) for each k from 0 to n. In fact, it is easy to check that
p is the unique polynomial of degree at most n which agrees with f and its
first n derivatives at a.

This leads to the following definition:

Definition 8.1. Let a ∈ R and n ∈ N be given, and let f be a real function
which is n-times differentiable at a. The Taylor polynomial for f of order n
centered at a is the unique polynomial of degree at most n which agrees with
f and its first n derivatives at a: its value at any x ∈ R is

n
∑

i=0

f (i)(a)

i!
(x − a)i

We will use the notation “Tnf(x; a)” to represent this. We will sometimes
write this as “Tn(f(x); a)” instead, though this is a slight abuse of notation
(conceptually, the function f and the value f(x) are not the same thing, but
this alternate notation ignores that distinction). In the special case where a
is zero, we will often drop the “ ; a” and write “Tnf(x)”. This special case is
sometimes also called the Maclaurin polynomial2. For each k from 0 to n,
the fraction f (k)(a)/k! is sometimes called the Taylor coefficient for f at a
of order k.

Remark. We have used the symbol Tn before when discussing the Trapezoid
Rule. Hopefully, the use of Tn will be clear from context (in particular, we
will not bring up the Trapezoid Rule again in this chapter). Sometimes we
will write “Tnf ” to denote the Taylor polynomial of order n (here, Tnf is a

2In honor of Colin Maclaurin, a Scottish mathematician who further popularized these
polynomials.
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function, not a value) instead of writing “Tnf(x; a)”. In these situations, the
value of a is usually understood from context or is assumed to be 0. Also,
with Taylor polynomials, the second argument a in “Tnf(x; a)” is a number,
whereas with the Trapezoid Rule, the second argument [a, b] in “Tn(f ; [a, b])”
is an interval.

Example 8.2:

When f = exp and a = 0, then f (k)(x) = ex for all k ∈ N, so f (k)(0) = 1.
This means that for all n ∈ N and all x ∈ R,

Tn exp(x) =

n
∑

i=0

1

i!
xi

as previously shown. Since this polynomial is centered at 0, it agrees with
exp and its first n derivatives at 0, so informally it should yield good approx-
imations for values of ex where x is near 0. For example, if we use n = 5 and
x = 1, then we get the approximation

e ≈ T5 exp(1) = 1 +
1

1
+

1

2
+

1

6
+

1

24
+

1

120
=

163

60
≈ 2.716667

This is a reasonably good approximation, even though you might not consider
1 as “being close” to 0.

For any a ∈ R, we can also easily compute the Taylor polynomial centered
at a. We have f (k)(a) = ea for all k ∈ N, so we have

Tn exp(x; a) =
n
∑

i=0

ea

i!
(x − a)i

However, in order to use this formula for approximations, we need to first
obtain a good approximation of ea. As a result, only a = 0 seems to yield
a convenient and practical expression for approximations. (You could try
something like a = log 2, so that elog 2 would be simple, but then you’d have
difficulty approximating (x − log 2).)

In general, when computing Taylor polynomials, a different center might
be useful because it allows us to approximate some quantities more effectively.
For instance, if we want to approximate f(2), then we expect to get a better
approximation using a = 1 as our center instead of a = 0, because 2 is
closer to 1 than to 0, and Taylor polynomials tend to be more accurate when
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their input is close to their center. However, when we change the center for
a Taylor polynomial, we might make the polynomial more difficult to use.
This shows that although we can theoretically make a Taylor polynomial
centered at any a, in practice we tend to use only choices of a leading to
approximations which are easy to calculate. �

Example 8.3:

As another example of a simple Taylor polynomial, let’s consider when f(x) =
sin x and a = 0. The derivatives of sin follow a very simple pattern: f ′(x) =
cos x, f ′′(x) = − sin x, f ′′′(x) = − cos x, and then f (4) = f , so the pattern
repeats every four derivatives. This pattern seems quite obvious, though it
is worth noting that any rigorous argument involving a pattern generally
needs an induction proof. One way of proving this by induction would be
to prove that for all n ∈ N, f (4n) = sin, f (4n+1) = cos, f (4n+2) = − sin, and
f (4n+3) = − cos. (We leave the details to the reader.)

As a result, we find that f (n)(0) = 0 whenever n is even, because sin 0 = 0.
On the other hand, f (1)(0) = cos 0 = 1, f (3)(0) = − cos 0 = −1, and in
general you can check that f (2k+1)(0) = (−1)k. (Powers of −1 are very useful
for describing quantities that keep switching sign.) Therefore, the Taylor
coefficients of even order are 0, and the Taylor coefficients of odd order keep
switching signs. We have, for any n ∈ N,

T2n+1 sin(x) =

n
∑

i=0

(−1)i

(2i + 1)!
x2i+1

Note that only odd powers of x occur with nonzero coefficients, so the Taylor
polynomial is an odd function. This makes sense, since sin is also an odd
function. For more on this, see Exercise 8.2.13.

For convenience in writing the formula, we have written this formula for
Taylor polynomials of odd order only. However, since the even-order coef-
ficients are 0, we see that T2n+2 sin = T2n+1 sin for any n ∈ N. Essentially,
this means that any 3rd-order approximation is already a 4th-order approx-
imation, any 5th-order approximation is already a 6th-order approximation,
and so forth, so it feels like you gain an order of accuracy for free. (This will
be useful to note when we present error bounds in a later section.)

As an example, we can use this to approximate sin 1. We get

T3 sin(1) = 1 − 1

6
≈ 0.833333
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and

T5 sin(1) = 1 − 1

6
+

1

120
≈ 0.841667

which is rather close to the value sin 1 ≈ 0.841471 obtained by a calculator.

Similarly, we can obtain the Taylor polynomials at a = 0 for f(x) = cos x.
The pattern we get tells us that f (n)(0) = 0 when n is odd and f (2k)(0) =
(−1)k. Thus, we have

T2n cos(x) =
n
∑

i=0

(−1)i

(2i)!
x2i

Even though this formula only expresses Taylor polynomials of even order,
you can also see that T2n+1 cos = T2n cos for any n ∈ N. �

With the previous example, since cos is the derivative of sin, you might
presume that the Taylor polynomials for cos are the derivatives of the Taylor
polynomials for sin. This is true: note that for any n ∈ N,

d

dx

n
∑

i=0

(−1)i

(2i + 1)!
x2i+1 =

n
∑

i=0

(−1)i

(2i + 1)!
(2i + 1)x2i =

n
∑

i=0

(−1)i

(2i)!
x2i

so that (T2n+1 sin(x))′ = T2n cos(x). In general, we have the following simple
properties of Tn:

Theorem 8.4. Let a ∈ R and n ∈ N be given, and let f and g be real
functions which are n-times differentiable at a.

1. For any constants A, B ∈ R,

Tn(Af + Bg)(x; a) = A Tnf(x; a) + B Tng(x; a)

In other words, Tn is a linear operation.

2. If n > 0, then

Tn−1f
′(x; a) =

d

dx
Tnf(x; a)

Roughly speaking, the Taylor polynomial of a derivative is the derivative
of a Taylor polynomial.
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3. If x is close enough to a so that f is continuous and n-times differ-
entiable from a to x (note that when n > 0, n-times differentiability
implies continuity), then we have

Tn+1

(
∫ x

a

f(t) dt; a

)

=

∫ x

a

Tnf(t; a) dt

Roughly speaking, the Taylor polynomial of an integral is the integral of
a Taylor polynomial, when the integral starts at the center.

Strategy. All of the parts of this theorem make statements of the form

TNF (x; a) = P (x)

for some function F , some N ∈ N, and some polynomial P . By definition, the
Taylor polynomial for F of order N at a is the unique polynomial P satisfying
P (k)(a) = F (k)(a) for each k from 0 to n. Each part of this theorem presents
a possibility for P ; we just need to check the derivatives of P to see if they
agree with the derivatives of F at a.

Proof. For all the parts of this theorem, let a, n, f, g be given as described.
For part 1, also suppose that A, B ∈ R are given. Since f and g are n-times
differentiable at a, so is Af + Bg. Also, for each k from 0 to n, we have

(Af + Bg)(k)(a) = Af (k)(a) + Bg(k)(a)

by linearity of derivatives. By the definitions of Tnf and Tng, this is equal to

(A Tnf + B Tng)(k)(a)

(we have omitted the (x; a)’s for convenience). Thus, A Tnf + B Tng agrees
with Af + Bg and its first n derivatives at a. Also, note that A Tnf + B Tng
is a linear combination of two polynomials of degree at most n, so it is a
polynomial of degree at most n. Thus, by definition, it must be Tn(Af +Bg).

For part 2, suppose n > 0. Since f is n-times differentiable at a, f ′ is
(n − 1)-times differentiable at a. Also, for any k from 0 to (n − 1), the
definition of Tnf tells us that

(f ′)(k)(a) = f (k+1)(a) = (Tnf)(k+1)(a) = ((Tnf)′)(k)(a)
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Thus, (Tnf)′ agrees with f ′ and its first n− 1 derivatives at a. Furthermore,
Tnf has degree at most n, so (Tnf)′ is a polynomial of degree at most n− 1.
This shows (Tnf)′ = Tn−1f

′, as desired.
For part 3, suppose that x is close enough to a so that f is continuous

and n-times differentiable from a to x. We define

P (x) =

∫ x

a

Tnf(t; a) dt

For any t from a to x, f is continuous at t, so the FTC tells us that P ′(x) =
Tnf(x; a). Thus, for any k from 1 to n + 1, we have

P (k)(a) = (Tnf(x; a))(k−1)(a) = f (k−1)(a) =

(
∫ x

a

f(t; a) dt

)(k)

(a)

Also, when k = 0, we clearly have

P (a) =

∫ a

a

Tnf(t; a) dt = 0 =

∫ a

a

f(t) dt

(This is why we need the lower limit of integration to be a). Thus, P agrees

with

∫ x

a

f(t) dt and its first n + 1 derivatives at a. Since P is obtained by

integrating a polynomial of degree at most n, P is a polynomial of degree at

most n + 1. Thus, by definition, P is Tn+1

(
∫ x

a

f(t) dt; a

)

, as desired. �

Theorem 8.4 allows us to take Taylor polynomials we have already com-
puted and manipulate them to obtain Taylor polynomials for new functions.
For instance, consider the following example.

Example 8.5:

Let a = 0 and define f : R − {1} → R by

f(x) =
1

1 − x

for all x 6= 1. It is not hard to see that f is infinitely differentiable at a = 0.
In fact, every derivative of f is a rational function whose denominator is zero
only at x = 1: we compute

f ′(x) =
1

(1 − x)2
f ′′(x) =

2

(1 − x)3
f ′′′(x) =

6

(1 − x)4
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and in general, you can prove by induction that

f (k)(x) =
k!

(1 − x)k+1

for all k ∈ N and all x 6= 1. Therefore, f (k)(0) = k!, so the kth Taylor
coefficient equals k!/k! = 1. This tells us that for all n ∈ N,

Tnf(x) =

n
∑

i=0

xi

We have seen this kind of summation before. For instance, the staircase
function uses this kind of summation with x = 1/2. In this summation, the
ratio of any two consecutive terms is constant with respect to i: for any i
from 0 to n − 1, we have xi+1/xi = x. We describe this by saying that this
is a geometric summation. In general, Exercise 1.9.2 tells us that the sum of
a geometric summation is

n
∑

i=0

xi =
xn+1 − 1

x − 1

for x 6= 1. Hence, we have

f(x) − Tnf(x) =
1

1 − x
−

n
∑

i=0

xi =
xn+1

1 − x

so in this case, we know the exact error of our Taylor approximation. We
will return to this example in the upcoming section on error analysis.

Now that we have the Taylor polynomial for 1/(1 − x), we can use the
fact that 1/(1 − x) is the derivative of − log(1 − x), along with Parts 1 and
3 of Theorem 8.4, to prove

Tn+1(log(1 − x)) = −
∫ x

0

n
∑

i=0

ti dt =

n
∑

i=0

−xi+1

i + 1

By following similar steps with the function 1/(1 + x), we get

Tn

(

1

1 + x

)

=

n
∑

i=0

(−1)ixi
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and

Tn+1(log(1 + x)) =
n
∑

i=0

(−1)ixi+1

i + 1

We can use these Taylor polynomials to estimate natural logarithms, thus
giving us another way of approximating logarithms (previously, we used in-
tegral approximation techniques to estimate logarithms). For instance, by
using x = 1 and n = 4, we get

log 2 ≈ 1

1
− 1

2
+

1

3
− 1

4
+

1

5
=

47

60
≈ 0.783333

�

Some Plausible Conjectures About Taylor Polynomials

Looking back at Example 8.5, suppose we define f(x) = 1/(1 − x) and

P (x) = Tnf(x) =
n
∑

i=0

xi

We also found that

Tn

(

1

1 + x

)

=
n
∑

i=0

(−x)i = P (−x)

This makes sense, as 1/(1 + x) = f(−x). This raises the question: can we
obtain new Taylor polynomials by substituting into old Taylor polynomials?

More precisely, we are led to the following conjecture:

Conjecture 8.6. Let a, b ∈ R and m, n ∈ N be given, let g be a polynomial
of degree at most m with g(b) = a, and let f be a real function which is
n-times differentiable at a. Define P (x) = Tnf(x; a). Then

Tmn(f(g(x)); b) = P (g(x))

Note that in this conjecture, we would expect P (g(x)) to be a Taylor poly-
nomial centered at b, because g(x) ≈ a when x ≈ b by continuity of g. Also,
note that P (g(x)) has degree at most mn, hence why we conjecture that it
is the Taylor polynomial of order mn.
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Unfortunately, this conjecture is false in general. Part of the issue is that
the Chain Rule only guarantees that f ◦ g is n-times differentiable at b, not
mn-times differentiable. However, even when f ◦g is mn-times differentiable,
the conjecture fails: see Exercise 8.2.12. However, some special cases of the
conjecture are simple to prove, such as the following theorem:

Theorem 8.7. Let a ∈ R and n ∈ N be given, and let f be a real function
which is n-times differentiable at a. For any constant c ∈ R, we have

Tn(f(x + c); a − c) = Tnf(x; a)

(in particular, when c = a, we have Tn(f(x + a); 0) = Tnf(x; a)), and when
c 6= 0, we have

Tn(f(cx); a/c) = Tnf(cx; a)

Therefore, putting these two statements together, we may conclude that Con-
jecture 8.6 is true when g is a non-constant linear function.

You are asked to prove this theorem in Exercise 8.2.9.

Remark. In particular, Theorem 8.7 justifies substituting −x into the Tay-
lor polynomial for 1/(1 − x) to obtain the Taylor polynomial for 1/(1 + x).
The theorem also allows us to exclusively focus on Taylor polynomials cen-
tered at 0, because Tnf(x; a) = Tn(f(x + a); 0). Thus, in many proofs or
computations, we can WLOG assume a = 0 to make our work look simpler.

It is possible to modify Conjecture 8.6 to obtain a true statement which
is very general, but the proof is quite involved. We will return to this af-
ter we have presented some more information about the error of a Taylor
approximation: see Exercise 8.5.16.

We can obtain some other plausible conjectures about Taylor polynomials
by considering different ways of manipulating polynomials. For instance,
what happens when you compute the Taylor polynomial of a polynomial?
If p is a polynomial of degree n, then for any a ∈ R and any m ∈ N with
m ≥ n, it is easy to see by definition that Tmp(x; a) = p(x). When m < n,
however, p(x) cannot be its own Taylor polynomial of order m. In this case,
you can prove in Exercise 8.2.10 that Tmp(x; a) is obtained by taking p(x)
and “chopping off” terms of high degree:
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Theorem 8.8. Let a ∈ R and n ∈ N be given, and let P be a polynomial of
degree n expressed in the form

P (x) =
n
∑

i=0

pi(x − a)i

for some constants p0, p1, . . . , pn ∈ R with pn 6= 0. Prove that for all m ∈ N,
if m < n then

TmP (x; a) =

m
∑

i=0

pi(x − a)i

We sometimes call TmP (x; a) the truncation of P (x) of order m.

For another example of a plausible conjecture, let’s consider what hap-
pens when you multiply two Taylor polynomials. Suppose we define P (x) =
Tnf(x; a) and Q(x) = Tmg(x; a), where a ∈ R, n, m ∈ N, and f and g
are real functions such that f (n)(a) and g(m)(a) exist. Intuitively, we have
P (x) ≈ f(x) and Q(x) ≈ g(x) when x ≈ a, so P (x)Q(x) ≈ f(x)g(x). This
leads to the following conjecture:

Conjecture 8.9. Let a ∈ R and n, m ∈ N be given, and suppose f and g
are real functions such that f (n)(a) and g(m)(a) exist. If P (x) = Tnf(x; a)
and Q(x) = Tmg(x; a), then

Tn+m(f(x)g(x); a) = P (x)Q(x)

Unfortunately, this conjecture is false in general. For a counterexample,
we set a = 0, n = 1, f(x) = 1 − x, g(x) = 1/(1 − x), and we let m ∈ N

be arbitrary. We have P (x) = T1f(x) = f(x) (as f is trivially a polynomial
of degree at most 1 which agrees with f and its first derivative at 0). Also,
we’ve previously shown

Q(x) = Tmg(x) =
m
∑

i=0

xi =
1 − xm+1

1 − x

Thus, P (x)Q(x) = 1 − xm+1. However, f(x)g(x) = 1, so we clearly have
Tm+1(f(x)g(x)) = 1, and P (x)Q(x) 6= 1 for any x ∈ (0, 1).

In this counterexample, note that although 1 − xm+1 and 1 are not the
same, they do match on every term of order at most m. In general, you can
prove the following modification of Conjecture 8.9 in Exercise 8.2.14:
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Theorem 8.10. Let a, n, m, f, g, P, Q be given as in Conjecture 8.9. Suppose
WLOG that m ≤ n. Then

Tm(f(x)g(x); a) = Tm(P (x)Q(x); a)

Thus, by Theorem 8.8, Tm(f(x)g(x); a) is obtained by truncating P (x)Q(x)
to order m.

This theorem gives us a way of computing Taylor polynomials of products.
Unfortunately, because we truncate, we lose information about orders which
are higher than m. It is useful to have some result about Taylor polynomials
of products which allows us to increase the order of our Taylor polynomials.
One such important result, which we will use in a later section, is presented
in this theorem, whose proof is outlined in Exercise 8.2.15:

Theorem 8.11. Let a ∈ R and n ∈ N be given, and suppose f is a real func-
tion which is n-times continuously differentiable at a. Define g : dom(f) → R

by g(x) = (x − a)f(x) for all x ∈ dom(f). Then g is (n + 1)-times differen-
tiable at a, and

Tn+1g(x; a) = (x − a)Tnf(x; a)

Informally, this says that powers of x − a can be pulled out of a Taylor
polynomial.

8.2 Exercises

For Exercises 1 through 7, a value a ∈ R and an equation defining a function
f are given (the domain of f is considered to be all values of x for which
the equation is meaningful). For any n ∈ N, compute Tnf(x; a) at all points
x where the Taylor polynomial exists. You may use previous examples and
exercises in your work.

1. a = 0, f(x) = bx

where b > 0 is a constant

2. a = π, f(x) = sin x

3. a = 0, f(x) =
1

b − x

where b ∈ R − {0} is a constant

4. a = 1, f(x) = log x

5. a = 0, f(x) = log

√

1 + x

1 − x

6. a = 0, f(x) = cos(2x)

7. a = 0, f(x) = sin2 x

(Hint: Use a half-angle identity.)
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8. Prove that for any x > 0 and any n ∈ N with n ≥ 2,

Tn(
√

x; 1) = 1 +
1

2
(x − 1) +

n
∑

i=2

(−1)i−1 (2i − 2)!

22i−1 (i − 1)! i!
(x − 1)i

(Hint: Let f(x) =
√

x and prove a formula for f (n)(x) by induction.)

9. Prove Theorem 8.7.

10. Prove Theorem 8.8.

11. For any α ∈ R and any k ∈ N, define

(

α

k

)

=
α(α − 1)(α − 2) · · · (α − k + 1)

k!

(thus, when α ∈ N, this gives the same value as the binomial coefficient
(

n
k

)

defined in Exercise 4.2.5.(c)).

(a) Prove that for any n ∈ N,

Tn ((1 + x)α; 0) =
n
∑

i=0

(

α

i

)

xi

(In particular, when n = 0,
(

α
0

)

= 1 and T0((1 + x)α; 0) = 1.)

(b) Using part (a) and Theorem 8.8, give a proof of the Binomial
Theorem, which says that for all a, b ∈ R − {0} and all n ∈ N∗,

(a + b)n =

n
∑

i=0

(

n

i

)

aibn−i

12. This exercise provides a counterexample to Conjecture 8.6 using func-
tions which are infinitely differentiable at a = 1. Let f, g : [0,∞) → R

be defined by f(x) =
√

x and g(x) = x2 for all x ≥ 0. Exercise 8.2.8
shows that

T2f(x; 1) = 1 +
1

2
(x − 1) − 1

8
(x − 1)2

for all x > 0 (note that x cannot be 0 since f is not differentiable
at 0). Define P (x) to be T2f(x; 1). (Thus, using the notation of the
conjecture, we have n = m = 2 and a = b = 1.)
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(a) Show that

P (g(x)) = 1 + (x − 1) − 1

2
(x − 1)3 − 1

8
(x − 1)4

(Hint: It may be helpful to note that x2 − 1 = (x − 1)(x + 1) =
(x − 1)((x − 1) + 2.)

(b) Compute T4(f ◦ g)(x; 1), and show that it does not equal P (g(x))
at any positive value of x except x = 1.

13. Prove that if f is an odd function which is n-times differentiable at
0, then f (2k)(0) = 0 for all k ≤ n/2. Thus, Tnf(x) is also an odd
function. Similarly, prove that if f is an even function which is n-times
differentiable at 0, then f (2k+1)(0) = 0 for all k ≤ (n − 1)/2, which
shows that Tnf(x) is an even function.

(You do not have to prove the fact that the derivative of an odd function
is even and vice versa, though the proof is not very difficult.)

14. Prove Theorem 8.10. It is probably useful, though not necessary, to
use the result of Exercise 4.4.6, which states that

(fg)(n)(x) =

n
∑

i=0

(

n

i

)

f (i)(x)g(n−i)(x)

15. This exercise outlines a proof of Theorem 8.11. Let a, n, f, g be given
as described. In fact, the remark after Theorem 8.7 allows us to assume
WLOG that a = 0, so g(x) = xf(x).

(a) Prove by induction on k that for all k from 1 to n,

g(k)(x) = xf (k)(x) + kf (k−1)(x)

for all x ∈ dom(f (k)). Note that this claim holds for k = 0 if
we interpret 0f (−1)(x) as 0 (even though the notation f (−1) is
undefined).

(b) Part (a) implies that g(k)(0) = kf (k−1)(0) for all k from 0 to n
(using the same convention for k = 0 as in part (a)). Prove that
this formula holds as well for k = n + 1, i.e.

g(n+1)(0) = (n + 1)f (n)(0)
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Note that you may NOT plug in k = n + 1 into part (a) because
you may not assume that f is (n+1)-times differentiable. Instead,
you should use the definition of derivative.

(c) Use the previous parts to prove that Tn+1g(x) = xTnf(x), finishing
the proof of Theorem 8.11.

16. Taylor polynomials do not always yield good approximations, even
when the function is infinitely differentiable. For instance, in this exer-
cise, we present an example of a nonzero infinitely-differentiable func-
tion whose Taylor polynomials are all constantly zero at a = 0. Define
f : R → R by

f(x) =

{

exp
(−1

x2

)

if x 6= 0

0 if x = 0

We will prove f (n)(0) = 0 for every n ∈ N. However, we cannot directly
compute f (n)(0) with the Chain Rule, because the inner function −1/x2

is not differentiable at 0.

(a) First, prove that for any a ∈ N,

lim
x→0

x−a exp(−1/x2) = 0

In particular, this proves that f is continuous at 0.

(b) Prove that for all n ∈ N, there exists a polynomial Pn such that
for every x 6= 0,

f (n)(x) = Pn(1/x) · exp(−1/x2)

To clarify, let’s say Pn(t) is the polynomial p0 + p1t + · · · + pkt
k

(k, and the values of the pi constants, will depend on n). Then
Pn(1/x) replaces t with 1/x.

(c) Use parts (a) and (b) to prove by induction on n ∈ N that
f (n)(0) = 0.

(Hint: Use the definition of derivative in the inductive step.)

8.3 Taylor’s Theorem

We have now introduced the notion of a Taylor polynomial, though apart
from some wishful thinking, we have not shown why Taylor polynomials
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tend to produce good approximations. We need some sort of bound on the
error, i.e. some sort of guarantee of reliability. For instance, suppose my
friend asked me to loan him “about $200”. Without further information, the
phrase “about $200” could mean “somewhere between $150 and $250” or it
could mean “between $195 and $205”. I would highly prefer to loan $205
instead of $250, so it is important for me to know how accurate my friend’s
estimate of $200 is.

In this section, we study the error of a Taylor polynomial approximation.
In particular, we will be able to obtain a couple convenient forms for repre-
senting that error. From these forms, we will be able to find bounds on the
error. These error bounds are what make Taylor polynomials so useful, even
for theoretical problems (as you will see in the next section). To start, we
introduce the notion of error more formally:

Definition 8.12. Let a ∈ R and n ∈ N be given, and let f be a real function
which is n-times differentiable at a. For any x where Tnf(x; a) exists, the
error Enf(x; a) is defined as

Enf(x; a) = f(x) − Tnf(x; a)

so that f(x) = Tnf(x; a) + Enf(x; a). As with the notation “Tnf(x; a)”, we
will occasionally write “En(f(x); a)”. We may also drop “ ; a” when a is zero.

Our main goal for this section is to find convenient ways of expressing
Enf(x; a) which will help us produce bounds. In particular, we’ll be able
to study how the choice of n affects the error bound, so that we can decide
in an approximation problem how large to make n for our desired level of
accuracy.

To get started, let’s consider the simplest case, when n = 0. Since
E0f(x; a) = f(x) − f(a), we know by the FTC that

E0f(x; a) = f(x) − f(a) =

∫ x

a

f ′(t) dt

when f is continuously differentiable from a to x. This formula makes sense,
because if you approximate f with a constant, then the error of your approx-
imation should depend on how steep f is, i.e. how large |f ′| is. From this
formula, we note that if f ′ is bounded from a to x, say |f ′(t)| ≤ M for all t
between a and x, then we get

|E0f(x; a)| ≤ M |x − a|

PREPRINT: Not for resale. Do not distribute without author’s permission.



542 Section 8.3: Taylor’s Theorem

Next, let’s analyze E1f(x; a). It is plausible to guess that the error of a
linear approximation depends on how curved f is, i.e. how large |f ′′| is. In
fact, in Exercise 4.10.17, you were asked to show that when f ′′ exists near a,
for any x near a there exists some c between a and x satisfying

|E1f(x; a)| ≤ |f ′′(c)||x − a|2

To get a more precise formula for E1f(x; a), note that

f(x) = f(a) + E0f(x; a) = f(a) +

∫ x

a

f ′(t) dt

and also

f(x) = f(a) + f ′(a)(x − a) + E1f(x; a)

by definition of E1f(x; a). Since we have the intuition that E1 should be
related to f ′′, and f ′′ is the derivative of f ′, we should rewrite the integral
of f ′(t) dt using integration by parts to try and produce f ′(a)(x − a) along
the way. Let’s set u = f ′(t) and dv = dt. Now, du = f ′′(t) dt, but we can
choose v to be any antiderivative of 1, say v = t + C for some constant C
which does not depend on t. We get

f(x) = f(a) + f ′(t)(t + C)|xa −
∫ x

a

f ′′(t)(t + C) dt

= f(a) + f ′(x)(x + C) − f ′(a)(a + C) −
∫ x

a

f ′′(t)(t + C) dt

Since we want f ′(a)(x− a) to appear in our final expression, we try C = −x
(note that −x is a constant with respect to t). This causes the f ′(x)(x + C)
term to disappear, and we get

f(x) = f(a) − f ′(a)(a − x) −
∫ x

a

f ′′(t)(t − x) dt

= f(a) + f ′(a)(x − a) +

∫ x

a

f ′′(t)(x − t) dt

Therefore, we have shown that

E1f(x; a) =

∫ x

a

f ′′(t)(x − t) dt
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To get E2f(x; a), you can try another integration by parts, using a similar
choice of parts, and you’ll find that

E2f(x; a) =

∫ x

a

f ′′′(t)
(x − t)2

2
dt

By doing these steps repeatedly, and noticing a pattern, we are led to the
following theorem, which is sometimes called Taylor’s Theorem3:

Theorem 8.13 (Taylor’s Theorem). Let a ∈ R and n ∈ N be given, and
let f be a real function which has a continuous (n + 1)st derivative around
a, say f (n+1) is continuous on (a − δ, a + δ) for some δ > 0. Then for all
x ∈ (a − δ, a + δ), we have

Enf(x; a) =

∫ x

a

f (n+1)(t)
(x − t)n

n!
dt

Remark. To remember this formula, note that the last term of Tnf(x; a) is

f (n)(a)

n!
(x − a)n

The formula for Enf(x; a) looks nearly the same, but all the a’s are replaced
with t’s, the derivative is one order higher (which makes sense since the
0th error is related to the 1st derivative, the 1st error is related to the 2nd

derivative, etc.), and the result is integrated with respect to t from a to x.
It is also worth noting that the result of this theorem does NOT imply

d

dx
Enf(x; a) = f (n+1)(x)

(x − x)n

n!
= 0

This is because if you use Part 1 of the FTC to take the derivative of an
integral, then the integrand must not depend on x. However, the integrand
in the expression for Enf(x; a) does depend on x.

Strategy. The idea is to repeatedly perform integration by parts, which we
formalize by writing a proof by induction. Suppose that as an inductive
hypothesis, we know

Enf(x; a) =

∫ x

a

f (n+1)(t)
(x − t)n

n!
dt

3Sometimes, the name “Taylor’s Theorem” is instead used to describe any one of a
collection of inequalities we will soon see which are corollaries of this theorem.

PREPRINT: Not for resale. Do not distribute without author’s permission.



544 Section 8.3: Taylor’s Theorem

Let’s choose the parts u = f (n+1)(t) and dv = (x − t)n/(n!) dt. We get
du = f (n+2)(t) dt and v = −(x − t)n+1/((n + 1)!) (note that we get a minus
sign because v is a function of t, not of x). This turns our integral into

−f (n+1)(t)(x − t)n+1

(n + 1)!

∣

∣

∣

∣

x

a

+

∫ x

a

f (n+2)(t)
(x − t)n+1

(n + 1)!
dt

Simplfying this, we obtain the last term of Tn+1f(x; a), plus En+1f(x; a).

Proof. We prove the theorem by induction on n ∈ N, where a, n, f , and δ
are given as described. As a base case, when n = 0, the FTC tells us that

f(x) = f(a) +

∫ x

a

f ′(t) dt

whenever f ′ is continuous from a to x. Since f(a) = T0f(x; a), this shows

E0f(x; a) =

∫ x

a

f (0+1)(t)
(x − t)0

0!
dt

proving our base case.
Now let n ∈ N be given, and assume that our theorem is true for n

as an inductive hypothesis. For our inductive step, suppose that f (n+2) is
continuous on (a − δ, a + δ) for some δ > 0. Let x ∈ (a − δ, a + δ) be given.
Because f (n+1) is continuous on (a − δ, a + δ), the inductive hypothesis says
that

f(x) = Tnf(x; a) +

∫ x

a

f (n+1)(t)
(x − t)n

n!
dt

We use integration by parts on this error integral, with the parts u = f (n+1)(t)
and v = −(x−t)n+1/(n+1)!, so that du = f (n+2)(t) dt and dv = (x−t)n/n! dt.
This yields

f(x) = Tnf(x; a) −
(

f (n+1)(t)
(x − t)n+1

(n + 1)!

)
∣

∣

∣

∣

x

a

+

∫ x

a

f (n+2)(t)
(x − t)n+1

(n + 1)!
dt

= Tnf(x; a) + f (n+1)(a)
(x − a)n+1

(n + 1)!
+

∫ x

a

f (n+2)(t)
(x − t)n+1

(n + 1)!
dt

= Tn+1f(x; a) +

∫ x

a

f (n+2)(t)
(x − t)n+1

(n + 1)!
dt
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where the last line follows from the definition of Tn+1f(x; a). This finishes
the inductive step. �

Taylor’s Theorem is very useful because it shows that the error of an
nth-order Taylor approximation depends on the (n + 1)st derivative of the
function. This means that we can use bounds on the (n + 1)st derivative to
get bounds on the error. We demonstrate with some examples.

Example 8.14:

By now, we have seen that for any n ∈ N and any x ∈ R,

Tn exp(x) =

n
∑

i=0

xi

i!

In particular, when x = 1, we can use these Taylor polynomials to approxi-
mate e1, which is e. For instance, we’ve seen that e ≈ T5 exp(1) = 163/60 ≈
2.716667. Now, we can use Taylor’s Theorem to estimate the error from this
approximation. We get

E5 exp(1) =

∫ 1

0

exp(6)(t)
(1 − t)5

5!
dt

Since exp is its own derivative, exp(6)(t) = et. Since t goes from 0 to 1,
et goes from 1 to e. Since we do not yet know a precise value for e (after
all, we’re trying to approximate it!), for now let’s use the simple bounds of
1 ≤ et ≤ 3. Thus,

∫ 1

0

(1 − t)5

5!
dt ≤ E5 exp(1) ≤

∫ 1

0

3
(1 − t)5

5!
dt

−(1 − t)6

6!

∣

∣

∣

∣

1

0

≤ E5 exp(1) ≤ −3
(1 − t)6

6!

∣

∣

∣

∣

1

0

1

6!
=

1

720
≤ E5 exp(1) ≤ 3

6!
=

1

240

This shows that the error is between 0.001389 and 0.0041667. In particular,
the error is definitely positive, so we know that T5 exp(1) is an underestimate
to the true value of e. Since e = T5 exp(1) + E5 exp(1), this tells us that

2.718056 ≈ 163

60
+

1

720
≤ e ≤ 163

60
+

1

240
≈ 2.720833
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However, these estimates don’t even tell us the correct second decimal
place of e. Using a larger value of n should give a better estimate for e,
but how large of a value should we use? In general, if we use Tn exp(1) to
approximate e, then the same reasoning as above shows that

∫ 1

0

(1 − t)n

n!
dt ≤ En exp(1) ≤

∫ 1

0

3
(1 − t)n

n!
dt

1

(n + 1)!
≤ En exp(1) ≤ 3

(n + 1)!

Therefore, if we want the error to be less than some positive number ǫ, we
should choose n large enough so that 3/((n + 1)!) < ǫ, i.e. (n + 1)! > 3/ǫ.
(Note that since (n + 1)! grows very rapidly as n gets large, this means that
the Taylor approximation errors approach 0 quite rapidly, so small values of
n can still produce very good approximations.)

For instance, suppose that we want at least four decimal places of accu-
racy. Note that the fourth decimal place can be affected by the fifth, because
of rounding. Thus, to guarantee at least four correct decimal places, we
want our error to be less than 5 units in the fifth decimal place, so we take
ǫ = 5× 10−5. Testing several values of n, we find that 9! > 3/ǫ, so any value
of n satisfying n + 1 ≥ 9, such as n = 8, should work. This gives us

e ≈ T8 exp(1) =
8
∑

i=0

1

i!
=

109601

40320
≈ 2.718279

with error at most 3
9!
≈ 8.267 × 10−6. �

Example 8.15:

As a more complicated example, let’s show how we can approximate the
integral

∫ 1

0

exp(t2) dt

by using Taylor’s Theorem. (We can’t expect to compute the integral exactly
because exp(t2) has no elementary antiderivative.) One advantage of using
Taylor’s Theorem here, instead of using integral approximation techniques
from the end of Chapter 5, is that we can use Taylor’s Theorem to obtain
a whole sequence of approximations to this integral (one approximation for
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each value of n). This allows us much more control over the accuracy of our
approximations.

First, we aim to approximate exp(t2). Rather than computing the Taylor
polynomial for exp(t2) by taking derivatives (it’s quite difficult to identify a
pattern for the nth derivative of this), let’s reuse our knowledge about exp
that we found in the previous example. Suppose we define f : R → R by
f(t) = exp(t2) for all t ∈ R. Let’s also say that T (x) = Tn exp(x) and
E(x) = En exp(x). Since for any n ∈ N and any x ∈ R, we have

exp(x) = T (x) + E(x)

we can plug in x = t2 to obtain

f(t) = exp(t2) = T (t2) + E(t2)

This lets us use our bounds on E to obtain bounds for E(t2). Hence, we can
obtain good approximations to f(t) without knowing whether or not T (t2)
is a Taylor polynomial for f(t). (In fact, this method even works if you
substitute something which isn’t a polynomial into T ; for instance, you can
also say

exp(sin t) = T (sin t) + E(sin t)

with this method, and then you proceed to find bounds on E(sin t).)
The work from the previous example shows that

(t2)
n+1

(n + 1)!
≤ En exp(t2) ≤ exp(t2)

(t2)
n+1

(n + 1)!

(It turns out that for any fixed t, these error bounds approach 0 as n → ∞,
though this is not obvious: see Exercise 8.5.14.) Thus,

n
∑

i=0

t2i

i!
+

t2n+2

(n + 1)!
≤ exp(t2) ≤

n
∑

i=0

t2i

i!
+ exp(t2)

t2n+2

(n + 1)!

We can now use our inequalities for f(t) to get inequalities for the integral:

∫ 1

0

n
∑

i=0

t2i

i!
+

t2n+2

(n + 1)!
dt ≤

∫ 1

0

exp(t2) dt ≤
∫ 1

0

n
∑

i=0

t2i

i!
+ exp(t2)

t2n+2

(n + 1)!
dt

The left side of this is the integral of a polynomial, which is easy to compute.
For the right side, however, we do not have an elementary antiderivative for
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exp(t2). Instead, we use the naive inequality exp(t2) ≤ 3 for t ∈ [0, 1]. This
gives us

n
∑

i=0

1

i! (2i + 1)
+

1

(n + 1)! (2n + 3)

≤
∫ 1

0

exp(t2) dt ≤
n
∑

i=0

1

i! (2i + 1)
+

3

(n + 1)! (2n + 3)

For instance, when n = 4, we get a lower bound of 15203/10395 ≈ 1.462530
and an upper bound of 12175/8316 ≈ 1.464045. Thus, the approximation of
1.46 is correct to two decimal places. �

The Lagrange Form

Occasionally, some other ways of writing the error in a Taylor approxima-
tion are more practical. We present one other way, which is called Lagrange’s
form of the error 4. This form does not use any integrals, instead expressing
the error in terms of f (n+1) at some unknown point from a to x.

To see the main idea behind Lagrange’s form, recall that

E0f(x; a) =

∫ x

a

f ′(t) dt

when f ′ is continuous from a to x. The Mean Value Theorem for Integrals
says that this integral equals f ′(c)(x − a) for some value c from a to x. We
aim to get a similar-looking formula for all values of n.

In general, we have

Enf(x; a) =

∫ x

a

f (n+1)(t)
(x − t)n

n!
dt

In order to “pull f (n+1) out of the integral”, the Weighted Mean Value The-
orem for Integrals (Theorem 5.42) comes in handy. For simplicity, let’s first
consider when x ≥ a. The Weighted MVT says that when F and G are two
continuous functions on [a, x], and G is nonnegative on [a, x], then there is
some c ∈ [a, x] satisfying

∫ x

a

F (t)G(t) dt = F (c)

∫ x

a

G(t) dt

4Due to Joseph Louis Lagrange.
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Applying this with F (t) = f (n+1)(t) and G(t) = (x − t)n/n! gives

Enf(x; a) =

∫ x

a

f (n+1)(t)
(x − t)n

n!
dt

= f (n+1)(c)

∫ x

a

(x − t)n

n!
dt =

f (n+1)(c)

(n + 1)!
(x − a)n+1

for some c from a to x (c depends on f , n, a, and x).
Now, let’s consider when x < a. Here, we write our error as

Enf(x; a) = −
∫ a

x

f (n+1)(t)
(x − t)n

n!
dt

so that the integral limits are in the correct order. Also, note that for all t ∈
(x, a), (x−t)n is positive iff n is even. Thus, when n is even, the same choices
of F and G work as above. However, when n is odd, we move the minus sign
inside the integral and choose F (t) = f (n+1)(t) and G(t) = −(x − t)n/n! in
the Weighted MVT. This yields

Enf(x; a) =

∫ a

x

f (n+1)(t)
−(x − t)n

n!
dt

= f (n+1)(c)

∫ a

x

−(x − t)n

n!
dt =

f (n+1)(c)

(n + 1)!
(x − a)n+1

Thus, in all cases, we have proven the following:

Theorem 8.16 (Lagrange’s Form of the Error). Let a ∈ R and n ∈ N

be given, and suppose that f is a real function with f (n+1) continuous on
some open interval containing a. Then for all x in that interval, there exists
some c from a to x such that

Enf(x; a) =
f (n+1)(c)

(n + 1)!
(x − a)n+1

(c depends on n and x, and it could be equal to a or to x).
In this form, the error looks a lot like the term of order n +1 in a Taylor

polynomial for f , except that the derivative is evaluated at c instead of a.
Informally, we can say the error behaves a lot like the “first term left out” of
Tnf(x; a).
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All of our examples earlier can be analyzed with Lagrange’s form instead
of with Taylor’s Theorem; the work would be mostly the same, but sometimes
Lagrange’s form makes the work a little cleaner. Lagrange’s form is often
easier to use when x < a, since you don’t have to worry about an integral with
its limits out of order (though you still have to be careful, since (x − a)n+1

will be negative if n is even). For illustration, we present a more theoretical
example using Lagrange’s form.

Example 8.17:

Define f(x) =
√

1 + x for all x > −1. The result of Exercise 8.2.8 shows that

T1(
√

1 + x) = 1 +
x

2

You can calculate f ′′(x) = −(1 + x)−3/2/4, so by Lagrange’s form, we have

√
1 + x = 1 +

x

2
+

f ′′(c)

2
x2 = 1 +

x

2
− x2

8(1 + c)3/2

for some c from 0 to x. In particular, 1+ c ≥ 0, so this proves that
√

1 + x ≤
1 + x/2.

If we have some further restrictions on x, then we can say even more. For
instance, suppose that x > 0. Thus, in our formula above, c ∈ [0, x], so f ′′(c)
is in [−1/4,−(1 + x)−3/2/4]. This yields

1 +
x

2
− x2

8
≤

√
1 + x ≤ 1 +

x

2
− x2

8(1 + x)3/2

For example, when x = 1, we obtain

1 +
1

2
− 1

8
≤

√
2 ≤ 1 +

1

2
− 1

8(23/2)
< 1 +

1

2
− 1

24

where we use the simple inequality 23/2 < 3 (because 23 = 8 < 32 = 9).
Hence,

√
2 is somewhere from 11/8 = 1.375 to 35/24 ≈ 1.458333.

This shows how Taylor errors can be used to prove some inequalities. This
approach also generalizes rather well: for instance, you can make a similar
proof that for all α ∈ (0, 1) and all x > −1, (1 + x)α ≤ 1 + αx. �

We can summarize many of our findings about the Taylor error in this
convenient theorem, which you should prove using Lagrange’s form and Tay-
lor’s Theorem:
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Corollary 8.18. Let a ∈ R and n ∈ N be given, and suppose f is a real
function such that f (n+1) is continuous on some open interval (a − δ, a + δ)
where δ > 0. Suppose that m, M ∈ R satisfy m ≤ f (n+1)(c) ≤ M for all
c ∈ (a − δ, a + δ). Then for all x ∈ (a, a + δ), we have

m
(x − a)n+1

(n + 1)!
≤ Enf(x; a) ≤ M

(x − a)n+1

(n + 1)!

and for all x ∈ (a − δ, a), we have

m
|x − a|n+1

(n + 1)!
≤ (−1)n+1Enf(x; a) ≤ M

|x − a|n+1

(n + 1)!

(Thus, the sign of the error can depend on the parity of n when x < a.) In
particular, if K ≥ 0 satisfies |f (n+1)(c)| ≤ K for all c ∈ (a − δ, a + δ), then

|Enf(x; a)| ≤ K
|x − a|n+1

(n + 1)!

It is worth noting that in this corollary, the bounds m, M , and K depend
on n, a, and δ. For this reason, we will sometimes write subscripts of n on
these bounds (i.e. writing Kn instead of K). Suppose we fix the value of x
and consider what happens as we change n. If Kn grows slowly as n increases,
then the Taylor error En will approach 0 quickly. However, if Kn increases
rapidly, then the error bounds from the corollary become much less useful.
Indeed, there are real functions f and numbers a ∈ R such that f is infinitely
differentiable at a, but the Taylor polynomial Tnf(x; a) only approaches f(x)
for x in some small open interval containing a. See, for instance, Exercises
8.5.8 and Exercises 8.5.20 through 8.5.22.

8.4 More About Order Of Error

In the recently mentioned corollary, we analyzed how Enf(x; a) depends on
n when x is held fixed. In this section, we will consider the converse problem:
how does Enf(x; a) depend on x when n is fixed? Lagrange’s form of the
error is particularly clarifying here: we have

Enf(x; a) =
f (n+1)(c)

(n + 1)!
(x − a)n+1
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for some c from a to x. This equation tells us that when n is fixed, the error
looks a lot like (x − a)n+1.

Back in Chapter 4, we studied the derivative by analyzing it in terms
of linear approximations. We established that a linear approximation us-
ing f ′(a) as its slope has a “better than linear” error, in the sense that
E1f(x; a)/(x − a) → 0 as x → a. For an arbitrary order n, our work above
with Lagrange’s form suggests the following statement about “better than
nth-order” errors:

Theorem 8.19. Let a ∈ R and n ∈ N be given, and suppose f is a real
function for which f (n+1) exists and is continuous around a. Then the nth-
order error Enf(x; a) goes to 0 “faster than nth order” as x approaches a, in
the sense that

lim
x→a

Enf(x; a)

(x − a)n
= 0

Remark. Note that if a function g(x) approaches 0 faster than nth order as
x → a, then it also approaches faster than (n − 1)st order. This is because

lim
x→a

g(x)

(x − a)n−1
= lim

x→a
(x − a)

g(x)

(x − a)n
= 0 · 0 = 0

Intuitively, this means that higher orders of error tell us more information
than low orders of error. We will return to this idea more rigorously near the
end of this chapter.

Strategy. Our work before this theorem suggests that Lagrange’s form of the
error is good to use here: it tells us that

Enf(x; a)

(x − a)n
=

f (n+1)(c)

(n + 1)!
(x − a)

when x is near a (but not equal to a) and c is from a to x. Certainly x−a → 0
as x → a, and (n + 1)! is a constant with respect to x.

However, what happens to f (n+1)(c) as x → a? Since c is from a to x, and
f (n+1) is continuous at a, we would expect that c → a and hence f (n+1)(c) →
f (n+1)(a). We can use this idea more formally in a couple ways. The way we
will use is to treat c as a function of x and use the Squeeze Theorem with
it, followed by using the Composition Limit Theorem to analyze f (n+1)(c)
(where c is the inner function). The other way (which you can explore in
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Exercise 8.5.10) is to use the fact that f (n+1)(x) is close to f (n+1)(a) when x is
close to a, so we can find a constant K such that |f (n+1)(x)| ≤ K whenever
x is close enough to a. This constant can be used with Corollary 8.18 to
simplify our limit calculation.

Proof. Let a, n, f be given as described. By Lagrange’s form of the error, for
each x near a but not equal to a, we may choose a value c(x) from a to x
satisfying

Enf(x; a)

(x − a)n
=

f (n+1)(c(x))

(n + 1)!
(x − a)

Now, when x > a, we have a ≤ c(x) ≤ x, so the Squeeze Theorem shows
that c(x) → a as x → a+. Similarly, when x < a, we have x ≤ c(x) ≤ a, so
c(x) → a as x → a−.

Therefore, c(x) → a as x → a. Because f (n+1) is continuous at a, we may
use the Composition Limit Theorem to deduce

lim
x→a

f (n+1)(c(x))

(n + 1)!
(x − a) =

f (n+1)(a)

(n + 1)!
· 0 = 0

as desired. �

Motivated by “better than linear” errors of linear approximations (as men-
tioned in Lemma 4.11), we have shown that Taylor polynomials of order n
produce “better than nth-order” errors as x → a. Now, Lemma 4.11 actu-
ally says something stronger about linear approximations: it says that the
ONLY linear approximation to f(x) at a with a “better than linear” error
is T1f(x; a). We aim to prove that a similar statement holds for nth-order
Taylor polynomials. More precisely, we obtain the following conjecture:

Conjecture 8.20. Let a ∈ R and n ∈ N be given, and suppose f is a real
function which is n-times differentiable at a. Suppose that P and E are real
functions satisfying

f(x) = P (x) + E(x)

for all x near a, where P is a polynomial of degree at most n and E converges
faster than nth-order to 0 as x → a. (In other words, E(x)/(x − a)n → 0 as
x → a.) Then P (x) = Tnf(x; a).
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We will soon see a proof of this conjecture which requires an extra as-
sumption: E(x)/(x−a)n has n derivatives at a.5 With this conjecture, we will
be able to compute some Taylor polynomials very efficiently. For example, if
we let f(x) = 1/(1 − x), then

f(x) = 1 + x + · · ·+ xn +
xn+1

1 − x

Setting E(x) = xn+1/(1 − x), it is easy to see that E(x)/xn → 0 as x → 0
and that E(x)/xn has n derivatives at 0. Thus, our conjecture shows that
1 + x + · · ·+ xn is Tnf(x). This is a much quicker derivation of Tnf(x) than
the derivation in Example 8.5.

In order to prove Conjecture 8.20, we first introduce a helpful condition
for establishing that a polynomial is a Taylor polynomial for f . Let’s say
f = P + E as above. In order for P (x) to be Tnf(x; a), we must have
P (k)(a) = f (k)(a) for all k from 0 to n, which is equivalent to saying E(k)(a) =
0. This leads to the following theorem (you should fill in the few remaining
details):

Theorem 8.21. Let a ∈ R and n ∈ N be given, and let f , P , and E be
real functions such that f and E are n-times differentiable at a and P is a
polynomial. Suppose that for all x ∈ dom(E),

f(x) = P (x) + E(x)

If E(k)(a) = 0 for all k from 0 to n (equivalently, if TnE(x; a) is the zero
polynomial), then Tnf(x; a) = TnP (x; a). In particular, by Theorem 8.8, if
deg(P ) ≤ n, then P (x) = Tnf(x; a) and E(x) = Enf(x; a).

Theorem 8.21 is useful because certain common types of functions E
occurring in practice can be shown to satisfy TnE(x; a) = 0 for all k from
0 to n. Our main goal is to prove that this condition is satisfied when E
converges to 0 faster than nth-order. (You can see another type of function
E with TnE(x; a) = 0 in Exercise 8.5.16.) To make our work a little simpler,
let’s introduce a new function g : dom(E) ∪ {a} → R as follows:

g(x) =

{

E(x)
(x−a)n if x 6= a

0 if x = a

5The author is currently unaware whether there is a proof of the conjecture which does
not use an assumption like this.
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Note that g(a) is defined to be 0 so that g is continuous at a (because E is
better than nth-order). Also, we assume g(n)(a) exists.

We may write
E(x) = (x − a)ng(x)

for all x ∈ dom(g). This form of writing E should remind you of Conjecture
8.9 concerning products of Taylor polynomials. While that conjecture is not
true in general, in that discussion, we mentioned a result for pulling powers
of x− a out of a Taylor polynomial: Theorem 8.11. That theorem is the key
to the following result:

Theorem 8.22. Let a ∈ R and n ∈ N be given, and suppose that g is a real
function which is n-times differentiable at a with g(a) = 0 (when n = 0, we
assume g is continuous at a). Then the function E : dom(g) → R defined
for all x ∈ dom(g) by

E(x) = (x − a)ng(x)

satisfies TnE(x; a) = 0, or equivalently E(k)(a) = 0 for all k from 0 to n.

Remark. This theorem, together with Theorem 8.21, finishes the proof of
Conjecture 8.20.

Strategy. Theorem 8.11 tells us that

Tn(x − a)ng(x) = (x − a)Tn−1(x − a)n−1g(x)

By applying the theorem n times in total, we finally obtain

Tn(x − a)ng(x) = (x − a)nT0g(x)

Lastly, since g is continuous at a, T0g(x) = g(a) = 0.

Proof. Let a, g be given as described. The proof is by induction on n, where
n and E are given as described. The base case of n = 0 is clear, because
T0(x − a)0g(x) = T0g(x) = g(a) = 0 as g is continuous at a.

Now let n ∈ N be given, and suppose that Tn(x − a)ng(x) = 0 as an
inductive hypothesis. For the inductive step, we want to compute Tn+1(x −
a)n+1g(x). Since g(n+1)(a) exists, the function (x− a)ng(x) has n continuous
derivatives at a. By Theorem 8.11, and using the inductive hypothesis,

Tn+1(x − a)n+1g(x) = (x − a)Tn(x − a)ng(x) = (x − a) · 0 = 0
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as desired. �

We now present a couple examples demonstrating the power of Conjecture
8.20 for finding some new Taylor polynomials.

Example 8.23:

Recall the following equation from Example 8.5:

1

1 − x
=

n
∑

i=0

xi +
xn+1

1 − x

After the statement of Conjecture 8.20, we saw how the conjecture proved
that this formula allowed us to readily compute Tn(1/(1−x)). We can also use
this formula, and a little algebra, to compute some other Taylor polynomials.

For instance, if we multiply throughout by x, we get

x

1 − x
=
(

x + x2 + · · ·+ xn+1
)

+
xn+2

1 − x
= P (x) + E(x)

where P (x) = x + x2 + · · · + xn+1 and E(x) = xn+2/(1 − x). If we let
g(x) = E(x)/xn+1 = x/(1−x), then g has n+1 derivatives at 0 and g(0) = 0.
Therefore, Conjecture 8.20 proves that

Tn+1

(

x

1 − x

)

= P (x) = x + x2 + · · · + xn+1

with very little effort. (Note that there is another easy way to get this Taylor
polynomial: we can write x/(1−x) = 1/(1−x)−1 and use linearity of Taylor
polynomials.)

Similarly, if we replace x with −x2 in our equation for 1/(1 − x), we get

1

1 + x2
=

n
∑

i=0

(−1)ix2i +
(−1)n+1x2n+2

1 + x2

Here, E(x) = (−1)n+1x2n+2/(1+x2) and g(x) = E(x)/x2n+1 = (−1)n+1x/(1+
x2). As g has 2n + 1 derivatives at 0 with g(0) = 0, we get

T2n+1

(

1

1 + x2

)

=

n
∑

i=0

(−1)ix2i
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(note that this is also the Taylor polynomial of order 2n, since the (2n+1)st
Taylor coefficient is 0, so it’s like we gained an order of approximation for
free, much like we did with the Taylor polynomials for sin and cos). By
integrating, Theorem 8.4 tells us

T2n+2 arctan(x) =

n
∑

i=0

(−1)i x2i+1

2i + 1

�

We can even use Conjecture 8.20 to obtain errors of Taylor polynomials:

Example 8.24:

In the previous example, we showed that

1

1 + t2
= P (t) + E(t)

where P (t) =
n
∑

i=0

(−1)it2i and E(t) = (−1)n+1 t2n+2

1 + t2
. Not only did we learn

that P (t) = T2n+1(1/(1+ t2)), but we also learned from Conjecture 8.20 that
E(t) = E2n+1(1/(1 + t2)). Therefore, by integrating from 0 to x, we obtain

arctanx = T2n+2 arctan(x) + E2n+2 arctan(x)

with

T2n+2 arctan(x) =

∫ x

0

P (t) dt =
n
∑

i=0

(−1)i x2i+1

2i + 1

and

E2n+2 arctan(x) =

∫ x

0

E(t) dt =

∫ x

0

(−1)n+1 t2n+2

1 + t2
dt

We can try to compute this error integral by partial fractions, but when
we perform long division, we get

t2n+2

1 + t2
=

n
∑

i=0

(−1)n−it2i +
(−1)n+1

1 + t2

so we end up recreating T2n+2 arctan after integrating. Instead, we’ll use
a simple inequality to make our work easier. Since the denominator is the
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part of the fraction which makes the integral difficult, we’ll use the naive
inequality 1 + t2 ≥ 1 to get t2n+2/(1 + t2) ≤ t2n+2. Now, we may be tempted
to write

E2n+2 arctan(x) ≤
∫ x

0

(−1)n+1t2n+2 dt = (−1)n+1 x2n+3

2n + 3

but this has a couple flaws. First, if x is negative, then the integral limits
are out of order, so we need to introduce another minus sign to get the
limits in the correct order before using the Comparison Property for Integrals.
Second, if n is even, then multiplying by (−1)n+1 reverses any inequality we
are making. However, you can see that in all cases, we still get a bound on
the magnitude of the error:

|E2n+2 arctan(x)| ≤ |x|2n+3

2n + 3

This error bound is very convenient for approximations. For instance,
since arctan 1 is π/4, we can approximate π as

π ≈ 4T2n+1 arctan(1) = 4

(

1 − 1

3
+

1

5
+ · · · + (−1)n

2n + 1

)

for any n ∈ N, with

|E2n+1 arctan(1)| ≤ 4

2n + 3

Thus, if we use n = 10, then we get π ≈ 3.232316, where the error has
magnitude at most 4(1/23) ≈ 0.173913. Thus, π is between 3.058403 and
3.232316.

In general, if we use an arbitrary n and x = 1, then our error is at most
4/(2n+ 3), which can be made arbitrarily small by choosing n large enough.
However, this error estimate goes to 0 much more slowly than the error
estimates from other examples, since those earlier estimates had factorials in
their denominators. Essentially, this happens because the derivatives of exp
at 0 are all equal to 1, but the derivatives of arctan x at 0 are proportional
to n!/(2n + 1) (i.e. they grow large very quickly).

In fact, when |x| > 1, because exponentials dominate polynomials, the
estimate |x|2n+3/(2n + 3) goes to ∞ as n → ∞! This shows that the Taylor
polynomials for arctan are not practical for approximating at values of x
with |x| > 1. When |x| = 1, the error estimate goes to 0 slowly as n →
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∞. When |x| < 1, the error behaves a lot like |x|2n+3 and so it goes to 0
rapidly. This realization allows us to use trigonometric identities to make
other approximation schemes to approximate π much more effectively; for
instance, see Exercise 8.5.18. �

8.5 Exercises

In Exercises 1 through 7, there are two parts. In part (a), prove the error
bound for all n ∈ N and all specified x. In part (b), use the error bound and
the Taylor polynomials found in previous examples to compute an approxi-
mation within the specified accuracy (i.e. with error smaller than the number
specified). You may use any of the techniques discussed in this section, such
as Taylor’s Theorem, Lagrange’s form of the error, or Corollary 8.18. You
may also use the results of previous exercises.

1. (a) |E2n sin(x)| ≤ |x|2n+1

(2n + 1)!
for all x ∈ R

(b) Approximate sin(0.5) to within 1/1000.

(Suggestion: Do not solve for n; just check several values to see
what error bounds they produce.)

2. (a) |E2n+1 cos(x)| ≤ |x|2n+2

(2n + 2)!
for all x ∈ R

(b) Approximate cos(2) to within 1/10.

3. (a)

∣

∣

∣

∣

En

(

1

1 − x

)
∣

∣

∣

∣

< |x|n+1 for all x < 0

(b) Use a Taylor approximation to approximate 1/1.1 to within 1/100.
How does the error bound compare with the actual error?

4. (a) 0 < (−1)n+1En

(

1

1 + x

)

< xn+1 for all x > 0

(b) Use a Taylor approximation to approximate 1/1.8 to within 1/3.
How does the error bound compare with the actual error?

5. (a) 0 < (−1)n+1En+1(log(1 + x)) <
xn+2

n + 2
for all x > 0

(Hint: Use the previous problem.)
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(b) Approximate log 2 to within 1/10. In your approximation, is the
error negative or positive?

6. (a)

∣

∣

∣

∣

E2n+1

(

x

1 − x2

)
∣

∣

∣

∣

≤ 4

3
|x|2n+3 for all x ∈ (−0.5, 0.5)

(b) Use a Taylor approximation to approximate 0.25/(1 − 0.252) to
within 1/100. How does the error bound compare with the actual
error?

7. (a)
∣

∣E2n+2

(

log(1 − x2)
)
∣

∣ ≤ 8

3
· x2n+4

2n + 4
for all x ∈ [0, 0.5)

(Hint: Use the previous problem.)

(b) Approximate log(15/16) to within 1/10000.

8. Define f : (0,∞) → R by f(x) = 1/(1 + x) for all x > 0. Prove that
for all n ∈ N, Tnf(1) is either 0 or 1. Thus, the error of the Taylor
approximations does not approach 0.

9. (a) Define f : R → R by f(x) = (sin x)/x if x 6= 0 and f(0) = 1 (thus,
f is continuous at 0). Prove that for all n ∈ N, there is a function
E : R → R such that for all x ∈ R,

f(x) =
n
∑

i=0

(−1)i x2i

(2i + 1)!
+ E(x)

and |E(x)| ≤ |x|2n+2

(2n + 3)!
.

(Hint: Define E(x) in terms of E2n+2 sin(x) when x 6= 0, and then
figure out the proper value for E(0).)

(b) Use part (a) to approximate the value of

∫ 1

0

f(t) dt with four

decimal places of accuracy.

10. Provide an alternate proof of Theorem 8.19 using the second approach
outlined in the strategy. More specifically, prove that f (n+1) is bounded
by some constant K for points near a, then use Corollary 8.18, and
lastly use that result to prove that Enf(x; a)/(x − a)n → 0 as x → a.
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11. We have previously seen in Exercise 7.2.5 that for all x > 1, log x <
x − 1. Prove that for all x ∈ (1, 2),

log x > x − 1 − (x − 1)2

2

(Hint: Write x as 1 + u and consider E2 log(1 + u).)

12. Use a Taylor approximation to prove that

cos x ≥ 1 − x2

2
+

x4

48

for all x ∈ (−π/3, π/3). (Hint: Use a 3rd-order approximation and
Lagrange’s form.)

13. Use a Taylor approximation to prove that |sin x| ≤ |x| for all x ∈ R.
(Hint: When |x| ≤ 1, use Lagrange’s form of the error and consider
cases based on the sign of x. There are two possible choices to use
for the order of the Taylor approximation, and each one works for the
proof, though the arguments are a little different for each order.)

14. Prove that for all b > 1, bn/(n!) → 0 as n → ∞. We sometimes describe
this result as “factorials dominate exponentials.” (Hint: When n > 2b,
show that the ratio between bn+1/(n + 1)! and bn/n! is less than 1/2.)

15. Use the previous exercise to prove that for any x ∈ R,

En exp(x) → 0 as n → ∞

Thus, we have Tn exp(x) → ex for any x ∈ R, so Taylor polynomials
produce arbitrarily good approximations for the exponential function.

16. In this exercise, we outline a proof of a general “substitution rule” for
Taylor polynomials, i.e. a correction to Conjecture 8.6:

Theorem 8.25. Let a, b ∈ R and n ∈ N be given. Suppose that f is a
real function which is n-times differentiable at a, and g is a polynomial6

6Although the statement of Theorem 8.25 requires g to be a polynomial, the result
actually holds for any function g which is n-times differentiable at b. The proof is similar,
but part (a)’s result needs to be structured in a different way which is much harder to
express, let alone prove by induction.
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with g(b) = a. By the Chain Rule, we know that f ◦ g is n-times
differentiable at b. Define P : R → R by P (x) = Tnf(x; a) for all
x ∈ R. Then we have

Tn(f ◦ g)(x; b) = Tn(P ◦ g)(x; b)

In other words, by the result of Theorem 8.8, to get the nth-order Taylor
polynomial for f ◦g at b, we write P (g(x)) in terms of powers of (x−b)
and then truncate to order n.

(Note that by the result of Exercise 8.2.12, we cannot guarantee that
P (g(x)) yields a Taylor polynomial for f ◦ g at b with a higher order
than n.)

(a) First, define P (x) = Tnf(x; a) and E(x) = Enf(x; a). Thus,

f(x) = P (x) + E(x)

As a result, if we define H(x) = E(g(x)), then we have

f(g(x)) = P (g(x)) + H(x)

Prove by induction on k that for all k from 0 to n, H(k) has the
form

H(k)(x) =

k
∑

i=0

pk,i(x)E(i)(g(x))

where pk,i is a polynomial for each i from 0 to k.

(b) Use part (a) to prove that H(k)(b) = 0 for all k from 0 to n. Thus,
by Theorem 8.21, we have Tn(f ◦ g)(x; b) = Tn(P ◦ g)(x; b).

17. Use Theorem 8.25 from the previous exercise to compute the following
Taylor polynomials: for all n, m ∈ N∗,

Tmn(exp(xm)) =

n
∑

i=0

xmi

i!

Tm(2n+1)(sin(xm)) =

n
∑

i=0

(−1)i xm(2i+1)

(2i + 1)!

T2mn(cos(xm)) =

n
∑

i=0

(−1)i x
2mi

(2i)!
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18. Previously, we computed approximations to π by using Taylor poly-
nomials for arctan 1 = π/4. This method produced large errors of
approximation. To get an improved method, we will instead express π
in terms of values of the form arctan x with |x| < 1. This is because
when |x| < 1, the error bound of |x|2n+3/(2n+3) we found with arctan
converges to 0 rather quickly.

The heart of our method is the following identity of John Machin, which
we will prove:

π = 16 arctan

(

1

5

)

− 4 arctan

(

1

239

)

(a) Prove the trigonometric identity

tan(x + y) =
tanx + tan y

1 − tanx tan y

for all x, y ∈ R for which tan x, tan y, and tan(x + y) are defined.

(b) Now, let α = arctan(1/5) and β = 4α − π/4. (α is chosen this
way because π/4 is roughly 0.8 = 4/5 ≈ 4α.) Use the identity
from part (a) with x = y = α, then with x = y = 2α, and
lastly with x = 4α and y = −π/4, to obtain tan(2α) = 5/12,
tan(4α) = 120/119, and tan β = 1/239. From this, it follows that

π = 16α − 4β = 16 arctan

(

1

5

)

− 4 arctan

(

1

239

)

proving Machin’s identity.

(c) Obtain an approximation for 16 arctan(1/5) which has error mag-
nitude less than 5 × 10−8.

(d) Obtain an approximation for 4 arctan(1/239) which has error mag-
nitude less than 5 × 10−8. (Note that since 1/239 is much closer
to 0 than 1/5 is, you will be able to use a much smaller order for
your Taylor polynomial!)

Using the results of parts (b), (c), and (d), you should be able to
obtain the approximation π ≈ 3.141592682, with error magnitude less
than 10−7.
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19. This exercise outlines an alternate proof of Lagrange’s form which has
slightly weaker hypotheses. This proof is useful for a couple reasons.
First, it will also give us a way to obtain other forms of the Taylor
error. Second, this proof can be generalized in multivariable calculus
to obtain a version of Taylor’s Theorem in multiple variables.

Suppose that a ∈ R and n ∈ N are given, and f is a real function which
is (n+1)-times differentiable on an interval [a− δ, a+ δ] (where δ > 0).
However, we do not require f (n+1) to be continuous on [a − δ, a + δ].
Let x ∈ [a − δ, a + δ] be given, and define F : [a − δ, a + δ] → R by

F (t) =

n
∑

i=0

f (i)(t)

i!
(x − t)i

for all t ∈ [a − δ, a + δ].

(a) Show that F (x) = f(x) and F (a) = Tnf(x; a). Thus, F (x) −
F (a) = Enf(x; a). (Intuitively, F (t) provides a “smooth transi-
tion” from Tnf(x; a) to f(x) as t goes from a to x.)

(b) Prove that F is differentiable from a to x, and

dF

dt
=

(x − t)n

n!
f (n+1)(t)

(c) When G is any continuously differentiable function from a to x,
satisfying G′(c) 6= 0 for all c between a and x, Cauchy’s Mean
Value Theorem implies

G′(c)(F (x) − F (a)) = F ′(c)(G(x) − G(a))

for some c between a and x. By using this together with part (b)
and the choice of G(t) = (x − t)n+1, prove the Lagrange form of
the error:

Enf(x; a) =
f (n+1)(c)

(n + 1)!
(x − a)n+1

(Note that other forms of the Taylor error can be obtained with
different choices for G.)

In the next three exercises, we analyze two different schemes for approxi-
mating logarithms. Our first scheme only produces arbitrarily good approx-
imations of log y when y ∈ (0, 2] (i.e. for any y ∈ (0, 2], by taking larger and
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larger orders of approximation, we can make the error as small as desired).
However, our second scheme produces arbitrarily good approximations of
log y for any y ≥ 1 (note that values of y in (0, 1) can be handled by the
identity log y = − log(1/y)).

20. For our first scheme, define f : (−1,∞) → R by f(x) = log(1 + x) for
all x > −1.

(a) By doing steps like those in Example 8.23, prove that for all x >
−1 and all n ∈ N∗,

Tn−1f
′(x) = Tn−1

(

1

1 + x

)

=

n−1
∑

i=0

(−1)ixi

and

En−1f
′(x) = En−1

(

1

1 + x

)

=
(−1)nxn

1 + x

Therefore, by integrating, we obtain

Tnf(x) =

∫ x

0

Tn−1

(

1

1 + t

)

dt =

n
∑

i=1

(−1)i−1xi

i

and

Enf(x) =

∫ x

0

En−1

(

1

1 + t

)

dt =

∫ x

0

(−1)ntn

1 + t
dt

(b) Prove that for all n ∈ N∗, we have the following: if x ≥ 0 then

1

1 + x
· xn+1

n + 1
≤ |Enf(x)| ≤ xn+1

n + 1

and if −1 < x < 0, then

|x|n+1

n + 1
≤ |Enf(x)| ≤ 1

1 + x
· |x|

n+1

n + 1

(c) Use part (b) to conclude that when x ∈ (−1, 1], Enf(x) → 0 as
n → ∞. Thus, we have Tnf(x) → log(1 + x) as n → ∞, so by
making n as large as desired, we can obtain arbitrarily precise
approximations to log(1 + x).
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(d) To approximate log y where y ∈ (0, 2], we can use Tnf(x) with
x = y − 1. Using this idea, find the value of log 1.5 correct to
three decimal places.

21. Let f be the same function as in Exercise 8.5.20. The goal of this
exercise is to show that Tnf(x) does not do a good job at approximating
log(1 + x) for any x > 1. More precisely, let x > 1 be given, and we
want to show Tnf(x) 6→ log x as n → ∞. In fact, we will show that
Tnf(x) has no limit as n → ∞!

(a) Suppose that, for contradiction, there exists some L ∈ R so that
Tnf(x) → L as n → ∞. Prove that (−1)n−1xn/n → 0 as n → ∞.
(Hint: (−1)n−1xn/n = Tnf(x) − Tn−1f(x).)

(b) From Exercise 7.4.27, we know that for any y > 0, ey > 1+y. Use
this to prove that

xn

n
> log x

for any n ∈ N∗.

(c) Use parts (a) and (b) to show that Tnf(x) cannot approach a limit
as n → ∞. Thus. our scheme from Exercise 8.5.20 only produces
good approximations for log(1+x) when x ≤ 1 (i.e. for log y when
y ≤ 2.)

22. In this problem, we introduce a different approximation scheme that
avoids the problem demonstrated in Exercise 8.5.21. We define g :
(−1, 1) → R by

g(x) = log

(

1 + x

1 − x

)

for all x ∈ (−1, 1). With this scheme, we approximate log y for any
y ≥ 1 by first writing y in the form (1 + x)/(1 − x) for some x ∈ [0, 1)
and then using Taylor polynomials for g(x). (Note: We will not need
to use negative values of x for our approximations, but g needs to be
defined on both sides of 0 in order for Tng(x; 0) to exist.)

(a) Prove that for every y ≥ 1, there exists a unique x ∈ [0, 1) with
(1 + x)/(1 − x) = y. It follows that the function which takes
x ∈ [0, 1) to (1 + x)/(1 − x) is a bijection from [0, 1) to [1,∞).
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(b) Prove that for all x ∈ [0, 1), if f is defined as in Exercise 8.5.20,
then g(x) = f(x) − f(−x). Use this to show that for all n ∈ N∗,

T2ng(x) = 2

(

n−1
∑

i=0

x2i+1

2i + 1

)

and

|E2ng(x)| ≤ 2 − x

1 − x
· x2n+1

2n + 1

(c) Use part (b) to prove that for any x ∈ [0, 1), E2ng(x) → 0 as
n → ∞. Thus, using the result in part (a), we can use Taylor
polynomials for log((1 + x)/(1 − x)) to obtain arbitrarily good
approximations for log y for any y ≥ 1.

(d) Using the previous parts of this problem, approximate log 3 correct
to three decimal places.

8.6 Some Applications of Taylor Polynomials

Taylor polynomials do more than just give us numerical approximations for
values like e or π. They give us ways to replace complicated expressions with
simple expressions, as long as we permit a little error. For instance, let’s say
you are investing one dollar for n years at a rate of interest x, where x > 0
and n ∈ N∗. After n years, you will have (1 + x)n dollars. If x is close to 0,
then the following approximation is pretty accurate:

(1 + x)n ≈ T1(1 + x)n = 1 + nx

Note that 1 + nx is the amount of money you would have if you received
x dollars every year for n years, starting with one dollar. Thus, when x
is small, there is little difference between accumulating interest and merely
receiving a lump sum each year. In fact, when x > 0, then you can see from
Lagrange’s form that

E1(1 + x)n =
n(n − 1)

2
(1 + c)n−2x2

for some c ∈ (0, x). This error gives us the useful inequality

(1 + x)n ≥ 1 + nx +
n(n − 1)

2
x2
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when x > 0 and n ≥ 2. (It turns out you can prove this inequality without
the use of calculus; try it!)

This example only uses a linear approximation to a complicated quantity.
However, Taylor polynomials can also be used with higher orders to obtain
even better accuracy. Because we have the flexibility to choose whichever
order we like, we can customize the order of Taylor polynomials to suit our
needs. This gives us a more complete picture of how a function behaves near
a point, much like a derivative at a point gives us a sense of how much the
function rises or falls. In this section, based on these ideas, we will present a
few important examples of the use of Taylor approximation.

Kinetic Energy: Einstein vs. Newton

One of the first problems one might study in physics is determining how
much energy a moving object carries as a result of its motion. This is called
its kinetic energy. Kinetic energy is important, for instance, when analyzing
how much fuel a car or a rocket is expected to burn to move at a designated
speed. For many years, the main formula for calculating kinetic energy was
the following formula, due to Isaac Newton:

KN(v) =
1

2
mv2

Here, v is the velocity of the object, m is its mass, and KN(v) is its kinetic
energy (we have chosen to use the symbol KN , where the subscript N stands
for Newton). Newton’s formula tells us that kinetic energy depends quadrat-
ically on speed: thus, for instance, if two objects have the same mass but one
moves twice as fast as the other, then the faster object will have four times
as much energy.

In 1905, however, the world of physics changed dramatically when Albert
Einstein published his famous paper on the theory of special relativity. One
of the findings of this paper was that Newton’s formula for kinetic energy
did not properly model the correct behavior at very high speeds. Instead,
Einstein had a different kinetic energy formula, which we will denote as KE

with a subscript of E for Einstein:

KE(v) =
mc2

√

1 − (v2/c2)
− mc2

Here, c is the speed of light, which is about 299, 792, 458 meters per second
or 670, 616, 629 miles per hour.
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In Einstein’s formula, the first term represents the total energy E that
an object with mass7 m carries when moving with velocity v. For instance,
when v = 0 (for an object at rest), we have the famous result E = mc2.
Also, we can see that KE(v) → ∞ as v → c−, so Einstein predicted that
an object’s kinetic energy becomes unbounded as its speed approaches the
speed of light. In contrast, Newton’s formula says that KN(v) → mc2/2 as
v → c−, so kinetic energy remains bounded with this formula.

How can we reconcile the differences between these two formulas? Since
the dependence of KE(v) on v is somewhat complicated, let’s use Taylor
polynomials to make approximations for KE(v). The hardest part to evaluate
in KE(v) is the expression (1 − (v2/c2))−1/2. To handle this, we introduce
the function f(x) = (1 − x)−1/2, so that

KE(v) = mc2

(

f

(

v2

c2

)

− 1

)

Since f ′(x) = (1 − x)−3/2/2, the linear approximation to f centered at 0 is

T1f(x) = f(0) + f ′(0)x = 1 +
x

2

Using this approximation in KE(v), we get

KE(v) = mc2

(

f

(

v2

c2

)

− 1

)

≈ mc2

((

1 +
v2

2c2

)

− 1

)

=
1

2
mv2 = KN (v)

Thus, Newton’s formula can be considered a Taylor approximation of
Einstein’s formula. When v2/c2 is close to 0, i.e. at low speeds, Newton’s
formula is quite accurate, but Newton’s formula becomes less accurate at
high speeds, when v ≈ c. To be more precise, we can analyze the error from
the Taylor approximation. For any x ∈ (0, 1), Lagrange’s form says that
there exists some ξ from 0 to x such that

E1f(x) =
f ′′(ξ)

2
x2 =

3

8
(1 − ξ)−5/2x2

7Technically, m is the rest mass, i.e. the mass when the object is at rest. Einstein also
postulated that the mass of an object effectively changes as a function of its speed, but
for simplicity we will assume m is constant.
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which is a value from 3x2/(8(1 − x)5/2) to 3x2/8. Therefore, since KE(v) −
KN(v) = mc2E1f(v2/c2), we have

3mv4

8c2(1 − (v2/c2))5/2
≤ KE(v) − KN(v) ≤ 3mv4

8c2

For example, let’s say our object in question is an average automobile,
with a mass of m = 2000 kilograms.8 If the car is driving at highway speeds,
so v = 90 kilometers per hour (which is 25 meters per second), then KE(v)−
KN(v) is bounded by approximately

3 · 2000 · 254

8(3 × 108)2
≈ 3 × 10−9

Thus, these measurements differ by only about 3 nJ (nanoJoules)! To get a
sense of how tiny this quantity is, a Joule is the amount of energy needed
to move 1 kg a distance of 1 meter, i.e. approximately the energy used to
lift a small apple from the ground to the height of an average person’s torso.
Our error in measurement is approximately 1 billion times less energy!9 This
illustrates that for most common objects, moving at common speeds, the
difference between Einstein’s formula and Newton’s formula is negligible.

Proving e Is Irrational

As a more surprising application of Taylor polynomials, we can prove

Theorem 8.26. e 6∈ Q.

Strategy. The main idea is that if e is rational, then n! e is also an integer
when n is a sufficiently large natural number. However, e ≈ Tn exp(1), and
n! Tn exp(1) is also an integer because

Tn exp(1) =
n
∑

i=0

1

i!
=

1

n!

(

n
∑

i=0

n!

i!

)

8Thanks to http://cars.lovetoknow.com/How_Much_Does_My_Car_Weigh for some
sample data.

9As another illustration, a mosquito’s kinetic energy is approximately 53 times bigger
than this error! (Thanks to http://en.wikipedia.org/wiki/Joule for this information.)
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(Note that for each i from 0 to n, n!/i! is the same as (i + 1)(i + 2) · · · (n),
so it is an integer.) Thus,

n! En exp(1) = n! e − n! Tn exp(1)

and n! En exp(1) is also an integer. However, En exp(1) approaches 0 very
quickly, and we can show that when n is large enough, |n! En exp(1)| is too
small to be an integer.

Proof. Let’s make the argument from the strategy more precise. Suppose e is
rational, so that e = p/q for some p, q ∈ N∗. Hence, n! e is an integer for any
n ∈ N∗ with n ≥ q. For any such value of n, n! En exp(1) is also an integer
as discussed in the strategy. We will show that 0 < n! En exp(1) < 1 when n
is large enough, contradicting the fact that n! En exp(1) is an integer.

To do this, we obtain some bounds on En exp(1) by using Corollary 8.18
with a = 0 and x = 1. Thus, we want bounds on exp(n+1) over the interval
[0, 1]. The (n + 1)st derivative of exp is exp, so for any t ∈ [0, 1], we have
exp(0) ≤ exp(n+1)(t) ≤ exp(1), i.e. 1 ≤ exp(n+1)(t) ≤ e. Hence, Corollary
8.18 tells us that

1

(n + 1)!
≤ En exp(1) ≤ e

(n + 1)!

Thus, when n ∈ N∗ and n ≥ max{2, q}, we have

1

3
≤ 1

n + 1
≤ n! En exp(1) ≤ e

n + 1
< 1

This shows that n! En exp(1) is an integer between 0 and 1, which is impos-
sible. Hence, e cannot be rational. �

Remark. The argument used to prove Theorem 8.26 suggests the following
question: can π be proven irrational with a similar argument? After all, for
every n ∈ N∗, we have π/4 ≈ T2n arctan(1). Unfortunately, this argument
won’t work here; let’s follow its steps and see which part fails.

We start by finding an expression for T2n arctan(1), and we discover (you
should fill in the details) that (2n − 1)! T2n arctan(1) ∈ Z. If π is assumed
to be rational (so that π/4 is also rational) and n is large enough, then
(2n − 1)! π/4 ∈ Z. Thus, (2n − 1)! E2n arctan(1) is also an integer.

However, the error bounds obtained from Example 8.24 show that

|(2n − 1)! E2n arctan(1)| ≤ (2n − 1)!

2n + 1
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As n grows large, this bound grows infinitely large. Thus, this bound cannot
be used to show that |(2n − 1)! E2n arctan(1)| < 1. This is where the proof
breaks down.

The reason this proof attempt does not work here is that although the
errors E2n arctan(1) approach 0 as n grows large, they approach 0 much more
slowly than the errors En exp(1) approach 0. In particular, n! En exp(1) goes
to 0, but (2n − 1)! E2n arctan(1) might not go to 0. To prove π is irrational,
we want a better approximation for π than 4T2n arctan(1).

This leads to another attempt by using a better approximation: Machin’s
identity from Exercise 8.5.18. Hence, we have

π ≈ 16T2n arctan

(

1

5

)

− 4T2n arctan

(

1

239

)

However, this attempt does not work either. The first problem is that al-
though the approximations are rational, their denominators are even larger
than (2n − 1)!. (Naively, you can write the approximation as a fraction
with denominator 52n−12392n−1(2n − 1)!.) Second, let’s say that E∗

n is the
error of this approximation. Although E∗

n approaches 0 more rapidly than
E2n arctan(1) does as n grows large, when you create an upper bound for
(2n − 1)! E∗

n, that upper bound still grows arbitrarily large. Hence, it is
unlikely that you can show 0 < |(2n − 1)! E∗

n| < 1 with this method.
It turns out that proofs of π’s irrationality tend to use different tactics:

one such proof is outlined in Exercise 8.7.23. However, modifications of the
proof of Theorem 8.26 can prove the irrationality of several other numbers:
see Exercises 8.7.3 and 8.7.4.

Little-o Notation And Limits

Our last major application of Taylor polynomials will be to use them to
compute limits. This is where our theorems regarding the order of a Taylor
error come into play. As an example of how this works, let’s revisit the limit

lim
x→0

sin x

x

We originally proved this limit is 1 by using geometry and the Squeeze
Theorem. Later, we were able to show that L’Hôpital’s Rule could easily
compute the limit as well. Now, with the aid of Taylor polynomials, we have
another way to proceed.
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Intuitively, when x is close to 0, sin x ≈ T1 sin(x) = x, so (sin x)/x ≈
x/x = 1. This is too informal, but we can make it more formal by introducing
the error of the approximation, E1 sin(x). We have

lim
x→0

sin x

x
= lim

x→0

T1 sin(x) + E1 sin(x)

x
= lim

x→0

x

x
+

E1 sin(x)

x

Certainly we have x/x = 1 when x 6= 0, and we also saw in Theorem 8.19
that E1 sin(x) is “better than 1st-order” as x → 0, i.e. E1 sin(x)/x → 0. This
proves that (sin x)/x → 1, as desired.

Before we proceed to more examples of the use of Taylor polynomials in
limits, note that the only information we needed about E1 sin(x) was merely
that E1 sin(x)/x → 0. In particular, we didn’t need to know any other details
about E1 sin(x) that Taylor’s Theorem or Lagrange’s form provides. Because
of this, it is helpful to introduce a shorthand notation which places our focus
solely on this limiting behavior:

Definition 8.27. Let a ∈ R, and suppose f and g are real functions defined
near a, where g(x) 6= 0 for all x near a (except possibly at a). We say
that f(x) is little-o (as in the letter “o”10) of g(x) as x → a, also written as
“f(x) = o(g(x)) as x → a”, to mean

lim
x→a

f(x)

g(x)
= 0

Intuitively, this means that f(x) has higher order than g(x) as x → a. For
instance, whenever we said “Enf(x) is better than nth-order as x → a” earlier,
we could say the same thing more compactly as “Enf(x) = o((x − a)n)”.

Remark. It is rather common to omit the phrase “as x → a” when describing
little-o notation if the value of a is clear from context. Similarly, we some-
times will write a whole string of calculations involving little-o and only write
“as x → a” at the end. This helps us focus on the main computations.

Also, it is important to note that the notation for little-o is misleading,
particularly the use of the equals sign. For instance, if a ∈ R, and f1, f2, and
g are functions satisfying f1(x) = o(g(x)) and f2(x) = o(g(x)) as x → a, then
we may not conclude that f1(x) = f2(x). After all, knowing f1(x)/g(x) → 0

10This notation is due to E. Landau. You can look up several variants of this notation,
such as big-O and big-Ω; these variants are useful for describing growth rates, especially
in computer science.
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and f2(x)/g(x) → 0 doesn’t tell us much about how f1(x) and f2(x) are
related to each other.

One possible interpretation of the notation “o(g(x)) as x → a” is to think
of o(g(x)) as a set: it can be considered as the set of all functions f for which
f(x)/g(x) → 0 as x → a. With this interpretation, the expression “f(x) =
o(g(x))” should really be “f(x) ∈ o(g(x))”, which avoids the confusion from
the previous paragraph. However, this notation is not in common usage.

The current notation is still popular because it helps us use little-o ex-
pressions in formulas. When we write an expression o(g(x)) in a formula,
we mean “some function f for which f(x) = o(g(x))”. For instance, the
statement

sin x + cos x = (x + o(x)) + (1 + o(1)) as x → 0

is really shorthand for “sin x+cos x has the form (x+f1(x))+(1+f2(x)) for
some functions f1 and f2 satisfying f1(x) = o(x) and f2(x) = o(1)”. (Note
that saying f2(x) = o(1) is the same as saying that f2(x) → 0 as x → 0.)
Similarly, the statement

sin x − x = o(o(x2)) as x → 0

means “sin x − x = o(f(x)) for some function f satisfying f(x) = o(x2)”.

Little-o notation can be used to write some of our theorems more com-
pactly. Theorem 8.19 states that when a real function f has a continuous
(n + 1)st derivative at a number a ∈ R, then Enf(x; a) = o((x − a)n) as
x → a. Conversely, Theorem 8.22 basically states that when a ∈ R and E is
a function satisfying E(x) = o((x − a)n) as x → a, then TnE(x; a) = 0.

Many convenient properties about little-o notation, which make it easier
to compute with little-o expressions, are given in this theorem:

Theorem 8.28. Let a, c ∈ R be given. Suppose f and g are real functions
defined near a with f(x), g(x) 6= 0 for x near a. As x → a, we have

1. o(g(x)) + o(g(x)) = o(g(x)) and o(g(x))− o(g(x)) = o(g(x)). (In other
words, the sum and difference of any two functions which are o(g(x))
are also o(g(x)).)

2. If c 6= 0, then o(cg(x)) = o(g(x)). (In other words, any function which
is o(cg(x)) is also o(g(x)). This basically means that constant factors
don’t affect the order of a function.)
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3. f(x) · o(g(x)) = o(f(x)g(x)). (In other words, when f is multiplied by
a function which is o(g(x)), the result is o(f(x)g(x)).)

4. o(g(x))/f(x) = o(g(x)/f(x)). (In other words, when a function which
is o(g(x)) is divided by f(x), the result is o(g(x)/f(x)).)

5. o(o(g(x))) = o(g(x)). (In other words, if two functions f1, f2 satisfy
f1(x) = o(f2(x)) and f2(x) = o(g(x)), then f1(x) = o(g(x)).)

The following consequence of Part 5 above is also worth noting: if g(x) = o(1)
and f1 is a function satisfying f1(x) = o(g(x)), then f1(x) = o(o(1)) = o(1)
and hence f1(x) → 0 as x → a.

Strategy. The hardest part about proving this theorem is understanding what
the theorem actually says. Once that is done, many of the proofs come from
applying the definition of little-o and using limit laws. Part 5 is a little
trickier, but it can also be proven by using the definitions: if f1(x) = o(f2(x))
and f2(x) = o(g(x)), i.e. f1(x)/f2(x) and f2(x)/g(x) both go to 0, then

f1(x)

g(x)
=

f1(x)

f2(x)
· f2(x)

g(x)

also goes to 0.

Proof. Let a, c, f, g be given as described. For part 1, suppose that f1 and
f2 are functions satisfying f1(x) = o(g(x)) and f2(x) = o(g(x)) as x → a.
Thus, f1(x)/g(x) and f2(x)/g(x) approach 0 as x → a. It follows that

lim
x→a

f1(x) + f2(x)

g(x)
= lim

x→a

f1(x)

g(x)
+

f2(x)

g(x)
= 0 + 0 = 0

so f1(x) + f2(x) = o(g(x)). The same basic argument shows f1(x)− f2(x) =
o(g(x)).

For part 2, if f1(x) = o(cg(x)), then we multiply and divide by c to obtain

lim
x→a

f1(x)

g(x)
= c lim

x→a

f1(x)

cg(x)
= c · 0 = 0

showing that f1(x) = o(g(x)).
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For part 3, suppose that f1 and f2 are functions satisfying f1(x) =
f(x)f2(x) where f2(x) = o(g(x)). Then

lim
x→a

f(x)f2(x)

f(x)g(x)
= lim

x→a

f2(x)

g(x)
= 0

since f(x) 6= 0 for x near a. This proves f1(x) = f(x)f2(x) = o(f(x)g(x)).
Part 4 works nearly the same way: if f1(x) = f2(x)/f(x) where f2(x) =
o(g(x)), then

lim
x→a

f2(x)/f(x)

g(x)/f(x)
= lim

x→a

f2(x)

g(x)
= 0

proving part 4.
Lastly, for part 5, suppose f1 and f2 are functions satisfying f1(x) =

o(f2(x)) and f2(x) = o(g(x)). Therefore, f1(x)/f2(x) and f2(x)/g(x) both
approach 0 as x → a. Furthermore, by the definition of f1(x) = o(f2(x)),
f2(x) 6= 0 for x near a. Thus, we may multiply and divide by f2(x) when x
is near a to obtain

lim
x→a

f1(x)

g(x)
= lim

x→a

f1(x)

f2(x)
· f2(x)

g(x)
= 0 · 0 = 0

proving that f1(x) = o(g(x)). �

Example 8.29:

In many cases, we use Theorem 8.28 when g(x) has the form (x−a)n for some
n ∈ N. In these cases, it is useful to note that whenever m ∈ N with m < n,
you can easily show that (x−a)n = o((x−a)m) as x → a. (Hence, it is more
informative to say a function is little-o of a high power than to say it is little-o
of a low power. We sometimes describe this by saying that the low power is a
weaker order than the high power, or that the high power is a stronger order
than the low power.) By part 5 above, o(g(x)) = o((x− a)n) = o((x− a)m).

This remark is especially useful when combined with part 1. For instance,
we can show that o(x5) + o(x3) = o(x3) as x → 0 by the calculations

o(x5) + o(x3) = o(o(x3)) + o(x3) = o(x3) + o(x3) = o(x3)

(the second equality follows from part 5 and the third follows from part 1).
We cannot, in general, replace the x3 in the last step with a stronger order.
For instance, x6 + x4 = o(x5) + o(x3), but x6 + x4 is not o(x4) because
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(x6 +x4)/x4 approaches 1 as x → 0. Intuitively, we see that in general, when
adding two little-o expressions with different orders, you can only conclude
that the result is little-o of the weaker order (so in the above calculation, x3

is a weaker order than x5).
For some extra practice, you should use the remarks above and Theorem

8.28 to check the following calculations by filling in any missing details or
steps:

sin x + log(1 + x) =

(

x − x3

6
+ o(x3)

)

+

(

x − x2

2
+ o(x2)

)

= 2x − x2

2
− x3

6
+ o(x2)

= 2x − x2

2
+ o(x2)

and

1 − cos x =
x2

2
+ o(x3)

(For the second calculation, it helps to note that T2 cos(x) = T3 cos(x) when
a = 0.) �

With the tools provided by Theorem 8.28 and Example 8.29, we can use
little-o notation to compute many limits. Let’s look at some examples.

Example 8.30:

Let’s compute the limit

lim
x→0

sin x − x

x3

This limit can be computed with three applications of L’Hôpital’s Rule, but
let’s instead show how little-o notation solves this problem quickly. Little-o
notation works well here because we know Taylor polynomials for sin x with
center 0. If we try a linear approximation for sin x, so that sin x = x + o(x),
then we get

sin x − x

x3
=

x + o(x) − x

x3
=

o(x)

x3
= o(x−2)

as x → 0 (the last step uses part 4 of Theorem 8.28). Unfortunately, this does
not help us find our limit, because x−2 → ±∞ as x → 0. Hence, knowing
that a function is o(x−2) does not uniquely tell us that function’s limit!
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To avoid this problem, we’d like our final result to only use little-o expres-
sions of functions which approach 0 as x → 0. Thus, we should use a Taylor
polynomial for sin x which has error with order at least o(x3) to cancel the
x3 in the denominator of our limit. Hence, let’s use T3 sin(x) to approximate
sin x, so sin x = x − (x3)/(3!) + o(x3). This gives us

sin x − x

x3
=

x − x3

6
+ o(x3) − x

x3
=

−1

6
+ o(1)

Hence

lim
x→0

sin x − x

x3
= lim

x→0

−1

6
+ o(1) =

−1

6

by the definition of o(1). This shows that when using little-o notation with
limits, some choices of Taylor order will not give you the answer, whereas
higher orders will work. (You should check to see that if you use T5 sin(x)
instead, the answer will not change.)

It is also useful to note that since T3 sin(x) = T4 sin(x) (the 4th-order
Taylor coefficient is 0), so we actually have sin x = x−(x3)/6+o(x4). Because
of this, we can compute another limit:

lim
x→0

sin x − x

x4
= lim

x→0

−x3

6
+ o(x4)

x4
= lim

x→0

−1

6x
+ o(1)

We conclude that this limit is infinite because o(1) → 0 and −1/(6x) → ±∞
as x → 0. �

Example 8.31:

Little-o calculations are especially useful when dealing with multiple approx-
imations at the same time. For instance, let’s consider

lim
x→0

sin x − x cos x

x2

For our first attempt, let’s try the simplest approximation possible for cosine:
cos x = 1 + o(1). Thus, x cos x = x + o(x) by part 3 of Theorem 8.28. To
cancel the x in this expression, we try a linear approximation with the sine:
sin x = x + o(x). Thus,

sin x − x cos x

x2
=

(x + o(x)) − x(1 + o(1))

x2
=

o(x)

x2
= o(x−1)
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As in the previous example, this final result does not help us.
Thus, we should use higher-order Taylor polynomials. Let’s try second-

order for cos x and third-order for sin x: sin x = x − (x3)/6 + o(x3) and
x cos x = x(1 − (x2)/2 + o(x2)). When we pick these orders, the only terms
which do not cancel contain factors of x2, so we get

lim
x→0

sin x − x cos x

x2
= lim

x→0

(

x − x3

6
+ o(x3)

)

−
(

x − x3

2
+ o(x3)

)

x2

= lim
x→0

x

3
+ o(x) = 0

In fact, the same work shows a more useful limit:

lim
x→0

sin x − x cos x

x3
= lim

x→0

1

3
+ o(1) =

1

3

You should try L’Hôpital’s Rule as well with this second limit, and you’ll see
that little-o notation works much more quickly. �

Example 8.32:

As another example involving multiple approximations, let’s look at

lim
x→0

ax − bx

x

where a, b ∈ R+ and a 6= b. You were asked to compute Tna
x in a previous

exercise, though we can also note that ax can be written in terms of exp by its
definition: ax = exp(x log a). Therefore, we may use the linear approximation
to exp, along with Theorem 8.7 to handle the log a constant, to conclude

ax = ex log a = 1 + (x log a) + o(x log a) = 1 + x log a + o(x)

(the last step uses part 2 of Theorem 8.28 when a 6= 1). Similarly, we obtain
bx = 1 + x log b + o(x). Thus,

lim
x→0

ax − bx

x
= lim

x→0

x(log a − log b) + o(x)

x
= lim

x→0
(log a − log b) + o(1)

so our limit is log a − log b = log(a/b). �

Example 8.33:
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Little-o notation even helps with indeterminate forms which are not 0/0-form.
For instance, let’s consider

lim
x→0+

x(xx−1)

i.e. the base is x and the exponent is one less than xx. (We can modify the
definition of little-o to handle one-sided limits; the properties it satisfies are
basically the same.) Let’s first focus on the exponent, xx − 1. By definition,
xx = exp(x log x).

To handle this, we first handle exp on its own: exp(t) = 1 + t + o(t) as
t → 0. We’d like to replace t with x log x. We note that x log x → 0 as
x → 0+, as we showed in Chapter 7 (unfortunately, we cannot use little-
o work to get this limit, because log x does not have a Taylor polynomial
centered at 0). This allows us to plug in x log x for t and conclude

exp(x log x) = 1 + x log x + o(x log x) as x → 0+

(see Exercise 8.7.7 for more of the formal details).

Therefore,

xxx−1 = xx log x+o(x log x) = exp((x log x + o(x log x)) log x)

where we again use the definition of exponentiation to a base which is not
e. The methods from Chapter 7 also prove that x log2 x → 0 as x → 0+, so
by plugging in x log2 x + o(x log2 x) for t in our Taylor expression for exp(t)
above, we get

xxx−1 = 1 + (x log2 x + o(x log2 x)) + o(x log2 x + o(x log2 x))

Since every term approaches 0 as x → 0+ except for the term 1, we have
xxx−1 → 1. �

As we have seen, Taylor polynomials with little-o error estimates fre-
quently yield convenient expressions for evaluating limits. You will get more
examples to try in the exercises. Frequently, little-o expressions provide
quicker and more convenient approaches to limits than L’Hôpital’s Rule
(though as we saw with x log x in the previous example, we cannot expect to
avoid all usage of L’Hôpital’s Rule).
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8.7 Exercises

In the first two exercises, we present some other uses of Taylor polynomial
approximations in science.

1. When a string or a cable is supported on two ends, and the middle
hangs down, the resulting shape is often called a catenary. Let’s say
that the lowest point of the catenary is (0, 0). We model the catenary
as a curve of the form

y = f(x) =
a

2

(

ex/a + e−x/a
)

− a

where a is a positive constant describing how much the catenary “opens
up”. Note that f(0) = 0 and f(a) = a(e + 1/e)/2 − a ≈ 0.543a. A
couple different catenaries are shown in Figure 8.2.

1

1�4
3�4

x

y

Figure 8.2: Three catenaries, labeled with their value of a

These pictures suggest that a catenary looks nearly like a parabola
when x is close to 0. Use Taylor polynomials to prove that when x is
close to 0,

f(x) ≈ x2

2a
(This confirms our intuition that a smaller value of a leads to a steeper
catenary.) Also, prove the following error estimate for all x ∈ [−a, a]:

∣

∣

∣

∣

f(x) − x2

2a

∣

∣

∣

∣

≤ e|x|3
3a2

≤ ea

3
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2. An electric dipole consists of two electric charges which have the same
magnitude but opposite sign (such as a proton and an electron a small
distance apart). Let’s suppose the charges have values q and −q and
are separated by a distance d. We consider a point P as in Figure 8.3,
so P is collinear with the charges q and −q, P is closer to q than to
−q, and P is distance D from q. It is known that the electric field at
the point P is

E(D) =
q

D2
− q

(D + d)2

P q -q

D d

Figure 8.3: A dipole

Prove that as D goes to ∞, E(D) is approximately proportional to
1/D3. (Hint: Pull a factor of 1/D2 out of E(D), and try to approximate
a function f(x) where x = d/D, since x is close to 0.)

3. Suppose that we use the proof tactic from Theorem 8.26 to prove that
e2 is irrational. Show that n! En exp(2) does not approach 0 as n → ∞,
and hence the proof tactic fails.

4. It is known that em is irrational for every m ∈ N∗, but we will not
prove this fact (the proof uses tactics somewhat similar to the proof of
π’s irrationality at the end of this section). Use this fact to prove the
following:

(a) Whenever q ∈ Q and q 6= 0, eq 6∈ Q.

(b) Use part (a) to prove that log q is irrational whenever q ∈ Q and
q > 1.

5. Suppose that a ∈ R and g is a real function defined near a with g(x) 6= 0
for x near a. If g(x) → 0 as x → a, prove that

o(g(x) + o(g(x))) = o(g(x)) as x → a

In other words, if f and h are real functions defined near a such that
g(x)+h(x) 6= 0 for x near a, f(x) = o(g(x)+h(x)), and h(x) = o(g(x)),
then f(x) = o(g(x)).

PREPRINT: Not for resale. Do not distribute without author’s permission.



Chapter 8: Approximating with Taylor Polynomials 583

6. Prove that if a ∈ R and f and g are real functions defined near a with
f(x), g(x) 6= 0 for x near a, then o(f(x)) · o(g(x)) = o(f(x)g(x)) as
x → a. Also, use this to show that

log2(1 + x) = x2 − x3 + o(x3) as x → 0

7. Suppose that a, b ∈ R, and f , g, and h are real functions defined near
a such that g(t), h(t) 6= 0 for t near a. Also, suppose that x is a real
function defined near b such that x(t) 6= a for t near b, and x(t) → a
as t → b. Prove that

f(t) = g(t) + o(h(t)) as t → a

implies
f(x(t)) = g(x(t)) + o(h(x(t))) as t → b

This allows us to substitute functions into little-o expressions. (Hint:
Use the definition of little-o together with the Composition Limit The-
orem.)

8. (a) Suppose that a ∈ R and g is a real function defined near a with
g(x) 6= 0 for x near a. Prove that if g(x) → 0 as x → a, then for
any n ∈ N,

1

1 − g(x)
=

n
∑

i=0

gi(x) + o(gn(x)) as x → a

(Hint: Consider Tn(1/(1 − t)) centered at t = 0.)

(b) Use part (a) to prove that

1

cos x
= 1 +

x2

2
+ o(x2) as x → 0

(Hint: Approximate cos x first.)

(c) Use part (b) to prove that

tan x = x +
x3

3
+ o(x3) as x → 0

(Hint: You may want to use the result of Exercise 8.7.6.)
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In Exercises 9 through 21, use little-o notation to compute the following
limits. To aid your work, you may use the following limits from Chapter 7,
which are true for all a > 0 and all b > 1:

lim
x→∞

xa

ex
= 0 lim

x→∞
logb x

xa
= 0 lim

x→0+
xa logb x = 0

9. lim
x→0

sin(ax)

sin(bx)

where a, b > 0 are constants

10. lim
x→0

sin x − x

arctanx − x

11. lim
x→0

1 − cos(x2)

x2 sin(x2)

12. lim
x→∞

x1/4
(

e−1/
√

x − 1
)

(Hint: Change variables.)

13. lim
x→π/2

cos x

x − π/2

(Hint: What should be the center of your Taylor polynomial?)

14. lim
x→0+

log x log(1 − x)

(Hint: Only one of these logarithms can be approximated with Taylor
polynomials.)

15. lim
x→0+

sin x log x

(Hint: Which function can be approximated near x = 0?)

16. lim
x→0+

xsinx

(Hint: Use the previous exercise.)

17. lim
x→0+

(sin x)x

(Hint: After an approximation, you’ll want to use log properties.)

18. lim
x→0

log(cos(ax))

log(cos(bx))

(Hint: After one set of approximations, you’ll want to do another set.)

19. lim
x→1

x1/(1−x)

(Hint: It might be easier to solve this with a variable approaching 0.)
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20. lim
x→1

(

1

log x
− 1

x − 1

)

21. lim
x→0

(

(1 + x)1/x

e

)1/x

(Hint: First show that (1 + x)1/x = exp(1 − x/2 + o(x)) = e · (1 −
x/2 + o(x)). You might want to use the result of Exercise 8.7.5 for
some steps.)

22. Find the value of c > 0 so that

lim
x→∞

(

x + c

x − c

)x

= 4

(Hint: (x + c)/(x− c) = 1 + 2c/(x− c), and 2c/(x− c) approaches 0 as
x → ∞.)

23. In this exercise, we outline a proof that π is irrational.11 For those
who are curious, this proof uses techniques coming from the theory of
Fourier series, as opposed to the theory of Taylor polynomials.

We start by assuming for a contradiction that π is rational, so we may
write π = a/b where a, b ∈ N∗. Let n ∈ N∗ be given. We define
f, F : R → R for all x ∈ R by

f(x) =
xn(a − bx)n

n!

and

F (x) =
n
∑

j=0

(−1)jf (2j)(x)

(Since f is a polynomial, f is infinitely differentiable at every point.)

(a) Prove that f is a polynomial of degree 2n whose coefficients are
integers divided by n! (i.e. n! f has integer coefficients), and also
f(0) = f(π) = 0.

(b) Prove that for all x ∈ (0, π),

0 < f(x) <
πnan

n!
11The website http://www.lrz-muenchen.de/∼hr/numb/pi-irr.html provided this proof,

which it says is due to John Niven.
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(c) Prove that for all j from 0 to n − 1, f (j)(0) = f (j)(π) = 0. (Hint:
What kinds of terms appear in f (j)(x)? You may find Exercise
4.4.6 useful.)

(d) Prove that for all j ∈ N with j ≥ n, f (j)(0) and f (j)(π) are integers.
(Your work from part (c) should be useful here.) It follows from
this and part (c) that F (0) and F (π) are integers.

(e) Prove that for all x ∈ R, F (x) + F ′′(x) = f(x).

(f) Using part (e), prove that

d

dx
(F ′(x) sin x − F (x) cos x) = f(x) sin x

for all x ∈ R. Use this to show that
∫ π

0

f(x) sin x dx = F (0) + F (π)

(g) Use part (b) to show that

0 <

∫ π

0

f(x) sin x dx <
2πnan

n!

(h) Finally, use the fact that factorials dominate exponentials (see
Exercise 8.5.14), along with parts (d), (f), and (g), to show that
if n is large enough, then F (0)+F (π) is an integer between 0 and
1. This yields the desired contradiction.
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Chapter 9

Sequences and Series

At many different points in this book, we have created lists of mathemati-
cal objects indexed by natural numbers. We call such a list a sequence of
mathematical objects. For instance, here are some examples:

• In Lemma 3.58, we proved that any continuous real function f on a
closed interval [a, b] is bounded on [a, b]. This is the argument that
the proof used, called the bisection method. We started with [a0, b0] =
[a, b], assuming for contradiction that f was unbounded on [a, b]. Thus,
f was unbounded on one of the halves of [a0, b0], and we took [a1, b1] to
be one such half. After that, we took [a2, b2] to be one of the halves of
[a1, b1] on which f was unbounded, and so on. In this way, we developed
a sequence of closed intervals

I0 = [a0, b0], I1 = [a1, b1], I2 = [a2, b2], . . .

so that for any n ∈ N, In+1 was one of the halves of In on which f was
unbounded. Intuitively, the In intervals closed in on a single point as
n grew large. In fact, this point was sup{an | n ∈ N}.

• In Chapter 5, we used sequences of step functions to help study inte-
grability. For instance, in Example 5.1, we found the area under the
function f : [0, 1] → R, defined by f(x) = x2 for all x ∈ R, as follows.
For each n ∈ N∗, we made step functions sn, tn : [0, 1] → R which broke
the interval [0, 1] into n equal-width subintervals, such that sn was be-
low f and tn was above f . Furthermore, we showed that by making n
sufficiently large, we could get the areas under sn and tn to be as close
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as desired to 1/3. In other words, the sequences of numbers

∫ 1

0

s1(x) dx,

∫ 1

0

s2(x) dx,

∫ 1

0

s3(x) dx, . . .

and
∫ 1

0

t1(x) dx,

∫ 1

0

t2(x) dx,

∫ 1

0

t3(x) dx, . . .

both approached 1/3. Based on this, we concluded that f was inte-
grable on [0, 1] with value 1/3.

• In Chapter 8, we introduced Taylor polynomials. In the special case
where f was a real function which is infinitely differentiable at some
a ∈ R, we obtained a sequence of polynomials

T0f(x; a), T1f(x; a), T2f(x; a), . . .

meant to approximate f well at points near a. Note that each Taylor
polynomial could also be written in the form

Tnf(x; a) =
n
∑

i=0

ti(x; a) where ti(x; a) =
f (i)(a)

i!
(x − a)i

Here, ti(x; a) can be thought of as the “ith Taylor term” and Tnf(x; a)
is the sum of the Taylor terms up to the nth.

These examples demonstrate how useful sequences are in mathematics.
Furthermore, we see that there are many different ways of creating sequences.
In our first example, In+1 is created from In, so intervals in this sequence are
recursively defined from the previous ones (as opposed to giving one formula
that defines all the In intervals at once). In our second example, the sequence

sn of step functions is used to create the sequence of numbers

∫ 1

0

sn(x) dx.

Lastly, in our third example, we see that the Tn sequence of functions is built
by taking sums from the ti sequence of functions.

In fact, the process used in our third example, where we take a sequence
and add up its members, is very common. The new sequence created this
way is called the series whose terms are the partial sums of the old sequence.
A series gives us a way to reason about “adding infinitely many numbers”.
Some series give us well-defined sums, and some do not.
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To illustrate this, we consider two series. Our first series is made from
the terms an = 2−n for each n ∈ N. Thus, the nth partial sum is

sn =

n
∑

i=0

ai = 1 +
1

2
+

1

22
+ · · ·+ 1

2n

As this sum is a geometric summation with ratio 1/2, Exercise 1.9.2 tells us
that sn = 2 − 2−n for each n ∈ N. As 2 − 2−n → 2 as n → ∞, this suggests
that the sum with “infinitely many terms” should equal 2:

∞
∑

i=0

2−i = 1 +
1

2
+ · · ·+ 1

2i
+ · · · = 2

We say that this series has sum 2. This is an example of a convergent series,
meaning that the partial sums approach a finite limit.

For our second series, suppose we instead use the sequence an = 1 for all
n ≥ 0 to build partial sums. Then sn, the nth partial sum of the an sequence,
equals n+1 (recall that our sequence of an terms starts with n = 0). Hence,
sn → ∞ as n → ∞, which suggests that

∞
∑

i=0

1 = 1 + 1 + · · ·+ 1 + · · · = ∞

Unlike the previous series, this series has an infinite sum. We say that this
series diverges. (More specifically, this series diverges to ∞.)

In this chapter, we will take these ideas, make them more precise, and
explore the consequences, particularly with series. Series are usually quite
tricky because it can be difficult to obtain a convenient expression for the
partial sums sn from which one can analyze the limiting behavior. Thus, in
many cases we will not be able to find the exact value of the sum of a series
though we will be able to determine whether the series converges. Even if we
don’t know the exact sum of a series, knowing whether the series converges
is still useful, because as we’ll see, convergent series can be manipulated
algebraically in many ways as if they were finite sums.

9.1 Sequences

Before we proceed any further, we should establish a precise definition of
what a sequence is. It can be instructive to ask: what properties should
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this definition have? One important property is that order of terms in a
sequence DOES matter: the sequence 1, 2, 1, 2, . . . is not the same as the
sequence 2, 1, 2, 1, . . .. Another important property is that terms can occur
multiple times in a sequence (unlike in a set, where multiplicity does not
matter). Thus, a sequence is like an ordered pair, but with infinitely many
coordinates (it could be considered an ordered “∞-tuple”). To make this
more precise, we use functions:

Definition 9.1. If S is any set, then an (infinite) sequence of members of
S is a function a : N → S. For each n ∈ N, a(n) is called the nth term of
the sequence, which is often written instead as an. We also say that an is the
term with index n. Frequently, for our purposes, S will either be R or a set
of real-valued functions.

More generally, for any sets I and S, a sequence from S indexed by I is a
function a : I → S, where we often write ai instead of a(i) for the term with
index i when i ∈ I. I is called the index set of the sequence. We will also
use the notation (ai)i∈I , or sometimes simply (ai) if the context is clear, to
refer to the entire sequence.

(As with many other notations, such as with summations or integrals, the
subscript is a dummy variable and can be replaced with any other variable
which is not already used. Thus, (an)n∈N and (ak)k∈N mean the same thing.)

The range of the sequence (ai)i∈I is ran(a) = {ai | i ∈ I}. Thus, the
range is a set, not a sequence. We will occasionally write this as {ai}i∈I , or
more simply write {ai} if the context is clear.

With sequences, many notational shorthands are very common. When
the index set is N, we may write (an)∞n=0 instead of (an)n∈N, using a notation
similar to that for summations. Analogously, if the index set has the form
{k, k + 1, k + 2, . . .} for some k ∈ N, then we may write (an)∞n=k, and we
say that the sequence starts with index k. If the index set has the form
{i, i+1, i+2, . . . , j} for some i, j ∈ N with i ≤ j, then we may write (an)j

n=i,
and we say that this is a finite sequence. In most cases, our sequences will
take one of these forms.

Example 9.2:

We recast our examples from the beginning of this chapter with this new no-
tation. In the first example, (In)∞n=0 is an infinite sequence of closed bounded
intervals (so the set S can be taken to be the collection of subsets of [a, b]). In
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the second example, we have sequences (sn)∞n=1 and (tn)∞n=1 of step functions,
as well as sequences

(
∫ 1

0

sn

)∞

n=1

and

(
∫ 1

0

tn

)∞

n=1

of real numbers. In the third example, we have sequences of functions
(ti)

∞
i=0 and (Tnf)∞n=0, though for any fixed x ∈ dom(f), (ti(x; a))∞i=0 and

(Tnf(x; a))∞n=0 are real-valued sequences.
As another simple example, the real-valued sequence (1)∞n=0 has every

term equal to 1. This is an infinite sequence with a one-element range. �

Remark. There are many different popular notations associated with se-
quences. For instance, some books write {an}∞n=0 or 〈an〉∞n=0 instead of
(an)∞n=0. We will use parentheses to denote sequences in this book, so that
curly braces can be used in connection with sets, i.e. (an) is the sequence
whereas {an} is the range.

Also, when working with a sequence (an)∞n=0, mathematicians tend to
forget about the underlying function a : N → R. As a result, the variable a
is considered free. For example, we can write phrases like “if an = 2−n, and
a = 0, then an approaches a as n gets large”.

Useful Properties of Sequences

There are many useful properties of functions that are also used with
sequences. For instance, a sequence (an)n∈N is increasing if i < j implies
ai ≤ aj for all i, j ∈ N. (If i < j implies ai < aj for all i, j ∈ N, we instead say
the sequence is strictly increasing.) The definition of a decreasing or strictly
decreasing sequence is similar. Likewise, you should be able to formulate
definitions for a sequence to be bounded (above or below).

Intuitively, to check whether a sequence (an) is increasing, we only need
to verify whether each term in a sequence is below the next term. In other
words, we should show a0 ≤ a1, a1 ≤ a2, and so on. More formally, you
should prove this result in Exercise 9.2.1:

Theorem 9.3. Let (an)∞n=0 be an infinite real-valued sequence. (an) is in-
creasing iff an ≤ an+1 for all n ∈ N. Similar statements hold for strictly
increasing, decreasing, and strictly decreasing sequences as well.

We put this theorem to good use with a couple examples.
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Example 9.4:

Consider the sequence defined by

an =
n

n2 + 1

for each n ∈ N∗. Writing out a few terms, we find that a1 = 1/2, a2 = 2/5,
a3 = 3/10, and so on. From this, we suspect that (an) is strictly decreasing.
(It is easy to check that this sequence is bounded below by 0. Once we prove
that the sequence is decreasing, it follows it is also bounded above by a1.)

We have several different ways of showing that (an) is strictly decreasing.
One way is to show directly that for any n ∈ N∗, an > an+1. We do some
algebra with inequalities to find that

an > an+1

↔ n

n2 + 1
>

n + 1

(n + 1)2 + 1

↔ n((n + 1)2 + 1) > (n + 1)(n2 + 1)

↔ n3 + 2n2 + 2n > n3 + n2 + n + 1

↔ n2 + n > 1

which is readily seen to be true for any n ≥ 1.
For a different approach for showing that (an) is strictly decreasing, we

recall that a real function whose derivative is always negative on an interval
is strictly decreasing. (an) is not a function with an interval for a domain
(as the index set is N∗, which contains no nonempty open intervals), so
we can’t compute the derivative of (an) directly. However, we can make a
corresponding real function

f(x) =
x

x2 + 1
for all x > 0

so that f(n) = an for each n ∈ N∗. Now, f is differentiable at every positive
x, yielding

f ′(x) =
(1)(x2 + 1) − (x)(2x)

(x2 + 1)2
=

1 − x2

(1 + x2)2

Since the denominator is always positive, and the numerator is negative when
x > 1, this proves that f is strictly decreasing on [1,∞). It follows that (an)
is strictly decreasing as well. �
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Example 9.5:

Consider the following recursive definition (this means the same thing as
inductive definition) for a sequence:

a0 = 1 an+1 = 2 − 1

2an
for any n ∈ N

For any k ∈ N∗, this formula computes ak in k steps, by first computing a1

from a0 (using n = 0 in the definition), then a2 from a1 (using n = 1 in the
definition), and so on until ak is computed from ak−1. The first few terms of
this sequence are

1,
3

2
,
5

3
,
17

10
, . . .

Unlike the previous example, it is not clear how the values an of this sequence
can be obtained by plugging n into a simple real function f . (In other words,
we say that we do not have a closed form for an.) Nevertheless, we can
still reason about this sequence by using induction, since the definition is
well-suited for aiding the inductive step of a proof.

As a first claim about this sequence, we claim that an is never zero. This
is important, because if an = 0, then an+1 involves division by zero and is
not well-defined. We can try to prove an 6= 0 by induction on n ∈ N. The
base case is obvious, but when we do the inductive step, we find that

an+1 6= 0 ↔ 2 − 1

2an
6= 0 ↔ an 6= 1

4

At this point, we are stuck, because we can’t use our inductive hypothesis of
an 6= 0 to conclude an 6= 1

4
.

To get around this difficulty, we surprisingly find it easier to prove a
STRONGER property by induction1. The first few terms of this sequence
suggest that (an) is strictly increasing. Thus, we will prove simultaneously
that an 6= 0 and an < an+1 to use Theorem 9.3. Note that once we know
that (an) is strictly increasing, it follows that

an > an−1 > · · · > a0 = 1 > 0

for all n ∈ N, so an 6= 0.

1Occasionally, it is easier to prove a stronger property than to prove a weaker one. This
phenomenon is sometimes called the Inventor’s Paradox.
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Thus, we aim to prove P (n) by induction on n ∈ N, where P (n) is
“0 < an < an+1”. For the base case of n = 0, we find a0 = 1 and a1 = 3/2 > 1,
so the base case is done. Now let n ∈ N be given, and suppose 0 < an < an+1

as an inductive hypothesis. We wish to prove that 0 < an+1 < an+2 in our
inductive step.

We already know that an+1 > 0, so it remains to show an+2 > an+1.
Because an+1 is positive, an+2 is well-defined. We start from our hypothesis
of an < an+1 and perform algebra on both sides, imitating the steps of our
definition of (an):

an < an+1

↔ 2an < 2an+1

↔ 1

2an

>
1

2an+1

↔ 2 − 1

2an

< 2 − 1

2an+1

↔ an+1 < an+2

(Note that the third line, which takes reciprocals, uses our hypothesis that
an and an+1 are positive.) This finishes the inductive step. Hence, now we
know that (an) is well-defined. As a bonus, we also know that (an) is strictly
increasing. �

Remark. The work from the previous example can be made a little more effi-
cient by introducing a real function to help with the inductive step. Suppose
we define f : R − {0} → R by

f(x) = 2 − 1

2x
for all x 6= 0

Thus, an+1 = f(an) for all n ∈ N. We say that (an) is obtained by starting
with a0 = 1 and iterating f , so an = (f ◦ f ◦ · · · ◦ f)(a0), where we have
composed f with itself n times.

It is not hard to check, by similar steps to the previous induction proof,
that f is strictly increasing. (Alternately, you can prove f ′(x) > 0 for all
x 6= 0.) It follows that an < an+1 implies f(an) < f(an+1), i.e. an+1 < an+2.
Hence, to finish the proof that 0 < an < an+1 for all n ∈ N, it remains to
show the base case, i.e. that 0 < a0 < a1 = f(a0).
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(Note that if a0 were chosen differently so that a0 > f(a0), then you would
be able to show that an > an+1 for all n such that an and an+1 are defined.
Thus, this new (an) is strictly decreasing, provided that it is well-defined.
For more on this, see Exercise 9.2.18.)

Limits of Sequences

Apart from questions of whether a sequence increases or is bounded, the
next most natural question to ask about a sequence is probably the following:
does the sequence tend towards any finite limit as the index goes to ∞? Up
to this point, we have dealt with limits of real functions, where the notation

lim
x→∞

f(x)

requires f to be defined on some unbounded interval (a,∞) (where a ∈ R).
However, our sequences have only been defined for natural numbers. Thus,
we introduce a definition of a sequence limit, which is meant to be very
similar to the usual limit definition in most respects:

Definition 9.6. Let L ∈ R and k ∈ N be given, and suppose (an)∞n=k is
a real-valued sequence. We say that (an) has limit L as n approaches ∞
(alternately, we say that (an) converges to L), written as

lim
n→∞

an = L

or as “an → L as n → ∞”, to mean that for any ǫ > 0, there exists an N ∈ N

(which depends on ǫ) such that N ≥ k and

∀n ∈ N (n > N → |an − L| < ǫ)

In other words, no matter how close we want the sequence to be to L, an is
close enough for all “sufficiently large” values of n. N represents a “cutoff”
such all that larger values of n are guaranteed to yield terms an which are
sufficiently close to L.

If no such L satisfying this definition exists, we say that (an) has no limit
as n → ∞ (or that (an) diverges).

As a simple example, we can prove that 1/n → 0 as n → ∞. To see this,
let ǫ > 0 be given. For any n ∈ N∗, we have

∣

∣

∣

∣

1

n
− 0

∣

∣

∣

∣

< ǫ ↔ n >
1

ǫ
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and therefore the definition of the limit is satisfied when we choose N = ⌈1/ǫ⌉.
Note that only very minor changes to this proof are needed to also show that
1/x → 0 as x → ∞, where x is a REAL number tending to ∞. This suggests
the following result:

Theorem 9.7. Let a ∈ R+ and L ∈ R be given, and suppose that f is a real
function defined on (a,∞) with

lim
x→∞

f(x) = L

where x is a real variable. Suppose the sequence (an)∞n=⌈a⌉ is defined by an =

f(n) for n ∈ N with n ≥ a. Then

lim
n→∞

an = L

in the sense of Definition 9.6.

Strategy. Intuitively, if f(x) → L as x → ∞, then f(x) can be made as close
to L as desired by taking x past some cutoff. The same cutoff, or any higher
cutoff, should still work in the special case where x is a natural number.

Proof. Let a, L, f, (an) be given as described. Let ǫ > 0 be given. We need
to find N ∈ N with N ≥ ⌈a⌉ such that

∀n ∈ N (n > N → |an − L| < ǫ)

Because we know f(x) → L as x → a, there is some M ∈ R such that

∀x ∈ (a,∞) (x > M → |f(x) − L| < ǫ)

(In fact, WLOG we may assume M ≥ a, since otherwise we may replace M
with max{M, a}.) Let N = ⌈M⌉. Thus, whenever n ∈ N and n > N , we
have n > M ≥ a and n ≥ ⌈a⌉. It follows that |f(n) − L| < ǫ and f(n) = an,
so |an − L| < ǫ, as desired. �

This theorem essentially says that if an infinite sequence is given by a
real function which has a limit, then the sequence also has that same limit.
This allows us to reuse lots of work that we have spent on limits in previous
chapters. Also, this theorem is useful because certain techniques for limit
computation, such as L’Hôpital’s Rule, are only valid on functions defined
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a0 a1

fHxL
x

y

Figure 9.1: The graphs of f(x) = sin(2πx) (curve) and an = sin(2πn) (solid
dots)

on intervals. (A sequence is not differentiable, so you can’t use L’Hôpital’s
Rule with it!)

However, it is important to note that Theorem 9.7 does not have an “iff”
in it. The theorem says that IF f(x) has a limit, THEN an = f(n) has the
same limit. The converse is false: consider

f(x) = sin(2πx) for all x ∈ R

When n ∈ N, we have an = f(n) = sin(2πn) = 0, so an → 0 as n → ∞.
However, f(x) has no limit as x → ∞, since the graph of f oscillates. See
Figure 9.1, where the solid dots represent the sequence (an) and the curved
graph represents the graph of f(x). The issue is that the sequence limit
only looks at the graph “every so often”, so the sequence does not detect the
function’s oscillation.

Remark. As a result of this example, it is important to realize that real-valued
limits and sequence limits for a variable approaching ∞ are not the same
thing. However, traditionally, the same notation with the lim symbol is used
for each. We will adopt the custom that if we write a limit with a variable
such as n, k, i, or some other letter near the middle of the alphabet, then we
are using a sequence limit. If we use a variable near the end of the alphabet,
such as x, t, or u, then we are using a real-valued limit. Hopefully, the context
will also make it clear which type of limit is being used (and sometimes, by
Theorem 9.7, the specific type of limit doesn’t make a difference!).

Although not all our theorems for real-valued limits work for sequences,
most of them do. You can prove that the usual limit laws, such as laws for
sums, products and quotients, all work for sequences with nearly the same
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proofs as their real-valued counterparts. There is also a definition of an
infinite limit for sequences: we say an → ∞ as n → ∞ if for all M ∈ R,
there exists N ∈ N (which depends on M) such that

∀n ∈ N (n > N → an > M)

(The intuition is that the sequence values become arbitrarily high; for any
fixed y-value cutoff M , we can always make an larger than M by taking big
enough values of n.) The definition of “an → −∞ as n → ∞” is similar. With
this definition, we can state and prove a couple variants of the Composition
Limit Theorem for sequences: see Exercises 9.2.16 and 9.2.17.

One other particularly important limit law which is provable for sequences
is the Squeeze Theorem. This can be used to obtain limits in some important
cases where other laws fail to apply, as the following example shows:

Example 9.8:

In this example, we present an important property about factorials. Previ-
ously, we have seen that factorials dominate exponentials: Exercise 8.5.14
shows that for any fixed b > 1, bn/n! → 0 as n → ∞. This tells us that
factorials grow very rapidly for large values of n. Now, we show that the
sequence (nn) grows even faster: in fact, n! = o(nn) as n → ∞, i.e.

lim
n→∞

n!

nn
= 0

Because factorials are recursively defined (0! = 1 and (n+1)! = (n+1)·n!),
most of the limit laws don’t apply to them. However, we note that we can
write our fraction as

n!

nn
=

n · (n − 1) · · · · 1
n · n · · · · · n = 1 · n − 1

n
· · · · · 1

n
≤ 1

n

where we bound all the fractions except the last by 1. Because 1/n → 0 as
n → ∞, and n!/nn > 0 for all n ∈ N, the Squeeze Theorem proves n!/nn → 0
as n → ∞.

In fact, this tactic can be used to prove an even stronger property: n!/nn

goes to 0 more quickly than ANY fixed power of n.2 To see this, for any
fixed k ∈ N, whenever n ≥ k we have

n!

nn
=

n

n
· n − 1

n
· · · · · k

n
· k − 1

n
· · · · · 1

n
≤ k!

nk

2In fact, a result called Stirling’s Formula shows that n! is asymptotic to (n/e)n
√

2πn,
meaning that their ratio approaches 1 as n → ∞.
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L

L-ΕaN

x

y

Figure 9.2: An illustration of the BMCT

where we bound the first n − k fractions by 1. (Although k! grows faster
than nk as a function of k, recall that k is a constant here.) This stronger
estimate will come in handy in a later section when we look at series. �

The BMCT

In general, it can be quite difficult to tell whether a sequence converges
to a limit, especially if the sequence is recursively-defined (which makes it
harder to use limit techniques that only apply to closed-form real functions).
However, the situation becomes much simpler when we look at a monotone
sequence, one which is either always increasing or always decreasing. To see
why this is the case, recall that monotone real functions have a nice prop-
erty: Theorem 3.48 proves that one-sided limits always exist for monotone
functions. The main idea of that theorem’s proof leads us to the following
very important theorem, the Bounded Monotone Convergence Theorem (or
BMCT):

Theorem 9.9 (Bounded Monotone Convergence Theorem).
Let (an) be an infinite real sequence, and suppose that (an) is monotone.

Then (an) converges (i.e. an has a finite limit as n → ∞) iff (an) is bounded.

Strategy. WLOG, we may focus on the case where (an) is increasing. The
main idea is presented in Figure 9.2. If (an) is unbounded, then the terms
rise arbitrarily high and go to ∞. Otherwise, any upper bound on (an) places
a “ceiling” on the terms above which the dots representing (an) cannot go.
Out of all such bounds, the one that does the best job at staying close to the
sequence, i.e. the “tightest ceiling”, is the least upper bound, L = sup{an}.

Now, we want to show that (an) converges to L. Thus, for any ǫ > 0, we
eventually want the terms to stay between L− ǫ and L+ ǫ. Actually, we just
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need SOME term to be greater than L − ǫ, because all terms afterward will
also be greater than L − ǫ as (an) is increasing.

This is where we use the fact that L is the tightest bound. As L =
sup{an}, L − ǫ is NOT an upper bound of {an}, so there must be some
N ∈ N such that aN > L − ǫ. Hence, for all n > N , an ≥ aN > L − ǫ.

Proof. Let (an) be given as described. WLOG, we may assume (an) is in-
creasing, because if (an) is decreasing, then (−an) is increasing and we can
apply this proof to (−an).

For one direction, suppose that (an) is unbounded. Since (an) is increas-
ing, it must hence be unbounded above, so for any M ∈ R, there is some
N ∈ N with aN > M . (Otherwise, M would be an upper bound.) Because
(an) is increasing, for all n ∈ N with n > N , we have an ≥ aN > M . This
means that an → ∞ as n → ∞, so (an) does not have a finite limit.

For the other direction, suppose that (an) is bounded. Therefore, sup{an}
exists; let’s call it L. We claim that an → L as n → ∞.

To prove this, let ǫ > 0 be given. Because L − ǫ < L, and L is the least
upper bound of {an}, L − ǫ is not an upper bound of {an}, so there is some
N ∈ N with aN > L− ǫ. Hence, for all n ∈ N with n > N , an ≥ aN > L− ǫ.
However, we also have an ≤ L because L is an upper bound. Putting these
conclusions together, we obtain |an − L| < ǫ for all n > N , as desired. �

The BMCT is often very useful for recursive sequences, because mono-
tonicity and boundedness can be checked by induction, whereas solving for
N in terms of ǫ in the limit definition is hard. In fact, in many recursive
sequences, it is not hard to find what the limit should be (i.e. determining a
candidate for the limit); rather, the difficulty comes from showing that this
candidate really is the limit. In these situations, the BMCT can be useful,
as we demonstrate with a couple examples.

Example 9.10:

Let’s return to the sequence (an) from Example 9.5:

a0 = 1 an+1 = 2 − 1

2an

for any n ∈ N

We previously proved that (an) is well-defined and strictly increasing. Now
we’d like to know: does the sequence converge? And if so, what is the limit?
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To prove convergence, the BMCT tells us that it only remains to check
that (an) is bounded. The recursive definition suggests that 2 is an upper
bound of (an). In fact, since an is always positive, it follows that

an+1 = 2 − 1

2an

< 2

for all n ∈ N. Combined with the fact that a0 = 1 < 2, we have shown that
2 is an upper bound for (an). As (an) is increasing, a0 = 1 is a lower bound.

Thus, we now know that an → L as n → ∞ for some L ∈ R. (In fact,
we also know that 1 ≤ L ≤ 2 because L is the least upper bound of {an}.)
How do we find L? The key tactic here is to take a limit of both sides of the
recursive definition, because an and an+1 both approach L as n → ∞. (This
is justified by a variant of the Composition Limit Theorem, since n+1 → ∞
as n → ∞.) This tells us that

lim
n→∞

an+1 = lim
n→∞

(

2 − 1

2an

)

L = 2 − 1

2L
2L2 = 4L − 1

2L2 − 4L + 1 = 0

L =
4 ±

√
8

4
= 1 ±

√
2

2

Note that this gives us two candidates for the limit. However, because
the limit must be in [1, 2], the minus sign does not make sense. Thus, the
limit is 1 + (

√
2)/2. �

Remark. Suppose we take the sequence from the previous example and apply
the definition a few times. Thus, we write an+1 in terms of an,

an+1 = 2 − 1

2an

then we replace an with an expression in terms of an−1,

an+1 = 2 − 1

2
(

2 − 1
2an−1

)

= 2 − 1

4 − 1
an−1
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and so forth:

an+1 = 2 − 1

4 − 1
2− 1

2an−2

(This is called unrolling the recurrence.) If we were to unroll infinitely many
times, then we would obtain an expression like

2 − 1

4 − 1
2− 1

4− 1

2−

...

where the left sides of the subtractions alternate between 2 and 4. This
kind of object, involving a sequence of nested fractions, is called a continued
fraction. To find the value of a continued fraction, the continued fraction
is expressed as the limit of a recursive sequence, and the limit is proven
to exist by using the BMCT or a similar tool, much like we did with the
previous example. Continued fractions play a major role in several areas of
mathematics, such as number theory and numerical analysis.

In Exercise 9.2.22, you will be able to develop properties of another con-
tinued fraction:

1 +
1

1 + 1

1+
...

Example 9.11:

In this example, we use recursive sequences to obtain a well-defined value for
the expression

√

3 +

√

3 +
√

3 + · · ·
To approach this, let’s say that for each n ∈ N∗, an is the expression where
the square roots go n levels deep. Thus, we have the recurrence

a1 =
√

3 an+1 =
√

3 + an for all n ∈ N∗

It is plausible to say that the value of our “infinite expression” should be the
limit of this sequence (an).

Before we establish that the sequence has a limit in the first place, let’s
first address the question: what would that limit have to be? (After all, we
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are most interested in the value of that infinite expression.) Let’s say that
an → L as n → ∞. Thus, an+1 → L also, so we find

lim
n→∞

an+1 = lim
n→∞

√
3 + an

L =
√

3 + L

L2 = L + 3

L2 − L − 3 = 0

L =
1 ±

√
13

2

Since we would expect our limit to be positive, we should use the plus sign,
so L = (1/2)(1 +

√
13).

Thus, if our (an) sequence has a limit, then that limit must be L. To
show that (an) is convergent, we will use the BMCT. To make our work a
little more straightforward, it is helpful to note that our definition of (an) is
obtained by iterating the function

f(x) =
√

3 + x for all x > 0

starting with the value
√

3. In other words, an+1 = f(an) for all n ∈ N. Note
that we found L =

√
3 + L above, i.e. L = f(L), so L is a fixed point of f .

Now, we prove monotonicity. Note that

a1 =

√

3 +
√

3 >
√

3 = a0

and that f is strictly increasing. These facts yield a straightforward proof
by induction that an < an+1 for all n ∈ N (fill in the details). Thus, (an) is
strictly increasing.

Showing that (an) is bounded is a little trickier, because we have to first
guess the bound. However, here’s where our knowledge that L = f(L) comes
in handy. Because f is strictly increasing, whenever an < L, we have

an+1 = f(an) < f(L) = L

This suggests that L is an upper bound of (an). (This is why it was useful
to compute L first before proceeding with the BMCT!) You can check that
a0 < L, and hence a simple proof by induction shows that an < L for all
n ∈ N. This proves that (an) is bounded above by L. Since (an) is also
bounded below (by a0), we know that (an) converges by the BMCT. �
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9.2 Exercises

1. Prove Theorem 9.3. (Hint: Suppose that an ≤ an+1 for all n ∈ N.
Prove that an ≤ an+m for all n, m ∈ N by induction on m.)

In Exercises 2 through 13, a formula defining a real-valued sequence
(an)∞n=1 is given. For that sequence, determine whether it is increasing, de-
creasing, both, or neither. Furthermore, determine if (an) is bounded below
or above, and provide appropriate bounds when they exist.

2. an = cos(nπ + π/2)

3. an =
n

2n

4. an =
√

n + 1 −√
n

5. an =
n!

2n

6. an =
sin n

n

7. an =
n + 3

n − 1/2

8. an =
e1/n − 1

1/n

(Hint: A Taylor estimate shows e1/n − 1 ≈ 1/n. Use the integral form
of the approximation’s error; it tells you more about the monotonicity
than the Lagrange form does.)

9. a1 =
√

2

an+1 =
√

2an for n ∈ N∗

10. a1 = 2

an+1 = (an)1/n for n ∈ N∗

11. a1 = 0

an+1 =
1

2
(an + 5) for n ∈ N∗

12. a1 = 1/2

an+1 =
1

1 − an
for n ∈ N∗

13. a1 = 1/3

an+1 =
1

1 − an
for n ∈ N∗

14. The last two exercises suggest an interesting pattern. Define f : R −
{1} → R by

f(x) =
1

1 − x
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for all x 6= 1.

(a) Show that f ′(x) > 0 for all x 6= 1, but f is not an increasing
function on R − {1}. Why doesn’t this contradict Theorem 4.47?

(b) Show that whenever x ∈ R − {0, 1}, f(f(f(x))) = x.

(c) If (an)∞n=1 is a sequence obtained by iterating f , i.e. an+1 = f(an)
for all n ∈ N∗, then which values of a1 cause the sequence to
converge?

15. For each of the sequences (an) from Exercises 9 through 13, determine
lim

n→∞
an if it exists. (Use the BMCT.)

16. Suppose (an)∞n=0 is a real-valued sequence and (nk)
∞
k=0 is a strictly in-

creasing sequence from N. The sequence (ank
)∞k=0 is called a subsequence

of (an) (note that if a is the function underlying (an) and n is the func-
tion underlying (nk), then a◦n is the function underlying (ank

)). Prove
the following:

Theorem 9.12. Let (an)∞n=0 be a real-valued sequence. If an → L as
n → ∞, where L is either a real number, ∞, or −∞, then every
subsequence of (an) also converges to L. In other words, ank

→ L as
k → ∞ for every strictly increasing sequence (nk)

∞
k=0 from N.

Remark. This theorem implies that if an → L, then an+1 → L as well
as n → ∞ (by choosing nk = k+1 for each k ∈ N). However, note that
a divergent sequence may have convergent subsequences! For instance,
if an = (−1)n, then the subsequence (a2n) is constantly 1, but (an) has
no limit.

17. (a) Prove the following variant of the Composition Limit Theorem:

Theorem 9.13. Let L ∈ R be given, and let (an)∞n=0 be a real
sequence with an → L as n → ∞. Suppose also that f is a
real function such that f(an) is defined for all n ∈ N and f is
continuous at L. Then f(an) → f(L) as n → ∞.3

3It turns out that the converse of this theorem is true: namely, if f has the property
that f(an) → f(L) whenever an → L, then f is continuous at L. We will not have use for
this result (though the proof is a good exercise in using a contradiction argument), but
this result shows that continuity could have been defined in terms of sequences back in
Chapter 3.
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(b) Prove this modification of Theorem 9.13:

Theorem 9.14. Let (an)∞n=0 be a real sequence with an → L as
n → ∞, where L is ∞ or −∞. Suppose that f is a real function
such that f(an) is defined for all n ∈ N and f(x) → M as x → L,
where M is either a real number, ∞, or −∞. Then f(an) → M
as n → ∞.

18. Suppose that f is the function from Example 9.5:

f(x) = 2 − 1

2x
for all x 6= 0

Note that f is strictly increasing from R − {0} to R.

Suppose we define (an)∞n=0 by starting with a0 = 2 and iterating f ,
i.e. an+1 = f(an) for all n ∈ N. (In the example, we used a0 = 1
instead.) Prove that an is well-defined for each n ∈ N and (an) is
strictly decreasing. What is the limit of (an) as n → ∞?

19. Define f : R → R by
f(x) = ex − 1

Note that f is strictly increasing on R.

(a) Define (an)∞n=0 by starting with a0 = −1/2 and then iterating
f , i.e. an+1 = f(an) for all n ∈ N. Prove that (an) is strictly
increasing and bounded. What is its limit?

(b) Now, suppose a0 = 1/2 and an+1 = f(an) for all n ∈ N. Prove that
(an) is strictly increasing. Why does it follow that (an) diverges,
and hence (an) must be unbounded?4

20. A sequence (an)∞n=0 defined by the equation

a0 = x an+1 = man + b for all n ∈ N

where m, b, x ∈ R, is said to be obtained by a linear recurrence (the
sequence is obtained by iterating a linear function). In this exercise,
we come up with a condition for when linear recurrences converge. To
simplify matters, we assume m 6= 1.

4This exercise shows that the starting point of a sequence can have a large effect on
the behavior. For some especially fascinating applications of this, look up chaos theory
and fractals. There are also applications in biology concerning the life cycles of some
organisms.
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(a) If (an) converges, then what must the limit be? Call that value L.

(b) Now define bn = an − L for all n ∈ N, using your value of L
from part (a). (This is a pretty common trick with recursive se-
quences: make a new sequence which measures displacement from
the candidate limit.) What is bn+1 in terms of bn?

(c) Use your answer from part (b) to obtain a closed form for an for
each n ∈ N. In other words, obtain a formula for an which does
not use summation symbols

∑

, product symbols
∏

, or earlier
terms in the sequence.

(d) Based on part (c), come up with a condition in terms of x, m, and
b that describes exactly when (an) converges. Also, what happens
when m = 1?

21. Suppose that (an)∞n=0 and (bn)∞n=0 are real-valued sequences. We define
(cn)∞n=0 by

c2k = ak c2k+1 = bk

for all k ∈ N. Thus, (cn)’s first few terms are

a0, b0, a1, b1, a2, b2, . . .

We say that (cn) is obtained by interleaving (an) and (bn).

Prove that if (an) and (bn) both converge to the same limit, then (cn)
also converges to that limit.

22. In this exercise, we will prove the following:

1 +
1

1 + 1

1+
...

=
1 +

√
5

2

This value is called the golden ratio, often denoted by φ, and it appears
in many natural processes.

The continued fraction on the left looks like it can be obtained by
starting with 1 and applying the function

f(x) = 1 +
1

x
for all x > 0
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infinitely many times. More formally, let (an)∞n=0 be the sequence ob-
tained by starting with a0 = 1 and iterating f , i.e. an+1 = f(an) for
all n ∈ N. Thus, the first few terms are

a0 = 1, a1 = 1 +
1

1
, a2 = 1 +

1

1 + 1
1

, a3 = 1 +
1

1 + 1
1+ 1

1

We define the value of our continued fraction to be the limit of (an),
provided this limit exists.

(a) Prove that if (an) converges to a limit L, then L = f(L). Use this
to show that

L =
1 ±

√
5

2

(Note that L must use the plus sign and not the minus sign, since
f : R+ → R+.)

(b) Note that f is strictly decreasing on R+. Use this to prove that

a0 < a2 < a4 < · · ·

i.e. the subsequence (a2k)
∞
k=0 is strictly increasing. (The term

“subsequence” was defined in Exercise 9.2.16.)

(c) Similarly, prove that

a1 > a3 > a5 > · · ·

i.e. the subsequence (a2k+1)
∞
k=0 is strictly decreasing.

(d) Use the previous parts to prove that for all n ∈ N, a0 ≤ an ≤ a1.
Thus, (an) is bounded.

(e) Although (an) is NOT monotone, parts (b) and (c) show that the
subsequences (a2k) and (a2k+1) are monotone. Thus, the BMCT
implies that they converge. Prove that they each converge to
L = (1 +

√
5)/2.

(f) Finally, use the result of Exercise 9.2.21 to prove that an → L as
n → ∞.

23. Prove that if (an)∞n=0 is any convergent real sequence, i.e. (an) has a
finite limit, then (an) is bounded. (Hint: Show that all but finitely
many terms are close to the limit, and use the Triangle Inequality.)
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9.3 Basic Results About Series

Now that we have built up some useful information about sequences, we can
formally introduce the main topic for the rest of this chapter: infinite series.
As mentioned in this chapter’s introduction, an infinite series gives us a way
to talk about a sum of infinitely many terms. However, we should first ask:
what should an “infinite sum” mean? Is it possible to add infinitely many
positive numbers and achieve a finite sum?

Consider the expression

1

1
+

1

1
+

1

2
+

1

6
+ · · ·+ 1

n!
+ · · ·

There are an infinite number of positive terms, so the sum keeps growing as
we take more terms. However, this doesn’t necessarily mean that the sum
grows to ∞. Let’s see what happens when we add the first few terms. In
other words, for any n ∈ N, we consider the nth partial sum

sn =
n
∑

i=0

1

i!

The first few terms of sn are

1, 2,
5

2
= 2.5,

8

3
≈ 2.666667,

65

24
≈ 2.708333, · · ·

It is easy to see that (sn) is strictly increasing. Also, by inspecting a few
values, it seems that (sn) is bounded above by 2.72. Thus, the BMCT tells
us that (sn) should converge to a value L satisfying L ≤ 2.72. Since sn can
be made arbitrarily close to L by taking n sufficiently large, we get the idea
that when we take EVERY term of the infinite sum, the sum should be L.
Thus, it makes sense to say

∞
∑

n=0

1

n!
= L

In fact, in this case, we can find out what L is. Note that sn is the same
as Tn exp(1), i.e. it is the nth-order approximation to e1 = e. We showed
in the previous chapter that En exp(1) → 0 as n → ∞, i.e. e − sn → 0, so
L = e! (This also shows a useful connection between Taylor polynomials and
infinite series, which we will explore in more detail in the next chapter after
we’ve built up more knowledge about infinite sums.)
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However, many infinite sums are not fortunate enough to have simple
answers, or even to have finite answers at all. For instance, the series

1 + 2 + 4 + · · ·+ 2n + · · ·

has the following first few partial sums:

1, 3, 7, 15, 31, · · ·

It is not hard to prove that the partial sums diverge to ∞, so this infinite
sum can be thought of as being infinitely large. Hence, unlike the first sum,
this sum is considered ill-defined. As another example, you can see that the
sum

1

1
+

1

4
+

1

9
+ · · ·+ 1

n2
+ · · ·

has partial sums bounded by 1.65. This infinite sum is well-defined, but it is
not clear what the limit of the partial sums equals.5 The problem with this
last example is that it is difficult to obtain any simple formula for the nth

partial sum. Thus, in many situations, we will only be able to study whether
a sum makes sense, not bothering to find the exact value of the sum.

The Formal Definition

To make the intuitive ideas above precise, we define an infinite sum as a
sequence of partial sums, as follows:

Definition 9.15. Let k ∈ N and an infinite sequence (an)∞n=k of real numbers
be given. The infinite series with terms (an), denoted by

∞
∑

n=k

an

is the sequence (sn)∞n=k defined by

sn =
n
∑

i=k

ai

5Amazingly, this sum equals π2/6; this result was first shown by Leonhard Euler.
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for each n ≥ k. sn is called the nth partial sum of the series. (Occasionally,
we define sn = 0 whenever n < k, so that sn is defined for all n ∈ N.) Note
that the partial sums can also be defined recursively by

sk = ak sn+1 = sn + an+1 for all n ≥ k

(As with the definition of sequence, the letter n is a dummy variable and can
be replaced with any other available variable in the summation expression.)
Occasionally, the series will also be denoted as

∑

an if the starting index is
clear from context or unimportant. (For instance, see Example 9.16.)

If the sequence (sn) of partial sums converges to a limit L ∈ R, then we
say the series converges with sum L and write

∞
∑

n=k

an = L

Thus, we have
∞
∑

n=k

an = lim
N→∞

N
∑

n=k

an

Otherwise, if the sequence (sn) diverges, then we say that the series diverges.
(However, if sn → ∞ as n → ∞, then we sometimes say that the series
diverges to ∞ to be more precise about the nature of the divergence.)

Remark. We use a summation symbol both for representing the series and
the value of the series (i.e. the sum). However, we will usually use the symbol
to refer to the sum. For instance, suppose (an) and (bn) are two sequences.
When we write ∞

∑

n=1

an =

∞
∑

n=1

bn

we mean that one series converges iff the other converges, and in that case
they both converge to the same sum. We do not usually write this expression
to mean that the sequences of partial sums are the same.

Example 9.16:

As a very simple example, we note that any finite sum can be viewed as an
infinite series: for instance, the finite sum a1 + a2 + · · · + an is the same

as

∞
∑

i=1

ai if we define ai = 0 whenever i > n. Conversely, if (ai)
∞
i=1 is any
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infinite sequence with only finitely many nonzero terms, then its series clearly
converges: when aN is the last nonzero term, the partial sums (sn)∞n=1 satisfy
sn = sN for all n ≥ N .

In fact, as far as convergence is concerned, finitely many terms make no
difference. To be precise, let’s say that (an)∞n=1 and (bn)∞n=1 are two different
infinite sequences which only differ at finitely many terms. Let N ∈ N be the
largest index for which aN 6= bN . Thus, if (sn) and (tn) respectively denote
the partial sums of (an) and (bn), then for any n > N we have

sn =

n
∑

i=1

ai =

N
∑

i=1

ai +

n
∑

i=N+1

ai

=

(

N
∑

i=1

bi +
N
∑

i=1

(ai − bi)

)

+
n
∑

i=N+1

bi

=
n
∑

i=1

bi +
N
∑

i=1

(ai − bi) = tn +
N
∑

i=1

(ai − bi)

because ai = bi whenever i > N . Note that

N
∑

i=1

(ai − bi)

is a constant with respect to n. Thus, sn and tn differ by a constant for any
n > N , so (sn) converges iff (tn) converges. In fact, if both converge, then
we have

∞
∑

n=1

an =

∞
∑

n=1

bn +

N
∑

i=1

(ai − bi)

On a related note, the starting point of a series doesn’t affect whether
the series converges. To be precise, let’s say that k, l ∈ N satisfy k < l, and
(ai)

∞
i=k is a given real sequence. For each n ≥ l, let

sn =
n
∑

i=k

ai and tn =
n
∑

i=l

ai

so sn and tn are partial sums. Note that sn and tn differ by

sn − tn =

l−1
∑

i=k

ai
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which is independent of n. Thus, (sn) converges iff (tn) converges, i.e.
∞
∑

i=k

ai and
∞
∑

i=l

ai

both converge or both diverge. For this reason, we sometimes write a series
in the form

∑

an, omitting a starting index for the sum, when we are only
discussing convergence and the actual value of the sum is unimportant. �

It is easiest to analyze a series when there is a convenient closed-form
expression for the partial sums. This makes calculating a limit of partial
sums simple. We present a few examples of such series.

Example 9.17:

Consider the series ∞
∑

n=1

1

n2 + n

The first few partial sums of this series are

1

2
=

1

2
1

2
+

1

6
=

2

3
1

2
+

1

6
+

1

12
=

3

4

and so forth. From this, you can conjecture that for any n ∈ N∗, the nth

partial sum is sn = n/(n+1). This can be readily proven by induction. Since
n/(n + 1) → 1 as n → ∞, it follows that our series converges with sum 1.

For a different way of looking at this series, we note that the term 1/(n2+
n) can be broken into simpler pieces using partial fractions:

1

n2 + n
=

1

n(n + 1)
=

1

n
− 1

n + 1

Therefore, for any N ∈ N∗, we have

sN =
N
∑

n=1

(

1

n
− 1

n + 1

)

=

(

1

1
− 1

2

)

+

(

1

2
− 1

3

)

+ · · ·+
(

1

N
− 1

N + 1

)

= 1 − 1

N + 1
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because all terms except for 1 and −1/(N + 1) cancel. This form makes it
especially convenient to find the limit of the partial sums. �

The previous example suggests a general approach which works well for
some series. Suppose we have a series

∞
∑

n=1

an

and we find some sequence (bn)∞n=1 such that for each n ∈ N, an = bn − bn+1.
This choice of bn causes the N th partial sum of our series to be

N
∑

n=1

(bn − bn+1) = b1 − bN+1

due to cancelation. In this situation, we say that we have written our series
as a telescoping series (because the partial sums can be “collapsed” to b1 −
bN+1, much like a navigator’s telescope can be collapsed down to a small size
when not in use). When a series can be written as a telescoping series for a
convenient choice of (bn), we can readily determine the sum of the series, as
this theorem states:

Theorem 9.18. Let k ∈ N be given, and suppose that (an)∞n=k and (bn)∞n=k

are infinite real-valued sequences. Also suppose that for all n ≥ k, an =
bn − bn+1. Then the telescoping series

∞
∑

n=k

an =
∞
∑

n=k

(bn − bn+1)

converges iff the sequence (bn) converges, and in that case we have

∞
∑

n=k

an = bk − lim
n→∞

bn

You should prove this theorem yourself. There are also some other variants
on telescoping series that you can explore in Exercise 9.4.14.

Example 9.19:
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Consider the series ∞
∑

n=1

log

(

n + 1

n

)

Note that the quotient property of logarithms allows us to write log((n +
1)/n) = log(n + 1) − log n. This puts our series into the telescoping form
from Theorem 9.18 with bn = − log n. Since log n → ∞ as n → ∞, our
series diverges. In fact, the proof of Theorem 9.18 readily shows that our
series diverges to ∞.

Another way of solving this problem, which amounts to essentially the
same work, is to compute the nth partial sum directly as

log
2

1
+ log

3

2
+ · · ·+ log

n + 1

n
= log

(

2

1
· 3

2
· · · · · n + 1

n

)

= log
n + 1

1

using the product property of log. Since log(n+1) diverges to ∞ as n → ∞,
so does our series. �

Interestingly, the result of the previous example tells us information about
another series. Notice that

log

(

n + 1

n

)

= log

(

1 +
1

n

)

≈ 1

n

where we approximate with the Taylor polynomial T1 log(1 + x) at x = 1/n.
This approximation should be pretty accurate since 1/n is close to 0 when n
is large. In particular, we can conjecture that

∞
∑

n=1

1

n

diverges to ∞ because the series from the previous example does.
This conjecture can be proven in a few different ways. Let’s say tn is the

nth partial sum of
∑

(1/n) and sn is the nth partial sum of
∑

log((n+1)/n).
One way of proving this conjecture is to analyze the Taylor error to show that
tn ≥ sn when n is large. Since sn → ∞, this implies that tn → ∞. Another
way of proving this conjecture uses completely different inequalities to find
something smaller than tn which still approaches ∞. For more details, see
Exercise 9.4.15.

Geometric Series
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At this point, we’ll study a particular type of series, called a geometric
series, for which we can compute closed-form formulas for the partial sums.
These series are the natural extensions of geometric summations that we saw
back in Example 8.5. Geometric series appear in a number of contexts, and
we will make use of them throughout this chapter.

To be precise, suppose r ∈ R is given. A sequence (an) is called a ge-
ometric sequence with ratio r if each term except the first is obtained from
the previous term by multiplying by r, i.e. an+1 = ran. The corresponding
series is called a geometric series. Thus, if our sequence starts with index k,
then our geometric series takes the form

ak + rak + r2ak + · · · =

∞
∑

n=k

rn−kak

It is also possible to express this sum as

∞
∑

i=0

riak

(Formally, these two series are not the same when k 6= 0 because the partial
sums of the first series start with index k, and the partial sums of the second
series start with index 0. However, these two sequences of partial sums are
merely shifted versions of one another, so if one converges, then the other
also converges to the same limit.)

First, we note that when ak = 0, every term in our series is 0, so the sum
is trivially 0. Hence, let’s consider what happens when ak 6= 0. Next, when
r = 1, every term equals ak, so the series diverges to either ∞ or −∞ (the
sign of the infinity equals the sign of ak). Thus, for the remainder of this
discussion, let’s consider when ak 6= 0 and r 6= 1.

The nth partial sum is

sn =

n
∑

i=0

riak = ak(1 + r + · · ·+ rn)

for n ∈ N. In Exercise 1.9.2, and when studying geometric summations in
Example 8.5, we have seen a closed form for this sum:

sn = ak
rn+1 − 1

r − 1
= ak

(

1

1 − r
− rn+1

1 − r

)
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(Alternately, akr
n can be written as ak(r

n/(1 − r) − rn+1/(1 − r)), which
allows us to obtain a telescoping form with bn = akr

n/(1 − r).)
Thus, our geometric series converges iff rn+1 converges as n → ∞. When

|r| < 1, we have rn+1 → 0. When |r| > 1, |rn+1| → ∞, so rn+1 diverges in
this case. Lastly, if |r| = 1 and r 6= 1, then r = −1, and (−1)n+1 diverges as
n → ∞ because it alternates between −1 and 1. Thus, we have found that
the geometric series converges iff |r| < 1, in which case the sum is

∞
∑

n=0

akr
n =

ak

1 − r

Another way to say this is that the sum of a geometric series, when it con-
verges, is its first nonzero term divided by one minus the common ratio.

It turns out we’ve already seen this sum before. In the case when k = 0
and a0 = 1, the sum is 1/(1 − r). We already know that

Tn

(

1

1 − x

)

= 1 + x + · · · + xn

for any n ∈ N and any x ∈ R − {1}. Thus, our work above shows that the
Taylor polynomials for 1/(1 − x) converge to 1/(1 − x) iff |x| < 1. In other
words, Taylor approximations to 1/(1 − x) are only useful for points which
are less than distance 1 from the center of the approximation.

Some Properties of Series

As series are merely sequences of finite sums, it makes sense that many
limit laws relating to sums would apply to series. For instance, we have the
following linearity law:

Theorem 9.20. Let k ∈ N and α, β ∈ R be given, and let (an)∞n=k and
(bn)∞n=k be infinite sequences of real numbers. If

∞
∑

n=k

an and

∞
∑

n=k

bn

both converge, then so does the series with terms (αan + βbn)∞n=k, and

∞
∑

n=k

(αan + βbn) = α

∞
∑

n=k

an + β

∞
∑

n=k

bn
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Strategy. When we discuss the convergence of a series, we are really dis-
cussing the convergence of its sequence of partial sums. Thus, all we have to
do is write everything in terms of the partial sums, and then we can use our
limit laws for sequences.

Proof. Let k, α, β, (an), (bn) be given as described. For each n ≥ k, define

sn =
n
∑

i=k

ai and tn =
n
∑

i=k

bi

Thus, sn and tn are respectively the nth partial sums of (an) and (bn). Hence,
the nth partial sum of (αan + βbn) is

n
∑

i=k

(αai + βbi) = α

n
∑

i=k

ai + β

n
∑

i=k

bi = αsn + βtn

By assumption, (sn) and (tn) converge as n → ∞. Thus, by the limit
laws for sequences, (αsn + βtn) also converges as n → ∞, and

∞
∑

n=k

(αan + βbn) = lim
n→∞

(αsn + βtn)

= α lim
n→∞

sn + β lim
n→∞

tn

= α
∞
∑

n=k

an + β
∞
∑

n=k

bn

as desired. �

Example 9.21:

Theorem 9.20 tells us that a linear combination of convergent series is also
convergent. In particular, the sum or difference of two convergent series is
convergent. As an example, we can use this theorem to calculate

∞
∑

n=0

(

1 + 2n

3n

)

=

∞
∑

n=0

(

1

3

)n

+

∞
∑

n=0

(

2

3

)n

=
1

1 − 1/3
+

1

1 − 2/3
=

9

2

In fact, linearity suggests another way to compute the sum of the geo-
metric series ∞

∑

i=0

riak
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As before, let’s consider when r 6= 1 and ak 6= 0. The only term in this sum
without any powers of r is the i = 0 term. We take that term out to the
side, and we factor a single r out of the remaining terms, to get6

∞
∑

i=0

riak = ak + r
∞
∑

i=1

ri−1ak

By reindexing the second summation with n = i − 1, so that n starts at 0,
we obtain7

∞
∑

i=0

riak = ak + r

∞
∑

n=0

rnak

At this point, the sum we are trying to find appears on both sides of the
equation (recall that i and n are dummy indeces). We move them to the
same side and obtain

( ∞
∑

i=0

riak

)

(1 − r) = ak

∞
∑

i=0

riak =
ak

1 − r

since r 6= 1. This agrees with our previous computation.
This approach for calculating the sum is usually easier to remember.

However, the approach does have one flaw: you are asked in Exercise 9.4.16
to determine the problem with this computation. �

Remark. Theorem 9.20 addresses what happens when convergent series are
added together. This suggests the question: what happens if you add two
divergent series together, or if you add a convergent and a divergent series
together? It turns out that when you add two divergent series together, the
result may or may not diverge. For instance, we know that

∑

1 diverges to
∞, and

∞
∑

n=0

(1 + 1)

6Technically, the step that pulls the i = 0 term out to the side is treating the original
series as a sum of two series: the first series has its 0th term equal to ak, but all other
terms are equal to 0. This detail can safely be ignored in practice.

7Formally, this step uses the Composition Limit Theorem with the sequence of partial
sums, treating n as a function of i. Usually, we do not need to be so formal about index
changes like these.
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diverges to ∞, but
∞
∑

n=0

(1 + (−1))

converges to 0.
However, when a convergent series and a divergent series are added, the

result is always a divergent series. To see this, suppose
∑

an converges
(the starting index of the sum isn’t important here) but

∑

bn diverges. If
∑

(an + bn) were convergent, then we could write
∑

bn =
∑

(an + bn) −
∑

an

and hence
∑

bn would converge as well by Theorem 9.20. This proves by
contradiction that

∑

(an + bn) must diverge.

Example 9.22:

To demonstrate the remarks made above, we note that

∞
∑

n=0

4n + 2

3n
=

∞
∑

n=0

((

4

3

)n

+ 2

(

1

3

)n)

diverges, because it is the sum of a divergent geometric series and a conver-
gent geometric series.

However, consider the series

∞
∑

n=0

(2n + (−2)n)

Since both
∑

2n and
∑

(−2)n diverge, we cannot immediately use Theorem
9.20 to conclude whether our series converges. Instead, we try to write this
series in a better form. Note that when n is odd, (−2)n = −(2n), so 2n +
(−2)n = 0. However, when n is even, (−2)n = 2n, so 2n + (−2)n = 2n+1.
Therefore, our series can be written as8

21 + 0 + 23 + 0 + 25 + · · · =
∞
∑

n=0

22n+1 =
∞
∑

n=0

(2 · 4n)

which diverges to ∞. �

8We are being pretty informal with the first equals sign in the above calculation, but
it is not hard to check that

∑

22n+1 diverges iff the original series diverges. This check is
frequently ignored in practice.
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The Divergence Test and Related Remarks

At this point, it is prudent to mention that although the linearity prop-
erty works for infinite series, as Theorem 9.20 demonstrates, certain other
properties of finite sums do NOT carry over to infinite series. The next
example contains a famous invalid calculation illustrating these ideas:

Example 9.23:

Consider the following calculation:

0 = 0 + 0 + · · ·
= (1 + (−1)) + (1 + (−1)) + · · ·
= 1 + (−1) + 1 + (−1) + · · ·
= 1 + ((−1) + 1) + ((−1) + 1) + · · ·
= 1 + 0 + 0 + · · · = 1

Some step of this calculation must be invalid, since 0 6= 1. Which steps are
problematic? The first and last steps are fine; it is safe to replace 0 with
(1 + (−1)) or with ((−1) + 1), since those are just equal numbers. However,
we claim that the transition from the second to the third line is problematic,
as is the transition from the third line to the fourth.

To shed more light on what is happening here, let’s be more formal about
the transition from the second line to the third line. The series on the second
line has terms (an)∞n=0 with an = 1 + (−1) for each n ∈ N. The series on the
third line has terms (bn)∞n=0, where

bn =

{

1 if n is even

−1 if n is odd

for each n ∈ N. Thus, if we let sn be the nth partial sum of
∑

an, and we
let tn be the nth partial sum of

∑

bn, then sn = 0, whereas tn = 1 for even n
and tn = 0 for odd n. This shows that (sn) converges to 0 but (tn) diverges,
alternating between 1 and 0.

Hence, by removing and regrouping parentheses, we have changed the
structure of the partial sums. This means that in an infinite series, the sums
are NOT associative in general. Associativity is a property which holds for
finite sums but not for infinite sums.
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Another property which holds for finite sums but fails for infinite sums
is commutativity. Unfortunately, we cannot yet produce a good counterex-
ample where a series converges but a rearrangement of the terms diverges
(we will have such counterexamples later, when we cover the Riemann Re-
arrangement Theorem, Theorem 9.79). However, we can demonstrate an
example where rearranging the terms of a divergent series causes divergence
in a different way. As shown above, the series

1 + (−1) + 1 + (−1) + · · ·

diverges because its partial sums alternate between 1 and 0. Now, suppose
we rearrange the terms to produce

1 + (−1) + 1 + 1 + (−1) + (−1) + 1 + 1 + 1 + (−1) + (−1) + (−1) + · · ·

(we write 1 followed by −1, then 1 twice followed by −1 twice, and so on,
incrementing the number of consecutive 1’s and −1’s each time). With this
rearrangement, the partial sums are not bounded! (For each N ∈ N, you can
find some n > N such that the nth partial sum is N .) �

In the first part of the previous example, where we had the paradoxi-
cal calculation to show that 0 = 1, we created a series whose partial sums
alternate between 1 and 0. Thus, the partial sums don’t converge to any
one value, because they change by 1 at every step. Intuitively, in order for
a series to converge, the partial sums must become arbitrarily close to the
final sum, so they change less and less as n grows large. This leads to the
following handy condition:

Theorem 9.24 (Divergence Test). Let (an) be an infinite real sequence.
If
∑

an converges (for any starting index), then an → 0 as n → ∞.

Strategy. The main realization here is that a term in the series is also the
difference between two partial sums: if (sn) is the sequence of partial sums,
then

sn+1 = sn + an+1

Since our series is convergent, the partial sums approach a finite limit. In
fact, sn and sn+1 both approach the same limit, so it follows that an+1 → 0.
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Proof. Let (an) be given as described, and assume
∑

an converges. Let (sn)
be the sequence of partial sums. By assumption, there is some L ∈ R such
that sn → L as n → ∞. Now, by definition, we have

sn+1 = sn + an+1

for all n ∈ N such that an+1 is defined. Therefore, since we also have sn+1 → L
as n → ∞, we have

lim
n→∞

an+1 = lim
n→∞

(sn+1 − sn) = L − L = 0

It follows as well that an → 0 as n → ∞. �

Example 9.25:

The Divergence Test earns its name because it is usually a quick way to check
whether a series is divergent before doing any more advanced testing. For
instance, the series

∞
∑

n=0

e1/n

is immediately known to be divergent, because e1/n → 1 as n → ∞. Since
it is usually very quick to apply the Divergence Test (i.e. to see whether the
terms approach 0), you should often apply the Divergence Test first when
studying a series. After all, if the terms do go to 0, then you have only spent
a little effort on the Divergence Test, whereas if the terms don’t go to 0 and
you try other techniques, then you waste much more effort.

For a harder, more subtle example, consider

∞
∑

n=0

sin n

We know that sin x has no limit as x → ∞ when x is REAL. This doesn’t
immediately prove that sin n has no limit when n is an INTEGER tending
to ∞. As it turns out, we don’t need to prove that sin n has no limit to show
our series diverges by the Divergence Test (though see Exercise 9.4.17). We
just need to show sin n 6→ 0.

To prove this, consider the sector of the unit circle between angles π/6
and 5π/6, as displayed in Figure 9.3. For all θ ∈ [π/6, 5π/6], we have sin θ ≥
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Π�65Π�6
n

n+1

Figure 9.3: Illustration that n lands between π/6 and 5π/6 infinitely often

1/2. To show that sin n 6→ 0, it suffices to show that sin n ≥ 1/2 infinitely
often, which means showing that the angle n lands in this sector of the circle
infinitely often.

We can think of n as representing a point on the circle with polar angle
of n radians, so as we proceed from n to n + 1, we take a point on the circle
and rotate it counterclockwise by 1 extra radian, as shown in the figure. Our
sector covers an angle of 2π/3 radians. Since 2π/3 > 1, we intuitively see
that as this point keeps rotating around the circle, it can’t “jump over” the
sector, so it must land in the sector at least once for each full revolution
around the circle. This shows that n lies in the sector infinitely often. (You
can formalize this more in Exercise 9.4.17.) �

Remark. The Divergence Test says that if
∑

an converges, then an → 0.
However, the converse is not true! For instance, we saw in Example 9.19
that ∞

∑

n=1

log

(

n + 1

n

)

diverges, but log((n + 1)/n) → 0. We will see many more examples soon of
series which diverge but have terms approaching 0.

At this point, we have a few basic tools for computing sums of series.
These include:

• Analysis of Taylor errors

• Finding a simple telescoping form

• Proving a formula for the partial sums by induction

• Building a series out of linear combinations of simpler series or basic
examples (such as a geometric series)
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• Using the Divergence Test

These basic approaches can only go so far, since we have so few basic examples
at the moment. As a result, there are many series for which these approaches
are not currently helpful. For these series, we usually can’t expect to easily
find the value of the sum if the series converges. Instead, for the rest of this
chapter, we will focus our efforts on finding ways of proving convergence or
divergence, as well as obtaining estimates for the error in approximating a
series’s sum with partial sums.

9.4 Exercises

1. Consider the series
∞
∑

i=0

(−1)i π2i+1

22i+1(2i + 1)!

For any n ∈ N, its nth partial sum is T2n+1 sin(π/2). Prove that
E2n+1 sin(π/2) → 0 as n → ∞, and use this to prove that the infi-
nite series has 1 as its sum.

2. Consider the series
∞
∑

i=0

(−1)i−1

(2i)!

As in the previous exercise, the partial sums come from Taylor approx-
imations. Identify which Taylor approximations they are, prove that
the error converges to 0, and use this to find the sum of the series.

3. (a) Suppose (sn)∞n=0 is a real-valued infinite sequence. Prove that
there exists exactly one real sequence (an)∞n=0 such that for each
n ∈ N,

sn =
n
∑

i=0

ai

Thus, any sequence can be considered to be the partial sums of a
series. (Hint: Define an inductively.)

(b) Suppose (an)∞n=0 is given. Prove that for any b0 ∈ R, there exists
exactly one sequence (bn)∞n=1 such that for all n ∈ N, an = bn −
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bn+1. Thus, every series can be expressed in telescoping form,
since ∞

∑

n=0

an =

∞
∑

n=0

(bn − bn+1)

(However, if there is no simple closed-form expression for bn, then
this telescoping form is not useful because it becomes difficult to
calculate a limit of bn as n → ∞!)

For Exercises 4 through 12, compute the sum of the series if it converges, or
establish that the series diverges. You may solve these problems by either
guessing a formula for the partial sums which is proven by induction, or by
using any theorems or series we have established in this chapter.

4.

∞
∑

n=0

(−1)nn

5.

∞
∑

n=1

2

n(n + 2)

6.

∞
∑

n=1

6n2 − 4n − 1

(3n + 1)(3n − 2)

7.

∞
∑

n=0

3n + 4n

52n+1

8.

∞
∑

n=0

4n + 32n

6n

9.

∞
∑

n=0

n1/n

10.

∞
∑

n=2

1

n2 − 1

11.

∞
∑

n=1

√
n + 1 −√

n√
n2 + n

12.

∞
∑

n=1

2n + n2 + n

2n+1n(n + 1)

13. Use partial fractions to prove that for all n ∈ N∗,

n

(n + 1)(n + 2)(n + 3)
=

−1

2

(

1

n + 1
− 1

n + 2

)

+
3

2

(

1

n + 2
− 1

n + 3

)

Use this result to compute the sum of

∞
∑

n=1

n

(n + 1)(n + 2)(n + 3)
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14. In this exercise, we consider some modifications of Theorem 9.18. Let
(an)∞n=0 and (bn)∞n=0 be given.

(a) Suppose that for each n ∈ N, an = bn − bn+2. Prove that

∞
∑

n=0

an

converges iff bn + bn+1 converges as n → ∞. (In particular, if
bn → 0, then bn + bn+1 → 0.) If bn + bn+1 → L as n → ∞, then
what is the value of our series?

(b) Apply your result from part (a) to the two series

∞
∑

n=0

1√
n +

√
n + 2

and

∞
∑

n=0

(−1)n

(n + 1)(n + 3)

Find the sums of the series above which converge.

(c) Suppose instead that for some fixed k ∈ N∗, we have an = bn−bn+k

for all n ∈ N. Generalize your results from part (a) to this case,
and use them to find the sum of the series

∞
∑

n=1

log (nn+3/(n + 3)n)

n2 + 3n

15. This exercise presents two ways of proving formally that
∑

(1/n) di-
verges. For part (a), suppose that sn is the nth partial sum of

∑

log((n+
1)/n) and tn is the nth partial sum of

∑

(1/n).

(a) Using Exercises 7.2.5 and 8.5.11, we know that for all x ∈ (1, 2),

x − 1 > log x > x − 1 − (x − 1)2

2

Use this to establish that tn ≥ sn ≥ tn/2 for all n ≥ 2. Conclude
by explaining why sn diverges to ∞ iff tn diverges to ∞.

(b) For a different way of analyzing the series
∑

(1/n), prove by in-
duction that for all n ∈ N∗,

2n
∑

i=1

1

i
≥ n

2
+ 1

Use this to prove that
∑

(1/n) diverges.
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16. What is wrong with the argument from Example 9.21 that tries to
calculate the sum of the geometric series? (Note that there must be a
flaw, or else that argument would establish that

∞
∑

i=0

2i

converges to 1/(1 − 2), which is negative!)

17. This exercise aims to formally prove that sin n 6→ 0 as n → ∞. The
key challenge of writing this argument precisely is specifying exactly
what it means to take a number representing an angle and rotate it
counterclockwise by 1 radian. To do this, we introduce the function
ρ : [0, 2π) → [0, 2π) defined for any x ∈ [0, 2π) by

ρ(x) =

{

x + 1 if x < 2π − 1

x + 1 − 2π if x ≥ 2π − 1

Intuitively, ρ takes a number representing an angle and adds 1 to it,
adjusting it if necessary to lie in the correct range. (Sometimes people
say that ρ adds 1 “modulo 2π”, suggesting a similarity with arithmetic
in Zn.)

Next, define the sequence (an)∞n=0 inductively by

a0 = 0 an+1 = ρ(an) for n ∈ N

Intuitively, an is supposed to represent the same angle as n.

(a) Prove by induction that for all n ∈ N, an − n has the form 2πkn

where kn is an integer. Use this to conclude that

sin n = sin an

Hence, it suffices to prove sin an 6→ 0.

(b) Now, we will prove that an is in [π/6, 5π/6] for infinitely many
values of n. Prove that a1 ∈ [π/6, 5π/6] and that for all n ∈
N, if an ∈ [π/6, 5π/6], then at least one of an+6 or an+7 is in
[π/6, 5π/6]. (Hint: Consider cases based on whether an is larger
than π/6 + (2π − 6).)
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Figure 9.4: Three stages of the construction of the Sierpinski triangle (solid
black triangles represent removed regions)

(c) Use part (b) to prove that sin an ≥ 1/2 for infinitely many values
of n ∈ N. Therefore, sin an 6→ 0.

(d) Let’s go further with this analysis. Use the idea of part (b) to prove
that an ∈ [7π/6, 11π/6] for infinitely many values of n. Why does
this, together with parts (a) and (c), prove that sin n has no limit
as n → ∞?9

18. Find the value of the repeating decimal 1.2454545 . . . (i.e. the digit
pattern 45 keeps repeating) by expressing it as the sum of a geometric
series.

19. As an application of geometric sequences and series, we consider a
shape called the Sierpinski triangle10. To create it, we start with an
equilateral triangle with area 1, which is the leftmost shape in Figure
9.4. Next, we break the triangle into four equilateral triangles with
half the side length and remove the interior of the middle triangle (i.e.
you do not remove the boundary of the middle triangle). This gives
us the middle shape in Figure 9.4. Next, in each of the three triangles
remaining, we similarly break them into 4 triangles with half the side
length and remove the middle one. This yields the rightmost shape in
Figure 9.4.)

9In fact, it is possible to prove that for any k ∈ N∗, if the interval [0, 2π] is broken
into k equal subintervals [0, 2π/k], [2π/k, 4π/k], and so on, then each subinterval contains
infinitely many terms of (an). (In some sense, this says that the integers are uniformly
spread out over the unit circle.) If you wish to try proving this yourself, then it is suggested
that you first try to prove there exist two integers m and n with m < n and |am − an| ≤
2π/k.

10The shape is named after the Polish mathematician Waclaw Sierpinski, who is also
credited with creating other self-similar sets and simple fractals.
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630 Section 9.5: Improper Integrals and the Integral Test

Doing this “middle-removal” step repeatedly, let’s say that Sn is the
shape that remains after n steps. For instance, our figure shows S0, S1,
and S2. When you perform this “middle-removal” step infinitely many
times, what remains is the set

∞
⋂

n=0

Sn = S0 ∩ S1 ∩ S2 ∩ · · ·

called the Sierpinski triangle.

(a) Prove that the area enclosed by the triangles in Sn is (3/4)n and
the total perimeter of the triangles in Sn is

(

3

2

)n

Perimeter(S0)

It follows that in the limit, the Sierpinski triangle has area 0 but
infinite perimeter!

(b) Alternately, we can measure the area of the Sierpinski triangle by
looking at the removed areas. Prove that for each n ∈ N, the area
removed from S0 to create Sn is

n
∑

i=1

3i−1

(

1

4

)i

Show that as n → ∞, we obtain an infinite series with sum 1.
Thus, as we found before, all of the area of the original triangle is
gone in the Sierpinski triangle.11

9.5 Improper Integrals and the Integral Test

As the end of the last section indicates, we aim to develop ways to test
whether a series converges without knowing its exact sum. This means the
same thing as determining whether the sequence of partial sums has a limit
without actually finding the value of the limit. This raises the question:

11Nevertheless, the Sierpinski triangle still has infinitely many points in it. In fact, it
can be shown to have infinitely many points which aren’t on the boundary of any removed
triangle!
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what tools do we have for finding whether a limit exists without actually
computing the limit?

The only such theorem we have at our disposal is the Bounded Monotone
Convergence Theorem, or the BMCT. If we are going to use the BMCT on
a sequence of partial sums, then we should next ask: when is our sequence
of partial sums monotone? To be more precise, let’s say sn is the nth partial
sum of the series

∑

an. Therefore, sn+1 = sn + an+1 for all n. This shows us
that sn+1 ≥ sn iff an+1 ≥ 0. As a result, we obtain the following:

Theorem 9.26. Let k ∈ N be given, and suppose that (an)∞n=k is an infinite
real-valued sequence where all the terms (except for possibly ak) have the same
sign. Then the partial sums (sn)∞n=k corresponding to

∑

an form a monotone
sequence: they are increasing if an ≥ 0 for all n > k, and they are decreasing
if an ≤ 0 for all n > k. Thus,

∑

an converges iff the partial sums (sn) are
bounded.

Because of this theorem, we will focus for now on nonnegative series, i.e.
series of the form

∑

an where an ≥ 0 for each n. For a nonnegative series,
the series converges iff the partial sums are bounded above. However, where
will we look for bounds? We have several ways to find bounds which we will
discuss in the next few sections.

Our first major way of finding bounds uses an idea we have seen back
when we studied integration: there’s a connection between summations of
positive numbers and areas under positive step functions. We illustrate this
connection with two important examples.

Example 9.27:

First, let’s consider the series
∞
∑

n=1

1

n2

For each i ∈ N∗, suppose we think of 1/i2 as representing the area un-
derneath a rectangle with base length 1 and height 1/i2. Let’s say this
is rectangle #i. If we put rectangles #1 through #n side by side, so the
heights range from 1/12 to 1/n2, then the total area of our rectangles is the
nth partial sum sn. We can fit these rectangles side by side under the graph
of y = 1/x2, as shown in Figure 9.5.
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632 Section 9.5: Improper Integrals and the Integral Test

1

2
3 4 5

y=1�x2

x

y

Figure 9.5: Rectangles underneath y = 1/x2 representing s5 (where rectangle
#i carries the number i on top)

From the figure, we see that sn is related to a right-endpoint approxima-
tion of the area underneath y = 1/x2. More precisely, we have

sn =

n
∑

i=1

1

i2
=

1

12
+

n
∑

i=2

1

i2
< 1 +

∫ n

1

dx

x2

(Note that we don’t want to compare the partial sum to an integral from 0
to n, because 1/x2 is unbounded on (0, n)! That is why the area of rectangle
#1 is pulled out of the sum first.) Thus, we have

sn < 1 +

(−1

x

)
∣

∣

∣

∣

n

1

= 2 − 1

n

In particular, this shows that sn ≤ 2 for all n ∈ N∗. Since our partial sums
are bounded above, our series converges to a value which is at most 2.

Going further with this, we can use the same idea to get a lower bound
on the sum of our series! Instead of placing the rectangles under the graph
of y = 1/x2, we place them over the graph by making the upper-left corners
touch the graph instead of the upper-right corners. This is illustrated in
Figure 9.6.

Therefore, sn is a left-endpoint approximation to the area under y = 1/x2

on [1, n+1] (Note that rectangle #i will have its base on the x-axis covering
[i, i + 1] this time.) This gives us

sn >

∫ n+1

1

1

x2
dx = 1 − 1

n + 1
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1

2
3 4

y=1�x2

x

y

Figure 9.6: Rectangles above y = 1/x2 representing s5

Since the value of our sum is the limit of sn as n → ∞, this shows that our
sum is at least 1. This is not a particularly good lower bound: we will show
how we can get better lower bounds from this method near the end of this
section. �

Example 9.28:

For a slightly different kind of example, with a different conclusion, let’s
consider the series

∞
∑

n=1

1

n

This famous series is called the harmonic series, and its nth partial sum is
called the nth harmonic number Hn. In the remarks following Example 9.19,
and in Exercise 9.4.15, we showed that the harmonic series diverges to ∞.
Let’s show how the ideas from the previous example can be used to prove
that this series diverges.

1
2 3 4 5

y=1�x

x

y

1
2 3 4

y=1�x

x

y

Figure 9.7: The 5th harmonic number H5, related to the curve y = 1/x
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634 Section 9.5: Improper Integrals and the Integral Test

As before, we think of Hn as representing the area of n rectangles, but
now the ith rectangle has height 1/i. By placing these rectangles with their
upper-right corners touching the graph of y = 1/x, we get the graph on
the left side of Figure 9.7. By placing these rectangles with their upper-left
corners touching the graph of y = 1/x, we get the graph on the right side
of Figure 9.7. (The graphs are similar to those in the previous example, but
y = 1/x decreases to 0 more slowly as x → ∞ than y = 1/x2 does. Also, as
x → 0+, y = 1/x goes to ∞ faster than y = 1/x2 does.)

The two illustrations give us an underestimate and an overestimate of sn:

∫ n+1

1

dx

x
< Hn <

1

1
+

∫ n

1

dx

x

so that Hn is between log(n + 1) and 1 + log n. Both of these quantities
approach ∞ as n → ∞. In particular, since the underestimate goes to ∞,
the partial sums are unbounded above. �

Comparing these two examples, we see that each involves an overestimate
and an underestimate to partial sums by thinking of them as areas of a
collection of rectangles. We compare these areas to integrals of a similar
real function (1/x2 for the first example, 1/x for the second). In our first
example, we proved convergence by showing the upper bounds were below a
convergent limit of integrals. In our second example, we proved divergence
by showing the lower bounds were above a divergent limit of integrals. In
either case, there is a connection between a limit of integrals and the sum of
the series. Before making that connection formal, let’s first study limits of
integrals in more detail.

Improper Integrals Of Type 1

Looking back at Figure 9.5, we saw

n
∑

i=2

1

i2
<

∫ n

1

dx

x2

and then we took a limit as n → ∞ of both sides. It is tempting to describe
this limit with the following notation:

∞
∑

i=2

1

i2
≤
∫ ∞

1

dx

x2
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Up to this point, we defined integrals only over closed bounded inter-
vals. However, the above work suggests that we can extend the definition of
integral to include infinite intervals. This leads us to the following type 1
integrals (we will consider type 2 at the end of this section):

Definition 9.29. Let a ∈ R be given and let f : [a,∞) → R be a function
such that f is integrable on [a, b] for all b > a. Then the improper integral
(of type 1) of f over [a,∞) is

∫ ∞

a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx

(where b is real). When this limit exists, we say the improper integral con-
verges. Otherwise, we say that the improper integral diverges.

Similarly, if b ∈ R is given and f : (−∞, b] → R is integrable on [a, b] for
all a < b, then the improper integral of f over (−∞, b] is

∫ b

−∞
f(x) dx = lim

a→−∞

∫ b

a

f(x) dx

Intuitively, when f is positive, we can think of the improper integral over
[a,∞) as the total area under the graph of f to the right of x = a. Sometimes
this area is finite (when the integral converges), and sometimes this area is
infinite. We present a few examples.

Example 9.30:

Consider
∫ ∞

0

e−x dx

We calculate this as follows:
∫ ∞

0

e−x dx = lim
b→∞

∫ b

0

e−x dx

= lim
b→∞

−e−x
∣

∣

b

0

= lim
b→∞

1 − e−b = 1

Similarly, we have
∫ 0

−∞
e−x dx = lim

a→−∞
e−a − 1 = ∞
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636 Section 9.5: Improper Integrals and the Integral Test

so the improper integral diverges on (−∞, 0]. This makes sense, because the
graph of e−x blows up as x → −∞, whereas e−x → 0 as x → ∞. �

Example 9.31:

Let’s generalize the examples with 1/x and 1/x2 from earlier and consider

∫ ∞

1

dx

xp

where p is a constant. We have the following antiderivative for x ∈ [1,∞):

∫

x−p dx =







x−p+1

−p + 1
if p 6= 1

log x if p = 1

Therefore,

∫ ∞

1

x−p dx =











lim
b→∞

b−p+1 − 1

−p + 1
if p 6= 1

lim
b→∞

log b if p = 1
=















1

p − 1
if p > 1

∞ if p = 1

∞ if p < 1

since b−p+1 converges iff −p + 1 < 0.
This example is interesting because it exhibits a “cutoff” between conver-

gence and divergence. The function 1/x converges to 0 as x → ∞, but it
doesn’t quite converge to 0 fast enough to have a finite improper integral.
However, 1/xp for any p > 1 has a finite improper integral. (See Exercise
9.7.30 for an interesting application of this!) �

Example 9.32:

Consider the improper integral

∫ ∞

0

cos(πx) dx

For any b > 0, we have

∫ b

0

cos(πx) dx =
sin(πx)

π

∣

∣

∣

∣

b

0

=
sin(πb)

π
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since sin 0 = 0. As b → ∞, the function sin(πb) oscillates between −1 and 1,
so our improper integral diverges.

However, it is worth noting that if we consider a SEQUENCE limit instead
of a limit of a real variable, then

lim
n→∞

∫ n

0

cos(πx) dx = lim
n→∞

sin(πn)

π
= 0

because sin(πn) = 0 for every integer n. This illustrates why we use a limit
of a REAL variable to define improper integrals. �

Remark. As with infinite series, the starting point of an improper integral
does not affect whether the improper integral converges (although it does
affect the value when the integral converges). To see this, suppose that
a ∈ R is given, and f is a real function which is integrable on [a, b] for every
b > a. Suppose that c > a is also given. For every b > c, we have

∫ b

a

f(x) dx −
∫ b

c

f(x) dx =

∫ c

a

f(x) dx

so these integrals differ by something which does not depend on b. Thus,
each improper integral converges as b → ∞ iff the other does.

With this in mind, we can define improper integrals over (−∞,∞) as
∫ ∞

−∞
f(x) dx =

∫ c

−∞
f(x) dx +

∫ ∞

c

f(x) dx

for any real value c, provided that the improper integrals on the right side
converge. If either of the integrals on the right side diverges, then we say the
integral over (−∞,∞) diverges as well. As with the work above, you can
check that the value of c is unimportant: if any one value of c causes the
right side to have a well-defined sum, then all values of c cause the right side
to have the same well-defined sum.

For instance,

∫ ∞

−∞
e−|x| dx =

∫ 0

−∞
ex dx +

∫ ∞

0

e−x dx

converges (see Example 9.30), and its value is 2. Also, see Exercise 9.7.29.

The Integral Test And p-Series

PREPRINT: Not for resale. Do not distribute without author’s permission.



638 Section 9.5: Improper Integrals and the Integral Test

Previously, we saw a connection between limits of integrals and limits of
partial sums. Now, we want to make that connection precise using improper
integrals of type 1. Suppose that a > 0 and we have a positive function
f : [a,∞) → R which is integrable on [a, b] for all b > a. We want to
establish inequalities that relate

∫ ∞

a

f(x) dx and
∞
∑

n=⌈a⌉
f(n)

(For instance, when considering
∑

(1/n2), we can use f(x) = 1/x2 and a =
1.) These inequalities will tell us a way to determine if partial sums of
∑

f(n) are bounded, so that we can use Theorem 9.26 to determine whether
the series converges.

Before proceeding to the main result, the Integral Test, it will be worth
our while to mention a useful theorem that, much like Theorem 9.26 for
series, allows us to judge convergence or divergence of an improper integral
when the integrand doesn’t change sign:

Theorem 9.33. Let a ∈ R be given, and suppose f : [a,∞) → R is inte-
grable over [a, b] for each b > a. Also, suppose that f never changes sign.
Then the improper integral

∫ ∞

a

f(x) dx

converges iff the set of partial integrals

S =

{
∫ b

a

f(x) dx | b ∈ (a,∞)

}

is bounded. Furthermore, when S is bounded and f(x) ≥ 0 for all x ∈ [a,∞),
the value of the improper integral is sup S. Similarly, when S is bounded and
f(x) ≤ 0 for all x ∈ [a,∞), the value of the improper integral is inf S.

You can prove Theorem 9.33 in Exercise 9.7.25 (the proof should be quite
similar to the proof of the BMCT). The use of this theorem is that it allows
us to prove an improper integral converges by finding bounds. This leads
us to the following test, motivated by the examples at the beginning of the
section:
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Theorem 9.34 (Integral Test). Let k ∈ N be given, and let f : [k,∞) →
R be given such that f is integrable over [k, b] for all b > k. Also, suppose
that f(x) ≥ 0 for all x ≥ k and f is decreasing on [k,∞). Then

∫ ∞

k

f(x) dx and

∞
∑

n=k

f(n)

either both converge or both diverge.

Strategy. The main idea is much like the picture in Figure 9.7. Each term
f(n) of the series represents a rectangle #n with height f(n) and width 1. If
we place rectangles #k through #n under the graph of y = f(x) by placing
their upper-right corners on the graph, then we find

sn =

n
∑

i=k

f(i) = f(k) +

n
∑

i=k+1

f(i) ≤ f(k) +

∫ n

k

f(x) dx

Thus, if the integrals are all bounded (which follows from convergence of
the improper integral by Theorem 9.33), then the partial sums sn are also
bounded. At this point, we may invoke Theorem 9.26.

On the other hand, we can also try placing the rectangles with their
upper-left corners on the graph of y = f(x), so that the rectangles lie over
the graph. This gives us

∫ n+1

k

f(x) dx ≤
n
∑

i=k

f(k) = sn

Thus, if the partial sums are all bounded, then we can show all the integrals
are bounded.

Formally, instead of talking about “placing rectangles under/over the
graph”, we can use step functions. More specifically, let’s say we’re try-
ing to show that the integral over [k, n+1] is at most sn. Since we want each
rectangle to be one unit wide, we take a partition of [k, n+1] into subintervals
of length 1. Thus, a typical open subinterval has the form (i, i + 1) where
i ∈ N and k ≤ i ≤ n. The rectangle which lies over the graph of y = f(x)
in this subinterval has height f(i), because f is decreasing. Thus, for any
x ∈ (i, i + 1), we get an upper step function by using the value f(⌊x⌋) as
the value on the subinterval. Similar computations show that a lower step
function uses the value f(⌈x⌉).
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640 Section 9.5: Improper Integrals and the Integral Test

Proof. Let k, f be given as described. For each n ∈ N with n ≥ k, and for
each b ∈ R with b > k, we define

sn =
n
∑

i=k

f(i) and I(b) =

∫ b

k

f(x) dx

so sn is the nth partial sum and I(b) is the partial integral up to b. Because
f(x) ≥ 0 for all x ≥ k, I is an increasing function of b and (sn) is increasing,
so the partial integrals and partial sums are certainly bounded below. By
Theorems 9.26 and Theorem 9.33, it remains to prove that (sn) is bounded
above if and only if all the partial integrals I(b) are bounded above when
b > k. In fact, since I(b) ≤ I(⌈b⌉) for all b > k, it suffices to show (sn) is
bounded above iff (I(n))∞n=k is bounded above.

In order to do this, our goal is to establish the following inequalities for
all n ∈ N with n ≥ k:

∫ n+1

k

f(x) dx ≤ sn ≤ f(k) +

∫ n

k

f(x) dx

Why does this suffice? If (I(n)) is bounded above, say by M , then the second
inequality above shows that sn ≤ f(k) + M for each n, so (sn) is bounded
above. Conversely, if (sn) is bounded above, say by some number K, then
the first inequality above shows that I(n) ≤ I(n + 1) ≤ K for all n.

To prove the first inequality of our goal, define U : [k, n + 1] → R by
U(x) = f(⌊x⌋) for all x ∈ [k, n + 1]. Thus, U is a step function compatible
with the partition of [k, n+1] in which all subintervals have length 1. (More
precisely, they have the form [i, i + 1] for i ∈ N from k to n.) Furthermore,
because ⌊x⌋ ≤ x for all x, and f is decreasing, U is an upper step function
for f on [k, n + 1]. Thus, by the definition of integral, we have

∫ n+1

k

f(x) dx ≤
∫ n+1

k

U(x) dx

=
n
∑

i=k

f(i)((i + 1) − i) = sn

To prove the second inequality of our goal, define L : [k, n] → R by
L(x) = f(⌈x⌉) for all x ∈ [k, n]. Thus, L is a step function compatible with
the partition of [k, n] in which all subintervals have length 1. (More precisely,
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they have the form [i − 1, i] for i ∈ N from k + 1 to n.) Because x ≤ ⌈x⌉ for
all x, and f is decreasing, L is a lower step function for f on [k, n]. Thus, we
have

∫ n

k

f(x) dx ≥
∫ n

k

L(x) dx

=
n
∑

i=k+1

f(i)(i − (i − 1)) = sn − f(k)

as desired. �

When a series comes from a function which we know how to integrate,
the Integral Test is often useful. For instance, consider the series

∞
∑

n=1

1

np

where p ∈ R is a constant. This series is sometimes called the p-series.
For p ≤ 0, the terms do not converge to 0, and this series diverges by the
Divergence Test. When p > 0, we saw in Example 9.31 that

∫ ∞

1

dx

xp

converges iff p > 1. Thus, by applying the Integral Test to f(x) = 1/xp (note
that f is positive and decreasing for p > 0), we find

∞
∑

n=1

1

np
converges iff p > 1

We will make frequent use of p-series in later sections, since much like geo-
metric series, they can be used for a range of basic examples with which we
compare other series.

Remark. The p-series occur in a very famous function, the Riemann zeta
function:

ζ(s) =

∞
∑

n=1

1

ns
for s > 1

(“zeta” is the Greek letter used for its name). Euler found many connections
between the ζ function and number theory, and he computed the values of
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ζ at even positive integers. Bernhard Riemann found a connection between
the distribution of prime numbers and the zeroes of the zeta function when
s is allowed to be complex. However, these results are beyond the scope of
this book.12

Example 9.35:

For another example where we can use the Integral Test, consider

∞
∑

n=1

log n

n

This looks like it comes from the function f(x) = (log x)/x, defined for x > 0.
Note that f(x) > 0 when x > 1. However, it is not immediately clear whether
f is decreasing. To determine where f decreases, we compute the derivative:

f ′(x) =
1 − log x

x2

This computation shows that f is decreasing on (e,∞). Thus, in order
to use f in the Integral Test, we need to pick a starting point larger than e.
In particular, we will use the Integral Test to determine whether

∑

(log n)/n
converges starting from k = 3. (Remember, though, that the starting point
doesn’t affect whether the series converges!)

Now, we compute the improper integral via a substitution of u = log x
and du = dx/x:

∫ ∞

3

log x

x
dx = lim

b→∞

∫ b

3

log x

x
dx

= lim
b→∞

∫ log b

log 3

u du = lim
b→∞

u2

2

∣

∣

∣

∣

log b

log 3

= lim
b→∞

log2 b − log2 3

2
= ∞

Therefore, by the Integral Test,
∑

(log n)/n diverges to ∞. We could have
also discovered this by realizing that

∑

1/n diverges to ∞ and noticing that
∑

(log n)/n has larger terms when n > e. �

12You may check out http://en.wikipedia.org/wiki/Riemann_zeta_function for more
information about the zeta function.
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An Error Analysis Of The Integral Test

The Integral Test can tell us more than just whether some series converge
or diverge. For the series that converge, the Integral Test can give us esti-
mates of the sum of the series! The main idea is to use the inequalities with
sn from the proof of the Integral Test to obtain estimates of the error we get
by approximating the sum of the series with sn.

To be specific, let’s say that we are applying the Integral Test with a
positive decreasing function f : [k,∞) → R, which yields a series

∑

f(n)
with partial sums (sn)∞n=k. Suppose that the series

∑

f(n) and the improper
integral of f over [k,∞) both converge: let’s say

∞
∑

n=k

sn = S

∫ ∞

k

f(x) dx = lim
b→∞

I(b) = I

where I(b) is the partial integral over [k, b]. For any N ∈ N with N ≥ k, we
would like to find bounds on S − sN , the error in approximating the sum S
of the series with the N th partial sum sN .

We note that

S − sN =
∞
∑

i=k

ai −
N
∑

i=k

ai =
∞
∑

i=N+1

ai

To estimate this, we consider the Integral Test applied with the starting point
of N + 1. The proof shows that for all n ∈ N with n ≥ N + 1,

∫ n+1

N+1

f(x) dx ≤
n
∑

i=N+1

f(i) ≤ f(N + 1) +

∫ n

N+1

f(x) dx

In fact, since f(N + 1) is the smallest value f takes on [N, N + 1] (as f is
decreasing), we have

∫ n+1

N+1

f(x) dx ≤
n
∑

i=N+1

f(i) ≤
∫ N+1

N

f(x) dx +

∫ n

N+1

f(x) dx =

∫ n

N

f(x) dx

We may take a limit as n → ∞ of all the parts of this inequality (because
they all converge), and we obtain

∫ ∞

N+1

f(x) dx ≤
∞
∑

i=N+1

f(i) = S − sN ≤
∫ ∞

N

f(x) dx
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It is straightforward to check that
∫ ∞

N

f(x) dx = I − I(N)

∫ ∞

N+1

f(x) dx = I − I(N + 1)

Because I(b) → I as b → ∞, it follows that I − I(N) and I − I(N + 1) can
be made as close to 0 as desired by taking N large enough. We summarize
this in the following corollary:

Corollary 9.36 (Integral Test Error Estimates). Let k, f, (sn) be given
as described in the Integral Test, and suppose that the improper integral of f
over [k,∞) converges. Therefore, the series

∑

f(n) converges, say S is its
sum. Then we have

∫ ∞

N+1

f(x) dx ≤ S − sN ≤
∫ ∞

N

f(x) dx

for all N ∈ N with N ≥ k. Furthermore, all of the parts of this inequality go
to 0 as N → ∞.

Example 9.37:

We already saw that the p-series with p = 2,

S =
∞
∑

n=1

1

n2

converges by the Integral Test. Let’s use Corollary 9.36 to estimate its sum.
For instance, we’d like to know which partial sum sN gives us an estimate
with error less than 0.1.

For any N ∈ N, we know

∫ ∞

N

dx

x2
= lim

b→∞

∫ b

N

dx

x2
= lim

b→∞

−1

x

∣

∣

∣

∣

b

N

= lim
b→∞

(

1

N
− 1

b

)

=
1

N

Therefore, the corollary tells us that the error S − sN is between 1/(N + 1)
and 1/N . To guarantee that the error is at most 1/10, we can choose N = 10.
Therefore,

S ≈ s10 =
1

12
+

1

22
+ · · · + 1

102
≈ 1.55
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However, note that 1/N converges to 0 pretty slowly as N → ∞, so you
need a pretty large value of N with this method to get a good estimate. We
can get a better estimate by using our error bounds more efficiently. Since we
know that the error is at least 1/(N +1), sN +1/(N +1) is a better estimate
of S than sN is. (Essentially, we take sN and shift it up by the lower bound
of our error.) Since

1

N + 1
≤ S − sN ≤ 1

N

we find that

0 ≤ S −
(

sN +
1

N + 1

)

≤ 1

N
− 1

N + 1
=

1

N(N + 1)

Therefore, when approximating by sN + 1/(N + 1), the error is guaranteed
to be proportional to 1/N2, which is much better than 1/N . When N = 10,
this tells us S ≈ s10 + 1/11 ≈ 1.64 with error at most 1/110.

In fact, we can do even better: rather than shifting up by the lower bound
of the error, let’s shift up by the average of our lower and upper error bounds!
This means that we estimate S with S + (1/N + 1/(N + 1))/2. By doing
similar steps to those above, we find

−1

2N(N + 1)
≤ S −

(

sN +
1

2

(

1

N
+

1

N + 1

))

≤ 1

2N(N + 1)

i.e.
∣

∣

∣

∣

S −
(

sN +
1

2

(

1

N
+

1

N + 1

))
∣

∣

∣

∣

≤ 1

2N(N + 1)

Using N = 10 here, we find that S ≈ 1.645, with an error of magnitude at
most 1/220. (With this approach, to guarantee an error with magnitude less
than 1/10, the choice of N = 2 suffices!) �

Improper Integrals Of Type 2

As we have now seen, type 1 improper integrals can be very helpful for
analyzing series. However, there are other ways in which an integral can be
improper. For instance, the integrand can have a vertical asymptote, i.e.a
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place where the integrand goes to ±∞.13 How would we make a meaningful
definition of integral for these types of functions?

For instance, let’s suppose that f is a real function defined on some in-
terval [a, b), but f has a vertical asymptote at b. Intuitively, if we integrate
f over [a, c] instead of over [a, b], where c ∈ (a, b), then we’d like to have

∫ c

a

f(x) dx ≈
∫ b

a

f(x) dx when c ≈ b

This suggests that as c gets closer and closer to b, the integral over [a, c] does
a better and better job at estimating the integral over [a, b]. Thus, we are
led to the following definition:

Definition 9.38. Let a, b ∈ R be given, and let f : [a, b) → R be a function
which is integrable on [a, c] for all c ∈ (a, b). Also, suppose that f has a
vertical asymptote at b. Then the improper integral (of type 2) of f over
[a, b] is

∫ b

a

f(x) dx = lim
c→b−

∫ c

a

f(x) dx

(where c is real). When this limit exists, we say the improper integral con-
verges, otherwise it diverges.

Similarly, if f is defined on (a, b] and integrable on [c, b] for all c ∈ (a, b),
but has a vertical asymptote at a, then the improper integral of f over [a, b]
is

∫ b

a

f(x) dx = lim
c→a+

∫ b

c

f(x) dx

Note that for both of these definitions, we require that we have exactly
one vertical asymptote at a limit of integration.

Example 9.39:

For any p ∈ R, consider
∫ 1

0

dx

xp

13Integrals of this type tend not to be useful in analyzing series, but we mention them
here since they are a natural generalization of type 1 integrals. Furthermore, there are
some particularly useful functions which are written as type 2 improper integrals, as we
will explore in the next section.
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Note that when p ≤ 0, the integrand is bounded on [0, 1], and the integral
is proper. For p > 0, the integral is improper of type 2 because we have
a vertical asymptote at x = 0. We have the following antiderivative for
x ∈ (0, 1):

∫

dx

xp
=







x−p+1

−p + 1
if p 6= 1

log x if p = 1

Therefore,

∫ 1

0

dx

xp
=











lim
a→0+

1 − a−p+1

−p + 1
if p 6= 1

lim
a→0+

− log a if p = 1
=











1
1−p

if 0 < p < 1

∞ if p = 1

∞ if p > 1

since a−p+1 converges as a → 0+ iff −p + 1 > 0.
Thus, in this example, we have convergence of the improper integral iff

p < 1. Contrast this with Example 9.31, which shows the type 1 integral
over [1,∞) converges iff p > 1! �

There are other extensions to the definition of improper integral which
allow us to integrate functions with more asymptotes. The main idea is to
keep using the interval addition property to break up an integral until each
subproblem has only one vertical asymptote located at a limit of integration.
Rather than write a complicated formal statement to describe this precisely,
we demonstrate one example:

Example 9.40:

The integral
∫ 2

−1

dx

x(x − 1)

is improper because it has vertical asymptotes at 0 and 1. We split this up
as

∫ 0

−1

dx

x(x − 1)
+

∫ 1/2

0

dx

x(x − 1)
+

∫ 1

1/2

dx

x(x − 1)
+

∫ 2

1

dx

x(x − 1)

so that each of the four subproblems has only one asymptote occurring at a
limit of integration. Our original integral is said to converge iff each of the
four subproblems converges. (The choice of 1/2 as a splitting point is just
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for convenience; you can check that any point in (0, 1) can be used without
affecting the final answer.)

We find an antiderivative by using partial fractions (some details are left
to the reader):

∫

dx

x(x − 1)
=

∫
(

1

x − 1
− 1

x

)

dx = log |x − 1| − log |x| + C

Since log |x| approaches −∞ as x → 0−, the subproblem

∫ 0

−1

dx

x(x − 1)

diverges. As a result, our original integral is divergent. (In fact, each of the
four subproblems is divergent!) �

We also remark that we can make other examples of improper integrals
by mixing type 1 and type 2 definitions. For instance, consider

∫ ∞

0

e−x

√
x

dx

This integrand has a vertical asymptote at 0, so the problem needs to be
broken into two subproblems, such as one over [0, 1] (of type 2) and one over
[1,∞) (of type 1). However, it is very difficult to obtain an antiderivative for
this integrand. We will return to this problem in the next section, when we
have another tool for analyzing convergence of improper integrals.

9.6 Comparison-Based Tests

In the last few sections, we presented some theorems that help us analyze
series (such as Theorem 9.26 which simplifies our work in checking nonneg-
ative series), and we also studied two important basic types of series. The
first is the geometric series

∑

rn, which converges iff |r| < 1. The second
is the p-series

∑

n−p, which converges iff p > 1. Many other series can be
analyzed by relating them to one of these basic types.

As a simple example, consider the nonnegative series

∞
∑

n=2

1

n2 + 1
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Suppose that the partial sums of this sequence are (sn)∞n=2; we’d like to know
whether (sn) is bounded above. Note that our series resembles

∑

1/n2. In
fact, for any n ≥ 2, we have 1/(n2 + 1) < 1/n2. It follows that

1

22 + 1
+

1

32 + 1
+ · · ·+ 1

n2 + 1
<

1

22
+

1

32
+ · · ·+ 1

n2

In other words, if (tn)∞n=2 is the sequence of partial sums of
∑

1/n2, then
sn ≤ tn for each n ≥ 2. Since

∑

1/n2 converges, (tn) is bounded above, so
(sn) is also bounded above. Thus, our original series converges.

By modifying this reasoning, you can readily prove the following theorem
in Exercise 9.7.26:

Theorem 9.41 (Comparison Test). Let k ∈ N∗ be given, and let (an)∞n=k,
(bn)∞n=k be two nonnegative sequences. If an ≤ bn for all n ≥ k, and

∑

bn

converges, then
∑

an converges as well. (We say that
∑

an is dominated
by
∑

bn, or that
∑

bn dominates
∑

an.) Equivalently (by contrapositive), if
bn ≤ an for all n ≥ k, and

∑

bn diverges, then
∑

an diverges as well.

The main idea of the Comparison Test (sometimes abbreviated CT) is
that we can analyze a nonnegative series

∑

an by comparing it against a
previously-analyzed nonnegative series

∑

bn. An informal way of summariz-
ing the theorem is “smaller than finite is finite, bigger than infinite is infinite”.
In other words, if a series

∑

an is dominated by a series
∑

bn with a finite
sum, then

∑

an also must have a finite sum. Intuitively, when an ≤ bn for
all large n, an goes to 0 at least as quickly as bn does.

We present some examples using the Comparison Test. Note that the
previously-known series we use in these examples are frequently p-series or
geometric series. Also, CT usually takes much less work to apply than the
Integral Test, since we don’t have to check in CT whether terms are decreas-
ing, nor do we have to compute any integrals. (The challenge in applying
CT is picking the correct inequality to use!)

Example 9.42:

At the beginning of Section 9.3, we saw that

∞
∑

n=0

1

n!
= e

We can also prove that this series converges by using CT. Let an = 1/n! for
n ∈ N. Intuitively, we know that an approaches 0 quite rapidly, so we suspect
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that
∑

an converges. This means we want to find some larger sequence (bn)
such that

∑

bn converges.
In fact, we have

1

n!
≤ 1

2n−1

for all n ≥ 1, which can readily be proven by induction on n. (Also, see
Example 1.59.) Thus, we can apply the Comparison Test with bn = 1/2n−1

and k = 1. Since
∑

bn is a geometric series with ratio 1/2,
∑

bn converges,
and

∑

an converges as well by CT. (Note, though, that CT only tells us con-
vergence, not the value of the sum, so our previous work actually established
a stronger result.)

It is worth noting that it can be unclear at first which inequalities will be
useful for CT. For instance, it is quite simple to notice that

1

n!
≤ 1

n

for all n ∈ N with n ≥ 1. This suggests that we try CT with an = 1/n!
and bn = 1/n. However,

∑

bn diverges, so CT tells us no information about
∑

an. (In other words, we only showed that
∑

an is “no bigger than infinite”,
but that doesn’t tell us whether it is finite!) �

Example 9.43:

For another example involving factorials, we saw in Example 9.8 that

n!

nn
≤ k!

nk

for any k ∈ N and any n ∈ N with n ≥ k. When k ≥ 2, the series
∑

k!/nk is
a convergent p-series (where n is the index of summation, and k is a constant
with respect to n). Therefore,

∑

n!/nn converges by the Comparison Test.
(Note that the choice of k = 1 would not yield a useful conclusion, by the
same reasoning as the last example.) �

Example 9.44:

Consider ∞
∑

n=1

|sin n|
np
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where p > 0 is a constant. (Note that we need the absolute-value bars in the
numerator to have a nonnegative series!) Perhaps the most straightforward
inequality for trigonometric functions is |sin n| ≤ 1. Thus, our series is
dominated by

∑

1/np. When p > 1, CT implies that our series converges.
However, when p ≤ 1, the inequality |sin n| /np ≤ 1/np cannot be used

with CT to prove convergence, because
∑

1/np diverges. Thus, we may
suspect that our original series diverges for p ≤ 1. This leads us to try
establishing some inequality of the form

|sin n|
np

≥ C

np

for some positive constant C. Unfortunately, though, no such inequality can
be proven for all n, since it turns out sin n can be made arbitrarily close to
0 infinitely often. (More precisely, for every ǫ > 0 and for every k ∈ N, there
is some n ∈ N with n ≥ k and |sin n| < ǫ.) Nevertheless, when C = 1/2, it
is possible to show that this inequality holds for enough values of n to make
the partial sums unbounded: see Exercise 9.7.31. �

Example 9.45:

For an example involving terms which go to 0 slowly, consider

∞
∑

n=2

1

logp n

where p is a positive constant. On first glance, we might try to compare this
with 1/np and consider cases based on whether p > 1. However, upon further
consideration, we recall that log n goes to ∞ more slowly than any power of
n: to be precise, Theorem 7.36 says that for any a > 0 and any n > 1, we
have

log n <
na

a
Therefore, for all a, p > 0, we have

1

logp n
>

ap

nap

Choosing a to be 1/p, we find that our series dominates
∑

((1/p)p)/n, where
n is the index of summation. Since (1/p)p is a constant with respect to n,
our series diverges by CT. �
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Limit Comparison Test

Sometimes, we would like to apply the Comparison Test, but the inequal-
ity we find goes in the wrong direction to be helpful. For instance, consider

∞
∑

n=1

1√
n2 + 1

Since
√

n2 + 1 >
√

n2 = n for all n ∈ N∗, our series is dominated by
∑

1/n.
However,

∑

1/n diverges, so this comparison does not help us. (We get no
information by showing the series is dominated by a divergent series.)

Since
√

n2 + 1 is approximately equal to n when n is large, this suggests
that we should be able to compare our series to

∑

1/n and conclude diver-
gence. Thus, for large values of n, we would like to establish

1√
n2 + 1

≥ C

n

where C is some positive constant. This is equivalent to showing that for
large enough values of n,

n√
n2 + 1

≥ C

for some C > 0. Luckily, we know a useful piece of information about the
ratio n/

√
n2 + 1: we can show that it approaches 1 as n → ∞. Thus, for

any ǫ > 0, if n is sufficiently large, then the ratio is between 1− ǫ and 1 + ǫ.
In particular, choosing ǫ = 1/2, we find that for n sufficiently large,

n√
n2 + 1

≥ 1

2

This allows us to use CT to prove divergence of our original series.
This example suggests that when we want to compare a nonnegative

sequence (an) with another nonnegative sequence (bn), the ratios (an/bn) can
provide useful information for the Comparison Test. For this reason, we
introduce the following definition:

Definition 9.46. Let (an) and (bn) be two infinite real-valued sequences
with an, bn 6= 0 for all n sufficiently large. We say that (an) and (bn) are
asymptotically equal if

lim
n→∞

an

bn
= 1

This is also written as “an ∼ bn as n → ∞”.
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Intuitively, if two sequences (an) and (bn) are asymptotically equal, then
they are approximately the same for large values of n. (In our previous exam-
ple, 1/

√
n2 + 1 ∼ 1/n.) More generally, if an/bn approaches some C ∈ (0,∞)

as n → ∞, then an ∼ Cbn and (an) and (bn) are essentially proportional.
This suggests that

∑

an and
∑

Cbn should have the same convergence status.
The Limit Comparison Test (or LCT for short) makes this precise:

Theorem 9.47 (Limit Comparison Test). Let k ∈ N be given, and let
(an)∞n=k, (bn)∞n=k be two positive sequences. If

lim
n→∞

an

bn

converges to a positive real number, then
∑

an and
∑

bn both converge or
both diverge. In particular, if an ∼ bn as n → ∞, then both

∑

an and
∑

bn

converge or both diverge.

Remark. The LCT requires the ratio an/bn to approach a positive number.
However, we can still get some useful information from other values of the
limit. If an/bn → 0 (i.e. an = o(bn)), then convergence of

∑

bn implies
convergence of

∑

an, but not necessarily conversely. Similarly, if an/bn → ∞,
then divergence of

∑

bn implies divergence of
∑

an, but not conversely. You
can prove these results in Exercise 9.7.27.

Strategy. Let’s say that an/bn → L as n → ∞ where L > 0. Intuitively,
this means an/bn ≈ L, so an ≈ Lbn. More precisely, for any ǫ > 0, we have
an/bn ∈ (L − ǫ, L + ǫ) for sufficiently large n. Hence,

(L − ǫ)bn < an < (L + ǫ)bn

If we pick ǫ so that L − ǫ > 0, then we have two possible comparisons to
use with CT, depending on whether we wish to establish convergence or
divergence of

∑

an.

Proof. Let k, (an), (bn) be given as described. Assume that

lim
n→∞

an

bn

is in (0,∞): call that limit L. By the definition of limit, there is some N ∈ N

with N ≥ k such that for all n ∈ N with n ≥ N , we have
∣

∣

∣

∣

an

bn

− L

∣

∣

∣

∣

<
L

2
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It follows by some simple inequalities that

L

2
bn < an <

3L

2
bn

Now, we wish to show
∑

an and
∑

bn either both converge or both di-
verge. For the first case, suppose that

∑

bn converges. Then
∑

(3L/2)bn

is a convergent series with positive terms, so
∑

an converges as well by the
Comparison Test. For the second case, suppose that

∑

bn diverges. Then
∑

(L/2)bn is a divergent series with positive terms, so
∑

an diverges as well
by the Comparison Test. �

Frequently, the Limit Comparison Test is easier to apply to a series than
the Comparison Test. We offer the following examples:

Example 9.48:

Suppose we consider
∞
∑

n=1

n3 + 2n2 + 1

2n5 + n3 − 1

Let’s say an is the nth term of this series. For both the numerator and
denominator, the highest-degree terms are the most important as n grows
large. Thus, we claim that an ∼ bn where bn = n3/(2n5) = 1/(2n2). To
verify this, we calculate

lim
n→∞

an

bn
= lim

n→∞
n3 + 2n2 + 1

n3
· 2n5

2n5 + n3 − 1

= lim
n→∞

1 + 2/n + 1/n3

1
· 2

2 + 1/n2 − 1/n5

= 1 · 1 = 1

(note that we split up the parts of an and bn appropriately to make it easy
to multiply and divide by appropriate powers of n). Since

∑

1/(2n2) is
convergent, the LCT implies that

∑

an converges as well.
Note that because we took a limit to use the LCT, we could focus on the

leading terms right away and ignore everything else. In contrast, if we were
to use the Comparison Test, then we would have to show an ≤ Cbn for some
constant C, which is a fairly technical task: we cannot just naively make
the numerator bigger and the denominator smaller since there are sums in
both the numerator and denominator. The LCT also saves us from worrying
about which direction of inequality we can establish. �
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Example 9.49:

For a similar example, consider

∞
∑

n=1

1
√

n(n + 1)

Here, we claim that the terms are asymptotically equal to 1/
√

n2, i.e. 1/n.
To see this, we compute

lim
n→∞

1/
√

n(n + 1)

1/
√

n2
=

√

lim
n→∞

n2

n(n + 1)
=

√

lim
n→∞

1

1 + 1/n
= 1

Since
∑

1/n diverges, the LCT says our original series does too. �

Example 9.50:

Consider the following two series:

∞
∑

n=1

cos(1/n)

n

∞
∑

n=1

sin(1/n)

n

Since cos(1/n) → 1 as n → ∞, the first series diverges by using the Limit
Comparison Test with bn = 1/n. However, in the second series, sin(1/n) → 0
as n → ∞, and we are not allowed to use the LCT with bn = 0/n. To deal
with this, we should analyze how quickly sin(1/n) goes to 0.

To simplify our notation, let x = 1/n, so that x → 0+ as n → ∞.
We already know (sin x)/x → 1 as x → 0. Thus, sin x ∼ x as x → 0+,
i.e. sin(1/n) ∼ 1/n as n → ∞. Hence, the terms of our second series are
asymptotically equal to 1/n2, and

∑

1/n2 converges, so our second series
converges by the LCT.

It is worth mentioning that we can also use Taylor approximations here!
We know that T1 sin(x) = x, so sin x = x + o(x) as x → 0+. From here,
it is easy to see that sin x ∼ x as x → 0+. In fact, we can use any Taylor
approximation to get an estimate: for instance, if we instead use T3 sin(x), so
sin x = x− x3/6 + o(x3), then we can show that sin x ∼ x− x3/6 as x → 0+.
However, since x3/6 = o(x) as x → 0+ (and in fact, x ∼ x−x3/6 as x → 0+),
this 3rd-order approximation does not yield any more useful information than
the 1st-order approximation did. �
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The Limit Comparison Test is a very useful consequence of the Com-
parison Test, and it makes many problems easier, but the Comparison Test
still has its uses. For instance, problems involving sin n and cos n, such as
Example 9.44, are easier to analyze with inequalities because sin n and cos n
oscillate as n → ∞. Also, the Limit Comparison Test can fail to yield a
useful conclusion with some series where the terms have parts going to ∞ at
very different speeds, as the next example indicates:

Example 9.51:

Consider the series ∞
∑

n=1

n

2n

This series is difficult to analyze with the Limit Comparison Test. Suppose
an = n/2n. If we try choosing bn = 1/2n, then an/bn = n → ∞. If we try
choosing bn = n, then an/bn = 1/2n → 0. When we look at our collection of
basic examples, such as the p-series and the geometric series, there seems to
be no good choice for bn which makes an/bn approach a positive finite ratio.

Instead, let’s use the Comparison Test. (The Integral Test also works,
though the integration problem uses integration by parts, which arguably
requires more work than the method we will demonstrate with CT.) Recall
that Theorem 7.30 roughly says that any power of n goes to ∞ much more
slowly than any exponential. Thus, not only does n/2n go to 0, but n/bn

also goes to 0 for any b > 1. This is useful because we can write

n

2n
=

n

bn(2/b)n
=

n/bn

(2/b)n

where the numerator goes to 0 and the denominator grows exponentially.
In particular, let’s choose b =

√
2 (though any b ∈ (1, 2) will work). Since

n/(
√

2)n → 0, we have the following when n is sufficiently large:

n

2n
=

n/(
√

2)n

(
√

2)n
≤ 1

(
√

2)n

This means that
∑

n/2n is dominated by
∑

1/(
√

2)n, which is a geometric
series with ratio 1/

√
2. Hence, our series converges by CT. In fact, you

can use this method of “breaking a large denominator into two moderately
large pieces” (in this case, breaking 2n into (

√
2)n(

√
2)n) in Exercise 9.7.28
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to show that when p is any polynomial, and b is any number bigger than 1,
∑ |p(n)|/bn converges. �

Comparison Tests For Improper Integrals

The main idea behind the Comparison Test is that a convergent posi-
tive series can be used to provide an upper bound for the partial sums of
another positive series. Analogously, when dealing with improper integrals,
a convergent improper integral of a positive function can be used to bound
partial integrals of other improper integrals. More precisely, you can prove
the following:

Theorem 9.52 (Comparison Test for Integrals). For all parts of this
theorem, suppose that I is a (possibly unbounded) interval of R, and f, g :
I → R are positive on I. Also, suppose that f(x) ≤ g(x) for all x ∈ I.

1. If I has the form [a,∞) for some a ∈ R, then

∫ ∞

a

g(x) dx converges →
∫ ∞

a

f(x) dx converges

A similar statement holds when I has the form (−∞, b] for some b ∈ R.

2. If I has the form [a, b) for some a, b ∈ R, such that f or g has a vertical
asymptote at b, then

∫ b

a

g(x) dx converges →
∫ b

a

f(x) dx converges

The same statement holds when I has the form (a, b] for some a, b ∈ R

such that f or g has a vertical asymptote at a.

In summary, if the larger function has a convergent improper integral,
then the smaller function does too. As a contrapositive, if the smaller function
has a divergent improper integral, then the larger function does too.

There is also a Limit Comparison Test for improper integrals, which is
proven using the Comparison Test in the same way as for series. We state
this theorem only for type 1 improper integrals, though it is not hard to state
and prove a version of this theorem for type 2 integrals as well:
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Theorem 9.53 (Limit Comparison Test for Integrals). Let a ∈ R be
given, and let f, g : [a,∞) → R be real functions which are positive on
[a,∞). Suppose also that

lim
x→∞

f(x)

g(x)

converges to a positive real number. Then the improper integrals

∫ ∞

a

f(x) dx

∫ ∞

a

g(x) dx

both converge or both diverge. Similar statements hold for other types of
improper integrals.

Remark. When f and g are decreasing functions, one way to prove these the-
orems is to apply the Integral Test and then use the corresponding theorems
for series. However, these theorems for integrals are more general: they do
not require f or g to be decreasing. Instead of using the Integral Test, the
proofs of these theorems merely imitate the arguments used in proving the
CT and LCT for series.

As with CT and LCT for series, the CT and LCT for improper integrals
allow us to analyze convergence or divergence of integrals which are too
difficult to evaluate directly. We present a few examples.

Example 9.54:

Consider the improper integral

∫ ∞

0

e−x2

dx

This integrand does not have an elementary antiderivative. However, we can
analyze this by using CT for integrals. Note that e−x2

goes to 0 very rapidly;
in fact, for any x ≥ 1, we have x2 ≥ x, so e−x2 ≤ e−x.

Therefore, our improper integral is dominated by e−x on [1,∞). As Ex-
ample 9.30 shows (or we can use the Integral Test),

∫ ∞

1

e−x dx converges.
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Therefore,
∫ ∞

0

e−x2

dx =

∫ 1

0

e−x2

dx +

∫ ∞

1

e−x2

dx

converges, as it is the sum of an ordinary integral and an integral which is
convergent by the Comparison Test. �

Example 9.55:

Consider the improper integral

∫ ∞

0

e−x

√
x

This integrand has a vertical asymptote at 0, so we must break up this
integral. One way to do this is to write

∫ 1

0

e−x

√
x

dx +

∫ ∞

1

e−x

√
x

dx

In order for this to converge, each of these two integrals must converge.
First, let’s consider the integral over [1,∞). As in the previous example,

the integrand is dominated by e−x. (It is useful to think of this as “the
exponential goes to 0 faster than 1/

√
x, so we bound 1/

√
x by a constant to

focus on the dominant part e−x”.) Thus, this integral converges by CT.
Second, let’s consider the integral over [0, 1]. This time, the

√
x in the

denominator is the part that causes problems when x is close to 0, so 1/
√

x is
the dominant part. Hence, we find a bound on e−x to simplify the problem.
Note that e−x ≤ 1 on [0, 1], so our integrand is dominated by 1/

√
x on [0, 1].

By the result of Example 9.39, we find that

∫ 1

0

1√
x

dx converges.

Therefore, our original integral also converges by CT.
The strategy presented in this example is typical for improper integrals

involving a few different types of functions in the integrand. The main idea is
that in an improper integral, usually some of the functions in the integrand
can be bounded, allowing us to focus on the “dominant” functions. For
instance, in the integral over [1,∞] above, 1/

√
x was not the dominant part,
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so it was bounded by 1. In the integral over [0, 1], e−x was not the dominant
part, so it was bounded by 1 as well. �

To end this section, let’s address one particularly difficult, but interesting,
type of improper integral. Sometimes, an improper integral can naturally be
broken into pieces indexed by integers. For instance,

∫ ∞

1

f(x) dx

can be broken into pieces of the form

∫ n+1

n

f(x) dx

for each n ∈ N∗. Suppose f is positive on [1,∞), and suppose we find
numbers an, bn ∈ R depending only on n satisfying

an ≤
∫ n+1

n

f(x) dx ≤ bn

It follows that

n
∑

i=1

ai ≤
n
∑

i=1

∫ i+1

i

f(x) dx =

∫ n+1

1

f(x) dx ≤
n
∑

i=1

bi

Letting n approach ∞, we find that the improper integral over [1,∞)
falls in between the series

∑

an and
∑

bn. Therefore, we can use informa-
tion about series to study improper integrals, whereas beforehand we used
improper integrals to study series! We illustrate this idea with one example:
see Exercise 9.7.32 as well.

Example 9.56:

Consider the improper integral
∫ ∞

π

|sin x|
x

dx

This integral resembles the series

∞
∑

n=1

|sin n|
n
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1

Π 2Π 3Π x

y

Figure 9.8: Part of the graph y = |sin x| /x on (0,∞)

from Example 9.44. However, we cannot use the Integral Test to relate these
two problems, because our integrand is not a decreasing function of x. We
need a new approach to analyze our integral.

To get an idea of how to proceed, we consider the graph of |sin x| /x in
Figure 9.8. Note that the curve touches the x-axis precisely at the integer
multiples of π. This suggests that on [π,∞), the area under the curve can be
broken into “hills”, the first on [π, 2π], the second on [2π, 3π], and so forth.
Thus, we define

In =

∫ (n+1)π

nπ

|sin x|
x

dx

for each n ∈ N∗ to be the area of the nth “hill”. It is not hard to show that
our improper integral on [π,∞) converges iff the series

∑

In converges.
To determine whether the series converges, we would like to estimate In

to apply either CT or LCT. In the integral defining In, the integrand does not
have an elementary antiderivative, so we should bound either the numerator
or the denominator. Suppose we try and bound the numerator by using the
inequality |sin x| ≤ 1. Then

In ≤
∫ (n+1)π

nπ

dx

x
= log |(n + 1)π| − log |nπ| = log

(

n + 1

n

)

In Example 9.19, we found that the series
∑

log((n + 1)/n) diverges (it
telescopes, though you could also apply the LCT to compare it with 1/n).
Hence, we have dominated

∑

In by a divergent series, which does not tell us
anything useful.
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Therefore, instead of bounding |sin x| in our integrand, let’s bound 1/x.
(After all, sin x should not be ignored as it was in our first approach, since
sin x creates the “hills” in the first place!) On [nπ, (n + 1)π], 1/x lies in the
interval [1/((n + 1)π), 1/(nπ)]. Thus,

1

(n + 1)π

∫ (n+1)π

nπ

|sin x| dx ≤ In ≤ 1

nπ

∫ (n+1)π

nπ

|sin x| dx

At this point, we need to know whether |sin x| is sin x or − sin x, which
leads us to consider cases based on the parity of n. You can check that in
either case,

∫ (n+1)π

nπ

|sin x| dx = 2

Therefore, In lies in [2/((n + 1)π), 2/(nπ)]. Note that
∑

2/((n + 1)π) and
∑

2/(nπ) both diverge, since they are constants times the p-series
∑

1/n.
As a result, since

∑

In dominates
∑

2/((n + 1)π), our original improper
integral diverges by the Comparison Test. �

9.7 Exercises

In Exercises 1 through 9, an improper integral is presented. Determine if the
integral converges, and if so, compute its value.

1.

∫ ∞

0

te−t dt

2.

∫ ∞

3

dx

x2 + 9

3.

∫ ∞

0

x + 2√
x2 + 4x + 3

dx

4.

∫ 2

1

log(t − 1)

t − 1
dt

5.

∫ 1

−1

x√
x + 1

dx

6.

∫ e

0

log t dt

7.

∫ 2

−2

1
√

(x − 2)(x + 2)
dx

8.

∫ 2

0

x

|x2 − 3x + 2| dx

9.

∫ ∞

0

e−t − t−1/3 dt
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10. For which values of p ∈ (0,∞) does the series

∞
∑

n=2

1

n(log n)p

converge?

11. (a) Make a function f : [0,∞) → [0,∞) such that f is continuous at
all x ∈ [0,∞),

∫ ∞

0

f(x) dx

converges, but
lim
x→∞

f(x)

does not exist. Thus, the Divergence Test (Theorem 9.24) does
not generalize to improper integrals.

(b) Suppose that a ∈ R and g : [a,∞) → R are given, and suppose
that g is positive and decreasing. Prove that if

∫ ∞

a

g(x) dx

converges, then g(x) → 0 as x → ∞.

In Exercises 12 through 24, determine whether the series or improper
integral converges or diverges. You may use any technique or test covered
in this chapter up to now, but cite which techniques or tests you use and
demonstrate why they apply.

12.
∞
∑

n=1

n

(4n − 3)(4n − 1)

13.

∞
∑

n=2

√
n |cos(n

√
n)|

n2 − 2

14.
∞
∑

n=1

(

1 − cos

(

1

n

))

15.
∞
∑

n=1

(

e−1/n − 1
)

16.

∞
∑

n=0

2 + (−1)n

2n

17.
∞
∑

n=0

(2 + (−1)n)(1.1)n
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18.

∞
∑

n=1

log n

n
√

n + 1

19.

∞
∑

n=3

2n

n!

20.

∫ ∞

1

e−
√

x

x
dx

21.

∫ 1

0

x |log x| dx

22.

∫ π

0

cos t√
t

dt

(Note: This integrand changes sign! This means you should split this
integral into pieces which are treated separately.)

23.

∫ 1

0

log x

1 − x
dx

(Hint: At the x = 1 end, consider a Taylor approximation.)

24.

∫ 1

0

log x√
x

dx

(Hint: You may want to use the result of Exercise 7.10.10 to bound
log x when x ≈ 0.)

25. Prove Theorem 9.33.

26. Prove the Comparison Test, Theorem 9.41.

27. In this exercise, we present two extensions of the Limit Comparison
Test (Theorem 9.47). In each of these, k ∈ N is given, and (an)∞n=k and
(bn)∞n=k are two positive sequences.

(a) Prove that if

lim
n→∞

an

bn

= 0

and
∑

bn converges, then
∑

an also converges. Also, provide an
example to show the converse is not true, i.e. an example where
an/bn → 0,

∑

an converges, but
∑

bn diverges.

(b) Prove that if

lim
n→∞

an

bn

= ∞

and
∑

bn diverges, then
∑

an also diverges. Also, provide an
example to show the converse is not true, i.e. an example where
an/bn → ∞,

∑

an diverges, but
∑

bn converges.
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28. Prove that for all polynomials p and all numbers b > 1, the series

∞
∑

n=1

|p(n)|
bn

converges.

Hint: Consider Example 9.51. It also helps to show that |p(n)| can be
dominated by a single power of n.

29. (a) Consider the two expressions

∫ ∞

−∞
sin x dx and lim

b→∞

∫ b

−b

sin x dx

Show that the integral on the left diverges but that the limit on
the right exists. This limit is called the doubly-infinite Cauchy
Principal Value.

(b) Consider the two expressions

∫ 1

−1

dx

x
and lim

ǫ→0+

(
∫ −ǫ

−1

dx

x
+

∫ 1

ǫ

dx

x

)

Show that the integral on the left diverges but that the limit on
the right exists. This limit is called the Cauchy Principal Value
of the integral from [−1, 1] about 0.

30. In Exercise 9.4.19, we saw an example of a two-dimensional shape with
infinite perimeter but finite area. In this exercise, we introduce a shape
with infinite surface area but finite volume! Let S be the solid of
revolution made by taking the area under the graph of y = 1

x
on [1,∞)

and spinning it about the x-axis. More formally, for any b > 1, let Sb

be the solid of revolution obtained by spinning the area under y = 1/x
for x ∈ [1, b] about the x-axis, and then

S =
⋃

b>1

Sb = {(x, y, z) ∈ R3 | ∃b > 1 (x, y, z) ∈ Sb}

The volume of S is defined to be the limit of the volume of Sb as b → ∞,
and similarly the surface area of S is the limit of the surface area of Sb
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as b → ∞. Because this shape looks like an infinitely-stretching horn,
it is called Gabriel’s Horn or Torricelli’s Trumpet.14

(a) Compute the volume of Sb for every b > 1, and show that Gabriel’s
Horn has volume π.

(b) It is known that when the area under the graph of a function
y = f(x) is rotated about the x-axis on [a, b], the surface area of
the resulting solid is

A = 2π

∫ b

a

f(x)
√

1 + (f ′(x))2 dx

Use this formula to prove that the surface area of Sb tends to ∞
as b → ∞. Thus, Gabriel’s Horn has infinite surface area!

Remark. Gabriel’s Horn leads to the painter’s paradox : although it
takes an infinite amount of paint to paint the outside of Gabriel’s Horn,
only finitely much paint needs to be poured to fill the inside of the horn!
There are several arguments for settling this paradox, but we will not
explore them here.

31. In this exercise, we prove more formally that
∑ |sin n| /n diverges. It

follows by CT that
∑ |sin n| /np diverges for any p ≤ 1.

First, for any n ∈ N∗, define

sn =

n
∑

i=1

|sin i|
i

Second, from Exercise 9.4.17, part (b), we know that for any n ∈ N∗,
if sin n ≥ 1/2, then at least one of sin(n + 6) or sin(n + 7) is at least
1/2 as well.

Use these results to prove that for all n ∈ N∗,

s7n ≥ 1

14

n
∑

i=1

1

i

then use this to conclude that
∑ |sin n| /n diverges.

14According to http://en.wikipedia.org/wiki/Gabriel’s_Horn, the mathematician Evan-
gelista Torricelli discovered this solid, though the name Gabriel’s Horn refers to the
archangel Gabriel in the Bible.
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32. Prove that
∫ ∞

1

|cos x|
x

dx

diverges. (Hint: You can use similar tactics to Example 9.56, though
there is also another quick approach reusing that example.)

33. The gamma function Γ (this is a capital “gamma”) is defined by

Γ(s) =

∫ ∞

0

ts−1e−t dt

for all s > 0.

(a) Prove that the improper integral defining Γ(s) converges for all
s > 0. (Hint: Consider Example 9.51.)

(b) Prove, using integration by parts, that Γ(s + 1) = sΓ(s) for all
s > 0.

(c) Use part (b) to prove that Γ(n) = (n − 1)! for all n ∈ N∗. Thus,
the gamma function is one way to extend the factorial function to
a function which is defined on (0,∞). (In fact, Γ is continuous on
(0,∞).)

34. Suppose that (an)∞n=1 is a DECREASING sequence of positive real num-
bers. This exercise outlines a proof of Cauchy’s Condensation Test :

∞
∑

n=1

an converges ↔
∞
∑

n=0

2na2n converges

This is called the Condensation Test because it essentially “condenses”
the partial sum a1 +a2 +a3 + · · ·+a2n with 2n terms down to a partial
sum a1 + 2a2 + 4a4 + · · · + 2na2n with n + 1 terms.

(a) First, prove that for all n ∈ N∗,

2n+1−1
∑

i=1

ai ≤
n
∑

i=0

2ia2i

(Hint: Try this with small examples, using the fact that the terms
decrease. It might be useful to note that 1+2+· · ·+2n = 2n+1−1.)
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(b) Next, prove that for all n ∈ N,

n
∑

i=0

2ia2i ≤
2n
∑

i=1

(2ai)

(c) Use parts (a) and (b) to prove the Condensation Test.

35. This exercise shows some applications of the Condensation Test from
the previous exercise.

(a) Give a proof using the Condensation Test that
∑

n−p converges
iff p > 1.

(b) Use the Condensation Test to show that
∑

(log n)−p diverges for
all p ∈ R. (Hint: Recall log n = (log2 n)(log 2).)

(c) Suppose a, b, c ∈ (0,∞) are constants. Use the Condensation Test
to discover when

∞
∑

n=3

1

na(log2 n)b(log2 log2 n)c

converges.

9.8 The Root and Ratio Tests

In this section, we present our final tests that apply to nonnegative series.
These tests work particularly well when a series is “almost geometric”. Intu-
itively, when we have a positive series

∑

an, these tests try to find a value r
so that an behaves a lot like rn.

As an example, consider the series from Example 9.51:

∞
∑

n=1

n

2n

Let’s say an = n/2n and bn = 1/2n for n ≥ 1. We would like to say that
an behaves like bn, because n goes to ∞ much more slowly than 2n does.
However, an is not asymptotically equal to bn; in fact, an/bn goes to ∞! We
should ask ourselves: if an is not asymptotically equal to bn, then how do we
justify that an is “a lot like” bn?
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We want to show that an behaves essentially like an exponential function.
One key property that an exponential function rn has (where r ∈ R is a
constant) is that its nth root is constant: (rn)1/n is always r. Thus, let’s

analyze a
1/n
n = n1/n/2. Since n1/n → 1 as n → ∞, we can say that a

1/n
n is

very close to 1/2 when n is large. This gives us one way to justify our claim
from the previous paragraph: n/2n should behave a lot like 1/2n because
(n/2n)1/n is very close to 1/2.

For another approach, we note another key property of the exponential
function rn: the ratio between consecutive terms, i.e. rn+1/rn, is always r.
This suggests that we analyze the ratio

an+1

an
=

n + 1

2n+1
· 2n

n
=

n + 1

n
· 1

2

and this ratio is very close to 1/2 when n is large. This gives another way to
justify our claim: n/2n should behave a lot like 1/2n because the terms are
roughly cut in half when n goes up by one.

These two approaches provide ways of relating a positive sequence to a
geometric sequence. We will soon show that each of these approaches can be
formalized as a series test, and we’ll demonstrate examples where these tests
are useful.

Root Test

Our first test in this section formalizes the first approach above:

Theorem 9.57 (Root Test). Let k ∈ N be given and let (an)∞n=k be a real-
valued sequence with an > 0 for all n ≥ k. Suppose that

lim
n→∞

a1/n
n = r

where r is either a nonnegative real number or ∞.

1. If r < 1, then the series
∑

an converges.

2. If r > 1, then the series
∑

an diverges. (This includes the case where
r = ∞.)

3. If r = 1, then the series
∑

an may converge or may diverge. In this
case, a different test must be used.
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Strategy. Suppose that a
1/n
n → r as n → ∞. Hence, for large n, a

1/n
n ≈ r.

We’d like to say that an ≈ rn, but our example at the beginning of this
section shows that such a leap of logic may be unjustified. (For another
example, although most people would agree that 1.99 is close to 2, 1.99n is
not close to 2n for large values of n. See Exercise 9.9.1.)

Let’s be more precise about how close a
1/n
n is to r. For any ǫ > 0, when

n is large enough, we have
∣

∣a1/n
n − r

∣

∣ < ǫ i.e. r − ǫ < a1/n
n < r + ǫ

Thus, an lies between (r − ǫ)n and (r + ǫ)n. This gives us two comparisons
which we can use with the Comparison Test.

When r < 1, r + ǫ < 1 when ǫ is small enough, so our series is dominated
by
∑

(r + ǫ)n. When r > 1, r − ǫ > 1 when ǫ is small enough, so our series
dominates

∑

(r − ǫ)n. However, when r = 1, neither comparison gives us a
conclusion via the Comparison Test, because r − ǫ < 1 and r + ǫ > 1.

Proof. Let k, r, (an) be given as described. First, suppose that r ∈ [0,∞) −
{1} (i.e. r is not ∞ or 1). Choose ǫ = |r−1|/2. Because a

1/n
n → r as n → ∞,

there is some N ∈ N with N ≥ k such that for all n ∈ N with n > N , we
have

r − ǫ < a1/n
n < r + ǫ → (r − ǫ)n < an < (r + ǫ)n

If r < 1, then r + ǫ = r + (1 − r)/2 = 1 − (1 − r)/2 < 1, so
∑

an

is dominated by the convergent geometric series
∑

(r + ǫ)n. By CT,
∑

an

converges in this case. If r > 1, then r−ǫ = r−(r−1)/2 = 1+(r−1)/2 > 1,
so
∑

an dominates the divergent geometric series
∑

(r − ǫ)n. Thus, by CT,
∑

an diverges in this case.
Lastly, we consider the cases r = ∞ and r = 1. When r = ∞, a similar

argument to above shows that a
1/n
n > 2 for all n large enough, so

∑

an

dominates
∑

2n and hence diverges. To see that r = 1 provides no useful
information, consider the p-series

∑

n−p where p is a constant. We already
know that

∑

n−p converges iff p > 1. However, we note that for both p = 1
and p = 2, (n−p)1/n → 1 as n → ∞. �

Remark. When r > 1 in the proof above, there is another way to show
that

∑

an diverges. Because an > (r − ǫ)n for large enough values of n, and
r−ǫ > 1 with our choice of ǫ, an cannot approach 0. Thus, by the Divergence
Test,

∑

an diverges.
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Example 9.58:

The Root Test makes it easy to see whether

∞
∑

n=2

(

1

log n

)n

converges. We set an = (1/ logn)n, so that a
1/n
n = 1/ logn → 0 as n → ∞.

Because 0 < 1, the Root Test says that
∑

an converges.
(For another way to approach this series, note that log n > 2 whenever

n > e2. Thus,
∑

an is dominated by
∑

1/2n. In fact, generalizing this
argument, for any M > 1, log n > M when n > eM , so

∑

an is dominated
by
∑

1/Mn.) �

Example 9.59:

Consider
∞
∑

n=1

an where an =

(

n

n + 1

)(n2)

Note that for this example, it’s not easy to tell whether an → 0, because as
n → ∞, an has the indeterminate form 1∞. However, the Root Test works
well here. We compute

a1/n
n =

(

n

n + 1

)n

=
1

((n + 1)/n)n

=
1

(

1 + 1
n

)n → 1

e

as n → ∞. Because 1/e < 1, the Root Test tells us that
∑

an converges.
Compare this example with the series

∞
∑

n=1

bn where bn =

(

n

n + 1

)n

The Root Test is ineffective here, because b
1/n
n → 1. However, since bn = a

1/n
n ,

the calculations above show that bn → 1/e, so bn does not approach 0. Hence,
the Divergence Test tells us that

∑

bn diverges. �

It is also possible to use the Root Test on series whose terms do not look
like nth powers, though it can be difficult to analyze the nth root of such
terms. Here is one example which illustrates this:
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Example 9.60:

Consider the series

∞
∑

n=1

an where an =
n!

nn

We have studied an previously in Examples 9.8 and 9.43. There, we saw that
for any fixed p > 1, an < p!/np for large enough n. Thus, our series converges,
since for any p > 1,

∑

an is dominated by a constant times
∑

n−p. Now,
let’s use the Root Test to see whether our series is dominated by a geometric
series. (This is useful information because a geometric series converges more
quickly than a p-series, since exponentials dominate polynomials.)

To use the Root Test, we need to know something about the behavior of
(n!)1/n. There is a famous result called Stirling’s Formula which says that15

n! ∼
(n

e

)n √
2πn

as n → ∞. From this, we can deduce (see Exercise 9.9.1) that (n!)1/n ∼ n/e.
There is also a simple argument, outlined in Exercise 9.9.17, which proves
(n!)1/n ∼ n/e without using Stirling’s Formula.

Therefore, we know that (n!)1/n/(n/e) → 1 as n → ∞. Using this, we

can compute the limit of a
1/n
n by multiplying and dividing by n/e:

a1/n
n =

(n!)1/n

n
=

(n!)1/n

n
· n/e

n/e

=
(n!)1/n

n/e
· n/e

n
→ 1 · 1

e

This shows that our series
∑

an behaves a lot like
∑

1/en. More precisely,
the proof of the Root Test shows that

∑

an is dominated by any sum of the
form

∑

rn where 1/e < r < 1. �

Ratio Test

15There are other variants of Stirling’s Formula; the variant we present here is accurate
enough for our purposes.
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There is another convergence test, called the Ratio Test, which analyzes
the convergence of positive series by trying to relate them to geometric series.
This test uses the second approach outlined at the beginning of the section,
which says that an behaves like rn if an+1/an is close to r for large values of
n. More formally, we have

Theorem 9.61 (Ratio Test). Let k ∈ N be given and let (an)∞n=k be a real-
valued sequence with an > 0 for all n ≥ k. Suppose that

lim
n→∞

an+1

an
= r

where r is either a nonnegative real number or ∞.

1. If r < 1, then the series
∑

an converges.

2. If r > 1, then the series
∑

an diverges. (This includes the case where
r = ∞.)

3. If r = 1, then the series
∑

an may converge or may diverge. In this
case, a different test must be used.

Strategy. The basic idea of this test is that if an+1/an → r, then each term
is approximately r times the previous term. Thus, ak+1 ≈ rak, ak+2 ≈ r2ak,
ak+3 ≈ r3ak, and so on. In fact, for any m ∈ N∗, we have

ak+m

ak

=
ak+1

ak

· ak+2

ak+1

· · · · · ak+m

ak+m−1

≈ r · r · · · · · r = rm

so that ak+m ≈ rmak. This suggests that we can compare
∑

an to ak

∑

rn

(since ak is a constant with respect to n).
As with the Root Test, we can be more precise by establishing inequalities

showing how close an+1/an is to r. For any ǫ > 0, we have
∣

∣

∣

∣

an+1

an

− r

∣

∣

∣

∣

< ǫ i.e. r − ǫ <
an+1

an

< r + ǫ

when n is large enough, say when n ≥ N . Then the same derivation above
shows that

aN (r − ǫ)m < aN+m < aN(r + ǫ)m

for any m ∈ N∗. When r 6= 1, then we can choose ǫ small enough so that
(r − ǫ, r + ǫ) does not contain 1, and the proof proceeds much like the proof
of the Root Test.
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Proof. Let k, r, (an) be given as described. First, suppose that r ∈ [0,∞) −
{1}, so r is not ∞ or 1. Choose ǫ = |r − 1|/2. Because an+1/an → r, there
is some N ∈ N with N > k such that for all n ∈ N with n ≥ N , we have

r − ǫ <
an+1

an
< r + ǫ

By the choice of ǫ, all of these numbers are positive. Hence, we can deduce
that for all m ∈ N∗,

(r − ǫ)m <
aN+m

aN
< (r + ǫ)m

(the proof by induction on m is left to the reader). Therefore,

aN(r − ǫ)n−N−1 < an < aN(r + ǫ)n−N−1

for all n > N + 1 (by choosing m = n − N − 1).
If r < 1, then r + ǫ < 1 as well, so

∑

an is dominated by a positive
constant times

∑

(r + ǫ)n (recall that N does not depend on n). Thus, by
CT,

∑

an converges in this case. If r > 1, then r − ǫ > 1 as well, so
∑

an

dominates a positive constant times
∑

(r− ǫ)n. As a result, CT tells us that
∑

an diverges in this case.
Lastly, when r = ∞, the same proof style as above shows that an+1/an > 2

for all n large enough, so
∑

an dominates a constant times
∑

2n and hence
diverges. For r = 1, consider the p-series

∑

n−p. For p = 1, we have

lim
n→∞

1/(n + 1)

1/n
= lim

n→∞
n

n + 1
= 1

and for p = 2, we have

lim
n→∞

1/(n + 1)2

1/n2
= lim

n→∞
n2

n2
(

1 + 1
n

)2 = 1

Both of these values of p produce r = 1, although
∑

n−1 diverges and
∑

n−2

converges. �

The Ratio Test is frequently more practical to apply than the Root Test.
It generally works well with large products, such as exponentials or factorials.
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For instance, if we use the Ratio Test with the example at the beginning of
this section, where an = n/2n, we get

lim
n→∞

an+1

an

= lim
n→∞

n + 1

2n+1
· 2n

n
= lim

n→∞
n + 1

2n
=

1

2

which is less than 1. Here are some other examples.

Example 9.62:

Consider the series ∞
∑

n=1

n!

nn

from Example 9.60. If we set an = n!/nn and try the Ratio Test, we find

an+1

an

=
(n + 1)!

(n + 1)n+1
· nn

n!

=
n!

(n + 1)n
· nn

n!
=

(

n

n + 1

)n

=
1

(

1 + 1
n

)n → 1

e

Since 1/e < 1, the Ratio Test tells us that
∑

an converges.
In fact, note that the Ratio Test produced the same limit that the Root

Test did in Example 9.60. This is not a coincidence: see Exercises 9.9.22 and
9.9.23. �

Example 9.63:

Consider the series ∞
∑

n=1

n2

n4 + 1

If we try the Ratio Test with an = n2/(n4 + 1), then

an+1

an

=
(n + 1)2

(n + 1)4 + 1
· n4 + 1

n2

=
(n + 1)2

n2
· n4 + 1

(n + 1)4 + 1

=
n2
(

1 + 1
n

)2

n2
· n4

(

1 + 1
n4

)

n4
(

(

1 + 1
n

)4
+ 1

n4

)

→ 1
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as n → ∞ (note that the second-to-last step involved factoring out the
dominant powers of n from the top and bottom of each fraction). Because
this limit is 1, the Ratio Test does not help. However, this series can quickly
be shown to converge via CT or LCT.

In general, the Ratio Test or the Root Test will always produce a limit
of 1 with any rational function, as you can prove in Exercise 9.9.18. This
seems quite plausible, because the Ratio and Root Tests look for geometric
behavior, but polynomials grow more slowly than exponentials. The Ratio
and Root Tests are primarily useful with products for this reason. �

Example 9.64:

Consider the series
∞
∑

n=1

an with an =
(n!)2

(2n)!

Because the terms involve factorials, which are large products, the Ratio Test
is a good test to try. We compute

an+1

an
=

((n + 1)!)2

(2n + 2)!
· (2n)!

(n!)2

=
((n + 1)n!)2

(n!)2
· (2n)!

(2n + 2)(2n + 1)(2n)!

=
(n + 1)2

(2n + 2)(2n + 1)
→ 1

4

Since 1/4 < 1, our series converges.
Another option is to apply the Root Test. In Example 9.60, we mentioned

that (n!)1/n ∼ n/e. It follows that ((2n)!)1/(2n) ∼ (2n)/e, which leads to
((2n)!)1/n ∼ 4n2/e2, as you can check. Putting these results together, you

can readily show that a
1/n
n → 1/4, as with the Ratio Test.

It turns out that we can also use Stirling’s Formula to get a good approx-
imation for an: see Exercise 9.9.19. �

Example 9.65:

We can also use the Ratio Test to analyze some series where we do not have
a simple closed form for the terms. For instance, let’s consider

∑

an where

an =
1 · 4 · 7 · · · · · (3n − 2)

1 · 3 · 5 · · · · · (2n − 1)
=

n
∏

i=1

3i − 2

2i − 1
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for all n ∈ N∗. Because our terms are products, we try the Ratio Test. We
have

an+1

an
=

1 · 4 · · · · · (3n − 2)(3(n + 1) − 2)

1 · 3 · · · · · (2n − 1)(2(n + 1) − 1)
· 1 · 3 · · · · · (2n − 1)

1 · 4 · · · · · (3n − 2)
=

3n + 2

2n + 1

which approaches 3/2 as n → ∞. Since 3/2 > 1, the Ratio Test tells us our
series diverges.

In contrast, consider when

an =
1 · 3 · 5 · · · · · (2n − 1)

2 · 4 · 6 · · · · · (2n)

A little work shows that an+1/an = (2n + 1)/(2n + 2) → 1 as n → ∞. Thus,
the Ratio Test cannot be used to determine whether

∑

an converges. This
series requires some more advanced techniques: see Exercise 9.9.20. �

Suggestions For Picking A Test

In the last few sections, we have presented a number of different tests that
we can use to check whether a series with positive terms converges or diverges.
With so many tests available, it helps to have guidelines that describe how
to pick a test. Certainly, practice makes perfect: the more examples you see
and try, the more intuition you will obtain for analyzing series. However,
we also offer the following rules of thumb for determining whether a positive
series

∑

an converges:

1. First, it’s worth checking whether an → 0 if this check can be done
quickly. If an 6→ 0, then the Divergence Test says

∑

an diverges.

Examples:
∑

e1/n,
∑

(2 · 4 · · · · · (2n))/(1 · 3 · · · · · (2n − 1)) (In these
series, the terms are all greater than 1!)

2. If an consists of products, such as factorials or exponentials, then the
Ratio Test is often helpful. The Root Test is also worth trying if it
looks like it produces simpler computations than the Ratio Test does.

Examples:
∑

2n/n!,
∑

exp(−n2)

3. When dealing with polynomial expressions, or with functions that can
be approximated well by a Taylor polynomial (for instance, sin(1/n)
is approximated well by Taylor polynomials for sin centered at 0), the
Limit Comparison Test is frequently handy.

Examples:
∑

(n + 2)/(n2 + 4),
∑

arctan(1/n)
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4. When there are obvious inequalities which simplify a problem (such as
|cos n| ≤ 1), the Comparison Test is appropriate. Sometimes, when
applying an inequality, the inequality goes in the wrong direction for
CT to yield a conclusion. In those cases, you can try to introduce an
extra constant factor (for instance, 1/(n + 1) is not bigger than 1/n,
but it is bigger than 1/(2n) for n large), or you can try the LCT.

Examples:
∑ |sin n| /n2,

∑

(2 + (−1)n)/3n

5. The Integral Test is often used as a last resort, because it requires both
an integral computation and also showing that a function is decreas-
ing. However, in certain situations, particularly when a substitution is
obvious, the Integral Test can be promising.

Examples:
∑

(log n)/n,
∑

ne−n (Both of these series can also be han-
dled by CT, similarly to Example 9.51.)

6. Lastly, sometimes multiple tests can be put together, each handling a
specific step.

Example: One way of analyzing the series
∑

(2+ (−1)n sin n)/(n2 − 1),
where n > 1, is to first note that

2 + (−1)n sin n

n2 − 1
≤ 2 + 1

n2 − 1
=

3

n2 − 1

and then we note that 3/(n2 − 1) ∼ 3/n2. Thus, the final answer uses
both LCT and CT.

It is also worth noting that this chapter is not the final word on series tests
for positive series. There are other series tests that have been developed for
handling cases where our tests have difficulty (especially for cases where the
Ratio or Root Tests produce a limit of 1). However, these tests are generally
difficult to motivate, difficult to apply, and difficult to prove.16

In contrast, we have restricted our attention to tests that have simple
motivations, can be usually applied with little effort, and that work well
with our basic examples of p-series and geometric series. All of these tests
come originally from one central idea: to show a positive series converges,
we only need to show its partial sums are bounded above. This central idea
does not work with series where the terms change sign, so we will make some
remarks about those series in the last section of this chapter.

16The interested reader may want to search in the literature for Raabe’s Test and Gauss’s

Test.
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9.9 Exercises

1. Suppose that (an)∞n=1 and (bn)∞n=1 are both sequences of positive real
numbers.

(a) Prove that if an ∼ bn as n → ∞, then a
1/n
n ∼ b

1/n
n .

(b) Show that the converse of part (a) is not true: namely, produce

an example of (an) and (bn) such that a
1/n
n ∼ b

1/n
n but an 6∼ bn.

If you try to imitate the proof of part (a) to prove the converse,
then where does the proof fail?

(c) Use part (a) to prove that if p is any polynomial with p(n) > 0 for
all n ∈ N∗, then p(n)1/n → 1. (Hint: Consider the leading term.)

For Exercises 2 through 15, determine whether the series converges or
diverges. You may use any technique or test covered in this chapter up to
now, but cite which techniques or tests you use and demonstrate why they
apply.

2.

∞
∑

n=1

e2n

(2e)n

3.

∞
∑

n=1

n2n

(2n)n

4.

∞
∑

n=1

(n!)2

2(n2)

5.
∞
∑

n=3

(n − 2)3n

(n − 1)
(

4 − 1
n

)n

6.
∞
∑

n=1

10n

(n + 1)42n+1

7.
∞
∑

n=1

n! (2n)!

(3n)!

8.

∞
∑

n=1

(n + 1)! (n − 1)!

(2n)!

9.

∞
∑

n=1

1 · 3 · · · · · (2n − 1)

(2n − 1)!

10.
∞
∑

n=1

2 · 4 · · · · · (2n)

n!

11.

∞
∑

n=1

2nn!

5 · 8 · · · · · (3n + 2)

12.
∞
∑

n=2

1

(log n)1/n

13.
∞
∑

n=2

(n1/n − 1)n

14.

∞
∑

n=1

1

(arctann)n
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15.

∞
∑

n=1

n(n+(1/n))

(

n + 1
n

)n

(Hint: Pull n1/n out to the side, since it converges to 1. One option is
to rewrite everything else in terms of exponentials and logarithms, and
then use a Taylor approximation of log(1 + x) when x is near 0.)

16. For which values of k ∈ N∗ does the series

∞
∑

n=1

(n!)2

(kn)!

converge?

17. This exercise outlines a proof of (n!)1/n ∼ n/e as n → ∞ which does
not use Stirling’s Formula. The main idea is to find inequalities for
log(n!) = log 1 + log 2 + · · ·+ log n by using integrals.

(a) By making appropriate step functions below and above the graph
of f(x) = log x, show that for any n ∈ N∗,

n−1
∑

i=1

log i ≤
∫ n

1

log x dx ≤
n
∑

i=2

log i

(b) Use part (a) to show that

log((n − 1)!) ≤ n log n − n + 1 ≤ log(n!)

and consequently
n!

n
≤ e · nn

en
≤ n!

(c) Use the inequalities from part (b) to deduce

e
(n

e

)n

≤ n! ≤ ne
(n

e

)n

From this, and the Squeeze Theorem, prove that (n!)1/n ∼ n/e.

18. Prove that if p is any polynomial with p(n) > 0 for all n ∈ N∗, then
p(n + 1)/p(n) → 1 as n → ∞. Thus, the Ratio Test should not be
used on series whose terms are rational functions (i.e. quotients of
polynomials).
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19. Use Stirling’s Formula

n! ∼
(n

e

)n √
2πn

to prove that
(

2n

n

)

=
(2n)!

(n!)2
∼ 22n

√
πn

as n → ∞. In particular, this implies that the nth root of (2n)!/(n!)2

approaches 4, so this exercise proves a stronger result than Example
9.64. (Also, see the next exercise.)

20. This exercise outlines two proofs that when s > 0 is a constant,

∞
∑

n=1

as
n where an =

1 · 3 · · · · · (2n − 1)

2 · 4 · · · · · (2n)

converges iff s > 2. The first proof, in parts (a) and (b), shows that an

is asymptotically equal to a constant times n−1/2. This proof also uses
Stirling’s Formula. The second proof, in parts (c) and (d), shows that
a2

n is bounded by C/n and D/n for some constants C, D > 0. This
proof does not use Stirling’s Formula.

(a) For any n ∈ N∗, show that

an =
(2n)!

22n(n!)2

(Hint: Since the denominator of an is the product of the first n
odd numbers, multiply and divide by the product of the first n
even numbers.)

(b) Use part (a) and the result of Exercise 9.9.19 to prove that
∑

as
n

converges iff s > 2. This finishes the first proof.

(c) For the second proof, for any n ∈ N∗, let’s write a2
n as

1 · 1 · 3 · 3 · · · · · (2n − 1) · (2n − 1)

2 · 2 · 4 · 4 · · · · · (2n) · (2n)

Recall that for any x > 1, x2 > (x − 1)(x + 1). Use this to prove
that

1

4n
≤ a2

n ≤ 1

2n
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(Hint: For one of the inequalities, pull out factors of the form x2

from the numerator. For the other, pull out factors of the form x2

from the denominator.)

(d) Use the result of part (c) to prove that
∑

as
n converges iff s > 2.

21. The following amazing formula for 1/π is due to Ramanujan:

1

π
=

2
√

2

9801

∞
∑

n=0

(4n)! (1103 + 26390n)

(n!)43964n

Verify that the series on the right-hand side converges.

22. In this exercise, we outline a proof of the following result:

Theorem 9.66. Let k ∈ N be given, and let (an)∞n=k be an infinite
sequence of positive real numbers. Suppose that

lim
n→∞

an+1

an

= r

where r is either a nonnegative real number or ∞. Then a
1/n
n → r as

n → ∞.

For simplicity, we will prove this result when r ∈ (0,∞); the cases r = 0
and r = ∞ can be proven similarly. Thus, suppose that an+1/an → r.

(a) The proof of the Ratio Test shows that for any ǫ ∈ (0, r), for some
N ∈ N∗ with N ≥ k, we have

aN(r − ǫ)m < aN+m < aN(r + ǫ)m

for all m ∈ N∗. Use this to find C, D > 0 such that for all n ∈ N∗

with n > N , we have

C(r − ǫ)n < an < D(r + ǫ)n

(C and D may depend on ǫ and N , but not on n or m.)

(b) Use part (a) to show that for all δ ∈ (0, 1), there exists some
M ∈ N∗ such that M ≥ k and for all n ∈ N∗ with n > M , we
have

(1 − δ)2r < a1/n
n < (1 + δ)2r

(Hint: Choose ǫ = δr, and use the fact that C1/n → 1 as n → ∞
to show that C1/n > 1 − δ for large values of n. Do something
similar with D1/n. This will tell you how to find M .)
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(c) Use part (b) to prove that a
1/n
n → r.

23. In this exercise, we show that the converse of Theorem 9.66 is false,
i.e. a

1/n
n → r does not necessarily imply an+1/an → r. (Thus, the Root

Test is a stronger test than the Ratio Test.) Consider (an)∞n=1 defined
by

a2n = (0.4)n(1.6)n a2n−1 = (0.4)n−1(1.6)n

for all n ∈ N∗. Prove that a
1/n
n → 0.8 as n → ∞ (and thus

∑

an

converges by the Root Test), but an+1/an has no limit as n → ∞.

9.10 Series With Mixed Terms

Most of the series tests that were developed earlier in this chapter only apply
to series with positive terms. (The Divergence Test applies to any series, how-
ever.) These tests were developed around the idea of finding upper bounds on
the partial sums of a positive series, because the partial sums are monotone
increasing. By factoring out −1 from a series, we can also use these tests to
handle series whose terms are all negative. In fact, since finitely many terms
never affect convergence of a series, our tests can be applied to any series
whose terms change sign only finitely many times.

However, when presented with a series with infinitely many positive terms
and infinitely many negative terms, we cannot establish monotonicity of par-
tial sums, so many of our earlier tests are not applicable. Because of this,
these kinds of series (which we will call series with mixed terms) are more
difficult to study. For simplicity, we will mainly focus on one special type
of mixed series: alternating series, where the terms alternate in sign. We
will also introduce the notion of absolute convergence, which lets us relate a
mixed series

∑

an to the positive series of absolute values
∑ |an|. Lastly, we

will explore a curious phenomenon concerning rearrangements of series that
can arise with mixed series.

Alternating Series

An alternating series has the form
∑

an where the terms of (an) alternate
in sign. Thus, we either have an = (−1)n|an| for all n or an = (−1)n−1|an|
for all n, depending on the sign of the first term. For instance, consider the
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following series, which is called the alternating harmonic series:

∞
∑

n=1

(−1)n−1

n
= 1 − 1

2
+

1

3
− 1

4
+ · · ·

For each n ∈ N∗, let sn be the nth partial sum of the series.
Because ((−1)n−1/n)∞n=1 is alternating, the partial sums alternately rise

and fall. Intuitively, we can imagine this by thinking of the partial sums
placed on a number line. Before adding any terms, we start at 0. Next,
we add 1 to get s1, moving 1 unit to the right. Next, we add −1/2 to get
s2, moving 1/2 a unit to the left. Continuing in this manner, our partial
sums continue jumping (or zig-zagging) to the left and to the right. A rough
picture illustrating is presented in Figure 9.9.

0 1

2

7

12
5

6

1

s1s2 s3s4

a1
a2

a3
a4

Figure 9.9: The first few partial sums of the alternating harmonic series

Note that since (1/n) is decreasing, our partial sums jump less with each
step. This has some important consequences. For instance, s3 < s1, because
we move 1/2 of a unit to the left from s1 to s2 but only 1/3 of a unit to the
right from s2 to s3. Similar logic shows that s5 < s3, s7 < s5, and so forth.
We can also show s4 > s2, s6 > s4, and so forth. Also, note that all the
even-indexed partial sums are smaller than all the odd-indexed partial sums.

Putting these remarks together, we find that if our series converges, then
its sum should lie in [s2, s1], and in [s4, s3], and in [s6, s5], etc. In general,
the closed interval [s2n, s2n−1] has length |s2n − s2n−1| = 1/(2n), which goes
to 0 as n → ∞. This intuitively means that these intervals [s2n, s2n−1] “zoom
in” on one point, which should be the sum of our series.

When we take the reasoning above and generalize it to an alternating
series

∑

(−1)n−1|an|, we obtain the following result due to Leibniz:
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Theorem 9.67 (Alternating Series Test). Let k ∈ N be given, and let
(an)∞n=k be a given real-valued sequence. Suppose that (an) is alternating. If
(|an|) is decreasing and an → 0 as n → ∞, then

∑

an converges.

Strategy. WLOG, we may suppose k = 1 and an = (−1)n−1|an|, i.e. a1 ≥
0. Let’s say (sn)∞n=1 is the sequence of partial sums. As suggested by the
argument earlier, we can show that the subsequence (s2n) is increasing and
the subsequence (s2n−1) is decreasing. Furthermore, these subsequences are
bounded, as for all m, n ∈ N∗, we can show s2m ≤ s2n−1.

As a result, both of these subsequences converge by the BMCT. Let’s say
s2n → L− and s2n−1 → L+ as n → ∞. (The − and + are used because
we expect the s2n values to approach the sum from the left side, and we
expect the s2n−1 values to approach the sum from the right side.) Because
an → 0, we can show that L− = L+. Thus, since the even-indexed and
the odd-indexed partial sums both approach the same limit, the sequence of
partial sums approaches that limit as well by Exercise 9.2.21.

Proof. Let k and (an) be given as described, and assume that (an) is al-
ternating, (|an|) decreases, and an → 0 as n → ∞. WLOG, we may also
suppose k = 1 and a1 ≥ 0, so that an = (−1)n−1|an| for each n ∈ N∗. (Thus,
odd-indexed terms are nonnegative, and even-indexed terms are nonpositive.)
Define (sn)∞n=1 to be the sequence of partial sums of

∑

an.
First, for any n ∈ N∗,

s2n+2 = s2n + a2n+1 + a2n+2 = s2n + (|a2n+1| − |a2n+2|) ≥ s2n

and

s2n+1 = s2n−1 + a2n + a2n+1 = s2n−1 + (−|a2n| + |a2n+1|) ≤ s2n+1

because (|an|) is decreasing. Thus, (s2n)∞n=1 is increasing and (s2n−1)
∞
n=1 is

decreasing. We claim that from this, it follows that both of these sequences
are bounded. For any n ∈ N∗, since s2n = s2n−1 + a2n ≤ s2n−1, we have

s2 ≤ s2n ≤ s2n−1 ≤ s1

This shows that both sequences are bounded below by s2 and above by s1,
proving the claim. (In fact, the same proof shows that for any m ∈ N∗,
s2m ≤ s2n ≤ s2n−1 ≤ s2m−1 for any n ∈ N∗ with n ≥ m.)

PREPRINT: Not for resale. Do not distribute without author’s permission.



686 Section 9.10: Series With Mixed Terms

By the BMCT, there exist L−, L+ ∈ R such that s2n → L− and s2n−1 →
L+ as n → ∞. In fact, the proof of the BMCT shows that

L− = sup{s2n | n ∈ N} L+ = inf{s2n−1 | n ∈ N}

Now, s2n = s2n−1 + a2n. By taking the limit as n → ∞ of this equality, we
obtain L− = L+ + 0, so L− = L+. For simplicity, let’s denote this common
value of L− and L+ by L.

Lastly, note that we have proven that (s2n) and (s2n−1) both approach
the same limit L. By Exercise 9.2.21, sn → L as n → ∞ as well. Thus, our
alternating series converges to L. �

The Alternating Series Test, sometimes abbreviated as AST, is a handy
tool for approaching many alternating series. For instance, it immediately
implies that the alternating harmonic series converges. Let’s say the sum is
L, and the partial sums are (sn)∞n=1 as before. We know that sn → L, but
how quickly does sn converge to L?

To answer this question, we use more information from the proof of the
AST. For any n ∈ N∗, we can show s2n ≤ L ≤ s2n−1. Using n = 2, we have
7/12 ≤ L ≤ 5/6, so if we guess L is the average of these two bounds, then we
find L ≈ 17/48, and our error is at most 1/2(5/6− 7/12) = 1/2(1/4) = 1/8.
Using n = 3, you can compute 37/60 ≤ L ≤ 47/60, leading us to the estimate
L ≈ 7/10 with error at most 1/12.

This kind of reasoning leads to the following corollary on error estimates,
which you can prove in Exercise 9.12.5:

Corollary 9.68. Let k ∈ N be given, and let (an)∞n=k be a real-valued se-
quence. Suppose that (an) satisfies the hypotheses of the AST. Let

L =
∞
∑

n=k

an

For any n ≥ k, if sn is the nth partial sum of
∑

an, then

|L − sn| ≤ |an+1|

In other words, the error in approximating by sn is bounded by the first term
of the series that sn “leaves out”. As a result, the estimate L ≈ (sn +sn+1)/2,
which approximates L by the average of sn and sn+1, has error magnitude at
most |an+1|/2.
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Remark. It turns out that with the alternating harmonic series, for any n ∈
N∗, sn is Tn log(1 + x) evaluated at 1. Recall from Exercise 8.5.20 that for
any x ∈ [0, 1],

|En log(1 + x)| ≤ xn+1

n + 1
≤ 1

n + 1

Applying this for x = 1 and letting n approach ∞, this shows that L =
log 2. In fact, the error bound from Taylor estimates agrees with the error
bound from Corollary 9.68. (This might not happen in general, though, with
approximations whose Taylor polynomials yield alternating series.)

There are other ways to obtain the sum of the alternating harmonic series,
as well as other similar series, by a more in-depth study of the harmonic series.
See Exercises 9.12.22 and 9.12.24.

Example 9.69:

As another example of the use of the Alternating Series Test, consider

∞
∑

n=2

an where an =
(−1)n(n2 + 1)

n3 − 1

This is certainly an alternating series, and it’s straightforward to show that
|an| → 0 as n → ∞. (Note that |an| → 0 iff an → 0 as n → ∞.) It remains
to see whether (|an|) decreases. One way to verify that (|an|) decreases is
to show directly that |an+1| < |an| for all n ∈ N with n ≥ 2; this involves
a fair bit of algebra. As an alternative, we can consider the corresponding
real-valued function f(x) = (x2 + 1)/(x3 − 1) and compute

f ′(x) =
2x(x3 − 1) − 3x2(x2 + 1)

(x3 − 1)2
=

−x4 − 3x2 − 2x

(x3 − 1)2

Since f ′(x) < 0 for all x > 1, f is strictly decreasing on (1,∞). Since
|an| = f(n) for all n ∈ N with n ≥ 2, (|an|) is strictly decreasing as well.
Thus, AST applies, and

∑

an converges. �

As the previous example shows, most of the work in applying AST comes
from verifying that (|an|) decreases. This raises the question: for an alter-
nating series

∑

an to converge, is it required that (|an|) be decreasing? After
all, we must require an → 0, by the Divergence Test. The following example
shows that the answer to our question is “no”:
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Example 9.70:

One way to construct a convergent alternating series
∑

an where (|an|) is
not decreasing is to take two positive convergent series and interleave their
terms with alternating signs. For instance, if we interleave

∑

n−2 and
∑

2−n

in this manner, then we obtain

1 − 1

2
+

1

4
− 1

4
+

1

9
− 1

8
+ · · · =

∞
∑

n=1

an with a2n = −2−n, a2n−1 =
1

n2

For this series, (|an|)∞n=k is not decreasing for any k ∈ N∗, because 1/n2

converges to 0 more slowly than 2−n does. However, you can check that
∑

an converges, and in fact

∞
∑

n=1

an =

∞
∑

n=1

1

n2
−

∞
∑

n=1

1

2n

(To prove this formally, you should prove a relationship between the partial
sums of the three series in the equation above. This relationship will have
to consider two cases based on whether the partial sum on the left uses an
even or odd number of terms.)

On the other hand, we can also use this interleaving idea to construct a
divergent alternating series

∑

an where (|an|) is not decreasing. To do this,
we interleave two positive series with alternating signs, where exactly one of
our positive series converges. For instance, if we interleave

∑

n−1 and
∑

2−n

in this manner, then we obtain

1 − 1

2
+

1

2
− 1

4
+

1

3
− 1

8
+ · · · =

∞
∑

n=1

an with a2n = −2−n, a2n−1 =
1

n

Here,
∑

an cannot converge, because if it did, then
∑

an +
∑

2−n would also
converge, but this sum is the divergent series

∑

n−1.
It is worth noting that any alternating series can be obtained by interleav-

ing two positive series. However, with many examples, the two interleaved
series both diverge. (For instance, this is the case for the alternating har-
monic series.) We will return to this idea when studying rearrangements at
the end of this section. �

For a more involved example of an alternating series
∑

an where (|an|)
does not decrease, you should see Exercise 9.12.4.
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Absolute and Conditional Convergence

Example 9.70 introduces an example of a series where the positive and the
negative terms each yield convergent series. In particular,

∑ |an| converges
for this example. In contrast, the alternating harmonic series

∑

(−1)n−1/n
has the property that it converges but

∑ |(−1)n−1/n| diverges. To explore
this idea more, we introduce the following definitions:

Definition 9.71. Let k ∈ N be given, and let (an)∞n=k be a real-valued se-
quence. The series

∞
∑

n=k

an

is said to be absolutely convergent if
∑ |an| converges. For instance, if an ≥ 0

for each n, then
∑

an converges iff it converges absolutely.

If
∑

an converges but does not converge absolutely, then we say that
∑

an is conditionally convergent.

Informally, when a series
∑

an converges conditionally, this means that
the magnitudes (|an|) approach 0 too slowly for

∑ |an| to converge, but the
positive and negative terms cancel each other enough to obtain convergence
of the original series. This is demonstrated well by the zig-zagging partial
sums for the alternating harmonic series in Figure 9.9 earlier. In contrast,
an absolutely convergent series does not need to rely on any cancelation in
order to obtain a convergent sum. More precisely, we have the following:

Theorem 9.72. Let k ∈ N be given, and let (an)∞n=k be a real-valued se-
quence. If

∑

an converges absolutely, i.e.
∑ |an| converges, then

∑

an also
converges, and

∣

∣

∣

∣

∣

∞
∑

n=1

an

∣

∣

∣

∣

∣

≤
∞
∑

n=1

|an|

In other words, the Triangle Inequality holds for absolutely-convergent series.

Strategy. The most important part of this proof is the following inequality,
which holds for any x ∈ R:

−|x| ≤ x ≤ |x|
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Informally, we’d like to apply this to each an and add the results for n from
k to ∞ to get

−
∞
∑

n=k

|an| ≤
∞
∑

n=k

an ≤
∞
∑

n=k

|an|

However, there are two issues with this step. The first issue is that each side
of the inequality is really a limit (since a series is a limit of partial sums),
and we’re not allowed to apply limits throughout an inequality unless we
already know the limits exist. In other words, using this step to prove

∑

an

converges is begging the question. Secondly, the main result that gives us
inequalities between series, the Comparison Theorem, only applies to series
with nonnegative terms, and

∑

an may have some negative terms.
To deal with these issues, we can rewrite our main inequality in a form

where each part is nonnegative. To do this, we take −|an| ≤ an ≤ |an| and
add |an| throughout to obtain

0 ≤ an + |an| ≤ 2|an|

Now, if we let bn = an + |an| and cn = 2|an|, then we see that (bn) and (cn)
are nonnegative sequences, and (cn) dominates (bn). Also,

∑

cn converges
by assumption. Thus,

∑

bn converges by the Comparison Test. It follows
that since

∑

bn and
∑ |an| converge, so does

∑

(bn − |an|) =
∑

an.
Now that we know

∑

an converges, the step that we wanted to do earlier
is justified. This is how we establish the inequality stated in the theorem.

Proof. Let k and (an) be given as described. For every n ∈ N with n ≥ k,
we have

−|an| ≤ an ≤ |an| → 0 ≤ an + |an| ≤ 2|an|
Thus, if we let bn = an + |an| and cn = 2|an|, then bn, cn ≥ 0, bn ≤ cn, and
∑

cn converges by assumption. By the Comparison Test,
∑

bn converges.
Therefore,

∑

(bn − |an|) converges, as it is the difference of two convergent
series, and this series equals

∑

an.

Lastly, to establish the inequality stated in the theorem, we know from
the Triangle Inequality that for every M ∈ N with M ≥ k,

∣

∣

∣

∣

∣

M
∑

n=k

an

∣

∣

∣

∣

∣

≤
M
∑

n=k

|an|
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Because both sides have a finite limit as M → ∞, taking a limit as M → ∞
finishes the proof. �

Theorem 9.72 tells us that absolute convergence is stronger than con-
vergence. Because of this, it is often a good idea to test a mixed series
for absolute convergence first. When testing for absolute convergence, we
consider a nonnegative series

∑ |an|, so we may use all of the tests for non-
negative series from earlier in this chapter. If the series does not converge
absolutely, then we test for conditional convergence, often by using the AST.

Example 9.73:

For each p ∈ R, consider the alternating p-series

∞
∑

n=1

(−1)n−1

np

The absolute-value series corresponding to this is
∑

1/np, which converges
iff p > 1. Thus, this series is absolutely convergent iff p > 1. Another simple
case to consider is when p ≤ 0. In this case, 1/np does not approach 0, so
the Divergence Test says this series diverges for p ≤ 0.

Lastly, we consider when 0 < p ≤ 1. In this case, it is easy to check that
1/np decreases and converges to 0. Thus, the AST shows our series converges
conditionally for p ∈ (0, 1]. �

Example 9.74:

For each p ∈ R, consider the series

∞
∑

n=1

sin n

np

This series is a mixed series, but it is not alternating. Certainly, if p ≤ 0,
then the terms do not converge to 0, so in that case the series diverges by
the Divergence Test. Hence, from now on we consider when p > 0.

When we take absolute values of the terms, we find
∣

∣

∣

∣

sin n

np

∣

∣

∣

∣

≤ 1

np

Thus, when p > 1, our series converges absolutely by the Comparison Test.
This does not, however, imply that the absolute-value series diverges for
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p ≤ 1; the Comparison Theorem does not give you any information for a
series which is dominated by a divergent series. Nevertheless, it is true that
our absolute-value series diverges for p ≤ 1, but the argument is fairly difficult
(see Exercise 9.7.31 for an outline).

Thus, for p ∈ (0, 1], the question remains: does our series converge con-
ditionally? Because the series is not alternating, we cannot use the AST. It
turns out that the series converges conditionally, though most proofs of this
use some theory from complex-valued series, which we do not have enough
time to cover in this book. For more information, look up the complex ex-
ponential function eiθ and a test called Dirichlet’s Test. �

9.11 Series Rearrangements

Absolutely convergent series and conditionally convergent series have a very
surprising difference related to rearranging their terms. Before mentioning
precisely what that difference is, though, let’s see some examples of what
can happen when terms are rearranged in a series. In Example 9.23, we
studied the divergent series

∑

(−1)n and realized that we could make the
partial sums diverge in different ways by ordering the terms differently. For
instance, the ordering

1 + (−1) + 1 + (−1) + 1 + (−1) + · · · ,

which alternates between positive and negative terms, causes the partial sums
to alternate between 1 and 0. On the other hand, the ordering

1 + (−1) + 1 + 1 + (−1) + (−1) + 1 + 1 + 1 + (−1) + (−1) + (−1) + · · · ,

which takes more and more positive terms before balancing them out with
negative terms, has an unbounded sequence of partial sums!

For a more surprising example, we offer the following:

Example 9.75:

We’ll show that the alternating harmonic series

1 − 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · = log 2
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can produce a different sum by reordering its terms! First, suppose we halve
all the terms of this series, so that we get

1

2
− 1

4
+

1

6
− 1

8
+ · · · =

1

2
log 2

Now, add these series for log 2 and (log 2)/2 together. The 1/2’s cancel, and
the two copies of −1/4 combine to form −1/2. Similarly, the 1/6’s cancel,
and the −1/8’s combine to form −1/4. Continuing with this pattern, we get

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+ · · · =

3

2
log 2

This shows that if we rearrange the alternating harmonic series by taking
two positive terms for each negative term, the sum becomes 3/2 times its
original value! A similar tactic allows us to obtain, for each even k ∈ N∗,
a rearrangement of the alternating harmonic series which converges to (1 +
1/k) log 2: see Exercise 9.12.23.

In fact, if you consider the rearrangement of the alternating harmonic
series which uses p positive terms followed by m negative terms, where p, m ∈
N∗, then the value of the sum can be found in terms of p and m. However,
the approach used to compute this sum is more difficult: see Exercise 9.12.24.
�

Thus, we see that for some series, the order in which the terms are pre-
sented affects the sum. The mathematician Bernhard Riemann (the same
Riemann from Riemann sums in integration) realized that rearrangements
affect all conditionally convergent series (they do not affect any absolutely
convergent series, as you can prove in Exercise 9.12.25). This result is for-
malized in the Riemann Rearrangement Theorem, also known as Riemann’s
Series Theorem.

Before presenting the Riemann Rerrangement Theorem in Theorem 9.79,
it is worthwhile to define rearrangement more precisely and also introduce
some useful results. Without loss of generality, let’s focus only on series
whose terms start with index 1.

Definition 9.76. Let (an)∞n=1 be a real-valued sequence. For any bijection
σ : N∗ → N∗, the sequence (aσ(n))

∞
n=1 is called a rearrangement of (an). In

other words, a rearrangement is a reordering in which each index occurs
exactly once. Similarly, the rearrangment of the series

∑

an is the series
∑

aσ(n).

PREPRINT: Not for resale. Do not distribute without author’s permission.



694 Section 9.11: Series Rearrangements

Certainly, the sum of a mixed series will depend on the interaction be-
tween the positive and negative terms. To make this interaction easier to
analyze, let’s introduce some useful notation to help us separate the positive
and the negative terms. For any x ∈ R, define

x+ = max{x, 0} =

{

|x| if x > 0

0 if x ≤ 0
x− = −min{x, 0} =

{

|x| if x < 0

0 if x ≥ 0

x+ and x− are respectively called the positive part and negative part of x.
The main idea behind these definitions is that x+ is nonzero only when x
is positive, and x− is nonzero only when x is negative. When x+ or x− is
nonzero, it equals x’s magnitude.

Why are these parts useful? Suppose
∑

an is a given mixed series. The
sum of its positive terms is

∞
∑

n=1

a+
n

(each negative an has a−
n = 0, so negative terms don’t affect this sum), and

the sum of its negative terms is

−
∞
∑

n=1

a−
n

Thus, the x+ and x− notation provides a convenient way to separate these
two sums.

Furthermore, for any x ∈ R, you can check that

x = x+ − x− |x| = x+ + x−

By solving these equations for x+ and x−, we obtain

x+ =
|x| + x

2
x− =

|x| − x

2

This establishes plenty of useful relationships between
∑

a+
n ,
∑

a−
n ,
∑

an,
and

∑ |an|, which are summarized in the following theorem:

Theorem 9.77. Let (an)∞n=1 be a real-valued sequence such that
∑

an con-
verges.

1.
∑

an converges absolutely iff
∑

a+
n and

∑

a−
n both converge.
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2.
∑

an converges conditionally iff
∑

a+
n and

∑

a−
n both diverge to ∞.

Strategy. All of the parts of this theorem come from the relationships above.
For instance, if

∑

a+
n and

∑

a−
n converge, then

∑ |an| converges because
|an| = a+

n + a−
n . The other direction of Part 1 is similar. For Part 2, if

∑

an converges conditionally, then
∑

a+
n is the sum of a convergent and a

divergent series, because a+
n = (|an| + an)/2. Thus,

∑

a+
n diverges. The rest

of this part is proven similarly.

Proof. Let (an)∞n=1 be given such that
∑

an converges. For Part 1, if
∑

a+
n

and
∑

a−
n both converge, then

∑ |an| converges as well because |an| = a+
n +a−

n

for each n ∈ N∗. Conversely, if
∑ |an| converges, then both

∑

a+
n and

∑

a−
n

converge because we have

a+
n =

|an| + an

2
and a−

n =
|an| − an

2

and
∑

an also converges.
(For an alternate proof of this direction, note that for each n ∈ N∗,

0 ≤ a+
n , 0 ≤ a−

n , and a+
n + a−

n = |an|. Thus,
∑

a+
n and

∑

a−
n are nonnegative

series which are dominated by
∑ |an|, so they converge by CT.)

For Part 2, first suppose that
∑

a+
n and

∑

a−
n diverge. By Part 1,

∑

an

does not converge absolutely. Because
∑

an is assumed to converge, it must
converge conditionally, proving one direction. For the other direction, if
∑

an converges and
∑ |an| diverges, then the equations for a+

n and a−
n above

show that
∑

a+
n and

∑

a−
n are sums of a convergent and a divergent series.

Therefore, they must diverge, and since they are nonnegative series, they
diverge to ∞. �

The Rearrangement Theorem And A “Tug Of War” Game

To illustrate the importance of Theorem 9.77, we present a “tug of war”
metaphor. Let’s suppose that two players named P and M (for “Plus” and
“Minus”) are holding onto opposite ends of a rope. This rope is hovering over
a number line, and to start, the center of the rope hovers over 0. Player P
wants to pull the rope farther to the right, increasing the coordinate of the
rope’s center, whereas Player M wants to pull the rope farther to the left,
decreasing the coordinate of the rope’s center. Also, Player P starts with a
list of all the positive terms of a mixed series

∑

an (i.e. P starts with all the
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a+
n terms), and Player N starts with a list of all the negative terms (i.e. all

the a−
n terms).

The players play a game with an infinite sequence of moves. To make a
move, one of the players looks at their list of numbers, selects the first one
on the list, moves the rope by that amount, and then removes the number
they just used from their list. Thus, if Player P makes a move, then the rope
moves to the right by a+

n units for some n. Similarly, if Player M makes a
move, then the rope moves left by a−

n units for some n. A player may make
multiple moves in a row before giving the other player a turn; we only require
that each player must give up their turn after finitely many moves.

Why does this game relate to rearrangements? On each move, some term
of the original series is selected by a player; let’s say that on the nth move,
the term aσ(n) is selected. (Thus, aσ(n) = a+

σ(n) when Player P chooses, and

aσ(n) = −a−
σ(n) when Player N chooses.) Also, let’s say Sn is the position

of the rope’s center after n moves. The game starts with the rope’s center
hovering over 0, so S0 = 0. Also, if the rope hovers over Sn after n moves,
then on the (n + 1)st move, the rope is pulled by the amount aσ(n+1), so
Sn+1 = Sn + aσ(n+1). Therefore, we have

Sn =
n
∑

i=1

aσ(i)

so Sn is the nth partial sum of the rearranged series with terms (aσ(n))
∞
n=1!

Hence, as the players play their game, they are defining a rearranged version
of the original series.

Example 9.78:

For a concrete example, consider the rearrangement of the alternating har-
monic series from Example 9.75 which converges to (3/2) log 2. This rear-
rangement is built by taking two positive terms, then one negative term, and
then repeating. In terms of the “tug of war” game, this corresponds to Player
P making two moves each turn and Player M making one move each turn.

Player P’s list starts with the terms a+
1 = a1 = 1, a+

3 = a3 = 1/3, a+
5 =

a5 = 1/5, and so forth. Player M’s list starts with the terms a−
2 = −a2 = 1/2,

a−
4 = −a4 = 1/4, a−

6 = −a6 = 1/6, and so forth. The first few terms used in
the rearrangement of the series (i.e. the first few moves made in the game)
are, in order,

a1, a3, a2, a5, a7, a4, . . .
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which leads to σ(1) = 1, σ(2) = 3, σ(3) = 2, σ(4) = 5, σ(5) = 7, σ(6) = 4,
and so forth. In general, you can prove by induction that for any n ∈ N∗,

σ(3n − 2) = 4n − 3 σ(3n − 1) = 4n − 1 σ(3n) = 2n

and you can verify that σ is a bijection from N∗ to N∗.
Note that with this particular game, Player P always took two moves per

turn, and Player M always took one move per turn. However, in general, the
number of moves per turn does not have to be constant for either player. All
that matters is that the number of moves per turn is always finite, so that
each player will get infinitely many turns and be able to use every number
on their list eventually. �

With this metaphorical game, we can explain the difference between abso-
lutely convergent and conditionally convergent. For an absolutely convergent
series, each player has a maximum total length that they can ever hope to
pull (these total lengths are

∑

a+
n for P and

∑

a−
n for M). As the game pro-

ceeds, each player approaches their total limit of how much they can pull, so
they become unable to pull the rope very far late in the game. Even when a
player uses a lot of moves per turn, if that player is close to their total limit,
then the rope won’t budge very far after all these moves. This suggests that
no matter who tugs when, the rope will settle down to a limit position at the
end of the game. (In fact, the limit position will be the same for each game
played with this series!)

In contrast, for a conditionally convergent series,
∑

a+
n and

∑

a−
n are

both infinite, so neither player has a limit on their total amount to pull.
This means that no matter how many moves a player has made, they still
have “infinite strength” and can move the rope as far as desired given enough
moves in a row. Although the moves become smaller and smaller as the
game proceeds (because an → 0 for a convergent series), to compensate, the
players will take more and more moves before giving the other player a turn.

Although Riemann probably did not use the phrase “tug of war” to de-
scribe conditionally convergent series, his famous Rearrangement Theorem,
which we are now ready to present, does use an algorithm which is similar
to our game:

Theorem 9.79 (Riemann Rearrangement Theorem). Let (an)∞n=1 be a
given real sequence such that

∑

an converges conditionally. Then for any
L ∈ R, there exists a bijection σ : N∗ → N∗ such that the rearranged series
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converges to L, i.e.
∞
∑

n=1

aσ(n) = L

Strategy. To illustrate the main idea, we’ll continue with the tug-of-war
metaphor. Suppose that the two players start the game centered at 0, and a
marker is placed on L. Player P wants to be on the right side of this marker,
and Player M wants to be on the left side. Thus, for the first turn, Player P
keeps pulling the rope to the right until L is passed, i.e. until the rope lies to
the right of L. (If L < 0, then Player P makes only one move, just so their
turn does something.) After that, Player M makes some moves pulling the
rope until L is passed again, i.e. until the rope center lies to the left of L. At
this point, control goes back to Player P, who pulls until L is passed again,
and so forth. During the game, the two players pass L infinitely often.

Let’s be more precise about how we keep track of the game in progress.
At the start of the game, let’s say that Player P’s list consists of the subse-
quence a+

p1
, a+

p2
, a+

p3
, and so forth. (Thus, (api

)∞i=1 enumerates the subsequence
of positive terms of (an)∞n=1.) Similarly, Player M’s list consists of the sub-
sequence a−

m1
, a−

m2
, and so forth, yielding a subsequence (amj

)∞j=1 of negative
terms of (an)∞n=1. With this notation, we can keep track of how many moves
each player has made with two variables i and j. At the start of the game, i
and j are both 1. When Player P moves, they select api

from their list, and
then i is incremented. When Player M moves, they select amj

from their list,
and then j is incremented. Thus, when Player P moves, i − 1 is the number
of moves they have made beforehand, and similarly for Player M.

To see that this is a valid game, we need to know that each player only
moves finitely many times before relinquishing their turn. This is where we
use the fact that

∑

a+
n and

∑

a−
n are infinite. When it is Player P’s turn,

P wants to move the rope as far as needed to pass L. The rope only needs
to move a finite distance before the turn ends. The total amount that P
could possibly move the rope, api

+ api+1
+ api+2

+ · · · , is infinite. Thus, only
finitely many moves from P are needed to pass L. A similar argument works
for Player M.

As this game is played, a rearrangement of the original series is built.
As the game proceeds, the moves played appear further down the players’
original lists (because each player makes at least one move per turn). Since
an → 0 as n → ∞, it follows api

and amj
go to 0 as i, j → ∞ as well. Thus,
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the players overshoot L by less and less per turn, and the rope eventually
settles in on L.

To make a formal proof, we just have to phrase the ideas from the game
precisely. We will use the sequences (pi) and (mj). We’ll maintain variables
i and j to denote the progress of the game. We’ll keep track of how many
moves n have been made in total, using this to build a rearrangement σ(n).
We’ll keep track of the sum we have built so far using the variable S. Also,
we will keep track of whose turn it is with a variable; let’s say T = 1 when
it is P’s turn and T = −1 when it is M’s turn. With these values, we can
describe the algorithm without any mention of the game.

Proof. Let (an)∞n=1 be given as described. Also, let L ∈ R be given. We
describe an algorithm for producing a bijection σ : N∗ → N∗ such that

∞
∑

n=1

aσ(n) = L

Before starting the algorithm, let (api
)∞i=1 be the subsequence of (an)

consisting of the positive terms. In other words, (pi)
∞
i=1 is a strictly increasing

sequence from N∗, and for each n ∈ N∗, if an > 0, then there is some i ∈ N∗

such that n = pi. Similarly, let (amj
)∞j=1 be the subsequence of (an) consisting

of the negative terms. (We may WLOG suppose that no terms of (an) are
zero, because terms of zero do not affect the sum of a series.) Note that

∞
∑

n=1

a+
n =

∞
∑

i=1

api
= ∞ and

∞
∑

n=1

a−
n =

∞
∑

j=1

−amj
= ∞

because of Theorem 9.77 (since
∑

an converges conditionally).
Now, we give the steps of the algorithm, which uses the variables i, j, n,

S, and T . i and j keep track of how many terms of our subsequences have
been used, whereas n keeps track of the total number of terms used. S will
maintain the partial sum of the rearrangement built so far, and T will either
be 1 if we are adding positive terms or −1 if we are adding negative terms.

1. As initial values, set i, j, and n to 1, set S to 0, and set T to 1.

2. If T is 1, then add api
to the current value of S, set σ(n) equal to pi,

and increment the values of i and n. Otherwise, if T is −1, then add
amj

to the current value of S, set σ(n) equal to mj , and increment the
values of j and n.
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3. If T is 1 and S > L, then set T to −1. Otherwise, if T is −1 and
S < L, then set T to 1.

4. Go back to Step 2. (Hence, this algorithm will never terminate.)

At this point, we establish a useful property of this algorithm. Every time
Step 2 is reached, we have the following:

S =

n−1
∑

k=1

aσ(k) =

i−1
∑

k=1

api
+

j−1
∑

k=1

amj

(This property is called an invariant of the algorithm.) You can check that
the invariant holds the first time Step 2 is reached, due to the assignments in
Step 1. Also, each time Step 2 is run, the invariant remains true because of
how σ(n) is assigned before n is incremented (along with i or j). This proves
that our invariant always holds.

Next, we claim that at any point in the algorithm, T changes after finitely
many more steps. To see this, let’s first consider the case when T is 1,
and suppose for contradiction that T never changes again. Thus, i always
increases and j never changes in Step 2 as the algorithm continues. Since
∑

api
= ∞, there is some I ∈ N∗ for which

I−1
∑

k=1

apk
> L −

j−1
∑

k=1

amj

When i takes the value I, our invariant shows that S > L, and Step 3 changes
the value of T , contradicting our assumption. This proves the claim in the
case where T is 1, and a similar proof works for the case when T is −1.

As a result, because T changes infinitely often, Step 2 guarantees that
i and j are incremented infinitely often. Thus, every pi and every mj will
occur in the range of σ as the algorithm proceeds. This proves σ is surjective.
Furthermore, because (pi)

∞
i=1 and (mj)

∞
j=1 are strictly increasing sequences

with disjoint ranges, σ will never repeat values: i.e. we cannot find m, n ∈ N∗

such that m 6= n and σ(m) = σ(n). Thus, σ is injective as well, so it is
bijective.

We have proven that this algorithm produces a rearrangement (aσ(n))
∞
n=1

of our original sequence. It remains to show that the partial sums of this
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rearrangement converge to L. Thus, let ǫ > 0 be given; we need to show
when n is sufficiently large,

∣

∣

∣

∣

∣

L −
n−1
∑

k=1

aσ(k)

∣

∣

∣

∣

∣

= |L − S| < ǫ

To see this, note that the largest S gets is just after a term api
is added in

Step 2 to make S > L, before Step 3 changes the value of T to −1. Similarly,
the smallest S gets is just after a term amj

is added in Step 2 to make S < L,
before Step 3 changes the value of T to 1. Thus, to guarantee that S lies
between L − ǫ and L + ǫ, we need only require that |api

|, |amj
| < ǫ for i

and j large enough. This follows because an → 0 as n → ∞ (since
∑

an

converges), so api
→ 0 as i → ∞ and amj

→ 0 as j → ∞ as well. �

Remark. It is worth noting that there are many different rearrangements of
a conditionally-convergent series which produce the same sum. For instance,
in the proof we just gave, each player stopped moving immediately after they
passed L. We could make a different game where each player stops moving
two moves after they pass L. You can check that this would yield a different
rearranged series with the sum L.

Also, it is possible to make rearrangements which cause the sum to diverge
to ∞ or −∞. See Exercise 9.12.27.

To demonstrate the algorithm used in the proof of Theorem 9.79, let’s
consider running that algorithm with the alternating harmonic series and
L = 1 (so an = (−1)n−1/n for each n ∈ N∗). Thus, the positive terms are
a1, a3, a5, and so forth, and the negative terms are a2, a4, a6, and so on. In
particular, pi = 2i − 1 and mj = 2j for each i, j ∈ N∗.

We start with i, j, n = 1, S = 0, and T = 1. Because 0 < L, we use the
term api

= a1 = 1/1 and increment i and n. Now, S = 1 = L, so Step 2 will
use the term api

= a3 = 1/3 and increment i and n. Now, S = 4/3 > L, so
Step 3 changes T to −1. The next run of Step 2 adds amj

= a2 = −1/2 to
S, incrementing j and n. Now, S = 5/6 < 1, so Step 3 changes T back to 1.

After this, 1/5 is added, which makes S larger than 1 again. Thus, −1/4
is added, making S smaller than 1 again. Next, 1/7 and 1/9 are both added
before S becomes greater than 1, and so forth. In summary, the first few
terms of the rearranged series which converges to 1 are

1 +
1

3
− 1

2
+

1

5
− 1

4
+

1

7
+

1

9
− 1

6
+ · · ·
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After adding −1/6, when the algorithm reaches Step 4, it has the values
n = 9, i = 6, j = 4, T = 1, and S = 1097/1260 < L. (Note that in the terms
above, i − 1 of them are positive and j − 1 of them are negative, leading to
n − 1 total terms.) Try computing a few more terms of this rearrangement
on your own!

9.12 Exercises

In Exercises 1 through 3, use the Alternating Series Test to show the series
converges, and find an n ∈ N∗ such that the nth partial sum approximates
the sum of the series to within 1/100.

1.

∞
∑

n=1

(−1)n−1 log n

n

2.
∞
∑

n=1

(−1)n log(1 + 1/n)

3.

∞
∑

n=1

(−1)n(n + 2)

n3

4. For each p ∈ (0,∞), consider the series

∞
∑

n=1

(−1)n−1bn with bn =
1

np + (−1)n

(Note that if p ≤ 0, then bn does not approach 0 as n → ∞.)

(a) Prove that this series converges absolutely iff p > 1.

(b) Now suppose p ∈ (0, 1]. Show that (bn)∞n=1 is not a decreasing
sequence by proving that for all n ∈ N∗, b2n+1 > b2n. Thus,
the Alternating Series Test does not apply. (Hint: The difference
(2n + 1)p − (2n)p can be approximated using the Mean Value
Theorem.)

(c) Prove that for p ∈ (0, 1],

lim
n→∞

b2n+1 − b2n

n−2p
= L

exists and is positive. Thus, b2n+1 − b2n ∼ Ln−2p.

(d) Use parts (a) and (c) to prove that our series converges condition-
ally iff p ∈ (1/2, 1].
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5. Prove Corollary 9.68.

6. Prove the following extension of the Root Test for mixed series:

Theorem 9.80. Let k ∈ N be given, and let (an)∞n=k be a real-valued
sequence. Suppose that

lim
n→∞

|an|1/n = r

where r is either a nonnegative real number or ∞. The series
∑

an

converges when r < 1, and the series
∑

an diverges when r > 1 (this
includes the case when r = ∞).

(Hint: The only part requiring a new idea is when r > 1. Use the
Divergence Test.)

7. Prove the following extension of the Ratio Test for mixed series:

Theorem 9.81. Let k ∈ N be given, and let (an)∞n=k be a real-valued
sequence with an 6= 0 for all n ≥ k. Suppose that

lim
n→∞

|an+1|
|an|

= r

where r is either a nonnegative real number or ∞. The series
∑

an

converges when r < 1, and the series
∑

an diverges when r > 1 (this
includes the case when r = ∞).

For Exercises 8 through 20, determine if the series is absolutely conver-
gent, conditionally convergent, or divergent. You may use any tests from this
chapter, including the extended Root and Ratio Tests from the previous two
exercises, but you should justify why each test you use applies.

8.
∞
∑

n=1

(−1)n+1

√
n

9.

∞
∑

n=1

(−1)n
√

n

n + 100

10.

∞
∑

n=1

cos3 n

n3/2

11.
∞
∑

n=1

(−1)n

(

1 +
1

n

)n

12.

∞
∑

n=1

(−1)n

n1/n

13.

∞
∑

n=1

(−1)n

log(en + e−n)
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14.

∞
∑

n=1

(−1)(−4)(−7) · · · (−(3n + 1))

(2)(4)(6) · · · (2n)

15.

∞
∑

n=1

(−1)n sin

(

1

n

)

16.

∞
∑

n=1

(−1)n

(

1 − cos

(

1

n

))

17.

∞
∑

n=1

(−1)n
(

e1/n − 1
)

18.

∞
∑

n=1

(−1)n(n−1)/22−n

19.

∞
∑

n=1

(−1)n

n log2(n + 1)

20.
∞
∑

n=1

an with an =

{

1/n if n = m2 for some m ∈ N∗

1/n2 otherwise

21. Use the idea of Theorem 9.77 to prove that for all real-valued sequences
(an)∞n=1, if exactly one of the series

∑

a+
n and

∑

a−
n converges, then

∑

an diverges.

22. When discussing the Integral Test, we showed the nth harmonic number

Hn =
n
∑

i=1

1

i

is closely related to log n. In this exercise, we outline a proof that
Hn − log n approaches a limit γ as n → ∞. This limit is called the
Euler-Mascheroni constant17

γ ≈ 0.5772156649 . . .

(a) Prove that for all n ∈ N∗,

Hn − log n =

n
∑

i=1

1

i
−

n−1
∑

j=1

∫ j+1

j

dx

x

17Interestingly, it is unknown, as of the writing of this book, whether γ is rational! See
http://en.wikipedia.org/wiki/Euler-Mascheroni_constant for more details.
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Use this to conclude that Hn − log n is the (2n− 1)st partial sum
of the alternating series

∞
∑

n=1

(−1)n−1an with a2n−1 =
1

n
, a2n =

∫ n+1

n

dx

x

(b) Prove that the alternating series from part (a) converges. Use this
to conclude that Hn − log n converges as n → ∞.

Remark. From this exercise, it follows that Hn can be written as

Hn = log n + γ + o(1) as n → ∞

using little-o notation. This becomes quite useful for analyzing variants
on the harmonic series.

23. Use an argument similar to Example 9.75 to construct, for each even
k ∈ N∗, a rearrangement of the alternating harmonic series that con-
verges to (1 + 1/k) log 2.

24. At the end of Exercise 9.12.22, it is shown that

Hn = 1 +
1

2
+ · · · + 1

n
= log n + γ + o(1)

as n → ∞. Let’s use this to analyze rearrangements of the alternating
harmonic series. For each n ∈ N∗, let an = (−1)n−1/n.

(a) Prove that for each n ∈ N∗,

n
∑

i=1

1

2i
=

Hn

2

and
n
∑

i=1

1

2i − 1
= H2n − Hn

2

(b) Suppose we take the rearrangement of the alternating harmonic
series consisting of repeating p positive terms followed by m neg-
ative terms indefinitely, where p, m ∈ N∗. (In Example 9.75, the
rearrangement corresponds to p = 2 and m = 1.) Use part (a)
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to show that for each n ∈ N∗, the (p + m)nth partial sum of this
rearranged series is

H2pn − Hpn + Hmn

2

From this, use the remark at the beginning of this exercise to show
this equals

log(2) +
1

2
log(p/m) + o(1)

as n → ∞.

(c) Using the rearrangement from part (b), show that the rearranged
series converges to log 2 + (log(p/m))/2. (Hint: Part (b) only
proves that the partial sums of the form s(p+m)n converge to that
limit! Can you show that the partial sums of the form s(p+m)n+1

have the same limit? What about the partial sums of the form
s(p+m)n+2, and so on? After this, adapt the idea of Exercise 9.2.21.)

25. Let (an)∞n=1 be an infinite real-valued sequence such that
∑ |an| con-

verges. By Theorem 9.77, we may define

L+ =

∞
∑

n=1

a+
n L− =

∞
∑

n=1

a−
n

with L+, L− ∈ [0,∞). Prove that every rearrangement of
∑

an con-
verges to L+ − L−. (Hint: For each ǫ > 0, take enough terms from
∑

a+
n so that the partial sum is within ǫ/2 of the total sum. Do a

similar step with
∑

a−
n . How many terms should be taken from the

rearranged series?)

26. Consider the series
∞
∑

n=1

(−1)n−1

√
n

This series is conditionally convergent. Find the first 20 terms in a
rearrangement of the series which converges to the sum 2. Also, find
the first 20 terms in a rearrangement of the series which converges to
the sum −1.
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27. Prove that every conditionally convergent series has a rearrangement
which produces the sum ∞, as well as a rearrangement producing the
sum −∞. (Hint: Adapt the proof of the Rearrangement Theorem
allowing L to change at certain points in the algorithm.)

28. Previously, in Example 9.56, we saw that

∫ ∞

1

|sin x|
x

dx

diverges. In this exercise, we will outline a proof that

∫ ∞

1

sin x

x
dx

converges. (Thus, this improper integral converges conditionally.) The
idea of this argument, much like the argument in Example 9.56, is to
consider “hills” of positive and negative area. For each n ∈ N∗, define

In =

∫ (n+1)π

nπ

sin x

x
dx

i.e. In represents the area of the nth hill. (Note that In is positive iff n
is even.)

(a) Use the results of Example 9.56 to show that (|In|)∞n=1 is decreasing
and In → 0 as n → ∞. Thus, by the Alternating Series Test,

∑

In

converges.

(b) Prove that

lim
b→∞

∫ b

1

sin x

x
dx =

∫ π

1

sin x

x
dx + lim

N→∞

N
∑

n=1

In

This proves that our improper integral converges. (Hint: Compare
the partial integral up to b with the partial sums using ⌊b/π⌋ or
⌈b/π⌉ terms.)
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Chapter 10

Uniform Convergence and Power

Series

In the previous chapter, we studied sequences of real numbers, particularly
in the context of infinite series. Along the way, we demonstrated some tech-
niques for analyzing convergence of sequences and series, such as the BMCT
and many series tests. A key theme in that chapter is approximation: the
terms of a sequence become close to the limit, and partial sums of a series
become close to the sum of the series. Similarly, in this chapter, we study
sequences and series of real-valued functions, and we analyze how close func-
tions in a sequence become to a “limiting function”.

It’s worth noting that we’ve already seen some important examples of
sequences of real-valued functions, although we may not have referred to
them as such. For instance, we studied geometric series, showing that

∞
∑

n=0

rn =
1

1 − r

for every r ∈ (−1, 1). Rather than think of r as a fixed constant, we can think
of it as a variable in a function. More precisely, if we define f : (−1, 1) → R

by

f(r) =
1

1 − r
for all r ∈ (−1, 1)

and for each n ∈ N, we define fn : (−1, 1) → R by

fn(r) =

n
∑

i=0

ri for all r ∈ (−1, 1)
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(so fn(r) is the nth partial sum of the geometric series), then our geometric
series formula says that fn(r) → f(r) for every r ∈ (−1, 1) as n → ∞. In
this way, the sequence of functions (fn)∞n=0 approaches the function f .

As another example, we have the Riemann zeta function

ζ(s) =

∞
∑

n=1

1

ns
for all s > 1

As with the geometric series, ζ(s) is the limit of a sequence of partial sums.
More precisely, if

ζn(s) =
n
∑

i=0

1

is

then ζn(s) → ζ(s) as n → ∞ for all s > 1. Since we don’t have a convenient
way to find exact values of ζ(s), the next best thing to do is to ask how similar
ζ is to each ζn. This raises questions such as: Since each ζn is continuous,
does it follow that ζ is? Is ζ bounded on (1,∞) because each ζn is? Is ζ
differentiable or integrable? Later in this chapter, we will be able to answer
many of these questions.

Last, but certainly not least, Taylor polynomials provide a very good
example of sequences of functions. When a ∈ R is given, and f is a real
function which is infinitely differentiable at a, we can form the sequence of
Taylor polynomials (Tnf(x; a))∞n=0. Intuitively, Tnf(x; a) is supposed to be a
good approximation to f(x) when x is near a, and increasing n is supposed
to make the approximation better. More precisely, if S is the set of all x ∈ R

satisfying Enf(x; a) → 0 as n → ∞ (recall that Enf(x; a) is the nth-order
Taylor error), then for all x ∈ S,

f(x) = lim
n→∞

Tnf(x; a)

= lim
n→∞

n
∑

i=0

f (i)(a)

i!
(x − a)i =

∞
∑

i=0

f (i)(a)

i!
(x − a)i

This last expression for f(x), which uses an infinite series of powers of x− a,
is called a power series centered at a. We will be able to prove a useful result
about the set S later in this chapter: S must be a (possibly infinite) interval
centered at a.

To generalize these examples, suppose that we have a sequence of real-
valued functions (fn)∞n=0, all with the same domain D. The main question
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we ask is: does this sequence of functions converge to a limit function f , in
the sense that fn(x) → f(x) as n → ∞ for all x ∈ D? When fn approaches
f in this manner, we say that f is the pointwise limit of the sequence (fn)
on D. Intuitively, you may suspect that when fn converges to f , fn behaves
much like f when n is sufficiently large. More formally, we’d like to know
which properties of the fn functions carry over to f , such as continuity,
differentiability, integrability, boundedness, and so forth.

As we will soon see, however, there is very little that can be proven in
general when f is the pointwise limit of a sequence (fn). The main issue is
that the speed at which fn(x) converges to f(x) may vary wildly based on x.
To address this, we introduce another way in which functions can converge
to other functions, called uniform convergence. In addition to pointwise con-
vergence, uniform convergence requires fn(x) to approach f(x) in a manner
independent of x. We will show that when fn converges to f uniformly,
many properties of the fn functions carry over to f . This is useful in many
applications, where we create a function f with some desired properties by
building it as a uniform limit of a sequence (fn) of approximating functions.
For instance, at the end of this chapter, we’ll show how to solve some differ-
ential equations and how to construct a function which is continuous on all
of R but not differentiable at any point.

10.1 Perils of Pointwise Convergence

To start our discussion, let’s first make a precise definition of what it means
for a sequence of functions to converge. The simplest possible definition is
the notion of pointwise convergence:

Definition 10.1. Let D ⊆ R and k ∈ N be given, and let (fn)∞n=k be an
infinite sequence of real functions defined on D. Also, let f be a real-valued
function defined on D. We say that (fn) converges to f pointwise on D as
n → ∞ if

f(x) = lim
n→∞

fn(x)

for all x ∈ D. f is called the (pointwise) limit of (fn) on D, and we write

fn → f on D as n → ∞

The set D is sometimes not mentioned when D is clear from the context.
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The definition of pointwise convergence is simple. However, it’s often
not useful for proving theorems, since when fn → f pointwise, very few
properties satisfied by the fn functions can be guaranteed to carry over to f .
In the rest of this section, we provide some examples to support this idea.
In the next section, we will introduce the notion of uniform convergence to
address most of the issues presented by these examples.

First, we show that in general, a pointwise limit of bounded functions
might not be bounded:

Example 10.2:

Consider the geometric series from this chapter’s introduction. Thus, for
each n ∈ N and each x ∈ (−1, 1), we define

fn(x) =

n
∑

i=0

xi f(x) =
1

1 − x

We know that fn → f on (−1, 1). In fact, the equation defining fn actually
describes a continuous function on [−1, 1], so each fn is bounded on (−1, 1).
(In fact, it is easy to show that sup{|fn(x)| | x ∈ (−1, 1)} = n + 1 for all
n ∈ N.) However, f is unbounded on (−1, 1).

The issue with this example is that the bound on the range of fn depends
on n. Specifically, sup{|fn(x)| | x ∈ (−1, 1)} approaches ∞ as n → ∞. On
the other hand, it is not too difficult to prove that f is bounded when each fn

is bounded by the SAME bound. More precisely, you can prove in Exercise
10.3.2 that if there is a constant M > 0 satisfying

∀x∀n ∈ N |fn(x)| ≤ M

then |f(x)| ≤ M for all x as well. �

Next, we proceed to what is arguably the largest problem with the notion
of pointwise convergence: it does not preserve continuity. In other words,
there are examples of sequences of real functions (fn) where each fn : D → R

is continuous on D but the pointwise limit is not continuous on D. For
instance, we offer the following examples:

Example 10.3:

For each n ∈ N∗, we define fn : [0, 1] → R by

fn(x) = xn
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for each x ∈ [0, 1]. It is not hard to check that for each x ∈ [0, 1],

lim
n→∞

fn(x) =

{

0 if x < 1

1 if x = 1

Clearly, the limit function is discontinuous at 1, although each fn is contin-
uous on [0, 1].

0 1

1

f1

f2

f3

x

y

Figure 10.1: Graphs of fn(x) = xn for some values of n

Informally, why does this behavior occur? Some insight may be obtained
from the graphs in Figure 10.1. The closer x is to 0, the faster xn converges
to 0. (In fact, when 0 < x < y < 1, xn = o(yn) as n → ∞.) Thus, as n
grows, points with x close to 1 are “lagging behind” the values where x is
close to 0. Once we reach the limit f , every point x ∈ [0, 1) has “caught
up” and obtained its limit of 0. This sudden shift from “lagging behind” to
“catching up” causes the limit function’s graph to jump at 1. �

Example 10.4:

Suppose fn : R → R is defined for each n ∈ N∗ and x ∈ R by

fn(x) = cos(πx)2n

A similar argument as in the previous example shows that

lim
n→∞

fn(x) =

{

0 if x 6∈ Z

1 if x ∈ Z
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Thus, this example shows that the pointwise limit of continuous functions
can have infinitely many discontinuities!1 �

For a somewhat different example, we demonstrate one way to start with
a limit function in mind and then create a sequence of functions with that
limit. This is useful for generating counterexamples to claims about pointwise
convergence.

Example 10.5:

Recall the Heaviside function H : R → R is defined for all x ∈ R by

H(x) =

{

0 if x < 0

1 if x ≥ 0

In this example, we show a way of making a sequence of continuous functions
(fn) which converge pointwise to H on R.

The key idea here is that H has only one discontinuity, and it’s at 0.
Thus, to make a continuous function which is a good approximation of H ,
we can make the function equal to H until we get a certain distance from 0,
and then we connect the pieces of the graph together with a simple curve.
One such function is defined by the equation

f(x) =

{

H(x) if x ≥ 0 or x < −1

x + 1 if x ∈ [−1, 0)

Intuitively, this choice of f agrees with H everywhere except for an inter-
val of length 1, then it uses a straight segment to join the two parts of the
Heaviside function together. For convenience, we chose to make the function
linear on [−1, 0), though any continuous function on [−1, 0] with the value 0
at −1 and the value 1 at 0 could be used instead.

Now, we use this idea to make a sequence of approximating functions. For
each n ∈ N∗, we make the nth function agree with H everywhere except for an
interval of length 1/n (this way, the “exception interval” becomes arbitrarily
small as n approaches ∞), and then we use a segment to join the two parts
of the curve. This leads to the following equation for all x ∈ R:

fn(x) =











0 if x < −1/n

nx + 1 if x ∈ [−1/n, 0)

1 if x ≥ 0

1Remark: It is unknown to the author whether it is possible to have a pointwise limit
of continuous functions be nowhere continuous.
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It is not hard to check that each fn is continuous on R. It is also clear
that fn → H on [0,∞). To prove that fn → H on (−∞, 0), we take an
arbitrary x < 0 and aim to show that fn(x) → 0 as n → ∞. Intuitively,
we see that as n grows larger, the “exception interval” for fn gets smaller,
closing in on 0, so eventually x lies outside this “exception interval”. More
formally, whenever n is large enough to satisfy 1/n < |x| (i.e. n > 1/|x|), we
have x < −1/n and thus fn(x) = 0 = H(x).

This finishes the proof that fn → H on R. Note that the fact that fn

is linear on (−1/n, 0) never gets used in the proof! Informally, the behavior
on the “exceptional interval” is irrelevant, because as n approaches ∞, the
“exceptional interval” becomes compressed down to the single-element set
{0}. Thus, we can choose to define fn on (−1/n, 0) however we like, provided
that fn stays continuous on R. �

Based on the previous examples, it may come as no surprise that pointwise
limits don’t preserve integrability either. In other words, a pointwise limit
of functions which are integrable on an interval [a, b] might not be integrable
on [a, b]. For instance, we have the following:

Example 10.6:

Perhaps our most well-studied example of a non-integrable function is the
characteristic function of the rationals χQ, defined for all x ∈ R by

χQ(x) =

{

1 if x ∈ Q

0 if x 6∈ Q

We aim to show that χQ can be expressed as the pointwise limit of integrable
functions.

To do this, we first note what makes χQ non-integrable on any interval
[a, b] with a < b. χQ jumps between 0 and 1 very rapidly, because Q and
R−Q are both dense in R. This forces every lower step function to lie below
y = 0 and every upper step function to lie above y = 1.

This suggests that one way to approximate χQ is to use only finitely
many jumps, i.e. make a function which takes the value 1 at only finitely
many rationals. Since the value of an integral is never affected by finitely
many points, the resulting function is integrable. To formalize this idea,
let’s enumerate the rationals as (rn)∞n=1 (see the definition of the staircase
function in Chapter 3 for more details). Now, for each n ∈ N∗, we define
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fn = χ{r1,r2,...,rn}, i.e.

fn(x) = χ{r1,r2,...,rn}(x) =

{

1 if x ∈ {r1, r2, . . . , rn}
0 otherwise

Each function of this sequence takes the value 0 everywhere except at
finitely many points, so

∫ b

a

fn(x) dx = 0

for all a, b ∈ R and all n ∈ N∗. Also, we claim that fn → χQ on R. It is
obvious that fn → χQ on R−Q. For each x ∈ Q, there is some N ∈ N∗ such
that x = rN , and thus whenever n ≥ N , we have fn(x) = 1 = χQ(x). This
proves that fn → χQ on Q as well. �

Lastly, we present another issue that can arise with integrals and point-
wise convergence. Even when each fn is integrable, fn → f , and f is inte-
grable, the integral of f does not have to be related to the integrals of the
fn functions. In particular, it is possible to have

∫ b

a

(

lim
n→∞

fn(x)
)

dx 6= lim
n→∞

(
∫ b

a

fn(x) dx

)

In other words, the integral of a limit might not equal the limit of integrals.
The following example demonstrates this:

Example 10.7:

In this example, we create a sequence of functions (fn)∞n=1 on R such that
fn → 0 pointwise but the integrals of fn do not approach 0. To do this, we
use an idea similar to the one from Example 10.5: we make fn equal to 0
everywhere except for an “exception interval” of length 1/n, and then in that
interval, we make a function which has area 1 underneath it. One way of
doing this is with the following definition for all x ∈ R and all n ∈ N∗:

fn(x) =











0 if x < 0 or x > 1/n

4n2x if x ∈ [0, 1/(2n))

4n − 4n2x if x ∈ [1/(2n), 1/n]

(Equivalently, we could define fn(x) = 2n− 2n2|x− 1/(2n)| for x ∈ [0, 1/n].)
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We constructed this function so that the area between the graph of fn

and the x-axis forms a triangle with height 2n and base 1/n: see Figure 10.2.
Therefore, for each n ∈ N∗, we have

∫ 1

0

fn(x) dx = 1

As n grows larger, the triangle grows taller and skinnier, but its area does
not change. Essentially, the triangle is getting pressed against the y-axis as
n grows. It is also possible to view this as a “sliding mass” example, where
the mass of the triangle (i.e. the area under the curve) slides closer to x = 0
as n grows. In the limit, the triangle has become completely flattened, and
the limiting curve has zero area.

f1

f2

f3

1�3 1�2 1

2

4

6

x

y

Figure 10.2: Several graphs from Example 10.7 with a triangle of area 1

Now, we prove that fn → 0 pointwise. This proof proceeds in the same
way as in Example 10.5. Certainly, fn(x) = 0 for every x ≤ 0. Also, when
x > 0, then fn(x) = 0 for all n > 1/x (i.e. once n is greater than 1/x, x
does not lie in fn’s “exception interval”). Note that this proof doesn’t use
any information about how fn is defined on (0, 1/n), so we could replace the
triangle shape in that interval with any other curve with area 1 underneath
to generate a similar counterexample. �
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10.2 Uniform Convergence

As we have seen in the previous section, when fn → f pointwise on a set
D, there is rather little that can be proven about f . However, if we require
that fn(x) converge to f(x) at roughly the same rate for all x ∈ D, then we
are able to show much more about f . More precisely, we have the following
definition:

Definition 10.8. Let D ⊆ R and k ∈ N be given, and let (fn)∞n=k be an
infinite sequence of real-valued functions defined on D. Also, let f be a real-
valued function defined on D. We say that (fn) converges to f uniformly
on D as n → ∞ if the following holds: for every ǫ > 0, there is an N ∈ N

(depending ONLY on ǫ) such that

|f(x) − fn(x)| < ǫ

for all x ∈ D and for all n ∈ N with n > N . We call f the uniform limit of
(fn) on D and write

fn → f uniformly on D as n → ∞

As with pointwise convergence, the set D is sometimes not mentioned when
it is understood from context.

Several remarks are in order concerning this definition and how it dif-
fers from pointwise convergence. If we write out the definition of pointwise
convergence completely, using quantifiers, then we obtain

∀ǫ > 0 ∀x ∈ D ∃N ∈ N ∀n > N (|f(x) − fn(x)| < ǫ)

In contrast, the definition of uniform convergence yields

∀ǫ > 0 ∃N ∈ N ∀x ∈ D ∀n > N (|f(x) − fn(x)| < ǫ)

There is only one difference: uniform convergence has ∃N before ∀x, whereas
pointwise convergence has ∀x before ∃N . However, this is a rather large
difference. With uniform convergence, N has to be chosen independently of
x, whereas N can depend on x with pointwise convergence. (In particular,
uniform convergence implies pointwise convergence, but not conversely.) By
forcing N to be chosen independently of x, uniform convergence forces the
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f
fn

f+Ε

f-Ε
x

y

Figure 10.3: A function fn lying between f − ǫ and f + ǫ

entire graph of fn to lie within ǫ units of the graph of f when n > N . This
is illustrated in Figure 10.3, where functions fn and f are graphed, and the
dotted curves represent f ± ǫ.

To gain a better appreciation of uniform convergence, let’s revisit a cou-
ple of the examples from the previous section and see whether they exhibit
uniform convergence:

Example 10.9:

In Example 10.3, we defined

fn(x) = xn f(x) =

{

0 if x ∈ [0, 1)

1 if x = 1

for all x ∈ [0, 1]. We saw that fn → f pointwise on [0, 1] as n → ∞.
Intuitively, this convergence should not be uniform because when x is close
to 1, xn approaches 0 much more slowly than when x is close to 0.

More precisely, we can show that uniform convergence fails by showing
that the definition can’t be satisfied with ǫ = 1/2. If the convergence were
uniform, then we could choose some N ∈ N∗ such that |f(x)− fN(x)| < 1/2
for all x ∈ [0, 1]. In particular, this means that |xN | < 1/2 for all x ∈ [0, 1).
However, this is not possible because xN → 1 as x → 1−. Alternately, we
can choose x to be (3/4)1/N as a counterexample (note that this choice of x
can depend on N).

Another way to think about this is that since each fn maps the interval
[0, 1) to [0, 1), we cannot force the entire graph to lie within 1/2 a unit of
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0. In fact, we can’t force the entire graph to lie within ǫ units of 0 for any
ǫ < 1, because for each n ∈ N∗,

sup
x∈[0,1]

|fn(x) − f(x)| = sup
x∈[0,1)

|xn| = 1

(think of this supremum as the “maximum distance”2 between fn and f).
When convergence is uniform, the distance between fn and f must approach
0, but in this example the distance is always 1. See Exercise 10.3.4 for more
details. �

Example 10.10:

In Example 10.2, we defined

fn(r) =

n
∑

i=0

ri f(r) =

∞
∑

i=0

ri =
1

1 − r

for all r ∈ (−1, 1). We saw fn → f pointwise on (−1, 1). To see whether
this convergence is uniform, we analyze how far apart fn and f for each
r ∈ (−1, 1) and n ∈ N∗:

f(r) − fn(r) =
∞
∑

i=0

ri −
n
∑

i=0

ri =
∞
∑

i=n+1

ri

= rn+1
(

1 + r + r2 + · · ·
)

=
rn+1

1 − r

Note that as r → 1−, rn+1/(1 − r) → ∞. Therefore, the set {|f(r) −
fn(r)| | r ∈ (−1, 1)} is unbounded, so fn and f are always “infinite distance
apart”. Thus, no choice of N satisfies the definition of uniform convergence for
ANY ǫ ∈ (0,∞). In fact, in Exercise 10.3.10, you can show that a uniform
limit of bounded functions must be bounded. It follows that convergence
cannot be uniform here, because each fn is bounded on (−1, 1) and f is not
bounded on (−1, 1).

However, we can obtain uniform convergence on smaller domains than
(−1, 1). Let’s say b ∈ (0, 1) is given, and we consider fn and f restricted to

2This notion of “maximum distance” is called the L∞ norm of fn − f . There are also
other ways to assign a notion of distance between two functions, but we will not cover
them here.
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(−b, b). (Intuitively, we know that f is unbounded when r is near 1 or −1,
so we restrict the domain to stay a fixed distance away from 1 and −1.) The
previous calculations show that for all r ∈ (−b, b),

|f(r) − fn(r)| =
|r|n+1

|1 − r| ≤
bn+1

1 − b

Now, the maximum distance between f and fn is bounded. Furthermore,
since b < 1, bn+1 → 0 as n → ∞. Thus, the maximum distance between
f and fn approaches 0 on (−b, b), so fn → f uniformly on (−b, b)! More
formally, for any ǫ > 0, choose N large enough so that bN+1/(1 − b) < ǫ,
and this choice of N satisfies the definition of uniform convergence. (Note
that this argument cannot prove uniform convergence on (−1, 1) because N
depends on b as well as ǫ.) �

The previous example illustrates a very important point. Sometimes,
when we consider convergence of a sequence of functions on some interval,
we may not obtain uniform convergence because of undesired behavior at
the ends of the interval. In these situations, if we restrict the domain to
stay away from the ends of the interval, then we frequently obtain uniform
convergence. We illustrate this idea with a couple examples, and we will also
return to this point in the upcoming section on power series.

Example 10.11:

First, for each n ∈ N∗ and x ∈ [0,∞), let’s define fn, f : [0,∞) → R by

fn(x) =
x

n + x
f(x) = 0

It is clear that for each x ∈ R, fn(x) → f(x) as n → ∞. In other words,
fn → f pointwise. However, is this convergence uniform on [0,∞)? Note
that the maximum distance between fn and f is

sup
x∈[0,∞)

x

n + x
= 1

because fn is strictly increasing with a horizontal asymptote at y = 1. (The
easiest way to see fn(x) is strictly increasing is to use long division to write
it as 1 − n/(n + x).) Thus, we do not have uniform convergence on [0,∞).
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However, let’s try restricting our domain to an interval of the form [0, b]
where b > 0. (This stays away from the “end” of ∞ which was making
uniform convergence fail.) On [0, b], the distance between fn and f is

sup
x∈[0,b]

x

n + x
=

b

n + b

Since b/(n+ b) approaches 0 as n → ∞, fn converges to f uniformly on [0, b]
for any b > 0. Thus, fn converges to f uniformly on arbitrarily long finite
intervals but not on an infinite interval! �

Example 10.12:

In contrast to the fn functions from Example 10.11, let’s consider defining
gn, g : [0,∞) → R for all x ∈ [0,∞) and all n ∈ N∗ by

gn(x) =
x

n + x2
g(x) = 0

Here, we have gn → g pointwise on [0,∞), but unlike the fn functions from
Example 10.11, the gn functions have horizontal asymptotes at y = 0. In fact,
gn is not strictly increasing on [0,∞). Several graphs of the gn functions are
drawn in Figure 10.4.

g1
g2

g3

x

y

Figure 10.4: Several graphs of gn(x) = x/(n + x2)

From these graphs, we see that each gn rises until it attains a maximum
and then falls off gradually towards 0. This suggests that the distance be-
tween gn and g,

sup
x∈[0,∞)

x

n + x2

is attained when gn reaches its maximum.
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Therefore, we aim to maximize gn. To do this, we first find the derivative:

g′
n(x) =

(n + x2)(1) − (x)(2x)

(n + x2)2
=

n − x2

(n + x2)2

Since the denominator is always positive, we find that g′
n(x) > 0 when x <√

n and g′
n(x) < 0 when x >

√
n. Thus, the absolute maximum of gn is

attained at
√

n. Let’s say xn =
√

n; thus, for all x ∈ [0,∞), we have

0 ≤ gn(x) ≤ gn(xn) =

√
n

n + (
√

n)2
=

1

2
√

n

Since 1/(2
√

n) → 0 as n → ∞, this proves that gn → g uniformly on [0,∞).
(Alternately, for any ǫ > 0, you can show that the choice of N = 1/(4ǫ2)
satisfies the definition of uniform convergence.) �

Series of Functions and the M-Test

Many useful examples of sequences of functions come from series of func-
tions, much like how series of real numbers provided many examples of se-
quences of real numbers. However, series of functions are even more impor-
tant since we can discuss questions such as continuity of the series, integra-
bility of the series, and so forth. Therefore, we take some time to discuss
series of functions, and we prove an extremely useful test for analyzing when
a series converges uniformly.

First, we should be precise about what a series of functions is. A series
of functions takes the form ∞

∑

i=k

ai

where k ∈ N and ai is a real function for each i ∈ N with i ≥ k. For each
n ∈ N, the nth partial sum of the series is the function fn satisfying

fn(x) =

n
∑

i=k

ai(x)

for all x in the domains of ak through an. (Technically, the series is the
sequence of partial sums, as is the case with series of real numbers.) We say
that our series converges pointwise on D to a function f : D → R if

f(x) = lim
n→∞

fn(x) =

∞
∑

i=k

ai(x)
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for each x ∈ D. (In other words, our series converges pointwise iff fn → f
pointwise.) We say that our series converges uniformly on D if fn → f
uniformly on D.

Much like with series of real numbers, we would like a way to test whether
a series of functions converges uniformly without requiring an exact formula
for the nth partial sum fn. (Pointwise convergence can be established using
the series tests from the previous chapter, because for each fixed x ∈ D,
the series

∑

an(x) is just a series of real numbers.) To make such a test for
uniform convergence, it makes sense to try replacing the functions ai(x) with
values that do not depend on x. In particular, if we had a bound Mi on ai

for each i, i.e. |ai(x)| ≤ Mi for all i and all x ∈ D, then we would have

|fn(x)| ≤
n
∑

i=k

|ai(x)| ≤
n
∑

i=k

Mi

for all x ∈ D.
In particular, if

∑

Mi converges, then
∑ |ai(x)| converges for each x ∈ D

by the Comparison Test. Going further with this reasoning, we obtain the
following handy result due to Weierstrass:

Theorem 10.13 (M-Test). Let D ⊆ R be given, and let (an)∞n=1 be a se-
quence of real functions defined on D. Suppose that for each n ∈ N∗, there
is a constant Mn ∈ R such that

|an(x)| ≤ Mn

for all x ∈ D. If the series
∑

Mn converges, then the series
∑

ai converges
absolutely and uniformly on D.

Strategy. Let’s say fn is the nth partial sum of our series
∑

ai. The remarks
before the statement of the M-Test show that

∑

ai converges pointwise on
D. Let’s say that f is the sum of the series on D, i.e. the pointwise limit
of (fn)∞n=1. To determine whether fn → f uniformly, we want to analyze the
distance between fn and f . This leads us to consider |fn(x) − f(x)|.

We find that for each x ∈ D,

|f(x) − fn(x)| =

∣

∣

∣

∣

∣

∞
∑

i=1

ai(x) −
n
∑

i=1

ai(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

i=n+1

ai(x)

∣

∣

∣

∣

∣
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(Sometimes we refer to the finite sum up to n as the “head” of the series up
to n terms, whereas the infinite sum from i = n + 1 to ∞ is called the “tail”
of the series.) We want to show that this tail can be made arbitrarily small
by choosing a large enough value of n.

The Triangle Inequality for series (i.e. Theorem 9.72) shows that

∣

∣

∣

∣

∣

∞
∑

i=n+1

ai(x)

∣

∣

∣

∣

∣

≤
∞
∑

i=n+1

|ai(x)| ≤
∞
∑

i=n+1

Mi

for all x ∈ D. Note that this bound only depends on n, not on x. Therefore, it
remains to show that the last series in this inequality can be made arbitrarily
small. However, we can write this last series as the tail of the series

∑

Mi

and use the hypothesis that
∑

Mi converges.

Proof. Let D and (an)∞n=1 be given as described. Choose a bound Mn ∈ R

for each n ∈ N∗ satisfying |an(x)| ≤ Mn for all x ∈ D. Also, for each n ∈ N∗

and x ∈ D, we define fn : D → R and sn, s ∈ R

fn(x) =

n
∑

i=1

ai(x) sn =

n
∑

i=1

Mi s =

∞
∑

i=1

Mi

Because 0 ≤ |ai(x)| ≤ Mi for all i ∈ N∗ and all x ∈ D, and
∑

Mi

converges, for each x ∈ D the series

∞
∑

i=1

|ai(x)|

converges absolutely by the Comparison Test. Therefore, we may define
f : D → R for all x ∈ D by

f(x) =
∞
∑

i=1

ai(x)

as absolute convergence implies convergence by Theorem 9.72.
This proves that fn → f pointwise on D as n → ∞. This also proves

that our series
∑

ai converges absolutely on D. Now, to prove uniform
convergence, let ǫ > 0 be given. We need to find N ∈ N∗ such that n > N
implies |fn(x) − f(x)| < ǫ for all x ∈ D. First, we note that because

∑

Mi
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converges, sn → s as n → ∞, so there is some N ∈ N∗ such that n > N
implies

s − sn =
∞
∑

i=1

Mi −
n
∑

i=1

Mi =
∞
∑

i=n+1

Mi < ǫ

(We do not need absolute values because each Mi must be nonnegative.)
With this choice of N , we compute, for any n ∈ N∗ with n > N and any
x ∈ D,

|f(x) − fn(x)| =

∣

∣

∣

∣

∣

∞
∑

i=1

ai(x) −
n
∑

i=1

ai(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

i=n+1

ai(x)

∣

∣

∣

∣

∣

≤
∞
∑

i=n+1

|ai(x)|

≤
∞
∑

i=n+1

Mi < ǫ

as desired. �

When analyzing a series of functions, usually some series test from the
previous chapter is first used to determine where the series converges point-
wise. After that, we can try the M-Test to determine whether the convergence
is uniform. The following two examples are typical:

Example 10.14:

Let’s consider the following series

f(x) =
∞
∑

n=0

(n + 1)xn

The Root Test or the Ratio Test3 readily shows that this series converges
pointwise when |x| < 1 and diverges when |x| > 1. Also, the series diverges
when |x| = 1 because the terms do not approach 0.

At this point, we’d like to know if the series converges uniformly on
(−1, 1). To use the M-Test, for each n ∈ N, we find a bound for |(n + 1)xn|

3Technically, we are using the stronger versions of the tests from Exercises 9.12.6 and
9.12.7.
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on (−1, 1). (The fact that this series starts from n = 0 instead of n = 1 does
not matter for the M-Test.) The best bound we can pick is

Mn = sup
x∈(−1,1)

|(n + 1)xn| = n + 1

However, since
∑

Mn diverges (in particular, Mn does not approach 0 as
n → ∞), the M-Test does not apply on the interval (−1, 1).4

Essentially, this series fails to converge uniformly on (−1, 1) for the same
reason that the sequence in Example 10.9 fails to converge uniformly on [0, 1]:
when |x| is very close to 1, xn converges to 0 very slowly as n → ∞. This
suggests that in order to obtain uniform convergence, we should restrict the
domain to stay a fixed distance away from the points 1 and −1. Thus, for
each b ∈ (0, 1), let’s consider the domain Db = (−b, b). On Db, we can choose
a better bound for |(n + 1)xn|:

Mn = sup
x∈(−b,b)

|(n + 1)xn| = (n + 1)bn

Note that
∑

Mn = f(b), and f converges at b because 0 < b < 1.
Thus, by the M-Test, the series f(x) converges uniformly on (−b, b) for each
b ∈ (0, 1). This is a very similar situation to Example 10.10, where we don’t
have uniform convergence on the entire interval of pointwise convergence,
but we get uniform convergence on many subintervals. �

Example 10.15:

Let’s consider the series

f(x) =

∞
∑

n=1

xn

n2 23n

The Root Test readily shows that this series converges pointwise when |x| < 8
and diverges when |x| > 8. When |x| = 8, we find that the series converges
absolutely because it is dominated by

∑

1/n2. Thus, this series converges
pointwise on [−8, 8].

In fact, in contrast to the previous example, we also have uniform conver-
gence on the whole interval of pointwise convergence. To see this, for each

4In fact, the series does not converge uniformly on (0, 1). When fn is the nth partial
sum, you can check that the distance between f and fn is at least n + 2 with a similar
argument.
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n ∈ N∗ and each x ∈ [−8, 8], we have
∣

∣

∣

∣

xn

n2 23n

∣

∣

∣

∣

≤ 8n

n2 8n
=

1

n2

Therefore, we choose Mn = 1/n2. Since
∑

Mn converges, our series for f(x)
converges uniformly on [−8, 8]. �

These examples demonstrate how the M-Test is useful for telling us when
certain series of functions converge uniformly. In fact, the proof of the M-
Test also suggests a way to find a bound on the maximum distance between
fn and f , where fn is the nth partial sum of the series. However, we still
don’t yet know much information about the series sum f , such as whether
f is continuous, differentiable, integrable, etc. We now turn our attention to
answering these questions.

Uniform Convergence, Continuity, and Integration

If you go back to the examples from earlier where a pointwise limit of
continuous functions fails to be continuous, then you will find that in those
examples, the convergence is not uniform. (We studied one such example
in detail in Example 10.9 above.) This is because unlike pointwise conver-
gence, uniform convergence preserves continuity of functions. This is one of
the primary reasons why uniform convergence is more useful than pointwise
convergence in proofs:

Theorem 10.16. Let D ⊆ R be an interval with more than one point (the
interval may be open, half-open, or closed), and let (fn)∞n=1 be a sequence of
real-valued functions defined on D. Also, let f : D → R be given, and assume
that fn → f uniformly on D as n → ∞. For any a ∈ D, if fn is continuous
at a for each n ∈ N∗, then f is also continuous at a.

In other words,

f(a) = lim
x→a

f(x)

= lim
x→a

(

lim
n→∞

fn(x)
)

= lim
n→∞

(

lim
x→a

fn(x)
)

= lim
n→∞

fn(a)

Thus, as the middle row shows, we can interchange the limits involving n
and involving x when convergence is uniform.
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Strategy. We want to show that f(x) → f(a) as x → a. By definition, this
means that for all ǫ > 0, we need to find some δ > 0 such that5

∀x ∈ D (|x − a| < δ → |f(x) − f(a)| < ǫ)

Informally, we want f(x) to be arbitrarily close to f(a) provided that x is
close enough to a.

We know that fn → f uniformly, so f(x) is close to fn(x) and f(a) is
close to fn(a) when n is large enough. Also, if x is close to a, then fn(x) is
close to fn(a) because fn is continuous at a. Informally, this means

f(x) ≈ fn(x) ≈ fn(a) ≈ f(a)

More formally, we can estimate the distance |f(x) − f(a)| by using the
three distances |f(x) − fn(x)|, |fn(x) − fn(a)|, and |fn(a) − f(a)|. In fact,
the Triangle Inequality yields

|f(x) − f(a)| ≤ |f(x) − fn(x)| + |fn(x) − fn(a)| + |fn(a) − f(a)|
Since we want |f(x) − fn(x)| < ǫ, this suggests that we should try to make
each distance on the right side less than ǫ/3. (In fact, this kind of proof is
fairly common in analysis dealing with uniformity, so this proof is sometimes
called “an ǫ/3 argument”.)

First, let’s look at the distances |f(x)−fn(x)| and |f(a)−fn(a)|. Because
fn → f , each of these distances can be made less than ǫ/3 for appropriate
choices of n. We want one choice of n that will work for all possible x AT
THE SAME TIME. This is where uniform convergence becomes important.
Because of uniform convergence, we can choose an N such that n > N implies
|f(x) − fn(x)| < ǫ/3 for every x ∈ D (in particular, |f(a) − fn(a)| < ǫ/3).

Once we have chosen our value of N , we can control the last distance
|fn(x)− fn(a)|. Because fn is continuous at a, there is some δ > 0 such that
|x − a| < δ implies |fn(x) − fn(a)| < ǫ/3. δ depends on n in general, so we
may not be able to find a value of δ which works for all n > N . However, we
only need |fn(x) − fn(a)| to be less than ǫ/3 for ONE value of n > N . For
simplicity, we choose n = N + 1 and take its corresponding value of δ.

In summary, we choose N first using uniform convergence. After that, we
choose n = N + 1, so n depends on N . Lastly, we pick δ based on n using
the continuity of fn. Putting this all together, each of our three distances is
less than ǫ/3.

5It is worth noting that this is the definition for two-sided continuity if a is not an
endpoint of D, and it is the definition for one-sided continuity if a is an endpoint of D.
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Proof. Let D, (fn)∞n=1, and f be given as described. Suppose that fn → f
uniformly on D, and let a ∈ D be given such that fn is continuous at a for
each n ∈ N∗. Let ǫ > 0 be given; we need to find δ > 0 such that

∀x ∈ D (|x − a| < δ → |f(x) − f(a)| < ǫ)

By the Triangle Inequality, for any x ∈ D, we have

|f(x) − f(a)| ≤ |f(x) − fn(x)| + |fn(x) − fn(a)| + |fn(a) − f(a)|

Because fn → f uniformly on D, there is N ∈ N∗ such that for all n ∈ N∗

with n > N and all x ∈ D,

|fn(x) − f(x)| <
ǫ

3

Let’s choose n = N + 1. Now, fn is continuous at a, so there is some δ > 0
such that

∀x ∈ D
(

|x − a| < δ → |fn(x) − fn(a)| <
ǫ

3

)

Using the choices of n and δ and the bound on |f(x) − f(a)| above, we get

|f(x) − f(a)| <
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ

for all x ∈ D with |x − a| < δ, as desired. �

With Theorem 10.16, which says that uniform convergence preserves con-
tinuity, we can now address the question of continuity for series of functions.
In Example 10.14, for instance, we showed that the series

f(x) =
∞
∑

n=0

(n + 1)xn

converges uniformly on (−b, b) for every b ∈ (0, 1). Since each partial sum
of the series is a polynomial, each partial sum is continuous on (−b, b) for
b ∈ (0, 1). It follows that f is continuous on (−b, b) for each b ∈ (0, 1)
and hence f is continuous on (−1, 1) (since every x ∈ (−1, 1) belongs to an
interval of the form (−b, b): choose b = (1 + |x|)/2). Similarly, the series
from Example 10.15,

f(x) =
∞
∑

n=1

xn

n2 23n
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converges uniformly on [−8, 8] and is hence continuous on [−8, 8].
Next, we address integrability. It turns out that a uniform limit of func-

tions integrable on an interval [a, b] is also integrable on [a, b]; the proof is
left for Exercise 10.3.14. However, even more than that is true:

Theorem 10.17. Let a, b ∈ R be given with a < b, and let (fn)∞n=1 be a
sequence of real-valued functions defined on [a, b]. Also, let f : [a, b] → R

be given, and suppose that fn → f uniformly on [a, b] as n → ∞. If fn is
integrable on [a, b] for each n ∈ N∗, then so is f (by Exercise 10.3.14).

Moreover, let c ∈ [a, b] be given, and define gn, g : [a, b] → R for each
n ∈ N∗ and x ∈ [a, b] by

gn(x) =

∫ x

c

fn(t) dt g(x) =

∫ x

c

f(t) dt

Then gn → g uniformly as n → ∞ on [a, b]. In particular, for any c, x ∈ [a, b],

∫ x

c

f(t) dt =

∫ x

c

(

lim
n→∞

fn(t)
)

dt = lim
n→∞

(
∫ x

c

fn(t) dt

)

We say that the integral of the limit is the limit of the integrals. In other
words, we can interchange integration and the limit involving n.

Strategy. We want to show that

∫ x

c

fn(t) dt →
∫ x

c

f(t) dt uniformly as n → ∞

This means that for each ǫ > 0, we want to show that when n is large enough,
we have

∣

∣

∣

∣

∫ x

c

f(t) dt −
∫ x

c

fn(t) dt

∣

∣

∣

∣

< ǫ

for all x ∈ [a, b]. Some simple inequalities yield

∣

∣

∣

∣

∫ x

c

f(t) dt−
∫ x

c

fn(t) dt

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ x

c

(f(t) − fn(t)) dt

∣

∣

∣

∣

≤
∫ x

c

|f(t) − fn(t)| dt

(Technically, this is only valid when the integration limits are in the correct
order, i.e. when x ≥ c, but a similar calculation can be done when x < c by
switching the limits and introducing minus signs.)
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We’d like this integral to be less than ǫ. Because fn → f , for any individ-
ual t ∈ [c, x], we can make |f(t) − fn(t)| arbitrarily small by taking n large
enough. In general, n might depend on t, but since fn → f uniformly, we
can choose an n which works for all t simultaneously! Thus, for each δ > 0,
we can find N ∈ N∗ large enough so that n > N implies |f(t) − fn(t)| < δ
for all t ∈ [a, b]. This yields

∫ x

c

|f(t) − fn(t)| dt ≤
∫ x

c

δ dt = δ(x − c) ≤ δ(b − a)

Since we want to show the integral is less than ǫ, we may choose δ to be
ǫ/(b − a). (Actually, since the inequalities in our work above may not be
strict, we choose δ to be slightly smaller than ǫ/(b − a).)

Proof. Let a, b, (fn)∞n=1, and f be given as described. Also, assume fn is
integrable on [a, b] for each n ∈ N∗, and let c ∈ [a, b] be given. We know that
f is integrable on [a, b] by Exercise 10.3.14. Let ǫ > 0 be given; we aim to
find N ∈ N∗ so that for all n ∈ N∗ with n > N and all x ∈ [a, b], we have

|g(x) − gn(x)| =

∣

∣

∣

∣

∫ x

c

f(t) dt −
∫ x

c

fn(t) dt

∣

∣

∣

∣

< ǫ

First, because fn → f uniformly on [a, b] as n → ∞, we may choose
N ∈ N∗ such that for all n ∈ N∗ with n > N and all t ∈ [a, b], we have

|f(t) − fn(t)| <
ǫ

2(b − a)

Next, let x ∈ [a, b] be given. When x ≥ c, we have

|g(x) − gn(x)| =

∣

∣

∣

∣

∫ x

c

(f(t) − fn(t)) dt

∣

∣

∣

∣

≤
∫ x

c

|f(t) − fn(t)| dt

≤
∫ x

c

ǫ

2(b − a)
dt =

ǫ

2(b − a)
(x − c)

≤ ǫ

2(b − a)
(b − a) =

ǫ

2
< ǫ

as desired. Similarly, when x ≤ c, we have

|g(x) − gn(x)| =

∣

∣

∣

∣

−
∫ c

x

(f(t) − fn(t)) dt

∣

∣

∣

∣

≤
∫ c

x

|f(t) − fn(t)| dt

≤
∫ c

x

ǫ

2(b − a)
dt =

ǫ

2(b − a)
(c − x)

≤ ǫ

2(b − a)
(b − a) =

ǫ

2
< ǫ
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as needed. �

As with Theorem 10.16 about continuity and uniform convergence, The-
orem 10.17 is often useful with series of functions. More precisely, let’s say

f(x) =
∞
∑

i=1

ai(x)

is a series of functions which are integrable on [a, b]. For each n ∈ N∗, let fn

be the nth partial sum of this series. If this series converges uniformly on an
interval D containing a and b, i.e. fn → f uniformly on D as n → ∞, then
we find

∫ b

a

f(t) dt = lim
n→∞

(
∫ b

a

fn(t) dt

)

or in other words,

∫ b

a

( ∞
∑

i=1

ai(t)

)

dt = lim
n→∞

n
∑

i=1

(
∫ b

a

ai(t) dt

)

=

∞
∑

i=1

(
∫ b

a

ai(t) dt

)

This is often summarized as saying that uniform convergence lets us inter-
change integrals and summations. Alternately, we say that a uniformly con-
vergent series may be integrated term by term. We present a couple examples
to demonstrate this idea.

Example 10.18:

As we saw in Example 10.14, the series

f(x) =
∞
∑

n=0

(n + 1)xn

converges uniformly on (−b, b) for every b ∈ (0, 1). Hence, since each x ∈
(−1, 1) belongs to some interval of the form (−b, b) for b ∈ (0, 1), we may
integrate f term by term and obtain

∫ x

0

f(t) dt =
∞
∑

n=0

∫ x

0

(n + 1)tn dt =
∞
∑

n=0

xn+1

At this point, we note that
∑

xn+1 is the geometric series with ratio x
starting with the term x1. Thus, the sum of that series is

∫ x

0

f(t) dt =
x

1 − x
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734 Section 10.2: Uniform Convergence

(This geometric series can also be seen to equal 1/(1 − x) − 1, since it is
obtained from the usual geometric series that starts with x0 by subtracting
x0.) Since f is continuous at x, we can differentiate both sides and use the
Fundamental Theorem of Calculus to obtain

f(x) =
1

(1 − x)2

for all x ∈ (−1, 1).
This shows that we can find the exact values of some series by using

term-by-term integration! �

Example 10.19:

For a similar example, consider

f(x) =
∞
∑

n=0

nxn

A simple use of the Root Test, together with the M-Test, shows that this
series converges uniformly on (−b, b) for every b ∈ (0, 1). We can find the
exact value of this series in a few different ways. One way is to use the series
from the previous example and subtract

∑

xn, which yields

∞
∑

n=0

nxn =
∞
∑

n=0

(n + 1)xn −
∞
∑

n=0

xn =
1

(1 − x)2
− 1

1 − x
=

x

(1 − x)2

Another way to compute f(x) is to immediately integrate term by term
from 0 to x, find the value of the integral, and then differentiate (which is
what the previous example did). However, the integral is

∫ x

0

f(t) dt =

∞
∑

n=0

n

n + 1
xn+1

which is not very convenient for finding exact sums because it is not geomet-
ric. We’d prefer to have an integrated series which is easier to evaluate.

To accomplish this, we note something clever: we can write f(x) as

f(x) = x + 2x2 + 3x3 + · · · = x
(

1 + 2x + 3x2 + · · ·
)

= x
∞
∑

n=1

nxn−1
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(note that we may factor out x because x is constant with respect to the
summation index n), and let’s consider the series

g(x) =
∞
∑

n=1

nxn−1

This series converges uniformly on the same intervals that f does, and it’s
easier to integrate g term by term than f , because the integral of ntn−1 from
0 to x is xn; there’s no expression like n/(n + 1) getting in the way. Thus,
we find

∫ x

0

g(t) dt =
∞
∑

n=1

xn =

( ∞
∑

n=0

xn

)

− 1 =
1

1 − x
− 1

and differentiating both sides yields

g(x) =
1

(1 − x)2

Finally,

f(x) = xg(x) =
x

(1 − x)2

The lesson to take from this example is that if the form of a series does not
make term-by-term integration convenient, then we can sometimes improve
the form of the integrated series by factoring out powers of x or by adding and
subtracting other known series. By using these tactics, it is possible to obtain
exact sums for any series of the form

∑

p(n)xn where p is a polynomial. A
few other examples of this are in the exercises. �

Uniform Convergence and Differentiation

Based on our most recent theorems, you might guess that uniform conver-
gence preserves differentiability. Unfortunately, however, this is not generally
true. When fn → f uniformly on an interval D, and each fn is differentiable
on D, it doesn’t necessarily follow that f is differentiable on D. Furthermore,
when f is differentiable on D, we might not have f ′

n → f ′ pointwise on D.
In other words, a derivative of a limit is not necessarily a limit of derivatives.
Here are some examples:

Example 10.20:
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736 Section 10.2: Uniform Convergence

For a rather simple example, consider fn : R → R defined for each n ∈ N∗

and each x ∈ R by

fn(x) =
sin(nx)

n

Since |fn(x)| ≤ 1/n, it is easy to show that fn → 0 uniformly on R. However,
f ′

n(x) = cos(nx), so f ′
n(0) = 1 for all n ∈ N∗.

For a similar example with series of functions, consider

f(x) =
∞
∑

n=1

sin(nx)

n2

We can use the M-Test with Mn = 1/n2 for each n ∈ N∗ to prove that this
series converges uniformly to a continuous function on R. In other words, if
fn denotes the nth partial sum, then fn → f uniformly on R. However, if we
try to differentiate this series term by term, then we obtain the series

g(x) =

∞
∑

n=1

cos(nx)

n

and g(0) diverges (it’s the harmonic series). In other words, the sequence of
derivatives (f ′

n)∞n=1 does not approach a finite limit at x = 0.6 �

Example 10.21:

In this example, let f(x) = |x| for all x ∈ R. We construct a sequence
of differentiable functions (fn)∞n=1 on R which converge uniformly to f on
R. This shows that a uniform limit of differentiable functions might not be
differentiable, since the absolute-value function is not differentiable at 0.

The main idea behind the construction is similar to the idea behind the
construction from Example 10.5 with the Heaviside function. We want fn to
behave a lot like f except for points near 0; near 0, we use a curve which
is smoother than the “sharp corner” of f . To do this, for each n ∈ N∗, we
make fn(x) = |x| for all x outside of an “exception interval” [−1/n, 1/n], and
on [−1/n, 1/n], we connect the graph with a parabola whose center is on

6It is worth noting that this argument does not prove that f ′(0) doesn’t exist. The
argument only proves that f ′(0), if it exists, cannot be the limit of f ′

n(0). It is actually
quite difficult (beyond the scope of this book) to analyze whether f ′(0) exists for this
example.
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the y-axis. This means that our definition takes the following form for some
an, cn ∈ R:

fn(x) =

{

|x| if x < −1/n or x > 1/n

anx2 + cn if x ∈ [−1, 1]

(We will find an and cn soon.) For example, the graph of f1 is provided in
Figure 10.5.

1

1-1

f1HxL

ÈxÈ
x

y

Figure 10.5: A graph of f1 with exception interval [−1, 1] (and the graph of
|x| with dashed lines)

In order for fn to be continuously differentiable on R, we need to pick an

and cn so that fn is continuous and differentiable at x = ±1/n. For x = 1/n,
this requires

lim
x→1/n−

fn(x) = lim
x→1/n+

fn(x) and lim
x→1/n−

f ′
n(x) = lim

x→1/n+
f ′

n(x)

which leads to the equations

an

n2
+ cn =

1

n
and

2an

n
= 1

These equations have the unique solution an = n/2 and cn = 1/(2n). With
these values of an and cn, you can check that fn is also continuously differ-
entiable at −1/n.

Now that we have constructed the sequence of fn functions, we should
prove that fn → f uniformly on R as n → ∞. To do this, we need to study
the maximum distance between fn and f :

sup
x∈R

||x| − fn(x)|
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Certainly ||x| − fn(x)| = 0 when x is not in [−1/n, 1/n]. Also, when x ∈
[−1/n, 1/n], it is clear that fn(x) and |x| are both in [0, 1/n], so ||x|−fn(x)| ≤
1/n. Thus, the maximum distance between fn and f is at most 1/n, and
this goes to 0 independently of x. Thus, fn → f uniformly.

It is worth noting that the fact that fn is a parabola on [−1/n, 1/n] hardly
gets used in the proof! All that is used from the definition on [−1/n, 1/n] is
the fact that fn(x) ∈ [0, 1/n] for x ∈ [−1/n, 1/n]. Thus, we can make similar
examples to this one by defining fn however we like on [−1/n, 1/n], provided
that we require fn to be continuously differentiable on R and fn(x) ∈ [0, 1/n]
for all x ∈ [−1/n, 1/n]. �

These examples demonstrate that differentiation is more difficult to an-
alyze than continuity and integration for uniform convergence. The last
example we just showed makes this particularly prominent, because we can
make fn oscillate several times between 0 and 1/n in the interval [−1/n, 1/n]
and still obtain uniform convergence! The issue is that when a function os-
cillates in a small area (e.g. x goes from −1/n to 1/n and y goes from 0 to
1/n), the value of the function and the integral of the function don’t change
very much, but the slope of the function can change very quickly.

Certain special types of series of functions do behave nicely with respect
to differentiation, however. In the next section, we will introduce power
series, and among other results, we will prove that it is safe to differentiate
a power series term by term. This, along with other nice properties, make
power series particularly easy to use, as we will see.

10.3 Exercises

1. Suppose that (fn)∞n=1 and (gn)∞n=1 are both sequences of real-valued
functions defined on a set D ⊆ R. Suppose that fn → f and gn → g
uniformly on D as n → ∞. Prove that fn + gn → f + g uniformly on
D as n → ∞. (Hint: Imitate the proof of the addition limit law.)7

2. Suppose that (fn)∞n=1 is a sequence of real-valued functions defined on
a set D ⊆ R, and suppose fn → f pointwise on D as n → ∞. Prove
that if there is some M ∈ [0,∞) such that

∀x ∈ D ∀n ∈ N∗ |fn(x)| ≤ M

7Almost all of the limit laws for sequences apply to uniform convergence as well. The
proofs for uniform convergence are quite similar to the original proofs of the limit laws.
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then |f(x)| ≤ M for all x ∈ D as well.

3. Let D ⊆ R be given, let (fn)∞n=1 be a sequence of real-valued functions
defined on D, and let f : D → R be given.

(a) Suppose that D = D1∪D2, where D1, D2 ⊆ R. Prove that fn → f
uniformly on D as n → ∞ if and only if fn → f uniformly on both
D1 and D2 as n → ∞.

(b) Show that the analogue of part (a) for infinite unions is false by
creating functions f, (fn)∞n=1 and subsets D, (Dn)∞n=1 of R such
that

D =
∞
⋃

i=1

Di

and for all i ∈ N∗,

fn → f uniformly on Di as n → ∞

but fn does not converge to f uniformly on D as n → ∞.

4. Let D be a given nonempty subset of R, let f : D → R be given, and
let (fn)∞n=1 be a sequence of real-valued functions defined on D. Prove
that fn → f uniformly on D as n → ∞ iff for all ǫ > 0, there is some
N ∈ N∗ such that for all n ∈ N, n > N implies

sup{|fn(x) − f(x)| | x ∈ D} < ǫ

(In particular, the supremum on the left side exists whenever n > N .)
This supremum is called the L∞ distance from f to fn on D.

5. For each n ∈ N∗ and each x ∈ [0, 1], define fn : [0, 1] → R by

fn(x) = nx(1 − x2)n

Prove that fn → 0 pointwise on [0, 1] as n → ∞, but that

lim
n→∞

∫ 1

0

fn(t) dt 6= 0

It follows by Theorem 10.17 that fn does not converge uniformly to 0.
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6. Let r : R → R be the ruler function (as defined in Chapter 3). For
each n ∈ N∗ and each x ∈ R, define fn : R → R by

fn(x) =







1

q
if x ∈ Q and x = p/q in lowest terms with q ≤ n

0 otherwise

Prove that fn → r uniformly on R as n → ∞. Use this to prove that
the ruler function is continuous at all irrational points and has integral
0 on every interval.

7. Let (ri)
∞
i=1 be an enumeration of the rationals, and for each n ∈ N∗ and

each x ∈ R, define gn : R → R by

gn(x) =
n
∑

i=1

(

1

2

)i

H(x − ri)

where H is the Heaviside function. Define s : R → R for all x ∈ R by

s(x) = sup{gn(x) | n ∈ N∗}

Thus, s is the staircase function from Chapter 3.

Prove that gn → s uniformly on R as n → ∞, and therefore s(x) is the
uniform sum of the series

∞
∑

i=1

1

2i
H(x − ri)

Use this to prove that s is continuous at all irrational points.

8. Let g : R → [0,∞) be given, and for each n ∈ N∗ and each x ∈ R,
define fn : R → [0,∞) by

fn(x) =

√

1

n
+ g(x)

Prove that fn(x) →
√

g(x) uniformly on R as n → ∞. (Note that
when g(x) = x2, this provides another way to create a sequence of
continuous differentiable functions which converges uniformly to |x|.)
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9. For each n ∈ N∗ and each x ∈ R, define fn : R → R by

fn(x) =
n2x

1 + n3x2

(a) Prove that fn → 0 pointwise on R as n → ∞.

(b) Prove that fn does not converge to 0 uniformly on (−b, b) for any
b ∈ (0,∞) as n → ∞.

(c) Prove that fn → 0 uniformly on (a,∞) for any a ∈ (0,∞) as
n → ∞.

10. Prove that a uniform limit of bounded functions is bounded. More
specifically, suppose D ⊆ R, f : D → R, and a sequence (fn)∞n=1

of real-valued functions defined on D are given. Suppose that fn is
bounded on D for each n ∈ N∗, and suppose fn → f uniformly on D
as n → ∞. Prove that f is bounded on D.

11. Suppose that D ⊆ R and a sequence of real functions (ai)
∞
i=0 defined

on D is given such that
∞
∑

i=0

ai(x)

converges uniformly on D. Prove that ai → 0 uniformly on D as
i → ∞. (This is essentially a uniform version of the Divergence Test.)

12. A two-dimensional sequence is a sequence indexed by a subset of N×N.
For instance, we can make the two-dimensional sequence (ai,j)(i,j)∈N∗×N∗

by defining

ai,j =
i + 1

ij

for all i, j ∈ N∗. With two-dimensional sequences, we can take lim-
its involving each variable separately, treating the other variable as a
constant. For instance, with our definition of ai,j above, we have

lim
i→∞

ai,j =
1

j
and lim

j→∞
ai,j = 0

(the first limit treats j as a constant, and the second limit treats i as a
constant). From this, we see that

lim
i→∞

lim
j→∞

ai,j = lim
i→∞

0 = 0

and lim
j→∞

lim
i→∞

ai,j = lim
j→∞

1

j
= 0
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Create a two-dimensional sequence (ai,j)(i,j)∈N∗×N∗ where

lim
i→∞

lim
j→∞

ai,j 6= lim
j→∞

lim
i→∞

ai,j

This shows that we cannot always interchange limits with multiple
dimensions. (Hint: One way to do this is to define the sequence by
cases based on whether i or j is bigger.)

13. Prove that the Riemann zeta function ζ : (1,∞) → R, defined by

ζ(s) =
∞
∑

n=1

1

ns

for all s > 1, is continuous on (1,∞). (Hint: Consider intervals of the
form [a,∞) for a > 1.)

14. Prove the following theorem:

Theorem 10.22. Let a, b ∈ R be given with a < b, and let (fn)∞n=1 be a
sequence of real-valued functions defined on [a, b]. Also, let f : [a, b] →
R be given, and suppose that fn → f uniformly on [a, b] as n → ∞. If
fn is integrable on [a, b] for each n ∈ N∗, then so is f .

(Hint: Use Theorem 5.22, so that for each ǫ > 0, you want to find step
functions s, t : [a, b] → R such that s(x) ≤ f(x) ≤ t(x) for all x ∈ [a, b]
satisfying

∫ b

a

(t(x) − s(x)) dx < ǫ

Now, for each δ > 0, we can choose n large enough so that |fn(x) −
f(x)| < δ for all x ∈ [a, b]. Use this to show that upper and lower step
functions for fn can be changed slightly to produce upper and lower
step functions for f . Based on this, what do you pick for δ in terms of
ǫ, a, and b?)

15. Use the ideas from Examples 10.18 and 10.19 to find a closed-form
value of the following series for each x ∈ (−1, 1):
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(a)

∞
∑

n=1

xn

n

(b)
∞
∑

n=1

xn

n + 1

(c)

∞
∑

n=0

(n + 2)(n + 1)xn

(d)
∞
∑

n=0

n2xn

16. When (fn)∞n=1 and f are all real functions defined and integrable on an
interval [a, b], we say that fn → f in the L1 sense on [a, b] as n → ∞ if

lim
n→∞

(
∫ b

a

|fn(x) − f(x)| dx

)

= 0

Thus, Theorem 10.17 shows that when fn → f uniformly on [a, b] as
n → ∞, then fn → f also in the L1 sense.

Construct a counterexample to show that fn → f in the L1 sense does
not imply that fn → f uniformly. Thus, the converse of Theorem 10.17
fails.

REMARK: It turns out if fn → f in the L1 sense, then it doesn’t even
follow that fn → f pointwise!

17. We have seen that uniform convergence does not necessarily preserve
differentiability. However, there are cases where uniform convergence
behaves well with derivatives. One common case is handled by the
following theorem:

Theorem 10.23. Let a, b ∈ R be given with a < b, and let (fn)∞n=1 be
a sequence of real functions defined on [a, b]. Also, let f, g : [a, b] → R

be given. Assume that for each n ∈ N∗, fn is continuously differentiable
on [a, b] (i.e. f ′

n is continuous). Also assume that fn → f pointwise
and f ′

n → g uniformly on [a, b] as n → ∞. Then fn → f uniformly on
[a, b], and f ′(x) = g(x) for all x ∈ [a, b].

Prove this theorem.

(Hint: Integrate each f ′
n from a to x, and use the Fundamental Theorem

of Calculus together with Theorem 10.17.)
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10.4 Power Series

In this section, we look at a special type of series of functions: power series.
Power series behave a lot like polynomials that have “infinite degree”. As we
will shortly show, power series also have many nice properties in common
with polynomials, such as being easy to differentiate and integrate.

To get started, here is a definition:

Definition 10.24. Let a ∈ R be given, and let (cn)
∞
n=0 be an infinite se-

quence of real numbers. The power series centered at a with coefficients (cn)
is the infinite series of functions

∞
∑

n=0

cn(x − a)n

(We use the convention that (x − a)0 = 1 even when x = a, so the value of
the series at x = a is c0.) For each n ∈ N, the expression cn(x − a)n is the
nth term of the power series, and cn is the nth coefficient.

A power series always converges at its center: the value of
∑

cn(x − a)n

at x = a is c0. To find out which other values of x yield convergence, the
Root Test and Ratio Test are frequently useful. Here are some examples:

Example 10.25:

Consider the power series
∞
∑

n=0

xn

n!

Let’s say that for each n ∈ N, an(x) is the nth term xn/(n!). Whenever
x ∈ R − {0}, the Ratio Test on (|an(x)|) yields

∣

∣

∣

∣

an+1(x)

an(x)

∣

∣

∣

∣

=
|x|n+1

(n + 1)!
· n!

|x|n =
|x|

n + 1
→ 0

as n → ∞. Therefore, our series converges absolutely for all x ∈ R. �

Example 10.26:
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Consider the series
∞
∑

n=0

n! xn

This series has value 1 when x = 0. However, for all x 6= 0, the Ratio Test
on the absolute values of the terms yields

(n + 1)! |x|n+1

n! |x|n = (n + 1)|x| → ∞

as n → ∞. Therefore, our series diverges for all x 6= 0. This is an example
of a power series which converges at only one point. �

Example 10.27:

Let’s consider the series
∞
∑

n=1

(x − 3)n

n

This series has center 3. At x = 3, the value is 0 (i.e. the 0th coefficient is 0).
For all other values of x, the Root Test on the absolute values of the terms
yields

|x − 3|
n1/n

→ |x − 3|

as n → ∞. Thus, our series converges absolutely when |x − 3| < 1 and
diverges when |x − 3| > 1.

In other words, we know we have absolute convergence on (2, 4) (the
numbers which are less than 1 unit away from 3) and divergence outside of
[2, 4]. It remains to check the endpoints of this interval, x = 2 and x = 4.
When x = 4, so that x−3 = 1, our series becomes

∑

1/n, which is divergent.
When x = 2, so that x − 3 = −1, our series becomes

∑

(−1)n/n, which
converges by the Alternating Series Test.

In summary, our series converges on [2, 4) (and 2 is the only point with
conditional convergence) and diverges elsewhere. We see that this “conver-
gence set” is an interval centered at 3 with radius 1. �

Interval of Convergence
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In our examples of power series, we saw that the set of values where the
series converges is an interval centered at the same center of the series. In our
first example, the convergence set is R, which can be considered an interval of
infinite radius. In our second example, the convergence set is {0}, which can
be considered an interval of radius 0. Our last example featured an interval
of radius 1 centered at 3, so we had convergence at points close to 3 and
divergence at points far away from 3.

In general, a power series is more likely to converge at points which are
close to the center. To see why this is plausible, let’s consider a power series
of the form

f(x) =

∞
∑

n=0

cn(x − a)n

Let’s say we know this series converges at y ∈ R, and suppose x ∈ R is given
which satisfies |x− a| ≤ |y− a|. (In other words, x is at least as close to a as
y is.) Then, for each n ∈ N, we have |cn(x − a)n| ≤ |cn(y − a)n|. It follows
that if f converges absolutely at y, then it also converges absolutely at x by
the Comparison Test. Thus, if f converges absolutely at y, then it converges
absolutely at all points closer to the center than y.

It turns out that we can prove a similar statement even when the con-
vergence at y is conditional, and we can also make a statement concerning
uniform convergence:

Lemma 10.28. Let a ∈ R be given, let (cn)∞n=0 be a sequence of real numbers,
and let f be the power series defined by

f(x) =
∞
∑

n=0

cn(x − a)n

for all x ∈ R where the series converges. Suppose that y ∈ R − {a} is given
such that f converges at y. Let s = |y − a|. Then f converges absolutely
and uniformly on any interval of the form (a − r, a + r) where 0 < r < s. It
follows that f converges absolutely on (a − s, a + s).

Strategy. Let’s say r is given with 0 < r < s. As the remarks before this
lemma show, when x ∈ (a − r, a + r), we have

|cn(x − a)n| ≤ |cn|rn ≤ |cn|sn = |cn(y − a)n|
This suggests choosing Mn = |cn|rn and trying to apply the M-Test. How-
ever, this only works if

∑ |cn(y−a)n| converges, i.e. if f converges absolutely

PREPRINT: Not for resale. Do not distribute without author’s permission.



Chapter 10: Uniform Convergence and Power Series 747

at y. When f converges conditionally at y, we need to try something differ-
ent.

Since we know that |cn(x − a)n| is smaller than |cn(y − a)n|, we ask:
HOW much smaller is it? One way to address this question is to consider
proportions (since proportions are important in the Limit Comparison Test
and the Ratio Test). We see that

|cn(x − a)n|
|cn(y − a)n| =

( |x − a|
|y − a|

)n

<
(r

s

)n

so

|cn(x − a)n| ≤ |cn(y − a)n|
(r

s

)n

Thus, since r < s, not only is |cn(x − a)n| smaller than |cn(y − a)n|, it
is exponentially smaller. We’d like to focus on this exponential factor by
creating a comparison between

∑ |cn(x − a)n| and
∑

(r/s)n.

In order to do this, however, we need to know how large |cn(y − a)n|
is. Here is where we use the fact that f(y) converges. Since

∑

cn(y − a)n

converges, the terms of that series approach 0, so |cn(y − a)n| must be close
to 0 for n large. This means that when n is large enough, we have

|cn(x − a)n| = |cn(y − a)n|
(r

s

)n

≤
(r

s

)n

and we can use the M-Test with Mn = (r/s)n.

Proof. Let a, (cn), y be given as described. Let s = |y − a|, and let r ∈ (0, s)
be given. We will prove that f converges uniformly on (a − r, a + r) by the
M-Test.

First, because f(y) converges, the series

∞
∑

n=0

cn(y − a)n

converges. Therefore, its terms approach 0 as n → ∞. In particular, there
is some N ∈ N such that for all n ∈ N with n > N , we have |cn(y− a)n| < 1.
It follows that for all n ∈ N with n > N , and for all x ∈ (a − r, a + r), we
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have

|cn(x − a)n| = |cn(y − a)n| · |cn(x − a)n|
|cn(y − a)n|

= |cn(y − a)n|
( |x − a|
|y − a|

)n

≤
(r

s

)n

Define the sequence (Mn)∞n=0 as follows for each n ∈ N:

Mn =

{

(r

s

)n

if n > N

|cnr
n| if n ≤ N

Therefore, |cn(x−a)n| ≤ Mn for all n ∈ N and all x ∈ (a− r, a+ r). Because
0 < r < s,

∑

Mn converges. Thus, by the M-Test,
∑

cn(x − a)n converges
absolutely and uniformly on (a − r, a + r), as desired. �

This lemma is the key result used to prove the following statement, which
formally establishes that power series converge on an interval:

Theorem 10.29 (Power Series Interval of Convergence). Let a ∈ R

and a sequence (cn)
∞
n=0 of real numbers be given. Let f be the power series

f(x) =
∞
∑

n=0

cn(x − a)n

Then exactly one of these three cases holds:

1. The series f(x) only converges for x = a. In this case, we set R = 0.

2. The series f(x) converges absolutely for all x ∈ R. In this case, we set
R = ∞.

3. There exists a constant R ∈ (0,∞) such that f(x) converges absolutely
when |x − a| < R and diverges when |x − a| > R. (When |x − a| = R,
the series may converge absolutely, converge conditionally, or diverge.)

In all cases, our series converges on an interval centered at a of radius R
called the interval of convergence of f . (R is called the radius of convergence
of f .) Furthermore, in cases 2 and 3, f converges uniformly on every interval
of the form (a − r, a + r) with 0 < r < R.
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Strategy. Lemma 10.28 shows that if f(y) converges, then f converges ab-
solutely on (a − s, a + s) where s = |y − a|. Another way to phrase this is
that if f converges at a point which is distance s from the center, then it
also converges at points which are less than distance s away from the center
as well. Based on this, we are led to consider: for which values of s can we
find a point where the series converges?

More formally, we want to consider the set

S = {|y − a| | y ∈ R, f(y) converges}
Our earlier remarks show that for every s ∈ S, the interval [0, s] is contained
in S. Thus, since S only contains nonnegative numbers, S is an interval with
0 as its lowest endpoint.

This raises the question: does S have a top endpoint? More generally,
does S have an upper bound? If S doesn’t have an upper bound, then the
work in the last paragraph shows that S = [0,∞), which corresponds to
case 2. Otherwise, S has an upper bound, and hence it has a least upper
bound. Intuitively, it makes sense to choose R = sup S, since the radius
of convergence should correspond to the “farthest you can travel” from the
center before you reach points where f diverges. From here, everything
follows by the properties of supremum and Lemma 10.28.

Proof. Let a, (cn), f be given as described, and define

S = {|y − a| | y ∈ R, f(y) converges}
Note that S only contains nonnegative numbers. Also, since any power series
converges at its center, we know f(a) converges, so 0 ∈ S. There are three
mutually-exclusive possibilities to consider: either S = {0}, S is unbounded
above, or S is bounded above with S 6= {0}.

In the first possibility, when S = {0}, this means that f(x) only converges
at x = a. This is case 1 from the theorem.

In the second possibility, suppose S is unbounded above. Therefore, for
any x ∈ R, there is some s ∈ S with s > |x − a|. Hence, by definition of S,
there is some y ∈ R such that |y − a| = s and f(y) converges. By Lemma
10.28, f converges absolutely at x. Thus, f converges absolutely on R, and
case 2 is satisfied.

For the third possibility, suppose that S 6= {0} and S is bounded above.
We define R = sup S. Note that S has a positive number in it, so R > 0.
We claim that R satisfies the conditions of case 3.

PREPRINT: Not for resale. Do not distribute without author’s permission.



750 Section 10.4: Power Series

Let x ∈ R be given. If |x − a| > R, then by definition of supremum,
|x − a| 6∈ S. It follows, by the definition of S, that f diverges at x.

Otherwise, if |x − a| < R, then |x − a| is not an upper bound of S, so
there is some s ∈ S with s > |x − a|. Also, there is some y ∈ R such that
|y− a| = s and f(y) converges, by definition of S. Thus, by Lemma 10.28, f
converges at x, as desired. This verifies the conditions of case 3.

Lastly, we address uniform convergence. Suppose that we are in case 2 or
3 and r ∈ R is given with 0 < r < R. The arguments from these cases show
that there is some s ∈ S with r < s, and hence there is some y ∈ R with
|y− a| = s and f(y) convergent. By Lemma 10.28, f converges uniformly on
(a − r, a + r). �

Theorem 10.29 helps us analyze power series, because it describes very
specifically the sets on which they converge. This occasionally comes in
handy for series which do not work well with the Root or Ratio Tests. For
instance, we offer these examples:

Example 10.30:

Consider the power series
∞
∑

n=2

xn

log n

centered at 0. We can test the absolute-value series using the Ratio Test,
yielding the ratio of

∣

∣

∣

∣

xn+1

log(n + 1)
· log n

xn

∣

∣

∣

∣

= |x| log n

log(n + 1)

To determine the limit as n → ∞, L’Hôpital’s Rule works8, and we obtain
the limit of |x|. Thus, our series converges absolulely for |x| < 1 and diverges
for |x| > 1, so the series has radius 1. (The endpoints of the interval of
convergence, i.e. x = ±1, need to be checked using other tests; you can show
that we get conditional convergence at −1 and divergence at 1.)

Another, perhaps easier, way to analyze this series is to note that xn/ log n
satisfies the following for all x ∈ R and all n ∈ N∗ with n > e:

|x|n
n

≤ |x|n
log n

≤ |x|n

8Remember that this limit involves n, so when applying L’Hôpital’s Rule, you want to
differentiate with respect to n, not with respect to x.
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Both
∑

xn and
∑

xn/n have radius 1 (as we have shown with earlier exam-
ples), so this suggests that

∑

xn/ log n also has radius 1. To prove this more
formally, we use two instances of the Comparison Test. When |x| < 1, the
comparison to |x|n shows that

∑ |x|n/ log n converges. When |x| > 1, the
comparison to |x|n/n shows that

∑ |x|n/ log n diverges.
Therefore, the series

∑

xn/ log n converges absolutely for |x| < 1 and
does not converge absolutely for |x| > 1. Hence its radius of convergence
must be 1 by Theorem 10.29. One nice advantage of using Theorem 10.29
is that although the work above did not prove divergence of

∑

xn/ log n for
|x| > 1 (it only proved that the absolute-value series

∑ |x|n/ log n diverges
for |x| > 1), we obtain divergence for |x| > 1 automatically from Theorem
10.29. �

Example 10.31:

Consider the power series

f(x) =

∞
∑

n=0

(1 + (−2)n)xn

It is possible to analyze this series with the Ratio Test or the Root Test,
though the work is a little difficult, especially with the Root Test. Instead,
we try a different approach. It seems plausible to split up 1 and (−2)n in the
above series and write

f(x) =
∞
∑

n=0

xn +
∞
∑

n=0

(−2x)n

but this equation requires both
∑

xn and
∑

(−2x)n to converge in order to
be valid.9 Nevertheless, we can still gain useful knowledge about f(x) by
studying

∑

xn and
∑

(−2x)n.
We already know that the geometric series

∑

xn converges absolutely for
|x| < 1 and diverges otherwise. Similarly,

∑

(−2x)n converges absolutely
when |−2x| < 1 and diverges otherwise, so this series has radius of conver-
gence 1/2. Thus, since

∑

xn and
∑

(−2x)n both converge for |x| < 1/2, so

9Actually, this equation also makes sense when exactly one of
∑

xn and
∑

(−2x)n

converges, because adding the terms of a convergent series and a divergent series must
produce a divergent result.
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does f(x) as shown in the equation above. Similarly, if 1/2 < |x| < 1, then
f(x) is the sum of a convergent and a divergent series, so f(x) diverges.

Putting this together, since f(x) converges for |x| < 1/2, the radius of
convergence for f is at least 1/2. Since f(x) diverges when 1/2 < |x| < 1,
the radius of convergence is at most 1/2. Thus, the radius is exactly 1/2.
Furthermore, the equation f(x) =

∑

xn +
∑

(−2x)n shows that f(1/2) and
f(−1/2) both diverge.

(One useful consequence of Theorem 10.29 applied to this example is
that f(x) also diverges when |x| ≥ 1, since the radius of convergence is
1/2. This conclusion does NOT follow immediately from writing f(x) =
∑

xn +
∑

(−2x)n, since adding the terms of two divergent series may or may
not yield a divergent result.) �

Remark. When reasoning about power series and their radii of convergence,
the following corollary to Theorem 10.29 is often handy:

Corollary 10.32. Let a ∈ R and a sequence (cn)∞n=0 of real numbers be
given. Let f be the power series

f(x) =

∞
∑

n=0

cn(x − a)n

and let R be its radius of convergence.
Let x ∈ R be given. If f(x) converges, then |x− a| ≤ R. If f(x) diverges,

then R ≤ |x − a|.
You can prove this corollary in Exercise 10.5.12.

This corollary helps to shorten the work needed for finding a radius of
convergence by plugging in appropriate choices of x. For instance, let’s revisit
Example 10.30, where we analyzed the power series

∑

xn/ log n. We saw this
series has radius at least 1 by comparing against the series

∑

xn. To see that
the series has radius at most 1, we note that for any b > 1,

∑

bn/ log n
diverges because bn/ log n → ∞ as n → ∞. Thus, the radius cannot be
larger than b for any b > 1, so the radius is at most 1.

Integrating and Differentiating Power Series

Let’s consider a power series f with center of a and radius of convergence
R, so f has the form

f(x) =
∞
∑

n=0

cn(x − a)n
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Thanks to Theorem 10.29, we know that f converges uniformly on intervals
of the form (a − r, a + r) for 0 < r < R. (For now, we consider only the
cases when R 6= 0, since an interval of convergence consisting of a single
point is uninteresting.) This means that our results about uniform series of
functions apply to power series. Since each partial sum of a power series
is a polynomial, which is continuous and integrable, it follows by Theorems
10.16 and 10.17 that for each r with 0 < r < R, f is both continuous and
integrable on (a − r, a + r).

Since every x belonging to (a − R, a + R) (note that when R = ∞, we
treat this interval as R) also belongs to some interval of the form (a−r, a+r)
with 0 < r < R, we see that f is continuous on (a − R, a + R). Also, for
every x ∈ (a − R, a + R), we have

∫ x

a

f(t) dt =

∫ x

a

∞
∑

n=0

cn(t − a)n dt

=
∞
∑

n=0

cn

∫ x

a

(t − a)n dt =
∞
∑

n=0

cn

n + 1
(x − a)n+1

by integrating term by term.
This means that within the interior of the interval of convergence (the

endpoints are a more subtle matter), a power series can be integrated as if
it were a polynomial! Performing this integration yields a new power series
whose (n + 1)st coefficient is cn/(n + 1) (and whose 0th coefficient is 0). This
raises the question: what is the radius of the integrated power series? Is it
bigger or smaller than R?

It is not hard to show that the radius of the integrated series is at least
as large as R. The work we just presented shows that the integrated series

∞
∑

n=0

cn

n + 1
(x − a)n+1

converges absolutely for every x ∈ (a − R, a + R). (In fact, by Theorem
10.17, this integrated series converges uniformly on (a − r, a + r) for any
r with 0 < r < R.) It follows by Corollary 10.32 that the radius of the
integrated series cannot be any smaller than R. With a little more work, we
get the very important result that the radius of the integrated series is R:
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Theorem 10.33. Let a ∈ R and a sequence of real numbers (cn)∞n=0 be given.
Let f be the power series centered at a with coefficients (cn). Let R be the
radius of convergence of f . Let g be the power series defined by

g(x) =

∞
∑

n=0

cn

n + 1
(x − a)n+1

for all x ∈ R where the series converges. Then g has radius of convergence
R, and

∫ y

x

f(t) dt = g(t)|yx = g(y)− g(x)

for all x, y ∈ (a − R, a + R).

Remark. Although the integrated series has the same radius, the behavior
might change at the endpoints of the interval of convergence. For instance,
the geometric series

∞
∑

n=0

xn

has radius 1 and diverges when |x| = 1, but the integrated series

∞
∑

n=0

xn+1

n + 1
=

∞
∑

n=1

xn

n

converges conditionally at x = −1.

Strategy. Most of the parts of this theorem were already proven in the re-
marks before the statement of the theorem. All that remains is showing that
the radius of g is at most R. In other words, if Rg is the radius of g, then
we’ve seen that Rg ≥ R, so now we want Rg ≤ R.

There are two possible ways to proceed. One way is to show that g(x)
diverges outside of f ’s interval of convergence. In other words, we prove that
|x − a| > R implies divergence of g(x). (It follows by Corollary 10.32 that
Rg cannot be larger than R.) However, this is a difficult approach to use,
because although we know that f(x) diverges when |x − a| > R, we don’t
have much information about HOW it diverges. In particular, we don’t know
whether the partial sums of f(x) blow up in magnitude or not.

Instead, we’ll use a different approach: we’ll show that f(x) converges
inside of g’s interval of convergence. In other words, we’ll show that when
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|x − a| < Rg, f(x) converges. We try this strategy because Theorem 10.29
tells us that g(x) converges ABSOLUTELY for |x− a| < Rg, which is a nice
fact we can exploit.

Thus, let’s suppose |x − a| = r < Rg, so that

g(x) =

∞
∑

n=0

cn

n + 1
(x − a)n+1

converges absolutely. We’d like to show that

f(x) =

∞
∑

n=0

cn(x − a)n

also converges absolutely by comparing its terms against the terms of g(x).
First, let’s try using the main idea from the proof of Lemma 10.28: analyze
the proportion between the terms of the two series. This leads us to consider
the ratio

∣

∣

∣

∣

cn(x − a)n

cn(x − a)n+1/(n + 1)

∣

∣

∣

∣

=
n + 1

|x − a| =
n + 1

r

(We can suppose that x 6= a, since any power series automatically converges
at its center). Unfortunately, (n + 1)/r goes to ∞ as n → ∞.

How do we deal with this issue? Looking back at the proof from Lemma
10.28, we notice one important feature of that proof which we have not
imitated: in the lemma, the ratio was computed with two points x and y
satisfying |x − a| < |y − a|. Because |x − a| < |y − a| in that argument, an
exponential term like (|x− a|/|y − a|)n appeared in the ratio, and this term
was crucial for obtaining a comparison with a convergent series. We’d like a
similar term to appear in our proof.

Therefore, let’s take some value y such that |x − a| < |y − a| < Rg, and
let’s define s = |y−a|. We know that g(y) converges absolutely by definition
of Rg. Now, we try to compare the magnitudes of f(x)’s nth term and g(y)’s
nth term (where we suppose cn 6= 0 for simplicity):

|cn(x − a)n| ≤
∣

∣

∣

∣

cn

n + 1
(y − a)n+1

∣

∣

∣

∣

↔ |x − a|n ≤ |y − a|n+1

n + 1

↔ rn ≤ sn+1

n + 1
↔ n + 1 ≤ sn+1

rn
= s

(s

r

)n

Since 0 < r < s, (s/r)n approaches ∞ much faster than n + 1 does! Thus,
our comparison works for large enough values of n.
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Proof. Let a, (cn), f, R, g be given as described. Let Rg be the radius of con-
vergence of g. The remarks made before the statement of the theorem prove
that Rg ≥ R. It remains to show that Rg ≤ R, and then all the remaining
statements of the theorem are proven as described before the statement of
the theorem. We will prove that for all x ∈ R with 0 < |x − a| < Rg, f(x)
converges, so that R ≥ |x−a| by Corollary 10.32. Once this is done, we know
R ≥ |x − a| whenever |x − a| < Rg, so it follows that R ≥ Rg as desired.

Let x ∈ R be given with 0 < |x− a| < Rg. Choose some y ∈ R such that
|x − a| < |y − a| < Rg (for instance, y = a + (Rg + |x − a|)/2 works), and
define r = |x − a| and s = |y − a|. Because |y − a| < Rg,

g(y) =

∞
∑

n=0

cn(y − a)n+1

n + 1

converges absolutely by definition of Rg. We will use this fact to show that
f(x) converges absolutely by the Comparison Test. Namely, we will prove
that when n is large enough,

|cn(x − a)n| ≤
∣

∣

∣

∣

cn

n + 1
(y − a)n+1

∣

∣

∣

∣

When cn = 0, our goal inequality is automatically satisfied. When cn 6= 0,
we replace |x − a| by r and |y − a| by s, and we rewrite our goal inequality
as follows:

|cn(x − a)n| ≤
∣

∣

∣

∣

cn

n + 1
(y − a)n+1

∣

∣

∣

∣

↔ |x − a|n ≤ |y − a|n+1

n + 1

↔ rn ≤ sn+1

n + 1
↔ 1 ≤ sn+1

rn(n + 1)
=

s(s/r)n

n + 1

Because 0 < r < s, and exponentials dominate polynomials, s(s/r)n/(n +
1) → ∞ as n → ∞. Therefore, we may pick some N ∈ N such that whenever
n > N , s(s/r)n/(n + 1) > 1. As a result, for all n > N , the nth term of f(x)
has a smaller magnitude than the nth term of g(y). Because g(y) converges
absolutely, f(x) converges absolutely by the Comparison Test. �

When f is a power series with radius of convergence R and center a,
Theorem 10.33 doesn’t just tell us that we can integrate f term by term on
(a − R, a + R). It also tells us that the radius of convergence doesn’t grow
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when we integrate! (In fact, most of the work of the previous theorem was
spent proving that the radius doesn’t grow.) Equivalently, if we start with
the integrated series g from the theorem, and we differentiate term by term
to get back f , then the radius doesn’t shrink! This leads to the following
corollary:

Corollary 10.34. Let a ∈ R and a sequence of real numbers (cn)∞n=0 be
given. Let f be the power series centered at a with coefficients (cn). Let R
be the radius of convergence of f . Let g be the power series defined by

g(x) =
∞
∑

n=1

ncn(x − a)n−1 =
∞
∑

n=0

(n + 1)cn+1(x − a)n

for all x ∈ R where the series converges. Then g has radius of convergence
R, and f ′(x) = g(x) for all x ∈ (a−R, a + R). We say that g is obtained by
differentiating f term by term.

Strategy. The main idea is that since g can be obtained from f by differenti-
ating terms, f can be obtained from g by integrating terms. More specifically,
let’s say Rg is the radius of convergence of g, and consider the series

∫ x

a

g(t) dt =
∞
∑

n=1

(
∫ x

a

ncn(t − a)n−1 dt

)

=
∞
∑

n=1

cn(x − a)n

defined for all x ∈ (a − Rg, a + Rg). This integrated series has radius Rg by
Theorem 10.33, but we also see that the integral is f(x)− f(a) = f(x)− c0.
Thus, f ′(x) = g(x) by the Fundamental Theorem of Calculus.

Proof. Let a, (cn), f, R, g be given as described. Let Rg be the radius of
convergence of g. For any x ∈ (a − Rg, a + Rg), Theorem 10.33 tells us that

∫ x

a

g(t) dt =
∞
∑

n=1

(
∫ x

a

ncn(t − a)n−1 dt

)

=
∞
∑

n=1

cn(x − a)n

and this series has radius of convergence Rg. Furthermore, we see that

∫ x

a

g(t) dt =

( ∞
∑

n=0

cn(x − a)n

)

− c0 = f(x) − f(a)
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Hence, f has radius of convergence Rg, so Rg = R.
Lastly, because g has radius R, Theorem 10.29 tells us that g is continuous

on (a − R, a + R). Therefore, for any x ∈ (a − R, a + R), the Fundamental
Theorem of Calculus lets us differentiate our previous equality with respect
to x and obtain g(x) = f ′(x), as desired. �

Corollary 10.34 is a result that sets power series apart from many other
series of functions. We have previously seen that differentiation does not
behave well with uniform convergence: a uniform limit of differentiable func-
tions can fail to be differentiable, or perhaps the derivative of the limit fails
to equal the limit of derivatives. In contrast, Corollary 10.34 proves that a
power series is differentiable inside its interval of convergence, the derivative
can be computed very easily (term by term), and the derivative is a power
series with the same radius! Essentially, power series enjoy all the properties
of differentiation that we would ideally like to have.

Example 10.35:

Consider the geometric series

f(x) =
1

1 − x
=

∞
∑

n=0

xn

which has center 0 and radius 1. By Corollary 10.34, we may differentiate
this series term by term on (−1, 1) and obtain

f ′(x) =
1

(1 − x)2
=

∞
∑

n=1

nxn−1

(Note that this starts at n = 1 because the n = 0 term of f(x) is a constant
and hence disappears in the derivative.) The series for f ′ also has radius 1,
so we may differentiate again on (−1, 1) to get

f ′′(x) =
2

(1 − x)3
=

∞
∑

n=2

n(n − 1)xn−2

(As before, the n = 1 term of f ′ disappears in f ′′.)
We can continue taking derivatives for each x ∈ (−1, 1), and we obtain

the formula

f (k)(x) =
k!

(1 − x)k+1
=

∞
∑

n=k

n(n − 1) · · · (n − k + 1)xn−k
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for all x ∈ (−1, 1) and all k ∈ N (which can be readily proven by induction
on k). As a result, we obtain power series representations for 1/(1 − x)k+1

for every k ∈ N. In fact, using the binomial coefficients
(

n
k

)

, we can write
this as

1

(1 − x)k+1
=

∞
∑

n=k

n(n − 1) · · · (n − k + 1)

k!
xn−k =

∞
∑

n=k

(

n

k

)

xn−k

We can also shift the index of the series to start at 0 and obtain

1

(1 − x)k+1
=

∞
∑

n=0

(

n + k

k

)

xn

This can be used to deduce identities about binomial coefficients: see Exercise
10.5.25. �

Computing Sums of Some Power Series

Because we can integrate and differentiate power series term by term, we
can find closed-form sums of several power series. We have demonstrated
the main ideas before in Examples 10.18 and 10.19. Now, we can get a few
more formulas by using differentiation. We present some examples now, and
we will have more examples when we talk about Taylor series in the next
section.

Example 10.36:

In this example, we find a couple power series whose sum is

f(x) =
1

2 − x

The main idea is to relate f(x) to the geometric series

1

1 − x
=

∞
∑

n=0

xn

for x ∈ (−1, 1).
One way to proceed is to note that 2 − x = 1 − (x − 1). Hence,

f(x) =
1

1 − (x − 1)
=

∞
∑

n=0

(x − 1)n
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which is valid when x − 1 ∈ (−1, 1), i.e. x ∈ (0, 2). This writes f(x) as a
series with center 1 and radius 1.

Another way of solving this problem is to factor 2 out of the denominator
to get

f(x) =
1

2

(

1

1 − (x/2)

)

=
1

2

∞
∑

n=0

(x

2

)n

=

∞
∑

n=0

xn

2n+1

This series has center 0 and radius 2, since it converges for |x/2| < 1 and
diverges for |x/2| ≥ 1. Since this second series converges in more places than
our first series, this second series is probably a better choice of series. �

Example 10.37:

In this example, we’d like to obtain the exact value of

∞
∑

n=1

1

n2n

There are techniques in discrete math for finding this sum, but they are
generally difficult. Instead, let’s show how we can find this sum using power
series. The main trick is to note that if we define

f(x) =
∞
∑

n=1

xn

n

then our desired sum is just f(1/2). (This is valid because f has radius 1
about the center 0, as you can check.)

Now, f(x) is quite similar to
∑

xn except for the n in the denominator.
We can get rid of that n by taking a derivative term by term, obtaining

f ′(x) =

∞
∑

n=1

xn−1 =

∞
∑

n=0

xn =
1

1 − x

Therefore, by integrating both sides, we get

f(x) − f(0) =

∫ x

0

f ′(t) dt =

∫ x

0

dt

1 − t
= −(log(1 − x) − log 1)

This is valid for all x ∈ (−1, 1).
Since f is centered at 0 and has zero constant term, we see that f(0) = 0.

Thus, f(x) = − log(1 − x) and hence f(1/2) = − log(1/2) = log 2. �
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10.5 Exercises

1. Determine where the series

f(x) =

∞
∑

n=1

(cos(πx))n

n

converges absolutely, converges conditionally, or diverges. This shows
that concepts like “interval of convergence” or “center” do not necessar-
ily make sense for series which are not power series.

For Exercises 2 through 11, a power series is given. Determine the radius
of convergence of each series. Also, for Exercises 2 through 5, when the radius
is finite, determine the interval of convergence (i.e. check the endpoints).

2.
∞
∑

n=0

(−1)nx2n

3.

∞
∑

n=0

n2xn

3n+2

4.

∞
∑

n=2

xn

n2 log n

5.
∞
∑

n=0

n! xn

(2n)!

6.
∞
∑

n=0

nnxn

n!

7.
∞
∑

n=0

(2 + (−1)n)nxn

(Hint: Consider Example 10.31.)

8.
∞
∑

n=0

3
√

nxn

9.
∞
∑

n=0

a(n2)xn where a > 0

(This answer has several cases depending on how large a is.)

10.
∞
∑

n=1

(

an

n
+

bn

n2

)

xn

where a, b > 0

11.
∞
∑

n=0

(sin n)xn

12. Prove Corollary 10.32.
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13. Prove that if (cn)∞n=0 is a bounded sequence of real numbers, then the

power series
∞
∑

n=0

cnxn has radius at least 1.

14. Suppose that (cn)∞n=0 is a sequence of real numbers and the power series

∞
∑

n=0

cnxn

has radius R > 0. For each k ∈ N∗, what is the radius of

∞
∑

n=0

cnx
kn?

(Hint: Corollary 10.32 might be useful.)

15. Suppose that a ∈ R is given and (cn)∞n=0 is a sequence of real numbers,
and suppose that

f(x) =

∞
∑

n=0

cn(x − a)n

is a power series with radius of convergence R > 0.

(a) Prove that f is infinitely differentiable at a and, for all n ∈ N, we
have

cn =
f (n)(a)

n!

(b) Suppose that (dn)∞n=0 is given such that

g(x) =

∞
∑

n=0

dn(x − a)n

is a power series with radius of convergence R, and assume f(x) =
g(x) for all x ∈ (a − R, a + R). Prove that cn = dn for every
n ∈ N. (Thus, if two power series represent the same function on
(a − R, a + R), then their coefficients must match!)

16. Suppose that f is a power series of the form

f(x) =
∞
∑

n=0

cnx
n
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with radius of convergence R > 0. Prove that f is an even function
on (−R, R) (i.e. f(−x) = f(x) for all x ∈ (−R, R)) iff cn = 0 for all
odd n ∈ N. Similarly, prove that f is an odd function on (−R, R) (i.e.
f(−x) = −f(x) for all x ∈ (−R, R)) iff cn = 0 for all even n ∈ N.

(Hint: If f is even, then show

f(x) −
∞
∑

n=0

c2nx2n =

∞
∑

n=0

c2n+1x
2n+1

is both even and odd. You may want to use the result of Exercise
10.5.15.)

In Exercises 17 through 22, an expression defining a real function of x
is given. Find a power series with center 0 whose sum is the specified real
function, and find the radius of convergence of the power series. (For instance,
see Example 10.36.)

17.
1

1 + x

18. log(1 + x)

19. log

(

1 + x

1 − x

)

(See also Exercise 8.5.22.)

20.
1

1 + x2

21. arctanx

22.
x

1 + x − 2x2

(Hint: Use partial fractions.)

In Exercises 23 and 24, a series is given. Use power series methods, much
like in Example 10.37, to obtain the value of the sum.

23.
∞
∑

n=1

(−1)n−1

n2n

24.

∞
∑

n=0

(−1)n−1

(2n + 1)3n

(Hint: Integrate a power series where x has been replaced with x2.)

25. In Example 10.35, we saw that for each k ∈ N and all x ∈ (−1, 1), we
have

1

(1 − x)k+1
=

∞
∑

n=0

(

n + k

k

)

xn
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Use this identity, and the result of Exercise 10.5.15, to prove the fol-
lowing:

(a) For all n, k ∈ N,
(

n + k + 1

k + 1

)

=

(

n + k

k

)

+

(

n + k

k + 1

)

(Hint: Write 1/(1 − x)k+1 as (1 − x)/(1 − x)k+2.)

(b) For all n, k ∈ N,

(k + 1)

(

n + k + 1

k + 1

)

= (n + 1)

(

n + k + 1

k

)

(Hint: Differentiate 1/(1 − x)k+1.)

10.6 Some Applications of Power Series

In the last section, we introduced power series and saw that they are easy
to integrate and differentiate within their interval of convergence. It follows
that a power series with positive radius is infinitely differentiable at its cen-
ter. In fact, in Exercise 10.5.15, we saw that when a function is given by a
power series with positive radius, the coefficients of that series are uniquely
determined. For convenience, we restate that result here:

Theorem 10.38. Let a ∈ R be given, let f be a real function which is in-
finitely differentiable at a, and suppose that there exist (cn)∞n=0 and R > 0 (R
might be ∞) satisfying

f(x) =

∞
∑

n=0

cn(x − a)n

for all x ∈ (a − R, a + R). Then

cn =
f (n)(a)

n!

for all n ∈ N.

Remark. When a, f , and R satisfy the hypotheses of Theorem 10.38, we say
that f is analytic on (a − R, a + R). In other words, an analytic function is
a function whose values are given by a power series.
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In this section, we explore a few uses for power series. First, we will ex-
plore the relationship between power series and Taylor polynomials of func-
tions, which lets us find useful representations for many common functions.
Next, we will use power series to solve some differential equations, where
term-by-term differentation of powers series comes in handy. Lastly, we will
show how the uniqueness of power series coefficients can be used to help
compute some sequences from discrete mathematics!

Taylor Series

Recall from Chapter 8 that when a ∈ R, n ∈ N, and f is a real function
which is n-times differentiable at a, the nth-order Taylor polynomial for f at
a is defined by

Tnf(x; a) =

n
∑

i=0

f (i)(a)

i!
(x − a)i

for all x ∈ R. When we compare this with the formula from Theorem 10.38,
we see that Tnf is the nth partial sum of f ’s power series! This should
be no surprise, because Tnf is specifically designed to agree with f and its
first n derivatives at a, whereas the power series for f is an “infinite-degree
polynomial” which agrees with ALL the derivatives of f at a.

This suggests that when f is a function is infinitely differentiable at a,
we can form the power series Tf given by the limit of Tnf as n → ∞:

Tf(x; a) =
∞
∑

n=0

f (n)(a)

n!
(x − a)n

This is called the Taylor series for f at a.10 Theorem 10.38 tells us that IF
f is analytic, i.e. if f can be represented by a power series, THEN the power
series for f has to be the Taylor series Tf .

However, this raises the question: when does the Taylor series actually
converge to f(x)? In other words, if f is infinitely differentiable, then is it
analytic? There are two issues to consider here. First, Tf(x; a) might not
converge at all values where f(x) is defined. For instance, when f(x) =
1/(1 − x), f is defined on R − {1}, but

1

1 − x
=

∞
∑

n=0

xn

10When a = 0, the series is also soemtimes called the Maclaurin series for f at a, in
honor of the Scottish mathematician Colin Maclaurin.
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x

y

Figure 10.6: A non-analytic function y = e−1/x2

for x 6= 0, y(0) = 0

only when |x| < 1. Second, it might be possible for Tf(x; a) to converge to
a different value from f(x). For instance, Exercise 8.2.16 shows that when

f(x) =

{

e−1/x2

if x 6= 0

0 if x = 0

we have f (n)(0) = 0 for all n ∈ N and hence Tf(x; 0) = 0 for all x ∈ R. Thus,
Tf(x; 0) 6= f(x) except when x = 0. The graph of y = f(x) is displayed in
Figure 10.6; intuitively, the graph is so flat near 0 that the Taylor series is
“fooled” into thinking the function is constant!

To deal with these issues, our most important tool is the Taylor error En,
defined by Enf(x; a) = f(x)− Tnf(x; a). We have Tf(x; a) = f(x) precisely
when Enf(x; a) → 0 as n → ∞. To analyze Enf(x; a), we can use Lagrange’s
form of the error (Theorem 8.16): for all x ∈ R, there is some c between x
and a (which depends on x, a, and n) such that

Enf(x; a) =
f (n+1)(c)

(n + 1)!
(x − a)n+1

This suggests that if f (n) grows more slowly than n!, then Enf → 0. For
instance, you can prove the following in Exercise 10.7.1:

Theorem 10.39. Let a ∈ R and r ∈ (0,∞) be given, and let f be a real
function which is infinitely differentiable on (a − r, a + r). Suppose that
C, A > 0 are given such that

|f (n)(x)| ≤ CAn

for all x ∈ (a−r, a+r). (Thus, the nth derivative grows at most exponentially,
independently of x.) Then Enf(x; a) → 0 uniformly on (a − r, a + r) as
n → ∞, i.e. Tnf(x; a) → f(x) uniformly on (a − r, a + r) as n → ∞.
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This theorem provides a useful way to check many Taylor series for func-
tions we studied when computing Taylor polynomials in Chapter 8. When
applying this theorem, r is often chosen to be an arbitrary positive number
less than the radius of convergence of the Taylor series. For instance, we offer
the following examples:

Example 10.40:

Suppose f(x) = ex for all x ∈ R. We have

Tf(x; 0) = lim
n→∞

Tnf(x; 0) =
∞
∑

n=0

xn

n!

The Ratio Test shows that this series has infinite radius of convergence.
We’d like to show that this Taylor series converges to ex by using Theorem

10.39. For any r ∈ (0,∞), and for all x ∈ (−r, r), we have

|f (n)(x)| = |ex| ≤ er ≤ CAn

where we choose C = er and A = 1. (These are not the only choices of C
and A which work.) Thus, the Taylor series for f converges uniformly to
ex on (−r, r) for any r ∈ (0,∞). (However, note that the convergence is
NOT uniform on R, because xn/n! does not converge uniformly to 0 on R as
n → ∞; see Exercise 10.3.11).

Therefore, for any x ∈ R, we have

ex =

∞
∑

n=0

xn

n!

We can use this to obtain Taylor series for other related functions. For
instance, by replacing x with x2, we obtain

e(x2) =
∞
∑

n=0

x2n

n!

If we write this in the form
∑

cnxn, then we find that for all k ∈ N,

c2k+1 = 0 c2k =
1

k!
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Therefore, when g(x) = e(x2), Theorem 10.38 tells us that g(2k+1)(0) = 0
and g(2k)(0) = (2k)!/k! for all k ∈ N. This result provides an easy way of
obtaining derivatives of g at 0 without repeatedly using the Chain Rule!

Furthermore, we can integrate the Taylor series for g term by term and
obtain

∫ x

0

e(t2) dt =

∞
∑

n=0

∫ x

0

t2n

n!
dt =

∞
∑

n=0

x2n+1

n! (2n + 1)

This is particularly useful since e(t2) does not have an elementary derivative,
so we can’t obtain a convenient closed form for its integrals. However, we do
have a series for the integral, and this series can be used to approximate the
value of the integral by partial sums. �

Example 10.41:

Let’s consider f(x) = sin x for all x ∈ R. We have

T sin(x; 0) = lim
n→∞

Tn sin(x; 0) =

∞
∑

n=0

(−1)nx2n+1

(2n + 1)!

This series has infinite radius of convergence, as you can check. Also, for any
n ∈ N, f (n) is either ± sin or ± cos, so |f (n)(x)| ≤ 1 for all x ∈ R. Therefore,
we can choose C = A = 1 in Theorem 10.39, and we choose r to be any
positive number, and we find that the Taylor series converges uniformly to
sin x on (−r, r).

Similarly, the series

T cos(x; 0) =
∞
∑

n=0

(−1)nx2n

(2n)!

converges uniformly to cos x on every interval of the form (−r, r). This can
either be proven by the same approach as for sin, or it can be proven by
differentiating the series for sin x term by term.

As in the previous example, we can obtain new series by substituting
in different expressions for x, because the Taylor series for sine and cosine
converge everywhere. For instance, we obtain

x sin(x2) = x
∞
∑

n=0

(−1)n(x2)2n+1

(2n + 1)!
=

∞
∑

n=0

(−1)nx4n+3

(2n + 1)!
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We can also integrate term by term to obtain formulas like

∫ x

0

cos(t4) dt =

∞
∑

n=0

∫ x

0

(−1)nt8n

(2n)!
dt =

∞
∑

n=0

(−1)nx8n+1

(2n!) (8n + 1)

�

In the last two examples, we presented examples of functions f and Taylor
series which converge to f on R. When the Taylor series converges on a finite
interval, however, the endpoints usually require more subtle arguments. The
following example illustrates the main idea:

Example 10.42:

Consider the Taylor series representation

1

1 − x
=

∞
∑

n=0

xn

which is valid for |x| < 1. By substituting values for x which have magnitude
less than 1, we can obtain other formulas. For instance, by plugging in −3x,
we get

1

1 + 3x
=

∞
∑

n=0

(−3)nxn

whenever |−3x| < 1, i.e. |x| < 1/3. Also,

1

1 + x2
=

∞
∑

n=0

(−1)nx2n

when |−x2| < 1, i.e. |x| < 1. We can also integrate term by term: for
instance, by plugging in −x and then integrating, we get

∫ x

0

1

1 + t
dt =

∞
∑

n=0

∫ x

0

(−1)ntn dt

whenever |x| < 1, i.e.

log(1 + x) =
∞
∑

n=0

(−1)nxn+1

n + 1
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Let f(x) = 1/(1 + x) and g(x) = log(1 + x). We’ve seen that Tnf → f
and Tng → g on (−1, 1) as n → ∞. (It turns out that this convergence is not
uniform on (−1, 1) but is uniform on (−r, r) whenever r ∈ (0, 1).) We also
note that the Taylor series for g converges at x = 1: Tg(1) is the alternating
harmonic series

∑

(−1)n/(n + 1). This raises the question: does the Taylor
series Tg(x) converge to g(x) when x = 1?

To analyze this, we need to study the Taylor error Eng(x). Since g is
obtained by integrating f , Eng can be obtained by integrating En−1f (as
integrating increases the degree by one). Furthermore, we actually know the
exact value of En−1f : since

1

1 − x
= 1 + x + · · · + xn−1 +

1 − xn

1 − x

we have En−1f(x; 0) = (1 − xn)/(1 − x). After applying some inequalities
and integrating (see Exercise 8.5.20 for more details), we eventually obtain

|Eng(x)| ≤ |x|n+1

n + 1

Thus, for x = 1, we have Eng(1) → 0 as n → ∞. This means that the Taylor
series for g is also valid at the endpoint x = 1, giving the sum of log 2. �

By using similar techniques, you can show that almost all of the Taylor
polynomials we found in Chapter 8 lead to Taylor series expansions which
are valid in an interval with positive radius. We summarize some of the most
important examples in the table below, all of which are studied by either
using Theorem 10.39 or by manipulating the geometric series for 1/(1 − x).
All of these examples have their center at 0.

It is worth noting two subtle points here. First, when the radius R is finite,
techniques like those in Example 10.42 are needed to analyze the endpoints
of the interval of convergence. Second, these series do not usually converge
uniformly on (−R, R), but they do converge uniformly on (−r, r) whenever
0 < r < R. Informally, as long as you stay away from the ends of the interval,
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you can show uniform convergence (often by using the M-Test).

Function Taylor Series Where it is Valid

ex

∞
∑

n=0

xn

n!
R

sin x

∞
∑

n=0

(−1)nx2n+1

(2n + 1)!
R

cos x

∞
∑

n=0

(−1)nx2n

(2n)!
R

1

1 − x

∞
∑

n=0

xn (−1, 1)

log(1 + x)

∞
∑

n=0

(−1)nxn+1

n + 1
(−1, 1]

arctanx

∞
∑

n=0

(−1)nx2n+1

2n + 1
[−1, 1]

Differential Equations

A differential equation is an equation involving an unknown function and
some of its derivatives. For instance, when y is an unknown function of x,
the equation

y′ = y

is a differential equation. We say this equation is first-order because the
highest order of derivative in the equation is the first derivative y′. Similarly,
the equation

y′′ + y = 0

is a second-order differential equation since its highest-order derivative is the
second derivative of y.

Now, let’s show how the techniques from this chapter can be used to
find solutions to differential equations. The basic idea is to assume y can
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be written as a power series
∑

cnxn, plug this into the equation, and find
conditions that the sequence (cn) must satisfy11. We demonstrate the method
with a few examples:

Example 10.43:

Consider the differential equation y′ = y. Let’s say we try and represent y
as a power series

y(x) =
∞
∑

n=0

cnxn

where the coefficients (cn) are to be determined. (We also ignore the issue of
radius of convergence for now; once we find the coefficients, we can go back
and figure out the radius.) Differentiating term by term, we have

y′(x) =
∞
∑

n=1

ncnx
n−1

Therefore, since y′ = y, we have

∞
∑

n=1

ncnxn−1 =

∞
∑

n=0

cnxn

To write both sides in the same form, where xn is on both sides, we shift the
left sum to get

∞
∑

n=0

(n + 1)cn+1x
n =

∞
∑

n=0

cnx
n

By Theorem 10.38, the coefficients must match on each side of the equation,
so for every n ∈ N, we must have (n + 1)cn+1 = cn. In other words,

cn+1 =
cn

n + 1

This gives us a recurrence for computing the coefficients c1, c2, c3, and so
forth from a value of c0 (c0 can be an arbitrary real number). The recurrence
tells us that

c1 =
c0

1
c2 =

c1

2
=

c0

2!
c3 =

c2

3
=

c0

3!
· · ·

11This method generally finds all solutions to many differential equations; this is justified
by uniqueness theorems proven in upper-level classes.
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In general, an easy induction proof shows that cn = c0/n! for any n ∈ N.
Therefore, our solution is

y(x) =

∞
∑

n=0

c0
xn

n!
= c0e

x

Thus, we have obtained an infinite collection of solutions to our differential
equation, one for each value of c0. These solutions have infinite radius of
convergence, so they satisfy y′(x) = y(x) for all x ∈ R.

By following the same approach, you can show that if y(x) =
∑

cnx
n

solves the differential equation y′ = ky, where k is a constant, then y(x) =
c0e

kx. (Compare this with the statement of Theorem 7.9.) �

Example 10.44:

Consider the equation
y′′ = −y

Let’s represent y as a power series by y(x) =
∑

cnx
n. Therefore, we have

y′(x) =
∞
∑

n=1

ncnxn−1 y′′(x) =
∞
∑

n=2

n(n − 1)cnxn−2

and hence y′′ = −y implies

∞
∑

n=2

n(n − 1)cnx
n−2 =

∞
∑

n=0

−cnx
n

By shifting the left sum to start from 0, so that we have terms of xn on
both sides, we get

∞
∑

n=0

(n + 2)(n + 1)cn+2x
n =

∞
∑

n=0

−cnxn

Matching coefficients, we find

cn+2 =
−cn

(n + 2)(n + 1)

for all n ∈ N. By iterating this recurrence, we can obtain c2 from c0, c4 from
c2, etc., as well as obtain c3 from c1, c5 from c3, etc. Thus, c0 and c1 can
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take arbitrary values, but after that, a routine induction shows that for each
n ∈ N,

c2n =
(−1)nc0

(2n)!
c2n+1 =

(−1)nc1

(2n + 1)!

Putting this all together, we get

y(x) = c0

∞
∑

n=0

(−1)nx2n

(2n)!
+ c1

∞
∑

n=0

(−1)nx2n+1

(2n + 1)!
= c0 cos x + c1 sin x

Notice that in this example, we have an infinite family of solutions spec-
ified by two constants c0 and c1, whereas the previous example had only
one constant c0. This is because this example has a second-order equation
whereas the other has a first-order equation. In general, we typically find
that all solutions to differential equations of order k are built by taking com-
binations of k separate basic12 solutions using k arbitrary constants. (In this
example, sin x and cos x are the basic solutions.) �

Example 10.45:

Now, for an example where x makes an appearance in the differential equa-
tion, consider

y′(x) = xy(x)

Suppose that y(x) =
∑

cnx
n as usual. Thus, using our earlier formula for y′,

∞
∑

n=1

ncnx
n−1 = x

∞
∑

n=0

cnx
n =

∞
∑

n=0

cnx
n+1

If we shift the right sum to start from 2, then we get an equation with xn−1

on both sides:
∞
∑

n=1

ncnxn−1 =

∞
∑

n=2

cn−2x
n−1

Here, we note that the left side has a term for n = 1 whereas the right
side does not. In other words, the right side has a coefficient of 0 for x0.
Since the coefficients of the power series must match on both sides, the left

12We will not take the time to formalize the notion of “basic solution”; this task is for a
linear algebra course or a differential equations course.
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side also has a coefficient of 0 for x0, i.e. 1c1x
0 = 0x0. This tells us that c1

must be zero.
For all values of n ≥ 2, however, setting the coefficients equal yields

ncn = cn−2, so cn = cn−2/n. This recurrence lets us obtain c2 from c0, c4

from c2, and so on. You can show that for each n ∈ N,

c2n =
c2n−2

2n
=

c2n−4

(2n)(2(n − 1))
= · · · =

c0

2n n!

On the other hand, since c3 is obtained from c1 using the recurrence, then c5

is obtained from c3, and so forth, you can also show that c2n+1 = 0 for each
n ∈ N. Putting this all together, we get

y(x) =

∞
∑

n=0

c0x
2n

2n n!
= c0

∞
∑

n=0

(x2/2)n

n!
= c0e

(x2/2)

�

As the examples demonstrate, power series yield a powerful method for
finding solutions to differential equations. However, they can only be used
to find analytic solutions to differential equations. For instance, consider the
equation

x2y′′(x) = y(x)

If y(x) has the form
∑

cnx
n, then

x2

∞
∑

n=2

n(n − 1)cnx
n−2 =

∞
∑

n=2

n(n − 1)xn =

∞
∑

n=0

cnx
n

Matching coefficients, we have find that n(n − 1)cn = cn for all n ≥ 2, and
also c0 = c1 = 0. However, for n ≥ 2, n(n − 1)cn = cn is only possible when
cn = 0. Thus, y is constantly zero, which is not a particularly interesting
solution to the differential equation.

The issue here is that y(x) = 0 is the only analytic solution to x2y′′(x) =
y(x). It turns out that the two basic solutions to x2y′′(x) = y(x) are not
analytic: see Exercise 10.7.23. Nevertheless, the power series method is
generally effective on many differential equations encountered in practice.
Even if the power series does not have a convenient closed form like the ones
from our earlier examples, having an answer in the form of a series can still
be useful. For instance, see Exercise 10.7.26.
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Solving Recurrences: The Method of Generating Functions

When solving differential equations with power series, we tend to get a
recurrence for finding the coefficients (cn) of the power series. Thus, by using
power series, we turn a problem involving derivatives into a problem involving
recurrences, i.e. a calculus problem becomes a discrete math problem. In
the examples we covered, the recurrence was quite simple, and a closed-form
formula could be proven by induction. However, what do we do with more
complicated recurrences?

It turns out that a simple trick can be used to turn discrete math prob-
lems into calculus problems! The main idea is: when we have a recurrence
describing a sequence (an)∞n=0, we can create the power series

f(x) =

∞
∑

n=0

anx
n

The function f is called the generating function for the sequence (an). We
assume that f has some positive radius R of convergence (the exact value of
this radius doesn’t actually matter). Roughly, our main approach is to first
obtain a closed form for f , and then we use this closed form to find a nice
expression for the Taylor series, telling us the coefficients (an).

To illustrate how this works in practice, we present two examples. You
can try more examples in the exercises.

Example 10.46:

Let’s show how generating functions can be used to solve the recurrence

an+1 = 2an + 1 for n ∈ N a0 = 1

Let f(x) =
∑

anx
n be the generating function with radius R > 0. Informally,

we use our recurrence to compute

f(x) = a0 + a1x + a2x
2 + a3x

3 + · · ·
= 1 + (2a0 + 1)x + (2a1 + 1)x2 + (2a2 + 1)x3 + · · ·
= 1 + 2x(a0 + a1x + a2x

2 + · · · ) + x(1 + x + x2 · · · )

= 1 + 2xf(x) + x

(

1

1 − x

)

Thus, f(x) is written in terms of itself, and we can solve for f(x).
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Let’s do the work above more formally. Since an+1x
n+1 = (2an +1)xn for

n ∈ N, and a0x
0 = a0, we write f in the form

f(x) = a0 +

∞
∑

n=1

anxn = a0 +

∞
∑

n=0

an+1x
n+1

applying an index shift so that an+1 appears. By plugging in our recurrence
and our base case, this tells us that

f(x) = 1 +
∞
∑

n=0

(2an + 1)xn+1 = 1 + 2
∞
∑

n=0

anxn+1 +
∞
∑

n=0

xn+1

which is valid when |x| < min{R, 1}. Lastly, by pulling a factor of x out of
the summations, we obtain

f(x) = 1 + 2x
∞
∑

n=0

anxn + x
∞
∑

n=0

xn = 1 + 2xf(x) + x

(

1

1 − x

)

By collecting the terms involving f(x) to the same side, we obtain

f(x)(1 − 2x) = 1 +
x

1 − x
=

1

1 − x

so we obtain the closed form

f(x) =
1

(1 − x)(1 − 2x)

whenever |x| < min{R, 1}. This closed form looks related to the geometric
series for 1/(1 − x) and 1/(1 − 2x). To write f in terms of these series, we
can use partial fractions!

Thus, let’s write

1

(1 − x)(1 − 2x)
=

A

1 − x
+

B

1 − 2x

where A and B are to be determined. By clearing the denominators, we
obtain

1 = A(1 − 2x) + B(1 − x)

When x = 1, we find A = −1, and when x = 1/2, we find B = 2.
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As a result, we know

f(x) =
−1

1 − x
+

2

1 − 2x
= −

∞
∑

n=0

xn + 2

∞
∑

n=0

(2x)n =

∞
∑

n=0

(2n+1 − 1)xn

Since f(x) =
∑

anxn, we find an = 2n+1 − 1 for all n ∈ N. �

In Example 10.46, it is probably not hard to see a pattern for an and
prove it by induction. However, this next example probably doesn’t have as
obvious a pattern:

Example 10.47:

Let’s consider the recurrence

an+2 = 5an+1 − 6an for n ∈ N a0 = 2, a1 = 5

As before, let’s set f(x) =
∑

anx
n. Our first step is to find a closed form

for f . In order to use our knowledge about a0 and a1, we set the terms a0

and a1x aside from f(x), so that

f(x) = a0 + a1x +

∞
∑

n=2

anx
n = a0 + a1x +

∞
∑

n=0

an+2x
n+2

(we also shifted our index so that an+2 appears). Plugging in our recurrence,
we find

f(x) = 2 + 5x +

∞
∑

n=0

(5an+1 − 6an)xn+2

= 2 + 5x + 5

∞
∑

n=0

an+1x
n+2 − 6

∞
∑

n=0

anx
n+2

By pulling out factors of x and shifting indeces so that our terms have the
form anxn, we find

f(x) = 2 + 5x + 5x
∞
∑

n=1

anxn − 6x2
∞
∑

n=0

anx
n

Lastly, we note that the sum from n = 1 is almost equal to f(x), except that
it’s missing the n = 0 term a0, which is 2. Thus, we find

f(x) = 2 + 5x + 5x (f(x) − 2) − 6x2f(x)
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Solving for f(x) yields f(x)(1 − 5x − 6x2) = 2 − 5x, so

f(x) =
2 − 5x

1 − 5x − 6x2
=

2 − 5x

(1 − 2x)(1 − 3x)

Next, we aim to find a convenient Taylor series for f . As in the last
example, we will do this by using partial fractions. Thus, let’s say

2 − 5x

(1 − 2x)(1 − 3x)
=

A

1 − 2x
+

B

1 − 3x

which leads to

2 − 5x = A(1 − 3x) + B(1 − 2x) = (A + B) + (−3A − 2B)x

Thus, A + B = 2 and −3A − 2B = −5. Solving these equations yields
A = B = 1. (Alternately, we could plug in x = 1/3 and x = 1/2 to obtain
these values.) As a result,

f(x) =
1

1 − 2x
+

1

1 − 3x
=

∞
∑

n=0

(2x)n +
∞
∑

n=0

(3x)n =
∞
∑

n=0

(2n + 3n)xn

It follows that an = 2n + 3n for all n ∈ N. �

The study of generating functions is surprisingly beautiful and provides a
concrete link between discrete mathematics and techniques of analysis. How-
ever, in the interest of time and space, we have only presented the basics.
For more details, you may be interested to check out the book generating-
functionology (it’s all one word!) by Herbert Wilf: the book is available for
free at his website.

10.7 Exercises

1. Use Lagrange form to prove Theorem 10.39.

In Exercises 2 through 7, a real function f of the variable x is specified.
Find the Taylor series Tf for this function centered at 0, and determine
which values of x ∈ R satisfy Tf(x) = f(x).

PREPRINT: Not for resale. Do not distribute without author’s permission.



780 Section 10.7: Exercises

2. f(x) =
ex + e−x

2

3. f(x) =







sin x

x
if x 6= 0

1 if x = 0

4. f(x) = ax where a > 0

5. f(x) = sin2 x

(Hint: Use a half-angle identity.)

6. f(x) =
1

1 + 4x2

7. f(x) =
2x

(2 − x)2

8. Prove that the Taylor series for arctanx converges to arctan x when
|x| = 1. (Hint: Use an argument like the one from Example 10.42, but
use the results from Example 8.24 instead of from Exercise 8.5.20.)

In Exercises 9 through 14, a series is given. Use power series methods to
obtain the value of the sum.

9.

∞
∑

n=1

(−1)n

n!

10.
∞
∑

n=0

2n

(n + 3)!

11.

∞
∑

n=0

(−2)n

(2n + 1)!

12.

∞
∑

n=3

(−2)2n+1

5n (2n + 1)

13.

∞
∑

n=2

n(−π2)n

(2n)!

14.

∞
∑

n=0

1

(2n + 1)!

(Hint: Combine ex and e−x some-
how.)

15. Define f : (−1, 1) → R by f(x) = x log(1 + x2) for all x ∈ (−1, 1). For
each n ∈ N, compute f (n)(0). (Hint: See Example 10.40.)

In Exercises 16 through 19, a differential equation is specified for y in
terms of x. First, find the solutions to the differential equation in the form
of a power series, then find the closed-form sum of the power series.

16. y′(x) = 2xy(x)

17. y′(x) − y(x) = x

18. (1 − x)y′(x) = y(x)

19. y′(x) − y(x) = ex
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20. Find all solutions to the differential equation

y′′(x) + xy′(x) − y(x) = 0

satisfying y′(0) = 0. Leave the answer in the form of a series (so do
not find a closed-form for the sum). Your answer should involve one
unknown constant.

21. Find the solution to the differential equation

(1 − x2)y′′(x) − 2xy′(x) + 6y(x) = 0

which satisfies y(0) = 1 and y′(0) = 0.

22. Find all solutions to the differential equation

y′′′(x) = y(x)

but leave the answer in the form of a series. (In other words, do not
find a closed-form value for the sum.) Your answer should involve three
unknown constants, since this is a third-order differential equation.

23. Consider the differential equation

x2y′′(x) = y(x)

We previously saw that its only analytic solution was the constant zero
function. In this exercise, we use a different approach for solving the
equation: we guess that y has the form y(x) = xp for some p ∈ R.

(a) Find all values of p ∈ R such that the function y(x) = xp satisfies
the differential equation x2y′′(x) = y(x) for all x > 0. There
should be two such values: we’ll call them α and β.

(b) Prove that for any A, B ∈ R, the function

y(x) = Axα + Bxβ

satisfies our differential equation for all x > 0, where α and β were
found in part (a). This shows that when we take two solutions to
our differential equation and make a linear combination of them,
we obtain another solution.

PREPRINT: Not for resale. Do not distribute without author’s permission.



782 Section 10.7: Exercises

(c) Explain why xα and xβ are not analytic on any interval of the
form (−r, r) for r > 0, where α and β come from part (a).

24. Recall from Exercise 8.2.11 that for any α ∈ R and any n ∈ N, we
defined

(

α

n

)

=
α(α − 1)(α − 2) · · · (α − n + 1)

n!

That exercise also shows that

Tn ((1 + x)α; 0) =

n
∑

i=0

(

α

i

)

xi

Let α ∈ R be given. In this exercise, we outline a proof of Newton’s
Binomial Theorem, which states that

(1 + x)α =

∞
∑

n=0

(

α

n

)

xn

for all x ∈ (−1, 1). The series on the right is called the binomial series
with power α.

(a) Show that the binomial series with power α has radius 1.

(b) Show that for all x ∈ (−1, 1), the differential equation

y′(x) =
αy(x)

1 + x

is satisfied when y(x) is (1 + x)α or when y(x) is the binomial
series for α. (You may not assume that these two functions are
the same!)

(c) Here is a uniqueness theorem for differential equations which we
will not prove:

Theorem 10.48. Let D be an open interval in R, let P and Q
be continuous functions on D, and let a ∈ D and b ∈ R be given.
Then the differential equation

y′(x) = P (x)y(x) + Q(x)

has a unique solution y on D satisfying y(a) = b.
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Use this theorem and part (b) to prove Newton’s Binomial Theo-
rem.

25. The differential equation

x2y′′(x) + xy′(x) + (x2 − k2)y(x) = 0

is called Bessel’s Equation (k is a constant). Let’s suppose k ∈ N is
fixed, and suppose that y is a solution to Bessel’s Equation of the form

y(x) =
∞
∑

n=0

cnx
n

(a) Prove that −k2c0 = 0, (1 − k2)c1 = 0, and (n2 − k2)cn + cn−2 = 0
for all n ∈ N with n ≥ 2.

(b) Use part (a) to prove that cn = 0 whenever n ∈ N and n < k.

(c) Use part (a) to prove that for all n ∈ N,

c2n+k =
(−1)n k! ck

22n n! (n + k)!

(d) From parts (b) and (c), it follows that a solution to Bessel’s Equa-
tion is uniquely determined by the values of ck and ck+1. Show
that one solution to Bessel’s Equation is

y(x) =
∞
∑

n=0

(−1)n (x/2)2n+k

n! (n + k)!

(In other words, find out which choices of ck and ck+1 produce this
formula.)

26. For any k ∈ N, the Bessel function Jk of order k is defined by

Jk(x) =
∞
∑

n=0

(−1)n (x/2)2n+k

n! (n + k)!

Among other uses, the Bessel functions appear when studying wave
propogation and signal processing.13 The Bessel function Jk also solves
Bessel’s Equation, as seen in Exercise 10.7.25. In this exercise, we
develop a few more properties of Jk.

13See http://en.wikipedia.org/wiki/Bessel_function for more details.
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(a) Prove that Jk has infinite radius of convergence for each k ∈ N.

(b) Prove that for all x ∈ R and k ∈ N∗, (xkJk(x))′ = xkJk−1(x).

(c) Prove that for all x ∈ R and k ∈ N, (x−kJk(x))′ = −x−kJk+1(x).

27. Suppose that (an)∞n=0 satisfies the recurrence

an+2 = 5an+1 − 6an for n ∈ N

(this is the same recurrence as in Example 10.47), but a0 and a1 are
unspecified. Use generating functions to find the solution to this recur-
rence. (Your final answer should express an in a closed form using a0,
a1, and n.)

28. The Fibonacci numbers (fn)∞n=0 are defined by the recurrence

fn+2 = fn+1 + fn for n ∈ N f0 = 0, f1 = 1

Use generating functions to find a closed form for fn in terms of n.

29. Find the unique sequence (an)∞n=0 satisfying the conditions

an+2 = 4an+1 − 4an a0 = 3, a1 = 8

(Hint: Near the end of the problem, recall that 1/(1−x)2 is the deriva-
tive of 1/(1 − x).)

10.8 Weierstrass’s Function

Previously, we’ve seen that a uniform limit of continuous functions is continu-
ous, but a uniform limit of differentiable functions might not be differentiable.
In this section, we take these ideas to the extreme: we make a function, due
to Karl Weierstrass, which is everywhere continuous but nowhere differen-
tiable!14 Intuitively, the graph of such a function is connected (because of
the continuity) but it is far from being smooth: there are jagged corners
everywhere. For instance, see Figure 10.7.

Before we show how this function is built, it is worth making a few remarks
about the nature of the function itself. We’ve seen examples of nowhere dif-
ferentiable functions before, like the ruler function, but these examples have

14Historically, Weierstrass was not the first to create a continuous nowhere-differentiable
function, but it is believed that his function was the first one published.
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x

y

Figure 10.7: A graph of a continuous nowhere-differentiable function

plenty of discontinuities. (For instance, the ruler function is discontinuous at
rational points.) Furthermore, when we introduced some functions which are
continuous but not differentiable everywhere, like the absolute-value function,
we saw these functions only have a few “sharp corners” or “vertical tangents”
every so often. It is not too hard to imagine a continuous function with in-
finitely many corners (for instance, a periodic function whose graph consists
of triangles), but it is difficult to imagine how one could build a function
with a sharp turn or vertical tangent at EVERY point. The fact that such a
function exists is highly surprising indeed!15

A Short Introduction to Fourier Series

How might we build a continuous nowhere-differentiable function? The
main idea is to build this function as a uniform series of continuous functions,
which ensures that our function is continuous. However, we cannot use power
series to make a continuous nowhere-differentiable function, since a power
series is differentiable inside its interval of convergence. Instead, we use
Fourier series : a typical Fourier series has the form

a0 +
∞
∑

n=0

(an cos(nx) + bn sin(nx))

where (an)∞n=0 and (bn)∞n=1 are sequences of real constants.

15In fact, there are many of these functions, as it can be shown (using a result called
the Baire Category Theorem) that every continuous bounded function can be written as
a uniform limit of continuous nowhere-differentiable functions!
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786 Section 10.8: Weierstrass’s Function

Basically, a Fourier series uses cosines and sines instead of powers of x.
The partial sums of a Fourier series are called trigonometric polynomials.
Note as well that each trigonometric function in this series is periodic with
period 2π (the shortest period for the functions cos(nx) and sin(nx) is 2π/n,
which divides 2π evenly). It follows that each trigonometric polynomial has
period 2π, so our series is periodic with period 2π as well. Thus, Fourier
series are used for studying periodic functions, and in fact they turn out to
be a very useful tool when studying waves and partial differential equations.

One way to think of a Fourier series is to think of each cos(nx) or sin(nx)
term as a simple wave or a signal at a certain frequency. When n is larger,
the wave oscillates more tightly. Multiplying the wave by a constant, like an

or bn, changes the amplitude of the wave. (If the constant is negative, then
the wave is reflected vertically as well.) When we add these amplified waves
together to make a trigonometric polynomial, we are layering the waves on
top of each other; in physics, this is called superposition. When we add many
different signals with rapidly growing frequencies, the resulting wave can be
very “noisy”, leading to the jagged picture from Figure 10.7.

Due to this, Fourier series do not usually satisfy the nice differentiability
properties that power series do. For instance, we’ve seen that the Fourier
series

∞
∑

n=1

sin(nx)

n2

converges uniformly on R (by the M-Test with Mn = 1/n2), and hence this
series is continuous on R, but this series cannot be differentiated term by
term: the Fourier series

∞
∑

n=1

(

sin(nx)

n2

)′
=

∞
∑

n=1

cos(nx)

n

diverges at x = 0. (In fact, whenever x is not an integer multiple of 2π, this
differentiated series converges conditionally, but the proof uses techniques we
do not have time to cover.)

There are some special cases in which Fourier series can be differentiated
term by term. As an example, consider the series

f(x) =
∞
∑

n=1

sin(nx)

n3
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and let g be its term-by-term derivative

g(x) =

∞
∑

n=1

cos(nx)

n2

It is not hard to show that f and g converge uniformly on R. As a result,
for any a, x ∈ R, we may integrate g term by term and obtain

∫ x

a

g(t) dt =
∞
∑

n=1

∫ x

a

cos(nt)

n2
dt =

∞
∑

n=1

(

sin(nx)

n3
− sin(na)

n3

)

= f(x) − f(a)

By the Fundamental Theorem of Calculus, it follows that f(x) − f(a) is
differentiable at x and f ′(x) = g(x).

This argument can be generalized to show that when f is a Fourier series
whose term-by-term derivative g converges uniformly, it follows that f ′ = g.
(Also, see Exercise 10.3.17.) However, when the term-by-term derivative g
does NOT converge uniformly, that does not necessarily imply that f fails to
be differentiable. Nevertheless, this does suggest that to make a continuous
nowhere-differentiable function, we could make a Fourier series which con-
verges absolutely but for which the term-by-term derivative diverges. This
is the idea we pursue next.

The Main Result

Based on our recent discussion of properties of Fourier series, Weierstrass
considered the following definition for a function, where a and b are positive
constants:

W (x) =

∞
∑

n=0

an cos(bnπx)

(The choice of πx instead of x in the series makes things a little more con-
venient, since the period of cos(πx) is 2, which is an integer.) In essence, W
is a superposition of infinitely many waves, but the frequences are growing
exponentially (as opposed to growing linearly in many other Fourier series),
so W should become jagged quite quickly if b is large.

More precisely, let’s analyze W and its term-by-term derivative. Since

|an cos(bnπx)| ≤ an
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788 Section 10.8: Weierstrass’s Function

for each n ∈ N and each x ∈ R, the M-Test shows that W converges uniformly
and is continuous when a < 1. Also, W has term-by-term derivative

−π
∞
∑

n=0

(ab)n sin(bnπx)

In order to make this series diverge, b should be large enough to satisfy
ab ≥ 1. In fact, Weierstrass showed that W is nowhere differentiable when a
and b satisfy slightly stronger conditions:16

Theorem 10.49. Let a, b ∈ (0,∞) be given such that a < 1, ab > 1+(3π/2),
and b is an odd integer. Define the Fourier series W by

W (x) =

∞
∑

n=0

an cos(bnπx)

Then W (x) converges for all x ∈ R, W is continuous on R, and W ′(x) does
not exist for any x ∈ R.

Strategy. We’ve already shown that W is well-defined and continuous on R.
It remains to show that W is nowhere-differentiable. This proof is definitively
harder than most of the other proofs in this book, as it uses a few clever
tricks that we have not used much before. There are also some rather long
calculations. For these reasons, we will not try and explain how someone
could have created this proof in the first place, but we will merely present
an outline of the main steps of the argument.17

Our goal is to take an arbitrary x0 ∈ R and show that this limit of
difference quotients does not exist:

lim
y→x0

W (y) − W (x)

y − x0
= lim

y→x0

∞
∑

n=0

an cos(bnπy) − cos(bnπx0)

y − x0

In fact, we will show that this limit fails to exist in a rather special way: the
difference quotients are unbounded above and below as y → x0. To do this,

16In fact, G.H. Hardy proved years later that the conditions ab ≥ 1 and 0 < a < 1 imply
that W is nowhere differentiable, but that proof is beyond the scope of this textbook.

17This argument is due to Johan Thim, from his Masters Thesis at
http://www.scribd.com/doc/29256978/Continuous-Nowhere-Differentiable-Functions
-Johan-Thim. According to Thim, this argument is close to Weierstrass’s original proof.
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we will find sequences (ym)∞m=0 and (zm)∞m=0 such that x0 is not in {ym}∞m=0

or {zm}∞m=0, ym and zm tend to x0 as m → ∞,

lim
m→∞

∣

∣

∣

∣

W (ym) − W (x0)

ym − x0

∣

∣

∣

∣

= lim
m→∞

∣

∣

∣

∣

W (zm) − W (x0)

zm − x0

∣

∣

∣

∣

= ∞

and the difference quotients at ym and at zm have opposite signs. In essence,
these sequences show that the difference quotients oscillate wildly “from −∞
to ∞” as ym and zm get closer to x0.

How do we find these points ym and zm? We look at the mth wave in
the series: am cos(bmπx). This wave has period 2/bm, and the point x0 lies
between two local maxima (the “crests” of the wave), as well as lying between
two local minima (the “troughs” of the wave); see Figure 10.8. We want to
pick ym and zm to be local extrema so that the difference quotients of ym and
zm have opposite signs and are as steep as possible. Hence, the proof finds
the closest extremum point to x0 (marked with a hollow dot in the figure)
and then chooses ym and zm to be the extrema a half-period away in either
direction. It follows that ym < x0 < zm, with ym and zm being at most one
period away from x0, so ym and zm approach x0 as m → ∞.

x0

ym zm

x

y

Figure 10.8: The mth wave am cos(bmπx) with x0 and some extrema labelled

Now, we analyze the difference quotient at ym. We’ve seen that this
difference quotient is an infinite series. The next trick of the argument is to
split that series into the terms with n < m and the terms with n ≥ m; in
essence, we study the “low-frequency waves” (with n < m) and the “high-
frequency waves” (with n ≥ m) separately. This means that (W (ym) −
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W (x0))/(ym − x0) is Slow(ym, m) + Shigh(ym, m), where

Slow(x, m) =
m−1
∑

n=0

an cos(bnπx) − cos(bnπx0)

x − x0

and

Shigh(x, m) =
∞
∑

n=m

an cos(bnπx) − cos(bnπx0)

x − x0

Intuitively, we expect Slow to be small and Shigh to be large, as the sharpest
slopes should come from waves that oscillate tightly. We use some inequalities
involving trigonometric identities, using the assumptions that b is an odd inte-
ger and ab > 1+(3π/2). Eventually, we find that |Slow(ym, m)+Shigh(ym, m)|
is proportional to (ab)m, which shows that it approaches ∞ and m → ∞.
The same steps work for zm, though we find that the difference quotient at
zm has the opposite sign from the difference quotient at ym.

Proof. Let a, b, W be given as described. The remarks before the statement
of the theorem prove that W is continuous on R. Now, let x0 ∈ R be given,
and we will show that W ′(x0) does not exist. More specifically, we will create
sequences (ym)∞m=0 and (zm)∞m=0 of points such that

1. For all m ∈ N, ym < x0 < zm.

2. ym → x0 and zm → x0 as m → ∞.

3. The difference quotients

W (ym) − W (x0)

ym − x0
and

W (zm) − W (x0)

zm − x0

have opposite signs and have magnitudes at least as large as C(ab)m,
where C is some positive constant independent of m.

It follows from conditions 2 and 3 of this list that W has unbounded difference
quotients near x0 and hence is not differentiable at x0.

To construct these sequences, let m ∈ N be given. Let αm be the nearest
integer to bmx0; more specifically, choose αm to be the unique integer satis-
fying bmx0 − αm ∈ (−1/2, 1/2]. Also, define ∆m = bmx0 − αm. (Note that
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since the graph of y = cos(πx) has local extrema at the integers, the mth

wave am cos(bmπx) has its closest extremum to x0 at x = αm/bm.) Define

ym =
αm − 1

bm
zm =

αm + 1

bm

It follows that

ym − x0 = −1 + ∆m

bm
and zm − x0 =

1 − ∆m

bm

Since |∆m| ≤ 1/2, it follows that ym < x0 < zm and that ym, zm → x0 as
m → ∞. This proves conditions 1 and 2 from our conditions on ym and zm.

It remains to prove condition 3. First, for any x ∈ R, define

Slow(x, m) =
m−1
∑

n=0

an cos(bnπx) − cos(bnπx0)

x − x0

and

Shigh(x, m) =
∞
∑

n=m

an cos(bnπx) − cos(bnπx0)

x − x0

=
∞
∑

n=0

am+n cos(bm+nπx) − cos(bm+nπx0)

x − x0

where we do an index shift in the last sum for convenience. (It is straight-
forward to see that these series converge absolutely for all x 6= x0 by the
Comparison Test.) Therefore, we have

W (ym) − W (x0)

ym − x0
=

∞
∑

n=0

an cos(bnπym) − cos(bnπx0)

ym − x0

= Slow(ym, m) + Shigh(ym, m)

and a similar statement holds for the difference quotient at zm.
Next, we analyze Slow. For any x ∈ R − {x0} and any n ∈ N, applying

the Mean Value Theorem to cos on the interval from bnπx to bnπx0 yields

cos(bnπx) − cos(bnπx0) = bnπ(x − x0) sin(c)
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for some c between bnπx and bnπx0. Thus, |cos(bnπx) − cos(bnπx0)| ≤
bnπ|x − x0|, and hence

|Slow(x, m)| ≤
m−1
∑

n=0

an bnπ|x − x0|
|x − x0|

=
m−1
∑

n=0

π(ab)n

Since ab > 1 + (3π/2), ab 6= 1, so we may use the partial sum formula for a
geometric series to write

|Slow(x, m)| ≤ π((ab)m − 1)

ab − 1
≤ π(ab)m

ab − 1

Now, we analyze Shigh. Let n ∈ N be given. Recall that b is an odd
integer, so bn is also an odd integer. Also, note that cos(πx) = (−1)x when
x is an integer. Therefore,

cos(bm+nπym) = cos

(

bm+nπ
αm − 1

bm

)

= cos (bnπ(αm − 1)) = (−1)(bn(αm−1))

=
(

(−1)(bn)
)αm−1

= (−1)αm−1 = −(−1)αm

The same calculations with zm show that cos(bm+nπzm) = (−1)αm+1 =
−(−1)αm . Next, we rewrite cos(bm+nπx0) by using a trigonometric iden-
tity, the facts that cos(πx) = (−1)x and sin(πx) = 0 when x is an integer,
and the definitions of ym, zm, αm, and ∆m (recalling that αm is an integer):

cos(bm+nπx0) = cos

(

bm+nπ
αm + ∆m

bm

)

= cos(bnπ(αm + ∆m))

= cos(bnπαm) cos(bnπ∆m) − sin(bnπαm) sin(bnπ∆m)

=
(

(−1)(bn)
)αm

cos(bnπ∆m) − 0 · sin(bnπ∆m)

= (−1)αm cos(bnπ∆m)

Using the definition of ym and the previous results, we obtain

Shigh(ym, m) =

∞
∑

n=0

am+n−(−1)αm − (−1)αm cos(bnπ∆m)

−(1 + ∆m)/bm

= (ab)m(−1)αm

∞
∑

n=0

an 1 + cos(bnπ∆m)

1 + ∆m
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Since |cos(bnπ∆m)| ≤ 1, each term in this sum is nonnegative. Thus, we get
a lower bound on that sum by throwing out all terms except for the term
with n = 0. Also, since |∆m| ≤ 1/2, it follows that cos(π∆m) ≥ 0, so

∞
∑

n=0

an 1 + cos(bnπ∆m)

1 + ∆m

≥ 1 + cos(π∆m)

1 + ∆m

≥ 1

1 + 1/2
=

2

3

Similarly, we find that

Shigh(zm, m) =
∞
∑

n=0

am+n−(−1)αm − (−1)αm cos(bnπ∆m)

(1 − ∆m)/bm

= −(ab)m(−1)αm

∞
∑

n=0

an 1 + cos(bnπ∆m)

1 − ∆m

and ∞
∑

n=0

an 1 + cos(bnπ∆m)

1 − ∆m
≥ 1 + cos(π∆m)

1 − ∆m
≥ 1

1 − (−1/2)
=

2

3

Finally, we collect all these results together. To make it easier to com-
bine results, let’s write our inequalities as equalities with extra variables.
More specifically, our work with Slow shows that there exist ǫ1, ǫ2 ∈ [−1, 1]
satisfying

Slow(ym, m) = ǫ1
π(ab)m

ab − 1
Slow(zm, m) = ǫ2

π(ab)m

ab − 1

Also, we can find η1, η2 ∈ [1,∞) satisyfing

∞
∑

n=0

an 1 + cos(bnπ∆m)

1 + ∆
= η1 ·

2

3

∞
∑

n=0

an 1 + cos(bnπ∆m)

1 − ∆
= η2 ·

2

3

Therefore, we find that

W (ym) − W (x0)

ym − x0
= Slow(ym, m) + Shigh(ym, m)

=
ǫ1π(ab)m

ab − 1
+ (−1)αm(ab)m 2η1

3

= (−1)αm(ab)m

(

2η1

3
+ (−1)αm

ǫ1π

ab − 1

)
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and similarly

W (zm) − W (x0)

zm − x0
= −(−1)αm(ab)m

(

2η2

3
− (−1)αm

ǫ1π

ab − 1

)

Now, because ab > 1 + (3π/2), we have π/(ab − 1) < 2/3. Thus, in
our expressions for the difference quotients at ym and at zm, the number
inside the large parentheses is at least 2/3− π/(ab− 1), which is positive. It
follows that the two difference quotients have opposite signs. Furthermore,
when C = 2/3−π/(ab−1), our difference quotients have magnitude at least
C(ab)m. Finally, we have proven condition 3 from our conditions on ym and
zm, so we are done. �

Remark. The proof we just finished uses two sequences of points, approaching
x0 from different sides, to show that the difference quotients are unbounded.
It turns out that we only need one of these sequences if we want to prove
that the difference quotients are unbounded. However, note that we don’t
actually know the sign of either of our difference quotients, because we don’t
know whether αm is even or odd. Hence, if we worked with only one sequence
of points, we wouldn’t know if the difference quotients go to ∞, go to −∞,
or oscillate between the two infinities. (Note that if the difference quotients
go to ∞ or go to −∞, then we have a vertical tangent at x0.)

In contrast, by working with two difference quotients of opposite signs, we
show that the difference quotients are unbounded above AND below. This
tells us that we do not have a vertical tangent at x0; instead, secant slopes
oscillate extremely wildly near x0. In fact, this construction tells us that W
has another nonintuitive property:

Corollary 10.50. Let a, b, W be given as in Theorem 10.49. Then W is not
monotone on any nonempty open interval.

The proof of this corollary is quite simple. Given any nonempty open in-
terval I, take a point x0 ∈ I, and construct the sequences (ym) and (zm) from
the proof of Theorem 10.49. Because ym and zm approach x0 as m → ∞,
when m is large enough, ym and zm also belong to I. Since the difference
quotient from ym to x0 and the difference quotient from x0 to zm have dif-
ferent signs, it follows that W is not monotone on [ym, zm] and hence is not
monotone on I.
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Corollary 10.50 says that the Weierstrass function W is nowhere mono-
tone. In contrast, most of the continuous functions we studied before are
piecewise monotone. Intuitively, most continuous functions “change direc-
tion” only finitely many times, but W changes direction all the time!

Concluding Remarks

The Weierstrass function is the last example this book covers. In many
ways, it is very deserving of this honor, since in order to introduce it and
analyze it, we use many different tools and techniques from this book. In
the process, we also encounter many important reasons why people study
analysis, as opposed to merely studying the formulas of calculus. These
reasons include:

• Analysis rigorously justifies results. The theorems of calculus are quite
powerful and beautiful, but much like any powerful tool, we need con-
trol to use the tool properly and purposefully. By writing careful,
precise definitions, and using rigorous proofs of results, we get control
and comfort in using our tools of calculus effectively.

• Although many results from calculus arise from natural observations
and intuition, there are plenty of important examples which are surpris-
ing and non-intuitive. When dealing with such examples, we need the
rigor of analysis to be able to make sense out of them. These examples
challenge our conventional ways of thinking about calculus, leading to
a deeper understanding. If used correctly, rigor does not detract from
intuition: it ultimately enhances and refines intuition.

• For many students, the main work in mathematics prior to analysis
uses equations and exact solutions. However, analysis also considers
inequalities and error estimates very important. For instance, Taylor’s
Theorem is particularly fundamental because it not only asserts that
Taylor polynomials are generally good approximations, it also makes
specific statements about HOW good they are. As another example,
in our proof that the Weierstrass function is nowhere differentiable, we
use complicated inequalities to obtain our main results.

Even outside of analysis, there is much to be gained by pursuing math-
ematics with care and detail. However, being rigorous does not mean that
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examples are “uninteresting” or “too concrete”. After all, definitions and theo-
rems are only useful when they model examples, address questions motivated
by prior experience, or provide more complete pictures as to how an area of
study works. There is a cycle at work here: we use examples and questions
to motivate definitions, we proceed from these definitions to theorems and
proofs, and then we use the theorems to create new examples to start the
cycle over again.

It is worth noting that different areas of mathematics tend to use different
proof styles and have different conventions. This causes some confusion over
standards, but with practice that confusion tends to become negligible. Ul-
timately, mathematicians from different areas devise results that target the
questions they find interesting. This doesn’t mean that these different areas
are incompatible: there are many important results that solve a problem in
one area of mathematics by converting it to an equivalent problem in another
area. (Generating functions are a particularly good example of this.)

Ultimately, I hope that you, as the student, will take some of these lessons
to heart in your future mathematics education. There is a vast amount of
mathematics to explore, and you should be prepared for it upon finishing
this book. You will be able to explore more beautiful and complex results
with careful reasoning and structuring as your guides.
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Index

(ai)i∈I , 590
(an)j

n=i, 590
(an)∞n=k, 590
−∞, 15
0 · ∞ forms, 512
0/0 form, 510
00 forms, 514
1∞ forms, 514
<, 78
>, 78
A(f ; [a, b]), see Area, Under graph of

f
A + B, as a sum of sets, 88
A2 with a set A, 35
Ab

a(f), see Average, Of a function
Enf(x; a), 541
ELn

, 439
EMn

, 439
ERn

, 439
Hn, see Harmonic number, see Har-

monic number
Jk, see Bessel Function
KE(v), 568
KN(v), 568
L(f ; [a, b]), see Integral, Lower
Ln(f ; [a, b]), 437
L∞ norm, 720
Mn(f ; [a, b]), 437
Rn(f ; [a, b]), 437
Sn(f ; [a, b]), 444

Tnf(x; a), 527
Tn(f ; [a, b]), 440
Tf(x; a), 765
U(f ; [a, b]), see Integral, Upper
W , see Weierstrass Function
∆xi, see Partition, Subintervals
∆

Changes, 202, 209
Sets, 17

Γ(s), see Gamma function
⇔, 5
⇒, 5
arccos, 180

Continuity, 180
Derivative, 254

arcsin, 179
Continuity, 179
Derivative, 253

arctan, 180
Continuity, 180
Derivative, 254
Integral, 393
Taylor polynomials, 557
Taylor series, 771

∩, see Set, Intersection
χA, see Characteristic function
(

α
i

)

, 538
(

n
i

)

, 213, 231, 538
◦, see Function, Composition
∪, see Set, Union
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L’H

= , 506
dnf

dxn
, 211

df

dx
, see Leibniz notation

∫

f(x) dx, see Integral, Indefinite
∫

P

s, see Integral, of step functions
∫ b

a

f , see Integral, 324
∫ b

a

s, 307, 309
∫ ∞

a

f(x) dx, 635
∫ b

−∞
f(x) dx, 635

∫ ∞

−∞
f(x) dx, 637

F (x)|ba, 369
∅, see Set, Empty
ǫ/2 argument, 121
ǫ/3 argument, 729
≡, see Statement, Equivalence
∃, see Quantifiers, Existential
exp, 462
∀, see Quantifiers, Universal
γ, see Euler-Mascheroni constant
≥, 78
id, see Function, Identity
∈, 6
inf S, see Bounds, Greatest lower
∞−∞ forms, 512
∞, 15
∞/∞ form, 510
∞0 forms, 514
⌈x⌉, see Ceiling
↔, see Statement, Equivalence

≤, 78
⌊x⌋, see Floor
ln, 458
log, 455
logb, 457
max S, see Maximum
C, 6
N, 6
N∗, 6
Q, 6
Q[

√
2], 68, 77

R, 6
R+, 78
Z, 6
Z2, see Integers modulo 2
Zn, see Integers modulo n
min S, see Minimum
¬, see Statement, Negation
φ, see Golden ratio
π

Approximating, 558, 562
Irrational, 571, 585

∏

, see Product notation
ran, see Function, Range
→, see Statement, Implication, see

Function√
2

Formal definition of, 87
Irrationality of, 77
Motivation for, 83

⊂, see Set, Proper subset
⊆, see Set, Subset
(, see Set, Proper subset
∑

an, 611
∑

, see Summation notation
sup S, see Bounds, Least upper
↾, see Function, Restriction of
∨, see Statement, Disjunction
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∧, see Statement, Conjunction
ζ(s), see Riemann zeta function
an ∼ bn, 652
bx, see Powers, Irrational
c, 568
dx, see Differentials, see Integral, of

step functions
e, 457

Approximating, 545
Irrational, 570

eiθ, 692
f ′, see Derivative, Definition of
f (n), see Derivative,nth

f−1 with f a function, 49
f+, see Positive part
f−, see Negative part
g(x) + C, see Integral, Indefinite
n-times differentiable, see Derivative,

nth

n!, see Factorial
nth-order derivative, see Derivative,

nth

o(g(x)) as x → a, 573
p-series, 641
u-substitution, see Substitution
x → a, see Limit
x → a+, see Limit, One-sided
x → a−, see Limit, One-sided
x+, see Positive part
x−, see Negative part
xi,n, 339
� , see Proof, Marker
“Choose”, 22
“Contained in”, see Set, Subset
“For all”, see Quantifiers, Universal
“Given”, 21
“Peaks”, 270
“Sup of spikes” function, 266

“There exists”, see Quantifiers, Exis-
tential

“Tug of war” game, 695
“Valleys”, 270
0, definition, 65, 67

Uniqueness of, 70
0/0 form, 132
1, definition, 65, 67

Uniqueness of, 70

AA, 66
Absolute convergence, 689
Absolute value, 101
Accuracy ǫ, 107
Addition, 65
Alternating Series Test, 684

Error estimates, 687
Analytic, 765
And, see Statement, Conjunction
Antiderivative, 366

Elementary, 376
Approaches, see Limit
Approximation

Error
“Better than nth-order”, 552, 553
“Better than linear”, 217, 552
Linear, 215, 290
Taylor, 541

Linear, 208, 523, 552
Archimedian Property, 94
Area

Area functions, 359
Between curves, 413
By horizontal slices, 412
By radial strips, 419
By vertical slices, 413
Computing, 410
In polar coordinates, 420
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Signed area, 301
Under graph of f , 295
Unsigned area, 301

Arithmetic operations, 65
Associate, see Associativity
Associativity, 66
AST, see Alternating Series Test
Asymptote

Horizontal, 133
Vertical, 134

Average
Of a function, 350
Of finitely many numbers, 348
Weighted, of functions, 352
Weighted, of numbers, 351

Axiom, 64
Algebraic, 65
Order, 77
Usage of, 97

Axiom C, 86

BC, see Induction, Base case
Bessel Function, 783
Bessel’s Equation, 783
big-Ω, 573
big-O, 573
Bijection, see Function, Bijective
Binary search, 174
Binomial Coefficient, see

(

n
i

)

Binomial series, 782
Binomial Theorem, 213, 538

Newton’s Binomial Theorem, 782
Bisection, see Binary search
Bisection argument, 184
BMCT, see Bounded Monotone Con-

vergence Theorem
Bolzano’s Theorem, 170
Bound variable, 8

Bounded
Locally vs. globally, 186

Bounded Monotone Convergence The-
orem, 599

Bounds, 84
Bounded, 84
Bounded above, 84
Bounded below, 84
Greatest lower, 85
Least upper, 85
Lower, 84
Sequences, 591
Unbounded, 84
Upper, 84

Cartesian product, 34
Catenary, 581
Cauchy Principal Value, 665
Cauchy’s Mean Value Theorem, 291
Ceiling, 96
Chain Rule, 236
Characteristic function, 153
Closed form, 593
Closed interval method, 274
Closure of an operation, 68
CLT, 147
Commutativity, 66
Commute, see Commutativity
Comparison property

For integrals, 323
For step function integrals, 308
Strict version, 323, 330

Comparison Test, 649
For integrals, 657

Completeness, 83
Gaps, 83

Composite, see Function, Composi-
tion
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Composition Limit Theorem, 147
For sequences, 605

Compound interest, 515, 568
Continuous, 516

Concave, 293
down, 293
up, 293

Concavity, 293
Conclusion, 4
Condensation Test, 667
Conditional convergence, 689
Continued fraction, 602
Continuity, see Continuous

Oscillation, 151
Uniform, 195
Uniform convergence, 728

Continuous, 108
On a closed interval, 170
One-sided, 109

Contraction, 281
Control δ, 107
Convergence

L1, 743
Pointwise, 711
Uniform, 718

Convex, 293
Corollary, 49
Cosecant

Derivative, 229
Integral, 478

Cosine
Continuity, 152
Derivative, 229
Integral, 343, 368
Taylor polynomials, 530
Taylor series, 768, 771

Cotangent
Derivative, 229

Integral, 392, 478
Countably infinite, 157
Critical value, 273
Cross section, 420
CT, see Comparison Test
Cutoff point M , 136
Cylinder (circular), 421
Cylindrical solid, 421

Darboux’s Theorem, 288
Decreasing, 161

Strictly, 52, 161
Defined near a

On the left, 109
On the right, 109

Defined near infinity, 136
Defined near negative infinity, 136
Deleted open interval, 106, 107
Denominator, 72
Density, 63

of Q in R, 96
of R − Q in R, 96
of R, 63, 83

Derivative, 203
nth, 210
Definition of, 203
One-sided, 204
Power series, 757
Uniform convergence, 735, 743

Difference quotient, 203
Differentiable, see Derivative, Defini-

tion of
Differential equation, 255, 467, 771

Order, 771
Separable, 467

Differentials, 249
Differentiating term by term, 757
Dipole, 582
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Dirichlet’s Test, 692
Discontinuous, 108

Infinite, 113
Jump, 113
Removable, 113

Disjoint, 16
Disk method, 426
Distance, 101

L∞, 739
Maximum distance between func-

tions, 720
Distribute, see Distributivity
Distributivity, 66
Divergence Test, 622
Division, 72

Euclidean, 96
Domination

Exponentials over powers, 497
Factorials over exponentials, 561
Powers over logarithms, 499

Dummy variable, 131

Enumerating Q, 157–158
Euler-Mascheroni constant, 704
Even, 21
EVT, see Extreme Value Theorem
Exponential, 451

Asymptotes, 462
Base, 463
Decay, 463
Definition, 462
Derivative, 465
Growth, 463
Natural, 462
Properties, 452
Taylor polynomials, 528
Taylor series, 767, 771

Extent, 188

ǫ-extent property, 191
Extrema, see Extreme value
Extreme value, 183, 270

Absolute, 270
Relative, 271

Extreme Value Theorem, 186
Extremum, see Extreme value

Factorial, 58
Fermat’s Theorem, 272
Fibonacci numbers, 59, 784
Field, 66

Ordered field, 83
First Derivative Test, 284
Floor, 94
Four-leaf rose, 418
Fourier series, 409, 585, 785
Free variable, 7
Frustrum (of a cone), 434
FTC, see Fundamental Theorem of

Calculus
Function, 35

Bijective, 40
Codomain, 35
Composition, 42
Constant, 44
Domain, 35
Fixed point of, 180, 603
Identity, 41
Injective, 39
Inverse, 47
Pointwise arithmetic, 42
Range, 36
Real function, 105
Restriction of, 39
Surjective, 38

Fundamental Theorem of Calculus
Part 1, 362
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Part 2, 368

Gabriel’s Horn, 665
Gamma function, 667
Gap of monotone function, 163
Gauss’s Test, 678
Generating function, 776
generatingfunctionology, 779
Geometric

Series, 709
Summation, 533
Taylor polynomials, 533, 556
Taylor series, 769, 771

Golden ratio, 607
Greater than, see >
Greatest integer function, see Floor

Harmonic number, 460, 633
Heaviside function H , 153, 205, 214
Horizontal reflection

For integrals, 326
For step function integrals, 310

Hypothesis, 4

Identity elements, 67
Additive, 67
Multiplicative, 67

If-Then, see Statement, Implication
Iff, 5
IH, see Induction, Inductive hypoth-

esis
Implicit

Differentiation, 224, 239
Equation, 224, 239

Implies, see Statement, Implication
Improper integral

Type 1, 635
Type 2, 646

Increasing, 161

Sequences, 591
Strictly, 52, 161

Indeterminate form, 509
0/0, 132

Indeterminate forms
Summary, 516

Induction, 54
Base case, 56
Inductive definition, 58
Inductive hypothesis, 56
Inductive step, 56
Strong, 59

Inductive definition, 593
Inequalities, see Axiom, Order
Infimum, see Bounds, Greatest lower
Infinitely differentiable, 211
Infix notation, 65
Inflection point, 293
Injection, see Function, Injective
Integers modulo n, 75
Integers modulo 2, 69
Integrable, see Integral
Integral, 316

Approximation, 435
Error, 439
Left-endpoint, 437
Midpoint, 437
Right-endpoint, 437
Simpson’s, 444
Trapezoid, 440

Definite, 367
Evaluated at a and b, 369
Improper, 347, 477
Indefinite, 367
Integrand, 302
Lebesgue, 317
Lower, 316
Lower limit, 302
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Of step functions, 301
Power series, 753
Preserving inequalities, 308
Proper, 347
Riemann, 317
Subinterval property, 327
Uniform convergence, 731, 742
Upper, 316
Upper limit, 302

Integral Test, 639
Error estimates, 644

Integration by partial fractions, 479
Integration by parts, 384, 385, 387

dv-part, 387
u-part, 387

Integration term by term, 733, 753
Interleaving sequences, 607
Intermediate Value Property

Derivatives, 288
Intermediate Value Theorem, 172
Interval addition

For integrals, 324
For step function integrals, 309

Interval of convergence, 748
Intervals, 15
Invariant, 700
Inventor’s Paradox, 593
Inverse trigonometric functions, 179

Continuity, 179
Invertible, see Function, Inverse
Irreducible quadratic factor, 480

Repeated, 480
IS, see Induction, Inductive step
Iterating a function, 594
IVT, see Intermediate Value Theo-

rem

Joule, 570

Kinetic energy, 568

L’Hôpital’s Rule, 502
For 0/0 forms, 503
For ∞/∞ forms, 510

Lagrange Form of the Error, 548
LCT, see Limit Comparison Test
Least integer function, see Ceiling
Left inverse, see One-sided inverses
Left-Endpoint Rule, 437
Leibniz notation, 209
Lemma, 48
Less than, see <
Limit, 107

f(x) → −∞, 138
f(x) → ∞, 138
As x → −∞, 136
As x → ∞, 136
Interchanging with integrals, 731
Interchanging with limits, 728
One-sided, 109
Pointwise, 711
Sequences, 595
Uniform, 718

Limit Comparison Test, 653
For integrals, 658

Limit Comparison Theorem, 140
Limit laws, 116

Addition, 120
Constant multiples, 118
Division, 129
Multiplication, 123
Subtraction, 122

Linear combination, 122
Linear factor, 480

Repeated, 480
Linear operation

Derivatives, 219
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Integrals, 323
Integrals of step functions, 308
Limits, 122

Linear recurrence, 606
Lipschitz-continuous, 199, 289, 361
little-o, 573
Logarithm, 451

Antiderivative of 1/x, 476
Asymptotes, 456
Base, 457
Binary, 458
Change of Base formula, 459
Continuity, 455
Decimal, 458
Definition, 455, 457
Derivative, 455
Functional equation, 453
Natural, 455
Properties, 452
Taylor polynomials, 533
Taylor series, 770, 771

Logarithmic differentiation, 474
Logistic equation, 255
Long division, 482
Lune, 433

M-Test, 724
Machin’s Identity, 562
Maclaurin polynomial, 527
Maclaurin series, 765
Magnitude, see Absolute value
Maximum, 84

Absolute, 183
Relative, 271

Mean Value Theorem, 278
for Integrals, 350
for Integrals, Weighted, 353

Midpoint Rule, 437

Minimum, 84
Absolute, 183
Relative, 271

Minus, see Subtraction
Monotone, 161

and Integrability, 337
Strictly, 161

Multiplication, 65
MVT, see Mean Value Theorem

Near, 106, 107
Negation push, 10, 12
Negations, 67

Formal definition of, 71
Uniqueness of, 71

Negative, 78
Negative part, 341, 694
Newton notation, 209
Nonnegative, 78
Nonpositive, 78
Not, see Statement, Negation
Nowhere dense, 183
Numerator, 72

OA, 77
Odd, 21
One-sided inverses, 53
One-to-one, see Function, Injective
One-to-one onto correspondence, see

Function, Bijective
Onto, see Function, Surjective
Optimization problems, 275
Or, see Statement, Disjunction
Order

Stronger, 576
Weaker, 576

Ordered n-tuples, 35
Ordered pair, 34
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Ordered triples, 35
Oscillation, see Extent

Painter’s paradox, 666
Pappus, 435
Parameter, see Free variable
Partial fraction, 479
Partial integral, 638
Partial sum, 588, 609, 611
Partial-fraction decomposition, 480
Partition, 299

Coarser, 304
Common refinement, 305
Compatible with, 304
Finer, 304
Partition points, 299
Refinement, 304
Subdivision points, 299
Subintervals, 299

Parts, see Integration by parts
Pascal’s Identity, 213, 231
Pert formula, 516
Polar

Angle, 417
Area, 420
Coordinates, 416, 417

Polynomial, 130
Continuity, 130
Derivative, 220

Positive, see R+

Positive part, 340, 694
Postulate, 64
Power series, 744

Derivative, 757
Integral, 753
Interval, 748
Radius, 748
Uniform convergence, 748

Uniqueness, 762, 764
Powers

Continuity, 130, 463
Derivative, 213, 223, 227, 232, 253,

465, 471
Integral, 341, 367
Irrational, 463
Monotonicity, 167
Of e, 463
Rational, 176, 181, 224
Square roots, 87

Uniqueness of, 91
Unbounded, 167

Prefix notation, 65
Prism, 421
Product, see Multiplication
Product notation, 131
Product rule for derivatives, 222
Proof

Cases, 27
Contradiction, 30
Contrapositive, 29
Contrapositive vs. Contradiction,

31
Counterexample, 46
Direct, 21
Distinctions from strategy, 22
Marker, 20
Table-like format, 25

Proposition, 7
Purple cow, 4, 19

QED, see Proof, Marker
Quantifiers, 7

Domain of, 8
Existential, 8
Order of, 9
Proof strategy, 21, 23
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Scope, 8
Universal, 7

Quotient, see Division, see Division,
Euclidean

Quotient rule for derivatives, 226

Raabe’s Test, 678
Radius of convergence, 748
Range of a sequence, 590
Ratio Test, 673
Rational function, 130, 227

Continuity, 130
Improper, 482
Proper, 482

Rationalization, 149
Rearrangement, 694
Reciprocals, 67

Formal definition of, 72
Uniqueness of, 71

Recursive definition, see Inductive def-
inition

Reduction formula, 391
Related rates problems, 243

Steps for solving, 244
Remainder, see Division, Euclidean
Rest mass, 568
Riemann Rearrangement Theorem, 621,

693, 698
Riemann Series Theorem, see Riemann

Rearrangement Theorem
Riemann sum, 436, 437
Riemann zeta function, 641, 710
Right inverse, see One-sided inverses
Right-Endpoint Rule, 437
Rise over run, 201
Rolle’s Theorem, 276
Root

nth, 175

Continuity of nth, 176
Multiplicity, 268
Of an equation, 25, 173

Root Test, 669
Ruler function r, 154
Russell’s Paradox, 15

Sample point, 436
Scope, see Quantifiers, Scope
Secant

Derivative, 229
Integral, 478

Secant line, 206
Second Derivative Test, 294
Sequence, 587, 590

Convergent, 595
Divergent, 595
Finite, 590
Geometric, 616
Index of term, 590
Index set, 590
Limit, 595
Subsequence, 605
Term, 590
Two-dimensional, 741

Sequences
Asymptotically equal, 652

Series, 588, 611
Alternating, 683
Alternating harmonic, 683
Convergent, 589, 611
Divergent, 589, 611
Dominates, 649
Fourier, 785
Functions, 723
Geometric, 616
Harmonic, 633
Mixed terms, 683
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Nonnegative, 631
Power series, 710, 744
Telescoping, 614

Set, 6
Defining, 13, 14
Difference, 17
Elements of, 6
Empty, 13
Equality, 18
Intersection, 16
Members of, 6
Proper subset, 18
Subset, 18
Symmetric difference, 17
Union, 16

Sharp corner, 217
Shell (cylindrical), 428
Shell method, 430
Shifting

Of integrals, 329
Of step function integrals, 312

Sierpinski triangle, 629
Sign of a number, 78
Simpson’s Rule, 442, 444
Sine

Continuity, 152
Derivative, 228
Integral, 368
Taylor polynomials, 529
Taylor series, 768, 771

Slide rule, 452
Slope

Instantaneous, 205
Snell’s Law, 286
Solid of revolution, 425
Span, see Extent
Squeeze Theorem, 142
Staircase function s, 160

Statement, 2
Associativity, 11
Commutativity, 11
Conjunction, 3
Contrapositive, 29
DeMorgan’s Laws, 12
Disjunction, 3
Distributivity, 11
Equivalence, 5
Equivalent, 4
Exclusive or, 3, 11
Implication, 4
Negation, 2
Truth tables of, 2

Step function, 300
Lower, 314
Upper, 314

Stirling’s Formula, 598, 672
Stretching

Of integrals, 330
Of step function integrals, 313

Strictly less than, 78
Substitution, 376–378

Definite integrals, 381
Inverse, 405
Trigonometric, 400, 405

Right triangle method, 403
Table, 405

Substitution Rule, see Substitution
Subtraction, 71
Sum, see Addition
Summation notation, 130
Supremum, see Bounds, Least upper
Surjection, see Function, Surjective

Tangent
Derivative, 229
Integral, 392, 478
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Tangent line, 206, 207, 523
Vertical, 209

Taylor
Coefficient, 527
Derivative, 530
Error, 541
Error order, 552
Integral, 530
Linearity, 530
Of a polynomial, 536
Polynomial, 525, 527
Series, 765
Taylor’s Theorem, 543

Torricelli’s Trumpet, see Gabriel’s Horn
Torus, 435
Transitivity

of <, 79
Trapezoid Rule, 440, 527

Error bound, 446
Triangle Inequality, 103
Trichotomy, 79
Trigonometric polynomial, 409, 785
Truncation of a polynomial, 536
Two-sided inverse, 48

Uniform
Bounded, 341
Limit, 336

Uniqueness, 12
Universe of discourse, 16
Unrolling a recurrence, 602

Vacuous, 19
Velocity

Average, 201
Instantaneous, 202

Venn Diagram, 17
Volume, 420

Pyramids, 424
Sphere, 425

Washer method, 426
Weierstrass Function, 787
Weierstrass substitution, 496
WLOG, 39
WOA2, 81

xor, see Statement, Exclusive or

Zero
Of a function, 23, 173

PREPRINT: Not for resale. Do not distribute without author’s permission.


