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Chapter 1

The Dzyaloshinskii-Moriya

Interaction and Spintronics

Applications

In this introductory chapter, we will first provide some necessary background on the basic

magnetic phenomena that will arise in our study of the creep motion of chiral domain walls before

introducing and detailing the cause for this chirality, the Dzyaloshinskii-Moriya interaction,

which is a quantum mechanical e↵ect that has only recently been realized to have a significant

impact on a number of very common magnetic thin film systems. Motivation for our study

comes from the fact that while there are an array of prominent emerging applications for DMI,

substantial di�culties and ambiguities have been encountered when trying to measure it.

1



Chapter 1. DMI and Spintronics Applications 2

1.1 Background on Magnetism and Magnetization Dynamics

1.1.1 Electron Spin

All electrons have both a fixed negative charge and a vectorial quantity called spin that cor-

responds to a fixed angular momentum and causes a magnetic dipole field to emanate from

the electron. The alignment of large numbers of spins causes these dipole fields to sum, which

serves as the primary origin of macroscopic ferromagnetic phenomena. Charges interact with

each other through electrostatic forces and the manipulation of charge and its net flow, current,

is the basis for electronics. Analogously, spins have a number of magnetostatic interactions and

a net flow of spin, termed a spin current, can be manipulated to provide a basis for the emerging

field of spintronics. Because of its scalar nature, producing a net change of charge in a volume

requires electrons to be transported into or out of it. In contrast, a net change of spin can

be accomplished simply through rotation of the electrons. Throughout the rest of this thesis,

we will be concerned with the properties of ferromagnets, which at small length scales have a

nonzero net spin angular momentum per unit volume termed the magnetization, M.

1.1.2 Magnetostatic Energy Terms

Several di↵erent types of magnetic energy e↵ects are important to determine the behavior of

the magnetization in our materials of interest including exchange interactions, magnetocrys-

talline anisotropy, dipolar interactions, and Zeeman interactions. We outline them here in the

framework of micromagnetics, where a magnetic material is described as a lattice of individual

magnetic moments which are free to rotate but whose magnitudes per unit volume are fixed

at the saturation magnetization Ms. While this is merely an approximation to a di�cult and

heavily quantum mechanical problem, it has proven extremely useful in describing even very

complex magnetic behavior [5]. Exchange describes the tendency for nearby magnetic moments
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in a ferromagnet to align parallel to eachother and is based on the quantum mechanical Heisen-

berg exchange interaction which emerges from the Pauli exclusion principle. The exchange

e↵ect holds magnetic domains together. Magnetocrystalline anisotropy concerns the energy dif-

ferences for moments lying along di↵erent directions in a crystal and originates from coupling

between spin and oribtal angular momenta known as the spin-orbit interaction. This anisotropy

energy is dependent on the symmetry of the crystal structure as the magnetic energy must be

the same along crystallographically equivalent directions. Structural asymmetry such as that

between films of two di↵erent materials can also play a role and interfacial magnetocrystalline

anisotropy terms can be produced where moments prefer to lie along or perpendicular to a

boundary between layers. Dipolar, or demagnetizing, interactions refer to the non-quantum

mechanical dipolar forces that moments exert on each other and can be considered as the in-

teraction between magnetic “charges” at either end of a moment vector, with opposite charges

attracting and like charges repelling. This dipolar interaction between moments decreases more

slowly as a function of distance than the other interactions and in a rigorous sense introduces

nonlocal terms to the magnetic energy. In many cases we can approximate the nonlocal form by

replacing it with an e↵ective term known as the shape anisotropy, which causes magnetization

to tend to lie along the long axis of an asymmetric structure. In thin films this means magneti-

zation will tend to be directed in the plane and in DWs it will be directed along the wall in the

absence of other interactions. Finally, the Zeeman energy is just the contribution of externally

applied fields and comes into play during the testing of materials and films in which we apply

fields to switch or otherwise manipulate magnetization. For a thin perpendicular film in the xy

plane that is taken to be uniformly magnetized through its thickness, all of these e↵ects can be

combined into a micromagnetic energy functional as follows:

E =

ZZ ✓
A|rm|2 � Km2

z +

M2
s

2µ0

�
Nxm

2
x + Nym

2
y

�
� µ0MsH • m

◆
@x@y (1.1)
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Here m is the dimensionless magnetization, A is the exchange sti↵ness, K is the net uniaxial

anisotropy (magnetocrystalline minus shape), Nx and Ny are the shape factors in the x- and

y-directions which account for the demagnetizing field in the case of a domain wall, and H is

the applied field.

1.1.3 Landau-Lifshitz Gilbert Equation

The dynamics of this system are described by the LLG equation, where each moment undergoes

damped precession (see Fig 1.1) around an e↵ective field, given by the following equations of

motion:

@m

@t
= � �

1 + ↵2
m ⇥ Heff � �↵

(1 + ↵2
) Ms

m ⇥ m ⇥ Heff (1.2)

Heff =

1

µ0Ms

@E

@m
(1.3)

Figure 1.1: Diagram of the torques on each moment in the LLG equation.

In these equations, � is the gyromagnetic ratio and ↵ is the dimensionless damping constant,

which describes a phenomenological relaxation toward equilibrium and is typically taken to

depend only on the material.
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1.1.4 Spin Transfer Torques

In addition to responding to applied fields, moments described in the LLG equation are also sub-

ject to manipulation by spin currents. Specifically, spin transfer torque results from relaxation

of a spin current within a ferromagnet, which produces a torque on the permanent magnet’s

moment (see Fig 1.2). The STT e↵ect is modeled in micromagnetics simulations by a modified

LLG equation incorporating an additional two terms, as follows[1]:

dm

dt stt
/ Tadm ⇥ (m ⇥ p) + Tflm ⇥ p (1.4)

Where Tad is the anti-damping or adiabatic torque constant, Tfl is the field-like or non-adiabatic

torque constant, and p is the moment vector of the injected spin current. STT can drive motion

in magnetic domain walls by applying a torque to the internal magnetic moment of the wall,

as described in section 1.3.2, and can be used to switch a magnetic tunnel junction purely with

current, thereby allowing the write operation of an MRAM bit to be considerably simplified.

18 C. Baraduc, M. Chshiev, and B. Dieny

an electrical current and not with an applied field. This e↵ect can be easily un-
derstood by considering a GMR where the two ferromagnetic layers F1 and F2

have their magnetizations misaligned by an angle ✓ (see Fig. 10-a). Let us con-
sider the fictitious box that include both ferromagnetic/spacer interfaces. The
electrons flowing from F1 to F2 enter the fictitious box with a spin polarization
along the direction of the magnetization M1 and leave the box with a spin polar-
ization along M2. Since the incoming (µ1) and outgoing (µ2) magnetic moment
is not the same, some magnetic moment is transferred to the system.

� �&''''
((( $$$'' ���

�

O6O5

7$%'.#()
*$(;

�<

�=

>=

�

'
($

&
($

&'
(( $$ �

><

>

!'(.*,1)+0'1P

"9 :9

4 5

Fig. 10. Spin transfer torque: (a) schematics of a F/NM interface in non-collinear
magnetic configuration; (b) in-coming (µ1) and out-going (µ2) magnetic moment due
to electron flow and total momentum (T = T1 + T2) left within the fictitious box

However magnetization cannot significantly increase, so any temporal varia-
tion of M has to be perpendicular to M :

d|M |2

dt
= 2M · dM

dt
= 0 (22)

Consequently only the component perpendicular to M of the electrons magnetic
moment can be transferred to the bulk magnetization. The total transferred
moment per time unit T is then decomposed in two parts T1 and T2 (Fig. 10-b).
One part acts on M1 and the other on M2. The magnetic moment transferred
to M1 is then a vector perpendicular to M1 which lies in the plane defined by
(M1, M2). Since the unit vector normal to this plane is M̂1 ⇥ M̂2, T1 and T2

are necessarily written as:

T1,2 = T1,2M̂1,2 ⇥ (M̂1 ⇥ M̂2) (23)

By analogy to magnetization dynamics, where the time derivative of the magne-
tization is equal to the torque exerted by the magnetic field, this transferred mo-
ment per time unit was originally called “pseudo-torque” by Slonczewski [100]. It
is now universally called spin transfer torque. Nevertheless we must keep in mind
that this term is not exactly a torque but stems directly from transverse spin
accumulation. In a typical spin-valve setup, one of the magnetic layers is pinned
by exchange bias [101, 102, 103] to an antiferromagnet while another is allowed

Figure 1.2: Schematic of spin transfer torque showing its relation to angular momentum

conservation taken from [1].
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1.2 The Dzyaloshinksii-Moriya Interaction

The origin of nearly all ferromagnetic and antiferromagnetic behavior is the result of the Heisen-

berg exchange interaction, a quantum mechanical e↵ect that can be well described as a coupling

between two spin angular momenta we will call S1 and S2, taking the form

Eex = �J · S1 • S2 (1.5)

Here J is known as the exchange constant, which is positive for ferromagnetic coupling where

it favors a parallel alignment of the spins and negative for antiferromagnetic coupling where an

antiparallel alignment is favored. Using symmetry arguments, Dzyaloshinskii posited the exis-

tence of another type of exchange interaction which is antisymmetric with respect to exchange

of its momenta, given by

Edmi = �D • S1 ⇥ S2 (1.6)

Where D is known as the DMI vector. When the DMI vector is positive (negative), the inter-

action favors spins that are canted toward (away from) each other in a plane perpendicular to

the vector. Another important feature of the interaction is that spins which are held parallel

or antiparallel by the exchange interaction have zero DMI energy. The antisymmetric nature of

DMI means that in collections of spins with high symmetry, many of the interactions will cancel

out. Most notably, inversion symmetry restricts the net DMI vector to zero so bulk materials

exhibiting DMI must have a crystal structure without an inversion center. This feature has

kept the study of DMI contained to exotic materials until recently, due to the combination of

improvements in film growth technology that allow interface e↵ects to become important and
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renewed interest in domain wall structure for spintronic applications[6]. To elaborate on the

first point, we note that in a stack of two di↵erent thin films, inversion symmetry is broken

even when both films have crystal structures with inversion centers. This property is known as

structural inversion asymmetry (SIA) and is technically true for any asymmetric film stack, but

in practice the magnetic films involved must be very thin in order to observe DMI due to the

short range of exchange e↵ects. Even in the case of ultrathin magnetic films, inside domains

DMI is typically overcome by symmetric exchange and shows no e↵ect on the equilibrium mag-

netization. However, at the boundary between domains of di↵erent magnetization, the domain

wall (DW), moments must rotate in space from one easy axis direction to the other through the

hard axis and are therefore inherently canted. DMI can lower or raise the energy of di↵erent

canting orientations and determine the type of DW that is present at equilibrium.

1.2.1 Dzyaloshinskii Domain Walls in Perpendicular Thin Films

(a) (b) (c) 

Figure 1.3: Top-down schematic of types of domain wall in a perpendicular thin film. (a)

Bloch wall; (b) Right-handed Néel; (c) Left-handed Néel.

We now describe the three possible types of DWs in a thin film with a perpendicular easy axis

(see Fig 1.3), with the first being the Bloch wall, where the magnetization rotates about an

axis perpendicular to the DW. In unpatterened films without DMI, the Bloch wall is favored

because it has a lower demagnetizing field. If such films are patterned into nanowires where
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the length of the DW is smaller than its width, Néel walls have lower demagnetizing field and

are the equilibrium structures. In these walls, the magnetization rotates about an axis parallel

to the DW and can have di↵erent chirality, leading to right- and left-handed Néel walls. For

a so-called up-down DW where the up domain is on the left, a right-handed Néel wall will

rotate counterclockwise going from the up domain to the down domain. Owing to additional

symmetry considerations laid out by Moriya[7] the net DMI vector must lie in the plane parallel

to the DW. Positive (negative) DMI favors a right- (left-)handed Néel wall, disfavors the left

(right), and has no energetic e↵ects on Bloch walls. The stability of Néel walls predicted by

DMI has been observed experimentally through a number of di↵erent methods [8–10] and from

a practical perspective can allow for very fast DW motion from spin currents [11] described

later, a property that is highly desirable to the nascent field of DW devices. Just as the regular

exchange interaction has a micromagnetic form in the exchange sti↵ness term, DMI in thin films

with SIA can be described micromagnetically as:

ZZ
D

✓
mz

@mx

@x
� mx

@mz

@x
+ mz

@my

@y
� my

@mz

@y

◆
@x@y (1.7)

It has been demonstrated [12] that this micromagnetic term results in an e↵ective in-plane field

that exists only in the DW at steady state and points from the spin up domain to the spin down

domain for positive D. For conditions that are outside of equilibrium, such as the switching of a

magnetic tunnel junction (MTJ) free layer by thermal fluctuations, fields, or spin currents, DMI

can have an impact on behavior as the magnetization becomes spatially nonuniform during the

switching process.
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1.3 Applications for Magnetic Materials with DMI

Now that the essential features of DMI have been detailed, we can explain why there is intense

interest in the research community to understand and exploit it on several di↵erent fronts which

are described below.

1.3.1 Domain Wall Motion by Spin Orbit Torques

The past decade of research has provided several key developments in the field of thin film

magnetic phenomena; in addition to DMI, the importance of the spin hall e↵ect (SHE) in

driving DW motion has only recently been revealed [13]. The SHE is a case where the charge

current through a normal metal generates a spin current in a direction transverse to the electron

flow. The polarization direction of the spin current is perpendicular to both the charge and spin

current directions. So for a charge current in the x-direction, a spin current with magnitude

proportional to the material-dependent spin hall angle, ✓SHE , will be generated in the z-direction

with spins polarized along the y-axis. This e↵ect is due to spin orbit interactions in the normal

metal and the spin torques generated by SHE are an example of spin orbit torques. For a

magnetic nanowire that contains a DW and has a normal metal underlayer with nonzero ✓SHE ,

current passed through the nanowire will generate a flux of spins into the DW with polarization

along the DW axis. For a Bloch wall, the spin current is polarized in the same direction

as magnetization, so any torques are thermally activated and relatively weak. For a Néel

wall, however, the spin current generates a non-adiabatic torque that has been shown to very

e�ciently drive the DW [14]. Combining DMI and SHE therefore enables fast current-driven

motion of DWs.
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1.3.2 Chiral Magnetic Textures

While we noted in section 1.2 that within domains DMI is typically overpowered by Heisenberg

exchange, it will prove useful to explain what happens when it isn’t. For very large values of D,

the tendency for moments to take on a canted arrangement can overcome the tendency for them

to align, leading to a nonuniform chiral magnetic ground state in the form of either a helical

phase or what is called a skyrmion lattice [15, 16]. Even when DMI is not strong enough to fully

stabilize them, skyrmions can exist as pointlike topological defects that superficially resemble

a bubble domain but are much smaller [17]. The topological stability of the skyrmion makes

them a topic of great interest to the magnetic physics community [18] and it has been suggested

that strong emergent fields may arise from their interaction with currents that would allow

for unprecedented current-driven mobility, though this has not yet been verified experimentally

[19]. Skyrmions have very recently been created, imaged, and manipulated in metallic stacks

at room temperature,[20] and engineering multilayers with large DMI is a crucial step in this

process in order to increase skyrmion lifetimes.

1.3.3 Impact on MTJ Performance

An MTJ is a two terminal device that consists of two closely spaced ferromagnetic layers sep-

arated by an insulating tunnel barrier. The the phenomenon of tunneling magnetoresistance

(TMR), the stack can be engineered so its resistance depends strongly on the relative polar-

ization direction of the adjacent magnetic films, which in turn can be manipulated using STT.

This strong, direct interaction between permanent magnetism and electron transport is critical

for a number of present and potential applications in particular a type of high speed nonvolatile

memory based on magnetoresistive e↵ects, known as magnetoresistive random access memory

(MRAM), is currently under development. Recent micromagnetic simulations [2] have shown



Chapter 1. DMI and Spintronics Applications 11

that DMI produces a decrease in the e↵ective barrier for thermal switching of MTJs while simul-

taneously increasing the critical current required for STT switching, resulting in a substantially

lower figure of merit for the an MRAM bit. During thermal switching, transition states with

nonuniform magnetization can develop within the free layer of the MTJ and because DMI stabi-

lizes some of these states it creates switching pathways with a lower thermal energy barrier (see

Fig 1.4). Since STT acts as a uniform torque on the free layer, the lowered thermal switching

barrier does not translate to lower critical current. To improve device behavior, we therefore

wish to reduce DMI in the electrode as much as possible. In previous work [21, 22], we studied

crystallization and interdi↵usion processes in the MTJ electrodes and used these studies to aid

the internal development of device stacks that could be employed to test switching e�ciency.

The goal of this project was to experimentally evaluate the impact of DMI on switching cur-

rents, and our attempts to develop electrodes with significant DMI will be discussed in chapter

5.
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Figure 1. Energy of static states in a nanodisk with DMI. (a) Energy of the quasi-uniform state (red line, circles) and of
the DW state (black line, diamonds) versus DMI magnitude D, determined by micromagnetic simulations. The inset images
show some of the stable and metastable configurations (where the colors red/white/blue correspond to the z magnetization
component). The open/filled circles denote (meta)stable/unstable DW states. (b) Minimum energy paths of magnetic reversal
for D = 0 � 3 mJ/m2 calculated with NEB, showing the DW-mediated reversal. (c) Barrier height calculated from (b). The
right axis shows the corresponding value of the room temperature thermal stability factor �.

time as t0 exp(�), where t0 is typically of the order of
1 ns. j

c0 is the zero-temperature instability threshold
current density, which defines the scale of the currents
required for read and write operations. In our study, we
investigate how � and j

c0 change in presence of strong
DMI e↵ect using micromagnetic simulations. We exploit
three numeric techniques: static and dynamic micro-
magnetic simulations using Mumax320 and OOMMF19

(for preliminary studies at T = 0) open source codes,
and nudged-elastic band (NEB) simulation of switching
paths, using the FastMag code21. We use as a model sys-
tem a perpendicularly magnetized disk of 32 nm diame-
ter and 1 nm thickness, with the following material pa-
rameters: saturation magnetization (M

S

) of 1.03 MA/m,
exchange sti↵ness (A) of 10 pJ/m, perpendicular mag-
netocrystalline anisotropy (K

u

) of 0.770 MJ/m3, and a
Gilbert damping factor (↵) of 0.01. These parameters
are typical of a perpendicularly magnetized CoFeB ac-
tive layer in an MTJ used in an MRAM cell. With
these values, we get an e↵ective anisotropy for the disk
Ke� = K

u

� 1
2 (N

z

�N
x

)µ0M
2
s

= 187 kJ/m3 (where N
i

are
the demagnetization factors of the disk22), corresponding
to µ0HKeff = 364 mT, a threshold DMI D

c

= 1.7 mJ/m2,
and an � = Ke�V/(k

B

T ) = 36, calculated in a uniform
rotation approximation.

We first analyze how DMI a↵ects the equilibrium
quasi-uniform states. In these simulations made using
the MuMax3 code (version 3.6.1), the magnetization was
initially set up and let to completely relax. Once D in-
creases, we see that DMI induces a radial tilt of the mag-
netization on the borders of the disk. As a result, the to-
tal micromagnetic energy (the sum of exchange, dipolar,
anisotropy, and DMI energies) reduces with D, Fig.1a.
This observation is in agreement with other theoretical
results reported for similar systems10,11.

Next, we study the evolution with D of the system

energy once the magnetic disk has a straight DW in
the middle, EDW, see Fig.1a. In this simulations, the
magnetization distribution was generated manually. (For
metastable states, the system relax in the illustrated
states, the values for the unstable states were obtained
using an ideal straight wall.) Even though this is not
a true relaxed state, since it is symmetric it represents
an energy extremum state on a possible switching path.
We observe that the DMI lowers EDW and stabilizes a
Néel domain wall even if we started from a Bloch wall
(for D � 0.05 mJ/m2). The rate of variation of EDW

with D follows closely the theoretical value of �⇡S (=
�10�16J/(Jm�2)), where S is the DW surface.11 For low
D, the DW state has a higher energy than that of a uni-
form state and is unstable (open circles in Fig.1a). But
for D > 1.8 mJ/m2 the DW state becomes meta-stable,
which means that a DW may by trapped in the disk cen-
ter if it gets there. For even larger D (D > 2.6 mJ/m2),
DW energy becomes lower than the energy of the uniform
state, thus it becomes the system ground state. This is
an important result as this meta-stable DW state may
force the use of higher writing currents, and impairs com-
pletely the required binary operation of a typical MRAM
cell (as the system no longer has only two stable states).

From Fig.1a we see that the energy di↵erence between
the uniform and DW state diminishes with D. To accu-
rately estimate the dependence of the energy barrier on
D, we exploit the NEB simulations23,24 implemented in
the FastMag code. NEB is a method to calculate a min-
imum energy path (MEP), i.e. the path in a configura-
tional space connecting two ground states (up and down
states for our disk) with a trajectory having minimum en-
ergy span. Using this method, it was shown recently that
for PMA MRAM cells of sizes of even 20 nm or less, the
domain-wall switching rather than the uniform rotation
may be the primary thermal switching mechanism.2

2

Figure 1.4: Plot showing the reduction in energy for a domain wall state in an MTJ electrode

nanopillar with increasing DMI taken from [2].
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1.4 Measuring DMI

The list of methods by which DMI has been observed in materials has grown rapidly throughout

the past few years and includes a great deal of methods using exotic equipment and involved

processing. Because we may wish to examine a large number of alloys for their DMI e↵ects, we

look for as high-throughput a method as possible.

1.4.1 Asymmetric Bubble Growth

One of the simplest techniques of measuring DMI to conduct, asymmetric bubble growth de-

scribes subjecting a small circular domain in a perpendicular thin film to an in-plane field while

using an out-of-plane field to drive its growth. The left, right, and top/bottom sides of the

domain are found to grow at di↵erent rates because the interaction of DMI and the applied

in-plane field break the symmetry of the three di↵erent sides (see Fig 1.5), noting that the sym-

metry at the top and bottom are not broken so these are counted as a single side. This technique

is appealing because it involves no patterning, as the starting domains can be preferentially nu-

cleated at pre-made defect sites generated by ion beam or other damage [8]. It also uses MOKE

to monitor domain growth, which we have easy access to. By far the largest drawback of this

method is that the interpretation of asymmetric growth results are disputed and as of yet no

single proposed mechanism appears to satisfactorily describe all observed experimental results.

Some of the first asymmetric bubble growth experiments were conducted on cobalt thin films

held perpendicular by a platinum interface [3, 8, 23]. In these and other experiments, a second

interface is present to make the stack either very asymmetric in order to produce large DMI

or nearly symmetric for lower DMI. The e↵ective DMI field will be parallel to the applied field

for one side (left or right) of the wall and antiparallel for the opposite side (see Fig 1.6). In

the following discussion we will refer to the wall where DMI and the applied field are parallel
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2

FIG. 1: (a) Sketch of the studied Ta/Pt/Co/Ir(tIr)/Pt layer
stacks with a varying Ir thickness. (b) Polar Kerr hysteresis
loops for samples with various Ir thickness. (c) Anisotropy
field µ0HK and areal magnetization Mst as a function of tIr.

serve the Walker breakdown field due to the fact that it
is often not reached or hidden in the creep regime [38].
As will be seen below, the creep regime itself can be used
to determine the strength of the DMI.

The multilayers for our study were grown by room tem-
perature dc sputtering at base pressures <⇠ 10�7 mbar
on thermally oxidized Si substrates with a 3 nm thick
Ta bu↵er layer. Since crystallographically ordered Pt/Ni
and Ir/Ni bilayers exhibit DMIs of opposite sign [30],
the e↵ective DMI in the Co layer can be potentially en-
hanced by placing the Pt and Ir layers on either side,
i.e. using two DMI-active layers. In order to reveal
the e↵ect of an Ir interface, we started from a stack of
Pt(5 nm)/Co(0.7 nm)/Pt(3 nm) and inserted a thin layer
of various Ir thicknesses tIr at the interface between the
Co and top Pt layer, as depicted in Fig. 1(a). All the
films exhibit a perpendicular anisotropy, as shown by the
square OOP hysteresis loops presented in Fig. 1(b). The
coercive field of about 20 mT in Pt/Co/Pt drops to about
9 mT as soon as the top surface is dusted with any thick-
ness of Ir. The OOP anisotropy was measured by the
vibrating sample magnetometry technique in an in-plane
field configuration. Fig. 1(c) shows that the anisotropy
field µ0HK is about 1 T for all the films, which demon-
strates that the anisotropy comes mostly from the bot-
tom Pt/Co interface [39]. This is experimentally conve-
nient, since it permits us to study changes in the DMI
from the inclusion of the Ir layer without the compli-
cation of varying OOP anisotropy—and quantities that
depend on it such as DW width—also varying.

The field-induced DW displacement was investigated
by Kerr microscopy in the polar configuration. Due to
its depth sensitivity it is appropriate for determining the
DMI in buried layers or films adapted to real devices. The
experimental setup is shown in Fig. 2(a). The magnetic
field was applied in-plane with a small out-of-plane com-
ponent necessary to move the DW. This is achieved by
tilting the magnet by an angle � with respect to the sam-
ple plane. The role of the in-plane field is demonstrated

FIG. 2: (a) Experimental setup in the Kerr microscope for
DMI measurement. The magnetic field is tilted by an angle
� with respect to the sample plane. (b) DW displacement
in the case of � = 90� after the application of a 1 s and
µ0Hz

= 7 mT pulse. The initial DW position is indicated by
the dashed line. (c) DW displacement in the case of � = 2.3�

after the application of a 1 s and µ0Hx

= +60 mT pulse.
(d) DW displacement after the application of a magnetic field
pulse of the same length and µ0Hx

= �60 mT. Black arrows
indicate the equilibrium orientation of the magnetic moments
within the DW.

in Fig. 2(b)-(d). In each case, a reverse domain was nu-
cleated and allowed to expand a little before switching o↵
the field. Its shape was then recorded, indicated by the
dashed line shown in Fig. 2(b). Consequently we applied
a 0.8-120 s long pulse of a magnetic field up to 350 mT,
during which the domain expands as the DW propagates
outwards. In the case of OOP field, i.e. � = 90�, the
domain expansion is homogeneous (Fig. 2(b)). The sit-
uation was very di↵erent in the case of an in-plane field
component when � ⇡ 2.3�, as shown in Fig. 2(c). One can
immediately see that the DW moving to the left and to
the right moved with di↵erent velocities while the DWs
moving in the directions perpendicular to the in-plane
field moved with the same velocities. Our explanation
for this observation is that the magnetic film contains
Néel walls rather than Bloch walls. The in-plane mag-
netic field thus breaks the symmetry, and the magnetic
moments within the DW on the right would be initially
antiparallel, whereas the ones on the left parallel, to the
magnetic field. To confirm this hypothesis, we have re-
versed the sense of the in-plane magnetic field (Fig. 2(d)).

We investigated systematically the DW velocities in
the direction of in-plane magnetic field as a function of
field pulse strength. A representative picture of the DW
motion in a Pt/Co/Pt film is shown in Fig. 3(a), showing
the right-hand DW moving much faster than the left-
hand one for a left pointing in-plane field component. We
emphasize that the DW creep is driven by the small OOP
component and the in-plane field component breaks the
radial symmetry of the creep velocity. This is expressed
by the asymmetry of the velocity-field curves in Fig. 3(d).

Figure 1.5: Bubbles grown in di↵erent in-plane fields taken from [3].

(antiparallel) as the low (high) energy wall. Typical results show that as the in-plane field is

turned on, the low energy wall increases in velocity while the high energy wall decreases. At

higher in-plane fields the high energy wall typically reaches a minimum velocity and then begins

to increase in speed as the field is increased further. The stated explanation for this behavior

was that the energy scale in a creep law fit, described in more detail in the following section,

depends proportionally on wall energy. To a rough approximation the wall energy has a term

proportional to �(Hx � Hdmi)
2
, so it was argued that the minimum velocity in the high energy

wall corresponds to the point where Hx exactly cancels Hdmi and the wall energy attains a

maximum. Several subsequent studies have raised issues with this description, possibly the

most striking of which is a CoNi study conducted by Lau et al. [24] that shows the velocity of

the high energy wall exceeding that of the low energy wall at su�ciently high field. This was

attributed to the anisotropic nature of the wall energy driving toward an equilibrium in overall

bubble shape, though no direct mechanism was provided. Attempts to investigate growth with

anisotropic wall energy through modeling are described in the following two sections. Finally,

we note that Jué et al. have shown that when their data is fit to a creep law, the di↵erence

in velocity doesn’t have the characteristic of an energy scale at all and instead appears as a

di↵erence in damping between the two sides [25]. This behavior was attributed to an entirely

new e↵ect of SIA where the intrinsic damping depends on the chirality of magnetization. It
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is clear that before results of these types of studies can be relied upon, a better theoretical

groundwork must be developed which makes some progress in describing the varied behavior of

experiments.

Hx 

D < 0 

ln(v) 

Hx 

Left wall 
Right wall 

(a) (b) 

Figure 1.6: (a) Diagram showing bubble wall magnetization for D < 0. (b) Expected velocity

behavior of the walls shown in (a) under the influence of an in-plane field according to the

description of Hrabec et al.[3]. The dashed line indicates the expected behavior for D = 0.

1.5 Alternative Methods

Given the di�culty of quantitatively extracting DMI from asymmetric bubble growth experi-

ments, it remains to be determined if results from the CoFeB/MgO system can be conclusive.

Exploring other methods as potential supplements or alternatives to bubble growth could be

critical to our ability to convincingly determine DMI for these films. Because of the increase

in research attention to interfacial DMI, several techniques have recently been developed that

may help with our analysis. We briefly detail these new methods, along with their strengths

and weaknesses, below.

Current-Driven Motion - Spin transfer torque can be used to move a domain wall in much the

same way as it is used to switch an MTJ, where electrons moving through the domain wall

exert a torque in the domain they are entering, resulting in wall motion against the current
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direction. The velocity of this wall motion has been shown to depend on an in-plane field in a

manner similar to the idealized field-driven motion case for low in-plane fields [10]. The sample

films are patterened as small wires and current pulses are applied over very short timescales,

allowing larger driving forces and higher velocities than field-driven motion on blanket films

but requiring more processing. This has the benefit of avoiding the creep regime, so e↵ects of

the pinning potential and thermal motion are reduced. Motion at velocities well above Walker

breakdown, however, can also be very complex [26] and this method has not yet been subjected

to the same scrutiny as bubble growth experiments.

Nucleation Field - Another method using patterened films, the nucleation field approach creates

structures where, during switching, domains preferentially nucleate at triangular corners to

produce a single, straight domain wall [9]. The critical field for nucleation depends on the

energy of the wall and can be adjusted with an in-plane field, resulting in a shift in coercivity.

The positive aspects of this method are that it deals directly with the wall energy and not the

kinetics of wall motion; negatives include the fact that it was developed very recently and has

few published results that conclusively indicate the change in coercivity is coming from DMI.

Maze Domain Collapse - In demagnetized films, domains become very small and the degree of

uniformity of the magnetization decreases. These small domains form a maze-like pattern where

walls are very closely spaced [27], and DMI stabilizes such nonuniform configurations, a↵ecting

both their structure and the perpendicular field at which they collapse. While this technique

requires no patterning and can be carried out relatively easily, it does not take advantage of

the symmetry of DMI during the measurement process and therefore other film properties such

as the exchange strength and the magnetization can have qualitatively similar e↵ects on maze

domain collapse. In theory, DMI should have a quantitatively distinct impact on the structure

of the maze domains, but in practice the size of domains is di�cult to measure reliably in a

demagnetized sample.
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Brillouin Light Scattering - A more established method of measuring DMI, Brillouin light scat-

tering involves optically exciting spin waves and determining their dispersion in the sample of

interest [28]. Materials with DMI display a di↵erence in the dispersion of spin waves depending

on their wavevector. While this method is well represented in the literature and involves no

patterning, it requires nonstandard equipment and expertise.

1.6 Thesis Outline

The primary focus for the rest of this thesis will be on investigating the anomalies that have

been observed in asymmetric bubble growth experiments described in the previous section.

Analytic results in creep theory have proven extremely successful in describing the dependence

of the DW velocity behavior on the perpendicular driving field Hz, so we will look to them

in greater depth in an attempt to understand the observed Hx dependences. We note that in

the models presented so far to describe the asymmetry behavior, several aggressive assumptions

have been made to simplify the problem but these may not be accurate. Our hypothesis is

that an enhanced model of creep will more e↵ectively represent the experimental behavior and

therefore provide better insight into the underlying physical phenomena. This more complete

model is developed in two stages - in chapter 3 we draw on analytic creep results which have

been derived for single vortex pinning systems in superconductors to understand how the creep

behavior depends in detail on all of the general elastic properties. These properties include the

elastic modulus, interface width, pinning strenght, e↵ective mass, and friction. In chapter 4

we derive how these elastic properties can be expressed for the Dzyaloshinskii DW and explore

their in-plane field dependence. Finally, in chapter 5 we combine the results of chapters 3 and

4 and apply the resulting models to experimental data in order to evaluate the e�cacy of creep

theory in explaining the trends in real materials.



Chapter 2

Experimental Techniques

2.1 Film Deposition and Characterization

Sputtering - This ubiquitous deposition method involves bombarding the material to be de-

posited (target) with an argon plasma, causing atoms to be ejected from the material’s surface

due to the impact of high energy ions. These ejected atoms can then accumulate on the surface

of substrates placed in their path, producing a thin film. For depositing conductive layers,

the plasma can be generated and sustained by applying a negative DC voltage to the target

which also acts to pull positively charged argon ions in, supplying the energy required to sputter

atoms and resulting in current flow through the target. This would result in charging for an

insulating material such as MgO, so a large RF bias is applied to these targets while a smaller

DC bias develops as a result - supplying sputtering energy but producing no net current flow.

The relatively high deposition rates and uniformity of sputtering coupled with typically lower

sensitivity to contaminants compared to techniques such as molecular beam epitaxy make it an

ideal method for depositing films where crystalline quality is not critical, which is largely true

for most films in an MTJ stack with the exception of MgO. Despite the strong dependence of

17
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device behavior on MgO crystal quality, standard RF sputtering has been reported to produce

MTJs of su�ciently high quality for our purposes [29], though we note that modifying the MgO

sputtering process is a major area of industrial and academic research[30]. For all studies de-

scribed in this document, films were deposited using either RF (for MgO) or DC (for all other

materials) sputtering from one of two di↵erent deposition systems. Since the quality and prop-

erties of sputtered films, particularly that of MgO, depend strongly on equipment parameters

including base pressure and geometry, our results vary depending on the equipment that was

used. We refer to the first deposition system as the 5-target tool, as it is custom-built with five

5” targets directed at a rotating substrate table so deposition is in the face-to-face geometry.

Base pressure on this piece of equipment is quite high at around 2⇤10

�7
Torr, which we believe

contributes to preventing deposition of high quality (001)-oriented MgO. In addition, the limit

of five targets means a vacuum break is required during the deposition of a full stack SAF MTJ

structure. The benefit of this system is that thickness gradients are very easy to deposit by

controlling the substrate table rotation, so tuning thicknesses to optimize desired properties

can be done in fewer deposition runs. The second system, which is newer, is an AJA tool with

seven 2” targets and one 3” target (for MgO) in a confocal sputter-up arrangement. This tool

typically reaches base pressures in the low 10

�9
Torr range in order to deposit good MgO and

has enough targets to run an entire device stack. Because of these improvements, all current

development is done on the AJA system while most of the crystallization studies we described

in chapter 1 were conducted before the AJA was installed using films from the 5-target tool.

Alternating Gradient Force Magnetometry (AGFM) - A recurring problem for thin film materi-

als is that their absolute magnetic moment is very small owing to the low volume of magnetic

material present, reducing the signal-to-noise ratio of moment measurements. AGFM has much

greater sensitivity than VSM and can measure relative moments very accurately down to around

a 10 nemu scale. This technique works be applying a gradient field to a sample that is free to
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vibrate - thereby producing a force on the sample holder. Rapidly alternating this gradient

field produces a vibration of the sample holder which is measured using a piezoelectric element.

At most frequencies of the alternating gradient field, the diamagnetic response of a sample

overwhelms the ferromagnetic signal so the frequency must be tuned to reduce the diamagnetic

contribution. The accuracy of this tuning can a↵ect the absolute strength of moment mea-

surements, so saturation magnetization values obtained with AGFM must be used cautiously.

Despite this drawback, the sensitivity of AGFM makes it an invaluable resource for measuring

PMA in ultrathin films as coercivity and saturation field values can be obtained to high accu-

racy for samples with very low moment; we have used it extensively to optimize the PMA in

MTJ stack structures.

Magnetooptical Kerr E↵ect (MOKE) Microscopy - The Kerr e↵ect refers to changes in the re-

fractive index and therefore reflective properties due to the magnetization of a material. This

property manifests as a phase shift which can be imaged using phase contrast microscopy tech-

niques, allowing the surface magnetization to be mapped directly. MOKE in combination with

applied fields thus provides a method of imaging growing domains and providing experimental

evidence of domain wall dynamics, which in turn are heavily influenced by DMI. The asym-

metric bubble growth method described in chapter 1 and explored in detail in chapter 5 relies

on these measurements, as do several of the potential alternative DMI measurement schemes.

Because MOKE is an optical method it is limited in resolution to around 1µm and can therefore

only study fairly large domains and switching behavior.

2.2 Micromagentic Modeling

Micromagnetic modeling is a numerical technique for solving the magnetization dynamics using

the LLG equation described in the previous chapter. In all micromagnetic results presented in
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this thesis, we used Mumax

3
version 3.8[31], which uses an explicit time Runge-Kutta method

to solve the micromagnetic evolution equations. Calculations of the faceted DW profile and

analysis of the static DW bending experiment were performed on a mesh of 1 x 1 x 2nm cells

using the conjugate gradient energy minimization algorithm built into the software. Dynamic

bending experiments used a maximum timestep of 10

�14
seconds.

2.3 MTJ Development and Testing

The work we have carried out on MTJs is vertically integrated, covering everything from stack

deposition to the electrical testing of fabricated devices. Here we outline our experimental

methods, including a brief discussion of the theory of operation for each technique as well

as elaboration on specific details related to our application of producing CoFeB/MgO/CoFeB

MTJs.

2.3.1 Film Level Characterization

X-ray Di↵raction (XRD) - Formation of the correct coherent interface required for high TMR

in MTJs is dependent upon deposited MgO films having (001) crystallographic texture (this

property is detailed in chapter 3). XRD provides a high-throughput method to determine the

existence and quality of this desired texture, allowing for the quick evaluation of a large number

of deposition conditions in terms of their impact on MgO structure. This technique works

by irradiating a thin-film sample with a beam of monochromatic X-rays and measuring the

intensity of di↵raction as a function of the angle of the incident and di↵racted beams with

respect to the film surface. For structure identification, the angle of the incoming and outgoing

beams are equal and are varied together in order to observe the change in di↵racted intensity

versus incident angle. If the film is crystallographically textured, this scan can produce peaks
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in intensity which occur due to the constructive interference of di↵raction from di↵erent Bragg

planes parallel to the surface of the film [32]. For MgO, we look for the 002 peak that occurs

when the beams are angled ⇠21

�
from the plane of the film when using Cu K↵ X-rays. If

this peak is present, we can determine the quality of the (001) texture by taking a rocking

curve, which involves varying the tilt angle of the film while the incident and di↵racted beams

remain at the same position. Measuring the full width at half max (FWHM) for di↵racted

intensity versus the sample tilt angle indicates how the (001) plane normals of the MgO grains

are distributed with respect to the film normal and serves as a figure of merit for film quality,

with lower FWHM indicating stronger texture. XRD is a powerful tool as films can be tested

with no additional processing, but we are typically limited to thicknesses of 5nm or greater for

MgO in order to obtain reasonable signal. In our experiments, MgO films deposited using the

5-target system typically had very weak or nonexistent 002 peaks while those made using the

AJA system produced 002 peaks with a minimum of 5.5

�
FWHM rocking curves. In principle,

XRD can also be used to determine the presence and quality of (001)-oriented ↵-FeCo which

crystallizes on the MgO surface after annealing of CoFeB, but the partially amorphous nature

of this layer results in a much weaker signal and requires even higher thicknesses which diverge

very significantly from device values. Ultrathin films like those found in devices are thus better

served by studies using transmission electron microscopy.

Transmission Electron Microscopy (TEM) - Direct imaging of the electrode and barrier structure

of MTJ stacks can only be accomplished by high resolution TEM, which can provide crucial

insight into the structure of the critical electrode-barrier interface and the crystallinity in both

the MgO and CoFeB layers. TEM involves sending an incident beam of electrons through

a thinned section of the film sample and analyzing the transmitted and di↵racted beams to

determine the sample’s structure. Prior to this technique, the sample must be thinned to the

range of ⇠10-100nm before it becomes reasonably electron transparent. The fragility of very
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thin sections and di�culty of sample prep means that only very small segments of the film

cross section can be imaged and it can be di�cult to interpret whether an observed di↵erence

between two stacks is due to changes in processing or just typical sampling variation. Still, TEM

is critical to troubleshooting film development problems, we have used it to confirm (001) MgO

and FeCo texture after annealing and analyzed physical changes due to di↵erent seedlayers.

Vibrating Sample Magnetometry (VSM) - For the crystallization studies described in chapter 1,

we require a method to determine saturation magnetization to a high degree of accuracy. VSM

is a standard technique in the study of magnetic material which uses induction to excite currents

in pickup coils by vibrating a magnetized sample nearby; these currents are dependent on the

strength of the sample magnetization and therefore allow it to be accurately measured. VSM

equipment also contains an electromagnet so di↵erent fields can be applied to the sample and

magnetic responses such as a standard hysteresis loop can be determined. Our particular tool

is a Quantum Design PPMS with VSM Oven attachment, which has a vacuum-sealed sample

chamber to run magnetic testing at ⇠ 10

�5
Torr and uses a helium-cooled superconducting

magnet to apply fields up to 10 Tesla. While the samples we use for crystallization testing

are thick enough that they can be saturated in-plane at fairly low fields, the vacuum chamber

on the equipment is critical and allows for the use of special sample holder that contain a

heating element and thermocouple so the sample can be annealed during measurement of its

magnetization which allows changes that occur during crystallization to be measured in real

time with fairly high throughput. The primary challenges for these measurements are the

presence of contaminants, as the sample must be bonded to its holder with ceramic cement

in order to ensure good thermal contact and the cement can pick up magnetic particles from

the film during annealing, resulting in magnetic contamination if not all the cement is removed

after measurement. Because our VSM has a characteristic noise floor of around 1µemu and the

changes we are interested in correspond to 10-20% of the total sample moment, we are limited
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to samples with total moment on the order of 20 µemu or above and therefore require at least

2-3nm of CoFeB for accurate results.

2.4 Patterning

In order to measure the TMR and switching behavior of MTJs, small pillar structures must be

patterned out of the blanket film stacks so that confined currents can be passed through the

junction. In broad terms, the patterning involves partially etching into our full stack structure

to form nanopillars of between 50-150nm in diameter, then depositing leads to both the top and

bottom of the pillar separately. This is accomplished in a sequence of six lithography levels, five

of which are optical lithography and one of which is e-beam. A diagram of the film stack going

through this process flow is provided in figure 2.1.

The detailed processing steps start with first depositing a carbon hardmask for the pillar etch

and then sputtering thick tantalum marks for e-beam lithography to align the pillars to (b).

After the nanopillar lithography, the hard mask undergoes a reactive ion etch (RIE) to expose

the film surface and the pillars are etched in an argon ion mill with end-point detection that

allows the etch to be stopped once the active MTJ layers are cleared (c). A SiN passivation layer

is then deposited and planarized in the ion mill (d), followed by optical lithography to pattern the

seed/bottom leads. Passivation over the bottom leads is etched by RIE, the remaining seedlayer

is cleared in the ion mill, and an additional passivation layer is deposited to encapsulate the

device (e). Small openings (vias) over the remaining seed material and over the nanopillar are

patterened optically and etched in the RIE, deep enough to expose the hardmask remaining

on the nanopillar but ideally not deep enough to expose the pillar sidewall (f). The remaining

hardmask is then selectively etched in the RIE to expose the metal pillar surface (g), followed by

another lithography and etch step which deepens vias over the remaining seed until the metal
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Figure 2.1: Standard process flow for e-beam nanopillars between 50-150nm in diameter, note

the aspect ratio of the pillars and vias is heavily exagerrated. A description of each stage is

provided in the text.

is exposed but leaves the pillar vias as they are (h). Finally, the surface is lightly etched and

contacts are deposited which provide current paths through the device and through the bottom

leads separately (i), which is required for the testing processes.

2.4.1 Device Testing

After patterning, TMR and RA product can be determined by electrical testing in an applied

field. We note as a precaution that MTJs with low MgO thicknesses can be damaged by

biases less than 1V, so electrostatic discharge (ESD) protection circuitry is required to ensure

the junctions don’t experience high transient currents while making contact to the probes. In
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a typical scan, the applied field is started at a high enough value to saturate the device in

the parallel state, then successive resistance measurements are taken at constant current as

the applied perpendicular field is lowered. If the antiparallel state is stable, then at some

critical field with opposite sign compared to the initial saturation field the low-coercivity layer

will switch and the resistance will sharply increase. To determine TMR from the high and

low resistance values, we also need to know how much of the total resistance is due to the

junction. In our devices, the resistance of the bottom leads can become significant for low MgO

thicknesses, so this background resistance must be measured by passing current through the

bottom leads only and subtracted out. Once switching is observed, we can take a minor loop

by starting in the antiparallel state and reducing the field until the low-coercivity layer switches

back; the di↵erence in the antiparallel to parallel (AP!P) and parallel to antiparallel (P!AP)

switching field gives a measure of the coupling between the electrodes. Increasing the field from

the antiparallel state will eventually result in the high-coercivity layer switching to the parallel

state, providing information on the stability of the antiparallel state. Current switching with

long pulses (100ms was used in the experiments shown in this document) is carried out on

the same equipment, where resistance is measured as a function of the applied current after

preparing the device in either the parallel or antiparallel state. Starting from the parallel state,

increasing the current from the fixed layer to the free layer (so electrons are being transmitted

from the free layer to the fixed layer) can result in a P!AP switch. Likewise if we start from

the antiparallel state and increase current coming from the free layer, we can observe an AP!P

switch. Because the device is a tunnel junction, the resistance will change depending on the

applied voltage/obtained current and the raw current switching data will not be rectangular like

the field switching data. This can be adjusted by taking the junction IV behavior into account.

Real MRAM cells must be switched with must faster current pulses than 100ms and shorter

pulses require a larger switching current[33]. Applying very short pulses requires a specialized
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generator and waveguide leads to reduce self-induction, both of which will be used in future

work.



Chapter 3

Review of Creep Theory for 1-D

Elastic Manifolds

The theoretical study of elastic manifold dynamics dates back to the early 19th century work

of Laplace in describing the capillary forces of fluids. In the intervening centuries, this line of

reasoning has been formalized and expanded to applications in a wide variety of disciplines,

providing insight into the behavior of a large number of physical objects, from soap bubbles

to crystalline grain boundaries to polymers. In this chapter, we will review in some detail the

branch of elastic manifold theory known as creep, which we are focusing on due to its relevance

to the experimental studies of DMI outlined in Chapter 1. After briefly discussing how creep

theory fits into the broader study of elastic manifolds, we will review the characteristic interface

properties that a↵ect mobility in the creep regime at low driving fields. Our analysis in this

chapter draws heavily on creep theory that was developed in great detail to understand single

vortex pinning in type II superconductors [34]. Magnetic DWs in thin films have been shown to

be excellent model systems for creep theory [35–37] as their velocity can be directly determined

27
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through magnetic domain imaging techniques such as MOKE and exhibits the expected critical

behavior which we will derive later in this chapter.

3.1 Conditions for Creep

Generally, an elastic manifold is an extended object with a self-energy that increases along with

its spatial extent, resulting in a tendency for a curved manifold to reduce its curvature in order

to become more compact. The dynamics of an elastic manifold are broadly categorized by the

dimensionality of the manifold, d, and the dimensionality of its motion, n. Such a case is referred

to as a d + n manifold. Our manifold of interest, a ferromagnetic domain wall in a thin film,

is technically a three dimensional space with an additional degree of freedom corresponding to

the internal magnetization direction in the plane of the film, but it can be treated e↵ectively as

a one dimensional object. In order for this to be valid, the DW width must be nearly constant,

the film must be thin enough so that the magnetization is uniform along the film normal, and

the internal degree of freedom must be a function of the DW orientation only. We will assume

these approximations are valid and describe the requirements for these assumptions in section

3.3.1 and chapter 4. Because the domain wall is constrained to an e↵ectively two dimensional

film, we only have motion in one dimension and can describe the DW fully by two coordinates,

z for the position along the axis of the DW orientation and u for the position along the axis of

DW motion. Thus we have a 1+1 manifold, and the elastic energy can be expressed as

Eel =

Z
"tf
2

✓
@u

@z

◆2

dz (3.1)

Here " is the sti↵ness (also known as elastic modulus) and tf is the film thickness.
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When elastic forces are coupled to any number of additional forces that tend to move the

manifold or constraints that restrict its motion, a rich set of behaviors can result. A simple

example is the aforementioned capillary theory developed by Laplace that is caused by the

interplay between the driving force of pressure fields and the surface energy of a fluid interface.

While several elementary cases like this have exact solutions, more complex scenarios are major

areas of ongoing research in fields such as microstructural evolution, where the motion of elastic

grain boundaries is constrained by requirements to preserve crystal topology [38]. The creep

behavior we seek to explain results from a combination of elastic forces and three additional

e↵ects - pinning forces, a driving force, and thermal fluctuations.

Ftotal = Fel + Fpin + Fdrive + Fthermal (3.2)

642 E.E. Ferrero et al. / C. R. Physique 14 (2013) 641–650

Fig. 1. Linking transport and geometry. (a) Snapshot of a domain wall in a two-dimensional ferromagnet [30]. (b) Typical velocity–force characteristics.
(c) Crossover lengths ℓopt and ℓav representing the optimal excitation and the deterministic avalanches, respectively. (d) Geometric crossover diagram.
Color available online.

γ∂t u(x, t) = c∂2
x u(x, t) + Fp(u, x) + f + η(x, t) (1)

This equation models the overdamped dynamics of an elastic interface with a univalued scalar displacement field u(x, t),
with x a vector of dimension d, such that the interface is embedded in a space of dimension D = d + 1. The elastic
approximation made above assumes small deformations such that the elastic part of the energy is well described by
Hel = (c/2)

∫
x dxd [∇u]2. We are thus ignoring “plastic” deformations such as overhangs or pinched-off loops that might

appear in real interfaces, and assuming that elastic interactions are short-ranged, with a stiffness constant c. The contact
with a thermal bath at temperature T is modeled by a Langevin noise, such that ⟨η(x, t)η(x′, t′)⟩ = 2kBT γδ(x − x′)δ(t − t′).
Finally, the interface is coupled with a uniform driving force f and to a quenched pinning force Fp, which arises from the
disorder in the host materials. We will consider a non-biased pinning force characterized by its disorder-averaged correlator:

Fp(u, x)Fp
(
u′, x′) = %

(
u − u′)δ

(
x − x′) (2)

with %(u) a short-ranged function, of range rf (determined by the domain wall width in real interfaces with point dis-
order). For the so-called random bond (RB) case, the elastic line moves in a random short-range correlated potential. The
corresponding pinning force is Fp(u, x) = −∂u U (u, x), where U (u(x), x) is the random potential, and thus

∫
u %(u) = 0. For

the random-field (RF) case, U (u(x), x) is a random walk as a function of u, with diffusion constant
∫

u %(u) > 0 [19].
The model just defined is minimal, and in order to compare with experiments other ingredients might be considered.

For example, in charge density waves and vortices, the elastic structure is periodic [20,21], while in fracture [17,22–25] and
wetting [26,27], the elastic interactions are long ranged. Moreover, anharmonic corrections to the elasticity or anisotropies
can be also relevant [28,29]. Remarkably, all these different universality classes (with different critical exponents) share the
same basic physics of the QEW model discussed in the following sections.

2. Transport and geometry of driven interfaces in random media

Disorder makes the interface dynamics very rich. On one side, the interface appears rough, both in absence and in pres-
ence of drive. On the other side, the response of the system to a finite drive is strongly non-linear and, at zero temperature,
motion exists only above a finite threshold, the so-called critical force fc. As summarized in Fig. 1, collective dynamics is
observed in different regimes: just above fc the motion is very jerky, and displays collective rearrangements or avalanches
of a typical size ℓav . Below fc, motion is possible only by thermal activation over energy barriers and the interface slowly

Figure 3.1: A schematic of di↵erent behaviors of the 1+1 manifold taken from [4].

Pinning forces are the result of static defects in the medium through which the manifold moves,

in our case caused by material inhomogeneities in the magnetic thin film. Due to their static

nature, these defects are also known as quenched disorder and will attract or repel the DW,

resulting in an uneven potential energy landscape with barriers that must be surmounted in

order for the DW to translate. Despite having a critical impact on a number of emerging
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technological applications in magnetics such as racetrack memory, the pinning sites in many

magnetic thin films are di�cult to examine directly and remain poorly understood. As we

elaborate on in the following section, several di↵erent forms for the pinning potential have been

described theoretically and through analysis of experimental creep results we can narrow our

focus down to the most likely candidates. The driving force we will focus on is a perpendicular

magnetic field f / Hz, which produces a constant potential energy gradient along the direction

of DW motion, causing the domain that is aligned parallel to the perpendicular field to expand.

In addition to perpendicular fields, ferromagnetic DW creep can be driven by currents that

produce spin torques on the DW by interacting with its internal degree of freedom. This type of

driving results in deep changes to the dynamics and we will only briefly discuss current-driven

motion as a possible avenue for future work in section 6.2.2. Before introducing thermal forces it

will be helpful to outline the di↵erent behaviors that are possible from the interaction of elastic,

pinning, and driving forces (Figure 3.1). Below a critical driving force f = fc there is no steady

translation as the DW is able to reorient itself in the pinning potential so that elastic forces and

pinning forces cancel the driving force and the DW is in a static equilibrium or pinned state.

As the driving force is raised above fc, the DW can be held in a pinned state only transiently

as the combination of elastic forces and driving force will overcome the pinning forces. The DW

therefore takes on a nonzero steady state velocity which exponentially increases as f is increased

further and asymptotically approaches the velocity that would be obtained in the absence of

any pinning potential, known as the flow regime.

Thermal fluctuations account for the random motion of the DW and are represented by a force

term that takes the form of stochastic white noise, which is uncorrelated in both space and time.

The inclusion of these forces allows the DW to sporadically overcome pinning sites even when

f < fc, resulting in a thermally-activated steady state velocity that depends exponentially on

the driving force. This case defines the creep regime, and critical force-velocity relationships
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can be expressed for limiting cases of f . In the low-driving limit, f ! 0, and the domain wall

behavior is determined as a perturbation from the completely pinned state. In the depinning

limit, f ! fc, and the behavior is determined as a perturbation of the flow regime. Because

the DW velocities in our experiments are several orders of magnitude below the flow velocity,

we will evaluate only the low-driving limit where the velocity can be expressed as follows.

vcreep = v0 exp

✓
� U

kT

◆

U / fµ

(3.3)

The remainder of this chapter will use scaling analysis to explore how the parameters of the

creep law above arise from the competing forces outlined in equation 3.2. In order to put a form

to these forces so the scaling behavior can be analyzed we will first need to make some broad

assumptions about the nature and structure of the pinning.

3.2 Types of Quenched Disorder

While the only necessary feature of quenched disorder is its ability to attract or repel a DW

and therefore pin it, the nature of the pinning site-DW interaction and the spatial distribution

of pinning sites can have a dramatic impact on the force-velocity behavior of the manifold

and can even alter the scaling exponents and universality class. To begin characterizing the

disorder, we will take the interaction between pinning sites and the DW to be short-ranged

so that the pinning energy can be expressed in terms of an unchanging potential energy field.

This is known as random bond or RB pinning and is capable of yielding a critical exponent µ

that agrees with experimental studies of DW creep in metallic thin films [35]. In contrast, the

pinning site-DW interaction could be long-ranged and produce what is called random force or
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RF pinning. RF pinning yields larger values of the critical exponent which have been observed

in creep experiments for ferromagnetic semiconductors [39]. Since we are interested in metallic

films, we will assume RB pinning and can therefore express the pinning force as

Fpin(z) = �@Vpin(z, u)

@u
(3.4)

Where Vpin(z, u) describes the pinning potential of a DW that goes through point (z, u). In

order to progress further, we must approximate the form of Vpin and therefore describe the

distribution and geometry of pinning sites. As the pinning sites are taken to be defects, the

value of Vpin is typically taken to be a random variable with no long range correlation. In one of

the simplest cases that still produces rich behavior, we can take Vpin to be a random Gaussian

field. This is a stochastic function described below that is parameterized by a pinning strength

and correlation length, the latter of which corresponds to the size and spacing of pinning sites.

hVpin(z, u)i = 0

⌦
Vpin(z, u)Vpin(z0, u0

)

↵
= �e|u�u0|/R

c�(z � z0)

(3.5)

Even with a fixed form of the pinning potential, the scaling behavior of the creep law will depend

on the size of the spatial correlation distance Rc, producing either weak collective pinning or

strong pinning as described in the following sections.

3.2.1 Weak Collective Pinning

The DW width � presents a lower limit for the correlation length of the pinning potential. This

is the case because Vpin describes the energy of the DW-pinning site interaction and not just
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the pinning sites alone. So even if the pinning sites are spaced closer than the DW width as

may be the case for atomistic defects, Vpin(u, v) will include a sampling of the defects within

a distance � of the point (u, v). In this scenario, called weak collective pinning, the DW is

pinned not by individual defects but by the collective action of many pinning sites, with the net

pinning force arising due to the DW favoring areas with high defect density. In weak collective

pinning, the detailed geometry of defects becomes unimportant and the pinning potential is can

be parameterized by the properties of the isolated DW and a single pinning strength variable �.

Weak collective pinning considerably simplifies the analysis of creep behavior and is the most

thoroughly understood type of pinning as a result.

3.2.2 Strong Pinning

Strong pinning results when the pinning site density decreases so that the DW is held in place

by individual defects. The pinning strength can alternatively be described in terms of the

properties of these individual defects using the average pinning force fp and defect density np,

giving

� / f2
pnp�

2
(3.6)

Analysis of this type of pinning is more di�cult than weak collective pinning mainly because it

requires more detailed information on the pinning sites. Despite this, some progress has been

made in the past few decades to evaluate the scaling details for cases of strong pinning in vortex

systems [40, 41]. While we will not explore the derivation here, this more recent work suggests

that the creep law parameters will have di↵erent dependencies on interface properties than weak

collective pinning even for point-like pinning defects. We will briefly present the corresponding

scaling results for point-like strong pinning sites to illustrate di↵erent possibilities for explaining
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the observed experimental data. Other types of strong pinning sites including extended defects

have been explored for vortex systems but are beyond the scope of this thesis.

3.3 Evaluating the Energy Scale for the Creep Law

Elastic forces dominate Pinning forces dominate Driving forces dominate 

Lc Lopt Smaller length scales Larger length scales 

Figure 3.2: A diagram of how the di↵erent forces a↵ecting the DW dominate at di↵erent

length scales.

Before evaluating how the creep law energy scale U depends on DW properties, we will attempt

to provide an interpretation of what this energy scale represents. In the presence of the random

pinning potential and in the absence of a driving force (which we can neglect because we are

interested in the low-driving limit), a static equilibrium is obtained where elastic forces and

pinning forces balance and cause the DW to roughen on a characteristic length scale called the

Larkin length or collective pinning length, denoted as Lc (Figure 3.2. We consider two points on

this pinned DW which are a length L >> Lc apart and on the z-axis. Between these two points,

the DW will tend to follow a weaving path through the pinning potential, but this path is not

unique and there can be many alternatives which satisfy the force balance. These alternate

paths are distinct metastable states which we can distinguish by their average distance from

the z-axis in the direction of DW motion, ū, and the total energy (elastic and pinning), Umeta.

Thermal forces can lead to transitions between metastable states that are called avalanches.

The two values characterizing the metastable states have di↵erent power law dependencies on L

that astoundingly can be determined exactly for 1+1 manifold dynamics using renormalization

group theory [42]. When a small driving force is applied, the energy required to transition

between metastable states is a sum of the di↵erence in elastic and pinning energy given by
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�Umeta and the energy change from the driving force which is proportional to �ū. We can then

use the known L dependencies of these terms to determine the L for which the energy barrier

to transition between metastable states is a maximum, known as Lopt. This is the optimal or

critical avalanche length, which is the rate limiting step in DW creep. The parameter U in

the creep law is therefore the characteristic energy between metastable segments of length Lopt.

In the following sections, we will derive expressions for Lc and Lopt in terms of the interface

parameters, eventually allowing us to express U in terms of these parameters as well.

3.3.1 The Larkin Length

The characteristic length scale of DW curvature in a disordered medium is determined by the

competition between elastic and pinning forces. Following Blatter [34], we can express this

length scale by considering the energy of a segment of the DW of length L that has endpoints

along the z-axis and curves outward from the axis a characteristic distance u. The sum of elastic

and pinning energies is

Eel+pin = "tf
u2

L
� (��tfL)

1/2
(3.7)

The second term is the total pinning energy, which scales as the

1
2 power of the volume of the

DW because the pinning potential is random, so the average pinning energy decreases with the

amount of space that is sampled, depending on volume to the �1
2 power. We consider a segment

that is deformed from the z-axis into a new pinning potential, so that u = �, and determine the

length scale Lc that minimizes energy density.

@Eel+pin/L

@L
= �2"tf�

2L�3
c +

1

2

(��tf )
1/2 L�3/2

c = 0 (3.8)
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Lc / �
"2/3t

1/3
f

�1/3
(3.9)

We can also determine the characteristic pinning energy, Uc of the segment simply by using

L = Lc in the second term on the right hand side of equation 3.7, obtaining

Uc / �"1/3�1/3t
2/3
f (3.10)

The critical force to depin the DW is just the force required to overcome this pinning energy

fc =

Uc

�Lc
=

�2/3t
1/3
f

�"1/3
(3.11)

These values are used in the next section to determine the properties of the DW at length scales

larger than Lc. Before we move on to that analysis, we include a wrinkle to the preceding

calculation that will arise in Chapter 4 when the sti↵ness " of the DW is dispersive, meaning it

depends on L. In this case, an additional term appears in equation 3.8. This added term forces

us to replace " in equations 3.9 and 3.10 with "⇤, given by

"⇤ = "(Lc) � Lc

2

@"

@L
(Lc) (3.12)

One problem with this expression is that it prevents us from solving explicitly for Lc as this

term now appears on both sides of equation 3.9. This issue can be circumvented by numerically

determining a self-consistent Lc.

An additional complication can arise if thermal fluctuations are relatively strong, which causes

Lc to become a function of temperature. The large fluctuations cause the assumption of static
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equilibrium to fail and tend to e↵ectively smooth out the pinning potential. These become

significant when thermal energy of the DW becomes comparable to the pinning energy at the

nonthermal Larkin length, Lc(T = 0). The temperature at which this occurs is known as the

depinning temperature, Tdp. The expressions for Tdp and the temperature-dependent Larkin

length, Lc(T ), are

Tdp = Uc/k (3.13)

Lc(T ) = Lc

 
1 +

✓
T

Tdp

◆5
!

(3.14)

Experimental analysis of the temperature dependence of DW velocity in Pt/Co thin films indi-

cates a Tdp well over 1000

�
C [43], so we will ignore any temperature dependence of Lc as our

experiments are conducted well below Tdp.

Finally, for strong pinning each segment is pinned by a single defect so the pinning energy

is independent of the elastic modulus. The length scale for curvature is still determined by

invoking mechanical equilibrium between the pinning forces and elastic forces, giving.

Lsp
c =

"1/2

�1/4n
1/4
p

(3.15)

U sp
c =

�3/4

"1/2n
5/4
p �2

(3.16)

f sp
c =

�3/4

n
1/4
p "3/2

(3.17)
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3.3.2 The Critical Avalanche Length

Seminal work by Huse, Henley, and Fisher [42] revealed key features of the statistical mechanics

of a 1+1 elastic manifold in a random potential. The results, obtained using the method of

images and later with renormalization group theory [44], are scaling expressions for the long

range properties of the rough DW metastable states in terms of the properties at the Larkin

length. As L ! 1, the distance between metastable states was found to grow as

�ū(L) = �

✓
L

Lc

◆2/3

(3.18)

While the energy barrier between these states grows as

�Umeta(L) = Uc

✓
L

Lc

◆1/3

(3.19)

Once a small field is applied, the energy barrier between metastable states can be expressed as

U(L) = �Umeta(L) � fL�ū(L) = Uc

✓
L

Lc

◆1/3

� fL�

✓
L

Lc

◆2/3

(3.20)

This is a critical nucleation problem, and we find the maximum energy barrier for an avalanche

by taking the derivative with respect to L

@U

@L
=

1

3

UcL
�2/3
opt L�1/3

c � 5

3

f�L
2/3
optL

�2/3
c = 0 (3.21)

Solving for Lopt and using equation 3.11,
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Lopt / Lc

✓
fc
f

◆3/4

(3.22)

Inserting back into equation 3.21, we arrive at the critical energy barrier for creep motion.

U / Uc

✓
fc
f

◆1/4

(3.23)

Which we can express in terms of interface properties using equations 3.10 and 3.11

U /
�3/4"1/4�1/2t

3/4
f

f1/4
(3.24)

Alternatively, strong pinning gives

U sp / �15/16

"7/8n
21/16
p �2f1/4

(3.25)

The dependence of U on f�1/4
is readily verifiable in the magnetic DW system by examining

the velocity as a function of driving field Hz. This critical exponent has been observed to hold

over many orders of magnitude of DW velocity in experiments conducted across a number of

di↵erent material systems [36]. In the following chapter, we will attempt to describe how U

depends on an in-plane magnetic field Hx, which manipulates the properties ", �, and �.

3.4 Attempt Frequency and the Creep Law Prefactor

While the creep law prefactor v0 has received considerably less attention in vortex theory than

the Arrhenius term, it may also vary with the manifold properties. Since this problem has not
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been directly addressed for vortex systems, the reasoning in this section is partially our own

work and should be subjected to more scrutiny than the previous sections. We are particularly

interested in the prefactor for our system because it has been suggested to contain information

on a newly described magnetic e↵ect known as chiral damping [25]. As with the energy scale, we

begin with an interpretation of the meaning of v0, and will first reiterate that the exponential

in equation 3.3 corresponds to the probability of successfully surmounting the energy barrier

between metastable segments of length Lopt. The prefactor thus describes the velocity that the

DW would have if every attempt at surmounting this energy barrier were successful, and we

should be able to write v0 as the product of the distance between the metastable states and the

thermal attempt frequency.

v0 / �ū(Lopt) ⇤ !opt (3.26)

The first component has already been obtained in equations 3.18 and 3.22. The second is less

trivial, like many of the other parameters we will assume a power law form at large length scales.

!(L) = !c

✓
L

Lc

◆⇣

(3.27)

Determining the exponent ⇣ is still in progress and requires an in-depth understanding of the

renormalization group methods used to find the critical exponents discussed previously. The

thermal frequency at the Larkin length, however, has close analogies to thermal time scales

that have been evaluated for vortex creep [34]. In general, the oscillating DW segment will have

both an e↵ective mass due to its internal degree of freedom and friction due to Gilbert damping.

The vast majority of studies involving DW motion focus on their translational behavior and

can neglect the DW mass. We will show in section 4.2 that this is not necessarily valid for
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DW bending modes and both mass-dominated and friction-dominated oscillations are possible

for typical experimental conditions, which is relevant to our present discussion because the two

limits have di↵erent characteristic frequencies.

!c / 1

Lc

⇣ "

m

⌘1/2
, mass-dominated oscillations (3.28)

!c / "

⌘L2
c

, damping-dominated oscillations (3.29)

In the above expressions, m is the DW e↵ective mass and ⌘ is the friction which is proportional

to the Gilbert damping parameter ↵. While in-plane field induced variation in the observed

prefactor has been attributed to changes in ↵, we note here that v0 will also depend on other

interface properties which are known to have in-plane field dependencies which will need to be

accounted for in order to deduce the correct form of ↵ as a function of Hx. The dynamical

interface properties m and ⌘ are evaluated in section 4.2 and their potential ability to describe

experimental phenomena is explored briefly in Chapter 5.



Chapter 4

An E↵ective Elastic Band Model for

Dzyaloshinskii Domain Walls

In the previous chapter, the governing behavior of a 1+1 elastic manifold was described in the

low-field creep regime and expressed in terms of general pinned interface properties. This chapter

will focus on evaluating these properties for a Dzyaloshinskii DW in terms of the parameters of

the system, both material and experimental. We will develop an e↵ective elastic band model for

the DW through the derivation of approximate analytic forms for the key interface properties,

followed by verification through comparison with micromagnetic results. We are particularly

interested in the dependence of the properties on an applied in-plane magnetic field Hx, as

the ability to alter the elastic properties with an externally applied field is a powerful tool for

experimentally probing the creep law behavior. The results of such experiments are explored in

the next chapter.

42



Chapter 4. Elastic Band Model 43

4.1 Static Properties

The sti↵ness ", DW width �, and pinning strength � can all be determined by the energetics of

a static DW. In order to express these properties analytically, we require an approximate model

for the DW energy. Using all the micromagnetic energy terms from section 1.1.2 and 1.2, we will

consider a planar Dzyaloshinskii DW with orientation ⇥ and internal magnetization direction

� in the presence of of an in-plane magnetic field. We take the direction of the applied field to

define the x-axis while the e↵ective field due to DMI is always oriented along the DW normal

(Figure 4.1).

Hx 

D < 0 

ln(v) 

Hx 

Left wall 
Right wall 

(a) (b) 

DW 

HDMI 
Θ 

M 

ϕ 

x 

Polar energy plot 

Figure 4.1: (Left) Top-down diagram of a Dzyaloshinskii DW clarifying the meaning of ⇥ and

�. (Middle) Bubble domain with e↵ective fields due to DMI represented by the radial arrows.

(Right) Polar energy plot corresponding to the bubble domain in an in-plane field.

As a first approximation, we will neglect any tilting of the magnetization in the domains due

to the applied in-plane field and assume that the DW width is constant and equivalent to the

width without an in-plane field or DMI, given by �0 =

p
A/Keff . This allows us to integrate

the micromagnetic energy functional and arrive at

�(⇥, �) = �0 � ⇡D cos(� � ⇥) � ⇡�0µ0HxMs cos(�) +

ln(2)

⇡
tfµ0M

2
s cos

2
(� � ⇥) (4.1)

The first term is the Bloch wall energy �0 = 4

p
AKeff , followed by a term due to DMI that

favors a Néel wall and the Zeeman term that favors the internal magnetization aligning with
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the applied field. The fourth term is the DW anisotropy energy rooted in the magnetostatic

favorability of Bloch walls over Néel walls.[45] Minimizing DW energy with respect to internal

magnetization results in the equilibrium values for a rigid wall as a function of orientation, �eq
(⇥)

and �eq
(⇥), which have been used in the calculation of DW tilting angles in nanowires and

equilibrium droplet shapes via the Wul↵ construction.[46, 47] The combination of the in-plane

field, which alters the wall energy depending on its absolute internal magnetization direction,

and the other terms which couple the magnetization with orientation, produces an anisotropic

wall energy as can be seen in the polar energy plot of a bubble domain. This anisotropic energy

has an important impact on the sti↵ness of the DW, which we explore below.

4.1.1 Sti↵ness

As described in the previous chapter, an elastic manifold is characterized by its tendency to

reduce curvature. This tendency is quantified by the elastic modulus, also known as sti↵ness

or surface sti↵ness for a 1+1 manifold like the Dzyaloshinskii DWs we are interested in. If we

take a planar DW segment with fixed endpoints and then force it to bend out of a straight line,

both the energy E and arc length S of the DW segment will change. We can define the sti↵ness

by this change as shown below.

" =

�E
�S

(4.2)

This elastic energy scale has routinely been assumed to be " = � for a magnetic domain

wall[35, 37], which is strictly true only for the isotropic case where � is not a function of

the wall orientation. For an anisotropic interface, the energy of the curved wall will change

not only because the length is increasing, but also because the orientations are changing. Here

" = �̃ where �̃(⇥) = �(⇥) + �00
(⇥) depends not only on the energy of the local orientation but
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also on the energies of orientations in close proximity to ⇥. This form of the surface sti↵ness

has previously found broad utility in describing the mobility of solid/liquid interfaces[48] and

was first employed in creep theory to describe the movement of flux lines through pinning sites

in anisotropic superconductors.[34, 49]

A sti↵ness value can be calculated from the equilibrium planar wall energy simply by

�̃(⇥, L ! 1) = �eq
(⇥) +

@2�eq

@⇥

2
(⇥) (4.3)

As noted above and discussed later in the text, this expression is valid only for long wavelength

distortion and so provides insight into the long range stability of the planar domain wall. In

Figure 4.2a, �eq
and the long wavelength limit of �̃ vs. µoHx are compared for Dzyaloshinskii

DWs with varying HDMI , where positive Hx implies it is anti-parallel to HDMI (henceforth

referred to as the anti-parallel case). While �eq
is symmetric about a maximum at HDMI , �̃ is

highly asymmetric about a maximum centered at Hx = 0. Although �eq
and �̃ are qualitatively

similar when the applied field is parallel to HDMI , we note the striking result that as � increases

for anti-parallel Hx, �̃ drops very rapidly at a field which is dependent on HDMI . The calculation

of �̃ is complicated by the occurrence of negative values around HDMI , as they suggest that

a non-planar, faceted wall configuration is favored. The thermodynamic properties of faceted

configurations have been explored in the study of crystal growth and are described geometrically

by the pedal, �(⇥), of the equilibrium profile as determined via the Wul↵ construction on the

polar energy plot, �(⇥) (Figure 4.2b). The pedal gives both the driving force for faceting, ��,

and the facet angles, �⇥, as indicated.[50][51] The faceting angle becomes non-zero where �̃ is

negative, and optimum orientations calculated from equation 4.18 show good agreement with

numerical energy minimization results (Figure 4.2e).[31] Calculating sti↵ness from �(⇥), we find

that the linear elastic response vanishes for cases where faceting is favored.
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Figure 4.2: a) �eq

and long wavelength �̃ vs µ
o

H
x

for varying µ
o

H
DMI

in a Dzyaloshinskii DW

with µ
o

H
k

=1T, M
s

= 600kA/m, and t
f

= 1.8nm. b) Wul↵ construction (grey), �eq

(⇥) (red),

and �(⇥) (blue) for a Dzyaloshinski DW with µ
o

H
x

= 300mT and µ
o

H
DMI

= 360mT . The

red point of the inset indicates the origin. c) Example calculation of wall faceting in Mumax

3

for the same conditions as (b). d) Calculated driving force for faceting, ��. e) Calculated

equilibrium facet orientation, �⇥, with superimposed numerical calculation results.

In real materials, a pinning potential can deform the domain wall at small length scales, in which

case Heisenberg exchange along the wall will prevent the internal magnetization from assuming

�eq
(⇥) everywhere and invalidate equation 4.3 (Figure 4.3). In order to express the sti↵ness in

this case, the magnetization profile and energy for an infinitesimally curved domain wall can

be calculated semi-analytically by considering perturbations of the 1-D expression in equation

4.18. We consider a narrow domain wall, neglecting non local terms in the demagnetizing

energy. Augmenting the 1-D energy with an additional term for the exchange along the DW,

the combined energy functional is

L >> Lex L ~ Lex 

Figure 4.3: Diagram illustrating that when a Néel wall is deformed over large length scales, it

can maintain a nearly Néel configuration everywhere. At smaller length scales, exchange forces

the internal moments to align.
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E =

Z
�(⇥, �) + 2A�

✓
@�

@s

◆2

ds (4.4)

We expand the 1-D energy to second order about the orientation, ⇥o, and equilibrium magne-

tization, �o, for a straight DW segment

�(⇥, �) = � + (⇥ � ⇥o)�⇥ + (� � �o)(⇥ � ⇥o)�⇥�

+

1

2

(⇥ � ⇥o)
2�⇥⇥ +

1

2

(� � �o)
2��� (4.5)

In the right hand side of the above equation, � and its partial derivates, indicated by subscripts,

are all evaluated at (⇥o, �o). A stationary � profile will satisfy the Euler-Lagrange equation

(⇥ � ⇥o)�⇥� + (� � �o)��� � 4A�
@2�

@s2
= 0 (4.6)

A segment that is deformed into a circular arc of radius R has an orientation profile along the

wall given by

⇥(s) = ⇥o � s

R
(4.7)

Which can be used to solve equation 4.6 for the magnetization profile, giving

�(s) = �o +

s

R

�⇥�

���
+C1 sinh

⇣ s

⇤

⌘
+ C2 cosh

⇣ s

⇤

⌘

⇤ = �

r
�o

���

(4.8)

Here ⇤ is the length scale for exchange along the domain wall, the vertical Bloch line width.

For a domain wall segment with fixed endpoints a length L apart, the bounds of integration for
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large R are

sep = ±R arcsin

✓
L

2R

◆
⇡ ±L

2

 
1 +

1

6

✓
L

2R

◆2
!

(4.9)

Combining the expressions for �, ⇥, �, and sep, we evaluate E of the curved segment and will

focus on the case where we do not fix the magnetization of the endpoints. Minimizing energy

with respect to C1 and C2 we have

C1 =

�⇥�

���

⇤

2R
sech

L

2⇤

C2 = 0

(4.10)

The ground state energy of a curved domain wall can now be directly determined, from which

we can extract the elastic response through the relation

E(R) ⇡ L

 
� +

1

6

✓
L

2R

◆2

�̃

!
(4.11)

The result is a dispersive sti↵ness given by

�̃(⇥, L) = � + �⇥⇥ �
�2
⇥�

���
⇣

✓
L

2⇤

◆

⇣(`) = 1 � 3

`3
(` � tanh(`))

(4.12)

As L ! 1, ⇣ ! 1 and we recover an expression for �̃ that is independent of symmetric exchange

along the DW. This expression, which can be directly derived from equations 3 and 5, is the

generalized sti↵ness for a surface with an orientational order parameter in local equilibrium

that was first identified by Fournier to describe soft materials.[52] Conversely, as L ! 0, ⇣ ! 0

and the sti↵ness corresponds to the domain wall bending while maintaining a constant internal
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.

Micromagnetic results were obtained from DW bending experiments outlined in the appendix

to this work. c-d) Corresponding "# and #" DW velocity behavior for the length scales and D

values in (a-b). e-f) Creep velocity asymmetry ln (v"#/v#"). Dashed lines indicate the behavior

of the DW energy.

magnetization direction. The third term in the expression for sti↵ness therefore corresponds to

the energy decrease due to the DW moments relaxing to the ground state of the curved wall.

Sti↵ness behavior as a function of µoHx is explored in Figure 4.4 for a series of perturbation

lengthscales and µoHDMI with ⇥o fixed at 8

�
to account for roughness as justified later. To

better compare the trends in �̃ with experiment, we have calculated a DW velocity using experi-

mentally determined coe�cients of the creep law for Hx = 0, Hz = 4.25mT with the exponential

factor scaling by (�̃/�̃H
x

=0)
1/4

, noting that the qualitative features are insensitive to the exact

choice of coe�cients and exponent. We see from either �̃ or velocity that at very low length

scales the e↵ect of DMI is to both shift the curve horizontally, as described by Je et al.[8] for

�, and induce an asymmetric vertical shift about µoHDMI which is superficially similar to the

chiral damping proposed by Jué et al.[25]. Unlike chiral damping, these two e↵ects o↵set each
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other at high fields so the sti↵ness converges for "# and #" walls. As the pinning length scale

increases, sharp drops in sti↵ness develop at fields where the wall transitions from fully Néel

to having some Bloch component. The most striking consequence is that the anti-parallel case

can have multiple local extrema as well as a significant window where it is expected to have a

greater velocity than its parallel counterpart before the two cases converge at much larger fields.

The behavior of the analytic model is confirmed by 2-D micromagnetic DW bending calculations

conducted with mumax3 as described in chapter 2. The sti↵ness of a DW can be measured

micromagnetically by determining how readily the domain wall deforms in spatially nonuniform

perpendicular fields (Figure 4.5). Periodic boundary conditions are applied at the top and

bottom of the simulation window and we know that in the upper half of the simulation, the

elastic restoring force on the domain wall is balanced by the force of the Zeeman interaction

from the perpendicular field.

Bz 

Bz 

Bx 

L 

W

Figure 4.5: Snapshot of micromagnetic simulation grid showing an exaggerated domain wall

bending experiment. Perpendicular fields of opposite signs are applied to the upper and lower

halves of the grid in order to induce a sinusoidal deformation.

�̃
u

L
=

1

4

BzMsL (4.13)

Where �̃ is the sti↵ness, u is the maximum domain wall displacement. The distance that the
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DW bends is directly related to the change in average perpendicular magnetization of the top

half, �mtop
z , that occurs when the z-fields are applied.

u =

3

4

W�mtop
z (4.14)

Here W describes the size of the micromagnetic mesh in the direction perpendicular to the wall.

Solving for sti↵ness, we have

�̃ =

L2

3W

Bz

�mtop
z

(4.15)

We note we can also get the change in total energy due to the applied fields from equation 4.13

and find the sti↵ness from the relation

�Etot =

1

32

(BzMsL)

2

�̃
(4.16)

In general, the analytic and micromagnetic methods agree quite well, with all the qualitative

features matching up very well. There is some disagreement at relatively large in-plane fields,

which could be due to the fact that DW width changes were ignored in the analytic method.

The assumptions made to derive the analytic result also break down when L is on the order of

�. At these very short deformation length scales, we can no longer assume that the DW will

maintain the same profile as the planar wall, and nonlocal e↵ects for the dipolar interaction

become more significant. For these situations the micromagnetic method is superior.
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4.1.2 Domain Wall Width

The in-plane field dependence of the Dzyaloshinskii DW width has been addressed recently in

the contexts of both the creep and flow regime[53, 54]. A key di�culty with this analysis is that

there are several di↵erent methods of characterizing the DW width, each of which can yield

distinct results. One technique is to assume that the profile of the polar angle of magnetization

✓ maintains the same form as a function of the distance along the DW normal, defined here by

the u-axis. This amounts to assuming a magnetization profile given by

✓(u) = 2 arctan

⇣
eu/�

⌘
(4.17)

Here � is not necessarily equal to �0 when a field is applied. This prevents us from combining

the exchange and anisotropy energy terms directly so that in place of �0 in equation 4.18, we

get a sum of two terms with di↵erent � dependencies, shown below.

�(⇥, �) = 2

✓
A

�
+ Keff�

◆
� ⇡D cos(� � ⇥) � ⇡�0µ0HxMs cos(�) +

ln(2)

⇡
tfµ0M

2
s cos

2
(� � ⇥)

(4.18)

If we minimize the energy with respect to �, we get an approximation for the DW width as a

function of in-plane field. Reintroducing this variable width to the above expression for energy,

the resulting energy values show poor agreement with micromagnetic results even at moderate

in-plane fields with very little tilting in the domain. We believe the problem with this calculation

is that the DW profile at moderate fields is not simply a rescaled version of the zero-field DW

profile, and that the in-plane field induces a significant change in the DW shape. To avoid this
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problem, we will specifically define the geometric DW width, which is related to the gradient in

mz at the middle of the DW wall.

� =

✓
@mz

@u

◆�1

(4.19)

The various micromagnetic energy terms can be balanced at the DW center, where mz = 0, to

give

� =

s
1 + hx cos �eq

1 � hx cos �eq
(4.20)

Where hx =

µ0Ms

H
x

2K
eff

. The geometric DW width can also be directly calculated from micromag-

netic results (Figure 4.6), with good agreement to the analytic result even at large values of the

in-plane field.
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Figure 4.6: Comparison of analytic and micromagnetic results for the in-plane field depen-

dence of the geometric DW width.
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4.1.3 Pinning Strength

Spatial variation of the material parameters in thin perpendicular magnetic films creates an

uneven energy landscape for a DW. Applying an in-plane field has no e↵ect on the material

parameters themselves, but it can alter the dependence of the DW energy on those material

parameters and therefore change the pinning energy [55]. For instance, a domain wall segment

that lies in an area of the film with average e↵ective anisotropy Keff will have a lower energy

than a segment that lies in an area with a higher average e↵ective anisotropy Keff + �Keff ,

so there will be an energy barrier that must be surmounted in order to move the DW from the

low anisotropy are to the high anisotropy area. For a general material parameter X, we call the

pinning by small spatial variations in the parameter �X pinning, and can quantify its strength

simply by

��X /
����
@�

@X

���� (4.21)

The pinning strength has been evaluated with micromagnetic simulations, and it is found that

depending on the magnetic character of the dominant pinning mechanism, qualitatively di↵erent

behavior can be observed. This could help explain the disparity in reported results between

material systems. For instance, in �Ms and �Ku pinning the strength increases as the field

increases, which would can correspond to a reduction in velocity with application of an in-plane

field that has been observed in some experiments [56] and stands in complete contrast to the

simple model proposed in chapter 1. Being able to deduce the pinning mechanism from creep

behavior would provide key insight into a technologically critical and di�cult-to-study subject,

but there are some important caveats to the prior analysis. First, there is no reason to believe

that whatever physical defect causes the magnetic parameters to vary would only a↵ect one of

them, so the variation of material parameters are likely to be correlated. If that correlation
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Figure 4.7: In-plane field dependence of pinning strength for a number of di↵erent mecha-

nisms.

is known, the pinning strength can be determined with the above equation by expressing the

various magnetic parameters in terms of an indirect parameter X.

Next, the pinning sites may not correspond to small changes in the material parameters, as there

could be areas of the film where the parameters are very di↵erent than their average values. This

would invalidate the perturbative approach and require more detailed micromagnetic analysis

of the pinning site. Finally and perhaps most importantly, there does not have to be a single

dominant pinning mechanism and/or the dominant mechanism can change as a function of the

in-plane field.

The variation of the pinning strength in an in-plane field introduces a large number of unknowns

into our analysis of DW velocity that we should not be able to ignore, given our determination

that the magnitude of the pinning strength e↵ect is significant for simple pinning models. If the
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material parameters including DMI and other chiral e↵ects were well known, however, it would

be possible to extract the pinning strength as a function of in-plane field experimentally and

use it to justify hypotheses regarding the identity of the pinning sites.

4.2 Dynamic Properties

The expansive field of ferromagnetic DW dynamics has remained productive throughout the

past half century, punctuated by many major analytic achievements that have been supported

experimentally, such as the description of Walker breakdown[57], spin transfer torque-driven

DW motion [58], and more recently spin-orbit torque-driven DW motion [13]. One of the

most common approximations made in the analytic description of DW motion is the rigid wall

approximation [59] which allows the DW to be treated as a simple translating point object with

an additional degree of freedom for the internal magnetization. This presents a problem for our

purposes, because a completely rigid DW would not exhibit any creep phenomena and it is the

deviations from rigidity, the bending modes [60], that will be our focus. Another feature of our

analysis that distinguishes it from the majority of DW motion studies is that thermal forces

are causing the motion, whereas thermal forces are frequently either ignored or expressed as a

small perturbation in the presence of some other driving force [61]. For a general elastic band

of length L with fixed endpoints, the governing equation for the motion is that of a damped

harmonic oscillator.

m
@2u

@t2
� ⌘

@u

@t
� "

L
u + Ftherm = 0 (4.22)

Attempts to describe this motion analytically are detailed in the next section, but our primary

approach is the ring-down method which will use micromagnetics. Ring-down analysis of an



Chapter 4. Elastic Band Model 57

oscillator involves establishing an excitation and then observing the decay of that excitation to

establish the governing dynamics. In the bending experiments described in section 4.1.1, we

applied a steady but spatially nonuniform perpendicular field to induce a sinusoidal distortion

of the DW that will serve as our excitation, corresponding to a starting u value in 4.22. If we

suddenly remove the perpendicular fields, the DW will relax exponentially to the planar state

(Figure 4.8). If there is not too much friction, fourier analysis of the relaxation will reveal the

characteristic frequency, and hence the e↵ective mass, of the oscillator. The decay rate, when

combined with the characteristic frequency information, yields the friction.
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Figure 4.8: Results of a ring-down simulation showing an oscillating and decaying DW

position (left) and its Fourier transform (right). The lowest frequency peak is believed to

correspond to the simple bending mode while the identity of the second peak is currently

unknown.

4.2.1 Inertia

The DW e↵ective mass identified by Döring [62] arises from the internal degree of freedom � of

the moving DW taking on a di↵erent direction than for the static DW �eq. This occurs because

the driving field results in a precessional torque on the internal magnetization which must be

balanced by the DW anisotropy which corresponds to ��� using the notation of section 4.1.1.

The e↵ective mass for a rigid, translating DW is known as the Döring mass and is given by
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mD /
M2

s

�
1 + ↵2

�

����2
gm

(4.23)

Where ↵ is the Gilbert damping constant and �gm is the gyromagnetic ratio. For a nonuniformly

translating DW, � will vary along the length of the segment and we must consider exchange

along the DW, just as we did in section 4.1.1 for the sti↵ness. The governing equations for

this type of behavior have been described in the context of bubble dynamics without DMI by

Sloncziewski [63].
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Just as we determined sti↵ness by introducing a parabolic distortion of the position of the DW

and determining the resulting potential energy, here we introduce a parabolic distortion of the

velocity of the DW and determine the resulting kinetic energy to extract the e↵ective mass.

The result is a dispersive e↵ective mass given by

m(L) = mD⇣

✓
L

2⇤

◆

⇣(`) =

8

15

+ 4`�5

✓
` � 1

3

`3 � tanh `

◆ (4.25)

Combining the mass with the sti↵ness as described in section 3.4 gives a characteristic frequency

that can be compared to the results from the ring down method (Figure 4.9). While the

agreement is good for lower length scales, at larger scales the deviations are very significant.
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This problem was similarly observed for the sti↵ness and may be improved by including variable

DW width.
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Figure 4.9: Comparison of analytic and micromagnetic determination for the thermal elastic

mode frequency for L=16nm (blue), 32nm (red), and 64nm (yellow-green).

4.2.2 Friction

In depth analytic and micromagnetic measurements of the friction will be left as a possible topic

for future work, but we can draw some conclusions from a cursory analysis of the micromagnetic

ring down results. We have found that the damping ratio of short wavelength DW oscillations

is very small up until a Gilbert damping value around 0.1, at which point the characteristic

frequency could be dominated by friction. This indicates that for smaller values of ↵, we would

expect the frequency to be mass-dominated. This has some implications for the chiral damping

e↵ect that we will explore in part in the next chapter.



Chapter 5

Comparison of Creep Models to

Experiment

Recent studies on asymmetric field-driven growth of magnetic bubble domains in perpendicular

thin films exhibiting an interfacial DMI have provided a wealth of experimental evidence to

validate models of creep phenomena, as we have seen in the previous chapter that key properties

of the DW can be altered with the application of an external in-plane magnetic field. While

asymmetric growth behavior has been attributed to the highly anisotropic DW energy which

results from the combination of DMI and the in-plane field, many experimental results remain

anomalous. In this chapter we seek to understand how readily the asymmetric DW mobility

studies in several material systems can be described in terms of a more in-depth application of

creep theory which was developed in the previous two chapters.

60
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5.1 Data Processing and Fitting Techniques

Asymmetric bubble domain expansion experiments yield information on the creep velocity for

all DW orientations, but geometric e↵ects may skew the results as the orientation of a point on

the bubble can change over time [24]. These type of considerations have been well studied in

growing crystals [64] and can be modeled if the energy of the roughened DW is known, but we

will ignore them here as they complicate our analysis. As the creep models that were derived

in chapter 3 are based on a macroscopically planar DW, and because a Dzyaloshinskii DW is

most sensitive to an in-plane field applied perpendicular to the DW, the only data that we will

attempt to fit is for the left and right sides of the bubble domain where the field is parallel or

antiparallel to the e↵ective field from DMI. Several studies have also been conducted on nearly

planar DWs by nucleating and expanding a rectangular domain and they indicate that the

mobility is not strongly a↵ected by the geometry, at least for the parallel and antiparallel cases.

If we assume the bubble domain is an up domain, then the left (right) side is a #" ("#) DW and

we can denote its velocity by v#" (v"#). Measuring the velocities for both sides at both positive

and negative Hx is technically redundant because by symmetry arguments v"#(Hx) = v#"(�Hx),

but this redundancy serves as a useful check on the sample alignment because the equation does

not hold for a tilted sample where Hx and �Hx will have opposite components normal to the

tilted film and therefore change the driving force. The velocity data can be transformed in order

to separate out and more easily evaluate the chiral magnetic e↵ects by defining antisymmetric

and symmetric components

Acreep(Hx) = ln

✓
v"#(Hx)

v#"(Hx)

◆
(5.1)

Screep(Hx) = ln

✓
v"#(Hx)v#"(Hx)

v"#(0)v#"(0)

◆
(5.2)
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Since chiral magnetic e↵ects produce asymmetry in the creep velocity behavior, Acreep will

contain much of the information on DMI. The Hx field dependence of the velocity has dominated

our discussion up to this point, but there is also considerable utility in determining the Hz

field dependence of the velocities. Most importantly, the critical exponent can be verified by

examining the linear correlation between ln(v) and H
�1/4
z . This relation holding lends some

support to the concept that creep theory is an accurate description of the governing behavior

and may also be able to describe the Hx dependence. Finally, analyzing the Hz dependence

for di↵erent Hx values can in theory separate out the Hx dependence of the prefactor and the

energy scale of the creep law. This information is extremely useful for attributing results to

specific quantities as certain properties appear only in the energy scale, but these measurements

are very di�cult to get precise results on in practice. This di�culty arises from the fact that

creep velocities are prone to noise as there is no guarantee that particularly large pinning sites

are evenly distributed and the changes in Hx dependence with Hz can be subtle.

Before moving on to the specific models used to fit the experimental data, we briefly outline

the fitting procedure. All of the models under consideration contain multiple parameters that

are not readily measurable and can therefore be tuned to produce a better fit. In order to save

time and eliminate bias, we have used automated fitting routines to select parameter values,

minimizing the least squared error in Acreep and Screep using a steepest descent method with

a line search. To limit the possibility of overfitting, some parameters such as Lc and ⇥0 are

restricted to a physically reasonable value or range and are verified to have little e↵ect on

estimates of the primary parameters of interest such as D.

5.1.1 Chiral E↵ects arising from DMI

From chapter 2, creep behavior can broadly be described by the equation
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vcreep = v0 exp �U⇤
(5.3)

Where we have nondimensionalized the characteristic energy barrier by normalizing to the

thermal energy. Several studies [3, 8] have suggested that the in-plane field dependence of the

creep velocity is well described using an energy barrier given by

U⇤
(Hx) = U⇤

(0)

✓
�(Hx)

�(0)

◆1/4

, “energy model” (5.4)

This is derived by assuming that the elastic modulus " is equal to the DW energy, which we

have shown not to be the case in section 4.1.1. Using the actual elastic modulus gives

U⇤
(Hx) = U⇤

(0)

✓
�̃(Hx)

�̃(0)

◆1/4

, “sti↵ness model” (5.5)

We will compare these models based on the experimental results in section 5.2, but it is impor-

tant to note that both models ignore the in-plane field dependence of the DW width and the

pinning strength, as well as any in-plane field dependencies present in the prefactor. These are

not valid assumptions because if creep theory were strictly true, we would expect all of these

terms to be significant. Unfortunately, for a model to be fully consistent with creep theory it

needs to describe the pinning mechanism, which is a nontrivial challenge to say the least. Based

on the fact that the chiral energy model is able to describe some experiments fairly well, we will

take the sti↵ness model simply as a starting point to investigate more complete explanations

for the various observed velocities.
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5.1.2 Chiral Damping and Anomalous Chiral Energy

A chirality-dependent damping was suggested by Jué [25] based on velocity asymmetry that

appeared to come from the creep law prefactor without any appreciable energy scale asymmetry

that would be expected from DMI according to either of the models of the previous section.

v0(Hx) = v0 (1 + ↵cd cos (�eq(Hx))) , chiral damping (5.6)

Here ↵cd is a parameter between -1 and 1 that characterizes the strength of the chiral damping.

From first principles, it has been shown that chiral damping can arise from spin-orbit coupling

and SIA [65], but it is not clear if the observed magnitude of the e↵ect is in accord with these

mechanisms. Other studies have also found chirality-dependent asymmetry that appears to be

independent of DMI [66], but indicate that this may originate in the energy scale. We will refer

to this as anomalous chiral energy (ACE) because it does not seem to depend directly on DMI

and represent it with a model generated by multiplying a term of the same form as the chiral

damping equation with the energy scale models of the previous section.

U⇤
ace(Hx) = U⇤

(Hx) (1 + ✏ace cos (�eq(Hx))) , anomalous chiral energy (5.7)

5.2 Material Systems

As outlined in section 1.3, there are several di↵erent technological applications for which the

analysis of DMI is relevant and each uses distinct materials. For DW motion applications,

CoNi multilayers are desirable for their relatively low damping and therefore large maximum

velocities. For p-MTJ electrodes, the most commonly used material is CoFeB with an MgO
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interface for PMA and TMR. We have conducted asymmetric bubble expansion experiments

on stacks from both of these systems and interpret the results below, making use of the models

presented in the previous section.

5.2.1 CoNi Multilayers

One of the most well-studied sources of PMA and DMI is Co grown on a (111) Pt surface, and

we will use this structure as a standard before moving on to less well-characterized materials.

The first sample we will investigate is a 1.8nm thick [Co/Ni]2.5 stack grown on a (111) Pt

seedlayer with a TaN capping layer. In Figure 5.1, we observe a distinct asymmetry in the

Co/Ni system characterized by a rapid increase in velocity for large positive Hx and a more

gradual monotonic increase for negative Hx noting that there is little di↵erence between the

trends for bubble domains or planar DWs. The large observed asymmetry about the minimum

in velocity immediately suggests that the energy model alone will not be able to describe the

behavior. A series of Kerr images are included to highlight the evolution of the wall morphology

with increasing Hx. Although there are likely to be changes to the morphology on a length scale

not resolvable by Kerr microscopy, it does appear that the wall profile becomes more irregular

for increasing Hx that could be due to a reduction of wall sti↵ness.

For this sample, the sti↵ness model is able to provide a significantly improved fit to the data

compared to the energy model. The parameters Lc = 50nm and ⇥0 = 8

�
have been selected

to improve fit but their values are also fairly consistent with prior work estimating the Larkin

length in Pt/Co systems[35] and MOKE images of the roughness, respectively. We also note

the model is fairly insensitive to them. Measurements at di↵erent driving fields confirm the

expected critical exponent and allow us to fix U⇤
0 and v0. This unfortunately reduces the fit so

that there is a clear symmetric shift about the minimum. Thus while the sti↵ness model seems

to be qualitatively describing the behavior, we already have an indication that our it may be
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Figure 5.1: a) Series of subtractive Kerr images of a DW in the Co/Ni multi-layer thin film

with indicated µ0Hx

where the bounds of grey region represent the displacement of an "# wall.

b) Experimental DW velocity vs. µ0Hx

for µ0Hz

= 4.25mT with best fit from the dispersive

sti↵ness model. The fitting parameters use values of v0 and U⇤
0 taken from experimental results

at H
x

= 0. c) DW velocity vs µ0Hz

for a series of µ0Hx

. Dashed lines correspond to creep

parameters used in our sti↵ness model where v0 is constrained (no H
x

dependence).

too simple. The experimentally obtained Hk for this sample is 1T , but we have included a plot

including Hk = 1.5T to show that the fit is can be made nearly perfect if a symmetric shift is

included.

Ir is another species that has been reported to give interfacial DMI when placed adjacent to Co

[67], though not as strong as Pt and the sign of D for Ir seeds is widely given to be opposite that

of Pt. This di↵erence in sign has previously been exploited to additively combine the e↵ects by

using Pt as an underlayer and Ir as a capping layer or vice versa. We have attempted to use alloys

of Pt and Ir as a seed layer to tune DMI over a large range by altering the alloy composition. The

full stack is Ta/Pt/PtIr/[Co/Ni]2.5/TaN and the PtIr alloys were deposited using alternating

sub-monolayer deposition. Representative velocity behavior is shown in Figure 5.2 and it is

immediately apparent that the velocity behavior for Ir-rich seeds is not well described by either

the energy or sti↵ness models alone. The velocity shows a very strong asymmetry but the
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shift in the minimum velocity is quite small. Since the DMI-based e↵ects we have considered

both shift the minimum and cause the asymmetry, we will have to include additional chirality-

dependent terms from section 5.1.2 if we wish to reproduce the data. Either of the expressions

from section 5.1.1 can be combined with either of the expressions from section 5.1.2 to give

four possible models. Of these, only the combination of the energy model and chiral damping

is unable to fit all of the data satisfactorily so we will neglect it. The other three models are

able to capture the observed velocity variations remarkably well, so we will have to di↵erentiate

between them by analyzing the fitted values (Figure 5.3).
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Figure 5.2: Typical model fit for asymmetric bubble growth in CoNi multilayers grown on

Pt-rich (left) and Ir-rich (right) seed layers. The sti↵ + ACE model is shown but other models

with low fitting error produce similar results.

All three models agree that as the Pt concentration is increased, DMI increases in magnitude.

The energy model, however, suggests that D for the Pt-rich seed is substantially larger than the

value obtained from the sti↵ness models. An independent measurement of DMI could therefore

establish a preference for one over another. The two ACE models both show linear trends in

the weight of the chiral term ✏ace, but with opposite slopes. The sti↵ness + ACE model shows

nearly no ACE for a Pt seed, while the energy + ACE model has maximum anomalous e↵ect

for the Pt seed. The chiral damping model has a fairly small value for ↵cd for the Pt seed and

a very large value for the Ir seed. It is interesting to note that the original evidence for chiral

damping involved an increase in velocity of around a factor of 2, while the estimate here for

the Ir seed would correspond to a factor of 50. This is not necessarily impossible because the
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regular Gilbert damping is much lower for these CoNi multilayers than for the Co single layer

in Jué et al, but it would indicate that whatever is causing the damping to be chiral is by far

the dominant dissipation mechanism in the material. In contrast, the same velocity asymmetry

would be result from a relatively modest 10% change in the energy barrier. Finally, the models

show some di↵erences in the values of U⇤
0 that are produced. These can ostensibly be selected for

by looking at the Hz dependence, but this may be demanding too much quantitative accuracy

from the relatively simple approximations of creep law behavior that have been used. We will

save further interpretation of these results for the concluding commentary in chapter 6.

-0.70 

-0.60 

-0.50 

-0.40 

-0.30 

-0.20 

-0.10 

0.00 

0.10 

0.0 0.2 0.4 0.6 0.8 1.0 

D
 (m

J/
m

2)
 

% Pt 

Stiff + CD 

Stiff + ACE 

Sig + ACE 

a

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

4.5 

5.0 

0.0 0.2 0.4 0.6 0.8 1.0 

Fi
tt

in
g 

er
ro

r 
(%

) 

% Pt 

Stiff + CD 

Stiff + ACE 

Sig + ACE 

b

-1.0 

-0.8 

-0.6 

-0.4 

-0.2 

0.0 

0.2 

0.0 0.2 0.4 0.6 0.8 1.0 

C
hi

ra
l W

ei
gh

t 

% Pt 

Stiff + CD 

Stiff + ACE 

Sig + ACE 

c

0 

5 

10 

15 

20 

25 

30 

35 

0.0 0.2 0.4 0.6 0.8 1.0 

U
0 

% Pt 

Stiff + CD 

Stiff + ACE 

Sig + ACE 

d
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the model fits for three di↵erent models. In all cases L
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Figure 5.4: Velocity asymmetry in TaMo/CoFeB/MgO bubble studies.

5.2.2 CoFeB Films

In the CoNi material system, the seed and capping layers produced both PMA and DMI for

the magnetic film. For CoFeB electrodes, PMA is established by the MgO interface which has

been indicated to possess very little DMI due to weak spin orbit coupling. The other material

adjacent to CoFeB is typically a heavy refractory metal with larger spin orbit coupling and

therefore has a potential to induce chiral magnetic e↵ects. While the adjacent heavy metal

layer is not believed to be the origin of the PMA, it can has a poorly understood impact on the

anisotropy and can determine whether or not the CoFeB can be crystallized with a perpendicular

easy axis, thereby restricting our choices. Perpendicular samples were successfully developed

with TaHf alloy seed layer, but these exhibited very little asymmetry in the velocity behavior.

Alloys of Ta and Mo as seeds produced some behavior similar to the Ir-rich seeds of the previous

section that could be described by anomalous chiral energy, but not readily explained in terms

of DMI (Figure 5.4). Thin seed layers of W have been reported to have a significant DMI, but

our perpendicular samples to date have all exhibited highly dendritic grain growth (Figure 5.5).

While we are troubleshooting this problem, recent reports [68] of bubble growth studies in these

systems seem to suggest that a sti↵ness model could describe at least some of the behavior.
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Figure 5.5: MOKE image of dendritic domains in a W/CoFeB/MgO stack.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have examined the theory of creep phenomena for chiral magnetic domain walls

in an attempt to provide insight into asymmetric bubble domain expansion experiments and

improve their ability to quantify DMI. Our analysis of creep theory for elastic manifolds led us to

develop an e↵ective elastic band model for a Dzyaloshinskii DW in an in-plane field using analytic

techniques [69], which allows key DW properties relevant to creep behavior to be evaluated very

quickly. Micromagnetic methods were developed to measure the DW elastic properties and verify

the analytic expressions. This work highlights and enhances parallels between Dzyaloshinskii

DWs and other interfaces including soft materials with internal orientation and vortices in

anisotropic superconductors, the latter of which are particularly notable because of the vast

amount of research that has been directed toward understanding their pinning. DW pinning is

critically important to future technological applications that require low critical driving currents

and our work here makes steps to improve our understanding of a regime where the pinning

dominates.

71
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In chapter 5, we applied the creep models to actual experimental results for Co/Ni multilayer

systems on PtIr alloy seed layers, identifying three candidate models that are able to precisely

describe the observed asymmetric bubble growth behavior. While further experiments are nec-

essary to determine model accuracy and identify the best choice, the sti↵ness + anomalous

chiral energy scheme is particularly appealing because it is able to describe the behavior of a

multilayer with a Pt seed layer almost purely in terms of DMI and a multilayer with an Ir seed

layer almost purely in terms of the anomalous chiral energy. This suggests a picture where Ir

a↵ects the film in a fundamentally di↵erent way than Pt, though the mechanism by which Ir

would be able to introduce a DW chirality dependence for the creep law energy barrier without

actually altering the average energy of the chiral DW remains unknown.

6.2 Future Directions

Throughout the thesis, several short open topics were identified that could add to the main

thrust of this work and we will be briefly list them here. First, the constant DW width approxi-

mation, which was used in several of the analytic expressions for the elastic band model, should

be replaced by the actual in-plane field dependent DW width in order to attain better agree-

ment with micromagnetic results. The intrinsic parts of the elastic band model could also be

completing by deriving an analytic expression for the DW friction. More complete models of the

creep law energy scale can be applied to the experimental results in attempts to determine the

in-plane field dependence of the pinning strength. On the experimental front, W/CoFeB/MgO

stacks with reasonable domain structure should be tested to see if they conform to any of the

fitting models. Finally, we introduce two additional thrusts of more intermediate scope below.
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6.2.1 Langevin Modeling

By far the most common method of numerically modeling magnetic phenomena is micromag-

netics, but the low-field creep regime is particularly di�cult to simulate with this technique.

The main reason is because the DW motion in this regime is highly stochastic, so the DW

spends most of the time pinned and only moves forward in short unpredictable bursts. There-

fore in order to measure an accurate average steady state velocity, the simulated time must be

very large, likely on the order of milliseconds. For a large 2-D micromagnetic simulation, this

becomes quite computationally expensive. Many simulated DW motion problems have been

made more computationally accessible by running a 1-D simulation where the only magnetic

variation is in the direction of DW motion, but this is equivalent to the rigid wall approxima-

tion and as we described in chapter 3, rigid DWs will not display creep behavior. Langevin

modeling uses a governing equation similar to the e↵ective elastic band model developed in this

thesis and reduces the dimensionality of the simulation to a 1-D model along the length of the

manifold. This type of modeling has been been shown to give µ = �1
4 if the thermal forces

are strong enough [70] and has found some success in describing features of vortex line creep

experiments [71]. We have already adapted such a model for use with the anisotropic surface

tension presented by DMI and an in-plane field. The equation of motion for each point on this

wall is:

du(zi)

dt
=

1

�

✓
� d�

du(zi)
+ Fp + Ft + F

◆
(6.1)

Where u(zi) is the distance the wall has traveled at a point zi along its length, Fp is the pinning

force, Ft is the thermal force, � d�
du(z

i

) is the e↵ective force stemming from the change in wall

surface energy (including changes in length and normal angle) due to the motion at point zi, F is

the driving force originating from the Hz field, and � is a friction coe�cient that is proportional
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to the Gilbert damping term ↵. The pinning force is generated as the gradient of a gaussian

random field representing the pinning potential and the thermal force is generated as a random

stochastic value with variance proportional to �kT . The equation of motion is solved using a

second order stochastic Runge-Kutta algorithm. As the code has not yet been optimized for

speed, we are limited to the study of velocities on the order of ⇠1m/s or higher. A snapshot

of the simulation is shown in Figure 6.1. The walls move in avalanches as expected and we

are able to recreate the desired µ = �1
4 , but the slope of the Langevin creep law fit diverges

significantly from experiment. Parallelizing the code and getting it to run on a GPU would be

critical to making this outcompete micromagnetic modeling, which already has readily available

GPU compatible software.

Figure 6.1: A snapshot of the Langevin model simulation, with DWs moving upward.

6.2.2 Extension to Current-Driven Creep

It has been shown analytically that current-driven creep caused by adiabatic spin transfer torque

has a di↵erent critical exponent, µ = �1
2 , than field-driven creep where µ = �1

4 [72]. This work

also showed that the critical exponent for non-adiabatic spin transfer torque is µ = �1
4 by

expressing it as a long-ranged driving force. Recent work in transport theory describing DW

motion in the flow regime has been able to provide an origin for the non-adiabatic torque by

giving the adiabatic torque a finite correlation length along the DW [73]. By incorporating

this finite-range torque into our model, which already describes the response of the DW to
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a nonuniform force with di↵erent transverse lengths, we may be able to explain intermediate

critical exponents, which have been observed in recent current-driven creep experiments [74].
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Emilie Jué, Vincent Cros, and Albert Fert. Dynamics

of dzyaloshinskii domain walls in ultrathin magnetic films. EPL (Europhysics Letters), 100

(5):57002, 2012.
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Richter, Maxwell Mann, Andrea Krone, Robert Reeve, Markus Weigand, et al. Observation

of room temperature magnetic skyrmions and their current-driven dynamics in ultrathin

co films. arXiv preprint arXiv:1502.07376, 2015.

[21] James P Pellegren and Vincent M Sokalski. Thickness and interface-dependent crystalliza-

tion of cofeb alloy thin films. IEEE Transactions on Magnetics, 51(11):1–3, 2015.



Bibliography 79

[22] JP Pellegren, M Furuta, V Sundar, Y Liu, J-G Zhu, and V Sokalski. Increased boron

content for wider process tolerance in perpendicular mtjs. AIP Advances, 7(5):055901,

2017.

[23] Y. P. Kabanov, Y. L. Iunin, V. I. Nikitenko, A. J. Shapiro, R. D. Shull, L. Y. Zhu, and C. L.

Chien. In-plane field e↵ects on the dynamics of domain walls in ultrathin co films with

perpendicular anisotropy. Ieee Transactions on Magnetics, 46(6):2220–2223, 2010. ISSN

0018-9464. doi: 10.1109/Tmag.2010.2045740. URL <GotoISI>://WOS:000278037800245.

601dh Times Cited:2 Cited References Count:19.

[24] Derek Lau, Vignesh Sundar, Jian-Gang Zhu, and Vincent Sokalski. Energetic molding of

chiral magnetic bubbles. Physical Review B, 94(6):060401, 2016.

[25] E. Jue, C. K. Safeer, M. Drouard, A. Lopez, P. Balint, L. Buda-Prejbeanu, O. Boulle,

S. Au↵ret, A. Schuhl, A. Manchon, I. M. Miron, and G. Gaudin. Chiral damping of

magnetic domain walls. Nat Mater, 15(3):272–7, 2016. ISSN 1476-1122 (Print) 1476-

1122 (Linking). doi: 10.1038/nmat4518. URL http://www.ncbi.nlm.nih.gov/pubmed/

26689141.

[26] Yoko Yoshimura, Kab-Jin Kim, Takuya Taniguchi, Takayuki Tono, Kohei Ueda, Ryo Hi-

ramatsu, Takahiro Moriyama, Keisuke Yamada, Yoshinobu Nakatani, and Teruo Ono.

Soliton-like magnetic domain wall motion induced by the interfacial dzyaloshinskii-moriya

interaction. Nature Physics, 12(2):157–161, 2015. ISSN 1745-2473 1745-2481. doi:

10.1038/nphys3535.

[27] Yoshihisa Obi, Hiroyasu Fujimori, and Hideo Saito. Magnetic domain structure of an

amorphous fe-pc alloy. Japanese Journal of Applied Physics, 15(4):611, 1976.

[28] Kh Zakeri, Y. Zhang, J. Prokop, T. H. Chuang, N. Sakr, W. X. Tang, and J. Kirschner.

Asymmetric spin-wave dispersion on fe(110): direct evidence of the dzyaloshinskii-moriya



Bibliography 80

interaction. Phys Rev Lett, 104(13):137203, 2010. ISSN 1079-7114 (Electronic) 0031-9007

(Linking). doi: 10.1103/PhysRevLett.104.137203. URL http://www.ncbi.nlm.nih.gov/

pubmed/20481909.

[29] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai,

J. Hayakawa, F. Matsukura, and H. Ohno. A perpendicular-anisotropy cofeb-mgo magnetic

tunnel junction. Nat Mater, 9(9):721–4, 2010. ISSN 1476-1122 (Print) 1476-1122 (Linking).

doi: 10.1038/nmat2804. URL http://www.ncbi.nlm.nih.gov/pubmed/20622862.

[30] S. Kamali, C. L. Zha, Y. Yoda, and J. Akerman. Oxidation states and the quality of

lower interfaces in magnetic tunnel junctions: oxygen e↵ect on crystallization of interfaces.

J Phys Condens Matter, 25(13):135302, 2013. ISSN 1361-648X (Electronic) 0953-8984

(Linking). doi: 10.1088/0953-8984/25/13/135302. URL http://www.ncbi.nlm.nih.gov/

pubmed/23470360.

[31] Arne Vansteenkiste, Jonathan Leliaert, Mykola Dvornik, Mathias Helsen, Felipe Garcia-

Sanchez, and Bartel Van Waeyenberge. The design and verification of mumax3. AIP

Advances, 4(10):107133, 2014. doi: http://dx.doi.org/10.1063/1.4899186. URL http://

scitation.aip.org/content/aip/journal/adva/4/10/10.1063/1.4899186.

[32] J. Kanak, P. Wisniowski, T. Stobiecki, A. Zaleski, W. Powroznik, S. Cardoso, and P. P.

Freitas. X-ray di↵raction analysis and monte carlo simulations of cofeb-mgo based magnetic

tunnel junctions. Journal of Applied Physics, 113(2):023915, 2013. ISSN 00218979. doi:

10.1063/1.4775706.

[33] Y. Huai. Spin-transfer torque mram (stt-mram): Challenges and prospects. AAPPS Bul-

letin, 18(6):33–40, 2008.

[34] G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur. Vortices

in high-temperature superconductors. Rev. Mod. Phys., 66:1125–1388, Oct 1994. doi:



Bibliography 81

10.1103/RevModPhys.66.1125. URL http://link.aps.org/doi/10.1103/RevModPhys.

66.1125.
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