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Abstract

Dynamic optimization problems directly incorporate detailed dynamic models as constraints within
an optimization framework. Model predictive control, state estimation, and parameter estimation
are all common applications of dynamic optimization which can lead to significant improvements
in process efficiency, reliability, safety, and profitability. This dissertation deals with dynamic opti-
mization from three perspectives.

We begin with an application of dynamic optimization. State estimation is a crucial part of the
monitoring and/or control of all chemical processes. We make use of a state estimation technique
called moving horizon estimation (MHE) which can be formulated as a dynamic optimization prob-
lem. However, large-scale MHE formulations may require non-negligible computational time to
solve limiting its application for real-time state estimation. An extension of MHE, called Advanced
Step Moving Horizon Estimation (asMHE), eliminates this computational delay. Both MHE and
asMHE perform well under the assumption of Gaussian measurement noise. We consider the case
where this assumption does not hold and measurements are contaminated with large errors. Stan-
dard least squares based estimators generate biased estimates even with relatively few gross mea-
surement errors. We therefore extend MHE and asMHE formulations using robust M-Estimators
in order to mitigate the bias of these errors on the state estimates. We demonstrate this approach
on dynamic models of a CSTR and a distillation column and find that our approach produces fast
and accurate state estimates even in the presence of many gross measurement errors.

A well-established method to solve dynamic optimization problems is direct transcription where
the differential equations are replaced with algebraic approximations using some numerical method
such as a finite-difference or Runge-Kutta scheme. In the second part of this work we present
pyomo.dae, an open-source modeling framework that enables high-level abstract representations
of optimization problems with differential and algebraic equations. A key distinctive feature of
pyomo.dae is that it does not adhere to standard, predefined formats of optimal control and esti-
mation problems. This enables high modeling flexibility and the consideration of constraints and
objective functions in non-standard forms that cannot be easily handled by traditional solution
methods and cannot be expressed in other modeling frameworks. pyomo.dae also enables the
specification of optimization problems with high-order differential equations and partial differen-
tial equations on restricted domain types and it provides automatic discretization capabilities to
transcribe high-level abstract models into finite-dimensional algebraic problems that can be solved
with off-the-shelf optimization solvers.

However, for problems with thousands of state variables and discretization points, direct tran-
scription may result in nonlinear optimization problems that exceed memory and speed limits of
most serial computers. In particular, when applying interior point optimization methods, the com-
putational bottleneck and dominant computational cost lies in solving the linear systems resulting
from the Newton steps that solve the discretized optimality conditions. To overcome these limits,
we exploit the parallelizable structure of the linear system to accelerate the overall interior point
algorithm. We investigate two algorithms which take advantage of this property, cyclic reduction
and Schur complement decomposition and study the performance of these algorithms when ap-
plied to dynamic optimization problems.
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Chapter 1

Introduction

In this chapter we describe the focus and scope of this dissertation. The central theme is

dynamic optimization but we approach the topic from a variety of perspectives. We begin

this chapter by describing this general class of optimization problems and two strategies

for solving them. Next, we review typical implementation strategies for these problems

and describe several challenges that arise when formulating and solving them. At the end

of the chapter we formally state the research objectives of this dissertation and give an

overview of the remaining chapters in the thesis.

1.1 Dynamic Optimization

Dynamic optimization problems are optimization problems constrained by differential

and algebraic equations (DAEs) or partial differential and algebraic equations (PDAEs)

and are ubiquitous in engineering and science. Application domains include aerospace

systems, chemical reactor systems, infrastructure (water, gas, electricity, transportation)

networks, buildings, hybrid energy systems, economics and finance, robotics, and envi-

ronmental engineering. A generic form for this class of problems is shown below

CHAPTER 1. INTRODUCTION
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1.1 DYNAMIC OPTIMIZATION

min

∫ tF

t0

Φ̂(x, y, u)dt+ Ψ̂(x(tF ))

s.t.
dx

dt
= ĝ(x, y, u) (1.1)

x(t0) = x̄0

h(x, y, u) = 0

xL ≤ x ≤ xU

yL ≤ y ≤ yU

uL ≤ u ≤ uU

where x is a vector of differential variables, y is a vector of algebraic variables, and u is a

vector of control, or input, variables. t is an independent continuous domain, such as time,

defined over a fixed, closed interval [t0, tf ]. ĝ represents the differential equations and h

represents the algebraic equations. The initial conditions of the differential states are given

by x̄0

In the area of chemical engineering, first-principles based dynamic models are avail-

able for most classical unit operations. The differential equations in these models arise

from conservation equations such as material and energy balances and the algebraic equa-

tions arise from constitutive relationships such as thermodynamic and transport proper-

ties. Incorporating these models directly in an optimization framework has been shown

to improve process reliability, control, and profits [1]. Common applications of dynamic

optimization include state estimation, parameter estimation, and optimal control[2, 3, 4, 5].

However, the computational costs required to solve these problems can limit their on-line

applicability and utilization for large-scale processes.

2
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1.2 SOLUTION STRATEGIES FOR DYNAMIC OPTIMIZATION

1.2 Solution Strategies for Dynamic Optimization

While dynamic optimization problems are fairly straightforward to formulate given a dy-

namic process model, the initial challenge in using this optimization approach is picking

a solution strategy. We can’t solve problem (1.1) directly because optimization solvers

can’t handle integrals or differential equations. A common solution approach is to refor-

mulate the problem as an algebraic NLP by discretizing the continuous dynamics. There

are several ways this can be done including single shooting, multiple shooting, and direct

transcription [6]. These methods differ in which parts of the model are discretized and

the types of dynamic models they can solve. A brief overview of these techniques is pro-

vided below in the context of solving a classical optimal control problem. For this problem

the idea is to find a control, or input, trajectory u(t) over the time domain [t0, tf ] which

minimizes some performance metric Φ.

1.2.1 Single and Multiple Shooting

The single shooting method works by discretizing the control trajectory over N stages.

Often, the control trajectory is represented as a piece-wise constant function where the

control input at each stage k is considered fixed. Once a discretized control trajectory is

calculated it is passed to a DAE solver that integrates the DAE model over the entire time

domain. This approach removes the DAE model from the optimization problem and re-

places it with gradient information from the DAE solver with respect to the controls. The

method sequentially iterates between solving an NLP problem to obtain a new guess for

the controls and solving the DAE model using the new control trajectory. It has the benefit

of incorporating robust DAE solvers which are designed to handle stiff dynamic systems.

However, the single shooting approach does not scale well for problems with many de-

grees of freedom or long time horizons and may be incapable of solving ill-conditioned or

unstable systems.

The multiple shooting method expands on the single shooting approach by discretiz-

CHAPTER 1. INTRODUCTION
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1.2 SOLUTION STRATEGIES FOR DYNAMIC OPTIMIZATION

ing both the control trajectory and the initial conditions for the differential states over N

stages. DAE solvers are used to integrate the model over each stage k independently i.e.

over individual domains [tk, tk+1]. The NLP problem with this approach solves for both

the controls and the initial conditions for the differential states while minimizing the per-

formance metric Φ and simultaneously linking the state profiles at the stage boundaries.

This allows multiple shooting to be an effective solution technique for ill-conditioned and

unstable systems. The multiple shooting approach performs well on problems with long

time horizons but does not scale favorably on problems with many dynamic states.

1.2.2 Direct Transcription

In contrast to the shooting methods described above, the direct transcription approach si-

multaneously discretizes the control trajectory as well as the entire DAE model, thereby

converging the dynamic model directly during the solution of a single large NLP problem.

The continuous dynamics in the DAE model are approximated using algebraic equations

such as a finite difference or runge-kutta scheme. This leads to a nonlinear programming

problem (NLP) that can be solved using an off-the-shelf solver. The fully-discretized ver-

sion of problem (1.1) is shown below

min

N−1∑
k=1

(Φ(xk, yk, uk)) + Ψ(xN )

s.t. xi+1 = g(xi, yi, ui), i = 1, . . . , N − 1 (1.2)

x1 = x̄0

h(xi, yi, ui) = 0, i = 1, . . . , N

xL ≤ xi ≤ xU , i = 1, . . . , N

yL ≤ yi ≤ yU , i = 1, . . . , N

uL ≤ ui ≤ uU , i = 1, . . . , N

4
CHAPTER 1. INTRODUCTION



1.3 TYPICAL IMPLEMENTATION

where the problem has been discretized usingN discretization points. Algebraic equations

used for some common discretization schemes are presented later in Chapter 4.

Direct transcription provides a systematic and convenient way to satisfy the DAE model

directly and avoids the computational costs of repeatedly integrating the large-scale DAE

model. This method can can be used to solve ill-conditioned and unstable systems and

shows favorable computational scaling with respect to the number of differential states

and the degrees of freedom. Direct transcription is the solution strategy used throughout

this work.

Direct transcription produces a large-scale NLP problem and therefore requires an effi-

cient large-scale NLP solver. However, for industrial-scale dynamic models the NLPs may

become intractable in terms of solution time or memory required to formulate the prob-

lem. This is a significant challenge for using this technique in practice and is one of the

topics addressed by the work in this dissertation.

1.3 Typical Implementation

The solution strategies described above are all well established and widely used methods

for solving dynamic optimization problems. However, there are very few tools available

for automatically applying one of these solution methods to general dynamic optimization

problems. Furthermore, modeling frameworks that do exist for dynamic optimization are

often domain specific and difficult to extend. In the case of direct transcription, discretiza-

tion schemes are often implemented manually on the DAE model under investigation.

This makes it time-consuming to try multiple discretizations on a particular model. More-

over, the discretization scheme implemented is restricted based on the user’s knowledge of

such schemes. High-order discretization schemes, such as orthogonal collocation, are non-

trivial to implement from scratch and therefore less likely to be attempted by newcomers

to dynamic optimization despite their numerical advantages.

Often times dynamic optimization applications are expressed in specific canonical forms

CHAPTER 1. INTRODUCTION
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e.g. optimal control. However, many applications can involve complex and exotic (non-

canonical) types of constraints such as multi-point boundary conditions and PDAEs span-

ning multiple domains. Such types of constraints cannot be easily expressed in existing

modeling packages and cannot be easily handled by variational methods. Moreover, the

solution of such problems requires sophisticated discretization schemes that might require

the combination of different techniques and experimentation. Again, these schemes are

usually implemented by hand and are thus tedious, prone to errors, and nontrivial even

for experts in dynamic optimization.

Applying a discretization scheme is not the only implementation challenge associated

with these problems. For applications such as nonlinear model predictive control or mov-

ing horizon estimation a sequence of dynamic optimization problems must be solved and

a typical implementation may span several software platforms and many files. A diagram

of this type of implementation is shown in Figure 1.1.

This diagram represents the implementation structure for the state estimation work in-

cluded in this dissertation. The different colors represent different software platforms and

the boxes represent different files. The implementation of a MHE state estimator requires

14 files interacting over 3 software platforms. There are many drawbacks associated with

this type of implementation. For one, it is often difficult to get different software platforms

to communicate and manage data efficiently. It is also difficult to pinpoint bugs and other

errors across so many different platforms. Additionally, this type of implementation is dif-

ficult to port to other systems and share with collaborators. Lastly, notice that the dynamic

optimization technique (i.e. optimal control, state estimation) is completely entwined with

the application model being studied which limits the amount of code that can be reused

for new dynamic models. This is just one example of how a dynamic optimization tech-

nique can be implemented, there is no standardized approach. Every dynamic optimiza-

tion practitioner will have their own implementation strategy which makes it difficult to

fairly compare the performance of different techniques.

6
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Figure 1.1: Diagram of the software platforms, files, and communication required for a

typical dynamic optimization application
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Future advances in dynamic optimization will likely require intricate interaction be-

tween modeling frameworks and NLP solvers that is not fully supported or easy to im-

plement with current optimization tools. Therefore, tool development for dynamic opti-

mization is an open and active area of research.

1.4 Research Problem Statement

This thesis addresses three significant challenges associated with dynamic optimization.

First, we study a useful application of dynamic optimization in the area of state estimation

with the objective of obtaining state estimates in real-time in the presence of large mea-

surement errors. We approach this problem using MHE state estimators and reduce the

online computational cost using NLP sensitivity. We address large measurement errors

using robust M-estimators.

After working with the state estimation techniques described above, we noticed that

the implementation of these methods was nontrivial and often quite cumbersome. This

posed a significant barrier for developing novel dynamic optimization algorithms as well

as using dynamic optimization techniques in real-world applications particularly for new-

comers. The second objective of this work is to develop a modeling framework that will

simplify the formulation of these problems. The framework we have developed is ex-

tremely flexible in the type of problems it can represent and is capable of automatically

applying a simultaneous discretization to a dynamic optimization model. In addition, it

separates the model abstraction from the discretization scheme allowing the user to exper-

iment and assess the performance of different discretizations in a more systematic manner.

The last challenge addressed in this dissertation is the large-scale NLP problem pro-

duced by direct transcription. The objective is to develop parallel solution techniques ca-

pable of solving these large NLPs and thereby enable dynamic optimization techniques to

be applied to industrial sized dynamic models. We address this objective by exploiting

sparsity and structure inherent to these problems and we investigate a promising parallel

8
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algorithm called cyclic reduction.

1.5 Dissertation Overview

This dissertation is separated into three parts. In the first part, we describe an applica-

tion of dynamic optimization which illustrates the potential of dynamic optimization for

improving process operation and control. Chapter 2 describes the state estimation prob-

lem and how it can be formulated as a dynamic optimization problem. Chapter 3 applies

the state estimators developed in the previous chapter to two classical chemical engineer-

ing unit operations. In the second part of this thesis, Chaper 4 describes a new modeling

framework for representing dynamic optimization problems and Chapter 5 demonstrates

the flexibility of this framework on a variety of dynamic models. The third and final part of

this dissertation addresses parallel solution algorithms for dynamic optimization. Chap-

ter 6 explains how structure arises in these problems and describes two algorithms capable

of exploiting that structure. Chapter 7 presents computational results for several parallel

solvers. Finally, Chapter 8 summarizes the main contributions of this work and suggests

avenues for future research.
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Chapter 2

State Estimation with Large Measurement

Errors

In this chapter we introduce one common application of dynamic optimization, state esti-

mation. We begin with a brief introduction and literature review on state estimation and

then describe two strategies for formulating the problem using dynamic optimization. Fi-

nally, we propose an extension for these strategies for dealing with large measurement

errors. This chapter is based on work published in [7].

2.1 Literature Review

Improvement of on-line operation of chemical processes requires accurate knowledge of

the current state of the system. This is particularly true for strategies that rely on first-

principles models of the chemical plant, such as Model Predictive Control [8] or Real-Time

Optimization [9]. Complicating factors that make real time state estimation challenging

include the impracticality or infeasibility of measuring every state of a process directly,

and delays that arise from measurements that take a significant amount of time to obtain.

Assuming that sufficient plant measurements can be obtained in real-time, one now

needs to use these measurements to obtain the states of the system. This can be done by

developing a model of the process which includes relationships between the measured

and unmeasured state variables along with variables to estimate plant-model mismatch,

unknown disturbances, and measurement noise. With this model several state estimation

approaches can be applied; these approaches differ by assumptions they make about the
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linearity or nonlinearity of the plant model and the probability distribution of the error

and noise variables. State estimation and the closely related topic of data reconciliation

have been studied under a broad variety of assumptions. For nonlinear systems, the Ex-

tended Kalman Filter (EKF)[10] is commonly applied in practice. While EKF is relatively

easy to implement, it has been shown to have poor performance for highly nonlinear sys-

tems [11, 12]. Related estimation methods that also deal with nonlinear systems include

the Unscented Kalman Filter [13], the Ensemble Kalman Filter [14, 15, 16], and the Particle

Filter [17, 18]. While each of these methods has pros and cons, one common drawback is

their inability to deal with bounds on the states. Ignoring these constraints can lead to an

increase in the estimation error or the divergence of the estimator [19]. On the other hand,

heuristic strategies, such as clipping, can greatly reduce the performance of the estimator.

Other remedies to handle constrained nonlinear state estimation include Nonlinear Re-

cursive Dynamic Data Reconciliation [20], Unscented Recursive Nonlinear Dynamic Data

Reconciliation [20, 21], the Constrained Ensemble Kalman Filter [12], and the Constrained

Particle Filter [22].

In contrast to the above estimators, the state estimation problem can be formulated di-

rectly as a nonlinear programming (NLP) problem. Here we consider Moving Horizon

Estimation (MHE) [23, 24, 25, 26], which uses a batch of past measurements to find the

optimal state estimates. MHE has been shown to have very desirable asymptotic stabil-

ity properties [27] and often performs better than EKF [19]. In addition, constraints and

bounds on plant states are handled directly by the NLP solver. On the other hand, compu-

tational delay is a major drawback for implementing MHE in an industrial setting [28].

A nice overview of methods for state estimation is given in [29], where it is noted that

computational complexity still remains a significant challenge. Efficient algorithms for

MHE include work done by Ohtsuka and Fujii [30] and Tenny and Rawlings [31]. More

recently, an MHE based real-time iteration approach has been investigated in [32]. Ad-

ditionally, Abrol and Edgar [33] applied an in situ adaptive tabulation based MHE for

12
CHAPTER 2. STATE ESTIMATION WITH LARGE MEASUREMENT ERRORS



2.2 STATE ESTIMATION FORMULATION

on-line state estimation. In this work we make use of a fast MHE strategy based on NLP

sensitivity developed by Zavala et al. [34].

Another important factor for state estimation is the robustness of our estimate. Sensors

can fail or be contaminated in such a way that their measurements are vastly different

from the true plant state. In this work we reduce the influence of bad measurements in

state estimation through a data reconciliation and gross error detection framework. A

summary of early work done in this field is given in [35]. Recent reviews of the state

of the art in outlier detection can be found in [36, 37, 38]. General approaches to gross

error detection include Principal Component Analysis [39], Cluster Analysis [40], Artificial

Neural Networks [41], and Robust Statistics [42].

Related work has also been done in the process control literature, including investigating

sensor faults and fault tolerance. A thorough review of work in this area can be found in

[43]. Of particular relevance to this work is the study of Chen and You that considers fault-

tolerant sensor system for noisy or drifing sensors [44]. However, it should be noted that in

this work we are considering strategies to mitigate the effects of gross error measurements

and not to explicitly detect or identify bad measurements.

In this chapter we consider the Moving Horizon Estimation (MHE) formulation [26] as

well as its extension called advanced step Moving Horizon Estimation (asMHE) [34, 45].

Both strategies are described in more detail in Section 2.2. Our main contribution in this

chapter is to extend these formulations using robust M-Estimators in order to mitigate the

effect of gross errors and make our state estimates more robust. A brief overview of robust

statistics and M-Estimators is given in Section 2.3.

2.2 State Estimation Formulation

As mentioned in the introduction, there are many ways to approach the state estimation

problem. In this chapter we focus on its formulation as a nonlinear optimization problem.

The formulations used in this work are briefly described below.
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2.2.1 Moving Horizon Estimation

Moving Horizon Estimation (MHE) [26] is a well known strategy for constrained state esti-

mation. The overall idea with MHE is to estimate the current state of the system using only

the last N states and measurements directly, where we refer to N as the horizon length. In

other words, we split time into two sets T1 = {l|0 ≤ l < k −N} and T2 = {l|k −N ≤ l ≤ k}

where k is the current time step. The NLP associated with this formulation is shown below.

Notice that the summation terms in the objective function are only over T2.

{ẑk−N |k, ..., ẑk|k} = arg min
{zk−N ,...,zk}

Φ(zk−N ) +
1

2

l=k∑
l=k−N

vTl R
−1
l vl +

1

2

l=k−1∑
l=k−N

wTl Q
−1
l wl

s.t. zl+1 = f(zl) + wl (2.1)

yl = h(zl) + vl

zLB ≤ zl ≤ zUB, l ∈ T2

where {ẑk−N |k, ..., ẑk|k} refers to the optimal state estimates at each time step in the horizon.

Also, Φ(zk−N ) = ||zk−N − ẑk−N |k−1||2Π̂−1
k−N|k−1

is the arrival cost and represents all the infor-

mation in T1, which is not included in the horizon. vl is the vector of measurement noise,

Rl is the covariance matrix of the measurement noise, wl is the vector of unknown distur-

bances, and Ql is the covariance matrix of the unknown disturbances. Also, the equality

constraints are a state-space model of the plant where h(zl) is the measurement model and

f(zl) is the system model. Additionally, bounds can be added to the states. A key assump-

tion behind this formulation is that the measurement noise and unmeasured disturbances

are zero mean, Gaussian random variables. Of course, when gross measurement errors

and outliers are present, this may no longer be a valid assumption.

NLP (2.1) is solved at every time step, k. After finding a solution, the horizon moves

forward in time by including the new measurement at the next time step (k + 1) and

simultaneously dropping the measurement farthest in the past (k−N). Past measurements

that are not within the horizon window are accounted for in the arrival cost. Good state

estimates with the MHE formulation require that we have a good approximation of the

14
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arrival cost or a sufficiently long horizon window. Moreover, a tradeoff exists between the

two and we can obtain good estimates with a shorter horizon window if we have a better

approximation of the arrival cost. The longer the horizon, the larger the NLP being solved

and thus the more computational time required to solve it. To estimate the arrival cost we

use an approximation derived in [46] where the arrival cost can be computed directly from

the Reduced Hessian of NLP (2.1) at the solution. This strategy is particularly attractive

if we solve (2.1) using a large-scale solver with exact second derivatives, as this becomes

a computationally cheap calculation. The computational results in the next chapter make

use of the interior point solver IPOPT [47].

Even with a small horizon, NLP (2.1) still leads to computational delay (i.e. the time be-

tween obtaining the measurements and computing the estimated states for the controller),

particularly when the state-space model representing the process is large and complex. For

on-line state estimation, this formulation could be problematic due to the computational

delay of solving (2.1) on-line, which can cause instabilities when the estimates are used for

process control purposes. Thus, in the next section we consider an extension of the MHE

formulation that is better suited for on-line use.

2.2.2 Advanced Step Moving Horizon Estimation

Advanced Step Moving Horizon Estimation (asMHE) [34, 45] is based on a similar ad-

vanced step strategy for Nonlinear Model Predictive Control [48]. It is also comparable

to a real-time iteration scheme for SQP methods previously presented by [32, 49]. The ba-

sic idea is that a background NLP can be formed with measurements predicted one time

step in the future. The NLP (2.1) can then be solved between sampling times using this

prediction as the new measurement. Once the actual measurement is obtained our state

estimates can be updated using NLP sensitivity. The advantage of this strategy is that the

only on-line calculation is the sensitivity update step, which results in significant reduction

of the computational delay for the state estimates.
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NLP sensitivity analysis [50] provides estimates for the partial derivatives of the optimal

solution with respect to system parameters. These sensitivites can then be used to approx-

imate the optimal solution under parameter perturbations. To illustrate how this works in

the context of state estimation, we first represent problem (2.1) as a generic NLP

minF (x, p0), s.t. c(x, p0) = 0, x ≥ 0 (2.2)

where x represents the state variables and p0 is the nominal value of the problem param-

eters. For state estimation, the parameters are the process measurements. In the asMHE

formulation, the nominal parameter values are the predicted process measurements. The

Karush-Kuhn-Tucker (KKT) conditions, or optimality conditions, of (2.2) are given by

∇xL = ∇xf(x; p0) +∇xc(x; p0)λ− ν = 0

c(x; p0) = 0 (2.3)

XV e = 0,

where X = diag(x), V = diag(ν), e is a vector of ones, and λ and ν are Lagrange multi-

pliers. We represent the optimal solution to (2.2) as s∗(p0)T = [x∗T , λ∗T , ν∗T ] and estimate

how the optimal solution changes with a perturbation to the nominal parameter values,

from p0 to p1. In problem (2.1) we denote p as the measurement at time k and define the

parameter perturbation from the predicted measurement (p0) to the actual measurement

(p1). Under mild regularity conditions of the NLP [51], the optimal solution to the per-

turbed problem can be approximated using a Taylor series expansion

ŝ∗(p1) ≈ s∗(p0) +
∂sT

∂p

∣∣∣∣
p0

(p1 − p0) (2.4)

To find the partial derivative needed in (2.4) we recognize the optimality conditions (2.3)

as implicit functions of the parameters p, represented as Q(s(p), p) = 0. We then apply the

implicit function theorem to Q around (s∗(p0), p0) to get

dQ(s∗(p0), p0)

dp

T

=
∂Q(s∗(p0), p0)

∂p

T

+
∂Q(s∗(p0), p0)

∂s

T ∂s(p)

∂p

T
∣∣∣∣∣
p0

= 0. (2.5)
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which can be solved for the partial derivative in (2.4). Furthermore, the ∂Q/∂s term is

exactly the KKT matrix used in interior point solvers such as IPOPT [47]. This means that

once IPOPT finds the optimal solution to problem (2.2), the factorized form of the KKT

matrix is available and the sensitivity required in (2.4) can be calculated from a single

backsolve [48]. Estimating the optimal solution in this way is much faster than solving the

entire NLP again. To summarize, the advanced step MHE (asMHE) formulation consists

of the following steps:

1. At time tk−1 generate a prediction of the process measurements ŷk using the state

estimates zk−1 and process model equations.

2. Between tk−1 and tk solve the NLP (2.2) in background with measurement prediction

at tk and hold the factorized KKT matrix at the solution.

3. At time tk obtain actual measurements yk.

4. Update solution of NLP (2.2) using Equations (2.4), (2.5), and the factorized KKT

matrix; performed on-line.

5. Update the expected value ẑk−N+1|k and covariance matrix Π̂k−N+1|k of the arrival

cost using the Extended Kalman Smoother described in [46].

6. Set k = k + 1 and return to Step 1.

Using asMHE for state estimation relies on our predicted measurements being close to

the actual measurements obtained. However, if we assume that some of our measurements

are contaminated with gross errors we need to assess their influence on the accuracy of the

state estimates. For this, we consider ways to formulate our state estimation problem to be

robust to gross errors.

2.3 Robust Statistics and M-Estimators

Gross errors and outliers can be caused by sensor failure or miscalibration and can include

sensor bias or drifting. For states that need to be recorded manually, gross errors can result
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from human error as well. Detecting such errors and eliminating their bias on the state

estimates is a crucial step in obtaining estimates that can be considered robust. In this

work we employ robust M-Estimators for gross error detection because they can easily be

implemented within our NLP formulation.

All maximum-likelihood type estimators, or M-Estimators, try to maximize some asso-

ciated likelihood function [42]. In the case of the Bayesian statistical framework that led to

the MHE formulation (2.1), the likelihood function associated with the observed measure-

ments is the conditional probability density function, p(yl|zl). In other words, we would

like to find the state estimates which maximize the probability of our observed measure-

ments. When we assume Gaussian measurement noise, the minimum variance estimator

associated with this likelihood function is the least squares estimator which is the vTl R
−1
l vl

term in the objective function of (2.1). Assuming that Rl is diagonal, the least squares

estimator can also be written as

ρLSj (εj) =
1

2
ε2j (2.6)

where εj = (yj − ŷj)/σj is the studentized error, the difference between our actual and

estimated measurement, or the residual, normalized by the standard deviation. If the

measurement noise is not Gaussian, the least squares estimator may not give adequate

performance, as it is not robust to deviations from the assumed Gaussian distribution. The

robustness of an M-Estimator is assessed by the estimator’s influence function, which is

proportional to the first derivative of the estimator. An estimator is considered robust if its

influence function is bounded as the observations go to infinity. The first derivative of the

least squares estimator is

dρLSj (εj)

dεj
= εj (2.7)

Therefore, its influence function is linear and unbounded as the observations go to infinity.

When our measurements are contaminated with gross errors, the assumption that the

measurement noise follows a zero-mean Gaussian distribution may not hold and it could

18
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Figure 2.1: Comparison of the values of the M-Estimators used in this work

be difficult to determine the exact noise distribution. So, if we use the least squares estima-

tor, any gross errors could have an undue influence on our state estimates. To avoid this

we consider estimators that are robust to deviations from our Gaussian assumption. Two

robust M-Estimators are considered in this work, the Fair (Huber-type) and Redescending

(Hampel) estimators.

2.3.1 Fair Function

The Fair Function [52] is given by

ρFj (εj) = C2

[
|εj |
C
− log

(
1 +
|εj |
C

)]
(2.8)

where ρj is the estimator associated with the jth measurement, C is a tuning parameter,

and εj is the studentized prediction error. The influence function for the Fair Function is

proportional to its first derivative:

dρFj (εj)

dεj
=

εj

1 +
|εj |
C

(2.9)

The Fair Function is plotted in Figure 2.1 and is convex with smooth first and second

derivatives. Notice that for small residuals the Fair Function is a good approximation of
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the least squares estimator. As the residuals become larger, the Fair Function transitions

from increasing quadratically to increasing linearly. Therefore, as the residuals approach

infinity, the Fair Function does not increase as fast as the least squares function and so less

weight will be put on gross error measurements, i.e. measurements that lead to large

residuals. In other words, the influence function of the Fair Function will approach a

constant, confirming that the Fair Function is robust to large measurement errors. The

shape of the Fair Function can be adjusted using its tuning parameter C. Smaller values

of C will cause the Fair Function to become linear at smaller residuals thus causing it to

deviate more from the least squares function.

2.3.2 Redescending Estimator

The second M-Estimator used in this work is Hampel’s Redescending estimator [53] which

is given by the piecewise function shown below

ρRj (εj) =



1

2
ε2j , 0 ≤ |εj | ≤ a

a|εj | −
a2

2
, a < |εj | ≤ b

ab− a2

2
+
a(c− b)

2

[
1−

(
c− |εj |
c− b

)2
]
, b < |εj | ≤ c

ab− a2

2
+
a(c− b)

2
, |εj | > c,

(2.10)

where εj is again the studentized prediction error and a, b, and c are tuning parameters

which define the 4 regions in the estimator. Each region behaves differently depending on

the magnitude of the residuals. The first derivative of the Redescending estimator is

dρRj (εj)

dεj
=



εj , 0 ≤ |εj | ≤ a

±a, a < |εj | ≤ b
±a(c− |εj |)

(c− b)
, b < |εj | ≤ c

0, |εj | > c,

(2.11)
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and the Redescending estimator is plotted in Figure 2.1. It is nonconvex and has smooth

first derivatives but nonsmooth second derivatives. We see that for small residuals in

[−a, a] the Redescending estimator is exactly the least squares estimator. In the second

region, when a < |εj | ≤ b, the estimator increases linearly with respect to the residuals.

As the residuals become even larger, less influence is placed on them until eventually the

estimator just becomes a constant value. This translates to an influence function which

becomes zero after passing the threshold defined by the tuning parameter c, which can

be seen in (2.11). In practice, this has the same effect as removing any gross error mea-

surement that exceeds this threshold. The Redescending estimator depends on 3 tuning

parameters rather than just a single one like the Fair Function. Thus, it is inherently more

difficult to determine their optimal values.

2.3.3 Robust Estimator Tuning and Use

In practice, robust M-estimators should be tuned to the problem under investigation. The

Fair Function is typically tuned by relating its tuning constant C to the asymptotic effi-

ciency [54]. For the Redescending estimator there is less agreement as to the best tuning

strategy and numerous methods have been proposed including one based on the Akaike

Information Criterion [54] and one based on estimating efficiecy using Monte Carlo simu-

lations [42]. In our experience, good performance can be obtained from the Fair Function

or the Redescending estimator for a range of tuning parameter values. Therefore, system-

atic tuning of the estimators used in the simulations shown in the next chapter was not

required and not investigated further.

M-estimators can be incorporated into our NLP formulation by simply replacing the

measurement error terms in the objective function with the ρ function of the desired esti-
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mator. Our new NLP problem becomes

{ẑk−N |k, ..., ẑk|k} = arg min
{zk−N ,...,zk}

Φ(zk−N ) +
1

2

l=k∑
l=k−N

ρME
l (vl) +

1

2

l=k−1∑
l=k−N

wTl Q
−1
l wl

s.t. zl+1 = f(zl) + wl (2.12)

yl = h(zl) + vl

zLB ≤ zl ≤ zUB

One danger of using robust M-Estimators is the possibilty of type-1 errors, i.e. incor-

rectly identifying good measurements as gross errors. While there is no way to completely

eliminate type-1 errors there is a trade-off that must be considered between the influence

put on large residuals and the number of type-1 errors. This trade-off must be taken into

account when choosing the tuning parameters for the robust estimators in order to achieve

good state estimation. Another concern with robust M-Estimators in NLP (2.12) is the non-

convexity of the estimator. Even with nonlinear plant models, the likelihood of obtaining

local solutions (and type-1 errors) is higher with nonconvex functions. This is especially

the case with the Redescending estimator, in contrast to the convex Fair Function.

2.4 Concluding Remarks

In this chapter we introduce the state estimation problem and describe two convenient

ways of formulating it as a dynamic optimization problem. Both MHE and asMHE have

the advantage of directly incorporating nonlinear process models and bounds on process

variables. Additionally, asMHE drastically reduces the on-line computational cost of ob-

taining state estimates.

Another significant challenge for obtaining good state estimates is dealing with large

measurement errors. We propose using robust M-Estimators to overcome this challenge

and illustrate how they can be incorporated in the MHE and asMHE formulations. In the

next chapter we demonstrate the performance of these state estimators.
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Chapter 3

State Estimation Case Studies

In this chapter we demonstrate the state estimators described in the previous chapter on

two chemical engineering process models. We begin by describing the implementation of

these methods and then compare the performance of various state estimators on dynamic

models of a CSTR and a distillation column. This chapter is based on work published in

[7].

3.1 Implementation

The dynamic state space models used in the simulations in this chapter are systems of dif-

ferential algebraic equations (DAE). One way of optimizing DAE systems, known as the

simultaneous approach, is to discretize the entire model with respect to time and approx-

imate the differential equations using piecewise polynomials. The resulting problem is an

NLP with only algebraic constraints. In this work we make use of Radau collocation to

discretize the differential equations in our models [6].

Numerical simulations were implemented using MATLAB [55] and AMPL [56] as mod-

eling platforms and the NLP was solved using IPOPT [47]. IPOPT is an open source NLP

solver for solving large problems which utilizes a Newton-based interior point algorithm.

To compute the NLP sensitivity and MHE arrival cost information, an extension to the

IPOPT solver called sIPOPT [57] was used. Moreover, for the update of the arrival cost

we use the sIPOPT-based procedure from [46]. This arrival cost update is well-suited for

multirate sampling and missing data, including gross errors eliminated by M-estimators.

Finally, when implementing the Redescending M-estimator in the objective function of
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(2.12), we used a smoothed approximation of the piecewise function (2.10) as discussed

in [54]. We do this to ensure continuous first and second derivatives, which is a property

required by our solver.

3.2 CSTR Case Study

To illustrate and compare the state estimators described in this chapter we first consider a

non-isothermal continuously stirred tank reactor (CSTR) with 3 states. We introduce gross

errors into these simulations by assuming that our measurements drift away from their

true values. We consider 6 state estimators in this chapter that compare the use of MHE

and asMHE with the 3 M-estimators described by (2.6), (2.8), and (2.10).

The states are plotted for each case study. However, in order to compare the estimators

quantitatively we also calculate the normalized Sum of Squared Errors (SSE). For each

estimator this is evaluated as follows

SSE =
∑
l∈T

∑
j∈S

(ẑj,l − zj,l)2 (3.1)

where ẑj,l is the j-th element of the normalized state estimate vector at time l, zj,l is the j-th

element of the normalized true state vector at time l, T is the set of sampling times, and

S is the set of state variables. The state vectors are normalized to values between 0 and 1

using their upper and lower bounds.

The dynamic CSTR model used in this case study describes the exothermic reaction

between sodium thiosulfate (component A) and hydrogen peroxide (component B). The

model equations are given in Appendix A.1. There are 3 dynamic states in this model, the

concentration of A CA, the reactor temperature TR, and the cooling water temperature Tcw.

In our simulations we assume that we measure TR and Tcw and estimate all three states.

The covariance values for the measurement noise and the unknown disturbances are given

in Table 3.1. As mentioned in the implementation section, the model is discretized using

orthogonal collocation with 5 finite elements and 3 collocation points. The number of finite
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Measurement Noise Variance State Disturbance Variance

CA - 10−8

TR 0.0625 10−4

Tcw 0.0625 10−4

Table 3.1: Variance values for noise in CSTR example

elements is also the horizon length for the estimators. This discretization scheme results

in an NLP (2.12) with 184 variables and 169 constraints being solved at each time step.

The simulations are run for 400 time steps and each time step is 1.2 seconds. In order to

isolate the effect the M-estimators have on the state estimates we consider an ideal scenario

where there is no plant-model mismatch, i.e. we know the state-space model, the model

parameters, and the noise variances exactly. The same tuning parameters are used for all

case studies, for the Fair Function C = 20 and for the Redescending estimator a = 1, b = 2,

c = 6.

3.2.1 Results Case 1: Single Drift

In this first case we introduce gross errors into our simulation by having one of our tem-

perature measurements drift away from the true state. This temperature drift is introduced

in the reactor temperature measurement, TR. The maximum error is 10 degrees above the

true measurement and we increase the gross error by 0.25 degrees per sample time. The

drift starts at time step 80, stays at the maximum error level for 130 time steps, and then

decreases to zero at a rate of 0.25 degrees per sample time.

The simulation results are shown in Figure 3.1 and Table 3.2. It is clear that the for-

mulations with least squares have the worst performance, as the gross error in TR causes

significant contamination in all three state estimates. The formulations with the Fair Func-

tion perform much better than least squares while the Redescending formulations give the

best state estimates.
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(a) MHE (b) asMHE

Figure 3.1: Comparison of the MHE and asMHE formulations with and without M-

Estimators for the CSTR case 1 simulation. MHE: MHE with least squares, MHEFF :

MHE with Fair Function, MHERED: MHE with Redescending, similarly for asMHE

In addition, we note that the results for MHE and asMHE are nearly identical. This is

significant because, as mentioned previously, asMHE relies on NLP sensitivity to approx-

imate the optimal state estimates. As the approximations are very good, the advantage

of the asMHE formulation is that most of the computational expense is off-line between

sampling times, and state estimates are generated much faster. The average CPU time

required to solve the full NLP (2.12) was 0.0108 seconds. The CPU time for completing

the on-line sensitivity update for the asMHE formulations is too small to measure in this

example. This difference in on-line computational time between MHE and asMHE is not

meaningful for such a small scale example. However, for the larger example in Section 3.3

the CPU time reduction is essential for the application.
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MHE asMHE

Least Squares 0.0597 0.0435

Fair Function 0.0053 0.0031

Redescending 1.712× 10−4 1.735× 10−4

Table 3.2: Normalized Sum of Squared Errors for CSTR case 1 simulation

3.2.2 Results Case 2: Multiple Drifts

In this case we introduce temperature drift errors into both temperature measurements.

The drift in TR is the same as in case 1. The drift in the cooling water temperature Tcw

begins at time step 150, increases at a rate of 0.4 degrees per time step, reaches a maximum

error of 7.2 degrees, and then decreases to zero at the same rate starting at sample time

300.

The results for this case are shown in Figure 3.2 and Table 3.3. Again we see that the

formulations with least squares perform the worst and the ones with the Fair Function

do significantly better. Here the interesting finding is the behavior of the nonconvex Re-

descending MHE formulation. When the MHE formulation with Redescending is run us-

ing the same initial conditions as the other cases, it converges to an inferior local solution.

This problem of inferior local solutions and the proposed initialization strategy for the Re-

descending estimator has previously been noted in [42] and [54]. To address this, we ini-

tialized the MHE Redescending formulation with the MHE Fair Function solution for each

horizon. With this initialization the Redescending MHE formulation solves very quickly

and behaves very well, as in the case 1 simulation. The results of this run are shown in the

Figure 3.2a. While we were able to get good state estimates with the MHE Redescending

estimator using a better intialization, we note that in order to implement this strategy the

MHE Fair Function and MHE Redescending formulations have to be solved in series at

every time step. This increases the computational time required to get the state estimates.

CHAPTER 3. STATE ESTIMATION CASE STUDIES

27



3.2 CSTR CASE STUDY

MHE asMHE

Least Squares 0.1157 0.0802

Fair Function 0.0150 0.0079

Redescending 1.641× 10−4 1.677× 10−4

Table 3.3: Normalized Sum of Squared Errors for CSTR case 2 simulation

Finally, we note that these inferior local solutions were encountered only in the Re-

descending MHE formulation and not in the Redescending asMHE formulation. This is

due to asMHE having a better initialization, which comes directly from the model predic-

tion, and not the actual measurement. In the case of gross errors, the MHE initialization is

severely biased while the asMHE initialization is not. Again, we have assumed no plant-

model mismatch; as long as our previous state estimate is close to the true state, our pre-

dicted measurement is going to be close as well. Moreover, it turns out that the sensitivity

update does not change the estimate much, which implies that the estimate is not very

sensitive to the new (outlier) measurement and depends more on the older measurements

in the horizon. Also, we believe that this improved initialization explains why asMHE

performs consistently better than MHE; as observed in the SSE values presented for each

simulation.

3.2.3 Results Case 3: Varying Horizon Length

In the first two cases a time horizon of 5 was used for all simulations. In this case we

tried longer time horizons of 10 and 20 time steps along with the multiple drift errors

of the previous case. The results are shown in Figure 3.3 and Table 3.4. Only plots of

concentration are included because the trends for the other states were the same.

For state estimation it is expected that longer horizons will result in better state estimates

because they put less weight on any single measurement. However, with gross errors and

longer horizons we found that ithe least squares and Fair Function formulations lead to
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(a) MHE (b) asMHE

Figure 3.2: Comparison of the MHE and asMHE formulations with and without M-

Estimators for the CSTR case 2 simulation. MHERED∗: MHE with Redescending and

initialized with Fair Function solution
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(a) MHE (b) asMHE

Figure 3.3: Comparison of the concentration state estimates for the CSTR case 3 simulation

using formulations with horizon lengths of 5, 10, and 20

worse state estimates when drifting errors are introduced to the system. This difference is

most notable in the plots of the Fair Function for MHE and asMHE, where the estimates

approach their true values as the horizon size decreases. This trend also appears for the

least squares formulations where the state estimates approach a plateau with increasing

horizon size. The trend with longer horizons can be explained because with long lasting

drifting errors we end up with many biased measurements in the time series. By increasing

N we include more gross errors in the horizon and they have more effect than with smaller

N . On the other hand, horizon length does not affect the Redescending cases, because the

effect of biased measurements is largely eliminated.
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MHE asMHE

Horizon Length LS FF RED LS FF RED

5 0.1157 0.0150 1.6412× 10−4 0.0802 0.0079 1.6769× 10−4

10 0.1718 0.0452 1.5993× 10−4 0.1539 0.0368 1.6040× 10−4

20 0.1751 0.0667 1.6319× 10−4 0.1630 0.0610 1.6476× 10−4

Table 3.4: Normalized Sum of Squared Errors for CSTR case 3 simulation. LS: Least

Squares, FF: Fair Function, RED: Redescending

3.3 Distillation Case Study

Now that we know how these state estimators perform on a small example we consider

a detailed dynamic model of a binary distillation column [58]. Again we introduce gross

drifting errors as with the CSTR example. We also consider gross errors as step changes to

simulate complete sensor failure.

3.3.1 Distillation Model

The distillation column modeled in this example separates methanol and n-propanol. The

model originates from [58] and consists of an index-2 system of DAEs. The distillation

column model from [58] was later reformulated in [59] to index 1. The model equations

are shown in Appendix A.2. We consider a column with NT = 40 trays along with a total

condenser and a reboiler. The feed stream enters the column at tray i = 21.

Assumptions in this model include an ideal vapor phase, constant pressure drop across

the trays, and negligible vapor molar holdups. Raoult’s law is used to model phase equi-

librium with non-ideal behavior addressed using tray efficiencies. Francis’ weir equation

is used to model the liquid flow rate between trays. In our simulations temperature, Ti,

and the liquid volume holdup, nvi , on each tray are the measurements and we estimate the

methanol composition in the liquid phase, xi as well as the liquid molar holdup, Mi, on
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Measurement Noise Variance State Disturbance Variance

Ti 6.25× 10−2 -

nvi 10−8 -

xi - 10−5

M0 - 10

Mi - 1

MNT+1 - 5

Table 3.5: Variance values for noise in Distillation example

each tray.

For our state estimation formulations we use a horizon length of 10 measurements and

we discretize the model using orthogonal collocation with 3 collocation points. NLP (2.12)

now has 21,642 variables and 20,718 constraints. The simulations are run for 300 time

steps and each sampling time is 60 seconds. Again we assume that there is no plant-

model mismatch in order to isolate the effects of the gross errors on each formulation.

The covariance values for the measurement noise and unknown disturbances are given in

Table 3.5. The M-Estimator tuning parameters are as follows for all cases: Fair Function

(C = 6), Redescending (a = 1, b = 2, c = 4).

3.3.2 Results Case 1: Drift Errors

In this first case we simulate drifts in the temperature measurements on 10 of the trays.

The drifts were generated by randomly selecting the tray on which the drift would occur,

the start time and duration of the drift, the maximum magnitude of the drift, and the rate

at which the drift reached that maximum. Additionally, they were formulated so that the

drifts would disappear before the end of the simulation so that the state estimators could

recover once the gross errors were removed. The results are shown in Figure 3.4 and Table

3.6.
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(a) MHE (b) asMHE

Figure 3.4: Comparison of the MHE and asMHE formulations with and without M-

Estimators for the Distillation case 1 simulation. MHE: MHE with least squares,MHEFF :

MHE with Fair Function, MHERED: MHE with Redescending, similarly for asMHE. M21

is the molar holdup on tray 21, x21 is the methanol composition on tray 21

Notice that significant shifts can be seen in the estimates of both the MHE and asMHE

formulations without M-estimators. Both the Fair Function and Redescending formula-

tions are able to mitigate the affects of the gross error. Again we see that the MHE and

asMHE estimates are very similar but the average on-line time required for the asMHE

formulation is only 0.022% of the time required to solve the MHE problem. The MHE

formulation with least squares took on average 45.48 CPU seconds to solve. The on-line

component of the asMHE formulation with least squares took on average 0.01 CPU sec-

onds. Thus, using asMHE along with the robust M-estimators we are able to generate fast

and accurate state estimates.

3.3.3 Results Case 2: Step Errors

In this case we simulate gross errors generated by sudden step changes in the measure-

ments. We also introduce even more errors into our measurements in an effort to further
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MHE asMHE

Least Squares 23.0092 16.2973

Fair Function 1.0122 0.9680

Redescending 0.9191 0.7955

Table 3.6: Normalized Sum of Squared Errors for Distillation case 1 simulation

MHE asMHE

Least Squares 864.4267 594.6171

Fair Function 2.2703 1.8590

Redescending 0.9618 0.8180

Table 3.7: Normalized Sum of Squared Errors for Distillation case 2 simulation

challenge the formulations. We introduce step errors into the temperature measurements

on 20 of the trays as well as the volumetric holdup measurements on 20 of the trays. The

step errors were generated randomly using a similar approach as that described in the pre-

vious case. Additionally, we no longer assume that the gross errors disappear before the

end of the simulations. This results in a case where about 15% of all measurements contain

gross errors. The results are shown in Figure 3.5 and Table 3.7.

We see that while both the MHE and asMHE formulations with the least squares func-

tion are unable to track the true state, the Redescending formulations are still able to pre-

dict accurate state estimates. An interesting feature of the asMHE least squares results for

the methanol composition is the appearance of tiny jumps in the estimate, which slightly

violate the upper bound on the state. This is most likely caused by a change in the active

set of constraints for NLP (2.12) when the predicted measurements are replaced with the

actual plant measurements containing gross errors in the asMHE algorithm.
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(a) MHE (b) asMHE

Figure 3.5: Comparison of the MHE and asMHE formulations with and without M-

Estimators for the Distillation case 2 simulation. M21 is the molar holdup on tray 21, x33 is

the methanol composition on tray 33
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3.4 Concluding Remarks

In these case studies we found that the Redescending estimator formulations are able to

follow the true state of the system even when a significant portion of the measurements

were contaminated with gross errors. However with too many gross errors the MHE for-

mulation with the Redescending estimator may get stuck at local solutions due to its non-

convexity. This problem could be overcome by first solving the NLP with the Fair Function

estimator, a convex objective. The asMHE formulation with the Redescending estimator

does not encounter the problem with the non-convexity and is much faster than the MHE

version. Overall, this chapter has shown that using robust M-Estimators can be an effective

strategy for state estimation when our measurements are contaminated with gross errors.

Additionally, robust M-Estimators can easily be incorporated into on-line state estimation

formulations such as asMHE resulting in fast and robust estimators.
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Chapter 4

A Modeling and Direct Transcription

Framework

In the second part of this thesis we focus on developing modeling tools for dynamic opti-

mization problems with the goal of simplifying the typical implementation for advanced

dynamic optimization techniques, such as state estimation, and making dynamic opti-

mization more accessible to non-expert users.

4.1 Introduction and Motivation

There are many modeling frameworks available to users interested in incorporating differ-

ential equations in optimization formulations. An alternative is to apply direct transcrip-

tion and solve the resulting finite dimensional representation in an algebraic modeling

language. Algebraic modeling languages typically allow the user to represent optimiza-

tion problems using a concise and natural syntax, perform model checking and automatic

differentiation, and provide interfaces for communicating with optimization solvers. Well-

known algebraic modeling languages include GAMS [60] and AMPL [56]. A limitation of

these tools is that they define their own proprietary syntax for representing optimization

problems and are not open-source. Consequently, they have limited extensibility.

Modeling tools that are embedded in high-level programming languages such as Python,

Matlab, and Julia provide more flexibility to incorporate new syntax and model process-

ing capabilities and to re-use legacy models. Examples of such tools include FlopC++ [61],

PuLP [62], Pyomo [63], and more recently JuMP [64]. While these languages allow the user
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Tool Types Non-Canonical Forms Open Source Open Language Solution Methods

ACADO [65] ODE, DAE X C++ Shooting Methods, Collocation

APMonitor [66] ODE, DAE X Collocation

GPOPSII [67] ODE, DAE Collocation

gPROMS [68] ODE, DAE, PDAE X Shooting Methods, Collocation

Optimica and JModelica.org [69] ODE, DAE X Shooting, Collocation

SOCS [70] and SOS [71] ODE,DAE Fortran Finite Difference, Collocation

TACO [72] ODE, DAE X Shooting

Tomlab PROPT [73] ODE, DAE X Collocation

pyomo.dae ODE, DAE, PDAE X X Python Finite Difference, Collocation

Table 4.1: Existing tools for handling optimization problems with differential equations.

to formulate problems in a high level programming language, they are currently restricted

in the classes of optimization problems they can represent. Specifically, only a small subset

of these tools provide syntax extensibility and processing (discretization) capabilities for

differential equations. An overview of such tools and their capabilities is provided in Ta-

ble 4.1. The last row compares the new package proposed in this work, pyomo.dae, with

several existing software tools. The table summarizes the types of differential equations

each tool can handle. The table also indicates whether the tool is open-source and whether

the tool represents models using a high-level programming language (as opposed to a pro-

prietary syntax). The last column in the table lists the solution methods each tool provides

to the user.

Most of the existing tools that can handle differential equations require the user to for-

mulate their model using a proprietary language. Notable exceptions are ACADO and

SOCS/SOS which can be used directly from C++ and Fortran, respectively. ACADO is

open source and provides both shooting and direct collocation methods for solving the

problems. However, ACADO is not able to handle large scale problems and cannot han-

dle optimal control problems in non-canonical forms. While these tools provide tailored

solution algorithms for these problems they are unable to represent models which deviate

even slightly from some required structure. APMonitor offers some additional flexibility

over ACADO in handling differential equations in non-canonical forms and high-index
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DAE systems and it is free to use via a web-server but it is not open-source. Moreover,

APMonitor also uses proprietary syntax.

Of the tools surveyed here, gPROMS is the only one that provides complete flexibility

in the types of differential equations that can be modeled, including support for PDAEs

and non-canonical forms. gPROMS, however, is a commercial software. Tools such as

Optimica, TACO, and Tomlab’s PROPT are extensions for existing modeling languages

in Modelica, AMPL, and Matlab; respectively. None of these tools include support for

differential equations is non-canonical forms and are extensions of proprietary syntax.

In contrast to the tools described above, pyomo.dae seeks to be a flexible and extensible

tool for representing systems of ODEs, DAEs, and PDAEs on certain domains and auto-

matically applying numerical discretization techniques for converting differential equa-

tions to algebraic equations. Using pyomo.dae a user may represent ordinary and partial

differential equations of arbitrary order, of arbitrary dimension, and in any form. This in-

cludes complex mixed partial derivatives. pyomo.dae is also capable of solving optimal

control problems in non-canonical forms.

pyomo.dae has been developed as an extension to the algebraic modeling language Py-

omo, which is based on the high-level programming language Python. In Section 4.1.1 we

will give a brief overview of Pyomo and then in Section 4.2 we introduce the key model-

ing constructs in pyomo.dae which lead to a new level of dynamic optimization model

abstraction. Section 4.3 reviews the automatic discretization schemes that have been im-

plemented to transform dynamic models to algebraic approximations. Finally, we discuss

how pyomo.dae can be extended to custom discretization schemes in Section 4.4.

4.1.1 Pyomo

Pyomo is an open-source algebraic modeling language written in Python [63, 74]. Since

its introduction, Pyomo has undergone major restructuring and extensions resulting in a

stable and flexible modeling language. An overview of the current features of Pyomo is
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Figure 4.1: Summary of Pyomo features

shown in Figure 4.1. Pyomo supports a wide range of problem types including Linear Pro-

gramming (LP), Mixed-Integer Programming (MIP), Nonlinear Programming (NLP), and

Mixed-Integer Nonlinear Programming (MINLP). Pyomo also includes interfaces for a va-

riety of optimization solvers and provides automatic differentiation (AD) for NLP prob-

lems using the open source AMPL Solver Library (ASL).

Pyomo’s main advantage over other algebraic modeling languages is that it is written

in a high level programming language. This means that a user does not have to learn a

specialized modeling language in order to formulate and solve optimization problems;

a basic understanding of Python is all that is required. Models are represented using

Python objects and can be formulated and manipulated in sophisticated ways using simple

scripts. Furthermore, Pyomo users have access to a large collection of other Python pack-

ages which include tools for plotting, numerical and statistical analysis, and input/output.

This opens the door for the development of novel algorithms, complicated model formula-

tions, and general model transformations. All of these features make Pyomo a promising

platform for implementing extensions for higher problem classes such as dynamic opti-

mization.
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4.2 Modeling Components in pyomo.dae

One of the main constructs of any standard algebraic modeling language is the notion of

an indexing set. This is what allows a user to quickly and compactly specify a set of re-

lated variables or a set of constraints of the same form. In standard algebraic modeling

languages, however, indexing sets are assumed to be discrete sets. This makes it challeng-

ing to represent optimization problems with continuous domains and dynamics without

first converting the model to a discretized approximation manually. Notably, pyomo.dae

is able to represent continuous domains and arbitrary derivatives by introducing two new

modeling components into Pyomo. In this section we will introduce these components

and give a brief overview of how they can be used to express rich sets of models with dif-

ferential equations. More details about using these components can be found in the online

documentation at http://www.pyomo.org.

4.2.1 ContinuousSet

Analogous to the notion of a discrete set already available in modeling languages, we

introduce the notion of a continuous set which is a key construct that enables high-level

model abstractions. The ContinuousSet construct allows users to represent continuous

bounded domains. Such domains can be interpreted as ’spatial’ or ’time’ domains but

such interpretations are not necessary. In other words, a continuous domain can represent

any domain of a function (e.g., a parameter domain). We highlight that we separate the

notation of the model syntax from that of a model solution. In other words, the abstraction

seeks to provide syntax and not to prescribe a solution method. In designing the syntax,

however, we have made sure to support communication of relevant information down to

solution methods.

The ContinuousSet is similar in structure to that of Pyomo’s Set component and can

be used to index variables and constraints. Variables and constraints can be defined over
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an arbitrary number of continuous domains. For instance, a variable of the form,

w(`, x, t), ` ∈ L := {0, 1, ..., L}, t ∈ T := [0, T ], x ∈ X := [0, X], (4.1)

defines a variable with indices ` spanning the discrete set L, where each variable w(`, ·, ·)

is defined over the continuous rectangular domain T × X = [0, T ] × [0, X]. By default, a

ContinuousSet will be treated as a closed set. The code to declare variable (4.1) using

pyomo.dae is shown below (assuming L, T , and X are previously defined constants).

Listing 4.1: Declaring a variable over discrete and continuous domains

1 m = ConcreteModel ( )

2 m. l = RangeSet ( 0 , L )

3 m. x = ContinuousSet ( bounds =(0 ,X ) )

4 m. t = ContinuousSet ( bounds =(0 ,T ) )

5 m.w = Var (m. l ,m. x ,m. t )

A ContinuousSet must be initialized with two numeric values representing the upper

and lower bounds of the continuous domain. A user may also specify additional points in

the domain that will be communicated to the solver. Such data can be used, for instance,

to ensure that a discretization mesh matches a subset of points, which in turn might be

needed to specify path constraints or match points with experimental data. The following

code snippet provides an example of how to do this:

Listing 4.2: Declaring continuous domains using ContinuousSet components

1 # d e c l a r e by p r o v i d i n g bounds

2 model . t = ContinuousSet ( bounds = ( 0 , 5 ) )

3 # d e c l a r e s p e c i f i c p o i n t s in domain

4 model . x = ContinuousSet ( i n i t i a l i z e = [ 0 , 1 , 2 . 5 , 3 . 3 , 5 ] )

A user may also declare a ContinuousSet on an abstract Pyomo model and initialize

it using a separate data file. In fact, most valid ways to declare and initialize a Pyomo Set

can be used to declare and initialize a ContinuousSet.
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When a model is discretized manually, the indexing set for a continuous variable is typ-

ically an arbitrary set of integers and the user is responsible for converting each index to

the desired time or length scale as a separate step. This is one of the most common places

where modeling errors occur, particularly when a more complex discretization scheme is

used such as collocation on finite elements. It can be particularly challenging to do this in

the case of unequally spaced finite elements. Furthermore, this is a necessary step for plot-

ting and analyzing the results. One of the main design strengths of the ContinuousSet

in pyomo.dae is that this step has been eliminated and domain scaling is done directly

in the set. In other words, every discrete point in a ContinuousSet corresponds to an

actual point in the bounded continuous domain being represented.

The ContinuousSet can also be used to receive information from the solution layer.

For instance, if the set is discretized using a collocation method over finite elements, one

can obtain a list of the discretization points used so that the user can interrogate and ma-

nipulate a ContinuousSet component and implement customized initializations or con-

straints over a ContinuousSet.

The notion of a continuous set provides high flexibility to the user to impose constraints

and objectives in non-standard forms. In particular, we do not impose restrictions on the

number of independent dimensions of a variable and constraint. For instance, we enable

the specification of a variable of the form,

w(`, x, y, z, t), ` ∈ L, t ∈ T , x ∈ X , y ∈ Y, z ∈ Z. (4.2)

Analogous to the definition of a subset of a discrete set L̄ ⊂ L is the definition of a subset

of a continuous set T̄ ⊂ T . Here, the subset T̄ can be both discrete (with elements in [0, T ])

or continuous. Constraints involving variables over a continuous set must be defined over

a subset of a continuous set. For instance, if we define X = [0, 2], T = [1, 10], all of the
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following constraints are valid:

h(w(`, x, t)) = 0, x ∈ [0, 1], t ∈ [5, 10]

h(w(`, x, t)) = 0, x ∈ {0, 0.1, 0.5, 1}, t ∈ T

h(w(`, x, t)) = 0, x ∈ {0, 0.1, 0.5, 1}, t ∈ {2, 3, 4}.

The current implementation of a continuous set in pyomo.dae does not allow a

ContinuousSet component to be defined as a subset of another ContinuousSet. This

extension is on-going work. Constraints over continuous subsets are currently imple-

mented using constraint skipping, as follows:

Listing 4.3: Declaring constraints over a subset of a continuous set

1 m. xsubset = Set ( i n i t i a l i z e = [ 0 , 0 . 1 , 0 . 5 , 1 ] )

2 m. t s u b s e t = Set ( i n i t i a l i z e = [ 2 , 3 , 4 ] )

3 m. x = ContinuousSet ( bounds = ( 0 , 2 ) , i n i t i a l i z e =m. xsubset )

4 m. t = ContinuousSet ( bounds = ( 1 , 1 0 ) , i n i t i a l i z e =m. t s u b s e t )

5

6 def con1 (m, l idx , xidx , t i d x ) :

7 i f xidx <= 1 and t i d x >= 5 :

8 return m. h [ l idx , xidx , t i d x ] == 0

9 e lse :

10 return Constra int . Skip

11 m. con1 = Constra int (m. l ,m. x ,m. t , r u l e= con1 )

12

13 def con2 (m, l idx , xidx , t i d x ) :

14 return m. h [ l idx , xidx , t i d x ] == 0

15 m. con2 = Constra int (m. l ,m. xsubset ,m. t , r u l e= con2 )

16

17 def con3 (m, l idx , xidx , t i d x ) :

18 return m. h [ l idx , xidx , t i d x ] == 0

19 m. con3 = Constra int (m. l ,m. xsubset ,m. tsubset , r u l e= con3 )

The ability to impose constraints at discrete points allows the user to impose path and
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point constraints. For instance, we can consider:

h(w1(x, 0)) = f(w1(x, T )), x ∈ X

h(w1(x, T )) = f(w1(x, T − δ)), x ∈ X

h(w1(X, 0)) = f(w1(X/2, T/2)).

where h(·) and f(·) are arbitrary functions. This construct allows imposition of multi-

point boundary conditions which include periodicity and delay constraints. Recirculation

(cyclic) constraints are typical in chemical reactors, periodicity constraints are typical in

model predictive control, and delay constraints are typical in signal and transportation

networks. The constraints expressed above can be implemented as follows:

Listing 4.4: Declaring multi-point boundary conditions

1 m. x = ContinuousSet ( bounds =(0 ,X) , i n i t i a l i z e =[X/ 2 ] )

2 m. t = ContinuousSet ( bounds =(0 ,T ) , i n i t i a l i z e =[T/2 ,T−d e l t a ] )

3

4 def con1 (m, xidx ) :

5 return m. h [ xidx , 0 ] == m. f [ xidx , T ]

6 m. con1 = Constra int (m. x , r u l e= con1 )

7 def con2 (m, xidx ) :

8 return m. h [ xidx , T ] == m. f [ xidx , T−d e l t a ]

9 m. con2 = Constra int (m. xsubset , r u l e= con2 )

10 def con3 (m) :

11 return m. h [X , 0 ] == m. f [X/2 ,T/2]

12 m. con3 = Constra int ( r u l e= con3 )

We also allow the user to impose constraints between variables and across domains. For

instance, the following constraint is valid:

h(w(`, x, T )) = f(w(`+ 1, x, 0)), x ∈ X .

Listing 4.5: Declaring constraints across domains
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1 m. l = RangeSet ( 1 , 1 0 )

2 m. x = ContinuousSet ( bounds =(0 ,X ) )

3 m. t = ContinuousSet ( bounds =(0 ,T ) )

4

5 def con (m, l idx , xidx ) :

6 i f l i d x == 1 0 :

7 return Constra int . Skip

8 e lse :

9 return m. h [ l idx , xidx , T ] == m. f [ l i d x +1 , xidx , 0 ]

10 m. con = Constra int (m. l ,m. x , r u l e= con )

This feature enables the user to couple physical elements described by different sets of

differential equations. For instance, multiple domains arise in lithium-ion batteries, fuel

cells, buildings, and gas networks. Coupling across domains is also common in multi-stage

optimal control where the horizon is lifted into stages.

Combined with the modular design of Pyomo, pyomo.dae leads to a higher level of

model abstraction which allows for an intuitive structure for formulating and linking dy-

namic models over several domains. However, it should be noted that we do not make

any claims about being able to solve arbitrary models over continuous domains. Our tool

simply allows the modeler to formulate their problem in a more straightforward manner.

4.2.2 DerivativeVar

The DerivativeVar component is used to declare a derivative of a Pyomo Var. A vari-

able may only be differentiated with respect to a ContinuousSet that it is indexed by

and the indexing sets of a DerivativeVar will be identical to those of the Var it is dif-

ferentiating. We also allow for derivatives of arbitrary order to be expressed. In the case of
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variable w(`, x, t) defined in (4.1) the derivatives

∂αw(`, x, t)

∂tα
(4.3a)

∂βw(`, x, t)

∂xβ
(4.3b)

∂α∂βw(`, x, t)

∂tα∂xβ
, (4.3c)

can be imposed for α, β = 1, 2, .... The following snippet illustrates the declaration of a first,

second-order, and mixed derivative. The variable being differentiated is supplied as the

only positional argument and the type of derivative is specified using the ’wrt’ keyword

argument (or the more verbose ’withrespectto’).

Listing 4.6: Declaring derivatives

1 m. dwdt = Derivat iveVar (m.w, wrt=m. t )

2 m. dwdx2 = Derivat iveVar (m.w, wrt =(m. x ,m. x ) )

3 m. dwdxt = Derivat iveVar (m.w, wrt =(m. x ,m. t ) )

A variable defined over a continuous set is assumed (from a modeling standpoint) to be

sufficiently smooth and therefore its derivatives exist. It is the responsibility of the user to

express a model fulfilling these needs. Again, the syntax is agnostic to the solution method

used (and of its requirements).

Derivatives can be expressed in the body of any constraint. This is an important feature

because we do not impose any predefined structure to differential models. This enables

the expression of DAEs with complex mass matrices or complex boundary conditions. For

instance, the following constraints are valid expressions,

∂w(`, x, t)

∂x
= f(w(`, x, t)), ` ∈ L, x ∈ X , t ∈ T

0 = f

(
∂w(`, x, t)

∂x
,w(`, x, t)

)
, ` ∈ L, x ∈ X , t ∈ T .

The code implementing such constraints has the form:

Listing 4.7: Declaring constraints with derivatives
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1 def con1 (m, l idx , xidx , t i d x ) :

2 return m. dwdx[ l idx , xidx , t i d x ] == m. f [ l idx , xidx , t i d x ]

3 m. con1 = Constra int (m. l ,m. x ,m. t , r u l e= con1 )

4

5 def con2 (m, l idx , xidx , t i d x ) :

6 return 0 == m. dwdx[ l idx , xidx , t i d x ] ∗ m. f [ l idx , xidx , t i d x ]

7 m. con2 = Constra int (m. l ,m. x ,m. t , r u l e= con2 )

The code snippet below provides a more explicit description of how to express

DerivativeVar components.

Listing 4.8: Declaring derivatives using DerivativeVar components

1 model = ConcreteModel ( )

2 model . s = Set ( i n i t i a l i z e =[ ’ a ’ , ’ b ’ ] )

3 model . t = ContinuousSet ( bounds = ( 0 , 5 ) )

4 model . l = ContinuousSet ( bounds =(−10 ,10))

5 model . x = Var ( model . t )

6 model . y = Var ( model . s , model . t )

7 model . z = Var ( model . t , model . l )

8

9 # D e c l a r e f i r s t d e r i v a t i v e o f model . x wi th r e s p e c t t o model . t

10 model . dxdt = Derivat iveVar ( model . x , wi threspec t to=model . t )

11

12 # D e c l a r e s e c o n d d e r i v a t i v e o f model . y wi th r e s p e c t t o model . t

13 # Note t h a t t h i s D e r i v a t i v e V a r w i l l be i n d e x e d by b o t h model . s and model . t

14 model . dydt2 = Derivat iveVar ( model . y , wrt =(model . t , model . t ) )

15

16 # D e c l a r e p a r t i a l d e r i v a t i v e o f model . z wi th r e s p e c t t o model . l

17 # Note t h a t t h i s D e r i v a t i v e V a r w i l l be i n d e x e d by b o t h model . t and model . l

18 model . dzdl = Derivat iveVar ( model . z , wrt =(model . l ) , i n i t i a l i z e =0)

19

20 # D e c l a r e mixed s e c o n d o r d e r p a r t i a l d e r i v a t i v e o f model . z wi th r e s p e c t

21 # t o model . t and model . l and s e t bounds
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22 model . dz2 = Derivat iveVar ( model . z , wrt =(model . t , model . l ) , bounds =(−10 ,10))

The design of the DerivativeVar component diverges from the core Pyomo compo-

nents in its use of positional arguments. Typically, positional arguments are used to spec-

ify indexing sets of a particular component. However, for DerivativeVar components,

a variable is supplied as a positional argument. This design choice was meant to embed

the notion of a derivative being an operation on a variable rather than a separate object by

itself.

We also note that the ’initialize’ keyword argument shown in the above code will ini-

tialize the value of a derivative and is not the same as specifying an initial condition or

boundary constraint.

After the derivatives in a model have been declared using DerivativeVar compo-

nents, differential equations are declared as standard Pyomo constraints and are not re-

quired to have any particular form. The following code snippet shows how one might

declare an ordinary or partial differential equation using one or more of the derivatives

defined in the previous code sample.

Listing 4.9: Declaring differential equations

1 # An o r d i n a r y d i f f e r e n t i a l e q u a t i o n

2 def o d e r u l e (m, t i d x ) :

3 i f t i d x == 0 :

4 return Constra int . Skip

5 return m. dxdt [ t i d x ] == m. x [ t i d x ]∗∗2

6 model . ode = Constra int ( model . t , r u l e= o d e r u l e )

7

8 # A p a r t i a l d i f f e r e n t i a l e q u a t i o n

9 def pde rule (m, t idx , l i d x ) :

10 i f t i d x == 0 or l i d x == −10 or l i d x == 1 0 :

11 return Constra int . Skip

12 return m. dzdl [ t idx , l i d x ] == m. dz2 [ t idx , l i d x ]

13 model . pde = Constra int ( model . t , model . l , r u l e= pde rule )
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A modeler might not want to apply a differential equation at one or both boundaries

of a continuous domain. This can be addressed explicitly in the Constraint declara-

tion using ’Constraint.Skip’ as shown above. By default, a constraint declared over a

ContinuousSet will be applied at every discretization point contained in the set. One

can also think of this as the distinction between applying a constraint over an open or

closed set.

In the case of boundary conditions for PDAEs, we highlight that the user is responsible

for providing consistent expressions and pyomo.dae provides syntax to communicate

such constraints (e.g., derivative objects and access to specific points).

4.3 Discretization Transformations

Before a Pyomo model with ContinuousSet and DerivativeVar components can be

sent to a finite dimensional solver it must first be sent through a discretization transforma-

tion. This transformation converts the dynamic optimization model to a purely algebraic

model using a simultaneous discretization approach. In other words, the continuous do-

mains in the model are discretized and any derivatives are approximated using algebraic

equations defined at the discretization points. Two families of discretization schemes are

currently implemented in pyomo.dae: finite differences and collocation.

By separating the model from the discretization scheme we give the user the opportunity

to experiment wtih several discretization schemes to find the one that works best with their

particular problem. This also provides the freedom to combine schemes in non-standard

forms such as using collocation to discretize a spatial domain and finite difference method

to discretize in time or viceversa.

One of the key differences between pyomo.dae and similar tools is that the discretized

model is returned to the user after a transformation is applied. This allows the user to in-

terrogate the discretized model and see the discretization equations that have been added

to the model. Furthermore, it allows the user to modify the model after it has been dis-
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cretized.

Applying one of the discretization schemes in pyomo.dae to a differential equation is

analogous to approximating the solution of that differential equation using a numerical

method. Numerical methods differ in terms of accuracy and the type of problems they

can be applied to. While we will provide a brief overview of the methods implemented in

pyomo.dae, a detailed review of these methods is outside the scope of this work. We refer

the reader to a more comprehensive text on numerical methods for more information on

these techniques and details of their applicability, for instance [75, 76, 77, 78].

4.3.1 Finite Difference Transformation

Finite difference methods are the simplest numerical methods to apply manually. They

approximate the derivative at a particular point using a difference equation. The

dae.finite difference transformation in pyomo.dae includes implementations of

several finite difference schemes. The most commonly used finite difference method is the

backward difference method (also called Implicit or Backward Euler). In our implementa-

tion a discretization is applied to a particular continuous domain and propagated to each

derivative and constraint over that domain. For instance, after applying the backward

difference method to the domain t the derivative and constraint

g

(
dx(t)

dt
, f(x(t), u(t))

)
= 0, t ∈ [0, T ] (4.4)

become,

dx

dt

∣∣∣∣
tk+1

=
xk+1 − xk

h
, k = 0, ..., N − 1 (4.5)

g

(
dx

dt

∣∣∣∣
tk+1

, f(xk+1, uk+1)

)
= 0, k = 0, ..., N − 1 (4.6)

where xk = x(tk), tk = kh, and h is the step size between discretization points or the size of

each finite element. We highlight that the discretization scheme is applied to all constraints

and variables of the model in a given continuous domain. Higher order derivative terms
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are approximated using recursive schemes. When a dae.finite difference transfor-

mation is applied to a Pyomo model, equations such as (4.5) are automatically generated

and added to the discretized Pyomo model as equality constraints. The following Python

script applies the backward difference method to a Pyomo model. The code also shows

how to add a constraint to a discretized model.

Listing 4.10: Applying a finite difference discretization to a Pyomo model

1 from pyomo . environ import ∗

2 from pyomo . dae import ∗

3

4 # Impor t c o n c r e t e Pyomo model

5 from pyomoExample import model

6

7 # D i s c r e t i z e model us ing Backward D i f f e r e n c e method

8 d i s c r e t i z e r = TransformationFactory ( ’ dae . f i n i t e d i f f e r e n c e ’ )

9 d i s c r e t i z e r . apply to ( model , nfe =20 , wrt=model . time , scheme= ’BACKWARD’ )

10

11 # Add a n o t h e r c o n s t r a i n t t o d i s c r e t i z e d model

12 def sum limit (m) :

13 return sum(m. x1 [ i ] for i in m. time ) <= 50

14 model . con sum limit = Constra int ( r u l e= sum limit )

15

16 # S o l v e d i s c r e t i z e d model

17 s o l v e r = SolverFac tory ( ’ ipopt ’ )

18 r e s u l t s = s o l v e r . so lve ( model )

There are several discretization options available to a dae.finite difference trans-

formation which can be specified as keyword arguments to the ’apply’ function of the

transformation object.

CHAPTER 4. A MODELING AND DIRECT TRANSCRIPTION FRAMEWORK

53



4.3 DISCRETIZATION TRANSFORMATIONS

These keywords are:

’nfe’: The desired number of finite element points to be included in the discretization. The

default value is 10.

’wrt’: Indicates which ContinuousSet the transformation should be applied to. If this

keyword argument is not specified then the same scheme will be applied to all con-

tinuous sets.

’scheme’: Indicates which finite difference method to apply. Options are ’BACKWARD’,

’CENTRAL’, or ’FORWARD’. The default scheme is the backward difference method.

If the existing number of finite element points in a ContinuousSet is less than the

desired number, new discretization points will be added to the set automatically. If a user

specifies a number of finite element points which is less than the number of points already

included in the ContinuousSet then the transformation will ignore the specified number

and proceed with the larger set of points. Discretization points will never be removed from

a ContinousSet during the discretization transformation.

4.3.2 Collocation Transformation

Orthogonal collocation over finite elements is a popular numerical method for solving

differential equations. This technique works by first breaking a continuous domain into

N −1 finite elements. Then over each finite element i the profile of the differential variable

x(t) is approximated using a polynomial of order K + 1. This polynomial is defined using

K collocation points which are additional discretization points within each finite element

i. Continuity is enforced at the finite element boundaries for the differential variables x.
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The discretization equations for a constraint of the form (4.4) are given by

dx

dt

∣∣∣∣
tij

=
1

hi

K∑
j=0

xij
d`j(τk)

dτ
, k = 1, . . . ,K, i = 1, . . . , N − 1 (4.7a)

0 = g

(
dx

dt

∣∣∣∣
tij

, f(xik, uik)

)
, k = 1, . . . ,K, i = 1, . . . , N − 1 (4.7b)

xi+1,0 =
K∑
j=0

`j(1)xij , i = 1, . . . , N − 1, (4.7c)

where tij = ti−1 + τjhi, x(tij) = xij , and where we we note that the solution x(t) is inter-

polated as:

x(t) =
K∑
j=0

`j(τ)xij , t ∈ [ti−1, ti], τ ∈ [0, 1] (4.8a)

`j(τ) =
K∏

k=0,6=j

(τ − τk)
(τj − τk)

. (4.8b)

The benefit to using a collocation method over a finite difference method is that it results in

significantly more accurate algebraic approximations. The drawback is that this scheme is

much harder to implement manually and debug. Furthermore, implementing the colloca-

tion discretization equations on high-order derivatives, partial derivatives, or differential

equations that are not in a standard form is nontrivial.

There are many variations of collocation methods; these mainly differ in the functional

representation of the state profile over each finite element and how the collocation points

are defined. The current version of pyomo.dae includes two types of collocation methods.

They both use Lagrange polynomials to represent the state profiles but differ in the choice

of collocation points τk. One uses shifted Gauss-Radau roots and the other one uses shifted

Gauss-Legendre roots. By shifted we mean that the collocation points τ are defined in the

domain τ ∈ [0, 1] rather than τ ∈ [−1, 1]. For more information on orthogonal collocation

we refer the reader to Chapter 10 of [6].

The following Python script applies the collocation method with Lagrange polynomials

and Gauss-Radau roots to a Pyomo model. The code also shows how to add an objective
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function to a discretized model.

Listing 4.11: Applying a collocation discretization to a Pyomo model

1 from pyomo . environ import ∗

2 from pyomo . dae import ∗

3

4 # Impor t c o n c r e t e Pyomo model

5 from pyomoExample2 import model

6

7 # D i s c r e t i z e model us ing Radau C o l l o c a t i o n

8 d i s c r e t i z e r = TransformationFactory ( ’ dae . c o l l o c a t i o n ’ )

9 d i s c r e t i z e r . apply to ( model , nfe =20 , ncp =6 , scheme= ’LAGRANGE−RADAU’ )

10

11 # Add o b j e c t i v e f u n c t i o n a f t e r model has be en d i s c r e t i z e d

12 def o b j r u l e (m) :

13 return sum ( (m. x [ i ]−m. x r e f )∗∗2 for i in m. time )

14 model . ob j = Objec t ive ( r u l e= o b j r u l e )

15

16 # S o l v e d i s c r e t i z e d model

17 s o l v e r = SolverFac tory ( ’ ipopt ’ )

18 r e s u l t s = s o l v e r . so lve ( model )

Notice that this transformation allows the user to specify the number of finite elements,

’nfe’, independently of the number of collocation points per finite element, ’ncp’. The dis-

cretization options available to a dae.collocation transformation are the same as those

described above for the dae.finite difference transformation with the modifications

shown below:

’scheme’: The desired collocation scheme, either ’LAGRANGE-RADAU’ or ’LAGRANGE-

LEGENDRE’. The default is ’LAGRANGE-RADAU’.

’ncp’: The number of collocation points within each finite element. The default value is 3.

It should be noted that any points that exist in a ContinuousSet before a transforma-
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tion is applied will be used as finite element boundaries and not as collocation points. The

locations of the collocation points cannot be specified by the user, they must be generated

by the transformation.

4.3.3 Applying Multiple Transformations

Discretizations can be applied independently to each ContinuousSet in a model. This

provides the user with great flexibility. For example, the same scheme can be applied with

different resolutions in different domains:

Listing 4.12: Applying different discretization resolutions to different continuous domains

1 d i s c r e t i z e r = TransformationFactory ( ’ dae . f i n i t e d i f f e r e n c e ’ )

2 d i s c r e t i z e . apply to ( model , wrt=model . t1 , nfe =10)

3 d i s c r e t i z e . apply to ( model , wrt=model . t2 , nfe =100)

This feature can be used, for instance, when discretizing different pipelines in a net-

work that exhibit different dynamic behavior or discretizing different stages in an optimal

control model with different resolutions.

Different schemes can also be applied to different domains. For example, we can ap-

ply a forward difference method to one ContinuousSet and the central finite difference

method to another ContinuousSet:

Listing 4.13: Applying different finite difference transformations to different continuous

domains

1 d i s c r e t i z e r = TransformationFactory ( ’ dae . f i n i t e d i f f e r e n c e ’ )

2 d i s c r e t i z e r . apply to ( model , wrt=model . t1 , scheme= ’FORWARD’ )

3 d i s c r e t i z e r . apply to ( model , wrt=model . t2 , scheme= ’CENTRAL ’ )

In addition, the user may combine finite difference and collocation discretizations. For

example:

Listing 4.14: Combining finite difference and collocation schemes
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1 d i s c r e t i z e r f e = TransformationFactory ( ’ dae . f i n i t e d i f f e r e n c e ’ )

2 d i s c r e t i z e r f e . apply to ( model , wrt=model . t1 , nfe =10)

3 d i s c r e t i z e r c o l = TransformationFactory ( ’ dae . c o l l o c a t i o n ’ )

4 d i s c r e t i z e r c o l . apply to ( model , wrt=model . t2 , nfe =10 , ncp =5)

If the user would like to apply the same discretization to all ContinuousSet compo-

nents in a model, this can be done by specifying a single discretization without the ’wrt’

keyword argument. This will apply the same scheme to all ContinuousSet components

in the model that have not been already discretized.

4.4 Package Implementation and Extensibility

One of the main implementation goals for automatic discretization in pyomo.dae is exten-

sibility as there are a plethora of discretization schemes documented in the literature and

some specialized schemes might be required in certain applications. As part of our imple-

mentation we have developed a general transformation framework along with certain util-

ity functions so that advanced users may easily implement their own custom discretization

schemes while reusing the syntax of the modeling language. The transformation frame-

work consists of the following steps:
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1. Specify Discretization Options

2. Discretize the Continuous Sets

3. Update Model Components

4. Add Discretization Equations

5. Return Discretized Model

If a user would like to create a custom finite difference scheme then they only have to re-

implement step (4) in the framework. The discretization equations for a particular scheme

have been isolated from of the rest of the code for implementing the transformation. For

example, the specific function for the forward finite difference method is:

Listing 4.15: pyomo.dae implementation of the forward finite difference scheme

1 def forward transform ( v , s ) :

2 ”””

3 A p p l i e s t h e Forward D i f f e r e n c e f o r m u l a o f o r d e r O( h ) f o r f i r s t d e r i v a t i v e s

4 ”””

5 def fwd fun ( i ) :

6 tmp = sorted ( s )

7 idx = tmp . index ( i )

8 return 1/(tmp [ idx+1]−tmp [ idx ] ) ∗ ( v ( tmp [ idx +1])−v ( tmp [ idx ] ) )

9 return fwd fun

In this function, ’v’ represents the continuous variable or function that the method is

being applied to while ’s’ represents the set of discrete points in the continuous domain. In

order to implement a custom finite difference method, a user would have to duplicate the

above function and just replace the equation next to the first return statement with their

method. After implementing a custom finite difference method using the above function

template, the only other change that must be made is to add the custom method to the

’all schemes’ dictionary in the Finite Difference Transformation class.

In the case of a custom collocation method, changes will be made in steps (2) and (4) of

the transformation framework. The code below shows the function specific to a collocation
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scheme with Lagrange interpolation polynomials and Radau collocation points.

Listing 4.16: pyomo.dae implementation of collocation using Lagrange polynomials and

Radau roots

1 def lagrange radau transform ( v , s ) :

2 ncp = s . g e t d i s c r e t i z a t i o n i n f o ( ) [ ’ ncp ’ ]

3 adot = s . g e t d i s c r e t i z a t i o n i n f o ( ) [ ’ adot ’ ]

4 def fun ( i ) :

5 tmp = sorted ( s )

6 idx = tmp . index ( i )

7 i f idx == 0 : # Don ’ t a p p l y t h i s e q u a t i o n a t i n i t i a l p o i n t

8 r a i s e IndexError ( ” l i s t index out of range ” )

9 low = s . get lower element boundary ( i )

10 lowidx = tmp . index ( low )

11 return sum( v ( tmp [ lowidx+ j ] ) ∗ adot [ j ] [ idx−lowidx ] \

12 ∗ ( 1 . 0 / ( tmp [ lowidx+ncp]−tmp [ lowidx ] ) ) for j in range ( ncp + 1 ) )

13 return fun

In addition to implementing the discretization equations, the user would have to ensure

that the desired collocation points are added to the ContinuousSet being discretized. In

pyomo.dae, Radau or Legendre collocation points are calculated following chapter 10 in

[6] if the user has the Python package Numpy installed otherwise they are extracted from

a stored Python dictionary.

So far we have shown that pyomo.dae is extensible in terms of implementing custom

discretization schemes but it is also extensible in a more general sense. The modeling ab-

straction introduced here allows for general implementations of any model transformation

or operation typically applied to optimal control problems. For instance, the control pro-

files can be constrained to follow predefined functions. To illustrate this, we extended the

dae.collocation transformation with a function that forces a control variable to have

a certain profile; for example, piecewise constant or piecewise linear. This is useful, for

instance, in optimal control problems where the control variable is often restricted to be
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constant over each finite element while the other state variables are not. This function

can be implemented by reducing the number of free collocation points for a particular

variable. The reduce collocation points() function is specified using the following

keywords:

’var’: The variable being restricted to fewer collocation points

’contset’: The continuous set indexing the specified ’var’ which has been previously dis-

cretized.

’ncp’: The new number of collocation points. Must be at least 1 and less than the number

of collocation points used to discretize the ’contset’.

The function may only be applied to a model after a collocation discretization transfor-

mation has been called to discretize the specified ContinousSet. The function works by

adding constraints to the discretized model which force any extra, undesired collocation

points to be interpolated from the others. These constraints have the following form over

finite element i:

uik =
K̄∑
j=1

γkjuij, k = K̄ + 1, ...,K (4.9)

where K is the original number of collocation points and K̄ is the reduced number of

points. A sample implementation is shown below.

Listing 4.17: Enforce path constraints on continuous variables

1 # D i s c r e t i z e model us ing Radau C o l l o c a t i o n

2 d i s c r e t i z e r = TransformationFactory ( ’ dae . c o l l o c a t i o n ’ )

3 d i s c r e t i z e r . apply to ( model , wrt=model . time , nfe =20 , ncp =6)

4

5 # C o n t r o l v a r i a b l e u made c o n s t a n t o v e r e a c h f i n i t e e l e m e n t

6 d i s c r e t i z e r . r e d u c e c o l l o c a t i o n p o i n t s ( var=model . u , c o n t s e t =model . time , ncp =1)

We also note that pyomo.dae does not distinguish between state and control variables.

This means that the reduce collocation points() function can be applied just as
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Figure 4.2: Pyomo workflow including discretization transformations

easily to impose a path constraint on a continuous state variable.

The modular nature of Pyomo also allows for extensions in terms of solvers for dy-

namic optimization. For example, a typical workflow with the current implementation of

pyomo.dae is shown in Figure 4.2. A straightforward extension would be to replace the

’Write .nl File’ and ’AMPL Solver Library’ blocks with another tool for automatic differ-

entiation such as CasADi [79]. Or the workflow could be extended to output the dynamic

model, before applying a discretization scheme, and then solving the problem using a

shooting method. Finally, there are several parallel solvers available for dynamic opti-

mization problems that rely on the discretized model being separated at the finite element

boundaries. A general implementation of this step could easily be added to pyomo.dae.

4.5 Concluding Remarks

In developing pyomo.dae our emphasis was on flexibility of the syntax. This certainly

does not mean that every problem can be solved using this tool. Also, because we are not

enforcing a structure on the differential equations or a restriction on the order of the deriva-

tives, we do not check for modeling errors or consistency. The responsibility falls on the
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user not to implement an inconsistent model. A similar observation also applies to general

algebraic modeling languages in which the user is responsible for not implementing mod-

els with incompatible constraints or empty feasible regions, for instance. However, now

that the pyomo.dae syntax is available, we can create model templates for creating mod-

els with canonical structures and with that prevent the user from specifying incompatible

models. This would allow us to implement solution algorithms tailored for a known struc-

ture, check for modeling errors, and more easily interface with existing integrators. The

next chapter demonstrates the flexibilty of pyomo.dae by applying it to a wide variety

of dynamic optimization problems. We also examine the computational costs associated

with automatic discretization.
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Chapter 5

Examples of Modeling Capabilities

In this chapter we provide examples that illustrate the modeling flexibility provided by

pyomo.dae. We begin with a simple heat transfer problem and walk step-by-step through

the code. We then include a small example of an optimal control problem which is a com-

mon application for dynamic optimization. Next, we show a medium-scale parameter

estimation problem for a dynamic disease transmission model that demonstrates how to

embed time-dependent data into a model. Our final example is a stochastic optimal control

model for natural gas networks which shows how to combine all of the modeling elements.

This model also demonstrates the scalability of pyomo.dae. All examples use Pyomo ver-

sion 4.3, Python version 2.7.6, and IPOPT version 3.10.1 on a desktop computer running

Ubuntu 14.04. The models can be accessed at https://software.sandia.gov/svn/

public/pyomo/pyomo/trunk/examples/dae/.

5.1 Heat Transfer

This example demonstrates the solution of a one-dimensional heat equation. The equation,

initial condition, and boundary conditions are shown below [80].

π2∂u

∂t
=
∂2u

∂x2
(5.1a)

u(x, 0) = sin(πx) (5.1b)

u(0, t) = 0 (5.1c)

πe−t +
∂u

∂x
(1, t) = 0 (5.1d)

x ∈ [0, 1], t ∈ [0, T ]. (5.1e)
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This problem has a number of interesting features including first and second order partial

derivatives, boundary conditions involving both the variable and its partial derivative,

and nonlinearity from a trigonometric function. In Listing 5.1 we first present a Pyomo

model that implements a manual discretization (without pyomo.dae). The model was

discretized in space using the backward difference method and was discretized in time

using orthogonal collocation with Radau points. The first line in the model imports the

needed Pyomo package. Lines 4-6 declare the number of discretization points and lines

9-11 declare sets containing all the discretization points. Lines 14-20 define the collocation

matrix for 4th order Lagrange polynomials with Radau roots. Computing this matrix is

often one of the more tedious parts of implementing a model. Lines 22 and 23 define the

spatial and time scaling for each finite element and lines 25-30 define the variables in the

model including the differential variables and derivatives in the model.

Models that are discretized manually typically use discretization points without any

physical meaning i.e. time/distance scaling is handled separately from the discretization

points themselves. This can often lead to modeling errors and confusion especially with

more complicated discretization schemes such as collocation. The model below tries to

overcome this difficulty by introducing an additional differential variable ’m.t’ which is

used to calculate the properly scaled time points. Lines 32-54 define constraints represent-

ing the heat transfer model (5.1a). The discretization schemes are applied in lines 56-93.

Finally a dummy objective function is declared in line 95 and the model is solved using

IPOPT. The entire implementation requires 98 lines of code and while changing the num-

ber of finite element points is straight-forward, changing the number of collocation points

or either of the discretization schemes will require significant changes to the implementa-

tion.

Listing 5.1: Pyomo heat tranfer model discretized manually

1 from pyomo . environ import ∗

2

3 m = ConcreteModel ( )
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4 m. n f e t = Param ( i n i t i a l i z e =20) # Number o f f i n i t e e l e m e n t s in t ime

5 m. ncp = Param ( i n i t i a l i z e =4) # Number o f c o l l o c a t i o n p o i n t s p e r f i n i t e e l e m e n t

6 m. nfex = Param ( i n i t i a l i z e =25) # Number o f f i n i t e e l e m e n t s in s p a c e

7 m. pi = Param ( i n i t i a l i z e =3 .1416) # Pi

8

9 m. t f e = RangeSet ( 0 , value (m. n f e t )−1) # S e t o f f i n i t e e l e m e n t p o i n t s in t ime

10 m. tcp = RangeSet ( 1 , value (m. ncp ) ) # S e t o f c o l l o c a t i o n p o i n t s in t ime

11 m. x = RangeSet ( 0 , value (m. nfex ) ) # S e t o f f i n i t e e l e m e n t p o i n t s in s p a c e

12

13 # C o l l o c a t i o n Matrix

14 radau adot ={ ( 1 , 1 ) : −9 . 0 0 0 0 0 0 0 0 0 0 0 0 0 , ( 1 , 2 ) : −4 . 1 3 9 3 8 7 6 9 1 3 3 9 8 , ( 1 , 3 ) : 1 . 7 3 9 3 8 7 6 9 1 3 3 9 8 ,\

15 ( 1 , 4 ) : −2 . 9 9 9 9 9 9 9 9 9 9 9 9 9 , ( 2 , 1 ) : 1 0 . 0 4 8 8 0 9 3 9 9 8 2 7 4 , ( 2 , 2 ) : 3 . 2 2 4 7 4 4 8 7 1 3 9 1 5 ,\

16 ( 2 , 3 ) : −3 . 5 6 7 8 4 0 0 8 4 6 9 0 4 , ( 2 , 4 ) : 5 . 5 3 1 9 7 2 6 4 7 4 2 1 8 , ( 3 , 1 ) : −1 . 3 8 2 1 4 2 7 3 3 1 6 0 7 ,\

17 ( 3 , 2 ) : 1 . 1 6 7 8 4 0 0 8 4 6 9 0 4 , ( 3 , 3 ) : 0 . 7 7 5 2 5 5 1 2 8 6 0 8 4 , ( 3 , 4 ) : −7 . 5 3 1 9 7 2 6 4 7 4 2 1 8 ,\

18 ( 4 , 1 ) : 0 . 3 3 3 3 3 3 3 3 3 3 3 3 3 , ( 4 , 2 ) : −0 . 2 5 3 1 9 7 2 6 4 7 4 2 1 , ( 4 , 3 ) : 1 . 0 5 3 1 9 7 2 6 4 7 4 2 1 ,\

19 ( 4 , 4 ) : 5 . 0 0 0 0 0 0 0 0 0 0 0 0 0}

20 m. adot = Param (m. tcp ,m. tcp , i n i t i a l i z e =radau adot )

21

22 m. ht = Param ( i n i t i a l i z e =2.0/m. n f e t ) # Length o f t ime f i n i t e e l e m e n t

23 m. hx = Param ( i n i t i a l i z e =1.0/m. nfex ) # Length o f s p a t i a l f i n i t e e l e m e n t

24

25 m. u = Var (m. x ,m. t f e ,m. tcp , i n i t i a l i z e = 0 . 2 )

26 m. t = Var (m. t f e ,m. tcp )

27

28 m. dudx = Var (m. x ,m. t f e ,m. tcp )

29 m. dudx2 = Var (m. x ,m. t f e ,m. tcp )

30 m. dudt = Var (m. x ,m. t f e ,m. tcp )

31

32 def pde (m, i , j , k ) :

33 i f i == 0 or i == value (m. nfex ) or k == 0 :

34 return Constra int . Skip

35 return m. pi ∗∗2∗m. dudt [ i , j , k ] == m. dudx2 [ i , j , k ]

36 m. pde = Constra int (m. x ,m. t f e ,m. tcp , r u l e= pde )

37

66
CHAPTER 5. EXAMPLES OF MODELING CAPABILITIES



5.1 HEAT TRANSFER

38 def i n i t c o n (m, i ) :

39 i f i == 0 or i == value (m. nfex ) :

40 return Constra int . Skip

41 return m. u [ i , 0 , 1 ] == s i n (m. pi∗ i ∗m. hx )

42 m. i n i t c o n = Constra int (m. x , r u l e= i n i t c o n )

43

44 def lowerbound (m, j , k ) :

45 return m. u [ 0 , j , k ] == 0

46 m. lowerbound = Constra int (m. t f e ,m. tcp , r u l e= lowerbound )

47

48 def upperbound (m, j , k ) :

49 return m. pi∗exp(−m. t [ j , k ] ) +m. dudx [ value (m. nfex ) , j , k ] == 0

50 m. upperbound = Constra int (m. t f e ,m. tcp , r u l e= upperbound )

51

52 def i n i t t (m) :

53 return m. t [ 0 , 1 ] == 0

54 m. i n i t t = Constra int ( r u l e= i n i t t )

55

56 # Apply f i n i t e d i f f e r e n c e d i s c r e t i z a t i o n e q u a t i o n s

57 def dudx backwardDifference (m, i , j , k ) :

58 i f i == 0 :

59 return Constra int . Skip

60 return (m. u [ i , j , k]−m. u [ i −1, j , k ] ) /m. hx == m. dudx [ i , j , k ]

61 m. dudx backwardDiff = Constra int (m. x ,m. t f e ,m. tcp , r u l e= dudx backwardDifference )

62

63 def dudx2 backwardDifference (m, i , j , k ) :

64 i f i == 0 or i == 1 :

65 return Constra int . Skip

66 return (m. u [ i −2, j , k]−2∗m. u [ i −1, j , k]+m. u [ i , j , k ] ) /m. hx∗∗2 == m. dudx2 [ i , j , k ]

67 m. dudx2 backwardDiff = Constra int (m. x ,m. t f e ,m. tcp , r u l e= dudx2 backwardDifference )

68

69 # Apply c o l l o c a t i o n d i s c r e t i z a t i o n e q u a t i o n s

70 def d u d t c o l l o c a t i o n (m, i , j , k ) :

71 i f k == 1 :
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72 return Constra int . Skip

73 return sum(m. u [ i , j , s ]∗m. adot [ s , k ] for s in m. tcp ) == m. ht∗m. dudt [ i , j , k ]

74 m. d u d t c o l l o c a t i o n = Constra int (m. x ,m. t f e ,m. tcp , r u l e= d u d t c o l l o c a t i o n )

75

76 def d t c o l l o c a t i o n (m, j , k ) :

77 i f k == 1 :

78 return Constra int . Skip

79 return sum(m. t [ j , s ]∗m. adot [ s , k ] for s in m. tcp ) == m. ht

80 m. d t c o l l o c a t i o n = Constra int (m. t f e ,m. tcp , r u l e= d t c o l l o c a t i o n )

81

82 # Apply c o l l o c a t i o n c o n t i n u i t y e q u a t i o n s

83 def u c o n t i n u i t y (m, i , j ) :

84 i f j == value (m. n f e t )−1:

85 return Constra int . Skip

86 return m. u [ i , j +1 ,1 ] == m. u [ i , j , 4 ]

87 m. u c o n t i n u i t y = Constra int (m. x ,m. t f e , r u l e= u c o n t i n u i t y )

88

89 def t c o n t i n u i t y (m, j ) :

90 i f j == value (m. n f e t )−1:

91 return Constra int . Skip

92 return m. t [ j +1 ,1 ] == m. t [ j , 4 ]

93 m. t c o n t i n u i t y = Constra int (m. t f e , r u l e= t c o n t i n u i t y )

94

95 m. obj = Objec t ive ( expr =1)

96

97 s o l v e r = SolverFac tory ( ’ ipopt ’ )

98 r e s u l t s = s o l v e r . so lve (m, t e e =True )

We now contrast the Pyomo model with manual discretization to one that has been dis-

cretized using pyomo.dae. The code is shown below. This implementation requires one

additional package imports in order to gain access to the desired modeling components.

Lines 4-8 define the modeling sets and variables. Note that the time and spatial scaling is

handled explicitly in the ContinuousSet components. This means that after applying a dis-
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cretization scheme, the components ’m.t’ and ’m.x’ will contain actual points in time and

space respectively. This also eliminates the need for an additional differential variable to

represent time as we had in the manually discretized model. Lines 10-13 define the deriva-

tives that appear in the model, lines 15-34 define the equations in the heat transfer model,

and line 36 defines the dummy objective function. These sections are nearly identical to

the previous implementation. Lines 38-42 apply discretization schemes to the model. Line

41 applies the Backward Difference method to the spatial ContinuousSet, ’m.x’, and line

42 applies Radau collocation to the time ContinuousSet, ’m.t’. Again, the model is solved

using IPOPT.

The implementation using pyomo.dae requires only half the number of lines of the

manually discretized model, leading to a much more concise and easy to follow model.

The discretization schemes have been completely separated from the model itself. Notice

that the second implementation doesn’t have any of the discretization-specific parameters

used in the first. Furthermore, changing the number of finite elements, the number of

collocation points, or the entire discretization scheme is equally simple by modifying one

of the 4 lines of code defining the discretization. To illustrate this point, we show some

alternate ways to discretize the heat transfer model below.
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Listing 5.2: Pyomo heat tranfer model discretized using pyomo.dae

1 from pyomo . environ import ∗

2 from pyomo . dae import ∗

3

4 m = ConcreteModel ( )

5 m. pi = Param ( i n i t i a l i z e =3 .1416)

6 m. t = ContinuousSet ( bounds = ( 0 , 2 ) )

7 m. x = ContinuousSet ( bounds = ( 0 , 1 ) )

8 m. u = Var (m. x ,m. t )

9

10 # D e c l a r e d e r i v a t i v e s in t h e model

11 m. dudx = Derivat iveVar (m. u , wrt=m. x )

12 m. dudx2 = Derivat iveVar (m. u , wrt =(m. x ,m. x ) )

13 m. dudt = Derivat iveVar (m. u , wrt=m. t )

14

15 # D e c l a r e PDE

16 def pde (m, i , j ) :

17 i f i == 0 or i == 1 or j == 0 :

18 return Constra int . Skip

19 return m. pi ∗∗2∗m. dudt [ i , j ] == m. dudx2 [ i , j ]

20 m. pde = Constra int (m. x ,m. t , r u l e= pde )

21

22 def i n i t c o n (m, i ) :

23 i f i == 0 or i == 1 :

24 return Constra int . Skip

25 return m. u [ i , 0 ] == s i n (m. pi∗ i )

26 m. i n i t c o n = Constra int (m. x , r u l e= i n i t c o n )

27

28 def lowerbound (m, j ) :

29 return m. u [ 0 , j ] == 0

30 m. lowerbound = Constra int (m. t , r u l e= lowerbound )

31

32 def upperbound (m, j ) :
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33 return m. pi∗exp(− j )+m. dudx [ 1 , j ] == 0

34 m. upperbound = Constra int (m. t , r u l e= upperbound )

35

36 m. obj = Objec t ive ( expr =1)

37

38 # D i s c r e t i z e us ing F i n i t e D i f f e r e n c e and C o l l o c a t i o n

39 d i s c r e t i z e r = TransformationFactory ( ’ dae . f i n i t e d i f f e r e n c e ’ )

40 d i s c r e t i z e r 2 = TransformationFactory ( ’ dae . c o l l o c a t i o n ’ )

41 d i s c r e t i z e r . apply to (m, nfe =25 , wrt=m. x , scheme= ’BACKWARD’ )

42 d i s c r e t i z e r 2 . apply to (m, nfe =20 , ncp =3 , wrt=m. t )

43

44 s o l v e r = SolverFac tory ( ’ ipopt ’ )

45 r e s u l t s = s o l v e r . so lve (m, t e e =True )
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Listing 5.3: Alternate discretizations for heat transfer model using pyomo.dae

1 # D i s c r e t i z e e n t i r e model us ing F i n i t e D i f f e r e n c e Method

2 d i s c r e t i z e r = TransformationFactory ( ’ dae . f i n i t e d i f f e r e n c e ’ )

3 d i s c r e t i z e r . apply to (m, nfe =25 , wrt=m. x , scheme= ’BACKWARD’ )

4 d i s c r e t i z e r . apply to (m, nfe =20 , wrt=m. t , scheme= ’FORWARD’ )

5

6 # D i s c r e t i z e e n t i r e model us ing C o l l o c a t i o n

7 d i s c r e t i z e r = TransformationFactory ( ’ dae . c o l l o c a t i o n ’ )

8 d i s c r e t i z e r . apply to (m, nfe =10 , ncp =3 , wrt=m. x , scheme= ’LAGRANGE−LEGENDRE ’ )

9 d i s c r e t i z e r . apply to (m, nfe =20 , ncp =3 , wrt=m. t , scheme= ’LAGRANGE−RADAU’ )

Experimenting with the type of discretization scheme along with the resolution of the

desired scheme becomes systematic. However, we are careful to note that not every dis-

cretization scheme is appropriate for every model. Different boundary/initial conditions

may need to be applied depending on the model and the discretization scheme used.

pyomo.dae does not perform any model checking to ensure the applied discretization

is appropriate for the model it is applied to. This is currently the responsibility of the

user. The pyomo.dae framework, however, provides the necessary constructs to enable

the user to tailor the specification of boundary conditions.

5.2 Optimal Control

The purpose of optimal control problems is to find an optimal sequence of inputs to a

dynamic system in order to meet some objective on that system. For example, a typical

objective might be minimizing or maximizing the final value of some state variable within
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a fixed time horizon. A small example was obtained from [81]:

min x3(tf ) (5.2a)

s.t. ẋ1 = x2 (5.2b)

ẋ2 = −x2 + u (5.2c)

ẋ3 = x2
1 + x2

2 + 0.005 · u2 (5.2d)

x2 − 8 · (t− 0.5)2 + 0.5 ≤ 0 (5.2e)

x1(0) = 0, x2(0) = −1, x3(0) = 0, tf = 1 (5.2f)

This problem has three state variables x1, x2, x3 and one control u. The following code

snippet shows how to implement some of the interesting features in this model including

the objective function (5.2a) and a complex path constraint (5.2e). Discretizing problem

(5.2) using orthogonal collocation with 7 finite elements and 6 collocation points per ele-

ment will result in the optimal profiles shown in the top plots of Figure 5.1. Note that in

this solution the control variable is allowed to change at every time point. In many appli-

cations this sort of continuous change in the control variable is undesirable or impossible

to implement. Therefore, in practice, the control variable is often restricted to be piecewise

constant over a certain time interval. This sort of restriction can easily be implemented in

pyomo.dae using the reduce collocation points() function. An example of how

to use this function is shown in the code snippet presented below. The last line restricts the

control variable u to only 1 free collocation point per finite element rendering it piecewise

constant. If we instead wanted the control variable to be piecewise linear we would only

have to modify the ’ncp’ keyword argument in the reduce collocation points()

function to ’ncp=2’ which would give the control variable two free collocation points, or

degrees of freedom, per finite element.

Listing 5.4: Partial implementation of problem (5.2)

1 # S e t t i n g t h e o b j e c t i v e f u n c t i o n

2 m. obj = Objec t ive ( expr=m. x3 [ 1 ] )
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3

4 # D e c l a r i n g t h e pa th c o n s t r a i n t

5 def con (m, t i d x ) :

6 return m. x2 [ t i d x ]−8∗( t idx −0.5)∗∗2+0.5 <= 0

7 m. con = Constra int (m. t , r u l e= con )

Listing 5.5: Code for discretizing the optimal control model and reducing the degrees of

freedom

1 # D i s c r e t i z e model us ing radau c o l l o c a t i o n

2 d i s c r e t i z e r = TransformationFactory ( ’ dae . c o l l o c a t i o n ’ )

3 d i s c r e t i z e r . apply to ( model , wrt=model . t , nfe =7 , ncp =6)

4

5 # R e s t r i c t c o n t r o l t o be p i e c e w i s e c o n s t a n t

6 d i s c r e t i z e r . r e d u c e c o l l o c a t i o n p o i n t s ( model , var=model . u , ncp =1 , c o n t s e t =model . t )
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Figure 5.1: Solution to the optimal control problem (top) with no restrictions on the control

variable and (bottom) restricting the control variable to be piecewise constant. Black dotted

line shows the inequality path constraint.

5.3 Parameter Estimation for Disease Transmission

The next example is a parameter estimation problem taken from [82]. This problem esti-

mates parameters for a childhood infectious disease transmission model from disease case
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data. The mathematical model is:

min ωI
∑
i∈F

(εIi)
2 + ωφ

∑
k∈T

(εφk)2 (5.3a)

s.t.
dS

dt
=
−β(y(t))S(t)I(t)

N
− εI(t) +B(t) (5.3b)

dI

dt
=
β(y(t))S(t)I(t)

N
+ εI(t)− γI(t) (5.3c)

dφ

dt
=
β(y(t))S(t)I(t)

N
+ εI(t) (5.3d)

R?k = ηk(φi,k − φi,k−1) + εφk , k ∈ T (5.3e)

βk = βmag · βpatt
k , k ∈ T (5.3f)

1.0 =

∑
k∈T β

patt
k

len(T )
(5.3g)

S̄ =

∑
i∈F Si

len(F)
, β̄ =

∑
k∈T βk

len(T )
(5.3h)

0 ≤ I(t), S(t) ≤ N, 0 ≤ β(y(t)), 0 ≤ φ(t) (5.3i)

where S represents the number of people susceptible to the disease, I is the number of

people with the disease who are infectious, and φ is the cumulative incidence of the dis-

ease. R? is the reported incidence of the disease and is a known input at a discrete set of

reporting times. For a more detailed description of the variables and parameters in the

model we refer the reader to [82].

The purpose of this model is to estimate the time-varying transmission parameter β

under the assumption that β varies seasonally but is the same from year to year. This in-

troduces an interesting feature of multiple time sets; T , the set of reporting times over a

single year and F , the set of all reporting times over a 20 year period. The set F is rep-

resented by the pyomo.dae continuous set model.TIME. The code snippet below shows

how equation (5.3d) is implemented accounting for these multiple time sets.

Listing 5.6: Code for implementing the differential equation (5.3d) in the gas network

model

1 def phidot eq ( model , i ) :
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2 i f i == 0 :

3 return Constra int . Skip

4 f e = model . TIME . get upper element boundary ( i )

5 j = model . TIME . f e . index ( f e )

6 return model . phidot [ i ] == model . e p s I [ j ] \

7 + ( model . beta [ model . P BETA NDX[ j ] ] ∗model . I [ i ]∗model . S [ i ] ) / model . P POP

8 model . phidot eq = Constra int ( model . TIME , r u l e= phidot eq )

Lines 4 and 5 take any time point i ∈ F and determine the corresponding upper finite

element boundary fe. The parameter model.P BETA NDX then maps this finite element

value to the correct index in T for model.beta.

The disease infection model has three differential equations and was discretized with

520 finite elements and 3 collocation points per finite element using orthogonal colloca-

tion with Lagrange polynomials and Radau roots. This leads to an NLP with 10,458 vari-

ables and 9,910 equality constraints. The model was discretized such that all finite element

points correspond to a reporting time for R?. Similar to the previous example, the model

was implemented twice, once by doing the discretization manually and once by using

pyomo.dae. Table 5.1 compares the timing and solver results for the two models. The

creation time refers to the amount of time it takes to read the python script and build the

optimization model in memory. For the implementation using pyomo.dae, the creation

time also includes the time for automatic discretization. If we compare the creation time

for the two implementations we see that they don’t differ significantly showing that there

is little overhead associated with applying the discretization automatically.

If we compare the solver results for the two implementations, we see a similar result. In

particular, the solve time for the two models is practically the same and it takes the solver

the same number of iterations to find the optimal solution. Even though the timing results

reported in the table show little difference between the performance of the two implemen-

tations, there is a crucial time which is not reported here and that is the implementation

time. The first time a modeler implements a discretization scheme like collocation manu-
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Manual Discretization Using pyomo.dae

Creation Time (sec) 1.38 2.20

Solve Time (CPU sec) 2.65 2.57

IPOPT Iterations 27 27

Objective (×10−5) 1.4716 1.4716

Table 5.1: Comparison of two implementations of the disease transmission problem

ally, it could easily take over an hour to apply and debug a model with a single differential

equation. In contrast, incorporating a differential equation using pyomo.dae is as simple

as writing a regular model constraint and selecting which discretization scheme to apply

which can be implemented in a fraction of the time.

Model initialization is an important step in being able to solve problems with differential

equations. The following code snippet shows how the variable S is initialized for this

particular example.

Listing 5.7: Code for initializing S in the disease transmission model

1 def i n i t S ( model , i ) :

2 i f i ==0:

3 return model . i n i t S i n i t

4 f e = model . TIME . get upper element boundary ( i )

5 j = model . TIME . f e . index ( f e )

6 return model . i n i t S [ j ]

7 def people bounds ( model ) :

8 return ( 0 . 0 , model . P POP )

9 model . S = Var ( model . TIME , i n i t i a l i z e = i n i t S , bounds= people bounds )

We highlight that this is an illustration of how a pyomo.dae model can potentially be

initialized but many alternatives are possible. In particular, the approach presented here

initializes the finite element points using a profile defined by the time-varying parame-

ter model.init S and it initializes the intermediate collocation points by setting them
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equal to the value at the upper finite element boundary. We choose this initialization ap-

proach because it is flexible enough to handle discretizations with any number of colloca-

tion points. pyomo.dae does not currently provide any automatic frameworks for model

initialization. However, using existing Pyomo and Python constructs, a user can create

initializations.

5.4 Stochastic Optimal Control for Natural Gas Networks

The last example seeks to optimize gas network inventories while accounting for uncer-

tainties in the system. The idea is to satisfy uncertain gas demands in the network by

building up inventory in the pipelines in a way that minimizes the required compression
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power. The model was proposed in [83] and is shown below.

min
∑
t∈T

∑
i∈Sn

cssi,t∆τ +
∑
t∈T

∑
`∈L

ceP`,t∆τ +
∑
t∈T

∑
j∈D

cd(dj,t − d̄j,t)2 (5.4a)

+
∑
k∈X

∑
`∈L

cT (p`,T,k − p`,0,k)2 +
∑
k∈X

∑
`∈L

cT (f`,T,k − f`,0,k)2 (5.4b)

s.t.
∂p`(x, τ)

∂τ
= −c1,`

∂f`(x, τ)

∂x
, ` ∈ L, x ∈ [0, L`], τ ∈ [0, T ] (5.4c)

∂f`(x, τ)

∂t
= −c2,`

∂p`(x, τ)

∂x
− c3,`

f`(x, τ)|f`(x, τ)|
p`(x, τ)

, ` ∈ L, x ∈ [0, L`], τ ∈ [0, T ]

(5.4d)

p`(L`, τ) = θrec(`)(τ), ` ∈ L, τ ∈ [0, T ] (5.4e)

p`(0, τ) = θsnd(`)(τ), ` ∈ Lp, τ ∈ [0, T ] (5.4f)

p`(0, τ) = θsnd(`)(τ) + ∆θ`(τ), ` ∈ La, τ ∈ [0, T ] (5.4g)∑
`∈Lrecn

f`(L`, τ)−
∑

`∈Lsndn

f`(0, τ) +
∑
i∈Sn

si(τ)−
∑
j∈Dn

dj(τ) = 0, n ∈ N τ ∈ [0, T ] (5.4h)

P`(τ) = cp · T · f`(0, τ)

(θsnd(`)(τ) + ∆θ`(τ)

θsnd(`)(τ)

) γ−1
γ

− 1

 , ` ∈ L, τ ∈ [0, T ] (5.4i)

θsup(i),τ = θ̄supi , i ∈ S, τ ∈ [0, T ] (5.4j)

0 = −c1,`
∂f`(x, 0)

∂x
, ` ∈ L, x ∈ [0, L`] (5.4k)

0 = −c2,`
∂p`(x, 0)

∂x
− c3,`

f`(x, 0)|f`(x, 0)|
p`(x, 0)

, ` ∈ L, x ∈ [0, L`] (5.4l)

PL` ≤ P`(τ) ≤ PU` , ` ∈ La, τ ∈ [0, T ] (5.4m)

θsuc,L` ≤ θsnd(`)(τ) ≤ θsuc,U` , ` ∈ La, τ ∈ [0, T ] (5.4n)

θdis,L` ≤ θsnd(`)(τ) + ∆θ`(τ) ≤ θdis,U` , ` ∈ La, τ ∈ [0, T ] (5.4o)

This model includes detailed network dynamics given by the PDEs (5.4c) and (5.4d).

Note that the PDEs are indexed by the number of links L in the network which means that

even moderately sized networks will require the simultaneous solution of many PDEs.

Uncertainty is included in this formulation by considering multiple scenarios for the gas

demand and formulating the problem as a stochastic optimization problem. In this case,
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the PDEs would have to be replicated for each scenario. Overall this leads to an opti-

mization model that changes dramatically in size with changes in the number of network

links, scenarios, and discretization points. The implementations for the partial differential

equations and the pressure boundary conditions are shown in the code snippets below.

Listing 5.8: Code for implementing the PDE equations (5.4c) and (5.4d)

1 # F i r s t PDE f o r gas network model

2 def f l o w r u l e (m, j , i , t , k ) :

3 i f t == m. TIME . f i r s t ( ) or k == m. DIS . l a s t ( ) :

4 return Constra int . Skip # Sk ip a t i n i t i a l t ime or f i n a l l o c a t i o n

5 return m. dpxdt [ j , i , t , k ]/3600 + m. c1 [ i ]/m. l l e n g t h [ i ]∗m. dfxdx [ j , i , t , k ] == 0

6 model . flow = Constra int ( model . SCEN, model . LINK , model . TIME ,

7 model . DIS , r u l e=f l o w r u l e )

8

9 # Second PDE f o r gas network model

10 def p r e s s r u l e (m, j , i , t , k ) :

11 i f t == m. TIME . f i r s t ( ) or k == m. DIS . l a s t ( ) :

12 return Constra int . Skip # Sk ip a t i n i t i a l t ime or f i n a l l o c a t i o n

13 return m. dfxdt [ j , i , t , k ]/3600 ==

14 −m. c2 [ i ]/m. l l e n g t h [ i ]∗m. dpxdx [ j , i , t , k ] − m. s l a c k [ j , i , t , k ]

15 model . press = Constra int ( model . SCEN, model . LINK , model . TIME ,

16 model . DIS , r u l e= p r e s s r u l e )

17

18 def s l a c k e q r u l e (m, j , i , t , k ) :

19 i f t == m. TIME . l a s t ( ) :

20 return Constra int . Skip

21 return m. s l a c k [ j , i , t , k ]∗m. px [ j , i , t , k ] == m. c3 [ i ]∗m. fx [ j , i , t , k ]∗m. fx [ j , i , t , k ]

22 model . s lackeq = Constra int ( model . SCEN, model . LINK , model . TIME ,

23 model . DIS , r u l e= s l a c k e q r u l e )

Listing 5.9: Code for implementing the pressure boundary conditions (5.4e), (5.4f), and

(5.4g)

1 # boundary c o n d i t i o n s p r e s s u r e , p a s s i v e l i n k s
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2 def p r e s s p a s s t a r t r u l e (m, j , i , t ) :

3 return m. px [ j , i , t ,m. DIS . f i r s t ( ) ] == m. p [ j ,m. l s t a r t l o c [ i ] , t ]

4 model . p r e s s p a s s t a r t = Constra int ( model . SCEN, model . LINK P ,

5 model . TIME , r u l e= p r e s s p a s s t a r t r u l e )

6

7 def presspas end rule (m, j , i , t ) :

8 return m. px [ j , i , t ,m. DIS . l a s t ( ) ] == m. p [ j ,m. lendloc [ i ] , t ]

9 model . presspas end = Constra int ( model . SCEN, model . LINK P ,

10 model . TIME , r u l e=presspas end rule )

11

12 # boundary c o n d i t i o n s p r e s s u r e , a c t i v e l i n k s

13 def p r e s s a c t s t a r t r u l e (m, j , i , t ) :

14 return m. px [ j , i , t ,m. DIS . f i r s t ( ) ] == m. p [ j ,m. l s t a r t l o c [ i ] , t ]+m. dp [ j , i , t ]

15 model . p r e s s a c t s t a r t = Constra int ( model . SCEN, model . LINK A ,

16 model . TIME , r u l e= p r e s s a c t s t a r t r u l e )

17

18 def p r e s s a c t e n d r u l e (m, j , i , t ) :

19 return m. px [ j , i , t ,m. DIS . l a s t ( ) ] == m. p [ j ,m. lendloc [ i ] , t ]

20 model . pressac t end = Constra int ( model . SCEN, model . LINK A ,

21 model . TIME , r u l e= p r e s s a c t e n d r u l e )

There are two continuous domains in this model, time and one dimension in space.

The model was discretized in time using a backward finite difference scheme and was

discretized in space using a forward finite difference scheme. The model was discretized

with 47 time intervals and multiple numbers of spatial points. Table 5.2 shows the compu-

tational effort required for different spatial discretization resolutions and Figure 5.2 shows

how the flow profile converges as the number of discretization points increases. The largest

problem solved had over 400,000 variables and constraints. Note that the creation time for

the model is only a small fraction of the overall solution time. Again, the creation time in-

cludes the time to apply a discretization scheme automatically. We also see that the creation

time does not increase as dramatically as the solve time when the number of discretization

points increases. This illustrates that the automatic discretization routines are scalable.
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Table 5.2: Effect of spatial discretization resolution on computational performance

Scenarios Nx Variables Constraints Iterations Creation (sec) Solve (sec)

1 2 9686 9144 35 0.64 2.27

1 6 25718 25128 45 1.71 11.85

1 10 41750 41112 43 2.92 19.26

1 20 81830 81072 50 5.87 40.84

1 60 242150 240912 56 17.72 147.72

1 100 402470 400752 67 31.54 412.18

3 2 29056 27872 37 1.84 17.50

3 10 125248 123776 54 8.96 124.44

3 20 245488 243656 64 18.07 276.18

Figure 5.2: Optimal axial flow profile in gas network for different resolutions. Darker color

indicates more discretization points.

It should also be mentioned that the model reported in [83] was first implemented in

Pyomo using a manual discretization scheme. During the process of converting the manu-
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ally discretized model to pyomo.dae we actually discovered an ”off-by-one” error in the

manual discretization. Such errors are easy to make and often difficult to find, given the

complexity of the models. In this case pyomo.dae becomes handy because it provides a

concise and systematic way of discretizing the variables and constraints in the model.

We again highlight that pyomo.dae does not perform any model checking. Therefore

it is up to the user to write a well-posed model and pick an appropriate discretization

scheme for their model. This is worth noting for this example because it is up to the user

to skip the enforcement of the PDE at certain domain boundaries as shown in Listing 5.8

in order to ensure consistency between the specified boundary conditions and the applied

discretization scheme.

5.5 Concluding Remarks

The level of model abstraction introduced by pyomo.dae opens the door for novel model

formulations and the implementation of generalized frameworks. Common applications

of dynamic optimization, such as model predictive control (MPC), which require solving a

sequence of optimization problems can be implemented as general frameworks and sepa-

rated from the system model they are applied to. In fact, a general implementation of MPC

has already been implemented using this framework.

Furthermore, there is also potential for pyomo.dae to be used in multigrid/multiscale

applications. By separating the model from the discretization scheme, we enable general

implementations of algorithms requiring the sequential solution of problems with differ-

ent discretization resolutions or to communicate discretization information to specialized

solvers.

In addition to the core modeling components found in every algebraic modeling lan-

guage, Pyomo also has other specialized packages for handling generalized disjunctive

programming (GDP) and stochastic programming (SP) problems. These extensions follow

the modularized design of Pyomo and can be combined with pyomo.dae. For example,
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this allows a user to easily represent GDP problems with differential equations or SP prob-

lems incorporating a dynamic model in each scenario. Providing the user a straightfor-

ward way to represent these complex models enables the development of new algorithms

for solving them.
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Chapter 6

Parallel Algorithms for Dynamic

Optimization

The modeling framework in the previous section provides an intuitive way for formulat-

ing dynamic optimization problems. In this section, we now shift the focus to efficient

solution strategies for these problems. As mentioned previously, one of the main chal-

lenges of using a direct transcription approach to solve dynamic optimization problems is

solving the large-scale nonlinear optimization problem resulting from the discretization.

This challenge is exacerbated when considering industrial-scale dynamic models. Paral-

lel decomposition strategies such as Schur complement decomposition have been shown

to significantly reduce the computational costs of solving large-scale dynamic optimiza-

tion problems. In this chapter we review this approach and also propose another parallel

algorithm called cyclic reduction (CR) for these problems.

6.1 Introduction

Several parallel decomposition strategies for dynamic optimization have been proposed in

the literature. Parallel techniques have been developed for both sequential and simultane-

ous dynamic optimization solution methods[84, 85, 86, 87, 88]. Our work makes use of a

simultaneous discretization, or direct transcription, approach and exploits the structure of

the system imposed by the discretization. Similar approaches have exploited a bordered

block diagonal structure that arises in these systems and solved them using different ver-

sions of Schur complement decomposition[89, 90, 91, 92, 93].
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Our work differs in that it takes advantage of a block tridiagonal structure. We make use

of an algorithm called cyclic reduction which is a parallel algorithm for solving tridiagonal

or block tridiagonal linear systems. It was originally proposed by Golub and Hockney in

the 1960’s [94] and has historically been applied in the context of solving partial differ-

ential equations numerically [95, 96, 97, 98]. A nice review of the history of CR and its

applications can be found in [99].

The original formulation of CR proposed by Hockney was found to be numerically un-

stable. A stable variant of the algorithm was later proposed by Buneman[95]. Since then,

the stability and numerical conditioning of CR has been studied in [100, 101, 102]. It has

been shown that under the condition of diagonal dominance or block diagonal dominance

CR is well-defined and stable.

CR has previously been applied to solve optimal control problems in parallel however it

was done within the context of a multiple shooting approach[103, 104]. More recently [105]

applied CR to solve quadratic programming problems (QPs) arising from model predictive

control with the Mehrotra Predictor-Corrector interior point method. The KKT matrix was

written in a dense normal form and cyclic reduction was applied to the block tridiagonal

structure with dense blocks.

In this work we consider a more general class of nonlinear dynamic optimization prob-

lems and apply CR in the context of a simultaneous discretization approach solved using

an interior point method. We work with the symmetric indefinite augmented form of the

KKT matrix which has a block diagonal structure with sparse blocks. Following the anal-

ysis in [105] we also investigate the numerical conditioning and stability of CR applied to

dynamic optimization problems.

Several high-performance implementations of CR have been developed over the years.

Well-known implementations include BLKTRI[106], BCYCLIC[107], and the GPU imple-

mentation of Zhang et al.[108]. However none of these implementations is ideally suited

to handle the sparse, structured, nonconstant blocks arising from dynamic optimization
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problems. BLKTRI is specialized to handle separable elliptic partial differential equations,

BCYCLIC is designed to handle dense blocks, and the GPU implementation solves tridiag-

onal matrices rather than block tridiagonal matrices. The main contribution of this work is

to show that CR is a promising approach for dynamic optimization and motivate the future

development of a high-performance implementation of CR tailored for these problems.

In order to demonstrate how structure arises in the context of dynamic optimization, the

next section gives a brief overview of one common approach for solving general nonlin-

ear optimization problems, the interior-point method. The next section also shows how

linear algebra becomes important for solving nonlinear optimization problems. We then

illustrate how we can exploit structure in the linear systems arising from dynamic opti-

mization problems in Section 6.3. Sections 6.4 and 6.5 describe the two algorithms used in

this work and Sections 6.6 and 6.7 provide a more detailed analysis of the fill-in produced

by the algorithms as well as the conditioning of the algorithms.

6.2 Interior-point Method

The interior-point algorithm described here is based on the one described in [47]. This

algorithm solves problems with the following form

min
x∈R

f(x) (6.1a)

s.t. c(x) = 0 (6.1b)

x ≥ 0 (6.1c)

where f : Rn → R and c : Rn → Rm are nonlinear functions of x ∈ Rn. The first step of the

algorithm is to move the inequality constraints into the objective function, multiplied by a

barrier parameter µ. This forms the following barrier problem
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min
x∈R

f(x)− µ
n∑
i=1

ln(xi) (6.2a)

s.t. c(x) = 0 (6.2b)

The overall idea of an interior-point algorithm is to solve a sequence of barrier problems

(6.2) with decreasing values of µ. As µ approaches zero, the solution of (6.2) approaches

the solution of our original problem (6.1). In order to solve (6.2), we must satisfy the

Karush-Kuhn-Tucker (KKT) conditions, or first order optimality conditions, given by

∇xL(x, λ, ν) = ∇xf(x) +∇xc(x)λ− ν = 0 (6.3a)

c(x) = 0 (6.3b)

XV e− µe = 0 (6.3c)

where X = diag(x) and V = diag(ν). λ ∈ Rm is the vector of Lagrange multipliers for the

equality constraints and ν ∈ Rn represents the multipliers for the bound constraints. The

KKT conditions (6.3) form a system of nonlinear equations which can be solved using a

modified version of Newton’s method. For a fixed value of µ, the following linear system

must be solved at each iteration k of Newton’s method


Wk ATk −I

Ak 0 0

Vk 0 Xk




∆xk

∆λk

∆νk

 = −


∇xf(xk) +ATk λk − νk

c(xk)

XkVke− µe

 (6.4)

where Wk := ∇xxL(xk, λk, νk) and ATk := ∇xc(xk). However, because Newton’s method

will require a number of iterations, the nonsymmetric linear system (6.4) is typically re-

duced to a symmetric form which allows for more efficient solution using sparse, symmet-

ric linear algebra solvers. This is done by eliminating the last block row resulting in the

augmented form of the KKT system shown below.
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 Wk + Σk ATk

Ak 0

 ∆xk

∆λk

 = −

 rk

c(xk)

 (6.5)

where Σk = X−1
k Vk and rk = ∇xf(xk) + ATk λk + µX−1

k e. Throughout the rest of this

chapter we refer to system (6.5) as the ’KKT system’ and the left most term as the ’KKT

matrix’. We also refer to the vector multiplied by the KKT matrix as the ’variable vec-

tor’. For large-scale NLP problems, solving the KKT system (6.5) becomes the dominant

time-consuming step in the overall interior point algorithm. Furthermore, the system may

become prohibitively large to store the full KKT matrix in memory. For this reason, this

work investigates ways to speed up the solution of the KKT system using several parallel

linear algebra techniques. These techniques exploit certain structures in the KKT matrix

that arise from applying a discretization scheme to solve a dynamic optimization problem.

The next section describes how these structures appear.

6.3 Exploiting Structure in the KKT System

Consider the simplified version of problem (1.2) below.

min

N−1∑
k=1

(Φ(xk, yk, uk)) + Ψ(xN )

s.t. xi+1 = g(xi, yi, ui), i = 1, . . . , N − 1 (6.6)

x1 = constant

The KKT matrix for this problem can be written as

 W fTw

fw 0

 w

λ

 = −

 r

c(α)

 (6.7)

where wT = [xT , yT , uT ] represents the primal variables. For notation simplicity we have

dropped the subscript k referring to the Newton method iteration and the ∆ in the variable
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vector. Recall that our model has been discretized using N discretization points, therefore

if we expand the variable vector it has the form

zT = [xT2 , . . . , x
T
N , y

T
1 , . . . , y

T
N−1, u

T
1 , . . . , u

T
N−1, λ

T
1 , . . . , λ

T
N−1] = [wT , λT ] (6.8)

If we rearrange the variable vector by grouping together primal and dual variables cor-

responding to the same discretization point we get

zT = [yT1 , u
T
1 , λ

T
1 , x

T
2 , y

T
2 , u

T
2 , λ

T
2 , . . . , x

T
N−1, y

T
N−1, u

T
N−1, λ

T
N−1, x

T
N ] (6.9)

The KKT matrix corresponding with this rearranged variable vector has the following

block tridiagonal structure



Wy1y1 Wy1u1 fTy1

Wu1y1 Wu1u1 fTu1

fy1 fu1 0 −I

−I Wx2x2 Wx2y2 Wx2u2 fTx2

Wy2x2 Wy2y2 Wy2u2 fTy2

Wu2x2 Wu2y2 Wu2u2 fTu2

fx2 fy2 fu2 0 −I

−I Wx3x3 Wx3y3 Wx3u3 fTx3

Wy3x3 Wy3y3 Wy3u3 fTy3

Wu3x3 Wu3y3 Wu3u3 fTu3

fx3 fy3 fu2 0

. . . −I

−I WxNxN


(6.10)

where the blocks have been outlined for clarity. This is the first of two structures that will

be exploited in this work. The second structure arises by noticing that the matrix (6.10)
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is almost block diagonal except for the off-diagonal identity terms. These identities arise

from the coupling in the dynamic model from one time step to the next. We can move

these coupling terms to the borders of the matrix by introducing decoupling variables v

and γ and the following equations to the KKT system

vi = xi+1, i = 1, . . . , N − 1

γi = λi−1, i = 2, . . . , N

The decoupling variables are added to the end of the variable vector and are again

grouped by discretization point such that

zT = [yT1 , u
T
1 , λ

T
1 , x

T
2 , y

T
2 , u

T
2 , λ

T
2 , . . . , x

T
N−1, y

T
N−1, u

T
N−1, λ

T
N−1, x

T
N , v

T
1 , γ

T
2 , v

T
2 , . . . , v

T
N−1, γ

T
N ]

(6.11)

Our KKT matrix now has the following bordered block diagonal structure
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

Wy1y1 Wy1u1 fTy1 0

Wu1y1 Wu1u1 fTu1 0

fy1 fu1 0 −I

Wx2x2 Wx2y2 Wx2u2 fTx2 −I 0

Wy2x2 Wy2y2 Wy2u2 fTy2 0 0

Wu2x2 Wu2y2 Wu2u2 fTu2 0 0

fx2 fy2 fu2 0 0 −I
. . . . . .

WxNxN −I

0 0 −I I

−I 0 0 0 I

0 0 0 −I . . .
. . . . . . I

−I I


(6.12)

Notice that the diagonal blocks from our original KKT matrix are now decoupled and

block diagonal. Additionally, the blocks outlined in the right and bottom borders of the

matrix are also block diagonal. These are both features that we can exploit.

To take advantage of the block tridiagonal structure in (6.10) we apply an algorithm

called cyclic reduction. For the bordered block diagonal structure in (6.12) we apply Schur

complement decomposition. Both of these techniques are parallelizable. These algorithms

are described in the next two sections.

6.4 Cyclic Reduction

Cyclic reduction is a parallel algorithm for solving tridiagonal or block tridiagonal linear

systems where half of the unknowns are eliminated at each pass of the algorithm. To
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illustrate this consider the linear system shown below.

A1 C1

B2 A2 C2

B3 A3 C3

. . . . . . . . .

BN AN





z1

z2

z3

...

zN


=



r1

r2

r3

...

rN


(6.13)

We assume that Aj , Bj , and Cj are matrices rather than scalar values. We refer to each

row in the tridiagonal matrix as a block row. To derive the CR operations for each pass,

consider the first three rows of pass i:

A
(i)
1 z

(i)
1 + C

(i)
1 z

(i)
2 = r

(i)
1

B
(i)
2 z

(i)
1 +A

(i)
2 z

(i)
2 + C

(i)
2 z

(i)
3 = r

(i)
2

B
(i)
3 z

(i)
2 +A

(i)
3 z

(i)
3 + C

(i)
3 z

(i)
4 = r

(i)
3 .

We use these equations to write z(i)
1 and z(i)

3 in terms of z(i)
2 and z(i)

4 .

z
(i)
1 = (A

(i)
1 )−1(r

(i)
1 − C

(i)
1 z

(i)
2 )

z
(i)
3 = (A

(i)
3 )−1(r

(i)
3 −B

(i)
3 z

(i)
2 − C

(i)
3 z

(i)
4 )

and substitute to get:

[A
(i)
2 −B

(i)
2 (A

(i)
1 )−1C

(i)
1 −C

(i)
2 (A

(i)
3 )−1B

(i)
3 ]z

(i)
2 −C

(i)
2 (A

(i)
3 )−1C

(i)
3 z

(i)
4 = r

(i)
2 −B

(i)
2 (A

(i)
1 )−1r

(i)
1 −C

(i)
2 (A

(i)
3 )−1r

(i)
3

which is rewritten for the next pass as:

A
(i+1)
1 z

(i+1)
1 + C

(i+1)
1 z

(i+1)
2 = r

(i+1)
1

Similarly, we can write z2j−1 and z2j+1 in terms of z2j , z2j−2, and z2j+2 as follows:

B
(i)
2j−1z

(i)
2j−2 +A

(i)
2j−1z

(i)
2j−1 + C

(i)
2j−1z

(i)
2j = r

(i)
2j−1

B
(i)
2j z

(i)
2j−1 +A

(i)
2j z

(i)
2j + C

(i)
2j+1z

(i)
2j+1 = r

(i)
2j

B
(i)
2j+1z

(i)
2j +A

(i)
2j+1z

(i)
2j+1 + C

(i)
2j+1z

(i)
2j+2 = r

(i)
2j+1.
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which leads to:

z
(i)
2j−1 = (A

(i)
2j−1)−1(r

(i)
2j−1 −B

(i)
2j−1z

(i)
2j−2 − C

(i)
2j−1z

(i)
2j ) (6.14)

z
(i)
2j+1 = (A

(i)
2j+1)−1(r

(i)
2j+1 −B

(i)
2j+1z

(i)
2j − C

(i)
2j+1z

(i)
2j+2) (6.15)

and we substitute to get:

−B(i)
2j (A

(i)
2j−1)−1B

(i)
2j−1z

(i)
2j−2 + [A

(i)
2j −B

(i)
2j (A

(i)
2j−1)−1C

(i)
2j−1 − C

(i)
2j (A

(i)
2j+1)−1B

(i)
2j+1]z

(i)
2j

−C(i)
2j (A

(i)
2j+1)−1C

(i)
2j+1z

(i)
2j+2 = r

(i)
2j −B

(i)
2j (A

(i)
2j−1)−1r

(i)
2j−1 − C

(i)
2j (A

(i)
2j+1)−1r

(i)
2j+1

which is rewritten for the next pass i+ 1 as:

B
(i+1)
j z

(i+1)
j−1 +A

(i+1)
j z

(i+1)
j + C

(i+1)
j z

(i+1)
j+1 = r

(i+1)
j (6.16)

where

B
(i+1)
j = B

(i)
2j (A

(i)
2j−1)−1B

(i)
2j−1

A
(i+1)
j = [A

(i)
2j −B

(i)
2j (A

(i)
2j−1)−1C

(i)
2j−1 − C

(i)
2j (A

(i)
2j+1)−1B

(i)
2j+1] (6.17)

C
(i+1)
j = C

(i)
2j (A

(i)
2j+1)−1C

(i)
2j+1

As a result this introduces zeroes into the tridiagonal structure leading to the matrix:

A
(i)
1 C

(i)
1

A
(i+1)
1 0 C

(i+1)
1

B
(i)
3 A

(i)
3 C

(i)
3

B
(i+1)
2 0 A

(i+1)
2 0 C

(i+1)
2

B
(i)
5 A

(i)
5 C

(i)
5

B
(i+1)
3 0 A

(i+1)
3 0 C

(i+1)
3

. . . . . . . . .

B
(i+1)
N/2 0 A

(i+1)
N/2



(6.18)

if N is even. Notice that the variables of pass i+ 1 correspond to the even variables of pass

i, or z(i+1)
j = z

(i)
2j .
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With a permutation of the block rows and columns in (6.18) we can then solve indepen-

dently for the even variables from the even rows and back-subtitute to recover the odd

variables from the odd equations. The system at pass i + 1 to solve for the even variables

of pass i will again have a block tridiagonal structure as shown below



A
(i+1)
1 C

(i+1)
1

B
(i+1)
2 A

(i+1)
2 C

(i+1)
2

B
(i+1)
3 A

(i+1)
3 C

(i+1)
3

. . . . . . . . .

B
(i+1)
N/2 A

(i+1)
N/2





z
(i+1)
1

z
(i+1)
2

z
(i+1)
3

...

z
(i+1)
N/2


=



r
(i+1)
1

r
(i+1)
2

r
(i+1)
3

...

r
(i+1)
N/2


but this system has only half as many block rows as the previous pass. We can continue to

apply CR passes until only a single block row is left or until the system is small enough to

solve directly.

During each pass the operations on the odd or even rows can be done independently of

the other odd or even rows respectively. For example, equations (6.14) and (6.15) require

the odd A(i) blocks to be factorized and each of these block factorizations can be done

independently, and therefore in parallel. Similarly, the calculation of the A(i+1)
j , B(i+1)

j ,

and C(i+1)
j blocks in equation (6.16) can be done independently for each j.

6.5 Schur Complement Decomposition

The second algorithm we investigate is blocked Cholesky decomposition or Schur comple-

ment decomposition. This algorithm can be used to solve bordered block diagonal linear

systems of the form shown below
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

A1 G1

A2 G2

. . .
...

AN GN

GT1 GT2 . . . GTN J





z1

z2

...

zN

η


=



r1

r2

...

rN

b


(6.19)

The first step in the algorithm is to perform a block elimination on the blocksA1 through

AN and substitute them into the bottom equation.

(J −
N∑
i=1

GTi A
−1
i Gi)η = b−

N∑
i=1

GTi A
−1
i ri (6.20)

This forms the Schur complement matrix S.

S = J −
N∑
i=1

GTi A
−1
i Gi (6.21)

The next step is to factorize S and solve for the variables η.

η = S−1(b−
N∑
i=1

GTi A
−1
i ri) (6.22)

Once η is known the remaining unknowns can be calculated from

zi = A−1
i (ri −Giη), i = 1, . . . , N (6.23)

Each step of this algorithm can be done in parallel. In the first step, each of the Ai blocks

can be factored independently of the others. The Schur complement can be pieced together

in parallel because the border G blocks are block diagonal. The final step of solving for the

zi variables is trivially parallelizable. It turns out that factorizing the Schur complement

can also be done in parallel because the Schur complement has a block tridiagonal struc-

ture as shown below.
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S =



S1 I

I S2

. . . I

I SN


(6.24)

This means that cyclic reduction can be used to factorize the Schur complement. Previ-

ous work applying the Schur complement approach to dynamic optimization has worked

with S as a whole and applied a serial, sparse symmetric linear algebra solver to factor S

[85, 92, 109]. Our approach factors S in parallel and exploits additional structure compared

to what has been done in the literature.

6.6 Sparsity Analysis

Maintaining sparsity is an important strategy for solving large-scale linear systems. In this

section we prove that the fill-in produced by applying CR to a sparse KKT system will be

limited to certain parts of the matrix and that much of the sparsity of the original system

will be preserved through the CR recursions.

Recall the block tridiagonal structure of the KKT matrix (6.10) and define E = [I 0 0],

Fk = [fxk fyk fuk ], z0
k = [xTk y

T
k u

T
k λ

T
k ]T , and

Wk =


Wxkxk Wxkyk Wxkuk

Wykxk Wykyk Wykuk

Wukxk Wukyk Wukuk

 (6.25)

then the tridiagonal blocks can be rewritten in the following form

A0
k =

 Wk (Fk)
T

Fk 0

 , B0
k =

 0 −ET

0 0

 , C0
k =

 0 0

−E 0

 = (B0
k)T (6.26)
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where the superscript ’0’ refers to the initial form of the blocks before any CR recursions.

Also recall, xk ∈ Rnx , yk ∈ Rny , uk ∈ Rnu , λk ∈ Rm, F ∈ Rm×(nx+ny+nu), and Ak ∈

R(nx+ny+nu+m)×(nx+ny+nu+m).

Now let E ∈ Rnx×(nx+ny+nu) take the following form E = [D 0]. Assume D ∈ Rnx×nx is

nonsingular and let

A−1 =


A11 AT12 AT13

A12 A22 AT23

A13 A23 A33


First, let us investigate the fill-in for the off-diagonal blocks from one CR pass to the next.

For the off-diagonal block B(i+1)
k we have:

B
(i+1)
k = −B(i)

2k (A
(i)
2k−1)−1B

(i)
2k−1

= −


−D(i)TA13 −D(i)TA23 −D(i)TA33

0 0 0

0 0 0




0 0 −D(i)T

0 0 0

0 0 0



= −


0 0 D(i)TA13D

(i)T

0 0 0

0 0 0


similarly for the off-diagonal block C(i+1)

k we have:
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C
(i+1)
k = −C(i)

2k (A
(i)
2k+1)−1C

(i)
2k+1

= −


0 0 0

0 0 0
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Notice that C(i+1)

k = B
(i+1)T
k and D(i+1) = D(i)AT13D

(i) and thus any fill-in that occurs in

the off-diagonal blocks during the CR recursions is limited to the (nx×nx) sized D blocks.

If we look at the fill-in for the diagonal block A(i+1)
k we have:
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 (6.27)

Thus, regardless of the original sparsity of A(i)
2k , the fill-in for A(i+1)

k is restricted to the

two (nx × nx) blocks in the top-left and bottom-right corners. This is significant because

for dynamic optimization problems the diagonal blocks of the KKT matrix in symmetric

indefinite augmented form are typically very sparse and nx � nu + ny +m.
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In contrast to the analysis provided above, we note that cyclic reduction applied to fac-

torize the Schur complement will not see any benefit from sparsity preservation because

the diagonal blocks of the Schur complement are dense.

6.7 Numerical Conditioning

In order to use CR in practice we have to ensure that the diagonal blocks, A(i)
k , remain

nonsingular and well-conditioned enough to perform a stable reduction in each pass. In

[105], a key point of using the dense normal form of the KKT matrix was that the diagonal

blocks are positive definite and they remain positive definite for every pass of CR. This

provides the necessary condition that the elimination using the diagonal block is well-

defined for each CR pass. Despite the positive definiteness of the diagonal blocks, the

author still observed some conditioning problems but the source of those difficulties was

not clear.

Our approach works on the symmetric indefinite augmented form of the KKT matrix,

instead of the normal form. This allows sparse factorization routines to be used on much

larger problems. Following the conditioning proof from [105] and describing the CR al-

gorithm in terms of Schur complements as was done in [110], we can prove the following

theorem.

Theorem 6.7.1. Assume that K0 is nonsingular. Then the block tridiagonal matrix K(i) remains

nonsingular for every CR pass i as long as the diagonal blocks A(i)
k are nonsingular.

Proof. With K0 nonsingular, we begin the induction by representing our block tridiagonal

matrix at pass i as:
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K(i) =



A1 C1

B2 A2 C2

B3 A3 C3

. . . . . . . . .

BNi ANi


(6.28)

At pass i we assume that K(i) is nonsingular and det(K(i)) 6= 0. By permuting the rows

and columns of K(i) to group the odd block rows and the even block rows we get the

following structure

K̃(i) =



A1 C1

A3 B3 C3

. . . B5
. . .

ANi−2
. . . CNi−2

ANi BNi

B2 C2 A2

B4 C4 A4

. . . . . . . . .

BNi−1 CNi−1 ANi−1



(6.29)

and det(K̃(i)) = ±det(K(i)). Since we assume the odd Ak blocks are nonsingular we

perform block Gaussian elimination to eliminate the blocks in the bottom left corner of

K̃(i) resulting in the matrix K̂(i). This forms the Schur complement in the bottom right

corner.

CHAPTER 6. PARALLEL ALGORITHMS FOR DYNAMIC OPTIMIZATION

103



6.7 NUMERICAL CONDITIONING

K̂(i) =


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B
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A
(i+1)
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

(6.30)

Because A(i+1)
k , B

(i+1)
k , and C(i+1)

k are given in (6.17) the Schur complement is identical to

K(i+i). Because of the block diagonal structure of the oddAk blocks, the Gaussian elimina-

tion steps, performed by adding multiples of one row to another, leaves the determinant

unchanged.

det
(
K̃(i)

)
= det

(
K̂(i)

)
6= 0 (6.31)

Furthermore, K̂(i) can be recognized as an upper triangular matrix for which the determi-

nant can be written as a product of the diagonal blocks.

det
(
K̂(i)

)
=

( ∏
k∈odd

det
(
A

(i)
k

))
det
(
K(i+1)

)
6= 0 (6.32)

From this expression we know that K(i+1) is nonsingular. We note that we can repeat

the same Schur complement operation for K(i+1) as long as the diagonal A(i+1)
k blocks are

nonsingular.

We know from the analysis in the previous section that the structure of A(i+1)
k will be the

same as A(i)
2k with fill-in in the top left and bottom right corners
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A
(i+1)
k =

 Q
(i)
k (Fk)

T

Fk ∆(i)

−

D(i)TA

(i)
33D

(i) 0 0

0 0 0

0 0 D(i)A
(i)
11D

(i)T

 (6.33)

=

 Q
(i)
k (Fk)

T

Fk ∆(i)

−
 φ(i) 0

0 ∆̃(i)

 =

 Q
(i+1)
k (Fk)

T

Fk ∆
(i+1)
k


where φ and ∆ are general representations of the fill-in at any CR pass and A(0)

k is defined

as in (6.26). Now let

A =

 Q (F )T

F ∆

 (6.34)

where we have dropped the k subscript and (i) superscript to simplify the notation. We

now state sufficient conditions that allow A to be nonsingular.

Theorem 6.7.2. The matrix A is nonsingular when F is full rank and Q is sufficiently positive

definite (i.e., Q− F̃ T1 Λ−1
+ F̃1 is positive definite).

Proof. An eigenvalue decomposition on ∆ leads to:

∆ = XΛXT (6.35)

where XT = X−1. Furthermore, we can find a permutation matrix P such that

PXT∆XP T =


Λ+

Λ−

0

 (6.36)

where Λ+ and Λ− are diagonal matrices with the positive and negative eigenvalues of ∆

respectively. Defining

H =

 I

PXT

 (6.37)
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we perform a congruence transformation on A using H and obtain the following matrix

HAHT =

 I

PXT

 Q (F )T

F ∆

 I

XP T



=


Q F̃1 F̃2 F̃3

F̃ T1 Λ+

F̃ T2 Λ−

F̃ T3 0


(6.38)

where F̃ = FXP T =
[
F̃1 F̃2 F̃3

]
and F̃ is also full rank. From this it follows that F̃1, F̃2, andF̃3

are also full rank. From Sylvester’s law of inertia, if HAHT is nonsingular then A is also

nonsingular. To determine conditions for nonsingular HAHT we define the submatrices:

Kb =

 Q F̃1

F̃ T1 Λ+

 and Ka =

 Kb F̃2

F̃ T2 Λ−


We note that Kb is positive definite because both Λ+ and the Schur complement (Q −

F̃ T1 Λ−1
+ F̃1) are positive definite. Next we see that Ka is nonsingular because F̃2 is full rank

and the Schur complement (Λ−−F̃ T2 K
−1
b F̃2) is negative definite. The latter follows because

Λ− is negative definite, F̃2 is full rank and Kb is positive definite.

Finally we see that HAHT and hence A are nonsingular because F̃3 is full rank, Ka is

nonsingular and hence the Schur complement −F̃ T3 K−1
a F̃3 is nonsingular.

Because we cannot guarantee that Q will be sufficiently positive definite, it may be nec-

essary to regularize Q by adding a positive term along its diagonal such that (Q + δI −

F̃ T1 Λ−1
+ F̃1) is positive definite. This regularization step may be required to complete any of

the CR passes. However, in practice we noticed that for our ill-conditioned test problems,

regularizing Q during the first CR pass was sufficient to keep the subsequent CR passes

nonsingular and well-conditioned.
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6.8 Concluding Remarks

This chapter has demonstrated how structure arises in dynamic optimization problems

and presents two linear algebra algorithms for exploiting this structure. While the Schur

complement approach has been widely studied in the context of dynamic optimization,

the cyclic reduction algorithm has not been. To the best of our knowledge, CR has never

been applied to solve dynamic optimization problems in the way proposed here, by oper-

ating on the symmetric indefinite augmented form of the KKT matrix. Compared to the

Schur complement approach, CR does not require the addition of decoupling variables

and constraints and therefore operates on smaller linear systems.

This chapter also presented a careful analysis of CR in the context of dynamic optimiza-

tion with respect to sparsity preservation and numerical conditioning. We have shown

that the fill-in caused by CR passes is limited to certain regions of the tridiagonal blocks

preserving much of the sparsity of the original system. In addition we derived sufficient

conditions for non-singular and well-conditioned CR passes. The computational perfor-

mance of both algorithms is studied in the next chapter.
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Chapter 7

Computational Performance of Parallel

Solvers

In this chapter we investigate the performance of the algorithms presented in Chapter 6.

We first demonstrate the Schur complement algorithm on the dynamic models studied in

Chapter 3. These results illustrate several challenges that arise when parallel algorithms

are applied to dynamic optimization problems. The second half of this chapter presents

results for both the cyclic reduction algorithm and Schur complement decomposition ap-

plied to structured test matrices.

7.1 Schur Complement Decomposition in PIPS-NLP

For this study we make use of a parallel interior point solver called PIPS-NLP (Parallel

Interior Point for NLP)[93]. PIPS-NLP is an open-source solver developed by researchers

at Argonne National Laboratory which has been designed to handle structured nonlinear

optimization problems. It is implemented in C and C++ and uses MPI for parallelization.

PIPS-NLP includes an implementation of the Schur complement decomposition approach

for solving the linear systems arising in the interior point algorithm with a bordered block-

diagonal, or arrowhead, structure. However, it does not exploit any additional structure

in the Schur complement, rather it solves it as a whole.

Structure is communicated to PIPS-NLP by dividing optimization problems into several

pieces and using suffixes to define the coupling between the pieces. Suffixes are compo-

nents of an algebraic modeling language for communicating additional problem informa-
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tion to a solver. Each piece of the optimization problem is written to a separate NL file. In

the case of dynamic optimization, the problem is divided at finite element boundaries.

In the following case studies we compare the performance of PIPS-NLP against the se-

rial interior point solver IPOPT. For both solvers MA57 was used for matrix factorizations.

Solver options for the interior point algorithms were set to equivalent values where possi-

ble. The tests were run on a desktop computer running Linux with 8 processors (4 cores

with hyper-threading). The serial version of PIPS-NLP, which does not exploit any prob-

lem structre, is also included in the comparison. The same initial guess is used for both

solvers.

7.1.1 CSTR Case Study

The first case study was performed on the 3-state CSTR model introduced in Chapter 3.

Again, the model equations can be found in Appendix A.1. For this case study we solve

a single instance of the MHE state estimation problem i.e. a single snapshot in time. We

examine the parallel performance of PIPS-NLP as the size of the problem and the num-

ber of processors are varied. The size of the problem is determined by the discretization

scheme applied, in this case orthogonal collocation over finite elements with 3 collocation

points. We vary the problem size by varying the number of finite elements (NFE) used

in the discretization. Table 7.1 shows the solution times and Table 7.2 shows the problem

sizes and solver iteration counts.

For the parallel runs, the model was divided such that the number of NL files was equal

to the number of processors being used to solve the problem. This means that for most

cases each NL file contained a piece of the model over several finite elements. This is

significant because additional coupling variables and constraints had to be added to the

model depending on the number of pieces. Thus, as shown in Table 7.2 the size of the

problem increases as the number of processors increases.

The solution time required for this model is extremely small, under a second for the
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Table 7.1: Time to solve one time step of the CSTR MHE problem with different horizon

lengths. Problems are solved using IPOPT and PIPS-NLP.

Solver Processors
Solve Time (sec)

NFE = 5 NFE = 10 NFE = 20 NFE = 50

IPOPT 1 0.043 0.082 0.137 0.262

PIPS-NLP 1 0.066 0.144 0.268 0.534

2 0.053 0.127 0.177 0.345

4 0.04 0.083 0.102 0.215

8 - 0.207 0.381 0.320

largest model considered. Therefore, there isn’t much speed-up in using a parallel solver.

We see slightly faster solve times for PIPS-NLP as the number of processors is increased

from 1 to 4 however we see a degradation in performance when we increase to 8 processors

due to both increased communication costs between processors and increased problem

size. PIPS-NLP is able to match the performance of IPOPT when run with 4 processors

and for the larger problems it has the fastest solve times.

7.1.2 Distillation Column Case Study

The second case study considers the binary distillation column model introduced in Chap-

ter 3. The model equations are given in Appendix A.2. Again we consider a single instance

of the MHE problem and we vary the problem size by changing the number of finite ele-

ments used in the discretization. The NLPs in this case are significantly larger and more

challenging to solve than in the CSTR case. Careful model initialization was required to

promote solver convergence. In addition, several solver options had to be tuned in order

for the solvers to converge reliably for these cases. Regularization was required for every

problem instance during one or more of the interior point iterations. Solve times for these
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Table 7.2: CSTR NLP problem sizes corresponding to the results in Table 7.1

NFE = 5 NFE = 10 NFE = 20 NFE = 50

IPOPT # Variables 184 404 844 2164

# Constraints 169 374 784 2014

# Iterations 25 29 25 21

PIPS-NLP # Variables 184 404 844 2164

1 processor # Constraints 169 374 784 2014

# Iterations 25 29 25 21

PIPS-NLP # Coupling Vars. 3 3 3 3

2 processors # Variables 190 410 850 2170

# Constraints 175 380 790 2020

# Iterations 22 31 22 21

PIPS-NLP # Coupling Vars. 9 9 9 9

4 processors # Variables 206 426 866 2186

# Constraints 191 396 806 2036

# Iterations 18 24 21 19

PIPS-NLP # Coupling Vars. - 21 21 21

8 processors # Variables - 458 898 2218

# Constraints - 428 838 2068

# Iterations - 30 32 19
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cases are presented in Table 7.3 and problem sizes are reported in Table 7.4.

Table 7.3: Time to solve one time step of the Distillation MHE problem with different

horizon lengths. Problems are solved using IPOPT and PIPS-NLP.

Solver Processors
Solve Time (sec)

NFE = 5 NFE = 10 NFE = 20 NFE = 50

IPOPT 1 12.86 36.85 33.797 163.509

PIPS-NLP 1 22.87 65.054 62.925 292.316

2 18.157 61.887 51.182 293.635

4 12.95 68.444 78.536 270.681

8 - 141.883 102.09 1094.012

For this case we see no benefit in using a parallel solver. IPOPT has significantly faster

solve times for every test case. In addition, we see some inconsistency in PIPS-NLP in

terms of the best number of processors to use. The poor performance of PIPS-NLP can

be attributed to the computational cost of the Schur complement decomposition approach

when there are a large number of coupling variables. The bottleneck of this algorithm is

the explicit formation and factorization of the Schur complement. The size of the Schur

complement is directly related to the amount of coupling in the problem which is deter-

mined by the number of dynamic states in the model and the number of processors used

to solve the problem.

Previous studies applying the Schur complement approach to dynamic optimization

considered models with only a couple dozen state variables and noted performance dete-

rioration as the number of processors increased [92, 109]. Furthermore, this performance

degradation is also noted in studies applying the Schur complement approach to general

structured nonlinear optimization problems [91, 111].

In our distillation column model we have 84 differential states corresponding to the
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Table 7.4: Distillation NLP problem sizes corresponding to the results in Table 7.3

NFE = 5 NFE = 10 NFE = 20 NFE = 50

IPOPT # Variables 8724 19419 40809 104979

# Constraints 8304 18579 39129 100779

# Iterations 53 71 27 35

PIPS-NLP # Variables 8724 19419 40809 104979

# Constraints 8304 18579 39129 100779

# Iterations 53 68 27 35

PIPS-NLP # Coupling Vars. 84 84 84 84

2 processors # Variables 8892 19587 40977 105147

# Constraints 8472 18747 39297 100947

# Iterations 51 64 23 39

PIPS-NLP # Coupling Vars. 252 252 252 252

4 processors # Variables 9228 19923 41313 105483

# Constraints 8808 19083 39633 101283

# Iterations 47 60 23 41

PIPS-NLP # Coupling Vars. - 588 588 588

8 processors # Variables - 20595 41985 106155

# Constraints - 19755 40305 101955

# Iterations - 55 22 55
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methanol composition and the liquid molar holdup on each of the 42 stages in the column.

This is already a significant amount of coupling and Table 7.4 shows how the number of

coupling variables multiplies even further as the number of processors increases. Clearly,

the increased computational costs associated with forming and factorizing a Schur com-

plement with this much coupling far exceeds any parallel speed-up produced by the rest

of the algorithm. The performance is further reduced by the regularization required for

this model. As noted in [112], whenever the regularization term is adjusted in PIPS-NLP,

the Schur complement must be re-built and factorized.

These results show that in order for a parallel algorithm to be effective in solving dy-

namic optimization problems, it has to maintain parallel efficiency as the number of cou-

pling terms increases. The next section shows how the cyclic reduction algorithm does just

that.

7.2 Cyclic Reduction Prototype

PIPS-NLP does not contain an implementation of the cyclic reduction algorithm. There-

fore we implemented prototypes of both the cyclic reduction and Schur complement algo-

rithms in order to compare their performance. We tested the algorithms on two versions of

a simple quadratic programming (QP) problem. The two versions differ in their objective

function, sparsity, and inclusion of algebraic constraints and variables. We chose to study

an equality constrained QP test problem because solving it would require the solution of a

single KKT system. As will be shown below, incorporating or not incorporating algebraic

variables as well as changing the ratio between the number of state, control, and algebraic

variables will impact the structure and sparsity of the the KKT matrix. This can have a

significant impact on the performance of the two algorithms considered in this work.

The algorithms were prototyped in Matlab R2012a [80] and tested on a Dell PowerEdge

T420 server with 12 cores and 64 GB of RAM. The Matlab parallel computing toolbox

was used for parallelization. In our implementations, all linear algebra on the individual
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blocks is done using the HSL solver MA57 [113] which was called using the MEX interface.

The test matrices all had 100 block rows which corresponds to a discretization with 100

time steps. The first algorithm we tested applied cyclic reduction to the full KKT matrix

in block tridiagonal form. The second algorithm introduced decoupling variables to the

KKT system and followed the Schur complement decomposition approach, factorizing the

Schur complement using cyclic reduction.

We compare our algorithms against Matlab’s built-in linear solver which is invoked by

a backslash. We will refer to this solver as ’Matlab Backslash’. When Matlab Backslash is

applied to a sparse matrix, it checks several properties of that matrix such as bandwidth,

band density, and symmetry before deciding which algorithm is most appropriate for that

system [114]. For instance, Matlab Backslash includes embedded versions of the high-

performance, state-of-the-art, serial solvers UMFPACK[115], MA57[113], and LAPACK’s

banded solver[116]. Because Matlab Backslash has been fine-tuned for performance over

many years, and because of its adaptive algorithm selection, we feel it was the best bench-

mark to compare our parallel algorithm prototypes against. However, it is important to

keep in mind that Matlab Backslash is a general linear solver designed to work well on a

wide variety of problems while our algorithms are tailored to handle a very specific struc-

ture and exploit a priori knowledge of that structure. The Matlab Backslash results illus-

trate the problem size boundary at which it becomes beneficial to use our structure-tailored

parallel algorithms over a general serial algorithm. For all the test matrices described in

the next two sections Matlab Backslash used MA57 to solve the full KKT matrix.

7.2.1 QP Structured Without Algebraic Variables

The QP problem for this test case represents a simple optimal control problem where the

dynamics in the model have been approximated using a linear algebraic equation. We only

include state and control variables and don’t impose any algebraic constraints besides the

dynamics. The problem is shown below

CHAPTER 7. COMPUTATIONAL PERFORMANCE OF PARALLEL SOLVERS

115



7.2 CYCLIC REDUCTION PROTOTYPE

min
1

2

N∑
k=1

xTkQxk +
1

2

N−1∑
k=0

uTkRuk (7.1a)

s.t. xk+1 = Axk +Buk, k = 0, . . . , (N − 1) (7.1b)

x0 = x(0) (7.1c)

where xk ∈ Rnx are vectors of state variables and uk ∈ Rnu are vectors of control variables

for each time point k. The matrices A and B are randomly generated sparse matrices each

with a density of 50%. They were generated such that the matrix [A B] has full row rank.

Q and R are randomly generated diagonal matrices with all positive entries. We did not

encounter any problems with ill-conditioning for this test case.

The results presented here solve a single instance of the KKT system that would arise

from problem (7.1). We form and solve the KKT system under two conditions, one with

twice as many state variables as control variables and one with twice as many control

variables as state variables. Figure 7.1 shows the sparsity patterns for these ratios of state

to control variables. The case with more states than controls results in denser diagonal

blocks in the KKT matrix.

In order to understand the computational scaling of our algorithms we generated and

solved KKT systems with varying block sizes while keeping the ratio of states to controls

constant. Recall that each test system has 100 block rows so a block size of 400 corresponds

to an overall linear system with 40,000 variables and equations. In the first case we had 2N

state variables and N control variables leading to a diagonal block size of 5N . The timing

results are shown in Figure 7.2.

We see that Matlab Backslash is able to solve the smaller systems, with diagonal block

sizes less than 300, faster than our parallel algorithms. The Schur complement approach

has the slowest times for all the block sizes tested. In contrast, cyclic reduction used to

factorize the full matrix is competitive with Matlab Backslash for the smaller cases and

faster for the larger cases when run with 8 or more processors. For both parallel algorithms
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(a) (b)

Figure 7.1: (Left) Sparsity pattern for QP case with 20 states and 10 controls. (Right) Spar-

sity pattern for QP case with 10 states and 20 controls. The tridiagonal blocks have been

outlined in red.

(a) (b)

Figure 7.2: Time to factorize a matrix with 2N states and N controls using (Left) cyclic

reduction on the full matrix and (Right) cyclic reduction on the Schur complement.
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Figure 7.3: Time to factorize a matrix with 2N states and N controls with several different

algorithms run with 12 processors.

we see some speed-up with an increasing number of processors. However, the results

suggest that using more than 8 processors will not improve performance significantly.

We also tested other versions of the Schur complement decomposition approach where

the Schur complement was factorized using the HSL solver MA57 or using Matlab Back-

slash. A comparison of these variations run with 12 processors is shown in Figure 7.3. The

implementation using cyclic reduction to factorize the Schur complement is the fastest.

However, none of the Schur complement implementations come close to matching the

performance of Matlab Backslash on the larger test systems.

The second case we studied had N state variables and 2N control variables leading to a

diagonal block size of 4N . Recall that this case results in sparser diagonal blocks than in the

first case. The timing results are shown in Figure 7.4. Again we see that Matlab Backslash

performs well over the entire range of block sizes and the Schur complement implementa-

tion is noticeably slower even when run with 12 processors. The cyclic reduction approach

comes close to matching the Matlab Backslash times for the larger block sizes when run

with 8 or 12 processors but it doesn’t surpass the performance of Matlab Backslash as in

the previous case.
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(a) (b)

Figure 7.4: Time to factorize a matrix with N states and 2N controls using (Left) cyclic

reduction on the full matrix and (Right) cyclic reduction on the Schur complement.

If we compare the performance of several versions of the Schur complement approach,

shown in Figure 7.5, we see more variability in which version is the fastest for different

block sizes but for the larger systems again we see that the Schur complement approach

with cyclic reduction has the best performance. However, once again the Schur comple-

ment approach is significantly slower than Matlab Backslash.

7.2.1.1 Larger Blocks

Given the results on block sizes up to 500, we test the cyclic reduction algorithm on even

larger block sizes. Figure 7.6 shows the timing results for block sizes up to 3500 and 4500

for the cases with more states and more controls respectively. The overall linear systems

being solved have hundreds of thousands of variables and constraints. The truncated

results for the 2 and 4 processor cases was caused by a 2GB transmission limit for each

processor imposed by Matlab’s Parallel Computing Toolbox. This limit has been removed

in more recent versions of Matlab.
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Figure 7.5: Time to factorize a matrix with N states and 2N controls with several different

algorithms run with 12 processors.

The figures show a dramatic increase in the solution time for Matlab Backslash with

block sizes greater than 2100 in the first case and 2600 in the second case. These explosions

in the solution time correspond to the server running out of RAM space and starting to

use swap space. Notice that the runs using CR also hit this upswing in time but only with

significantly larger block sizes. This seems to indicate that our algorithm implementation

is more memory efficient in solving these systems than what is built into Matlab. Using

CR, we are able to solve large block tridiagonal systems faster than using a general linear

algebra solver and we are able to solve larger systems on the same computer hardware.

Figure 7.6 also shows that for the larger block sizes eventually the case using 12 proces-

sors becomes slower than the case with 10, which becomes slower than the case with 8, etc.

This slow-down illustrates the additional memory and communication overhead required

when more processors are used.

We also note that we see very little speed-up moving from 8 to 12 processors and there-

fore we would not expect significant speed-up with the addition of more processors. The

CR algorithm is not perfectly parallelizable and will run into the challenge of idle proces-

sors when the number of even block rows in the tridiagonal matrix is less than the number
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(a) (b)

Figure 7.6: Time to factorize a matrix using cyclic reduction on the full matrix for (Left) 2N

states and N controls and (Right) N states and 2N controls.

Figure 7.7: Time to factorize a matrix with N states and 2N controls with the block size

fixed to 1500 and varying the number of block rows.
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of available processors. This point is reached faster when more processors are used. Fig-

ure 7.7 shows that as we increase the number of block rows in our original system, we see

more of a performance difference between the 8 and 12 processor cases. With a greater

number of block rows, more CR recursions can be completed before we start having idle

processors.

Comparing the results for the two test cases shows that sparsity has a significant effect

on algorithm performance. In order to better understand this effect we took a closer look

at the two factors controlling the sparsity of our KKT systems, the ratio of control to state

variables and the density of the matrices A and B. Table 7.5 shows the solve times for the

two algorithms run with 12 processors on KKT systems with 100 block rows and the block

size fixed to 1000. The Schur complement times use cyclic reduction to factorize the Schur

complement. As the ratio of controls to states increases, the system becomes more sparse.

Similarly, reducing the density of the random sparse matrices A and B from 50% to 5%

results in a significantly sparser system.

The results show that as the systems become more sparse, the two algorithms perform

similarly in terms of solve time. On the other hand, as the systems become more dense,

the performance of the Schur complement approach degrades more than that of the CR

approach. The results for the larger ratios of controls to state variables motivates the need

to consider algebraic variables and constraints in our QP structured problem, in order to

get a more comprehensive idea of how these algorithms will perform on real dynamic

optimization problems. These test cases are presented in the next section.

7.2.2 QP Structured With Algebraic Variables

For these test cases algebraic variables and linear constraints are added to the QP problem.

We also consider a more general form for the objective function. The problem formulation

is shown below.
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Table 7.5: Effect of sparsity and the ratio of controls to states on parallel algorithm per-

formance. Runs were done using 12 processors and the Schur complement was factored

using cyclic reduction

A,B density is 50%

Ratio
# Controls

# States

Cyclic

Reduction

Time (sec)

Schur

Comple-

ment Time

(sec)

0.5 37.8 115.7

2 20.9 57.7

4 11.6 31.6

8 7.7 16.0

16 4.6 8.4

32 2.8 5.0

64 2.2 3.3

A,B density is 5%

Ratio
# Controls

# States

Cyclic

Reduction

Time (sec)

Schur

Comple-

ment Time

(sec)

0.5 23.4 37.7

2 12.6 15.6

4 7.3 8.2

8 4.5 4.5

16 3.2 3.0

32 2.2 2.7

64 1.6 2.9

min
1

2

N∑
k=0

zTkWz (7.2a)

s.t. xk+1 = Axk +Buk + Cyk, k = 0, . . . , (N − 1) (7.2b)

0 = Dxk + Euk + Fyk, k = 0, . . . , (N − 1) (7.2c)

x0 = x(0) (7.2d)

where yk ∈ Rny are vectors of algebraic variables and zTk = [xTk , u
T
k , y

T
k ]. The matrices

A,B,C,D,E, and F are randomly generated, full-rank sparse matrices with a density of

5%. W is the Hessian of the objective function. W is randomly generated as a sparse

symmetric matrix with a density of 5%. Notice that the randomly generated matrices are
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an order of magnitude more sparse than in the previous test cases.

For this test case we did encounter some ill-conditioning and numerical error propaga-

tion. We experimented with several strategies for handling this ill-conditioning by adding

a positive diagonal matrix to W . Regularization was done only once before the first CR

pass. The regularization technique used for the results presented here was to make W

positive definite by adding a diagonal term that dominates the largest negative eigenvalue

inW . Calculating the eigenvalues is straightforward in Matlab for our test cases. However,

for a high-performance implementation of CR it is not a practical approach. We also tested

a regularization approach similar to the inertia correction step in IPOPT and found that it

was also effective in stabilizing the CR recursions. However proving that this approach

will always be sufficient remains an open question.

We considered two cases of problem (7.2). The first had the same number of controls as

states and 10 times the number of algebraics as states. The second had the same number

of controls as states and 20 times the number of algebraics as states. The sparsity patterns

for the KKT matrices for these cases are shown in Figure 7.8. Notice that the off-diagonal

blocks are almost entirely zeros because the ratio of states to algebraics is very small. This

also means that the fill-in from CR for these systems will be negligible compared to the

overall size and sparsity of the blocks.

Timing results for the first case are shown in Figure 7.9. Compared with the previous

QP problem we are able to solve systems with larger block sizes due to the sparser random

matrices used in this problem. The results show that CR applied to the full matrix performs

very well, beating Matlab’s backslash for almost all the block sizes with only 4 processors.

We also see improved performance for the Schur complement approach with 8 or 12 pro-

cessors which is competitive with Matlab’s Backslash over the entire range of block sizes.

For the 2 and 4 processors cases, the Schur complement approach quickly reaches the 2GB

transmission limit imposed by Matlab indicating that the Schur complement algorithm is

significantly more memory intensive than CR. On the other hand, if we compare CR with
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(a) (b)

Figure 7.8: (Left) Sparsity pattern for QP case with 5 states, 5 controls, and 50 algebraics.

(Right) Sparsity pattern for QP case with 5 states, 5 controls, and 100 algebraics.

several versions of the Schur complement approach, as shown in Figure 7.10, it becomes

even more apparent that CR significantly outperforms the other algorithms.

For the second case with 20 times the number of algebraics as states, we see an even

more dramatic difference in solve times between CR and Matlab Backslash. These results

are shown in Figure 7.11. CR is able to solve systems with a block size of 6500 in about half

of the time it takes Matlab Backslash. This corresponds to a system with 650,000 variables

and constraints. In addition, CR is faster than backslash for most of the test matrices using

only 2 processors. The Schur complement approach shows promising timing performance

on these systems but hits the memory transmission limits very quickly. These results very

clearly show the benefit of using a structure-exploiting linear solver over a general linear

solver for these large, sparse systems.
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(a) (b)

Figure 7.9: Time to factorize a matrix with N states, N controls, and 10N algebraics using

(Left) cyclic reduction on the full matrix and (Right) cyclic reduction on the Schur comple-

ment.

Figure 7.10: Time to factorize a matrix with N states, N controls, and 10N algebraics with

several different algorithms run with 12 processors.
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(a) (b)

Figure 7.11: Time to factorize a matrix with N states, N controls, and 20N algebraics using

(Left) cyclic reduction on the full matrix and (Right) cyclic reduction on the Schur comple-

ment.

7.3 Concluding Remarks

The results in this chapter show that cyclic reduction is a promising parallel linear algebra

approach for dynamic optimization problems. We have demonstrated the performance

of this algorithm on a number of test matrices and shown that CR outperforms state-of-

the-art, serial linear algebra solvers. In addition, the performance of the cyclic reduction

algorithm does not deteriorate as significantly as the Schur complement decomposition

approach when there are many dynamic states. This is due in part to the fact that CR

operates on smaller linear systems compared to the Schur complement approach and CR

also preserves sparsity more effectively than the Schur complement approach. As men-

tioned before, the CR implementation used in this work is a prototype. It remains to be

seen whether or not a high-performance implementation of CR within an interior point

framework will show similar performance advantages.
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Chapter 8

Conclusions

In this chapter we summarize our contributions and offer suggestions for future work.

8.1 Summary and Contributions

Chapter 1 presents a brief introduction to dynamic optimization. We review three com-

mon solution techniques including direct transcription which reformulates the problem

as a single large NLP. We then describe current implementation practices and challenges

for dynamic optimization techniques including the manual implementation of discretiza-

tion schemes and implementations over multiple software platforms. Finally, Chapter 1

describes the research objectives of this dissertation.

Applications

Chapter 2 introduces the state estimation problem. We review previous work in state es-

timation and describe two methods for formulating the problem using dynamic optimiza-

tion, MHE and asMHE. MHE is a useful technique for constrained state estimation and

produces accurate state estimates using a finite set of past measurements. asMHE has

all the benefits of MHE with the added advantage of reduced on-line computational cost.

Chapter 2 also reviews the concept of robust M-estimators as a strategy for dealing with

large measurement errors and illustrates how they can be incorporated in an MHE frame-

work. Chapter 3 describes several case studies applying the state estimators in Chapter

2 to models of a CSTR and a distillation column. We describe the implementation and

demonstrate how the addition of robust M-estimators reduces the influence of measure-
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ment errors.

The major contributions of this section are listed as follows:

• Extension of MHE and asMHE using robust M-Estimators to mitigate the effect of

large measurement errors on state estimates.

• Application of novel, robust state estimators to classical chemical engineering mod-

els of a CSTR and a distillation column.

• Analysis of the performance of novel, robust state estimators under a variety of pro-

longed measurement error scenarios simulating sensor drift and failure.

• Development of a state estimator that produces fast and accurate state estimates even

in the presence of many large measurement errors by combining the computational

efficiency of asMHE with the robustness of Hampel’s Redescending estimator.

Modeling Tools

Chapter 4 describes available algebraic modeling frameworks for dynamic optimization

and their limitations, motivating the development of pyomo.dae. We develop the frame-

work in Pyomo because it is an open-source, full-featured algebraic modeling language

developed in the high-level programming language Python. We explain how the two

modeling components introduced by pyomo.dae are flexible enough to represent arbi-

trary differential equations over bounded rectangular domains. Chapter 4 also presents

the automatic discretization features included in pyomo.dae and several discretization

schemes included in the package including orthogonal collocation over finite elements.

In addition, we briefly describe the implementation and demonstrate the extensibility of

pyomo.dae. Chapter 5 tests pyomo.dae on a wide variety of dynamic optimization prob-

lems including the numerical solution of a PDE boundary value problem, optimal control,

and parameter estimation. Furthermore, we show that the computational cost of using

automatic discretization scales well with problem size and the number of discretization

points.
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The major contributions of this section are listed as follows:

• Development of a novel model abstraction for general dynamic optimization prob-

lems that separates the dynamic model from the solution technique.

• Design and development of modeling components for concisely and intuitively rep-

resenting arbitrary differential equations over bounded rectangular domains.

• Design and development of a flexible and extensible direct transcription framework

for automatically applying a discretization scheme to DAE and PDAE models.

Parallel Solution Algorithms

Chapter 6 reviews a common NLP solution approach, the interior point method, and de-

scribes the linear systems resulting from the Newton steps that solve the discretized opti-

mality conditions. We then illustrate how exploitable structure is imposed on these linear

systems when a direct transcription approach is applied to a dynamic optimization prob-

lem. Chapter 6 also includes descriptions of two parallel algorithms capable of exploiting

this structure. The Schur complement decomposition approach exploits a bordered block-

diagonal structure and the cyclic reduction algorithm exploits a block tridiagonal structure.

We propose a novel way to apply cyclic reduction to the symmetric indefinite form of the

KKT matrix and carefully analyze the sparsity and numerical conditioning properties of

applying cyclic reduction to KKT systems arising from dynamic optimization. Chapter 7

studies the computational performance of the parallel algorithms presented in Chapter 6.

We apply an existing parallel interior point solver to dynamic models of a CSTR and a

distillation column and demonstrate the poor scaling of the Schur complement approach

when a model has many differential states. We also demonstrate a prototype of the cyclic

reduction algorithm and show that it may be able to overcome some of the limitations of

the Schur complement approach.

The major contributions of this section are listed as follows:

• Proposal to use the cyclic reduction algorithm to solve the symmetric indefinite KKT
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system arising from discretized dynamic optimization problems.

• Analysis of the effect of cyclic reduction recursions on the sparsity and structure of

the KKT matrix.

• Development of two theorems describing sufficient conditions for cyclic reduction

recursions to remain non-singular and well-conditioned when applied to KKT sys-

tems.

• Analysis of the performance of cyclic reduction when applied to structured test sys-

tems representing KKT matrices arising from dynamic optimization.

8.2 Recommendations for Future Work

State Estimation

Further work is required to explore the limits of the asMHE formulation with the Re-

descending estimator in terms of what percentage of gross error measurements it can over-

come. A careful sensitivity analysis of the different tuning parameters for the robust M-

Estimators would also be interesting. In practice these estimators would be tuned to the

particular application rather than set to reasonable, general values as in this study.

It would also be worthwhile to continue exploring the performance of these formula-

tions by considering additional case studies with different types of errors. Our work fo-

cused mainly on gross errors that might be caused by a sensor drifing away from the true

value or failing entirely. It would be interesting to see how the formulations perform with

random outliers to see what effect the type of gross error has on the performance of the

state estimators. Moreover, structured outliers as found in fault detection need to be stud-

ied.

Additionally, one of the major assumptions with the case studies presented in this thesis

was that there was no plant-model mismatch. Preliminary results relaxing this assumption

show that the amount of plant-model mismatch can have a significant effect on the perfor-
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mance of the estimators presented here. Most notably, it causes the MHE and asMHE

estimates to differ significantly. More work is needed to systematically investigate this

observation.

Finally, state estimation is the first step in strategies for real-time optimization. It would

be interesting to combine on-line, robust state estimators with nonlinear model predictive

control (NMPC) in an effort to create an overall strategy for on-line plant optimization that

is more robust.

pyomo.dae Modeling Framework

Currently pyomo.dae can only handle bounded rectangular continuous domains. In the

future we plan on extending our tool to represent unbounded domains. This would make

it easier to represent control problems over infinite horizons. We also plan on adding a

modeling component to represent integrals.

pyomo.dae includes a variety of discretization transformations as well as a frame-

work for users to implement their own custom discretization. However, simultaneous

discretization is just one of several approaches for solving this class of problem. Single

and multiple shooting methods are also common solution strategies [117, 118, 119]. We

plan to eventually link pyomo.dae to existing integrators, such as Sundials [120], and

then add implementations of shooting methods. An integrator would also allow us to

simulate dynamic models in order to initialize our discretized optimization problem or

develop hybrid full-discretization/shooting algorithms.

Another useful extension would be more sophisticated frameworks for model initializa-

tion and specification of time dependent data. In the current implementation a user can

provide a careful initialization for a model after it has been discretized. However, this

is not entirely straightforward and the initialization is tied to the discretization applied.

We would also like to implement several data interpolation schemes in order to make this

initialization process easier and consistent across any choice of discretization. An interpo-
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lation scheme would also be useful for estimating differential variable values at any point

in the continuous domain after the model has been solved, especially in the case of a collo-

cation discretization where a high order functional form of the state profile already exists.

An automatic, element-by-element initialization would be another possible extension.

Parallel Solvers

In the future we plan on implementing a high performance version of cyclic reduction and

embedding it within the interior point solver PIPS-NLP. This will allow us to test cyclic

reduction on a variety of large-scale dynamic optimization problems and more thoroughly

compare its performance against the Schur complement approach.

We also plan on investigating a variant of CR which is better suited for parallel im-

plementation and overcomes the challenge of idle processors seen in the classical imple-

mentation. This variant was proposed in [121] and is essentially the standard block cyclic

reduction algorithm applied to every block row and without the back substitution step.

We expect to see more significant speed-up as we add processors using this approach.

Finally, we plan on taking a deeper look at the more technical details of CR applied to

KKT systems related to dynamic optimization. We observed some very favorable stability

and conditioning properties and hope to gain a better theoretical understanding of our

observations.
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Appendix A

Mathematical Models

This appendix contains mathematical models used in this thesis. The first model is for a

general 3 state CSTR and the second model is for a binary distillation column. Both models

are index-1 DAE systems.

A.1 General 3 State CSTR

The dynamic CSTR model shown below describes the exothermic reaction between sodium

thiosulfate(component A) and hydrogen peroxide(component B). The model comes from

Qu and Hahn[122] and values for the model parameters were taken from Rajaraman et

al.[123].

dCA
dt

=
F

V
(CinA − CA)− 2k(TR)C2

A (A.1a)

dTR
dt

=
F

V
(T inR − TR) +

2(−∆HR)k(TR)C2
A

ρCP
− UA

V ρCP
(TR − Tcw) (A.1b)

dTcw
dt

=
Fcw
Vcw

(T incw − Tcw) +
UA

VcwρcwCPcw
(TR − Tcw) (A.1c)

k(TR) = k0 exp

[
−Ea
RTR

]
(A.1d)

CA ∈ [0, 1], TR ∈ [200, 420], Tcw ∈ [200, 420] (A.1e)

The 3 states in this model, CA, TR, and Tcw, represent the concentration of A, the reactor

temperature, and the cooling water temperature, respectively. The known inputs are the

feed and cooling water flow rates, F and Fcw. The inlet concentration of A is given by CinA ,

the temperature of the inlet stream is T inR , and the temperature of the inlet cooling water
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A.2 DISTILLATION COLUMN MODEL

is T incw. The other parameters in the model are as follows: reactor volume (V ), reactor area

(A), reaction heat (∆HR), inlet feed stream density (ρ), inlet feed heat capacity (CP ), global

heat transference coefficient (U ). Similar parameters for the cooling water are represented

with the subscript cw.

A.2 Distillation Column Model

The distillation column model presented here separates methanol and n-propanol. The

model is based off an index-2 DAE system reported in [58]. This model was later reformu-

lated to be index-1 by Lopez-Negrete et al.[59]. The index-1 model equations are shown

below. We consider a column with NT = 40 trays along with a total condenser and a

reboiler. Trays are numbered from the bottom up with the reboiler being i = 0 and the

condenser being i = NT + 1. The feed stream enters the column at tray i = 21. Variable

and coefficient definitions are listed in the nomenclature section at the end of this section.

Assumptions in this model include an ideal vapor phase, constant pressure drop across

the trays, and negligible vapor molar holdups.

First, the following mass balances are enforced for each stage i.

Ṁi = Vi−1 − Vi + Li+1 − Li + Fi, i = 1, ..., NT (A.2a)

ṀNT+1 = VNT −D − LNT+1 (A.2b)

Ṁ0 = L1 − V0 −B (A.2c)

R =
LNT+1

D
(A.2d)

Miẋi = Vi−1(yi−1 − xi)− Vi(yi − xi) + Li+1(xi+1 − xi) + Fi(zf,i − xi) (A.2e)

M0ẋ0 = L1(x1 − x0)− V0(y0 − x0) (A.2f)

MNT+1ẋNT+1 = VNT (yNT − xNT+1) (A.2g)

Next, the model includes the following equilibrium and summation equations. Raoult’s

law is used to model phase equilibrium with non-ideal behavior addressed using tray
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A.2 DISTILLATION COLUMN MODEL

efficiencies.

Pi−1 = Pi + ∆Pi, i = 1, ..., NT+1 (A.3a)

Pi = P si,1(Ti)xi + (1− xi)P si,2(Ti) (A.3b)

P si,j = exp

(
Aj −

Bj
Ti + Cj

)
(A.3c)

Ṫi = −
(P si,1 − P si,2)ẋi

(∂P si,1/∂Ti)xi + (∂P si,1/∂Ti)(1− xi)
(A.3d)

yi = αixi
P si,1
Pi

+ (1− αi)yi−1 (A.3e)

y0 = x0

P s0,1
P0

(A.3f)

The model also includes energy balances.

hLi (xi, Ti) = xih̄
L
i,1(Ti) + (1− xi)h̄Li,2(Ti) (A.4a)

hVi (yi, Ti, Pi) = yih̄
V
i,1(Ti, Pi) + (1− yi)h̄Vi,2(Ti, Pi) (A.4b)

Ṁih
L
i +Mi

(
ẋi
∂hLi
∂xi

+ Ṫi
∂hLi
∂Ti

)
= Vi−1h

V
i−1 − VihVi − VihVi +

Li+1h
L
i+1 − LihLi + Fih

L(zf,i, Tf,i, Pf,i) (A.4c)

Ṁ0h
L
0 +M0

(
∂hL0
∂x0

ẋ0 +
∂hL0
∂T0

Ṫ0

)
= QR −Qloss − V0h

V
0 + L1h

L
1 −BhL0 (A.4d)

ṀNT+1h
L
NT+1 +MNT+1

(
∂hLNT+1

∂xNT+1
ẋNT+1 +

∂hLNT+1

∂TNT+1
ṪNT+1

)
= VNT

(
hVNT − h

L
NT+1

)
−QC

(A.4e)

and finally, equations for the hydrodynamics using the Francis weir formula.

nvi = MiV
m
i (xi, Ti) (A.5a)

V m
i (xi, Ti) = xiV̄

m
i,1(Ti) + (1− xi)V̄ m

i,2(Ti) (A.5b)

LiV
m
i (xi, Ti) = Wi

(
nvi − n

v,ref
i

) 3
2 (A.5c)
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Nomenclature

h̄Li,j Liquid enthalpy for pure component j on tray i

Aj , Bj , Cj Antoine’s equation constants for component j

QR Reboiler heat duty

Vi Vapor flow rate leaving tray i

αi Tray i efficiency

h̄Vi,j Vapor enthalpy for pure component j on tray i

V̄ m
i,j Molar volume of pure component j on tray i

B Bottoms flow rate from reboiler

D Distillate flow rate from condenser

Fi Feed flow rate entering tray i

hLi Liquid enthalpy on tray i

hVi Vapor enthalpy on tray i

Li Liquid flow rate leaving tray i

Mi Molar hold-up on tray i

nvi Liquid volume holdup on tray i

nv,ref
i Volume of tray i

Pi Total pressure on tray i
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P si,j Vapor pressure of component j on tray i

QC Condenser heat duty

Qloss Reboiler heat loss

R Reflux ratio

Ti Temperature on tray i

V m
i Molar volume of liquid on tray i

Wi Weir constant for tray i

xi Mole fraction of methanol in liquid on tray i

yi Mole fraction of methanol in vapor on tray i

zf,i Mole fraction of methanol in feed entering tray i
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