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Abstract

he traic safety and eiciency applications made possible by vehicular communi-

cations have the potential to improve the lives of millions of people who, every day,

use automobiles as their primary means of transportation. To be well connected

and fully functional, these networks of cars require a minimum number of active

nodes, which oten may not happen due to a lack of radio-equipped vehicles on the

road. hese same networks can also be overwhelmed with traic and signaling in

the presence of too many cars, requiring careful coordination between all nodes to

ensure proper operation.

One way to overcome both these problems is to supplement vehicle-to-vehicle

(V2V) communications with vehicle-to-infrastructure (V2I) systems by deploying

Roadside Units (RSUs) along the road to support the network of moving cars. RSUs

are infrastructure nodes that can supplement sparse networks in low-density scenar-

ios, and help coordinate and move data in denser networks. RSUs have an associated

cost, however, and so their numbers need to be minimized while still maintaining a

signiicant improvement to the vehicular network.

he work presented in this thesis quantiies the beneits of Roadside Unit deploy-

ments and proposes innovative approaches that can reduce and even eliminate the

need for RSUs altogether. he irst part of the thesis focuses on highway networks:

irst, an analytical model is developed to analyze communication delay in scenar-

ios with sparse bi-directional traic, considering both disconnected and connected

RSUs. hen, a study on connectivity and message dissemination in these networks

reveals how signiicant beneits of RSUs are only achieved when the deployed RSUs

are interconnected. Extensive simulation work paired with sets of experimental

measurements validate both model and study.

Supplementing the work on sparse highway networks, an infrastructure-less



approach is then proposed, consisting of two methods to improve communication

delays in these scenarios: decelerate disconnected vehicles as they receive safety

messages, and boost the same vehicles’ radio transmit power, to shorten the time

to restore connectivity. Both techniques are modeled analytically, and data from

a simulation study validate the models and show signiicant improvements in the

connectivity of sparse highway networks with this infrastructure-less approach.

he second part of the thesis sets its sights on urban vehicular networks. High

costs associated with RSUs prevent their deployment at scale, and therefore ind-

ing alternative solutions to this longstanding problem is very important. A novel,

low-cost self-organizing network approach to leveraging parked cars as RSUs in

urban areas is proposed here, enabling parked cars to create coverage maps based on

received signal strength and to decide whether to become RSUs from that knowledge.

Initial simulation work reveals signiicant beneits to emergency message broadcast-

ing delay in sparse scenarios and shows the ability of the self-organizing approach in

providing robust and widespread coverage to dense urban areas, using only a small

fraction of the cars parked in a city.

he parking behaviors of individual drivers are then studied, by analyzing and

gathering statistics on travel survey data from various metropolitan areas. Daily

and hourly analytical models of parking events are provided, along with important

derivations. he statistical data show that parking events can be classiied into two

major groups based on the time a car spends parked, and that these patterns vary

substantially throughout the day while being markedly similar across diferent cities.

he last part of the thesis focuses on self-organization for parked car RSUs. Novel

mechanisms for self-organization are introduced that are innovative in their ability

to keep the network of parked cars under continuous optimization, in their multi-

criteria decision process, and in their control of each car’s battery usage, rotating

roadside unit roles between vehicles as required. he irst comprehensive study of

the performance of such approaches is presented, via realistic modeling of mobility,

parking, and communication, thorough simulations, and an experimental verii-

cation of concepts that are key to self-organization. his analysis leads to strong

evidence that parked cars can serve as an alternative to ixed roadside units, and

organize to form networks to support smarter transportation and mobility.
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Chapter 1

Introduction

łI do not think that the wireless waves I have

discoveredwill have any practical application.ž

Ð H. R. Hertz

Wireless communications between automobiles have the potential to substantially

improve the safety, the eiciency, and the comfort of millions of people who use this

mode of transportation every day. A Vehicular Ad Hoc Network (VANET) enables a

number of applications, both in the realm of what is already possible with a computer

network (e.g., Internet access, content delivery, or even games), and in novel and

highly relevant areas to drivers, such as advance collision warnings, eicient travel

routes, or road hazard notiications.

To enable Dedicated Short Range Communications (DSRC) between vehicles,

the basis for vehicular networks, IEEE introduced a new communication standard

known as the 802.11p Wireless Access in Vehicular Environments (WAVE) [1, 2].

his standard adapts the popular 802.11 wireless technologies to work with the high

mobility and harsh fading that characterize the vehicular environment, by increasing

the robustness of car-to-car communications and increasing the opportunities for

nodes to transmit data. It provides a multi-channel DSRC solution for multiple

application types, with diferentiated channels for network control, network services,

safety applications, and long range data transmission.

Such vehicular ad hoc networks require a minimum number of nodes (cars)

for the network to be well connected and functional. However, in sparse vehicular
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networks, the communication between vehicles is subject to very high transmission

delays, which poses a signiicant problem for safety messages that should reach

nearby vehicles as quickly as possible when an accident occurs, or for when road

safety information needs to be disseminated. On these sparse networks, delays can

oten exceed hundreds of seconds [3].

One way to overcome this problem is to supplement vehicle-to-vehicle (V2V)

communications with vehicle-to-infrastructure (V2I) support [4], by deploying in-

frastructure nodes known as Roadside Units (RSUs) along the road, in addition to

the DSRC units within the vehicles which are generically known as On-Board Units

(OBUs). Acting as message relays and data delivery points, Roadside Units can make

a signiicant improvement to the usefulness and reliability of a vehicular network.

Figure 1.1 shows examples of both testbed and commercial RSU hardware.

(a) (b)

Figure 1.1: Examples of real-world roadside units. (a) One of 52 roadside units belonging to the US-

DOT’sMichiganTest Bed inOaklandCounty,Michigan [5]. (b) Roadside unit hardwaremanufactured

by Cohda Wireless [6].

he irst part of this thesis focuses on the beneits that deployments of Roadside

Units can bring to a sparse highway network. In these sparse networks, the intermit-

tent connectivity due to low node count and high nodemobility can cause substantial

delays in the broadcast of important safety messages. hese issues can be mitigated

by deploying RSUs along the road in either a standalone manner (disconnected RSUs)

or linked together through a network backbone (connected RSUs). Although the

2



presence of these units may signiicantly improve communication performance, a

careful study of the associated improvement needs to be conducted, since the cost

of deploying and supporting RSUs in vehicular environments can be very high. A

sample of RSU installation costs can be seen in table 1.1 [7].

Table 1.1

Roadside Unit Installation Costs

Hardware $3 000 Radio Survey per site $ 1 000

Incidentals $1 030 Map Generation $ 1 000

Comm. Connection Equipment $1 125 Planning $ 550

Power Connection Equipment $ 325 Design $ 1 600

Additional Installation Equipment $2 000 System Integration & License $ 1 500

Total Cost for Installation Labor $2 475 Traic Control $ 1 000

Construction Inspection $1 075 Total $17 680

Existing studies on the physical distribution of RSUs to optimize communica-

tions fail to consider bi-directional traic (where cars in one direction can relay

messages to the cars in the opposite direction), or to give a clear comparison be-

tween using connected and disconnected RSUs in quantitative terms. Moreover, no

studies are complemented with real-life testbed results. he work presented in this

thesis aims to ill these gaps. We ofer a comprehensive look at the impact of RSUs on

the quality of the communications in highway scenarios, considering bi-directional

traic, and provide a detailed study based on analysis, simulations, and an experi-

mental testbed, revealing the tradeof between network packet delay and the number

of RSUs deployed.

Our work shows that deployments of RSUs on highways provide little or no

improvement in the end-to-end delay in safety message dissemination if the RSUs

are disconnected from each other. Conversely, we observe that interconnected RSUs

can reduce the re-healing time or the end-to-end delay by orders of magnitude. We

believe that these indings bring a new perspective on how the RSU deployment

issue should be handled.

he second part of this thesis is centered on vehicular networks that operate in

urban areas, and in the use of cars as Roadside Units as an alternative to the costly

RSU installations. A nationwide deployment of RSUs as supporting infrastructure

3
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for vehicular networks was anticipated to have happened by 2008 [8]. However, this

forecast did not come to fruition due to diiculties in justifying the beneits of RSUs,

lack of cooperation between the public and private sectors, but most importantly,

a lack of funding for infrastructure whose widespread deployment is estimated

to cost billions of dollars. A 2012 industry survey by Michigan’s Department of

Transportation (DoT) and the Center for Automotive Research reiterated that łone

of the biggest challenges respondents see to the broad adoption of connected vehicle

technology is funding for roadside infrastructure.ž [9].

hese diiculties explain why one is unlikely to see substantial deployments of

RSUs in the near future, and motivate the need for a credible, low-cost alternative to

ixed infrastructure that can operate both independently and in conjunction with

existing RSUs. In urban areas, one way to avoid the prohibitive expense of ixed

RSUs is to use the vehicles themselves as RSUs and, in this thesis, we propose the

use of parked cars as full-ledged RSU replacements, introducing a self-organizing

network approach to allow them to form vehicular support networks. We tackle

the speciic problems of selecting which parked cars should become part of the

network, how to measure each car’s utility to be able to make informed decisions,

what algorithmic steps vehicles should follow when they park, and how to deal with

possible disruptions in connectivity when parked cars leave. Simulation data from a

unique platform built with real-life data show that parked cars bring tangible beneits

in initial deployment stages, where insuicient numbers of DSRC-enabled vehicles

cause the network to become sparse; in denser networks, we see how a support

network that provides excellent coverage is possible using only a small fraction of

the cars that park in a city.

he third part of this thesis takes a more in-depth look at the potential for parked

car self-organization. We present a new approach that advances existing techniques

in several ways: a new set of mechanisms optimize networks of parked cars beyond

their initial grouping, which leads to amore eicient selection of cars to act as RSUs; a

multi-criteria decision making process acts directly on key metrics of signal strength,

coverage saturation, and network coverage, allowing for a precise control of the

resulting support network; and car battery usage is factored into the decision process,

with RSU roles being rotated among parked cars, ensuring a controlled use of each

vehicle’s battery resources. We shed light on the number of parked cars that need to
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Organization of the Dissertation 1.1

be recruited to provide urban coverage in various scenarios, and analyze the quality

and strength of the resulting networks in detail. We then bring in realistic models

of the distribution of parking events and their respective duration, and validate the

proposed mechanisms against them. Our analysis shows that this new approach

makes use of fewer cars to reach identical levels of signal strength and coverage, and

is more efective at stabilizing the resulting network. With this work, we provide

strong conirmation that self-organizing approaches are suitable for the creation of

vehicular support networks from parked cars.

1.1 Organization of the Dissertation

his dissertation is organized as follows. Chapter 2 is focused on the deployment of

Roadside Units in sparse highway vehicular networks. We develop analytical models

that characterize message transmission delay in these scenarios, run simulations

that validate the models and reveal the beneits that RSUs can bring, and show

data from an empirical study to conirm our predictions. In chapter 3, we present

an infrastructure-less approach to improve the transmission of important safety

messages in highway networks, together with an analytical model, a simulation

study, and a discussion on the viability of the proposed methods.

Chapter 4 shits our focus towards urban areas. We introduce a new approach to

allow the cars that are parked in a city to undertake the responsibilities of RSUs, and

provide a set of self-organizing processes to choose which cars should be tasked with

network support. We show the beneits that this approach can bring in sparse-density

scenarios, and how a widespread network can be established in dense scenarios. In

chapter 5, we analyze travel surveys from threeUS cities to reveal a number of parking

trends and patterns, and provide hourly and daily models of these parking behaviors.

Chapter 6 develops a new approach to parked car self-organization based on

neighborhood optimization and multi-criteria decision making. We present an

extensive and thorough study of this approach, its advantages, and its performance

under realistic parking behaviors. Finally, we show data from a pair of experimental

studies that verify core assumptions of self-organization processes, and we touch on

a few security considerations as well. Concluding remarks, a list of contributions,

and directions for future research are presented in chapter 7.
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Chapter 2

Roadside Units in Sparse Highway

Vehicular Networks

In a sparse vehicular network, the intermittent connectivity due to low node count

and high node mobility can cause substantial delays in the broadcast of important

safety messages. Roadside Units may be used to strengthen network connectivity

and to provide fast message dissemination; however, these infrastructure nodes have

an associated cost, and so the number of RSUs needs to be minimized while still

providing a signiicant improvement in communications. In this chapter, we study

the beneits of deploying RSUs to improve communications in highway scenarios.

We develop an analytical model to analyze communication delay in scenarios with bi-

directional traic, considering both connected and disconnected RSUs, and validate

our model via simulations and experimental measurements with 802.11p equipment.

Contrary to conventional wisdom, our results show that signiicant beneits of RSUs

concerning connectivity and message dissemination are only achieved when the

deployed RSUs are interconnected. Conversely, deploying a large number of discon-

nected RSUs will lead to little or no beneit in message dissemination delay [10, 11].

2.1 Introduction

he communication between vehicles in sparse vehicular ad hoc networks can be

characterized by very high transmission delays, which adversely afect the quality of

the communications. hese delays pose a signiicant problem for safety messages,
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which should reach nearby vehicles as quickly as possible when an accident occurs,

or when vehicle and road safety information needs to be disseminated.

he packet delivery delay experienced in end-to-end communication scenarios

between disconnected vehicles has been modeled and analyzed in previous works

(see, for example, [3]). his delivery delay is known as the re-healing time. It was

shown that this time can be larger than 100 seconds in multi-hop disconnected

communication scenarios, which is detrimental for vehicular communications.

Such results and indings provide motivation for the deployment of Roadside

Units to improve communication between vehicles on a highway. hese infrastruc-

ture nodes are ixed base stations deployed along the road with the goal of increas-

ing the overall coverage of a vehicular network. hey can be equipped with better

hardware than the units used in the vehicles, and can have fewer power and cost

constraints. When used as ixed points for communication on highways, they are

expected to enhance the network’s performance and improve the propagation delay

of messages between the several disconnected vehicles. A network of RSUs can also

connect to a backbone, enabling access to other Wide Area Networks (WANs) or

to the Internet. Although the presence of these units may signiicantly improve

communication performance, a careful study of the associated improvement needs

to be conducted, since the cost of deploying and supporting RSUs in vehicular envi-

ronments can be very high.

he existing studies on RSUs are mostly focused on vehicle to infrastructure

(V2I) communications, for dissemination of information or Internet access [12ś31].

Unfortunately, most of these studies only consider unidirectional traic or assume

that the RSUs are connected to a backbone. Such studies therefore provide little

insight into the quality of communications when one deploys stand-alone RSUs.

In this chapter we present a comprehensive study of the impact of RSUs on

the quality of the communications in highway scenarios, considering bi-directional

traic, where cars in one direction can relay traic to the cars in the opposite direction.

We present a detailed study based on analysis, simulations, and an experimental

testbed, which provides insight into the tradeof between network packet delay and

the number of RSUs deployed.

To this end, we develop mathematical models to determine the average delay of

a packet between a disconnected source-destination pair in the presence of RSUs
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as relays or broadcasters of information. he models cover both the single-gap (the

disconnection between adjacent clusters) and multi-gap communication scenarios.

We study both the scenarios of disconnected RSUs, where RSUs are deployed without

a physical connection between them, and interconnected RSUs, where RSUs are

connected through iber or wireless links.

Our analytical results are veriied via extensive Monte Carlo simulations and fur-

ther validated with empirical measurements, with real scenarios on the road, where

cars and RSUs communicate through our own implementation of DSRC technol-

ogy [32]. he results validate the accuracy of the proposed models, and highlight

the disparity between deployment of disconnected and interconnected RSUs. For

single-gap communications with disconnected RSU support, the transmission delay

can be reduced by 15% to 30%; for traversing multiple gaps, a reduction of at most

25% in end-to-end delay is possible. With connected RSUs the decrease in delay

can be of several orders of magnitude, depending on the desired Region of Inter-

est (RoI). hese results are critical for the deployment of RSUs on highways: on the

one hand, they show that the improvement by disconnected RSUs (where they are

used as broadcasters of information) is quite modest even if the density of RSUs is

very large; on the other hand, they show that connected RSUs (acting as relays of

information) are the better choice for providing high-quality communications and

better connectivity in vehicular highway scenarios. hrough this key result, we pro-

vide major insights into how this interconnected RSU scenario can be implemented

on highways.

2.2 Vehicle and Network Traic Model

2.2.1 Parameters of Sparse Vehicular Networks

An ad-hoc network operating on a highway with vehicles as network nodes can

be fully characterized by a discrete set of parameters. Research in [3] presents an

empirical study of traic characteristics on the Interstate 80 highway inCalifornia, for

various times of day, based on the analysis of extensive sets and traces of real freeway

data, independently collected by the Berkeley Highway Laboratory (BHL) [33].

his study has shown that late-night traic tends to be low-volume and high-

speed. When a vehicular network is formed, the low density of vehicles under such

9
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conditions leads to network sparsity Ð i.e., a network that is prone to disconnected

gaps between its nodes. his research is focused on methods to overcome such

disconnection, and therefore, late-night and low-volume traic is the scenario that

is most relevant to this work.

he inter-vehicle spacing of this type of traic is shown, in [3], to follow the

well-known exponential distribution, which in turn allows one to derive various

characteristics of the vehicular network that these vehicles create. he exponential

distribution has been known to provide a reasonable representation of inter-vehicle

spacing for low-density traic [34].

It can therefore be seen that the critical parameters for such a network are: the

vehicle traic density λt , in vehicles entering one lane of the highway per unit of

time; the vehicles’ speed v, which, from empirical observation of late-night traic, is

seen to have a relatively low deviation from the mean, and can therefore be treated

as a deterministic value; the number of vehicles per unit of distance, λs ≙ λt/v; and
on the network side, the expected radio range R of each vehicle’s DSRC radio. In this

work, vehicles can travel in either the east-bound or the west-bound direction (see

igure 2.1).

Inter-Cluster
Spacing

Intra-Cluster
Spacing

Isolated Vehicle

Cluster

Cluster
Length

Cluster
Size

5 3 6

Figure 2.1: A standard highway scenario depicting several characteristics of a sparse vehicular network.

From the exponential distribution of inter-cluster spacing, and the concept of

a vehicle cluster (a group of vehicles traveling in the same direction, where each

vehicle is in the radio range of at least one other vehicle), a series of equations that

describe core characteristics of the sparse vehicular network can be derived. We

now list the ones that are critical to our analysis. Figure 2.1 illustrates some of these

characteristics, and for further details on this base traic model and how each core

characteristic is derived, please refer to [3].

he probability of being the last vehicle in a cluster is given by

Pd ≙ e−λsR . (2.1)
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heProbability Distribution Function (PDF) of the spacing between cars in the same

cluster, Sintra, as well as its expected value E∥Sintra∥, are given by
fS intra(sintra) ≙ λse

−λs s intra

1 − e−λsR
, (2.2)

E∥Sintra∥ ≙ 1

λs
− Re−λsR

1 − e−λsR
. (2.3)

Similarly, the distribution and expectation of the spacing between clusters (i.e., the

gaps), Sinter , is given by

fS inter(sinter) ≙ λse
−λs(s inter−R) , (2.4)

E∥Sinter∥ ≙ R + 1

λs
. (2.5)

he Probability Mass Function (PMF) of cluster size, CN , in number of vehicles, is

fCN
(cn) ≙ Pd(1 − Pd)cn−1 , (2.6)

and the mean cluster size is given by

E∥CN∥ ≙ 1

Pd
. (2.7)

he vehicle cluster length distribution fCL
(cl), in meters, involves a more complex

derivation. We provide a numerical calculation of this PDF in Appendix A. he

expected cluster length is given by

E∥CL∥ ≙ ( 1

Pd
− 1)( 1

λs
− Re−λsR

1 − e−λsR
) . (2.8)

With the deployment of ixed infrastructure units in the vehicular network, two

new parameters are introduced: the distance CI , in meters, between each RSU and

the next, and the radio range RI of these units, also in meters. Being specialized

equipment, we observe that an RSU’s physical hardware can be improved over the

one deployed in vehicles, to enable increased transmission power and/or antenna

gain, which in turn would result in an improved communication range.
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2.2.2 Analytical Modeling of Sparse Vehicular Networks

he transmission scenario that will be under consideration for the remainder of the

chapter is the transmission of a message from a source vehicle, denoted as Src, to

a destination vehicle, Dst, in a two-lane, bidirectional road. To better characterize

each lane’s traic, the vehicle density is denoted as λe and λw , and the vehicle’s speed

as ve and vw , depending on whether we refer to east-bound or west-bound traic.

Src andDst in our scenario must necessarily be members of two separate clusters,

with any number of intermediate clusters in between Ð their exact number depends

on the distance between Src andDst and onnetwork and traic parameters. herefore,

there is at least one communication gap between Src andDst that cannot be overcome

without the aid of a third entity.

his entity is an opposite-lane vehicle, denoted as Z, that receives the message

from Src, stores it, and delivers it to Dst once it communicates with Dst. his mecha-

nism is called Store-Carry-Forward transmission, and the time for the message to be

transmitted across a region of disconnection is designated the Re-Healing Time.

For a message transmission requiring one or more gaps to be traversed, the need

for ‘re-healing’ happens when the last car in a cluster (tail) has received a message

and is unable to relay the message to the head of the following cluster. Using the last

vehicle as a point of reference, which we consider to be the Src vehicle from now on,

two main scenarios can be identiied:

• he best-case scenario, which occurs when the Src vehicle is in the range of

an opposite-lane vehicle capable of receiving and relaying the message (see

igure 2.2a);

• he worst-case scenario, which occurs when there is no opposite-lane vehicle

in range of Src, and thus Srcmust wait for one such vehicle to relay themessage

(see igure 2.2b).

hese scenarios are fundamental for the understanding of how messages prop-

agate in sparse vehicular networks, and are an important tool for understanding

the contribution of infrastructure deployments. We now briely describe the two

scenarios.

12
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Dst1 Src1 Src1b

Z1

(a) (b)

Figure 2.2: Examples of (a) a best-case scenario; (b) a worst-case scenario.

Best-Case Scenario

In a best-case scenario, depicted in igure 2.2a, the source vehicle Src1 is directly

connected to vehicle Z in the opposite lane at the time it receives a message for Dst1.

his scenario then considers two possibilities:

• No vehicles in Z’s cluster are in range of Dst1, in which case the lead vehicle

of Z’s cluster must wait until it moves into range of Dst1; this scenario occurs

with probability p10 and its re-healing time is denoted as E∥Tr10∥.
• Vehicle Z or a vehicle in its cluster might be directly connected to Dst1, in

which case the re-healing time is instantaneous; this scenario occurs with

probability (1 − p10), and its re-healing time is denoted as E∥Tr11∥.
Given these two events, it can be shown that the mean re-healing time in a best-case

scenario is given by

E∥Tr1∥ ≙ E∥Tr10∥p10 + E∥Tr11∥(1 − p10)
≙ ⎧⎪⎪⎨⎪⎪⎩(1 − Pd) 1

ve + vw
{ 1

λe
− 1

2
E∥Sintra∥E∥CN ∣CN ≤ k∥}

+ Pd
1

ve + vw
(R + E∥Sinter∥ − R)⎫⎪⎪⎬⎪⎪⎭p10 . (2.9)

Worst-Case Scenario

In a worst-case scenario, as depicted in igure 2.2b, the disconnected vehicle Src1b

does not have any opposite-lane vehicle in its range. herefore, for the message to be

carried across the gap, it must now wait for an opposite-lane vehicle to move into its

range, and then for that vehicle to carry the message to Dst1. Two delay components

13
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are discernible: the temporal delay from Src to Z (denoted as E∥Tr20∥), and then from
Z to Dst (denoted as E∥Tr21∥).

he mean re-healing time in a worst-case scenario can be shown to be

E∥Tr2∥ ≙ E∥Tr20∥ + E∥Tr21∥
≙ p120

E∥CL∥
ve + vw

+ (1 − p120) 1

2λw(ve + vw) +
E∥Sinter∥
ve + vw

, (2.10)

where p120 ≙ P∥CL < E∥S′

inter∥ − 2R∥, is the probability that Src is in a small cluster.
Details on the distinction between small and large clusters and on how this result is

reached are outlined in [3].

Mean Per-Gap Re-healing Time

he worst-case scenario occurs with probability P
′

d ≙ e−2Rλw , the probability of

having no opposite-lane vehicles in a range of 2R, which follows from the exponential

distribution of vehicle spacing. It also follows that the best-case scenario occurs with

probability 1 − P
′

d , and thus the mean re-healing time per gap is given by

E∥Tr∥ ≙ (1 − P
′

d)E∥Tr1∥ + P
′

dE∥Tr2∥ . (2.11)

Multi-Gap Delay

Oten, a safety message will need to overcome many gaps before it reaches its desti-

nation or is delivered to all vehicles in a predetermined area of interest. As a result

of the memoryless property of the exponential distribution [35], all gaps in the road

are statistically independent, and can be analyzed individually.

In order to determine the mean re-healing time required for a message to be

delivered to a given point in the road, one must irst determine how many gaps

exist between the source and the destination vehicles. Given the distance d between

both vehicles, computing the mean number of gaps, GC , from the cluster length and

intercluster spacing, is straightforward:

GC(d) ≙ d

E∥CL∥ + E∥Sinter∥ . (2.12)

hemean re-healing time involving multiple gaps can be determined by multi-

plying the gap count, GC , by the per-gap re-healing time, E∥Tr∥.
14
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2.3 Communication Model for Infrastructure-Supported

Networks

his section presents the analytical models to characterize vehicular networks with

disconnected and connected RSU deployments. Together with the simulation data

and the empirical studies, these constitute the core research that is presented in

this chapter. One can envision several speciic scenarios where RSUs can provide

signiicant beneits to communications:

• RSUs as communication relays;

• RSUs as broadcasters of information (one-time or repeated information);

• RSUs as infrastructure communication points to and from a WAN (e.g., Inter-

net).

When one considers the beneit of having RSUs assist communications in sparsely

connected networks, the most critical scenario is the irst one, where we envision

deployments of RSUs to enable relaying of information when there is severe discon-

nection between vehicles. herefore, this work speciically addresses this scenario,

where we consider that vehicles low in both directions and that RSUs, if present, are

helping to relay information between disconnected sources and destinations.

2.3.1 Disconnected RSU Scenarios

he most straightforward scenario is a pure deployment of RSUs along the road,

regularly spaced at a ixed distance, with no backbone to interconnect the RSUs. Our

irst model characterizes re-healing time on a highway where RSUs are deployed in

a stand-alone or disconnected manner.

Working with the analytical framework described in section 2.2.2, we determine

which communication scenarios can beneit from the presence of RSUs. Best-case

and worst-case scenarios are evaluated independently, as each lead to a diferent set

of beneits.
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Best-Case Scenario - RSU Reduces Spatial Distance

In a best-case scenario (shown earlier in igure 2.2a) where the source vehicle Src is

directly connected to a vehicle Z in the opposite lane to carry its message, improve-

ments are seen when an RSU is positioned in a way where it can forward the message

from Z to the destination Dst, efectively acting as a bridge between the two vehicles.

To obtain the average reduction in the distance that Z needs to travel, we irst note

that, if the RSUs are placed at ixed intervals of CI meters, then the probability of

inding an RSU at an exact point in space is a uniformly distributed random variable

in ∥0,CI):
fRSU(r) ≙

⎧⎪⎪⎨⎪⎪⎩
1/CI , 0 ≤ r < CI ;

0, otherwise .
(2.13)

We now refer to igure 2.3. By taking as reference the point in time where the

vehiclesDst and Z close in and reach a distance of 2RI to one another, we see a range

of positions where an RSU can be found that would allow for the RSU to act as a

relay between the two vehicles. In this scenario, if no RSUs were present, the two

vehicles would have to close in to a distance of R to be able to communicate, i.e., they

would have to travel a distance of 2RI − R.

Dst

Z

RSU

RSURSURSU
RSURSU

2R
I

Figure 2.3: Favorable positions where disconnected RSUs can reduce the spatial distance between Src

and Z.

he range of favorable RSU positions is between:

• he RSU being right on top of either vehicleDst or Z.his is the least favorable

scenario, and results in no improvement in delay.

• he RSU being in front of vehicleDst by RI . his is themost favorable scenario,

where the travel distance reduction is highest (by 2RI −Rmeters) and vehicles
can communicate immediately.
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From this last point, we observe that the reduction in travel distance increases linearly

from x ≙ 0 to RI and decreases linearly from RI to 2RI , with x as the distance from

the RSU to Dst. he travel distance reduction, G(x), is given by
G(x) ≙⎧⎪⎪⎨⎪⎪⎩

(2 − R
RI
) x , 0 ≤ x < RI ;

−(2 − R
RI
) x + 2(2RI − R), RI ≤ x < 2RI .

(2.14)

Lemma 1. he mean reduction in travel distance achieved by the presence of an RSU

in a favorable position to relay messages is given by

E∥L1I∥ ≙ ∫ 2RI

0
G(x) fRSU(x)dx ≙ (2RI − R)(R2

I + R2)
2RICI

. (2.15)

Proof of Lemma 1. Follows from equations (2.13) and (2.14). he range of favorable

RSU locations is ∥0, RI∥, the probability of having an RSU in such a location is given

by fRSU , and each point in this range represents a reduction in travel length given

by G(x). ∎
In a multi-gap scenario, an improvement is only seen if a vehicle in the new

cluster has a new opposite-lane vehicle in range to act as a relay. Refer to igure 2.3: if

vehicle Dst cannot immediately forward the message to a new opposite-lane vehicle,

then it will have to use vehicle Z again as the new relay (which would then be the

closest opposite-lane vehicle), thus nullifying possible gains.

Lemma 2. he probability of a cluster of cars having at least one opposite-lane vehicle

in range is given by

PdC ≙ 1 − Pr∥no opposite-lane vehicles in a range of CL∥
≙ 1 − e−λw ⋅E∥CL∥ . (2.16)

Proof of Lemma 2. Due to the exponential characteristic of traic in both lanes, the

probability of having no vehicles in a given range L will be given by e−λL (follows

from zero realizations in a homogenous Poisson Point Process of rate λ). he desired

probability is the complement of having zero vehicles in the range of interest, which

corresponds to the length of a cluster. Refer to Appendix A for the deinition of

E∥CL∥. ∎
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2. Roadside Units in Sparse Highway Networks

Lemma 3. he mean reduction in travel distance achieved by a regularly spaced de-

ployment of disconnected RSUs is given by

E∥LI∥ ≙ E∥L1I∥ ⋅ PdC
≙ (2RI − R)(R2

I + R2)
2RICI

(1 − e−λw ⋅E∥CL∥) . (2.17)

Proof of Lemma 3. Follows from lemmas 1 and 2. ∎

he new best-case re-healing time, E∥T ′

r1∥, is the result of subtracting E∥LI∥
(from lemma 3) from the distance components in equation (2.9):

E∥T ′

r1∥ ≙
⎧⎪⎪⎨⎪⎪⎩
(1 − Pd)
ve + vw

( 1

λe
−
1

2
E∥Sintra∥E∥CN ∣CN ≤ k∥

− E∥LI∥) +
Pd

ve + vw
(E∥Sinter∥ − E∥LI∥)

⎫⎪⎪⎬⎪⎪⎭p10 . (2.18)

Worst-Case Scenario - RSU as Message Relay

In a worst-case scenario, the source vehicle is not connected to any vehicle capable

of forwarding its message, and must wait for one to come into range.

With the presence of RSUs, a new scenario where an RSU acts as a relay becomes

possible. his is shown in igure 2.4. his occurs when the delay to forward a

message through an opposite-lane vehicle is larger than the delay for the source to

get a message to an RSU, plus the delay for the destination to reach that RSU.

Z

Dst
RSU

E[Sinter]

Src

Figure 2.4: A scenario where a disconnected RSU can store and forward a message from Src to Dst

faster than Z would.

Lemma 4. he probability of having an RSU act as a message relay between two

disconnected clusters (in a shorter time than an opposite-lane vehicle) is given by

p2A ≙ eλw(R−K) , (2.19)

18



Communication Model for Infrastructure Support 2.3

where K ≙ 2∥(E∥Sinter∥ − RI + CI/2)(ve + vw) − (E∥Sinter∥ − R)∥/ve .
Proof of Lemma 4. We begin by determining an expression for the probability of

having the RSU as the main relay. his event occurs when the time it takes for Src to

ind a vehicle Z, and then for Z to reach Dst, is larger than the time it would take for

Src to reach an RSU, and for Dst to come into range of that RSU:

P [Sinter − R + S
′

inter/2
ve + vw

> Sinter − RI + CI/2
ve

] , (2.20)

where S
′

inter is the inter-cluster spacing for vehicles in the opposite-lane. Rearrang-

ing the inequality as a function of S
′

inter , we obtain a probability in the form of

P [S′

inter > K], with K ≙ 2∥(E∥Sinter∥ − RI + CI/2)(ve + vw) − (E∥Sinter∥ − R)∥/ve .
he probability p2A can now be determined via the inverse Cumulative Distribu-

tion Function (CDF) of S
′

inter :

p2A ≙ 1 − P [S′

inter ≤ K]
≙ 1 − ∫ K

R
λwe

−λw(S′inter−R)dS′

inter

≙ eλw(R−K) . (2.21)

∎
Lemma 5. he average re-healing time when an RSU is acting as the main relay is

given by

E∥Tr2A∥ ≙ (CI − 2RI

2
+ R + 1

λe
) 1

ve
. (2.22)

Proof of Lemma 5. he re-healing time for the scenario addressed in Lemma 4 is

given by the average distance from Src to the RSU, plus the distance from Src to Dst,

which corresponds to the inter-cluster spacing in the lane of interest. Since a vehicle

can be, at most, CI − 2RI meters away from an RSU, the average distance to an RSU

is (CI − 2RI)/2, and
E∥Tr2A∥ ≙ (CI − 2RI

2
+ E∥Sinter∥) 1

ve
. (2.23)

With equation (2.5), lemma 5 follows. ∎
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2. Roadside Units in Sparse Highway Networks

Worst-Case Scenario - RSU Reduces Spatial Distance

If the scenario described in section 2.3.1 does not occur, the standard worst-case

scenario applies. Re-healing time is the sum of two components: Srcmust wait until

an opposite-lane vehicle Z comes into range, and Z must carry this message to Dst.

For the worst-case scenario, we observe that an RSU brings no advantage to the

temporal delay between Src and Z. Even if the message from Src were to reach Z with

the help of an RSU, Z’s time to deliver the message to Dst would not change.

he beneit of an infrastructure unit, in this scenario, comes as a reduction in

the distance that Z needs to travel to reach DstÐ this reduction is the same as the

one shown in lemma 3.

Lemma 6. In a worst-case scenario with RSU support, the re-healing time from Z to

Dst is given by

E∥Tr21∥ ≙ (R + 1

λe
− E∥LI∥) 1

ve + vw
. (2.24)

Proof of Lemma 6. Follows from lemma 3 and equation (2.10). ∎
Due to the inclusion of the new scenario as described in section 2.3.1, the worst-

case total re-healing time is now simply

E∥T ′

r2∥ ≙ E∥Tr2A∥p2A + E∥Tr2B∥(1 − p2A) , (2.25)

where E∥Tr2B∥ is the previous worst-case re-healing time, from equation (2.10), ater

replacing E∥Tr21∥ with lemma 6.
With the best-case and worst-case scenarios appropriately extended for the pres-

ence of RSUs, we reach the global per-gap re-healing time equation, which is stated

by the following theorem.

heorem 1. he re-healing time for a network with disconnected RSU support is given

by

E∥T ′

r ∥ ≙ (1 − P
′

d)E∥T ′

r1∥ + P
′

dE∥T ′

r2∥
≙ (1 − e−λw2R)⎧⎪⎪⎨⎪⎪⎩

(1 − Pd)
ve + vw

[ 1

λe
− 1

2
E∥Sintra∥

× E∥CN ∣CN ≤ k∥ − E∥LI∥] + Pd
ve + vw

(E∥Sinter∥ − E∥LI∥)
⎫⎪⎪⎬⎪⎪⎭
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× p10 + e−λw2R
⎧⎪⎪⎨⎪⎪⎩e

λw(R−K) (CI − 2RI

2
+ R + 1

λe
) 1

ve

+ (1 − eλw(R−K))[p120 E∥CL∥
ve + vw

+ (1 − p120) 1

2λw(ve + vw)
+ (R + 1

λe
− E∥LI∥) 1

ve + vw
]⎫⎪⎪⎬⎪⎪⎭ . (2.26)

Proof of heorem 1. Follows from equations (2.11), (2.18), (2.25), and lemmas 1-6. ∎
To conclude the analysis on disconnected RSUs, we recall section 2.2.2 to note

that the multi-gap re-healing time with disconnected RSUs can be computed by

following the same rationale as before. he introduction of RSUs on the road does

not change the number or the length of the clusters, so the average number of gaps

in a given span remains the same.

2.3.2 Interconnected RSU Scenarios

In a highway where roadside units are deployed and interconnected, the network

of RSUs is capable of quickly forwarding traic over large distances by relaying

traic through its interconnected backbone. To characterize message propagation

delay in this scenario, we break away from the previous models and take a more

pragmatic approach where the message will be preferentially relayed through the

connected network of RSUs. his approach is reasonable given the fact that we

are primarily interested in characterizing re-healing time for messages that need to

traverse multiple disconnected clusters over medium to high spans of road, and thus

relying on the interconnected RSUs will almost always be the preferred method.

Deinition 1. In an interconnected RSU scenario, if the source and destination vehicles

are spaced suiciently far away (more than the RSU spacing), messages are primarily

relayed through RSUs. herefore, a vehicle is considered disconnected if it is not in

range of an RSU. With interconnected RSUs, re-healing time is the average time a

disconnected vehicle waits until it can contact an RSU, either by itself (single-hop) or

through other vehicles in its cluster (multi-hop).

he total re-healing time is both the average delay for the Src vehicle to reach

an RSU and the average delay for the Dst vehicle to also reach an RSU. hese events
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2. Roadside Units in Sparse Highway Networks

are indistinguishable, as the goal of both vehicles is to establish contact with an RSU.

Two main cases can be identiied:

• Isolated vehicle: if the vehicle is isolated, its re-healing time is the time for the

vehicle to contact an RSU.

• Clustered vehicle: if the vehicle is part of a cluster, its re-healing time is the

shortest time for any vehicle in the cluster to reach an RSU Ð intra-cluster

communication can relay the message to the RSU as necessary.

We now derive analytical models that characterize the re-healing time in each of

these cases.

Isolated Vehicles

For an isolated vehicle, we identify the following three metrics: probability that

an isolated vehicle is disconnected from an RSU, Pr∥Vd∥; average delay for a dis-
connected vehicle to reach an RSU’s radio range, E∥TrV ∣Vd∥; and probability that a
vehicle is isolated, Pr∥CN ≙ 1∥ (i.e., the vehicle is not part of a cluster). his scenario

is depicted in igure 2.5.

RSURSU

Src

C
I
-2R

I
C
I

Figure 2.5: Example scenario of an isolated vehicle.

he probability that an isolated vehicle is disconnected from an RSU at the time

of transmission or reception of a message is obtained in a straightforward manner

from the density of RSUs and their radio range. For an RSU separation distance

of CI , and an RSU radio range of RI , the proportion of road not covered by the

RSUs’ radio ranges equals the probability that, at any given point in time, a vehicle is

disconnected from its nearby RSUs:

Pr∥Vd∥ ≙ CI − 2RI

CI
≙ 1 − 2RI

CI
. (2.27)

If the vehicle is disconnected, then it must be located in the span of road between

two consecutive RSUs’ radio ranges, i.e., in igure 2.5 it must be located in the area
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with a length of CI −2RI . Statistically, it is safe to assume that, on average, the vehicle

will be located in the center of this region; therefore, the average re-healing time

is given by the time required to traverse half the length of the region with no RSU

coverage:

E∥TrV ∣Vd∥ ≙ CI − 2RI

2

1

ve
. (2.28)

Lemma7. In a highwaywith connected RSUs, the average re-healing time of an isolated

vehicle is given by

E∥TrV ∥ ≙ E∥TrV ∣Vd∥Pr∥Vd∥ + E∥TrV ∣¬Vd∥Pr∥¬Vd∥
≙ CI − 2RI

2ve
(1 − 2RI

CI
) . (2.29)

Proof of Lemma 7. Follows from equations (2.27) and (2.28); the re-healing time

associated with event ¬Vd is zero, as the vehicle is connected. ∎
Clustered Vehicles

In a cluster of vehicles, it is suicient to have a single vehicle in the cluster in range of

an RSU for all vehicles in the cluster to be able to communicate with the RSU. his

requires vehicle-to-vehicle multi-hop communications in the cluster. he following

deinition is based on this observation.

Deinition 2. In a highway where RSUs are deployed uniformly at a ixed distance of

CI , and where each RSU has a radio range RI , if the length of a cluster of vehicles is

equal to or larger than CI − 2RI , then at least one vehicle in that cluster will always be

directly connected to an RSU, and therefore all vehicles in the cluster are considered

‘connected’.

For clustered vehicles, we observe that the followingmust occur for the re-healing

time to not be zero:

• As per deinition 2, the length of the cluster the vehicle belongs to must be less

than CI − 2RI . his event’s probability is P∥CL < CI − 2RI∥.
• If the cluster’s length satisies the above condition, it may still happen that one

or more of the vehicles in the cluster are in range of an RSU in the time period
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where communication is requested. We denote the probability that this event

does not occur by Pr∥Cd∥ (cluster disconnected).
Lemma 8. he probability that the length of a cluster is less than CI − 2RI is given by

P∥CL < CI − 2RI∥ ≙ 1 − e
− CI−2RI

µ

kR + e
− R

µ

. (2.30)

Proof of Lemma 8. See Appendix A, where regression variables k and µ are also

deined. ∎
Lemma 9. he expected length of a cluster, conditioned on CL < CI − 2RI , is given by

E∥CL∣CL < CI − 2RI∥ ≙
e

R+CI
µ kR2 + 2e CI

µ (R + µ) − 2e R+2RI
µ (µ + CI − 2RI)

2(e CI
µ − e

R+2RI
µ + e

R+CI
µ kR) . (2.31)

Proof of Lemma 9. See Appendix A. ∎
Consider the scenario in igure 2.6. For the cluster to be disconnected, the edge

vehicles of the cluster must be in the region ∥RI ,CI − RI∥. herefore, by taking

the center of the cluster as reference, it follows that the cluster’s center must be in

a region of length (CI − 2RI) − E∥CL∣CL < CI − 2RI∥, otherwise one of the edge
vehicles will be in range of an RSU. he cluster’s center can be located anywhere

in ∥0,CI). herefore, the probability of a cluster being disconnected from the RSU

network, P∥Cd∥, is given by
Pr∥Cd∥ ≙ (CI − 2RI) − E∥CL∣CL < CI − 2RI∥

CI
. (2.32)

RSU
C2C1

RSU

CI-2RI
CI E[CL]

C3

Figure 2.6: Example scenario of clustered vehicles.
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Let us consider igure 2.6 again. Statistically speaking, it is correct to assume

that the center of the cluster is in the middle of region ∥0,CI). hus, the shortest

re-healing time is the time for the frontmost vehicle in the cluster to reach the next

RSU’s radio range, which corresponds to a travel distance of (CI − 2RI − E∥CL∣CL <
CI − 2RI∥)/2. he mean re-healing time for any vehicle in a cluster which is both

disconnected and smaller than CI − 2RI is given by

E∥TrC ∣Cd ∩ CL < CI − 2RI∥ ≙
(CI − 2RI) − E∥CL∣CL < CI − 2RI∥

2v
. (2.33)

Lemma 10. he average re-healing time of a vehicle in a disconnected cluster is given

by

E∥TrC ∥ ≙ E∥TrC ∣Cd ∩ CL < CI − 2RI∥Pr∥Cd∥Pr∥CL < CI − 2RI∥
≙ (CI − 2RI − E∥CL∣CL < CI − 2RI∥)2

2veCI

⎛⎜⎝1 −
e
− CI−2RI

µ

kR + e
− R

µ

⎞⎟⎠ . (2.34)

Proof of Lemma 10. Follows from lemmas 8 and 9, equations (2.32) and (2.33), and

the fact that the speciic events ¬Cd and CL ≥ CI − 2RI correspond to a re-healing

time of zero. ∎
Global Re-Healing Time Model

he inal model for per-gap re-healing time, stated by the following theorem, is the

consolidation of isolated vehicle and clustered vehicle scenarios.

heorem2. heper-gap re-healing time for a networkwith interconnected RSU support

is given by

E∥Tr∥ ≙ E∥TrV ∥Pr∥CN ≙ 1∥ + E∥TrC ∥Pr∥CN > 1∥
≙ CI − 2RI

2v
(1 − 2RI

CI
) e−λsR

+ (CI − 2RI − E∥CL∣CL < CI − 2RI∥)2
2vCI

× ⎛⎜⎝1 −
e
− CI−2RI

µ

kR + e
− R

µ

⎞⎟⎠(1 − e−λs ⋅R) . (2.35)
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Proof of heorem 2. Follows from lemmas 7 and 10, and the Cluster Size PMF in

equation (2.6). ∎

2.4 Evaluation of Infrastructure-Supported Networks

In this section we present the results obtained with the analytical model proposed in

section 2.3, and with a Monte-Carlo simulation platform which is used for verifying

the analytical model.

2.4.1 Monte-Carlo Simulation Model

Our custom-designed simulator, written in C++, replicates a straight two-lane high-

way, with traic lowing in both directions. Vehicles are generated at the beginning of

each road at time intervals obtained from an exponential random number generator.

Vehicles move at a constant speed, and there is no overtaking.

he transmission range of each vehicle and RSU can be controlled, and is set

to 250m unless otherwise stated. Radios are assumed to have perfect and instant

communication, with no packet error when within the radio range, and no com-

munication outside it. We also assume that, once a node receives a message, it

immediately rebroadcasts it to every node in its vicinity. In section 2.5, we prove the

validity of these assumptions for sparse networks with data from an experimental

802.11p testbed.

For each simulation, the setup is as follows: the simulator irst runs for an arbi-

trarily long time, suicient to ill the road in both lanes. hen, source and destination

vehicles are picked in order to match the criteria of that particular simulation, e.g.,

if the goal is to transmit a packet between two vehicles which are 10 km apart, the

simulator attempts to locate the pair of vehicles on the road that better matches that

goal. Once this process is completed, the source vehicle generates and broadcasts a

single message. Ater the message is received by the destination vehicle, metrics are

recorded and the simulation setup is discarded.
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2.4.2 Validation of Inner Model Characteristics

Disconnected RSUs

he twomain components of re-healing time in disconnected RSUs are the best-case

and the worst-case re-healing time. For this analysis, we set up a 10 km road with

RSUs deployed at 1 km intervals, and once both lanes were illed with traic, a vehicle

in the eastbound lane was randomly selected to broadcast a message. he simulator

then measured the time for the message to reach the next cluster in the eastbound

lane, and reported whether we were in the presence of a best-case or a worst-case

scenario.

Figure 2.7a shows the analytical and simulation results for the two main compo-

nents of the disconnected RSU model, for vehicle densities ranging from 213 veh/h

to 745 veh/h (the same density is used in both directions). Figure 2.7b shows the

results of a simulation where Src and Dsc are 10 km apart, with disconnected RSUs

deployed every 1 km, and is therefore a setup where both best case and worst case

scenarios can occur randomly.
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Figure 2.7: Comparisons between analytical and simulation results with disconnected RSUs. (a) Best-

case and worst-case re-healing time with disconnected RSUs at 1 km intervals. (b) Total re-healing

time for vehicles spaced 10 km apart, with disconnected RSUs.

We observe a very good match between the predictions of our analytical model

and the output of the simulations. Results show that, as the traic density increases,

the re-healing time of both best- and worst-case scenarios decreases, as expected. As
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Figure 2.8: Comparisons between analytical and simulation results with connected RSUs. (a) Re-

healing time for an isolated vehicle with connected RSUs. (b) Re-healing time for a clustered vehicle

with connected RSUs.

a network grows sparser, so do the re-healing times; furthermore, the likelihood of

being in the presence of a worst-case scenario also increases, which carries a higher

penalty in re-healing time.

Interconnected RSUs

As explained in section 2.3.2, our approach for scenarios with interconnected RSUs

considers that the RSUs are the primary entities relaying messages. We consider two

main cases: the case where a vehicle is isolated, and the case where it is part of a

cluster.

A simulation is set up with a 10 km road, where RSUs are deployed at regular

intervals and interconnected. We consider that, when an RSU receives a message,

the message immediately becomes available at all other RSUs, which begin rebroad-

casting that message. Figure 2.8a shows the re-healing time for isolated vehicles. he

vehicle density has no efect on the re-healing time, as the scenario is conditioned

to isolated vehicles Ð therefore, we plot this delay against the RSU density, for den-

sities between 0.5 rsu/km to 1.25 rsu/km. Observe that there is an excellent match

between the simulation results and the results of our analysis. Re-healing time is

seen increasing linearly with the increase in distance between RSUs, which is an

expected result given the fact that vehicles travel at a ixed speed.
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he second scenario with connected RSUs considers that the target vehicle is

part of a cluster. he length of the cluster the vehicle is part of depends directly on

the vehicle density, higher densities leading to larger clusters.

Figure 2.8b plots the average re-healing time of vehicles that are part of clusters,

for a ixed RSU spacing of 1 km. Again, we observe a very good match between

simulation results and our analytical models. Comparing with the 1000m data point

in igure 2.8a, which corresponds to ∼9 s, one can conclude that being part of a cluster
considerably improves the vehicle’s time to connect to an infrastructure.

he excellent match between models and simulation results in igures 2.7a, 2.7b,

2.8a, and 2.8b, for both special cases and global end-to-end delays, upholds the

validity of our analytical models and the conviction that all relevant possibilities for

interactions with RSUs have been considered.

2.4.3 Single-Gap Communication Delay

We consider a road where RSUs are deployed in intervals of 1000m and 750m, and,

conservatively, have the same radio range as vehicles. Vehicle speeds were set to

30m/s (both lanes), and radio ranges to 250m. Figure 2.9 shows a comparison of all

three scenarios, for densities that go from 200 veh/h to 700 veh/h. Since it has been

shown that the analytical models are in line with the simulation results, plots in this

section feature data from the models only.
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Figure 2.9: Single-gap re-healing time, to transmit over short distances.
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It can be observed that a deployment of isolated RSUs can yield a reduction of

1 s to 5 s in the network’s mean re-healing time. his advantage becomes smaller

for denser networks, as disconnection becomes less of an issue. A deployment

of connected RSUs shows substantial improvement for very sparse networks, for

densities under ∼325 veh/h for CI ≙ 1000m, and ∼475 veh/h for CI ≙ 750m. Due to
the way the scenario for connected RSUs was designed, note that, for a transmission

over a single hop and given suicient vehicle density in both lanes, opposite-lane

vehicles may be able to deliver a message in shorter time than if going through

connected RSUs. his is evident from igure 2.9, for higher densities.

For a single-hop transmission, we observe that the best re-healing time in a

road with connected RSUs is the shortest time between the opposite-lane store-

carry-forward approach, and the delivery-through-infrastructure approach. his is

particularly true for safety messages, where an ideal vehicular network must try to

broadcast the message through any possible means. he re-healing metric will then

be the shortest time for that message to be delivered.

2.4.4 End-To-End Communication Delay

In a multi-gap scenario, we study the delay involved in sending a message over a

large segment of road (up to 30 km), which is essentially an accumulation of multiple

re-healing delays, based on the number of clusters between source and destination,

and on the inter-cluster spacing.

In the no-RSU and disconnected RSUmodels, store-carry-forward is the primary

mechanism of transmission. For these scenarios, we ix the vehicle density in both

directions and determine the mean number of clusters to be traversed. hen, the

total delay is the sum of all re-healing times required to get a message from each

cluster to the next. For connected RSUs, we determine the number of RSUs the

message must travel to reach the destination, and add a conservative 50ms delay per

(RSU) hop to the re-healing time.

Figure 2.10 plots accumulated re-healing times for all three scenarios as a func-

tion of the length of road to transmit a message across, in a network where λ is ixed

to a value indicative of a sparse network (λ ≙ 425 veh/h). All other parameters are
the same as in the single-gap scenario above.

his is a scenario where a deployment of RSUs is capable of yielding signiicant
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Figure 2.10: Multi-gap end-to-end delay, to transmit over large distances.

gains. he presence of disconnected RSUs steadily reduces the multi-gap accumu-

lated delay by ∼20%, with higher gains possible for closer-spaced RSUs. he gains,

however, are not what one would hope for. In this particular scenario, when RSUs

are deployed 1 km apart with a 250m range, 50% of the road becomes covered by

the RSUs alone, yet the re-healing time gains are modest at best.

Interconnected RSUs, on the other hand, show signiicant gains. A deployment

of interconnected RSUs can thus be viewed as the only way to carry messages across

long lengths of road with delays not exceeding 5 seconds. he results depicted in

igure 2.10 are the key inding of this study: the deployment of RSUs can only bring

signiicant improvements if they are connected. In other words, deploying a high

number of disconnected RSUs will not lead to signiicant beneits.

2.4.5 Efects of Cluster Spacing and Radio Range

Two parameters determine the beneits that RSUs can bring to a network: their

expected radio range, RI , and the distance they are deployed from each other, CI .

Figure 2.11a shows what delays can be expected in disconnected RSU setups, for

diferent combinations of CI and RI , on a highway where vehicles Src and Dst are

selected so that they are approximately 10 km away. Each pair of RSU spacing and

radio range values has been chosen so that the length of road between two RSUs that

is not serviced is at least 250m, thus ensuring that the RSUs remain disconnected.
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Figure 2.11: Impact of RSU spacing (CI) and RSU radio range (RI). (a) Disconnected RSU scenarios. (b) Interconnected RSU

scenarios.

Results show that placing RSUs closer together in these scenarios yields only

modest gains. For each 250m reduction in CI , the re-healing time improves by 2 s to

8 s. he efect of the RSU’s radio range is signiicantly larger Ð each 125m boost in

the radio range can yield 10 s to 20 s less re-healing time, which is quite signiicant.

Next we analyze interconnected RSUs in more detail. Figure 2.11b plots the mean

re-healing times achievable with diferent combinations of RSU radio range RI and

RSU spacing CI . he results correspond to a highway setup where vehicles Src and

Dst are selected to be approximately 10 km away. Again, a conservative 50ms delay

per RSU hop is added to the re-healing time.

Figure 2.11b is of great importance for the planning and design of highway RSU

deployments. he impact of the RSU’s radio range is very clear. As an example, for

a threshold of 5 seconds, by increasing the RSU’s radio range from 250m to 500m

one can space the RSUs an extra 500m apart while still observing the same expected

re-healing time. In a 300 km road span, again as an example, improving the RSU’s

radio equipment to achieve the 500m range would allow one to deploy 100 fewer

RSUs in that particular road segment, a signiicant cost saving.

For interconnected RSU scenarios, the distance between RSUs is of much greater

importance than for disconnected RSU scenarios, where more gains can be achieved

by boosting the RSU’s radio range.
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2.4.6 Re-Healing Time Probability Distribution

To conclude this evaluation of infrastructure-supported networks, we present an

analysis of the probability distribution of re-healing time, for two instances of dis-

connected and connected RSU scenarios. he goal of this analysis is to investigate

the pattern of delay spread in representative scenarios, and to determine the spread

around the statistical mean.

In order to obtain probability distribution functions (PDF) of the re-healing

time in each scenario, we gathered data from the comprehensive sets of simulations

that were performed previously to ensure the validity of the analytical models, and

obtained the desired PDFs from this data. First, we analyze the re-healing time for

a scenario with disconnected RSUs, spaced 1 km apart, where the time for a safety

message to reach a vehicle 10 km away from the source of the message is measured.

We considered ive diferent traic densities (all of them corresponding to sparse

vehicular networks with very low densities), to ensure variety, and the default 250m

radio range. he results are shown in igure 2.12a.
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Figure 2.12: Re-healing time probability distributions. (a) Probability Distribution Functions for a

10 km re-healing time, with a deployment of disconnected RSUs placed 1 km apart. (b) Histogram of

a 10 km re-healing time, with a deployment of connected RSUs placed 1 km apart. 5000 samples.

For this scenario, we attempted to distribution-it the data to various known

distributions and look for the closest match. We successfully itted data from all
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traic densities to the Log-Normal Distribution, with D-statistics of less than 4% (a

goodness-of-it measure from the Kolmogorov-Smirnov test). his indicates that the

re-healing time in disconnected RSU scenarios follows the log-normal distribution,

and does so with a high degree of conidence.

One can also see, in igure 2.12a, that the spread of the delay around the mean

is relatively small, if one takes into account how dynamic the evaluated scenarios

can be. his provides further conidence that the results reported in this work are

reliable as the plus or minus one standard deviation will be small.

For scenarios with connectedRSUs, we found that the delay distributions feature

unspeciic patterns, and itting the data to any known probability distributions with a

reasonable degree of conidence was not possible. Figure 2.12b shows the histogram

of simulation data for the 10 km re-healing time in a scenario with connected RSUs

deployed at 1 km distances, and a traic volume of 420 veh/h.

In connected RSU scenarios, when both source and destination vehicles are in

range of an RSU, a safety message can be propagated instantly, thus explaining the

large peak at the origin of the chart in igure 2.12b. he remaining data points exhibit

very low probability of occurrence. Deployments of connected RSUs show such a

vast improvement over disconnected RSUs, that any small observable delay spread

is of little consequence for the purpose of broadcasting safety messages.

hese results clearly show that in both regimes studied in this work (connected

RSUs and disconnected RSUs) the spread around the statistical mean value is not

signiicant.

2.5 Experimental Veriication

To further strengthen the validity of the proposed models for RSU-aided vehicular

communication, we designed and implemented a physical testbed for experimental

veriication of VANET technologies in Aveiro, Portugal. Our testbed comprises

ive hardware units, each consisting of a modern Single Board Computer (SBC)

itted with an IEEE 802.11p radio enhanced to operate in the regulated 5.9GHz ITS

band [32].
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2.5.1 Testbed Hardware and Sotware

• Board: PCEngines Alix3D3, with a 500MHz AMD Geode LX800 CPU at its

core (32-bit x86 architecture) [36].

• Radio: Unex DCMA-86P2 5.86-5.92GHz miniPCI radio for IEEE 802.11p ap-

plications (Atheros AR5414A-B2B chipset) [37].

• Antenna: L-Com 5.1-5.9GHz 5 dBi omnidirectional antenna.

• Operating System: Linux Debian Squeeze, kernel version 2.6.32-5-486.

• Driver: Modiied ath5k based on version compat-wireless-2010-11-01.

At the time of this writing, the publicly-available drivers for Atheros chipsets

supported neither the 802.11p standard nor any hardware operating at 5.9 GHz. For

this reason, we have modiied the ‘ath5k’ driver that is freely available for Atheros-

based chipsets, implemented the set of 802.11p standards, and modiied the Central

Regulatory Domain Agent (CRDA) and the sotware’s regulatory database to allow

operation in the 5.9GHz band.

For the mobile units, we installed hardware in a range of common mid-size

vehicles, deploying the units on the rootops of the vehicles. For the ixed RSUs, we

installed battery-powered hardware in tripods that were then deployed on the side of

highways, at the same height asmobile units. To connect RSUs for the interconnected

RSU tests, we used 802.11g hardware operating in the 2.4GHz ISM band.

2.5.2 Case Scenarios and Setup

To evaluate the validity of ourmodels, a number of experimental measurements were

carried out to evaluate the performance of RSU-supported sparse highway networks.

hese include the veriication of real-life radio range of 802.11p radios, multi-hop

communication delay, and backbone interconnection of RSUs.

All tests were performed in a low-traic, 2 km straight road at the edge of the city

of Aveiro, Portugal. For safety reasons and to comply with local road regulations, the

drivers maintained the mobile units at a ixed 50 km/h speed, and therefore all the

analytical data points to which our experimental data are matched with are derived

for a speed of 13.89m/s. Regarding the radio’s transmission range, ater calibration all

35



2. Roadside Units in Sparse Highway Networks

our radios exhibited 0% packet loss at 240m range, which then decayed to having no

communication at distances of 260-270m, which matches well with our theoretical

250m radio range. For this behavior, the transmission power measured at the radio’s

output was 4 dBm.

To begin, we veriied the assumption that multi-hop communication has suf-

iciently low delay to be considered negligible. he irst scenario, depicted in ig-

ure 2.13a, places four vehicles in a row, each at a 250m radio range to match the

maximum radio range that we assume throughout this work, and attempts a 3-hop

communication. his test revealed delays of 0.49ms, 5.51ms and 15.58ms for 1-hop,

2-hop and 3-hop links, respectively, which are at least two orders of magnitude lower

than the re-healing times given in this work, and can therefore be safely ignored.
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Figure 2.13: Experimental setups. (a) Multi-hop communication setup. (b), (c), (d) Disconnected RSU

setups, D1, D2 and D3 scenarios, respectively. (e), (f) Connected RSU setups, isolated vehicle and

clustered vehicle scenarios, respectively.

he exhaustive evaluation of disconnected RSU scenarios is a complex and cum-

bersome process, due to the number of possible sub-scenarios that the model deals

with. For disconnected RSUs, three sample scenarios were designed to represent the

main communication systems, and are depicted in igures 2.13b, 2.13c and 2.13d.
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• ScenarioD1: in this scenario, a Src and a Dst vehicle are positioned at equal

relative distance to an RSU; in such a setup, the RSU should providemaximum

beneit and reduce the distance the vehicles must travel for a message to be

delivered to Dst.

• ScenarioD2: similar to Scenario D1, but in this case we position the RSU in a

location where it is at the edge of providing no beneit to the communication.

he expectation is for the transmission to proceed as if no RSU was present.

• ScenarioD3: in this scenario, both Src and Dst travel east-bound in the same

lane, but are disconnected. An RSU is placed away from both vehicles, and is

expected to receive Src’s message, hold it, and deliver it to Dst.

For scenarios where connected RSUs are deployed, the experimental setup is

easier to automate, and so we veriied the analytical and simulation results previously

given in igures 2.8a (isolated vehicle) and 2.8b (clustered vehicle) directly, now with

a speed of 13.89m/s as reference. Figures 2.13e and 2.13f show the two setups. In

both cases, the backbone between the two RSUs was established with 802.11g radios

operating in the 2.4GHz ISM band.

For isolated vehicles (Figure 2.13e), a single car, Src, was designed to generate a

new message as soon as it reached the middle of two RSUs, and measured the delay

for that message to reach the opposite-end RSU1 (which requires backbone relaying

of the message from RSU2). he tests were then repeated for diferent separation

distances between the RSUs.

For clustered vehicles (Figure 2.13f), the setup is similar but in this case, instead

of a single car, one has a cluster formed by three vehicles. he tail of the cluster

generates a message as soon as the cluster is in the middle of two RSUs which are

1 km apart, and the time for that message to reach RSU2 is measured. he tests were

then repeated for diferent cluster lengths, according to the mean cluster lengths

expected for a road with vehicle densities ranging from 95 veh/h to 345 veh/h.

2.5.3 Experimental Results

Figure 2.14a plots the analytical delay predictions and experimental results for scenar-

ios D1, D2 and D3. he results show, for the three test scenarios under consideration,
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that the basic communication in disconnected RSU-supported networks can be ex-

pected to operate as per the assumptions upon which our analytical models are built,

and that analytical results closely match the experimental data.
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Figure 2.14: Experimental results. (a) Test scenarios D1, D2, and D3, with disconnected RSUs. (b) An

isolated vehicle with interconnected RSUs. (c) A clustered vehicle with interconnected RSUs.

he experimental results for the scenarios with interconnected RSUs, for isolated

and cluster vehicles respectively, can be seen in igures 2.14b and 2.14c. Once again,

the experimental results closely follow our analytical model’s predictions, both for

isolated and clustered vehicles, and both for various RSU spacings and various traic

densities, further strengthening the validity of these models.

hese are very important empirical results as they show how close the analytical

models follow the reality of vehicular communications. he close match between

our analytical models and experimental results with real-life 802.11p equipment are

a key result.
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2.6 Discussion

Our results show that RSUs are indeed able to signiicantly decrease the re-healing

time in vehicular networks. However, for scenarios with low vehicle density, a signif-

icant improvement can only be achieved with a strong deployment of RSUs, but the

underlying costs of such a large deployment scenario may be prohibitive.

How to interconnect the RSUs in real life is an important practical issue. Many

highways now carry a iber optic backbone to which RSUs can ideally be attached to,

or are covered by broadband cellular wireless access, though the latter has a much

lower bandwidth when compared to the iber optic backbone. Regardless, these

solutions require leasing the existing infrastructure to a third party, which would

incur additional costs.

New wireless technologies may also be viable for establishing point-to-point

links between RSUs. In particular, upcoming technologies such as WiMAX and LTE

have been shown capable of establishing point-to-point links over tens of kilometers

(whereas we expect RSUs to be deployed at much closer distances) while providing

more throughput than the theoretical maximum of 802.11p [38, 39].

An important observation of this work is that disconnected RSUs, when deployed

with standard equipment, provide modest improvements to the network’s re-healing

time, whereas the interconnection of RSUs results in tremendous improvement, as

shown in igure 2.10.

Regarding possible application scenarios, our analytical models can be used to

show how an infrastructure-assisted vehicular network can be designed in order

to support protocols with speciic delay requirements. For example, to prepare a

deployment to support a routing protocol such asAODV(which requires amaximum

per-gap delay of 2 s) when λ ≙ 425 veh/h, one would need to deploy disconnected
RSUs every 295m, or connected RSUs every 740m.

Finally, highway entries and exits should be taken into account in any compre-

hensive analysis. he main consequence of such structures is a change in vehicle

density. By splitting the highway into shorter segments of road, at entries and exits,

each segment can be analyzed independently, computing each mean re-healing time,

and aggregating the results.
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2.7 Related Work

he dynamics of two-way highway traic and VANET capacity have been studied

in previous works such as [3, 12ś14], with detailed analysis on the network perfor-

mance and information storage capability of the VANET.he physical distribution of

RSUs to optimize communication is an important design consideration for real-life

scenarios, and studies exist on the placement of RSUs for Internet access [15, 16],

RSU deployment at popular junctions [17], and determination of critical network

points [18ś20]. All these works are based on urban areas. Network connectivity in

V2I has also been an important research area [21ś23], where the tradeofs between

RSU density/placement and overall VANET connectivity can be determined.

Information dissemination and Internet access are the subject of many works

[16, 24ś26], all of which use a V2I approach, relegating V2V communications be-

tween vehicles to a secondary role. Others study the RSU network’s ability to deliver

messages over large distances [27, 28], but consider uni-directional traic and dis-

connected infrastructure only.

Of more relevance to this work are studies [29] and [30], which also approach the

relation between infrastructure density and network delay performance. he former,

[29], considers both two-way traic and the same store-carry-forward method for

infrastructure-less communication, but with a diferent viewpoint for the concept

of re-healing: the authors consider that re-healing is achieved once the message is

relayed to an RSU or to a vehicle in the region of interest. he latter, [30], studies

vehicle-to-RSU packet delivery delay and RSU separation distance, and obtains

a maximum delay violation bound. he study does not, however, consider packet

retransmission via opposite-lane vehicles, which is an importantmethod formessage

forwarding in highways.

It is important to mention that among these studies, very few address bidirec-

tional communication, and none of them gives a clear comparison between using

connected and disconnected RSUs in quantitative terms. Moreover, none of the

aforementioned studies is complemented with real-life testbed results. he work

here reported aims to bridge these gaps.
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2.8 Summary

With thework presented in this chapter we have shown that, contrary to conventional

wisdom, deployments of RSUs on highways provide little or no improvement in the

re-healing time or the end-to-end delay in safety message dissemination if the RSUs

are disconnected from each other. Conversely, interconnected RSUs can reduce

the re-healing time or the end-to-end delay by orders of magnitude. In countries

where broadband wired or wireless communications capability exists along major

highways, this does not pose any serious problems. When such capability does not

exist, however, the results of this study have shown that for signiicant improvements

the RSUs must be connected. he analysis, the simulations, and the experiments

conducted all endorse the validity of these observations and conclusions. We believe

that these indings bring a new perspective on how the RSU deployment issue should

be handled.
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Chapter 3

Infrastructure-less Approaches for

Highway Networks

Deployments of Roadside Units are an efective solution for mitigating network dis-

connection caused by the lack of DSRC-enabled vehicles in sparse highway vehicular

networks. However, due to the costs associated with the deployment and mainte-

nance of these infrastructure units, the majority of highways are unlikely to see RSU

support in the near future. To improve the timely broadcast of important safety

messages, methods that do not rely on the presence of infrastructure must be con-

sidered. In this chapter, we introduce two methods for improving communication

delays in infrastructure-less highway scenarios: a irst method where a disconnected

vehicle decelerates when it receives a safety message, and a second method where

a disconnected vehicle boosts the transmission power of its radio, to achieve faster

connectivity with following vehicles. Our results show signiicant improvements in

the connectivity of sparse vehicular networks when one applies these methods [40].

3.1 Introduction

Low traic density in a vehicular highway network, during certain hours of the day,

impacts the network’s ability to react to emergencies by alerting drivers and divert-

ing traic. High re-healing times, caused by frequent node disconnection, push the

delays associated with the propagation of safety messages to tens and hundreds of

seconds. Chapter 2 showed how a deployment of connected RSUs could substan-



3. Infrastructure-less Approaches for Highway Networks

tially improve sparse highway networks, while one of disconnected RSUs, although

cheaper, would yield very modest gains. However, the cost of such infrastructure

deployments is oten prohibitive, and it is unlikely that all but a small portion of the

world’s highways will see RSU installations in the near future.

One approach to improving re-healing time in infrastructure-less roads is to

have vehicles acting as self-organizing RSUs, i.e., having vehicles perform the func-

tionality of deployed RSUs. In this chapter, we show that vehicles in a sparse network,

under the right conditions, can act as mobile RSUs, thus obviating the need for the

deployment of infrastructure. he vehicles’ mobility, lack of backbone access, and

a general need to not impact each driver’s freedom of movement must be carefully

considered to see if one can apply the aforementioned approach and develop vehic-

ular networks with a reduced number of RSUs. With these concerns in mind, we

research two techniques that we believe are socially and technologically viable. hey

are:

• Deceleration of vehicles in the accident lane, to hasten approach by rear dis-

connected vehicles, which is feasible if the deceleration is not abrupt and if

the vehicle can move to an emergency lane.

• Power control (by the means of range boosting) at the head and tail vehicles

of each cluster, increasing the vehicles’ transmission range in case of a dis-

connection, which is feasible as long as the transmission power is kept under

the IEEE 802.11p maximum of 44.8 dBm EIRP (Efective Isotropic Radiated

Power).

To this end, we irst outline an analytical model for the one-way traic scenarios

based on the characteristic exponential distribution of vehicles on highways. hen,

we perform comprehensive Monte Carlo simulations of highway traic where an

accident has occurred, with the deceleration and range boosting techniques applied.

We study the re-healing time of an emergencymessage, which is the time it takes for a

message originating at the accident to reach other disconnected vehicles approaching

the accident location, for both one-way traic and two-way traic scenarios.

he impact on re-healing time caused by the deceleration and the range boosting

techniques is irst evaluated separately, for diferent levels of deceleration and range

boosting, and then jointly, with both techniques applied simultaneously. he results
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show that the efectiveness of these techniques is very diferent, and is heavily afected

by traic density and by the presence or absence of opposite-lane traic.

3.2 Analytical Models and Simulation Platform

In this section we outline the key steps of an analytical framework that characterizes

the expected re-healing time in a single-lane scenario. his section presents the

analytical models for studying the efects of braking and range boosting, which we

then use in section 3.3 to validate our simulation results.

he density of sparse traic in highway scenarios has been shown to follow an

exponential distribution [3]. he framework is designed with the assumption that

vehicles travel at ixed speeds Ð this is an approximation for sparse highway traic

that previous research has found to be realistic and to not cause meaningful loss of

statistical signiicance [3].

Given a ixed radio transmission range R, in meters, and a road traic density λ,

in vehicles per meter, we deine clusters as groups of vehicles that can communicate

with one another through a single- or multi-hop path. For the purpose of studying

the efects of tail vehicle range boosting, a second range variable, Rb, is introduced.

When range boosting is applied, Rb is increased to the desired range for the tail

vehicle; otherwise, Rb ≙ R. It is assumed that the network can identify which vehicle

in a cluster is the tail vehicle, which is trivial through GPS positioning, but also

possible through existing network protocols [41].

When the tail vehicle in a cluster begins decelerating, it will connect with the

lead vehicle from the following cluster when the vehicles reach a distance of Rb.

With the frame of reference centered on the tail vehicle, the preceding vehicle has

a zero relative speed (as it travels at the same speed as the braking vehicle), and

will be accelerating towards the tail vehicle as that vehicle decelerates. he distance

that must be traveled by that vehicle before communication is established is given

by sinter − Rb, where sinter represents the distance between clusters (inter-cluster

spacing, see [3]).

We assume that the deceleration of a vehicle is constant up to the point where the

vehicle stops. From the point of view of the decelerating vehicle A, the next vehicle’s

speed is initially zero (it follows A at the same speed); then, as A decelerates, the
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next vehicle’s speed towards it increases linearly; and when A reaches a full stop, the

next vehicle will be approaching A at its full, constant speed.

Consider a vehicle’s braking acceleration to be ab, each vehicle’s top speed v,

and an arbitrary distance X between two disconnected vehicles (X > Rb). Using

elementary equations of motion, one can determine the time for the vehicles to

connect as the forward vehicle begins to decelerate:

delay ≙
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
2(X − Rb)ab−1, X − Rb < v2

2ab
; (3.1a)

v

ab
+ (X − Rb − v2

2ab
) 1
v
, X − Rb ≥ v2

2ab
. (3.1b)

One can now calculate the expected delay, E∥TrA∥, when the vehicles are expo-
nentially distributed and their inter-cluster distance is Sinter . From the delay equation

above, one can irst obtain the probability PA for X − Rb < v2

2ab
, and then the delays

E∥Tr1A∥ from equation (3.1a) and E∥Tr2A∥ from equation (3.1b).

heprobability PA that the vehicles will connect before the braking vehicle arrives

at a full stop is given by

PA ≙ P [Sinter − Rb < v2

2ab
] ≙ e

λ(R− v2+2ab Rb
2ab

)
. (3.2)

he expected inter-cluster spacing that will lead to the vehicles connecting before

full stop is given by

E∥Sinter ∣Sinter < κ∥ ≙ ∫ κ

R
sinter ⋅

fS inter(sinter)
FS inter(κ) dsinter

≙ κ − R

eλ(R−κ) − 1 +
1

λ
+ κ , (3.3)

where κ ≙ v2/2ab + Rb. he delay, from equations (3.1a) and (3.3), will be:

E∥Tr1A∥ ≙√
2E ∥Sinter ∣Sinter < κ∥ ab−1 . (3.4)

If the vehicles only connect ater the braking vehicle comes to a full stop, both

the time when the vehicle is decelerating and the time when the vehicle is stopped

must be considered. his case occurs when inter-cluster spacing Sinter is greater than

v2/2ab + Rb:

E∥Sinter ∣Sinter ≥ κ∥ ≙ ∫ ∞
κ

sinter
fS inter(sinter)
1 − FS inter(κ)dsinter

≙ κ +
1

λ
. (3.5)
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he resulting delay, from equations (3.1b) and (3.5), will be:

E∥Tr2A∥ ≙ v

ab
+ (E ∥Sinter ∣Sinter ≥ κ∥ − v2

2ab
) ⋅

1

v
. (3.6)

Combining the two cases from (3.4) and (3.6), and their associated probabilities from

(3.2), one can obtain the expected re-healing time E∥TrA∥:
E∥TrA∥ ≙ PA ⋅ E∥Tr1A∥ + (1 − PA) ⋅ E∥Tr2A∥ . (3.7)

his re-healing time, E∥TrA∥, is the delay from one cluster to the next. In order

to determine the time to reach a vehicle that is d meters away from the source (such

as the 10 km re-healing time, which is our reference metric in section 3.3), one must

irst determine howmany gaps exist between the source and the destination vehicles.

Given the distance d between both vehicles, computing the mean number of gaps

(GC) from the cluster length (CL) and intercluster spacing (Sinter) is straightforward:

GC(d) ≙ d

E∥CL∥ + E∥Sinter∥ . (3.8)

he cluster length and intercluster spacing distributions can also be derived

from the exponential distribution of vehicles in a straightforward way [3]. he mean

re-healing time involving multiple gaps can be determined by multiplying the Gap

Count, GC , with the per-gap re-healing time, E∥TrA∥.
he methodology presented here for one-way traic can be applied similarly to

a statistical two-lane model, such as the one in [3], to obtain a model suitable for

analysis of two-way traic.

3.3 Efects of Deceleration and Power Control

In this sectionwe present the results of our simulation platform and analyticalmodels,

and show how deceleration and range boosting can improve re-healing time in sparse

vehicular networks. We consider both scenarios where two-way traic exists (typical

with highways) and where only one-way traic is present.
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3.3.1 Monte Carlo Simulation Model

Our network simulations are built on top of NS3 [42], and implement a two-lane

highway where traic can low in one or two directions. he vehicle generation

routine inserts vehicles at the start of the lane following the exponential distribution,

with deinable density. An accident can be generated, blocking the road and causing

vehicles in the same lane of the accident to form a dense queue behind it.

As was explained in section 3.2, vehicles move at a constant speed, and there is

no overtaking. Each vehicle is equipped with a radio device, and for two-way traic

scenarios, the vehicles in the lane opposite to the accident are capable of performing

Store-Carry-Forward, where a vehicle can hold an emergency message until it is

in reach of another vehicle. Upon receiving an emergency message, vehicles are

instructed to broadcast it to all neighbors. he transmission range of vehicles is set

to 250m, and can be dynamically controlled for the range boosting scenarios.

Each simulation begins by allowing time for the road to ill with vehicles. hen,

the accident is triggered at the speciied location, broadcasting a message, and the

time for that message to reach another vehicle that is 10 km away from the accident is

registered. For statistical signiicance, each data point is averaged over a minimum of

100 repetitions, and 95% conidence intervals are generated to ensure that suicient

repetitions are performed.

Our reference performance metric for emergency message broadcasts is a 10 km

re-healing time: the time it takes for an emergency message to reach a vehicle that is

10 km away from the point of origin, in the lane of interest. he re-healing time is

the most crucial metric in emergency broadcast, as the goal is to reach vehicles ap-

proaching the emergency site so drivers can quickly be made aware of the emergency.

From a traic optimization perspective, informed drivers may also divert to alternate

routes, either by their own choice or by recommendation by the vehicle’s GPS unit.

he distance of 10 km is chosen so as to ensure that there is a reasonable number of

disconnected clusters between source and destination, when vehicle density is low.

he following sections will present primarily simulation results. When avail-

able, data from the analytical model presented in section 3.2 are overlaid with the

simulation data for the purpose of validating our approach.
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3.3.2 Decelerating vs. Proactive Queuing

We begin by evaluating the re-healing time in a network where tail vehicles decel-

erate, versus a similar network where vehicles just queue behind the source of the

emergency message (e.g.: an accident). We consider vehicle densities that go from

∼200 veh/h to ∼650 veh/h, which represent low- and medium-density scenarios [3].
he vehicle’s top speed is set to 30m/s, and if deceleration occurs, vehicles do so at a

deceleration level of 5m s−2.

Figure 3.1 shows the total re-healing time required to propagate an emergency

message to a destination that is 10 km away from the event that caused the message.

For 1-way traic with deceleration, the data from the analytical model (‘An.’) is also

plotted, for comparison.
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Figure 3.1: Re-healing time comparison between queuing behind an accident and proactive decelera-

tion.

It can be seen that proactive deceleration is only efective for scenarios with one-

way traic, where the re-healing time can improve between 30% to 60% (depending

on traic volume) versus the queueing scenario. he data also show a very good

agreement between the simulation data and the analytical model predictions for

one-way traic with deceleration.

his result seems to indicate that deceleration is very ineicient in scenarios with

two-way traic, where the forwarding of emergency messages through opposite-

lane vehicles can be much faster. One can see minimal improvements in re-healing
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time when using both delivery methods (decelerating in the lane of interest plus

forwarding with opposite-lane vehicles), but the impact of requiring tail vehicles to

decelerate might not be justiied for such a modest gain.

3.3.3 Efects of Proactive Deceleration

We now study the relation between proactive deceleration and re-healing time. In a

real-life scenario deceleration is unlikely to be a controllable variable, as each driver

will brake the vehicle diferently, but nevertheless deceleration can be estimated

based on road conditions and driving patterns.

Figure 3.2 shows what kind of gains can be had given an expected deceleration.

For the 1-way traic scenario, re-healing time can improve up to 28%, while for the

2-way traic scenario, the efects of deceleration are negligible. Again, there is a good

match between simulation results and data from the analytical model.
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Figure 3.2: Re-healing time as a function of deceleration strength.

3.3.4 Efects of Range Boosting

To evaluate the efects of an increase in transmission power by the last vehicle in

the cluster, we ran sets of simulations where that vehicle’s radio range is instantly

increased as it receives an emergency message broadcast, while also decelerating

at a 5m s−2 level. We evaluate the 10 km re-healing time with radio ranges boosted

from 50m to 200m, from a base range of 250m. We have also ensured, through
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simulations with 802.11p radio models, that these range boosts are possible without

exceeding the maximum transmission power of 48.8 dBm EIRP that is deined in

the 802.11p standard.

In igure 3.3, we see that power control at the tail nodes can yield gains for both

the one-way and two-way traic scenarios. With only one lane of traic, the delay

can be reduced by as much as 53%, while for the two-way scenario, delay can go

down by as much as 78%, from 70 s to just 15 s to reach a span of 10 km. Data from

the analytical model (‘An.’) are a near-perfect match to the simulation results.
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Figure 3.3: Efects of tail vehicle range boosting on the network’s re-healing time.

3.3.5 Same-Lane and Opposite-Lane Traic Density

An emergency message travels in a single direction in the lane of interest, and in

a 2-way traic scenario, it can be carried by opposite-lane vehicles. We study the

efects of varying traic density in a single lane, to determine if a lack of vehicles

in the opposite lane can be more detrimental than a lack of vehicles in the lane of

interest, or vice-versa.

he results of a set of simulations where traic is ixed in one lane and varied in

the other can be seen in igure 3.4, where the east-bound lane is where the message

originates and the deceleration occurs, while the west-bound lane is the opposite lane.

he data show that traic density is equally important both in the main lane (where

deceleration occurs) and in the opposite lane where vehicles carry the emergency
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message across. For higher traic densities, the density of cars in the main lane is

more important than in the opposite lane, and an increase in it (i.e., ixing density in

the west-bound lane) yields better results than an increase in opposite-lane traic.
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Figure 3.4: Re-healing time in a two-way scenario with diferent densities of traic per lane.

3.3.6 Deceleration & Power Control

he inal set of results shows the combined efects of deceleration and power control

in the re-healing time of the vehicular network. Figures 3.5 and 3.6 plot the re-healing

time analysis for one-way and two-way traic, respectively, for selected pairs of edge

vehicle radio power boost and deceleration. he range boost levels of 0m, 100m

and 200m, and the deceleration levels of 3m s−2, 4m s−2 and 5m s−2 are considered,

for traic densities ranging from 200 veh/h to 650 veh/h.

1-Way Traic

With only one-way traic on the road, igure 3.5 shows that both deceleration and

power control have an impact on the re-healing time Ð however, decelerating yields

comparatively small improvements against a radio power boost.
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Figure 3.5: Re-healing time as a function of deceleration and tail vehicle power control, with one-way

traic only.

2-Way Traic

When two-way traic exists on the road, the data in igure 3.6 conirm that deceler-

ating vehicles in the lane of interest bring negligible improvements to the network’s

re-healing time, which we hypothesized earlier from the data in igure 3.1.

200 300 400 500 600 700
0

50

100

150

200

250

300

Traffic Volume [veh/h]

Re
−H

ea
lin

g 
Ti

m
e 

[s]

Deceleration + Power Control − 2 Way Traffic

 

 

+0m;3ms−2

+0m;5ms−2

+0m;7ms−2

+100m;3ms−2

+100m;5ms−2

+100m;7ms−2

+200m;3ms−2

+200m;5ms−2

+200m;7ms−2

Figure 3.6: Re-healing time as a function of deceleration and tail vehicle power control, with two-way

traic.

his conirms that opposite-lane forwarding of emergency messages is substan-

tially more eicient than deceleration in the lane of interest. Furthermore, one can
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see that power control at tail vehicles is crucial for a quicker message broadcast, and

boosting the radio range by 100m and 200m can cut the total re-healing time down

by 50% to 75%.

3.4 Discussion

Providing connectivity in sparse vehicular ad hoc networks remains a major chal-

lenge in the design and operation of vehicular networks, especially in disseminating

safety messages in a timely manner. While conventional wisdom suggests that road-

side units might be able to mitigate this problem, the past decade has proven that

this is a costly proposition that might be hard to implement on a large scale. hese

realities motivate our quest for inding alternative solutions that rely on the members

of a vehicular ad hoc network as opposed to deploying additional hardware.

3.4.1 Social Impact of Proposed Measures

One issue thatmerits discussion is the social acceptability of the proposed techniques,

in particular the one where vehicles reduce or halt their movement while on the

highway. While there is no doubt that such a request is an inconvenience to the

drivers, onemust also note that: i) it is only asked of for the transmission of important

safety messages, which can be likened to the way drivers now give way to emergency

vehicles; ii) it only applies in low-density scenarios Ð network connectivity is not an

issue with large numbers of vehicles; and iii) the deceleration only impacts a limited

number of vehicles, therefore reducing the number of drivers afected.

3.4.2 Technical Approach

In this work, we have opted to evaluate a more straightforward method for power

control. In dense networks, power control schemes must try to not be disruptive, by

progressively increasing transmitted power in a staircase fashion, while monitoring

the power levels of surrounding nodes. In sparse networks, however, the lack of

nodes is the main concern, and cluster tail nodes are by deinition disconnected

from the rear nodes. We therefore believe that a more aggressive boosting of power

levels might be more appropriate. In particular, in sparse networks for safety mes-
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sage broadcasting, it is our opinion that the urgency of the messages surpasses the

concerns of mitigating interference. Safety messages are, by design, small, and infre-

quent broadcasting of small packets at high power levels should not be detrimental

to the overall performance of the network.

3.5 Related Work

Research on the performance of vehicular networks in areas of low vehicle density

has been relatively sparse, with most works focusing on well-connected scenarios.

he broadcast of emergency messages, and techniques to decrease the time that

these messages take to reach their intended destinations, is an important design

consideration for any safety-oriented vehicular network.

Interference and packet collisions in vehicular networks can lead to failures in

the reception of safety-critical messages. he work in [43] proposes a distributed

power control scheme to limit the load of periodic messages on the network and

secure bandwidth for emergency broadcasts. In [44], a distributedMAC schemewith

strict priority requirements for emergency messages is proposed as an alternative

to previous statistical-based priority MAC schemes, reducing the node-to-node

propagation delay. In [45], a cross-layer approach is proposed to address the same

reliability issue, with a relay selection mechanism that jointly integrates geographical

location, vehicle speed and physical layer data in the decision process. A broadcast

control mechanism speciically tailored for emergency warning packets is also shown

in [46], where the criteria for rebroadcasting safety messages is dynamically adapted

to the number of neighbors of each vehicle. In the framework of emergency message

dissemination, [47] suggests segmenting the vehicles in range of the message source,

delegating the forwarding duty to a single vehicle and thereby reducing broadcast

delay.

Most of these studies are focused on the performance of the broadcast medium

and the reliability of safety messages. his work’s focus, however, is on the delay for

an emergency message to be broadcast across a segment of road to vehicles that are

not in the immediate vicinity of the accident, and on techniques that can be used to

reduce that delay without introducing additional infrastructure on the road.
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3.6 Summary

We have evaluated two diferent techniques to minimize the broadcast time of safety

messages on infrastructure-less highways, during low-traic periods (or during the

initial deployment phase of the DSRC technology) where the network becomes

sparse and disconnected. We developed mathematical models and a simulation

platform to analyze the communication improvements when employing tail vehicle

deceleration, and tail vehicle power control. he metric of choice was the re-healing

time, which is the time it takes for a safety message to be broadcast across a given

span of road.

It has been shown that the technique of reducing the speed of vehicles (i.e.,

deceleration) in order to quickly close gaps in sparse networks can yield good im-

provements, but only if the road in question has one-way traic exclusively. When

one has two-way traic, our study shows that deceleration is not as efective, as mes-

sage forwarding by opposite-lane vehicles is substantially more eicient. his is true

even when the density of opposite-lane vehicles is low. Conversely, the application

of power control and radio range boosting techniques to cluster edge vehicles can

lead to signiicant gains in the re-healing time of safety messages, both in the cases of

one-way and two-way traic. In light of these results, a suitable approach would be

to enforce both deceleration and power control in sparse one-way highway vehicular

networks, and restricting networks of two-way traic to power control alone.
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Chapter 4

Leveraging Parked Cars as Urban

Roadside Units

A comprehensive implementation of the envisioned traic safety and eiciency ap-

plications of the IEEE 802.11p and WAVE standards assumes the premise of the use

of DSRC technology both as On-Board Units (OBUs) and as Roadside Units (RSUs).

he high cost associated with RSUs, however, has so far prevented massive deploy-

ment of RSUs. Finding alternative solutions to this longstanding problem is therefore

very important. In this chapter, we propose a self-organizing network approach to

using parked cars in urban areas as RSUs. his self-organizing network approach

enables parked cars to create coverage maps based on received signal strength and

make important decisions, such as if and when a parked car should serve as an RSU.

Our results show the feasibility and cost-efectiveness of the proposed approach,

which can provide excellent coverage using only a small fraction of the cars parked

in a city [48, 49].

4.1 Introduction

Vehicular networks require a minimum number of cars to be well connected and

functional, which can fail to happen due to either low numbers of vehicles on the

road or insuicient radio-equipped vehicles. Studies show that in urban areas of low

vehicle density, important safety broadcasts can take more than 100 seconds to reach

all nearby cars [50]. On the other hand, dense networks with too many vehicles
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can be overwhelmed with traic and signaling [2], requiring careful coordination

between the nodes to ensure proper operation. One way to overcome both these

problems is to supplement vehicle-to-vehicle (V2V) communications with vehicle-to-

infrastructure (V2I) support systems, that is, to deploy infrastructure nodes known

as Roadside Units along the road, in addition to the On-Board Units within the

vehicles [1]. hese units can supplement a sparse network in a low-density scenario,

and help coordinate and move data in dense scenarios.

he U.S. Department of Transportation (DoT) anticipated a nationwide deploy-

ment of supporting infrastructure of RSUs for vehicular networks to have happened

by 2008 [8] Ð however, this forecast did not come to fruition due to diiculties in

justifying the beneits of RSUs, lack of cooperation between the public and private

sectors, but most importantly, a lack of funding for infrastructure whose widespread

deployment is estimated to cost billions of dollars. A 2012 industry survey by Michi-

gan’s DoT and the Center for Automotive Research reiterated that łone of the biggest

challenges respondents see to the broad adoption of connected vehicle technology is

funding for roadside infrastructure.ž [9] and, in 2014, a nationwide study sponsored

by the U.S. DoT reported average costs of $17 680 per deployed Roadside Unit [7], for

both hardware and installation. hese prohibitive costs explain why one is unlikely

to see substantial deployments of RSUs in the near future, despite their importance

to vehicular networks.

Oneway to avoid the prohibitive expense of RSUdeployment is to use the vehicles

themselves as RSUs [51], and in urban areas the idea of leveraging parked cars to

assist a vehicular network has been suggested [52], although only for speciic use

cases (e.g., overcoming corner obstructions, or increasing node density in sparse

areas). he objective of this work is to propose a credible, low-cost alternative to a

Roadside Unit deployment that can operate both independently and in conjunction

with existing RSUs.

To this end, we introduce a self-organizing network approach that allows parked

cars to function as RSUs forming a vehicular support network. We tackle the speciic

problems of selecting which parked cars should become part of the network, how

to measure each car’s utility to be able to make informed decisions, what algorith-

mic steps vehicles should follow when they park, and how to deal with possible

disruptions in connectivity when parked cars leave.
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Simulation data from a unique platform with real-life data validate our proposed

approach and its methods. he results show that an on-line, greedy decision pro-

cess based on self-generated coverage maps and limited communication between

vehicles can achieve an average coverage that is 93% to 97% as good as an optimum

solution. he proposed algorithms can also optimize the number of parked cars that

are designated as RSUs, selecting on average only 12% more cars than an optimum

process. A second set of data shows, additionally, that parked cars bring tangible

beneits in initial deployment stages, where insuicient numbers of DSRC-enabled

vehicles cause the network to become sparse. In these scenarios, using small num-

bers of parked cars to act as RSUs can reduce the time for emergency messages to be

broadcast by 40% to 50%. hrough these key results, we verify that parked cars can

indeed serve both as RSUs and as an extension to vehicular infrastructure deploy-

ments, and can self-organize to do so with no signiicant overhead to the existing

networks of moving cars. Combined, the two analyses in this work encompass both

low-, medium- and high-density scenarios, and their corresponding challenges.

4.2 Advantages of Parked Cars as RSUs

While the irst suggestions for the use of cars as RoadsideUnits aimed at recruiting the

moving vehicles for this purpose [51], in urban areas parked cars present themselves

as equally compelling candidates. For one, parked cars share many of the beneits of

ixed RSUs, of which one of the most signiicant is that they do not move.

As cars move, buildings and other obstructions enter and leave the line of sight

between them, causing detrimental fading and shadowing efects on the commu-

nication channel. Eventually, the nodes move too far apart from each other, and

the channel disappears. A parked car in an urban area has a ixed, known position

for extended periods of time and consequently, a more stable communication chan-

nel with nearby cars and RSUs is possible. heir ixed location is also beneicial to

applications that rely on geocasting (the broadcasting of messages to speciic geo-

graphic areas), making it simpler to route such messages to their intended location.

Furthermore, in areas of low vehicle density, the activation of parked cars can sup-

plement the network by increasing the number of available nodes and, consequently,

strengthening connectivity.
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We introduce three methods of operation for parked cars to become a part of the

vehicular network Ð they are depicted in igure 4.1. When no ixed RSUs exist in the

urban area, parked cars can form amesh network with each other (see igure 4.1a),

each parked car connecting to its neighboring parked cars. his mesh network can

support the moving vehicles by ofering to relay and broadcast messages, with the

beneit of having a stable node structure and stable links between nodes (moving

cars do not enjoy this beneit).

(a) (b) (c)

Figure 4.1: Modes of operation for parked cars acting as RSUs. (a) Parked cars form a mesh network with point-to-point links

to other parked cars in range, using 802.11p. (b) Parked cars extend the range of a ixed 802.11p RSU, acting as relays to it.

(c) Parked cars with access to an uplink establish themselves as standalone RSUs (depicted: using a cellular network as an

uplink).

When a limited deployment of ixed RSUs is already present, parked cars in the

vicinity of an RSU can act as relays to it (see igure 4.1b), extending the reach of the

ixed unit. In this mode, the value of a deployed RSU can be increased by enlarging

its coverage area. Parked cars acting as relays advertise their ability to forward

messages to an RSU, so moving vehicles use them as such. Around these relays, other

parked cars can continue to form the previously-described mesh network, further

amplifying the coverage of the original RSU via relays of relays.

Lastly, a parked car with the access to a backbone uplink can leverage that link

to establish itself as a standalone RSU (see igure 4.1c). In this mode, a parked car

can communicate with other existing RSUs and uplink-enabled cars via the Inter-
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net, allowing it to send messages to distant locations in adequate time. Increasing

numbers of vehicles now come equipped with Internet connectivity (using 3G or

LTE/LTE-A cellular technologies), and there is the possibility for the car’s electronics

to be allowed the use of this link for selected purposes (e.g., safety messages).

In urban areas that have seen limited deployments of ixed infrastructure, cars

that are parked can be used to ill in the gaps, providing coverage in areas not serviced

by existing RSUs, directing messages to the RSUs as necessary. Parked cars can,

therefore, serve both as the main solution to providing support to a mobile vehicular

network and as a complementary solution to the existing infrastructure.

he remainder of this chapter will focus on the crucial issue of deciding which

parked cars should become a part of this vehicular support network.

4.3 A Self-Organizing Network Approach to Creating RSUs

his section describes a self-organizing approach for constructing a vehicular support

network from parked cars. Together with the simulation data on sparse networks

and the performance analysis on dense networks, these constitute the main research

presented in this chapter.

At the core of this self-organizing approach lies a single decision: when a vehicle

parks, should it become an RSU, or should it enter a sleep mode? he decision

depends on what the support network aims to accomplish. When a parked car takes

a Roadside Unit role, this has non-negligible costs both to the battery of that vehicle,

as it must then power the DSRC electronics, and to the vehicular network, as active

nodes will broadcast their presence and answer requests from other cars, causing

overhead. So, for dense areas, the primary goal should be to maximize the reach of

this support network, while minimizing the number of active RSUs.

With this objective inmind, we introduce an on-line, greedy algorithm that allows

each car to decide whether to become an RSU or not. he process is necessarily on-

line since the network is in constant evolution, as cars park and leave; our approach

is also greedy, in the sense that we attempt to make a locally optimum decision

whenever a vehicle is parked, aiming to approach a global optimum solution.

With full knowledge of each parked car at every location, one can evaluate

all possible combinations of turning cars on and of, and reach a global optimum
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solution. Evidently this is not feasible, as not onlywould it quickly amount tomillions

of computations, it would also need to repeat itself whenever a car parked. With this

work, we aim for an approach that requiresminimal communication between nodes.

4.3.1 Self-Observed Coverage Maps

To be able to optimize the number of parked cars that become active and take the

role of RSUs, we require a new metric that can represent each vehicle’s value to

the network. he primary goal of this RSU network is to be able to reach as many

locations in the city as possible Ð therefore, we are interested in knowing the signal

coverage of each parked car, i.e., which areas it can reach, and how well it can do so.

Cars, however, can park in numerous distinct locations. Using propagation

models, one could estimate the coverage map of each particular car, but doing so

would also require the local roadmap, as well as knowing the shapes and structures

of nearby buildings (to determine obstructions). Such a process would still fail to

account for undocumented obstacles such as trees, trucks, billboards, etc.

With this work, we introduce a system whereby parked cars listen to beacons

being broadcast by other nearby cars on the road and use those beacons to build

maps of their coverage. By doing so, parked cars learn about which areas in their

vicinity they can send and receive messages from. hese beacons, which include

position, speed, and bearing, are standardized and known as Cooperative Awareness

Messages (CAMs), and are broadcast at rates no lower than 1Hz [53]. When the

signal strength of incoming beacons is made available from the lower protocol layers,

parked cars can take advantage of this valuable information to track how strong

coverage is at each location, building a distribution of the signal power of incoming

messages and using it to estimate the quality of coverage.

In igure 4.2, we illustrate the process of learning a coverage map, while also

demonstrating coverage tracking in the shape of cells. In this work, we divide the

urban area into a logical 2D cell map that is common to all cars. his approach

stems from the need to have coverage maps that are easily representable, storable

and shareable, and that can track coverage in irregular street maps with adequate

precision. To ensure that all vehicles share the same grid division, we opt to align

cell boundaries to GPS coordinates, a universal reference for all GPS-enabled cars.

Under this cellular division, a self-observed coverage map can be represented
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Figure 4.2: In this example, (a), (b), and (c) show how a parked car (the green car in the igure) observes parts of its coverage

map by listening to beacons from a nearby moving vehicle. As a vehicle moves nearer, our parked car overhears its beacons

and corresponding signal strength, tagging the cells in its local map. he complete, self-observed coverage map is seen in (d).

as a matrix containing signal strength values, with 5 meaning excellent signal and

0 meaning no coverage. In this work, we align cell boundaries to the nearest GPS

second (a standard WGS84 coordinate point multiplied by 3600, rounded down¹),

which results in a cell that is approximately 30m wide. Figure 4.3 illustrates this

division by showing a grid map with cells delimited by the nearest GPS second. A

coverage map for a vehicle with a maximum radio range of 150m will be 11 × 11 cells
large (with the vehicle positioned at the center cell); 3 bits per cell can represent the

6 levels of coverage, which makes a map ∼46 bytes in size. To center the map, the
latitude and longitude of the vehicle (2 bytes each) is sent along with the data matrix.

In this matrix form, coverage maps can be shared between vehicles through the

WAVE Short Message Protocol (WSMP), a part of the WAVE standard [54].

¹E.g., the decimal WGS84 coordinate 43.917 500 000 000 00 can be expressed as 158 103 s, or

N43°55′3.00′′ (hours (°), minutes (′), seconds (′′)).
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Figure 4.3: A section of the city of Porto overlaid with a grid aligned to one GPS second.

4.3.2 Procedures for Newly Parked Cars

Each newly parked carmust follow a logical set of actions to allow it to decidewhether

it should become an RSU. A newly parked car begins by listening for beacons being

broadcast by other vehicles in its vicinity, which can be seen in igure 4.4. During

this process, the vehicle builds its coverage map, as described in the last section. We

provide reference values for the duration of this step later on, in section 4.4.3.

Once the step of building a map of coverage is complete, the vehicle requests the

coverage maps of neighboring active RSUs, using WAVE Short Messages (WSMs).

he decision process only requires maps from ixed RSUs and active parked cars. An

alternative to this step is to instruct RSUs to broadcast their coverage maps periodi-

cally, so newly parked cars can simply receive them while listening for beacons.

he outcome of this algorithm ultimately decides whether the parked car should

become an RSU or switch to a power-saving (sleep) mode. he decision made by

each car depends on its observed coverage and the maps it receives from other RSUs

in its 1-hop neighborhood. We opt to keep the decision down to each vehicle, while

relying only on information from the car’s 1-hop neighbor nodes, to minimize the

associated network overhead. We describe this decision process in more detail in

the next section.

he process that newly parked cars must follow is straightforward. However, it is

possible for a car’s coverage map to change ater the decision step, which can occur

if no vehicles passed through a nearby road during the listening step. Coverage can

also worsen if an obstruction appears near a parked car, e.g. if a large truck decides

to park next to it. To account for this possibility, when a car detects that its coverage

map has changed signiicantly, it reevaluates its decision, by following the steps in
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Figure 4.4: Let: lowchart of actions taken by a newly parked car in order to decide whether to become

an RSU. Right: a parked car may see a substantial update to its coveragemap, triggering a new decision

process.

igure 4.4. A delta value, ∆cov , tracks how many cells have changed since the last

decision, and crossing a pre-speciied threshold triggers a new decision step.

4.3.3 Making a Decision

At the core of the decision process lies the decision score (dscore), a measure of each

car’s added value to the network. Asmentioned in the previous section, each carmust

make a decision when it parks, once it has inferred its coverage map and received the

maps from nearby RSUs (which can be other active parked cars, as well). With these

data in hand, the now-parked vehicle estimates what will happen to the network

should it decide to become an RSU at the location where it parked. In essence, it

measures its net beneit against its perceived detriment.

he coverage matrixes from neighboring RSUs are combined to obtain twomaps

of the local area: a irst map with the best signal coverage available at every cell, and
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a second map with the number of RSUs that serve each cell. When the decision

process is triggered, the new parked car overlays its coverage map with these local

area maps. For each cell in this map, the parked car will see one of the following

occur:

• Establishing new coverage. If the new parked car is covering a cell that no

other RSU in its vicinity can reach, then becoming an RSU will provide new

coverage to the network. his action is a major beneit.

• Improving existing coverage. If the newly parked car can cover an existing

cell at a signal level better than any other nearby RSU, then becoming an RSU

will improve the strength of the existing coverage provided by the RSUs. his

action also beneits the network.

• Adding redundant coverage. A parked car that adds coverage to an already-

covered cell, but does so at a signal strength level equal to or lower than what is

already provided by other RSUs, is adding unnecessary weight to the network.

We refer to this as saturating the network.

Each of these three efects is then quantiied, and a weighted sum of each results

in the decision score. In this work, dscore is given by

dscore ≙ κ ⋅ dnew + λ ⋅ dboost − µ ⋅ dsat , (4.1)

where dnew, dboost and dsat are metrics for new coverage, improved coverage, and

excess coverage, respectively. he coeicients κ, λ and µ weight each component of

the decision score, adjusting the balance between improvement and degradation to

the network. Later on, in section 4.4.3, we will provide reference values for these

coeicients.

We now formalize each of thesemetrics and how they are calculated. All notation

is summarized in table 4.1. A newly parked vehicle on its decision step has its own

observed coverage map, ∥scm0∥, whose elements scmi j represent geographic cells.

At this point, the vehicle also holds a collection of its neighbors’ coverage maps,

N ≙ {scm1, scm2, . . . , scmn}. Coverage matrixes are square matrixes of order n
(but not symmetric, i.e., scmn1 ≠ scm1n) where n is always odd, so that a single cell

exists at the center of the matrix that corresponds to the vehicle’s location.
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Table 4.1

Algorithm Notation Reference

Deinition Notation

Matrix indices (row, col.) i , j

Geographic indices (lat., lon.) x , y

Self-observed coverage map ∥scm∥ ≙ (scmi j)
Center coordinates of an scm xcenter , ycenter

Deciding vehicle’s own scm scm0

Collection of neighbor scms N ≙ {scm1 , scm2 , . . . , scmn}
Local map of coverage ∥lmc∥ ≙ (lmci j)
Local map of saturation ∥lms∥ ≙ (lmsi j)

In this work, we use the subscripts (i , j) to refer to matrix rows and columns,
and the subscripts (x , y) to refer to geographic coordinates. Coverage matrixes are
always accompanied by the coordinates (xcenter , ycenter) of the center cell located at
scm⌈n/2⌉⌈n/2⌉, which allows any element to be mapped to a latitude/longitude pair Ð
when (x , y) is used, the mapping is implied, since it is straightforward.

We begin by constructing two cell maps of the local neighborhood: a localmap of

signal coverage lmc ≙ (lmci j) ∈ {0, 1, . . . , 5} and a local map of coverage saturation
lms ≙ (lmsi j) ∈ N0. hese maps give a picture of the existing RSU support network:

lmc tracks the best coverage being provided at each cell, and lms counts the number

of RSUs covering that cell at the same time. Algorithm 1 shows how these local maps

are built.

Local maps span from the lowest to the highest latitudes/longitudes seen in all

scms, i.e., they are as large as the total geographic area covered by the underlying

self-observed coverage maps.

With the lmc and the lms, the metrics in equation (4.1) can now be calculated

as described in algorithm 2 below. dnew sums the strength of new coverage: e.g., a

new cell covered with signal 4 will add 4 to dnew. his way, the decision process can

distinguish between new coverage that can be stronger or weaker. dboost measures

the improvements to already-covered cells, summing the delta between the existing

and new signal levels. dsat tracks redundant coverage (network saturation): for every

cell that the new vehicle covers, sum the number of neighbors that already service it.
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Algorithm 1: BuildLocalMaps

Data: N ≙ {scm1, scm2, . . . , scmn}
Result: Local maps lmc, lms

1 ▷ lmcxy and lmsxy are initialized to 0

2 foreach scmn ∈ N do

3 foreach scmn∥xy∥ ∈ scmn do

4 if scmn∥xy∥ > lmcxy then lmcxy ← scmn∥xy∥
5 if scmn∥xy∥ > 0 then lmsxy ← lmsxy + 1
6 end

7 end

For example, if a given cell that the car can reach is already serviced by 5 RSUs, add

5 to dsat. his additive increase process helps keep a balanced number of RSUs that

serve each cell.

Figure 4.5 shows two contrasting examples of the self-organizing decision process,

in a simpliied environment with no obstructions. he irst, in igures 4.5a and 4.5b,

shows a new car parking in an advantageous location and evaluating its decision

score. he algorithms reveal that, of the 93 cells in the car’s coverage map, 86 will

add new coverage to the network while 7 will bring no improvement to the existing

coverage. his car will, therefore, have a positive dscore and become an RSU.With two

RSUs now active, igures 4.5c and 4.5d give a second example where another vehicle

parks in between the RSUs. his new vehicle sees, from its decision algorithms,

that it can add coverage to 10 new cells, and improve existing coverage to 25 cells Ð

however, it will also be adding to network saturation to 58 cells, and may therefore

have a negative dscore, and enter a sleep state.

he decision process builds from coveragematrixes that relect the real-life status

of the RSU support network and returns a Yes/No decision on each newly parked car.

With the procedure for gathering coverage maps, the algorithms for newly parked

cars, and the decision score equation, the self-organizing approach is fully functional.

68



A Self-Organizing Network Approach 4.3

Algorithm 2: ScoreMetrics

Data: scm0, lmc, lms

Result: A tuple of score metrics (dnew , dboost, dsat)
1 dnew ← dboost ← dsat ← 0

2 foreach scmxy ∈ scm0 do

3 if scmxy > 0 then
4 if lmcxy ≙ 0 then
5 dnew ← dnew + scmxy

6 else if lmcxy < scmxy then

7 dboost ← dboost + (scmxy − lmcxy)
8 end

9 dsat ← dsat + lmsxy
10 end

11 end

4.3.4 Substituting Displaced Cars

We now outline an optional mechanism to preserve the structure of the support

network whenever an RSU is displaced. When a parked car that is taking a Roadside

Unit role becomes mobile again, we refer to this situation as the RSU having been

displaced. Because decisions only occur when cars park, the service that was being

provided by that RSU is not reestablished until a new car parks in the area.

One optimization to the self-organizing approach is to allow inactive parked cars

to wake up periodically and listen to the 802.11p Control Channel (CCH), so they

can react to changes in the network or respond to requests to come back on-line.

We begin by showing how this periodic wake-up can be achieved, and then propose

a limited communication system for inactive vehicles to elect a replacement to a

displaced RSU.

Periodic Wake-Up

A periodic wake-up allows inactive parked cars to be recalled in case of need. For a

replacement protocol to be able to act upon all viable candidates, the wake-up events
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Figure 4.5: Two contrasting examples of the self-organizing decision process. (a) A new vehicle parks in an advantageous

location, in the vicinity of a single existing RSU. (b) he decision algorithms show that it can cover a substantial new area,

and so the car establishes itself as a second RSU. (c) Later on, another vehicle parks in between the two existing RSUs. (d)he

algorithms now show that this car would be a net loss to the network, adding more redundant cells than new and improved

cells. his vehicle does not become an RSU.hese examples are simpliied and shown for illustration purposes only.

must be synchronized, which can be achieved with ease through 802.11p’s mandatory

time synchronization.

hrough Time Advertisement messages and GPS timecode data, all On-Board

Units (OBUs) of a vehicular network are synchronized to UTC (Universal Time

Coordinated). We can then implement modular arithmetics based on the local time

tOBU to ensure all OBUs wake up in parallel. A modulo operation triggers a wake-up

when the remainder of (tOBU mod N) is zero: e.g., with tOBU in seconds and N ≙ 15,
the OBUs will wake 4 times a minute. On each wake-up, the OBU must listen for

a single CCH interval (50ms), so with a 15-second interval inactive cars only have

to have their OBUs active 0.3 % of the time, with a corresponding energy savings.

here is therefore a tradeof between the reaction time of inactive parked cars and

the energy required to allow inactive cars to be contacted.
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Electing a Replacement

An inactive parked car detects a displaced RSU when it fails to hear a beacon coming

from said RSU during its periodic wake-up interval. Beacons in 802.11p do not

beneit from guaranteed delivery, so a car should only react once it fails to hear

multiple beacons in a row. Figure 4.6 illustrates the election process, which works by

quickly eliminating as many candidates as possible with no communication between

them. his silent elimination ensures that a network in an area with hundreds of

inactive cars (e.g. in a parking lot) is not looded with messages every time an RSU

is displaced.

backoff/listen standard operation
missed

beacon

CCH

SCH

x …

…

Figure 4.6: he proposed election process, occurring on every inactive car that detects the loss of an

RSU.his process occurs exclusively in IEEE 1609.3’s Continuous Channel Access, where the radios

remain on the Control Channel (CCH), and do not switch to the Service Channels (SCH). Slots

correspond to CCH Intervals, standardized as 50ms.

To this end, we propose an initial backof period inversely related to each car’s

decision score, as described earlier in section 4.3.3. Each car detecting a displaced

RSU computes its dscore setting aside the coverage map of the displaced RSU. Its

backof time tbackof is given by

tbackof ≙ ⌊(1 − dscore

dscoremax
) × Nbackof

slots
⌋ × tCCH , (4.2)

where dscoremax is the largest value a decision score can take (which is found empiri-

cally), Nbackofslots speciies how many intervals the backof process is allowed to last

for, and tCCH is the duration of a CCH Interval, 50ms. In this calculation, the car’s

decision score is used as a ratio to the number of backof intervals. Larger (better)

decision scores will then lead to shorter wait times. As the backof timer on the best

candidate expires, it begins to broadcast new RSU beacons, advertising itself as the

winner of the process and instructing other candidates to return to sleep.

he number of backof slots determines the balance between how quickly a
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replacement RSU is found and how many candidates are excluded by the process.

When multiple listeners are assigned the same expiration timer, contention at the

Medium Access layer ensures that only one will broadcast a beacon irst, but at this

point, the choice is random. Nbackofslots should therefore be suiciently large to

eliminate most candidates based on their decision scores (e.g., 40 backof slots can

exclude 97.5 % of all candidates in 2 seconds).

4.4 Performance Analysis

Here, we present a study of the beneits that parked cars can bring to sparse urban

areas and an analysis of the performance of the self-organizing approach shown in

section 4.3. To do so, we run simulations on a platform that integrates real road

topologies, realistic vehicle mobility, real maps of obstructions, and empirical signal

measurements with 802.11p hardware, all of which are gathered from and applied

to the city of Porto, Portugal. he platform, which was custom-developed for this

work, is described next.

4.4.1 An Urban Simulation Platform Using Real Data

he urban environment introduces a number of challenges to a vehicular network.

hemovement of cars is dependent on factors such as the time of day, the type of road

the car is on, and the activity of intersection traic lights; the propagation of radio

waves is afected by obstructing buildings of varied sizes and composition, signal

relection and difraction on multiple surfaces, and even by other cars themselves

blocking the communication path; moreover, constant node mobility causes these

conditions to change at a rapid pace.

To better characterize the complexities of urban areas, we set out to design

simulation scenarios that are highly realistic, so that the resulting data are reliable

and indicative of what can happen in a real-life scenario. With this goal in mind, we

developed a platform with the following features:

• Realistic vehicle mobility and traic light patterns, obtained with the well-

known open-source vehicle simulator SUMO [55].
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• Real urban street layouts generated from publicly-available city maps that

include lane numbers, speed limits and traic lights [56].

• An accurate, vectorial model of urban obstructions, made available by the

Porto City Council. With this obstruction data, in the form of a shapeile, we

created a Geographic Information System (GIS) [57] to determine Line-Of-

Sight status between any two vehicles.

• Realistic modeling of core wireless network metrics such as Bandwidth and

Packet Loss, as a function of node distance and Line-Of-Sight status, derived

from empirical measurements gathered with actual 802.11p-equipped vehicles

circulating in Porto as well [32].

In our simulations, the signal strength between two cars is modeled with the

results presented in [32]. he data from this study are used to assign levels of cover-

age quality while a parked vehicle is building its coverage map, through the process

described earlier in section 4.3.1, and the inal signal quality for each cell is deter-

mined by averaging the signal of all received beacons. hese classiication criteria

are shown in table 4.2. In a real-life scenario, coverage strength can be determined

with received signal strength measurements from the DSRC radios.

Table 4.2

Quality Measure Criteria for Coverage Maps

Quality 5 4 3 2

Distance
LOS 70m 115m 135m 155m

NLOS 58m 65m 105m 130m

4.4.2 Improving Broadcast Delay in Sparse Networks

In the initial stage of a vehicular network deployment, insuicient numbers of ve-

hicles with DSRC equipment will cause the network to become sparse. A sparse

network is one where some of its nodes are too far apart from their neighbors for

communication to occur, leading to network disconnection. In an urban area, this

causes virtual clusters of cars to form, where cars in a cluster can talk to one another,
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but are unable to send messages to other neighboring clusters. his sparse network

problem has been well studied on highway vehicular networks [3] and, in these envi-

ronments, connected Roadside Unit deployments bring substantial beneits, as was

shown in chapter 2. While this issue is prevalent in scenarios of low market penetra-

tion, it can also occur in periods of low traic, even with full market penetration of

DSRC hardware.

Here, we study a scenario where the urban area sees a low density of DSRC-

enabled vehicles, which in turn also results in small numbers of parked cars that

can join the network as RSUs. Our goal is to determine whether the approaches

introduced in this chapter bring tangible beneits in these sparse scenarios. For the

problem at hand, we simulate an accident that occurs at a random point in the city,

automatically triggering the dispatch of an emergency message. In real life, these

messages have a dual purpose: to reach any nearby emergency vehicles, hospitals

or police stations, and to quickly inform other drivers of the accident, so they can

anticipate danger, expect congestion, and take alternative routes. he latter may also

aid in the former, by reducing traic in the vicinity of a crash, which helps emergency

services en route.

his scenario serves as a tool to study the overall performance of a message

broadcast in an urban vehicular network, and is not exclusive to safety applications.

Our metric of interest is then themessage reachability: the rate at which the message

spreads to nearby vehicles, and how quickly everyone in the immediate neighbor-

hood is informed. To broadcast the message, we select UV-CAST, a well-known

urban broadcasting protocol designed speciically for vehicular networks [50]. When

the need to disseminate a message occurs, UV-CAST comes into play by locating the

edge nodes of the cluster themessage is coming from, with a git-wrapping algorithm.

hese edge nodes are then designated as the ideal message broadcasters and continue

to rebroadcast the message as they meet new vehicles on the road. Figure 4.7a shows

an example of the algorithm at work.

In this analysis, we adapt UV-CAST to support multiple message origins, by

making use of the support network of parked cars. An example of this multi-origin

system is seen in igure 4.7b Ð here, active parked cars in the area assist the rebroad-

casting of messages to other parts of the network. At locations where other active

parked cars exist, UV-CAST’s algorithms are executed again, and new sets of broad-
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Parked CarDesignated BroadcasterMessage Source

(b)

(a)

Figure 4.7: UV-CAST selecting forwarders for a message broadcast with (a) no RSUs; (b) 3 parked

cars active in standalone mode.

casters are selected, efectively increasing the numbers of vehicles that redistribute

our emergency message, as well as their geographical dispersion.

For simulation purposes, we set up a 1 km2 area in the city of Porto, as described

earlier in section 4.4.1, featuring a diverse mix of road structures, speed limits, and

functional traic lights. We predeine a ratio of 1 parked car acting as anRSU for every

10 cars on the road (a 1:10 ratio) and analyze three densities of vehicles: 20 veh/km2,

40 veh/km2 and 80 veh/km2. he irst two densities match low-density and early-

morning scenarios, while the third is a medium-density scenario where network

sparsity is expected to be less problematic. Parked cars are placed randomly in the

area, and the 1:10 ratio between parked cars andmoving cars is chosen to be conserva-

tive Ð oten, close to 80% of all cars in a given area are parked. he reduced number

of parked cars that are able to operate as RSUs in standalone mode is intentionally
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chosen to emulate environments where uplink availability is scarce.

Figure 4.8 shows the evolution of an emergency message’s reachability for the

three densities under consideration. Here, reachability denotes the number of nodes

that have received the message Ð e.g., for the 40-vehicle scenario, the maximum

reachability is 40. We compare six scenarios, three with and three without parked

car support, and average the results over 50 repetitions each. he data show improve-

ments of 47%, 45% and 41% in the time required for full reachability, for the 20-,

40- and 80-vehicle densities respectively. hese are substantial gains that efectively

cut an emergency message’s broadcast delay in half in these sparse scenarios.
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Figure 4.8: Multi-origin UV-CAST message reachability over time, with 10% of the cars on the road parked and active as

standalone RSUs.

he improvements diminish, proportionately, as the number of cars on the road

increases, which is an expected result given that higher vehicle density translates

to improved network connectivity (less sparseness). For example, in the medium-

density scenario (80 cars), because the network is less sparse, the emergencymessage

immediately reaches ∼60% of all cars with the irst broadcastÐ a consequence of the

improved connectivity is to have fewer and larger clusters, and so a higher proportion

of vehicles will be in the same cluster as the broadcast source. Seeing smaller gains in

well-populated networks does not, however, mean that RSUs are not needed when

the network is not sparse Ð in higher-density scenarios, the beneits of RSUs will

come in the form of controlled broadcasting (e.g., preventing broadcast storms) and

improved network eiciency, among others.

he simulation results shown in igure 4.8 indicate that even a small number of
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parked cars randomly-distributed throughout an urban area can bring substantial

improvements to the broadcast of important emergency messages, which is one of

the most important applications of a vehicular network.

4.4.3 Performance of Self-Organization Mechanisms

We now turn our attention to the performance of our self-organizing approach. To

do so, we run a series of simulations in a 1 km2 region in the city of Porto using the

simulation platform detailed earlier, and analyze the behavior of the algorithms and

mechanisms that were shown in section 4.3.

Time to Build Coverage Maps

he coverage maps that the vehicles build are a fundamental part of the proposed

approach, but due to the randomness inherent in a vehicular network, a parked car

may not have a reliable way to know if it has overheard enough beacons to form

a reliable coverage matrix. A simulator is an ideal tool to analyze this observation

step, as it can determine the complete map of a speciic car beforehand, and track its

evolution. We run a series of simulations where cars are parked at random locations

in the city, introduce traic at three diferent densities, and track the evolution of

each car’s coverage map. Figure 4.9 plots the maps’ percentage of completeness as a

function of time.
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Figure 4.9: Probability that a car’s self-coverage map has been completely observed, as a function of

elapsed time, in low- and medium-density scenarios.

he data conirm the intuition that with more moving cars a reliable map will

take less time to build. For 80% of the map to be statistically complete, in these
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low-density scenarios, the newly parked car must receive beacons for 498 s, 392 s and

330 s, for the 20-, 40- and 80-vehicle densities, respectively. A conservative approach

for a real-life scenario is then to instruct cars to build coverage maps for 500 s to

600 s (i.e., for about 10 minutes) ater they park, to ensure a suiciently complete

map. A decision may be executed earlier, particularly if large numbers of beacons are

received from multiple directions (suggesting a dense network) Ð in the worst case,

the car will temporarily take an unnecessary RSU role, and once more coverage is

learned, the decision process is retaken. In higher-density scenarios, our tests show

that coverage maps are typically built in 30 s to 60 s.

Decision Algorithm vs. an Optimal Solution

Given the cell map division proposed in section 4.3.1, our core metrics for a support

network of parked cars are: the mean signal level available to each cell (network

coverage); the average number of RSUs covering each cell (network saturation); and

a count of how many parked cars take on the RSU role. In dense networks where

considerable numbers of parked cars exist, the selection of which cars should take on

RoadsideUnit roles becomes the primary concern. heoptimal solution to a given set

of parked cars can be determined by evaluating each possible combination of active

and inactive vehicles, with complete knowledge of the candidates and their coverage

maps. Here, 2#cars scenarios are possible, easily exceeding millions of computations,

which makes optimal decisions infeasible in real-life.

We design a simulation scenario of high vehicle density where 24 cars are in-

structed to park randomly in a small 0.18 km2 section of the map. his constraint

forces the cars to park on nearby streets, so that their coverage overlaps and a decision

is made on which cars to keep active. For comparison purposes, we irst determine

the optimal solution by bruteforcing the 224 possible combinations (approx. 16.7 mil-

lion runs), and we also calculate the efects of simply activating all available parked

cars. he results are shown in table 4.3. Predictably, the activation of all available ve-

hicles leads to the best coverage, but also causes each cell to see an average of 8 RSUs,

which is ineicient and may be problematic. he optimal solution provides roughly

the same level of signal coverage, now with only 1.6 RSUs seen at each cell, and just

5 out of the 24 cars let active. hese results show that, given perfect decisions, 19 of

these 24 parked cars are not needed and can enter an energy-eicient sleep state.
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Table 4.3

Reference Optimal Metrics and Parameter Set Metrics

Scenario
Signal

Coverage

Coverage

Saturation

RSU

Count

All RSUs active 4.13 8.28 24

Optimal selection 4.06 1.63 5

Set1 (µ ≙ 0.1) 3.93 2.42 7.2

Set2 (λ ≙ 8.0) 3.76 2.02 5.6

Next, we analyze our self-organizing approach, with sharing of coverage maps

and decisions taken at each node, to determine whether it can approach the outcome

of an optimal solution. To do so, we vary the weights of each component in the

decision criteria dscore, rerun the simulation scenario, and plot the resulting signal

strength, coverage saturation and RSU count metrics. In igure 4.10, each of the

coeicients κ, λ and µ is adjusted individually from 0.1 to 10.0, causing a correspond-

ing decrease/increase in the weight that the dnew, dboost and dsat metrics have in the

inal decision score of each parked car. he resulting city-wide metrics are shown.

Figure 4.11 then plots these same metrics for two preselected parameter sets: Set1 is

geared towards better coverage, and Set2 aims for fewer active RSUs.

he data in igures 4.10 and 4.11 show that a decision process optimized towards

improved coverage can reach a global signal strength of 3.93, which is only 3% worse

than the Optimal selection. his particular scenario occurs by setting µ ≙ 0.1 (the

dsat coeicient). However, the result is also that 7.2 parked cars remain active, which

is 2.2 cars more than the optimal solution. A second set of coeicients can be selected

to reduce the number of active cars to a minimum: with λ ≙ 8, the resulting signal
strength is of 3.76 (7% worse than Optimal), and only 5.6 parked cars remain active.

he data presented in this section show that our decision process can obtain near-

optimal results without the need for an extensive knowledge of a network’s RSUs,

and that it can also be directed towards speciic goals, such as better signal strength

or fewer active parked cars. Extrapolating the results to a 1 km2 area, we observe that

about 28 to 30 parked cars per km2 may be suicient to form an extensive vehicular

support network. his number is an order of magnitude smaller than the typical
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Figure 4.10: Efect of varying the coeicients κ, λ and µ (and the corresponding components of the

decision score, dnew, dboost and dsat) on signal strength, coverage saturation, and number of active

RSUs. A single coeicient is varied at a time, while the others remain ixed at 1.0.

density of parked cars in a city. And while our study so far has been heuristic in its

nature, varying coeicients and analyzing the corresponding outcomes, chapter 6will

introduce a scoring mechanism that acts directly on the metrics of signal strength,

coverage saturation, total area covered, and energy usage, allowing for principled

ways to tailor the decision process to it a speciic goal.

4.5 Discussion

Leveraging parked vehicles as roadside units is a relatively new and unexplored

concept, and the mechanisms and algorithms we present in this work should be

considered as initial explorations of this idea. his work is the irst to approach the
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Figure 4.11: City-wide metrics for two coeicient sets with diferent optimization goals, versus an

optimal selection. (a) Average strength of coverage. (b) Number of parked cars activated. Set1 attempts

to maximize the quality of service coverage, while Set2 is aimed at reducing the number of active

parked cars.

problem of assigning RSU roles to a large pool of candidates, while optimizing the

network in a self-organized way, thereby showing the viability of the concept in an

urban environment. Our results show that a self-organizing approach with limited

information can indeed approach a globally optimal coverage solution, indicating

that parked cars are able to form a vehicular support network without the need for

centralized control and decisions. he following are some of the open problems and

possible areas of improvement.

In this work, we restricted exchanges of coverage maps to a conservative 1-hop

neighborhood. Relaxing this limitation may yield more eicient algorithms (e.g.,

issuing a map request to the 2-hop neighborhood, or geocasting that same request),

at the expense of incurring a higher overhead on the network.

he second part of our study analyzed how the network establishes itself in areas

where no network existed before. his initial setup represents a transient state in the

support network. In urban areas where parked vehicles exist at every hour of the day,

once the initial RSUs are established a steady state is reached, and the replacement

mechanism provided in section 4.3.4 takes over. he proposed mechanism aims to

be overhead-eicient, and preserve the initially-established structure by picking the
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replacement that is most similar to the departing vehicle. Here, steady state coverage

may be improved by picking the replacement car that optimizes the network at the

local neighborhood instead. his, however, may require large numbers of inactive

parked vehicles to communicate so an informed decision can be performed.

he use of the car’s battery is also a concern to the self-organizing approach.

In chapter 6, we will show empirical data indicating that an OBU that operates

for the average parking duration of a car will drain under 5% of the car’s available

battery capacity (see section 6.4.1 on page 126). Other factors such as aging batteries,

prolonged parking events or the presence of other power-hungry electronics may

require this power draw to be reduced even further, however. With the mechanism

shown in section 4.3.4, that allows inactive cars to react to displaced RSUs and

automatically select a replacement, an active parked car can intentionally disable

itself ater a pre-speciied amount of time (e.g., ater 1 hour, the power draw will

be under 1 %) and be automatically compensated for by neighboring cars. More

advanced mechanisms can elect replacements beforehand and execute a sot handof.

We introduce one such method in chapter 6.

Finally, this work uses a cellular division of the urban area to be able to represent

coverage maps as 2D arrays of signal strength, and proposes that such divisions be

geographically aligned to GPS seconds. he precision (or lack thereof) of car GPS

signals may be of concern for this type of approach. Small GPS inaccuracies can

cause beacons sent at the edge of a cell to be erroneously assigned to a nearby cell

and, should that be found to be an issue in real-life scenarios, the system may opt to

discard beacons sent near these boundaries, or to ilter beacons with high Dilution

of Precision (a measure of GPS signal quality). An empirical study of the process

through which cell-based coverage maps are built is given, later on, in chapter 6 (see

section 6.4.2 on page 128).

4.6 Related Work

he concept of using cars as Roadside Units began to gain traction as it became

apparent that the cost of these units would pose a signiicant barrier to their deploy-

ment. Leveraging moving cars as temporary RSUs in urban areas, by requesting that

they make brief stops to aid in emergency message broadcasts, was shown to bring
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a measurable improvement to such goals [51]. he work in chapter 3 showed how

similar concepts, when applied to highway vehicular networks, were able to reduce

broadcast delay when opposite-lane traic was insuicient to relay packets

he speciic idea of parked cars as members of the vehicular network is irst

introduced in [52]. his work suggested activating parked cars to increase the num-

ber of nodes in a sparse network, improving its connectivity. It reported a 3.3x

improvement in node density when 10% of available parked cars became active.

hese results follow from tenuous assumptions of stable 250m radio ranges in the

urban area, which empirical data have shown to be improbable [32].

he interesting work in [58] suggests using parked cars as a means to overcome

the signal degradation that occurs when buildings block the line of sight between two

vehicles. By activating parked cars at key intersection points, other cars can use the

parked car at the intersection as an unobstructed message relay. With this approach,

cars were shown to be able to receive nearby emergency messages up to 17 s faster.

A follow-up to this work [59] also demonstrated how parked cars can be used to

aid existing RSUs in content downloading. By caching content from ixed RSUs,

bandwidth demands on the main RSU for distributing content could be alleviated.

hese works presented data obtained under the assumption of 200m radio ranges,

irrespective of obstructions.

he existing body of work on parked cars has revealed the interesting possibilities

that can be brought by leveraging parked cars as RSUs, albeit in speciic, limited

scopes. While these works describe some interesting use cases for parked cars in

urban vehicular networks, they do not address the fundamental question of how

these entities should be selected, managed, and replaced using a self-organizing

network approach, nor whether they can assume more lexible support roles in the

network, instead of being relegated to these speciic uses. Our work aims to show

that using a self-organizing network approach, parked cars can serve as a low-cost

and very eicient alternative to deploying RSUs in urban areas.

4.7 Summary

We have showed that using a self-organizing network approach, the large numbers

of parked vehicles in urban areas can be leveraged to serve as RSUs and provide
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support to the networks of moving vehicles. hese networks of parked cars can

serve as low-cost, eicient alternatives to expensive deployments of ixed Roadside

Units. To function as RSUs, they require only the means to keep DSRC electronics

powered while vehicles are parked. Our proposed self-organizing network approach

introduced novel ways for cars to determine their ability to act as RSUs and to decide

whether to become RSUs from that knowledge. Our analysis showed how a support

network that provides excellent coverage is possible using only a small fraction of

the cars that park in a city.
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Chapter 5

Statistics of Cars Parking in Urban Areas

he ability to model and predict the behavior of cars that park in an urban area is

essential to the development of vehicular networks that leverage these parked cars. In

this chapter we analyze themobility patterns of people living inUS cities who use cars

as their primary means of transportation. We process and analyze survey data from

the metropolitan areas of Atlanta, Chicago, and Knoxville, to extract statistics on the

parking behaviors of individual cars. We then provide daily and hourly numerical

models of parking events, along with useful derivations of the main parking statistics.

he data we present conclusively show that parking events are classiied into two

major, clearly identiiable groups according to the time cars spend parked; that these

patterns vary substantially throughout the day; and inally, that these trends are very

similar across diferent cities [60].

5.1 Introduction

Regional travel surveys have been commissioned by city transportation committees

from as early as 1965 [61]. hese surveys consist of randomly-sampled person-to-

person interviews that inquire about a person’s travels on a speciic date, collecting

departure and arrival times, locations, and means of transportation, among others.

Earlier surveys consisted of in-person interviews Ð nowadays, Computer-Assisted

Telephone Interviews (CATI) are standard. Studies that make use of these travel

surveys are oten tailored towards the development of urban parking spaces and

parking lots [62], and so data are aggregated in metrics such as parking spot occupa-
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tion throughout the day. While this gives us a broad picture of how parking spaces

are used, it does not let us infer the parking behaviors of each individual car.

In this chapter, using data from recent travel surveys, we draw statistics on how

single cars park in urban areas. hese statistics are of particular use to vehicular urban

network research. Recent studies have brought forth the idea of leveraging parked

cars as active nodes in an urban network, increasing network connectivity [52],

relaying messages across intersections [63], and acting as supporting Roadside Units

(as seen in chapter 4). So while the potential for parked cars in these networks seems

clear, a number of pitfalls need to be addressed as well Ð for example, the electronics

that enable the networkmust run limited by the power available from the car’s battery,

and cars can vacate their spots and become mobile at any time.

With this work, we provide a probabilistic view of how individual cars park,

allowing for informed decisions to be made concerning these cars. Speciically, we

analyze how total time parked is distributed, how parking behaviors evolve through-

out the day, and how these trends difer from one city to another. We then show

how parking time can be accurately modeled through a dual Gamma stochastic

process, to characterize distinct short-term and long-term parking behaviors, and

provide derivations for estimating parking duration and remaining parking time of

individual cars.

5.2 Applications in Vehicular Networks

Our research has shown that parked cars can be leveraged to improve urban vehicular

networks, simply by activating the radios in these otherwise unused entities (refer

to section 4.6 on page 82). A support network that consists of parked cars will

necessarily require some degree of self-organization, as cars park and depart oten

andunpredictably. When selecting a parked car for a speciic role in the network, with

the models presented in this chapter one is able to prioritize cars that are statistically

more likely to stay parked for longer, so the chosen car can fulill its role for longer

as well.

Another concern with this approach is that power consumption of the radio

electronics must be kept in check, in order not to risk draining the car’s battery

(whose primary purpose is to kick-start a stopped engine). In this context, a system
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to rotate the supporting roles in the vehicular network among nearby parked cars

can be implemented. Using the models in this work, an algorithm can rotate roles

among cars based on how long each car is likely to remain parked, and how much of

its battery is let.

In general, we believe that most systems that leverage parked cars will beneit

from taking the statistics presented in this chapter into consideration.

5.3 Travel Survey Data Sources

Performing a metropolitan travel survey demands a substantial amount of work and

logistics, along with adequate funding to employ interviewers and collect data on a

household-by-household basis. Figure 5.1 shows the number of surveys performed

in the USA, from 1965 to date. he 1990s and 2000s saw a signiicant growth in the

number of surveys performed per year, which has since then declined.
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Figure 5.1: Histogram of travel surveys conducted by metropolitan areas, states and localities of the

United States over the past 50 years.

In this work, we analyze data from three speciic surveys: Atlanta 2011 [64],

Knoxville 2008 [65], and Chicago 2007 [66]. In order to draw statistics that relect

modern parking trends, we speciically select surveys that are no older than 10 years,

from medium- and large-sized urban areas. At the time of this writing, these were

the surveys we were able to locate that it the criteria. As our goal is to analyze

the individual parking behavior of vehicles in a city, we process these survey data,

and exclude samples in which the mode of transportation does not cause a parking

event. Traveling on foot, by bicycle or by collective public transportation (bus, train,

subway) are some examples of samples that were excluded. Table 5.1 lists the surveys,

the number of samples contained in each survey, the percentage of these samples

where the person traveled by car, and the population size in each metropolitan area.
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Table 5.1

Characteristics of Travel Survey Data

Survey
Number of

samples

Car-only

samples

% Car

samples

Metro.

pop.

Atlanta 2011 119 478 81 863 68 % 5.5 m

Knoxville 2008 15 313 11 535 75 % 0.9 m

Chicago 2007 159 856 103 964 65 % 9.5 m

5.4 Statistics of Urban Parking

5.4.1 24-Hour Model of Parking Events

We begin by analyzing the complete 24-hour dataset in each survey, as a whole, and

deriving important characteristics from these data. For improved presentation, we

apply kernel density estimators to the survey data, using Normal distributions as

the kernel function K(·), its bandwidth calculated through the normal distribution

approximation [67]. Figure 5.2 shows how the duration of parking events in a single

day is distributed, for each survey’s urban area.
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Figure 5.2: Probability density functions of total time parked, in minutes, for each of the three survey

sets.
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Important observations can be drawn from igure 5.2, the irst one being that

the main characteristics of parking duration are remarkably similar among all three

cities. A second observation is that a large mass of cars park for 3 hours or less (the

irst peak from 0 to 180 minutes), which are then followed by a series of smaller

overlapping peaks that represent longer-term parking.

Using the 180-minute mark as a classiier, we now analyze the short-term and

long-termparking event groups. Figure 5.3 plots the distribution of the times of day at

which vehicles irst park, for the two groups, in the city of Chicago. hedata show that

short-term and long-term parking events are also very distinct in terms of the time at

which the car is parked. Short-term parking (in red) is mostly consistent throughout

the daytime, while long-term parking (in blue) peaks substantially between 6 and

9 A.M., with a second smaller peak occurring again around 1 P.M.
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Figure 5.3: Time of day at which vehicles park, for short-term (under 3 hours) and long-term (over

3 hours) parking.

he probability distribution of the time cars spend parked, in igure 5.2, is useful

to vehicular research, and this 24-hour aggregate of events can be itted to known

probability distribution functions. We itted the survey data in the Chicago dataset,

the largest of our three chosen surveys in terms of sample size, to various well-

known distributions and applied the Kolmogorov-Smirnov test (which quantiies

the distance between two distributions) to judge the best it.

he Nakagami probability distribution, a distribution related to the Gamma
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distribution (that oten models waiting times between events), exhibited the best

it to the data shown in igure 5.2. Table 5.2 shows the Nakagami parameters of

shape (m) and spread (Ω) resulting from the it, and the upper and lower bounds of

the Kolmogorov-Smirnov test. he error between the empirical survey data and the

itted probability distribution does not exceed 6%.

Having a single mathematical model capable of describing the time vehicles will

spend parked can be useful Ð however, we will now show how parking behaviors

vary throughout the day, which will suggest the need for more complex models.

Table 5.2

Fitting Parameters and Kolmogorov-Smirnov Test Results

Parameters K-S Test

m Ω D+ D-

Nakagami

Distribution
0.282 598 125 292 5.48 % 5.97 %

5.4.2 Hour-by-Hour Analysis

Weknow, intuitively, that parking trends vary signiicantly throughout the day,match-

ing people’s daily routines. We saw already, in igure 5.3, that most long-term parking

happens in the early hours of the morning, which coincides with the hours at which

most day jobs begin. In this section, we show these trends in iner detail.

Figure 5.4a shows probability density functions of the total time vehicles stay

parked, in an hour-by-hour basis: for example, the top igure pertains to the vehicles

that parked between 4:00 and 4:59. Once again, this analysis is repeated for the three

chosen surveys. Data begin at 4 A.M., as there were insuicient data points in earlier

hours for us to be able to perform meaningful statistical analyses.

hese detailed plots let us draw important conclusions. First, we can see that the

split between short-term and long-term parking is only meaningful until 10 A.M.

Past that hour, long-term parking events almost cease to exist. Second, the peak

duration of long-term parking events grows shorter each passing hour: at 4 A.M.,

long-term parking averages 10 hours of parking time, but four hours later, at 8 A.M.,

the density peaks at 7.5 hours. he data show very clearly that the earlier a vehicle
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Figure 5.4: (a) Probability distribution of total time parked, grouped by the time of day at which

parking occurred. (b) Distribution of remaining time until parking ends, from global snapshots at

the start of each hour.
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is parked, the longer it will stay parked for. And igure 5.4a again shows that major

parking trends are consistent across diferent cities, though the Knoxville survey

data (the smallest of the three) may be suiciently distinct from Chicago and Atlanta

to warrant further research into smaller-sized urban areas.

For the purposes of vehicular research, knowing these distributions and the hour

at which a car parked allows one to estimate that vehicle’s parking duration, and

how likely it is that it will park for a short or a long period. And when one cannot

ascertain the time of parking, important information can still be obtained.

Figure 5.4b shows the distribution of time that a parked vehicle has let in that

state (until it becomes mobile again), at speciic hours of the day. hese data are

obtained by taking a snapshot of all parked cars at the beginning of the hour, and

determining how long each vehicle will remain parked for. his way, knowing only

the current time of day, one can scan a car or a group of cars and make an informed

estimate of when these cars will be leaving their parking spots. he probability

density functions are similar to the ones in igure 5.4a, with important diferences.

he average remaining parked time on each vehicle is higher, whichmeans that, from

a random sample of cars that are parked, one is more likely to ind cars parking for a

longer time. his efect propagates throughout the day: at 1 P.M., while most new

cars are parking for an hour or less, the ones already parked will remain in that state

for up to 5 hours.

5.4.3 Mathematical Model of Parking Behavior

We now attempt to obtain a mathematical model for a car’s parking behavior, from

the data that were just presented. From the hourly data in igure 5.4a, and by splitting

the data points at the irst observable trough in the distribution, we were able to

heuristically determine that both short-term and long-termparking can be accurately

modeledwith a dual Gamma probability distribution. his also tells us that our initial

analysis of the whole data set Ð which, absent this classiication, appeared to be best

it by a Nakagami distribution Ð can be improved upon.

From igure 5.4a we observe that the distribution of short-term parking mimics

an exponential distribution (with the distinction that very short parking events (e.g.

under 1 minute) are empirically rare), which is itself a special case of the Gamma

distribution. Long-term parking events resemble a normally-distributed random
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variable, and in fact a Gaussian model will reasonably it the data Ð however, such

a distribution is deined in R, which does not apply here as parking events cannot

have a negative duration. A Gamma distribution, deined in R
+, models long-term

behavior equally well, and the resulting dual model is substantially more tractable

as we no longer need to be concerned with negative tails in the normal distribution.

From our data, a car’s parking behavior can then be described by a stochastic

process X, indexed by discrete time t, where each Xt is a continuous random variable

representing the time the vehicle will spend parked, when it parks at hour t. he

individual random variables follow a mixture distribution of the aforementioned

Gamma models. he irst-order density of X is given by

f (x, t) ≙ D1,t × 1

Γ(κs,t)θs,tκs ,t xκs ,t−1e
− x

θs ,t

+ D2,t × 1

Γ(κl ,t)θ l ,tκ l ,t xκ l ,t−1e
− x

θ l ,t

x > 0 , t ≙ {0, 1, 2, . . . , 23} , (5.1)

where κs and θs are the shape and scale parameters of the Gamma distribution

that models short-term parking, and κl and θ l are their equivalents, but for the

distribution that models long-term events. Coeicients D1 and D2 weight each

distribution, as a valid density function must always integrate to one (and therefore,

D1 + D2 ≙ 1). he t subscript indicates that the variable is speciic to time t.

he irst-order distribution FX(x) of the stochastic process Xt is then given by

F(x, t) ≙D1,t

γ (κs,t , x
θs ,t
)

Γ(κs,t) + D2,t

γ (κl ,t , x
θ l ,t
)

Γ(κl ,t)
x > 0 , t ≙ {0, 1, 2, . . . , 23} , (5.2)

where Γ(⋅) and γ(⋅) are the upper and lower incomplete Gamma functions, respec-
tively. Knowing the hour t at which a car parked, the expected time that the car will

be parked for can be shown to be:

E∥Xt , t ≙ t∥ ≙ ∫ ∞

0
x f (x , t ≙ t)dx

≙ D1,tκs,tθs,t + D2,tκl ,tθ l ,t , (5.3)

where κθ is, by deinition, the expected value of the Gamma distribution.
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An equally important derivation is the probability that a car still has n more

hours let parked Ð useful if, e.g., one knows that a car has been parked for t hours,

and wishes to know the probability that it will stay parked for at least n more hours.

Let ta be the time the car has been parked for, and tp ≙ ta + n the parked time we

wish to know the probability of. his conditional probability will be given by

P∥Xt > tp∣Xt > ta∥ ≙ 1 − FX(tp)
1 − FX(ta) , ta < tp

≙ D1γ (κs , tp
θs
) Γ(κl) + D2γ (κl , tp

θ l
) Γ(κs) − Γ(κl)Γ(κs)

D1γ (κs , ta
θs
) Γ(κl) + D2γ (κl , ta

θ l
) Γ(κs) − Γ(κl)Γ(κs) , (5.4)

where {κs , θs , κl , θ l , D1, D2} are speciic to the time t when the vehicle in question
parked.

Data Fitting

We it the hourly survey data points shown in igure 5.4a to the probabilistic model

of equation (5.1), through an Expectation-Maximization (EM) routine. Due to the

considerable number of parameters (κs , θs , κl , θ l , D1, D2), we opted to augment the

EM process with an iterative itting routine, drawing from concepts of evolutionary

computation. As all three surveys show similar parking trends, we itted only the

data in the Chicago 2007 set, the largest of the three.

he itting routine works by mutating one variable on each iteration, and then

determining the log-likelihood of the resulting model, to evaluate its goodness of it

to the survey data. If a particular mutation improves the goodness of it, it is kept Ð

if not, it is discarded. As the routine iterates, it converges towards a set of variables

that is a better it to the data. We applied this process to every hourly subset of data,

and drew the values of all variables once itness stabilized. he raw itting results can

be found at the end of this chapter, in table 5.3.

From the results of the itting process, igure 5.5 shows the main characteristics

of the short-term and long-term Gamma-distributed parking behaviors, and their

evolution over time. Figure 5.5a plots the mean parking time which, as could be

observed earlier in igure 5.4a, grows shorter throughout the day. he variance of

parking time also grows tighter throughout the day, with brief increases at 9 A.M.

and around 6 P.M.
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Figure 5.5: Main characteristics of the short-term and long-term Gamma-distributed parking behaviors, and their evolution

over time. (a) Expected value of each distribution, in minutes. (b) Standard deviation of each distribution. (c) Distribution

weight coeicients.

Validation

To validate the hourly model that resulted from the itting process, we applied the

Kolmogorov-Smirnov test to each hourly snapshot of data. Figure 5.6 shows the

{D−, D+} range of the K-S test for both the general (daily) and the hourly models.
We can see that the hourly model its the data with errors not exceeding 10%, and

stays under 5% error in many of the hourly slices. In comparison, the general (daily)

model will undershoot and overshoot on most of the partitioned data.

5.5 Summary

In this chapter, we studied vehicular parking trends in medium-sized urban areas.

By analyzing recent travel surveys from the cities of Atlanta, Chicago, and Knoxville,

we provided a probabilistic view of how individual cars park. We have shown how

parking events naturally separate into twomajor groups of short-term and long-term

parking, and conducted an hour-by-hour analysis of the data, revealing how trends

evolve throughout the day. Modeling each event group separately, we determined

that short-term parking resembles an exponential distribution, while long-term

parking is predominantly gaussian in its nature. Drawing from these observations,
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Figure 5.6: Kolmogorov-Smirnov test results for the data against the general and hourly models.

we developed a numerical model that accurately relects vehicles’ parking behavior

in an urban area, along with important derivations that are of particular relevance

to vehicular network research that intends to leverage parked cars.
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Table 5.3

Fitting Coefficients for the Stochastic Hourly Model

Hour D1 D2 κs θs κl θl

3 0.5642 0.4358 1.272 298.7 15.00 43.73
4 0.4984 0.5016 1.059 338.4 15.95 40.14
5 0.4854 0.5146 1.252 156.1 20.09 30.06
6 0.4317 0.5683 1.195 127.5 22.50 25.24
7 0.3972 0.6028 1.057 111.6 23.27 21.96
8 0.5482 0.4518 1.079 137.8 22.36 21.46
9 0.8206 0.1794 0.9479 106.0 22.90 20.08
10 0.9543 0.0457 0.8640 85.58 19.39 20.07
11 0.8755 0.1245 0.9315 56.75 9.388 30.38
12 0.8000 0.2000 1.153 44.69 8.545 28.69
13 0.7631 0.2369 1.224 39.52 9.682 24.23
14 0.7523 0.2477 1.233 30.55 6.246 29.97
15 0.7061 0.2939 1.252 27.84 5.831 27.02
16 0.6995 0.3005 1.224 23.82 5.335 23.06
17 0.6407 0.3593 1.129 22.34 4.384 23.73
18 0.5669 0.4331 1.229 24.59 4.244 27.27
19 0.5071 0.4929 1.309 21.23 3.849 29.47
20 0.6390 0.3611 1.451 11.93 3.031 30.10
21 0.6277 0.3723 1.454 9.482 2.966 30.41





Chapter 6

Improving Parked Car Self-Organization

Vehicles that park in urban areas can be leveraged to take on the roles of ixed Road-

side Units, positioning themselves as an efective alternative to costly deployments

of vehicular network infrastructure. Chapter 4 showed how parked cars equipped

with DSRC technology were able to self-organize and create a vehicular support

network in an urban area, replacing or augmenting existing RSUs. In this chapter,

we introduce novel mechanisms for parked vehicles to self-organize and form ei-

cient vehicular support networks that provide widespread coverage to a city. hese

mechanisms are innovative in their ability to keep the network of parked cars un-

der continuous optimization, in their multi-criteria decision process that can focus

on speciic network performance metrics, and in their control of each car’s battery

usage, rotating roadside unit roles between vehicles as required. We also present

the irst comprehensive study of the performance of such an approach, via realistic

modeling of mobility, parking, and communication, thorough simulations, and an

experimental veriication of concepts that are key to self-organization. Our analysis

brings strong evidence that parked cars can serve as an alternative to ixed roadside

units, and organize to form networks that can support smarter transportation and

mobility [68].

6.1 Introduction

As the world population continues to shit from rural to urban areas, smarter trans-

portation becomes an increasingly necessary part of urban development. With
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urbanization comes a greater need for mobility, both in the form of personal vehi-

cles and of public transportation, and consequently a demand for better transit and

parking information. A greater awareness of available transportation resources is

therefore a key element of a Smart City.

he advent of vehicular networking, through the IEEE 802.11p and WAVE stan-

dards, allows individual vehicles to communicate and report their activity, which

enables the direct monitoring of transportation resources. Traic density and road

congestion can bemeasured in real-time [69ś71], parking space availability estimated

from cars that arrive and depart [72, 73], and the location of buses and other public

transport can be tracked directly and eiciently [74]. he envisioned traic eiciency

applications assume one such infrastructure deployment in the form of Roadside

Units (RSUs), but the prohibitive costs associated with RSU hardware, installation,

and maintenance have severely limited their adoption [7, 9]. Vehicles that park in

urban areas can be leveraged to take on the roles of ixed roadside units, positioning

themselves as an efective alternative to costly deployments of network infrastructure.

Our initial research on this area, presented in chapter 4, has shown that parked cars

equipped with 802.11p technology are able to self-organize and create a vehicular

support network in an urban area, replacing or augmenting existing roadside units.

his work introduces a new approach for parked car self-organization. his

approach advances existing techniques in several ways: the proposed mechanisms

optimize networks of parked cars beyond their initial grouping, which leads to amore

eicient selection of cars to act as RSUs; a multi-criteria decisionmaking process acts

directly on key metrics of signal strength, coverage saturation, and coverage area,

allowing for a precise control of the resulting support network; and car battery usage

is factored into the decision process, with RSU roles being rotated among parked

cars, ensuring a controlled use of each vehicle’s battery resources.

he work presented in this chapter also includes the irst comprehensive evalua-

tion of the concept of leveraging parked cars as efective roadside unit replacements.

Exhaustive simulation studies analyze how parked cars can organize to form new

networks, and how those networks behave in their steady-state. We shed light on the

number of parked cars that need to be recruited to provide adequate urban coverage

in various scenarios, and analyze the quality and strength of the resulting networks

in detail. Upper and lower bounds are established for the balance between better
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coverage strength and fewer roadside units, providing a unique frame of reference

to judge the performance of self-organizing approaches, and various iterations on

the design of the newly introduced decision processes are all seen to operate near

the optimal bounds. We bring in the detailed, realistic models of the distribution of

parking events and their respective duration from the work in chapter 5, and validate

the proposed mechanisms against them. Our analysis shows that this new approach

makes use of fewer RSUs to reach the same levels of signal strength and coverage as

the earlier proposals, and is more efective at stabilizing the parked car network.

Finally, this work presents the irst empirical study of the process through which

vehicles learn their own coverage map by overhearing beacons from other moving

cars, an essential element to the self-organization process, and prove its validity. With

this, we provide strong conirmation that self-organizing approaches are suitable for

the creation of vehicular support networks from parked cars, and provide both an

eicient set of new decision algorithms to do so and a comprehensive simulation

platform to evaluate their performance on.

6.2 A New Self-Organizing Approach

To form a network, parked cars must work towards self-organization while meeting

a number of goals: providing widespread coverage to the urban area; selecting, from

large pools of parked vehicles, which should take on RSU roles; and managing the

battery power drain on those cars. hese goals are reached through collaboration

and informed decisions between the cars themselves.

Our approach is designed to work in any scenario where a widespread deploy-

ment of ixed infrastructure RSUs (fRSUs) is not available. his may mean that

fRSUs exist in limited numbers, or that no fRSUs have been deployed at all. In cities

where no fRSUs exist, parked car RSUs (pcRSUs) can self-organize to create a mesh

network and provide coverage and support to the urban area (see igure 6.1). When

a limited deployment of fRSUs is in place, pcRSUs can also coexist by acting as relay

nodes to those fRSUs, extending their coverage area.

In chapter 4, we introduced a number of novel concepts that facilitate this self-

organization between cars. Speciically, we proposed a cellular division of the urban

area, aligning cell boundaries to GPS coordinates (with a 1 GPS second interval).
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Parked Car (inactive)

Parked Car RSU (PCRSU)

PCRSU Coverage Area

Fixed RSU (FRSU)

FRSU Coverage Area

DSRC Links

Figure 6.1: Example of an eicient RSU role assignment to parked cars, enabling the formation of a

stable and widespread mesh network using only a fraction of the available vehicles. When present,

ixed RSUs can also have their coverage area extended by parked car RSUs.

With this cell division as a common reference, parked cars can then be instructed

to listen to Cooperative Awareness Messages (CAMs) from neighboring vehicles,

and to build their own coverage maps from these beaconing messages, marking

cells where beacons were received from with the signal strength of those messages.

he exchange of coverage maps between cars allows decision processes to know the

utility of each car to the network, and optimize using that information.

he mechanisms presented in the following section make use of these core con-

cepts. We advance existing work by introducing a completely new approach for

the decision process, one where newly parked cars are given the authority to make

decisions for their neighbors, assigning and revoking RSU roles to other neighbor

pcRSUs to optimize the local network. Additionally, we formulate the decision

problem as a Multiple-Criteria Decision-Making (MCDM) problem that explicitly

evaluates key metrics of the resulting network of parked cars, and factors battery

usage data from active pcRSUs into each decision.
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6.2.1 Local Decision Maker

As a new vehicle parks, it irst constructs its own coveragemap by listening to beacons

being sent frommoving cars, and gathers the coveragemaps of its neighboring fRSUs

and pcRSUs. hen, it creates a list of candidate roadside unit entities in its 1-hop

neighborhood, consisting of itself and other active parked cars. From this pool, the

decision maker lists the possible combinations obtained from assigning or revoking

RSU roles to the entities in the pool, and assigns a score to each combination. We

name a combination of active/inactive entities a Coverage Solution, and designate it

by Sk (where k is the index of the coverage solution).

Once all coverage solutions are ranked, the one with the highest score is applied

to the network. Figure 6.2 illustrates this decision process. To do this, the newly

parked car, acting as a authoritative decision maker, sends specially crated messages

reassigning RSU roles in its vicinity. hrough this approach, the network of pcRSUs

sees a local optimization every time a new vehicle parks.

n
C

n-1
n
C

n-2
n
C

n

DSRC LinksCandidate Cov. Area PCRSU (disabled)PCRSU Cov. AreaPCRSU Candidate PCRSU

(a) Newly parked car (b) Score coverage solutions Sk (c) Apply highest scoring Sk

Figure 6.2: Enumerating and scoring coverage solutions. (a) A newly parked car learns its coverage map and queries its

neighbor parked car RSUs for their maps. (b) Coverage solutions are enumerated and scored according to the various criteria.

(c) he best coverage solution is communicated to the neighborhood, and becomes active.

6.2.2 Ranking Coverage Solutions

A self-organizing approach for parked cars has a number of core goals: the network

of cars should aim to provide widespread coverage to the urban area in all of its

locations, whenever possible, and to supply that coverage with strong signal, so that

moving nodes can connect to the pcRSU network reliably and with high data rates.
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It must also aim to minimize the number of parked cars that take on RSU roles, and

the time those vehicles spend active as pcRSUs, drawing power from their respective

batteries.

Because the network is intended to be self-organized, there is an implicit assump-

tion that a central controller is not available, and so decisions must be taken by the

parked vehicles themselves, communicating only between them as needed. Poor

decisions may lead to either (a) more parked cars being assigned RSU roles than

necessary, creating a more crowded network and wasting battery energy, or (b) a

pcRSU network that is suboptimal in signal strength, coverage area, or both.

To score a coverage solution, we resort to dimensionless analysis: a Weighted

Product Model (WPM) [75], where the utility of each solution is determined by

multiplying a series of attributes, each of which is raised to the power of a coeicient

that represents its weight to the solution’s score. his approach eliminates any units

of measure, which is ideal to our multi-dimensional decision-making problem. he

score of a coverage solution Sk is, then, a product of attributes a j,k , each weighted

by a coeicient w j:

score (Sk) ≙ n∏
j≙1

(a j,k)w j . (6.1)

Our scoring function integrates the following four attributes:

• Signal Strength (asig,wsig): An average of the best signal strength available at

each cell. It is the main attribute that pushes towards a city-wide network with

strong coverage.

• Coverage Saturation (asat,wsat): he counterweight to signal strength, cover-

age saturation represents the number of RSUs that provide coverage to a cell.

Higher average signal strength in the city demands a larger number of RSUs

and, therefore, higher coverage saturation.

• Coverage Area (acov ,wcov): he span of the coverage being provided by the

RSU network. A strong signal strength does not imply widespread coverage,

as it only considers cells where coverage is provided. his attribute can favor

solutions with wider coverage.

• Energy Usage (abat,wbat): A measure of how much energy active pcRSUs in

a coverage solution have expended, and how close they are to a maximum
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threshold. his attribute pushes towards coverage solutions that remove aging

pcRSUs from the network, keeping the battery utilization of active parked cars

under control.

Each of these attributes is calculated on the expected outcome of a coverage

solution, i.e., on the RSU network that would theoretically result if the coverage

solution were applied, assigning and revoking RSU roles.

6.2.3 Constraining the Search Space

For a decision maker to score all coverage solutions that may be possible in its neigh-

borhood, it needs to search a space of 2N possible combinations, with N being the

number of neighbors plus the decision maker itself. For denser networks of pcRSUs,

the number of coverage solutions in the search space can become too unwieldy and

computationally expensive.

We adopt a more restrained approach, by restricting the search space to cover-

age solutions that do not revoke more than two RSU roles in the decision maker’s

neighborhood. Because the self-organized pcRSU network is grown incrementally

as each new car parks, pcRSUs seen by a decision maker are the result of earlier,

equally-optimized decisions, so coverage solutions that revoke higher numbers of

roles are unlikely to lead to high decision scores, and it is therefore safe to exclude

them from the search space.

Under these constraints, valid coverage solutions will belong to one of three

possible categories. Examples of this selection can be seen in igure 6.2.

1. No entities are disabled: the candidate parked car becomes a pcRSU, and all

neighboring pcRSUs remain active. A single such solution exists (nCn ≙ 1),
which we denote as S0. It increases the number of RSUs in the city by one.

2. One entity is disabled: either the newly parked car or a neighboring pcRSU.

A total of nCn−1 such solutions exist, and they do not change the number of

RSUs in the city. he solution that only disables the newly parked car is a

‘no-action’ solution, leaving the network unchanged. We denote this speciic

case as Sna.
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3. Two entities are disabled: the parked car takes on an RSU role and replaces

two existing pcRSUs; or, both the parked car and a neighbor pcRSU are dis-

abled. A total of nCn−2 such solutions exist, and they decrease the number of

RSUs in the city by one.

With this search space restriction we reduce the time complexity of evaluating cover-

age solutions fromO(2n) (exponential time) toO(n2) (quadratic time), a signiicant
improvement. As an example, a decision maker with 8 neighbors will now need to

evaluate only 37 solutions of the 256 that were possible.

6.2.4 Attribute Models

We now show how to quantify each of the four attributes that are part of the scoring

function. Our aim here has been to keep these models as straightforward as possible,

so that our subsequent analysis can show, with clarity, what each attribute contributes

towards the resulting network of parked cars. An algorithm to calculate all attributes

and produce a inal decision score is shown aterwards, in section 6.2.5.

Signal Strength

Our signal strength attribute is the average signal strength that is expected of a given

coverage solution. From the received coverage maps and the vehicle’s coverage map,

the signal strength of each cell in the resulting solution is taken and averaged.

In this work we use a 1-5 classiication that corresponds linearly to a Received

Signal Strength Indicator (RSSI). Because the decision algorithm is dimensionless,

RSSI may also be used directly. Other metrics such as signal power (e.g., in dBm)

or network bandwidth (e.g., in Mbit/s), should be equally practicable, but are not

evaluated here. For accuracy, only the cells that the decision maker can cover should

be considered, since the vehicle acting as decision maker does not have a complete

view of the network beyond these cells.

Coverage Saturation

he coverage saturation attribute relects the overlap in coverage between active

roadside units. For a given cell in a coverage solution, its saturation value equals
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the number of RSUs that can cover the cell (i.e., the number of RSUs that a vehicle

located on the cell will see). his metric relects the number of RSUs in the area,

and also their arrangement: a poor RSU role assignment where pcRSUs are stacked

too close sees more cells with higher saturation (more overlap between the pcRSUs’

coverages), while a more eicient distribution gives a more widespread coverage and

more cells with lower saturation.

Saturation is also a measure of redundancy in the RSU network, which may be

desirable from an availability standpoint: when cells are covered by more than a

single RSU (saturation greater than 2), if a car with the RSU role is removed from

the network, continued access to the network can be ensured by other RSUs.

As with the signal strength attribute, our saturation attribute is the average of the

coverage saturation seen at each cell of a coverage solution. Average saturation can

range from 1 to∞, but in practice, an eicient algorithm will keep mean saturation

in a range of 1.44 to ∼ 5 (see sections 6.3.1 and 6.3.4).

Coverage Area

he signal strength and coverage saturation attributes, on their own, do not ensure

a widespread coverage by the network of parked cars, which is also a desired trait

for this network. Consider that, once a base network is established, new coverage

will be available primarily at the fringes of the covered area, where the signal is

weaker, therefore pushing average signal strength down and penalizing coverage

solutions that expand the network’s reach. To make sure that local decisions push

towards widespread coverage, we include an attribute that quantiies the area of

service provided by each coverage solution.

To compute this attribute, the algorithm begins by counting the number of

covered cells in the S0 coverage solution, which we deined earlier as the solution

that disables no pcRSUs and, therefore, has thewidest possible coverage area (since all

other coverage solutions involve disabling at least one entity). he coverage attribute

acov is then deined as the ratio between a solution’s number of covered cells and the
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widest possible coverage in that decision step (belonging to S0):

cvg(Sn) ∶≙ ‘number of cells with service in Sn’ ,

acov(Sn) ≙ cvg(Sn)
cvg(S0) . (6.2)

Unlike asig and asat, the coverage area attribute must include all cells covered by

the decision maker and its neighboring RSUs. his ensures that new coverage at the

edges of the existing network is correctly scored.

Battery Usage

To compute the battery usage attribute abat, the car acting as the decisionmaker must

irst query its neighbor pcRSUs for an indicator of their energy expenditure. his

request can be sent together with the request for coverage maps that the decision

process requires. Vehicles can have diferent battery capacities, which are in turn

afected by the age of the battery, so this indicator is best calculated individually by

each vehicle, and not by the decision maker.

In this work we use a straightforward model where each vehicle has predeined

standard (τm) and maximum (τM) times of activity. he indicator decreases linearly

once τm is exceeded, and the parked car relinquishes its RSU role forcefully at τM :

τn,i ∶≙ ‘active time of entity ξn,i ’ ,

bat(ξn,i) ≙
⎧⎪⎪⎨⎪⎪⎩
1 , τn,i < τm ;

1 − τn , i−τm
τM−τm

, otherwise .
(6.3)

his design keeps battery concerns invisible to the decision process, at irst, and

then allows for RSU roles to be reassigned by decision makers before a hard limit on

a vehicle’s battery resources is reached. he resulting battery attribute of a coverage

solution is the averaging of all the neighboring roadside units’ battery indicators:

ξn ∶≙ ‘set of entities in solution Sn’ ,

∣ξn∣ ∶≙ cardinality of ξn ,

ξn,i ∶≙ ‘active entity i in solution Sn’ ,

abat(Sn) ≙ ∑i∈ξn bat(ξn,i)
∣ξn∣ . (6.4)
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Coverage solutions that are able to revoke longer-standing RSU roles without

afecting the network (e.g., by handing over an older RSU role to a new vehicle in a

similar location) will see higher decision scores. We analyze this attribute in detail

in section 6.3.3.

6.2.5 Scoring Algorithms

Pseudocode to score a coverage solution via the Weighted Product Model shown

in section 6.2.2 is given here, with algorithms 3 and 4. he irst, CountCoveredCells,

counts the number of cells covered by a given coverage solution or coverage map.

It is used to measure the size of a coverage solution (covSk
), the size of the best

possible coverage in a decision step (in S0, covS0
, used in acov), and to average mean

signal strength and mean coverage saturation values. he second, ScoreCoverageSo-

lution, computes the attributes a j,k and weighs them according to their respective

weights w j, producing the inal scoring metric, score (Sk). hese algorithms make

use of the decision maker’s coverage map (scm0), and the coverage maps from its

1-hop and 2-hop neighborhood (N1,N2). New notation is summarized in table 6.1,

supplementing the notation provided earlier in table 4.1 (on page 67).

Table 6.1

Algorithm Notation Supplement

Deinition Notation

2-hop neighbor scms N2 ≙ {scm1 , scm2 , . . .}
Coverage solution Sk

Number of covered cells in Sk covSk

pcRSU scms in Sk ∥scmSk
∥ ≙ {scmk

1 , scm
k
2 , . . .}

pcRSU battery indicators in Sk ∥batSk
∥ ≙ (batkn)

6.3 Evaluation of Self-Organized Networks of Parked Cars

We now analyze the performance of the decision process shown in section 6.2. To

do so, we run simulations on a 1 km2 area in the city of Porto, on a custom-designed

platform that simulates realistic vehicle mobility [55], and features real obstruction
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Algorithm 3: CountCoveredCells

Data: ∥scmSk
∥,N2

Result: covSk
: the number of covered cells in Sk

1 ▷ lmxy (in an empty lm) are initialized to 0

2 covS0
← 0

3 foreach scmn ∈ {scmSk
,N2} do

4 foreach scmn∥xy∥ ∈ scmn do

5 if scmn∥xy∥ > 0 then lmxy ← 1

6 end

7 end

8 foreach lmxy ∈ lm do

9 if lmxy ≙≙ 1 then covSk
≙ covSk

+ 1
10 end

masks [57], road topologies [56], and a communication model that follows empir-

ical signal measurements taken in Porto [32]. he custom platform and all of its

associated data have been made available in [76], as part of this research.

We begin this study by evaluating separate attributes of the decision process in

controlled scenarios, to see how each attribute contributes to the resulting pcRSU

network. hen, we create randomized pcRSU networks and determine best and

worst bounds for the self-organized processes, and see how our decision algorithms

fare against these bounds. We then look into the decisions’ sensitivity to the number

of cars on the road and the OBU radio range, their behavior under realistic parking

trends, and conclude with a comparison between self-organizing approaches. A

summary of the simulations’ parameters is shown in table 6.2.

6.3.1 Balancing Coverage Saturation

Signal strength and coverage saturation are the two core attributes of our decision

process, as they balance one another: stronger mean signal can be reached by as-

signing new RSU roles in underserved areas, which in turn increases the coverage

saturation in the network. We begin our study by looking at a decision process with

the asig and asat attributes alone. We ran sets of 2-hour simulations where the 1 km2
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Algorithm 4: ScoreCoverageSolution

Data: scm0, ∥scmSk
∥, ∥batSk

∥,N2, covS0
, wsig, wsat, wcov, wbat

Result: score (Sk)
1 ▷ lmcxy (in an lmc) and lmsxy (in an lms) are initialized to 0

2 asig ← asat ← acov ← abat ← 0

3 // create signal and saturation maps

4 foreach scmn{scmSk
,N2} do

5 foreach scmn∥xy∥ ∈ scmn do

6 if scmn∥xy∥ > lmcxy then lmcxy ← scmn∥xy∥
7 if scmn∥xy∥ > 0 then lmsxy ← lmsxy + 1
8 end

9 end

10 // average signal strength to get asig

11 foreach lmcxy ∈ lmc do
12 if lmcxy > 0 and scmxy ∈ scm0 > 0 then asig ← asig + lmcxy
13 end

14 asig ← asig / covscm0

15 // average coverage saturation to get asat

16 foreach lmsxy ∈ lms do
17 if lmsxy > 0 and scmxy ∈ scm0 > 0 then asat ← asat + lmsxy
18 end

19 asat ← asat / covscm0

20 // compute acov

21 acov ← covSk
/ covS0

22 // compute abat

23 foreach batkn ∈ batSk
do

24 abat ← abat + batkn
25 end

26 abat ← abat / ∣Sk ∣
27 // produce a decision score

28 score (Sk)← asig
wsig ⋅ asat

wsat ⋅ acov
wcov ⋅ abat

wbat
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Table 6.2

Simulation Parameters

General Parameters

Urban area size 1 km2 Cell division 1′′ (WGS84)

Vehicle density 55 veh/km2 Cell size ∼23m× 31m
Max. radio range ∼155m Total cells 1400 (1 km2)

Simulation time 2 h Road cells 650 (0.47 km2)

Simulation Specific

6.3.1 Saturation wsat ≙ 0.05 .. 0.40
6.3.2 Coverage wcov ≙ 0.00 .. 1.00
6.3.3 Battery wbat ≙ 0.00 .. 1.50
6.3.5 Density vehicles ≙ 20 .. 55
6.3.6 Radio Range rangecoeff . ≙ 1.00x .. 2.00x

urban area saw an average of 55 moving vehicles in circulation, entering the city at

a rate of 0.5 veh/s. he weight of the signal strength, wsig, remained constant at 1.0,

while the weight of the saturation attribute, wsat, was adjusted.

he evolution of the number of active pcRSUs and the percentage of the city

covered by those pcRSUs is plotted in igure 6.3, with samples taken in 1-second

intervals. Beginningwith a network devoid of RSUs, the transient state of the network

lasted for approximately 1060 s (∼17min) from the moment the irst vehicle parked

until the city’s coverage area stabilized. Both igures show that the network of parked

cars enters a steady state, and these decision mechanisms keep the network stable

in terms of pcRSUs and coverage. he same behavior was seen in the mean signal

strength and mean coverage saturation (not shown).

We present a steady state analysis of the network in table 6.3, as the weight

wsat that controls the coverage saturation attribute is increased. Both attributes

behave as expected: higher weights on wsat push towards fewer active pcRSUs and,

consequently, a lower mean signal strength (as the signal strength attribute, asig,

is de-prioritized in favor of asat). he metrics’ standard deviations become tighter

depending on which attribute is leading the decision process, which is desirable.

We continued to pushwsat beyond 0.4, but nomeaningful changes were observed

in the network. he best (lowest) coverage saturation that was observed was 1.4 RSUs
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Figure 6.3: Parked cars with active RSU roles (top) and percentage of the urban area where parked

car RSU service is made available (bottom), through the course of 2-hour simulations, as the weight

controlling the coverage saturation attribute is varied. Data sampled in 1-second intervals.

per cell. his self-organized process is unable to push for lower saturation levels

(ideally, towards the minimum of 1.0, a single RSU per cell), for the understandable

reason that it requires communication between pcRSUs in order to function. For a

pair of pcRSUs to communicate with one another, their coverages must necessarily

overlap Ð therefore, coverage saturation in that overlap must exceed 1.0.

Increasing wsat pushes the saturation of the network down, decreasing the num-

ber of pcRSUs while also increasing eiciency in terms of urban area covered per

pcRSU. he 1 km2 urban area in Porto where we run our simulations has 650 usable

cells (i.e., where vehicles can move through), which corresponds to a 468 000m2

(0.47 km2) area that the parked cars can provide coverage to. At the lowest wsat,

the average area covered per pcRSU was 5600m2, while at the highest wsat, each

pcRSU was able to cover 7200m2, a 28% increase. We observed a strong inverse

correlation between coverage saturation and urban area covered per pcRSU (at a

linear correlation coeicient of −0.995).
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Table 6.3

Network Steady State Varying a Saturation Attribute

wsat
Signal Distribution

2 3 4 5

City

Cov.

Signal

Str.

Cov.

Sat.

Active

RSUs

0.05 94% 4.51
±0.86

2.62
±1.11

79

0.10 92% 4.38
±0.93

2.21
±0.95

69

0.20 83% 4.05
±1.07

1.64
±0.72

55

0.30 77% 3.90
±1.12

1.48
±0.65

50

0.40
0% 100%

75% 3.86
±1.13

1.45
±0.63

49

wsig ≙ 1.0

6.3.2 Expanding Network Coverage

heprevious analysis showed that restricting the number of pcRSUs in the city causes

the undesired side efect of reducing the citywide coverage that the pcRSU network

is able to provide. While this is expected (coverage and RSU count are inherently

linked), a scoring algorithmmust be able to optimize the network towards providing

a more widespread coverage, as well. We now see how the inclusion of a coverage

attribute into the decision process helps achieve this goal.

We repeated the 2-hour simulation sets, ixing wsat ≙0.2 to serve as a baseline

from the previous analysis, while increasing the weightwcov of the coverage attribute.

Figure 6.4 shows how the percentage of the city that is covered evolves throughout

the simulation, for the diferent attribute weights. he data show that the coverage

attribute pushes the pcRSU network’s total coverage to high levels, and improves

the stability of that coverage. he duration of the transient state does not appear to

change through diferent attribute sets, as well.

We provide an analysis of the network’s steady state in table 6.4. he data show

that higherwcov values lead to amore widespread coverage of the network with fewer

pcRSUs than in our initial analysis. To push towards better coverage, the decision

process does recruit additional pcRSUs, increasing both signal strength and coverage
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Figure 6.4: Percentage of the urban area covered by the self-organized RSU network, through the

course of 2-hour simulations, as the weight controlling the coverage attribute is varied. Data sampled

in 1-second intervals.

saturation as a result. However, it does so at a more optimal distribution of pcRSUs

(more area covered per pcRSU) than before. To illustrate this fact, table 6.5 compares

two parameter sets that recruit similar numbers of pcRSUs and achieve similar mean

signal strength in the city, the irst set with asig and asat attributes only, and the second

with the acov attribute included in the scoring algorithm. his comparison shows

that the inclusion of acov increased citywide coverage by 5% and reduced coverage

saturation by 8%, at no increase to the number of active pcRSUs or cost to the mean

signal strength that is being provided.

Table 6.4

Network Steady State Varying a Coverage Attribute

wcov
Signal Distribution

2 3 4 5

City

Cov.

Signal

Str.

Cov.

Sat.

Active

RSUs

0.00 83% 4.05
±1.07

1.64
±0.73

55

0.10 92% 4.18
±1.00

1.77
±0.77

60

0.30 96% 4.30
±0.94

1.94
±0.82

65

0.50 97% 4.36
±0.90

2.03
±0.84

68

1.00
0% 100%

98% 4.43
±0.87

2.19
±0.85

72

wsig ≙ 1.0, wsat ≙ 0.2
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Table 6.5

Parameter Set Comparison in Steady State

wsat
wcov

Signal Distribution

2 3 4 5

City

Cov.

Signal

Str.

Cov

Sat.

Active

RSUs

0.10
0.00

92% 4.38
±0.93

2.21
±0.95

69

0.20
0.50 0% 100%

97% 4.36
±0.90

2.03
±0.84

68

wsig ≙ 1.0

A look into the topologies of the parked car networks reveals that this approach

is able to create well-connected mesh networks, with most pcRSUs forming a stable

link with two or more RSU neighbors. Link quality between pcRSUs ranges between

4.5Mbit/s to 6Mbit/s (∼42% of links) and 12Mbit/s to 27Mbit/s (∼39% of links),

which is suitable for low-bandwidth applications (e.g., monitoring vehicular traic,

collecting data from urban sensors, or tracking the location of public transportation).

his relects the optimization goals of the proposed algorithms, which are targeted

towards wide coverage at a reduced number of pcRSUs. For bandwidth-intensive

content delivery applications, the inclusion of a link quality attribute in the decision

algorithm is a straightforward solution to push the resulting network towards a

tighter mesh, enabling higher-throughput links.

With this analysis, we showed that a coverage attribute improves the self-orga-

nization of the parked cars, ensuring not only a higher citywide coverage but also

a better distribution of RSU roles, with lower coverage saturation and higher area

covered per pcRSU.

6.3.3 Managing Battery Utilization

he fourth and inal attribute of our decision scoring algorithm concerns the time

a parked car spends with its DSRC electronics activated, performing RSU roles,

and drawing power from the car’s battery. A vehicle’s battery, when its engine is

of, is a inite resource that must be managed correctly. Not only must the car’s

energy budget be shared with electrical systems that are active when the car parks

(e.g., alarm systems, and keyless entry systems), but failing to do so has the serious
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consequence of leaving the driver stranded, should the battery be too drained for

engine re-ignition.

By including the battery utilization of active pcRSUs in the scoring algorithm,

we aim to drive the decision makers towards coverage solutions that replace aging

pcRSUs with newly parked cars, while at the same time attempting to preserve the

existing structure of the pcRSU network.

To study the eicacy of this attribute, we begin by setting a hard threshold of

1 hour on the maximum time a parked vehicle can hold RSU roles for. Active parked

cars that exceed this threshold are forcefully removed from the pcRSU network. We

then set the τ parameters in equation (6.3) to begin penalizing pcRSUs once their

active time exceeds 30 minutes (τm ≙ 1800, τM ≙ 3600). With this coniguration,

pcRSU battery life does not factor into the decision process until 30 minutes of

activity have elapsed, allowing for decisions to focus exclusively on the quality of

the network as long while the parked cars’ activity times are within expected values.

Empirical data provided in section 6.4.1 will show that an OBU operating for ∼6.5 h
consumes approximately 4.2 % of a typical car battery. We opt for amore conservative

limit in this evaluation: 30 minutes to 1 hour with an active OBU would result in a

battery usage of 0.32% to 0.64%.

he igures in table 6.6 show the distribution of the lifetime of RSU roles in the

network during 8-hour simulations, together with the network’s metrics ater the

transient state, as we increase the weight wbat of the battery attribute. When abat is

not in play (wbat ≙ 0.0), we see most pcRSUs being disabled at our designated 1-hour

threshold. A noticeable number of RSU roles are also revoked shortly ater they

are assigned, which can be attributed to the initial set of roles being rotated out as

newly parked cars in more optimal locations become available. As wbat is increased,

the pcRSUs that were hitting the 1-hour threshold begin to be replaced instead by

decisions from decision makers in the city, with higher weights leading to earlier

role revocation, pushing the lifetime of pcRSUs closer to τm.

he steady-state analysis of various city metrics in table 6.6 indicates that a well-

designed attribute can rotate RSU roles eiciently, with a negligible impact to the

existing self-organized pcRSU network. Mean signal strength, coverage saturation,

coverage area, and number of active pcRSUs all deviated less than 3% as wbat was

increased, relative to the baseline where the battery attribute was not included. his
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Table 6.6

Roadside Unit Lifetime Analysis

wbat
pcRSU Lifetime

density

City

Cov.

Signal

Str.

Cov.

Sat.

RSU

Count

0.00 95%
4.24
±0.98

2.09
±0.85

68

0.30 96%
4.29
±0.97

2.13
±0.84

70

0.50 96%
4.28
±0.95

2.12
±0.86

70

1.00 95%
4.27
±0.96

2.10
±0.85

69

1.50
0m 30m 60m

95%
4.26
±0.97

2.10
±0.84

69

Lifetime histograms span 3600 seconds. wsig ≙ 1.0, wsat ≙ 0.2, wcov ≙ 0.3

important result shows the eicacy of our proposed algorithm in the management

of a parked car’s battery utilization as it takes on RSU tasks.

Finally, we note that a small percentage of RSU roles still exceed the 1-hour

threshold and have to be forcefully revoked, even at the highest wbat weights we

evaluated. We hypothesize that these are pcRSUs in critical locations where not

enough new parking events occur for a decision maker to be able to ind an adequate

replacement. Increasing the time allotted for an RSU role to be replaced (τM − τm)

may mitigate this behavior.

6.3.4 Decision Performance

An essential measure of the quality of a self-organized network of parked cars is

its ratio of signal strength to coverage saturation. For a certain mean signal quality

that is achieved in a given area, there is an optimal and a sub-optimal number and

placement of pcRSUs that may lead to it. We study this ratio in our simulation setup

by illing the network with parked vehicles, and assigning RSU roles to those vehicles

in a random manner. For each random attribution of roles, we then measure the

resulting signal strength and coverage saturation in the network. hedata in igure 6.5

show 500 000 random assignments, on top of which we overlay the citywide metrics

collected from the simulations in the previous sections.
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Figure 6.5: Signal strength and coverage saturation metrics sampled in 1-second intervals from the

simulations in sections 6.3.1, 6.3.2 and 6.3.3.

Relatively clean upper and lower bounds can be observed from the sets of random

attributions. hese bounds are an important inding: for self-organized networks

of cars, they reveal that the ratio between the number of recruited cars and the

strength of the coverage being provided will be bounded. Here, the lower bound

represents the most optimal placement of pcRSUs for each observation of signal

strength, while the opposite is true for the upper bound. his gives us an important

frame of reference to analyze the performance of any decision making process. he

data show that an increasing efort is required to push the network to higher signal

strengths. For example, improving mean signal from 2.0 to 4.0 is possible with, on

average, one extra pcRSU, however the same efort is required to move the mean

signal from 4.0 to 4.5, and more than double that efort will be needed to go from 4.5

to 4.9. his assumes an optimal assignment of RSU roles, which might not always

be possible.

he overlaid data from the decision mechanisms demonstrate that these operate

very close to the lower signal-to-saturation bound revealed by the random role

assignment data, and quantiied performance metrics against the bound can be

seen in Figure 6.6. he scoring algorithm that included a coverage attribute, in

section 6.3.2, operates closer to this lower bound than the initial 2-attribute algorithm,

which matches our earlier observation that this attribute may lead to a more optimal
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Figure 6.6: Coverage saturation averages for the data in igure 6.5, and corresponding increases over

the optimal lower bound (higher is worse). For reference, the upper bound is 5.2 to 9.2 (495% to

550%) higher, which places the various conigurations in the 95th percentile of possible RSU selections.

he lower bound shown here is a curve-it of the most optimal points in random role attribution.

distribution of RSU roles. he introduction of a pcRSU lifetime threshold and the

inclusion of a battery attribute, in section 6.3.3, sees the data samples pushed away

from this ideal lower bound to a small degree, which is an expected consequence

from the forceful revocation of RSU roles from parked cars that have been active for

some time. In all three cases, regardless, the decision algorithms place the resulting

pcRSU network in a very optimal region.

hese important results show that our decision mechanisms are operating near

the best observed eiciency for a network comprised of parked cars, achieving vari-

ous levels of signal strength at the smallest possible coverage saturation and, conse-

quently, the lowest number of pcRSUs at their most optimal arrangement.

6.3.5 Sensitivity to Vehicle Density

he simulation studies presented so far saw an average number of 55 moving vehicles

per km2 on the road, whichmatches amedium-lowdensity scenario. We now analyze

identical scenarios where we reduce the number of moving vehicles, to ind out how

the decision mechanisms respond to the lower vehicle density. his density afects

primarily the time parked cars take to build their coverage maps and the frequency

of parking events.

he evolution of the number of active pcRSUs, mean signal strength, mean

coverage saturation, and total city coverage can be seen in igure 6.7. Four densities

120



Evaluation of Self-Organized Networks 6.3

of vehicles were considered: 55 veh/km2, 35 veh/km2, 25 veh/km2 and 20 veh/km2,

which range from medium- to low-density scenarios.
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Figure 6.7: Evolution of various network metrics throughout 2-hour simulations, as the density of

vehicles per km2 is altered. Scoring algorithm weights set to wsig = 1, wsat = 0.2, wcov = 0.3, and

wbat = 0. Data sampled in 1-second intervals.

he data in these igures show that only the duration of the network’s transient

state is afected by the decrease in the number of road vehicles, with all four met-

rics eventually converging to a similar steady state. his indicates that the decision

mechanisms are robust and should operate equally well in the face of varying vehicle

densities, as is expected from real life scenarios. A small 2 % decrease can be seen in

the steady state citywide coverage, which could indicate that the lowest-density sce-
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narios have insuicient new parking events for the algorithm to completely optimize

the network.

6.3.6 Sensitivity to Wireless Radio Range

Wenow provide an analysis of the decisionmechanisms’ sensitivity to the radio range

of the OBUs used in the vehicles. Figure 6.8 shows various network metrics in the

network’s steady state as a multiplier is applied to our propagation models, scaling

the efective range of the vehicles’ DSRC radios. he data indicate that the number

of RSU roles assigned by the self-organizing mechanisms decreases nearly linearly

with the corresponding increase in radio range: doubling the radio range halves the

number of pcRSUs, from ∼ 69 to ∼ 33. his is an interesting result due to the fact

that the total area that a vehicle’s radio can reach should increase quadratically with

the radio range (area ≙ πr2), assuming perfect conditions for propagation. In an

urban environment, however, vehicles’s signals are constrained by the road layout,

in efect being tunneled by surrounding buildings. We hypothesize this to be the

reason behind the near-linear relation that is observed.
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Figure 6.8: Steady state averages of various network metrics of 2-hour simulations, as a multiplier

is applied to the radio range of vehicles and parked cars. Scoring algorithm weights set to wsig = 1,

wsat = 0.3, wcov = 0.5, and wbat = 0. Conidence intervals stated in the 99% level.

Besides the number of active pcRSUs, both signal strength and coverage satura-

tion remain relatively constant, despite the change in radio range, indicating that the
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algorithms are resilient to this network aspect. In terms of coverage area being pro-

vided, the range increase also grew this metric by 2%, to a near-complete coverage

level.

6.3.7 Realistic Parking Behavior

To see how the self-organizing mechanisms operate under realistic parking con-

ditions, we integrated the realistic parking models presented in chapter 5, which

include a distribution of vehicle arrivals (and subsequent parking) throughout the

day, and a comprehensive hour-by-hour stochastic model of the time these same

vehicles remain parked. he data from whole-day simulations performed with ac-

curate parking models is presented in igure 6.9. Parking events at two densities

(4000 and 2000 vehicles parked over 24 hours) are distributed throughout the day

following the dual-Gamma stochastic model (see section 5.4.3 on page 92).

In realistic scenarios, decision mechanisms face two new issues. he irst is a

possible shortage of newly parked cars, which constrains the assignment of RSU

roles to vehicles that may not always be at locations optimal for a pcRSU network.

he second concerns the vehicles’s parking durations: evidently, cars parking for

only a short time make for poor pcRSUs, and this parking duration is not known

beforehand; but a more pernicious efect occurs when a car parking for a short

time makes the decision to disable a nearby car that is parked for a longer time.

Without knowledge of the time each vehicle will spend parked, or a means to recruit

previously-disabled pcRSUs, this side efect is diicult to mitigate.

Despite these issues, the data in igure 6.9 show that, under realistic parking

conditions, a self-organized network of parked cars is able to provide and maintain

widespread coverage of the urban area throughout the day, at adequate levels of

coverage strength, while assigning roles to only a fraction of the vehicles that park

throughout the day. Practical applications for parked cars may beneit from attempt-

ing to predict the parking duration for each vehicle, prioritizing those more likely to

remain parked in RSU role assignment. As an example, the models in section 5.4.3

indicate that long-term parking occurs primarily in the early morning hours, so

vehicles that park in these hours may be more suitable candidates for RSU roles.
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Figure 6.9: Evolution of various network metrics throughout whole-day simulations with realistic

parking behavior. he irst plot shows a simpliied view of how parking events are distributed, with

long-term and short-term parking behaviors split up. he remaining plots compare two densities of

parking events: 4000 and 2000 vehicles parked (over 24 hours). Scoring algorithm weights set to

wsig = 1, wsat = 0.2, wcov = 0.3, and wbat = 0.

6.3.8 Approach Comparison

We conclude our simulation work with a comparison between the self-organizing

approaches presented in chapter 4 and this chapter. To recap, with the former ap-

proach newly parked cars make individual decisions on whether they should become

pcRSUs. It is intended to be simple and minimally demanding on the network, re-

quiring only 1-hop exchanges of neighbors’ coverage maps. he latter approach, seen

in this chapter, allows parking cars to act as local decision makers, reconiguring

their local neighborhood by reassigning RSU roles among neighbors in an efort to

achieve the best possible network.
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For this comparison, we identiied two sets of parameters for the decision al-

gorithms belonging to each approach that, when applied, resulted in two networks

of parked cars that were able to provide similar levels (<1% diference) of signal

strength and coverage size. We then compared the remaining performance metrics

to see which approach was most eicient. he steady state metrics of each of these

networks can be seen in table 6.7, for sets of 2-hour simulations. he data show

that the approach where cars act as decision makers is more eicient, assigning 13

fewer RSU roles in total, and in turn decreasing coverage saturation by 27%. his

Table 6.7

Performance Comparison of Self-Organizing Approaches

Approach
Signal Distribution

2 3 4 5

City

Cov.

Signal

Str.

Cov.

Sat.

Active

RSUs

individual
decisions

97% 4.3
±1.0

2.6
±1.0

78

decision
makers 0% 100%

96% 4.3
±0.9

1.9
±0.8

65

κ ≙ 1.0, λ ≙ 1.0, µ ≙ 4, wsig ≙ 1.0, wsat ≙ 0.2, wcov ≙ 0.3

is expected, as it is the more powerful approach, and gathers maps from a wider

(2-hop) neighborhood, gaining a better picture of the local RSU network.

We also compared the evolution of the number of active RSUs and coverage

saturation, to see how each approach behaved over time. hese metrics can be seen

in igure 6.10. he data show that individual decisions causemonotonically increasing

metrics, due to the fact that each parked car can only join the network or remain

as-is. When cars act as decision makers, the metrics oscillate as RSUs are occasionally

disabled if deemed beneicial by the decision algorithm. One can also see that the

latter approach enters a steady state in a much shorter time, and is therefore the

superior solution here as well.

6.4 Experimental Work

In this section we present the results of two empirical studies aimed at verifying

base assumptions of self-organizing approaches for parked cars. With the irst study,
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Figure 6.10: Parked cars with active RSU roles (let) and coverage saturation (right), through the course of 2-hour simulations,

for both self-organizing approaches. Data sampled in 1-second intervals.

we analyze the power consumption of a DSRC On-Board Unit to determine what

impact it may have on the battery of a parked vehicle. With the second study, we

replicate the learning process a newly parked car goes through in order to determine

its own coverage map, showing its viability.

6.4.1 Power Requirements of DSRC Equipment

he main requirement for a vehicle to work as a Roadside Unit is to be able to

maintain power to the DSRC electronics. Ordinary passenger cars have two sources

of energy: when the engine is running, an alternator generates electricity, powering

the car’s electronics and recharging its battery; when the engine is of, power is

sourced from that same battery. DSRC electronics, when the car is parked and its

engine is of, must be powered from the latter. he amount of energy that is drained

should be controlled, as other applications (such as security systems and keyless

entry systems) will also be draining the battery at the same time.

To understand the impact that DSRC hardware will have on the battery of a

parked vehicle, we have performed a comprehensive study of the power consumption

of the NetRider, an OBU/RSU prototype hardware unit developed by the company

Veniam [77]. he NetRider devices consist of a Single-Board Computer with GPS

and separate DSRC and WiFi radios. he units that were generously provided to us

for this study are used at the core of the company’s testbed deployments.

In a laboratory setting, we attached digital multimeters to a pair of NetRiders

and measured the power draw of these equipments in the following activity states:
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powering the base hardware; powering the unit’s DSRC radio; powering the unit’s

WiFi radio; simulating a 100% computational load on the processor; transmitting

data on the DSRC interface at 100% and 50% duty cycles; and receiving data on the

DSRC interface at 100% and 50% duty cycles. Power consumption measurements

for each activity state were then taken for a duration of 30 seconds, at a rate of

10 measurements per second, and averaged. A complete set of activities and its

respective power consumption can be seen in igure 6.11.
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Figure 6.11: Instantaneous power demand by an on-board unit performing various tasks.

Table 6.8 reports the power that was required by each activity. From this data,

we estimate the power consumption of a hypothetical RSU scenario where the DSRC

channel is averaging 50% utilization, the unit is transmitting and receiving similar

amounts of data, and the mean CPU load nears 30% (a number commonly seen

in our testbeds), to be of approximately 4.62W. We can now predict that, for the

average 6.64 hours that a car spends parked every day [62], having an active DSRC

unit will take a 4.2 % toll on a car’s battery. his is calculated as follows: a standard 12-

volt automotive battery on a passenger vehicle has a capacity of 60Ah (ampere/hour),

or 720Wh (watt/hour). he energy consumed by an OBU over the ∼ 6.64 hours the

vehicle is parked is equal to E ≙ POBU × tparked ≙ 30.68Wh, and 30.68/720 ≈ 4.2%.

Battery capacity degrades with age and usage, and car batteries reach End-Of-Life

(EOL) when less than 50% of the original capacity remains. At this EOL point, the

battery toll would be of ∼8.4%, still less than one tenth of the total capacity.
We underline the fact that the hardware units we were able to obtain are proto-
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Table 6.8

Average Power Draw of Major OBU Systems

OBU System Power Draw

Base system 1.64W

Powering DSRC radio 2.42W

Powering WiFi radio 0.49W

CPU under 100% load 0.45W

DSRC transmission at 100% duty cycle 1.75W

DSRC transmission at 50% duty cycle 0.75W

DSRC reception at 100% duty cycle 0.21W

DSRC reception at 50% duty cycle 0.10W

types meant for testbed deployments, and that production hardware is expected to

draw under 3W in operation, further decreasing battery use. Nevertheless, parked

cars with RSU roles should limit their activity to safeguard excessive battery drain.

6.4.2 Inferring Coverage Maps from Received Beacons

Aprimary concern of any self-organizing approach that relies on a parked car’s ability

to determine its own coverage map so that informed decisions can be made, is the

reliability of the process that creates the car’s coverage map. Radio signals can vary

greatly in an urban environment, due to the signiicant number of obstructions that

cause the signal to fade. Wave relections and corner difraction also contribute to

the received signal in an urban environment.

We performed an experimental study of the process of creating a coveragemap by

a parked vehicle. For this study, we parked a DSRC-enabled vehicle and instructed it

to collect beacons being broadcast from neighboring vehicles. hese beacons contain

the GPS coordinates of the transmitting vehicles, and the parked car can determine

the signal strength (RSSI) of each received beacon. We then drove other vehicles

equipped with OBUs in the neighboring roads of the parked car.

his experiment was performed in the city of Aveiro, Portugal, in an urban area

with a variety of small residences, low-rise apartments, and commercial buildings.

Figure 6.12 shows an aerial view of the area in question.

From the beacon data points that were recorded by the parked car, the car then
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Figure 6.12: Aerial view of the urban area where data was collected. he blue centre dot shows where

the observing car was parked.

grouped measurements by their geographic cell, and computed the average signal

strength and standard deviation of the measurements belonging to each cell. he

resulting coverage map and statistics are shown in igure 6.13, and complete RSSI

histograms for each cell can be seen in igure 6.14, at the end of the chapter.

he data show that vehicle-to-vehicle signal strength in an urban vehicular net-

work is well-behaved over short distances. his suggests that a self-organizing ap-

proach can depend on coverage maps that were learned by parked cars (by observing

beacons), and that the signal strength values estimated for each cell will be represen-

tative of the strength of coverage that can be provided to that cell by the listening

vehicle. On most cells, the spread of the signal strength around the mean is relatively

small, particularly if one considers how dynamic the environment can be. Our OBUs

report RSSI in a range of 1 to 50, and of the 75 cells fromwhich beacons were received,

88% of the cells showed a standard deviation under 5.0.

he nature of cell-based coverage maps does imply that a level of abstraction is

applied to the city map and, consequently, there may be situations where a deep fade

occurs within a cell, and the average received power from beacons fails to relect the

coverage quality on that cell. In these situations, a bimodal distribution can oten be

seen.
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Figure 6.13: A real-life coverage map learned by a parked car equipped with DSRC radios, by listening

to beacons transmitted from moving vehicles. Bottom-let: distribution of the average RSSI observed

at each cell, and corresponding 0 to 5 signal strength classiication. Bottom-right: distribution of RSSI

variance at each cell.

6.5 Considerations on Vehicular Network Security

We now discuss some of the security considerations of our proposed self-organizing

network approaches and suggest possible techniques to mitigate security issues.

Vehicular networks, by themselves, inheritmany of the problems that afect computer

networks, wireless networks, highly mobile networks, and very dense and large-scale

networks. he approaches presented in this work do not introduce newweaknesses to

vehicular networks, which are already vulnerable to attacks of impersonation, bogus

information, denial of service, or hardware tampering [78]. hey may, however,

exacerbate some of these problems within certain security models.

A rogue parked car bypassing the decision process may attempt to announce

itself as an RSU, an attack of impersonation. It may then deliberately fail to trans-
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mit important safety messages (message suspension), or, e.g., falsify an emergency

warning to reroute traic (bogus information). Rogue entities may also fake the type

of messages that are used to revoke RSU roles, aiming to disable RSUs in a given

area. One solution to both these issues is to collectively replay and verify decision

processes before accepting their outcomes, by having the neighbors of a new parked

car RSU and RSUs seeing their roles revoked repeat the decision algorithms them-

selves. At the cost of a higher network overhead, groups of vehicles can then defend

against misbehaving nodes by identifying decision mismatches and banning the

nodes from the network [79]. Alternatively, one may forego direct RSU revocation,

inform neighboring RSUs of the new parked car RSU, and allow each active RSU to

understand, by itself, whether it should remain in its role or not.

Rogue entities may attempt to win the decision process legitimately, and only

then transmit bogus information Ð however, such problems are not limited to

the self-organizing approach (moving vehicles with rogue OBUs can also falsify

information), and thus require broader security models. Speciic security solutions

that depend on ixed RSUs being relatively tamper-proof are also not applicable

to the self-organizing solution, since it moves the RSU roles to the vehicles where

tamper-prooing is considerablymore challenging [80]. Restricting the use of parked

cars as message relays for existing ixed (and trusted) RSUs can still bring the beneits

of wider and more robust city coverage, and overcome these issues.

6.6 Summary

A novel approach has been provided to enable parked cars to self-organize and form

widespread vehicular support networks in the urban area, which can then be used

to monitor vehicular traic, public transportation, and available parking. hrough

newly introduced mechanisms and a multi-criteria decision process, the vehicular

support network that is created can be continuously optimized through time, de-

signed to target speciic metrics of signal strength, coverage saturation, and coverage

area, while rotating RSU roles between vehicles to manage battery utilization. An ex-

tensive simulation study, coupled with an experimental veriication of key concepts,

provides the irst strong evaluation of a self-organizing approach for parked cars. It

reveals, for the irst time, how such a network forms and evolves, what quality of
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coverage is possible and how it is distributed, what balance is achievable between

recruited vehicles and network strength, and validates the proposed mechanisms

against simulations that integrate realistic models of parking behavior. Also, the

analysis shows a ∼25% improvement in the eiciency of RSU role assignment against

the previous self-organizing approach, as well as increased stability of signal and

coverage.
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Chapter 7

Conclusion

he work in this thesis focuses on methods that improve the connectivity and the

coordination of vehicular networks through the use of Roadside Units, improving

the overall performance of the network in the face of node sparsity and challenging

environments. By evaluating the beneits of deployments of Roadside Units, and pre-

senting alternative methods for network support when these units are not available,

we provide signiicant insight into optimizing the performance of these networks

under most circumstances. We now review the main research contributions of this

dissertation.

7.1 Contributions

On the topic of infrastructure support in highway vehicular networks, the main

contributions of this dissertation are as follows:

• An analytical framework for characterizing re-healing time in sparse high-

way networks with infrastructure support, for two diferent types of RSU

deployments (disconnected and interconnected), based on core traic, net-

work, and infrastructure deployment parameters. he closed-form analytical

models accurately characterize all of the scenarios where RSUs can assist in the

propagation of safety messages through a sparse network, and cut down the

end-to-end delay. Using these models, an RSU deployment can be designed

to match the speciic requirements of a number of applications.



7. Conclusion

• Showing the substantial diference in performance between disconnected

and interconnected RSUs, via the analytical models and Monte Carlo sim-

ulations. Comprehensive simulation sets validate all subcomponents of the

analytical models and reveal that even dense deployments of disconnected

RSUs bring only modest beneits to a sparse network, while connected RSUs

can reduce re-healing time by more than an order of magnitude. In addition

to this key result, we also provide valuable insights into the inluence that the

density of RSUs and their radio range have in re-healing time.

• An experimental veriication of the infrastructure support models for high-

ways, from a testbed with DSRC-enabled vehicles and RSUs, showing that the

predictions of the models in this work are accurate and realistic. here is an

excellent match between the measurement results and our analytical data.

• An infrastructure-less approach to reducing re-healing time in highway net-

works, with an aim to improve the dissemination of critical messages in sparse

scenarios lacking deployments of RSU infrastructure. Twomethods, proactive

braking and range boosting, are analytically modeled and evaluated, showing

the efectiveness of the irst on roads with one-way traic, and the beneits of

the second when also in the presence of opposite-lane vehicles.

On the topic of urban vehicular networks, and the use of cars as roadside units, our

contributions are as follows.

• A low-cost solution to the problemof deployingRSUs for providing support

to urban vehicular networks, by leveraging the parked cars in cities. A self-

organizing network approach to selecting RSUs from a large pool of parked

cars is introduced, employing a novel way for vehicles to assess their value to

the network by listening to beacons transmitted by other cars, and piecing

together a map of their coverage. A division of the urban area in cells aligned

to GPS coordinates is also proposed, allowing vehicles to eiciently share

coverage maps and eicient decisions to be made based on those maps.

• A simple on-line algorithm to maximize the coverage of the support net-

work of parked cars, while minimizing the number of cars that are required

to be enabled. Using the coverage maps, this algorithm requires only brief
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1-hop exchanges between RSUs. A detailed study is provided for the beneits

of the proposed approach at the initial stages of implementation, where the

small market penetration rate of DSRC-equipped vehicles will imply that only

a few parked cars in a given area will be able to become RSUs.

• A statistical analysis of the mobility patterns and parking trends in urban

areas. Travel survey data from the metropolitan areas of Atlanta, Chicago, and

Knoxville are analyzed, and the time and duration of parking are extracted

and modeled numerically as daily and hourly models. An analysis of these

models reveals that parking events can be categorized into two broad groups

according to the time the cars spend parked, and parking trends are shown to

be remarkably similar across diferent cities.

• An advanced approach for creating support networks of parked cars. By

giving newly parked cars the role of decision makers, and allowing them to

reconigure RSUs in their vicinity, a continued optimization of the support

network is ensured. A multi-criteria decision-making solution is formulated

for the problem of assigning RSU roles to available cars, and a system to limit

the battery power draw on each car is developed, allowing RSU tasks to rotate

between available vehicles as a part of each decision step.

• An extensive evaluation of the performance of parked car self-organization.

his study reveals, for the irst time, how networks of parked cars come to-

gether; the quality of the support network that is created; what the best balance

between the number of recruited cars and the quality of the network is; the

sensitivity to the frequency of parking events, and to the radio range of the ve-

hicles’ hardware; and the performance of the network under realistic parking

behaviors modeled from empirical data.

• Experimental studies verifying key assumptions of the proposed processes

for self-organization. A irst study, analyzing the power consumption of On-

Board Units in detail, shows that these have a small impact on the battery of a

parked car. A second study, on the process through which cars learn their own

map of coverage by overhearing message beacons, shows the small variance

in received signal strength, and therefore its resilience.
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7.2 Future Research

Directions for future research of relevance to the work shown in this dissertation are

presented in this section. On the topic of Roadside Unit placement, and the beneits

these units bring to both overly sparse and overly dense networks, the existing

body of work is now considerably mature. Interesting work remains on how to best

integrate these units into the existing network, and in the development of protocols

that leverage the availability of supporting infrastructure.

On the theme of self-organizing vehicular networks, and the concept of using

parked cars as urban RSUs, there is considerable room for further exploration. hese

are some of the items that warrant future study:

• Experiment with further degrees of decision centralization. In this disser-

tation, we explored decisions that afected either the local neighborhood of

parked cars or a single car. With hybrid approaches, where the network of

parked cars extends a small number of ixed RSUs, it may be of interest to

defer the decisions on which cars should become RSUs to these permanent

RSUs. Coverage maps, instead of being broadcast, may be collected at the

central RSUs, and they can assign RSU roles with a broader knowledge of the

urban area and the existing networks. Without ixed RSUs, the self-organizing

approach can also elect a form of ‘super-coordinator’, a node that is respon-

sible for decisions in a wider area (wider than its immediate neighborhood).

hese approaches may improve decision eiciency and the stability of the RSU

support network.

• Investigate methods for data permanence in the network of parked cars.

One shortcoming of the use of parked cars as RSUs is this network’s ability

to store and hold data. Content distribution and collection of sensor data are

two tasks oten assigned to RSUs. However, parked cars are only temporary

RSUs, and once a car loses its RSU role any data it is holding is lost. Two

topics may be studied here: irst, distribute copies of necessary data among

neighbors, to add redundancy to the stored data and allow it to survive RSU

disappearance. Second, develop a collective system for the storage of larger

information blocks that would not it on a single OBU by themselves, but can

be split and distributed among multiple nodes.
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• Implement and evaluate a self-organizing approach in a large-scale testbed.

As a continuation to the experimental work presented in chapter 6, a larger-

scale real-world evaluation with multiple parked cars may yield important

insights. We have strived to perform accurate and realistic simulations, and

have leveraged substantial empirical data for that purpose Ð nevertheless,

we realize the limitations of simulation work, and suggest testing the deci-

sion algorithms and the interactions between vehicles and RSUs with a more

extensive testbed.

• Evaluate the proposed approaches in suburban and rural areas. he simula-

tion work in this dissertation replicated a central area of a major city, with a

rich urban topology. It would be quite interesting to see how a self-organizing

approach performs in areas of lower population density, and how it may be

adapted to these new environments. To maintain the same degree of realism

adopted by our work, four sets of empirical data are required for each area: a

road map, a vector map of buildings and obstructions, signal measurements

in the DSRC frequency band to derive a communication model, and a travel

survey to extract realistic parking behaviors.

• Extend the multi-criteria decision algorithms to adapt to increased traic

demands. Areas of high node density may have greater demand for sending

and receiving data through the RSU network, and the fundamental goal of

widespread coverage may not be suicient here. Measuring and integrating

these requirements into the multi-criteria decision process would allow the

self-organizing approach to recruit more RSUs in response to the increased

demand. IEEE 802.11p standardizes six non-overlapping service channels,

which allows the coexistence of multiple communication paths to source and

sink data from these areas of increased demand.
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Appendix A

Numerical Model of Cluster Length

Distribution

To determine the distribution of cluster lengths, we ran 49 Monte-Carlo simulations

with each run illing a highway with one million vehicles. hese 49 simulations cor-

respond to 7 × 7 pairs of vehicle density and vehicle radio range, the two parameters
that impact the distribution of the cluster length. he chosen ranges of values were:

for vehicle density λs, from 0.0019 veh/m to 0.0079 veh/m, in 0.0010 intervals; for

vehicle radio range R, from 50m to 650m, in increments of 100m. From the sim-

ulation data, we observe the following characteristics of the distribution of cluster

lengths:

• he distribution of cluster lengths comprises two separate, non-contiguous

branches.

• he irst branch closely resembles the uniform probability distribution, in the

domain ∥0, R∥.

• he second branch resembles the exponential probability distribution, in the

domain ∥R,∞∥.

hrough numerical interpolation, we were able to obtain the following PDF for



A. Cluster Length Distribution

cluster length, CL:

fCL
(cL) ≙ (A.1)⎧⎪⎪⎨⎪⎪⎩
k(R, λ)(Rk(R, λ) + e−R/µ(R,λ))−1 , 0 < cL < R ;

µ(R, λ)−1(Rk(R, λ) + e−R/µ(R,λ))−1e−cL/µ(R,λ) , cL ≥ R .

he term k(R, λ) characterizes the uniform branch of fCL
(cL):

k(R, λ) ≙ α + β ⋅ λ +
γ

R + δ
, (A.2)

with:

α ≙ 0.0003295 , β ≙ −0.2942 ,

γ ≙ 0.7212 , δ ≙ −24.67 .

he R2 [81] of this it equals 0.9817. he term µ(R, λ) characterizes the exponential
branch of fCL

(cL):
µ(R, λ) ≙ κ + ω ⋅ eθ⋅R⋅λ , (A.3)

with:

κ ≙ −161.1 , ω ≙ 199.8 , θ ≙ 0.9063 .

he R2 of this it equals 0.9905.

Proof of Lemma 8. he probability P∥CL < CI − 2RI∥ can be obtained through inte-
gration of equation (A.2) in the domain ∥0,CI − 2RI∥. To limit complexity, we only
consider the scenario where CI − 2RI is larger than R, an assumption that is valid

for the scenarios we evaluate with the re-healing models.

P∥CL < CI − 2RI∥ ≙ ∫ CI−2RI

0
fCL

(x)dx
≙ ∫ R

0
fCL

(x)dx +∫ CI−2RI

R
fCL

(x)dx

≙ 1 − e
−

CI−2RI
µ

kR + e
− R

µ

. (A.4)

∎
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Proof of Lemma 9. he conditional expected length of a cluster E∥CL∣CL < CI−2RI∥
can be computed in a straightforward manner from fCL

:

E∥CL∣CL < CI − 2RI∥ ≙
≙ ∫ CI−2RI

0
cL

fCL
(cL)

FCL
(CI − 2RI)dcL

≙ 1

FCL
(CI − 2RI) [∫

R

0
cL fCL

(cL)dcL + ∫ CI−2RI

R
cL fCL

(cL)dcL]

≙ e
R+CI

µ kR2 + 2e CI
µ (R + µ) − 2e R+2RI

µ (µ + CI − 2RI)
2(e CI

µ − e
R+2RI

µ + e
R+CI

µ kR)
. (A.5)

∎
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