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Abstract

Models are useful for many computer vision tasks, such as object detection, recognition, and

tracking. Computer vision tasks must handle situations where unknown objects appear and must

detect and track some object which is not in the trained database. In such cases, the system must

learn or, otherwise derive, descriptions of new objects.

In this dissertation, we investigate creating a representation of previously unknown objects

that newly appear in the scene. The representation is to create a viewpoint-invariant and scale-

normalized model approximately describing an unknown object. Those properties of the represen-

tation facilitate 3D tracking of the object using 2D-to-2D image matching. The representation has

both benefits of an implicit model (referred to as a view-based model) and an explicit model (re-

ferred to as a shape-based model). The object representation is created using multi-modal sensors.

We illustrate the benefits of the object representation with two applications: object detection and

3D tracking. We extend the object representation to an explicit model by imposing a shape prior

and combining two existing approaches.
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Chapter 1

Introduction

1.1 Motivation

Imagine vehicles passing an intersection. Your visual system can easily detect the shape and position

of the vehicle and persistently track them, and identify the brand and year of the vehicles. However,

it is very difficult for a computer because of the problem of variability. A vision system needs to

generalize across huge variation in the appearance of an object - due for instance to viewpoint,

illumination, scale or occlusion. At the same time, the system must maintain specificity because

an object can be recognized at a variety of levels of specificity: a car can be recognized as “a black

car” by the color, or “a sedan” by the shape [1].

Models are important for the robustness and efficiency of computer vision applications. One can

manage to perform tasks without models, but with models, one can perform tasks better [2]. For

example, when recognizing a car in an image, if we have car models which are manually trained

or generated, we can recognize the car by searching in the previously constructed database. Fur-
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thermore, models are useful for detecting and tracking objects in challenging conditions, such as

occlusion, illumination, and viewpoint change. Models are generally built based on prior knowl-

edge about the object appearance, shape, or both, and model learning is accomplished with user

supervision.

Many computer vision tasks must handle situations where previously unseen objects appear and

must detect and track an object which is not in the trained model. In such cases, the system must

learn the new objects or simply derive the descriptions for the objects never seen before [3] [4]. For

example, if we trained a perception system with only car and person models, the system can not

recognize animals. Therefore, building object models while keeping track of the objects is necessary

to accomplish the tasks of computer vision applications.

To build object models online, the first question to be address is how to represent objects. The

focus of representation is to describe implicitly or explicitly the geometry and appearance of 3D

objects [5], [6]. The implicit representation (referred to as a view-based model) models an object as

a set of representative images taken from different viewpoints. The explicit representation (referred

to as a view-based model) is to create the 3D geometric shape of the object. The former has the

advantage of simple matching to an image at runtime (assuming that other variations like lighting

and color can be minimized), but it requires a large number of viewpoints and therefore a lot of

data storage. The latter makes storage more efficient, since there is only one model per object, but

the model creation is more challenging.

Object representation is influenced by the available sensors. Some sensors are more appropriate

for shape representation, and some are appropriate for appearance representation. Vision provides

dense data with fast updates, but it does not give a sense of scale. Lidar can give accurate geometric
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information, but only at sparse locations, and much of the appearance information cannot be

captured. The combination of the two sensors gains the benefits of both. The tradeoff is the

additional effort needed to calibrate the sensors with respect to each other. It can be solved by

finding corresponding features in the lidar and vision data. However, finding such correspondences

is difficult because the lidar spot usually cannot be seen directly in the image, since a lidar typically

operates outside the visual spectrum. Full 3D sensors are expensive and somewhat bulky, but single

line lidars, which provide limited 3D information, are compact and lower cost.

1.2 Related Work

This dissertation work focuses on creating an approximate model of unknown objects online using

pervasively combined sensor data. Therefore, it is useful to examine existing object representa-

tion methods, online modeling approaches, and existing modeling approaches using sensor fusion

techniques.

An object should be defined as something that is of interest for further analysis. The common

approach (referred to as the model-based approach) models objects by their shape, appearance,

or both. Other ways include detecting and tracking the motion blobs of moving objects without

recognition (referred to as the non-model-based approach). The non-model-based approaches have

an advantage in which they can detect and track moving objects without prior knowledge. However,

they cope poorly with occlusion and cannot re-acquire the tracked object after losing it because

they describe objects as moving blobs or points instead of using shape or appearance of the object

[7] [8] [9] [10]. However, model-based detection and tracking approaches have achieved more reliable

performance in vision-based applications [11] [12] and in lidar-based approaches [13] [14] [15].
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A 3D object model is more robust and able to detect and track objects over longer durations than

2D object models. Since the 3D object models contain geometric and appearance information, they

have much higher stability with respect to viewpoint change, occlusion, and shape deformation [16]

[17]. For example, in [2] [18] [19] [20], the authors used 3D wire-frame vehicle models to track various

types of moving vehicles with a stationary camera and showed that the 3D model is more robust

in occlusion and viewpoint changes. The 3D object representation can be either implicit (view-

dependent or viewer-centered) or explicit (view-invariant or object-centered) [21]. The implicit

model features multi-view-based models encoding different views of an object [22]. The explicit

model contains the 3D shape [23] [24] or the 3D shape and appearance of an object [25]. In

the aforementioned research, the 3D object models are manually created in limited environments.

These approaches have failed to detect and track objects previously unseen or not in their training

databases.

Once we create 3D models online, it is possible to detect and track objects when they appear

again. Online object modeling approaches can be categorized into two types. The first approach is

to make a robust and adaptive model varying in shape and appearance online [3] [26]. The second

is to build a model of previously unseen objects on-the-fly [27] [4]. Both are identical in terms

of making models online. In [27], the authors introduced an online object modeling approach for

use in airborne images. They built a set of view-dependent object appearance models adaptively

and automatically while tracking an object under different viewing angles. Although they built

viewpoint dependent object models, the models do not contain any shape information. In [4], the

authors described exemplar-based online object modeling for representing the shape of objects in

planar laser scans. They conducted experiments to build models for several types of moving people

e.g., pedestrians, skaters, or cyclists in real environments.
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View-based models Approximate model Shape-based models

Figure 1.1: Overview of 3D object representation: The implicit 3D model represents objects as a

collection of 2D views. The explicit 3D model uses volumetric representation and has an explicit

model of the 3D geometry of the object. The approximate model consists of two main models:

approximate unwrapped mosaics (color and edge gradient) and an approximate geometry. The

approximate model has the benefits of both view-based and shape-based models; that is, we estimate

3D pose of an object by 2D-to-2D matching.

1.3 Dissertation Overview

In this dissertation, we create object models online while tracking. To trade-off between the implicit

and explicit representation, we create an approximate model with the geometry and appearance

of an object as shown in Figure 1.1. Our sensor configuration is a combination of a single line

scanning lidar and a vision sensor.

The organization of this dissertation is as follows: In Chapter 2, we introduce preliminary

work for the approximate representation - vertical boundary detection and data association by

sensor fusion. We describe the approach of the approximate representation and the performance of

detection and tracking with the model in Chapter 3. Approximate modeling of a specific object (e.g.,

5



cars) and a method for 3D car shape recovery are introduced in Chapter 4. Finally, we conclude

with a summary of this work and suggest future extensions in Chapter 5. In the Appendix, we

introduce a new extrinsic calibration algorithm that we developed for combining lidar measurements

and imagery.

1.4 Dissertation Contributions

The contributions of this dissertation include approximate representation of unknown objects using

lidar measurements and appearance, detection and 3D tracking of the objects, and 3D shape

recovery of a specific object, as shown in Figure 1.2. The details of the contributions made are:

Approximate Representation of Unknown Objects

We create a model which is invariant to viewpoint and scale. We first create an approximate

geometric model that provides the geometry for an unwrapped mosaic model of appearance. The

approximate model consists of an approximate unwrapped mosaic along with an approximate ge-

ometry. The unwrapped mosaicing is achieved by creating a fronto-parallel image using the cor-

responding geometry. The appearance model consists of color and edge gradient mosaics, both

created independently and normalized by viewpoint and scale. Using the approximate model, we

can obtain the benefits of both implicit and explicit modeling approaches, since we can perform 2D

image matching for detecting an object and estimating its 3D pose.

Detection and Tracking using Approximate Model

We build a classifier to distinguish between different objects when we detect an object with the

6



Approximate model

Detection and tracking 2.5D shape model 3D car shape recovery

Figure 1.2: Dissertation contributions: We create an approximate representation method for un-

known objects. The approximate model estimates the 3D pose of an object using 2D image match-

ing. We recover the 2.5D shape model with the approximate model. We also recover an explicit

3D car shape using the shape prior of a car and the lidar constraints.

approximate model. Each approximate model is used to build a probabilistic model that can be

used to assign a probability score to each query object, from which a classifier is obtained. We

evaluate the performance of our detector using data sets obtained in outdoor environments.

3D Shape Recovery Imposing Shape Prior

We recover a 3D car shape of real scale by imposing the shape prior of a car and geometric

constraints from lidar measurements. We develop an approach that combines three ideas: (i) an

existing method for aligning a deformable model of a car to an image [28]; (ii) an algorithm for 3D

7



shape recovery using the Origami world [29]; and (iii) a new method for applying knowledge-based

constraints and lidar geometry constraints to recover the geometry of real scale.

Pervasive Sensor Fusion

In order to create the models, we pervasively combine a single-line scanning lidar and vision data.

We compute features from the data, and then fuse the information at the feature-level. Many fusion

approaches use data from different modalities independently and then fuse the resulting output of

the algorithm. This approach has some advantages, since the data from each sensor can be treated

independently. However, it does not take advantage of all the available information from a calibrated

multi-modal sensor system. The benefit of our approach is that we can integrate fusion throughout

the different stages in the process. The feature-level fusion approach can be more robust than the

decision-level fusion because both sensors can contribute to the solution at each step in a sequence

of operations, whereas decision-level fusion is limited by any one step that performs poorly for a

given sensor.
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Chapter 2

Object Region Detection and

Association

2.1 Introduction

In order to create a model of an object, we first need to find correspondences of the tracked object

between frames. Searching for the correspondences across frames is equivalent to tracking the

object over time. To search for the correspondences, we first detect the foreground in each frame,

that is, we should identify the locations of potential object regions in the frame. Hereafter, we refer

to the potential object region as an object region or an object image.

The object region can be estimated by detecting the boundary of an object. An object boundary

occurs where one object occludes another from the viewpoint of a sensor. Detecting object bound-

aries in images is difficult because appearance may change more dramatically within an object

than at its boundary. Lidar offers a good alternative to monocular vision approaches for boundary
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detection. These sensors directly estimate the distance to surfaces in the scene and therefore have

the potential to detect depth discontinuities that often appear at object boundaries. Lidars have

the advantage of lower uncertainty and reliable performance in untextured regions, generally at the

expense of lower angular resolution. However, even the high-precision range measurements of laser

scanners do not trivially solve the boundary detection problem.

A common approach for detecting boundaries using range data is to compute differences in the

range of adjacent measurements and to declare any range difference above a given threshold to be an

object boundary. While this simple thresholding approach can work well for straightforward cases, it

does not perform as well in more challenging situations that occur frequently worth addressing. For

example, if two objects are close together, they may be incorrectly classified as a single object with

no boundary between them. For these challenging cases, we considered whether the information

from lidar could be helpful in detecting such boundaries and also whether imagery could be helpful.

Combining both sensors’ data can also be beneficial for tracking objects in a scene. It can be

awkward to consistently track an object using vision-based tracking because of information loss

[15]. The vision-based tracking can be difficult to consistently track an object because of loss of

information caused by projection of the 3D world on a 2D image, appearance change by viewpoints

and scene illumination, and partial and full occlusions. On the other hand, lidar-based tracking

can struggle to maintain correspondences across frames due to sparse depth information. Properly

combining individual sensor’s measurements has a benefit because one sensor’s data can provide

complimentary information to the other sensor.

Vision-based tracking has been studied in numerous ways for many decades. Most of the ap-

proaches are divided into three major categories based on object representation and image features:
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(i) discrete feature tracker, (ii) contour tracker (e.g. edge-gradient), and (iii) region-based tracker.

The tracking is performed in two main stages. First, each tracker represents objects as discrete

features (e.g. points and lines), object boundaries (e.g. edge-gradient), or simple geometric shape

(e.g. rectangular or elliptical patch). Second, the tracker establishes correspondences between the

object instances across frames [30]. Tracking objects with only visual information remains a diffi-

cult problem within the field of computer vision because of viewpoint and illumination change [30]

[31].

Lidar can offer a good alternative to vision-based approaches for object tracking. The sensor

directly estimates the distance to surfaces in the scene and therefore has the potential to detect

depth discontinuities that often appear at object boundaries. Lidars have the advantage of lower

uncertainty and reliable performance in untextured regions, generally at the expense of lower angu-

lar resolution [13]. However, even the high-precision depth measurements of lidars do not trivially

solve the object tracking problem. Moreover, if the lidar scans a single line, it is more difficult than

a multi-line or a 3D scanning lidar because we cannot have depth information at object regions

except in the scanning direction

We propose a region-based tracking approach by pervasive sensor fusion of a single line scanning

lidar data and imagery. The methodology for performing object tracking using lidar data and

imagery can be summarized in two main stages: (i) vertical boundary detection of objects in a

single frame and (ii) data association of the same object across frames.
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2.2 Related Work

There is relatively little research on explicitly detecting object boundaries with sensor fusion. How-

ever, the boundary detection problem can be viewed as the dual of the more commonly studied

problem of segmentation, where the goal is to find all the points (or pixels) belonging to a sin-

gle object. Boundary detection (or segmentation) algorithms can be broadly classified based on

whether they use range data or imagery.

The most common method for segmenting range data is to use jump distance thresholds [32] [33]

[34] [35]. Boundaries are identified wherever the Euclidean distance between two adjacent points

is larger than a threshold. Arras [34] and Spinello [35] observed that although fixed threshold

methods work well in indoor environments, they do not work well in outdoor environments due to

the longer ranges involved and more challenging conditions. For example, if the threshold is chosen

to be large enough to cluster objects at long distances, then nearby objects are not separated.

To solve these problems, new segmentation methods using more complex and adaptive thresholds

(typically a function of range) were developed [32] [33]. While these methods address the problem

of long-range objects, they still have difficulty with challenging scenarios such as occlusions and

viewpoint changes in outdoor environments.

There is much existing literature related to object tracking and data association. In this chapter,

we will briefly introduce several of the most common algorithms used to address the data association

problem because our object tracking is focused not on solving a general tracking problem but on

keeping track of an object of interest over time.

The most commonly used algorithm is the Nearest Neighbor (NN) approach, which assigns each

observation to the most probable object [36] [37] [38]. The biggest limitation of this approach is
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that it makes irreversible assignment decisions immediately. Information obtained in the future

can be invaluable at resolving ambiguities at the current time step. The Joint Probabilistic Data

Association (JPDA) algorithm is a popular approach to tracking multiple moving objects [39] [37]

[38]. The JPDA computes a Bayesian estimate of the correspondence between features detected in

the sensor data and the different objects to be tracked. The JPDA can be seen as an approximation

of the exact Bayesian solution of the data association problem. The Multiple Hypothesis Tracking

(MHT) algorithm keeps several correspondence hypotheses for each object at each time frame [40]

[37] [38].

2.3 Vertical Boundary Detection

Vertical boundary detection is a key step in segmenting an object from its background, which

is known as figure-ground segmentation. The ability to distinguish a foreground object from the

background in a scene can simplify object detection and recognition, and distinguishing a foreground

object is a first step in detecting, modeling, and tracking moving objects in a scene.

We cast the problem of vertical boundary detection as a classification task. A single line-

scanning lidar produces a sequential series of range measurements with fixed angular increments

in polar coordinates. The vertical boundary of an object may lie at any point in this continuum,

and therefore, the true location of the boundary is likely to lie at some position between the

measured rays. The classification task is to determine whether an object boundary exists between

two consecutive range measurements.

We consider the space between consecutive lidar measurements, and predict whether an object

boundary exists within this region or not. Given a set of labeled local features derived from the
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Figure 2.1: Overview of vertical boundary detection. The boundary detection problem in the

framework of classification (Nb: Non-boundary, B: boundary).

data, standard machine learning tools, such as support vector machines (SVMs), can be used to

learn the relationship between features computed from the data and the boundary/non-boundary

classification labels.

If the scene is observed simultaneously with a camera, then it is possible to calibrate the camera

pose with respect to the lidar, which allows the range measurement points to be projected onto

the camera image. The centers of projection of the camera and lidar need to be as close together

as possible to minimize the effects of parallax. Camera image resolution is typically significantly

higher than the angular resolution of lidars, which means that the region between two projected

laser points will contain multiple pixels. Consequently, information from image patches must be

aggregated. We use rectangular image patches surrounding the projected lidar points for computing

image-based features. Intuitively, if the image patches surrounding two points belong to the same

object, then the statistics of the image patches are more likely to be similar than if they belong to
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two different objects.

Evidence of a boundary existing between two lidar points may be based on features derived from

the range, including distance between real returned points (except intervening points with no return

from the laser scanner, which we refer to as “no-return points”), range from origin to mid-point,

and surface orientation. Evidence of a boundary between two points in an image is based on image

texture features, histogram similarity, mean intensity, standard deviation of intensity.

Given a set of features derived from the lidar and image data, along with the ground truth

labeling of whether a boundary exists between each pair of lidar measurements, we use standard

machine learning techniques to train a classifier to correctly label novel data queries.

2.3.1 Lidar Features

When a lidar returns consecutive range scan points (pi, i = 1, . . . , n) in a full scan, each scanned

point can be defined as (ri, φi) in polar coordinates and as (xi = ricosφi, yi = risinφi) in Cartesian

coordinates. Here, n denotes the number of scan points, including valid and invalid scanned points in

a full scan. A point is considered invalid if the sensor did not receive a return for that measurement,

which occurs, for example, when there is no surface within the sensor’s range. In this dissertation,

we only consider the relation between valid range measurements (pj , j = 1, . . . , nr), where nr

is defined as the number of valid returned points. The lidar features are defined as a function

(fj : Pj → R
m) that takes a pair of consecutive valid points (Pj = (pj, pj+1), j = 1, . . . , (nr − 1))

and returns an m-dimensional value (XL
j = (dj , lj , θj)

T , XL
j ∈ R

3). We define the following lidar-

based features (refer to Figure 2.2):
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Figure 2.2: Lidar features.

• Distance between valid returned points (dj,j+1): This feature is the Euclidean distance between

points pj and pj+1 (j = 1, . . . , (nr − 1)) and is given by

dj = ‖pj − pj+1‖2. (2.1)

• Range from origin to mid-point (lj,j+1): This feature measures the range from the lidar

sensor’s origin to the mid-point between points pj and pj+1, which is given by

lj =

∥∥∥∥
pj + pj+1

2

∥∥∥∥
2

. (2.2)

• Angle between valid returned points (θj,j+1): This feature is designed to measure the orienta-

tion of the surface with respect to the viewing direction and is given by

16
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Figure 2.3: Image features. Left: Examples of image patches used for computing image-based

features. Right: Close-ups of some representative pairs of adjacent regions from the left image.

θj = arctan

(
rj+1

rj sinφj

− cotφj

)
. (2.3)

2.3.2 Image Features

Each image feature is based on two rectangular regions, Rj andRj+1, extracted from image locations

centered on the projection of the lidar measurements, pk and pk+1 into the image (Figure 2.3). The

image features are defined as a function (fj : Pj → R
m) that takes a pair of consecutive valid patches

(Ij = (Rj , Rj+1), j = 1, . . . , (nr − 1)) and returns a 3-dimensional value (XI
j = (hj ,mj , sj)

T ,XI
j ∈

R
3). In our experiments, because the original patch size is varying by the lidar measurement, we

normalized the size (N ) of each patch to be 11 by 15 pixels.

• Histogram intersection (hj,j+1): This feature measures the similarity between two histograms

computed over adjacent regions. This is calculated as

hj =

∑
B min (Hj,Hj+1)∑

B Hj

(2.4)
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where Hj and Hj+1 are the histograms acquired from the image patches Rj, Rj+1, and B is

the number of bins in the histogram. In our experiments, B is set to 16.

• Difference of mean intensity of two patches (mj,j+1): This feature measures the difference of

average intensity of adjacent patches

mj =
1

N

(
∑

m,n

(Rj (m,n)−Rj+1 (m,n))

)
(2.5)

• Difference of standard deviation of two patches (sj): This feature returns the difference of

standard deviation of the intensity of adjacent patches.

sj = σj − σj+1 (2.6)

where

σj =

√
1

N − 1

∑

m,n

(Rj(m,n)− µj)
2 (2.7)

and µj is the mean intensity value of patch Rj . The value of σj+1 is defined analogously.

2.3.3 Boundary Classification

Features derived from the lidar and imagery are used to train a support vector machine (SVM)

classifier to label pairs of range measurements as boundary or non-boundary. SVM is a common su-

pervised learning algorithm for binary classification. An SVM seeks the hyperplane that maximizes

a notion of margin between classes [41]. Linear SVM is fast, has publicly available implementations,

and handles high-dimensional feature spaces well.

18



2.4 Association of Object Regions

Once we detect the object regions in a scene through vertical boundary detection, we assign the

objects to the object labels, which is commonly referred to as the data association problem. Data

association is a straightforward problem if we track a single object in a scene. Assuming no

measurement noise and only a single object, there will be just one measurement at every time

instant and therefore data association is trivial. However, in most real situations, multiple objects

are detected that sometimes move near each other or occlude one another, making data association

difficult.

Combining geometric information and appearance of objects can help to find correspondences

across frames. When two objects appear superimposed in our perspective, depth information may

be used to rule out matches where appearance cannot. However, when two objects move close

to one another, appearance may contribute to the decision of matching candidates because the

appearance of an object does not change dramatically in a short time period.

We detect objects in every frame and seek to match a set of tracks across frames. Once objects

have been detected, data association can be performed to link the object tracks to the currently

detected object. Since the lidar provides accurate depth information of the objects, some matches

are easily filtered out when the matches are geometrically unlikely from the position in the previous

frame. This process is is referred to as gating. The gating process decomposes data association

into sub-problems.

Once highly unlikely matches are filtered out, we evaluate each observation in the track gating

region and choose the best one to incorporate into the track. The data association between the

track and observations is accomplished in three main steps. We first evaluate the correspondence
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between the track and observations by measuring the distance of lidar measurements and appear-

ance similarity. Second, we compute the relative likelihood between matching pairs with both

similarity measures. Finally we choose the best matching pairs by solving an integer programming

problem [42] [43].

2.4.1 Similarity of Lidar Measurements

A direct measurement of similarity between data points is the distance between two points. Consid-

ering N tracks and M observations, there are N ×M possible matching combinations. In practice,

some matches are more likely to originate from one track than another. Measuring the geometric

distance is therefore an efficient way to estimate the likelihood of matches; the longer the distance

between a object and an observation, the less likely the observation corresponds with the object.

Considering a pair of an object Zn at time t and an observation Zm at time t+1, the similarity

of two lidar measurements is estimated by a distance between the center points z̄n and z̄m of

both measurements. The lidar likelihood SL for matching the Zm to the Zn is estimated by an

exponential function:

SL(Zn,Zm) = exp (−
‖z̄n − z̄m‖

2

σ2
), (2.8)

where the SL is normalized from 0 to 1.

2.4.2 Similarity of Image Regions

Image similarity is measured with sub-image regions In and Im in the object region of interests

(ROIs) which are cropped from the vertical boundary detection. Since a single line scanning lidar
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measures depth of a stripe line of an object, we define the sub-image region to be a rectangular

region. The width of the rectangular region is the same as the object ROIs, while height is measured

using a pre-defined size onto the object ROIs centered on the projection of the lidar measurements.

Considering the normalized color histograms hn and hm extracted from sub-images In and Im

respectively, the image similarity SI is estimated by computing the Bhattacharyya measure between

distributions of hn and hm [44]. However, the Bhattacharyya measure is a divergence-type measure

between distribution and does not impose a metric structure. We use the modification of the

Bhattacharyya measure proposed by [45]. This measure represents a metric distance between two

distributions as:

SI(In, Im) =
√
1− ρ(hn,hm), (2.9)

where

ρ(hn,hm) =

K∑

k=1

√
(hn(k), hm(k)),

and K is the number of bins.

2.4.3 Data Association

Given N tracks at time t and M observations at time t + 1, we compute a maximum-likelihood

matching between the objects and observations using the approach proposed by Li [43]. The

algorithm relies on two inputs: a likelihood vector c of V matching hypotheses and a constraint

matrix A, where c is a length V vector and A is a V × (N +M) matrix. We create the vector c

and the matrix A as follows.
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When the similarity measures SL and SI are given, the vth likelihood cv is estimated as:

cv = SL(Zn,Zm) SI(In, Im). (2.10)

The constraint matrix A whose row index corresponds to the vth hypothesis is built as:

A(v, i) =





1 if i = n or i = N +m

0 otherwise.

(2.11)

Given the likelihood vector c and the constraint matrix A, selecting the best matching pairs

between the tracks and the observations is equivalent to finding a subset of rows of A such that

the sum of corresponding elements in c is maximized, under the constraint that no two rows share

common non-zero entries. This can be posed as the following integer programming problem:

max
x

cTx s.t ATx ≤ b, (2.12)

where x is a binary V × 1 vector which is 1 if vth row is in the solution, or 0 otherwise, and b is a

V × 1 identity vector. While integer programming problems are in general NP-hard, the problem

given in Equation 2.12 can be solved exactly using linear programming. This is due to the fact

that the constraint matrix A is totally unimodular1, and the right-hand sides of the constraints

are all integers. In fact, if the above two conditions are satisfied, a linear programming problem

will always have an integer-valued solution [46]. We solve the integer programming problem with

the MATLAB function, linprog.

1A matrix is totally unimodular if the determinant of any square submatrix takes one of the values in -1, 0, 1.
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2.5 Experiments

We evaluate the performance of the vertical boundary detection approach in this section. The

performance evaluation of the data association approach is given in Chapter 3 because it is tightly

coupled with the object representation approach that will introduce in Chapter 3.

Using the framework described in [47], we performed a series of experiments to evaluate the

effectiveness of our boundary detection approach. The experiments include: a) a comparison of

different types of classifiers; b) a comparison of our algorithm with a state-of-the-art method that

uses dynamic jump distance thresholding; and c) a comparison of our algorithm using lidar features,

image features, and a combination of lidar and image features.

For our experiments, a SICK LMS-221 lidar and a PointGrey Flea2 camera were used to acquire

the data sets. The lidar has a 180◦ degree horizontal field of view (FOV), with a line scanning

frequency of 75 Hz and a 0.5◦ angular resolution. The camera has a 60◦ degree horizontal field of

view, with a frame rate of 30 Hz and a resolution of 800 by 600 pixels. These sensors were mounted

on front of a vehicle. The lidar was placed at a height of 70 cm, and the camera was installed 30

cm above the lidar. The data from each sensor was time-stamped to enable synchronization.

2.5.1 Choice of Classifier

We compared the performance of three different classifiers: SVMs using a linear kernel, SVMs using

an RBF kernel, and logistic regression. For the SVM classifier implementation, we used LibSVM

[48] and determined the penalty parameter (C = 10) for the linear kernel SVM and the penalty and

kernel parameters (C = 10, γ = 0.1) for the RBF kernel SVM by cross validation. The results of

the experiment show that there is not much differentiation between the performance of the chosen
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Figure 2.4: Comparison of classifiers. The performance comparison of three different classifiers.

ROC (left) and Precision/Recall (right) curves.

classifiers (Figure 2.4). In the ensuing experiments, we use the SVM classifier with a linear kernel,

which is sufficiently fast and does not suffer from the possibility of overfitting than when we use a

radial basis function as kernel.

2.5.2 Comparison with Dynamic Thresholding

In our second experiment, we compared the performance of our algorithm, using lidar features only,

with the adaptive breakpoint detector (ABD) algorithm described by Borges and Aldon [32]. The

ABD algorithm uses a threshold that scales as a function of distance from the sensor to determine

the boundaries between objects.

We evaluated the two algorithms on the same data sets, which included all instances inside

and also outside the camera FOV. The results, shown in Figure 2.5, show that our algorithm

outperforms the ABD algorithm for all threshold values. We also manually extracted a subset of
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Figure 2.5: Comparison with Dynamic Thresholding. Threshold averaging ROC (left) and Preci-

sion/Recall (right) curves. These illustrate that our method improves boundary detection perfor-

mance when compared to the ABD algorithm.

the full data that consisted entirely of challenging cases such as bushes, occlusion, and transparent

surfaces. The performance of both algorithms on this challenging data set is lower than on the full

data set, but our algorithm still outperforms the ABD method. Figure 2.6 shows an example of

the boundary classification results of the two algorithms for a portion of an example scan. In this

example, the ABD algorithm breaks up single objects when they are viewed obliquely (for example,

a car seen from a slanted angle), whereas our method classifies these instances correctly.

2.5.3 Effect of Sensor Modality

The next experiment was designed to test the contribution of the lidar-based features versus the

imagery-based features. In this experiment, only instances within the camera’s FOV were used.

We evaluated three cases: lidar features only, image features only, and lidar and image features
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Figure 2.6: An example showing the segmentation performance of the ABD method and our algo-

rithm for a single scan.
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Figure 2.7: Effect of Sensor Modality. Threshold averaging ROC (left) and Precision/Recall (right)

curves when image only, lidar only, and combined features are used.

combined.

Figure 2.7 provides the threshold averaging ROC curves with respect to the three cases. As can

be seen, the lidar features are more discriminative than the image-based features. This agrees with

the intuition that depth discontinuities from 2D laser range measurements are a more reliable indi-

cator of object boundaries than differences in image intensity or texture. However, the combination

of lidar and image-based features performs better than features from either modality individually.

This result suggests that the information in the lidar and image features is not entirely redundant.

Figure 2.8 shows the segmentation result of lidar, image, and combined data when we consider

a sample frame of data in the camera FOV. As shown in Figure 2.8 (a), the car on the left and the

person standing 0.5 m in front are grouped into a single object. Discriminating the objects into

two different things is difficult because of their close proximity to each other.

Figure 2.8 (b) shows the segmentation result when only image features are used for segmentation.
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As can be seen, the segmentation result is not as good in this case. In the figure, the marked points

indicate the manually labelled ground truth and each colored box encompasses a set of points

classified as non-boundary. In other words, the boxes represent the segmentation result. The

height is fixed at 60 pixels.

The method using combined lidar and imagery features was evaluated in the same frame of

data (Figure 2.8 (c)). In this case, boundaries that were misclassified by the image feature method

are now correctly classified. Specifically, the person and the car, which were separated by 0.5 m

are now correctly divided into two segments. When only image or lidar features were used, these

objects were segmented as one group.

2.6 Summary

We introduced vertical boundary detection and data association as preliminary tools for object rep-

resentation. Both approaches are performed using lidar measurement and corresponding imagery.

First, we have proposed a supervised learning approach for object boundary detection. The

method is aimed at line scanning lidars and can be augmented with imagery if available. We

formulate the boundary detection task as a classification problem and use features derived from

the lidar measurements and image patches surrounding the lidar measurements as inputs to a

classifier. The classifier is learned using a set of labeled training examples. Experiments show that

the SVM classifier performs slightly better than logistic regression. The proposed method improves

on the performance of an existing dynamic thresholding boundary detection algorithm, especially

for challenging boundary cases. Further improvement is achieved by incorporating visual features

derived from co-registered imagery.
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We have introduced a data association approach measuring the maximum-likelihood between

objects and observations. The likelihood of each association pair is estimated by measuring ap-

pearance similarity using histogram intersection and by computing the euclidean distance between

candidate matching pairs. The performance of data association is evaluated together with the

object representation approach in Chap 3.
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0.5 m and the sensors’ origin is placed at 25 m from the objects.
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Chapter 3

Approximate Representation of

Unknown Objects

3.1 Introduction

In this chapter, we propose an approximate object representation with a single line scanning lidar

and camera data. The representation consists of an approximate unwrapped mosaic along with an

approximate geometric model. The main concept behind the proposed representation technique is

that, by unwrapping an object image using the corresponding lidar measurements, we can estimate

the 3D pose of the object using 2D image matching. The goal is to create a viewpoint-invariant

and scale-normalized object model. The algorithm learns the object model online without human

intervention. The set of models created is used to detect and track previously seen objects and

improve tracking performance in challenging situations such as occlusion, abrupt view changes and

illumination changes.
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Object detection and tracking are challenging problems in computer vision applications because

the system has to manage many critical situations such as occlusion, viewpoint change, and intra-

class variation. There are a variety of approaches, depending on the type of object and the sensor

configuration.

Many approaches are based on 2D models; that is, the approaches track a set of point features,

optical flow, or blobs in 2D image space [30]. Many approaches produce good results when ob-

jects are well-separated and move smoothly. However, performance falls dramatically when these

conditions are not met; e.g., when the objects’ visual appearances change significantly due to

turns in their trajectory, when occlusions occur due to proximity between objects during periods

of congestion, and when there is abrupt illumination change in outdoor environments.

In contrast with the 2D approaches, 3D model-based approaches have many advantages [2]

[16]. First, prior knowledge of the 3D shape of an object can result in better performance under

occlusion. Also, once we know the 3D geometry of an object, we can estimate the 3D pose of the

object. Furthermore, 3D models can be applied even if objects change their orientation during the

motion. The critical problem of the 3D model-based approach is that features extracted from a 2D

image do not immediately correspond to the 3D object models. In other words, we must obtain

the transformation between image and object coordinates.

In order to consistently track an object in 3D, we need a robust and effective object represen-

tation approach because tracking and modeling are interdependent. If we have a good estimate of

the motion of an object, then modeling becomes simpler, and if we have a model of the object,

then tracking becomes simpler. We create a model with the benefits of 2D and 3D models; the

model can detect an object by 2D-to-2D image matching like the 2D model-based approach, and
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directly estimate the 3D pose of the object from the matching result. This model can be built by

unwrapping an object image with the corresponding lidar measurement.

Unwrapping refers to the process of creating a 2D image representation of a 3D model. In this

thesis, we define the unwrapped image as a fronto-parallel view of an object generated with its

geometry [49]. Once we transform sequential object images to unwrapped images, we can easily

align those unwrapped images by 2D-to-2D image matching because the unwrapped images are

viewpoint-invariant and scale-normalized [50]. Matching two unwrapped images, we can directly

estimate the 3D pose of the object.

The methodology for creating the approximate model of unknown objects is summarized as

follows. First, we create an unwrapped image of a tracked object ROI with its lidar measurements

in each frame. Second, we align the unwrapped object images by simultaneously minimizing the

image matching error and geometric alignment error. Finally, we create an approximate model

that consists of an unwrapped mosaic and approximate geometry. A high-level diagram of the

approximate representation of an object is shown in Figure 3.1

3.2 Related Work

An object’s shape and appearance can be described in a diversity of ways. In general computer

vision applications, an object can be defined as anything of interest that needs further analysis.

After knowing the object of interest, we need to find a suitable representation of the object. Types of

objects may need very different representations due to the trade-off between accuracy and efficiency.

An approximate object representation is determined by the end application. For example, a point-

based representation may be proper for a flock of birds in the sky [9] [10], a bounding box may
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Figure 3.1: Overview of this chapter: Stages of the algorithm for the proposed approximate repre-

sentation of unknown objects.

may be appropriate tracking people walking on the road [45], and a 3D model may be appropriate

for tracking a rigid object in 3D space [2] [18] [20] [16].

There are many approaches to building 3D models of objects in controlled environments [51] [52]

[24]. Critical to these approaches is the determination of correspondence between spatially localized

features within each image. Most of the approaches model objects by aligning local features such

as points and lines over time [53]. These approaches assume that two images taken from two

barely different points of view are not very different and that there is a rich texture on the object

surface. However, in an outdoor environment where both the object and sensor are moving, these

assumptions are unrealistic, the object’s illumination and viewpoint change dramatically.

Image-based matching may be superior to local feature-based algorithms in textureless cases [54].

34



On a sunny day, a car will violate the Lambertian assumption because parts of it are transparent

and missing texture. This leads to many difficulties for detecting features. Since image matching

uses an entire image, the approach can align images of a texture-less object. However, the objects

may appear different from different views, and if the object view changes dramatically during

tracking, the image-based matching may no longer be valid.

3.3 Image Unwrapping using Lidar Measurements

Once a piecewise linear fit of the 2D lidar geometry1 is obtained, each fitted line directly corresponds

to a plane in the image. The unwrapped image of an object is described as a set of warped image

planes corresponding to the fitted lines. The unwrapping process is performed with two steps: (i)

lidar geometry fitting and plane estimation, and (ii) object image warping with the fitted lidar

geometry and weight estimation of each plane. The unwrapping process is illustrated in Figure 3.2.

3.3.1 Fitting Raw Lidar Measurements

A lidar returns sparse depth measurements of an object and sometimes provides unreliable depth

information depending on the object’s material characteristics. To represent the raw measurements

as line components, we need to remove outliers of the raw lidar measurements by fitting. The

line elements describing an object geometry are estimated by a piecewise approximation. The

methodology for fitting a raw lidar measurement is summarized in two steps: (i) raw measurement

clustering and polynomial curve fitting and (ii) piecewise linear fitting.

1We define our lidar scan data to a 2D geometry because the lidar provides depth information of a single line on

an object’s surface.
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Figure 3.2: Image unwrapping procedure. Left image shows the planes which are estimated with the

lidar geometry. Right images show the unwrapped object image and the weight of each unwrapped

plane. The red lines describe the boundary of each plane. The green box describes the unwrapped

image region which we use for the modeling.

Given a lidar geometry L of an object, we simplify the raw lidar measurements using the Douglas-

Peucker (referred to as Iterative End Point Fit algorithm) [55] [56]. Using the algorithm, we detect

corner points (ci, i = 1, · · · , N) over a threshold distance T1 in the raw measurement. We separate

the measurement N + 1 clusters (Lj , j = 1, · · · , N + 1) based on the corner points ci. In order to

remove outliers, we fit a 2nd-order polynomial function f(xk) to the data points (xk, yk) of each

cluster (Lj). The fit function f(xk) can be estimated minimizing the error Ef between the f(xk)

and yk in a least square sense:

Ef =

nk∑

k=1

(yk − f(xk))
2 , (3.1)

where f(xk) = a0 + a1x+ a2x
2.
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With the fitting functions of the cluster, we obtain a smooth estimate of the object’s geometry.

We refit piecewise linear functions to the smoothed geometry in order to estimate plane surfaces.

In order to find feature points for piecewise linear fitting, we first detect corner points using the

DouglasPeucker algorithm, in this case using a new threshold distance T2 smaller than T1. Once

we find the corner points (c∗i , i = 1, · · · ,M − 1), the final lidar geometry consists of M lines, which

corresponds by a description of the surface with M planes. In this thesis, we define the piecewise

linear fitted lidar geometry as L = {Lj}, j = 1, · · · ,M with respect to an object. Figure 3.3 shows

a resulting of fitted raw lidar measurement.

3.3.2 Unwrapping of Object Image

We warp an object image to a frontal view image with lidar measurements; that is, we unwrap

the set of imaged planes consist of the object image. We define α to be the inter-pixel distance in

real-world units. For instance, if the inter-pixel distance is α and the height of model is h, the real

height of the object is αh.

Each fitted line Lj of a lidar geometry directly corresponds to a plane of an object’s surface

because we assume that the surface is piecewise planar. Once we know the corresponding image

region, that is, the object region image (I ) with the lidar geometry, we can divide the object region

image into M sub-image regions I = {Ij}, j = 1, · · · ,M as shown in Figure 3.4. The Lj and Ij

describe the geometry and sub-images of sub-surfaces of an object’s surface (S ), where S is a set

of the geometries and sub-images, e.g., Sj = {Lj , Ij}.

In order to convert a perspective distorted image (referred to as the object image I ) to a fronto-

parallel image (referred to as the unwrapped image U ), we estimate a homography matrix H which
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Figure 3.3: Fitted lidar measurement. The raw lidar measurement (red line) is fitted to the green

line by curve fitting, and then the fitted line is re-fitted by a piecewise linear function (blue line).

From the fitting result, we can estimate that the object surface consists of five planes. The numbers

of each fitted line show the angle difference between the normal direction vector of each line and

the viewing direction vector from the sensor.

is a transformation from the object image plane to the unwrapped image plane. Given a set of

point pairs pi = (ui, vi) in I and qi = (xi, yi) in U respectively, we compute the transformation

matrix H.

We estimate vertices (Vi, i = 1, · · · , 4) of sub-planes of the object’s surface in 3D space. Pro-

jecting Vi onto the image, we can find the correspondences pi. The sub-image Ij is defined a

region having pi as vertices. The corresponding points on the unwrapped image are estimated

with the inter-pixel distance α and the length of fitted lines lj . The number of pixel rows in the
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Figure 3.4: Estimated planes by lidar measurements. The imaged planes (I1, I2, I3, I4, I5) in

the object image I are estimated using the lines (L1, L2, L3, L4, L5) obtained by piecewise linear

fitting, respectively. Height of the imaged planes is fixed to a predefined height. In this thesis, we

set the height to 6 m.

unwrapped image is computed from the fixed maximum height as h
α
. The number of columns is

lj
α
.

The inter-pixel distance varies according to the working range R. If the working range is increased,

the inter-pixel distance is decreased and vice-versa:

α = R
F tan(θL)

WθL
, (3.2)

where θL is the angular resolution of the lidar, F is the horizontal Field of View (FOV) of a camera,

and W is the horizontal resolution of an image.

Let pi = (ui, vi, 1)
T denote the vertices in homogeneous coordinates of Ij , and let Hj denote

the transformation from Ij to Uj. The corresponding vertices qi = (xi, yi, 1)
T in Uj are estimated

as [49]:

39



qi = Hjpi. (3.3)

Once we compute the transformation matrix (Hj), we map the Ij into Uj with Hj . We use the

inverse warping approach; that is, we do not warp each pixel (u, v) in Ij to its corresponding location

(x, y) in Uj, but get (x, y) from its corresponding location (u, v). Since the mapping coordinate is

not always an integer, we filter the pixel values by bilinear interpolation.

3.4 Motion Estimation

Consistent object tracking depends critically on motion estimation. This section addresses the

motion estimation of a tracked object using its appearance and geometry. Combining appearance

and geometry of an object may be helpful because certain aspects of the motion estimate can be

difficult with each sensing modality individually. In the image domain, the translating motion of

an object is easy to parse, since the appearance does not change much, but the rotating motion of

the object may be hard to analyze. In the lidar domain, some data can be easy to match if it has

sufficient constraints (such as the corner of a vehicle), but other data can be ambiguous (e.g., the

flat side of a vehicle).

The motion of a tracked object is estimated by registering the currently unwrapped object image

onto the previously unwrapped object image. The motion estimation is accomplished in two main

stages: (i) unwrapped image registration and geometry alignment and (ii) four degree of freedom

(DOF) motion estimation. The object in sequential frames is consistently tracked with the data

association algorithm in Chapter 2.

Given two unwrapped object images Ut−1 and Ut, and corresponding geometry data Lt−1 and Lt
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taken from different frames, we estimate the image matching error EU and the geometry alignment

error EL.

Given the current image Ut(x) sampled at discrete pixel locations, xi = (xi, yi), we want to find

where it is located in Ut−1(x ). The straightforward way to establish the alignment between two

images is to shift one image relative to the other. We use normalized cross-correlation to measure

quality of alignment of the two color images. The correlation value is computed by summing

differences across all three color channels [57]:

SNCC(u) =

∑
i {Ut−1(xi)− U t−1}{Ut(xi + u)− U t}√∑
i {Ut−1(xi)− U t−1}

2
{Ut(xi + u)− U t}

2
, (3.4)

where u = (u, v) is the displacement, and

U t−1 =
1

N

∑
i
Ut−1(xi) (3.5)

Ut =
1

N

∑
i
Ut(xi + u).

are the mean of the corresponding patches and N is the number of pixels in the patch. Figure

3.5 shows the NCC score between two unwrapped images. Different colors in Figure 3.5 indicate

the level of cross correlation with blue being low and red being high values. Finally, the alignment

position is obtained by locating the maximum correlation (red areas in the plot) as:

x∗ = arg max
x,y

SNCC(u), ∀(u, v) ∈ (x , y). (3.6)

Given the alignment position x∗ = (x ∗, y∗) in Ut−1, we assign the matching score of the row

y∗ to the distribution of the matching score. The image matching error EU is a N vector and is
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Figure 3.5: Similarity measure of two unwrapped object images. In the modeling stage, the simi-

larity SNCC is estimated from the weighted sum of the similarity of color images S1NCC and the

similarity of gradient images S2NCC ; that is, SNCC = wS1NCC + (1−w)S2NCC . The weight w(=

0.3) is estimated empirically.

obtained as:

EU = 1− SNCC(x
∗, y∗). (3.7)

Denote by Lt−1 the geometry data corresponding to Ut−1 and by Lt the geometry data corre-

sponding to Ut. We want to find a Euclidean transformation in 3D space consisting of rotation

θZ and translation (tx, ty) that transforms the x of reference image onto the x
′

of template image

corresponding to the intersection region of the Ut−1 and Ut. The alignment error is obtained as:

42



EL(k) =
N∑

k=1

wk

∥∥∥∥∥∥∥∥
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k

y
′

k




∥∥∥∥∥∥∥∥
2

, k ∈ [1,N ] , (3.8)

where wk is defined to the ratio of the column size of intersection region to the column size of Ut−1.

Measuring the image registration error and the corresponding geometry alignment error, we

estimate a motion with four degrees of freedom (θz, tx, ty, tz) which is described by translations

and rotation in 3D space. The translation tz is estimated from the image matching because this

translation related to the vertical direction in image.

Figure 3.6 shows the motion estimation result by simultaneously minimizing image registration

error and geometry alignment error. The 4-DOF motion is estimated by the weighted sum of both

alignment errors:

[θZ , tx, ty ] = arg min
k

{w1 EU (k) + w2 EL(k)},

tz = y∗, (3.9)

where the weight values, w1 and w2 are obtained experimentally (w1 = 0.7, w2 = 4).

3.5 Weighted-Mosaicing

In order to create a model incrementally, sequential images must be aligned to a reference image.

We might envision two approaches for aligning images: (i) aligning two sequential images and

estimate an offset relative to a reference image and (ii) aligning a current image onto a reference

image which accumulates previous images. The first approach benefits matching two sequential
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Figure 3.6: Motion estimation result. The image matching result shows that the alignment posi-

tion is (154, 139) and the matching score is 0.75. The distribution of the matching error is the

dissimilarity value at the 154th row. In the upper left image, the red stars show the number of

the row. The geometric alignment error is estimated within the interval where the image matching

score is higher than 0.9 times as much as the matching score at (154, 139). This interval is shown

in the lower left image as the red line. In the lower right image, the red circle shows the estimated

position minimizing the weighted sum of EU and EL.

images because the appearance of an object does not dramatically vary in a short period, but this

approach has a drift problem which accumulates alignment error over time. The second approach

avoids the drift problem because it aligns a current image onto a reference image created with

all previous sequence images, but matching the current image onto the reference image is difficult
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because the reference image is blended with images from different views and different illuminations.

Image stitching is the process of merging multiple images with overlapped fields of view to

generate a single image. This process can be divided into two main stages: image registration and

blending. Since the unwrapped images are invariant with respect to scale and viewpoint changes,

the unwrapped images are registered by 2D-to-2D matching. The critical issue is how to represent

the registered-unwrapped images obtained under different illumination conditions to generate a

single unwrapped image.

We update the reference image using a weighted mosaic approach. The weighted mosaic ap-

proach is a way to minimize the difference between the reference image and a current image when

we update the reference image. We build the mosaic image with a set of column images of previous

image frames which have a high weight. The weight is dependent on the angle between the sensor’s

view direction and the normal of an object’s surface because quality of unwrapped images degrades

as this angle increases. In order to minimize the difference between adjacent columns, we smooth

the mosaic image in an MRF energy minimization framework [58], [59].

Our weighted-mosaicing approach is accomplished in two stages: (i) estimating weights of image

planes and (ii) stitching image planes using their weights.

3.5.1 Plane Weight Estimation

Since the mosaic image is built with a set of column images accumulated over time, we estimate a

weight for each column of the unwrapped image. Considering an unwrapped image (U = {Ui}, i =

1, · · · ,M), the number of columns NU of U is measured as follow:

45



NU =
1

α

M∑

i=1

li, (3.10)

where li is length of ith fitted line.

Given NU , we estimate the weight (wk, k = 1, · · · , NU ) of each column based on the angle φ

between the viewing direction of a sensor and the surface normal corresponding to the column:

wk = cos2 φk. (3.11)

If the distance between an object and a sensor does not change dramatically, this measured

weight is reasonable. Otherwise, wk should depend on the object distance, since the quality of

unwrapped images depends on distance. In that case, we redefine the weight function with a

distance weight:

w∗

k = cos2 φk exp

(
−

dk
2R

)
, (3.12)

where dk is geometric distance of the kth column and R is the working range we defined.

3.5.2 Weighted Stitching using MRF model

After the weights are computed, each column can be taken from the image with the highest weight.

However, doing this may lead to discontinuities between adjacent columns. It is desirable to min-

imize discontinuities between consecutive columns of the unwrapped mosaic image. Our weighted

mosaicing approach can be regarded as a labeling procedure in an MRF framework. We formulate

the problem as a 1D MRF where each MRF label determines which image to use as the source
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for the mosaic image in each corresponding column. Figure 3.7 shows the mosaicing of unwrapped

images in the modeling sequence.

We use graph cut optimization to estimate the label of each column in the mosaic image. The

graph cut optimization solves the labeling problem minimizing an energy function with two energy

terms [60]. Let X represent a set of labels for each column, where xk denotes the label of the kth

column. The energy function which we minimize is denoted by E(X):

E(X) = ED(X) + λES(X)

=
∑

k∈V

ED(xk) + λ
∑

(k,k+1)∈E

ES(xk, xk+1) (3.13)

where the first energy term (ED(xk) = w∗

(k,xk)
) is defined to be the data for assigning a column k

to label xk and the second energy term (ES(xk, xk+1) = ‖xk − xk+1‖) is the pairwise penalty for

smoothing the frame difference of neighbouring labels.

When different images are stitched together, for various reasons (changed lighting conditions,

vignette effects) the adjacent pixel intensities differ enough to produce artifacts. To remove these

artifacts, we use a feathering approach (a center weighting image blending) [57]. In this approach,

the pixel values in the blended regions are a weighted average from the two overlapping images.

3.6 Approximate Representation

Tracking an object over time, we are able to obtain the mean appearance (e.g., color and edge-

gradient) of the accumulated object images and the mean geometry of the tracked object. However,

the mean appearance does not explain the foreground region in the image because we detected the
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Figure 3.7: Weighted-mosaicing of unwrapped images. In the upper left image, the green box shows

the object region of the tracked object. The lower left image shows the unwrapped image of the

image in the green box. The upper right corner image shows the unwrapped mosaic of color images.

The right center image shows the unwrapped mosaic of gradient images. Both unwrapped mosaics

are obtained independently. The lower right image shows the approximate geometry corresponding

to the unwrapped mosaics.
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(a) Appreance (color/gradient) (b) Geometry

Figure 3.8: Approximate model of a object. The approximate model consists of the unwrapped

mosaic (color/gradient) and the approximate geometry of the object.

vertical boundary for the registration, but we did not estimate the height of the object in the object

images. The goal of the approximate representation is to find a good representation of unknown

objects for improving detection and tracking performance when they appear again.

In this section, we propose an approximate representation for an object. The final approximate

model consists of the mean appearance of the foreground region and the mean geometry. Figure

3.8 shows the approximate model of an object consisting of the unwrapped mosaic (e.g., color and

edge gradient) and the approximate geometry.

3.6.1 Height Estimation

The height is estimated by detecting a horizontal boundary in the accumulated object image. As

the object moves, the background in the object image will typically change more dramatically than

the object appearance, so we detect the point in the mean object image where the background

variability begins to occur. In order to detect the height position, we need some discriminative

features that can detect the appearance change.
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We use graph-cut optimization to detect the object height. The graph cut optimization returns

the label (e.g., {Foreground = 1, Background = 0}) of each row minimizing an energy function

with two energy terms [60]. The first energy term is obtained by the gradient confidence and the

second energy term is measured by the similarity between row pixels in the accumulated object

images.

3.6.1.1 Energy Minimization

The horizontal boundary detection is a kind of binary labeling problem which determines whether

a row is the foreground or not. With the gradient confidence CG of registered gradient images and

the color similarity HC between two row images, the label of each row in the mean object image is

assigned by minimizing the following energy function with graph-cut optimization.

E(X) =
∑

j∈V

ED(xj) + α
∑

(j,j+1)∈E

ES(xj , xj+1), (3.14)

where ED(xj) is the data term for each row j, and ES(xj , xj+1) is the smoothness term related

with two neighbouring rows j and j + 1. The parameter α trades off the influence of these two

energy terms.

The data term ED(xj) is defined as the negative log likelihood of each row label lj given the

column image xj.

ED(xj) =





− ln p(lj|xj = 1) if xj is foreground

− ln p(lj|xj = 0) if xj is background

The smoothness term ES(xj , xj+1) penalizes the differences between adjacent labels. This term
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is defined as:

ED(xj , xj+1) = ‖xj − xj+1‖ exp

(
−
‖Hj −Hj+1‖

2

2 σ2

)
. (3.15)

Figure 3.9 shows the estimated horizontal boundary in the mean object image.

3.6.1.2 Gradient Confidence between Object Images

Suppose we have two unwrapped object images (Ut−1, Ut) which are already registered. We are

able to measure the confidence of gradient field with an approach proposed in [61]. Let Gt−1 and

Gt be the gradient vector fields of the two images. Given the matching position x∗ = (x ∗, y∗) , the

gradient confidence CG between the both images is given by:

CG(Ut−1 ∩ Ut) =
1

2
(‖Gt−1(x

∗, y∗)‖+ ‖Gt(x
∗, y∗)‖) (3.16)

−‖Gt−1(x
∗, y∗)−Gt(x

∗, y∗)‖,

CG(Ut−1 − (Ut−1 ∩ Ut)) =
1

2
‖Gt−1(x

∗, y∗)‖, (3.17)

CG{Ut − (Ut−1 ∩ Ut)} =
1

2
‖Gt(x

∗, y∗)‖. (3.18)

3.6.1.3 Histogram Intersection between Row Images

Let U ∈ M × N be the mean object image of the accumulated object images. Let Hj denote the

color histogram of the jth row. We estimate the similarity between consecutive rows measuring

the histogram intersection of Hj and Hj+1 [57]. This is calculated as
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Figure 3.9: Height estimation using 1D MRF model. Image (a) shows the likelihood of each row.

Image (b) shows the similarity between adjacent rows. Image (c) shows the labeling result of each

row in which the foreground row is labeled as 1 and the background is labeled as 0.
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HC(Hj ,Hj+1) =

∑B
b=1 min (hj(b),hj+1(b))∑B

b=1 hj(b)
, (3.19)

where B is the number of bins in the histogram. In our experiments, B is a set of 48 (i.e., each

color channel has 16 bins).

3.6.2 Approximate Model Training

The detection problem requires us to discriminate a target object in the scene. However, it is

difficult to determine a threshold on a matching score to reject false positives. In order to solve

the problem of threshold-based object detection, we apply supervised machine learning techniques

using a support vector machine (SVM) and convert the output to a probability score.

Given the approximate model of an object and the unwrapped images which are used for the

model, we can make training samples by registering the edge-gradient of the unwrapped images

into the edge-gradient of the approximate model. The samples are generated by dividing each

unwrapped image registered onto the approximate model into sub-images of different widths as

shown in Figure 3.10. The width is limited to avoid generating sub-images that are too small, as

shown in Figure 3.10 (a). We randomly choose half of the samples and assign them to the positive

class. We measure the matching position on the approximate model, the size of width of the sub-

image, and the cross-correlation score. We specify the remaining samples as negative samples and

shift the original matching position of theses samples out of alignment in the column direction, as

shown in Figure 3.10 (b). The matching position and the matching score are re-estimated.

We define the features (x ∈ Ren) as the column position of the matching position (x), the

width of sub-image (w), and the cross-correlation score (m). Given the training input data T =
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Figure 3.10: Sample generation for training the model. Image (a) shows sample generation with the

unwrapped images which are used for creating the approximate model. Image (b) shows positive

and negative sample generation. To generate the negative samples, we shift the matching position

x∗ from side to side by eight pixels.
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Figure 3.11: Probabilistic output of the training model.

{(x1, y1), · · · , (xK , yK)} consisting of a set of features xk derived from both samples and the binary

hidden states yk, we train a linear SVM classifier to correctly label novel data queries.

In order to compute the likelihood when an image is registered in the model image, we express

the classifier output as a probability. Let f : X ⊆ ℜn → ℜ be a discriminant function trained from

the input training data by SVMs. The aim is to estimate parameters of a posterior distribution

p(y|f (x), θ) of the hidden state y given the value of the discriminant function f (x). The distribution

is modeled by a sigmoid function as shown in Figure 3.11. We estimate the probabilistic output

using the STPRtool in [62].

p(1|f (x), θ) =
1

1 + exp (a1f (x) + a2)
, (3.20)

which is determined by parameters θ = (a1, a2). The parameter θ is estimated by the maximum-

likelihood estimation

55



θ = arg max
θ

K∏

k=1

p(yk|f (xk), θ) (3.21)

= arg max
θ

K∑

k=1

log p(yk|f (xk), θ).

3.7 Experiments

A SICK LMS-221 lidar and a PointGrey Flea2 camera were used to acquire the data sets for our

experiments. The lidar has a 180 degree horizontal field of view, with a line scanning frequency of

75 Hz and a 0.5◦ angular resolution. The camera has a 60◦ horizontal field of view, with a frame

rate of 15 Hz and a resolution of 1024 by 768 pixels. These sensors were mounted on front of a

vehicle. The lidar was placed at a height of 70 cm, and the camera was installed 30 cm above the

lidar. The data from each sensor was time-stamped to enable synchronization.

Using the framework described above, we performed a series of experiments to evaluate the

effectiveness of our approximate representation approach. In the first experiment, we evaluated

the accuracy of the 3D sensor-pose estimation using our approximate representation algorithm.

We then compared our representation algorithm to two state-of-the-art methods: iterative closet

point (ICP) [63] and the color ICP approach [64]. Finally, we evaluated the detection and tracking

performance of our approximate model.

3.7.1 Evaluation of 3D Pose Estimation Accuracy

We evaluated the accuracy of the 3D sensor pose estimate. This evaluation was done using the

best estimated sensor poses in object coordinate in which the poses are manually generated with
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130 frames. The performance was evaluated as the angle error, the translation error on the XY -

ground plane, and the distance error between the ground-truth position and the estimated position.

Additionally, we estimated the translation in the Z direction. The testing was achieved with the

two sets of different frame rates, i.e., two- and five-frame intervals. The object views vary more

dramatically as the frame interval is increased.

Figure 3.12 shows the results of 3D sensor pose estimation. Our approach accurately estimates

the sensor position independent of the frame rate. As shown in Figure 3.12 (a) and Figure 3.12

(b), the averages of the angle errors are 1.2◦ (2 frames) and 2.7◦ (5 frames), respectively. The

translation errors in the Y direction on the XY -ground plane increase with the frame interval,

but the translation errors in the Y direction do not vary significantly by the number of the frame

interval. Angular error causes a large error in the Y translation direction because the angle error

increases at the specific frames where the sensor position moves on the Y axis. Since we use lidar

geometry for the modeling, the maximum distance errors of the two cases are less than 0.3m. The

largest angle errors occur when the object moves on the slanted ground because our approximate

representation does not estimate roll and pitch motion.

Figure 3.13 shows the comparison of the sensor pose estimate using different frame rates. For

the experiment, we used three different frame rates in which each performance was evaluated with

two, three, and five frame intervals respectively. When we estimate the sensor pose with the frame

rate of 3 frames/second, the frame interval is five, and the angle error is 2 times higher than the

other cases, but it has similar error values in the other estimation interval. This result indicates

that the lidar views a strong shape feature (such as a corner) in most frames except from 35 to

60. All of the three cases accurately estimate the pattern of the XY -ground plane because the

estimated Z coordinate shows that the height of the ground plane in the middle frames is higher
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Figure 3.12: Evaluation of 3D sensor pose estimate. The frame rate is 7.5 frames/second; that is,

we use 65 frames of data with 2 frame intervals out of 130 data frames. The initial few frames are

artificially generated for evaluating the robustness of our algorithm.
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than the height in the first and last frames.
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Figure 3.13: Comparison of 3D sensor pose estimates. The frame rates of each experiment are 7.5,

5, and 3 frames per second respectively. The model geometry shows the object shape created using

the 7.5 frame per second.

3.7.2 Comparison against Existing Methods

In our second experiment, we compared the performance of our algorithm with two existing al-

gorithms; the iterative closet points (ICP) approach and color ICP. Both algorithms are state-of-

the-art approaches to register or align data, though there are many variants of these. The color

ICP considers not only point data, but color as well. For the color ICP approach, the texture

information was used with small image patches centered onthe projection of lidar measurements.
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The results, shown in Figure 3.14, show that our algorithm outperforms both algorithms for the

initial frame section of 1 to 40 frames. These frames consist of challenging cases such as abrupt

view changes and featureless geometry data. The misalignment of the ICP algorithm was caused

by some featureless geometry data (e.g., lines without corners). The ICP algorithm requires a

good initial transformation in order to converge to the globally optimal solution, otherwise only

a local optimum is achieved. The color ICP is robust with respect to featureless data, but the

corresponding image patches are not discriminative because most cars have textureless surfaces

and similar colors at the same height.

3.7.3 Evaluation of Detection and Tracking Performance

We test the performance of our detector and the tracking accuracy with 3D pose estimation of

unknown object using our approximate model. For the experiment, we first create the approximate

model of an object of interest using half of the frames in a full frame data set and then detect

and track the object in the full frames. The rejection of wrong objects is achieved by checking the

likelihood of each object using our training model.

Figure 3.15 shows the detection result using our approximate model. This dataset was obtained

on a moving sensor platform. The approximate model was created using 10 frames in the dataset.

We test the detection performance from the 1st frame to the 30th frames. The object was accurately

detected with high probability in all frames. As shown in Figure 3.15 (d), when half of the object is

out of the field of view (FOV) of the camera, our algorithm detected part of the object and aligned

that part on the model.

Figure 3.16 shows the tracking result of an object in 3D space. For these experiments, we
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Figure 3.14: Comparison with ICP and color ICP. The color ICP algorithm performs better than

the ICP algorithm in the case of abrupt view change, but color ICP also does not overcomes the

estimation error of the sensor position in the case of featureless data sets.

detect an object at 3 frame intervals in 130 frame data and estimate the 3D pose of the object.

The tracking was performed by detecting the object and estimating the 3D pose. The tracking

trajectory was obtained by tracking the estimated center of mass of the object. We predicted an

accurate trajectory in all frames.
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(a) t=2 (b) t=7

(c) t=15 (d) t=28

Figure 3.15: Object detection results. Image (a), (b), (c), (d) show the detection result at the

2nd frame, 7th frame, 15th frame, and 28th frame. In each result, the upper left image shows the

segments in a scene, the upper right image shows the likelihood of each segment, the lower left

image represents the matching position on the model, and the lower right image shows the detected

object respectively. The bar color in the likelihood image represent the color of segments.

3.8 Summary

In summary, we have presented an algorithm approximately representing unknown objects in out-

door environments using lidar measurements and corresponding imagery. The success of the method

62



X (pixel)

Y
 (

p
ix

e
l)

0 100 200 300 400 500 600

0

50

100

-15 -10 -5 0 5 10 15
0

5

10

15

20

25

X(m)

Y
(m

)

Sensor origin

Lidar scan points

Object center

Tracking trajectory

Figure 3.16: Object tracking with 3D pose estimation. We show the result at the last frame of

the tracking sequence. In the scene image, the green box represents the object image region that

is detected using the vertical boundary detection approach. The geometric model of the tracked

object is shown as a red box in the right image. The image in the lower left corner shows the

matching region on the model of the tracked object. The red shows the edge gradients of the

model, the green describes the edge gradient of the object, and the yellow represents the edge

gradient matched with high probability.

described in this chapter lies in three central stages which consist of unwrapping the object image

with corresponding lidar geometry, registering unwrapped images, and training the approximate

appearance model.

The approximate model consists of the unwrapped mosaics (i.e, color and edge-gradient), the

approximate geometry, and the probabilistic training model of an object. These model components

are created by an incremental modeling approach. Using the unwrapping approach, we create an

appearance model which is invariant to viewpoint and scale changes. With the approximate model,
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we detect and track an object in a scene, and then estimate its 3D pose by 2D-to-2D matching

between the unwrapped object image and its approximate model. We then use the approximate

model to train a classifier and represent the detection result as a probabilistic score. The proposed

algorithm is tested with the datasets we obtained in an outdoor environment. The result shows that

the approximate model outperforms both ICP and color ICP alignment algorithms for estimating

the sensor position.
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Chapter 4

Car Modelling with Shape Prior

4.1 Introduction

In autonomous vehicle applications, some objects occur frequently (e.g., vehicles). Can we exploit

knowledge about object class to do better for these objects? In this chapter, we apply the approxi-

mate representation approach to the specific object class of a car. Up to now, we were interested in

creating a model without any prior knowledge of a target object. However, we can use prior knowl-

edge to improve the accuracy of our models. For example, we can exploit the known symmetry of

cars in order to recover a full model from a partial view.

We model cars using two different approaches. First, we create an explicit car model using the

car shape prior and geometric constraints. Second, we extend the approximate modelling approach

by exploiting prior knowledge such as symmetry of cars. The reason why we choose the specific

object class of car is two-fold. The car is the class of object that describes the assumptions of a

planar surface and rigid-body motion that we employed for the approximate model. Additionally,
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we can use the symmetry property and parallelism of edges.

Given a 2D car image, recovering a 3D car shape of real scale is a challenging problem. Much

research has addressed the 3D car shape recovering problem, but there is little research on the 3D

shape recovery of real scale. Kanade and others conducted early vision research on 3D reasoning

from edges and their intersections in line drawings [29]. The idea is that reasoning about these

junctions can constrain the interpretation of the drawings to allow 3D reasoning in the under-

constrained case of 2D images. However, this approach has two central problems: (i) since they

assume orthographic projection rather than perspective projection, it is difficult to recover a 3D

object shape of real scale using the approach and (ii) the approach always needs line drawings of

an object.

In the first approach, we recover a 3D car shape of real scale using the Origami world of a car. To

do this, we impose a shape prior of a car and geometric constraints from lidar measurements. We can

assume weak-perspective projection using lidar measurements instead of orthographic projection.

We automatically obtain the line drawings of a car employing the 2D car alignment approach

proposed by Li [28].

In the second model approach, we aim to model a car more explicitly than the approximate model

with prior knowledge of a car. Since the approximate representation of an object is built using the

unwrapped mosaicing approach, the model itself does not define a detailed shape. Knowing the

object class is helpful for improving model accuracy with the approximate model. Extension of

the approximate representation is summarized in two points of view: (i) once we build a half-car

model including a side and rear or a side and front view, we create a full model by exploiting the

symmetry of cars; and (ii) we recover the 3D car shape shape by carving out incorrectly projected
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regions resulting from the planar surface assumption.

4.2 Car Shape Recovery

In order to recover a 3D car shape, we first need to check the two existing methodologies introduced

by Li and Kanade [28] [29]. First, Li’s approach is to align a set of landmark points onto an image

in which the points form the shape of a car. Second, Kanade suggests an approach to recover the

3D shape of an object given an orthographic perspective assumption.

The key idea of the robust 2D car alignment approach is to find optimal feature points minimizing

a shape prediction error from random shape and pose hypotheses. The approach first detects a set

of landmarks in the shape of a car. In this step, it uses the Histogram of Oriented Gradient (HOG)

[65] to describe the image patches centered at the landmarks. After detecting a set of landmarks,

the approach uses RANSAC to choose a subset consisting of correctly detected inliers [57]. Given

the inliers, it estimates the car shape by solving a Bayesian inference problem. To evaluate the

approach, Li manually labeled the landmarks of 5297 car images spanning a wide variety of sizes,

types, viewpoints, lighting condition, and partial occlusions. He also manually classified the labeled

data into five views: frontal, half-frontal, profile, half-back, and back views. In our approach, with

the same labeled data and same parameter configuration, we estimate a 2D car alignment model

at only the diagonal views such as profile and back or profile and frontal views. To recover a 3D

car shape, we need information about at least two surfaces of a car.

The methodology for recovering 3D shape of an object consists of two stages: (i) apply a model of

Origami World of an object and (ii) map image regularities into shape constraints. Origami World

is a kind of model for converting line drawings to a set of surfaces and recovering geometrically
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plausible shapes (that is, 3D configurations). The world assumes that all the projection lines

are orthogonal to the projection plane (i.e., orthographic projection) and surfaces in the Origami

World are planar (i.e, the orientation is constant throughout a surface) [66]. The terminology for

the Origami World generally follows the labeling theory of Waltz [67]. We first summarize the

definitions of edge, vertex, line, junction, and region in the Origami World [66]:

• Edge: a straight boundary of a plane surface

• Vertex : a corner or point where edges of the surfaces meet

• Line: an orthographic projection of an edge onto the image plane

• Junction: the projection onto the image plane of a vertex or the point where an edge is

interrupted by an occluding surface

• Region: an area in the image plane surrounded by lines

Here, an edge corresponds to a line in the image plane and a surface corresponds to a region in

the image plane. Each edge is classified by its physical meaning in the scene. A line can be labeled

with one of the four labels: + (convex), − (concave), ←, and → (occluding). See [66] for more

details about Origami World.

Once we build a model of Origami World, we need additional constraints to recover the 3D

shape of the object. In [29], Kanade used parallelism of lines and skewed-symmetry as the image

regularities. He mapped the image regularities into shape constraints in the gradient space 1. With

1With orthographic projection, a plane in the scene whose surface is visible by the viewer can be expressed as

−z = ax + by + c. The two-dimensional space made of the ordered pairs (a, b) is called the gradient space G. The

gradient space is a good tool to represent surface orientation in the scene [68]
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2D alignment/

Origami world
3D shape recoveryDetection

Figure 4.1: Overall process for a 3D car shape recovery. The processes consist of three steps: (i)

car detection, (ii) 2D car alignment modelling, and (iii) 3D car shape recovery

the assumption of orthographic projection, we can explain the parallelism of lines in the gradient

space. If a pair of boundary lines of two planes is parallel in the 3D space, the two planes intersect

along those boundary lines moving one of the planes toward the other. Skew-symmetry property is

a relaxed version of the real symmetry property. The skewed-symmetry means that a 2D shape in

which the symmetry is found along lines not necessarily perpendicular to the symmetry axis, but

at fixed angle to the axis.

Recovery of a 3D shape of a car is summarized in two stages: (i) we detect a car in the diagonal

views and obtain the line drawings of the car using a 2D car alignment approach, and (ii) we recover

a 3D car shape of real scale by solving an optimization problem to satisfy surface constraints and

lidar constraints. Figure 4.1 shows the overall process for recovering a 3D car shape.
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4.2.1 Car Detection and Alignment Model

In order to recover a 3D car shape, we need a specific view of a car, which means that a car should

be detected at a diagonal view (i.e., profile and back or profile and frontal). Detecting the specific

view of cars, we should make a model with many view-based car images and design a detector

using the model. The car detector based on the multi-view model does not adequately detect the

diagonal views of a car; it frequently detect the side view as the diagonal view [31]. Li’s approach2

fails to estimate the alignment model correctly if the views are incorrectly identified.

We use the approximate model to detect specific views of a car. Once we create an approximate

model of a car, we can accurately estimate its 3D pose by matching an unwrapped image of the car

onto the approximate model. When the unwrapped image of the car is aligned in specific regions on

the approximate model, the view of the car is likely to be one of the diagonal views (i.e., half-frontal

or half-back view). The specific regions on the approximate model are defined as areas including

profile and back views or profile and frontal views at the same time. Once we detect a car in the

diagonal views, we crop out the car region Ic.

In this thesis, we estimate the landmarks by using the 2D car alignment algorithm. The 2D

car alignment algorithms returns optimal landmarks minimizing the alignment error of an input

car image. In case of diagonal views, it provides 15 points which describe the shape of a car as

shown in Figure 4.2. For recovering the 3D car shape, we use 13 landmarks, ignoring the two points

obtained from both wheels. We will define the landmarks to be junctions in the terminology of

Origami World.

1We does not use the multi-view detector which Li suggests in his paper.
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Figure 4.2: Landmarks detected in the 2D car alignment algorithm. Li’s algorithm provides 15

landmarks in the diagonal view. We do not use the landmarks on the front and rear wheel in the

alignment result. Left images shows the local descriptors used to detect the landmarks. Right

image shows the 2D car alignment result obtained from Li’s algorithm.

4.2.2 3D Car Shape Recovery using Origami World

From the result of 2D car alignment, we obtain the line drawings of a car. The line drawing of the

car means not the 3D car shape, but a 2D projection of the 3D car shape. To recover a 3D car

shape, we build a car model in the Origami world using the line drawing. The purpose of modeling

in the Origami world is to obtain a labeled line drawing and a Surface Connection Graph (SCG).

The labeling procedure consists of assigning one of the four labels (+, −, ←, or →) to each line.

The Surface Connection Graph (SCG) represents a surface as a node and a constraint between the

surfaces as + (Convex) or − (concave). Figure 4.3 shows the results of line labeling and the SCG

of a car.

In order to recover a 3D car shape at real scale, we first impose some constraints on the gra-

dient space (intersection of surfaces, a skewed-symmetry heuristic, and a parallel-line heuristic, as

previously defined). We define additional constraints from the shape prior of a car and geometric

constraints from the lidar measurements (referred to as a vertical constraint and lidar constraint).
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Figure 4.3: Labeled line drawing and surface connection graph of a car. In the left image, the

numbers are region labels, ’v’ describes the vertices of a car. In the right image, ’S’ means the

surface in 3D ,and the numbers correspond to the region labels in the left image.

Surface intersections require that two adjacent surfaces intersect at a given line. Parallelism con-

straints require that certain lines are parallel in 3D. Skewed-symmetry constraints require that both

sides of a car are symmetric in 3D space. An orthogonal constraint requires that the side and the

front or rear surfaces are orthogonal. A lidar constraint requires that the ratio of the length and

width of a car measured from the lidar measurement is equal to the ratio of the estimated length

and width satisfying the constraints. The constraints are represented in the surface connection

graph as shown in Figure 4.4.

The 3D car shape is obtained by minimizing weighted sum of errors. Suppose that two regions

are connected along a line with a direction (ai = (cos(αi), sin(αi)), i = 1, · · · , 8) in the image

as shown in Figure 4.4. The regions are given the gradients (Gi = (p, q), i = 1, · · · , 6), and the

real scales of length and width of a car are measured by lidar measurements. We can define each

constraint as:
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Figure 4.4: Surface connection graph with constraints. In top image, the blue lines describe

the intersection line of two regions, arrows with ’a’ labels indicate the direction vectors for each

constraint, and the green line show the skewed-symmetry axis. In the bottom image, ’S’ means the

surface in 3D ,and the numbers correspond to the region labels in the top image, ’w’ is the weight

between connected surfaces, and ’C’ is the constraints. The blue constraints show the intersection of

surfaces, and the green constraints show the skewed-symmetry heuristic. The parallel-line heuristic

is defined between ’S1’ and ’S2’, and between ’S2’ and ’S3’. ’CO shows the orthogonality between

’S1’ and ’S4’. ’CL shows the length constraint of ’S1’ and ’S4’.
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Intersection of surfaces: two adjacent surfaces intersect at a given line,

G1 · a1 = G2 · a1

G2 · a2 = G4 · a2

G1 · a3 = G4 · a3

G2 · a4 = G3 · a4

G3 · a5 = G5 · a5

G4 · a6 = G5 · a6,

eI = ‖(G1 −G2) · a1‖
2 + ‖(G2 −G4) · a2‖

2 + ‖(G1 −G4) · a3‖
2 + ‖(G2 −G3) · a4‖

2

+ ‖(G3 −G5) · a5‖
2 + ‖(G4 −G5) · a6‖

2. (4.1)

Skewed-symmetry heuristic: both sides of a car is symmetric in 3D space,

(G1 · a1)(G1 · a3) + cos (α1 − α3) = 0

(G2 · a4)(G2 · a2) + cos (α4 − α2) = 0

(G3 · a4)(G3 · a7) + cos (α3 − α4) = 0,

eS = ‖(G1 · a1)(G1 · a3) + cos(α1 − α3)‖
2 + ‖(G2 · a4)(G2 · a2) + cos(α4 − α2)‖

2

+ ‖(G3 · a4)(G3 · a7) + cos(α3 − α4)‖
2. (4.2)
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Parallel-line heuristic: certain lines are parallel in 3D,

eP =
1

2
(‖(G1 −G3) · a1‖

2 + ‖(G1 −G3) · a4‖
2). (4.3)

Orthogonal constraints: the vertical component of the surface normal be consistent across

surfaces,

eO = ‖(G1(1)−G2(1))‖
2 + ‖(G1(2)−G4(2))‖

2. (4.4)

Lidar constraints: the surface normal and lidar scan line is orthogonal and lidar scans of side

and the front or real surface is also perpendicular,

eL = ‖{L1‖a
·
8‖ − L2‖a

·
1‖}‖

2, (4.5)

where ‖a·1‖ and ‖a·8‖ are the magnitude of the projection vector on the image of the a1 and a8

vectors.

These constraints can be solved for using a weighted least squares framework using the following

equation 4.6. Each constraint is part of a weighted sum in an overall objective function to be

minimized, with the total of the weighting coefficients constrained to sum to one. The errors due

to each component are Intersection of surfaces(EI), Skewed-symmetry heuristic(ES), Parallelism

heuristic(EP ), Orthogonal constraints(EV ), and Lidar constraints(EL):

E = wI

∑
EI + wP

∑
EP + wS

∑
ES + wO

∑
EO + wL

∑
EL (4.6)

where the weight values are estimated empirically (wI = 0.25, wP = 0.15, wS = 0.3, wO = 0.1,

wL = 0.2), and
∑

(wI + wP + wS + wO +wL) = 1.
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4.2.3 Experiments

We analyzed the effect of the lidar constraints by comparing to the car shape recovered without

the lidar constraints. Figure 4.5 shows the recovered 3D car shape using the shape constraints

based on orthographic projection. Although the vertices of the recovered car shape are accurately

placed on the image, the shape does not represent the real scale of the car due to the orthographic

assumption. Figure 4.6 shows the recovered car shape with both of the shape constraints and

the lidar constraints. The recover car shape represents the real scale of the car. Using the lidar

measurements makes it possible to use weak perspective projection to recover the 3D shape instead

of orthographic projection.

We evaluate the performance of our approach recovering the 3D car shape of different types of

cars. These results are shown in Figure 4.7.
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Figure 4.5: 3D car shape recovery without lidar constraints. The edge length of the recovered car

is measured in pixels. The ratio of the width to length of the car is generally 1:2.5, but the ratio of

the recovered car is 1:1.5. The red square shows the landmarks detected by the 2D car alignment

approach. The red circle is the projection of the vertex of the recovered shape. The blue line shows

the edge of the car.
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Figure 4.6: 3D car shape recovery with lidar constraints. The recovered car shape has real scale of

the car with edge length being recovered in meters. The estimated length and width are 4.9 m and

2 m respectively.
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Figure 4.7: Recovered 3D car shapes.
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4.3 Car Model using Approximate Representation

With the approximate model, we may reconstruct 3D models of cars because the approximate

model includes the 2D geometry and height of a car. However, the approximate model represents

a cylindrical shape, not a 3D shape of a car. The approximate model of a car is incrementally

created with accumulated multiple views of the car. We need a method to recover a 3D from a

set of images, such as space carving. While this technique works well under controlled conditions,

very little is known about 3D object reconstruction under conditions with dramatically changing

illumination.

We reconstruct a 3D car shape with a foreground segmentation approach and shape prior of a car.

The explicit foreground region of an object can be segmented using the unwrapped mosaic image

that we used in the approximate modelling step in Chapter 3 because the background typically

changes more dramatically than the object appearance. However, it is difficult to reconstruct the

3D car shape through the segmentation process due to the appearance of the approximate model

of the car. During the unwrapping process, parts of the image (such as the rear window) can be

warped depending on their depth, since the lidar only returns the depth of a stripe on the object.

Fortunately, in the case of a car, we can use two strong properties: (i) the two sides of a car are

symmetric, and (ii) the profile view is orthogonal to the frontal and rear views.

A 3D car shape is created by mirroring a segmented car appearance on the symmetric axis of

the model. The modeling process is consists of two stages: (i) foreground segmentation in the mean

appearance of unwrapped images, and (ii) mirroring of car geometry and appearance.
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4.3.1 Foreground Segmentation

The foreground segmentation is performed by energy minimization based on graph-cut optimization.

Through the approximate modeling, we estimated the initial height and superposed the gradient

confidence map on the unwrapped mosaic image of an object. We can make statistical models with

respect to the foreground and background using the color texture of the unwrapped mosaic image.

Given the statistical model of the foreground and background, we pose the segmentation problem

in the binary labelling framework using graph-cut optimization [60].

Given the initial height estimation result in Chapter 3, we can deduce that the region below

this height is likely to be in the foreground, and the region below it is more likely to be in the

background. We segment the foreground region by building statistical models of pixel intensity or

color. The statistical model can be represented as a mixture of Gaussian distribution of the pixel

distributions over pixel-level characteristics [69]. However, segmentation based on the Gaussian

mixture model (GMM) does not take into account spatial information [70]. Therefore, to improve

the accuracy of segmentation, we apply a spatial MRF model for foreground segmentation [60].

4.3.1.1 Modelling of a Mixture of Gaussian Distribution

Once we select the foreground and background image regions, we represent those images as a

mixture of K Gaussian distributions. We model the foreground and background with different

number of Gaussians. The GMM distribution has the form:

p(x) =
K∑

i=1

wi ·N(x|µi,Σi), where
K∑

i=1

wi = 1, 0 ≤ wi ≤ 1.

where µiis the mean value, Σi is the covariance, and wi is the prior probability (weight) of the ith
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Gaussian.

Given a set of pixel values X = x1, x2, · · · , xN drawn from an unknown distribution (assumed to

be a GMM), the set can be modeled by estimating the parameters θ = [w1, · · · , wK ;µ1, · · · , µK ; Σ1, · · · ,ΣK ]

of the Gaussian mixture model that best fits the data.

We can estimate the parameter θ by maximizing the likelihood p(X|θ) of the data with respect

to the model parameters:

θ∗ = arg max
θ

p(X|θ) = arg max
N∏

j=1

p(xj |θ). (4.7)

One of the most popular approaches to maximize the likelihood is to use the Expectation-

Maximization (EM) algorithm. The EM approach introduces a hidden variable such that its

knowledge would simplify the maximization of the likelihood. At each iteration, the EM algo-

rithm estimates the distribution of the hidden variable given the data and the current value of

the parameters (E-step) and maximizes the joint distribution of the data and the hidden variables

(M-step) [69].

4.3.1.2 Energy Minimization

Once we model the foreground and background using a GMM, segmenting the object image can

be posed in the framework of a binary labeling problem. This labelling problem can be effectively

solved using a Markov Random Field (MRF) model. The MRF is a graphical model of a joint

probability distribution. It consists of an undirected graph G = (V,E) in which the nodes V

represent random variables and the edges E represent direct correlations between variables [60].

Considering an image (I) constituting of a set of pixels, we can define the set of all pixels with a

82



given color as the nodes (V ) and the set of all adjacent pixel pairs as the edges (E). Foreground and

background segmentation problem consists to assigning a unique label xi to each pixel i ∈ V , e.g.

xi ∈ L, where L is a set of region labels (foreground (= 1), background (= 0)). Given foreground

and background GMMs p(zFg) and p(zBg), the label xi of ith pixel can be estimated by inferring

the Maximum a posterior solution (MAP) of the MRF model

xi∗ = arg max
xi

p(xi|z) = arg max
xi

p(xi|zF g, zBg) (4.8)

which is equivalent to an optimization problem to minimize the following energy function E(X) by

the Hammersley-Clifford theorem [69].

E(X) =
∑

i∈V

ED(xi) + α
∑

(i,j)∈E

ES(xi, xj) (4.9)

where ED(xi) is the data term for each pixel i, and ES(xi, xj) is the smoothness term relating two

neighbouring pixels i and j. The parameter α trades off the influence of these two energy terms.

The data term ED(xi) is defined as the negative log likelihood of each pixel label li given the

GMMs of the foreground and background:

ED(xi) =





− ln p(li|xi = 1) if xi is foreground

− ln p(li|xi = 0) if xi is background

The smoothness term ES(xi, xj) penalizes the difference between the labels of adjacent pixels i

and j. The smoothness term is defined over 4-connected neighbors. We use the following penalty

function [60]:
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ES(xi, xj) = ‖xi − xj‖ exp

(
−
‖|Ii − Ij‖|

2

2 σ2

)
(4.10)

4.3.2 Exploiting Prior Knowledge

Given the segmented foreground image, the 3D car shape is reconstructed by exploiting the car

shape prior . The shape modelling is performed by mirroring the segmented appearance and the

corresponding geometry across an axis of symmetry. The symmetry axis is estimated by aligning

the mirror image onto the reference model image, because when we fold the aligned image, the

center column is the symmetric column. The mirrored geometry is estimated by the symmetric

axis which is measured by the corresponding geometry of the symmetric column.

In order to detect the symmetric column, the reference image and its mirror image should be

aligned. Aligning between the both images is performed with sub-regions on the aligned image

because the sub-regions are a common region between the reference image and its mirror image.

Thesubregion consists of a frontal or rear region on the matched image. The sub-image region

is estimated using the corresponding geometry because the shorter line generally represents the

geometry of front or rear of a car.

The reference geometry corresponding to the reference image consists of two lines in which the

number of points of the geometry is same with the number of columns of the image. Considering

both end points (p1,pN ) of the geometry, the corner point pc is a point which has the maximum

distance from the line passing trough the both end points to points of the geometry. The column

indexes of the sub-image region are defined as follow:
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RI =





[1, c] if ‖p1 − pc‖2 < ‖pc − pN‖2

[c, n] if ‖p1 − pc‖2 > ‖pc − pN‖2

The aligned image is created by matching sub-images. The best matching position is estimated

using a sliding window approach. The column of symmetry is easily measured by folding the aligned

image until it overlaps perfectly. Once we estimate the symmetric column on the aligned image,

the symmetric axis of the geometry is a line passing trough the point corresponding the symmetric

column. The symmetric line is also parallel to the fitted side geometry of the car.

4.3.3 Experiments

Figure 4.8 shows a 3D car model built with the shape prior. For this experiment, we used the

approximate model of a car whose side and front are detected in the modeling step as shown in

Figure 4.8 (a). By taking into account symmetry and orthogonality, we re-built the approximate

model of the car. Figure 4.8 (b) shows the re-generated approximate appearance, geometry, and

3D shape of the car.

4.4 Summary

We introduced two 3D car shape modeling approaches: real-scale car shape recovery and a 3D

modeling using the approximate model. In the first approach, we recovered a real-scale car shape

recovery using Origami World of a car. This work was achieved by imposing a shape prior of a car

and geometric constraints from lidar measurements, and then combining two existing approaches

such as the 2D car alignment approaches proposed by Li and the 3D recovery using a single image
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(a)

(b)

Figure 4.8: Image (a) shows an original approximate model of a car, Image (b) shows a more

complete 3D car model reconstructed with shape prior.
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proposed by Kanade. In the second approach, we create more complete 3D car shape using the two

strong properties: (i) the two sides of a car are symmetric, and (ii) the profile view is orthogonal to

the frontal and rear views. This work was achieved by segmenting foreground in the approximate

appearance model and estimating symmetry axis on the approximate model.
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Chapter 5

Conclusions

This dissertation addressed the approximate representation of unknown objects, detection and

tracking of previously seen objects in 3D, and extension of an approximate model by imposing a

shape prior. We pervasively combined lidar sensor data and vision data throughout. The contri-

butions of this dissertation are presented in four main categories:

Approximate Representation of Unknown Objects : We developed an algorithm that is

approximately representing unknown objects in outdoor environments with lidar measurements and

corresponding imagery. We created viewpoint-invariant and scale-normalized models of unknown

objects. This work was achieved in three stages: (i) weighted-unwrapped mosaicing of object images

with corresponding lidar geometry, (ii) registration of the unwrapped images, and (iii) foreground

segmentation. The approximate model consists of the unwrapped mosaics (i.e, color and edge-

gradient) and the approximate geometry. Using this object representation, we obtained both the

benefits of view-based models and shape-based models; that is, we estimate the 3D pose of an

object by 2D-to-2D matching.
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Detection and Tracking using an Approximate Model : We designed a detector to

distinguish between different objects when we detect an object with the approximate model. We

trained the detector using positive and negative samples generated from the unwrapped mosaics in

the approximate appearance model. We represented the training model as an probabilistic model

to estimate the likelihood of new objects. We evaluated the performance of our detector using

datasets obtained in outdoor environments. The detector identifies all of the objects which have

their approximate model in detection.

3D Shape Recovery Imposing Shape Prior : We demonstrated recovery of real-scale 3D

car shapes using Origami World. In order to recover a car shape, we imposed a shape prior of a car

and geometric constraints from lidar measurements. This work is achieved by combining our new

ideas with two existing approaches, the 2D car alignment approach for automatic line drawing and

the Origami World for 3D shape recovery. We applied a weak-perspective projection assumption

for shape recover with lidar measurements instead of orthographic projection. We automatically

obtained the line drawings of a car by employing the 2D car alignment approach proposed by Li.

Pervasive Sensor Fusion : In this dissertation, we pervasively combined lidar and vision

data. Both types of sensor data are fused at the feature-level by computing features from the

data. The benefit of our approach was that we integrate both sensor data throughout the different

stages in the process. Such an approach can be robust because both sensors can contribute to

the solution at each step in a sequence of operations, whereas decision-level fusion is limited by

any one step that performs poorly for a given sensor. We proved the benefits of the feature-level

fusion of both sensors in the problem of boundary detection, data association, modeling, detection,

and tracking. We estimated the extrinsic parameters between both sensors using a new extrinsic

calibration method minimizing the corresponding error of the lidar measurement and vision data.
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We developed a time-synchronization method minimizing the time difference between the lidar

measurement and vision data.

To summary, the thesis develops a viewpoint-invariant and scale normalized model of unknown

objects using pervasive sensor fusion of a lidar sensor and a vision sensor. We have demonstrated

that the model has the benefits of view-based models and shape-based models, performing 3D pose

estimation by 2D-to-2D matching. The detector using the model shows excellent performance on

detecting the objects which have approximate models. The proposed 3D shape recovering method

automatically builds explicit car shape models of real scale with a single image. We hope that the

obtained results will contribute to solve other problems in computer vision and serve a basis for

pursuing the dream of building autonomous vehicles.
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Appendix A

Extrinsic Calibration of a Lidar and

Camera

In order to convert data between the local coordinate systems, we must estimate the rigid body

transformation between the sensors. In this thesis, we developed a robust-weighted extrinsic cal-

ibration algorithm that is implemented easily and has small calibration error [71]. The extrinsic

calibration parameters are estimated by minimizing the distance between corresponding features

projected onto the image plane. The features are edge and centerline features on a v-shaped calibra-

tion target (Figure A.1). The proposed algorithm contributes two ways to improve the calibration

accuracy. First, we use different weights to distance between a point and a line feature according

to the correspondence accuracy of the features. Second, we apply a penalizing function to exclude

the influence of outliers in the calibration data sets. We conduct several experiments to evaluate

the performance of our extrinsic calibration algorithm, such as comparison of the RMS distance of

the ground truth and the projected points, the effect of the number of lidar scan and image, and
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Figure A.1: Calibration board description used for the extrinsic calibration: The blue lines, (left

(ll), center (lc), and right (lr)) describe the line feature that we extracted in the image and the

three red points (pl, pc, pr) are the point features in 3D.

the effect of pose and range of the calibration target. In the experiments, we show our extrinsic

calibration algorithm has calibration accuracy over 50% better than an existing state of the art

approach. To evaluate the generality of our algorithm, we also colorize point clouds with different

pairs of lidars and cameras calibrated by our algorithm.

A.1 Extrinsic Calibration between Lidar and Vision

Our extrinsic calibration algorithm consists of three steps: data acquisition, feature extraction, and

optimization. These steps are described in the following subsections.
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A.1.1 Calibration Target and Data Acquisition

The calibration target we designed consists of two planar boards arranged in a v-shape. The angle

is 150◦, based on the recommendation of Wasielewski [72]. We marked the centerline and left and

right boundaries with black tape to enable those edges to be detected in images. We created our

target from foamcore boards, which are low cost, light weight, and sufficiently planar. Using this

calibration target, we obtain a set of images and lidar scans with the target in different poses and

at different ranges. Both planes on the convex side must visible to each sensor. The lidar scan line

must intersect both the left and right sides of the target. The lidar and camera must either be

synchronized or held stationary during a scan.

A.1.2 Feature Definition and Extraction

We extract three line features (ll, lc, lr) from each image and three point features (pl, pc, pr) from

each lidar scan, as shown in Figure A.1. The image-based line features correspond to the left

and right edges and the centerline of the target. Currently, we manually select the line features

because we found it difficult to automatically extract these lines in long range images. The 3D

features extracted from the lidar scan include the left and right depth edges and the centerpoint

(Figure A.2). First, we manually select the border points on the target on the left and right sides

(pjL, p
j
R). Second, we segment the lidar data into two linear segments corresponding to the left

and right sides of the target. The segmentation is accomplished using the Iterative-End-Point-Fit

(IEPF) algorithm [73]. The IEPF algorithm recursively splits a set of points until a distance related

criterion is satisfied. In our case, the algorithm is stopped after two segments are found. Next, we

fit lines to each segment using the total least squares method. Finally, the intersection of those
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lines is defined as the centerpoint.

Li proposed using edge points as 3D features directly [74]. However, since the lidar can be sparse,

the features may be far from the true edge of the target, especially at long distances. Therefore,

we propose using virtual feature points placed at the expected value of the true edge locations, as

shown in Fig. A.2 (a). If we assume that the true edges are uniformly distributed between the last

point (pjL) and the next consecutive point (pj+1
L ), the expected value is the mid-point of the two

points. The feature (pl) is computed by selecting the intersection point of the angular mid-point

and the fitted line as shown in Figure A.2 (b). The feature (pr) is computed analogously.

A.1.3 Optimization

The extrinsic parameters are estimated by minimizing the distance between the line features and

point features in 2D. Given a set of N paired images and lidar scans with the target in different

poses and at different ranges, we project the point features (pl, pc, pr) in 3D onto the images. In the

image plane, we measure the normal distance between each line feature (ll, lc, lr) and corresponding

projected point feature (p̃l, p̃c, p̃r). We obtain three distance values per image (dl, dc, dr), one each

on the left and right borders and from the centerline. The error function E(R, t) is defined as the

squared sum of those distances over the N image and lidar pairs:

E(R, t) =
N∑

i=1

(dil)
2 + (dic)

2 + (dir)
2,

dik = dist(p̃ik, lik), k = {left, center, right}.

(A.1)

where the function dist is the minimum distance from point (p̃k) to line (lk). We estimate the

extrinsic parameters by minimizing (A.1) using the Levenberg-Marquardt (LM) method [75].
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(a) The left boundary point (pjL) is never exactly placed on the left edge line of the calibration

board. Instead, we select a virtual point (pl) between the two consecutive points (pjL, p
j+1

L ),

located at the expected value of the edge line position (yellow dot). In the figure, the gray

plane represents the calibration target and the blue line describes the left edge line of the
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2

(b) The virtual point (pl) is selected as a point that is placed on the intersection position

of the angular mid-point and the line fitted to the left side lidar points. θ is the angular

resolution of the lidar. The centerpoint (pc) is selected as the intersection of the left and right

fitted lines.

Figure A.2: Lidar feature definition and extraction.
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A.2 Extensions to the basic approach

We observed two characteristics in the basic approach: some points are more reliable than the

others, and line features can be noisy due to manual extraction. Therefore, we extended the basic

approach in two ways. First we applied different weights to the distance error for the center features

versus the edge features because the center feature is more accurate than the others. Second, we

incorporated a robust optimization approach to handle the effect of outliers in data sets.

A.2.1 Feature Weighting

Intuitively, the corresponding accuracy of center feature is higher than the others because the point

is selected as the intersection of the left and right fitted lines. We apply more weight to the distance

of center feature. The weighting values are computed by the following steps. First, we measure

the average residuals (el, ec, er) of each position from Equation (A.1). The average residuals are

computed as el =
∑N

i (dil)
2/N where N is number of image and lidar scan pairs. The center and

right residuals (ec and er) are expressed analogously. Second, we compute the weights (wl, wc, wr)

as wl = 1/el. Each weight value describes the confidence of the distance measure. We also show

that the correspondence of the center feature is more accurate through experiments in Section A.3.

Once we have determined the weights, we re-estimate the extrinsic parameters by minimizing the

following error function with the LM algorithm:

EW (R, t) =
N∑

i=1

wl · (d
i
l)
2 + wc · (d

i
c)

2 + wr · (d
i
r)

2 (A.2)
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A.2.2 Robust Optimization

Since we extract the corresponding line and point features manually, noise is likely to be included

in image and lidar pairs. We extend our approach to be robust to the effect of outliers. Small

errors can be managed by increasing the size of the data set, but outliers in the data set cause

the accuracy of the extrinsic calibration to decrease. Therefore, we apply the concept of nonlinear

robust regression to exclude the influence of these outliers [76]. If there exists a large pixel distance

error between the selected edge line and the corresponding lidar point, the algorithm gives the

penalty measured by the Huber penalty function. Otherwise, it returns the distance value. The

equation is represented as follows [46]:

ER(R, t) =

n∑

i=1

wl · φhuber(d
i
l) + wc · φhuber(d

i
c) + wr · φhuber(d

i
r) (A.3)

where φhuber(·) is the Huber penalty function:

φhuber(d) =





d2 if |d| ≤ dmax

dmax(2 · |d| − dmax) if |d| > dmax

. (A.4)

Since we use the virtual points instead of the real border points, the maximum distance on image

is bounded as follows:

dl, dr . dmax = f tan

(
θ

2

)
(A.5)

where f is the focal length of the camera and θ is the angular resolution between successive lidar

points. We use this bound to define dmax.
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A.3 Experimental Results

In order to illustrate and evaluate our algorithm, we used three pairs of cameras and lidars. One

pair consists of a SICK LMS-221 lidar and a PointGrey Flea2 camera. The other pairs are composed

of a SICK LMS-291 lidar and a PointGrey Flea2 camera. The detailed specifications of the sensors

are the same. The lidars have a 180◦ horizontal field of view, with a line scanning frequency of 37.5

Hz and a 0.5◦ angular resolution. The cameras have a 60◦ horizontal field of view, with a frame

rate of 15 Hz and a resolution of 1024 by 768 pixels. The data from each sensor is time-stamped to

enable synchronization. The intrinsic parameters of the cameras (e.g., focal length, optical center,

pixel aspect ratio, and skew) were computed using the Matlab Camera Calibration Toolbox [77].

The images used for the experiment were rectified by the intrinsic parameters prior to feature

extraction.

We analyzed the performance of our algorithm and compared to the state of the art using

the ground truth image/scan pairs. In the first experiment, we evaluated the performance of our

baseline algorithm and the two extensions – the weighting method and the robust optimization. We

then compared our algorithm to two state-of-the-art previously published algorithms. In the third

experiments, we evaluated the effect of the number of scan/image pairs. Finally, to evaluate the

repeatability of our extrinsic calibration algorithm, we colorized point clouds using the resulting

calibration and visually verified the results.

A.3.1 Comparison of Base Line and Extension Approaches

We compared the performance of our baseline approach and the two extensions described in Section

A.2. Using a set of 250 image/scan pairs, we randomly selected subsets of 50, 100, and 150
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Figure A.3: Comparison of our baseline approach with the weighted and robust extensions. The

results were computed as a function of number of image/scan pairs evaluated using 10-fold cross

validation. The errors were estimated by measuring the RMS distance with the ground truth.

image/scan pairs and computed the extrinsic parameters using the features extracted from each

subset. The experiment was repeated multiple times using 10-fold cross-validation and using the

same picked points for each image/scan pair. The results were evaluated in terms of the line

alignment error averaged over the trials within each group. Figure A.3 shows the comparison of

our baseline, weighted, and robust approaches. Within each group, the robust approach performed

the best. For example, when we used 150 pairs, the robust approach performed 20% better than

the baseline approach and 5% better than the weighted approach. Therefore, we used the robust

approach to evaluate the performance of our calibration algorithm in the following experiments.
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A.3.2 Comparison with Previous Methods

We compared our method to Li’s [74] and Wasielewski’s [72] algorithms. We used the same 250

image/scan pairs as in the first experiment. Figure A.4 (a) shows the lidar points projected onto

a test image by the extrinsic parameters acquired from each algorithm. The projected lidar points

for our algorithm are located closer to the ground truth line than the projected points of the

other methods. The performance of each algorithm is objectively evaluated by computing the line

alignment error, as shown in Figure A.4 (b). The average error of our method is 1.87 pixels. It

is smaller than Wasielewski (2.7 pixels) and Li (5.5 pixels). In the case of Wasielewski and our

method, the correspondence error of the centerpoint is smaller than both the side points which

confirms our intuition that led to the weighted approach.

A.3.3 Effect of the Number of Scan/Image Pairs

We evaluated the line alignment accuracy as as function of number of image/scan pairs. This

evaluation was done using 10-fold cross validation. The number of testing image/scan pairs were

randomly selected from the 250 pairs. As shown in Figure A.5, our result improves when using

more image/scan pairs and achieves better performance with less data. The average error of our

method is 4.4 pixels. This error value is 2 times lower than Wasielewski’s 8.5 pixels and 2.2 times

lower than Li’s 9.6 pixels. When using 50 pairs, our approach has 43% better performance than

Wasielewski’s algorithm using 100 pairs and 75% better than Li’s method with 100 pairs. This

result means that our approach performs as well as the previous approaches with half of the data.

It is interesting to note that the calibration accuracy of Li’s approach is not improved by increasing

the number of the pairs.
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(a) Projection of the lidar points onto the two ground truth images: The yellow

band is the marked tape. The blue line is the mid-line of the marked tape that

manually selected. The red and cyan boxes show close-up of the projection of the

lidar points. Red points = Wasielewski, green points = Li, cyan = our method

(robust).
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(b) Line alignment error between the ground truth line and projected

lidar points.

Figure A.4: The comparison of the extrinsic calibration algorithms which proposed by Walsielewski,

Li, and us. To do this test, we used the four ground truth images we made.
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Figure A.5: Performance as a function of number of image and lidar scan pairs. We used a 10-fold

cross validation to evaluate the effect that the number of calibration data give to the calibration

accuracy. Our approach was also affected by the number of the calibration data, but the effect was

smaller than other approaches).

A.3.4 Point Cloud Colorizing

We evaluated reliability and repeatability of our algorithm. This experiment was achieved with

two pairs of lidars and cameras on the roof of a vehicle looking diagonally at 45◦ with respect to

the vehicle. The lidar were mounted with a 90◦ roll rotation so vertical cuts of the environment

are obtained. As the vehicle drives, lidar and image data are acquired, and the 3D points are

accumulated in a common reference frame using the inertial sensors of the vehicle. Since the

cameras and lidars were calibrated with our method, the image projection of each 3D lidar point

is known. The color of each 3D point is then extracted and used to perform a photo-realistic 3D

reconstruction of the environment. Figure A.6 shows examples of the 3D reconstruction obtained.

A detailed visual inspection of Figure A.6 reveals the accuracy of our calibration algorithm (observe

the lighting post and windows of the building).
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Figure A.6: Colorized point clouds of an outdoor street scene. Left: Overview of a section of

the scene. Upper right: Corresponding camera image. Lower right: A close up of the region

indicated by the red box in the left sub-figure. Notice that the a edges of the window openings are

well-aligned, indicating that the calibration accuracy is good.

A.4 Summary

We developed an extrinsic calibration algorithm compensating for the drawbacks of existing ap-

proaches and providing highly accurate calibration performance. We conducted several experiments

to evaluate the performance and to compare to existing state-of-the-art algorithms. The main find-

ings of our experiments are:

• The alignment accuracy of our method is two times better than the compared state of the

art algorithms.
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• Our method requires fewer image/scan pairs to achieve the same calibration accuracy than

the previous methods.

• Our method has robust performance regardless of pose and range of the calibration target.
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