
Carnegie Mellon University 
 

CARNEGIE INSTITUTE OF TECHNOLOGY 
 
 

THESIS 
 

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
 
 

        FOR THE DEGREE OF Doctor of Philosophy  
 
       
 
 
 
 
 

 
TITLE                   Array-based Spectro-temporal Masking                               
 
 
         For Automatic Speech Recognition  
 
 
 
PRESENTED BY    Amir Reza Moghimi        
 
 
ACCEPTED BY THE DEPARTMENT OF  
 
 
            Electrical and Computer Engineering  
 
 
 
 __Richard Stern______________________________                   _5/1/14________________  
                                                           ADVISOR, MAJOR PROFESSOR                                                                     DATE   
   
 
 __Jelena Kovacevic____________________________  ____5/1/14________________ 
        DEPARTMENT HEAD  DATE
        
 
 
 
APPROVED BY THE COLLEGE COUNCIL 
 
 
 _____Vijayakumar Bhagavatula___________________  ______5/1/14_______________ 
     DEAN   DATE
      



Array-based Spectro-temporal Masking for Automatic Speech Recognition

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Amir R. Moghimi

B.S., Electrical Engineering, Sharif University of Technology

M.S., Electrical and Computer Engineering, Carnegie Mellon University

Carnegie Mellon University

Pittsburgh, PA

May 2014



Supervisor: Dr. Richard Stern
Department of Electrical and Computer Engineering

Committee Members: Dr. Vijayakumar Bhagavatula
Department of Electrical and Computer Engineering

Dr. Bhiksha Raj
Language Technologies Institute

Dr. Mike Seltzer
Microsoft Research

ii



Notice of Copyright

©Amir R. Moghimi

All Rights Reserved.

iii



Acknowledgements

I’d like to begin by thanking my advisor, Dr. Richard Stern. His support – financial,

intellectual and moral – has carried me through graduate school. His belief in me has

bolstered my own resolve and sustained my efforts. Most importantly, though, he has

been a mentor and role model, one worthy of my respect and admiration; truly, that

is all anyone can ask. I’d also like to thank Dr. Bhiksha Raj and Dr. Rita Singh

for numerous discussions, ideas, pointers, lessons and general pieces of advice given

throughout my time in graduate school. Their academic guidance and moral support

have been essential and are greatly appreciated. If for no other reason, I value my time

at Carnegie Mellon for the opportunity it provided to befriend and learn from these

individuals.

There are many others who have helped me get to this point – teachers, professors,

relatives and friends who have enlightened, inspired, encouraged, helped or otherwise

touched me over the years. Even if I have failed to adequately express my gratitude

to them, it is felt wholeheartedly. There are too many to mention, but I would like

to thank a few by name. I thank my committee members, Dr. Bhagavatula and Dr.

Seltzer, for the time, patience and expertise they have contributed to evaluating and

improving my work. I am grateful to my professors at Sharif University – particularly

to Dr. Shamsollahi and Dr. Salehi, for believing in me and giving me opportunities to

learn and grow as an undergraduate.

To my own family, of course, I can hardly do justice in this limited space. I’d like

to thank my brother, Omid, for being an everlasting source of friendship, camaraderie,

antagonism, entertainment, challenge, self-awareness and discussions both inane and

profound. Throughout our lives, his presence has enriched, balanced and seasoned me.

To my parents, Reza and Susan, I am indebted for many things. They have shaped

my character, giving me a sense of self-worth to sustain me and a moral and ethical

compass to guide me. They instilled in me a love of knowledge, of learning, of curiosity,

of reflection. Perhaps most importantly, though, through hard work and sacrifice they

provided me with the tools, the experiences and the position in life to do what I have

iv



done and to become who I am; they placed me on the high branch from which I first

jumped. This is a privilege few people enjoy in this world, and for it I will forever be

grateful.

Finally, I dedicate this thesis to my wife, Akram. Without your encouragement

and unwavering support, this work would never have happened and this thesis never

been written – nor, in all likelihood, would most things I do ever bear fruit. You have

given my life meaning, passion, excitement and direction; you inspire me to do more,

aim higher and be better. You have changed my life immeasurably, in ways of many

of which even you are probably unaware. You are my motivation, my inspiration, the

beginning and end of all my journeys. I love you.

Acknowledgement of Financial Support

The work appearing in this thesis has been funded by grants from:

� The National Science Foundation (Grant IIS-I0916918)

� Cisco Systems, Inc. (Grant 570877)

v



Abstract

Over the years, a variety of array processing techniques have been applied to the

problem of enhancing degraded speech to improve automatic speech recognition. In

this context, linear beamforming has long been the approach of choice, for reasons

including good performance, robustness and analytical simplicity. While various non-

linear techniques – typically based to some extent on the study of auditory scene

analysis – have also been of interest, they tend to lag behind their linear counterparts

in terms of simplicity, scalability and flexibility. Nonlinear techniques are also more

difficult to analyze and lack the systematic descriptions available in the study of linear

beamformers.

This work focuses on a class of nonlinear processing, known as time-frequency (T-

F) masking – a.k.a. spectro-temporal masking – whose variants comprise a significant

portion of the existing techniques. T-F masking is based on accepting or rejecting indi-

vidual time-frequency cells based on some estimate of local signal quality. Analyses are

developed that attempt to mirror the beam patterns used to describe linear processing,

leading to a view of T-F masking as “nonlinear beamforming”. Two distinct formu-

lations of these “nonlinear beam patterns” are developed, based on different metrics

of the algorithms behavior; these formulations are modeled in a variety of scenarios to

demonstrate the flexibility of the idea. While these patterns are not quite as simple

or all-encompassing as traditional beam patterns in microphone-array processing, they

do accurately represent the behavior of masking algorithms in analogous and intuitive

ways.

In addition to analyzing this class of nonlinear masking algorithm, we also attempt

to improve its performance in a variety of ways. Improvements are proposed to the

baseline two-channel version of masking, by addressing both the mask estimation and

the signal reconstruction stages; the latter more successfully than the former. Further-

more, while these approaches have been shown to outperform linear beamforming in

two-sensor arrays, extensions to larger arrays have been few and unsuccessful. We find

that combining beamforming and masking is a viable method of bringing the benefits

vi



of masking to larger arrays. As a result, a hybrid beamforming-masking approach,

called “post-masking”, is developed that improves upon the performance of MMSE

beamforming (and can be used with any beamforming technique), with the potential

for even greater improvement in the future.
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Chapter 1

Introduction

There is a long history of using array processing techniques to improve the robustness of

automatic speech recognition systems in adverse enviromental conditions. In this case, the

array elements will be sound sensors (i.e., microphones) and the adverse conditions of interest

are some combination of the following:

� Additive Noise - Usually modeled as Gaussian and independent of the signal(s)

� Interfering Signals - Frequently other speech, sometimes music or other sounds

� Reverberation - Modeled as a set of linear filters applied to the target and interferering

signals

Of the three, additive noise is usually the least problematic; it also lends itself more easily

to single-sensor processing solutions [1]. Therefore, recent array processing research tends

to focus on the latter two; this work is no exception. The problem of interfering signals is

of particular interest, as speech-on-speech interference is one of the most damaging forms of

degradation, while being relatively common in real-world scenarios. The so-called “cocktail-

party problem” has, in fact, long been of interest to researchers of the human auditory system

[2, 3] and to those who attempt to mimic its functionality articificially [4]. In the domain

of automatic speech recognition (ASR), it remains an open problem as cutting-edge systems
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still fail when presented with interfering sources that are too numerous or too powerful.

The various array-based approaches to these problems can be broadly categorized into

two groups: linear and nonlinear. The linear algorithms are based for the most part on

classical linear beamforming ideas [5], with many modified to exploit specific properties of

speech (e.g., [6]). These approaches tend to have solid theoretical bases and lend themselves

well to analyses, comparisons and secondary metrics; some of these will be discussed in

Section 2.2.1 and referenced in Chapter 3. They also degrade relatively gracefully in the face

of small errors or changes in the environment. The nonlinear approaches, on the other hand,

are more of a mixed bag; most are based to some extent on various models of human auditory

processing, itself a highly nonlinear process. They are more difficult to conceptualize, and

thus, to analyze without resorting to experimental performance metrics such as word error

rate (WER) [1] (see Sections 2.3 and 3.1). As will be discussed in Chapter 4, there are

also significant performance gaps between linear and nonlinear array processing. Perhaps

the most important gap is scalability; the performance of linear processing techniques can

be improved simply by using larger and larger arrays, while nonlinear processing techniques

typically do not scale nearly as well.

This work focuses on an important class of the nonlinear approaches, those based on

time-frequency (T-F) masking [4]; its many variations and derivatives make up a considerable

portion of the overall nonlinear array processing literature. Observations based on a review

of existing literature on these methods will be presented in Sections 3.1 and 4.1; these, in

turn, motivate the overall goals of this work:

1. To achieve a better understanding of these methods and their strengths and weaknesses,

especially when compared to linear beamforming.

2. To develop analyses that will facilitate a more intuitive discussion of the methods,

preferably using metrics with counterparts in the area of linear beamforming.

3. To improve the performance and scalability of these methods.

2



The remainder of this work is organized as follows: Chapter 2 will outline the problem

and provide some background. Chapter 3 describes efforts to develop an analysis framework

for masking algorithms – cultivating a view of these techniques as “nonlinear beamformers” –

in effect addressing Objectives 1 and 2 above. Chapter 4 focuses on potential improvements

to masking (Objective 3), comparing masking to beamforming in the process (Objective 1).

Chapter 5 will summarize the contributions presented in Chapters 3 and 4 and conclude the

discussion.
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Chapter 2

Background

As mentioned in Chapter 1, the main goals of this work are to develop a better understand-

ing of array-based T-F masking algorithms and to improve their performance. In both of

these efforts, linear beamformers are the standard against which the various nonlinear array

processing methods are measured.

Therefore, this chapter will begin with a brief overview of the array processing paradigm,

touch upon linear processing and then move on to masking. A particular variation of mask-

ing, known as PDCW, will then be introduced; the remainder of this work will use variations

of PDCW as stand-ins for masking in general. Care will be taken to develop analyses of these

methods that are easily extensible to other variations of masking algorithms and potentially

to other nonlinear methods, enabling more straightforward comparisons between linear and

nonlinear array processing.

2.1 Setup of problem

In the realm of automatic speech recognition, array processing techniques have long been

applied to the problem of signal separation. Consider Figure 2.1, wherein a target signal

and multiple interfering signals originating from speakers (i.e., sources) at different locations

arrive at the various sensors of an array. The signal received at the p-th microphone (i.e.,

4



sensor) is

xp(t) = a0ps (t− τ0p) +
∑
l

alpilp (t− τlp) (2.1)

where alp and τlp are the attenuation and delay of the path from the l-th interfering speaker

to the p-th microphone (and l = 0 indicates the target speaker).

Figure 2.1: A generic array processing environment with multiple sources and multiple
sensors – s(t) represents the target signal and the il(t) represent interfering signals

If the environment is reverberant, the room impulse responses [7] must be included:

xp(t) = a0ps (t− τ0p) ∗ h0p(t) +
∑
l

[
alpilp (t− τlp) ∗ hlp(t)

]
(2.2)

where the hlp(t) are causal, decaying impulse responses.

One of the most popular methods for the simulation of reverberant path impulse re-

sponses, known as the image method [8], can be used to model reverberant components. In

short, each speaker is mirrored across the surfaces of the room to create a virtual speaker,

whose signal is attenuated and delayed by amounts corresponding to the reflection charac-

5



teristics of the surface and the geometry of the room. Thus, each arriving component of the

reverberation can be thought of as free-path propagation from one of these virtual sources.

Equation (2.2) can be rewritten accordingly:

xp(t) =

signal︷ ︸︸ ︷
a0ps (t− τ0p)︸ ︷︷ ︸

direct

+
∑
r

a′0prs
(
t− τ ′0pr

)
︸ ︷︷ ︸

reverberant

+

interference︷ ︸︸ ︷
∑
l

alpilp (t− τlp)︸ ︷︷ ︸
direct

+
∑
r

a′lprilp
(
t− τ ′lpr

)
︸ ︷︷ ︸

reverberant

 (2.3)

where the a′ and τ ′ represent the attenuation and delay of the virtual sources. Note that

the signal from each of these virtual sources is equal to either the target signal or one of the

interferers; thus, each term in (2.3) representing a reverberated component will be correlated

with a corresponding direct component. As an example, Figure 2.2a illustrates the impulse

response of a path from a source to a destination in a featureless room with dimensions of

8× 5× 3 meters, simulated using Habets’ implementation of the image method [9].

Reverberant impulse responses typically consist of a few discrete impulses, representing

the first few arriving copies of the signal (i.e., the signal paths with few reflections and

shorter delays), followed by a denser “tail”. As an example, consider the first roughly

40 ms vs. the rest of the signal in Figure 2.2. The amplitude of the early reflections are

usually much larger than that of the tail, whose amplitude decays over time in a roughly

exponential fashion. This gives rise to a typical measure of reverberation, the reverberation

time (RT ) [7], which is defined as the time it takes for the envelope of the impulse response

to drop to a certain level. A typical choice of level is 60 dB below the peak amplitude,

with the corresponding reverb time labeled RT60. To demonstrate, Figure 2.2b is a plot of

the impulse response from Figure 2.2a but with the amplitude in dB; as can be seen, the

RT60 of this particular impulse response is roughly 190 ms. It is also worth noting that

6



(a) Linear scale

(b) dB scale

Figure 2.2: Example of a reverberant impulse response, simulated using the image method
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while the reverberation time depends heavily on the shape and physical properties of the

room and objects in the environment, in most scenarios small changes in the locations of

source and receiver do not affect the reverberation time significantly; thus, the concept of

reverb time is often generalized to describe an acoustical environment, not just particular

source/destination pairs. The impulse response from Figure 2.2, for example, comes from a

room with a nominal RT60 = 200 ms.

2.1.1 A special case: The two-element array

Thus far, only a very generalized framework has been presented with the most basic of

analyses. It will be useful to consider the simplification of this framework to a simple, yet

widely used type of array: one with only two sensors. This configuration is illustrated in

Figure 2.3, with a target and a single interferer. In the absence of a discussion on localization

and steering errors, which are beyond the scope of this work, it can be assumed without loss of

generality that the target signal is directly on the bisecting plane (i.e., the array’s broadside);

this direction will be chosen as the origin for azimuth angles, and from it the interferer’s

position measured.

To simplify Equation (2.1), some assumptions will be made. The first is that the distance

from the sources to the array is significantly greater than the size of the array; in this

case, the free-path attenuations from each speaker will be equal for all microphones (i.e.,

al1 = al2 = al). Furthermore, from the array’s perspective, these attenuations can be folded

into the original signal and interference powers; any difference in path loss will only be

reflected as a shift in the received SIR (signal-to-interference ratio):

xp(t) = s (t− τ0p) + i (t− τ1p)

This can be further simplified by choosing the origin of time for each signal as being the
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Figure 2.3: Two-sensor array with single interferer – d is the distance between the two sensors
(microphones) and φ is the azimuth angle of the interferer

instant when the signal first impinges on a certain microphone, say the left1. The target will

arrive at the two microphones simultaneously, so there is no relative delay. The interfering

signal wavefront must travel a distance beyond the left microphone to arrive at the right;

assuming a speed of sound c, the relative time delay will be τ = d
c

sinφ, leading to the

following simplification of (2.1) for this configuration:


x1(t) = s (t) + i (t)

x2(t) = s (t) + i

(
t− d

c
sinφ

) (2.4)

or, in the frequency domain:


X1(f) = S (f) + I (f)

X2(f) = S (f) + I (f) e−j2πf
d
c
sinφ

(2.5)

1In the two-microphone setting, this text will refer to the left microphone and microphone 1 interchange-
ably. Similarly, the right microphone is microphone 2.
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So the target signal is in phase at the two microphones, while the interferer is out of phase

by an amount dependent on the geometry of the array (and which is a linear function

of frequency). Keep in mind that in these equations, s (t) and i (t) are the signal and

interference as received by the left microphone; they are attenuated and delayed, but not

otherwise degraded, versions of the original target and interfering signals. Now, for the

remainder of this text, signals and systems will be expressed in discrete time to accurately

represent actual implementations. The sampling process is assumed to be ideal and free

of aliasing, with sampling frequency fS. Remember that discrete-time angular frequency ω

and continuous-time frequency f are linearly related, as are discrete time index n and the

corresponding continuous time points tn at which the samples are taken (as in, x [n] = x (tn)):

tn =
n

fS
∧ f =

ω

2π
fS (2.6)

Converting (2.5) to discrete time under these assumptions results in


X1

(
ejω
)

= S
(
ejω
)

+ I
(
ejω
)

X2

(
ejω
)

= S
(
ejω
)

+ I
(
ejω
)
e−jωfS

d
c
sinφ

(2.7)

The goal in these configurations is to separate the signal from the interferer(s); i.e.,

to supress the interfering signal(s) as much as possible while causing minimal distortion of

the target signal. This is, by and large, accomplished by creating a distinction based on

the direction of arrival of a particular signal component, accepting components from the

direction known to be close to the target and rejecting others. Incidentally, the “virtual

sources” view of reverberation expressed in (2.3) suggests that successful spatial separation

will also suppress much of the contribution of the reverberant path components.
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2.2 Existing approaches

The various array-based approaches to spatial separation of incoming signals can be broadly

categorized as either linear or nonlinear; these will be discussed in the following sections.

2.2.1 Linear beamforming

Linear array processing (a.k.a. beamforming) is defined as applying a linear filter to the

signal received at each microphone. In short:

y [n] =
∑
p

xp [n] ∗ gp [n]
F←→ Y

(
ejω
)

=
∑
p

Xp

(
ejω
)
Gp

(
ejω
)

(2.8)

There are large bodies of literature on the basic theory of linear beamforming [5] and the

numerous methods of applying it to speech processing [4]. Almost all variations have one

point in common: the array filters gp [n] are chosen so that the target signal is not distorted.

The methods vary in areas such as array geometry [10], formulation of the filters (e.g., time

domain vs. frequency domain or various system-level expressions of the array filters in terms

of combinations of other filters) [11] and adaptations to fit a particular type of signal or

environment. Another important categorization is fixed vs. adaptive beamformers. Fixed

beamformers are designed beforehand and the filters are LTI, while adaptive beamformers

have time-varying filters that adapt in real time to optimize some criterion (itself a source

of many variations [12, 13, 14]). Of course, most adaptive beamformers are designed to

converge to a steady-state LTI system in the presence of relatively stationary signals and

environments.

In addition to the fact that state-of-the-art linear beamformers have proven to be robust in

the face of interference and reverberation [4, 14], linear beamformers are simple to understand

and to implement. In fact, the filtering operation itself is relatively computationally efficient

and can be easily included in real-time systems (although, to be fair, some of the adaptive

variations are much more complex). Furthermore, a number of what we will call “secondary”
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metrics exist to quantify their behavior; some of these include:

1. Beam Pattern: Frequency response of the beamformer in a given direction. If the

direction is expressed in spherical coordinates (as is customary), the beam pattern

will be a function of frequency, azimuth and elevation: B (f ;φ, θ). In two dimensions,

this will simplify to just frequency and azimuth: B (f ;φ). As an example, Figure 2.4

illustrates the two-dimensional beam pattern of a simple four-element array where

∀p : Gp (ejω) = 1.

2. Beam Width: Angular width of the main lobe of the beam pattern. Measured at the

points where |B (f ;φ)| drops to some specified fraction of its maximum.

Figure 2.4: Beam pattern, in dB, of a four-element linear array with elements spaced at 4 cm
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3. Gain: Ratio of maximum of the beam pattern to its average (〈·〉φ denotes averaging

over φ):

Gain (f) =
maxφ |B (f ;φ)|
〈|B (f ;φ)|〉φ

4. Output SIR: Signal-to-interference ratio on the output, after processing. Assuming a

signal with power |S|2 at φ = 0 and interferers with powers |Il|2 at angles φl, this is:

SIRout =
|B (f ; 0)|2 |S|2∑
l |B (f ;φl)|2 |Il|2

Chapter 3 will detail attempts to develop similar analysis metrics for nonlinear array

processing methods.

2.2.2 Nonlinear techniques

The many array-based approaches to this problem that do not fit in the mold described in

Section 2.2.1 can be loosely grouped together under the heading “nonlinear array process-

ing”. They can differ wildly in motivation, methodology and the type, number and order of

nonlinear stages of processing. The ideas behind many are rooted to some extent in some

model of human auditory perception [4] (itself a highly nonlinear process). For example,

Stern, et al. [15] have developed a system based on correlating subband signals across time

and frequency, which borrows heavily from models of human sound localization as described

in [16].

Other variations are less directly motivated by physiology and based on other intuitive

ideas. For example, a large class of algorithms are based on the idea of time-frequency

(T-F) masking, which involves running the incoming signal(s) through some fashion of time-

frequency analysis (typically the short-time Fourier transform), suppressing certain T-F cells

based on some criterion and then reconstructing the signal from the residual. This class of

algorithms is the focus of this work and will thus be discussed in more detail in Section 2.3.
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2.3 Time-frequency masking

As mentioned, T-F masking algorithms share the following general pattern:

1. Run the microphone signals through some form of time-frequency analysis, typically

the short-time Fourier transform (STFT).

2. Determine which T-F cells are worth keeping; set the others to zero. Mathematically,

this is equivalent to multiplying the T-F-domain signal X [n, k] by a “mask” M [n, k],

where the mask is always 0 or 1. Of course, this 0 or 1 constraint is far from universal.

When it is in effect, the masking is called binary, but many variations of T-F masking

relax this constraint in different ways.

3. Reconstruct the signal from this masked version.

As described, none of this is inherently nonlinear: The STFT operation is linear (as,

indeed, are almost all analysis methods used in this first step), the masking operation is

equivalent to a time-varying linear filter and the reconstruction can be linear or nonlinear,

depending on the specific algorithm in question. In addition, there is nothing array-based

in the procedure as presented; in fact, T-F masking is also widely applied to mono audio to

improve signal quality for ASR [17, 18, 19] and for human intelligibility [20, 21].

The nonlinearity and the array dynamics come into play in determining the mask it-

self; this decision is also a major source of variety among the various flavors of masking

algorithms. Numerous, sometimes incompatible, assumptions and objectives have been con-

sidered when developing decision mechanisms (e.g., [22, 23, 24, 25, 26, 27, 28]). In the signal

separation paradigm, one common and intuitive objective is to select those T-F cells where

the signal power exceeds the interference power and reject the others. Going back to the

two-microphone configuration of Figure 2.3 and (2.7), this can be expressed as

M [n, k] =


1 |S [n, k]| > |I [n, k]|

0 otherwise

(2.9)
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Of course, since S [n, k] and I [n, k] are not directly known to the array, this “oracle mask”

must be estimated on a cell-by-cell basis from the input signals X1 [n, k] and X2 [n, k]. Even

aiming for this particular oracle mask, the method of estimation varies considerably. In a

two-microphone setting, one approach is to estimate the inter-microphone time difference

(ITD)2 on a cell-by-cell basis and from there estimate a direction of arrival (DoA) for the

signal in that cell. Assuming the interferer direction (i.e., φ) is known, if the estimated DoA

is closer to the target, M [n, k] = 1; otherwise M [n, k] = 0. ITD estimation itself can take

many forms [27, 28], one of which will be detailed in Setion 2.3.1 as part of PDCW, the

algorithm to be used as the baseline version of T-F masking throughout this work.

Figure 2.5: Block diagram of a generic two-sensor T-F masking algorithm

2.3.1 Phase-difference channel weighting (PDCW)

In [28], Kim and Stern introduced a version of two-sensor T-F masking which they termed

Phase-Difference Channel Weighting (PDCW). In terms of the framework for masking pre-

sented in Section 2.3, the defining features of PDCW are outlined below:

The T-F analysis method is a regular STFT. The window length is set longer than

the 20 ms typical in speech recognition; this is referred to as medium-time processing and

2Occasionally, the inter-microphone intensity difference (IID) is used as well; however, in small arrays in
the absence of objects between the sensors, IID is usually negligibly small.
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explained in [28]. In the experiments described in this work, 80-ms windows have been used.

The mask estimation stage aims to estimate the oracle mask of (2.9) via ITD estimation,

as discussed. ITD, in turn, is estimated via the phase difference between the left and right

signals:

θ [n, k] = ∠X1 [n, k]− ∠X2 [n, k] = ∠ (X1 [n, k]X∗2 [n, k]) (2.10)

Combined with (2.7), it is easy to deduce that in the absence of interference or noise, θ [n, k] =

0. With no target signal and an interferer at azimuth φ, θ [n, k] = ωkfS
d
c

sinφ, where ωk

is the center frequency of subband k; e.g., with an N -point DFT, ωk = 2π
N
k. A target and

interferer of equal power will combine for a phase difference halfway between the two; this

is the decision threshold:

M [n, k] =


1

∣∣θ [n, k]
∣∣ < ∣∣∣∣12ωk fSdc sinφ

∣∣∣∣
0 otherwise

(2.11)

Note the symmetry created by using absolute values; this ensures that interferers at both

positive and negative azimuths (i.e., off to the left and off to the right) are rejected, creating

a “cone of acceptance” around the target speaker. In fact, this decision threshold is one

of the more important tunable parameters of PDCW; by decreasing or increasing it, one

can tighten or widen the cone of acceptance around the target. For example, in reverberant

environments, a tighter bound is beneficial as it excludes more of the virtual sources, and

therefore a higher amount of reverberant signal energy, resulting in a cleaner signal. To set

a cone of acceptance at φT around the receiver, the phase decision threshold should be set

as below:

M [n, k] =


1

∣∣θ [n, k]
∣∣ < ∣∣γ (ωk;φT )

∣∣
0 otherwise

, γ (ω;φ) = ω
fSd

c
sinφ (2.12)

where the definition of γ (ω;φ) corresponds to the left-right phase difference that would be
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observed in response to a hypothetical single source at azimuth φ and angular frequency ω.

This is the threshold definition that will be used throughout this work.

For reconstruction, PDCW uses a simple overlap-add (OLA) synthesis, with one ad-

ditional detail: Before masking, the binary masks are smoothed according the shape of

gammatone filters distributed according to the Equivalent Rectangular Bandwidth (ERB)

scale [29, 30]. This process is termed channel weighting and described in detail in [28]. This

smoothing is done across frequency only, as the medium-time windowing at the first stage al-

ready has a smoothing effect across time. Specifically, given the gammatone filter frequency

responses Hi (e
jω) a set of weighting factors are calculated for the corresponding filters at

each frame (n) from the estimated binary mask M [n, k] and the input signal X [n, k] for

that frame:

wi [n] =

∑
kM [n, k] |X [n, k]Hi (e

jωk)|∑
k |X [n, k]Hi (ejωk)|

(2.13)

These weights are then used to smooth the mask:

M̃ [n, k] =

∑
iwi [n] |Hi (e

jωk)|∑
i |Hi (ejωk)|

(2.14)

The smoothed mask M̃ [n, k] is then applied to the signal. Channel weighting has been

shown to improve output signal quality, both subjectively and for ASR experiments, by

reducing the distortion caused by the sudden level changes a binary mask introduces to the

spectrogram.
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Chapter 3

Analysis of Masking Techniques

3.1 Introduction and motivation

A review of the literature on nonlinear array processing techniques (e.g., [15, 22, 23, 25, 26,

27, 28, 31, 32]) results in the following observation (among others): While many of these

techniques are well motivated and based on intuitive reasoning, there is a conspicuous absence

of thorough analysis methodology. The vast majority of papers discuss the reasoning behind

and the implementation of their specific variation, then move directly into speech recognition

experiments – or equivalent end-result experimentation, if targeting a domain other than

ASR – to demonstrate the algorithm’s performance. This is especially noticeable when

compared to the linear beamforming literature. Although it is true that the definitive test of

an algorithm designed for improving ASR performance is none other than ASR performance,

there are a few reasons that an additional analysis technique would be beneficial, including:

� Speech recognition experiments tend to be complicated and time consuming.

� ASR results depend on a a number of factors, including the speech database, language

model, recognition method and many tunable parameters. Comparisons between front-

end processes do not necessarily hold across different scenarios.

� Due to the complexity of the speech recognition, cause-and-effect relationships are
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frequently difficult to predict. In other words, it may be simple to observe that a certain

change in the processing results in a performance improvement (or deterioration), but

it is often very difficult to produce a satisfying explanation as to the reason why.

Furthermore, as T-F masking competes with linear beamforming, any metric that allows

a more intuitive and direct comparison between a beamformer and a masking technique

would give insight into the workings of both. This is no straightforward task, but this

chapter details an attempt to do so, culminating in the model and analyses developed in

Sections 3.3 and 3.4.

3.2 Sources of distortion and error

For an ASR system trained on clean speech, the system output y [n] of a masker represents

a distorted version of the clean target signal s [n] expected by the recognizer. To quantify

this distortion, we first assume a lossless T-F analysis-synthesis pair, such as the STFT and

OLA used in PDCW; this allows us to calculate the distortion at the pre-reconstruction

stage (i.e., in Y [n, k]). For simplicity, the two-microphone configuration of Figure 2.3 will

be considered here; extensions are trivial. In this case, from Figure 2.5 and (2.7), we obtain:

Y [n, k] = X1 [n, k] ·M [n, k] = S [n, k]M [n, k] + I [n, k]M [n, k] (3.1)

Hence, the distortion relative to the clean signal can be expressed as:

D [n, k] = S [n, k]− Y [n, k] = S [n, k] (1−M [n, k])︸ ︷︷ ︸
signal suppression

+ I [n, k]M [n, k]︸ ︷︷ ︸
interference leakthrough

(3.2)

If the masking is binary, the terms 1−M [n, k] and M [n, k] represent a simple T-F cell

selection. In this light, masking algorithm design can be viewed as an optimization problem

whose cost function is a nondecreasing function of these two competing distortions.

It should be noted that (3.1) does not accurately represent the actual implementation of
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PDCW. In practice, both left and right signals are masked, after channel weighting, and the

results averaged; i.e., Y [n, k] = 1
2

(
X1 [n, k] · M̃ [n, k] +X2 [n, k] · M̃ [n, k]

)
. This functions

as a delay-and-sum beamforming step that further improves the performance of the masker.

This averaging step has been omitted from the equations above in the interest of simplicity,

but its inclusion does not change the basic point.

3.2.1 Feature distances and statistical prediction

In (3.2), the distortion is measured as the difference between the spectrograms of the clean

and processed signal. Let us define the average distortion of a particular processing algorithm

as the average Euclidean distance between the clean and processed signals, when expressed

as spectrograms:

D̄ = E

√∑
k

∣∣D [n, k]
∣∣2 = E

√∑
k

∣∣S [n, k]− Y [n, k]
∣∣2 (3.3)

where the expected value is over the independent, random signals S [n, k] and I [n, k]; in

practice, this will be estimated via time-averaging over long durations and many input

signals.

Many similar distortion metrics can be defined, based on different transformations of

the signals (i.e., features) and different distance metrics. For example, power spectrograms,

log-spectrograms, mel-cepstra (MFCCs) [4], gammatone filterbank outputs [29] or PNCC

coefficients [33] can be used instead of spectrograms. As for distance metrics, instead of the

L2 norm (i.e., Euclidean distance), any of the Lp norms can be used, in addition to statistical

metrics such as K-L divergence and mutual information [34]1. The value in defining such

an average distortion metric for an algorithm is that, if it proves to be descriptive of the

algorithm’s performance, it is relatively simple to calculate computationally; simply run a

large number of signals, degraded by various environments, through the array processing

1These statistical metrics rely on an assumption of some underlying probability distribution of the fea-
tures; this can be a source of both complexity and inaccuracy.
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and measure the average distortion.

To test the various metrics, we have done exactly that: run many speech recognition

experiments, using basic PDCW, in a variety of scenarios, involving a target speaker at 0

and interferer at 30, 45 or 60 degrees with an signal-to-interference ratio (SIR) of 0, 10 or 20

dB or infinity (i.e., no interfering signal) in an enclosure with a reverberation time of 0, 200

or 500 ms, for a total of 33 scenarios, with multiple experiments within each scenario. To

create each (degraded) test utterance, the target and interfering signals are drawn randomly

from the DARPA Resource Management (RM1) database. For each experiment, an average

distortion metric is caluclated based on different combinations of the features and distance

metrics mentioned above. Additionally, the processed signals are passed to the Sphinx-3

recognizer, with its acoustic models trained on clean speech drawn from the RM1 training

set, and a word error rate (WER) is calculated. To determine which of the distance metrics

is a better predictor of the algorithm’s performance, the correlation coefficient of each of

these distortion metrics with the experimental WER is calculated; the result can be seen

in Figure 3.1. Notice that the L2 norm of MFCC features has a roughly 0.8 correlation

coefficient with WER across these various scenarios, indicating that it should be relatively

predictive of WER behavior.

Thus far, we have obtained a distortion metric that is descriptive of a processing algorithm

in that its value is highly correlated with the algorithm’s performance. In fact, using feature

combination methods such as PCA and LDA on the feature-distance combinations above, we

are able to construct combined features with correlation coefficients of close to 0.90, across

scenarios and even different parameterizations of PDCW.

The next step is to construct a predictive function f (·) such that: WER ≈ f
(
D̄
)
. One

approach to this problem is to choose a parameterized family of functions and attempt to fit

the function to the data. We attempted this approach with polynomials of various orders, us-

ing linear regression to fit the parameters of a function of the form WER ≈
∑P

p=0 apD̄
p. Un-

fortunately, when considering all the scenarios mentioned above (i.e., different SIRs and/or
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Figure 3.1: Correlation coefficient of various distortion metrics with WER

reverberation times), none of the fits are particularly close. By limiting to data from a par-

ticular scenario, the fits can be improved, but the parameters vary considerably from one

scenario to the next.

3.3 Analysis: Nonlinear beam pattern

The elegance and intuitiveness of the secondary metrics used with linear beamforming leads

to the question, “Can a set of equivalent metrics be developed for masking algorithms?”

In particular, the behavior of beamformers are characterized relatively completely by their

beam patterns; if a similar metric were to be developed for masking, it would allow us to

view masking algorithms as “nonlinear beamformers”.

The difficulty, of course, lies in the nonlinearity. The power of the beam pattern as

a descriptor is that since all the combinations are linear, any signal from any direction is
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processed independently of the existence, position or power of any other sources. This is

not the case for nonlinear techniques; the effect of any T-F masking algorithm on the target

signal is heavily affected by the position and power of the interferer(s). However, given a

simple paradigm such as the one from Figure 2.3, the free variables can be limited to a

manageable few:

1. Frequency (ω): Of course, since the array geometry manifests itself differently at dif-

ferent frequencies (e.g., the phase difference between the copies of the interferer at the

left and right microphones is a function of frequency), any model will have to take that

into account.

2. Interferer azimuth (φ): A linear beam pattern describes the reponse to a signal from

a source in a particular direction, regardless of how many sources there happen to be

and whether each one is desirable (i.e., target) or undesirable (i.e., interference). In

the masking paradigm, it is assumed the target is straight ahead, but the interferer

can be at any location. The behavior of the algorithm will depend on this location;

e.g., more spatial separation leads to better signal separation by the algorithm. This

should be noted as a difference between the nonlinear beam patterns described herein

and convential beam patterns; the azimuth in nonlinear beam patterns corresponds to

interferer azimuth only.

3. Signal-to-interference ratio (SIR): This is the major difference between the linear and

nonlinear cases. A more powerful interferer will cause more signal masking than a

weaker one. In fact, this comes into play at the level of individual T-F cells; however,

for simplicity’s sake, we will attempt to develop an average characterization dependent

only on the overall SIR.

Thus, the nonlinear beam pattern will be a function of the form B (ω;φ;SIR). The

following sections will describe options for the quantity B (·) to be thus mapped and the

models used to calculate them. The material in this section forms the basis for [35].
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3.3.1 Analytical and computational modeling of mask presence

Ignoring for a while the smoothing step in PDCW and looking at the initial binary mask,

one option is to calculate the probability that a cell in a given band will be accepted by the

mask; i.e., Pr
{
M [n, k] = 1

}
. Since the mask on each cell is a Bernoulli variable, this is

equivalent to E
[
M [n, k]

]
. Thus, we have defined a form of the nonlinear beam pattern:

BM (ωk;φ;SIR) = E
[
M [n, k] |ωk, φ, SIR

]
(3.4)

when calculated in the presence of an interferer at azimuth φ at the given nominal SIR (note

that ωk is the angular frequency corresponding to subband k). The statistical averaging is

over various conditions of the signal and interference; the exact quantities will be discussed

below. The result is dependent on frequency, and thus will approximate time averages of

the masks in the various subbannds. We will call this quantity mask presence, as it shows

the fraction of time (or circumstances) where the masking allows the incoming signals to

pass through; e.g., if E
[
M [n, k]

]
= 0.6, it means that in a given experiment, roughly 60%

of the T-F cells in subband k will be accepted, with the other 40% being masked out. This

definition is also directly applicable to non-binary masks.

To calculate this, we must first isolate the sources of randomness in the mask generation.

The signals S [n, k] and I [n, k] are random; when looking at a single cell, each will have

a random amplitude and phase. Since phase references are arbitrary, we can collapse the

relative phases of the signal and interference into one random variable: α = ∠S [n, k] −

∠I [n, k]; since the signal and interference are assumed to be independent, we can reasonably

assume that the phase difference is uniform: α ∼ U (−π, π]. The random amplitudes can be

named S and I:

S [n, k] = S ∧ I [n, k] = Ie−jα (3.5)

Since the signals are assumed to be of similar type (e.g., both speech), their long-term

spectral profiles will be similar; thus, the nominal SIR will also be the nominal SIR for each
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subband. Specifically, this means

E
[
|S|2

]
E
[
|I|2

] = SIR

Now, (2.7) can be expressed in terms of the random variables of the model – remember that

the phase shift will be dependent on the frequency under analysis:

X1 = S + Ie−jα ∧ X2 = S + Ie−jαe−jωfS
d
c
sinφ (3.6)

Combining (3.4), (2.12), (2.10) and (3.6):

BM (ωk;φ;SIR) = E
[
M [n, k]

]
= Pr

{
M [n, k] = 1

}
= Pr

{
|θ| < |γ (ωk;φT )|

}
(3.7)

where: θ = ∠ (X1X
∗
2 ) = ∠

[(
S + Ie−jα

) (
S + Ie−jαe−jγ(ωk;φ)

)∗]
= ∠

[(
S + Ie−jα

) (
S + Iej(α+γ(ωk;φ))

)]
= ∠

[
S2 + SIej(α+γ(ωk;φ)) + SIe−jα + I2ejγ(ωk;φ)

]
⇒ θ = ∠

[
S2 + 2SI cos

(
α +

1

2
γ (ωk;φ)

)
e
j
2
γ(ωk;φ) + I2ejγ(ωk;φ)

]
(3.8)

Unfortunately, we are not aware of an analytical solution to (3.8). There are three inde-

pendent random variables, α, S and I, the latter two of which have irregular distributions.

Solving for the distribution of θ and then for BM (ωk;φ;SIR) is impossible without gross

approximations.

However, this problem can be solved computationally. The first step is to build prob-

ability distributions for S and I; in this scenario, where both are assumed to be speech

sources, this can be done by building signal level histograms of actual speech spectrograms.

Since speech spectra are far from flat, these distributions will be frequency-dependent. Fur-

thermore, since the signal and interference are both speech signals, the distributions will be
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Figure 3.2: Distributions of speech subband signal levels in dB

identical, with one caveat: the interference distribution must be attenuated by the amount

of the nominal SIR. To simplify this operation, we collect histograms of log-spectrograms;

this way, the attentuation of the interference amounts to a simple shift, without changing

the shape of the distribution. The frequency-dependent histogram of log-spectral speech is

shown in Figure 3.2.

The only remaining step is to calculate the value of the mask for each possible combina-

tion of the three random variables, then average according to their probabilities; in effect,

averaging the value of the mask over the joint p.d.f. of these variables. Doing this for spe-

cific values of the three free paramters (frequency, interferer azimuth and nominal SIR) will
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Figure 3.3: Mask presence pattern for two-microphone array, d = 4 cm, φT = 20◦, SIR
= 0 dB (angle in the X-Y plane corresponds to interferer azimuth, with the array’s look
direction being along positive X)

yield one value of BM (f ;φ;SIR), from which a complete “nonlinear beam pattern” can be

constructed.

Figures 3.3 through 3.5 show examples of this, for a two-microphone array with elements

4 cm apart and the phase threshold set for a cone of acceptance 20◦ wide around the target

direction. Note that in both cases, when the interferer is at φ = 0◦, the mask is always 1; this

makes sense because when the interferer and target are in the same direction, the masker

will simply accept everything and reduce to a simple receiver. As the interferer moves off

to the side, when SIR = 0 dB the mask presence drops to about 0.5; this is also expected

as, according to (2.9), with equal signal and interference powers about half the cells will be
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Figure 3.4: Mask presence pattern for two-microphone array, d = 4 cm, φT = 20◦, SIR =
10 dB (angle in the X-Y plane corresponds to interferer azimuth)

accepted and half rejected. When the SIR increases to 20 dB, a higher percentage of cells

are accepted as the signal overpowers the interference more frequently.

Thus far, we have developed a “beam pattern” for T-F masking algorithms. This pattern

emulates a linear beam pattern in that it shows, on average, how frequency and direction

affect the incoming signals. However, it falls short of describing the quality of the masker. In

a masking algorithm, if a cell is masked it affects both target and interferer; the probability

of this occurring is plotted in Figures 3.3 through 3.5. However, the amount of interference

power masked is usually higher than the target power; indeed this is the goal of masking

in the first place. The more adept the algorithm is at identifying the appropriate cells, the

better it will perform. Unfortunately, the beam pattern developed above does not capture
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Figure 3.5: Mask presence pattern for two-microphone array, d = 4 cm, φT = 20◦, SIR =
20 dB (angle in the X-Y plane corresponds to interferer azimuth)

this behavior. In the following section we turn our attention to an alternative metric, based

on output noise, that does.

3.3.2 Output noise and SNR

In (3.2), a distinction was drawn between the two sources of distortion in the output of a

masking algorithm. This can lead to a characterization of noise on the output of the pro-

cessing, at a given frequency, as (substituting the signal and interference phasors introduced

in (3.5))

N2 =

signal suppression︷ ︸︸ ︷
(S (1−M))2 +

interference leakthrough︷ ︸︸ ︷
(IM)2 (3.9)
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Figure 3.6: Output noise pattern for two-microphone array, d = 4 cm, φT = 20◦, SIR = 0 dB
(angle in the X-Y plane corresponds to interferer azimuth, with the array’s look direction
being along positive X)

In other words, the noise power is the sum of the signal power in rejected cells and the inter-

ference power in accepted cells. Similarly, the output signal-to-noise ratio can be expressed

as

SNRout =
E [S2]

E [N2]
=

E
[
S2
]

E
[

(S (1−M))2
]

+ E
[

(IM)2
] (3.10)

Of course, this is not technically correct; when defining SNR metrics in this fashion, the

signal and noise components should be independent of each other. In this case, not only is

one of the noise terms a direct function of the signal, but the mask in both terms is a function

of both signal and interference, which makes the definition somewhat messy. However, it

is useful as a rough estimate of how corrupted the output signal is compared to the input
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Figure 3.7: Output noise pattern for two-microphone array, d = 4 cm, φT = 20◦, SIR =
10 dB (angle in the X-Y plane corresponds to interferer azimuth)

signal.

Now, this output noise can be used to construct a variant of the nonlinear beam pattern:

BN (ωk;φ;SIR) = E
[
N2|ωk, φ, SIR

]
. In the computational model described in Section 3.3.1,

the mask for each instance of the random triplet (α, S, I) has already been calculated; the

calculation of the average noise from that information is trivial. This can then be averaged

over the joint distribution to construct this new type of beam pattern.

Figures 3.6 through 3.8 show the output noise pattern of the array whose mask presence

pattern was shown in Figures 3.3 through 3.5. The noise levels in these plots are normalized;

the values at φ = 0◦, where all the interference is passed through, can be considered the

reference. When SIR = 0 dB, as the interferer moves off to the side, the output noise level
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Figure 3.8: Output noise pattern for two-microphone array, d = 4 cm, φT = 20◦, SIR =
20 dB (angle in the X-Y plane corresponds to interferer azimuth)

drops by about 10 dB (depending on the frequency in question); this is equivalent to a

processing gain of 10 dB achieved by the algorithm. This gain is lower when the SIR is

higher, as there is less interference to suppress in the first place. Also note the consistency

across frequency and azimuth. This would help explain why, with two sensors, masking

outperforms beamforming (see Figure 4.10); with only two sensors, beamforming is unable

to achieve the necessary consistency.

3.3.3 Comparisons with linear beam patterns

Figure 3.9 depicts the beam pattern of a delay-and-sum beamformer with the same array

used to obtain Figures 3.6 through 3.8. With a target signal in the direction of the main
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Figure 3.9: Beam pattern of two-element delay-and-sum beamformer

lobe and an interferer at various azimuth angles, the beam pattern at any angle will be the

amount of interferer power if the interferer is at that same angle, normalized by the signal

power. This is equivalent to the nonlinear beam patterns of Figures 3.6 through 3.8, except:

1. The nonlinear beam patterns are based on the power of the output noise metric rather

than the power of the interference signal at the output.

2. The nonlinear beam patterns are a function of input SIR.

Even given these differences, it is clear that interference suppression of the nonlinear T-

F masker is much more consistent than the two-element linear beamformer, across both

azimuth and frequency.
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Figure 3.10: Equivalent processing gain pattern of T-F masking scenario depicted in Fig-
ure 3.6 (angle in the X-Y plane corresponds to interferer azimuth)

To observe the same phenomenon from an alternative viewpoint, we can compare the

processing gain of the masker and the beamformer. Figure 3.10 illustrates the processing gain

of the masker whose output noise pattern is depicted in Figure 3.6; Figure 3.11 illustrates

the processing gain of the beamformer depicted in Figure 3.9. Here, processing gain is

defined as the improvement in SNR from the input to the output of the system. For a given

interferer direction, the linear beamformer can improve quality greatly over a small range of

frequencies, while the nonlinear T-F masker suppresses the interferer to a lesser degree but

consistently across all frequencies.

Incidentally, the same observation can be used to visualize the scaling of linear beam

patterns. Compare Figure 3.9, the beam pattern of a two-element beamformer, with Fig-
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Figure 3.11: Equivalent processing gain pattern of beam pattern depicted in Figure 3.9
(angle in the X-Y plane corresponds to interferer azimuth)

ure 2.4, the beam pattern of a four-element beamformer with the same element spacing. An

interfering source off at an angle will be suppressed far more consistently by the pattern of

Figure 2.4 than by that of Figure 3.9; in other words, a four-element delay-and-sum outper-

forms a two-element delay-and-sum beamformer. This behavior of linear beamformers will

be discussed in Chapter 4, forming the goal of the work detailed in Section 4.3.

3.3.4 Verification of the model

Interestingly, even though this definition of SNR is flawed, the values calculated seem to

correspond reasonably well to what one would expect from such a metric. To support this

claim, a series of parallel experiments was run to confirm that the general concept of SNR
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and processing gain for nonlinear T-F masks is valid.

In one set of experiments, the physical configuration of Figure 2.3 is simulated with the

interferer at φ = 60◦ at various SIR levels. Two variations of PDCW are used to process

the received signals: one with the binary masks, with no frequency smoothing, and one

with smoothed masks (for convenience, we will refer to the former as PD and the latter as

PDCW). The masker’s output is then passed to a speech recognizer.

In the second set of experiments, the output noise patterns BN (ωk;φ;SIR) from the

model (such as those of Figures 3.6 through 3.8) for φ = 60◦ and those same SIR levels are

calculated; at each SIR, this will just be a function of frequency. This function is applied

like a filter’s frequency response to the interfering signal, which is then just added to the

target signal. This “artificially degraded” signal is then passed to the same recognizer with no

further processing. Mathematically, the synthesis procedure of the second set of experiments

can be described as

Y [n, k] = S [n, k] + I [n, k] · 1

SIR
·B (ωk;φ = 60◦;SIR) (3.11)

where S [n, k] and I [n, k] are the STFTs of the (clean) target and interfering utterances,

respectively, and SIR and the pattern BN are assumed to be in amplitude scale rather than

decibels. Y [n, k] is passed directly to the recognizer. Thus, the SIR of the signals used in

the second set of experiments has the same spectral profile as our model’s prediction of the

output SNR of the masking algorithm used in the first set.

In both sets of experiments, the target and interfering signals are drawn from the DARPA

Resource Management (RM1) 2.0 test database, consisting of 600 utterances. For each

target utterance, a different utterance is randomly selected from the test set to function as

the interfering signal. The same target/interfering utterance pairing is maintained across

all experiments; i.e., a given target utterance is paired with the same interfering utterance

in all scenarios across all the sets of experiments, but (as stated) that pairing is randomly
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Figure 3.12: Word error rates (WER) of masked speech vs. speech with interferer with
spectral profile predicted by output noise model

determined.

All the speech recognition experiments appearing in this thesis also share the following

details, unless explicitly noted otherwise: The speech recognizer is CMU Sphinx-3, with its

acoustic models trained using CMU SphinxTrain on clean speech from the DARPA RM1

speaker-independent training set, consisting of 1600 utterances. The acoustic models are

3-state hidden Markov models (HMMs), with output probabilities modeled by Gaussian

mixture models (GMMs) with 8 Gaussians per mixture. State tying is used to reduce the

training parameter space, resulting in 1000 total tied states (senones). The feature extraction

is conventional MFCC processing as implemented in CMU SphinxBase, using the standard

13 MFCCs and the delta and delta-delta coefficients, resulting in 39-dimensional feature

vectors.

The results of these experiments are shown in Figure 3.12; as can be seen, the model-
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predicted WER tracks actual performance quite well. Although the model currently only

considers binary masks, it is a bit optimistic in predicting the behavior of a binary masker.

This is probably due to the fact that the model is predicting the average values for output

noise, which – as can be seen in Figures 3.6 through 3.8 – tend to be quite smooth across

frequency, while the actual masks produced by PD, being binary, have sharp local transitions

that hurt recognition accuracy. On the other hand, it seems that smoothing the masks makes

up for much of that degradation, to the point that the model predicts the performance of

PDCW very closely.

3.4 Extensions of the nonlinear beam pattern

While the nonlinear beam patterns developed in Section 3.3 are both intuitive and fairly

predictive, they are based on a fairly limited model of the behavior of T-F masking algo-

rithms. Specifically, the analysis leading to the patterns presented above is based on the

assumption of a two-element array receiving signals from a single target source and single

interferer, both producing speech signals, in a non-reverberant environment with no other

sources of noise (e.g., additive noise at the sensors). The following sections demonstrate how

some of these assumptions can be modified or relaxed, leading to extensions of the model to

a wider variety of scenarios.

3.4.1 Different signal types

The first, and perhaps simplest, extension is to allow the model to work with signals other

than speech. To achieve this, it is enough to modify the distributions of the random variables

representing signal levels in the model, namely, S and I. For example, to model a single

speech source in the presence of a single music source, we use the subband distributions

illustrated in Figure 3.2 for S and the corresponding distributions of music for I, with the

remainder of the model unchanged. It is worth noting that with mixed signal types, the
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Figure 3.13: Distributions of white noise subband signal levels in dB

nominal SIR per subband will not necessarily be the same as the overall nominal SIR, as

the signals will have different spectral shapes. This will not be an issue as long as the

normalization of the distributions is done so that their overall average is kept equal (i.e., at

unity, for simplicity). Mathematically, if f|X| (x;ωk) denotes the probability density function

of the signal magnitude in subband k, the functions must be normalized, using the same

factor across all frequencies, so that

〈∫
x2f|X| (x;ωk) dx

〉
k

= 1 (3.12)

where 〈·〉k denotes averaging over k.
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Figure 3.14: Distributions of pink noise subband signal levels in dB

To calculate the distributions for other noise sources, we can follow the same procedure

outlined in Section 3.3.1 with a large dataset of that type of signal (e.g., music). For

simpler signal types, however, the distributions are analytically obtainable. For example, if

a Gaussian white noise signal x [n] is processed by STFT using a window w [n]:

X [n, k] =
(
x [n] e−jωkn

)
∗ w [n]

= (x [n] cos (ωkn)) ∗ w [n]︸ ︷︷ ︸
XI [n,k]

+j (x [n] sin (−ωkn)) ∗ w [n]︸ ︷︷ ︸
XQ[n,k]

(3.13)

where ∗ denotes convolution. Thus, the value of each cell of the STFT will be a complex
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Figure 3.15: Mask presence pattern for two-microphone array with an interfering pink noise
signal, d = 4 cm, φT = 20◦, SIR = 0 dB (angle in the X-Y plane corresponds to interferer
azimuth)

random variable, whose real and imaginary parts (XI and XQ) are each Gaussian random

variables, as each is a linear combination of Gaussians (i.e., the samples of x [n]), and

uncorrelated with each other, due to the fact that the in-phase and quadrature components

of the complex exponential (i.e., the cos (·) and sin (·)) are orthogonal. It is also easy to

show that they are both zero-mean and of equal variance; let us name this variance σ2. We

are interested in the distribution of the magnitude of X:

|X| =
√
XI

2 +XQ
2

Fortunately, it is well known that the magnitude of such a complex random variable follows
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Figure 3.16: Output noise pattern for two-microphone array with an interfering pink noise
signal, d = 4 cm, φT = 20◦, SIR = 0 dB (angle in the X-Y plane corresponds to interferer
azimuth)

the Rayleigh distribution with parameter σ [36]:

f|X| (x) =
x

σ2
e−

x2

2σ2 (3.14)

For reasons discussed in Section 3.3, for this model it is preferable to express the signal level

in dB; the distribution can be modified accordingly:

Y = 20 log10 |X| ⇒ fY (y) =
ln 10

20σ2
10

y/10e−
10

y/10

2σ2

=
ln 10

20σ2
x2e−

x2

2σ2 , where x = 10
y/20 (3.15)
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Figure 3.17: Word error rates (WER) of masked speech in the presence of pink noise vs.
speech with Gaussian noise interferer with spectral profile predicted by output noise model

The average power of X, E
[
|X|2

]
, is equal to σ2. Since the model will set the input SIR to

a specific value, the distributions of any signal type can be normalized to have an average

power of 1 (as is the case with Figure 3.2); setting σ = 1 in (3.15) achieves this. This is true

for all subbands, as white noise is, by definition, spectrally flat. Figure 3.13 illustrates the

distribution of subband signal levels for white noise obtained in this fashion.

Similarly, pink noise signal level distributions can be analytically obtained. The power

of pink noise is inversely proportional to frequency; thus, the σ paramter must now be a

function of frequency such that

σ2 (ω) ∝ 1

ω
(3.16)

During normalization, care must be taken that the average power across all subbands be

kept at unity, according to (3.12). The resulting distributions are illustrated in Figure 3.14.

43



Figures 3.15 and 3.16 illustrate the result of using the pink noise distributions obtained

above to model the behavior of PDCW when faced with a target speech signal and interfering

pink noise signal at 0 dB SIR. The setup is otherwise identical to that of Figures 3.3 and 3.6.

The figures show that the masking algorithm loses some of its consistency across frequency

when dealing with signals with different spectral profiles.

The noise model can be verified using a procedure identical to that of Section 3.3.4, except

that the interfering signal I[n, k] is now a unit-variance pink noise signal, rather than a speech

utterance. As before, a given target utterance is paired with the same randomly-generated

pink noise sample function across all experiments. The results, illustrated in Figure 3.17,

demonstrate that the predictive accuracy of the model is not harmed by the use of the new

signal type.

3.4.2 Independent sensor noise

Input noise at the array’s sensors have, thus far, not been considered in the nonlinear beam

pattern model. This noise is often modeled as additive, Gaussian and independent of the

incoming signals. Spectrally, they can be of many shapes but white and pink noise are

very common models. Another frequent assumption is that the noise present at each sensor

is independent of the others; this is the basis for many beamforming, filtering and other

techniques in the field of noise reduction. To model the behavior of masking in such scenarios,

we can modify (3.6) to accommodate the sensor noises. Each sensor noise will be a complex

random variable with its own amplitude and phase:

X1 = S +N1e
−jα1 ∧ X2 = S +N2e

−jα2 (3.17)

The random variables N1 and N2 are given distributions based on their particular noise

type; e.g., that of Figure 3.13 or 3.14 for white or pink Gaussian noise. Since independent

sensor noise is also frequently assumed to be equally powerful across all sensors, the same
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Figure 3.18: Mask presence pattern for two-microphone array with additive pink Gaussian
noise at sensors, d = 4 cm, φT = 20◦

distribution can be used for both variables (but not the same value, of course – they must

be drawn independently).

The resulting beam patterns (either mask presence or noise) will have one fewer free

parameter, as the concept of interferer location does not apply to this setup, resulting in

functions of the form B(ωk;SIR), where SIR is the overall nominal input SIR for the target

signal compared to either of the noises. Figures 3.18 and 3.19 illustrate the mask presence

and output noise patterns corresponding to a target speech signal and additive pink Gaussian

sensor noise at various nominal input SIRs. The consistency of masking across frequency

appears again in these graphs: The mask presence patterns are not flat across frequency,

as the input signal and noise have different spectral shapes, but the resulting output noise
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Figure 3.19: Output noise pattern for two-microphone array with additive pink Gaussian
noise at sensors, d = 4 cm, φT = 20◦

is quite consistently low (except at f = 0, where there is no phase information anyway

and array processing is useless). The algorithm exhibits a 15-20 dB gain across different

frequencies and input SIRs, far better than a two-element linear beamformer (compare to

Figure 3.9 or Figure 3.11).

As before, the noise model is verified using a procedure identical to that of Section 3.3.4,

using pink noise signals as the “interfering utterances”. The results, illustrated in Figure 3.20,

demonstrate that the predictive accuracy of the model of modeling sensor noise is simliar to

that of modeling a spatially discrete interfering source.

Of course, the sensor noise model and discrete interferer can be used in tandem. Com-
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Figure 3.20: Word error rates (WER) of masked speech in the presence of pink noise at
sensors vs. speech with Gaussian noise interferer with spectral profile predicted by output
noise model

bining (3.6) and (3.17) produces


X1 = S +N1e

−jα1 + Ie−jα

X2 = S +N2e
−jα2 + Ie−jαe−jωfS

d
c
sinφ

(3.18)

which contains seven independent random variables (S, I, α, N1, α1, N2 and α2) over which

the pattern quantities (i.e., mask presence or output noise) must be averaged. The resulting

beam pattern will have four free variables: B(ωk;φ;SIRinterferer, SIRsensor noise)

3.4.3 Multiple interferering sources

Another limitation of the model as presented in Section 3.3 is its assumption of a single

target speaker and single interfering source. Many applications will call for T-F masking in
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Figure 3.21: Mask presence pattern for two-microphone array with two interfering speech
signals, as a function of one interferer’s position (φ1, represented as angle on the X-Y plane),
d = 4 cm, φT = 20◦, SIR1 = 0 dB, φ2 = −45◦, SIR2 = 10 dB

the presence of multiple interferers. Fortunately, extending the model to this type of scenario

simply requires adding magnitude and phase random variables for each interferer. Working

this into an equation similar to (3.6) produces the received signal random phasors


X1 = S +

∑
l

Ile
−jαl

X2 = S +
∑
l

Ile
−jαle−jωfS

d
c
sinφl

(3.19)

where the Il and αl variables represent the magnitudes and phases of each interfering source

and φl is the source location’s azimuth. Each Il and αl is drawn independently from the

others; Il from the corresponding sources signal type’s distribution (at the appropriate fre-
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Figure 3.22: Output noise pattern for two-microphone array with two interfering speech
signals, as a function of one interferer’s position (φ1, represented as angle on the X-Y plane),
d = 4 cm, φT = 20◦, SIR1 = 0 dB, φ2 = −45◦, SIR2 = 10 dB

quency) and αl from a uniform distribution.

While this is conceptually simple, two practical issues arise:

1. The number of random variables grows linearly with the number of interferers. Since

the averaging of the beam pattern quantities is being done over the joint distributions

of all the random variables, the complexity of modeling a setup with L interferers will

be Θ
(

(RMRP )L
)

, where RM and RP are the resolutions of the magnitude and phase

distributions, respectively. In practice, this limits the number of interferers based on

the implementation of the model and hardware in use.

2. The number of free variables in the beam pattern also grows linearly with the number
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Figure 3.23: Mask presence pattern for two-microphone array with two interfering speech
signals, as a function of one interferer’s position (φ1), d = 4 cm, φT = 20◦, SIR1 = 20 dB,
φ2 = −45◦, SIR2 = 10 dB

of interferers. Specifically, each interfering source will have its own location (φl) and

power (SIRl); thus, the beam pattern will now be of the form

B (f ;φ1, φ2, . . . , φL;SIR1, SIR2, . . . , SIRL)

With three-dimensional graphs, it is impossible to visualize the beam pattern with

more than two free variables (e.g., frequency and azimuth in Figure 3.3 or frequency

and SIR in Figure 3.18). Thus, the best that can be done is to set values for all but

two of the free variables and plot the resulting slice of the pattern.

With these limitations in mind, Figures 3.21 through 3.24 illustrate the mask presence
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Figure 3.24: Output noise pattern for two-microphone array with two interfering speech
signals, as a function of one interferer’s position (φ1), d = 4 cm, φT = 20◦, SIR1 = 20 dB,
φ2 = −45◦, SIR2 = 10 dB

and output noise patterns corresponding to a target speech signal in the presence of two

interfering speech signals. Interferer 2 is kept at φ2 = −45◦ with SIR2 = 10 dB. Interferer 1

is moved across space, tracing the patterns. Figures 3.21 and 3.22 are at SIR1 = 0 dB, while

Figures 3.23 and 3.24 are at SIR1 = 20 dB. It is interesting to note that at SIR1 = 0 dB, the

patterns are not heavily affected by the presence of the second interferer (compare Figures

3.21 and 3.22 to Figures 3.3 and 3.6), while at SIR1 = 20 dB, the discriminative power of

the azimuth threshold is almost invisible, as the interference (and therefore, the masking

operation) is dominated by the second interferer.

As before, the noise model is verified using a procedure identical to that of Section 3.3.4,

this time using a pair of interfering speech utterances for each target utterance. Each in-
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Figure 3.25: Word error rates (WER) of masked speech in the presence of two speech in-
terferers vs. speech with Gaussian noise interferer with spectral profile predicted by output
noise model, SIR1 varies across the graph, SIR2 = 10 dB

terfering utterance is shaped spectrally by the its corresponding contribution to the model-

predicted output noise. Interferer 1 is kept at φ1 = 60◦, similar to the results from Sec-

tion 3.3.4, while the second interferer is located at φ2 = −45◦ and kept at a power of

10 dB below the target signal (i.e., SIR2 = 10 dB). The results, illustrated in Figure 3.25,

demonstrate that the predictive accuracy of the model is not significantly affected by the

introduction of the second interferer. Of interest in Figure 3.25 is the flattening of the WER

lines at higher SIRs; because the SIR values on the graph correspond to one interferer, once

its power drops beyond a certain point the WER is dominated by the second interferer.
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3.4.4 Reverberant environments

Thus far, the nonlinear beamforming model has only been applied to scenarios in which

the target signal, as received by the sensors, is distorted by nothing other than additive

interference or noise. This does not take into account the effect of the acoustical environment,

namely, reverberation. As discussed in Section 2.1, the effect of reverberation is to filter the

signal with an impulse response similar in form to that of Figure 2.2. In order to model the

behavior of a masking algorithm in the presense of such distortion, one option is to turn to

one of many models of the behavior of reverberant fields at the sensors of an array (e.g.,

[7, 37, 38]) and build it into our cell-level phasor calculations. However, in the interest of

utility and flexibility, a different route has been taken: The model will receive the reverberant

impulse response signals in time domain (i.e., hlp (t) as defined in (2.2)). This way, the model

can work from actual measured impulse responses or simulated ones. Given these impulse

responses, the target and any interferers as received at each sensor can be calculated.

To work this into the random phasor model, recall that these phasors are intended to

model the behavior of an individual time-frequency cell of the signal spectrograms. Looking

at the lowpass filter formulation of the STFT operation [39] on a sensor input signal:

X1 [n, k] =
(
x1 [n] e−jωkn

)
∗ w [n]

where w [n] is the window function used in the STFT and ∗ represents convolution. To

include the reverberant impulse responses, let us assume for now that there is no interferer

present and analyze the target signal only. In this section, the discrete-time versions of

the impulse responses between the target source and the two sensors are denoted h1 [n] and

h2 [n]:
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X1 [n, k] =
[
(s [n] ∗ h1 [n]) e−jωkn

]
∗ w [n]

=
∑
m

w [n−m] e−jωkm (s [m] ∗ h1 [m])

=
∑
m

w [n−m] e−jωkm

(∑
r

s [m− r]h1 [r]

)

=
∑
m

∑
r

w [n−m] e−jωkms [m− r]h1 [r]

=
∑
r

h1 [r] e−jωkr

(∑
m

w [n−m] s [m− r] e−jωk(m−r)
)

(m′ = m− r) =
∑
r

h1 [r] e−jωkr

(∑
m′

w [n− r −m′] s [m′] e−jωkm
′

)

=
∑
r

h1 [r] e−jωkrS [n− r, k]

=
(
h1 [n] e−jωkn

)︸ ︷︷ ︸
wideband

∗S [n, k]︸ ︷︷ ︸
lowpass

(3.20)

where the convolution is across the time variable n. As noted, of the two signals being

convolved to produce the subband values of the STFT, one is lowpass (i.e., band-limited

at low frequencies), by definition of the STFT – this, incidentally, is why STFTs can be

downsampled – producing a resulting STFT subband signal that is also lowpass. STFTs

created with Hamming windows – the most commonly used window type – are typically

downsampled by half the window length, creating frames with 50% overlap [40]. For example,

in the analyses producing the results presented earlier we used 80-ms Hamming windows,

which at a sampling frequency of 16 KHz produces a window length ofN = 80 ms×16 KHz =

1280 samples, leading to downsampling factor of 640.

The problem with incorporating this into the current form of the random phasor model

is that the model analyzes each T-F cell in isolation, whereas from (3.20) it is clear that each

T-F cell value of X1 [n, k] will be a function of the current and many past values of S [n, k] –

keep in mind that h1 [n] is the impulse repsonse of a physical system and therefore causal, so
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future values of S [n, k] do not matter. Our solution to this problem begins with replacing

S [n, k] with a piecewise-constant approximation of itself, Ŝ [n, k], whose each sample is equal

to the the nearest downsampled value of S [n, k] from the same subband; i.e.,

Ŝ [n, k] = S

[
N

2

∥∥∥∥ 2

N
n

∥∥∥∥ , k] (3.21)

where ‖·‖ denotes rounding to the nearest integer. This is equivalent to a rectangular

interpolation of the downsampled version of S [n, k] (as opposed to the correct sinc-based

interpolation). The dependence on past values remains, but there are now fewer of them;

combining (3.21) back into (3.20) results in

X1 [n, k] ≈
∑
r

h1 [r] e−jωkrŜ [n− r, k]

≈
N60∑
r=0

h1 [r] e−jωkrS

[
N

2

∥∥∥∥ 2

N
(n− r)

∥∥∥∥ , k]

where N60 = RT60 ·fS is the 60-dB reverb time of the impulse response, in samples (roughly,

the number of samples over which the impulse response has significant nonzero values). Let

us look at the calculation at a time n that is a multiple of the downsampling factor (we are

only interested in calculating the downsampled version of the output STFT in any case).

Since the ultimate goal is to remove the time factor completely and replace it with random

phasor averaging, and since the time reference on the signals is arbitrary, we can without

loss of generality look at the calculation at n = 0:

X1 [0, k] ≈
N60∑
r=0

h1 [r] e−jωkrS

[
N

2

∥∥∥∥− 2

N
r

∥∥∥∥ , k]

Now, using the variable transformation r = N
2
m− r′, we can break the sum into frames over

which Ŝ [n, k] is constant; i.e., N
2
m will be the frame centers and r′ can run from −N

4
to
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N
4
− 1. This means −1

2
≤ 2

N
r′ < 1

2
, which in turn simplifies the argument of S [·, k] above:

N

2

∥∥∥∥− 2

N
r

∥∥∥∥ =
N

2

∥∥∥∥−m+
2

N
r′
∥∥∥∥ = −N

2
m

The convolution sum can now be broken in two:

X1 [0, k] ≈
2
N60
N∑

m=0

N
4
−1∑

r′=−N
4

h1

[
N

2
m− r′

]
e−jωk(

N
2
m−r′)S

[
−N

2
m, k

]

≈
2
N60
N∑

m=0

S

[
−N

2
m, k

] N
4
−1∑

r′=−N
4

h1

[
N

2
m− r′

]
e−jωk(

N
2
m−r′)

 (3.22)

The inner sum in (3.22) is independent of any signal behavior and can be calculated before-

hand. The result will be one value per frame m in subband k:



h
(k)
1 [m] =

N
4
−1∑

r′=−N
4

h1

[
N

2
m− r′

]
e−jωk(

N
2
m−r′)

h
(k)
2 [m] =

N
4
−1∑

r′=−N
4

h2

[
N

2
m− r′

]
e−jωk(

N
2
m−r′)

(3.23)

where the corresponding set for the right sensor is also included. (3.22) can be rewritten

with this simplified notation:

X1 [n, k] ≈
2
N60
N∑

m=0

S

[
−N

2
m, k

]
h
(k)
1 [m] (3.24)

In (3.24), given that the upper limit on m is

2
N60

N
= 2× RT60 · fS

window length · fS
= 2× RT60

window length

the sum will consist of a relatively small number of terms; e.g., with a reverberation time of
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400 ms and 80-ms windows, there will be only 11 terms. Thus, only 11 values (1 present and

10 past) of the signal STFT are necessary to approximate the received STFTs at the left and

right sensors. As per the nonlinear beam pattern approach from the previous sections, each

of these values can now be modeled with a random phasor whose magnitude is distributed

according to speech subband levels and whose phase is random:


X1 =

2
N60
N∑

m=0

Sme
jαm · h(k)1 [m]

X2 =

2
N60
N∑

m=0

Sme
jαm · h(k)2 [m]

(3.25)

In this model, each Sme
jαm represents the T-F cell value of the signal at m half-frames in

the past (with m = 0 being the current frame). The main flaw of this model is that the

Sm variables are drawn independently from the subband signal level distribution. While the

assumption of identical distributions is realistic, their independence is not; most real signals,

including speech, are correlated with themselves to varying degrees over time. However,

the use of longer windows validates this assumption to some extent; the farther apart the

samples of the STFT are taken, the less correlated they are with each other.

Now that the left and right sensor phasors’ distributions are calculable from signal distri-

butions, the remainder of the process is similiar to that of Section 3.3, with a few exceptions

discussed here. The first is that the output noise metric must be modified. For reverberation,

it seems reasonable to consider the present signal level, S0 in (3.25) to be the desirable signal

portion, and the rest of the Sms to be interfering. In other words, we assume that the early

arriving copies in a reverberant field are desirable and the later arrivials, belonging to past

values of the signal, interfere with the early arrivals, which is a reasonable description of the
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Figure 3.26: Mask presence pattern for two-microphone array with target source in rever-
berant environment, d = 4 cm, φT = 20◦

adverse effects of reverberation in general. (3.9) can be modified accordingly:

N2 =

signal suppression︷ ︸︸ ︷∣∣∣S0h
(k)
1 [0] (1−M)

∣∣∣2 +

reverberation leakthrough︷ ︸︸ ︷
2
N60
N∑

m=1

∣∣∣Smh(k)1 [m]M
∣∣∣2 (3.26)

Another important distiction is that, thus far, only a single target signal has been con-

sidered in reverberant fields; therefore, the definitions of interferer azimuth and SIR are no

longer relevant. However, a new free variable does appear: the reverberation time. Thus,

the beam patterns will be of the form B (ω;RT60). Figures 3.26 and 3.27 demonstrate the

mask presence and output noise patterns obtained using the procedure described in this

section. To generate these figures, the model was given impulse responses simluated using
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Figure 3.27: Output noise pattern for two-microphone array with target source in reverberant
environment, d = 4 cm, φT = 20◦

Habets’ implementation of the image method [9] in a featureless room with dimensions of

8 × 5 × 3 meters (Figure 2.2 is an example). Different reverberation times are obtained by

varying the absorption coefficients of the room’s surfaces. The two sensors of the array are

spaced at 4 cm, with the source at a distance of 2 m along the array’s broadside axis. The

source and sensors are all positioned on a plane halfway between the ceiling and floor (i.e.,

1.5 m away from each).

Of course, including one or more interferers would be conceptually simple. Terms identical

to those of (3.23) can be constructed for each impulse response from each interferer to each

sensor, which would then need to be added into (3.24) and (3.25). The resulting beam

59



patterns would have multiple free variables:

B (f ;φ1, φ2, . . . , φL;SIR1, SIR2, . . . , SIRL;RT60)

The difficulty, however, lies in the implementation. Because each interferer would now require

its own set of 2 × RT60
window length

+ 1 random phasors (each having a random amplitude and

phase), the computational complexity of the problem would increase greatly. For this reason,

only results with a single target are included here.

The remaining task is to perform verification experiments for the reverberant model. As

in the non-reverberant cases, the goal is to synthesize test signals using a procedure that

reflects the prediction of the model in some fashion and perform speech recognition on them.

The results are then compared to parallel experiments, wherein test signals with the actual

degradation in question (in this case, reverberation with the same impulse responses) are

processed using the masking algorithm. The latter experiments are simple to run; the key

lies in the synthesis procedure for the first set. In this case, the model is predicting the

contribution of each Sm – i.e., each of the past few frames of the signal – to the overall

output noise (see (3.26)). It would be reasonable, therefore, to synthesize a signal corrupted

by its own past frames in a manner consistent with the predicted value of these contributions.

Since the model calculates these quantities at each frequency, the synthesis can operate on

each subband separately. Mathematically, if X [n, k] is the STFT of a clean utterance,

downsampled by a factor of half the window length (which corresponds to the separation

of the model’s Sm values in time), the STFT of the model-predicted output signal for the

reverberated input signal will be

Y [n, k] =

2
N60
N∑

m=0

from model︷ ︸︸ ︷
E

[∣∣∣Smh(k)L [m]M
∣∣∣2]X [n−m, k] (3.27)

Figure 3.28 illustrates the results of these experiments. The array, clean data, masking
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Figure 3.28: Word error rates (WER) of masked reverberated speech vs. speech self-
corrupted according to output noise model

algorithms and recognition engine are identical to those of Section 3.3.4. The impulse re-

sponses used in these experiments are identical to those used in generating Figures 3.26 and

3.27.

3.4.5 Comparison of different scenarios

Having adapted our analysis method to various scenarios, we return to a familiar question:

How descriptive (or predictive) is the metric in use? Within a particular environment type,

the question has been answered by the verification experiements performed; the performance

predicted by the model tracks actual performance relatively well in each of these scenarios.

However, as the definition of output noise (and SNR) differs somewhat from one scenario to

the next, the consistency of these definitions comes into question.

To examine this, we look at the output noise-to-signal ratio (i.e., output noise normalized

by signal level) in a number of different scenarios. These scenarios are chosen so that PDCW
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Figure 3.29: Model-predicted output noise levels in various scenarios, each withWER ≈ 15%

processing produces a word error rate of roughly 15% in each case – look at the WER = 15%

intercepts on the green lines in Figures 3.12, 3.17, 3.20, 3.25 and 3.28). Ideally, a well-defined

output noise metric would look similar (although not necessarily identical) for these cases,

regardless of the underlying adaptations.

Figure 3.29 illustrates this output noise, as a function of frequency, for the five cases in

question. As can be seen, all but one of the models produce output noise values that are

roughly similar, in level if not in shape. The one exception is when modeling reverberant

environments; as was explained in Section 3.4.4, the output noise in that model is defined

using variables representing past signal values, which is qualitatively somewhat different

than the other cases. What this means is that our nonlinear beam patterns are not useful

for comparing the performance of an algorithm in reverberation with its performance in non-

reverberant environments. While this is unfortunate, it is also true with conventional beam

patterns; the shape of the pattern itself does not provide much detail about the performance

of the beamformer in reverberant vs. non-reverberant environments.
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3.5 Conclusions

This chapter has detailed the development of a model for the analysis of the behavior of

masking algorithms. The model produces intuitive, descriptive metrics – based loosely on

the concept of the beam patterns of linear beamformers – that can be presented as nonlinear

beam patterns. The model is based on simple, straightforward theory and not particularly

computationally costly. Furthermore, the resulting metrics prove to be relatively predictive

of the performance of the algorithm under analysis. Although the initial model is designed for

a limited use case, extensions are not difficult to develop and implement. To demonstrate

this, several other scenarios have been considered and the model adapted to analyze the

behavior of the masking algorithm in each one.

The main benefit of such a model is that it provides a standalone tool for examining the

behavior of a masking technique (and, by extension, the comparison of techniques to each

other). Since it is based solely on probabilistic calculations, it alleviates the need to process

real signals. In the context of speech recognition (and similar pattern recognition tasks) it

produces descriptors independent of database, recognizer, etc. – factors that introduce a

great deal of variability into the current analyses and comparisons of masking techniques.

There is more to be done, of course. Perhaps the most pressing area of inquiry is the

definition of the output noise metrics (e.g., (3.9) or (3.26)). Currently, these are chosen to be

simple and intuitive. It could well be, however, that simple addition of the distortion terms in

these equations is not the optimal combination when considering predictive accuracy. Other

linear combinations (more generally, all nondecreasing functions C
(
(S (1−M))2 , (IM)2

)
of

the distortion terms) can be examined. Once such a metric has been established, it can be

calculated and plotted similarly to the noise metric from Section 3.3.2 to produce a more

predictive, if slightly less intuitive, form of the nonlinear beam pattern itself. Furthermore,

either the current noise measure or a more optimal one can be applied as a cost function to

blindly optimize the parameters of a masking algorithm.

Another potential area of inquiry is more practical in nature: an examination of the
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tradeoffs between complexity and accuracy. Although the model is, in most cases, com-

putationally simple, the dependence on averaging over joint distributions does create the

potential for great complexity when multiple variables are involved (as was discussed in Sec-

tion 3.4.4). It could well be that the number of necessary calculations can be reduced in an

intelligent way that minimizes the impact on the descriptive power and predictive accuracy

of the resulting nonlinear beam patterns.

64



Chapter 4

Can Masking Be Improved?

This chapter focuses on improving the performance of T-F masking algorithms. Section 4.1

begins by examining some of the current shortcomings of masking algorithms and identifying

a few potential areas of improvement. Section 4.2 focuses on improving the familiar two-

channel version of masking, while Section 4.3 details attempts to develop a method to extend

masking to arrays of more than two elements.

4.1 Strengths and weaknesses of masking

Two-channel masking algorithms have been shown to substantially improve the quality of

speech in the presence of reverberation and interference [27, 28]; we have also confirmed this

via experimentation. With a two-microphone configuration, we have also found masking

to be superior to linear beamforming, especially in the presence of reverberation. With

only two elements, linear beamforming techniques produce sidelobes that are too large to

properly suppress off-target interference components across the wide range of frequencies

that comprise speech signals (see Figure 3.9), whereas masking is able to achieve consistent,

if not stellar, suppression outside the “cone of acceptance” (see Figures 3.3 and 3.6). In

addition, our implementation of two-channel masking includes a step where both input

signals are masked and then averaged before reconstruction; this is itself a beamforming
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operation. The computational cost of masking, while higher than linear beamforming, is not

a significant issue; case in point, even when implemented in MATLAB, PDCW runs at a

small fraction of real time and its computational cost is typically dwarfed by the cost of the

speech recognition (or other pattern recognition task).

However, there are many issues with masking that limit its usefulness. One obvious area

is the significant gap between the quality of the ouptut of a masker and the original, clean

signal; e.g., compare the recognition accuracy of PDCW-processed speech in the presence

of even a single interferer to that of clean, unprocessed speech in Figure 3.12. Closing this

gap is, of course, the overarching goal of all array processing research. Section 4.2 details

attempts to improve the performance of T-F masking. There are also more immediate

concerns, especially when masking is compared to linear beamforming. Results of previous

studies using these techniques (e.g., [22, 23, 25, 26, 27, 28, 32]) suggest that while T-F

masking techniques typically perform well in their intended target scenarios, they do not

generalize as easily or degrade as gracefully as linear beamforming techniques. One example

is sensitivity to steering errors. While, in theory, modifying PDCW to target sources off

the array’s broadside axis should be as simple as shifting the received signals, in practice

this degrades performance significantly, especially when presented with real-world signals as

opposed to simulated data. Furthermore, the adaptive processing techniques used in linear

beamforming have yet to find competitive counterparts in masking; although attempts have

been made with some success (e.g., [43]), the flexibility and robustness of linear beamforming

when faced with unknown, and even moving, signal source locations is unmatched.

Perhaps the most glaring problem with masking is scalability; the performance of linear

processing techniques can be improved simply by using larger arrays, while nonlinear pro-

cessing techniques typically do not scale well, if at all. Indeed, while there are large bodies

of literature on single- and dual-channel masking, multi-channel masking seems to have been

comparatively neglected. This is mainly because there are very few intuitive approaches to

scaling these algorithms; this issue will be discussed in more detail in Section 4.3.
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4.2 Improving two-channel masking

As stated in Section 4.1, even in a two-microphone configuration with no steering errors or

other such issues, there remains room for improvement. Of the three main building blocks of

a T-F masking algorithm – namely, time-frequency analysis, mask estimation and reconstruc-

tion (see Figure 2.5) – we will focus on the latter two and attempt to devise modifications

that will lead to the desired performance improvements. As always, we are using PDCW as

a launching point, as it is a relatively simple and intuitive, yet high-performing, version of

T-F masking.

4.2.1 Mask estimation

Recall that in PDCW the left-right phase difference thresholding of (2.11) and (2.12) are

used to approximate the oracle mask introduced in (2.9). This leads to two potential causes

of mask suboptimality: the oracle mask as defined could be suboptimal and/or the phase-

difference-based estimation could be error prone.

Fortunately, the latter is easily quantifiable. We experimented with the same configura-

tion used to produce Figure 3.12, with a single interferer at various SIR levels. Since the

degradation (i.e., speech-on-speech interference) is simulated, the actual clean target and

interfering signals are known. The oracle mask can therefore be constructed from their spec-

trograms as per (2.9); for the remainder of this section, this will be referred to as M [n, k].

An actual mask is also obtained using PD, as per (2.11); this will be named M̂ [n, k]. These

two are then compared to calculate a mask estimation error for that particular utterance

(this is pre-smoothing, so the masks are binary):

eM =
〈〈
M [n, k]⊕ M̂ [n, k]

〉
k

〉
n

(4.1)

where ⊕ denotes exclusive-or and 〈·〉n denotes averaging over n. These per-utterance errors

can then be averaged across utterances created using similar SIR values. The result is that,

67



consistently across SIR, the binary PD mask M̂ [n, k] estimates the oracle mask M [n, k] with

less than 5% error.

The two masks (oracle and PD-based) can also be used to calculate an error power metric

akin to that of (3.3) and (3.9). Given


Y [n, k] =

1

2
(X1 [n, k] +X2 [n, k])M [n, k]

Ŷ [n, k] =
1

2
(X1 [n, k] +X2 [n, k]) M̂ [n, k]

(4.2)

(i.e., the output of binary masking using the oracle and PD-based masks, respectively), the

error power metric would be

ε =

√〈∑
k

∣∣Y [n, k]− Ŷ [n, k]
∣∣2〉

n√〈∑
k

∣∣Y [n, k]
∣∣2〉

n

(4.3)

where the error is scaled by the rms error value of the output signal spectrogram itself (the

denominator of (4.3)). This error turns out to consistently lie around 1-2%, across various

input SIRs. These results indicate that mask estimation itself is not a significant source of

performance degradation.

As for suboptimality of the oracle mask itself, it is clear that (2.9) as defined is the mask

that minimizes total output noise as defined in (3.9). However, it can still be experimented

with; the oracle mask definition can be modified to accomodate an optimal SIR threshold

other than 0 dB:

M [n, k] =


1

|S [n, k]|2

|I [n, k]|2
> SIRT

0 otherwise

(4.4)

It turns out, however, that the optimal threshold is indeed 0 dB. We have run speech

recognition experiments using PDCW to process simulated data, replacing the mask esti-

mation stage of PDCW with (4.4) with various threshold SIRs. The target and interfering
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utterances are drawn randomly from the DARPA Resource Management (RM1) database,

with the target/interfering utterance pairing maintained across experimental scenarios. The

recognizer is CMU Sphinx-3, with its acoustic models trained on clean speech from the RM1

training set. Experiments were performed at nominal input SIRs of 0, 10 and 20 dB and

threshold SIRs ranging from -9 to 30 dB, in increments of 3 dB, for each scenario. We found

that, across all these scenarios, SIRT = 0 dB is consistently the best choice – i.e., produces

the lowest word error rate1.

In closing, we note that while current mask estimation techniques seem nearly optimal,

these observations and conclusions do not hold in reverberant environments. On one hand,

the oracle mask is not so easy to define in reverberation. Ideally, reverberant signal compo-

nents that arrive early enough to reinforce the signal would be kept and later reverberations

would be rejected; however, the exact cutoff point is both difficult to determine and fre-

quency dependent. On the other hand, a phase-difference-based estimator for such a mask

would not be as simple as (2.11). This can also be observed experimentally; in the absence

of reverberation, as long as the algorithm’s threshold azimuth is less than the interferer

azimuth, changes in the threshold do not noticeably impact performance. With reverbera-

tion, however, the dependence is significant; the optimum φT in reverberation is noticeably

smaller than halfway between the signal and interferer, which is consistent with rejecting a

number of the reverberant signal components as well. Thus, optimal mask generation for

reverberation remains an open question, which will be discussed further in Section 4.4.

4.2.2 Reconstruction and feature extraction

As mentioned in Section 2.3.1 and discussed in [28], the smoothing of the binary masks

before application (i.e., the “channel weighting” step) provides a noticeable improvement

to recognition accuracy, not to mention subjective signal quality and human intelligibility.

This performance gap is also on display in Figure 3.12; note the difference between the lines

1This, incidentally, also supports the use of the particular noise metric used in Chapter 3, as it is minimized
using this particular oracle mask.

69



marked “PD” and “PDCW”. This is due to the sharpness of the spectrograms produced

by binary masking; that type of rapid signal level increase and decrease across time and

frequency is unnatural and distortive. This suggests that other reconstruction methods, per-

haps also aimed at producing “natural”-looking spectra, might improve signal quality even

more. The following sections will describe attempts to improve the performance of PDCW

by modifying or replacing the channel weighting and/or the overlap-add reconstruction step.

Missing feature reconstruction

One approach is to mask the signal using the binary mask (i.e., remove the smoothing step),

then apply a missing feature reconstruction method to the resulting spectrogram. There

are numerous such methods in the open literature, all based on reconstructing features that

conform to what one would expect of realistic speech features; they differ in the metrics

used to measure said realism, and of course in the chosen method of filling in the absent

features. To experiment with this approach, we have chosen a method developed by Raj,

et al. [44] that is based on clustering spectral vectors. We found that doing so consistently

improves performance over PD (i.e., binary masking). When compared to PDCW (i.e.,

smoothed masking), however, the improvement only comes at higher SIR levels. As an

example, Figure 4.1 shows the results of this experiment run on the same configuration as

that of Figure 3.12: A single target and single interferer, located at φ = 60◦, at various

nominal input SIRs, with the masker using an azimuth threshold of φT = 20◦. The database

and recognition details are as described in Section 3.3.4. Looking at Figure 4.1, the benefit

of using cluster-based missing feature reconstruction is not negligible at 20 or 15 dB SIR

(about 10% relative WER reduction in this scenario at 20 dB), but the missing feature

reconstruction falls behind the existing reconstruction method at lower SIRs.

This behavior can probably be explained as follows: At higher SIR levels, there is more

of the original spectrogram on which to base the reconstruction, whereas at lower SIRs, large

swaths of the signal are masked out (and therefore, not available to the algorithm). The
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Figure 4.1: Word error rates (WER) of PD, PDCW and PD-masking with cluster-based
reconstruction

cluster-based reconstruction algorithm, like most of its peers, tends to perform poorly when

confronted with large areas of missing data; it is much better suited to filling in gaps that

are spread uniformly throughout time and frequency [44, 45].

There are other issues with using this type of reconstruction method: not only does it

greatly increase the computational complexity of the algorithm, it also includes a training

phase. While it is true that a speech recognition application will require heavy processing

power and a training database of clean speech anyway, there are scenarios where it can be

an encumbrance for the front end to require training as well; e.g., mobile applications where

the front end is on the device but feature vectors are sent to a server for recognition.
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Direct feature extraction

An alternative approach is to bypass reconstruction altogether. In a speech recognition ap-

plication, the reconstructed time-domain speech signal is just passed to a feature extraction

algorithm (usually MFCC processing [1]) anyway, so aside from demonstrations to human

listeners, there is no real value in reconstructing a time-domain waveform. Figure 4.2 illus-

trates the reconstruction phase of masking, followed by the MFCC feature extraction phase

of a typical speech recognizer.

Replacing the reconstruction and the following feature extraction steps with a feature

extraction directly off Y [n, k] would, at the very least, save the computational cycles devoted

to the OLA reconstruction of the masker and the initial STFT of the feature extraction. The

procedure here involves passing the masked signal Y [n, k] to the post-STFT stages of MFCC

processing; namely, power calculation (i.e., magnitude-squaring), mel-frequency-scale power

Figure 4.2: Reconstruction of T-F masking, followed by MFCC feature extraction
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Figure 4.3: Direct MFCC-style feature extraction from the masked signal

mapping, a logarithm and finally the discrete cosine transform (DCT). Figure 4.3 illustrates

this approach.

As Figure 4.4 shows, this approach also proves to be mildly beneficial in terms of per-

formance. The results are from experiments in a scenario identical to that of Figure 4.1,

with one exception: the standard MFCC processing is now replaced with the direct feature

Figure 4.4: Word error rates (WER) of PD and PDCW with reconstruction vs. direct
MFCC-style feature extraction
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extraction implementation detailed above. We experimented with both the binary mask

(PD) and the smoothed mask (PDCW); in each case, direct MFCC reconstruction provided

a slight advantage over the corresponding algorithm with its orginial OLA synthesis. This

is likely due to the small discontinuities created across time during the masking operation;

if the windowing operation of the STFTs of the masker and subsequent feature extraction

are not perfectly aligned, this will create small spectral differences between Y [n, k] and the

output of the feature extraction’s STFT operation, which in turn will harm performance.

Comparing the results from Figures 4.1 and 4.4, we can see that direct feature extrac-

tion provides a more consistent performance boost than missing feature reconstruction, if

a slightly lower one at high SIRs. As explained, direct feature extraction is also far less

computationally costly. Given these advantages, focusing on alternative direct feature ex-

traction methods seems to be the better investment of time and resources in improving the

performance of maskers. Although MFCC features, on which we have based Figure 4.3, are

widely used in speech recongition front-ends, there are a number of different features that

have proven more robust to various adverse environmental conditions (e.g., [33, 46, 47]).

Of these, PNCC features are a prime candidate for direct feature extraction from masked

speech. They have been shown to be high performing in noisy environments; they are also

one of the feature types based on the gammatone filterbanks that have shown to improve

performance when used as kernel functions for smoothing the binary masks (i.e., channel

weighting – see Section 2.3.1).

PNCC processing, described in [33] and detailed in [48], follows the same general flow of

MFCC processing, but differs in the following ways:

� The frequency response of the ERB-based gammatone filters [29, 30] are used instead

of MFCC’s triangular mel-scale filters.

� A power-law nonlinearity is used instead of MFCC’s logarithmic nonlinearity. In [33],

the exponent is chosen to be 1/15 after manual tuning; we have used the same.
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Figure 4.5: Direct PNCC-style feature extraction from the masked signal

� The introduction of intermediate subsystems between the two steps mentioned above.

These subsystems include:

– A calculation of average power over longer frame durations; we have used the

same 80-ms duration also used in mask estimation.

– “Asymmetric Noise Suppression”, which uses an “asymmetric nonlinear filter” to

estimate acoustical background noise levels over these longer durations, and a

form of temporal masking that tracks signal envelope onsets, crudely mimicing

the auditory system.

– Mean power normalization, necessitated by the modification of the nonlinearity.

Building these subsystems into our masking algorithm as a direct feature extractor results

in the system illustrated in Figure 4.5.

Figure 4.6 presents the results of using this technique in speech recognition experiments

in the same scenario as Figure 4.1. The results of MFCC-style feature extraction (from
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Figure 4.6: Word error rates (WER) of PD and PDCW with reconstruction vs. direct
MFCC-style and PNCC-style feature extraction

Figure 4.4) are also included for ease of comparison.

As Figure 4.6 shows, PNCC-style feature extraction improves upon the performance of

MFCC-style feature extraction. Note that at higher SIRs (such as 20 dB) the performance

of PDCW masking with PNCC-style feature extraction approaches that of clean speech; i.e.,

the gap is being closed. Lower SIRs, of course, still have a way to go. This improvement in

performance is not unexpected; the motivation for using PNCC-style feature extraction in

the first place was that PNCC features have been painstakingly designed to be more robust

to noise and degradation than MFCC features. In fact, despite its relative complexity,

PNCC is gaining wide recognition and acceptance as a preferred feature extraction method

in situations where noise robustness is a factor.
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4.3 Multi-channel masking

Linear beamforming techniques are generally well formulated and easily adaptable to various

array geometries, including different numbers of microphones. Of course, array geometry

does affect the characteristics and behavior of the array processing. In particular, increasing

the array size (i.e., number of sensors) increases the number of free parameters, which in

turn allows for narrower beams, better sidelobe suppression and overall better performance

– compare the sidelobes in Figure 2.4 (a four-element array) to Figure 3.9 (a two-element

array). Masking algorithms, on the other hand, derive no such benefit from increasing the

array size, in large part because the formulation is not as robust and there is not an obvious

extension from two microphones to many. The remainder of this section explores options for

scaling masking algorithms; this material forms the basis for [49].

4.3.1 Mask combination

In two-channel masking algorithms like PDCW, phase difference information from a pair of

microphones is used to estimate the mask, which is then applied to the signal. Perhaps the

most intuitive generalization of masking to a larger array would then be to apply the same

procedure to each pair of microphones and combine the masks. In an array with P elements,

there will be
(
P
2

)
pairs. One option for mask combination is simple averaging:

M [n, k] =
1(
P
2

) (P2)∑
p=1

Mp [n, k] (4.5)

where Mp [n, k] is the mask estimated by the p-th pair. Note that now, with pairs at different

locations, the target signal will not be on the broadside axis for each pair, which means that

the cone of acceptance will have to be around some nonzero azimuth. Assuming that the

target direction and array geometry are known, this target azimuth can be calculated for
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each pair. Naming this quantity φp, (2.12) can be modified for this scenario as below:

Mp [n, k] =


1 γ (ωk;φp − φT ) < θp [n, k] < γ (ωk;φp + φT )

0 otherwise

(4.6)

where the γ (ω;φ) function is defined in (2.12). Conceptually (4.6), adjusts the phase thresh-

olding of (2.12) to accept signals with a perceived DoA of at most φT away from the correct

target direction φp, rather than zero. The averaged mask from (4.5) is then smoothed (see

the discussion on channel weighting in Section 2.3.1) and applied to one of the input signals.

Unfortunately, it turns out that this approach is not particularly beneficial. For example,

Figure 4.7 (red squares) illustrates the performance, in terms of WER, of the procedure out-

lined above when used in uniformly-spaced line arrays of different sizes. For comparison, we

have also used adaptive beamforming (green triangles) on the same arrays; the beamform-

ers are designed to have a response of unity in the target direction with adaptive sidelobe

cancellation based on the MMSE criterion [5]. In all cases the element separation is 4 cm

and the interferer is at φ = 60◦ with an SIR of 10 dB. The threshold azimuth of the mask

estimation is set at φT = 15◦. To keep the comparison with linear beamformers fair, the en-

vironment is chosen to be reverberant, with a reverberation time of 200 ms. This is because

adaptive beamforming can easily suppress a single interferer, at the expense of creating large

sidelobes in other directions; the existence of reverberation precludes this type of solution,

as large sidelobes in any direction are detrimental. The reverberation is simulated, using

Habets’ implementation of the image method [9], in a featureless room with dimensions of

8×5×3 meters with a uniform surface absorption coefficient selected to result in the desired

reverberation time. The beamformers are first allowed to converge and then the coefficients

are used for the testing runs. The database and speech recognition details are as described

in Section 3.3.4.

Figure 4.7 demonstrates the superiority of the scaling of linear beamforming. The reason

is that the masks generated by the different microphone pairs are highly correlated with each
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Figure 4.7: Word error rates (WER) of multi-channel PDCW with mask averaging vs. linear
beamforming

other. To examine this, the correlation coefficient between the masks produced by any two

microphone pairs can be calculated:

ρpq =

〈
〈(Mp [n, k]− µp) (Mq [n, k]− µq)〉k

〉
n√〈〈

(Mp [n, k]− µp)2
〉
k

〉
n

〈〈
(Mq [n, k]− µq)2

〉
k

〉
n

, µp =
〈
〈Mp [n, k]〉k

〉
n

For example, in the experiments described above, even when using the ten-microphone linear

array, the correlation coefficients were all greater than 0.92. The implication is that the

addition of extra pairs does little to change the masks generated by a single pair, which

in turn leaves performance largely unaffected. This is hardly surprising; as discussed in

Section 4.2.1, the mask estimation method is quite accurate to begin with. In arrays with

different geometries (e.g., with elements arranged around a circle), the situation does improve

slightly but masking is still greatly eclipsed by beamforming.
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4.3.2 Two-channel masking with sub-array beamformers

With the failure of mask combination, other methods must be sought to extend masking to

multiple channels. One idea is to combine linear beamforming and two-channel masking by

performing two-channel masking on signals other than sensor inputs. In an array with P

elements, we divide the array into two (symmetric, if possible) segments, called “sub-arrays”.

A linear beamformer is designed and applied to each of these sub-arrays; for simplicity, if

the sub-arrays can be chosen symmetrically the same set of beamforming filters is used for

both. The outputs of the two arrays are then combined using basic two-channel masking.

Figure 4.8 illustrates the general idea of this approach, on an array with six sensors.

Mathematically, the outputs of the sub-array beamformers can be expressed as (see (2.8))


V1
(
ejω
)

=
∑
p∈A1

Xp

(
ejω
)
G

(1)
p′

(
ejω
)

V2
(
ejω
)

=
∑
p∈A2

Xp

(
ejω
)
G

(2)
p′

(
ejω
) (4.7)

where Xp (ejω) is the received signal at the p-th sensor, p′ represents the corresponding index

Figure 4.8: Masking with sub-array beamforming system
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on the sub-array set and A1 and A2 represent the sub-array index sets:

A1 ∩ A2 = ∅ ∧ A1 ∪ A2 = {1, 2, . . . , P}

where P is the number of elements in the array. Mask estimation and application are then

performed on V1 [n, k] and V2 [n, k], the STFTs of V1 (ejω) and V2 (ejω), as per Section 2.3.1.

There are a number of details that must be considered when implementing this idea.

One is the geometry of the array and the selection of sub-array elements. We have not yet

developed a systematic, optimal method of division, but have instead operated on a case-

by-case basis. For example, for line arrays with even number of sensors, the sub-arrays are

designated as per Figure 4.9. This way, the geometric separation between the two sub-arrays

is equal to the separation between adjacent sensors. In (4.7), this means

A1 = {1, 3, 5} ∧ A2 = {2, 4, 6}

Figure 4.9: Staggered division of a six-element line array into sub-arrays

The next issue is sub-array beamformer design. The use of adaptive beamforming be-

comes difficult here, as adaptation in the presence of the masker is not straightforward and

requires further study. For this reason, and due to the necessity of phase compensation

mentioned below, we have elected to use fixed sub-array beamformers that have all been

designed via adaptive beamforming in a stand-alone scenario and then applied to our test

configurations. For example, in the configuration from Figure 4.9, a three-element array
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with elements spaced at 2d is placed in the target configuration and an adaptive beam-

former is allowed to converge. Because the subarray selection of Figure 4.9 is symmetric,

and we are assuming the signal sources are in the far field, this beamformer is then used

as the sub-array beamformer on both sub-arrays (i.e., G
(1)
p′ (ejω) = G

(2)
p′ (ejω) = Gp′ (ejω)).

Incorporating these specifications allows us to rewrite (4.7) as below:


V1
(
ejω
)

=

P
2∑

p′=1

X2p′−1
(
ejω
)
Gp′
(
ejω
)

V2
(
ejω
)

=

P
2∑

p′=1

X2p′
(
ejω
)
Gp′
(
ejω
) (4.8)

The remaining issue is phase compensation. In regular PDCW, the phase difference

caused by a source at a given aziumth is simple to calculate (see (2.12)). Now, the signals

will first be passed through a pair of beamformers; the phases at the various elements will

be different and produce a phase difference between the outputs of sub-arrays 1 and 2

that will not necessarily follow (2.12). However, in the case of equally-spaced line arrays,

since the corresponding sensors in the two sub-arrays are always exactly d apart, if the two

beamformers are identical, the difference will still boil down to γ (ω;φ). To demonstrate,

we calculate γA (ω;φ), the phase difference observed between V1 (ejω) and V2 (ejω) in the

presence of a single hypothetical source at azimuth φ, under the assumptions made so far:

First, looking at Figure 4.9, we choose the midpoint of the array to be the origin of

geometric coordinates and the phase reference for the received signal; i.e., the incoming

signal as observed at the origin will be named S (ejω). Assuming the sensors are numbered

1 through P from left to right, the position of sensor p will be
(
p− P+1

2

)
d. Thus, following

a logic similar to that of Section 2.1.1, the difference in travel time between the path from

source to midpoint and the path from source to sensor p is

τp =

(
p− P + 1

2

)
d

c
sinφ
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Hence, the signal received at each sensor will be a phase-shifted version of the signal as

received at the midpoint:

xp (t) = s (t− τp) = s

(
t−
(
p− P + 1

2

)
d

c
sinφ

)
⇒ Xp

(
ejω
)

= S
(
ejω
)
ejωfS(P+1

2
−p) dc sinφ (4.9)

This expression can be compared to the phase shift experienced by the interferer at φ in

(2.7). Substituting (4.9) back into (4.8), the outputs of the two sub-arrays become


V1
(
ejω
)

=

P
2∑

p′=1

S
(
ejω
)
ejωfS(P+1

2
−2p′+1) dc sinφGp′

(
ejω
)

V2
(
ejω
)

=

P
2∑

p′=1

S
(
ejω
)
ejωfS(P+1

2
−2p′) dc sinφGp′

(
ejω
)

⇒ V1
(
ejω
)

=

P
2∑

p′=1

S
(
ejω
)
ejωfS(P+1

2
−2p′) dc sinφejωfS

d
c
sinφGp′

(
ejω
)

= ejωfS
d
c
sinφ

P
2∑

p′=1

S
(
ejω
)
ejωfS(P+1

2
−2p′) dc sinφGp′

(
ejω
)

= V2
(
ejω
)
ejωfS

d
c
sinφ

⇒ γA (ω;φ) = ωfS
d

c
sinφ = γ (ω;φ)

As a result, the same formulation can be used to obtain the threshold azimuth when process-

ing the sub-array outputs with PDCW. In other geometries, this difference must be calculated

on a case-by-case basis with knowledge of the beamforming filters and array geometry.

Perhaps a more intuitive view of this system, which corroborates the result above, is the

following: The sub-array system can be viewed as identical to that of Figure 2.3, except that

now each of the two elements has its own directivity pattern (i.e., the beam pattern of the

respective sub-array). We have further assumed that the sub-arrays are chosen symmetrically
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and the beamformers assigned to the two are identical. Let us name this beam pattern

BA (ω;φ) and assume it is normalized so that BA (ω; 0) = 1 (i.e., signals coming from the

look direction are unaltered). Now we can determine the response of the sub-arrays to a

single source at azimuth φ:


V1
(
ejω
)

= S
(
ejω
)
ejωfS

1
2
d
c
sinφBA (ω;φ)

V2
(
ejω
)

= S
(
ejω
)
e−jωfS

1
2
d
c
sinφBA (ω;φ)

(4.10)

where signal phase is shifted at the input to each sub-array due to the spatial separation of

the two sub-arrays by d (as above, the midpoint of the array is assumed to be the phase

reference). Thus:

γA (ω;φ) = ∠V1
(
ejω
)
− ∠V2

(
ejω
)

= ∠
(
S
(
ejω
)
ejωfS

1
2
d
c
sinφBA (ω;φ)

)
− ∠

(
S
(
ejω
)
e−jωfS

1
2
d
c
sinφBA (ω;φ)

)
= ∠S

(
ejω
)

+ ∠ejωfS
1
2
d
c
sinφ + ∠BA (ω;φ)− ∠S

(
ejω
)
− ∠e−jωfS

1
2
d
c
sinφ − ∠BA (ω;φ)

= ωfS
1

2

d

c
sinφ−

(
−ωfS

1

2

d

c
sinφ

)
= ωfS

d

c
sinφ = γ (ω;φ)

Figure 4.10 (blue diamonds) shows the performance of this approach, compared to the

mask combination method of Section 4.3.1 with the same array, simulated environment,

database and recognizer. In these experiments, the beamformer used in both sub-arrays is

designed beforehand in a standalone scenario via adaptive sidelobe cancellation based on the

MMSE criterion; once the beamformer converges, the resulting coefficients are used in the

sub-array system. As Figure 4.10 demonstrates, the use of sub-array beamformers greatly

improves the scalability of masking, but it still falls somewhat short of linear beamforming.

However, the “crossover point” where linear beamforming starts out-performing masking has

now been moved up to about 4 sensors.
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Figure 4.10: Word error rates (WER) of multi-channel PDCW with mask averaging and
PDCW with sub-array beamforming vs. linear beamforming

4.3.3 Post-masking

The idea of a masking/beamforming hybrid introduced in Section 4.3.2 holds promise. The

difference with linear beamforming, however, is still significant; especially so if we take into

account the fact that there are many beamforming techniques that outperform the one used

for comparison in Figure 4.10 [4, 5]. The truth is that the sub-array division approach suffers

from two major weaknesses. The first is that the beamforming, operating at the sub-array

level, does not make use of the full array size. The second is that the mask estimation is

based on the outputs of the sub-arrays. Since the phase difference information has been

distorted by the beamforming stage, the mask estimation will be using degraded data.

A different approach to the masking/beamforming hybrid potentially solves both these

problems. The mask is estimated directly from the sensor inputs using the pairwise mask

combination method of Sec. 4.3.1; i.e., each possible pair of sensors produces a maskMp [n, k],
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according to (4.6), which are then combined using (4.5) to produce a single mask M [n, k].

This mask is put aside, while all the signals are passed to a linear beamformer operating on

the full array:

V
(
ejω
)

=
P∑
p=1

Xp

(
ejω
)
Gp

(
ejω
)

The mask is then smoothed according to the channel weighting discussed in [28] and men-

tioned in Section 2.3.1 (replace “X” in those equations with “V ” as defined above) and

applied to the output of the linear beamformer (a single channel):

Y [n, k] = V [n, k] M̃ [n, k]

Figure 4.11 illustrates this approach, which will be named “post-masking” for the obvious

parallels to the post-filtering techniques (e.g., [50, 51, 52]) that inspired it. In post-filtering,

the array inputs are used, pre-combination, to design an LTI filter which filters the output

of a beamformer; in post-masking, the array inputs are used to estimate a T-F mask which

is then applied to a beamformer’s output.

Figure 4.12 (orange circles) shows the performance of this approach, compared to the

Figure 4.11: Beamforming with post-masking system
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Figure 4.12: Word error rates (WER) of PDCW post-masking vs. sub-array beamforming
and mask combination

methods of Sections 4.3.1 and 4.3.2. The array, simulated environment, database and rec-

ognizer are identical to the setup of those experiments. As was the case with the sub-array

beamforming system, due to the complexity of the interplay between the adaptive conver-

gence of the beamformer and the (time-varying) masking operation, the beamformers are

first allowed to converge in a training run and then used in the post-masking system as con-

stant beamformers. In fact, the beamformer used for the post-masker and for the straight

beamformer (green triangles) are identical. As can be seen, the post-masking system out-

performs the straight MMSE beamformer, although the gap closes as the number of sensors

increases. Because the beamformers are identical, the difference between the green and or-

ange lines can be interpreted as the contribution of the post-masking system. It seems that

this contribution diminishes as the performance of the beamformer itself improves; this will

be discussed in slightly more detail in Section 4.4.
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Figure 4.13: Word error rates (WER) of PDCW post-masking vs. Zelinski and McCowan
post-filtering

For a more fair comparison, Figure 4.13 compares the post-masking system to the Zelinski

[50] and McCowan [52] post-filters, operating with the same beamformers on the same data

sets. The post-masker outperforms even the McCowan post-filter, albeit slightly, while the

Zelinski post-filter lags behind the other systems – this is not unexpected, as the Zelinksi

post-filter is designed for noise fields with characteristics not entirely descriptive of simulated

reverberation.

As seen in Figures 4.12 and 4.13, the post-masking idea significantly improves on the

performance both of simple mask combination with no beamforming and of sub-array beam-

forming (the first iteration of the masking-beamforming hybrid approach). The advantage

over mask combination is clear; post-masking uses the same mask estimation and application

steps, with the addition of a powerful linear beamformer in between. This linear beamformer

accounts for most of the gain of post-masking over mask combination. The advantage over
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sub-array beamforming, on the other hand, is slightly more subtle. As explained at the

beginning of this section, in sub-array beamforming the beamformers each utilize only half

of the available elements; the beamformer in post-masking, on the other hand, operates

on the full array. Given the scaling of beamforming, this is a serious advantage in and of

itself – compare the performance of the beamformers with two, four and eight elements in

Figure 4.12. Furthermore, the mask estimation in sub-array beamforming is done after the

signals have already been processed by the beamformers. Since the beamformers themselves

make use of phase difference in their processing, the phase differences on the outputs of the

beamformers is a distorted version of the input phase difference; some of the accuracy of the

estimation is lost in the transition. In post-masking, on the other hand, the input signals

are used directly to estimate the mask before any phase distortion the beamforming may

introduce.

4.4 Conclusions

In this chapter, we approached the problem of improving the performance of a typical T-F

masking algorithm from a number of different angles. One area of focus was mask estimation;

Section 4.2.1 showed that the current mask estimation is quite accurate, the caveat being

that this statement is limited to non-reverberant environments. Reverberant environments,

however, are less straightforward to model; there is also more room for improvement in terms

of ASR performance. Recent studies [21] have shown that, in reverberant environments,

oracle binary masking using an SIR threshold (see (4.4)) greater than 0 dB significantly

improves human intelligibility: The higher the nominal input SIR, the higher the optimal

threshold SIR. If this result carries over to ASR, it could be used to improve the performance

of masking in reverberation. Using simulated data, where the clean signal and interferer are

known and the nominal SIR is tunable, a brute-force search can be attempted to determine

the optimal SIR threshold for a given input SIR in various levels of reverberation, similar to
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the experiments outlined toward the end of Section 4.2.1.

An alternative approach to improving mask estimation in reverberation is to look at

criteria other than phase difference. For example, the precedence effect [4] allows humans

to localize signals even in the presence of reverberation, and many algorithms, such as [53],

have emulated that functionality to enhance single-channel reverberated speech for ASR.

Such a criterion could also be used to emphasize mask estimation; for example, the phase

difference calculated in T-F cells that are determined to contain early echoes could be stored

and combined with the phase difference calculated in the following cells to temper the masks

estimated therein. This is, however, potentially quite a complicated problem.

Another area of focus was reconstruction of masked spectrograms. We discussed two

alternate approaches to OLA-style reconstruction in Section 4.2.2: resconstruction using

a missing-feature reconstruction technique (specifically, cluster-based reconstruction) and

the avoidance of reconstruction altogether in favor of direct feature extraction. Given the

results of cluster-based reconstruction vs. direct MFCC-style feature extraction, it seems

more reasonable to focus further improvement efforts on direct feature extraction. With

the introduction of PNCC-style feature extraction, we have improved the performance of

masking even further, at the cost of increased computational complexity. This increase in

complexity, however, is still dwarfed by the ensuing speech recognition operation.

As for the competition with linear beamforming, with two microphones, masking already

outperforms beamforming; the combination of improvements in feature extraction and mask

estimation mentioned above can widen that gap and establish masking as the go-to method

when processing the inputs from a microphone pair. This is, in itself, significant; the abun-

dance of stereo microphones and recordings and the expense of constructing larger arrays

make two-channel masking a prevalent use case. However, the performance of two-channel

masking in the more adverse environments (e.g., low SIR and/or heavy reverberation) is

still unsatisfactory; while linear beamforming can compensate for this by using larger ar-

rays, masking does not scale properly with array size.
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Section 4.3 explored approaches to improve the scalability of masking algorithms. Using

PDCW as a representative case of two-channel time-frequency masking algorithms, we have

demonstrated that this type of algorithm does not easily generalize to arrays of more than two

elements. However, masking can be combined with linear beamforming, which does scale

well to large arrays, to reap the benefits of T-F masking in these scenarios. Specifically,

using the novel post-masking system, we have successfully used T-F masking to enchance

the performance of a linear beamformer in arrays of up to ten elements. This post-masking

system is also shown to be competitive with the post-filtering techniques that partially

inspired it.

Now that these intial results have revealed the potential of post-masking, there is much

room for improvement. The question of optimal mask estimation for post-masking, for one,

is far from settled. While the method described in (4.6) does indeed estimate (2.9) relatively

accurately, it is not certain that (2.9) itself is a good target when using post-masking. The

linear beamformer in post-masking changes the SIR, so that on the beamformer’s output

the mask is likely far too conservative; i.e., too many cells are rejected. This, in turn, could

be the reason that the added benefit of this post-masking technique diminishes in larger

arrays; the better the beamformer, the less realistic the oracle mask. Given knowledge of

the beamformer’s beam pattern, the mask estimation stage of post-masking can be modified

to estimate a mask of the form discussed in Section 4.2.1 (and presented in (4.4)), where

the SIR threshold is set differently at different frequencies, in order to estimate the optimal

mask at the output of the beamformer, rather than the input. Moving forward, this seems

to be a reasonable first avenue of investigation.
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Chapter 5

Summary of Contributions

Chapters 3 and 4 described the two main thrusts of this work. The first is to develop analysis

methods that will help explain the behavior of masking algorithms more intuitively and ease

comparison and contrast between nonlinear and linear array processing techniques. The

second is to improve the performance of masking algorithms in order to make them more

competitive with linear beamforming. This chapter will summarize the main points, results

and conclusions of the previous two.

5.1 Analysis

Chapter 3 detailed the development of a model for the analysis of the behavior of masking

algorithms. The model produces intuitive, descriptive metrics – based loosely on the concept

of the beam patterns of linear beamformers – that can be viewed as nonlinear beam patterns.

Beginning with the single target, single interferer scenario (see Section 2.1.1), these beam

patterns are set to be functions of frequency, interferer location and input SIR. Two different

quantities are mapped as functions of these free variables, leading to two different versions of

the nonlinear beam pattern: the mask presence pattern BM (f ;φ;SIR) and the output noise

pattern BN (f ;φ;SIR). The patterns are calculated by examining the sources of randomness

in the mask estimation process at the level of individual time-frequency cells. Each source is
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modeled as a random variable with an appropriate distribution, which are then appropraitely

transformed and averaged to produce the patterns above. It turns out that, in addition to

being intuitive, these metrics are relatively predictive of the performance of the algorithm

under analysis.

Although the initial model is designed for a limited use case, extensions can also be

developed. To demonstrate this, several other scenarios are considered and the model is

adapted to analyze the behavior of the masking algorithm in each one. These scenarios

include:

� Different signal types (Section 3.4.1)

� Independent noise at the sensors (Section 3.4.2), which produces patterns of the form

B (f ;SNR)

� Multiple interfering sources (Section 3.4.3); with one target signal and L interferers,

this produces patterns of the form B (f ;φ1, φ2, . . . , φL;SIR1, SIR2, . . . , SIRL)

� Reverberant environments (Section 3.4.4), producing patterns of the form B (f ;RT60)

The nonlinear beam patterns developed herein represent a novel method for the analysis

and visualization of the behavior of masking algorithms. Since the analysis is based solely

on probabilistic models, it alleviates the need for costly and time-consuming large-scale data

processing. It allows masking systems to be studied independently of signal database and

other processing steps, including the pattern recognition task (e.g., speech recognition) for

which these algorithms typically form the front end – factors that introduce a great deal of

variability into the current analyses and comparisons of masking techniques. These models

and the patterns they produce can be used to compare different variations of masking –

e.g., they can be used to tune the parameter(s) of an algorithm before any actual data

is processed. They can also be used to compare the behvavior of a specific algorithm in

different circumstances – compare Figures 3.6 through 3.8 or the various scenarios depicted

in Figure 3.29.

93



5.2 Improvements

Chapter 4 detailed attempts to improve the performance of masking algorithms, in an ef-

fort to make them more competitive with linear beamforming approaches. The problem is

approached from a number of different angles. One area of focus is mask estimation; it is

established (Section 4.2.1) that the current mask estimation method is quite accurate, the

caveat being that this statement is limited to non-reverberant environments.

Another area of focus is the reconstruction of masked spectrograms. Two alternate ap-

proaches to OLA-style reconstruction are discussed in Section 4.2.2: resconstruction using a

missing-feature reconstruction technique (specifically, cluster-based reconstruction) and the

avoidance of reconstruction altogether in favor of direct feature extraction. It is argued that

while cluster-based reconstruction does provide a boost at higher input SIR values (when

the masking is less intrusive), this boost is inconsistent and comes at the cost of a greatly

increased complexity. On the other hand, direct MFCC-style feature extraction is both com-

putationally simpler and more consistent in its gain over the baseline. Given these points,

it seems more reasonable to focus further improvement efforts on direct feature extraction.

With the introduction of PNCC-style feature extraction, the performance of masking is con-

sistently improved even further, at the cost of somewhat increased computational complexity.

This increase in complexity, however, is still dwarfed by the speech recognition operation.

As for the competition with linear beamforming, with two microphones, masking already

outperforms beamforming; the combination of improvements in feature extraction and mask

estimation mentioned above can widen that gap and establish masking as the go-to method

when processing the inputs from a pair of microphones. This is, in itself, significant; the

abundance of stereo mics and recordings and the expense of larger arrays make two-channel

masking a prevalent use case. It would not be surprising to see spectro-temporal masking

become the dominant approach in two-channel scenarios in the near future. However, the

performance of two-channel masking in the more adverse environments (e.g., low SIR and/or

heavy reverberation) is still unsatisfactory; while linear beamforming can compensate for this

94



by using larger arrays, masking does not scale properly with array size.

Improving the scalability of masking algorithms is studied in Section 4.3. Using PDCW as

a representative case of two-channel time-frequency masking algorithms, it is demonstrated

that the this type of algorithm does not easily generalize to arrays of more than two elements.

However, masking can be combined with linear beamforming, which does scale well to large

arrays, to reap the benefits of T-F masking in these scenarios. Specficially, using the novel

post-masking system, we successfully use T-F masking to enhance the performance of a linear

beamformer in arrays of up to ten elements, even if the margin of performance gain diminishes

as the array size grows. To our knowledge, this is the first masking-based technique that

outperforms conventional adaptive beamforming techniques in larger arrays. While there

are other beamforming algorithms that outperform the post-masking system as described in

Section 4.3.3, we are hopeful that, with improvements to the mask estimation of post-masking

(see Section 5.3), the idea can be used in conjunction with any beamforming technique, no

matter how powerful its standalone behavior. This is a major practical benefit of using a

hybrid masking-beamforming approach; it benefits from advances in beamforming technology

as well.

5.3 Potential directions for future work

Both thrusts (the analysis and the performance improvement) provide opportunities for

continued investigation. On the analysis side, perhaps the most pressing area of inquiry is

the definition of the output noise metrics (e.g., (3.9) or (3.26)). Currently, these are chosen

to be simple and intuitive. It could well be, however, that simple addition of the distortion

terms in these equations is not the optimal combination when considering predictive accuracy.

Furthermore, either the current noise measure or a more optimal one can be applied as a

cost function to blindly optimize the parameters of a masking algorithm.

Another potential area of inquiry is more practical in nature: an examination of the
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tradeoffs between complexity and accuracy. Although the model is, in most cases, com-

putationally simple, the dependence on averaging over joint distributions does create the

potential for great complexity when multiple variables are involved (as was discussed in Sec-

tion 3.4.4). It could well be that the number of necessary calculations can be reduced in an

intelligent way that minimizes the impact on the descriptive power and predictive accuracy

of the resulting nonlinear beam patterns.

On the improvement side, beginning with mask estimation, there does seem to be room

for improvement in reverberant environments. Recent studies [21] have shown that, in re-

verberant environments, oracle binary masking using an SIR threshold (see (4.4)) greater

than 0 dB significantly improves human intelligibility: the higher the nominal input SIR,

the higher the optimal threshold SIR. If this result carries over to ASR, it could be used to

improve the performance of masking in reverberation. Experiments similar to those outlined

toward the end of Section 4.2.1 can be devised to examine this question. An alternative

approach to improving mask estimation in reverberation is to look at criteria other than

phase difference. For example, the precedence effect [4] allows humans to localize signals

even in the presence of reverberation, and many algorithms, such as [53], have emulated that

functionality to enhance single-channel reverberated speech for ASR. Such a criterion could

also be used to emphasize mask estimation.

As for the question of masking in larger arrays, the results from Section 4.3 have revealed

the potential of combining masking and beamforming into a hybrid system. Even though

this post-masking approach is already quite useful, there is much room for improvement. The

question of optimal mask estimation for post-masking, for one, is far from settled. While the

mask estimation method in use accurately estimates the oracle mask chosen as its target,

it is not certain that this target, itself, is optimal. The linear beamformer in post-masking

changes the SIR, so that on the beamformer’s output the mask is likely far too conservative;

i.e., too many cells are rejected. This, in turn, could be the reason that the added benefit

of this post-masking technique diminishes in larger arrays; the better the beamformer, the
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less realistic the oracle mask. Moving forward, this seems to be a reasonable first avenue of

investigation.

A potential solution to this problem is to allow for different mask estimation decisions

at different frequencies. Given knowledge of the beamformer’s beam pattern, the mask

estimation stage of post-masking can be modified to estimate a mask of the form discussed

in Section 4.2.1 (and presented in (4.4)), where the SIR threshold is set differently at different

frequencies, in order to estimate the optimal mask at the output of the beamformer, rather

than the input. In the context of PDCW, this might take the form of replacing the scalar

azimuth threshold φT in (2.12) with a function of frequency φT (ω); this would create a

different cone of acceptance at each frequency. A new problem will then be the design of this

frequency-dependent threshold. One intuitive starting point is to set the azimuth threshold

at each frequency according to the beam width of the underlying beamformer. The narrower

the beam width of the beamformer, the greater the suppression of the interference is likely to

be. Thus, a more permissive decision threshold at the beamformer’s input – i.e., a larger φT

– will likely produce a more realistic mask, pointing to an inverse relationship between the

beam width and the ideal width of the mask estimator’s cone of acceptance. Of course, this

is a very qualitative argument, but one that might provide the basic idea behind a greatly

improved version of post-masking.
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