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ABSTRACT 

 

This thesis addresses the cost-effectiveness of curtailing a wind farm to regulate the electrical 

grid frequency and the hurricane risk to offshore wind farms in the eastern United States. 

Additionally, this thesis presents a new method to generate long periods of non-stationary wind 

speed time series data sampled at high rates by combining measured and simulated data. 

Paper 1 calculates the cost of curtailing the power output of a wind farm to provide a reserve of 

power to regulate the electrical grid frequency, as required by grid operators in several countries with 

high wind-power penetrations. The simulations in Paper 1 show that it is most efficient to curtail a 

few turbines deeply rather than curtail all turbines in a wind farm equally. Compared to regulation 

prices in the Texas (ERCOT) market in 2007-2009, a curtailed wind farm would be cost-competitive 

with conventional generators less than 1% of the time.  

Paper 2 supports the simulations in Paper 1 by developing a method to combine long periods of 

low-frequency wind speed data with realistic simulated high-frequency turbulence. The combined 

time series of wind speeds retains the non-stationary characteristics of wind speed, such as diurnal 

variations, the passing of weather fronts, and seasonal variations, but gives a much higher sampling 

rate.  

Papers 3 and 4 estimate the hurricane risks to current designs of offshore wind turbines in the 

U.S. Paper 3 develops analytical probability distributions based on historical hurricane records to 

predict the distribution of damages to a single wind farm in a given location. Paper 4 uses simulated 

hurricanes with realistic statistical properties to estimate the correlated risks to all the wind farms in 

a region and estimate the distribution of aggregate losses over different periods. Both papers find 

hurricane risks are small for current turbine designs in New England and the Mid-Atlantic, but the 
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risks in the Gulf of Mexico and the Southeast are significant enough to warrant new, stronger 

designs. Hurricane risks could be reduced almost an order of magnitude by ensuring that turbines 

can continue yawing to track the wind direction even if grid power is lost. 
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Chapter 1: INTRODUCTION 
 

The United States pledged at the Copenhagen Accord to reduce greenhouse gas emissions 17% 

below 2005 levels by 2020 [1]. Electricity generation is likely to contribute significantly to that 

reduction because it accounts for approximately 40% of United States greenhouse gas emissions [2] 

and it is easy to regulate—there are relatively few power plants compared to the number of other 

greenhouse gas (GHG) sources and their emissions can be easily monitored. Greenhouse gas 

emissions from electric power can be reduce by capturing carbon released during combustion and 

sequestering it (“CCS”), by switching to technologies that produce less carbon per unit of electricity 

generated (e.g. natural gas turbines), or by generating electricity without combustion (e.g. nuclear, 

hydro, wind, solar). Since 2000, most new generation built in the U.S. has been either natural gas 

turbines or wind power. The wind power’s share of new generation peaked at 42% in 2009, when 

natural gas prices reached record highs [3]. 

This growth has been fueled by economics, uncertainty about future greenhouse gas policies, 

and a growing demand for renewable energy to meet Renewables Portfolio Standards that many 

states have enacted. The economics are particularly compelling-- in many cases, the cost of energy 

from a new wind power plant is less than that cost of energy from new power plants of most other 

types [4] and government subsidies make wind even more attractive. As a result, the capacity of wind 

generators installed in the United States has grown from approximately 8.7 GW in 2005 to more 

than 47 GW at the end of 2011 [3]. Nationally, approximately 3.3% of electrical energy is generated 

from wind power, but the penetration is much higher in some states [3]. For example, approximately 

22% of the electricity generated in South Dakota and 20% of the electricity generated in Iowa come 

from wind power [3].  



 2 

The work in this thesis investigates the feasibility of using current wind turbine designs in ways 

they were not intended for. Current wind turbines are designed to maximize power capture but grid 

operators in some areas are asking wind farms to curtail power output to regulate the electrical grid 

frequency. Similarly, current offshore turbines are designed to survive North Sea storms, but 

developers are considering installing them in areas prone to hurricanes, which can be stronger. We 

base our analysis of the feasibility of those activities on deep understanding of the characteristics of 

wind, which we feel is vital to understanding wind power. Each paper in this thesis incorporates 

sophisticated models of wind phenomena, from the spectrum of wind turbulence on short time 

scales to stochastic models of hurricane diameter. 

In Chapter 1 we calculate the cost-effectiveness of curtailing a wind farm to regulate the grid 

frequency. Current turbine designs are capable of curtailing their power output to create a reserve of 

power that can be used to regulate the grid frequency. We calculate the regulation capacity available 

and its cost by simulating the active power output of a curtailed 100-MW wind farm with a hybrid of 

real speed data and simulated high-frequency turbulence. The simulations allow us to estimate the 

size of reserve as a function of statistical properties of the wind speed and show that a curtailed 

wind farm can provide secondary frequency regulation capacity at a cost lower than conventional 

generators in less than 1% of the 1-hour periods studied. Although the operating cost of curtailing a 

wind farm for frequency regulation capacity is high, the capital cost of installing the hardware and 

software to enable curtailment for frequency regulation is low, so it is reasonable for grid operators 

to require wind farms to have the capability as long as it is rarely used. If a wind farm is curtailed, we 

find it is most efficient to deeply curtail a few turbines than evenly distribute the curtailment to all 

turbines. 

In Chapter 2 we develop a method to generate realistic wind speed data used in the simulations 

in Chapter 1. Certain applications, such as that in Chapter 1, require long periods (e.g. several years) 
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of wind speed data measured at short intervals (e.g. a few seconds). We develop a method to 

generate days to years of non-stationary wind speed time series sampled at high rates by combining 

measured and simulated data. Measured data, typically 10 - 15 minute averages, captures the non-

stationary characteristics of wind speed variation: diurnal variations, the passing of weather fronts, 

and seasonal variations. Simulated wind speed data, generated from spectral models, adds realistic 

turbulence between the empirical data. The wind speed time series generated with this method agree 

very well with measured time series, both qualitatively and quantitatively. The power output of a 

wind turbine simulated with wind data generated by this method demonstrates energy production, 

ramp rates, and reserve requirements that closely match the power output of a turbine simulated 

turbine with measured wind data. 

In Chapter 3 and Chapter 4, we look at the hurricane risks to offshore wind turbines built to 

current designs. Current offshore wind turbines are designed to withstand wind speeds equivalent to 

a Category 2 hurricane, but they are likely to be damaged by stronger winds. No offshore wind 

projects have been developed in the United States, but there are 10 offshore wind projects in the 

planning process (with an estimated capacity of 3.8 GW) [3] and more proposed [5], all in areas at 

risk from Atlantic hurricanes. These risks directly affect the cost of offshore wind power—

strengthening current turbine designs to better survive hurricanes will increase their costs and the 

cost of electricity they produce.  

In Chapter 3 we estimate the hurricane risk to a single wind farm in a specific location using 

probability distributions fit to historical hurricane records. We develop two analytical probability 

distributions for the expected number of turbines destroyed over the lifetime of a windfarm: one for 

the case where turbines are not replaced when destroyed and one for the case that turbines are 

replaced. Those distributions predict that the hurricane risk is low for current turbine designs in the 

Mid-Atlantic and New England, but is significant in the Gulf of Mexico where more intense 
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hurricanes are frequent. The risk can be reduced by designing turbines for higher maximum wind 

speeds, or by adding backup power to ensure the turbine nacelle can be turned to point directly into 

the wind even if grid power is lost.  

In Chapter 4, we estimate the correlated hurricane risk to all wind farms in a region using 

simulated hurricanes with realistic statistical properties. Using simulated hurricanes allows us to 

estimate the risks of events with return periods longer than the historical record (~ 100 years) and 

assess the correlation of risks between locations. We estimate the fraction of offshore wind power 

simultaneously offline and the cumulative damage in a region. In Texas, the most vulnerable region 

we studied, 11% of offshore wind power could be offline simultaneously due to hurricane damage 

with a 100-year return period and 5% could be destroyed in any 10-year period. Correlated damage 

to wind farms in a region is unlikely to significantly affect grid operations, but could cause large 

losses for companies insuring many wind farms in a region. We also use this method to re-calculate 

the results in Chapter 3 and find the risks lower than those estimated in Chapter 3, though still 

significant.  

The work presented in this thesis is intended to inform better policies and investment decisions 

for large-scale wind power development. Wind power is likely to make a significant contribution to 

reducing GHG emissions from electric power generation if it is developed and used cost-effectively.  

 

1.1 References 

[1] “Appendix I to the Copenhagen Accord - Quantified economy-wide emissions targets for 

2020 ,” United Nations, Copenhagen, FCCC/CP/2009/11/Add.1, Mar. 2010. 

[2] EIA, “Electric Power Annual 2010,” U.S. Energy Infomation Administration, Washington, 
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U.S. Energy Information Administration, Washington DC, Jul. 2012. 

[5] “OffshoreWind.net,” offshorewind.net. [Online]. Available: http://www.offshorewind.net. 

[Accessed: 18-Nov-2012]. 
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Chapter 2: THE COST OF CURTAILING WIND TURBINES 

FOR SECONDARY FREQUENCY REGULATION 

CAPACITY 
 

 

Abstract 

We analyze the cost of curtailing the active power output of a wind farm to provide secondary 

frequency regulation capacity. We calculate the regulation capacity available and its cost by 

simulating the active power output of a curtailed 100-MW wind farm with a hybrid of real speed 

data and simulated high-frequency turbulence. We find that a curtailed wind farm can provide 

secondary frequency regulation capacity at a cost lower than conventional generators in less than 1% 

of the 1440 1-hour periods studied. Although the operating cost of curtailing a wind farm for 

frequency regulation capacity is high, the capital cost of installing the hardware and software to 

enable curtailment for frequency regulation is low. For that reason, we suggest that it is reasonable 

that grid operators require wind farms to have the capability to curtail for frequency regulation, but 

we recommend that capability should be rarely used. 

 

 

 

This paper, written with Jay Apt, was submitted to Energy Systems in December 2012. 
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2.1 Introduction 

When large numbers of wind turbines are connected to the electrical grid, the rapid variability of 

wind power on short time scales can cause the grid frequency to deviate significantly from its 

nominal value [1], [2]. In the many regions where pumped hydroelectric storage is not available, the 

grid frequency is typically regulated by adjusting the power output of fast-ramping thermal 

generators, including gas turbines. Gas turbines can be expensive to operate and produce power less 

efficiently and with higher levels of NOx emissions when quickly varying their power output [3]. 

Other technologies are capable of compensating for the short-term variability of wind power, but 

they are either currently too expensive to be practical or cannot be scaled large enough to meet the 

rapidly-increasing penetration of wind power on the electrical power grid. Batteries and flywheels are 

technically well-suited to rapidly generating or absorbing power but commercially available units are 

too expensive at the moment on the scale needed for the penetrations of wind power expected in 

the next 10 – 20 years, although some promising systems are in the development phase. 

Hydroelectric power, and especially pumped hydro storage, is technically well-suited to rapidly 

changing power output and is relatively inexpensive. However, little new pumped hydro storage is 

being developed in the United States. 

Denmark, Ireland, Great Britain, and Germany now include requirements in their national grid 

codes that wind farms be able to increase or decrease their power output to aid in regulating the grid 

frequency [4]-[7]. The active power output of a wind farm can be decreased by reducing the 

aerodynamic efficiency of the wind turbines or completely shutting down some turbines, but it is 

impossible to increase the output of a wind farm beyond the power level provided by the current 

wind velocity. Operating a wind farm at less than the currently available wind capacity (“curtailing”) 

creates a reserve of power that allows power output to be increased on demand. Prior research has 

demonstrated the technical feasibility of curtailing the power output of a wind farm to regulate the 
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grid frequency [5], [8]-[10]. Those authors consider primary frequency regulation, in which a 

generator responds to frequency deviations in a few seconds. In this paper we consider secondary 

frequency regulation, in which the generator responds over tens of seconds or minutes to a dispatch 

signal from the grid operator. Other research has demonstrated the feasibility of curtailing a wind 

farm to reduce the variation in power output or limit power ramp rates [11]-[13]. Many modern 

wind farms already have most or all the equipment necessary to curtail for frequency regulation and 

many others can be retrofitted inexpensively. However, the revenue a wind farm foregoes due to 

curtailment may be greater than the cost of procuring the same frequency regulation from traditional 

sources such as gas turbines or hydroelectric power plants, or using an energy storage technology 

such as a battery to store a reserve of energy [9], [10]. 

We calculate the cost and quantity available of frequency upregulation capacity from a curtailed 

wind farm as a function of wind conditions. Upregulation capacity is the ability of a generator to 

increase its active power output to increase the grid frequency. We also compare the cost of 

upregulation from a curtailed wind farm to market prices for upregulation capacity (typically set by 

gas turbines), though grid operation rules do not generally allow wind power to bid into the market 

for upregulation capacity (or other ancillary services). This comparison gives a first-order estimate of 

how often grid operators may call on wind turbines for secondary frequency regulation.  

The method of curtailing a wind farm we consider in this research does not reduce the variability 

of the wind farm power output. We control the wind farm to maintain a constant difference Δ 

between the possible power Pposs and curtailed power Pcurt outputs, which provides only a reserve of 

power that the grid operator can use to regulate the supply of power to match demand. There is an 

alternative curtailment scheme that would reduce the variability of wind power by curtailing the 

wind farm output to a low fixed amount, but we do not consider it here because the cost would be 
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extremely high and there is still active debate about how much cost wind power variability imposes 

on a grid operator [14], [15]. 

2.2 Model 

We calculate the amount of upregulation capacity a curtailed wind farm can produce and its cost 

by simulating the operation of a 100-MW wind farm. The wind farm produces upregulation capacity 

by curtailing its power output a fixed amount below the power possible in given wind conditions; 

this creates a reserve of power than can be dispatched on demand. The wind farm we model 

consists of 20 5-MW pitch-regulated turbines that receive power setpoint commends from a closed-

loop wind farm controller that regulates the aggregate power output of the wind farm. The turbines 

are driven by wind speed data that is a hybrid of measured low-frequency wind speed data and 

simulated high-frequency turbulence. We analyze the curtailed power output of the wind farm, 

relative to its uncurtailed output, to calculate how much upregulation capacity it can produce and at 

what cost. 

We create 60 days of wind speed data sampled at 5 Hz for three locations in central North 

America listed in Table 2.1. We use the method developed by Rose and Apt to create the wind speed 

data as a hybrid of measured 10-minute data and simulated high-frequency turbulence [16]. This 

method simulates high-frequency turbulence to “interpolate” between empirical data while 

maintaining the statistical properties of the empirical data. In this research, the empirical data is 10-

minute mean and standard deviation of the wind speed measured at 50-meter height at three 

locations listed in Table 2.1. We randomly draw 60 days of data from each year and each location; 15 

days from each season where possible. The high-frequency turbulence is simulated using Veers’ 

method with the Kaimal spectrum recommended by the IEC wind turbine design standard [17], 

[18]. We create wind-speed time series for each turbine location in the wind farm. The wind speed 
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time series for each turbine location have identical mean wind speeds, but the turbulences are related 

to each other by the lateral coherence relation proposed by Sørensen et al. [19] We use only the 

lateral coherence relation because all the turbines are arranged in a straight line perpendicular to the 

wind. 

We use the hybrid wind speed data to dynamically simulate the power output of each turbine in 

a 20-turbine wind farm. Dynamically simulating individual turbines is an improvement on steady-

state turbine models that relate power output to wind speed with a simple power curve, or aggregate 

farm models that lump the entire farm into a single equivalent turbine [19]-[21]. Each turbine is a 

pitch-regulated 5-MW turbine with a 126-meter rotor designed by the National Renewable Energy 

Laboratory [22]. The turbine rotor is large enough that it has a smoothing effect on the wind 

turbulence at higher frequencies; we model this smoothing effect with the wind turbine admittance 

function (Fwt(f )) proposed by Sørensen et al. [19] The turbines in the wind farm are spaced 5 rotor 

diameters apart (630 m) in a line perpendicular to the wind direction; the wind direction is constant.  

The wind farm simulations are run using the SimWindFarm toolbox (version 0.8) for Matlab, 

developed as part of the Aeolus project [23]. The active power output of the wind farm is curtailed 

by a closed-loop controller that reduces the power setpoint for each turbine so the aggregate actual 

power output is a fixed number of megawatts below the possible power output; the Danish grid 

code refers to this control scheme as “Delta production constraint”, where Δ is the fixed difference 

between the possible and actual power outputs [24]. Individual turbines are not curtailed equally—

each turbine is curtailed proportional to its available power [25]. We do not allow the wind farm 

controller to command any wind turbine to curtail below its lower operating limit (LOL) of 20% of 

its rated power, though a turbine’s power output may go below that limit when the wind speed is 

low. 
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We simulate the power output of the wind farm for levels of curtailment 0 ≤ Δ ≤ 30 MW with 

identical wind inputs. To limit the number of simulations, we increase curtailment in one-megawatt 

steps up to 10 MW, two-megawatt steps up to 20 MW, and five-megawatt steps up to 30 MW. We 

repeat the simulations of all curtailment levels with 60 days of hybrid wind speed data described 

above. To generalize the results of these experiments, we repeat the simulations with five wind 

speed data sets of 60 days each, listed in Table 2.1: three sets of wind speed measurements from a 

wind farm site in west Texas in 2007, 2008, and 2009, a set of measurements from a site in the 

northern Great Plains of the U.S. in 2008, and a set of measurements from a site in Ontario, Canada 

in 2008.  

Table 2.1: Empirical wind speed data used to simulate wind farm power 

Location Period Mean wind 
speed 

Turbulence 
intensity (TI) 

Capacity 
factor 

West Texas 
29 Mar. 2007 – 8 Dec. 2007 

21 Dec. 2007 – 14 Dec. 2008 
25 Dec. 2008 – 1 Sept. 2009 

6.8 m/s 
7.2 m/s 
7.5 m/s 

13% 
13% 
13% 

29% 
33% 
35% 

Northern Great 
Plains (U.S.) 2 Jan. – 17 Dec. 2008 8.0 m/s 10% 41% 

Ontario (Canada) 29 Dec. 2007 – 20 Dec. 2008 6.7 m/s 12% 28% 

2.3 Analysis 

We calculate the amount of upregulation capacity that a curtailed wind farm can provide by 

retrospectively analyzing the wind farm simulations described in Section 2.2. The upregulation 

capacity R(k | Δ) that a wind farm can supply for given curtailment Δ in the kth dispatch interval of 

length T is the smallest difference between the uncurtailed (“possible”) power at time Pposs(t) and 

curtailed power at time Pcurt(t):  

  
( 2.1 ) 

for t in the kth period: kT ≤ t ≤ (k+1)T. 
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An example of data for this calculation are shown in Figure 2.1 for a dispatch interval of T = 

300 seconds and a curtailment of Δ = 5 MW. During most of the dispatch interval, the curtailed 

power Pcurt(t | Δ = 5) (green line) closely tracks the desired curtailment Pref(t) - Δ (dashed line), as 

shown at point A. However, Pcurt(t) (green line) is sometimes not curtailed as much as desired, as 

shown at point B. In this case illustrated by point B, the power output of several of the turbines in 

the wind farm reached the lower operating limit (LOL = 0.2 p.u.) and could not curtail further. The 

amount of available upregulation capacity R(k | Δ = 5) for the interval, shown as the shaded area, is 

limited by the smallest difference between Pposs(t) and Pcurt(t | Δ = 5) in that interval. Upregulation 

capacity R is always less than or equal to the curtailment Δ. We measure upregulation capacity in 

megawatts hours (MW-h), which is different from the unit of energy “megawatt hours (MWh)”. 

We analyze dispatch intervals T of 60 minutes and 15 minutes. Most power systems with 

markets for frequency regulation use a dispatch interval of 60 minutes, which means market 

participants bid an amount of regulation capacity they can sustain for the full 60 minutes. We test a 

dispatch interval of 15 minutes to determine whether a curtailed wind farm can better compete over 

shorter intervals. 
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Figure 2.1: Method for calculating the available regulation capacity. In this example, the 100 MW-capacity wind farm is 
curtailed by Δ = 5 MW, but the available regulation capacity R(k | Δ) is 3.9 MW. R(k | Δ) is the largest curtailment that 
can be maintained through the entire dispatch interval T, i.e. the smallest difference between the uncurtailed and curtailed 
power outputs of the wind farm. The limiting condition is shown at point B. Point A shows an example of the turbines 
tracking their power limit setpoints perfectly—the actual curtailed power is 5 MW less than the uncurtailed power, as it is 
commanded to be. 

The upregulation capacity available in a given dispatch interval, calculated in ( 2.1 ) cannot be 

known in advance without perfect forecasting of future wind conditions. Perfect foresight is an 

unrealistic assumption, but it sets an upper bound on the amount of regulation capacity available 

and the opportunity cost, in terms of energy production lost, to produce it. The results in Section 2.4 

relax this assumption slightly—there we assume perfect forecasting of only the mean and standard 

deviation of wind speed in a given dispatch interval, rather than perfect forecasting of the wind 

speed at every moment. 

We calculate the cost of upregulation capacity from a curtailed wind farm by retrospectively 

analyzing the wind farm simulations described in Section 2.2. The average cost of upregulation 

capacity AC(k | Δ) in the kth dispatch interval with curtailment Δ is the energy generation lost in 
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that interval due to curtailment Eloss(k | Δ) divided by the quantity of upregulation capacity provided 

during that interval R(k | Δ): 

  ( 2.2 ) 

where Eloss is measured in MWh and AC is measured in MW-h/MWh. We calculate the marginal 

cost of upregulation capacity MC(k | Δ) as the additional upregulation capacity divided by the 

additional energy loss resulting from curtailing one more step. The steps are not always one 

megawatt; to limit the number of simulations, we increase curtailment in one-megawatt steps up to 

10 MW, two-megawatt steps up to 20 MW, and five-megawatt steps up to 30 MW. The average 

power was often not high enough to simulate curtailment up to 30 MW-- only approximately 20% 

of the 1-hour intervals we examined produced enough power to curtail by 30 MW. 

2.4 Results 

We present three results: estimates of the maximum regulation capacity available in given 

conditions, the cost of regulation capacity in terms of unproduced energy, and the cost premium for 

curtailment-derived regulation capacity compared to the market price. 

2.4.1 Maximum Available Regulation Capacity 

The maximum upregulation capacity available by curtailing a wind farm in the kth dispatch 

interval Rmax(k) can be modeled by a linear function of the average power over the interval Pµ(k) and 

coefficient of variation (COV) of power over the interval PCOV(k) with a form given by ( 2.3 ) and 

fitted parameters given in Table 2.2. The COV of power PCOV(k) is the standard deviation of power 

in that interval divided by the mean power in that interval. 

 
 

( 2.3 ) 

 

AC(k|�) =
E

loss

(k|�)
R(k|�)
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We fit the linear function in equation ( 2.3 ) to data derived from the power output of a 100-MW 

wind farm described in Section 2.2 simulated with wind speed data from west Texas in 2008. The 

maximum upregulation capacity Rmax(k) calculated as the maximum of ( 2.1 ) over the range of 

simulated curtailments. We use Type I Tobit regression [26], [27] to fit the model to the data because 

Rmax(k) is both left- and right-censored—it cannot be less than zero and it cannot be greater than the 

largest curtailment we simulated (30 MW). In practice, we find left- and right-censoring limits of 1 

MW and 29 MW, respectively, gave a better fit because Rmax does not reach the theoretical limits (0 

and 30 MW) in many of the simulated intervals. Tobit regression for data that is both left- and right-

censored is fit by maximizing the log of the likelihood function given in equation 6.39 in a 

monograph by Maddala [28]. 

Table 2.2: Regression coefficients for max regulation capacity in ( 2.3 ) 

 T = 60 min 
(ncens = 996) 

T = 15 min 
(ncens = 3764) 

Constant (a0) -9.40 
(0.55) 

-13.5 
(0.16) 

Pμ coeff. (a1) 0.621 
(0.010) 

0.770 
(0.0037) 

PCOV coeff. (a2) -52.2 
(2.2) 

-48.4 
(0.85) 

The a1 coefficient in Table 2.2 shows that the expected value of Rmax increases 0.62 MW when 

the mean power in a 60-minute dispatch interval increases by 1 MW and by 0.77 MW for a 15-

minute dispatch interval. The a2 coefficient shows that the expected value of Rmax decreases very 

rapidly as the coefficient of variance (COV) of the wind farm power increases. For example, if the 

COV increases by 0.01 (1% of the mean power) for a 60-minute dispatch interval, Rmax decreases by 

0.52 MW.  

These results assume perfect forecasting of the mean and COV of wind farm power for a given 

interval. This is important because upregulation capacity must typically be bid into the market hours 

or a full day ahead. If future wind conditions cannot be forecast with perfect accuracy, the wind 
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farm must bid less upregulation capacity into the market than it could theoretically produce or risk 

being unable to meet its commitment. However, we show in Section 2.4.2 that a wind farm should 

bid less than the Rmax because the costs rise steeply as the upregulation capacity approaches its 

maximum. 

2.4.2 Cost of Curtailing for Regulation Capacity 

The average and marginal costs of curtailing a wind farm for frequency regulation as a function 

of regulation capacity are calculated with ( 2.2 ) and the results are shown in Figure 2.2 for 15-

minute and 60-minute dispatch intervals. We calculate the average cost as the opportunity cost, i.e. 

the amount of energy production (in MWh) lost to produce 1 MW-h of steady regulation capacity. 

The marginal cost is the opportunity cost of additional regulation capacity R produced by curtailing 

the wind farm one additional megawatt. Figure 2.2 plots cost curves for three representative ranges 

of Rmax: 5 MW, 10 MW, and 15 MW. The circles denote the median cost and the error bars show the 

5th and 95th percentile costs. 

We find several trends in the cost of regulation capacity from a curtailed wind farm. First, the 

cost of regulation capacity is lower in periods with larger maximum available regulation capacity 

Rmax. Second, the cost is high for quantities of regulation capacity near zero or near Rmax. Third, costs 

are slightly lower for shorter dispatch intervals, e.g. 15-minute intervals vs. 60-minute intervals. 

These trends are consistent for wind power simulated with wind data from the three sites listed in 

Table 2.1. 

The cost of regulation capacity is lower in intervals with larger Rmax, as shown in Figure 2.2. The 

cost curves representing periods with smaller Rmax (e.g. 5 MW) have higher costs for all levels of 

regulation capacity then the curves representing periods with larger Rmax (e.g. 15 MW). For example, 

minimum median AC for 60-minute dispatch intervals in Figure 2.2C is 1.51 MWh/MW-h when 
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Rmax = 5 MW , 1.11 MWh/MW-h when Rmax = 10 MW, and 1.06 MWh/MW-h when Rmax = 15 

MW.  

Similarly, the marginal cost MC decreases as Rmax increases. For example, the minimum median 

MC for a 60-minute dispatch interval in Figure 2.2D is 1.31 MWh/MW-h when Rmax = 5 MW, 1.03 

MWh/MW-h when Rmax = 10 MW, and 1.00 MWh/MW-h when Rmax = 15 MW. 

The cost of regulation capacity is high for quantities of regulation capacity R near zero or near 

Rmax. The high cost of regulation capacity near zero (R ≤  1 MW) can be seen on the left side of the 

AC curves in Figure 2.2A and C. For example, Figure 2.2C shows the median AC of 1 MW of 

regulation  

 

Figure 2.2: The average cost (AC) and marginal costs (MC) of regulation capacity for 15-minute and 60-minute dispatch 
intervals. Each line represents cost data for dispatch intervals with maximum available regulation capacity in a certain 
interval described in the figure key. Circles denote the median and error bars show the 5th and 95th percentile costs. These 
results are calculated for a 100-MW wind farm simulated with wind speed data from west Texas in 2008. 

The opportunity cost when R is near zero can be reduced by curtailing a few turbines more 

deeply instead of curtailing all turbines in the wind farm equally. For example, if all turbines are 
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curtailed equally, the median AC of R = 1 MW is 1.48 MWh/MW-h for a 15-min dispatch interval 

with Rmax = 5 MW. If only half the turbines in the wind farm are curtailed, the median AC is 1.12 

MWh/MW-h and if a quarter of the turbines are curtailed, the median AC is 1.00 MWh/MW-h. 

However, concentrating the curtailment on a few turbines reduces the maximum available regulation 

capacity; for example, concentrating the curtailment on 25% of the turbines reduces Rmax by a factor 

of four. 

The high cost of regulation capacity near the maximum can be seen on the right side of the AC 

curves in Figure 2.2A and C and the MC curves in Figure 2.2B and D. For example, Figure 2.2D 

shows the marginal cost of increasing R from 8 to 9 MW is 1.58 MWh/MW-h and the marginal cost 

of increasing R from 9 to 10 MW is 2.80 MWh/MW-h in a 60-min period with Rmax = 10 MW. The 

cost increases sharply as R approaches Rmax because individual wind turbines reach the lower 

operating limit (LOL) of their power output. When turbines reach their LOL, even for a short time, 

that limits the available regulation capacity R for the entire interval, as described in equation ( 2.1 ). 

However, energy loss Eloss is cumulative over the entire interval, so it is not affected much when 

turbines briefly reach their LOL. Thus the cost of regulation capacity, calculated with equation ( 2.2 

), increases sharply when the denominator R decreases (because turbines reach their LOL) but the 

numerator Eloss changes very little. 

The results in Figure 2.2 exclude data where the actual regulation capacity is very close to the 

maximum available regulation capacity (Rmax – R < 0.1 MW) because the costs approach infinity. 

Excluding those points significantly reduces the 95th percentile cost but changes the median MC very 

little. In addition to excluding those points, we also exclude dispatch intervals when the mean wind 

farm power is outside the linear range (Pµ(k) < 21 MW or  Pµ(k) > 50 MW) and dispatch intervals 

when the maximum available upregulation capacity is near zero (Rmax(k) < 0.5 MW).   
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The cost of regulation capacity decreases for shorter dispatch intervals, though the difference 

becomes smaller as Rmax increases. For example, the results in Figure 2.2A and C show that the 

median AC of 10 MW of regulation capacity is 1.03 MWh/MW-h for a 15-minute dispatch interval 

and 1.04 for a 60-minute dispatch interval when Rmax = 15 MW.  

The results in Figure 2.2 are calculated for wind speed data from west Texas in 2008, but results 

calculated for the other locations and other periods listed in Table 2.1 show the same trends. Results 

calculated for the Great Plains wind data show lower average and marginal costs than the other sites; 

we believe the costs are lower because the a wind farm at the Great Plains site has a significantly 

higher capacity factor than the other two sites—41%, as compared to 33% for the west Texas site in 

2008 and 28% for the Ontario site. 

2.4.3 Cost-Effectiveness of Curtailing for Frequency Regulation 

Curtailing a wind farm can very rarely provide frequency regulation for less than the market 

price of regulation. We compare the minimum AC in each 1-hour dispatch interval to the market 

price of upregulation (“MCPCU” = “Market-Clearing Price of Capacity – Up”) in the corresponding 

dispatch interval in the ERCOT (Texas) market [29]. The cost of upregulation capacity from a 

curtailed wind farm in a given interval is the minimum AC in that interval multiplied by the 

opportunity cost of a megawatt of wind power production. We plot the results in Figure 2.3 as a 

cumulative distribution (CDF) of premiums that must be paid for regulation capacity from a 

curtailed wind farm, above the market price. The results are sensitive to the market price of 

upregulation and to the opportunity cost of curtailment. 

Negative cost premiums in Figure 2.3 correspond to intervals when wind farm curtailment 

produces upregulation capacity for less the market price. The cost of curtailment-derived 

upregulation capacity is less than the market price in approximately 1% of the 1440 1-hour dispatch 

intervals studied in 2008, and approximately 0% of the dispatch intervals in 2007 and 2009. If the 



 20 

grid operator is willing to pay a premium up to $50/MW-h, the wind farm can provide regulation 

capacity in 8% of the 1-hour dispatch intervals in 2007, 15% in 2008, and 5% in 2009. These results 

assume an opportunity cost for curtailing the wind farm of $62/MWh, made up of a wholesale 

energy price of $40/MWh (the only wind power price in Texas reported to Wiser and Bolinger [30]), 

the federal Production Tax Credit (“PTC”) of $21/MWh, and a Renewable Energy Certificate 

(“REC”) price of $1/ MWh estimated by Wiser and Bollinger [30]. To examine the sensitivity of the 

results to the opportunity cost, we plot in Figure 2.4 the percentage of 1-hour dispatch intervals 

when upregulation capacity from a curtailed wind farm costs less than the market price against the 

opportunity cost of curtailment. These results show that a wind farm with a lower opportunity cost 

will be competitive in the upregulation capacity market more often than a wind farm with higher 

opportunity costs. The CDF in Figure 2.3 does not reach a cumulative probability of 1 because the 

wind farm was not able to supply any regulation capacity in approximately 55% of the periods 

analyzed. 
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Figure 2.3: A CDF of the cost premium for regulation capacity from a curtailed wind farm, as compared to ERCOT market 
prices for upregulation. The curtailed wind farm can provide upregulation at less than the market price in fewer than 1% of 
the 1440 1-hour periods studied and at any  price in approximately 45% of the periods studied. We assume an opportunity 
cost for curtailing the wind farm of $62/MWh. 

In practice, a wind farm operator may bid less than the full opportunity cost for upregulation 

capacity because he or she would receive payments for extra energy produced when that 

upregulation capacity is dispatched, sometimes called upregulation energy. Most other players in the 

upregulation capacity market already bid prices based on expectations of the amount of upregulation 

energy that will be dispatched.  

The results in Figure 2.3 and Figure 2.4 are calculated for wind speed data from west Texas in 

2008, but results calculated for the other locations and other periods listed in Table 2.1 show the 

same trends. We compare regulation capacity costs calculated with wind speed data from the other 

sites listed in Table 2.1 to regulation capacity market prices from Texas, so the results do not 

account for any correlation between regulation market prices and wind conditions. Regulation 
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capacity costs calculated with Great Plains wind data are approximately half of costs calculated with 

wind data from the other two sites, though they are still only competitive with the market price in 

3.5% of the periods studied. We believe the costs are lower because the a wind farm at the Great 

Plains site has a significantly higher capacity factor than the other two sites—41%, as compared to 

33% for the west Texas site in 2008 and 28% for the Ontario site.  

 

Figure 2.4: Cost-effectiveness of wind farm curtailment for upregulation as a function of opportunity cost of curtailment. As 
the opportunity cost of curtailment increases, upregulation from curtailment is cheaper than the market price for 
curtailment in fewer 1-hour dispatch intervals. 

These results are best-case scenarios based on the assumption of perfect forecasting. The results 

are likely to be similar even with imperfect forecasting because Figure 2.2 shows that the cost of 

upregulation capacity does not diverge much from the minimum when the wind farm is not 
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We show above that, for Texas energy and regulation prices, curtailing a wind farm is rarely cost-

competitive. However, curtailing a wind farm may be more or less cost-effective in other power 

systems depending on the relationship between energy and regulation prices. For example, a system 

20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

Opportunity cost ($/MWh)

C
os

t o
f c

ur
ta

ilm
en

t <
 m

ar
ke

t p
ric

e 
(%

)

 

 
2007
2008
2009



 23 

with many large coal power plants and few gas turbines would likely have lower energy costs and 

higher regulation costs, which would make curtailing a wind farm more cost-competitive. 

2.5 Conclusions 

A curtailed wind farm can rarely provide frequency upregulation at a cost lower than the present 

U.S. regulation market price, even if wind conditions can be forecast with perfect accuracy. We find 

that even with the high prices for upregulation capacity seen in the Texas (ERCOT) market in 2008, 

a curtailed wind farm with average opportunity costs could produce upregulation capacity at a cost 

less than the market price only 1% of the time. In other years with lower market prices for 

upregulation capacity, a curtailed wind farm would almost never be competitive. Curtailing a wind 

farm for frequency upregulation may be worthwhile in electrical grids where fast-ramping 

conventional generators are very expensive such as Hawaii, where diesel generators produce most of 

the regulation. 

Several factors put wind farms at a disadvantage in a competitive market for upregulation 

capacity. First, the structure of some government subsidies for wind energy increase the opportunity 

cost of unproduced energy. When wind turbines are subsidized based on energy production, a 

curtailed wind farm loses both the revenue and the subsidy for unproduced energy. Second, thermal 

generators have lower opportunity costs for unproduced energy because their lost revenue is 

partially offset by fuel savings. Wind turbines have no significant variable costs, so they receive no 

offsetting savings for curtailment. 

However, it is reasonable for grid operators to require that wind farms install the capability to 

curtail for frequency regulation. Curtailing a wind farm has a high operating cost, the opportunity 

cost of unproduced energy, but a very low capital cost. For grid operators, requiring delta 

curtailment capability from wind farms creates an emergency source of frequency regulation that 
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may become more useful as wind power penetration increases. Wind farm owners already accept the 

requirement to be able to curtail for frequency regulation as a cost of connecting to the grid in some 

places. 

If it is necessary to curtail a wind farm to provide upregulation capacity, there are several ways to 

minimize the cost. First, wind farms should be curtailed to approximately half of the maximum 

available upregulation capacity, as shown in Figure 2.2. If a wind farm is required to provide a small 

quantity of regulation capacity, it is better to deeply curtail a few of the turbines than evenly spread 

the curtailment over all the turbines. Some grid codes, such as those for E.On (Germany) and 

EirGrid (Ireland) require wind farms to curtail by a few percent of their rated power to create 

reserve power for frequency regulation [5], [7]. Curtailing only a few turbines in each wind farm to 

meet these requirements would increase the amount of reserve power for a given curtailment and 

decrease the variability of the size of the reserve. Second, wind farms with low opportunity costs 

should be curtailed first. Wind farms that sell power on low-price long-term contracts or farms that 

no longer receive production subsidies are the most likely candidates. 
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Chapter 3: GENERATING WIND TIME SERIES AS A HYBRID 

OF MEASURED AND SIMULATED DATA 
 

 

Abstract 

Certain applications, such as analyzing the effect of a wind farm on grid frequency regulation, 

require several years of wind power data measured at intervals of a few seconds. We have developed 

a method to generate days to years of non-stationary wind speed time series sampled at high rates by 

combining measured and simulated data. Measured wind speed data, typically 10 - 15 minute 

averages, captures the non-stationary characteristics of wind speed variation: diurnal variations, the 

passing of weather fronts, and seasonal variations. Simulated wind speed data, generated from 

spectral models, adds realistic turbulence between the empirical data. The wind speed time series 

generated with this method agree very well with measured time series, both qualitatively and 

quantitatively. The power output of a wind turbine simulated with wind data generated by this 

method demonstrates energy production, ramp rates, and reserve requirements that closely match 

the power output of a turbine simulated turbine with measured wind data. 

 

 

 

This paper, written with Jay Apt, was published as S. Rose and J. Apt, “Generating wind time 

series as a hybrid of measured and simulated data,” Wind Energy, vol. 15, no. 5, pp. 699–715, Jul. 

2012. 
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3.1 Introduction 

Planning for frequency control in a power system with significant amounts of wind power 

requires both high-frequency data (~1 Hz) to capture fast changes in power output and long periods 

of data to capture diurnal and seasonal variations. Similarly, simulating the fatigue life of wind 

turbine mechanical components requires high-frequency data to capture the dynamic effects of 

control system actions, but long periods of data to compile statistical data to more accurately 

estimate lifetimes. In both cases, large amounts of data are needed to design systems that are neither 

overly conservative and inefficient nor unreliable. 

Long wind speed data sets sampled at high rates are often difficult to obtain. Empirical data are 

often sampled at too slow a rate, in the wrong location, or at the wrong height. Government 

meteorological services record many years of wind speed data, but it is typically sampled at slow 

rates (2 minute moving average in the USA) with low amplitude resolution (1 knot, 0.51 m/s, in the 

USA) [1] and at locations that are not valuable for wind power development. Wind farm developers 

collect several years of data at potential wind power sites, but they typically record 10-15 minute 

average values that are sufficient to estimate only long-term power production. Special scientific 

campaigns sometimes collect weeks to years of high-frequency data, but there are few of them 

because they are expensive to set up and maintain. The measurement instruments on a wind turbine 

are one of the best sources of this type of data, but the measurements can be confounded by the 

effects of the turbine and other turbines nearby, and data are frequently not archived at high 

temporal resolution.  

Simulated wind speed data can be created at very high sampling rates, in any location, and at any 

height desired. However, simulation of periods longer than a few hours is difficult because wind 

speed variations are non-stationary processes: their statistical properties change over time. Those 

properties change with time of day, with the passing of weather fronts, and with the seasons. Most 
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methods for simulating long periods of wind speed data use separate models for the non-stationary 

variations over longer periods (e.g. hours to months) and the stationary variations over shorter 

periods (e.g. seconds to minutes).  

Previous authors have proposed a variety of methods for simulating non-stationary wind speed 

time series longer than a few hours [2]. The simulation methods divide the variations into high-

frequency (periods less than approximately 15 minutes) and low-frequency (periods greater than 15 

minutes) ranges. One method, which we will refer to as the “spectral method”, joins together 

separate spectral models for the high- and low-frequency ranges in the frequency domain [3], [4] and 

generates time series using the Veers method [5]. The other class of methods, that we will refer to as 

the “parametric method”, models the high-frequency range using a spectral model and the low-

frequency range using a probability distribution [6]-[8]. Short periods (~10 minutes) of high-

frequency data are generated using the Veers method, blended together, and then superimposed on 

low-frequency time series data. Most authors blend together the short time series of high-frequency 

data using a window function such as the Hann function that reduces leakage of energy outside the 

range of simulated [6], [9] but one author concatenates together the high-frequency time series 

without any windowing because discontinuities are smaller than the largest sample-to-sample 

variations in the blocks of simulated wind speed [7]. 

Both methods of modeling the low-frequency, non-stationary variations in wind speed are 

inadequate for certain types of power system planning and simulation because their simulations are 

not indexed to time of day and time of year. For example, the spectral and parametric methods can 

generate long time series that contain a certain level of wind speed variance with a given probability, 

but those methods cannot model what time of day or time of year that level of variance is likely to 

occur. Electrical power demand is a relatively predictable function of time of day and time of year, 

so wind simulations must correctly model wind properties as a function of time. Nielsen addresses 
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this problem in a non-stationary simulation of a wind front passage by specifying the statistical 

properties of wind turbulence at certain reference states, using Veers method to simulate stationary 

turbulence at those reference states, and then interpolating between the stationary simulations with 

Bezier curves fit to the reference states [10].  

Our work addresses and solves the problem of correctly placing events in time by creating 

“hybrid” wind speed time series that combine measured low-frequency wind speed data with 

simulated high-frequency data. This hybrid method is similar to the parametric methods described 

above, especially Nielsen [10], but the hybrid method uses low-frequency measured wind speed data 

instead of the low-frequency data generated by parametric methods, and low-pass filtering of the 

measured data instead of windowing or interpolation. Low-frequency measured wind data are 

available from meteorological stations and meteorological towers at wind farms. Low-frequency 

wind speed data are also available from meso-scale simulations, but users should be very careful to 

understand the limitations of particular meso-scale models and the spatial and time resolutions of 

the data they generate. 

Our work also improves on the procedure used in the parametric methods by filtering the low-

frequency data to remove noise that leaks into the high-frequency region. This filtering fixes the 

problem of spurious low-frequency content in the Power Spectral Density (PSD) of data generated 

by McFarlane’s method [6]. 

We demonstrate that this hybrid method creates wind time series that closely match the high-

frequency and low-frequency characteristics of measured wind data and that the results of wind 

turbine simulations run with our hybrid wind closely match the results of turbine simulations run 

with measured wind data. 
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3.2 Hybrid Method for Generating Wind Data 

We propose a hybrid method to generate long periods (days to years) of wind speed time series 

data by combining measured wind speed statistics sampled at low rates with simulated wind 

turbulence sampled at high rates. Measured statistics capture the non-stationary properties of real 

wind and simulated turbulence interpolates between the measured data. The hybrid method 

simulates short periods of turbulence using measured mean wind speed (and variance, if available) as 

a parameter, then superimposes the simulated turbulence on measured mean wind speed. 

We define T as the total length of the period covered by the input data (in seconds); the total 

length of the output data is also T because the hybrid method interpolates the measured data. The 

sampling interval of the low-rate measured statistics is Tsample, input = (fsample,input)
-1 (we use Tsample,input = 600 

seconds, fsample, input = 1.7 x 10-3 Hz). The sampling frequency of the output data is foutput (we use foutput = 1 

Hz).  

A hybrid wind speed time series u(t) of length T with output sampling frequency foutput is created 

by the following steps, illustrated in Figure 3.1: 

A. Statistics of wind speed data are calculated over long intervals. In this paper, the wind 

speed mean and variance are measured with a sampling interval of Tsample,input = 600 

seconds. 

B. A block of zero-mean, high-frequency turbulence is simulated for every two points of 

measured data (2Tsample,input) using a spectral model and the Veers method [5]. Blocks of 

turbulence are concatenated together without blending, overlapping, or windowing. 

C. The measured mean wind speed is re-sampled to the desired sampling rate foutput and 

smoothed by a low-pass filter. 

D. The simulated turbulence is added to the smoothed mean to create the hybrid wind speed 

time series. 
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Figure 3.1: Procedure for generating wind speed time series from a hybrid of measured and simulated data. (A) Wind speed 
mean and variance measured for a long period Tinput are used as parameters to generate zero-mean turbulence in (B). 
The mean wind speeds in (A) are re-sampled at a higher rate foutput and smoothed by a low-pass filter in (C). The hybrid 
wind speed time series in (D) is the sum of (B) and (C). 

3.2.1 Slowly-varying Measured Wind Speed (C) 

The basis of a hybrid wind time series is mean wind speed measured at sampling intervals of 

Tsample, input. Low-rate mean wind speed captures slow changes such as diurnal and seasonal phenomena 

and the passing of weather fronts. Meteorological stations for wind resource assessment or weather 

prediction record the mean (and sometimes variance) of wind speed for periods of a few minutes. In 

this research, we use measured 10-minute mean U0, p and variance σ2
u, p, where p is an index of the 

10-minute period (Figure 3.1A). 
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We wish to create a time series of wind speeds of length T with a sampling rate of foutput. We re-

sample the low-rate mean data to a sampling rate of foutput by repeating each measured mean U0, p at 

intervals foutput for a period of Tsample, input (Figure 3.1C). Increasing the sampling rate from fsample,input to foutput 

does not add any new information, but it adds high-frequency noise. According to the sampling 

theorem, the maximum frequency signal that can be resolved by data sampled at fsample,input is fNyq,input = 

(2Tsample,input)
-1 (the Nyquist frequency) [11]; all the content for frequencies higher than fNyq, input is 

introduced noise. We remove the noise using a 3rd-order low-pass Butterworth filter with a cutoff 

frequency of fcutoff = fNyq,input = (2Tsample,input)
-1, where the gain of the filter is 1. The low-pass filter is 

implemented in the frequency domain by applying the Fourier transform to the data, convolving the 

transformed data with the filter, and then applying the inverse Fourier transform. To avoid wrap-

around effects from the Fourier transform, we de-trend the data by subtracting the best-fit line 

before applying the Fourier transform and then adding that best-fit line after applying the inverse 

Fourier transform. 

3.2.2 High-rate Turbulence (B) 

The hybrid method simulates high-rate turbulence to interpolate between measured mean wind 

speed values, shown in Figure 3.1B. For every two measured mean wind speeds U0, p and U0, p+1, we 

generate a zero-mean turbulence time series of length 2Tsample, input. To model the non-stationary 

properties of real wind, the variance of each simulated turbulence time series is a function of the 

corresponding measured mean wind speed (and variance, if available). We model wind turbulence 

with two variations of the Kaimal spectrum: the form given in Kaimal’s original paper that models 

variance as a function of surface roughness length z0 [12], and the form given in the IEC 61400-1 

standard that takes wind speed variance as an explicit input [13].  

Wind turbulence is simulated by a method developed by Shinozuka [14] and extended by Veers 

[5]. The Veers method simulates wind turbulence by taking the Fourier transform of a turbulence 
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spectrum. The procedure for simulating wind turbulence by Veers method is described in detail in 

many other sources [15] and summarized here: 

1. Define a 1-sided spectrum for the wind turbulence S(f) 

2. Discretize the spectrum for the desired output period and sample rate: S[m] = S(f) f 

3. Scale the discretized spectrum and apply random phase angles: 

€ 

V[m] = 1
2η S[m]eiφ [m ] 

4. Construct a two-sided spectrum V2 side 

5. Calculate the turbulence time series: 

€ 

u = FFT(V2 side )  

 

If the wind speed variance σ2
u is known, the one-sided Kaimal spectral model specified in the 

IEC 61400-1 standard [13] can be used: 

 

 

€ 

S( f ) =σ u
2 4( L1U0

)

1+ 6( L1U0
) f( )

5 / 3

 
( 3.1 )  

If the wind speed variance is not known but the surface roughness length z0 is known (or can be 

estimated), the one-sided Kaimal spectral model proposed by Kaimal [12] can be used: 

 

 

€ 

S( f ) = u*
2 105( z

U0
)

1+ 33( z
U0
) f( )

5 / 3

 
( 3.2 ) 

where 

σu = 10-minute standard deviation of longitudinal wind speed [m/s] 

U0 = 10-minute mean of longitudinal wind speed [m/s] 

€ 

u* =
κ U0

ln( zz0 )  

L1 = 8.1*Λ1 

€ 

Λ1 =
0.7z z ≤ 60m
42 z > 60m

$ 
% 
&  
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κ = 0.4 = von Kármán constant 

z = turbine hub height [m] 

z0 = surface roughness length [m] 

f = frequency [Hz] 

The duration of each simulated interval of high-rate turbulence must be 2Tsample,input in order to 

generate frequency content up to fNyq,input, the highest frequency that the input data can resolve 

according to the Sampling Theorem [11]. Each simulated period will contain N = 2Tsample, input foutput 

points; if N is not an integer, we round it up to the nearest even integer. 

 Each simulated time series corresponds to two low-rate measurements, so we must combine the 

measured means U0, p and U0, p+1 and measured variances σ2
u, p and σ2

u, p+1 according to the following 

formulas: 

 

€ 

U0, p∪ p+1 =
U0, p +U0, p+1

2  

( 3.3 ) 

 

€ 

σ u, p∪ p+1
2 =

N
2 −1( )σ u, p

2 + N
2 −1( )σ u, p+1

2

N − 2  
( 3.4 ) 

where equation ( 3.4 ) is the formula for the pooled variance of two equally-sized samples of N/2 

points each [16]. 

We discretize the continuous one-sided Kaimal spectrum S(f) in equation ( 3.1 ) or ( 3.2 ) at 

discrete frequencies fm = mΔf : 

  ( 3.5 ) 

There are M = 1 + N/2 unique frequencies in the one-sided spectrum, where N = 2Tsample, inputfoutput . 

We require that N be an even integer, so M will be an odd integer based on the definition above. We 

force S[0] = 0 because the steady-state (“DC”) value of the simulated data is zero and we are 

simulating a zero-mean process. 

€ 

S[m] = S( fm )Δf m = {0,1, ..., M −1}
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We scale the magnitude of the discretized spectrum according to the following formula to create 

V, a vector of Fourier coefficients for a 1-sided spectrum: 

 

€ 

V[m] = 1
2η S[m]eiφ [m ] ( 3.6 ) 

The term eiφ[m] creates random phases in V that make the output of Veers method random. The 

phases eiφ[m] are complex numbers and S[m] are real numbers, so V[m] are complex numbers. The 

phase angles φ[m] are drawn from a uniform random distribution over the range [0 2π]. Nearly all 

simulations that use the Shinozuka/Veers method use uniform randomly-distributed phase angles. 

Shinozuka proves that a simulated time series will be ergodic if uniform randomly-distributed phase 

angles are used [15]. In our analysis of measured wind speed data sampled at 5 – 52 Hz, we found 

that the differences between adjacent phase angles can be described by a von Mises distribution [17] 

and that the fit of the von Mises distribution improves for higher sampling frequencies. However, 

we find that it is statistically impossible to distinguish between uniform and von Mises distributions 

for the sampling frequencies used in our paper (~1 Hz). The dispersion of the von Mises 

distribution of the phase differences, analogous to the standard deviation in a normal distribution, is 

so low at this sampling frequency that statistical tests cannot establish that a von Mises distribution 

fits the data. 

The factor of ½ in equation ( 3.6 ) is necessary because we will create a two-sided spectrum from 

V, but the spectra in equations ( 3.1 ) and ( 3.2 ) are one-sided spectra. The factor of ½ should be 

omitted if a two-sided spectrum is used. We introduce η to normalize S[m] to compensate for the 

variance lost when S(f) is discretized. 

The factor η accounts for the difference between the desired variance σ2
desired and the actual 

variance σ2
actual of data simulated with the discretized spectrum in equation ( 3.5 ). We define η as: 
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( 3.7 ) 

In theory, the variance σ2 of wind turbulence simulated from a one-sided spectrum is given by 

equation ( 3.8 ) and approximated by ( 3.9 ), assuming that M is large: 

 

€ 

σ 2 = S( f )df
0

∞

∫
 

( 3.8 ) 

 

     

€ 

≈ S[m]
m= 0

M

∑
 

( 3.9 ) 

In practice, the actual variance of the simulated wind turbulence is smaller than predicted in ( 3.8 ) 

and ( 3.9 ) because S[0] = 0 and M is not infinite. This is a problem because variance is a parameter 

in the spectrum in equation ( 3.1 ) and we want the variance of the simulated turbulence output to 

equal that parameter.  

We show in Figure 3.2 that the actual variance of the simulated turbulence output is well-

predicted by the following formula: 

 

€ 

σ actual
2 ≈ S[m] ≈ S( f )df

Δf − 12Δf

fNyq− 12Δf

∫
m=1

M

∑
 

( 3.10 ) 

where the integration limits in ( 3.10 ) are determined by the method for discretizing the continuous 

spectrum, best illustrated by Figure 1 in a paper by Yang [18]. The integral of the continuous 

spectrum in a small region around fm is approximated by a rectangle of height S[m] and width Δf: 

 

€ 

S[m]Δf ≈ S( f )df
fm− 12Δf

fm + 12Δf

∫
 

( 3.11 ) 

Figure 3.2 shows that discretizing the turbulence spectrum causes a loss of variance in the 

simulated turbulence. We simulated 400 – 1600 seconds of turbulence at sampling frequencies from 

0.2 – 20 Hz using Veers method and the Kaimal spectrum in equation ( 3.1 ). The actual variance of 

€ 

η =
σ desired
2

S( f )df
Δf − 12Δf

Δf + 12Δf

∫
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simulated turbulence deviates significantly from the desired variance (σ2
desired = 1); the actual variance 

only approaches the desired variance asymptotically with increasing sampling frequency (

€ 

foutput →∞

) and increasing sample period (

€ 

T→∞). In this paper, we use a sampling frequency of 5 Hz and a 

sampling period of 1200 sec; that means the variance of each period of simulated turbulence is 

approximately 8% lower than the measured variance used as a parameter in the simulation.  

 

Figure 3.2: This figure plots the actual variance of turbulence simulated with the Kaimal spectrum in equation ( 3.1 )and a 
variance parameter σ2desired = 1 against the sampling frequency of the simulation. Different curves plot simulations of 
different lengths. The actual variance is plotted as solid lines and the variance predicted by equation ( 3.10 ) is plotted as 
dotted lines. The turbulence is simulated with Veers method, the Kaimal spectrum from equation ( 3.1 ), U = 10 m/s, σ2 = 
1 m2/s2, and z = 65. 

We correct for that loss of variance using equation ( 3.10 ). Equation ( 3.10 ), plotted as dotted 

lines, closely predicts the actual variance of simulated turbulence, plotted as solid lines, without 

running a simulation. We use that prediction to calculate η in equation ( 3.7 ), and use η in equation 

0 2 4 6 8 10 12 14 16 18 20
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Sampling frequency [Hz]

Va
ria

nc
e σ

2  o
f s

im
ula

te
d 

wi
nd

 tim
e 

se
rie

s [
m

2 /s2 ]

 

 

Actual σ2 
Predicted σ2

T = 800 sec

T = 1600 sec

T = 1200 sec

T = 400 sec

σ2
desired



 39 

( 3.6 ) to scale the spectrum so the variance of the simulated turbulence measured the desired 

variance. 

We use the following pattern to create a two-sided spectrum of N points:  

 

€ 

V2 side = 0, V[2], V[3], ..., V[M −1], V[m], V*[M −1], ..., V*[2][ ]  ( 3.12 ) 

where the negative frequencies are represented in the second half of V2 side, each V2 side[n] is complex-

valued except V2 side[N/2], and the first element V2 side[1] is forced to zero because we are creating a 

zero-mean simulation. To produce a time series of real-valued wind speeds, the V2 side must be 

conjugate symmetric, i.e. 

€ 

V2 side[n] = V2 side
* [mod(N − n +1, N) +1] , where the * operator represents 

complex conjugation. Note that the magnitudes of the one-sided spectra in equations ( 3.1 ) or ( 3.2 

) are multiplied by ½ in equation ( 3.6 ) in anticipation of creating the two-sided spectrum in 

equation ( 3.12 ). 

We calculate the turbulence time series output u using the Fast Fourier Transform (FFT): 

 

€ 

u = FFT(V2 side )  ( 3.13 ) 

where the FFT is defined following Press [11] as: 

 

€ 

u[n] = V2 side[k]e
i2π (n−1)(n−1)/N

k=1

N

∑ n = {1, ..., N}
 

( 3.14 ) 

In theory it is not necessary to take the absolute value of the FFT in equation ( 3.13 ) because 

the conjugate-symmetric two-sided spectrum we constructed in equation ( 3.12 ) ensures the output 

of the FFT will be real-valued. In practice, the limited numerical precision of computers may cause 

the output u[n] to have small imaginary values. 

Confusingly, different sources define the FFT and its inverse in opposite ways. Press [11] gives 

the definition of the FFT in equation ( 3.14 ), but Bracewell [19] and Newland [20] define that as the 

inverse FFT. The Matlab software uses the definition in equation ( 3.14 ) except for a minus sign in 

the exponential term; Mathematica accepts a parameter for the choice of definitions. 
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3.2.3 Combining Empircal and Simulated Data (D) 

We create the hybrid wind speed time series by concatenating the blocks of simulated zero-mean 

turbulence and superimposing them on the filtered measured mean data (Figure 3.1D). We find that 

windowing the periods of simulated turbulence suggested by some authors [6], [9] is not necessary. 

We do not encounter the problem of excessive spectral content at low frequencies noted by 

McFarlane [6] because our method does not overlap consecutive blocks of simulated high-frequency 

data and because we low-pass filter the measured data. 

3.2.4 Extension to Three Dimensions 

We do not consider the general three-dimensional case of the Veers method here; good 

explanations can be found in papers by Veers [21] and Sørensen [4], but we will briefly summarize 

how to extend the one-dimensional case described above. A simulated 3-D wind field consists of 

parallel, coherent 1-D wind speed time series. A coherence matrix γ is introduced in equation ( 3.6 ), 

so the discretized spectrum S[m] must be a square matrix. Because S[m] is a square matrix, the square 

root operation must be replaced by the Cholesky decomposition or similar decomposition that yields 

a lower-triangular matrix. Similarly, the random phases in the eiφ[m] term of equation ( 3.6 ) must be 

replaced by a square matrix with complex random phase angles on the diagonal and zeros elsewhere. 

3.2.5 Application Notes 

The general method we present here can be used to generate high-frequency wind speed time-

series data. However, certain applications require details we have not discussed above.  

Power production: The large rotors on multi-megawatt wind turbines filter most high-

frequency turbulence, but make the power output of those turbines sensitive to the significant wind 

speed differences across the rotor induced by shear. Wagner has shown that calculating the power 

performance of a wind turbine from only hub-height wind speed measurements introduces 
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significant uncertainties [22]; related research by Antoniou has shown hub-height measurements 

introduce similar uncertainties in power curve and wind resource calculation [23]. Wagner proposes 

several methods to calculate an “equivalent” wind speed that better correlates with power output 

[22]. Dolan proposes an alternative formula to calculate an equivalent wind speed based on a wind 

shear function [24]. These methods calculate an equivalent wind speed from wind speeds measured 

at several heights within the area of the turbine rotor. Our hybrid method can be used to generate 

wind speed times series at multiple heights, but the results will be sensitive to the models of wind 

shear and vertical coherence used. We also recommend simulating the low-pass filtering effect of the 

large rotor with the Hψ,0(s) filter proposed by Sørensen [25]. 

Power quality/Flicker: Power quality and flicker analyses deal with power variations at 

frequencies higher than approximately 1 Hz [26]. The large rotor of multi-megawatt wind turbines 

filters most wind fluctuations at frequencies higher than 10-1 Hz [27], but wind shear and the 

aerodynamic effect of blades passing the tower introduces noise at three times the rotation 

frequency (“3p”). We recommend applying the Hψ,0(s) and Hψ,3(s) filters proposed by Sørensen [25] to 

simulate the low-pass filtering effect of the large rotor and the 3p effect of wind shear and blades 

passing the tower. 

3.3 Validation 

We validate the method for creating hybrid wind speed data described above by comparing the 

data it generates to wind speed data measured at three sites in the U.S. The hybrid method was 

created to support simulations of wind power variability on time scales relevant to grid frequency 

regulation, so we focus on validating the characteristics of the hybrid method that are most 

important for that application. First we compare the characteristics of wind speed variation, 

especially the Power Spectral Density (PSD). Then we use that wind speed data to drive a simulated 
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wind turbine to create wind power data. We compare the energy production and ramp rate 

characteristics of the wind power over different time scales. 

The procedure for creating the data used to validate the hybrid wind method is: 

1. Collect measured wind speed data from field measurements (see Table 3.1) and decimate 

data to 5 Hz. The measured 5 Hz data are the “Measured” data set 

2. Calculate 10-minute statistics (mean and standard deviation) from measured wind data in 

step 1.The measured 10-minute mean wind speeds (resampled to 5 Hz) are the 

“Measured, 10-min avg” data set 

3. Generate 5 Hz hybrid wind speed data 

a. Hybrid data created with equation ( 3.1 ), which takes wind speed standard 

deviation as an input, are the “Hybrid, σ” data set 

b. Hybrid data created with equation ( 3.2 ), which takes estimated surface 

roughness length as an input, are the “Hybrid, z0” data set 

4. Simulate time series of the power output of a 2-MW wind turbine, using the wind speed 

time series generated in Step 3. 

3.3.1 Validation Data 

To validate our hybrid method of creating long wind speed time series, we used publically-

available wind speed data from three experiments conducted by the U.S. National Center for 

Atmospheric Research (NCAR): CASES99 (Cooperative Atmosphere-Surface Exchange Study) [28], 

FLOSSII (Fluxes Over Snow Surfaces, Phase II) [29], and ATST (Advanced Technology Solar 

Telescope site survey) [30], [31], summarized in Table 3.1. We decimate these data to 5 Hz by 

applying an 8th order low-pass Chebyshev Type I filter and then down-sampling the data by selecting 

every rth point, where r is the sampling frequency of the data set divided by 5 Hz [32]. We calculate 
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the along-wind horizontal (longitudinal) wind speed from the decimated data. The large rotor on 

modern wind turbines acts as a low-pass filter to attenuate phenomena faster than approximately 0.5 

Hz [27], so we choose a sampling rate of 5 Hz to ensure we capture all significant power variations. 

Table 3.1: Properties of data sets from three U.S. National Center for Atmospheric Research (NCAR) experiments used to 
validate the hybrid wind model. 

Data Set 
Name Location Measurement 

Height 
Sampling 

Frequency 

Surface 
Roughness 
Length z0 

(estimated) 

Dates Sampled 

CASES99 Leon, KS 55 m 20 Hz 0.03 m 6 – 30 Oct., 1999 

FLOSSII North Park, CO 30 m 60 Hz 0.03 m 20 – 31 Nov., 2002 
15 – 29 Dec., 2002 

ATST Big Bear Lake, CA 25 m 30 Hz 0.003 m 7 May – 14 June, 2004 
 

We group the data into contiguous blocks that share common atmospheric stability properties. 

First we calculate the stability criterion value 1/L for each 1-hour period, where L is the Obukhov 

length from Businger [33] calculated according to equation ( 3.15 ) below. Next we determine the 

Pasquill atmospheric stability class [34] corresponding to the calculated value of 1/L using a 

nomogram given by Golder [35], assuming the roughness lengths z0 given in Table 3.1. Finally, we 

create each block of data by selecting the contiguous data with the same stability class: stable 

(Pasquill A, B, C), neutral (Pasquill D), or unstable (Pasquill E, F) and require that each block of data 

be a minimum of 2 hours long and have a mean wind speed greater than 4 m/s. The distribution of 

the data in the stability classes is shown in Table 3.2. 

 

€ 

L =
u*
3T 

κg # w Tv '  
( 3.15 ) 

where 

€ 

u* = " u " w 
2

+ " v " w 
2( )
1/ 4

= friction velocity (definition from Weber [35]) 

u = longitudinal (along-wind) velocity [m/s] 

v = latitudinal (across-wind) velocity [m/s] 
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w = vertical wind velocity [m/s] 

T = absolute temperature [K] 

Tv = virtual temperature [ºC] 

κ = 0.4 = von Kármán constant 

g = 9.8 m/s2 = acceleration of gravity  

€ 

" a " b  = covariance of two variables a and b 

Table 3.2: Distribution of the measured wind speed data in different atmospheric stability classes 

Data Set Stable Data [hours] Neutral Data [hours] Unstable Data [hours] 

CASES99 148 177 10 
FLOSSII 111 150 0 
ATST 46 87 111 

 

3.3.2 Wind Speed Time Series 

Figure 3.3 qualitatively compares wind speed time series generated with our hybrid method to a 

measured wind speed time series. The two hybrid wind speed data sets (“Hybrid, σ” and “Hybrid, 

z0”) are generated by calculating the 10-minute mean and variance of the measured time series, then 

superimposing simulated high-frequency turbulence on the 10-minute mean data. For comparison, 

the “Measured, 10-min avg.” plot shows the kind of measured data commonly captured from 

meteorological masts that would be used as the basis for generating hybrid wind data. 
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Figure 3.3: A comparison of measured wind speed data (“Measured”), hybrid wind speed data generated with empirical 
mean and variance statistics (“Hybrid, σ”), hybrid wind speed data generated with empirical mean statistics and estimated 
surface roughness length (“Hybrid, z0”), and empirical mean statistics (“Measured, 10-min avg.”).  These data are 
representative of the close match between hybrid wind speed data and measured data with similar statistical properties. 
These plots show 4 hours of data from the CASES99 experiment beginning at 20:00:00 October 28, 1999 (stable atmospheric 
conditions). The hybrid and “Measured, 10-min avg.” data are generated using 10-minute statistics derived from the 
“Measured” data. 

The plots in Figure 3.3 demonstrate that the hybrid method generates realistic non-stationary 

wind speed data. We calculate the 10-minute means and variances of a five-hour period of empirical 

wind speed data, labeled “Measured”, that has a significant increase in mean wind speed beginning at 

t = 3000 seconds and a significant increase in wind speed variance beginning at t = 7000 seconds. 

Wind speed with the data simulated with the “Hybrid, σ” method, which takes mean and variance as 

inputs, captures the increase in mean wind speed and the increase in variance.  Wind speed with the 

data simulated with the “Hybrid, z0” method, which takes only the mean as an input, also captures 

the increase in mean wind speed and the increase in variance. 
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3.3.3 Wind Speed Turbulence Spectra 

We compare the PSD (Power Spectral Density) of hybrid wind speed time series to the PSD of 

measured wind speed time series from the CASES99 experiment and plot the results in Figure 3.4. 

We calculate the PSD according to the following formula: 

 

€ 

S2 side ( f ) = T FFT−1(u)
2

 ( 3.16 ) 

where T is the duration of the data in second and the inverse Fourier Transform is defined by Press 

[11] as: 

 

€ 

V2 side[k] =
1
N

u[n]e− i2π (n−1)(k−1)/N
n=1

N

∑ k = {1, ..., N}
 

( 3.17 ) 

 

Figure 3.4: A comparison of Power Spectral Densities (PSD) of measured wind data, both variants of hybrid wind speed 
data, and measured 10-minute average data from the ATST field site for 6 – 8 m/s mean wind speed. Each PSD is the 
segment average of the PSDs all 2-hour segments of data in the specified mean wind speed range (see description in text). 
Data from stable conditions (0.01 < 1/L < 0.15) are plotted in (A), neutral conditions (-0.03 < 1/L < 0.01) are plotted in (B), 
and unstable conditions (-0.15 1/L < -0.03) in (C). We plot the spectral only to 2 Hz because we decimate (low-pass filter 
and down-sample) the measured data to 5 Hz, but the low-pass filtering attenuates the spectra of the measured data above 
2 Hz. 

Each PSD plotted in Figure 3.4 is the average of all the PSDs of 2-hour periods with the mean 

wind speed between 6 and 8 m/s. This averaging, called “segment averaging” in Press, Section 13.4 
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[11] reduces the variance of the PSD. The number of periods averaged is given in the title of each 

plot. We plot the spectra for mean wind speeds 6 – 8 m/s because that range consistently contains 

the most data across the three experimental sites. We plot the spectra of four different data sets: 

“Measured” is ATST field data decimated to 5 Hz, “Hybrid, σ” is hybrid data created with the 

Kaimal spectral model in equation ( 3.1 ), “Hybrid, z0” is hybrid data created with the Kaimal 

spectral model in equation ( 3.2 ), and “Measured, 10-min avg” is 10-minute means of the ATST 

field data, re-sampled to 5 Hz by repeating each value. We include the “Measured, 10-min avg” data 

to show the results if 10-minute average data is re-sampled to a higher frequency without adding 

high-frequency turbulence. The spectrum of the “Measured, 10-min avg” data diverges from the 

spectrum of the “Measured” data for two reasons. First, calculating the 10-minute average of the 

“Measured” data acts as a low-pass filter that attenuates the spectral power beginning at 

approximately 10-3 Hz. Second, re-sampling 10-minute average data to create the “Measured, 10-min 

avg” data introduces noise at frequencies f > 1.7 x 10-3 Hz with spectral power that decreases as f-2.  

Figure 3.4 demonstrates the advantage of the hybrid method: it adds the turbulence not found in 

the 10-minute average data (plotted in green).  The spectra of the hybrid wind data in Figure 3.4 

closely match the spectra of the measured ATST wind data in stable, neutral, and unstable 

atmospheric conditions. The spectra of wind speed data generated with both hybrid variants is 

almost indistinguishable from the spectra of the measured data at all frequencies. These results are 

representative of the results for other range of mean wind speed and for data from the CASES99 

and FLOSSII experiments with one exception: the hybrid wind under-predicts the magnitude of 

turbulence for frequencies in the range of 1 x 10-3 – 3 x 10-3 Hz when compared to data from the 

CASES99 test site during stable atmospheric conditions (not shown). That range of frequencies is 

where measured data are joined with simulated turbulence to form hybrid wind, which suggests that 

the low-pass filter applied in Step C of the hybrid method may not be steep enough. However, this 
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under-prediction is not evident in neutral and unstable CASES99 data or in any of the ATST and 

FLOSSII data. 

3.3.4 Wind Turbine Simulation Model 

All wind power data used in this paper are created by simulation of a single 2-MW wind turbine 

in Matlab/Simulink. The turbine is pitch-regulated, variable-speed model with an 80-m rotor, 

modeled using the Wind Turbine Blockset, v3.0 developed by Aalborg University [36].  This 

simulation model is not a static power curve; it models the dynamics of rotor acceleration and pitch 

and torque regulation. It does not model electrical transients or the 3p blade-passing frequency. We 

use the turbine design parameters, control scheme, control parameters, and first-order generator 

model recommended by the Danish Technical University (DTU) [37]. We incorporate a rotor-wind 

filter Hψ,0(s) proposed by Sørensen [25] into the wind turbine model to simulate the filtering effect of 

a large rotor on turbulence that is not spatially homogeneous, but we do not account for the effect 

of vertical wind shear across the rotor disk. 

Each simulation takes wind speed sampled at 5 Hz as its input and generates real power sampled 

at 5 Hz as its output. We initialize each simulation by duplicating the initial wind speed value for 

1000 seconds at the beginning of wind speed data set; this padding allows initial transients of the 

simulation model to settle out. We remove the corresponding first 1000 seconds of the output 

power data. As described in Section 3.1, each input data set consists of at least 2 contiguous hours of 

wind speed data in one stability regime (stable, neutral, or unstable) with a mean wind speed greater 

than 4 m/s. 

3.3.5 Validation of Power Production 

We compare the energy and power produced by one 2-MW wind turbine with 40-meter blades 

(described in Section 3.3.4) fed with both the measured and hybrid wind speed time series and plot 
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the results in Figure 3.5. Comparing simulated wind power takes into account the filtering effect of a 

large wind turbine on wind speed fluctuations and the dynamic response of a modern turbine to 

those fluctuations. We do not compare simulated wind power to wind power measured from actual 

wind turbines because of the difficulties in controlling the output of actual turbines for wind 

direction, wakes, terrain, mechanical and electrical losses, power limits, and ramp rate limits. Future 

work should analyze met-mast and wind power data to give a more thorough comparison of the 

hybrid method to the output of an actual wind turbine. 
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Figure 3.5: The plots on the left show percent difference in energy production ε between a turbine simulated with empirical 
wind data and hybrid wind data, plotted against per-unit (p.u.) mean power. (A) compares measured data to hybrid data 
created with equation ( 3.1 ), (B) compares measured data to hybrid data created with equation ( 3.2 ), and (C) compares 
measured data to 10-minute average measured data. The boxplots on the right plot the mean (center line), 25th and 75th 
percentile values (bottom and top of box), and the 5th and 95th percentiles (bottom and top “whiskers”) of the same data 
[40]. 

Figure 3.5 shows a comparison between the energy generated by a 2-MW wind turbine driven by 

the measured wind data described in Table 3.1 and the corresponding hybrid wind data. Each sub-

plot shows the percent error in energy generation in 1-hour periods plotted against the mean power 

for that 1-hour period, measured in the per-unit (p.u.) system. We use the per-unit system to express 

turbine power output as a fraction of the maximum power output (2 MW in our paper).  Figure 

3.5A compares hybrid wind data generated using equation ( 3.1 ), which takes wind speed standard 
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deviation as a parameter. Figure 3.5B compares hybrid wind data generated using equation ( 3.2 ), 

which takes surface roughness length as a parameter. Figure 3.5C compares measures 10-minute 

average wind data to show the results if the hybrid method is not used to fill in high-frequency 

turbulence.  

We define the 1-hour percent energy generation error ε in hour k as:  

 

€ 

ε(k) =
Emeas(k) − Ehyb (k)

Emeas(k)  
( 3.18 ) 

where Emeas(k) is the energy generated by the simulated wind turbine driven by measured wind data 

in hour k and Ehyb(k) is the energy generated with hybrid wind data in hour k.  

Figure 3.5 shows both variants of hybrid wind (Figure 3.5A and B) have smaller errors in energy 

production than the 10-minute average data (Figure 3.5C) they are based on. The mean error for 

hybrid data created with both methods (A and B) is -0.4%; the mean error for the 10-minute average 

data (C) is -0.8%. Hybrid data also gives significantly less variance in the errors: 90% of the hybrid 

errors fall between -2.7% and +1.4%, whereas 90% of the errors for the 10-minute average data fall 

between -4.5% and 3.4%. Using the hybrid method to add high-frequency turbulence to low-

frequency measured data significantly reduces the magnitude and range of error in energy 

production. The hybrid method also reduces the trend of energy error increasing as a function of 

mean power: Figure 3.5C shows that using 10-minute average data over-predicts energy production 

when the average power is low and under-predicts energy when the average power is high. Data 

created with the hybrid method do not show such a strong trend. 

3.3.5.1 Power Ramp Rate 

Figure 3.6 and Figure 3.7 show comparisons of the ramp rates of power generated by a 2-MW 

wind turbine driven by the measured wind data described in Table 3.1 to the corresponding hybrid 

wind data. Validation of the ramp rates is important to confirm that the hybrid method accurately 
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models the variations on different time scales. Figure 3.6 shows a comparison of the distribution of 

sizes of ramp events and Figure 3.7 compares the size of extreme ramp events.  

We use the definition that the ramp rate is the change in mean power from one period to the 

next: Pramp(n) = Pmean(n+1) – Pmean(n) [38]. The ramp rates are binned by the mean power of the starting 

period Pmean(n). We analyze ramp rates over three different time scales: 10 minutes, 1 minute, and 10 

seconds. The 10-minute ramp rates correspond to phenomena in the “load-following” time scale, 1-

minute ramp rates correspond to phenomena in the “frequency-regulation” time scale, and the 10-

second ramp rates correspond to “flicker” phenomena.  

The duration curves in Figure 3.6 plot the percentile values of ramp rates. Ramp events are 

grouped together in bins by initial power Pmean(n); Figure 3.6 shows the duration curves for 10-

minute, 1-minute, and 10-second ramp events with an initial power of 0.6 to 0.7 per-unit (p.u.). This 

figure is similar to comparisons of measured and simulated wind power ramp rates given by Brower 

for validation of the Eastern Wind Integration and Transmission Study, but we plot a cumulative 

distribution function (CDF) where Brower plots a probability density function (PDF) [39].  
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Figure 3.6: A comparison of the distribution (percentiles) of power ramp rates for a simulated turbine driven by measured 
wind data. All plots show changes in power starting in the range 0.6 – 0.7 per-unit (p.u.); (A) shows the distribution of 10-
minute ramp rates, (B) the distribution of 1-minute ramp rates, and (C) the distribution of 10-second ramp rates. The 
hybrid data are nearly indistinguishable from the measured data, especially for 1-minute and 10-second ramp rates. 

Figure 3.6 shows that the hybrid methods are slightly worse at modeling 10-minute ramp rates 

than 10-minute average measured data (A), but much better at modeling 1-minute and 10-second 

ramp rates (B and C). For 10-minute ramp rates starting from the 0.6 – 0.7 p.u. power range (Figure 

3.6A), the mean-square error (MSE) between the measured data and the 10-minute average 

measured data is 8.7 x 10-5 p.u./10-min, significantly smaller than MSEs for the two hybrid data sets: 

3.3 x 10-4 p.u./10-min and 2.2 x 10-4 p.u./10-min. For 1-minute ramp rates (Figure 3.6B), the MSE 
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for the hybrid data sets is 1.9 x 10-4 p.u./1-min but the MSE for the 10-minute average measured 

data is more than an order of magnitude larger: 5.9 x 10-5 p.u./1-min. For 10-second ramp rates 

(Figure 3.6C), the MSEs for the hybrid data sets are 3.0 x 10-5 and 6.7 x 10-5 p.u./10-sec but the 

MSE for the 10-minute average measured data is two orders of magnitude larger: 4.9 x 10-3 p.u./10-

sec. These results are typical of those in all other initial power ranges. 

The power ramp rates based on hybrid wind data match very closely to the power ramp rates 

based on measured wind over time scales from 10 minutes to 10 seconds. The good match between 

hybrid and measured ramp rates on these time scales shows that the simulated turbulence 

introduced by the hybrid method models the characteristics of actual wind turbulence well. It is 

somewhat surprising that the hybrid wind predicts 10-minute power ramps that are smaller than 

than10-minute average measured data because the hybrid method adds zero-mean turbulence that 

should not affect the 10-minute ramp rate. We suspect that the under-prediction of 10-minute ramp 

rates by the hybrid method is an artifact of the low-pass filter used in creating the hybrid data. Figure 

3.4 supports this hypothesis—the spectra of hybrid wind diverge slightly from the spectra of 

measured wind at approximately 1.1 x 10-3 Hz, which corresponds to a period of ~15 minutes. 

Figure 3.7 plots the 1st percentile (most extreme down ramps) 10-minute, 1-minute, and 10-

second ramp rates as a function of initial power Pmean(n). The data are grouped by initial power into 

0.1 p.u. bins, so each plotted point is the 1st percentile ramp rate value for all the data in a particular 

bin. These plots are a cross-sectional slice of the plots in Figure 3.6, but varying the initial power 

instead of the percentile value. The 1st percentile ramp rates are significant because they put the 

greatest burden on other generators to compensate for the decrease in wind power.  
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Figure 3.7: The extreme (1st percentile) power ramp rates for a simulated turbine driven by measured and hybrid wind 
data. Each plot shows the extreme power down ramp as a function of the initial power (power output at the start of 
ramping). (A) shows the distribution of extreme 10-minute ramp rates, (B) the distribution of extreme 1-minute ramp rates, 
and (C) the distribution of extreme 10-second ramp rates. The ramp rates of the hybrid data closely match the ramp rates 
of the measured data, but the hybrid data predicts more extreme 10-second ramp rates for initial power output in the range 
0.7 – 1 p.u. 

The data for extreme power ramp rates plotted in Figure 3.7 show a similar trend to the data in 

Figure 3.6: the hybrid data model power ramps over short periods (1-minute and 10-seconds) better 

than the 10-minute average data, but slightly worse for 10-minute ramping periods. For the 1st 

percentile 10-minute ramp rates (Figure 3.7A), the mean-square error (MSE) between the measured 
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data and the 10-minute average measured data is 4.0 x 10-4 p.u./10-min, significantly smaller than the 

MSEs for the two hybrid data sets: 1.9 x 10-3 p.u./10-min and 1.5 x 10-3 p.u./10-min. For the 1st 

percentile 1-minute ramp rates (Figure 3.7B), the 10-minute average measured data has a MSE of 1.0 

x 10-2 p.u./1-min, several orders of magnitude larger than the MSEs of the hybrid data: 8.2 x 10-5 

and 6.9 x 10-5 p.u./1-min. Similarly for the 1st percentile 10-second ramp rates (Figure 3.7C), the 10-

minute average measured data has a MSE of 1.4 x 10-2 p.u./1-min, which is two orders of magnitude 

larger than the MSEs of the hybrid data: 3.1 x 10-4 and 2.4 x 10-4 p.u./10-sec. 

Similar to the ramp rate duration curves in Figure 3.6, the 1st percentile power ramp rates based 

on hybrid wind data match very closely to the power ramp rates based on measured wind over time 

scales from 10 minutes to 10 seconds. They do not match as well on a time scale of 10 minutes—we 

suspect that the under-prediction of 10-minute ramp rates by the hybrid method is an artifact of the 

low-pass filter used in creating the hybrid data. However, we are surprised that the hybrid data sets 

diverge significantly at higher initial powers. The hybrid method under-predicts extreme down ramp 

rates by 2.5% of the rated turbine power output (0.025 p.u.) for initial power 0.8 – 0.9 p.u., 

suggesting that the hybrid method generates too much turbulence at higher wind speeds. 

3.3.6 Validation of Spinning Reserve Requirements 

Figure 3.8 compares the power reserves needed for power generated by a 2-MW wind turbine 

driven by the measured wind data described in Table 3.1 and the corresponding hybrid wind data. 

Validation of the power reserve requirements is important to confirm that the hybrid method 

accurately models the variations on different time scales. We define the reserve requirement as the 

difference between mean power in one period and minimum power in the next: Pramp(n) = Pmean(n) – 

Pmin(n+1) [38]. The reserve requirement values are binned by the mean power of the starting period 

Pmean(n). As we did for the ramp rates, we analyze reserve requirements on 10-minute, 1-minute, and 
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10-second time scales. We analyze the 99th percentile reserve requirements because these represent 

the most extreme reserve requirements. 

 

Figure 3.8: The extreme (99th percentile) reserve requirements for a simulated turbine driven by measured and hybrid wind 
data. Each plot shows the extreme reserve requirement as a function of the initial power (power output at the start of 
ramping). (A) shows the distribution of extreme 10-minute reserves, (B) the distribution of extreme 1-minute reserves, and 
(C) the distribution of extreme 10-second reserves. The reserve requirements of the hybrid data closely match the reserve 
requirements of the measured data, but the hybrid data predict more extreme 10-second reserve requirements for initial 
power output in the range 0.7 – 1 p.u. 

The data for extreme power reserve requirements plotted in Figure 3.8 show that the hybrid 

method is consistently better at predicting reserve requirements than the 10-minute average 

measured data. For 10-minute reserve requirements (Figure 3.8A), the 10-minute average data are 

nearly as good as the hybrid data: it has a MSE of 4.5 x 10-4 p.u. compared to the MSEs of the 

0

0.2

0.4

0.6

0.8 99th Percentile 10−min Reserve Reqirements

 

 

99th Percentile 1−min Reserve Reqirements  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Re
se

rv
e 

re
q.

 [p
.u

./1
0 

se
c] 99th Percentile 10−sec Reserve Reqirements

 

 

Measured
Hybrid, σ
Hybrid, z0

Measured, 10−min avg

Re
se

rv
e 

re
q.

 [p
.u

./1
 m

in]
Re

se
rv

e 
re

q.
 [p

.u
./1

0 
m

in]

0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Inital Power [p.u.]

Inital Power [p.u.]

Inital Power [p.u.]

A

B

C



 58 

hybrid data of 3.8 x 10-4 and 4.5 x 10-4 p.u. For 1-minute reserve requirements (Figure 3.8B), the 

hybrid method is significantly better: the MSE for 10-minute average data is 3.8 x 10-3 p.u., an order 

of magnitude worse than the MSEs for the hybrid data: 3.0 x 10-4 and 9.7 x 10-5 p.u. For 10-second 

reserve requirements (Figure 3.8C), the MSE for 10-minute average data is 2.6 x 10-3 p.u. and the 

MSEs for the hybrid data are an order of magnitude smaller: 4.6 x 10-4 and 3.9 x 10-4 p.u. 

As with the extreme ramp rates in Figure 3.7, the hybrid data sets diverge significantly at higher 

initial powers. The hybrid method over-predicts extreme reserve requirements by 3% of rated 

turbine power output (0.03 p.u.) for initial power 0.8 – 0.9 p.u. This result again suggests that the 

hybrid method generates too much wind turbulence at higher wind speeds. 

3.4 Conclusions 

We demonstrate a method for creating long wind speed time series as a hybrid of measured and 

simulated wind speed. This method is meant to take advantage of wind speed data measured at low 

frequencies by meteorological stations and wind farm developers, and data simulated with 

appropriate spatial and temporal resolution by meso-scale weather models. The measured wind data 

capture non-stationary phenomena such as diurnal variations, the passing of weather systems, and 

seasonal variations, while our hybrid method simulates data to interpolate the fast turbulent 

variations that are needed to accurately model fast variations in wind power.  

Our analysis shows that the wind speed time series created with our hybrid method accurately 

reproduce measured wind speed data from three different sites and in neutral, stable, and unstable 

atmospheres. We demonstrate that the total energy produced by a wind turbine simulated with 

hybrid wind is within -2.7%/+1.4% of the energy produced by the same turbine simulated with 

measured wind data for 90% of the tested period. We also demonstrate that the power ramp rates 
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and spinning reserve requirements for a turbine simulated with hybrid wind data very closely match 

the results for a turbine simulated with measured wind data.  

This method is well suited to studies of single wind turbine power fluctuations on the scale of 

seconds to minutes. It generates wind speed data time series sampled fast enough to simulate 

dynamic behavior of an individual wind turbine, such as pitch control, but retains their time-

dependent characteristics such as diurnal variations, the passing of weather fronts, and seasonal 

variations. 
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Chapter 4: QUANTIFYING THE HURRICANE RISK TO 

OFFSHORE WIND TURBINES 
 

 

Abstract 

The U.S. Department of Energy has estimated that if the U.S. is to generate 20% of its electricity 

from wind, over 50 GW will be required from shallow offshore turbines. Hurricanes are a potential 

risk to these turbines. Turbine tower buckling has been observed in typhoons, but no offshore wind 

turbines have yet been built in the U.S. We present a probabilistic model to estimate the number of 

turbines that would be destroyed by hurricanes in an offshore wind farm.  We apply this model to 

estimate the risk to offshore wind farms in four representative locations in the Atlantic and Gulf 

Coastal waters of the U.S. In the most vulnerable areas now being actively considered by developers, 

there is a 5% probability that more than 20% of the turbines in a wind farm will be destroyed in a 

20-year period. Reasonable mitigation measures – increasing the design reference wind load, 

ensuring that the nacelle can be turned into rapidly changing winds, and building most wind plants 

in the areas with lower risk – can greatly enhance the probability that offshore wind can help to meet 

the United States’ electricity needs. 

 

 

 

This paper was published as S. Rose, P. Jaramillo, M. J. Small, I. Grossmann, and J. Apt, 

“Quantifying the hurricane risk to offshore wind turbines,” Proceedings of the National Academy of 

Science, vol. 109, no. 9, pp. 3247–3252, Feb. 2012.  
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4.1 Corrections After Publication 

The research in this chapter was published in the Proceedings of the National Academy of 

Science [1]. After it was published, Mark Powell and Steven Cocke of Florida State University wrote 

a letter to the editor pointing out one error and several flawed assumptions about hurricanes in the 

paper [2]. In this thesis, I present results corrected for the error described in point 1 below 

(confusing 1-min and 10-min average wind speeds) but I do not correct the results for the 

contentious assumptions listed in points 2 – 4 below. I also discovered typographical errors in 

equations 6 and 8 and the legend for figure S7 in the Supporting Information [3] that I have 

corrected in this thesis—they appear as equations ( 4.6 ) and ( 4.8 ) and Figure A-7.  

The error and one of the flaws significantly reduce the calculated risks, which means we 

overstated the risks in our published paper. We addressed this in a response [4] that was published 

alongside their letter [2]. However, even the reduced risks are high enough to support the conclusion 

of this chapter of the thesis (and the published paper) that offshore wind turbines in hurricane 

prone areas need to be designed differently than current designs intended for northern Europe. For 

example, there still remains a 5% probability that more than 10 turbines will be destroyed during the 

lifetime of the farm off the coast of Galveston. 

The letter from Powell and Cocke objected to four shortcomings in the published paper: 

1. We incorrectly interpreted the maximum sustained wind speed reported for U.S. hurricanes 

as a 10-minute average. The U.S. National Hurricane Center records a 1-minute average. As 

a result, we overstated the maximum sustained wind speed by approximately 10% [5]. I 

recalculated the results for Galveston with this correction and plotted them as (B) in Figure 

4.2. 

2. Data from hurricanes after 1977 are considered more accurate because of improved 

reconnaissance aircraft measurements and data from hurricanes before 1900 are not 
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considered reliable for risk modeling. In the published paper, we fit a Generalized Extreme 

Value distribution to hurricanes as far back as 1851. While newer hurricane data is 

considered more reliable, I found the period of HURDAT hurricane intensity data does not 

significantly change the fitted distribution. A generalized extreme value (GEV) distribution 

fit to hurricane data from 1978 – 2008 is not statistically different from a GEV distribution 

fit to hurricane data from 1851 – 1977 at the 95% confidence level, according to a two-

sample Kolmogorov-Smirnov test.  

3. Hurricanes tend to weaken as they approach land [6], but we assumed in the published paper 

that the lifetime maximum intensity of a hurricane is representative of its intensity at 

landafall. I re-analyzed data from hurricanes in the Galveston region and confirmed that 

their average intensity at landfall was 65% of their peak intensity. However, the distribution 

of landfalling intensities of all hurricanes in the gulf of Mexico (Table 1, Rappaport et al. [6]) 

is statistically indistinguishable the distribution we use in the paper—peak intensities of only 

hurricanes in the Galveston region. Thus, the GEV distribution for Galveston does not 

change if we assume the landfalling intensity of a hurricane anywhere in the Gulf of Mexico 

is drawn from the same distribution instead of assuming that hurricanes passing through a 

region around Galveston maintain their peak intensity to landfall, as we previously assumed.  

4. The area of a hurricane exposed to the maximum winds is significantly smaller than we 

assumed in the published paper. For example, Figure 4.1 plots the maximum sustained wind 

speed of each hurricane to strike Galveston County (directly or indirectly) at each point 

along the coast. The overall maximum sustained wind speed and track of each hurricane is 

taken from the HURDAT database and the radius of maximum winds (RMW) is calculated 

from the central pressure according to a relationship proposed by Powell et al. [7] If central 

pressure measurements are not available, the RMW is assumed to be 33 km, the median size 
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of Gulf hurricanes from figure 37 in Ho et al. [8]). The wind field is calculated with a model 

proposed by Holland et al. [9] Figure 4.1 shows that most hurricanes making landfall in 

Galveston County expose less than half the coastline to their maximum wind speeds. 

 

Figure 4.1: Wind profiles at landfall of all hurricanes making landfall in or near Galveston County, TX, 1900-2008. 

Using the wind profiles from Figure 4.1, I re-calculated the results for a hypothetical wind farm 

located at 29.15ºN, 94.66ºW using the correct averaging period described above, and plotted the 

results as (C) in Figure 4.2. Those results are calculated from a Monte Carlo simulation of 200,000 

years using a Poisson landfall rate of 9/107, a GEV fit of Gulf landfall maximum winds (Table 1, 

Rappaport et al. [6]), and a wind field for each hurricane randomly selected from the 9 Galveston 

landfalling hurricanes.  
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Figure 4.2: Cumulative distribution of the number of turbine towers in a 50-turbine wind at 29.15ºN, 94.66ºW buckled in 20 
years if buckled towers are not replaced and there is no active yawing. The original results for Galveston published in 
Figure 2 of our paper are shown in (A).  Results using the correction for 1 – average wind speeds are plotted in (B). Results 
using that correction and a wind field model are shown in (C). 

4.2 Introduction 

As a result of state renewable portfolio standards and federal tax incentives, there is growing 

interest and investment in renewable sources of electricity in the United States. Wind is the 

renewable resource with the largest installed-capacity growth in the last 5 years, with U.S. wind 

power capacity increasing from 8.7 GW in 2005 to 39.1 GW 2010 [10]. All of this development has 
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Though no offshore wind projects have been developed in the U.S., there are 20 offshore wind 
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projects in the planning process (with an estimated capacity of 2 GW) [11]. The U.S. Department of 

Energy’s 2008 report, 20% Wind by 2030 [12] envisions 54 GW of shallow offshore wind capacity to 

optimize delivered generation and transmission costs. 

U.S. offshore resources are geographically distributed through the Atlantic, Pacific and Great 

Lake coasts. The most accessible shallow resources are located in the Atlantic and Gulf Coasts. 

Resources at depths shallower than 60 meters in the Atlantic coast, from Georgia to Maine, are 

estimated to be 920 GW; the estimate for these resources in the Gulf coast is 460 GW [11].  

Offshore wind turbines in these areas will be at risk from Atlantic hurricanes. Between 1949 and 

2006, 93 hurricanes struck the U.S. mainland according to the HURDAT database of the National 

Hurricane Center [13]. In this 58-year period, only 15 years did not incur insured hurricane-related 

losses [14]. The Texas region was affected by 35 hurricane events, while the southeast region 

(including the coasts of Florida, where no offshore resources have been estimated [11]) had 32 

events.  

Hurricane risks are quite variable, both geographically and temporally. Pielke et al. [15] note 

pronounced differences in the total hurricane damages (normalized to 2005) occurring each decade. 

Previous research has shown strong associations between North Atlantic hurricane activity and 

atmosphere-ocean variability on different timescales, including the multidecadal [16], [17]. Atlantic 

hurricane data show that hurricane seasons with very high activity levels occur with some regularity; 

for instance, since 1950, there have been 25 years with three or more intense hurricanes (Saffir-

Simpson Category 3 or higher). There were two 2-year periods with 13 intense hurricanes: 1950-

1951 and 2004-2005.  2004 and 2005 hurricanes were particularly damaging to the Florida and Gulf 

Coast regions (6 hurricanes made landfall in those areas in 2004 and 7 the following year).  

These hurricanes resulted in critical damages to energy infrastructure. Hurricane Katrina (2005), 

for example, was reported to have damaged 21 oil and gas producing platforms and completely 
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destroyed 44 [18]. Numerous drilling rigs and hydrocarbon pipelines were also damaged. Similarly, 

hurricanes have damaged powers systems. Liu et al. [19] reported that in 2003 Dominion Power had 

over 58,000 instances of the activation of  safety devices in the electrical system to isolate damages 

as a result of Hurricane Isabel. Although no offshore wind turbines have been built in the U.S., there 

is no reason to believe that this infrastructure would be exempt from hurricane damages.  

In order to successfully develop sustainable offshore resources, the risk from hurricanes to 

offshore wind turbines should be analyzed and understood. Here we present a probabilistic model 

to estimate the number of turbines that would be destroyed by hurricanes in an offshore wind farm.  

We apply this model to estimate the risk to offshore wind farms in four representative locations in 

the Atlantic and Gulf Coastal waters of the U.S.: Galveston County, TX; Dare County, NC; Atlantic 

County, NJ; and Dukes County, MA. Leases have been signed for wind farms off the coasts of 

Galveston [20] and Dukes County [21]; projects off the coasts of New Jersey and North Carolina 

have been proposed [21]. 

4.3 Materials and Methods 

We model the distribution of the number of wind turbine towers buckled by hurricanes for two 

cases:  (1) turbines are not replaced for the life of the wind farm, and (2) turbines are replaced after 

each hurricane. For each case, we calculate the distributions using two methods: an analytical 

probability distribution presented here and a Monte Carlo simulation discussed in Appendix A. The 

method is summarized in the flow chart shown in Figure 4.3. 
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Figure 4.3: Flow chart for calculating the hurricane risk to offshore wind farms using historical hurricanes. 

All the analyses presented here model a wind farm of 50 NREL 5-MW wind turbines [22] for 20 

years. The turbines are shut down with their blades feathered to 90º because hurricane wind speeds 

are much higher than the maximum operating limit of wind turbines. We believe our results under-

estimate the probability of loss because we model only buckling of the tower base but ignore 

damage to other components. Our results may also under-estimate the probability of tower buckling 

because we analyze the onshore version of the NREL 5-MW turbine, which has a rigid foundation 

structure and is not subjected to wave loads; Jha et al. [23] develop a more detailed model the NREL 

5-MW turbine that includes foundation compliance and wave loads. 
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4.3.1 Assumptions 

The risk model we develop in this chapter is based on several assumptions. The broadest 

assumption is that future hurricane activity will be similar to recorded hurricane activity in the period 

1851 - 2008. Records of hurricane activity over that period are not uniformly reliable-- earlier are 

considered less complete (i.e. not all hurricanes were observed or recorded) and less accurate (e.g. 

poor measurements). This period also will not predict the effects of future climate change. 

1. Rate of Hurricane Occurrence: We assume the rate of hurricanes striking a wind farm 

with their maximum intensity will be similar to the average rate of landfalling hurricanes in 

that county from 1900 – 2007. The historical record of landfalling hurricanes in that period 

is considered reliable. However, Powell and Cocke point out that the area exposed to 

maximum winds in a hurricane is smaller than many U.S. coastal counties [2]. Furthermore, 

we include “indirect” hurricane strikes from the historical record when we calculate that rate 

of hurricane occurrence, so we likely over-estimate the rate of hurricanes striking a wind 

farm. 

2. Hurricane Intensity: We assume that the intensities (maximum 1-min average wind speed) 

of hurricanes at landfall will be similar to the maximum intensities of hurricanes within a few 

hundred miles of the U.S. coast (regions given in Table 4.2) from 1851 – 2008. This is a 

weak assumption for two reasons. First, Powell and Cocke point out that hurricanes tend to 

weaken from their maximum intensities as they move close to shore [2], so this assumption 

results in an over-estimation of intensities. Second, there is good evidence that historical 

record missed tropical cyclones until the advent of satellite imaging in the mid-20th century 

{Landsea:2007vh} and the intensity estimates for tropical cyclones early in the historical 

record are quite uncertain.  
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3. Damage function: We assume that the simulated wind loads on the turbine and the 

resulting stresses are representative of a real turbine designed for IEC Class 1B conditions. 

This is a reasonable assumption, though we believe we under-estimate the buckling 

probability because we do not model foundation compliance or wave slam loads (both 

discussed in Section A.8.1). The software used to simulate the turbine stresses is 

continuously improved and updated by NREL and used by many academic researchers and 

some turbine manufacturers. The software used to simulate the turbulent wind field is widely 

used for simulating typical turbulence, but we were not able to assess whether turbulence in 

a tropical cyclone has “typical” properties. 

4.3.2 Analytical Distribution: Turbine Towers Buckled without Replacement 

We model Yno rep, the number of turbine towers that buckle in T years without replacement as a 

modified Phase-Type distribution with six parameters: Yno rep ~ PH(λ, µ, σ, ξ, α, β), where λ is the 

hurricane occurrence rate; µ, σ and ξ are the three parameters of the Generalized Extreme Value 

(GEV) distribution for event maximum wind speed; and α and β are the two parameters of the log-

logistic wind speed-turbine buckling probability relationship. We use a Phase-type distribution 

because it models a series of events (storms) that occur randomly with a certain rate, and each 

buckles an integer number of turbine towers; it gives the distribution of time until all towers have 

been buckled. Figure 4.6 plots the results calculated with this method. 

Hurricane occurrence is modeled as a Poisson process with rate parameter λ fitted to historical 

hurricane data. The probability that H, the number of hurricanes that occur in T years, equals a 

particular value h is: 

 
 ( 4.1 ) 

€ 

Pr(H = h) =
λT( )h

h!
e−λT
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The maximum 10-minute sustained wind speed of each hurricane at 10-meter height is modeled 

as a Generalized Extreme Value (GEV) distribution with a location parameter µ, a scale parameter 

σ, and a shape parameter ξ fitted to historical hurricane data. The probability density function for 

W, the maximum sustained wind speed, evaluated at particular value w is: 

 
 ( 4.2 ) 

The probability that a single wind turbine tower is buckled by a 10-minute sustained hub-height 

wind speed u is modeled using a Log-Logistic function with a scale parameter α and a shape 

parameter β. The parameters for turbines that can and cannot yaw to track wind direction are given 

in Table 4.1. These parameters are fit to probabilities of turbine tower buckling calculated by 

comparing the results of simulations of the 5-MW offshore wind turbine designed by the U.S. 

National Renewable Energy Laboratory [22] to the stochastic resistance to buckling proposed by 

Sørensen et al. [24] More extensive details are given in Appendix A. 

Table 4.1: Parameters of log-logistic functions for probability of tower buckling. 

 Turbine pointed into wind 
(Active Yawing) 

Turbine pointed perpendicular to 
wind (Not Yawing) 

Damage function parameters 
(log-logistic function) α = 174, β = 19.3 α = 140, β = 18.6 

 

The function is fitted to the results of simulations of stresses on a particular turbine design given 

a yaw direction relative to the wind, a wind turbulence intensity, and a sustained wind speed u, 

described in further detail in Appendix A. The Log-Logistic function is given by: 
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The number of turbine towers buckled by a single hurricane in a wind farm of n turbines is 

modeled as a Beta Binomial distribution with parameters αB and βB. We derive the Beta Binomial 

distribution by fitting a Beta distribution with parameters αB and βB to the probability of buckling as 

a function of wind speed weighted by the probability of occurrence of each wind speed (a 

convolution of D and W) with a nonlinear least-squares fit. The wind speeds W are scaled to turbine 

hub height using the table of scaling values for hurricanes given by Franklin et al. [25] Fitting the 

distribution simplifies the model by replacing the convolution of D and W, which together have five 

parameters, with a Beta distribution that has only two parameters. The Beta distribution gives the 

distribution of buckling probabilities for a single turbine tower given a hurricane with random 

(GEV) maximum wind speed. The corresponding Beta Binomial distribution with the same 

parameter values αB and βB gives the probability that X, the number of turbine towers that buckle 

out of n total, equals a particular value x: 

 
 ( 4.4 ) 

where B( ) is the Beta function.  

The cumulative distribution of the number of turbine towers buckled in T or fewer years 

without replacement, Yno rep, is modeled as a modified Phase-Type distribution: 

 Pr 𝑌!"  !"# ≤ 𝑦   𝜏 ≤ 𝑇) = 𝛑exp  (𝑇𝐓(𝑦,𝑛))𝐞 ( 4.5 ) 

where π  is a row vector of initial state probabilities, T is a matrix of jump intensities for the 

transitions between states, and e is a column vector of ones. A Phase-Type distribution gives the 

distribution of times τ to reach the absorbing state of a Markov jump process [26], [27]. In this 

application, each jump (state transition) represents a hurricane occurrence, each state represents a 

unique number or turbines buckled, and the absorbing state is when all n turbine towers in the wind 
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farm have buckled. We modify the Phase-Type distribution to calculate the distribution of the 

number of turbine towers buckled Yno rep in a fixed time T by iteratively redefining the absorbing state 

to include cases where less than n turbine towers are bucked, as shown in Figure 4.4. 

 

Figure 4.4: The Markov Chain used to calculate the probability that the number of turbine towers buckled is less than or 
equal to y . We define the absorbing state as all the states where Yno rep ≥  y+1. 

This redefinition of the absorbing state makes the sizes of the vectors π  and e a function of y 

and makes both the size and values of the matrix T a function of y. To calculate the probability that 

y or fewer turbine towers buckle, we define the absorbing state to include an integer number of 

turbine towers buckled from y+1 to n. There are y+1 total states; the y+1st state is the absorbing 

state. The term π  in ( 4.5 ) is a y+1 element row vector of initial state probabilities; in this 

application π  = [1 0 … 0] because the distribution begins in state 1 (no turbine towers buckled). The 

term e is a column vector of ones: [1 1 … 1]T. The term T is a (y+1) X (y+1) matrix of jump 

intensities, where the jump intensity Tij(y,n) from the ith state to the jth state is the product of λ, the 

rate of hurricane occurrence, and pij, the probability a hurricane causing a transition from state i to 

state j by buckling turbine towers. The off-diagonal elements of T(y,n) in the ith row and jth are 

calculated by: 

  ( 4.6 ) 
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 ( 4.7 ) 

where t is the jump intensity for a hurricane that jumps directly to the absorbing state (i.e. destroys 

all remaining turbines): 

 
 ( 4.8 ) 

The off-diagonal elements of T do not sum to 1 along a row because some hurricanes do not cause 

a state transition (i.e. some hurricanes do not buckle any turbine towers). 

4.3.3 Analytical Distribution: Turbine Towers Buckled with Replacement 

We model Yrep, the number of turbine towers that buckle in T years with replacement as a 

compound Poisson distribution with six parameters: Yrep ~ Compound Possion(λ, µ, σ, ξ, α, β). We 

use a compound Poisson distribution because it models the distribution of the sum of independent 

identically-distributed events (hurricanes buckling wind turbines, in this case) that occur as a Poisson 

process. The compound Poisson distribution is a convolution of the Poisson distribution given in ( 

4.1 ) for the number of hurricanes that occur in T years and the Beta Binomial distribution given in ( 

4.4 ) for number of turbine towers buckled by each hurricane. No analytical expression exists for the 

PDF or CDF of a Compound Poisson distribution that contains a Beta Binomial distribution. We 

use Panjer’s Recursion [28], [29], an iterative method, to approximate the PDF. The details are given 

in Appendix A. 

4.3.4 Application to Specific Locations 

The rate of hurricane occurrence parameter λ for the Poisson distribution given in ( 4.1 ) is 

calculated as the number of hurricanes to make landfall (direct and indirect strikes) in each county 

between 1900 and 2007 [30], divided by the length of the time period. The calculated values for the 
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locations we investigate are given in Table 4.2. The parameters for the Generalized Extreme Value 

distribution given in ( 4.2 ) are fit to historical data for the maximum 10-minute sustained wind 

speed at 10-meter height for all hurricanes to pass through the geographic ranges of interest 

(described in the fourth column of Table 4.2) between 1851 and 2008. 

Table 4.2: Distribution parameters for Poisson and GEV distributions. 

 Rate of hurricane 
occurrence 

[events/year] 

Max. sustained hurricane wind 
speed: GEV distribution [knots] 

Geographic range of 
hurricanes modeled 

(lat/long) 
Galveston County, TX λ = 0.19 μ = 78.7, σ = 12.1, ξ = 0.251 25.5°N–30°N 92°W–99°W 

Dare County, NC λ = 0.21 μ = 77.6, σ = 11.9, ξ = -0.0366 32°–36.5°N 71°–81°W 

Atlantic County, NJ λ = 0.047 μ = 77.2, σ = 10.6, ξ = -0.0544 36°–41°N 71°–77.5°W 

Dukes County, MA λ = 0.075 μ = 73.2, σ = 6.99, ξ = -0.139 40.3°–42°N 66°–74.5°W 

 

4.4 Results 

4.4.1 Wind Farm Risk from a Single Hurricane 

Wind turbines are vulnerable to hurricanes because the maximum wind speeds in those storms 

can exceed the design limits of wind turbines. Failure modes can include loss of blades and buckling 

of the supporting tower. In 2003, a wind farm of seven turbines in Okinawa, Japan was destroyed by 

typhoon Maemi [31] and several turbines in China were damaged by typhoon Dujuan [32]. Here we 

consider only tower buckling, since blades are relatively easy to replace (although their loss can cause 

other structural damage). To illustrate the risk to a wind farm from hurricane force wind speeds, we 

calculate the expected number of turbine towers that buckle in a 50-turbine wind farm as a function 

of maximum sustained (10-minute mean) wind speed, assuming that turbines cannot yaw during the 

hurricane to track the wind direction (we later consider the case in which the nacelle can be yawed 

rapidly enough to track the wind direction of the hurricane). Figure 4.5 plots the median, 5th 
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percentile, and 95th percentile of the number of turbine towers that buckle as a function of wind 

speed. The vertical dotted line shows the design reference wind speed for wind turbines in IEC 

Class 1 wind regimes, which includes the NREL 5-MW turbine we simulate, and nearly all offshore 

wind turbines currently in production. The IEC 61400-3 design standard for Class 1 wind regimes 

requires that a turbine survive a maximum 10-minute average wind speed with a 50-year return 

period of 50 m/s (97 knots) at hub height [33]; we scale this wind speed from 90-m height to 10-m 

height assuming power-law wind shear with an exponent of 0.077 [25] because hurricane wind 

speeds are given for 10-meter height.  

 

Figure 4.5: Cumulative distribution function of the expected number of turbine towers buckled by a single storm as a 
function of wind speed. This models a hurricane with a turbulence intensity of 9% in a 50-turbine wind farm of NREL 5-
MW turbines (35) that cannot yaw to track the wind. The dashed lines plot the 5th and 95th percentile values and the solid 
vertical line shows Vref, the design wind speed with a 50-year return period (15) scaled to 10-m height.  

A Category 2 hurricane (wind speeds of 45 m/s or higher) will buckle up to 1% of the turbine 

towers in a wind farm.  Hurricane Ike in 2008, for example, had a maximum sustained wind speed of 

95 knots (49 m/s) at 10-meter height (Category 2) when it passed over the meteorological tower 

erected by the developers of the Galveston Offshore Wind project. If a 50-turbine wind farm had 
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been located off the coast of Galveston when hurricane Ike struck, our model predicts that 

Hurricane Ike would have had a 5% probability of buckling 1 turbine tower. 

Higher-category hurricanes will destroy a significant number of turbines; a Category 3 (wind 

speeds of 50 m/s or higher) will buckle up to 46% of the towers. The damage caused by Category 3, 

4 and 5 hurricanes is important for offshore wind development in the U.S. because every state on 

the Gulf of Mexico coast and 9 of the 14 states on the Atlantic Coast have been struck by a 

Category 3 or higher hurricane between 1856 and 2008 [30]. 

4.4.2 Risk from Multiple Hurricanes 

We calculate the cumulative distribution function (CDF) for the number of turbine towers that 

buckle in 20 years for wind farms at four different locations, assuming that buckled towers are not 

replaced after each storm. The distributions are modeled by a modified Phase-Type distribution 

described in the materials and methods section. Figure 4.6 shows the CDF for each location for two 

cases: turbines that can yaw to track wind direction (dashed line) and turbines that cannot yaw (solid 

line). The non-yawing case is a worst-case scenario, but it is realistic for two reasons. First, wind 

turbines typically do not have backup power for yaw motors and hurricanes often cause widespread 

power outages. Wind turbine design standards such as the IEC 61400-3 (Design Load Case 6.2) 

require turbine designers to assume a yaw misalignment up to ±180º if no yaw backup power is 

available, though designers can assume the turbine points directly into the wind if six hours of 

backup power is available for the yaw and control systems [33]. Second, wind direction in a 

hurricane may change faster than a wind turbine can yaw. The NREL 5-MW turbine we model is 

designed to yaw at 0.3º/sec, but Schroeder et al. show that the wind direction of Hurricane Bob in 

1991 changed 30º in approximately 60 seconds (0.5º/sec), as measured 55 km away from the center 



 79 

of the storm [34]. The yawing case in Figure 4.6 illustrates how much the risk to a wind farm is 

reduced if the turbines can track the wind direction quickly and reliably as a hurricane passes.  

 

Figure 4.6: Cumulative distribution of the number of turbine towers in a 50-turbine wind farm buckled in 20 years if 
buckled towers are not replaced. Dashed lines plot the distribution for the case that turbines can yaw to track the wind 
direction, and solid lines plot the distribution for the case that turbines cannot yaw. 

Galveston County is the riskiest location to build a wind farm of the four locations examined, 

followed by Dare County, NC. In contrast, Atlantic County, NJ and Dukes County, MA are 

significantly less risky. In Galveston County, there is a 43% probability that at least one tower will 

buckle in 20 years and a 18% probability that more than half will buckle if the turbines cannot yaw; 

if they are able to yaw, there is still a 16% probability that at least one tower will buckle and less than 

6% probability that more than half will. These results for Galveston do not match line B in Figure 

4.2, which are based on a GEV distribution fit to all landfalling hurricanes in the Gulf of Mexico, 

because these results are based on the GEV distribution given in Table 4.2, which is fit to only 

hurricanes that pass near Galveston. In Dare County, NC, there is a 34% probability that at least one 
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tower will buckle in 20 years and a 1% probability that more than half will buckle if the turbines 

cannot yaw; if they are able to yaw, there is a 4% probability that at least one tower will buckle and 

much less than 1% probability that more than half will.  

In Atlantic County, NJ there is a 7% probability that at least one tower will buckle in 20 years 

and less than 1% probability that more than half will buckle. In Dukes County, MA, there is a 5% 

probability that at least one tower will buckle in 20 years and less than 1% probability that more than 

half will buckle. If the turbines in Atlantic and Dukes counties are able to quickly yaw even when 

grid power is out, there is approximately a 99% probability that none will buckle in 20 years.  

The results in Figure 4.6 assume the turbulence intensity of hurricanes is lognormally distributed 

with a mean of 9% and standard deviation of 1.5 %, where we define the turbulence intensity (TI) as 

the 10-minute standard deviation of wind speed divided by the 10-minute mean wind speed. The TI 

distribution is fitted to data from tropical cyclones over water, as discussed in Appendix A. The 

probability distributions in Figure 4.6 are sensitive to the chosen value of TI: higher turbulence 

intensities for a given mean wind speed means higher peak wind speeds, which increase the 

probability of a turbine tower buckling.  

If turbines are replaced after each hurricane, the cumulative probabilities for fewer than 35 

turbine towers buckling in 20 years is within two percentage points of the distributions without 

replacement shown in Figure 4.6. However, there is a possibility that more than 50 turbine towers 

will buckle in 20 years. For example, there is a 4% probability in Galveston County that more than 

50 turbine towers will buckle if the turbines cannot yaw. The distributions with replacement are 

modeled as a compound Poisson distribution; the derivation of the distribution and a CDF plot of 

the results are given in Appendix A. 



 81 

4.4.3 Distribution of Damage by Hurricane Intensity 

The number of turbine towers that buckle in a wind farm during the farm’s 20-year life is a 

function of the frequency of hurricane occurrence and the intensity of the hurricanes that occur. 

Higher-intensity storms buckle more turbine towers, but occur less frequently. To assess which 

categories of hurricanes cause the most expected damage, we use Monte Carlo simulation to 

calculate the expected value of the number of turbines that buckle in 20 years and the expected 

damage from each category of hurricane. The results are plotted in Figure 4.7. These results reflect 

damages averaged through 10,000 simulated 20-year periods. The results in any given 20-year period 

will be different, typically dominated by one or two hurricanes. 

 

Figure 4.7: The expected number of turbine towers that buckle in a 50-turbine wind farm over 20 years for each location, 
subdivided by hurricane category. 
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Figure 4.7 indicates that Category 4 and 5 hurricanes are projected to cause most of the expected 

damage at each location: 95% in Galveston County, 82% in Dare County, 70% in Atlantic County, 

and 85% in Dukes County. However, no Category 4 and 5 hurricanes have made landfall in Dare, 

Atlantic, or Dukes counties since record keeping began in 1850. Analyses of U.S. hurricanes prior to 

1850 report four landfalls in North Carolina that may have been category 4 (in 1815, 1827, 1842 and 

1846) [35], [36] and one in 1821 that was likely either category 4 or 5 [36]. This historic record 

indicates that hurricanes of intensity 4 or higher should be possible in Dare County. Category 4 

hurricanes also appear possible in Atlantic county with sufficiently warm sea-surface temperatures 

such as during late August. Hurricane model projections [35] indicate that the Great Colonial 

Hurricane of August 1635 most likely retained category 4 intensity until reaching southern New 

Jersey. However, storms of category 4 intensity in coastal Massachusetts may be physically 

impossible in present climate conditions. Generalized Extreme Value distributions (GEV) fit to the 

maximum sustained wind speeds of hurricanes in the regions around Dare, Atlantic, and Dukes 

counties predict probabilities of 4%, 2%, and 2%, respectively, that a hurricane making landfall in 

those counties will be Category 4 or 5.  

We test the sensitivity of our results in Figure 4.6 and Figure 4.7 to the occurrence of category 4 

and 5 hurricanes by repeating the Monte Carlo simulation of 10,000 20-year periods but excluding 

periods that contain a category 4 or 5 hurricane. This analysis excludes 16% of total simulations for 

Dare County, 2% for Atlantic County, and 2% for Dukes County. The results for Dare County are 

the most sensitive to the occurrence of high-category hurricanes: the expected number of turbine 

towers that buckle in 20 years decreases from 2.8 to 0.5, the probability of no turbine towers 

buckling increases from 61% to 72%, and the probability that less than half the turbine towers 

buckle increases from 97% to more than 99% when Category 4 and 5 hurricanes are excluded. The 

results for Atlantic and Dukes counties show a similar trend: the expected number of turbine towers 
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that buckle falls from 0.35 to 0.08 in Atlantic County and from 0.43 to 0.06 in Dukes County. In 

both Atlantic and Dukes counties, the probabilities of none of the turbine towers and less than half 

the turbine towers buckling increase approximately one percentage point. Plots of the CDF of 

number of turbine towers bucked with higher-category hurricanes excluded are given in Appendix 

A. 

4.5 Discussion 

The 2008 DOE report [12] estimates that 54 GW of shallow offshore wind capacity will be 

required to bring the U.S. to 20% wind, and locates most of that capacity off the Gulf and East 

coasts. We find that hurricanes pose a significant risk to wind turbines off the U.S. Gulf and East 

coasts, even if they are designed to the most stringent current standard (IEC Class 1 winds). Now is 

an appropriate moment to consider mitigation strategies that can be incorporated to reduce risk to 

the grid and to operators, before large-scale offshore wind development is undertaken in the United 

States. 

Engineered solutions can mitigate the risk of wind turbine damage as a result of hurricanes in 

the Eastern United States. Typically, wind turbines are designed based on engineering design codes 

for northern Europe and the North Sea, where nearly all the offshore and coastal wind turbines have 

been built. These codes specify maximum sustained wind speeds with a 50-year return period of 42.5 

– 51.4 m/s (83 – 100 knots), lower than high intensity hurricanes [37]. Several authors have studied 

extreme winds in areas prone to tropical cyclones. Garciano et al. [38] propose increasing the 50-year 

design reference wind speed for the Philippines from 50 m/s to 58 m/s at hub height, Clausen et al. 

[39] propose 55 – 75 m/s (at 10-m height) for parts of the Philippines and southern Japan, and Ott 

proposes a model of extreme wind speeds in the western Pacific [40]. Some authors analyze the 

design codes in the context of tropical cyclones. A study by Jha et al., sponsored by a Joint Industry 
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Project that included two wind turbine manufacturers (GE Energy and Clipper Wind), compares the 

reliability levels of an offshore wind turbine designed to IEC 61400-3 and API RP-2A standards 

operating in several hurricane prone U.S. locations [23], [33], [41]. Clausen et al. [32] recommend 

increasing the design load safety factor, currently 1.35, to 1.7 in order to maintain the same level of 

reliability in tropical cyclone areas. They estimate increasing the safety factor will increase the cost of 

an onshore turbine 20 – 30%. The percentage cost increase to strengthen an offshore turbine, like 

the one we model in this paper, for tropical cyclones is likely to be smaller because a significant 

portion of the cost of offshore turbines is in the logistics of transporting, installing, and maintaining 

them.  

We have also demonstrated that wind turbines that have external power available to yaw can 

have a substantially reduced risk of being destroyed. Installing lead-acid batteries to allow a turbine 

to yaw without external power would add $30,000 - $40,000 (2010 prices) to the price of a turbine 

and 1,400 – 2,400 kg to its weight, assuming 6 hours of backup power for yaw motors that draw 12 

kW of power [42]. The yaw rate of the turbine we model is 0.3 degrees per second. Further work is 

needed to determine the yaw rate that is appropriate for hurricanes. Backup power, robust wind 

direction indicators, and active controls may be a low-cost way to reduce risk to the turbine.  

A main concern with losing wind turbines during hurricanes is the implication this will have for 

grid reliability, and more work is needed on this issue. We hypothesize, however, that there is ample 

warning of hurricanes, and supplemental generation reserves can be brought on line to cover for the 

wind plants that will be shut down for the months to years that it may take to rebuild buckled 

towers. However, system operators must make it economical for the owners of such spare 

generation to stay in business even in years with no hurricane damage, and suitable capacity payment 

mechanisms will be required. 
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The probability of hurricane landfalls is not geographically uniform. Figure 4.8 plots the offshore 

wind resources within water shallower than 60 meters [11] and the annual rate of hurricane landfalls 

for states in the Eastern U.S. since 1900 [43]. Information for Florida, Alabama, and Mississippi is 

not included in Figure 4.8. Though these states have moderate to high hurricane occurrence rates 

(0.44, 0.14, and 0.10 year-1 respectively), there are no offshore wind resource estimates available for 

them. The specific results shown in this paper are thus not representative of all the risk of hurricanes 

to all possible offshore wind farm locations. It is clear, however, that analysis of the type presented 

here should be performed as part of the wind farm siting analysis. 

 

Figure 4.8: Resource vs. Hurricane Occurrence Rate λ [year-1]. Texas, Louisiana, and North Carolina are shown in red 
because the annual rate of hurricane occurrence in those states is significantly higher than in the other states considered. 

Our analysis also assumed that historic wind speeds and historic rates of hurricane occurrence 

are representative of future conditions. Historical conditions may be poor predictors if climate 

change were to affect hurricane intensity or frequency. Detection of climate change effects on 

hurricanes is complicated by the very high sensitivity of hurricanes to variations in atmosphere-
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over which hurricane observations are considered reliable [44], [45]. Current high-resolution 

modeling studies project a relatively small increase in Atlantic hurricane intensity with increased 

global temperatures due to an increase in available thermal energy. Some of these models also 

identify a possible decrease in Atlantic hurricane frequency, which may be attributable to the 

stabilization of the upper atmosphere [46]. According to these projections, an increase in intensity 

due to climate change may not be noticeable for the next few decades [45]-[48]. In line with this, 

Pielke et al. [15] report that no trends in normalized damages can be detected. On the other hand, a 

recent observational study [49] finds that there has been an increase in the intensity of the most 

intense hurricanes. Wind farm developers will invest and operate under the current uncertainties on 

the future development of Atlantic hurricane activity. The method developed here will support the 

decision process of wind turbine investors in hurricane-prone areas. Sensitivity analysis on models 

like the one presented here can allow investors and regulators to see how distribution parameters 

affect the risk. 

There is a very substantial risk that Category 3 and higher hurricanes can destroy a substantial 

fraction of the turbines in wind farms at some locations. By knowing the risks before building 

multiple GW of offshore wind plants, we can avoid precipitous policy decisions after the first big 

storm buckles a few turbine towers. Reasonable mitigation measures – increasing the design 

reference wind load, ensuring that the nacelle can be turned into the wind, and building most wind 

plants in the areas with lower risk – can greatly enhance the probability that offshore wind can help 

to meet the United States’ electricity needs. 
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A Appendix 

A.1 Risk From Multiple Hurricanes with Replacement  

In the main body of the paper, Figure 4.6 present CDF plots for the number of turbines 

destroyed in 20 years if buckled turbine towers are not replaced. Here we present similar results for 

the case in which buckled towers are replaced after each storm. Figure A-1 plots the CDF for each 

location for two cases: turbines that can yaw to track wind direction (dashed lines) and turbines that 

cannot yaw (solid lines). 

 

Figure A-1: Cumulative distribution of the number of towers in a 50-turbine wind farm buckled in 20 years if buckled 
toowers are replaced after each storm if they buckle. Dashed lines plot the distribution for the case that turbines can yaw to 
track the wind direction, and solid lines plot the distribution for the case that turbines cannot yaw. 

In this scenario, buckled towers are replaced after each storm so there is no limit to the 

maximum number of towers that buckle. There is a 4% probability that more than 50 turbine towers 

will buckle in Galveston County and less than 1% probability that more than 50 will buckle in Dare 

County. 
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A.2 Risk From Multiple Hurricanes, Cat. 4 and 5 Hurricanes Excluded 

To illustrate the effect of excluding category 4 and 5 hurricanes for Dare, Atlantic, and Dukes 

counties, we plot the CDF of the number of turbines damaged with and without those higher-

category hurricanes. The results for the case that turbines cannot yaw to track the wind direction are 

shown in Figure A-2, where solid lines plot the results for all hurricanes and dotted lines plot the 

results excluding category 4 and 5 hurricanes. Similarly, the results for the case that turbines can 

actively yaw are shown in Figure A-3, where solid lines plot the results for all hurricanes and dotted 

lines plot the results excluding category 4 and 5 hurricanes.  

 

Figure A-2: CDF of the number of turbine towers buckled in 20 years without replacement; turbines cannot yaw to track 
the wind. Solid lines plot the distribution including all hurricanes, and dotted lines plot the distribution with category 4 and 
5 hurricanes excluded. 
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Figure A-3: CDF of the number of turbine towers buckled in 20 years without replacement; turbines can actively yaw to 
track the wind. Solid lines plot the distribution including all hurricanes, and dotted lines plot the distribution with category 
4 and 5 hurricanes excluded. 

A.3 Analytical Distribution: Turbine Towers Buckled with Replacement 

As described in the main document, we use a Compound Poisson distribution to model Yrep, the 

total number of turbine towers buckled in T years in a wind farm of n turbines if towers are 

immediately replaced after they are buckled by a hurricane. The Compound Poisson distribution is a 

function of six parameters: λT, µ, σ, ξ, α, and β.  

 Yrep ~ Compound Poisson(λT, µ, σ, ξ, α, β) (A 1) 

No analytical expression exists for the PDF or CDF of a Compound Poisson distribution 

that contains a Beta Binomial distribution. We use Panjer’s Recursion [1], [2], an iterative method, to 
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 (A 2) 

0 5 10 15 20 25 30 35 40 45 50
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Turbines Buckled in 20 years

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

 

 

Galveston County, TX
Dare County, NC
Atlantic County, NJ
Dukes County, MA

All hurricanes

Cat. 4 and 5 excluded

€ 

Pr(Yrep = y) = gy = a +
bj
y

" 

# 
$ 

% 

& 
' f jgy− j

j=1

y

∑



 93 

where 

 

 
(A 3) 

The value of fj is zero for j > n in equation (A 2) because the Beta Binomial distribution for the 

number of turbine towers buckled in the ith hurricane Xi is not defined for x > n, i.e. the number of 

towers buckled in one hurricane cannot be larger than the number of turbines in the wind farm. 

Panjer defines a and b for a Poisson distribution [1]: 

a = 0 

b = λT 

The initial value of f is: 

 
 (A 4) 

and the initial value g0, from [3], gives the probability that no turbine towers are buckled by 

hurricanes in T years as the probability that no hurricanes occur (H = 0) plus the probability that a 

positive number of hurricanes occur but cause no damage: 

 

 

(A 5) 

where B(α, β) is the Beta function: 
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A.4 Monte Carlo Distribution: Turbine Towers Buckled with Replacement 

To check the Compound Poisson distribution described above, we use Monte Carlo simulations 

to calculate Yrep, the distribution of the total number of turbine towers buckled in T years in a wind 

farm of n turbines if towers are replaced after each hurricane. We simulate 10,000 20-year periods 

using the same distributions used in the Compound Poisson distribution: H for the frequency of 

hurricane occurrence, W for the maximum sustained wind speed, and D for the probability of 

buckling as a function of wind speed. 

For each simulated 20-year period in a given location, we calculate the total number of towers 

that buckle according to the following procedure: 

1. Draw number of hurricanes from Poisson distribution H described in Section A.6. 

2. Draw maximum sustained wind speed for each hurricane from Generalized Extreme Value 

distribution W described in Section A.7. 

3. Scale maximum sustained wind speed to hub height [4] and calculate probability of a single 

turbine tower buckling at that wind speed using the Log-Logistic damage function described 

in Section A.8. 

4. Calculate the number of towers buckled in each hurricane using a Binomial distribution with 

the probability of buckling calculated in step 3 and n turbines. 

 

A comparison of the distributions calculated with the compound Poisson distribution and the 

Monte Carlo simulation is shown in Figure A-4. 
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Figure A-4: A comparison of the cumulative probability distributions of number of turbine towers buckled in 20 years for 
the case where turbine towers are replaced after each storm if they buckle. Results calculated with Monte Carlo simulation 
are plotted as dashed lines and results calculated with a compound Poisson distribution are plotted as solid lines. 
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3. Scale maximum sustained wind speed to hub height [4] and calculate probability of a single 

turbine tower buckling at that wind speed using the Log-Logistic damage function described 

in Section A.8. 

4. Calculate the number of remaining turbines buckled in each hurricane using a Binomial 

distribution with the probability of buckling calculated in step 3 and the number of turbines 

remaining after all the previous hurricanes. 

 

A comparison of the distributions calculated with the Phase-Type distribution given in the main 

paper and the Monte Carlo simulation described above is shown in Figure A-5. 

 

Figure A-5: A comparison of the cumulative probability distributions of number of turbine towers buckled in 20 years for 
the case where towers are not replaced if they buckle. Results calculated with Monte Carlo simulation are plotted as 
dashed lines and results calculated with a Phase-Type distribution are plotted as solid lines. 

A.6 Hurricane Frequency (H) 

We fit a Poisson distribution to the rate of hurricane occurrence in a particular county by 

dividing the number of hurricanes to make landfall in that county from 1900 to 2006 by the number 

0 5 10 15 20 25 30 35 40 45 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Turbines Towers Buckled in years

C
um

ul
at

iv
e 

Pr
ob

ab
ilit

y

CDF of Turbines Damaged in 20 years without Replacement
Solid = Analytical, Dashed = Monte Carlo

 

 

Galveston County, TX
Dare County, NC
Atlantic County, NJ
Dukes County, MA

Analytical

Monte Carlo



 97 

of years [5]. Table 4.2 in the main paper lists the resulting rate of hurricane occurrence values λ for 

the four counties we examine. This method of calculating the rate of hurricane occurrence assumes 

that the rate is constant and equal to the average rate. However, previous research has shown strong 

associations between North Atlantic hurricane activity and atmosphere-ocean variability on different 

timescales, including the multidecadal [6], [7].  

A.7 Hurricane Intensity (W) 

We fit a Generalized Extreme Value distribution (GEV) to the maximum 10-minute sustained 

wind speed at 10-meter height of hurricanes that pass through a region around the counties we 

examine. Table 4.2 in the main paper gives the parameters of the fitted GEV distributions for each 

location and the latitude and longitude limits of the regions around those locations. Figure A-6 

compares the empirical and fitted CDFs for the maximum sustained wind speed at each location. 

 

Figure A-6: Comparison of empirical CDFs for maximum hurricane wind speed in the regions we examine and the GEV 
distributions fitted to those data. 
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A.8 Wind Turbine Damage Function (D) 

We fit a Log-Logistic distribution to the probability of a wind turbine tower buckling as a 

function of 10-minute sustained wind speed at hub height. The probability of the turbine tower 

buckling at a given wind speed is calculated by simulating tower bending moments of a 5-MW 

NREL turbine and comparing them to the stochastic resistance to buckling of the turbine tower. In 

our analysis, we model the 5-MW wind turbine design created by the U.S. National Renewable 

Energy Laboratory (NREL) for two load cases (active yawing and not yawing).  

We calculate separate damage functions for the “active yawing” and “not yawing” load cases 

because those are the best- and worst-case wind load conditions for an idling wind turbine. The 

active-yawing case assumes the grid power is available to the turbine or the turbine has a backup 

power source for the yaw motors and control system; the not-yawing case assumes the turbine does 

not have a backup power source and grid power has been lost, a typical occurrence in hurricanes [8]. 

The current design standards for wind turbines given by the IEC [9] and Germanischer-Lloyd [10] 

require that an idling wind turbine be able to survive 10-minute sustained wind with 50-year 

recurrence period (load case 6.2). If backup power is not available for the yaw and control systems, 

the IEC standard requires the turbine must be able to survive a yaw misalignment of ±180º and the 

Germanischer-Lloyd standard specifies ±30º. The “active yawing” case we simulate assumes backup 

power for the yaw system, and the “not yawing” case assumes a yaw misalignment of 90º. The 

probability of buckling as a function of wind speed for the “active yawing” and “not yawing” cases 

are plotted in Figure A-7. 
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Figure A-7: Log-logistic functions fitted to probability of tower buckling as a function of wind speed. The vertical red line 
at 95 knots plots the 10-minute sustained wind speed with a 50-year return period used to design Class I wind turbines in 
the IEC 61400-3 standard. 

A.8.1 Bending moment simulation 

We calculate a range of maximum tower bending moments by simulating the mechanical loads 

on an NREL 5-MW turbine [11] for mean wind speeds from 40 to 110 m/s (78 – 214 knots) at hub 

height. We simulate 30 10-minute periods for each mean wind speed, with the turbulence intensity 

of each period drawn from a lognormal distribution with a mean of 9% and standard deviation of 

1.5%. The turbine is shut down with blades feathered because the wind speed is higher than the 

operating limit.  

The NREL 5-MW turbine we simulate is designed for offshore installation in an IEC Class 1B 

wind regime [12]. We simulate the configuration referred to by NREL as “onshore”, which is 

identical to the “offshore” except that the “onshore” configuration assumes a rigid foundation and 

no ocean wave loads. The rigid foundation we use in our simulations is likely to give lower estimates 
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of the maximum tower bending moment than a compliant “offshore” foundation design, according 

to simulations conducted by Bush et al. [13] Neglecting wave loads is also likely to give lower 

estimates of the maximum tower bending moment because wave loads contribute significantly to the 

tower bending moment, as shown by simulations conducted by Jha et al. [14] These two 

simplifications of the turbine model embodied in the “onshore” configuration likely underestimate 

tower bending moments and therefore underestimate the probabilities of tower buckling. 

We use the TurbSim software, version 1.50 [15], to simulate a  turbulent 3-dimensional wind 

field . We generate 30 10-minute wind speed time series for each mean wind speeds from 40 – 110 

m/s (78 - 214 knots) in 2 m/s increments. The turbulence around each mean wind speed is 

generated from the Normal Turbulence Model (NTM) given in the IEC 61400-3 design standard [9]. 

For each simulation, we randomly draw a 10-minute turbulence intensity (TI) value from a 

lognormal distribution with a mean of 9% and a standard deviation of 1.5%. Turbulence intensity I 

is calculated as the quotient of the 10-minute mean wind speed u and the 10-minute standard 

deviation σ: I = u10 min/σ10 min. The lognormal distribution is fitted to TI values measured in 

hurricanes and tropical cyclones over water. The directly-measured TI values are given in Table A-1 

and TI values calculated from directly-measured gust factors are given in Table A-2.  

Table A-1: 10-minute turbulence intensities measured for hurricanes over water. 

TI Measured Height Source 

15% 10 m [25] Table 6 
11% 10 m [16] Table 2 
13% 19 m [26] Fig. 1 
17% 19 m [26] Fig. 1 
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Table A-2: 10-minute turbulence intensities calculated from gust factors of hurricanes over water. Turbulence intensities 
are related to gust factor by the relation TI = (GF – 1)/α , where α = 2.44, an average of measured values from figure 7 in 
the paper by Yu et al. [16] Gust factors calculated from 60-minute periods are converted to 10-minute periods by dividing 
by 1.055, as recommended by Vickery et al. [17] 

GF Calculated TI (10-min) Measurement height Source Notes 
1.4 16% 10 m [27] Table 2  
1.38 16% 10 m [27] Table 2  
1.45 15% 10 m [17] Table 4 60-min avg. period 
1.32 10% 44 m [17] Table 4 60-min avg. period 
1.46 16% 10 m [17] Table 4 60-min avg. period 
1.36 12% 10 m [17] Table 4 60-min avg. period 
1.38 13% 10 m [17] Table 4 60-min avg. period 
1.48 17% 10 m [17] Table 4 60-min avg. period 

 

Turbulence intensity values are calculated from measured gust factor (GF) values according to 

the relationship TI = (GF – 1)/alpha, where α = 2.44 is averaged from several values given by Yu 

[16]. Gust factor values given by Vickery et al. use a 60-min averaging period; Vickery et al. 

recommend dividing the GF by 1.055 to calculate the 10-min value [17]. We scale the TI values to 

hub height h = 90 meters using the following relationship derived from equation 2.3.2-3 in the API 

RP-2A design standard: 

 

 
(A 7) 

Figure A-8 plots the TI values directly measured and derived from gust factor measurements in 

tropical cyclones, other TI values measured over water in extra-tropical storms, the tropical-cyclone 

TI values scaled to hub height, and the power-law from equation (A 7) used to scale them to hub 

height. 
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Figure A-8: Turbulence intensity (TI) in over-water tropical cyclones vs height. TI values from tropical cyclones are scaled 
to 90-meter height using a power-law relationship adapted from equation 2.3.2-3 in the API RP-2A-WSD standard. TI 
values measured in extra-tropical storms in the North Sea are also shown for comparison. 

The bending moment on base of the turbine tower is dominated by three forces:  aerodynamic 

force on the turbine blades, aerodynamic force on the nacelle, and aerodynamic force on the tower. 

We calculate the horizontal components (x and y) of the moments caused by those three forces for 

each 0.0125-second time step in a 10-minute simulation. We select the maximum vector sum of the 

moments after excluding the first 60-seconds of the simulation to remove transient oscillations 

caused by initial conditions of the simulation. The process is repeated for 30 simulations at each 

value of mean wind speed. Figure A-9 plots the magnitude of the average of maximum tower 

bending moments as a function of mean wind speed, with the contributions of wind loads on the 

blades, nacelle, and tower separated. Figure A-9A plots the moments for the “Active Yawing” load 

case, where the wind strikes the turbine head-on, and Figure A-9B plots the moments for the “Not 

Yawing” load case, where the wind strikes the turbine from the side. 
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Figure A-9: Magnitude of bending moment on the tower base vs. 10-min mean wind speed. The “Blades” component of 
the moment is simulated using the NREL FAST software. The “Nacelle” component is calculated using [A8] the “Tower” 
component is calculated using [A10]. 

We simulate the moment caused by the aerodynamic force on the feathered blades using the 

NREL FAST software, version 7.00.01a-bjj [18]. The output signals for the x- and y-components of 

the bending moment at the tower base are labeled “TwrBsMxt” and “TwrBsMyt”. The maximum 

moments in some simulations are anomalous, especially for the “Not Yawing” load case where the 

wind strikes the turbine from the side. We believe these outliers are the result of numerical 

convergence problems in the FAST software. We exclude the outliers by fitting a robust quadratic 

least-squares line with bi-square weights to the maximum moments as a function of mean wind 

speed and excluding maximum moments outside the ±50% range around the quadratic regression 

line, as shown in Figure A-10.  
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Figure A-10: The method for excluding anomalous simulation results for maximum tower bending moment. The red line is 
a robust linear best-fit to the data and the green dashed lines are 0.5 and 1.5 times the best-fit line. Data outside the green 
dashed lines are excluded. 

FAST does not simulate wind loads on the nacelle or tower [19], [20], so we calculate the 

moment caused by the aerodynamic force on the nacelle using the following expression adapted 

from sections 5.2.1 and 5.3.1 of the DNV-RP-C205 design standard [21]: 

 
 

(A 8) 

where ux and uy are the horizontal components of wind speed parallel to and perpendicular to the 

long axis of the nacelle and 𝑥  and 𝑦  are the unit vectors in those directions. The surface area S and 

shape coefficient C of the nacelle are based on the nacelle dimensions of the comparable REpower 

5M offshore turbine, which is 6 meters wide, 6 meters tall, and 18 meters long [22]. The shape 

factors are taken from Table 5-5 in the DNV-RP-C205 design standard [21]. The parameter values 

are given in Table A-3. 
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Table A-3: Parameters of wind load on the nacelle 

Parameter Value Description 
ρa 1.21 kg/m3 density of dry air at 20ºC 
hmax 90 m tower height 
cfront 0.7 shape coefficient, nacelle front 
cside 1.2 shape coefficient, nacelle side 
sfront 36 m2 nacelle surface area, front 
sside 108 m2 nacelle surface area, side 

 

The bending moment caused by wind load on the tower is more complicated because the wind 

acts across the whole length of the tower and because the diameter of the tower decreases with 

height. We model the diameter of the tower D as a function of height h as a linear function: 

 

 
(A 9) 

where Dbase is the tower diameter at its base, Dtop is the diameter at the top, and hmax is the height of 

the top of the tower. The shape coefficient for the tower, a long cylinder, is Ctower = 0.5 from Figure 

6-6 in the DNV-RP-C205 design standard [21]. Assuming a uniform wind speed across the whole 

length of the tower, the bending moment from the wind load on the tower is: 

 

 

(A 10) 

The contribution of the wind load on the tower is significant, especially at higher wind speeds, as 

shown in Figure A-9. 

A.8.2 Calculation of Buckling Probability 

Given the magnitude M of the maximum tower bending moments calculated above, we calculate 

the probability of a turbine tower buckling by comparing the magnitude of the simulated bending 

moments to a random variable for the resistance of a tower to buckling. For each load case (“Active 

Yawing” or “Not Yawing”) and mean wind speed u, we create 5,000 bending moment values by 
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repeatedly sampling the simulation results with equal probability. If no anomalous values were 

excluded, there are 30 simulation values to sample from; there are fewer if some were excluded. 

We calculate 5000 resistance to buckling values Mcr according to equation (A 11), the resistance 

to buckling of a thin-walled cylinder, by randomly sampling the parameters from the distributions 

given in Table A-4 [23]: 

 
 (A 11) 

 

Table A-4: Parameters of resistance to buckling at the base of a NREL 5-MW turbine tower. LN = log-normal distribution, 
COV = coefficient of variance. Adapted from Søresnen et al. [23] 

Variable Description Distribution 
type 

Expected 
value COV 

Dbase tower diameter (base) - 6 m - 
Dtop tower diameter (top) - 3.87 m - 
t tower thickness (base) - 0.027 m - 
E Young’s modulus - 210 GPa - 
Fy yield stress LN 1 0.05 
Xy,ss model uncertainties due to scale effects: yield stress LN 1 0.05 
XE,ss model uncertainties due to scale effects: Young’s modulus LN 1 0.02 
Xcr

 critical load capacity LN 1 0.10 
 

The damage function D at a given 10-minute mean wind speed for a given load case (“Active 

Yawing” or “Not Yawing”) is calculated by comparing all the sampled bending moment values to 

the sampled resistance-to-buckling values to find the probability of buckling for each 10-minute 

mean wind speed u: 

  (A 12) 

We generalize the results calculated in equation (A 12) by fitting a log-logistic function to the 

data. The form of the log-logistic function is given by equation ( 4.3 ) in the body of the paper. 

The distribution of number of turbine towers buckled in a hurricane is modeled in ( 4.4 ) by a 

beta-binomial distribution. The beta-binomial distribution gives a binomial distribution for the 
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number of turbine towers buckled in a single hurricane, where all turbines have the same probability 

of buckling. The assumption that all turbines have the same buckling probability implies a strong 

correlation between the buckling of the towers in the wind farm. Our results are not sensitive to this 

assumption of strong correlation. Figure A-11 compares the distribution of the number of turbine 

towers buckled in a single hurricane for two different models of correlation between tower buckling. 

The model labeled “Identical turbines” in Figure A-11 is the model we use in our paper, where the 

number of towers buckled is binomial distributed and all turbines have the same probability of 

buckling. We compare that model to a model that implies a weaker correlation between turbines, 

labeled “Distribution of turbine properties”. In that distribution, each turbine is exposed to different 

wind conditions with turbulence intensities drawn from a lognormal distribution and each tower has 

a different resistance to buckling calculated with (A 11). The results in Figure A-11 are calculated for 

a mean wind speed of 70 m/s (136 knots) but results for other mean wind speeds show similarly-

good matches between the distributions. 
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Figure A-11: Distribution of number of turbine towers buckled in a single hurricane a mean wind speed of 70 m/s (136 
knots). Blue bars plot results for the case used in our paper, where buckling probabilities are identical for all turbines. 
White bars plot results for the case where the resistance to buckling of each tower is drawn randomly from the distribution 
given in (A 11). 

A.9 Nomenclature 

T = time period to investigate 

n = number of turbines in the wind farm  

u = 10-min average hub height wind speed 

λ = rate parameter for occurrence of hurricanes 

µ = location parameter for distribution of wind speed in a hurricane 

σ = scale parameter for distribution of wind speed in a hurricane 

ξ = shape parameter for distribution of wind speed in a hurricane 

α = scale parameter for the log-logistic distribution of the probability of a turbine tower buckling at 

a 10-min average wind speed u 

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Turbine Towers Buckled in a Single Hurricane

Pr
ob

ab
ilit

y

 

 

Identical turbines
Distribution of turbine properties



 109 

β = shape parameter for the log-logistic distribution of the probability of a turbine tower buckling at 

a 10-min average wind speed u 

αB, βB = parameters of the beta-binomial distribution for the distribution of turbine towers buckled 

in a single hurricane (parameters are derived by fitting a beta distribution to the damage 

function weighted by the probability of occurrence of wind speed) 

W = random variable for the maximum sustained (10-min) wind speed of a hurricane 

w = a wind speed drawn from W 

D = random variable for the probability of turbine damage for a given wind speed w 

X = random variable for the number of turbines damaged in one hurricane 

x = a number of damaged turbines drawn from X 

H = random variable for the number of hurricanes in Y-years 

h = a number of hurricanes drawn from H 

Yrep = random variable for the number of turbines damaged in T-years with replacement 

Yno rep = random variable for the number of turbines damaged in T-years, no replacement 

y = a number of turbines damaged drawn from Y 

a = constant for alternative description of the Poisson distribution used in Panjer recursion from 

[24] 

b = constant for alternative description of the Poisson distribution used in Panjer recursion from 

[24] 

τ = the time to destroy all turbines (or reach an absorbing state) if turbines are not replaced 

z = number of Monte Carlo simulations  

T = transition matrix for phase-type distributions (state transition intensities). The values Tij are the 

probabilities of transition from state i to state j. There are n + 1 states, where the n + 1 state is 

the absorbing state 
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t = vector of intensities of state transitions directly to the absorbing state 

π = starting probabilities for each state 

k = number of turbines in absorbing state 

m = an index for summation 

C = shape coefficient 

ρa = density of dry air at 20°C 

u = wind speed 

S = surface area 
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Chapter 5: QUANTIFYING THE HURRICANE CATASTROPHE 

RISK TO OFFSHORE WIND POWER 
 

 

Abstract 

The U.S. Department of Energy has estimated that over 50 GW of offshore wind power will be 

required for the United States to generate 20% of its electricity from wind. Developers are actively 

planning offshore wind farms along the U.S. Atlantic and Gulf coasts and several leases have been 

signed for offshore sites. These planned projects are in areas that are sometimes struck by 

hurricanes. We present a method to estimate the catastrophe risk to offshore wind power using 

simulated hurricanes. Using this method, we estimate the fraction of offshore wind power 

simultaneously offline and the cumulative damage in a region. In Texas, the most vulnerable region 

we studied, 11% of offshore wind power could be offline simultaneously due to hurricane damage 

with a 100-year return period and 5% could be destroyed in any 10-year period. We also estimate the 

risks to single wind farms in four representative locations; we find the risks are significant but lower 

than those estimated in previously published results. Much of the hurricane risk to offshore wind 

turbines can be mitigated by designing turbines for higher maximum wind speeds, ensuring that 

turbine nacelles can turn quickly to track the wind direction even when grid power is lost, and 

building in areas with lower risk. 

 

 

This paper, written with Mitch Small, Paulina Jaramillo, and Jay Apt, was submitted to Risk 

Analysis in December 2012.  
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5.1 Background 

As a result of state renewable portfolio standards and federal tax incentives, there is growing 

interest and investment in renewable sources of electricity in the United States. Wind is the 

renewable resource with the largest installed-capacity growth in the last 5 years, with U.S. wind 

power capacity increasing from 8.7 GW in 2005 to 47 GW in 2011 [1]. All of this development has 

occurred onshore. U.S. offshore wind resources may also prove to be a significant contribution to 

increasing the supply of renewable, low-carbon electricity. The National Renewable Energy 

Laboratory (NREL) estimates that offshore wind resources can be as high as four times the 2010 

U.S. electricity generating capacity [2]. Although this estimate does not take into account siting, 

stakeholder, and regulatory constraints, it indicates that U.S. offshore wind resources are significant. 

No offshore wind projects have been developed in the United States, but there are 10 offshore wind 

projects in the planning process (with an estimated capacity of 3.8 GW) [1] and more proposed [3]. 

The U.S. Department of Energy’s 2008 report, 20% Wind by 2030 envisions 54 GW of shallow 

offshore wind capacity to optimize delivered generation and transmission costs [4]. 

The U.S. has good wind resources along the Atlantic, Pacific, and Great Lake coasts. Many areas 

along the Atlantic Coast and Gulf Coast are particularly attractive because they have high average 

wind speeds, are in relatively shallow water, and are close to major population centers. 

Unconstrained resources at depths shallower than 30 m in the Atlantic coast, from Georgia to 

Maine, are estimated to be 345 GW; the estimate for these resources in the Gulf of Mexico (Texas 

and Louisiana) is 198 GW [2]. For comparison, the 2010 net summer generation capacity for the 

entire U.S. was 1,039 GW [5].  

Offshore wind turbines in these areas will be at risk from Atlantic hurricanes. Between 1949 and 

2006, 93 hurricanes struck the U.S. mainland according to the HURDAT (Hurricane Database) 

database of the National Hurricane Center [6]. Only 15 years in this 58-year period did not incur 
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insured hurricane-related losses [7]. Wind turbines are vulnerable to hurricanes because the 

maximum wind speeds in those storms can exceed the design limits of wind turbines. In 2003, a 

wind farm of seven utility-scale turbines in Okinawa, Japan, was destroyed by typhoon Maemi, 

which had an estimated maximum sustained wind speed of 60 m/s [8] (equivalent to a Category 4 

hurricane), and several turbines in China were damaged by typhoon Dujuan [9].  

It is rare but not unprecedented for a single natural disaster to damage multiple conventional 

power plants. Hurricane Katrina flooded critical pumps and controllers at one power plant, and 

damaged cooling tower shrouds and fans at several others [10]. Hurricane Sandy in 2012 may have 

damaged several gas turbine power plants in New Jersey [11]. The Tohoku earthquake and tsunami 

in March 2011 caused significant damage to the Fukushima Daiichi and Daini power stations; four 

reactors at Fukushima Daiichi, totaling 2,719 MW of capacity, were permanently shut down [12]. 

The earthquake and tsunami also damaged several large coal power plants: 6,050 MW of capacity 

were offline after the earthquake, 4,250 MW were still offline in July 2011, and 2,000 MW (the 

Haramachi Power Station) were expected to be offline until the summer of 2013 [13], [14]. 

Interestingly, the Kamisu semi-offshore wind farm was struck by a 5-meter tsunami during the 

Tohoku earthquake but resumed operation three days later when the local electrical grid was re-

established [15]. 

Hurricane effects on offshore wind power may be more similar to damage to the electrical 

transmission system than damage to conventional power plants. Like the components of the 

transmission system, offshore wind turbines are geographically dispersed and operate independently. 

Severe weather events, such as hurricanes [10] and ice storms [16], sometimes damage individual 

transmission components, which in turn can cause blackouts. However, repairing damage to 

offshore wind turbines will likely take much longer and require more specialized equipment than 

repairing damages to the transmission system. Many transmission system components are 
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commodities and are often stockpiled before hurricane seasons, but most wind turbine components 

are built-to-order and offshore wind turbine repairs require specialized ships and cranes. 

Previous work by Rose et al. estimated the hurricane risk to a single wind farm over its lifetime 

using compound probability distributions fitted to one hundred years of historical hurricane records 

[17]. That study likely over-estimates the risk to a wind farm because it assumes that any hurricane 

making landfall in a county affects the entire coastline of that county with its maximum winds, but 

the area of maximum winds is typically smaller than a coastal county in the U.S [18]. Furthermore, 

that method did not consider hurricane tracks, so it could not assess the correlated risk to nearby 

wind farms. The new work we present here calculates the correlated risk to all wind farms in a 

region by analyzing thousands of simulated hurricanes and accounting for the wind field of each 

hurricane. 

The research presented in this paper follows a catastrophe modeling approach [19]. We 

construct a hazard model that describes the frequency of occurrence, intensity, and location of 

hurricanes that make landfall in the continental U.S. We also create an inventory of wind turbines at 

risk by placing simulated turbines in offshore locations likely to be developed. Finally, we model the 

vulnerability of the wind turbines to hurricane winds. 

5.2 Method 

We calculate the distribution of wind power offline due to hurricane damage by simulating fifty 

5,000-year periods of hurricane activity along the U.S. coast (a total of 2.5x105 years). Each hurricane 

is generated by a statistical-deterministic model developed by Emanuel et al. [20] We calculate the 

wind field of each hurricane to determine the wind speed at each turbine location, and use a 

probabilistic damage function to determine whether each turbine buckles. The method is 

summarized in the flow chart shown in Figure 5.1. 
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Figure 5.1: Flow chart for calculating the hurricane risk to offshore wind farms using simulated hurricanes. 

This method differs from the one developed by Rose et al. [17] because that previous method 

calculated hurricane rates of occurrence and intensities by fitting probability distributions to 

historical hurricanes and did not model the wind field. After towers buckle, we assume it takes 

several years to rebuild them in case several hurricanes strike the same area in a short period (for 

example, seven hurricanes made landfall in Florida in 2004-5, with two each year striking the same 

area). Using simulated hurricanes allows us to base our risk calculations on much longer periods of 

hurricane activity than are available in historical records, which reduces the uncertainty of our 

estimates. However, we explicitly model uncertainties in hurricane size and rate of occurrence, and 

the turbine damage function. 

5.2.2

5.2.4

5.2.6 5.2.5

5.2.8
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5.2.1 Assumptions 

The risk model we develop in this chapter is based on several assumptions. The broadest 

assumption is that future hurricane activity will be similar to the hurricanes simulated based on 

climatological conditions from 1979 – 2011; we discuss the details of this assumption below. That 

limited period may not capture trends or long-term cycles in hurricane activity, and will not predict 

the effects of future climate change. 

1. Rate of Hurricane Occurrence: We assume the annual rate of hurricanes making landfall 

in the continental U.S. follows a 33-year cycle and the rate in each year of the cycle is similar 

to the rate in of landfall of hurricanes simulated with the corresponding year’s climatological 

conditions. The rate of occurrence of the simulated hurricanes is sensitive to the rate at 

which proto-hurricanes form in the Atlantic Basin, a parameter that Emanuel et al. estimate 

from tropical cyclones from 1981 – 2000 [21]. The rate of occurrence is also sensitive to 

“steering effects” that may cause hurricanes to strike the U.S. more or less frequently than 

their absolute numbers would indicate; assumptions governing the hurricane tracks are 

discussed below. Finally, this assumption will also not capture longer-term trends or cycles in 

hurricane activity, though the evidence for either of those in historical hurricane records is 

ambiguous.  

2. Hurricane Intensity: We assume the intensities (maximum 1-min average wind speed) of 

hurricanes will be similar to the intensities of the simulated hurricanes. This is a good 

assumption as long as future sea surface temperatures (SST), which are the main driver of 

hurricane intensity, are similar to the SSTs in 1979 – 2011 period that we used for our 

simulations. The 1979 – 2011 climatological data we used for our simulations encompasses 

at least one El Niño/La Niña cycle but it may not capture longer climatological cycles. 
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3. Hurricane size: We assume that the distribution of the radius of maximum winds (RMW) 

of hurricanes will be similar to the distribution of RMW of hurricanes measured from 1988 – 

2011. It is difficult to determine whether the distribution of hurricane RMW from that 

period is typical because records of RMW before that period are spotty and are usually not 

measured directly. We believe that the RMWs of the simulated hurricanes, which are 

calculated from the simulated intensity [22], are as consistent because they are based on a 

physics model. However, the RMWs calculated with that model are consistently smaller than 

historical hurricanes and therefore not reliable without correction.  

4. Hurricane Tracks: We assume that future hurricane tracks will be similar to tracks of the 

simulated hurricanes in a statistical sense. The tracks are generated by a stochastic method 

that depends on the tracks of historical tropical cyclones after 1970 [20], which we estimate 

is approximately 400 named storms for the Atlantic Basin from 1970 - 2005. This means that 

the simulated hurricane tracks are unlikely to model phenomena that occurred infrequently 

or not at all during that period, such as changes in the Gulf Stream or higher-altitude winds 

that influence hurricane track. 

5. Damage function: We assume that the simulated wind loads on the turbine and the 

resulting stresses are representative of a real turbine designed for IEC Class 1B conditions. 

This is a reasonable assumption, though we believe we under-estimate the buckling 

probability because we do not model foundation compliance or wave slam loads (both 

discussed in Section A.8.1). The software used to simulate the turbine stresses is 

continuously improved and updated by NREL and used by many academic researchers and 

some turbine manufacturers. The software used to simulate the turbulent wind field is widely 

used for simulating typical turbulence, but we were not able to assess whether turbulence in 

a tropical cyclone has “typical” properties. 
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5.2.2 Simulated Hurricanes 

The historical record of hurricanes in the U.S. is insufficient to confidently estimate the risk of 

intense hurricanes. For this reason, we estimate the risk using hurricanes simulated with the method 

of Emanuel et al. that generates hurricanes with statistical properties that agree with the historical 

record [20]. Emanuel’s method simulates hurricanes by first randomly seeding weak vortices 

randomly in space and time [21]. Those vortices follow a track stochastically determined by ambient 

winds, and their intensity evolves along that track as a deterministic function of wind and ocean 

conditions known as the Coupled Hurricane Intensity Prediction System (CHIPS); some vortices 

grow into hurricanes but most dissipate [23]. 

We generate 300 tropical cyclones that make landfall in the continental U.S. based on 

climatological conditions for each year from 1979-2011, for a total of 9,900 storms. This range of 

years covers periods of low hurricane activity in the continental U.S. (e.g. 1981-2, 2000-1) and 

periods of high activity (e.g. 1985, 2004-2005) [6] as well as several El Niño/La Niña cycles. The 

3,285 storms that reach hurricane intensity within 200 km of the continental U.S. are the pool of 

hurricanes we draw randomly from when we create long time series of hurricane activity. For each 

hurricane, we calculate the maximum 1-minute sustained wind speed at each offshore wind turbine 

location using the wind profile proposed by Holland et al. [24] The wind profile depends on the 

radius of maximum wind rmax. We scale the CHIPS-calculated rmax value for each hurricane by a 

lognormal-distributed random variable (described in Section 5.2.6 below) to make the distribution of 

radii similar to the distribution of radii of historical hurricanes. The maximum sustained wind speed 

we calculate for each hurricane is the sum of the circular wind speed, a fraction of the of the wind 

speed at 850 hPa height, and a latitude-dependent fraction of the hurricane’s translation speed [25]. 
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5.2.3 Historical Hurricanes 

We use the historical data for north Atlantic hurricanes to check the results calculated with the 

simulated hurricanes above. The historical record we use consists of the Extended Best Track data 

set for 1988-2011[26] combined with the HURDAT data set for 1900-1987[6]. The Extended Best 

Track data includes estimates of the radius of maximum wind rmax for each hurricane but HURDAT 

does not, so we estimate missing rmax values from minimum central pressure, if available, using the 

following formula given by Powell et al. [27] in ( 5.1 ): 

 
 

( 5.1 ) 

where the factor of 1/1.852 converts from nautical miles to km, Δp is the difference between ambient 

pressure (1,013 hPa) and minimum central pressure, ϕ is latitude, and ε is a normally-distributed 

error term with mean of 0 and standard deviation of 0.3. When pressure is not available, we assume 

a radius of maximum wind of 33 km, the historical median for landfalling hurricanes in the 

continental US given by Ho et al. [28] 

5.2.4 Wind Farm Placement 

We place offshore wind turbines in all feasible locations along the U.S. East Coast and Gulf 

Coast (Figure 5.2). We define “feasible locations” as locations with suitable wind resource between 8 

and 93 km (5 – 50 nautical miles) from shore with water shallower than 30 m, similar to the 

definition used in the Eastern Wind Integration and Transmission Study (EWITS) [29]. We follow 

the definition of “suitable wind resource” used in EWITS: average annual wind speed at 80 m 

sufficient for a typical IEC Class II turbine to have a capacity factor of at least 32% (approximately 

7.4 m/s at 90-m height). The wind resource data are taken from maps created by the National 

Renewable Energy Laboratory (NREL), scaled from 90 m to 80 m height with a power law 

exponent of 1/7. We exclude marine sanctuaries, military practice areas, Navy aviation warning 
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areas, shipping lanes, active oil and gas leases, and bays and inland waterways. References for the 

wind resource and exclusion area databases are given in Appendix B. The turbines are placed with a 

density of 5 MW/km2, equivalent to a spacing of approximately 8 rotor diameters between turbines 

for the NREL 5MW reference turbine; for comparison, turbines at the Horns Rev I wind farm west 

of Denmark are spaced 7 rotor diameters apart [30].  

 

Figure 5.2: Wind turbine locations for the "Full Development" scenario. Mississippi, Alabama, and Florida are excluded 
because wind resource estimates are not available for those states. Detail of the wind turbine location map for Texas and 
western Louisiana, showing excluded areas such as shipping lanes and oil and gas leases. 

The turbines are grouped into four regions in order to aggregate damages from individual 

hurricanes: Texas, the Southeast (Georgia, South Carolina, and North Carolina), the Mid-Atlantic 

(Virginia, Maryland, Delaware, New Jersey, and New York), and New England (Rhode Island, 

Massachusetts, New Hampshire, and Maine). 

5.2.5 Rate of Hurricane Occurrence 

The number of U.S.-landfalling hurricanes in our 5000-year simulations is drawn from a cyclic 

nonhomogeneous Poisson process. Emanuel’s method [20], which generates the pool of simulated 

hurricanes (described above) also generates a Poisson rate parameter Λm for each of the 33 years of 

climatological conditions: m = [1979, 1980, … , 2011]. We cyclically repeat those 33 rate parameters 

so that there is a rate parameter corresponding to each of the 5000 years in the periods of hurricane 
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activity we simulate: [Λ1979,  Λ1980, … , Λ2011, Λ1979,  Λ1980 , …]. To determine the number of 

hurricanes that make landfall in each year of the simulation, we draw from a Poisson distribution 

with the corresponding rate parameter. 

The value of the rate parameter Λm is uncertain because it is calculated from a finite number of 

storms. We model this uncertainty as a Bayesian posterior distribution with an informationless prior. 

The posterior for the Poisson distribution is a gamma distribution with shape hyperparameter tm and 

rate hyperparameter km: Λm ~ Gamma(tm, km). The hyperparameter km is the number of U.S.-

landfalling hurricanes in the climatological conditions of year m. The hyperparameter tm is number of 

years for km lanfalling hurricanes to occur; we calculate this as the number of storms seeded in the 

climatological conditions of year m divided by a universal constant that relates the storm seeding 

rates with global historical genesis rates [21]. To simulate the number of hurricanes in a year of a 

5000-year simulation, we first draw a realization λ from the corresponding gamma-distributed 

random variable Λm, and then we draw the number of hurricanes from a Poisson distribution with 

the rate parameter λ.  

5.2.6 Hurricane Size 

The radius of maximum wind rmax of each simulated hurricane is calculated deterministically by 

the CHIPS model [31] from climatological conditions . However, we find those rmax values tend to 

be smaller and more narrowly distributed (Figure 5.3B) than the rmax values of comparable hurricanes 

in the historical record (Figure 5.3A). Therefore we scale the rmax values of the simulated hurricanes 

by a lognormal-distributed random variable S so that the distribution of their scaled rmax values 

(Figure 5.3C) better matches the distribution for historical hurricanes. 
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Figure 5.3: Histogram of radius of maximum winds for hurricanes within 200 km of the continental U.S. coast. The 
distribution of rmax in (C), has been scaled by a lognormal distribution described in Section 5.2.6 to match the distribution 
of rmax for historical hurricanes in (B) better than the rmax calculated by Emanuel’s CHIPS model shown in (A). 

We calculate the lognormally-distributed scaling factor S = H/M, where H is a lognormal 

distribution fit to rmax of historical hurricanes from the Extended Best Track data set for 1988-2010 

[26] and M is a lognormal distribution fit to rmax of the simulated hurricanes described above. The 

distributions for both H and M are fitted to only hurricanes within 200 km of the continental U.S. 

coast.  

The distributions H and M are uncertain because they are fitted to a finite number of hurricane 

size measurements. We model these uncertainties as Bayesian posterior distributions with 

informationless priors [32]. The posterior for the joint distribution of normal distribution parameters 

µ and θ (where the precision θ = 1/σ2) is a normal-gamma distribution with three hyperparameters 

calculated from sufficient statistics: α is the number of observations of rmax, β is the sum of the 
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observed rmax values, and γ is the sum of the square of the observed rmax values. The marginal 

distribution for θ is shown in ( 5.2 ) and conditional distribution for µ given θ is shown in ( 5.3 ). 

 

 
( 5.2 ) 

 

 
( 5.3 ) 

We use the posterior for a normal distribution because lognormal distributions use the same 

parameters as the corresponding normal distribution. The hyperparameter values for rmax 

measurements 2 hours apart for historical hurricanes within 200 km of the continental U.S. coast 

are: αH = 479, βH = 1.83x103, γH = 7.17x103 and the hyperparameters for rmax measurements 2 hours 

apart for simulated hurricanes within 200 km of the continental U.S. coast are: αM = 40337, βM = 

1.30x105, γM = 4.19x105. 

We limit the scaled radius of maximum winds to the range 18.5 - 98.9 km based on the observed 

5th and 95th percentile values in the Extended Best Track data set for 1988-2010 within 200 km of 

the U.S. coast (409 observations for 41 hurricanes) [26]. These limits are comparable to the rmax 

values that meet quality control standards in the analysis by Willoughby et al. [33] and the limits on 

Powell’s expression for rmax as a function of central pressure and latitude [27]. 

5.2.7 Model Validation for Hurricane Occurrence and Wind Speeds 

In order to validate the simulated hurricane activity we use in this paper, we calculate the return 

period of tropical storms, hurricanes, and intense hurricanes at 45 locations along the Gulf and 

Atlantic coasts to compare to return periods calculated from historical hurricanes for the same 

locations by Keim et al. [34] and we calculate return periods for a range of wind speeds for New 

Orleans and Miami to compare to results presented by Emanuel and Jagger [35]. The results, which 
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are presented in Appendix B, show that the model we develop here predicts return periods for 

intense hurricanes (≥ Category 3) similar to return periods calculated from the historical record. 

5.2.8 Wind Turbine Damage Function 

We calculate the probability of a single turbine tower buckling as a function of the maximum 10-

minute sustained wind speed it experiences at hub height. This damage function is similar to that 

used by Rose et al. [17] but we modify it here by adding normally-distributed scatter around the log-

logistic function to better represent the uncertainty in fitting the function to simulated turbine 

buckling data (Figure 5.4). The parameters of the damage function used here (given in Table 5.1) are 

calculated from simulations of the NREL 5-MW offshore reference turbine design [36]; we expect 

other turbine designs will have damage functions with similar forms but different parameters. This 

damage function does not account for wave loads or damage mechanisms other than tower 

buckling.  

 

Figure 5.4: Log-logistic functions fitted to probability of tower buckling as a function of wind speed. The vertical red line at 
95 knots is the 10-minute sustained wind speed with a 50-year return period used to design Class I wind turbines 
in the IEC 61400-3 standard. 
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The hurricane wind field model calculates 1-minute sustained wind speed but our damage 

function is based on 10-minute sustained wind speed; we divide the 1-minute speed by a factor of 

1.11 to get 10-minute sustained speed, as suggested by Harper et al. [37] 

The probability of a wind turbine tower buckling D(u) as a function of 10-minute average hub-

height wind speed u is calculated as a log-logistic function with normally-distributed scatter, 

described by equation ( 5.4 ) and equation ( 5.5 ) and the parameters in Table 5.1.  

  ( 5.4 ) 

 

 
( 5.5 ) 

The parameters α, β, σD are fit to probabilities of turbine tower buckling calculated by 

comparing simulated stresses on a 5-MW offshore wind turbine designed by the U.S. National 

Renewable Energy Laboratory [36] to the stochastic resistance to buckling proposed by Sørensen et 

al. [38] The simulations are described in more detail by Rose et al. [17] The predictive distribution 

given in ( 5.4 ) is fitted to simulations of wind turbine buckling at 36 10-min average wind speeds 

from 77.8 – 213.8 knots (40 – 110 m/s, in 2 m/s steps) using Metropolis-Hastings (MH) sampling, a 

special case of Markov Chain Monte Carlo (MCMC) methods [39]; additional detail is given in 

Appendix B. We give summary statistics for the empirical distribution of each parameter from MH 

sampling in Table 5.1 considering two load cases: a non-yawing turbine hit broadside by the wind 

and a yawing turbine hit head-on by the wind.   
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Table 5.1: Descriptive statistics for the parameters of the predictive distribution for the wind turbine damage function, 
which models the probability that a turbine will buckle at a given 10-min average wind speed u . These parameters are fit to 
simulations of wind turbine shut down with blades feathered. **(p < 0.05), ***(p < 0.01) 
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α (scale) 174.0 174.0 0.842 

 
β (shape) 19.6 19.6 0.411 

σD (std. dev.) 0.0295 0.0292 0.0038 

 

5.3 Results 

5.3.1 Wind Power Simultaneously Offline 

We estimate the return periods for fractions of the wind power in a region simultaneously offline 

due to hurricane damage for fifty 5,000-year periods. The return period is the inverse of the annual 

probability of a given fraction of wind power being offline. We assume it takes 2 years to rebuild 

turbines buckled by hurricanes, so the damage from multiple hurricanes within 2 years is cumulative; 

we plot the sensitivity of the results to rebuilding time in Figure 5.7. In Texas (Figure 5.5) the 

median amount of wind power offline with a 100-year return period is 11% with a range of 8.3– 

16% for non-yawing turbines. For a 50-year return period, the median fraction offline is 6.3% with a 

range of 4.7 – 8.1%. If the turbines were able to yaw to track the wind direction, the median amount 

of wind power offline in Texas is 0.37% with a 100-year return period and 0.10% with a 50-year 

return period. In the Southeast (GA, SC, and NC), shown in Figure 5.6, the median amount of wind 

power offline with a 100-year return period is 1.9%, with a range of 1.2% – 3.0% for non-yawing 
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turbines. For a 50-year return period in the Southeast, the median fraction offline is 0.65% with a 

range of 0.38 – 0.98%. We do not show results for the Southeast if turbines were able to yaw; the 

median wind power offline is 0.01% with a 100-year return period and 0% with a 50-year return 

period. We also do not show results for the Mid-Atlantic and New England because the risks are too 

small to estimate with the 3,285 simulated landfalling hurricanes we used in our simulations. 

Our damage model predicts that historical hurricanes would have been similarly destructive if 

offshore wind turbines had existed in the locations we describe above. The most destructive would 

have been Hurricane Carla, which struck Texas in 1961. It would have buckled 7.9% of the turbines 

(6.8 GW) in Texas if they were unable to yaw and 0.4% (0.38 GW) if they could yaw fast enough to 

always point into the wind. Similarly, Hurricane Helene in 1958 would have destroyed 1.8% of the 

non-yawing turbines (1.8 GW) in the Southeast and Hurricane Gloria in 1985 would have destroyed 

0.2% of the non-yawing turbines (0.1 GW) in the Mid-Atlantic. The one exception is Hurricane 

Gerda in 1969, which would have destroyed 8.8% of the non-yawing turbines (3.4 GW) in New 

England, significantly more than our simulations predict for even a 1,000-year return period (we 

predict a median of 1.5% and maximum of 4.2%). For comparison, the only other historical 

hurricane that would have caused measureable simulated damage in New England was Hurricane 

Esther in 1961, which would have destroyed 0.2% (0.08 GW) of the non-yawing turbines. 
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Figure 5.5: Return period for fraction of wind power offline due to hurricane damage in the Texas, assuming turbines are 
placed in all locations described above (total capacity of 87 GW). The top plot gives risks for non-yawing turbines; the 
bottom gives risks for yawing turbines. Each of the “Simulated hurricanes” lines represents one of the fifty 5,000-year 
periods of simulated hurricanes. The “Historical hurricane” line represents risk calculated from the historical hurricane 
record (1900 - 2011) and “HLo” and “HHi” represent the lower and upper confidence bounds for the historically-based 
estimates. 

0 2% 4% 6% 8% 10% 12% 14% 16% 18%
0

10

20

30

40

50

60

70

80

90

100

Offshore wind power offline in a given year

Re
tu

rn
 p

er
io

d 
[y

r]

HLo

Simulated
hurricanes

Texas
Non−Yawing turbines (broadside wind)

Historical
hurricanes

HHi

0 0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1%
0

10

20

30

40

50

60

70

80

90

100

Offshore wind power offline in a given year

Re
tu

rn
 p

er
io

d 
[y

r]

Historical
hurricanes Simulated

hurricanes

HHi

Texas
Yawing turbines (head−on wind)



 130 

 

Figure 5.6: Return period for fraction of wind power offline due to hurricane damage in the Southeast (GA, SC, NC), 
assuming turbines are placed in all locations described above (total capacity of 104 GW) and the turbines cannot yaw. We 
do not show the results for yawing turbines because the risks are negligible. Each of the “Simulated hurricanes” lines 
represents one of the fifty 5,000-year periods of simulated hurricanes. The “Historical hurricane” line represents risk 
calculated from the historical hurricane record (1900 - 2011) and “HLo” and “HHi” represent the lower and upper 
confidence bounds for the historically-based estimates. 

The lines labeled “Historical hurricanes” in Figure 5.5 and Figure 5.6 show damage that would 

have been caused by historical hurricanes if offshore turbines had existed in the locations we 

describe above. The lines labeled HLo and HHi represent the lower and upper confidence bounds for 

the empirical CDF of historically-based risks, calculated using Greenwood’s formula [40]. 

These results are most sensitive to the uncertainty in the size of hurricanes and the turbine 

rebuilding time. Sensitivity of wind power simultaneously offline to rebuilding time is shown in 

Figure 5.7 for the 100-year return period in Texas. 
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Figure 5.7: Sensitivity of results to rebuilding time. These results are the percentage of Texas offshore wind power 
simultaneously offline with a 100-year return period. The boxes represent the 25th and 75th percentiles of the simulation 
results, the whiskers represent the maximum extent of the simulated predictions not classed as outliers, and circles are the 
outliers. 

5.3.2 Cumulative Damage 

In the previous section, we showed that only a small fraction of offshore wind power in a region 

would be offline simultaneously due to buckling by hurricanes. However, the cumulative damage 

over several years can be significantly larger. We estimate the cumulative damage to offshore wind 

power in each region and in the entire eastern U.S. for periods of 2, 5, and 10 years, assuming 

turbines designed to existing standards. The results, plotted in Figure 5.8, show that the cumulative 

damage increases with the length of the period and that Texas is likely to see the most cumulative 

damage. 

For Texas and the entire Atlantic coast except Florida (“All U.S.”), we predict a 10% probability 

that more than 0.7% of offshore wind power will be destroyed in any 2-year period, more than 2.9% 

in any 5-year period, and more than 5.7% in any 10-year period if the turbines cannot yaw. For 

Texas alone, there is a 10% probability that more than 0.9% of offshore wind power will be 
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that more than 0.04% of offshore wind power will be destroyed in any 2-year period, more than 

0.5% in any 5-year period, and more than 1.6% in any 10-year period if the turbines cannot yaw. If 

the turbines can yaw to point directly into the wind, the cumulative damages are lower by at least a 

factor of 10. We do not show results for the Mid-Atlantic and New England because the simulated 

cumulative damages are too small to estimate with the 3,285 simulated landfalling hurricanes we 

used in our simulations. 

 

Figure 5.8: Predicted cumulative fraction of offshore wind turbines destroyed in periods of 2, 5, and 10 years. The top row 
shows cumulative damage for non-yawing turbines and the bottom row for yawing turbines. The left-most column shows 
cumulative damage for the entire eastern U.S. coast, the center column for Texas, and the right-most column for the 
Southeast region (GA, SC, NC). 

5.3.3 Lifetime Risk to a Single Wind Farm 

We estimate the lifetime hurricane risk to a single wind farm in four locations: Galveston 

County, TX; Dare County, NC; Atlantic County, NJ; Dukes County, MA. For each location, we 

calculate the lifetime risk as the distribution of the simulated number of turbine towers buckled by 

hurricanes in 20 years, the typical design life of wind turbines, if buckled turbines are not replaced. 
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farm locations using hurricanes simulated with a method proposed by Emanuel et al. [20]; the exact 

wind farm locations are given in the online Supporting Information. The results for Galveston and 

Dare counties are shown in Figure 5.9 and Figure 5.10, where the lines plot the median risk for all 

periods and all wind farm sites near a particular county; the error bars represent the 5th and 95th 

percentile risks. Solid lines plot the risk to non-yawing turbines and dashed lines plot the risk to 

yawing turbines. Results for Atlantic and Dukes counties are given in Appendix B. 

We present these results (labeled “New results (this paper)”) for comparison with results for the 

same four locations presented in Rose et al. [17] (labeled “Rose et al.”) and a correction of those 

earlier results that converts 1-min average wind speeds to 10-min average wind speeds, described in 

Rose et al. [41] (labeled “Rose et al. corrected”) and Section 4.1. There are several important 

differences between the methods used in the current paper and the methods for previous results. 

First, the new results are based on the simulated hurricanes described above; previous results are 

based on probability distributions fitted to historical hurricanes. Second, the new results model the 

wind field of a hurricane near shore, whereas the previous did not. Third, the new results correct an 

error in the previous results described by Powell and Cocke [18] that confused 1-min and 10-min 

average wind speeds; the results labeled “Rose et al. corrected” correct that error but use probability 

distributions fitted to historical hurricanes. Table 5.2 compares selected results for Galveston, TX 

calculated with three methods described above; Table 5.3 compares selected results for Dare 

County, NC calculated with the same three methods. The comparisons in Table 5.2 and Table 5.3 

show that the hurricane risks to offshore wind turbines we predict with the more sophisticated 

method in this paper are slightly lower than risks predicted by the simplified method developed by 

Rose et al. [17], if the corrections for wind speed averaging period described by Rose et al. [41] are 

applied. 
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Figure 5.9: Cumulative distribution of number of turbine towers buckled in Galveston County, TX by hurricanes in 20 years 
if buckled towers are not replaced. Dashed lines plot the distribution for the case that the turbines can yaw to track the 
wind direction, and solid lines plot the distribution for the cast that turbines cannot yaw. 

 

Figure 5.10: Cumulative distribution of number of turbine towers buckled in Dare County, NC by hurricanes in 20 years if 
buckled towers are not replaced. Dashed lines plot the distribution for the case that the turbines can yaw to track the wind 
direction, and solid lines plot the distribution for the cast that turbines cannot yaw. 
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In Atlantic County, NJ, there is a 0.4 - 3% probability and in Dukes County, MA, a 0.2 – 2% 

probability that at least one tower will buckle in 20 years if the turbines cannot yaw. The probability 

of more than half the turbines buckling in the non-yawing case or any turbines buckling in the 

yawing case in Atlantic County and Dukes County are too small to estimate with the 3,285 simulated 

landfalling hurricanes we used in our simulations. 

Table 5.2: Comparison of results for Galveston County with no rebuilding of buckled turbines. 

Galveston County, TX 
  ≥ 1 turbine buckled in 

20 years 
> 25 turbines buckled in 

20 years 

N
on

-y
aw

in
g 

tu
rb

in
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(b
ro

ad
si

de
 to

 w
in

d)
 New results (this 

paper) 32 - 41% 3 – 7% 

Rose et al. 
corrected [41] 43% 18% 

Rose et al. [17] 60% 30% 

Ya
w

in
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tu
rb

in
e 

 (h
ea

d-
on

 to
 w

in
d)

 New results (this 
paper) 5 – 10% 0% 

Rose et al. 
corrected [41] 16% 6% 

Rose et al. [17] 25% 10% 
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Table 5.3: Comparison of results for Dare County, NC if buckled turbines are not rebuilt. 

Dare County, NC 

  ≥ 1 turbine buckled in 
20 years 

> 25 turbines buckled in 
20 years 

N
on

-y
aw

in
g 

tu
rb

in
e 

(b
ro

ad
si

de
 to

 w
in

d)
 New results (this 

paper) 5 - 12% 0.01 - 2% 

Rose et al. 
corrected [41] 34% 1% 

Rose et al. [17] 60% 9% 

Ya
w
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rb

in
e 

(h
ea

d-
on

 to
 w
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d)

 

New results (this 
paper) 0.4 - 2% < 0.3% 

Rose et al. 
corrected [41] 4% < 0.1% 

Rose et al. [17] 15% < 0.1% 

 

5.4 Discussion 

Our results suggest that hurricanes will pose a non-negligible, but likely manageable risk to grid 

operators in coastal regions should they become dependent on offshore wind power, though 

hurricanes in the Gulf of Mexico may pose a significant risk to insurers. Grid operators in areas 

prone to intense hurricanes should account for the hurricane risk when calculating capacity value for 

offshore wind power if they use existing wind turbine designs. Insurers should carefully assess the 

spatial and temporal correlation of hurricane risk to offshore wind power in areas prone to intense 

hurricanes. Hurricane risk can be mitigated by strengthening turbine designs or ensuring that 

turbines can yaw to track the wind direction even if grid power is lost. These risks may change as the 

climate changes, but it is unclear whether the risks will increase or decrease. 

From the perspective of an electrical grid operator, the hurricane risk to offshore wind power 

may affect two aspects of electrical grid reliability: system security and system adequacy. Security is a 
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measure of the ability of the power grid to continue operating normally in case of the loss of a major 

component, such as a power plant or transmission line. The U.S. grid has experience in dealing with 

temporary losses of major components as a result of hurricanes, and there are established 

communication protocols that require generators to inform the power grid operators of any 

generation assets loses [42]. Furthermore, the scale of expected offshore wind power losses, even in 

extreme events, is similar to the reserve margin used to maintain system security. For example, 

ERCOT, the Texas grid operator, has a minimum reserve margin target of 13.75% of system load 

[43], but a 100-year hurricane event would take 9 – 14% of the offshore wind power offline 

simultaneously. 

Adequacy is a measure of the generation and transmission capacity to meet future load. Wind 

power can contribute only a fraction of its rated power output, known as “capacity value”, to system 

adequacy because wind is a variable resource. There has been significant work on estimating the 

capacity value of wind power [44]-[46], but none has considered the risk of losses in wind farm 

installations resulting from natural hazards. Unlike conventional generators, which can see short-

term outages as a result of hurricanes [47], long term loses of offshore wind resources could result 

from hurricanes. These long-term losses can affect the adequacy of the grid, which in turn would 

affect security. The results we present in this paper suggests that there is a risk associated with 

installing significant amounts of offshore wind power in the Gulf of Mexico if the turbines are 

designed to current standards. Figure 5.5 shows, for example, that there is a 2% probability of 

having 4.7 – 8.1% of installed wind capacity offline simultaneously in any given year and a 1% 

probability of 9 – 14% offline. We thus suggest that methods for calculating the capacity value of 

offshore wind resources in the Gulf Cost should incorporate the risk of losses due to hurricanes. 

This will ensure that appropriate long-term reserve margins are maintained and available to maintain 

security of the grid. 
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From the perspective of insurers, the hurricane risk to offshore wind power may be significant 

because offshore turbines are expensive and current turbine designs are vulnerable. For example, a 

100-year event (hurricane or series of hurricanes) could cause $31 – 49 billion in damages to 

offshore wind turbines and a 50-year event could cause $17 – 27 billion if turbines are installed in all 

feasible locations along the Texas coast (87 GW and assuming an overnight capital cost for offshore 

wind turbines of $4,000/kW [30]). That 100-year event would rank as one of the ten costliest two-

year periods in U.S. history in terms of hurricane damage and the 50-year event would rank as one 

of the fifteen costliest 2-year periods. For comparison, Hurricane Ike, one of the costliest hurricanes 

in U.S. history after Katrina, caused approximately $29.5 billion in damages [6]. It is unlikely that the 

entire Texas coastline will be developed, but the insurance exposure could be in the billions of 

dollars if there is significant offshore wind power development in the Gulf of Mexico with current 

wind turbine designs. 

To mitigate the risks of hurricanes, offshore wind turbines can be designed for higher maximum 

wind speeds, designed to track the wind direction (yaw) quickly enough to match wind changes in a 

hurricane even if grid power is cut off, or placed in areas with lower hurricane risk, as discussed by 

Rose et al. [17]. Efforts are underway to determine design standards for offshore wind turbines in 

hurricane prone areas [48]. Battery backup is a low-cost way to maintain yawing capability when grid 

power is interrupted [17]. Nearly all planned offshore wind development in the U.S. in the next 10 – 

20 years will occur in low-risk areas such as New England and the Mid-Atlantic states. A U.S 

Department of Energy report envisions a scenario with 54 GW of offshore wind from North 

Carolina to Maine by 2030 [4] and the U.S. Bureau of Ocean Energy Management (BOEM) is 

planning to auction offshore wind leases from Massachusetts to Virginia [49]. However, the state of 

Texas has strongly encouraged onshore wind development and has signed a lease for a wind power 

development near Galveston [50]. 
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The model developed for this paper uses simulated hurricane tracks and intensities based on 

climatological conditions from 1979 to 2011; it does not assess the effects of climate change. There 

has been significant work on evaluating the implications of climate change on hurricane occurrence 

[21], [51]-[53]. Studies suggest the frequency of hurricanes may not increase in the future and may 

even decrease, but the intensity of these tropical cyclones is likely to increase as a result of climate 

change. These conflicting trends will affect the risk hurricanes pose on the large-scale deployment of 

offshore wind resources in the Gulf Coast, where we find the current risk is the greatest. While a 

reduction in hurricane frequency may mean there is a reduction in risk, the increased intensity will 

result in increased damages by individual storms. It is hard to measure, however, which of these two 

mechanisms will affect the risk to offshore wind farms the most. 
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B Appendix 

B.1 Wind Turbine Placement Details 

Wind turbines are placed in areas that meet the following criteria: 

• Water depth shallower than 30 meters 

• Mean annual wind speed greater than 7.4 m/s at 90 m height 

(http://www.nrel.gov/gis/data_wind.html) 

• Distance from shore greater than 8 km and less than 93 km. 

Wind turbines are excluded from the following areas: 

• Marine sanctuaries 

o Descibed by shapefiles labeled “Marine Protected Areas” from 

http://www.cec.org/Page.asp?PageID=924&ContentID=2336 

• Military practice areas 

o Described by shapefiles labeled “COASTAL.MIPARE_POLYGON” from 

http://ocs-

spatial.ncd.noaa.gov/SpatialDirect/translationServlet?SSFunction=prepareFetch 

• Military aviation warning areas with floor below 1000 ft 

o Shapefiles retrieved by querying 

http://www.csc.noaa.gov/ArcGISPUB/rest/services/MultipurposeMarineCada

stre/MultipurposeMarineCadastre/MapServer/27/query with the following 

parameters: 

§ Filter Geometry: {xmin: -125, ymin: 29, xmax: -70, 
ymax: 47} 

§ Geometry Type: Envelope 

§ Return Fields: “NAME”, “LOWER_ALT” 

• Shipping lanes 

o Described by shapefiles labeled “COASTAL_FAIRWAY” and 

“COASTAL_TSEZNE” from http://ocs-

spatial.ncd.noaa.gov/SpatialDirect/translationServlet?SSFunction=prepareFetch 

• Active oil and gas leases 
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o Described by shapefiles retrieved from http://csc.noaa.gov/mmcviewer/  

• Bays and inland waterways 

o Matagorda Bay, Galveston Bay, Pamlico Sound, Cheasapeake Bay, Delaware Bay, 

Long Island Sound, and Cape Cod Bay 

B.2 Total Installed Wind Capacity Used in This Paper 

Table B-1: Total installed offshore wind power capacity that could be developed in each state within the constraints 
described in Section B.1, assuming a density of 5 MW/km2. Mississippi, Alabama, and Florida are excluded because wind 
resource estimates are not available for those states. Connecticut is excluded because nearly all its coastline is on Long 
Island Sound, are area we assumed was unlikely to be developed. 

 State Capacity (MW) 

G
ul

f o
f 

M
ex

ic
o Texas 86,520 

Louisiana 68,100 

So
ut

he
as

t Georgia 45,740 

South Carolina 21,200 

North Carolina 37,380 

M
id

-A
tla

nt
ic

 Virginia 15,160 
Maryland 720 
Delaware 6,760 
New Jersey 18,400 
New York 9,940 

N
ew

 E
ng

la
nd

 Rhode Island 3,000 

Massachusetts 29,140 

New Hampshire 40 

Maine 6,840 
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B.3 Lifetime Risk to a Single Wind Farm 

B.3.1 Wind Farm Locations 

Table B-2: Locations of the wind farms used to calculate results in Section 5.3.3 and Section B.3.2. 

 Wind Farm Locations 

Galveston County, TX 

29.09ºN, 94.90ºW 

29.25ºN, 94.71ºW 

29.41ºN, 94.41ºW 

28.76ºN, 94.63ºW 

28.82ºN, 94.32ºW 

28.96ºN, 94.18ºW 

Dare County, NC 

35.09ºN, 75.93ºW 

35.21ºN, 75.57ºW 

35.50ºN, 75.34ºW 

35.73ºN, 75.41ºW 

36.17ºN, 75.61ºW 

Atlantic County, NJ 

39.24ºN, 74.34ºW 

39.31ºN, 74.26ºW 

39.40ºN, 74.24ºW 

Dukes County, MA 

41.45ºN, 70.96ºW 

41.23ºN, 70.73ºW 

41.27ºN, 70.42ºW 

41.48ºN, 70.37ºW 

 

B.3.2 Additional Results 

 Figure B-1 and Figure B-2 plot results for the lifetime (20-year) risk to a single wind farm in 

Atlantic County, NJ and Dukes County, MA, and Table B-3 and Table B-4 compare those results to 

previously-published results. 
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Figure B-1: Cumulative distribution of number of turbine towers buckled in Atlantic County, NJ by hurricanes in 20 years if 
buckled towers are not replaced. Solid lines plot the distribution for the cast that turbines cannot yaw. Results for yawing 
turbines are not shown because the risks are too small to calculate with the method in this paper. 

 

Table B-3: Comparison of results for Atlantic County with no rebuilding of buckled turbines. 

Atlantic County, NJ 
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Figure B-2: Cumulative distribution of number of turbine towers buckled in Dukes County, MA by hurricanes in 20 years if 
buckled towers are not replaced. Solid lines plot the distribution for the cast that turbines cannot yaw. Results for yawing 
turbines are not shown because the risks are too small to calculate with the method in this paper. 
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B.4 Metropolis-Hastings Algorithm for Damage Function Distribution 

We use a Metropolis-Hastings algorithm (a special case of Markov Chain Monte Carlo methods) 

to estimate the three parameters θ1 = α , θ2 = β , θ3 = σ for the turbine damage function. 

Specifically, we use the Metropolis-Hastings algorithm with component wise updating of the 

parameters[3], according to the following steps: 

1. Initialize an iteration counter j = 1 and set initial values of the parameters θ(0). It helps to 

choose initial parameter values relatively close to the expected final values because the MH 

algorithm will converge faster that way. 

2. For each parameter θi:  

a. Propose a new parameter value θi
* as a function of the previous parameter value θi

(j-1) 

according to the proposal distribution q: 

 

b. Calculate the proposal ratio: 

 

c. Calculate the likelihood ratio, which is the ratio of the likelihood function with 3 

parameters: the proposed value for the ith parameter θi
* and the values for the two 

other parameters from the previous step : 

 

where the likelihood function based on equation ( 4 ) in the body of the paper is the 

product of the probability density value of the residuals (difference between 
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measured turbine buckling probability and loglogistic model) for the K measured 

turbine buckling probabilities y(uk) that are a function of wind speed uk:. For example: 

 

where f(x; µ, σ) is the PDF of the Normal distribution: 

 

d. Calculate the acceptance probability α as the minimum of the proposal ration and 

the likelihood ratio:  

 

e. If the proposal is accepted (α > uniform random number), , otherwise 

 and go to the next parameter θi+1. 

3. Increment the iteration counter j = j+1 

 

In the Gamma distribution in step 2a, τ is a parameter that must be tuned to improve the 

convergence speed of the algorithm; we set  τα = 100, τβ = 5, and τσD = 1000. In the likelihood 

function in step 2c, yk is the simulated probability of tower buckling at wind speed uk. Each pair (uk, 

yk) corresponds to a point in Figure 7 in the body of the paper. We simulated turbine buckling at K 

= 36 different 10-min average wind speeds from 77.6 – 213.8 knots (40 – 110 m/s, in 2 m/s steps). 

The details of the turbine buckling simulation are given in the Supporting Information of work by 

Rose et al. [2] 

We assume informationless priors, i.e. uniform distributions. 
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B.5 Model Validation 

Emanuel et al. have shown that the simulated hurricanes we use as the basis for our analysis 

have statistical properties similar to historical hurricanes [4]. However, we transform those simulated 

hurricanes by modeling uncertainty in their return rate and size. We validate the transformed 

hurricanes by calculating the return periods of three different storm intensities at 45 locations along 

the U.S. coast (Section B.5.1 below) and return periods of a range of wind speeds in New Orleans 

and Miami (Section B.5.2 below). 

B.5.1 Return Period of Storms Along the U.S. Coast 

We estimate return periods of intense hurricanes, all hurricanes, and all tropical storms for 45 

points along the Gulf and Atlantic coasts using the simulated hurricanes described in the body of the 

paper. For each point, the return periods are calculated within 20 km of the point for storms that 

pass within 240 km of the point, using the simulated hurricanes described in the body of the paper. 

We present these results for comparison with results based on historical hurricane data in a paper by 

Keim et al. [5] 

In Figure B-3 we plot our estimates of the return periods of winds greater than intense-hurricane 

(> 96 knots), which are comparable to the historically-based return periods given by Keim et al. for 

most locations. This is important because offshore wind turbines designed to existing standards are 

most vulnerable to intense hurricanes. Our simulations predict shorter return periods for intense-

hurricane-force winds along the coasts of Georgia, northeastern Florida, and northwestern Florida, 

but the historical record is not long enough to accurately estimate return periods for those regions. 
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Figure B-3: Return periods of wind speeds greater than 96 knots (intense hurricanes) within 20 km of each point, 
calculated with the simulation method described in the body of the paper. 

In Figure B-4 we plot our estimates of return periods for winds greater than hurricanes strength 

(> 64 knots), which predict shorter return periods than the historical record. Although our results 

over-predict the frequency of all hurricanes relative to historical data, we expect this has little effect 

on our turbine risk results because most of risk comes from intense hurricanes and we show in 

Figure B-3 that we model the return period of those well. 
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Figure B-4: Return period of wind speeds greater than 64 knots (hurricanes) within 20 km of each point, calculated with 
the simulation method described in the body of the paper. 
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Figure B-5: Return period of wind speeds greater than 34 knots (tropical storms) within 20 km of each point, calculated 
with the simulation method described in the body of the paper. 

In Figure B-5 we plot our estimates of return periods for tropical-storm-force winds, which 

predict shorter return periods than the historical record. As with the return periods of all hurricanes 

in Figure B-4, we expect this has little effect on our turbine risk results because most of risk comes 

from intense hurricanes and we show in Figure B-3 that we model the return period of those well. 

B.5.2 Return Periods of Maximum Total Wind Speed for Select Locations 

We estimate the distribution of return periods for a range of maximum total wind speeds for 

New Orleans and Miami, shown in Figure B-6 and Figure B-7. For each point of interest, the return 

periods are calculated within 100 km of the point for storms that pass within 100 km of the point, 
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using the simulated hurricanes described in the body of the paper. We present these results for 

comparison with results based on historical hurricane data in a paper by Emanuel and Jagger.[5] 

We find the return periods we estimate for total maximum wind speed in New Orleans (Figure 

B-6) are somewhat shorter than the return periods Emanuel and Jagger estimate. For example we 

estimate 100-knot winds have approximately a 25-year return period but Emanuel and Jagger 

estimate approximately 30 years. We estimate 120-knot winds have a return period of approximately 

45 years but Emanuel and Jagger estimate approximately 65 years. Both our estimates and Emanuel 

and Jagger’s both fall within the confidence interval for return periods estimated from historical 

hurricane records. We believe our estimates differ from Emanuel and Jagger’s even though we use 

the same model to simulate hurricanes because our hurricanes are have larger radii of maximum 

winds that better match the distribution of sizes of historical hurricanes. 

 

Figure B-6: Return periods for maximum total wind speeds within 100 km of New Orleans, calculated from the simulated 
hurricanes described in the body of the paper. 
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We find the return periods we estimate for total maximum wind speed in Miami (Figure B-7) are 

somewhat different from the return periods Emanuel and Jagger estimate. For example we estimate 

100-knot winds have approximately a 24-year return period but Emanuel and Jagger estimate 

approximately 17 years. We estimate 120-knot winds have a return period of approximately 55 years 

but Emanuel and Jagger estimate approximately 38 years. Both our estimates and Emanuel and 

Jagger’s both fall within the confidence interval for return periods estimated from historical 

hurricane records. 

 

Figure B-7: Return periods for maximum total wind speeds within 100 km of Miami, calculated from the simulated 
hurricanes described in the body of the paper. 
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