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Abstract 

Many studies have recently reported estimates of greenhouse gas (GHG) emissions 
and associated potential climate impacts of biofuel and natural gas (NG) use. U.S. corn 
ethanol production keeps increasing under federal mandates, and NG production soars 
due to successful tapping of unconventional resources in North America, particularly 
shale gas. Numerous life cycle assessment (LCA) studies document technology specific 
corn ethanol and NG GHG estimates. The estimates often include all life cycle stages 
from fuel supply to combustion, and point out potential for emissions reductions. 
Several studies suggest that using GHG emissions as an evaluation metric 
underestimates corn ethanol’s radiative forcing (RF) impact – a precursor and indicator 
for global temperature change – by 10-90% over the next few decades. This emissions 
timing effect may overestimate (i) ethanol’s climate benefits over gasoline and (ii) the 
effectiveness of U.S. policies mandating and subsidizing ethanol. This work revisits the 
above studies, and builds upon existing models to quantify RF impacts across the corn 
ethanol life cycle. The emissions timing factor (ETF) is significantly smaller than 
previous estimates (2-13% depending on the chosen impact time frame), and the effect 
is dwarfed by uncertainty in the GHG emissions estimates. Nevertheless, ETF reduces 
ethanol’s probability of meeting the federal target of 20% GHG reduction relative to 
gasoline from 53% (according to EPA GHG estimates) to 7-29%. However, the small 
potential climate impacts from U.S. ethanol use may not actually be observable based 
on estimated initial increases in global average surface temperature of < 0.001 °C. 
About 25% of global primary energy production comes from NG, whose life cycle GHG 
emissions and potential future climate impacts from substituting coal are highly 
uncertain due to fugitive methane (CH4) emissions from the NG industry. Accurately 
quantifying the NG fugitive emissions (FE) rate – the percentage of produced NG, 
mainly CH4 and ethane (C2H6) – released to the atmosphere is challenging due to the 
size and complexity of the NG industry. Recent LCA estimates suggest that the current 
NG FE rate could be as high as 8% and 6%, from shale and conventional NG, 
respectively, and other bottom-up studies indicate even higher rates several decades 
ago. This work analyzes possible ranges of the global average NG FE rate based on 
atmospheric CH4, C2H6, and carbon isotope (δ13C-CH4) measurements recorded since 
1984, and top-down modeling of their sources and sinks. 
Box-model, δ13C-CH4 mass balance, and 3D-modeling results agree on best estimate 
NG FE rates of 3-5% (of dry NG production and dry NG composition) globally over the 
past decade, and 5-8% around 1990. Upper bound FE rates are 5% and 7% in 2010 
and 2000, respectively. Best estimate and upper bound values may be overestimated 
because both assume lower bound emissions from oil and coal production as well as 
complete absence of natural hydrocarbon seepage. While LCA studies are useful for 
identifying processes with the greatest NG FE reduction potential, the recent high 
bottom-up estimates do not appear representative of the U.S. national average based 
on top-down modeling results. Given the steadily declining NG FE rates one may expect 
that further emissions abatement is possible if industry practices are further improved.  
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Ripened in the finest garden, 
Supported by a trusted few, 
Through the leafs a fruit is shining. 
A blossom taps towards the blue. 
 
It shall unfold its precious grain, 
A source of guidance yet unknown, 
So that before the petals drop 
A garden elsewhere has been sown. 
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Chapter 1: Introduction 
Energy from renewable sources, such as biomass, wind, and solar radiation, 
increasingly contribute to the world’s energy production, which mainly consists of coal, 
oil, and natural gas. While the fossil fuel (FF) contribution of global power generation 
has declined from 70% to 66% during 1980-2010, the biomass, wind, and solar 
contribution has increased 25-fold from 0.2% to 5% over the same period (1). This 
energy transition is the result of several factors including policy incentives and declining 
costs of renewable energy technologies (2, 3). Policy incentives, such as renewable 
energy mandates, are partially driven by a wide scientific consensus that rising GHG 
concentrations associated with FF use pose a threat to global climate and the welfare of 
future generations (4, 5). Evaluating the effectiveness of alternative energy transition 
pathways to reduce GHG emissions is important for efficiently allocating economic 
resources and designing energy and climate policy (6). 
Life cycle assessment (LCA) is a tool, which can be applied to quantify the GHG 
emissions of alternative forms of energy, and it is increasingly used to inform policy-
makers (7–10). LCA has traditionally been used to support complex environmental 
performance evaluations of emerging technologies due to its ability to represent metrics 
like GHG emissions at high resolution (11–13). A major benefit lies in producing a 
systematic inventory of the product discharges to the environment in every life cycle 
stage, e.g., material extraction, processing, use, and waste management (14). For 
instance, numerous LCA studies document the technology specific emissions during 
these stages and point out potential for emissions reductions, e.g., in the case of 
biofuels (9). While these emissions inventories can be extended to estimate impact 
measures, such as atmospheric RF as an indicator for temperature change, most LCA 
studies limit their analysis to emissions. 
Several studies in 2009 and 2010 focusing on the climate implications of substituting 
corn ethanol for gasoline suggest that using GHG emissions as an evaluation metric 
underestimates ethanol’s RF impacts, thereby overestimating (i) ethanol’s climate 
benefits over gasoline and (ii) the effectiveness of U.S. policies mandating and 
subsidizing ethanol (15–17). U.S. corn ethanol production was 13.3 Bgal in 2012 (6.4% 
energy equivalent of U.S. gasoline production), and the U.S. Environmental Protection 
Agency’s (EPA) Renewable Fuel Standard 2 includes a mandate of corn ethanol 
increasing to 16 Bgal in 2022 (7, 18, 19). The disagreement in ethanol’s perceived 
climate benefits between the life cycle GHG inventory and RF impacts arises from 
ethanol’s land use change (LUC) induced GHG emissions. This emissions source, 
which appears to be the largest single contributor to corn ethanol’s life cycle GHGs, may 
be caused, directly or indirectly, by providing agricultural land for the biofuel feedstock 
(20, 21). Emissions from LUC occur over a short period at the beginning of the life cycle 
(15), which may span a decade or more. Thus, the early LUC emissions may cause a 
greater amount of cumulative radiative forcing (CRF) over the next decades than the 
remaining life cycle emissions. Some estimate that the traditional metric used for policy 
support, i.e., GHG emissions per unit of produced fuel, underestimates RF impacts by 
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10-90% due to emissions timing, thereby whitewashing the effectiveness of biofuel 
development policies (15–17). This is particularly policy relevant because (i) most LCAs 
find little – if any – GHG benefits of corn ethanol over gasoline (7, 8, 20, 22), and (ii) any 
renewable fuel supported by the 2007 Energy Independence and Security Act (EISA) 
must reduce GHG emissions by at least 20% over gasoline (23). 
Chapter 2 of this dissertation revisits the above studies regarding the relevance of 
emissions timing for U.S. biofuel policies. It builds upon existing models to quantify RF 
impacts across the corn ethanol life cycle, and addresses several additional issues. An 
earlier version of this chapter was published in 2011 (24). Three research questions 
were formulated. 

1) What is the magnitude of the emissions timing effect, i.e., underestimated RF 
impacts in traditional LCA, after addressing the limitations of previous models 
(described in more detail in section 2.1.3)? 

2) By what percentage does adding the LUC induced emissions timing factor to the 
traditional LCA GHG metric reduce the probability of corn ethanol meeting the 
EISA target? 

3) What is the absolute RF impact of U.S. corn ethanol production and use including 
LUC, and what are the implications for climate policy? 

Chapters 3-5 address the need to better understand uncertainties in CH4 emissions 
from the NG life cycle. CH4 emissions are a key parameter for estimating climate 
implications of switching from coal to a greater share of natural gas (NG) production, 
which some consider a low cost transition fuel towards decarbonizing the economy (25). 
Two major reasons prompted this change of research focus. First, absolute potential 
climate impacts of transportation biofuels are small compared to NG, which contributed 
1.1% and 26% to U.S. primary energy consumption in 2012, respectively (1). Second, 
given the successful tapping of unconventional NG sources in North America, NG 
production and associated GHG emissions are expected to grow rapidly in the near 
future (26). While many studies indicate associated reductions in GHG emissions (27–
34), the actual RF impacts associated with the coal-to-gas transition are less clear. 
Some climate modeling studies suggest the distinct possibility that replacing coal with 
NG could lead to temporarily (decadal time scales) higher global warming due to 
increased emissions of more potent CH4 in addition to greenhouse effects from CO2 and 
sulfate aerosols (35, 36). 
Accurately quantifying the NG FE rate, i.e., the percentage of produced NG – mainly 
CH4, but also C2H6 and higher hydrocarbons – released to the atmosphere, intentionally 
and unintentionally, is challenging due to the size and complexity of the NG industry, 
which includes extraction, processing, transport, and distribution. Recent U.S. estimates 
suggest that current NG FE could be as high as 8% and 6%, from shale and 
conventional NG, respectively (28). Other studies indicate possible NG FE over 9% from 
conventional sources several decades ago (37, 38). In contrast to bottom-up studies 
such as the LCA studies discussed above that rely largely on emissions data from the 
NG industry, the objective of this research was to analyze possible ranges of the global 
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average NG FE rate based on atmospheric measurements recorded since 1984. This 
work draws upon top-down Bayesian inversion modeling approaches developed over 
the past two decades, which are used primarily to understand all sources and sinks of 
atmospheric CH4 and other species. The traditional inversion process to model CH4 
includes (i) employing external prior best emissions estimates of each CH4 or C2H6 
source, (ii) simulating their atmospheric mixing using an emissions transport model, and 
(iii) constraining the priors using atmospheric measurements of CH4 or C2H6 
concentrations and δ13C-CH4 from a global observation network (39). While previous 
studies have estimated absolute CH4 emissions from NG and oil production (39–44), 
NG FE rates were not quantified. The main objective of this CH4 and C2H6 modeling 
study is to quantify the range of NG FE rates over time that are consistent with 
atmospheric measurements. Four research questions were formulated, which will be 
addressed in Chapters 3-5. 

1) What are the best estimate NG FE rates over the past two decades globally 
according to CH4, C2H6, and δ13C-CH4 tracers, and is there a trend over time? 

2) What is the upper bound of global NG FE given the lower bound of all other CH4 
and C2H6 sources, and what are the prior assumptions (e.g., FF emissions 
factors and hydrocarbon composition) underlying this bound? 

3) Can literature estimates of natural CH4 and C2H6 seepage be reconciled with 
global measurements, and how does this affect the NG FE estimates? 

4) What are the policy implications of global atmospheric observational constraints 
on NG FE rates? 

Chapter 3 provides a more detailed description of the research motivation, objectives, 
and a literature review. Chapter 4 develops a transparent, global prior CH4 and C2H6 
emissions inventory needed to interpret NG FE rates based on inversion results. This 
inventory constitutes a bridge between the LCA and atmospheric inversion communities, 
which has not existed thus far. Chapter 5 describes (i) the global inversion box-model 
developed here, (ii) the existing 3D transport model employed to support the box-
modeling, and (iii) the results. Chapter 6 concludes this dissertation with a summary of 
chapters 2-5, including main findings and implications for energy and climate policy. 
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Chapter 2: Relevance of Biofuel Greenhouse Gas Emissions 
Timing 
Chapter 2 reproduced with permission from (24). Copyright 2011 American Chemical 
Society. 

2.1 Introduction 

Corn ethanol is currently the prevailing biofuel in the U.S. Domestic production 
increased from 1.8 to 10.6 Bgal/yr over the past decade (45). The federal government 
established a mandate to blend gasoline with corn ethanol, which will increase to 15 
Bgal/yr (7% of U.S. gasoline consumption) by 2016 (23). Before 2012, corn ethanol was 
subsidized at $0.45/gal (2, 23). These policies are aimed towards mitigating climate 
change impacts from the transportation sector, and to overcome the dependence on 
foreign oil among others (2).  
Currently, the perceived effectiveness of corn ethanol or other biofuels to mitigate 
climate change is mainly based on GHG emissions. Policy makers rely increasingly on 
greenhouse gas accounting (GHGA) or LCA to support complex performance 
evaluations of emerging technologies (14). However, as the accounting procedures 
within LCA are improved to provide a better representation of reality, LCA results 
sometimes change significantly (7). This can dramatically alter prior results and beliefs, 
influencing policies, and amending decisions that determine billions of dollars of public 
and private investments. 

 Estimating corn ethanol life cycle GHG emissions 2.1.1
Greenhouse gas accounting or LCA of corn ethanol and other biofuels includes 
establishing a GHG inventory of all emissions that occur during the fuel’s production and 
use, and is usually compared to a gasoline baseline (7). Typically, emissions are 
accounted for during all life cycle stages including agricultural feedstock production, 
conversion into liquid fuel, combustion, transportation of the feedstock and the fuel, and 
ancillary processes such as production of fertilizer and machinery (22). These are 
sometimes referred to as well-to-wheel (WTW) emissions (22). Other effects may be 
taken into account including emissions from LUC (21). 
Land use change emissions can occur directly when the biofuel feedstock displaces 
other biomass (e.g., previous crops or forests). The above- and belowground biomass 
may be burned and rapidly decayed, respectively. Emissions from LUC may also be 
released indirectly through market-mediated effects (see Appendix A for details). 
Throughout this paper, only WTW emissions and LUC emissions (direct plus indirect 
LUC) are distinguished. 
Quantifying biofuel emissions from LUC is challenging, which leads to high uncertainty 
in LUC estimates. Literature values for LUC from corn ethanol range from 500 to 5,100 
g CO2-equivalent (CO2e) per MJ of additional biofuel production capacity (7, 20, 21, 46, 
47). Assuming a 30-year life cycle means 17 to 170 g CO2e/MJ emissions per year. 
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EPA’s mean estimate of corn ethanol WTW emissions is 46 g CO2e/MJ emissions per 
year (7). Thus, LUC may increase the life cycle GHG emissions by 37 to 370%. EPA 
has estimated mean LUC emissions at 28 g CO2e/MJ per year (7).  
In LCA, the sum of all WTW emissions is weighted by their GHG specific global 
warming potentials, and LUC emissions are added after dividing by the total amount of 
fuel produced over the life cycle (7). The time horizon of the life cycle can be determined 
by the corn ethanol project time (22). This is the number of years the feedstock, i.e., 
corn, is produced on a given piece of land before the land is used for other purposes, 
e.g., conversion to pasture. A time horizon of 30 years is often used in LCA, but this is 
not an empirical value (21). In 2010, EPA found the mean life cycle GHG emissions to 
be 74 and 93 g CO2e/MJ for corn ethanol and gasoline, respectively (see Appendix A for 
details) (7). This translates into a GHG balance of -20%. The GHG balance, the 
prevailing performance metric regarding climate change mitigation, describes how much 
more or less GHG emissions corn ethanol releases relative to gasoline (22). 

 Emissions timing and the GHG balance 2.1.2
Emissions from LUC occur in the first years of the life cycle until all new acreage from 
increased feedstock demand is converted to corn and indirect LUC has ceased through 
market equilibrium (7). A hypothetical emissions time profile in Figure 1 describes the 
CO2e emissions released at any year of the fuel’s life cycle for the functional unit, i.e., 1 
MJ of fuel. The profile is illustrative for EPA emissions data, and includes emissions 
from land clearing, soil carbon, and foregone sequestration (7). 

 
Figure 1: Illustrative GHG emissions of corn ethanol and gasoline (all EPA (7) data). 
Ethanol emissions are shown for both the emissions time profile and annualized 
emissions (traditional GHGA). 
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Section 2.2 provides details regarding the methods to estimate the emissions time 
profile. The GHG emissions of corn ethanol follow a different time pattern than those of 
gasoline because, in the model presented here, gasoline has no analogous large up-
front emissions. The construction of the ethanol factory or the oil refinery, which may 
also cause early GHG emissions, is not considered. The varying emissions release over 
the corn ethanol life cycle is referred to as the emissions time profile. It is important to 
note that the GHG balance used by EPA and others does not address emissions timing 
because it allocates all LUC emissions evenly over time, i.e., emissions are annualized 
over the life cycle. EPA also considered a scenario in which emissions are discounted at 
2% over 100 years to address emissions timing (see discussion in Appendix A). 

 The significance of early emissions 2.1.3
Releasing GHG emissions today may be more harmful than emissions in the future. The 
rationale for this statement was described previously (15–17), and is summarized here 
briefly. First, climate change poses the risk of potentially irreversible damages to 
humans and ecosystems, which calls for policies to mitigate climate change impacts 
from GHG emissions over the next decades (4). As a result, reducing GHG emissions 
today may be more valuable than a reduction in the future under certain assumptions 
about the social cost of carbon over time. Substituting gasoline with corn ethanol, 
however, is conceptually the opposite, i.e., reducing GHG emissions in the future, but 
increasing emissions today due to LUC. 
Second, atmospheric CO2 decays over a period of several centuries (48), causing 
emissions today to contribute to the greenhouse effect several hundred years in the 
future. Consider the difference between emitting CO2 today and in 20 years. Over the 
next century, the cumulative climate impact of the former is greater than that of the latter. 
The GHG balance approach masks this difference in timing, possibly conveying fewer 
impacts than those actually occurring. As a result, ignoring emissions timing may 
whitewash the effectiveness of policies that support corn ethanol or other biofuels. 
Several authors have estimated that the GHG balance undervalues the climate impacts 
of corn ethanol by 9-89% due to emissions timing using different ways of modeling RF 
(15–17). GHGs contribute to positive RF (and increasing global surface temperature) by 
absorbing some of the radiation and reflecting it back into the atmosphere (48). 
These studies described new methods to address the concept of emissions timing in 
biofuel LCA. However, several model limitations oversimplify real world processes, 
which could affect the results significantly. First, marginal emission impulses, rather 
than actual emissions from annually varying ethanol quantities were used to estimate 
RF. The former implies that all LUC from the 15 Bgal/yr occurs instantaneously whereas 
in reality RF is a function of increasing ethanol production over time until full capacity is 
reached. Second, estimating RF from LUC emissions only, i.e., excluding WTW 
emissions (16), overlooks the fact that the CRF benefits from lower WTW ethanol 
emissions (relative to gasoline) increase with longer impact time frames. Third, 
estimating the influence of timing as the difference between the CRF balance (CRF of 
ethanol emissions relative to gasoline) and the GHG balance (based on life cycle 
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emissions) (15, 17) may be misleading because of different underlying assumptions in 
the two metrics. For example, the CRF balance distinguishes two time horizons (the 30-
year corn ethanol life cycle period and the year until which ethanol may be produced in 
the U.S.) while the GHG balance assumes both time horizons to be the same. Instead 
of isolating the influence of emissions timing, this approach quantifies the combined 
effect of emissions timing and assumed fuel quantities. 

 Research objective 2.1.4
This work builds on the methods and arguments established by O’Hare et al., Kendall et 
al. and Levasseur et al. (15–17) through quantifying the influence of emissions timing on 
the RF impacts of corn ethanol. Realizing the limitations of the existing methods, a RF 
model was developed to address these limitations, and to update the results of the 
emissions timing effect. By modeling the total RF from actual fuel quantities, the order of 
magnitude effect of corn ethanol induced LUC emissions on global mean surface 
temperature (∆Ts) was also estimated. The specific research questions are as follows: 

1) What is the magnitude of the emissions timing effect, i.e., underestimated RF 
impacts in traditional LCA, after addressing the above-mentioned limitations of 
previous models? 

2) By what percentage does adding the LUC induced emissions timing factor to the 
traditional LCA GHG metric reduce the probability of corn ethanol meeting the 
EISA target? 

3) What is the absolute RF impact of U.S. corn ethanol production and use including 
LUC, and what are the implications for climate policy? 

2.2 Methods 

This analysis follows the general procedure in Figure 2. In the first step, literature GHG 
inventories are used to generate the emissions time profile of corn ethanol and gasoline 
(described in section 2.2.1). The time profile (g CO2e/MJ/yr) is combined with the energy 
contents of annual fuel consumption (MJ/yr) to estimate the total GHG emissions for 
each year by using the same amounts of energy for corn ethanol and gasoline. 
Next, the RF model (section 2.2.2) estimates RF for each fuel as a function of total GHG 
emissions over time using the emissions time profile (upper branch). CRF for each fuel 
is estimated over different impact time frames. The CRF balance of corn ethanol (CRF 
of ethanol relative to gasoline) is estimated analogously to the GHG balance (GHG 
emissions of ethanol relative to gasoline). 
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Figure 2: Overview of the analytical procedure of this research to quantify the influence 
of emissions timing on the RF impact of corn ethanol over a given time horizon. Fuel 
consumption starts at 1.8 Bgal/yr in year 2001, and reaches maximum capacity of 15 
Bgal/yr in 2016 (see Appendix Figure A - 1). 

Then, the simulation is repeated, but using the annualized emissions (lower branch), 
which is implied in traditional LCA (see Figure 1). Finally, the difference in CRF between 
the simulations for the emissions time profile and the annualized LUC emissions is used 
as a measure to quantify the influence of timing. 

 GHG emissions inventory and time profile for corn ethanol and gasoline 2.2.1
Radiative forcing is estimated using GHG emissions from four different LCA studies (7, 
20, 46, 47). The EPA study was used in support of the Renewable Fuels Standard 2 
(RFS2). Emissions vary significantly among the studies for both LUC and WTW, i.e., the 
remaining life cycle emissions. A summary of data including the disaggregation of CO2e 
emissions into CO2, CH4, and N2O is presented in Appendix A. EPA data (7) was used 
as the base case (see Appendix Table A - 1). Emissions estimates for LUC from Hertel 
et al. and Tyner et al. (46, 47) are used to test the sensitivity of the model. The results of 
a stochastic analysis of LUC uncertainty in Plevin et al. (20) were used to estimate 
upper and lower bounds of possible LUC values (see Appendix Table A - 2). 
The allocation of emissions over time on a per MJ basis generally coincides with earlier 
work (7, 15), and the results are summarized in Figure 1. However, absolute emissions 
are modeled (see Appendix Figure A - 1), which allows representing the actual ramp-up 
in annual corn ethanol production. The annual volume increases are used as a proxy for 
absolute LUC occurrence over time, which distributes LUC more evenly over time 
compared to previous work. It is still a conservative estimate since modeled upfront 
emissions may be shifted more towards future years in reality, thereby reducing the 
share of absolute upfront emissions (see Appendix A for details). Appendix A also 
provides details regarding the choice of the biofuel project time, the sources of LUC 
emissions, the gasoline emissions over time, and the calculation of total emissions from 
a given fuel volume in a particular year. In the base case, fuel use is simulated 
according to historical and projected corn ethanol production (45) using data from 2001 
to 2030 (see Appendix Figure A - 1). Annual fuel use increases to reach the federal 
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mandate of 15 Bgal/yr in 2016 (Renewable Fuel portion of the RFS2), and is assumed 
to remain constant thereafter (15).  
An accelerated LUC scenario was also calculated, which simulates ethanol production 
to reach 15 Bgal/yr in the first year, rather than over the course of 16 years, which 
causes all LUC to occur in one year. This reflects the hypothetically highest increase in 
GHG concentration from LUC in a single year. In this case, no more LUC occurs in the 
following years assuming that corn is grown on the lands already converted to 
agriculture in year 1. Accelerated LUC is implied in all prior emissions timing analyses 
(15–17). 

 Radiative forcing over time 2.2.2
A simplified RF model was developed based on the BERN model (49) and 
recommendations given in the Fourth Assessment Report of the Intergovernmental 
Panel on Climate Change (IPCC) (48). BERN is a simple climate model (SCM) used by 
IPCC. It lacks the high resolution of the complex (atmosphere-ocean general circulation) 
models, which are used to study the fundamental processes governing climate change, 
and to allow projections of regional scale changes (50). However, BERN and other 
SCMs “replicate the global scale average behavior of complex models” (50), which was 
deemed sufficient for the modeling presented here. The model estimates RF and the 
magnitude of the change in global mean surface temperature ΔTs given the emissions 
estimates above.  
The RF model tracks the net radiative activity of the emissions over time. The only 
emissions considered in the RF model are from WTW (corn ethanol and gasoline) and 
LUC (corn ethanol only). All other anthropogenic GHG emissions are omitted because 
only the RF effects from fuel use are of interest. RF is estimated for each GHG (CO2, 
CH4, and N2O) and fuel (corn ethanol and gasoline). In each impact year t (1 to 100), 
RF is the result of the emissions released in t and the non-decayed fraction of emissions 
that occurred in all previous release years r (1 to 100). For each GHG and fuel, an r by t 
matrix RFrt is calculated using Eq. 1. 

!"!",!"#$,!"! = !!",!"#$,!"! ∗ ∆! ∗ !"!",!"! ∗ !!",!"! , Eq. 1, 

where Ert,Fuel,GHG is the matrix of the annual emissions release of a GHG (g), ∆C is the 
change in atmospheric concentration of the GHG due to the release (ppmv/g), 
RErt,.GHG is the radiative efficiency matrix, i.e., the instantaneous RF of a unit increase in 
atmospheric GHG concentration (W/m2/ppmv), Drt, GHG is the decay matrix of the GHG 
(unit-less), and ∗!denotes element-by-element multiplication (as opposed to standard 
matrix multiplication). The details of the above matrices are described in Appendix A. 
In order to calculate the total RF for each fuel and GHG, the rows r in the RF matrix are 
added to yield an RF vector with t elements for each impact year t (Eq. 2). Next, the 
three RF vectors representing each GHG are added to yield the total RF vector for each 
fuel (Eq. 3). 
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!"!"#$,!"! ! = !"!",!"#$,!"! ! = 1
100

!=1

, !"!",!"#$,!"! ! = 2
100

!=1

,⋯ !! !"!",!"#$,!"! ! = 100
100

!=1

 Eq. 2 

!"!"#$ ! = !"!"#$,!"! !
!"!

 Eq. 3 

Ethanol’s CRF balance is estimated analogously to the GHG balance, i.e., relative to 
gasoline. In contrast to the GHG balance, however, the CRF balance is a function of 
impact time t (Eq. 4). 

!"#!!"#"$%& ! = !"!"!!"#$ ! −! !"!"#$%&'( !!
!"!"#$%&'( !!

 Eq. 4, 

This analysis defines the emissions timing factor ETF as the amount (in percent) by 
which the GHG balance underestimates actual RF impacts over a given t (Eq. 5). 

!"# ! = !"#!!"#"$%&!"#$!!"#$%&' ! − !!"!!"#"$%&!""#$%&'() !  Eq. 5, 

According to IPCC (48), ΔTs is estimated from RF in Eq. 6: 

∆!! =
!!!"#!
∆!!!"#!

× !"!"!!"#$ − !"!"#$%&'(  Eq. 6, 

where λ2xCO2 is the climate sensitivity, i.e., the increase in global mean surface 
temperature from a doubling of atmospheric CO2 concentration from pre-industrial levels 
(from 280 ppmv to 560 ppmv). IPCC estimates the likely range of λ2xCO2 between 1.5 
and 4.5 °C (48). ΔF2xCO2 is the RF response from this doubling of CO2, commonly 
assumed to be 3.71 W/m2 (48). 

2.3 Results 

Radiative forcing from 30 years of corn ethanol and gasoline use was estimated over a 
100-year impact time frame based on literature life cycle emissions (including LUC) and 
fuel use scenarios in the U.S. The base case represents LUC distributed over 16 years 
(2001-2016) as annual ethanol production increases over this period. This represents a 
phased-in agricultural land approach to increasing U.S. ethanol production, thereby 
illustrating historical and projected annual ethanol volumes in the U.S. from 2001 to 
2030. 

 Radiative forcing over time 2.3.1
Figure 3 shows RF from gasoline and corn ethanol for both annualized emissions and 
the time profile using base case estimates (EPA). Ethanol production increases to 15 
Bgal/yr in 2016 according to historical and projected annual ethanol volumes in the U.S. 
(45). All three curves display increasing RF until year 30 because the net effect of the 
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GHG emissions release over time is an increase in atmospheric GHG concentration. 
After 30 years, RF declines in all three curves because GHG emissions from fuel use 
cease in the base case. However, a significant RF effect remains after 100 years due to 
the long atmospheric lifetime of the GHGs. 
Initial (year 1) RF is highest for the corn ethanol time profile curve due to LUC. After 
about 10 years, the slope of the time profile curve decreases gradually because 80% of 
the overall LUC has occurred. After about 20 years, the curves of the time profile and 
gasoline intersect, which means a RF reduction from substituting gasoline with ethanol 
thereafter. Over the first 15 years, RF from annualized corn ethanol is higher than 
gasoline despite lower life cycle emissions because modeled fuel volumes are initially 
low. As a result, annualized LUC emissions have an over proportionate leverage on 
overall emissions. 

 

Figure 3: RF(t) of gasoline and corn ethanol (both annualized emissions and emissions 
time profile) using base case GHG emissions estimates (EPA (7), 30 years of production). 
See Appendix  
Figure A - 2 and section 2.3.2 for a discussion of alternative production periods. 

The fuel production increase at varying rates in the model contributes to the non-uniform 
slope over the first 30 years. For annualized corn ethanol, overall RF from LUC is 
distributed evenly over 30 years, creating a more uniform slope. The same is true for 
gasoline, which has no LUC effects in the model. RF and ΔTs from electricity generation 
(51, 52) and the transportation sector (53) was also estimated as reference points of 
what increases may be considered “high”. The details provided in Appendix A show that 
the maximum effect of 15 Bgal/yr corn ethanol on RF and ΔTs is less than 1% that of 
U.S. electricity consumption. Reducing U.S. gasoline consumption by 10% decreases 
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RF and ΔTs by eight times the amount that RF and ΔTs increases from 15 Bgal/yr corn 
ethanol. 

 CRF balance 2.3.2
Figure 4 shows the CRF balance of corn ethanol, i.e., the ethanol-gasoline ratio of RF 
integrated under the curves in Figure 3 for both the annualized emissions and the time 
profile over different impact time frames. The CRF provides a measure of ethanol’s life 
cycle performance based on CRF up to a given impact year, as opposed to the 
traditional GHG balance. 

 

Figure 4: CRF balance of corn ethanol (both annualized emissions and emissions time 
profile) and ETF using base case GHG emissions estimates (EPA (7)). The GHG balance 
of corn ethanol is also depicted for reference. A lower CRF balance means lower RF 
impacts of corn ethanol relative to gasoline. 

Both CRF curves decrease with higher impact time frames as the RF benefits from 
relatively lower WTW emissions from ethanol materialize over time. The curve for the 
time profile is above the annualized emissions because the LUC emissions of the 
former cause RF over a longer period within 100 years. The difference between both 
curves is ETF, which indicates by how much the RF impacts are underestimated when 
emissions timing is ignored. In the base case, ETF is 2 and 5 percentage points over 
100 and 50 years, respectively, and increasing for shorter time frames. Modeling 
relatively low WTW emissions from the RFS2 (7) offsets some of the ethanol CRF 
increases due to modeling a ramp-up in ethanol production (see Appendix Figure A - 5). 
The horizontal line at -20% in Figure 4 represents the GHG balance – the commonly 
used GHGA metric used to compare biofuels with gasoline – as a reference to show the 
gap between CRF and GHG balance. Previous analyses (15, 17) quantified emissions 
timing as the gap between the GHG balance and the CRF balance (time profile). In 
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contrast, this method isolates the influence of (a) emissions timing due to significant 
upfront emissions and (b) anticipated fuel quantities on corn ethanol’s climate 
performance. The latter is an independent policy issue, which should be addressed 
regardless of how harmful early emissions are to climate.  
The CRF balance of the time profile is 12% to -7% (base case), which indicates that 
corn ethanol is 32 to 13 percentage points less beneficial than what the GHG balance 
conveys. Note that both the GHG balance and CRF balance shown in Figure 4 assume 
the same fuel production period of 30 years used in earlier studies (7, 15–17, 21, 46, 
47) after which no more ethanol is produced to further offset early LUC emissions. 
Figure 5 illustrates the influence of alternative production periods on CRF. Further 
differences in implicit assumptions between GHG and CRF balance are illustrated in 
Appendix Figure A - 5.  

 

Figure 5: CRF balance of corn ethanol (both annualized emissions and emissions time 
profile) for varying fuel production periods using EPA (7) GHG emissions estimates. 

Fuel production was simulated over 20, 30 (base case), 40 or 50 years, i.e., fuel 
production from 2001 to 2020, 2030, 2040, and 2050, respectively. As illustrated in 
Figure 5, longer fuel production allocates LUC over a greater amount of fuel volume, 
which improves ethanol’s CRF balance. In fact, the CRF balance of the 2050 scenario is 
below the -20% mark (GHG balance) for 60 or more years of impacts. The model 
assumes no additional LUC after 2016 when the maximum capacity of 15 Bgal/yr is 
reached. For production periods less than 30 years, the CRF is shifted to higher values. 
As a result, the difference between the CRF balance and the GHG balance captures not 
only emissions timing, but also the influence of produced fuel volumes. Note that the 
fuel production period has a significantly higher influence on ethanol’s climate 
performance than ETF. The model shows ETF is mainly a function of the scale of 
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assumed LUC, the impact time frame, and the production period, and ETF is fairly 
insensitive to other parameters. For instance, the sensitivity analysis in Appendix Figure 
A - 6 shows that ETF is only 1-6% for the relatively low LUC estimates in Tyner et al. 
(47), but it increases to 3-15% for higher LUC in Hertel et al. (46). 

 Influence of emissions timing on the GHG balance 2.3.3
The emissions timing factor may be added to the GHG balance of corn ethanol to reflect 
the influence of emissions timing. The value of ETF depends on the impact time frame 
chosen by the policy-maker. Figure 6 shows the GHG balance for several impact time 
frames. 
The boxes with error bars pertain to LUC uncertainty values (95% confidence interval 
and minimum and maximum values, respectively) from Plevin et al. (20). The 95% 
confidence interval of -16% to 26% in Figure 5 compares to -32% to -7% in EPA (7). 
The triangles correspond to EPA base case estimates, which do not fall within the 95% 
confidence interval. According to this data, there is a less than 2.5% chance that corn 
ethanol will meet the EISA target of a 20% reduction in GHG emissions relative to 
gasoline, which confirms the conclusions of Mullins et al. (9). 

 

Figure 6: GHG balance of corn ethanol with and without ETF for several impact time 
frames. Illustrated estimates are EPA (7) base case and Plevin et al. (20). LUC 
uncertainty with 95% confidence intervals and min/max values (error bars). The EISA 
target is a 20% reduction in GHG emissions relative to gasoline. 

Considering either Plevin et al. or EPA estimates (7, 20), corn ethanol emissions 
uncertainty (LUC and fuel production period) has a much greater influence on the GHG 
balance than the ETF, which is triggered by LUC. However, emissions timing shifts the 
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95% confidence interval towards higher corn ethanol emissions relative to gasoline. 
That is, the chance of meeting the EISA target is reduced even further. 
As mentioned above, the period over which corn ethanol will be produced in the U.S. 
also influences the performance of corn ethanol, which is not captured in the GHG 
balance. This effect is displayed in Appendix Figure A - 7. It shows that the CRF 
balance drops slightly below the GHG balance (in favor of ethanol) if ethanol is 
produced until 2050, but increases significantly if production ceases in 2020. 

2.4 Conclusions 

This study was designed to understand if and how the LCA of biofuels can accurately 
account for the fact that LUC emissions occur early in its life cycle. Adaptations to 
current LCA may be appropriate if traditional GHGA underestimates the RF impacts 
from biofuel emissions including LUC. The emissions timing effect of biofuels has been 
investigated previously. This research further develops the methods to quantify the 
timing effect in three ways. First, this study accounts for the annual ethanol production 
that increases over time, thereby distributing LUC over more than a decade. Second, 
the analysis accounts for total RF of both WTW and LUC emissions, rather than LUC 
alone. This takes into account the increasing CRF benefits of lower ethanol WTW 
emissions (than gasoline) at higher impact time frames. Finally, the difference between 
the CRF balance of the time profile and the annualized emissions (traditional LCA) was 
calculated, rather than the difference between the CRF balance of the time profile and 
the GHG balance. The former is necessary to isolate the effect of emissions timing from 
the effect of assumptions about annually varying fuel volumes. 
In this model, the influence of emissions timing on RF is significantly smaller than 9-89% 
suggested by previous studies (15–17). In the base case, ETF is 2, 5, and 13% for 
impact time frames of 100, 50, and 30 years, respectively. Given a corn ethanol GHG 
balance of -20% (7), i.e., corn ethanol emitting 20% less GHGs than gasoline, 
accounting for time may increase the GHG balance to -18%, -15%, and -7% with 
respect to the above impact time frames. The results are sensitive to the uncertainty in 
the LUC emissions inputs as well as the time period over which the fuel is produced. 
From a biofuel LCA perspective, emissions timing adds little to our understanding of the 
climate impacts of corn ethanol because the uncertainty inherent in the LUC estimates 
(that triggers ETF) contributes one to two orders of magnitude more to life cycle 
emissions uncertainty than ETF. To complicate matters, it may be inappropriate to select 
a single ETF for a given impact time frame because ETF depends significantly on the 
time period over which corn ethanol would be produced. The fuel production period is 
different from the life cycle period. The former is the period over which ethanol is 
produced in the U.S., irrespective of the location, whereas the latter is the period over 
which the feedstock is produced on a given piece of land (usually 30 years). The longer 
corn ethanol is produced at the mandated 15 Bgal/yr beyond 2016, the greater the CRF 
benefits from lower WTW GHG emissions. This assumes that LUC from corn ethanol is 
reduced dramatically for fuel produced at constant volumes, thereby avoiding an 
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increasing demand for agricultural land. It does not account for the possibility of 
accumulating carbon on land dedicated to corn after reducing ethanol and corn 
production. 
From a policy maker’s perspective, emissions timing is more important because, in the 
model, ETF increases the chance of corn ethanol missing the EISA target of 20% GHG 
reduction relative to gasoline. According to the EPA LCA, the mean (and median) GHG 
balance of corn ethanol is just below -20%, i.e., the probability that the target is met is 
just over 50%. Since EPA estimates that corn ethanol barely meets the EISA target 
(based on its mean value), even a small a skew in the distribution can significantly 
reduce the probability of meeting this target. A stochastic model was developed to 
quantify the extent to which adding the LUC induced ETF to the GHG balance reduces 
the probability to meet EISA (see methods and results in Appendix A). The analysis 
suggests that ETF reduces this probability from 53% to 7-29% depending on the chosen 
impact time frame. Thus, switching from the mean GHG balance to probability of 
meeting the target amplifies the influence of ETF from 2-13 percent points to 24-46% in 
reduced probability of meeting the EISA target. Furthermore, ETF reduces the 
probability of corn ethanol emitting equal or less GHG emissions than gasoline from 
99% to 71-98%. 
From a climate change mitigation perspective, the impacts from corn ethanol GHG 
emissions would be a very small contributor to reducing climate change as expressed 
by RF units, even when considering the relatively low EPA LUC emissions estimate. 
The model assumes that most of the emissions “cost” of corn ethanol has occurred over 
the last decade due to LUC effects from expanding ethanol production. This cost was 
estimated to be 0.0006 W/m2 in the base case (15 Bgal/yr), which translates into a first 
order estimate of 0.0007 °C increase in ΔTs. The model predicts a reduction in RF and 
ΔTs at the end of the life cycle, which is in the same order of magnitude. It appears very 
unlikely that either temperature change (first positive, then negative) would entail 
increased or reduced damages of an order of magnitude that can actually be observed 
or quantified. 
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Chapter 3: Quantifying Natural Gas Fugitive Emissions – 
Motivation and Research Overview 
This chapter provides the background for the second part of the dissertation, which aims 
at characterizing uncertainty of emissions of industry-wide NG FE. Throughout this work, 
NG FE refer to mainly CH4 and C2H6 emissions from seals, equipment leaks, venting, 
and accidental leaks (54), which encompasses all industry segments and processes 
from NG production to end use. This chapter describes (i) the importance of the NG FE 
rate (in % of dry NG production and dry NG composition) from a climate and economic 
perspective, (ii) estimation methods and resulting NG FE ranges from the literature, and 
(iii) a conceptual overview of the approach taken here. 

3.1 Importance of uncertainty in NG FE  

Natural gas use is expected to increase significantly over the next decades both in the 
U.S. and worldwide due to an unprecedented expansion of unconventional NG 
production, specifically shale gas, coal-bed methane (CBM), and tight sands gas. In 
North America, proved NG reserves are estimated at 260 trillion cubic feet (Tcf) (26), 
and “remaining recoverable” unconventional NG resources are estimated at 3,200 Tcf 
(55). Global annual NG consumption is expected to increase from the current 110 Tcf to 
about 170 Tcf in 2035 (25). With increased NG production and overhauling or 
replacement of U.S coal-fired power plants, increased NG use for electricity generation 
will likely occur over the next 5-15 years (56). The U.S. The Energy Information 
Administration (EIA) projects that within 30 years an additional 100 GW NG-fired net 
electricity capacity will be installed compared to only 5 GW for coal (26).  
The U.S. electricity sector is responsible for about 40% of energy related GHG 
emissions (57). Electricity generation from renewables offers large GHG reductions, but 
the high costs of a rapid transition to renewables may outweigh the potential benefits of 
avoiding climate change impacts (58–61). As a result, transitioning from coal fired 
electricity generation to a greater share of NG generation capacity is perceived as a low 
cost alternative to decarbonizing the energy system (26). However, the extent and 
timing to which a coal-to-gas transition will reduce GHG emissions and mitigate climate 
change is highly uncertain. 
One of the most uncertain factors is the amount of NG emitted to the atmosphere during 
NG production, processing, transport, and local distribution, the latter for non-electricity 
related NG use, such as in the commercial and residential sectors (36). CH4 is the main 
component of NG, which is a GHG – 25 times more potent than CO2. Hence, relatively 
small amounts of NG FE can have considerable impacts on global climate. Some 
climate modeling studies suggest that – depending on the NG FE rate – using NG as a 
bridge fuel could lead to temporarily (decadal time scales) higher warming, partly due to 
increased emissions of CH4 offsetting the potential reductions in CO2 (35, 36). Figure 7, 
which compares life cycle GHG emissions from coal and NG from the literature, 
illustrates the implications of these conclusions. It includes power generation with 
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assumed 39% and 50% power plant efficiency for coal and NG, respectively. Total GHG 
emissions from coal are significantly higher than NG, but (i) the CH4 fraction of NG is 
much more uncertain compared to coal, and (ii) the CH4 contribution in NG is up to 33% 
of total GHG emissions whereas this number is only about 5% for coal (not shown in 
Figure 7).  

 
Figure 7: Comparison of GHG emissions between coal and NG life cycles including 
power generation at 39% and 50% efficiency, respectively. Literature estimates for coal 
(28, 31, 36), NG CO2 (28, 30, 34, 36), and the NG CH4 base case (10) were used. The NG 
CH4 uncertainties were calculated based on the range of NG FE rates used in Wigley (36) 
and the literature review in section 4.2.2. The temperature time lag estimates are 
adapted from Wigley (36) based on a global coal-to-gas transition as described above. 

Greater NG CH4 emissions (equivalent to up to 10% NG FE relative to production; see 
section 4.2.2 for a more detailed description) significantly increase the time until climate 
benefits can be achieved from a coal-to-gas transition. The numbers on the far right 
column summarize results by Wigley (36), which simulates global temperatures 
resulting from a business-as-usual (BAU) or “no-climate-policy” baseline emissions 
scenario as well as one where coal is gradually replaced with NG worldwide at a rate of 
1.25% per year starting in 2000. At a 1% NG FE rate, global temperatures in the coal-to-
gas transition scenario increase for 50 years relative to BAU before temperatures drop 
below BAU due to a combination of reduced coal related cooling aerosol emissions and 
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increased CH4 from NG. In Wigley (36), this initial increase in temperatures (in the order 
of <0.1°C for a global transition) is mainly due to foregone emissions of cooling aerosols 
from reduced coal combustion. After 50 years, temperatures continue to decline below 
BAU due to reduced amounts of long-lived CO2 emissions from NG. Yet, this time lag 
increases to about 140 years if the NG FE rate is as high as 10%. Alvarez et al. suggest 
that climate benefits from a coal-to-gas transition for power generation are achieved in a 
shorter period due to lower estimated (cooling) SO2 emissions from U.S. coal plants (62). 
Reducing NG FE uncertainty is key for understanding the climate effects of a coal-to-
gas transition over time. 
Natural gas FE inflict economic losses on NG producers. Assuming a 2012 U.S. 
representative wellhead price of $3/Mcf NG (although prices have fluctuated from about 
$2-11/Mcf NG during 2000-2012), lost global NG has a market value of $15 billion/year 
(63). EPA’s 2013 GHG inventory reports a 1.8% FE rate from NG production in the U.S. 
(64), which is equivalent to 0.36 Tcf/year or $1 billion/year. The NG industry can 
implement existing technologies (e.g., improved safety valves) and perform services 
(e.g., pipeline repairs) to reduce CH4 emissions and maximize market output. However, 
these measures require upfront capital and O&M expenditures, which can represent a 
barrier for implementation and mitigation (65, 66). The economic feasibility of these 
measures hinges critically on the estimated CH4 savings potential, and thus on the 
estimated NG FE rate. While not necessarily linearly proportinate, higher FE (and 
therefore savings potential) reduces the net mitigation cost, which increases the range 
of economically feasible mitigation options. This research will provide valuable 
information for businesses in the NG industry to re-evaluate their CH4 emissions 
reduction potential, which may increase the economic feasibility of available CH4 
mitigation technologies while simultaneously leading to more environmentally 
sustainable business practices. 

3.2 Review of NG FE estimates, methods and uncertainties 

The life cycles of coal and oil result in mainly CO2 emissions from combustion and other 
processes, which are relatively easy to estimate (34). In contrast, NG FE emissions are 
difficult to quantify due to (i) challenges in accurately measuring fugitive CH4 emissions 
from leaks and venting across a diverse industry and (ii) the fact that CH4 arises from 
varied industries and natural sources. CH4 emissions from the NG industry have been 
estimated through various approaches including bottom-up studies based on 
equipment-level measurement samples, global inversion modeling, and local air 
sampling. The following sub-sections will provide a brief description of each approach 
and summarize the literature results. It will also highlight the benefits and shortcomings 
of each approach in order to set the stage for the methods used in this work. 

 Bottom-up analysis 3.2.1
Bottom-up studies include direct leak measurement studies, which focus on specific 
parts of the NG industry such as pipeline transport (67), and state or national emissions 
inventories, which estimate absolute emissions based on emissions factors (EFs) and 
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total NG production (54). These bottom-up analyses for estimating NG FE essentially 
rely on measurements (leak detection & direct measurement of pipelines, processing 
facilities and other system components), engineering estimation (process specific 
emissions factors from manufacturers and industry models), and mass balance 
calculations (at the industry level). These data are provided mostly by the NG industry 
(68). The accuracy of these data is subject to limitations. First, EFs for equipment may 
vary by the chosen measurement method (69). Second, some measurement data sets 
represent a small sample that unlikely reflects the size and complexity of the NG 
industry. For instance, the number of well samples used to generate EFs by the EPA, 
which are referenced and used in LCAs, corresponds to only about 2% of the wells in 
the EPA GHG emissions inventory (64, 70). The NG industry claims that these sample 
data are not representative of the industry, and that the EPA EFs are overestimated (70). 
While EFs based on small sample sizes could also be underestimated, a recent study 
using direct CH4 measurements at 190 NG production sites by Allen et al. (71) indicate 
slightly smaller overall NG production related CH4 emissions compared to the EPA 
GHG inventory (64). Third, there may be significant spatial and temporal variability of FE 
rates. In 2013, EPA’s Office of Inspector General concluded that EPA needs to improve 
air emissions data, since about half of its emission factors for oil and gas production are 
rated “below average or poor, or are unrated” (72). As a result, any analysis of these 
data is subject to considerable uncertainty. 
Another type of bottom-up study is LCA, which estimates all emissions from NG 
extraction to end-use at a detailed level. LCA studies combine bottom-up data by 
producing a systematic inventory of the emissions in every life cycle stage. It is used to 
support complex environmental performance evaluations of competing technologies and 
fuels, such as NG and coal, given its ability to represent metrics like GHG emissions at 
high resolution (11–13). LCAs and direct measurement studies will be the focus 
throughout this chapter because these document their assumptions and system 
boundaries most transparently. 
Numerous LCA studies document the life-cycle stage specific CH4 emissions of NG 
production and point out potential for emissions reductions (10, 27, 30–34). In addition, 
other studies document CH4 measurement data at various life cycle stages and world 
regions (37, 54, 67, 73, 74). These studies report NG FE rates from less than 1% to 
over 10% of NG lost during extraction, processing, transport, and local distribution. An in 
depth summary and discussion of the results of 16 studies targeting 15 countries from 
1969-2011 is provided in section 4.2.2. While quantifying NG FE is technically 
challenging (see above), this wide range of FE estimates also results from differences in 
system boundary selection (see also Chapter 2) as well as assumptions and emissions 
data choices, i.e., industry and/or governmental data (64, 68, 75). 
Bottom-up studies in general, and LCAs in particular, provide an in-depth analysis of the 
CH4 emissions throughout different segments of the NG industry, and they point out 
emissions hotspots where abatement is most needed. From a policy perspective, 
however, the large uncertainties among studies create challenges for decision-makers 
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in estimating the potential climate benefits from a coal-to-gas transition. Hence, further 
analysis is needed to reduce NG FE uncertainties. 

 Local and regional air sampling and analysis 3.2.2
Natural gas FE can also be estimated based on collecting air samples near active oil 
and gas operation sites. These are sometimes referred to as field campaigns, in which 
air samples are collected via mobile labs installed in vehicles or airplanes over a period 
of several days or weeks (76). The field campaigns can be combined with data from 
regional tower-based observation networks (77). The collected air samples are analyzed 
for hydrocarbon composition and carbon isotope data in order to quantify air CH4 and 
C2H6 concentrations, among others, and potential types of emissions sources, such as 
NG, landfills, and agriculture given their source specific carbon isotopic signature. A 
small fraction of atmospheric CH4 contains the carbon isotope δ13C-CH4, and CH4 from 
the various emissions sources has different degrees of 13C depletion, i.e., carbon 
isotope signature, due to differences in CH4 formation processes (78). Measurements 
and analysis of δ13C-CH4 thus provide an additional observational constraint for 
allocating CH4 emissions among sources. After estimating the fraction of observed CH4 
from NG, this information is used in combination with local NG production data in order 
to estimate the site-specific NG FE rate. The methods are conceptually similar to global 
inversion modeling, which is described in more detail in the following section (3.2.3). 
Two recent studies with air sampling in Colorado and Utah suggested local NG FE rates 
near oil and gas basins ranging from 2.3-7.7% (mean 4.0%) and 6.2-11.7% (mean 
8.9%), respectively (77, 79). 
The local and regional air sampling approach is complementary to bottom-up studies by 
providing atmospheric measurements to verify bottom-up estimates. While LCA and 
other bottom-up results are based on assumptions about specific business practices 
among others (see section 3.2.1 above), observational data reflects the emissions 
resulting from business practices at the site. Observations also reflect potential 
emissions sources, which may not be included in most bottom-up studies, such as 
leaking abandoned NG wells. However, the local and regional air sampling approach is 
subject to limitations. First, field campaigns lasting only several days or weeks may be 
viewed as a temporal snapshot. The measurement results depend on the individual NG 
production activities during the campaign, and NG FE estimates crucially depend on 
incorporating this information, which may not be fully available. For instance, if air 
sampling occurs during days when the number of well completions (pre-production) is 
high, NG FE will be overestimated because NG production volumes are used in the 
calculation. In a literature review of seven NG LCAs, Weber et al. (10) show that 
conventional well completions account on average 30% (range is 3-61%) of total on-site 
CH4 emissions. This figure is higher for shale gas wells, but could be less when 
accounting for captured gas, e.g., green completions (80). Note that CH4 from a well 
completion occurs over a short time of only several days or weeks whereas the 
remaining 70% of total on-site CH4 emissions are released over several years. Of 
course, local air sampling measurements can also be skewed towards smaller NG FE 
rates for the same reason. Second, local and regional air sampling results may not be 
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representative nationally. However, nationally representative estimates are needed for 
informing energy and climate policy. 

 Global inversion modeling 3.2.3
Methane emissions can be estimated from the NG industry worldwide using global 
inversion modeling, which relies on atmospheric air samples distributed throughout the 
world and collected at varying frequencies since the 1980s (81). It is typically a 
Bayesian approach (40, 82) in which posterior emissions locations, quantities, and 
sources are estimated using (i) prior emissions estimates, (ii) measurements of CH4 or 
C2H6 concentrations, and/or δ13C-CH4 isotope ratios from a global observation network, 
and (iii) atmospheric transport models to simulate how spatially and temporally 
distributed emissions change global concentrations (81). Global inversions typically rely 
on a global network of measurement stations. For instance, NOAA’s network includes 
about 84 surface sites (83). The objectives of global inversion modeling are (i) to 
quantify the global CH4 or C2H6 budget, i.e., the annual CH4 or C2H6 emissions released 
to the atmosphere, and (ii) to distinguish the individual emissions sources comprising 
the global budget (40, 84), which is illustrated in Figure 8 showing literature results of a 
CH4 inversion. 

 
Figure 8: Literature results of global CH4 inversion modeling. Global annual prior and 
posterior CH4 emissions estimates averaged over 1984-2003; adapted from Bousquet et 
al. (40). Prior estimates are based on bottom-up studies. Posteriors are estimated by 
constraining the priors (budget and source contributions) using global atmospheric CH4 
and isotopic measurements. Posterior uncertainties indicate one standard deviation. 

A conceptual overview of the inversion modeling process including tasks as well as 
involved data and models is given in Figure 9 for the example of CH4. The prior source 
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emissions estimates (including uncertainties) shown in Figure 8 are developed at a 
country (anthropogenic sources) or regional (natural sources) level using a bottom-up 
approach including various data sources described in more detail in Chapter 4. Global 
maps including FF production sites and transportation routes, urban population, natural 
ecosystems and other proxies are used to allocate the total country and regional level 
emissions spatially across the globe (85). Emissions source specific carbon isotopic 
signatures (78), are linked to each source in the resulting emissions maps, which are 
generated at a given frequency, e.g., monthly. An emissions transport model is then 
used to simulate how the prior emissions change CH4 concentrations and isotope ratios 
throughout the global atmosphere over time. Observational data is available since the 
1980s (83), hence simulations can be performed over the past three decades. 

 
Figure 9: Conceptual overview of global CH4 inversion modeling. CH4 sources typically 
include those depicted in Figure 8. Solid and dashed frames symbolize tasks and 
data/models, respectively. 

Next, the simulated concentrations, isotope ratios and associated uncertainties – 
including prior emissions and transport modeling uncertainties – are constrained by 
global measurements. The measurement data includes CH4 concentrations and isotope 
ratios resulting from atmospheric air samples, i.e., mainly flask samples from an 
international network of surface stations and towers (83). In addition to flask samples, 
satellite data provide observational constraints using imaging spectrometers (86, 87), 
which measures trace gases such as CH4 by recording transmitted, backscattered, and 
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reflected radiation from the atmosphere. In contrast to the limited number of surface 
measurements, satellite data cover a geographically larger area, but it relies on 
reflected sunlight with less data retrieval at high latitudes in winter, at night, or cloudy 
skies (81). The quality of the obtained greenhouse gas data is subject to ongoing 
development (42, 87–89). 
An optimization approach is used to estimate the best fit between observations, i.e., 
measurements, and simulations for each source over space and time. The resulting 
spatially distinct concentrations from the atmospheric transport model are aggregated to 
so-called source regions. For instance, NOAA’s CarbonTracker-CH4 (CT-CH4) model 
divides the atmosphere into 13 land regions and 11 ocean regions. CT-CH4 then 
maximizes an objective function, which estimates posterior emissions by minimizing the 
sum of the squared residuals between measurement sites and simulation results 
(concentrations) in the corresponding source region over time (82). As will be discussed 
in more detail in Chapter 5, the resulting posteriors are influenced to a larger extent by 
the prior estimates in regions where observational data is sparse. The resulting 
posterior emissions for each source and region can be aggregated to yield global 
source strengths (see also right pie chart in Figure 8). The smaller the magnitude of 
total residuals, the smaller the difference between global atmospheric CH4 burden and 
total posterior source strength. 
The global atmospheric CH4 burden used as an inversion constraint, i.e., total annual 
emissions, is determined based on CH4 concentration measurements across the globe 
in combination with global CH4 sink estimates (see section 5.2). The three major CH4 
removal processes from the atmosphere are reaction with the hydroxyl radical (OH), 
reaction with atomic chlorine (Cl) and excited-state oxygen (O1D) in the stratosphere, 
and oxidation by methanotrophic bacteria, i.e., soil uptake (90). The OH sink is by far 
the largest sink, and its CH4 removal processes as well as magnitude are discussed in 
Appendix B along with the stratosphere sink. In inversion modeling, the strength of the 
photochemical sink (OH, Cl, and O1D) is often expressed as CH4 lifetime τ (39, 81, 91). 
It represents the residence time of CH4 in the atmosphere until it is removed through 
photochemical processes. Section 5.2 describes in detail how the CH4 burden is 
estimated using CH4 measurement time series and τ. In contrast to the photochemical 
sink, CH4 removal through oxidation in soils is commonly accounted for by explicitly 
including a negative CH4 source in the emissions priors (39, 40). Recent estimates of 
soil uptake range between 25-40 Tg/yr, i.e., less than 10% of the global CH4 burden 
(see section 4.6). 
Several global inversion studies have reported FF related CH4 emissions over the past 
decades (39, 40, 42, 92, 93). The global FF CH4 emissions estimates in two recent 
inversion studies (40, 83) are summarized in Figure 10. The best estimates of total FF 
CH4 range from 78-110 Tg CH4/yr (excluding posterior uncertainty ranges) and 62-123 
Tg CH4/yr (including posterior uncertainty ranges), which are constrained by prior 
information and measurements in the inversion model. Bousquet et al. (40) suggest that 
FFs account for 97-123 Tg CH4/yr, and NG and oil production are responsible for 54-72 
Tg CH4/yr on average (1984-2003). Estimates for NG only were not provided, but can 
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be estimated. Accounting for the NG fraction of the NG and oil sum in the prior 
estimates, i.e., 71% and 29%, respectively (94), NG alone ranges from 39-51 Tg CH4/yr. 
The NOAA estimates are lower compared to Bousquet et al. (40). According to the 
NOAA study FFs account for 62-94 Tg CH4/yr. Accounting for the NG fraction in the FF 
priors, NG emissions range from 23-35 Tg CH4/yr. Thus, considering both inversion 
studies, NG emissions range from 23-51 Tg CH4/yr. 
In order to compare these results to NG FE rates estimated in LCAs and other bottom-
up studies, percent values of NG FE were converted to absolute (Tg CH4) values in 
Figure 10. Using dry NG production and hydrocarbon composition data, which is 
described in more detail in Chapter 4, absolute NG CH4 emissions were estimated 
globally for NG FE rates ranging from 1-10%, i.e., the uncertainty ranges in LCAs 
described above. Emissions were estimated over the period 1984-2011, which is 
covered by the inversion studies. FE rates of 1% and 10% translate into 15 and 150 Tg 
CH4/yr on average over this period. The lower and upper bounds of both inversion 
studies (23-51 Tg CH4/yr) then correspond to global average NG FE rates between 1.5-
3.4%. Hence, these inversion studies suggest that the upper 2/3 range of LCA NG FE 
estimates are too high compared global atmospheric measurements. 

 
Figure 10: Summary of FF estimates in previous inversion studies (39, 40). Prior 
uncertainties in NOAA are ±75% of mean value (no explanation provided in Bousquet et 
al.). Posterior FF uncertainties represent one standard deviation. The asterisk denotes 
that posterior uncertainties for NG only (excluding coal and/or oil) were not estimated in 
the studies. The error bars for NG only were estimated based on FF uncertainties in the 
inversion and the NG fraction of prior FF emissions, which is described in more detail in 
the text. 
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Global inversion modeling has been used to verify bottom-up emissions estimates, and 
current observation networks are suitable for assessing emissions over large scales 
(81). However, specifically quantifying NG FE using global inversion modeling is subject 
to the limitations discussed below. 
Sparse observational network: 
First, while distinguishing broad CH4 sources, e.g., FFs, landfills, agriculture, and 
wetlands, is one of the main inversion objectives, it is also a great challenge. Source 
distinction is difficult because (i) isotope measurements (see sections 3.2.2 and 5.2 for 
details) are only available for a fraction of observation sites (only 13 stations globally in 
Bousquet et al. (40)), and (ii) the isotopic signature ranges of different sources in 
general, and FF sources in particular, overlap significantly (95). While monitoring CH4 
concentrations long-term (several decades) is an advantage over local and regional air 
sampling campaigns, the number of observation sites (~100) is relatively small for 
inferring globally distributed emissions. The spatial distribution of CH4 observations is 
generally helpful in distinguishing some sources, e.g., FFs in the Northern hemisphere 
and equatorial and high latitude wetlands. However, it is often difficult to discriminate 
between other sources. For instance, CH4 from landfills and enteric fermentation tends 
to be emitted in highly populated regions also geographically close to FF production and 
use. Enteric fermentation in particular is estimated to be one of the largest CH4 sources 
globally in bottom-up and inversion studies, and some consider it the single most 
uncertain quantity (96). Moreover, there is a lack of measurements at sites with 
potentially high NG production activity, such as Russia. Given these conditions, 
observational CH4 data can only provide a limited constraint in current inversion models. 
As a result, the prior source allocation can significantly influence the posterior source 
allocation, which is described in more detail in Chapter 5. This limits the amount of 
information that can be obtained about the total amount and spatial distribution of NG 
emissions from the inversion results above. 
Influence of prior uncertainties: 
Second, published inversion studies typically report posterior FF uncertainties, but rarely 
posterior uncertainties for NG only (39, 40). While some studies quantify the extent to 
which the choice of prior estimates influence posteriors and their uncertainties for all 
sources in general (82), this information is typically not available for the NG source in 
particular. As discussed above, prior estimates may largely influence posteriors in 
regions with few measurements. Hence, documented posterior uncertainties may only 
represent a fraction of the total uncertainties. As a result, the earlier estimates of 23-51 
Tg CH4/yr corresponding to 1.5-3.4% global average NG FE rates could be too narrow, 
and further analysis may help quantify the larger range of uncertainty. Assigning prior 
uncertainties is a challenge for inversion modelers who rely on data sources, such as 
the Emissions Database for Global Atmospheric Research (EDGAR). EDGAR (85) is 
the commonly used prior data source for global CH4 inversion modeling, which provides 
both country-level data and global emissions grid maps for atmospheric modeling. Due 
to insufficient transparency in parts of the database, only some of its data – including 
the spatial distribution of total emissions – is useful for the purposes of this dissertation 
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research. Since EDGAR (85) reports only point estimates for each source and location 
(see Figure 11), inversion modelers are likely to set prior uncertainties for a given 
emissions source without reference to bottom-up ranges. Yet, some bottom-up studies, 
such as LCA, analyze and report uncertainties based on data from different sources, 
e.g., process specific EFs collected from several industry and government reports. 
Results or approaches from LCA studies have not been used to generate inversion 
priors in the past, but LCA data can be useful for informing prior uncertainty ranges in 
future inversions. 

 
Figure 11: An approximate hierarchy of bottom-up data sources and publications used in 
LCA studies and as priors (EDGAR) in atmospheric inversion studies. 
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Third, estimating globally or regionally averaged NG FE rates based on inversion 
posteriors is limited by the transparency of the prior estimates. Since inversion 
posteriors (in Tg CH4/yr) must be converted back to % NG FE rates, it is crucial that the 
information needed for this conversion is well documented. This information, which 
includes regionally specific NG production data and assumptions about NG hydrocarbon 
composition among others (see more in Chapter 4), is used to generate the inversion 
priors. Hence, developing transparently documented inversion priors is key to estimating 
NG FE rates through inversion modeling. Moreover, transparency is important for 
highlighting the assumptions underlying the inversion priors. A critical review of NG FE 
estimates based on global inversion modeling is only possible if these assumptions are 
well documented. Yet, prior emissions used in previous inversions lack this 
transparency. EDGAR uses National Inventory Reports (NIRs) of the United Nations 
Framework Convention on Climate Change (UNFCCC) member countries as the main 
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source among others (85). While this allows for collecting country specific emissions, it 
also creates challenges, such as the need to replace missing or incomplete data. 
Furthermore, the NIRs already aggregate data from industry and government reports 
(64, 75), which renders data transparency a difficult task. Since EDGAR (85) reports 
include little information about their data compilation, assumptions regarding NG FE can 
only be inferred at a very coarse level. For example, assumptions about emissions 
allocation between oil and NG are not provided in EDGAR. A summary of the bottom-up 
data sources available for inversion priors is shown in Figure 11 to illustrate the 
reporting hierarchy of bottom-up estimates and the benefits of using LCA emissions 
estimates. Recent NG LCAs capture the emissions differences between bottom-up 
studies, and provide uncertainty ranges based on the literature source data (10, 28, 31, 
34). 

 Summarizing the existing problem of quantifying global NG FE 3.2.4
Research over the past few decades has contributed a large amount of data for 
quantifying NG FE in different parts of the world. This data has led to numerous in-depth 
analyses of NG industry processes and resulting CH4 emissions. Despite this 
development, methodological and data limitations preclude robust conclusions 
regarding an average industry-wide NG FE rate. Natural gas FE estimates from bottom-
up studies including LCA vary by an order of magnitude (between about 1% and 10% of 
NG production) because of measurement and engineering data choices, differences in 
system boundaries, and location variability. Moreover, measurement data may not be 
representative of the entire industry due to small sample sizes. Local and regional air 
sampling studies may only provide a temporal and spatial snapshot. Estimating NG FE 
based on measurements and limited data about on-site production activities creates 
additional challenges. Previous global CH4 inversion results indicate that global average 
NG FE are at most one third of the upper estimates in the literature. The wide range of 
FE rates from LCA and local and regional air sampling studies and the considerable 
differences in estimates and uncertainty of both approaches warrants further 
investigation in order to better understand the climate impacts of NG production and use. 
While uncertainties need to be analyzed more carefully, global inversion modeling is a 
promising approach to re-assess LCA estimates. Future inversion studies may 
characterize possible NG FE uncertainties in more depth by (i) estimating NG FE for a 
wide range of prior estimates, and (ii) clearly documenting the data and assumptions 
underlying the prior FF estimates. 

3.3 Research objectives and tasks 

 Research objectives 3.3.1
This part of the research can be considered a ground truth analysis of NG FE rates 
used in LCA studies by comparing bottom-up life cycle CH4 emissions from global NG 
production (LCA results) and top-down CH4 emissions from atmospheric concentration 
measurements. The research throughout this project will determine the likely ranges of 
global fugitive CH4 emissions from NG production based on bottom-up estimates, and 
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constrain these ranges with atmospheric measurements. This will be achieved through 
combining LCA and global CH4 inversion modeling, which is illustrated in Figure 12. 
While the objective of traditional inversion modeling is multifaceted, e.g., understanding 
the total budget of CH4 and C2H6 as well as the interannual variability of the sources and 
sinks (40, 81, 82), this research focuses on characterizing CH4 and C2H6 emissions 
uncertainty from the NG industry. This will be achieved by generating transparent prior 
emissions inventories using estimates from the LCA literature and other bottom-up 
studies. In order to link prior assumptions to posterior results, the emphasis lies on 
clarity and transparency of bottom-up estimates. 

 
Figure 12: Research overview and differences to previous work in the literature. 

The overarching research question throughout this work is: which range of NG FE (%) is 
reasonable globally, and which range is inconsistent given atmospheric measurements 
as a constraint? How would these refined ranges affect prior or future policy decisions? 
The specific research questions to be answered are: 

1) What are the best estimate NG FE rates over the past two decades globally 
according to CH4, C2H6, and δ13C-CH4 tracers, and is there a trend over time? 

2) What is the upper bound of global NG FE given the lower bound of all other CH4 
and C2H6 sources, and what are the prior assumptions (e.g., FF emissions 
factors and hydrocarbon composition) underlying this bound? 

3) Can literature estimates of natural CH4 and C2H6 seepage be reconciled with 
global measurements, and how does this affect the NG FE estimates? 

4) What are the policy implications of global atmospheric observational constraints 
on NG FE rates? 
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This research does not explicitly quantify CH4 emissions from shale gas operations, nor 
does it make projections about future trends in NG FE. As mentioned above, the 
modeling focuses entirely on emissions from the 1980s to present. However, this 
research is an important groundwork for future studies dealing with new technologies, 
such as hydraulic fracturing. Several LCA studies have compared NG FE from 
conventional and shale gas (10, 31), the latter having reached the 10% of total U.S. 
production mark only in 2008 (97). While these studies provide a detailed analysis of the 
emissions differences between conventional and shale gas, robust conclusions about 
shale NG FE rates cannot be drawn due to the large uncertainties in NG FE. As a result, 
better knowledge about past and present NG FE from conventional sources is needed 
to infer FE of new technologies using LCA methods, and to make projections about 
future emissions. 

 Research tasks 3.3.2
The tasks required to meet the research objectives and specific research questions are 
outlined below. The list gives an overview of the tasks, which will be described in more 
detail in the following Chapters. 

• Chapter 4: Develop Bayesian prior CH4 and C2H6 emissions inventories 
a) Generate FF CH4 emissions inventories from the 1980s to 2011. 

- Collect FF production data and review CH4 and C2H6 EFs for NG, 
oil, and coal as well as gas hydrocarbon composition. 

- Allocate emissions between NG and oil production. 
b) Create global grid maps for spatial allocation of FF CH4 and C2H6 

emissions. 
c) Review prior CH4 and C2H6 emissions and uncertainties from non-FF 

sources in the literature. 
d) Collect global CH4 emissions grid maps for all other sources from existing 

databases. 

• Chapter 5: Global CH4 and C2H6 atmospheric modeling 
e) Develop a global box-model to carry out inversion modeling using global 

average CH4, C2H6, and δ13C-CH4 measurements to constrain NG FE. 
f) Simulate global emissions transport using the 3-dimensional CT-CH4 

model, compare results with the box-model, and analyze the spatial 
constraints for NG FE. 

While similar to the conceptual overview of global CH4 inversion modeling (see Figure 9), 
the prior emissions inventory tasks focus on generating FF inventories, and global totals 
for other CH4 and C2H6 sources will be used directly from the literature. Furthermore, the 
analysis of inversion posteriors will focus on NG FE uncertainty in order to address the 
research questions above.  
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Chapter 4: Quantifying Natural Gas Fugitive Emissions – 
Bayesian Prior Estimates 
4.1 Introduction 

Over the past few decades, numerous bottom-up and field studies have estimated the 
amount of CH4 emitted to the atmosphere from the NG industry. Yet, limitations in 
research methods and data lead to large uncertainties, i.e., between about 1% and 10% 
of NG production is lost due to leaks and venting (see Table 3). Recent global CH4 
inversion results indicate that uncertainty in global average NG FE may be reduced 
significantly using a global observation network. As described in Chapter 3, this 
approach requires a transparent set of Bayesian FF priors in addition to EDGAR (85), 
which provides only point estimates for both country-level data and global emissions 
grid maps rather than uncertainty ranges. Due to insufficient transparency in parts of the 
database, only some of its data – including the spatial distribution of total emissions – is 
useful for this research. 

 
Figure 13: Overview and structure of Chapter 4 (section numbers are indicated in bold). 

This chapter describes the emissions quantities and the data sources used to generate 
the FF priors for the atmospheric modeling part of this work. NG, oil, and coal related 
CH4 and C2H6 emissions priors are estimated in detail using FF production data and 
EFs from the literature. Distinguishing the three FF CH4 sources in observed 
atmospheric CH4 concentrations is a challenging task in inversion modeling. Since the 
isotopic signatures of the three sources overlap significantly, and the emissions 
releases of these sources are also in close geographical proximity, the observational 
signal to detect each source individually is relatively weak (40). As a result, detailed 
analysis and transparent documentation of oil and coal industry priors helps isolating 
NG related posterior and associated uncertainties. Given a posterior FF CH4 budget, the 
NG fraction is easily estimated (NG = FF – oil – coal) based on assumptions underlying 
the coal and oil priors. Other anthropogenic (e.g., agriculture, industry) and natural CH4 
emissions quantities were adopted as priors from the literature. 
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As shown in Figure 13, sections 4.2 and 4.3 review the literature and databases 
regarding emissions factors for NG, oil, and coal, gas hydrocarbon composition, activity 
data (FF production) for individual countries, which are needed to generate country-level 
emissions estimates, and non-FF sources. Section 4.4 describes the methods for 
generating fossil priors including their global spatial distribution based on 
aforementioned data collected. This section also summarizes the data sources used for 
other anthropogenic and natural CH4 and C2H6 emissions. Section 4.5 summarizes the 
results, i.e., the prior emissions and uncertainties for each emissions source, and 
section 4.6 provides concluding remarks. 

4.2 Fossil fuel CH4 and C2H6 emissions data collection 

 Natural gas and coal-bed hydrocarbon gas composition 4.2.1
Life cycle FF hydrocarbon emissions depend on the amount of NG, oil, or coal produced, 
FE rate (or EFs), and CH4 and C2H6 content in the released gas. For instance, the 
emissions at a given NG FE rate increase with higher CH4 and C2H6 content in the 
leaking gas. Hydrocarbon composition across the NG industry, from oil production, and 
coal mining, particularly CH4 and C2H6 content, is reviewed in this section. The terms in 
Table 1 will be used in this chapter to distinguish NG from different well types and 
locations, which determine the composition, use, and hydrocarbon emissions of NG as 
described below. 

Table 1: Typical distinctions of NG based on well type and location (98). 
Category Description 
Unassociated 
(or non-
associated) gas 

NG from gas and condensate wells, in which there is little or no crude oil. 
Gas wells typically produce raw natural gas by itself, while condensate wells 
produce free natural gas along with a semi-liquid hydrocarbon condensate. 

Associated gas NG from oil wells. This gas can exist separate from oil in the formation (free 
gas), or dissolved in the crude oil (dissolved gas). 

Stranded gas NG from deposits for which the construction of pipelines is uneconomical. 

Natural gas from the well-head (gross NG) is processed to provide a consistent quality 
for the NG consumer. Processing removes higher hydrocarbons along with other 
impurities (99). As a result, NG composition varies between upstream (prior to central 
processing facilities) and downstream (see Table 2). NG CH4 content upstream (gross 
and wet NG production) is generally lower compared to NG downstream (dry NG 
production) because the higher hydrocarbons and other NG components have not yet 
been removed. The opposite is true for C2H6. Apart from a few samples collected in the 
1960s (see Table 2), there are no recent publicly available data providing specific NG 
hydrocarbon composition in different parts of the industry. This work determines NG FE 
rates – based on dry NG production and dry NG hydrocarbon composition – in order to 
compare results with some recent bottom-up studies, which are also based on dry NG 
production statistics (see Table 3 and discussion below for details). Since this requires 
composition data of dry NG, the CH4 and C2H6 content of dry NG is estimated using 
upstream hydrocarbon composition data as well as wet, dry, and NGL production data 
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in a mass balance approach in sections 4.2.1 and 4.4.1. Table 2 summarizes available 
global upstream hydrocarbon composition data from the literature as well as 
downstream composition data from two sources. Literature data is given in different 
units (volume, molar, and weight percent) depending on sources. 

Table 2: CH4 and C2H6 content in NG across different parts of the industry, ordered by 
type of NG (unassociated/associated/mixed), process stage, sample size and location, 
and reference year. 

Process Sample size, 
Locations 

Year Units CH4 C2H6 Sources 

Unassociated NG 
 Extraction (wet) n/a n/a Vol-% 96.0 2.7 (100) 
 Upstream of centralized 

processing plant n/a (Canada) 1987 Mol-% 92.5 4.5 (101) Wt-% 85.0 7.8 
 Downstream of cen-

tralized process. plant n/a (Canada) < 2004 Mol-% 97.2 0.7 (101) Wt-% 95.0 1.3 
 Major transmission lines 28 (USA) < 1966 Vol-% 84.6 5.7 (102) 
 Distribution system 48 (USA) 1962 Vol-% 89.4 5.1 (102) 
Associated NG 
 

Extraction (wet) 

47 (Williston, USA) 2006 Mol-% 54.0 17.0 (103) 
Wt-% 31.9 18.8 

n/a (Canada) 1987 Mol-% 73.3 12.0 (101) 
Wt-% 52.3 16.0 

n/a n/a Vol-% 30-40 n/a (100) 
Mixed unassociated & associated NG sources 
 

Extraction 

n/a (USA) 1996-
2011 

Vol-% 84.0 n/a (64) 

6,109 (USA) 1948-
1997 

Vol-% 79.9 5.7 (104) Wt-% 64.7 8.6 
625 (USA) 1976 Vol-% 88.3 4.7 (105) 
40 (USA) 1951 Vol-% 84.1 8.1 (102) 
8,405 (Uinta Basin, 
USA) 2012 Wt-% 76.4 8.9 (106) 

77 (Barnett Shale, 
USA) 2012 Wt-% 66.2 n/a (107) 

n/a (Denver-Jules 
Basin, USA) 2006 Wt-% 57.6 15.5 (108) 

1,053 (globally) 1984-
1997 

Mol-% 81.8 3.7 (109) Wt-% 61.9 5.2 
174 (globally) 1970 Vol-% 89.0 n/a (105) 
32 (globally) < 1966 Vol-% 81.5 9.8 (102) 

As shown in Table 2 CH4 and C2H6 values given in volume and molar percent are not 
significantly different from each other, but weight percent values are significantly 
different due to increasing specific weight for higher hydrocarbons. Hydrocarbon 
emissions from the oil industry are due to associated NG production at oil wells. Some 
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of these oil related fugitive emissions come from leaks, and the remainder is from 
vented or incompletely flared gas (see section 4.2.2 for details) due to process upsets 
and/or lack of infrastructure to deliver the gas to market, i.e., stranded gas. 
Unassociated wet NG generally has a higher CH4 content than associated wet NG (>90 
vol-% versus <80 vol-%), whereas the opposite is true for C2H6 (unassociated <5 vol-%, 
associated >10 vol-%). The CH4 content of mixed associated and unassociated NG 
varies between approximately 80-90 vol-% (5-10 vol-% for C2H6). While the majority of 
data refers to NG production in North America, only three literature sources provide 
global composition data, including only one source after 1970. Two data sources 
comprise over 7,000 well samples (104, 109) – rather than averages only – and were 
used to compare North American and global data (Figure 14). 

 
Figure 14: Comparison of CH4 content in NG globally, in North America, and the U.S. 
between two data bases (104, 109). Legend values in parentheses state the number of 
samples. GOM = Gulf of Mexico. 

While the contents of the database in Etiope (109) are proprietary, permission to publish 
the above statistics was obtained. As shown in Figure 14, CH4 content in the continental 
U.S. is not significantly different between both sources. Furthermore, CH4 content 
globally (109) is not significantly different from the continental U.S. (104). Hence, it is 
concluded that on average the CH4 content from the continental U.S. is representative 
globally. 
The CH4-C2H6 emissions ratio from coal mining is important for estimating coal related 
C2H6 emissions because most EFs for coal mining provide only CH4 estimates (see 
section 4.2.3). Kotarba and Lewan (110) provide coal-bed gas composition from two 
hard coal (underground mining) basins in Poland. Based on 13 samples from different 
sites, the CH4-C2H6 (wt-%) ratio ranges from 2 to 3,500, with a weighted average of 64 
(weighted average C2H6 content is 1 wt-%). Gas composition of underground mines 
throughout the U.S. is available from 78 samples (111). The CH4-C2H6 ratio ranges from 
60 to 9,900 with a weighted average of 930, but the unit (vol-%, mol-%, or wt-%) is 
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omitted in the paper. If vol-% or mol-% are used, the weighted average CH4-C2H6 ratio 
would be in the order of 500 (see calculations in section 4.4.1 for details). In summary, 
the weighted averages of the sample C2H6 contents in Poland and the U.S. is 1 wt-% or 
less. 

 Emissions factors from the NG and oil industries 4.2.2
Emissions factors describe the amount of hydrocarbon gas emitted to the atmosphere 
per unit of fuel produced. Metrics can be absolute, e.g., in units of kg CH4/m3 oil, or 
relative amounts, such as % produced dry NG. As discussed in Chapter 3, EFs in LCA 
are the basis for comparing GHG emissions among different fuels or technologies. EF 
values sometimes vary significantly depending on the data source. Numerous studies 
have estimated CH4 emissions from the NG industry. This works reviews 16 studies, 
which have either (i) directly incorporated EFs from industry or government sources or 
LCA databases, or (ii) reported own measurements. Detailed EFs for some sub-
processes (as opposed to aggregate EFs), such as gas flaring, are reviewed here in 
order to explain the differences between studies, and to justify the emissions inventory 
methods in section 4.4. 
Table 3 summarizes the review results, which are shown in FE as a percent of produced 
NG. FE rates in some studies (31, 34, 38, 67, 73) are based on dry gas production, 
whereas this was not documented in some studies. In order to facilitate comparison of 
LCA and inversion results, FE rates for NG priors below are generated based on dry 
gas production. Most studies documented NG CH4 emissions per MJ NG produced or 
per MWh generated power. In these cases, the data were converted to % NG FE using 
NG properties data from the literature, such as energy content of NG (see Appendix 
Table B - 8). One reason for the wide range of FE estimates (ranging from near zero to 
over 10%) is differences in the choice of system boundaries between studies. For 
example, potential emissions from local NG distribution networks are often omitted, and 
some studies include only pipeline FE. Furthermore, disagreements between studies 
arise due to data choices from different industry and government reports (10). Few 
studies have accounted for the full life cycle including production, processing, 
transmission, and local distribution. 
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Table 3: Literature values of NG FE ordered by location, reference year, and life cycle 
stage. Units are FE in percent of dry production (31, 34, 38, 67, 73); whether dry or gross 
production not reported in other studies. Studies reporting CH4 emissions on a per MJ 
(or similar) basis (113-117) were converted to percent of dry NG production assuming 90 
vol-% CH4 content. Total values in parentheses indicate that study did not include all life 
cycle stages. 
Country Year a Production Processing Transmission Distribution Total Notes Ref. 

USA 2011 1.4 0.4 0.2 0.2 1.5-3.2 Convent. NG 
LCA 

(34) 

USA 2011 2.0 0.3 - (2.3) Convent. NG 
LCA 

(10) 

USA 2011 0.3-2.2 0-0.2 1.4-3.6 1.7-6.0 Convent. NG 
LCA 

(28) 

USA 2011 1.6 0.4 0.2 0.2 1.5-4.0 Shale gas 
LCA 

(31) 

USA 2011 2.0 0.3 - (2.3) Shale gas 
LCA 

(10) 

USA 2011 2.2-4.1 0-0.2 1.4-3.6 3.6-7.9 Shale gas 
LCA 

(28) 

USA 1992 0.4 0.2 0.5 0.3 0.9-1.9 - (112) 
Russia 2005 0.8-2.9 - (0.8-2.9) - (113) 

Russia 2003 0.1 - 0.4-1.6 0.5-0.8 (1.0-
2.5) 

Own meas-
urements, 
transmission 
only 

(67) 

Russia 1996 - 0.1 0.9 - (1.0) Own meas-
urements 

(73) 

Russia Pre-
1993 2.4-2.8 3.3-4.0 0.8-2.2 6.5-9.3 - (37) 

Thailand 2009 0.02 0.17 - - (0.19) LCA data-
base EFs 

(114) 

Romania 2007 2.9 0.8 1.9 - (5.6) - (115) 

Algeria 2000 0.1 0.1 - - (0.2) LCA data-
base EFs 

(116) 

Germany 2005 0.8 0.3 1.1 - (117) 
Germany 2000 0.04 - - - (0.04) 

LCA data-
base EFs 

(116) 
Netherlands 2005 0.14 0.04 0.18 (117) 
Netherlands 1987 - - - 0.6 (0.6) (118) 
Austria 2005 1.6 0.7 2.3 (117) 
Belgium 2005 0.14 0.03 0.17 (117) 
Spain 2005 0.22 0.19 0.41 (117) 
France, 
Italy, 
Luxembourg 

2005 0.7 0.3 1.0 
(117) 

Norway 1991 0.02 - (0.02) (119) 

UK 1969 - - - 1.9-10.8 (1.9-
10.8) 

- (38) 

a Base year (if provided), otherwise year of publication. 
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As described in section 4.2.1, hydrocarbon emissions from the oil industry are mainly 
due to associated NG production at oil wells. The largest share of oil related emissions 
comes from the following sources: (i) unintentional fugitive emissions throughout the life 
cycle, (ii) CH4 emitted from venting, mostly at the production site, and (iii) incomplete 
flaring. EFs related to the oil life cycle were reviewed from four studies (64, 120–122) as 
shown in Table 4. The EFs span two orders of magnitude, and the IPCC EF for 
developing countries is four times the amount of developed countries. As a reference, 
EPA’s EF assumes that 2% of produced NG is vented or released unintentionally (see 
Appendix B for details). In comparison, the IPCC study best reflects results from a 1990 
U.S. Department of Energy (DOE) study by Barns and Edmonds (123, 124), which 
suggests that 20% of all non-marketed associated NG escapes to the atmosphere 
through venting and fugitives, and 80% is flared. However, the authors acknowledge 
significant uncertainties in these figures. Furthermore, it is possible that the share of 
venting and fugitives has decreased significantly since 1990. More details about the EFs 
including their assumptions are discussed in Appendix B. 

Table 4: Summary of oil CH4 emissions factors from four different studies. 

 
EF 

[kg CH4/m3 oil] 
Notes (see Appendix 

B for details) Sources 

EPA 2013 
Average (1990-2010)     2.9 Based on reported total 

emissions and EIA oil 
production statistics 

(64) 95% C.I., low     2.2 
95% C.I., high     7.2 

Wilson et al. 2004, 2008 
low     0.8 Same as EPA; required 

allocation between 
oil/NG 

(121), 
(122) high     6.9 

IPCC 2006 
Developed world (weighted average) 11 

As reported in source (120) Developing world low 11 
Developing world high 41 

A particular challenge in estimating CH4 emissions from the oil life cycle is quantifying 
incompletely flared associated gas. Emissions inventories typically account for fugitive 
emissions, and use relatively high combustion efficiencies for flares, usually in the order 
of 99%, i.e., not all flared CH4 is emitted as CO2. For instance, the EF for flaring used in 
the Wilson et al. (2004) study (121) corresponds to a flaring efficiency of 99.93% (see 
Table B-2). 

In Wilson et al. (2010), 99.65% of flared NG is emitted as CO2 (122). In the EPA 2013 
GHG inventory, flaring efficiency is 98% (64, 125). However, a literature review 
indicates that such high efficiencies can be observed only in laboratory experiments 
(126), whereas industrial scale efficiencies may be significantly lower. Recent studies 
suggest flaring efficiencies significantly below 90%. See Appendix B for a more detailed 
discussion of flaring efficiency estimates in the literature. Given the low flaring EFs in 
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the studies in Table 4, CH4 from incomplete flaring will be accounted for separately 
when using the EFs above for estimating total CH4 emissions from the oil industry. 
NOAA provides the latest estimates of worldwide NG flaring (127, 128). The data over 
the period 1994-2010 is based on satellite sensor measurements with dedicated thermal 
bands, which can distinguish gas flares from anthropogenic lighting, such as cities. 
Figure 15 summarizes the NOAA data for the Top 10 flaring countries and rest of the 
world (ROW). Most of this NG and the contained CH4 is combusted and released to the 
atmosphere as CO2. As discussed above, however, industrial flares are not 100% 
efficient. Thus, a fraction of the total NG flared (on average 105 Tg NG/yr globally) is 
released as CH4, adding to the overall CH4 emissions from the oil industry, which is 
captured in the EFs in Table 4. 

 
Figure 15: Observed NG flaring (from oil and gas fields) by country using NOAA data 
(127). 

Flaring is particularly high in developing countries as shown in Figure 15. As described 
in detail in the literature, this phenomenon is mostly due to undeveloped infrastructure to 
transport and process the associated NG, and sell it to the market (129, 130). Appendix 
B illustrates this phenomenon more clearly by showing the ratio of NG flaring to oil (and 
thus associated gas) production (Appendix Figure B - 1). Note that NOAA’s flaring data 
only account for actually observed NG flaring and associated incomplete flaring CH4 
emissions. It does not account for CH4 vented to the atmosphere, e.g., through 
improperly operated flares or intentional NG venting. Hence, the flaring estimates and 
the associated incomplete flaring CH4 emissions represent a lower bound for oil CH4 
emissions in addition to CH4 accounted for in the EFs above. 
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 Emissions factors from the coal industry 4.2.3
Hydrocarbon emissions related to coal production depend on three main parameters 
(131): (i) the ratio of underground and surface mining because underground EFs are 
about one order of magnitude higher than for surface mining. This work establishes a 
database of coal production from underground and surface mining for major coal 
producing countries (see section 4.2.4 and Appendix Table B - 6) using literature 
sources. (ii) The amount of utilized coal CH4 as an energy source, and the amount of 
flared CH4 from the mine, which may change significantly over time (see Appendix B). 
(iii) EFs for each mining method in a specific coal basin, which depends mainly on the 
depth and rank of coal. Table 5 summarizes ranges of coal CH4 EFs from underground 
and surface mining as well as post-mining activities and abandoned mine emissions 
(see Appendix B for definitions and further description). Given the magnitude and spatial 
variability of underground EFs, establishing a country-level production database of 
underground mining is important for estimating global CH4 emissions from coal 
production. The country specific coal EFs in Table 5 cover 85% of world coal production, 
and the Tier 1 EFs may be used for the remaining countries. More details regarding the 
country-specific EFs and a discussion about the data sources are provided in 
Appendix B. 

Table 5: Summary of literature coal CH4 emissions factors from underground and 
surface mining as well as different life cycle stages. Units are m3 CH4/t (metric ton) coal. 

a See Appendix Table B - 3; b Former Soviet Union; [1] (120); [2] (64); [3] (132); [4] (133) 

 Activity data 4.2.4
The amount of fuel produced in a given year and/or country is referred to as activity data. 
This data is needed in an emissions inventory for generating emissions time series of a 
given fuel in combination with the associated emissions factors. EIA provides FF (NG, 
oil, coal) production data for years starting in 1980 until today including 230 countries 

 Range Mean  Notes Sources 
Underground EFs 

IPCC Tier 1 10-25 n/a Globally representative values 

[1,2] Major producers 7-24a n/a FSUb, Germany, Poland, UK, 
Czech Republic, Australia 

USA 11-15 12 Range, IPCC; Mean, EPA 

China 10-12 11 Province-level averages; see 
discussion in Appendix B [3,4] 

Surface EFs 
IPCC Tier 1 0.3-2.0 1.2 Globally representative values [1] 

Post-mining EFs 
Underground 1.4-1.5 1.5 U.S. data, base year 2009; 

Range is due to temporal 
variability in reported data 
(1990-2010) 

[1,2] Surface 0.2-0.3 0.2 
Abandoned mine EFs 

Underground 1.1-1.5 1.3 
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(134). EIA data are used in this work, and differences compared to other sources are 
discussed in Appendix B. Global production data since 1980 is summarized in Figure 16. 
Country specific FF production data are only a proxy for the spatial distribution of 
emissions. Emissions may not always be released in the country where fuel extraction 
occurred. The vast majority of coal (Table 5) and oil related CH4 emissions occur at the 
extraction site, thus using production statistics is reasonable. A fraction of CH4 
emissions from NG produced in Russia, for instance, may be released in Central 
European local distribution systems where it is transported via pipelines. A share of the 
pipeline emissions and all of the distribution related emissions of this NG is therefore 
associated with the NG consumption data of the importing country as well as any 
country where the pipeline transits (see Appendix B for details). It is assumed here that 
all emissions occur in the country where the FFs are produced due to lack of data, and 
given the uncertainties associated with the spatial allocation of CH4 emissions in the 
grid maps as described in more detail in section 4.5. 

 
Figure 16: Summary of FF production data from the Energy Information Administration 
(134). 

 As shown in section 4.2.3, differentiating coal production by type of mining is important 
because EFs for underground mining are significantly higher compared to surface 
mining. Several sources document underground/surface breakdown for 23 countries 
representing 95% of world coal production throughout 1980-2010. As summarized in 
Appendix Table B - 6, underground coal production varies between 5-100% of total coal 
production among countries. Some data sources provide the underground/surface 
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breakdown for only a single year. In these cases, this value is used for the full time 
series from 1980-2011. 

 China is the world’s largest coal producer accounting for 53% of global underground 
coal production over 1980-2010 (134). According to Raven Ridge Resources, illegal 
coal production is in the order of 10% of reported total production (135), i.e., total 
reported Chinese coal production (134) is likely underestimated. Furthermore, two 
sources (136, 137) indicate a significant coal production data mismatch among different 
Chinese government agencies, which suggests that the EIA coal production data during 
1997-2008 are underestimated. The Chinese sum of regional coal consumption data is 
~20% higher than production data after accounting for import/export but consumption 
data may be over-reported to match politically desired gross domestic product output. 
This underestimate ranges from 1-23% for different years, and about 8% over the entire 
period. This is equivalent to 4% of world coal production during this period, and a higher 
value when only CH4 emissions intensive underground coal production is considered. 
According to (137), Chinese coal production could be even higher, but no quantitative 
estimate is provided. 

4.3 Non-FF CH4 and C2H6 emissions data collection 

This section summarizes the literature review of non-FF CH4 and C2H6 emissions as 
well as the range of values chosen for atmospheric modeling in Chapter 5. Prior CH4 
emissions ranges were selected based on five of the most recent inversion studies (39–
41, 43, 44) and two literature reviews (138, 139) as shown in Figure 17. Both literature 
review studies encompass a total of 31 bottom-up and inversion studies, which cover 
most of the posterior ranges of the five recent inversion studies. This is particularly true 
for the lower bounds, which are important for constraining NG FE (see section 3.2.3). 
While the inversion studies suggest a wide range particularly for natural and 
agriculture/waste emissions (see all sub-categories in Table 10), relatively low estimates 
in one source category are balanced by higher estimates in another category. 
The yellow vertical lines (and associated values in yellow boxes) represent the ranges 
chosen as priors for atmospheric modeling described in Chapter 5. The lower bounds 
were selected by including the lower bound posteriors of all source categories in the five 
inversion studies and the lower bounds of the literature reviews. Two exceptions were 
made. First, the lower bound estimates of the relatively small termites, oceans, and 
marine sediment sources as reported in Wuebbles and Hayoe (139) were excluded in 
the natural CH4 category since these are one magnitude lower than best estimates. The 
adjusted lower bound natural emissions are the same as in IPCC (138). The selected 
lower bound natural emissions are consistent with a recent inter-model comparison of 
process-based wetland models (140) indicating a lower bound of 141 Tg CH4/yr. 
Second, NOAA’s biomass burning category was excluded, which is likely 
underestimated due to insufficient representation of small fires in its prior database and 
choice of prior uncertainties (39). Given the balance among source categories, e.g., 
relatively low natural emissions compensated by higher agriculture/waste emissions in 
the same study, it appears very unlikely that all priors chosen for modeling in Chapter 5 
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could be at the lower bound simultaneously. Yet, this scenario will be used in Chapter 5 
for estimating upper bound NG FE rates. The prior means represent the average of the 
five inversion study posteriors minus 10% as a conservative estimate (the upper bound 
NG FE estimate increases as non-FF estimates decrease). The upper bound was 
selected such that lower and upper bound represent a normal distribution around the 
mean. 

 
Figure 17: Summary of literature review for non-FF CH4 sources from bottom-up and 
atmospheric modeling studies. Bars and horizontal lines indicate relatively recent CH4 
inversion studies (39–41, 43, 44) and literature reviews (138, 139), respectively. The 
bounds of the literature reviews indicate the mean values of the studies with the lowest 
and highest values. Posterior uncertainties represent one std. dev. in Bousquet (std. dev. 
were added for each reported subcategory) and NOAA. Two std. dev. in Wang, but 
agriculture/waste uncertainties were only reported as the sum of FFs and soil sink 
uncertainties (details not reported in Chen and Mikaloff). Asterisk denotes that study 
includes isotopic analysis. Vertical yellow lines (with values in yellow boxes) show 
ranges chosen as priors for Chapter 5 (see text for selection criteria). 

Biomass burning (BB) and biomass fuel combustion (BFC), the latter sometimes 
referred to as biofuels, are the two major non-fossil sources of atmospheric C2H6 (84, 
141). Table 6 summarizes literature values for these sources as well as the range of 
values chosen for atmospheric modeling. BB emissions were estimated using emissions 
factors (g CH4 and C2H6 per kg dry matter burned) and total CH4 emissions excluding 
BFC (Tg CH4/yr). BFC emissions were estimated using the CH4/C2H6 emissions ratio of 
BFC (142) and total BFC emissions (Tg CH4/yr) in the developing world (143). Total 
estimates of combined BB and BFC emissions vary between 2-11 and around 5 Tg 
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C2H6/yr in bottom-up and atmospheric modeling studies, respectively. The prior values 
chosen in this work range from 2-9 Tg C2H6/yr, thereby giving slightly more weight to 
(84), which already constrains bottom-up values using atmospheric measurement data. 

Table 6: Summary of literature review for non-FF ethane (C2H6) sources from bottom-up 
and atmospheric modeling studies as well as values chosen for this work. Units are Tg 
C2H6/yr. 
 Biomass 

burning 
Biomass fuel 
combustion Total 

Bottom-up studies (142) (143)  - 
low 1.6 0.6   2.2 

medium 3.6 1.7   5.3 
high 7.5 4.0 11.5 

Atmospheric modeling studies (84) (84)  - 
low 2.4 2.6   5.0 

high 2.8   5.4 
This work 

low 1.6 0.6   2.2 
medium 3.6 2.3   5.9 

high 5.2 4.0   9.2 

Natural CH4 seepage may be a significant source of atmospheric CH4, which is not 
currently accounted for in most of the bottom-up emissions inventories and global CH4 
inversion studies described above. The only exception is the Wuebbles et al. literature 
review (139) where the low estimate in the study accounts for 12 Tg CH4/yr from natural 
seepage. Recent research suggests that  geologic sources of CH4 from earth’s natural 
degassing represents an important factor in explaining atmospheric measurements 
(144). Seepage can occur as visible macro-seeps, marine seepage, micro-seepage, 
and in geothermal/volcanic areas. According to sample data – extrapolated globally – 
between 40-60 Tg CH4 and 2-4 Tg C2H6 is released to the atmosphere from natural 
seeps (144), and about 80% of this amount is thermogenic (145). This is about 10% and 
20% of the global CH4 and C2H6 budget, respectively, and the source is isotopically and 
geographically very similar to FF CH4. Hence, adding natural seepage as a source in 
atmospheric modeling may significantly reduce the ceiling of the NG CH4 budget. Global 
grid maps of natural CH4 seepage are not readily available to include in the 3D 
atmospheric modeling, and generating these grid maps is beyond the scope of this work. 
However, the above global estimates will be incorporated in the CH4 and C2H6 
atmospheric model simulations. 

4.4 Prior FF emissions inventory methods 

 Emissions allocation between NG and oil industries and gas composition 4.4.1
In LCA or other bottom-up inventories, allocation of emissions is needed to account for 
the fact that some emitting processes generate more than one product (8, 14). Co-
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product allocation is not standardized for specific products and processes (12). As 
reviewed by Weber et al. (10), allocation procedures in NG LCAs vary considerably 
among studies contributing to differences in results. In this study, emissions must be 
allocated between NG and oil since both fuels are sometimes extracted from the same 
well (see section 4.2.2). Unassociated and associated NG refers to gas produced from 
NG and oil wells, respectively (see Table 1). Since posterior NG related CH4 and C2H6 
emissions will be calculated as NG = FF – Oil – Coal (see section 4.1), the following 
assumptions for allocating CH4 emissions between NG and oil industries are made here 
(see also Table 7): 

i. Flaring observational data (and related CH4 and C2H6 emissions from incomplete 
flaring) refers to oil wells, i.e., unassociated NG flaring is treated as negligible. 

ii. In addition to flaring, fugitive CH4 and C2H6 emissions occur during oil production 
as represented in oil EFs described above. 

iii. Marketed associated and unassociated gas (oil and NG wells) is the denominator 
for the NG FE rate because both gas sources are included in dry gas production 
statistics used to estimate NG FE (CH4 and C2H6 emissions as a percentage of dry 
gas production). 

Table 7: Assumptions for allocating CH4 and C2H6 emissions among NG and oil 
industries. The term industry is used here to distinguish emissions from the different 
products NG and oil. 
Life cycle 
stages Oil industry  NG industry  Notes 

Pre-production 
and extraction 
of NG and oil 

Literature fugitive EFs 
from oil production; 
incomplete flaring a 

Remainder of leaks and 
venting emissions from oil 
and gas wells not covered 
in oil industry 

Marketed associated and 
unassociated gas (oil and 
NG wells) is the 
denominator for NG FE rate 

Processing Literature fugitive EFs 
from oil refining 

Fugitives from NG 
processing - 

Transport and 
distribution 

Shipping emissions 
from oil tanks (64) b 

Fugitives from pipelines 
and distribution system 

NG related LNG emissions 
are assumed negligible (64) 

a See section 4.2.2 and Appendix B for flaring emissions details 
b Shipping related emissions are also included in EDGAR (85) inventories and grid maps 
described in section 4.4.3. 

The U.S. Bureau of Land Management (BLM) database (104) contains routine analyses 
of U.S. oil and gas well hydrocarbon composition (among others) collected as part of a 
continuous survey for occurrences of helium. This survey was conducted from 1917 
until 1996, and it consists of 17,167 samples. The database was first analyzed for 
missing entries in crucial fields such as hydrocarbon contents and sample date and/or 
entry errors, e.g., publication date before sample date (see details in the results section 
in Table 11). CH4, C2H6, propane (C3H8), butane (C4H10), pentane (C5H12), hexane 
(C6H14), nitrogen (N2), and carbon dioxide (CO2) mol-% were averaged for each year 
and over the period 1948-1997 (this is the period for which data entries for all of the 
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above components were available; composition for the remaining years was not 
estimated due to missing data entries for some hydrocarbons). While other components 
are also present in NG, the above contribute on average 99.5 mol-%. The composition 
results were then used in combination with the chemical properties data of CH4, C2H6, 
C3H8, and C4H10 as summarized in Appendix Table B - 8 to calculate wt-% NG 
composition, which is needed to estimate CH4 and C2H6 emissions based on NG FE 
rate scenarios. The data was also used to estimate total energy content of the samples 
and dry gas. 
Downstream NG composition was estimated by performing a mass balance of NG 
upstream and downstream of processing while accounting for pipeline standards 
regarding energy content of processed NG. EIA data (97, 146) is available for the U.S. 
on an annual basis for production of marketed (wet) NG (upstream of NG processing), 
dry NG (downstream), and NGLs (individually for each component; downstream). In the 
mass balance, the following condition is met: 

• Marketed.NG.=.Dry.NG.+.NGLs (in total and for each hydrocarbon) 
The following assumptions were made: 

• Of the total annual upstream NG volume, each hydrocarbon weight fraction is 
equal to EIA marketed (wet) NG multiplied by the respective weight fraction from 
the BLM samples of the same year. In other words, the BLM composition 
samples (converted to wt-%) are representative of wet NG. 

• The difference between the reported marketed NG flows of higher HCs (C2H6, 
C3H8, and C4H10) and reported NGL outputs (also C2H6, C3H8, and C4H10) are 
returned to pipeline quality gas at the tail end of NG processing. 

Non-hydrocarbons (especially N2 and CO2) in the BLM samples were excluded for this 
mass balance to represent the fact that non-hydrocarbons are already removed in 
marketed (wet) NG (147). Since dry NG must meet pipeline quality standards (see 
section 4.2.1), the energy content of the resulting dry NG composition from the mass 
balance was checked against these standards. 
Mass balance Eq. 7 through Eq. 14 are given below, where Vwet,x,i and Vwet,CH4,i are 
absolute wet NG volume streams of component x (C2H6, C3H8, C4H10) and CH4, 
respectively, in year i (to be processed); VFwet,x,i and VFwet,CH4,i are wet NG volume 
fractions from the BLM database; Pwet,i.and.Pdry,i are wet and dry NG production (in m3), 
respectively; Vdry,x,i.and.Vdry,CH4,i are the absolute dry NG volume streams; NGLx,i is the 
absolute NG liquids volume stream of component x (146); VFdry,x,i.and.VFdry,CH4,i are dry 
NG volume fractions; WFdry,x,i.and.WFdry,CH4,i are dry NG weight fractions using the gas 
densities ρ in Table B - 8. Note that C5H12 and C6H14 are in liquid phase at standard 
temperature and pressure. Since these two components contribute less than 1 mol-% to 
NG in the BLM database, they were omitted from the mass balance. 

!!"#,!,! = !"!"#,!,!×!!"#,! Eq. 7 

!!"#,!"!,! = !"!"#,!"!,!×!!"#,! Eq. 8 
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!!"#,!,! = !!"#,!,! − !"#!,!  Eq. 9 

!!"#,!"!,! = !!"#,! − !!"#,!,!
!

 Eq. 10 

!"!"#,!,! = !!"#,!,! ÷ !!"#,! Eq. 11 

!"!"#,!"!,! = !!"#,!"!,! ÷ !!"#,! Eq. 12 

!"!"#,!,! =
!"!"#,!,!×!!

!"!"#,!"!,!×!!"! + !"!"#,!,!×!!!
 Eq. 13 

!"!"#,!"!,! =
!"!"#,!"!,!×!!"!

!"!"#,!"!,!×!!"! + !"!"#,!,!×!!!
 Eq. 14 

 Country-specific CH4 and C2H6 emissions from NG, oil, and coal 4.4.2
Prior NG and oil CH4 and C2H6 emissions were estimated for those countries 
representing the top 96% and 91% of 1980-2011 world production, respectively (see 
Appendix Table B - 7). NG and oil estimates represent 37 and 26 countries, respectively, 
out of 233 countries and world regions represented in EDGAR (85). EIA production 
statistics were used as described in section 4.2.4. 
Prior emissions estimates for the remaining countries were adopted from EDGAR (85). 
Choosing this relatively small set of countries allows focusing on finding the best 
available data for the key emissions areas of the world, and comparing those with 
EDGAR. To provide a context, even if focusing on this small set of countries resulted in 
overlooking a hypothetical 50% error in EDGAR emissions for the sum of the remaining 
countries (less than 10% of world production), this would change global emissions only 
in the order of 5%. Prior emissions were generated from 1980 until 2011 to match the 
time series for which NOAA’s observational CH4 data is available. 
In order to bound prior NG FE estimates from the literature, three NG FE scenarios were 
established as shown in Table 8. FE rates were distinguished between OECD countries, 
Russia (or FSU), and ROW, and included a FE reduction factor over time. Both 
distinctions (spatial and temporal) are meant to represent potential improvements in 
infrastructure that reduce emissions from NG production over time, but at different 
intervals depending on world region. The emphasis is on keeping assumptions 
transparent in order to facilitate interpretation of inversion results. Based on the 
literature review in Table 3, EFs are mainly available for the U.S., some European 
countries, and Russia. Note that values in Table 8 include lower and upper bounds from 
individual studies (see footnotes of Table 8), whereas Table 3 summarizes only mean 
values. The IPCC Tier 1 recommendations indicate higher NG FE and associated 
emissions in developing countries compared to OECD (120). While data for other 
developing countries is limited, the scenarios assume highest FE in FSU while FE in the 
ROW are averaged between OECD and FSU. FE reductions in FSU in this model 
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started in 1990 with the collapse of the Soviet Union, which is consistent with 
conclusions from previous CH4 inversion studies and reviews, e.g., Dlugokencky et al. 
(81). In addition to the FE rates in Table 8, atmospheric modeling was carried out for 
scenarios using global average, constant FE rates over time, such as 1%, 3%, 5%, 7%, 
and 9%. 

Table 8: NG FE scenarios used to bound the literature values from section 4.2.2. 

!
OECD*! FSU! ROWi!

!
1980! 2010! 198021990! 2010! 1980! 2010!

Low$ 3.0%$ 1.5%a$ $$$6.5%d$ 2.9%f$ 4.8%$ 2.2%$
Medium$ 4.0%$ 2.3%b$ 7.25%$ 4.5%g$ 5.6%$ 3.4%$
High$ 6.0%$ 6.0%c$ $$$8.0%e$ 6.0%h$ 7.0%$ 6.0%$

a (34), low; b (10), mean; c (28), high (conventional NG); d (37), low; e (37), high; f Gas 
production/processing 2% from (34), mean, plus transport/distribution 0.9%, (67), low; g Gas 
production/processing 2% (34), mean, plus transport/distribution 2.5% (67), high; h (28), high 
(conventional NG); i Average between OECD and FSU; * OECD countries as listed in Appendix 
Table B - 7. 

Country-specific absolute NG industry CH4 and C2H6 emissions ENG,CH4,i.and.ENG,C2H6,i in 
year i were estimated as in Eq. 15 and Eq. 16 based on FE rate FENG,i and dry NG 
production PNG,dry,i (in units of Tg/year). The dry NG CH4 weight fraction WFdry,CH4 is 
calculated in Eq. 14 (average of WFdry,CH4,i over time). Using dry NG weight fraction for 
CH4 is appropriate in combination with dry NG production. It is compatible from a mass 
balance perspective, and it allows comparing NG FE results with most other studies, 
which also used dry NG as a basis. A weighted average dry and wet NG C2H6 weight 
fraction would be needed to reflect that (i) a significant portion of C2H6 is removed in the 
dry gas stream, and (ii) the ratio between upstream and downstream FE is not 
necessarily 1:1, and highly uncertain (see Table 3). If dry NG C2H6 weight fraction was 
used instead, the prior C2H6 emissions may be underestimated significantly due to 
upstream NG FE and associated higher C2H6 content. As a compromise, the NG C2H6 
weight fraction was chosen based on wet composition data, and used in combination 
with dry NG production data. As shown in Table 2, the wet NG C2H6 weight fraction 
ranges from 5.2-8.7% in the U.S. and internationally. In order to reflect this large range 
and associated uncertainty in the literature, three scenarios for the NG C2H6 weight 
fraction WFC2H6 were chosen: low (5.2%), medium (7.0%) and high (8.7%). Applying the 
lower dry NG production data compensates for the fact that using wet NG C2H6 weight 
fraction may overestimate C2H6 emissions from FE downstream. 

!!",!"!,! = !"!",!×!!",!"#,!×!"!"#,!"! Eq. 15 

!!",!!!!,! = !"!",!×!!",!"#,!×!"!!!! Eq. 16 

 Out of the different literature values for oil EFs, which span two orders of magnitude, the 
relatively low EPA CH4 EFs in Table 4 (64) were chosen as a representative global 
average (2.9 kg CH4/m3 oil). As described in section 4.2.2, the 2012 EPA EFs are 
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equivalent to 2% of non-marketed associated NG released to the atmosphere from 
venting and fugitive sources, as opposed to the 20% by DOE in 1990. Thus, EFs may in 
fact be higher than the EPA estimate, but this choice provides a lower bound for oil 
industry emissions. Ignoring potentially unaccounted CH4 from oil well venting and other 
fugitives in the inversion priors also provides a lower bound for the total prior FF CH4 
budget. Hence, considering a given posterior FF CH4 budget from the inversion in 
Chapter 5 as well as the relatively low 2012 EPA EFs generates an upper bound for NG 
industry emissions. 

 In addition to EPA EFs, NOAA flaring observations were used to estimate CH4 
emissions from incomplete flaring. NOAA observations are available only from 1994 to 
2010, but prior emissions start in 1984. Flaring data were extrapolated based on the 
ratio of flaring to oil production. The ratio is relatively constant over time for most 
countries, and some have higher ratios in earlier years (see Appendix Figure B - 1). The 
1994 ratio was used for pre-1994, which is a conservative estimate, since the trend 
indicates that the ratio could be higher. Based on the literature review in Table 2 and 
section 4.2.2, an optimistic 95% flaring efficiency and 40 wt-% associated (flared) wet 
NG CH4 content were chosen as conservative values, i.e., leading to a lower bound of 
flaring emissions. The influence of a more pessimistic 80% flaring efficiency estimate on 
NG FE will be discussed in Chapter 5. 
Country-specific absolute oil industry CH4 emissions EOil,CH4,i in year i (Eq. 17) were 
estimated based on emissions factor EFOil,CH4,i, NG production POil,i (in m3 oil/year), 
flaring efficiency EFFlare,i, associated (flared) wet NG CH4 content WFassoc,flare,CH4, and 
observed flaring amount PFlare,i (in Tg NG/year, see Figure 15). Oil industry C2H6 
emissions EOil,C2H6,i (Eq. 18) were scaled from EOil,CH4,i using the associated wet NG 
composition (wt-%) ratio of CH4 and C2H6, Roil,CH4/C2H6, from the literature. Given the 
uncertainty among sources (1.7-3.3, see Table 2), three ratio scenarios were chosen: 
low (3.3), medium (2.5) and high (1.7) C2H6 content. 

!!"#,!"!,! = !"!"#,!"!,!×!!"#,! + !"!"#$%,!×!"!""#$,!"#$%,!"!×!!"#$%,! Eq. 17 

!!"#,!!!!,! = !!"#,!"!,! ÷ !!"#,!"!/!!!! Eq. 18 

Prior coal CH4 emissions were estimated for 22 countries for which data regarding the 
share of underground and surface mining was available (see Appendix Table B - 6). 
These countries represent 95% of world primary coal production during 1980-2010. EIA 
production statistics were used as described in 4.2.4, except for Chinese coal 
throughout 1997-2008 where (136) was used. Despite this adjustment, it should be 
noted that Chinese coal production may in fact be higher (137). 
Country-specific absolute coal industry CH4 emissions ECoal,CH4,i in year i (Eq. 19 through 
Eq. 21) were estimated based on underground mining emissions factor EFCoal,i,u, 
underground coal production PCoal,i,u, surface mining emissions factor EFCoal,i,s, and 
surface coal production PCoal,i,s. EFCoal,i,u is the sum of mining emissions factor EFCoal,i,u,m 
and post-mining and abandoned mines emissions factor EFCoal,i,u,pm&am. EFCoal,i,s is the 
sum of mining emissions factor EFCoal,i,s,m and post-mining emissions factor EFCoal,i,u,pm. 
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Coal industry C2H6 emissions ECoal,C2H6,i (Eq. 18) were scaled from ECoal,CH4,i using the 
coal-bed gas composition (wt-%) ratio of CH4 and C2H6, RCoal,CH4/C2H6, from the literature. 
Given the uncertainty among sources (see section 4.2.3), three ratio scenarios were 
chosen: low C2H6 (1000), medium C2H6 (100) and high (50) C2H6 content. 

!!"#$,! = !"!"#$,!,!×!!"#$,!,! + !"!"#$,!,!×!!"#$,!,! Eq. 19 

!"!"#$,!,! = !"!"#$,!,!,! + !"!"#$,!"&!" Eq. 20 

!"!"#$,!,! = !"!"#$,!,!,! + !"!"#$,!" Eq. 21 

!!"#$,!!!!,! = !!"#$,!"!,! ÷ !!"#$,!"!/!!!! Eq. 22 

Emissions factors EFCoal,i,u and EFCoal,i,s are based on Table 5 (either averages between 
low/high estimates or best estimates) and summarized in Table 9. Note that these 
country specific EFs cover 86% of world underground coal production in 2010, and that 
the more uncertain IPCC Tier 1 EFs are incorporated for the remaining 14% of coal 
producing countries. 

Table 9: Summary of EFs chosen for coal CH4 emissions priors (in units of m3 CH4/t coal). 

 

Share of 2010 under-
ground production 

Emissions factors, 
mining only 

Incl. post-mining & 
abandoned minesa 

EF 
Sources 

China 53% 11.4 14.1 (133), 
(132) 

USA 13% 11.7 14.5 (148) 
FSU 5% 20 22.8 

(120) 

Poland 5% 9.4 12.2 
Australia 4% 15.6 18.4 
Germany 2% 22.4 25.2 
Czech 
Republic 2% 23.9 26.7 

United 
Kingdom 2% 15.3 18.1 

Total 86%  
ROW 14% 17.5 20.3 (120) Surface n/a 1.2 1.4 

a (64) 

 Spatial distribution of country-level emissions using EDGAR CH4 4.4.3
emissions grid maps 

The spatial distribution of country-level emissions in EDGAR’s global emissions grid 
maps (85) was adopted, which is based on population and other proxies (see section 
3.2.3). Note that the grid maps only provide approximate spatial information of 
emissions sources on a country or regional level. However, the spatial resolution of the 
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inversion models is usually significantly lower than the grid maps due to computational 
efficiency constraints. Furthermore, the significance of lacking spatial detail on a country 
or regional level may be limited when analyzing simulation results for zonal averages as 
performed in Chapter 5. The absolute emissions in the grid maps were scaled based on 
the FF estimates generated in section 4.4.2. In order to scale the countries in the NG, oil, 
and coal maps individually in each year, the grid cells belonging to each country were 
identified. A national identifier map was generated using raw data provided by EDGAR 
(85) (land-based national boundaries) and the Flanders Marine Institute maritime 
boundaries geo-database to perform this step (149). Boundaries for maritime sovereign 
regions were required to allocate offshore emissions to individual countries, e.g., U.S. 
NG and oil drilling in the Gulf of Mexico. The EDGAR emissions raster was scaled for 
each country individually, such that the total emissions of each country in the grid map 
matches the country’s emissions estimated in section 4.3. The procedure for updating 
EDGAR’s grid maps was followed for all countries estimated individually, which account 
for 96%, 91%, and 95% of global NG, oil, and coal production, respectively (see 
Appendix Table B - 7 for details). Emissions for the remaining countries were left 
unchanged from the original EDGAR dataset. Individual grid maps for NG, oil, and coal 
sources were generated for each year of the inversion time frame. 
A summary of the collected spatial emissions data sources for all emissions sources is 
provided in Table 10. All CH4 sources and estimates will be used in the atmospheric 
modeling part described in Chapter 5. The “Other energy and industry” category was 
used directly as provided by EDGAR (85). Annual grid maps for NG, oil, coal, and 
“Other energy and industry” were linearly interpolated between each year to yield 
monthly grid maps. In contrast to EDGAR, estimates from the Global Fire Emissions 
Database (GFED) contain daily grid maps, which allows modeling the annual cycle of 
agriculture/waste CH4. GFED annual cycle “Agriculture/Waste” emissions were adopted 
in order to scale EDGAR annual totals and grid maps of the same sources. “Other 
biomass burning” grid maps were used from the GFED database. “Other energy and 
industry” and “Agriculture/Waste” annual totals were linearly extrapolated from 2008 
(last year in EDGAR) to 2011 using the last 10 years available in EDGAR. A more 
detailed description of the grid map scaling process using Matlab is provided in 
Appendix B. 
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Table 10: Data sources for emissions and emissions distributions used in 3D modeling. 
 Emissions 

source data 
Spatial 
distribution 

Seasonal 
cycle 

IPCC source 
codes (120) 

FF 
NG This work 

(section 4.4) 
(94) no 1B2b 

Oil 1B2a 
Coal 1B1 

Other energy and industry 
Public power and heat, other energy 
industries, transportation, residential 
and other sectors, industrial processes, 
FF fires 

(94) (94) no 1A1/2/3/4, 
2, 7A 

Natural sources 
Wetlands, enteric fermentation of 
termites and wild animals, oxidation in 
dry soils, oceans 

(88) (150), 
(151) 

(88) - 

Agriculture/Waste 
Enteric fermentation, manure 
management, rice cultivation, other 
agriculture, agricultural waste burning, 
solid waste disposal, wastewater 
handling, waste incineration 

(94) (94) (152) 4A/B/C/D/F, 
6A/B/C 

Other biomass burning 
Grassland and open savanna fires, 
woodland fires, deforestation and 
degradation fires, forest fires, peat fires 

(153), 
(154) 

(155) (155) 4 E, 5 
A/C/D/F 

(94): EDGAR v4.2 

4.5 Prior FF emissions inventory results 

This section summarizes the results of the NG composition data analysis, the absolute 
country-specific CH4 emissions from the NG, oil, and coal industries, and the spatial 
allocation of emissions. The emissions results (to be used as priors in Chapter 5) will be 
compared with EDGAR (85), which is widely used in atmospheric modeling. As 
described in Chapter 3, prior FF emissions were estimated in this chapter to provide 
more detail and transparency compared to EDGAR, which will be useful for interpreting 
inversion results in Chapter 5. The original BLM database (104) consisting of 17,167 
samples was analyzed and samples with the following criteria were eliminated: (i) 
samples without sample date, (ii) where sample date was after publication date, (iii) 
where CH4 content was lower than C2H6 content, (iv) samples not containing CH4 and/or 
C2H6 data, (v) samples without C3+ data, and (vi) samples not containing N2 and/or CO2 
data. The remaining sample size is 6,109 (see Table 11). 
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Table 11: Summary of gas samples used for analyzing hydrocarbon composition from 
BLM database (104). 
 Removed samples Sample size 
Original number of samples        - 17,167 
No samples date    298 16,869 
Sample date after publication date 1,525 15,344 
CH4 content < C2H6 content    322 15,022 
No CH4 and/or C2H6 data available      20 15,002 
No C3+ data available 8,480   6,522 
No N2 and/or CO2 data available    413   6,109 

(Final sample size) 

Table 12 shows hydrocarbon composition of the 6,109 samples from 1948-1997, the 
period over which all hydrocarbon and N2 and CO2 data was available. The energy 
content of the BLM data (1,091 Btu/cft) is consistent with a recent survey among the 
U.S. NG industry (156) on inlet gas to processing plant (1,101 Btu/cft), i.e., between well 
gas and wet gas. Appendix Figure B - 2 shows annual averages over the period 1948-
1997 including possible explanations for the inter-annual variations. 

Table 12: Results of well gas sample analysis using BLM data (104). 

 Units CH4 C2H6 C3H8 C4+ CO2 N2 Total 
Weighted avg. 1948-1997 mol-% 79.9 5.7 3.0 2.5 1.8 6.6 99.4 

Std (all samples) 17.2 4.0 3.0 3.1 8.3 12.2 n/a 
Weighted avg. 1948-1997 wt-% 64.7 8.6 6.5 8.1 2.9 9.1 100 

The results of the mass balance are summarized in Table 13. It covers the period 1981-
1997, during which both well samples and NGL production data was available. The 
upstream CH4 mass flow was on average 0.3% lower than downstream. Since this is 
physically not possible, two phenomena may explain this result. First, this discrepancy 
may represent uncertainties in the average wet NG composition from Table 2 and 
Figure 14 as well as dry gas and NGL production data (97, 146). Second, the difference 
may represent remaining N2 and CO2 in the dry gas, which was not accounted for in the 
mass balance. 

Table 13: Summary of dry gas composition using an upstream-downstram mass balance 
approach. 

 

Units CH4 C2H6 C3H8 C4+ ΔCH4 (upstream-
downstream)a 

Energy content (Btu/cft) 
Mass balance Literatureb 

Weighted avg. 
1981-1997 

vol-% 93.0 4.6 1.4 0.9 -0.3 1,089 950-1,150 wt-% 85.3 8.0 3.7 3.0 -0.3 
a Difference between upstream and downstream CH4 mass flow, in % of dry NG production (see 
explanation above). 
b See Appendix B for details. 
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Dry gas composition is consistent with pipeline quality standards, which includes a 
range of pipeline gas energy content between 950 and 1,150 Btu/cft (157). Dry NG 
composition results coincide reasonably well with NREL data (158), which suggests 
pipeline CH4 and C2H6 contents of 94.4 mol-% and 3.1 mol-%, respectively. Given that 
CH4 and C2H6 contents in Table 13 are lower than NREL, total NG emissions (and FE) 
estimates in this work may be conservative, i.e., underestimated, which serves the study 
objective of finding an upper bound of NG FE. 
Figure 18 summarizes global CH4 emissions over time based on the NG FE scenarios 
described in section 4.4.2. All three scenarios assume that FE decrease significantly 
over time due to replacement of old leaking infrastructure and/or management 
improvements. It will be analyzed in Chapter 5 whether this temporal decline in FE rates 
is consistent with observational constraints. Nevertheless, absolute emissions increase 
due to growing NG production. 

 
Figure 18: Global NG industry CH4 emissions based on regionally and temporally 
specific FE rate scenarios in Table 8. Solid lines are emissions for each scenario (left 
axis), dashed lines are FE rates associated with each scenario (right axis), and EDGAR 
(85) (black) is shown for comparison. 

It also shows that CH4 emissions in all three scenarios are significantly higher than 
EDGAR (85) until about 2006, after which EDGAR overtakes the low FE scenario. 
Figure 19 shows the results for NG FE rates applied globally and constant over time. 
The comparison shows that EDGAR emissions assume a global average NG FE rate in 
the order of 3% provided that NG production data and NG CH4 content are not 
significantly different from this analysis. However, note that while assuming the same 
NG FE rate in Figure 19, country-level emissions vary significantly between this work 
and EDGAR as shown in Appendix Table B - 9. For instance, prior CH4 emissions in this 
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work are about 3, 5, and 7 times higher than EDGAR in Canada, the Netherlands, and 
Norway, respectively. Prior CH4 emissions in other countries, such as the Ukraine, are 
up to 0.8 times lower than in EDGAR. As discussed in section 3.2.3, posteriors in 
previous inversion studies appeared to be strongly influenced by prior emissions. By 
using a larger range of potential NG FE rates, this work will clarify whether high FE rates 
are possible given a limited global CH4 budget. 

 
Figure 19: Global NG industry CH4 emissions based on FE rates applied globally and 
constant over time (see section 4.4). 

Figure 20 and Figure 21 show results for the global C2H6 emissions equivalent to Figure 
18 and Figure 19 for CH4, i.e., based on the NG FE scenarios described in section 4.4.2. 
Both Figures represent C2H6 emissions assuming the “low” NG C2H6 content scenario in 
Eq. 16, and the results for all NG C2H6 content scenarios are illustrated in Appendix 
Figure B - 3. C2H6 emissions over time increase at the same rate as CH4 emissions 
given the same underlying NG production data. EDGAR (85) does not provide C2H6 
emissions estimates, thus a comparison cannot be made. 
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Figure 20: Global NG industry C2H6 emissions based on regionally and temporally 
specific FE rate scenarios in Table 8. Solid lines are emissions for each scenario (left 
axis), dashed lines are FE rates associated with each scenario (right axis). Note these 
results represent the “low” NG C2H6 content scenario in Eq. 16. The results for all NG 
C2H6 content scenarios are illustrated in Appendix Figure B - 3. 

 
Figure 21: Global NG industry C2H6 emissions based on FE rates applied gobally and 
constant over time (see section 4.3) under the “low” NG C2H6 content scenario in Eq. 16. 
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Global oil CH4 and C2H6 emissions based on Eq. 17 and Eq. 18 are summarized in 
Figure 22 in comparison with emissions using other EFs described in Table 4. As 
mentioned above, the EPA emissions factors (64) were used in this study to provide a 
lower bound for oil industry emissions in order to quantify an upper bound for NG FE. 
The results of this work coincide very closely with EDGAR (85) estimates, which are 
flanked by values from the Wilson et al. studies (121, 122) in the Gulf of Mexico (GOM), 
i.e., GOM EFs applied globally. The low IPCC estimate (120) is significantly higher than 
all other sources while the high IPCC estimate is a factor of 4 greater than low IPCC for 
developing countries (see 4.2.2). While oil CH4 emissions from EDGAR and this work 
are very similar, country-level emissions vary significantly between both studies as 
shown in Appendix Table B - 9. For instance, prior CH4 emissions in this work are over 
0.7 and 2.5 times higher than EDGAR in the U.S. and the U.K., respectively. Prior CH4 
emissions in other countries, such as Canada and Nigeria, are up to 0.6 times lower 
than in EDGAR. 

 
Figure 22: Global oil industry CH4 and C2H6 (medium well C2H6 content scenario, dashed 
red line, right axis) emissions from this work based on (64) EFs plus emissions from 
incomplete flaring, and comparison with emissions using other literature EFs and data 
from EDGAR (94). [1] (120); [2] (121); [3] (122); [4] (64). 

Global coal industry CH4 and C2H6 emissions are summarized in Figure 23. The global 
results of this work are nearly identical to EDGAR between 1980-2002. Past 2002, 
EDGAR emissions increase at a greater rate, largely due to higher emissions estimates 
in China, the U.S., India, and Russia. Similar to NG and oil, differences in coal 
emissions for individual countries vary significantly between this work and EDGAR. In 
fact, emissions for 17 (12) out 22 countries estimated here differ by at least 10% (25%) 
from EDGAR (see Appendix Table B - 9). 
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Figure 23: Global coal industry CH4 and C2H6 (dashed red line, right axis) emission 
results in comparison with data from EDGAR (94). 

Grid maps used for atmospheric modeling were developed for CH4 and C2H6 for each 
emissions source and year based on the spatial distribution provided by EDGAR (see 
Chapter 3). The spatial distribution of emissions in the grid maps were adopted from 
EDGAR, and scaled to match the country level emissions totals estimated above. 
Example grid maps are shown in Figure 24 illustrating NG CH4 emissions in 2008. 
Panels a (this work, high NG FE scenario) and b (EDGAR) show results at the higher 
0.1° x 0.1° grid resolution. 
Finally, the grid maps were converted to a lower 1° x 1° grid resolution (panels c and d), 
which is required for use with CT-CH4 in Chapter 5. While emissions are plotted on a log 
scale, the higher emissions on the left panels can already be distinguished for some 
countries and regions, such as the U.S., the Middle East, and Norway. Grid maps for oil 
and coal CH4 emissions are shown in Appendix Figure B - 4 and Figure B - 5. Oil grid 
maps include emissions from tanker transport across the oceans. Coal grid maps 
appear incomplete due to missing information regarding the spatial emissions 
distribution and because coal industry emissions are mainly point sources from 
individual mines, which are difficult to visualize on a grid map (159). Grid maps for C2H6 
are not shown as these differ from CH4 only in the scale of the legend. 

0.0#

0.1#

0.2#

0.3#

0.4#

0.5#

0.6#

0#

5#

10#

15#

20#

25#

30#

35#

40#

45#

50#

198
0#

198
2#

198
4#

198
6#

198
8#

199
0#

199
2#

199
4#

199
6#

199
8#

200
0#

200
2#

200
4#

200
6#

200
8#

201
0#

Gl
ob

al
&c
oa

l&i
nd

us
tr
y&
C 2
H 6
&e
m
is
si
on

s&(
Tg
/y
r)
&

Gl
ob

al
&c
oa

l&i
nd

us
tr
y&
CH

4&e
m
is
si
on

s&(
Tg
/y
r)
&

Year&

EDGAR#

This#work,#CH4#

This#work,#C2H6#



 58 

 
Figure 24: CH4 emissions grid maps in 0.1° x 0.1° resolution (upper panels) for the high 
NG FE scenario from this work (panels a, c) in comparison with data from EDGAR (94) 
(panels b, d) for the year 2008, and in 1° x 1° resolution (lower panels) for use in 
CarbonTracker-CH4. Note that the legend units are in kg CH4/yr/grid cell on a logarithmic 
scale (numbers indicating exponents to base 10). The values in panels c and d are 
higher due to fewer grid cells. 

4.6 Summary 

The objective of this chapter was to explain spatially coded global CH4 and C2H6 
emissions estimates to be used for atmospheric modeling. The emphasis was on 
striking a balance between using detailed country-level data for the major emitting 
countries and allowing transparency in methods and results in order to facilitate 
interpretation of atmospheric modeling results, particularly NG FE, based on 
assumptions underlying the emissions priors. 
Emissions were estimated based on NG FE rate scenarios (NG industry), country-level 
and other emissions factors (oil and coal industries), hydrocarbon gas composition, and 
country-level FF production data from the literature. Wet gas composition was quantified 
based on over 6,000 well samples in order to estimate CH4 and C2H6 emissions from 
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NG FE as well as oil and coal industries. Dry gas composition was quantified through a 
mass balance approach using wet gas composition and wet gas, dry gas, and NGL 
production in the U.S. Table 14 summarizes the prior CH4 emissions results (global 
totals for each FF industry; low, medium, and high NG FE scenario) in comparison with 
EDGAR (85) estimates. The data indicates significant upward NG corrections compared 
to EDGAR, but decadal averages of oil and coal in this work are very similar to EDGAR. 
The relative differences to EDGAR are amplified for individual countries, which 
influences the spatial distribution of emissions in the grid maps, and potentially also the 
inversion results. 
Table 14: Global prior FF emissions estimates compared to EDGAR (94). Note that 
differences for individual countries are significantly larger (in some cases over +/-100%) 
than the global averages. 
 This work 

(Tg CH4/yr) 
 Difference relative to EDGAR 

(%) 
 Avg. 1980-2008  Avg. 1980-2008 1980 2008 
NG (by FE 
scenario)  

     

low  45    +19   +55      -9 
medium 57    +53   +86   +27 

high 83  +122 +141 +113 
Oil, best estimate 14       -4    -22     +1 
Coal, best estimate 31       -2     +1    -14 

Table 15 summarizes the prior CH4 and C2H6 emissions results (global totals for each 
FF industry) for annually constant NG FE rates ranging from 1-9% applied globally as 
well as oil and coal emissions using a range of C2H6 contents in the emitted 
hydrocarbon gases. While NG is the main source for CH4 emissions for most FE rate 
scenarios, the oil industry dominates C2H6 emissions except for 9% NG FE, and the 
coal industry plays only a minor role in total FF C2H6 emissions. “Other energy and 
industry” CH4 emissions are based on EDGAR (see Table 10). 

Table 15: Summary of global prior FF emissions estimates for different FE rate and gas 
composition scenarios as well as “other energy and industry” emissions referenced in 
Table 10. 

 CH4 (Tg/yr)  C2H6 (Tg/yr) 
 Avg. 1980-2008 2011  Avg. 1980-2008 2011 

NG (annually const. NG 
FE rate applied globally)a      

1%   13   19  1.0     1.6 
3%   38   57  3.1     4.7 
5%   64   96  5.2     7.8 
7%   90 134  7.3 11 
9% 115 172  9.4 14 
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 CH4 (Tg/yr)  C2H6 (Tg/yr) 
 Avg. 1980-2008 2011  Avg. 1980-2008 2011 

Oil      

low C2H6 content 

  14   17 

 4.6     5.4 

medium C2H6 content  5.9     6.9 

high C2H6 content  8.3     9.8 
Coal      

low C2H6 content 

  31   46 

   0.03       0.05 

medium C2H6 content  0.3     0.5 

high C2H6 content  0.6     0.9 
Other energy and 
industry   18   20  -    - 

a NG values assume medium C2H6 content 

Table 16 summarizes the prior non-FF emissions based on the literature review in 
section 4.3. Note that the 3D-modeling values for agriculture / waste based on EDGAR 
and GFED (see Table 10), which vary annually and seasonally, coincide well with the 
medium values chosen from the literature. Moreover, the medium box-model prior total 
non-FF emissions are identical with priors used in the 3D simulation (385 Tg/yr), which 
allows direct comparison of box-model results with CT-CH4 (FF priors used in both 
models are also identical). Note that the gobal soil CH4 sink prior used in both models is 
slightly higher than in the literature in Figure 17: 25 Tg/yr (40), 30 Tg/yr (44), and 38 
Tg/yr (41). (43) did not include a soil sink in their inversion study. 

Table 16: Summary of global prior non-FF emissions estimates used in the 3D-forward 
modeling and ranges for box-modeling. 
 CH4 (Tg/yr)  C2H6 (Tg/yr) 

Natural Agriculture 
/ waste BB Soil 

sink Total  BB BFC Total 

3D-model 
(avg. 1980-2011) 215 194 16 -40 385  n/a n/a n/a 

Box-model 
(const. over time)          

low 130 130 25 -40 250  1.6 0.6 2.2 
medium 182 200 43 -40 385  3.6 2.3 5.9 

high 235 270 60 -40 525  5.2 4.0 9.2 

BB - Biomass burning; BFC - Biomass fuel combustion  
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Chapter 5: Quantifying Natural Gas Fugitive Emissions – 
Global Atmospheric Modeling 
5.1 Introduction 

Fossil fuel, and other anthropogenic and natural emissions priors in Chapter 4 were 
developed based on detailed EFs and literature estimates. The atmospheric modeling 
approach in this work contains three main steps. First, NG FE uncertainty will be 
reduced using the total global atmospheric CH4 budget as a constraint. This is achieved 
by estimating posterior CH4 emissions of NG, oil, coal, and other non-FF emissions 
source categories using a global CH4 inversion box-model. A box-model treats the 
global atmosphere as a single parameter rather than a 3-dimensional space as occurs 
in the inversion studies reviewed in Chapters 3 and 4. The box-model uses an annually 
weighted average of all available atmospheric measurements worldwide and thereby 
neglects the spatial differences in measurements and emissions. As a result, posterior 
emissions from different emissions categories are constrained by the global CH4 budget 
and the prior uncertainties. Simulations with this box-model are computationally efficient 
and allow more model simulations than an inversion model with 3-dimensional 
emissions transport. Based on rapidly calculated box-model estimates, priors are 
selected for more refined CT-CH4 simulations. 
Second, NG FE uncertainty will be reduced using C2H6 as an alternative trace gas. As 
discussed and quantified in Chapter 4, C2H6 is the second most abundant hydrocarbon 
component of NG, oil, and coal. In contrast to CH4, the major global C2H6 emissions 
sources consist of only FFs, biomass burning, and biomass fuel combustion. It is less 
difficult to constrain individual processes given this small number of sources. Global 
C2H6 measurements and the prior C2H6 emissions estimates from Chapter 4 will be 
implemented in the inversion box-model. The resulting posterior C2H6 emissions will 
thus provide an additional constraint for NG FE alternative to the global CH4 budget. 
Moreover, δ13C-CH4 measurements will be used in a CH4 mass balance as an additional 
constraint, which is not currently available in CT-CH4. Using δ13C-CH4 measurements 
constrains posterior emissions (and thus NG FE) due to differences in isotopic 
signatures between source categories as discussed in 3.2. 
Finally, the NG FE scenarios from Table 8, which are in agreement with the most likely 
emissions scenarios based on global CH4, C2H6, and δ13C-CH4 constraints, will be used 
in global 3-dimensional CH4 forward modeling. This approach is used to simulate 
atmospheric concentrations across space and time resulting from the above emissions 
scenarios and the global emissions grid maps described in Chapter 4. The simulated 
concentrations can then be compared to measurements at each site. While the 
scenarios may not be equally likely, simulating each scenario individually is useful for 
analyzing whether and how different NG FE rates can explain potential spatial 
inconsistencies between simulations and observations. The rationale of this approach is 
twofold. The 3-dimensional transport model will demonstrate the validity of the box-
model results by comparing the global average concentrations of the 3D simulation with 
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those in the box-model. Furthermore, the 3D-simulations provide the data to calculate 
the inter-hemispheric gradients resulting from each emissions scenario, which can be 
compared with observations. Since about 95% of FF emissions are released in the 
northern hemisphere, the N-S gradient is an important constraint for distinguishing 
sources (81), particularly for analyzing NG FE uncertainty. While forward modeling 
generates modeled CH4 concentrations to be compared with observations, it does not 
result in optimized posteriors. However, forward modeling comes at a reduced 
computational cost, and results can be used as a basis for inversion modeling in the 
future. 

5.2 Global atmospheric box- and 3D-model simulation methods 

The 1-box-model treats the atmosphere as a single box. The model conserves the 
global mass of the emissions, and it accounts for global annually observed trace gas 
concentrations, which eliminates the need for complex global emissions transport. The 
box-model was developed based on Bruhwiler et al. (82) by considering the probability 
p(z|s)!that the simulation (with associated transport errors) of the emissions sources s 
yields the total emissions burden z derived from the observations (see below). Invoking 
Bayes’ Theorem yields the probability of the sources given the observations, p(s|z). 
Maximizing p(s|z) is achieved by minimizing the (spatial/temporal) differences between 
simulation and observations. The solution to this problem yields posterior emissions and 
uncertainties in Equations 23 and 24. 

!! = ! !! + !!! ! + !"!! !! ! − !!!  Eq. 23 

!! = !! − !!! ! + !"!! !!!" Eq. 24 

The posterior and prior emissions vectors s’.and.sp, respectively, have the form  

!! =
!′!
!′!
⋮
!′!

 Eq. 25, !! =

!!!!!!
⋮
!!!

 Eq. 26, 

and the prior and posterior covariance matrices Q,.and.Q’, respectively, have the form 

! =
!!! 0 … 0
0 !!! … 0
⋮
0

⋮
0

⋱
…

⋮
!!!

 Eq. 27, !′ =
!′!! 0 … 0
0 !′!! … 0
⋮
0

⋮
0

⋱
…

⋮
!′!!

 Eq. 28, 

where j is the number of emissions years, and each element is itself a vector. Each 
element s’j..and.spj is a vector equal to the length of the number m of emissions sources 
(e.g., NG). Each element in Q,.and.Q’ is a square diagonal matrix of size m.x.m with 
diagonal elements for each emissions year. The off-diagonal elements in Eq. 28 are 
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zero because each element in Q’ only represents total uncertainties of all sources in a 
given year j, and is itself a matrix. The sub-matrices for each year represent prior (Q) 
and posterior (Q’) emissions uncertainty, i.e., variance for each source m, and 
covariance between sources. Specifically, 
!′!
!′!
⋮
!′!

!, 

!!!!!!
⋮

!!!

 , 
!!! 0 … 0
0 !!! … 0
⋮
0

⋮
0

⋱
…

⋮
!!!

 , 
!′!! !′!" … !′!!
!′!" !′!! … !′!!
⋮

!′!!
⋮

!′!!
⋱
…

⋮
!′!!

. 

H is the emissions transport matrix (and HT its transpose) in the form.

! =
!!! 0 … 0
0 !!! … 0
⋮
0

⋮
0

⋱
…

⋮
!!!

, Eq. 29, 

where each element in H is itself a vector with length m 
!! !! … !! , 

and each element Hm.=.1, thus representing no transport, since the box-model treats 
the atmosphere as a single box. A more sophisticated model may represent the fact that 
the non-decayed CH4 fraction in year j is carried over to year j+1. In this case, H,.HT.and.
Q’ would be non-diagonal. However, an approximate model solution showed that the 
annual emissions differences between the models are only in the order of 1-2%, which 
was deemed insignificant for the purpose of this work. 
The model-data mismatch error covariance matrix R is an estimate of the uncertainty of 
the measured and globally and annually averaged concentrations z. This model 
assumes a 95% confidence interval for z, i.e., approximately ±1% (or ±20 ppb for CH4). 
In a more complex model, i.e., at least two boxes, R would also include uncertainty of 
atmospheric transport. However, this can be ignored in this 1-box-model. The 
covariance matrix R represents the observational error in the form 

! =
!!! 0 … 0
0 !!! … 0
⋮
0

⋮
0

⋱
…

⋮
!!!

 Eq. 30, 

where each element Rjj is the variance of the annual global emissions burden zj, from 
the emissions burden vector z in the form 

! =
!!
!!
⋮
!!

 Eq. 31. 
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The annual emissions burden zj for CH4 is estimated using Eq. 33, which is the solution 
to differential Eq. 32, solved for z. The burden zj for C2H6 is estimated using Eq. 34: 

!!!"!
!" = !!"! −

1
!"# ∗ !!"! Eq. 32, 

!!"!(!) =
!!"! ! − !!"! ! − 1 ∗ !!

!
!"#

!"# ∗ 1− !!
!
!"#

 Eq. 33, 

!!!!!(!) = !!!!!(!)×!"!!!! Eq. 34, 

where CCH4(t) is the annually observed global average CH4 concentration at year t 
multiplied by 2.767 Tg/ppb (160), and tau is the global average lifetime of CH4. For tau, 
a range of 9.1-9.7 years was chosen based on the literature review summarized in 
Appendix B. The scaling factor SFC2H6 converts the annually observed global average 
C2H6 concentration CC2H6(t) into the annual emissions burden zC2H6(t), which is based on 
3D-modeling in (161) and has been applied recently in (84). Given uncertainties of up to 
45% due to the reaction rate with and concentration of OH (161), its best estimate and 
upper value (corresponding to a higher global budget for estimating upper bound NG FE 
rates), 0.018 and 0.026 Tg C2H6/ppt, respectively, will be used. 
Methane measurements from air samples collected at 84 surface sites in the NOAA 
Cooperative Global Air Sampling Network are available for the years 1983-2012 (162). 
In addition to these weekly samples, in situ quasi-continuous CH4 time series from 
towers of external networks are included. The global average annual CH4 
concentrations used in Eq. 33 were calculated by NOAA (163), and are based on 
measurements from a subset of network sites. These sites are typically at remote 
marine sea level locations, which are representative of well-mixed marine boundary 
layer air (163). A smooth curve is fitted to the weekly measurements, and a relative 
weighting scheme is used to fit global averages and latitudinal distribution, which favors 
sites with relatively low noise and consistent sampling (164). The uncertainty of NOAA’s 
calculated global average CH4 concentrations is 1.1 ppb (one std. dev.) averaged 
across years (165). 
A map of the global measurement sites is presented in Figure 25, and a more detailed 
description of the data, sampling methods, and observational network including a list of 
all sites is available at NOAA’s online documentation (162). Global annually averaged 
C2H6 measurements were provided by (165) based on air-sample measurements from 
(166), and described in more detail elsewhere (84). As discussed in Appendix B, the 
box-model reproduces the globally averaged CT-CH4 3D-simulation results reasonably 
well including the inter-annual variations as well as the allocation among sources. 
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Figure 25: Sampling network of NOAA’s Global Monitoring Division providing CH4 
measurements at each site (graph from (83)). Aircraft data are used to evaluate 3D 
inversion results, and are disregarded in this work. 

Ethane observations starting in 1984 come from the UC-Irvine Global Monitoring 
Program as described in (84) (via personal communication with a co-author (165)), 
which consists of 45 remote surface locations in the Pacific basin (Alaska to New 
Zealand). The globally averaged C2H6 mixing ratio provided by the authors and used in 
this work is based on separating the Earth’s surface into 16 latitudinal bands, averaging 
the C2H6 mixing ratios within each band, and then averaging the 16 band means. Each 
global annual C2H6 mixing ratio is the average of four consecutive seasonal means (84). 
The global representativeness of the measurements were previously evaluated by the 
authors through comparison of monthly global and zonal C2H6 averages with those from 
NOAA and the University of Colorado’s Institute of Arctic and Alpine Research 
(INSTAAR) cooperative global air sampling network. The NOAA/INSTAAR network 
comprises a wider spatial sampling range during the period 2006–2010. The authors 
determined that the Pacific-based measurements typically represent the globally 
averaged background concentration at the Earth’s surface to within 5-10%, and that the 
global background air data from the NOAA/INSTAAR network are similar to the 
background air composition in the Pacific Basin (84). Globally and annually averaged 
CH4 and C2H6 measurements are summarized in Appendix Table B - 9. 
In addition to CH4 and C2H6 box-model inversions, a global mass balance of δ13C-CH4 in 
atmospheric CH4 was carried out in order to test NG FE rate scenarios using a third 
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observational constraint. The 13C:12C ratio of CH4, δ, in per mil (‰) or part per thousand 
can be expressed as (167): 

! = !!"#$%&
!!"#$%#&%

− 1 ×1000‰ Eq. 35, 

where R.=.(Rare.isotope.÷.Abundant.isotope). The global mass balance for three CH4 
sources can be formulated for each year as (168): 

! = !!!"# + !!! + !!! Eq. 36, 

!!! = !!!"#×!!"# + !!!×!!! + !!!×!!! Eq. 37, 

where zMic,.zFF, and.zBB refer to the microbial, FF, and BB fraction of total annual CH4 
emissions, respectively, as described in Table 10, and zMic includes all natural and 
agriculture/waste sources. The different CH4 emissions sources are aggregated to only 
three emissions categories in order to avoid an under-constrained system of two linear 
equations (Eq. 36 and Eq. 37). The equation system is solved for zMic.and.zFF as an 
optimization problem as described in more detail in Appendix B, while zBB is considered 
known to be at least 25 Tg/yr based on the discussion in section 4.3. The isotopic 
signatures δMic,.δFF, and.δBB are considered known to lie within the range of -59 to -63 ‰, 
-38 to -42 ‰, and -22 to -26 ‰, respectively, based on weighted averages of each 
emissions category from 13 literature sources (168). The total annual CH4 emissions 
burden z is the same as in Eq. 33, and the flux weighted mean isotopic ratio of all CH4 
sources (167) is: 

!! = !!! + ! −
! 1+ !! 1000

! ×!!!"!!" + !!!!" ×
!!"!
!  Eq. 38, 

where globally and annually averaged measurements δa are -47.1 ± 0.05 ‰ over the 
past decade (169), ε = -6.3 ‰, the observed growth rate of δa is 0.01‰/yr, 
α.=.ε.÷.1000.+.1 (168), and CCH4 is the same as in Eq. 33. 
Three-dimensional forward simulations of CH4 emissions using CT-CH4 complement the 
global box-model simulations and the δ13C-CH4 mass balance. Emissions were 
simulated for 11 individual source categories, which are described in more detail in 
Table 10. FF (NG, oil, coal) and natural (wetlands, soils, oceans, termites, and wild 
animals) CH4 emissions were modeled as separate sources given the existing CT-CH4 
model code, which allows tracking the individual contributions of total concentrations. 
The resulting source-specific concentrations are added to background concentrations to 
yield total concentrations. The input emissions grid maps are as described in section 4.4. 
Atmospheric transport in CT-CH4 is based on Transport Model 5 (TM5) (170), which is 
developed and maintained jointly by the Institute for Marine and Atmospheric Research 
Utrecht (IMAU, The Netherlands), the Joint Research Centre (JRC, Italy), the Royal 
Netherlands Meteorological Institute (KNMI, The Netherlands), and NOAA ESRL (USA). 
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The meteorological fields used for transport in TM5 come from the European Center for 
Medium range Weather Forecast (ECMWF) operational forecast model. For CT-CH4, 
TM5 is run at a global 6°x 4° resolution, 60-90 layers in the vertical depending on the 
year, and at time steps of less than 3 hours. Forward simulations in this work cover the 
period 1989-2011 for which meteorological fields were already integrated in CT-CH4, 
and measurements are the same as used for the box-model. Zonal integrals of CH4 
concentrations were estimated analogously to global averages described above. The 
following five different zones were distinguished in order to analyze the spatial 
differences ignored in the box-model: polar Northern hemisphere (PNH, 53.1°N-90°N), 
temperate Northern hemisphere (TNH, 17.5°N-53.1°N), the tropics (17.5°S-17.5°N), 
temperate Southern hemisphere (TSH, 17.5°S-53.1°S), and polar Southern hemisphere 
(PSH, 53.1°S-90°S). 

5.3 Atmospheric CH4 and C2H6 modeling results 

 Global box-model simulation results 5.3.1
The results for CH4 box modeling are summarized in Figure 26, which shows prior and 
posterior emissions (left and right bars, respectively) for a range of NG FE rates (upper, 
middle, lower panels) and different CH4 lifetimes (left and right panels). Inversion 
models typically assign prior uncertainties to all sources, and report posterior means 
and uncertainties for all sources (see Figure 17). A different approach is used in this 
work, which is equivalent to a mass balance with the objective to identify best estimate 
and upper bound NG FE rates. The mass balance is carried out in order to estimate NG 
FE using only the global total posterior emissions burden as a constraint in combination 
with prior emissions scenarios. Note that this mass balance could have been calculated 
without developing an inversion box-model. However, the inversion 1-box-model 
described here will provide the basis for future model development, such as a 2-box-
model and/or linked CH4 and C2H6 inversions. 
A visual illustration of the box-model mass balance is provided in Appendix Figure B - 
11. For each year, the inversion model forces FF CH4 posteriors to equal priors by 
assigning nearly zero prior uncertainties. By assigning fixed posterior FF emissions, i.e., 
NG FE rate scenarios and lower bounds for oil and coal, only the non-FF posteriors will 
be adjusted to match the annual CH4 budget based on measurements. As mentioned in 
more detail below and in Appendix Figure B - 11, an upper bound of NG FE rates can 
thus be quantified by identifying NG FE scenarios where total priors exceed posterior 
emissions. Figure 26 shows that total prior emissions exceed posteriors increasingly at 
higher NG FE, which is more pronounced in the low CH4 budget scenario. Moreover, the 
rate at which prior emissions increase due to surging FF production over time exceeds 
posteriors, i.e., measurements, particularly throughout the past decade, which will be 
discussed in more detail below. 
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Figure 26: Box-model CH4 inversion results using global, annually constant NG FE rates 
for a range of CH4 lifetimes. The left and right bars in each year are prior and posterior 
emissions, respectively. 

The implications of the box-model CH4 inversion are summarized in Figure 27, which 
shows the differences between prior and posterior emissions relative to FF CH4 for 
years ranging from 1985 to 2010. Analogously to Figure 26, results are plotted for 
different NG FE rates and two global CH4 budget scenarios. Positive values indicate that 
NG FE rates are incompatible with measurements and priors. In this case, NG related 
emissions are too high to match the total CH4 budget while maintaining the prior 
estimates of all other emissions sources. The upper panel shows prior mean minus 
posterior mean. In this metric, positive values indicate that NG FE are too high 
assuming that all other emissions sources are in reality at least as high as the prior best 
estimate (prior mean). If this assumption holds and CH4 lifetime is at least 9.1 years, 
then the NG FE rate cannot be higher than about 5% since 1985, and must be 4% or 
less since 2000. The vertical axis shows that, for example, in the 9% NG FE and low 
global budget scenario (upper left panel), the total FF emissions would have to be over 
50% lower in order to match the global CH4 budget. While prior oil and coal emissions 
are likely a low estimate (see section 4.4), prior non-FF emissions may be significantly 
lower than the best estimate as discussed in section 4.3. For example, assuming 80% 
associated gas-flaring efficiency (instead of 95% as described in section 4.4.2) 
increases prior oil emissions by 5.5 Tg CH4/yr (mean value 1984-2011). Given the 
posterior FF budget estimated in the inversion box-model, the lower flaring efficiency 
would reduce NG FE by 0.3 and 0.6 percentage points in 1984 and 2011, respectively. 
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The lower panel in Figure 27 shows which NG FE rates are compatible with 
measurements if all non-FF sources (biomass burning, natural, and agriculture/waste) 
were in reality at their lower bound of prior estimates. In this case, NG FE could be 9% 
or higher, and only slightly less in 2010 if CH4 lifetime was relatively high (lower left 
panel). Moreover, global average CH4 observations would not be sufficient to reduce 
NG FE uncertainty in the LCA literature. It should be emphasized, however, that this 
assumes all non-FF sources to be at their lowest prior values simultaneously. 

 
Figure 27: Prior minus posterior CH4 emissions for different years and CH4 lifetimes. 
Positive values indicate incompatibility of NG FE rates with measurements and priors. 
Upper panel: prior mean – posterior mean (best estimate NG FE). Lower panel: prior 
lower bound – posterior mean (upper bound NG FE). 

Global average CH4 observations are only sufficient to reduce NG FE uncertainty under 
the scenarios described above because a large fraction of the total CH4 budget is from 
non-FF sources, which are also highly uncertain. Box-model inversions using C2H6 
measurements were performed to provide additional observational evidence. While the 
C2H6 content of FF use is more uncertain than CH4 (see section 4.4), non-FF sources 
constitute a smaller fraction of the global C2H6 budget compared to CH4. This renders 
C2H6 a favorable tracer for FF CH4 and C2H6 emissions including the NG FE rate. Figure 
28 and Figure 29 show C2H6 inversion results analogously to Figure 26 and Figure 27 
for the medium FF C2H6 content. The low and high global C2H6 budget scenarios are 
derived using the methods described in section 5.2. Missing years indicate that 
measurements were not available. NG FE rates refer to % of NG production (same as in 
the CH4 inversion), i.e., interpretation of results is exactly the same as in the CH4 
inversion. Note that posterior BB and BFC emissions in Figure 28 are negative in some 
years. This indicates that FF C2H6 emissions alone are higher than the global C2H6 
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budget, and the model forces the non-FF sources to be negative in order to maintain the 
global budget as a whole. Hence, negative values are not to be understood as an 
emissions sink. Negative values signal that a NG FE rate is inconsistent with 
measurements for a given scenario in this model. Similarly to the CH4 inversion, Figure 
28 emphasizes that the rate at which prior emissions increase due to surging FF 
production over time exceeds posteriors, which may signify a declining NG FE rate over 
time, and/or significant emissions from natural seepage and/or leaking abandoned gas 
wells. 

 
Figure 28: Box-model C2H6 inversion results using global, annually constant NG FE rates 
and medium FF C2H6 content. The low and high budget scenarios refer to C2H6 
measurements scaled (Tg/ppt) using (161) best estimate and uncertainties, respectively. 
Negative posterior emissions indicate FF priors are too high to accommodate non-fossil 
emissions in the budget. 

Figure 29 shows that current NG FE rates do not exceed 4% in this calculation, even if 
the global budget is high and BB and BFC emissions are at their lowest prior levels 
(lower right panel). Only under the assumption of the lowest threshold C2H6 content of 
all FFs (see section 4.4) could current NG FE be as high as 5% (see Appendix Figure B 
- 12 and Figure B - 13) and as high as 7% in 2000. FE rate uncertainty before 2000 
(dark and light blue bars) is more difficult to constrain with confidence. If the global C2H6 
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budget is high and/or BB and BFC emissions are low, NG FE could be 9% or higher 
(lower right panel in Figure 29 and right panel in Appendix Figure B - 13). However, note 
that the global C2H6 burden modeled for estimating upper bound NG FE are higher than 
any literature estimates. As shown in Figure 28, the global C2H6 burden between 1985 
and 1992 ranges from 17-21 Tg C2H6/yr compared to 10-18 Tg C2H6/yr over the same 
period from 11 studies reviewed by Xiao et al. (171). This suggests that – all else equal 
– it is very unlikely that NG FE rates are as high as 5% and 7% in 2010 and 2000, 
respectively. 

 
Figure 29: Prior minus posterior C2H6 emissions for different years and global C2H6 
budgets, and medium FF C2H6 content. Positive values indicate incompatibility of NG FE 
rates with measurements and priors. Upper panel: prior mean – posterior mean (best 
estimate NG FE). Lower panel: prior lower bound – posterior mean (upper bound NG FE). 

As summarized in Table 17, current NG FE rates under 9% cannot be ruled out using 
CH4 measurements alone, but best estimates here are 3-4% over the past decade, 
which is consistent using both CH4 and C2H6 measurements. NG FE are much more 
uncertain before 2000. Best estimate NG FE estimates in 1990 are 2-5% based on CH4 
data, and up to 8% using C2H6 data. It should be emphasized that the assumptions 
going into the box-model and FF prior emissions were intentionally skewed towards 
upper bound scenarios in order to analyze which NG FE rates can be ruled out with 
confidence. The upper bound scenarios assume that (i) all non-FF sources are at their 
minimum simultaneously, (ii) relatively small amounts of associated gas venting is 
considered in oil EFs, and (iii) no natural seepage is included in the priors. NG FE rates 
over 9% are possible in the upper bound scenario using CH4 measurements, but C2H6 
measurements indicate that current NG FE rates over 5% are inconsistent with the 
observations given any scenario and the described assumptions therein. 
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Table 17: Summary of possible NG FE rates (in % of dry NG production) under different 
scenarios using the box-model inversion. 

 

The results of the δ13C-CH4 mass balance are summarized in Table 18, which shows 
emissions estimates for each category and corresponding isotopic signatures. The best 
NG FE estimates are based on literature mean value isotopic signatures described in 
section 5.2, a mean biomass burning source of 43 Tg CH4/yr from the literature (see 
Figure 17), and a medium CH4 lifetime of 9.4 years, which yields NG FE rates between 
3-5% given the FF CH4 bottom-up inventory in section 4.5. This is in agreement with the 
best estimate from CH4 and C2H6 measurements in Table 17. The high NG FE estimate 
assumes a short CH4 lifetime of 9.1 years, a lower biomass burning threshold of 25 Tg 
CH4/yr, and an isotopic signature uncertainty range of ± 2‰. For comparison, the 
equivalent literature BB estimate in Table 6 is 32 Tg CH4/yr including a conservative 
(low) BFC value.  

Table 18: CH4 emissions source attribution and associated NG FE rate based on global 
isotope mass balance, averaged over the period 1990-2010. 
 Microbial BB FF NG FE rate 
Units (unless otherwise noted) Tg CH4/yr % 
Best NG FE estimate 

Emissions, 2010 367 43 133 3 
Emissions, 2000 355 43 126 5 
Emissions, 1990 357 43 128 5 

δ13C-CH4 source signature (‰) -61 -24 -40 - 
Upper bound NG FE  

Emissions, 2010 310 25 225 8 
Emissions, 2000 300 25 216 >9 
Emissions, 1990 303 25 218 >9 

δ13C-CH4 source signature (‰) -63 -26 -42 - 

Tracer
FF C2H6 content
Global burden Low High Low High Low High

2010 2 3 1 3 1 2
2000 2 4 1 4 1 3
1990 2 5 2 8 1 7

2010 9 9 2 5 1 4
2000 9 9 3 7 2 6
1990 9 9 6 9 5 9

CH4 C2H6

- Low Medium

Upper bound NG FE
(low non-FF priors)

Best NG FE estimate
(mean non-FF priors)

>"
>"

>"
>"

>"
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Also note that the isotopic signatures in the high NG FE scenario are skewed to 
significantly lighter (more negative) values compared to those used in the recent 
literature (172, 173), which yields higher NG FE rates. Maximizing the FF source in the 
mass balance optimization problem yields a 7% NG FE rate in 2010, but 9% or higher is 
possible in earlier decades. In this case, all isotopic signatures must be at the low end 
of the uncertainty range. While the best estimate from isotopes agrees with the best 
estimate from CH4 and C2H6, isotopes constrain current NG FE to 8% or lower, which 
cannot be achieved using CH4 measurements alone. 
As reviewed in section 4.3, emissions from natural seepage may range between 40-60 
Tg CH4/yr and 2-4 Tg C2H6/yr, the δ13C-CH4 fraction being indistinguishable from FFs. 
Additional box-model simulation results using the lower bound natural seepage values 
reduces NG FE estimates (both best estimates and upper bound) by about two 
percentage points (see Appendix Table B - 10). In this case, best estimates range from 
less than 1% to less than 3% over the past decade. The best estimate for 2010 is 1% or 
less, i.e., smaller than the current EPA bottom-up estimate, which appears unlikely. 
Hence, in order to defend the magnitude of the modeled natural seepage source, best 
estimate natural and/or agriculture/waste, and biomass burning priors are too high. 
Natural seepage reduces the 2010 upper bound NG FE estimate to 6% and 3% using 
δ13C-CH4 and C2H6 constraints, respectively. 
As shown above, CH4 priors increase at a greater rate than CH4 measurements, and 
C2H6 priors increase while C2H6 measurements decrease over time. Possible 
explanations are: (i) NG FE rates have decreased significantly since the 1980s. (ii) NG 
FE rates are at the lower end of box-model results, and there are significant emissions 
from natural seepage and/or leaking abandoned gas wells. Since seepage and leaking 
abandoned well emissions are relatively independent of NG and oil production, total 
prior emissions are expected to increase at a lower rate. Indeed, a 1% global average 
NG FE rate in combination with a natural seepage source would eliminate the 
inconsistency between prior CH4 and C2H6 growth rates and measurements (see 
Appendix Figure B - 14 and Figure B - 16). However, such low FE rate is unlikely as 
discussed above. Instead, these results support the evidence in Tables Table 17 and 
Table 18 that NG FE rates have decreased over time. This conclusion is consistent with 
several other studies. Simpson et al. and Aydin et al. (84, 141) concluded that the 
reduction in global C2H6 concentrations is due to decreased flaring and venting of NG. 
Monteil et al. (172) suggest that reductions in FF emissions are a likely explanation for a 
decline in both CH4 concentrations and δ13C-CH4 since 1980. Recent direct CH4 
measurements at 190 NG production sites in the U.S. by Allen et al. (71) indicate lower 
overall CH4 emissions from production (well pad) activities than previous measurement 
data used in EPA’s 2013 GHG inventory (64). 

 Global CT-CH4 model forward simulation results 5.3.2
NOAA’s CT-CH4 system - driven by the TM5 global transport model - was used to 
simulate atmospheric concentrations of each prior scenario for the years 1989-2011. 
Observational CH4 data is available from 84 NOAA sites distributed globally for this 
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period. Global averages of the forward simulation output from CT-CH4 are consistent 
with box-model results as shown in Figure 30, which displays differences between the 
high, medium and low NG FE scenarios (see Table 8 and Figure 18) and 
measurements. The medium FE scenario is a reasonable fit throughout the 1990s (~ 
4% FE) compared to 2% and 4-5% in the box-model for CH4 lifetimes τ of 9.7 and 9.1, 
respectively. In the 2000s, CT-CH4 suggests a best estimate NG FE rate of just over 4% 
dropping to less than 3% in 2010 compared 2-4% (2000) and 2-3% (2010) in the box-
model depending on τ. Given that τ used in CT-CH4 is approximately 9.45, best 
estimates of both models agree within one percentage point NG FE. Forward results 
and measurements are presented separately in Appendix Figure B - 18, which shows 
similar seasonal patterns in simulations and measurements. 

 
Figure 30: CarbonTracker-CH4 global average forward modeling results (simulation 
minus measurement) for three NG FE scenarios with decreasing FE rates over time. 

Simulations and measurements across 41 latitudinal bands (intervals of 0.05 sine of 
latitude) are plotted in Figure 31 as an indicator of the inter-hemispheric gradient for the 
year 2000. Other years are shown in Appendix Figure B - 19 revealing a qualitatively 
similar pattern. The gradient provides information about the spatial distribution of CH4 
emissions, which cannot be obtained from the box-model. The spatial fit of simulations 
and measurements can be used as a proxy for the attribution of sources. About 96% of 
NG CH4 emissions in the prior grid maps simulated with CT-CH4 are released in the 
Northern hemisphere. The equivalent values for oil, coal, agriculture/waste, and natural 
sources are 91%, 88%, 82%, and 54%, respectively. Figure 31 shows that CH4 
concentrations at the North Pole are about 130 ppb higher compared to most Southern 
latitudes. Simulations exhibit a similar, but more pronounced North-South gradient, i.e., 
150, 165, and 180 ppb for low, medium, and high NG FE scenarios, respectively. While 
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Figure 30 shows that the medium FE scenario best matches global total CH4 
abundance, the inter-hemispheric gradient indicates that total medium prior emissions 
are too high in the North and too low in the South. Since (i) reducing NG FE alone is not 
sufficient to match the observed inter-hemispheric gradient, and (ii) coal and oil CH4 
priors are considered a low estimate, misallocation of non-FF CH4 priors across 
latitudes must at least partially explain the mismatch between simulations and 
measurements. This is consistent with previous atmospheric inversions, which tend to 
reduce high latitudinal sources compensated by increases at lower latitudes, and 
tropical wetlands may be underestimated in particular (44, 92). 
The magnitude of the mismatch is in the order of one percentage point NG FE per 
hemisphere, i.e., the difference between the low and medium FE scenario, which is 
equivalent to 10-20 Tg CH4/yr. As a hypothetical first order estimate, reducing 10-20 Tg 
CH4/yr prior emissions from a given Northern latitudinal band, and increasing emissions 
in the equivalent Southern band by the same amount may eliminate the mismatch. As 
described above, particularly natural emissions priors have a strong Southern 
hemispheric contribution, i.e., ~95 and ~80 Tg CH4/yr in the North and South, 
respectively. Re-allocating the above mismatch in the natural source alone would 
therefore reverse the North-South contributions. Instead of re-allocating 10-20 Tg CH4/yr 
within the same latitudinal bands in the North and South, the mismatch can also be 
eliminated by re-allocating emissions larger or smaller than 10-20 Tg CH4/yr depending 
on the chosen locations. This could be established by conducting a full inversion. 

 
Figure 31: CT-CH4 simulated CH4 concentrations across 41 latitudinal bands for the year 
2000 compared with NOAA’s measurements (174). Observational uncertainties for the 
individual latitudinal bands were not available at the time of dissertation submission. 
The uncertainties are likely between those for global average (±1.1 ppb) and individual 
sites (up to ±20 ppb) with highest values where data are sparse, i.e., the tropics. 

1,650&

1,700&

1,750&

1,800&

1,850&

1,900&

1,950&

2,000&

+90& +30& 0& 30& 90&

CH
4$c
on

ce
nt
ra
,o

ns
$(p

pb
)$

La,tude$(Degrees)$

High&NG&FE&rate&scenario&

Medium&

Low&

Observa=on&



 76 

Seasonally averaged forward simulation output from CT-CH4 is shown in Figure 32, 
which displays differences between the high, medium and low NG FE scenarios and 
measurements for five different latitudinal bands. As shown in Figure 31, higher NG FE 
rates provide a better fit in Southern latitudes compared to Northern latitudes. 
Additionally, the seasonal data indicate that NG FE scenarios in the polar and 
temperate Northern hemispheric zones do not provide the same fit (simulation minus 
measurement) in summer and winter, as opposed to nearly identical fit in the Southern 
hemisphere. 

 
Figure 32: CT-CH4 seasonal forward modeling residuals (simulation minus measurement) 
for five latitudinal zones, i.e., polar northern hemisphere (PNH), temperate northern 
hemisphere (TNH), tropics, temperate southern hemisphere (TSH), and polar southern 
hemisphere (PSH), and high (green dotted line), medium (red), and low (blue) NG FE 
scenarios. Winter and summer plots show averages over December, January, February, 
and June, July, August, respectively. The dashed yellow line is a reference for 
comparing simulation-measurement fit in winter and summer. 

The best-fit (ΔCH4 = 0) summer-winter difference is ~25-30 ppb in PNH and decreases 
to nearly zero in PSH. This indicates that given any FE rate scenario, prior Northern 
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emissions are too high in the summer and/or too low in the winter. If Northern seasonal 
emissions sources with summer peaks were smaller, Northern summer concentrations 
would fall by a given amount, and Northern winter concentrations would fall to a much 
lower extent. As a result, the best-fit NG FE scenario would provide a better agreement 
across seasons. 
Agriculture/waste and wetlands are the two major source categories of similar 
magnitude (~190 and ~170 Tg CH4/yr, respectively) with a distinct seasonal pattern, 
which may explain this phenomenon. Particularly, modeled prior Northern wetland CH4 
emissions peak around July/August and are nearly zero from November to March (see 
also (140)). The seasonal differences (peak minus trough) of wetlands (~50 ppb) are 
roughly twice as strong as for agriculture/waste (~25 ppb) at Barrow, and smaller at 
lower latitudes. This is shown in Figure 33, where agriculture/waste and wetland 
contributions to CH4 concentrations from CT-CH4 forward simulations are plotted for 
three sites across a wide latitudinal spectrum. At Barrow, agriculture/waste 
concentrations are countercyclical to wetlands, with the latter peaking around 
July/August. This behavior may be explained by a combination of atmospheric transport 
of agriculture/waste emissions from lower latitudes, a reduced winter OH sink at higher 
latitudes (as agriculture/waste emissions are transported North) as well as local high 
latitude wetland sources during the summer. The countercyclical behavior was also 
observed at other remote Northern sites across the longitudinal spectrum, e.g., Summit, 
Greenland, and Pallas-Sammaltunturi, Finland, with wetland peaks around July (see 
Appendix Figure B - 20). Moving towards lower latitudes, the cyclic differences between 
agriculture/waste and wetland sources become less pronounced, e.g., three months at 
Mauna Loa and one month at the South Pole. 
The behavior in Figure 33 is consistent with at least two possible explanations for the 
seasonal mismatch in Figure 32. First, prior Northern wetland emissions may be too 
high. Reducing this source would lower Northern summer concentrations to a greater 
extent than in winter, and thus provide a better seasonal fit. The magnitude of seasonal 
differences of wetlands (~ 50 ppb at Barrow) appears sufficient to explain Northern 
summer-winter discrepancy (~25-30 ppb). In this case, prior Southern emissions, e.g., 
wetlands, need to be increased simultaneously in order to maintain the global budget. 
This also means that increased NG emissions (predominantly Northern) cannot balance 
reduced Northern wetland emissions in the global budget. It should be noted that some 
studies suggest increased CH4 emissions from Siberian wetlands due to thawing 
permafrost as a feedback to climate change. For instance, based on lake measurement 
extrapolated to North Siberian lakes, Walter et al. (175) conclude that previous Northern 
wetland emissions were underestimated by up to 64%. Shakova et al. (176) find about 
10 Tg CH4/yr from sub-sea permafrost in the East Siberian Arctic Shelf, which have not 
been accounted for in global CH4 inventories. Results from this work as well as NOAA’s 
previous inversion (177) do not find a missing CH4 source in Northern Polar Hemisphere 
based on historical measurements. In any case, if there is a significant unaccounted 
permafrost CH4 source, the above NG FE estimates would be overestimated given the 
global CH4 burden as a constraint. Nevertheless, increases in global temperatures have 
the potential to contribute large amounts of CH4 emissions from permafrost and other 
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Northern soils in the future. According to some estimates, these sources hold twice the 
amount of carbon that is present in the atmosphere today (178). 
Second, agriculture/waste priors may be too low given their countercyclical pattern 
relative to wetlands. Increasing agriculture/waste priors would increase Northern winter 
concentrations more than Northern summer concentrations, thereby reducing the 
seasonal summer-winter mismatch in the North. In order to compensate for the resulting 
increase in global concentrations as well as the inter-hemispheric gradient mismatch 
(Figure 31), reductions in Northern wetland and/or NG emissions, and increased 
Southern emissions are needed. In either case, NG priors would have to be reduced 
from the best fit (3-4% over the last decade), if any. 

 
Figure 33: CarbonTracker-CH4 simulated CH4 concentration contributions (excluding CH4 
sink) from agriculture/waste and wetland sources at three select sites. The gap in 
Antarctica around 2001 is due to an error in data retrieval from the simulation results 
with no effects on results in the following years. 

0"

100"

200"

300"

400"

500"

600"

700"

1989" 1991" 1993" 1995" 1997" 1999" 2001" 2003" 2005" 2007" 2009" 2011"

0"

100"

200"

300"

400"

500"

600"

700"

0"

100"

200"

300"

400"

500"

600"

700"

CH
4$c
on

ce
nt
ra
,o

ns
$(p

pb
)$

Year$

Barrow,$Alaska$(71.3°$N)$

Mauna$Loa,$Hawaii$(19.5°$N)$

South$Pole,$Antarc,ca$(90°$S)$

Agriculture/waste$

Wetlands$



 79 

The low magnitude of the inter-hemispheric simulation-measurement mismatch, less 
than 5% of the global budget, indicates that the spatial misallocation of the priors is 
small. Since the spatial fit is largely determined by the allocation of emissions sources, 
the relatively good fit of simulation and measurement supports the best estimate FE 
rates in the box-model (2-5% from 1990-2010) as opposed to the upper bound 
estimates (7% in 2000 and higher in earlier years). The inter-hemispheric gradient and 
seasonal comparisons show that an improved spatial emissions allocation includes (i) a 
prior emissions transfer from Northern to Southern wetland emissions and/or (ii) 
increased prior Northern agriculture/waste emissions in combination with reduced NG 
FE relative to the best estimate (3-4%). Thus neither the inter-hemispheric gradient nor 
the seasonal comparisons suggest that a global average NG FE rate of 3-4% over the 
period 1990-2010 is too low. This conclusion is subject to potential imprecision of the 
TM5 emissions transport model, which may lead to uncertainties in the simulated spatial 
allocation of CH4 concentration. This could affect the perceived accuracy of the best 
estimate NG FE rates, but evaluating TM5 is beyond the scope of this work. 

5.4 Summary and Conclusions 

This chapter described the observational constraints on the prior emissions estimates 
and NG FE scenarios developed in Chapter 4. A global box-model was built as a 
computationally efficient way to analyze a range of emissions scenarios and global CH4 
and C2H6 emissions burdens, the latter representing uncertainty in atmospheric 
chemistry. A global δ13C-CH4 isotope mass balance was carried out in order to use an 
additional observational constraint on the NG FE rate. Finally, the CH4 emissions grid 
maps developed in Chapter 4 were applied in NOAA’s CT-CH4 model to add spatial 
emissions constraints. 
Box-model, isotope mass balance, and CT-CH4 results agree on best estimate NG FE 
rates of 3-5% globally over the past decade. C2H6 measurements indicate upper bound 
FE rates of 5% and 7% in 2010 and 2000, respectively, assuming an upper bound 
global emissions burden based on measurements and literature as well as lower bound 
literature C2H6 FF content. In contrast to C2H6, NG FE rates below 9% over the past 
decade cannot be ruled out with global average CH4 and δ13C-CH4 measurements alone 
due to uncertainty in non-FF sources. However, spatial constraints derived from CT-CH4 
support the best estimate range of 3-5% over the past decade. The inter-hemispheric 
gradient shows that the best estimates non-FF prior CH4 emissions in Chapter 4 are too 
high in the Northern hemisphere. Furthermore, simulations and measurements were 
inconsistent across seasons for any NG FE scenario. Adjusting the best estimate 3-5% 
NG FE rate upwards would only aggravate the inter-hemispheric disagreement between 
simulations and measurements. Taking into account the global CH4 budget, it was 
concluded that overestimated Northern wetland emissions and underestimated 
Southern wetland emissions best explain both the inter-hemispheric and the seasonal 
discrepancy. 
Model results suggest that FE rates have decreased over time. The best estimate NG 
FE rate around 1990 ranges from 5-8%, which is consistent using global average CH4, 
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C2H6, and δ13C-CH4 measurements. This is supported by CT-CH4 unless non-FF CH4 
emissions have changed significantly prior to 2000. Box-modeling suggests that even 
conservative estimates of natural seepage (40 Tg CH4/yr and 2 Tg C2H6/yr) reduce NG 
FE rates by about two percentage points. In this case, the best estimate NG FE rate 
would be less than 1% in 2010. Such low global rate is lower than any recent U.S. 
bottom-up estimate, and is therefore very unlikely. Hence, in order to defend the 
magnitude of the modeled natural seepage source, best estimate natural and/or 
agriculture/waste, and biomass burning priors might be too high. 
Best estimate global average NG FE rates of 3% in 2010 in this work suggest that 
recent high LCA estimates of 6-8% FE rates in the U.S. (28) may be possible at 
individual sites, but do not appear representative as a national average. This conclusion 
assumes that U.S. industry practices do not lead to significantly higher emissions 
compared to the global average. Given the declining NG FE rates over time estimated 
here, it is also possible that the above high LCA estimates are due to outdated literature 
EFs. The observed steady decline in NG FE rates suggests incremental improvements 
of industry practices and/or gradual adaptation throughout the industry rather than 
immediate innovations at a particular point in time. Based on the results presented here, 
it is difficult to identify particularly effective NG FE mitigation practices or technologies to 
be adopted elsewhere in the industry. Nevertheless, the steadily declining FE rates 
indicate that further reductions are possible, and the referenced LCA studies point out 
the processes with greatest potential for improvement. In this light, requests from policy-
makers to improve industry practices, such as EPA’s New Source Performance 
Standards (179), appear promising and enforcement should be ensured. 
As pointed out in previous inversion studies, the global observational network is 
currently too sparse to distinguish CH4 sources at a country level with confidence, 
including NG FE. The large posterior uncertainties in this work support this finding, 
particularly for CH4, which calls for an expansion of the current network. The upper 
bound global average NG FE was constrained most effectively using C2H6 
measurements. However, uncertainties could be reduced even further if more 
associated and unassociated NG composition sample data were publicly available from 
basins across the world given the large variability of C2H6 content. Policies aimed at 
providing this composition data, e.g., requiring drilling companies to report the data or 
supporting research to generate the data, would improve the accuracy of NG FE 
estimates. 
Local and regional inversion studies using field measurements can complement global 
inversion modeling, which may provide basin specific NG FE rates unattainable with the 
current global observation network. Some of these studies are currently underway or 
planned, and further research support is needed to enable their realization across 
basins in the U.S. The industry average NG FE estimates from this work can be used as 
a reference, and basin specific studies may point out areas with local or regional hot 
spots. 
The potential initial adverse climate impacts of a global coal-to-gas transition are likely 
at the less severe end of the spectrum as formulated by Wigley (36). According to the 
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author’s model, and assuming the best estimate global average NG FE rates of 3-5% 
over the past decade suggest that global temperatures will increase by less than 0.05°C 
before 2060, and decrease by a larger amount thereafter. Initial temperature increases 
will be smaller and time scales will be shorter after incorporating further reductions in 
NG FE rates in the future. As a comparison, a recent analysis by Smith and Mizrahi 
suggests that reducing all anthropogenic CH4 emissions by 54% (from 257 to 119 Tg 
CH4/yr) over the 2005 to 2030 period would reduce global temperatures by about 0.1°C 
in 2050 (180). While Smith and Mizrahi conclude that policies to reduce short-lived 
climate forcers, such as CH4, only have moderate impacts on near-term global climate 
warming, the comparison with Wigley (36) emphasizes the significance of NG FE for 
global anthropogenic CH4 reductions.  
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Chapter 6: Conclusions 
The climate implications of biofuel and NG use have been two of the most widely 
discussed research topics in the LCA community over the past few years. Research 
interest has increased as biofuel and NG production in the U.S. grew rapidly over the 
last decade. The perceived desirability of corn ethanol as a renewable transportation 
fuel ebbed as studies indicated significant GHG emissions from direct and indirect LUC.  
Detrimental climate impacts from emissions timing related to LUC were also suggested, 
but conclusions were based on only a few studies in an emerging field of research. The 
NG FE rate and the corresponding CH4 emissions have been highly uncertain for 
several decades. Bottom-up studies – including LCA – are highly dependent on 
relatively small samples of industry emissions data, which is a major contributor to 
uncertainty in NG FE rates. This work has addressed both issues by taking an 
atmospheric science perspective. The contribution of this dissertation is twofold. First, 
existing atmospheric modeling approaches were developed further. The emissions 
timing model presented incorporates several real-world processes, which were not 
accounted for in previous studies. The inversion box-model was designed and the CT-
CH4 model was adopted to explicitly quantify uncertainty in NG FE as opposed to 
deriving best estimates for all CH4 sources. Second, this work bridges the gap between 
the atmospheric modeling and LCA communities. The careful selection of metrics and 
biofuel GHG emissions estimates over time was key for estimating the effect of 
emissions timing in the RF model. Establishing more transparent Bayesian prior CH4 
and C2H6 emissions inventories were key for quantifying NG FE rates based on 
observational constraints. 

6.1 Research questions and brief answers 

Chapter 2: Biofuel emissions timing 
1) What is the magnitude of the emissions timing effect, i.e., underestimated RF 

impacts in traditional LCA, after addressing the above-mentioned limitations of 
previous models? 

The emissions timing factor (ETF), i.e., the influence of emissions timing on RF is 
significantly smaller than 9-89% suggested in previous studies. In the base case, ETF is 
2, 5, and 13% for impact time frames of 100, 50, and 30 years, respectively. Accounting 
for time may increase corn ethanol’s GHG balance from -20% (no ETF) to -18%, -15%, 
and -7% with respect to the above impact time frames. The results are sensitive to the 
uncertainty in the LUC estimates and the time period over which the fuel is produced. 
Emissions timing adds little to our understanding of the climate impacts of corn ethanol 
because the uncertainty inherent in the LUC estimates (that triggers ETF) contributes 
one to two orders of magnitude more to life cycle emissions uncertainty than ETF. 
2) By what percentage does adding the LUC induced emissions timing factor to the 

traditional LCA GHG metric reduce the probability of corn ethanol meeting the EISA 
target? 
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From a policy maker’s perspective, emissions timing is more important because ETF 
increases the chance of corn ethanol missing the EISA target of 20% GHG reduction 
relative to gasoline. According to EPA, the probability of meeting the target is 53%, but 
even a small skew in the LCA GHG distribution can significantly reduce the probability 
of meeting this target. This work suggests that ETF reduces this probability to 7-29% 
depending on the chosen impact time frame. Thus, switching from the mean GHG 
balance to probability of meeting the target amplifies the influence of ETF from 2-13 
percent points to 24-46% in reduced probability of meeting the EISA target. 
3) What is the absolute RF impact of U.S. corn ethanol production and use including 

LUC, and what are the implications for climate policy? 
The impacts from corn ethanol emissions represent a very small contributor to reducing 
climate change as expressed in RF units, even when considering the relatively low EPA 
LUC emissions estimate. Most of the emissions “cost” of corn ethanol has occurred over 
the last decade due to LUC effects from expanding ethanol production. This cost was 
estimated to be 0.0006 W/m2 in the base case (15 Bgal/yr), which translates into a first 
order estimate of 0.0007 °C increase in global average surface temperature. The model 
predicts a reduction in RF and Ts at the end of the life cycle, which is in the same order 
of magnitude. It appears very unlikely that either temperature change (first positive, then 
negative) would entail increased or reduced damages of an order of magnitude that can 
actually be observed or quantified. Both the low probability of meeting the EISA target 
as well as the small magnitude of climate benefits (if any) should be taken into account 
when allocating climate change mitigation funds in support of corn ethanol. 
Chapters 3-5: Uncertainty in NG FE rates 
1) What are the best estimate NG FE rates over the past two decades globally 

according to CH4, C2H6, and δ13C-CH4 tracers, and is there a trend over time? 
Box-model, isotope mass balance, and 3D-modeling results agree on best estimate NG 
FE rates of 3-5% globally over the past decade. Discrepancies in the inter-hemispheric 
gradient and among seasons between simulations and measurements suggest 
overestimated prior Northern wetland emissions. Adjusting the best estimate NG FE 
rate upwards would only aggravate the inter-hemispheric disagreement. FE rates have 
likely decreased over time. The best estimate NG FE rate around 1990 ranges from 5-
8%, which is consistent using global average CH4, C2H6, and δ13C-CH4 measurements. 
This is supported by CT-CH4 unless non-FF CH4 emissions have changed significantly 
prior to 2000. 
2) What is the upper bound of global NG FE given the lower bound of all other CH4 and 

C2H6 sources, and what are the prior assumptions (e.g., FF emissions factors and 
hydrocarbon composition) underlying this bound? 

Ethane measurements indicate upper bound FE rates of 5% and 7% in 2010 and 2000, 
respectively, assuming an upper bound global emissions burden based on 
measurements and literature as well as lower bound literature C2H6 FF content. In 
contrast to C2H6, NG FE rates below 9% over the past decade cannot be ruled out with 
global average CH4 and δ13C-CH4 measurements alone due to uncertainty in non-FF 
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sources. Best estimate and upper bound values may be overestimated because both 
assume lower bound emissions from oil and coal production as well as complete 
absence of natural seepage. 
3) Can literature estimates of natural CH4 and C2H6 seepage be reconciled with global 

measurements, and how does this affect the NG FE estimates? 
Box-modeling suggests that even conservative estimates of natural seepage (40 Tg 
CH4/yr and 2 Tg C2H6/yr) reduce NG FE rates by about two percentage points. In this 
case, the best estimate NG FE rate would be less than 1% in 2010. Such low global rate 
is even lower than any recent U.S. bottom-up estimate, and seems hence very unlikely. 
Hence, in order to defend the magnitude of the modeled natural seepage source, best 
estimate natural and/or agriculture/waste, and biomass burning priors must be 
considered too high. 
4) What are the policy implications of global atmospheric observational constraints on 

NG FE rates? 
Best estimate global average NG FE rates of 3% in 2010 in this work suggest that 
recent high LCA estimates of 6-8% FE rates in the U.S. (28) may be possible at 
individual sites, but do not appear representative as a national average. This assumes 
that U.S. industry practices do not lead to significantly higher emissions compared to the 
global average. The steadily declining NG FE rates suggest that further reductions are 
possible, and the referenced LCA studies point out the processes with greatest potential 
for improvement. In this light, requests from policy-makers to improve industry practices, 
such as EPA’s New Source Performance Standards (179), appear promising and 
enforcement should be ensured. The global observational network is currently too 
sparse to distinguish CH4 sources at a country level with confidence, including NG FE, 
which calls for an expansion of the current network. Policies aimed at providing a 
greater sample size of associated and unassociated NG composition data (specifically 
C2H6 content), e.g., requiring drilling companies to report the data or supporting 
research to generate the data, would improve the accuracy of NG FE estimates. 
Research support for basin specific inversion studies using field measurements is useful 
for complementing global inversion modeling. This may yield results indicating areas 
with local or regional hot spots where reductions in NG FE are most needed. Combining 
the best estimates NG FE rates of 3-5% and previous analysis by Wigley (36), a global 
coal-to-gas transition scenario may increase temperatures by less than 0.05°C before 
2060, and decrease by a larger amount thereafter. 

6.2 Future work 

Biofuel emissions timing 
1) Employing a set of more sophisticated climate models would allow quantifying ETF 
based on temperature changes. This may be important to account for (i) the time gap 
between RF and temperature changes (in the order of a decade), and (ii) the added 
uncertainty inherent in the climate response, both of which are masked in RF based 
ETF. Also, the climate model did not account for non-GHG emissions, such as aerosols 
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and black carbon, which are also released during LUC from biomass burning. Aerosol 
and black carbon emissions have a negative and positive RF impact, respectively, and 
modeling these emissions may significantly change RF from biofuel GHG emissions. 
While this may be important for biofuel LCA in general, it could also increase or reduce 
the influence of emissions timing. However, it does not address other issues of GHG 
emissions, such as the acidification of the oceans. 
2) This case study looked at relatively small emissions or emissions reductions. 
Changing traditional LCA methodology by accounting for emissions timing may be 
reasonable only if timing actually impacts climate on an absolute scale. While GHG 
emissions clearly add up among different energy technologies, this accumulation effect 
is not obvious for emissions timing. Future research should explore scenarios in which 
different energy technologies exhibiting large upfront emissions generate significant 
climate impacts due to emissions timing. As an example, such scenarios could include 
carbon capture and sequestration or NG production from shale formations, whose 
temporal emissions patterns may vary significantly. 
Uncertainty in NG FE rates 
1) A formal statistical analysis is needed to estimate probability distribution functions 
(PDF) of the global average NG FE rate (over time) in addition to best estimates and 
upper bound scenarios. This can be achieved by running the inversion box-model in a 
Monte Carlo simulation, thereby explicitly incorporating prior probability distributions of 
the most uncertain model parameters. Specific parameters should include hydrocarbon 
composition of associated and unassociated NG, CH4 lifetime, the global C2H6 burden, 
and non-FF CH4 and C2H6 sources. This approach allows sampling a wide range of 
prior emissions estimates based on distributions derived from a more comprehensive 
literature review compared to this work. The PDFs will provide researchers and policy-
makers with more detailed estimates of NG FE rates. 
2) The box-model results can be further refined using 3D-modeling not included in this 
work. First, C2H6 forward modeling, e.g., using CT-CH4, may provide important insights 
about NG FE rates because the vast majority of C2H6 emissions is due to FFs, which 
are released in the Northern hemisphere. Second, generating and simulating global grid 
maps of CH4 and C2H6 from natural seepage is needed to better understand its 
magnitude, and thus its influence on NG FE rates. Coordinates of global natural 
seepage sites are readily available (109, 144), but have not yet been included in global 
inversion modeling. Finally, the box- and 3D-model results can be used to inform prior 
distributions for a full inversion. This also includes comparing simulation and 
measurement at specific sites of interest, e.g., Southern Great Plains (SGP) with 
relatively small non-FF emissions influence, as a first indicator of regional differences in 
NG FE rates.  
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Life cycle assessment 
Life cycle assessment is an evolving tool, originally developed in the soda-
manufacturing industry for comparing the environmental burdens that glass and plastic 
containers represent over their lifetime (14). This is sometimes referred to as “cradle-to-
grave” or WTW analysis. The tool is now often used to track energy use and 
environmental impacts of different products and processes. 

Modeling assumptions 

Corn ethanol WTW and LUC emissions 
Land use change causes GHG emissions by changing the carbon stock of the land 
where the biofuel feedstock is cultivated (21). For instance, clearing a forest for 
agriculture may cause GHG emissions from burning biomass during clearing and 
disrupting the soil during cultivation, which can lead to decay of below-ground biomass. 
Furthermore, LUC can prevent CO2 uptake through foregone accumulation of carbon 
over years or decades (the feedstock production period) (21). Since 2008, LUC 
emissions induced by biofuel production have been studied widely (7, 20, 21, 46, 47). 
Biofuels may induce LUC when feedstock production displaces other crops (e.g., 
soybean) or biomass (e.g., forests). Crops or biomass may be displaced either directly 
by the feedstock (direct LUC) or through biofuel induced price changes of agricultural 
commodities (indirect LUC) (21). Biofuel production may cause indirect LUC 
domestically or internationally, reducing the desirability of biofuels (7, 20, 21, 46, 47). 
While some sources estimate direct and indirect LUC emissions separately, others do 
not. Throughout this paper, I only distinguish WTW emissions and LUC emissions 
(direct plus indirect LUC). 
EPA has estimated mean LUC emissions at 28 g CO2e/MJ per year (7, 20, 21, 46, 47). 
Despite the high uncertainty, EPA included this value in their Regulatory Impact 
Analysis for the Renewable Fuel Standard 2 (7). In 2010, EPA found the mean life cycle 
GHG emissions to be 74 and 93 g CO2e/MJ for corn ethanol and gasoline, respectively 
(7). These figures, which refer to EPA’s highlighted results, are for the year 2022 
including projections about technology and yield improvements. They also estimated 
values for 2012 and 2017, which are considerably higher (181). 
Alternative emissions estimates, annual fuel volumes, and time series  
Table A - 1 summarizes literature values for corn ethanol and gasoline GHG emissions 
used to establish the annualized emissions and the time profile and to calculate climate 
change impacts. The emissions are divided into LUC (ethanol only) and WTW, i.e., the 
remaining life cycle emissions, for corn ethanol and gasoline. 
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Table A - 1: Summary of GHG emissions and emission factors for gasoline and corn 
ethanol from the literature: EPA (7), Tyner (47), and Hertel (46). 

 Units 
Sources 

EPA, 
2010 

Tyner, 
2010 

Hertel, 
2010 

Gasoline 
WTW a g CO2e/MJ 93 92 92 

Corn ethanol 
Total LUC b,c 

g CO2e/MJ 

840 502 950 
Annualized LUC d 28 17 32 
WTW a 46 64 64 
Total 74 81 96 
GHG balance corn ethanol 
relative to gasoline % -20 -12 +4 

Economic model used for LUC - 
FAPRI-
CARD, 
FAMOS 

GTAP GTAP 

Increase in annual fuel 
production causing the LUC Bgal/yr 12.3-15.0 1.8-15.0 1.8-15.0 

Time period of LUC e years 12 14 14 
a WTW CO2e emissions are disaggregated into CO2, CH4, and N2O using EPA RFS2 
(7) data as described below. 
b Values exclude carbon sequestration (above- or belowground) after termination of 
biofuel feedstock production. However, Hertel et al. (46) calculate a scenario in which 
10% of all lost carbon is sequestered within 30 years after feedstock production through 
reforestation reducing LUC by 80 g CO2e/MJ. 
c EPA (7) calculates LUC emissions as CO2, CH4, and N2O, and the total LUC 
emissions are given in g CO2e/MJ. All other sources assume all lost carbon is 
converted to CO2. Disaggregation in the three GHGs was performed as described 
below. The disaggregated values were converted to g CO2e/MJ in the table for 
comparison. 
d In all sources, LCA allocates LUC emissions evenly over the ethanol volume that is 
produced in 30 years, the biofuel project period. This time period is used to determine 
the marginal LUC emissions per unit of ethanol. 
e Time period in which the physical LUC is estimated to take place. This is necessary 
for modeling the LUC over time instead of assuming all LUC occurring in the same year. 

A stochastic analysis of LUC emissions by Plevin et al. (20) provides the lower and 
upper bounds of LUC emissions values for the RF model. Table A - 2 summarizes the 
95% confidence interval as well as the minimum and maximum LUC values. 
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Table A - 2: Summary of upper and lower bounds of LUC emissions (g CO2e/MJ) using 
stochastic data from Plevin et al. (20). Values pertain to a 30-yr life cycle period and 
uniformly distributed model parameters (e.g., emissions per ha converted land). 

 Lower bound Upper bound 
95% confidence 
interval 

Total LUC 945  2130  
Annualized LUC 32  71  

Minimum and 
maximum 

Total LUC 450  5,100  
Annualized LUC 15  170  

For use in the RF model, WTW CO2e emissions were disaggregated into CO2, CH4, and 
N2O using EPA data (7). Disaggregation is critical to capture the actual impacts 
because the GWPs of CH4 and N2O are one to two orders of magnitude higher than 
CO2. Well-to-wheel mass fractions for CO2, CH4, and N2O are 94.1%, 0.201%, and 
0.00143% of CO2e emissions, respectively, for ethanol, and 96.0%, 0.115%, and 
0.00377% for gasoline (7). Multiplying all fractions by the respective 100-year GWPs 
adds up to 100%.  
EPA analysis (7) provides LUC emissions individually for all three GHGs. In contrast, 
the other sources assume that all C is converted in CO2. Carbon dioxide equivalent 
emissions were disaggregated following the methodology in EPA (7), which states that 
CH4 and N2O are small fractions of the LUC CO2 emissions, and the fractions vary by 
the converted land type. The averages of these mass fractions over all land types, 
weighted by the LUC occurring in each country and land type, are 0.21% and 0.011% 
for CH4 and N2O, respectively. 
The time step in this analysis is one year. The ethanol emissions of a single year 
include all WTW emissions. Ethanol is produced over the 30-year project time frame 
during which agricultural land is dedicated for feedstock production. This value is often 
used in LCA including EPA analysis (7). Additionally, there are four sources of LUC 
emissions whose time pattern assumptions were adopted from the BTIME model (15). 
In the first year of LUC, all standing (above-ground) biomass is burned. Soil carbon 
(below-ground) is released over the first 20 years since land clearing. Eighty percent of 
these emissions occur in the first 5 years, the rest by year 20. Foregone sequestration is 
accounted for as a carbon debt because the displaced biomass can no longer 
accumulate carbon as long as corn for ethanol is produced (see Table A - 3). The end of 
the 30-year period concludes the analysis of the base case. 
Table A - 3: Parameters of the BTIME model for allocating LUC emissions over time. 
Source: (15). 
LUC-Parameter Value Unit 

Forest fraction 80 % of LUC emissions 
Pasture fraction 20 % of LUC emissions 

Above-ground emissions (immediate loss) 
Forest  77.5 % of Forest LUC 

Pasture 14.3 % of Pasture LUC 
Below-ground emissions 

Forest 22.5 % of Forest LUC 
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LUC-Parameter Value Unit 
Pasture 85.7 % of Pasture LUC 

Early loss 80 % of Below-ground emissions 
End of early loss period   5 Years after LUC occurrence 
End of later loss period 15 Years after early loss period 

Foregone sequestration 
Annual emissions during production period   4.7 g CO2/MJ/yr 

The time profile of ethanol emissions with annualized LUC is also presented in Figure 1. 
The annual values for gasoline emissions represent the entire life cycle emissions per 
unit of gasoline. These values are constant over all years because LUC due to gasoline 
production is assumed negligible. In order to fairly compare the temporal effects of 
gasoline and ethanol production (including LUC), gasoline production is modeled over 
30 years as well. Ethanol emissions with annualized LUC are also constant over time, 
but lower than gasoline due to the lower overall life cycle emissions. 
Total WTW and LUC emissions in a given year were calculated separately before 
adding to get the total GHG emissions over time. Total WTW emissions per year are the 
product of the WTW portion of the time profile (g/MJ), annual fuel use (gal), and energy 
content of the fuel (88.9 and 132 MJ/gal for ethanol and gasoline, respectively). Total 
LUC emissions at a given year were calculated as the product of the LUC portion of the 
emissions time profile (g/MJ) and the incremental ethanol production of the same year 
(MJ), which triggers the LUC. Table A - 3 summarizes the assumptions of the BTIME 
model going into establishing the emissions time profile. 

 

Figure A - 1: LUC scenarios according to annual corn ethanol production considered in 
this analysis. 
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Figure A - 1 depicts the annual ethanol volumes considered in the base case and the 
accelerated LUC scenario. Using annual increases in corn ethanol production as an 
indicator for LUC occurrence over time (particularly regarding ILUC) is a simplification. 
However, it is very unlikely that LUC (even ILUC) will occur before the associated 
increase in corn ethanol production in each year. Thus, the method should be regarded 
as allocating LUC at the earliest possible points in time. LUC could in reality be shifted 
more towards the future, thereby reducing the share of upfront emissions. As a result, 
ETF should be regarded as a conservative estimate (lower ETF possible). 
  



 

 A-6 

Accounting for emissions timing in the LCA literature  

Several authors have estimated that the GHG balance undervalues the climate impacts 
of corn ethanol by 9-89% due to emissions timing (15–17). In order to correct the 
underestimation, O’Hare et al. (15) calculate the ratio of CRF of corn ethanol and 
gasoline GHG emissions. This ratio is then multiplied by the corn ethanol GHG balance. 
Moreover, the authors examined the use of a discount rate, which weighs emissions 
today greater than those in the future (15). Depending on the chosen time preference, 
i.e., discount rate, life cycle emissions of corn ethanol may be higher or lower than 
gasoline. For instance, counting emissions over 100 years, corn ethanol emissions may 
be 5% lower than gasoline, but when discounted at 7% corn ethanol emissions would 
be 16% greater (15). Discounting of emissions in the LCA of RFS2 was performed using 
0% and 2% discount rates. However, the final results ignored the 2% scenario, partly 
due to the “lack of consensus in the scientific community about the best way to translate 
GHG emissions into a proxy for economic damages” (7). In fact, choosing the 2% 
discount rate would have resulted in corn ethanol not meeting the “Renewable Fuel” 
requirement of EISA for facilities built after December 2007 (7). In turn, this may have 
interfered with meeting the EISA biofuel production targets. 
Kendall et al. estimate a penalty factor for LUC emissions (16). The factor is calculated 
as the increase in CRF of a LUC emission impulse today relative to annualizing LUC 
over 30 years. Radiative forcing (RF) is a measure of the imbalance between the earth’s 
incoming solar radiation, and its reflection back into space (48). GHGs contribute to 
positive RF (and increasing surface temperature) by absorbing some of the radiation 
and reflecting it back into the atmosphere (48). The penalty factor is multiplied by the 
LUC emissions, which increases the life cycle emissions of corn ethanol by 46%, and its 
GHG balance by 89%. 
Levasseur et al. describe a method to compare the performance of a biofuel and the FF 
incumbent based on climate change impacts of a marginal increase in GHG 
concentration over time, in RF per MJ of fuel (17). The RF impacts are simulated using 
GHG emissions as they occur over time, including emissions from LUC in the beginning 
of the life cycle. The authors find that the GHG balance is 9-19% lower than the CRF 
using the actual emissions time profile. They conclude that performance should be 
assessed based on impacts over time, e.g., in CRF, as opposed to GHG emissions. 
However, they also note that the simplified RF model may not accurately represent 
actual impacts, which is an important potential limitation of the study. 
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Radiative forcing model  

The following equations are used in Eq. 1. The elements in the emissions matrix Ert,.Fuel,.
GHG are as in Eq. A - 1. Emissions are simulated for fuel use in the release years r from 1 
to 30 (the end of the life cycle) in the base case. There will be some ethanol emissions 
after 30 years due to the final increment of LUC (from reaching full capacity of 15 
Bgal/yr) that causes foregone sequestration beyond the model’s 30-year time horizon of 
fuel production. Gasoline emissions will cease for r >30. 

 Eq. A - 1, 

where e(r) is the amount of the total emissions in the release year r described in section 
2.2.1. The GHG emissions are converted into changes in atmospheric concentrations 
using Eq. A - 2. 

 Eq. A - 2, 

where MGHG is the molar mass of the GHG, which is 44, 16, and 44 g/mol for CO2, CH4, 
and N2O, respectively. The constants mair (5.14*1021 g) and Mair (28.9 g/mol) are the 
total mass and the molar mass of air in the atmosphere, respectively (182). The 
elements in the radiative efficiency matrix RErt,.GHG for each GHG are as in Eq. A - 3. 

 Eq. A - 3, 

where re(t) is the radiative efficiency (in W/m2/ppmv) of a GHG in the impact year t. The 
radiative efficiencies of each GHG are given in Eq. A - 4, Eq. A - 5, and Eq. A - 6. The 
following three scenarios for future atmospheric background CO2 concentration BCCO2 
were obtained from the IPCC Data Distribution Centre (183). The A1B scenario, 
representing moderate increases in CO2 concentration, is used as the base case, and 
B1 and A1FI are considered as low and high concentration scenarios, respectively. The 
radiative efficiencies of CH4 and N2O were treated as constant over time as a 
conservative estimate (Eq. A - 5 and Eq. A - 6), which deviates from IPCC methods (48). 
This simplification has little impact on the results because both GHGs represent only 
small portions of the overall RF in the model. 
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For CO2, re(t) decreases with increasing future atmospheric CO2 concentration 
according to Eq. A - 6 (184). 

 Eq. A - 4 

 

Eq. A - 5 

 

Eq. A - 6 

The elements in the decay matrix Drt,.GHG for each GHG are as in Eq. A - 7. 

 Eq. A - 7, 

The decay rates in Eq. A - 8, Eq. A - 9, and Eq. A - 10 assume a background 
concentration of 378 ppmv (184). 

 Eq. A - 8, 

 

Eq. A - 9, 

 

Eq. A - 10 
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Modeling results using alternative data and scenarios 

 
Figure A - 2 shows RF time series individually for gasoline and corn ethanol. In contrast 
to the base case, fuel production is simulated over 50 years. As a result, the positive 
spread of absolute RF between gasoline and corn ethanol is significantly larger (see 
Chapter 2). 

 
Figure A - 2: RF(t) of gasoline and corn ethanol (both annualized emissions and 
emissions time profile) for 50 years of production (EPA (7) emissions estimates). 
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Figure A - 3. ∆RF(t) and GHG emissions (corn ethanol minus gasoline, 15 Bgal/yr 
capacity, EPA (7) emissions estimates). 

 
Figure A - 3 depicts ∆RF (corn ethanol minus gasoline) and GHG emissions over the 
impact time frame, which shows the time lag between changes in emissions and RF 
over time due to the relatively slow decomposition of GHGs in the atmosphere. In 
addition to the main paper, it also shows RF using emissions estimates in Tyner et al. 
(47) and Hertel et al. (46). 
Radiative forcing in the accelerated LUC scenario  
Figure A - 4 shows RF(t) of corn ethanol and gasoline individually in the accelerated 
LUC scenario, which assumes all LUC from 15 Bgal/yr corn ethanol to occur in year 1. 
This assumption is implicit in the previous analyses (15–17). The ethanol curves are 
initially higher than gasoline due to LUC emissions all occurring in the first time step, but 
then increases at a lower rate due to lower life cycle emissions during the production 
and use phase modeled during the remainder of the 100 years. After 30 years, both 
curves decline because this analysis time frame for production ceases, and GHG decay 
reduces atmospheric concentration of these gases and associated RF. 
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Figure A - 4: RF(t) for corn ethanol (15 Bgal/yr) and gasoline individually (using EPA, 
Tyner et al., and Hertel et al. (7, 46, 47) emissions estimates, accelerated LUC scenario). 

Figure A - 5 shows the CRF balance for both the base case and the accelerated LUC 
case. Note that the CRF balance is significantly lower in the accelerated LUC scenario 
compared to the base case. The accelerated LUC scenario is equivalent to previous 
analyses (15–17), which assume most LUC (all above-ground LUC emissions) to occur 
in year 1. Furthermore, note that annual fuel use in the base case increases over time 
(Figure A - 1), whereas the GHG balance implicitly assumes full capacity from the first 
year. As a result, LUC impacts are leveraged over a smaller amount of WTW emissions 
benefits compared to the GHG balance. Indeed, the CRF curves in the accelerated LUC 
scenario, which assumes full capacity in the first year, are shifted down towards the 
GHG balance (Figure A - 5). 
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Figure A - 5: CRF balance of corn ethanol for both the base case and the accelerated 
LUC scenario. 

The base case CRF results are incidentally similar to those in O’Hare dissertation. (15) 
(0% discount rate) because current (RFS2) corn ethanol WTW emissions are employed, 
which are 46 g CO2/MJ, i.e., 25% lower than in O’Hare dissertation. (15) (60 g CO2/MJ). 
Sensitivity analysis 
A sensitivity analysis was performed to test the robustness of the model results to a 
number of input parameters, which is shown in Figure A - 6. ETF changes only 
marginally for different background concentrations, different CH4 and N2O emissions, 
higher ethanol WTW emissions, and for shifting all LUC emissions from the emissions 
time profile to the first year of the life cycle (accelerated LUC). Future average gasoline 
emissions may increase if currently untapped fossil sources may add more GHG 
intensive fuel to the mix. Considering an extreme case where average gasoline 
emissions increase by 50%, ETF would decrease from 2-13% to 1-8%. A 50% drop in 
corn ethanol WTW emissions would not change ETF significantly. Lower overall LUC 
estimates in Tyner et al. (47) reduce ETF significantly, particularly over shorter impact 
time frames. Accordingly, higher LUC emissions in Hertel et al. (46) increase ETF (see 
also doubling of EPA LUC estimates). Figure A - 6 shows that ETF is lower when 
accounting for a phased-in ethanol production over time (base case) compared to 
production at full capacity from the first year. 
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Figure A - 6: Sensitivity analysis results for ETF over 100, 50, and 30-year impact time 
frames. EPA (7) emissions estimates are used as the base case. 

Figure A - 7 shows how the production period influences the CRF balance of corn 
ethanol with respect to uncertainty. Over a 100-year impact time frame and fuel 
production until 2030 (base case), the GHG balance is lower than the CRF balance, i.e., 
the GHG balance overestimates ethanol’s benefits.  

 

Figure A - 7: Direct comparison of the GHG balance and 100-yr CRF balance (time 
profile) of corn ethanol over different fuel production time frames. Only the CRF balance 
accounts for emissions timing. Illustrated estimates are EPA (7) base case and Plevin et 
al. (20) LUC uncertainty with 95% confidence intervals and min/max values (error bars). 
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However, the GHG balance underestimates ethanol’s benefits if fuel production is 
counted until 2050. This is because the GHG balance ignores the policy cap of 15 
Bgal/yr corn ethanol in 2016, and corn ethanol may not cause further LUC after 
maximum production is reached. As a result, corn ethanol may reduce emissions 
beyond 30 years of production (life cycle period), which is not captured by the GHG 
balance. Similarly, the GHG balance would overestimate ethanol’s benefits by about 40 
percentage points if corn ethanol production would cease in 2020. The model assumes 
that all LUC occurs until that year without further emissions benefits from lower WTW 
emissions. Analogously to Figure 6 in the main article, the uncertainty inherent in the 
LUC estimates clearly dominates the potential emissions benefits or costs of corn 
ethanol. 
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Reference points for climate impacts  

Additional analysis for similar climate decisions in other industries beyond biofuels was 
done to understand the relative significance of ΔTs results. Emissions estimates from 
U.S. electricity consumption (15) was used in combination with U.S. electricity demand 
forecasts (16) to estimate RF impacts of power generation over the same time frame as 
corn ethanol (2001-2030). Since electricity generation is the largest source of GHGs in 
the U.S., the results can serve as a reference of the magnitude of impacts that may be 
considered “high”. Figure A - 8 compares total RF and ΔTs for electricity generation, 
gasoline reduction, and substitution of gasoline with corn ethanol (51–53). 

 

Figure A - 8: RF(t) from U.S. electricity consumption, U.S. gasoline reduction, and corn 
ethanol use (base case). 

Maximum RF from corn ethanol is 0.0006 W/m2. Between 1950 and 2000, global RF 
has increased by 1.5 W/m2 (48). The magnitude of global mean surface temperature 
change associated with maximum RF from corn ethanol at maximum 15 Bgal/yr 
capacity, i.e., 7% of U.S. gasoline, is 0.0007 °C. As shown in Table A - 4, the maximum 
effect of this corn ethanol volume on RF and ΔTs is less than 1% that of U.S. electricity 
consumption. Reducing U.S. gasoline consumption by 10% decreases RF and ΔTs by 
eight times the amount that RF and ΔTs increases from 15 Bgal/yr corn ethanol. 
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Table A - 4: Maximum RF and ΔTs (at 4.5°C climate sensitivity) resulting from GHG 
emissions due to U.S. electricity generation and reduction in gasoline use as reference 
points for substitution of gasoline with corn ethanol (all 2001-2030). 

  Reference points b 
 U.S. corn ethanol 

minus gasoline a 
U.S. Electricity 
consumption 

10% U.S. gasoline 
reduction 

RF (W/m2) 0.0006 0.067 -0.0046 
ΔTs (°C) c 0.0007 0.081 -0.0056 

a EPA base case (15 Bgal/yr max. capacity). This maximum difference in RF between corn 
ethanol and gasoline occurs in year 10 (see also Figure 3 in Chapter 2). 
b Historical (51) and projected (52) CO2 emissions from electricity. Gasoline consumption 
based on 2009 (53). Shown maximum RF occurs in year 30 (end of the simulated impact 
period). 
c ΔTs values should be considered as an order of magnitude estimate. 

 
  



 

 A-17 

Corn ethanol’s probability of meeting the Renewable Fuel target in 
the Energy Independence and Security Act of 2007 

Adding ETF to the GHG balance could reduce the desirability of corn ethanol in terms of 
GHG emissions. Moreover, the Energy Independence and Security Act of 2007 (EISA) 
requires mandated “Renewable Fuels” to reduce GHG emissions by at least 20% 
relative to gasoline. Given EPA’s life cycle assessment (LCA) (and assuming that the 
mean and median value of the GHG balance are identical), there is a 50% chance that 
corn ethanol meets this target (7). Adding ETF may reduce this probability even further. 
The objective of the final part of this analysis is to quantify how ETF influences the 
probability of corn ethanol meeting the EISA target. 
Data and methods 
Data from EPA’s Regulatory Impact Analysis for the RFS2 is used (7). Figure A - 9 
shows the probability distribution function (PDF) for corn ethanol’s GHG balance, which 
was generated by EPA using Monte Carlo analysis. It is approximately normally 
distributed with a mean of -20.4%. 

 
Figure A - 9: EPA result for the GHG balance of corn ethanol (graph from (7)). The -20% 
line represents the EISA target. Ethanol emissions are shown relative to gasoline (mean 
92.9 g CO2e/MJ). 

The RFS2 also provides estimates for the breakdown between LUC and the remaining 
WTW emissions, which is summarized in Table A - 5. 



 

 A-18 

Table A - 5: Distribution statistics (adopted from (7)) of corn ethanol GHG 
emissions (n/a indicates no data is available). 

Emissions source [g CO2e/MJ] 

2.5th percentile Mean 97.5th percentile 

LUC 19.9 30.3 43.6 

WTW n/a 44.5 n/a 

Total 51.2 74.8 91.9 

    

GHG balance 
(Gasoline 92.9 g 

CO2e/MJ) 

[%] 

-32 -20 -7 

Adding ETF to the distribution should skew the original distribution to the right, i.e., to 
higher GHG balance values. ETF is only applied to corn ethanol emissions (keeping 
gasoline constant) because gasoline emissions are assumed to be constant over time 
(no LUC). First, a Monte Carlo simulation is performed in Analytica to generate 
estimates of the original distributions (Figure A - 9 and Table A - 5). The LUC emissions 
distribution was generated using a Lognormal distribution Log(median=29.7, geometric 
stdev=1.22) and a sample size of 10,000. The median and geometric standard 
deviations were chosen to achieve the best possible fit with the estimates in Table A - 5. 
A similar process was followed to generate an approximate distribution for the WTW 
emissions. Since no percentile values were available for WTW emissions, a normal 
distribution with Normal(44, 2.5) was chosen (again a sample size of 10,000). This 
distribution achieved the best fit for the total corn ethanol emissions distribution. The 
Analytica model was designed such that LUC and WTW distributions are added to yield 
the total corn ethanol emissions. Then, the GHG balance associated with each pair of 
LUC and WTW emissions is calculated using Eq. A - 11. 

 
Eq. A - 11, 

where EmissionsGasoline equals 92.9 g CO2e/MJ. This yields the distribution of the GHG 
balance of corn ethanol. Next, the MATLAB climate model is run for random samples of 
LUC and WTW emissions to calculate ETF values. This is important because ETF 
increases with increasing LUC emissions. A regression analysis is performed to 
estimate ETF as a function of LUC emissions. The ETF independent of WTW emissions 
for the small ranges of WTW emissions considered here. Finally, the Analytica model is 
designed to add ETF to the GHG balance to account for the emissions timing effect that 
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GHG balance =
Emissions

EtOH , LUC + Emissions
EtOH ,WTW " Emissions

Gasoline

Emissions
Gasoline
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is being investigated. This yields new distributions of the emissions timing corrected 
GHG balance - one for each impact time horizon. Analytica uses Eq. A - 12 to calculate 
the corrected GHG balance for each data point in the simulation. 

 
Eq. A - 12, 

where ETF is regressed as a function of LUC emissions (see above). The new, 
corrected distributions are then used to calculate the probabilities of corn ethanol (i) 
meeting the EISA target of -20% emissions reductions and (ii) emitting equal or less 
than gasoline. This is accomplished by calculating the percentile values of each 
observation based on the simulated estimates. This means first adding the number of 
observations (e.g., for -20% GHG balance and below) and then dividing by the sample 
size. 
Results 
Reproduction of EPA’s PDF of corn ethanol’s GHG balance 
The PDF of corn ethanol’s GHG balance in EPA’s RFS2 was reproduced because only 
the graph in Figure A - 9 was available. The simulation result for LUC emissions is 
illustrated in Figure A - 10 (all Analytica simulation figures contain 600 data points). The 
mean, 2.5th and 97.5th percentiles are 30.4, 20.1 and 43.9 g CO2e/MJ, respectively, 
which is a reasonable approximation to the original data (Table A - 5). The result of the 
WTW distribution is illustrated in Figure A - 11. The mean, 2.5th and 97.5th percentiles 
are 44.0, 39.1 and 48.9 g CO2e/MJ, respectively. 

 

Figure A - 10: PDF of corn ethanol LUC emissions using Analytica (sample size 10,000) 
for a Lognormal distribution with Log(median=29.7, geometric stdev=1.22). 
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Figure A - 11: PDF of corn ethanol WTW emissions using Analytica (sample size 10,000) 
for a Normal distribution with N(44, 2.5). 

Running the Monte Carlo simulation for both LUC and WTW distributions results in the 
total corn ethanol emissions distribution shown in Figure A - 12. The distribution shows 
the GHG balance on the abscissa, which was converted from the emissions value using 
Eq. A - 11. This PDF is the model for the curve in Figure A - 9. The mean, 2.5th, and 
97.5th percentile values of the (here) simulated data are -20.0%, -32.3%, and -4.7%, 
respectively. The 97.5th percentile value is off by 2.3 percent points relative to the 
original data in Table A - 5. 

 
Figure A - 12: PDF of the corn ethanol GHG balance (in %) from adding LUC and WTW 
emissions. 

MATLAB climate model results 
Figure A - 13 shows ETF as a function of the LUC emissions. The ETF is mainly a 
function of the LUC value, and ETF increases with higher LUC. The shorter the impact 
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time horizon, the greater the relative influence of LUC emissions on overall emissions, 
and the higher rate of increasing ETF. The ETF was initially calculated for 6 random 
LUC values which showed ETF to be a linear function of the GHG balance. A regression 
analysis was performed in Excel to test the significance of the results, and to extrapolate 
ETF for higher GHG balances. For instance, the 6 values of the 100-year ETF have an 
R2 of 1, and P-values of 10-9 and 10-11 for intercept and slope, respectively (i.e., very 
high confidence in regression result). After extrapolation, ETF was calculated again for 
higher GHG balances to check the linearity of the climate model (with respect to LUC 
emissions values), which confirmed the extrapolated values. 

 
Figure A - 13: MATLAB climate model results of ETF for 30, 50, and 100-year impact time 
frames. 

Figure A - 14 shows the influence of ETF on the GHG balance as a function of the 
impact time frame. The upper line represents ETF for bin values that generate a GHG 
balance of 0%. For very high impact time frames, the GHG balance including ETF will 
approach 0%, but for short impact time frames such as 30 years ETF increases the 
GHG balance to 25%. The lower line represents ETF for bin values that generate a 
GHG balance of -20%. 
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Figure A - 14: The influence of ETF on the GHG balance for different LUC values and 
impact time frames. 

GHG balance distributions corrected with ETF 
Figure A - 15 and Figure A - 16 show how the GHG balance distribution changes as 
ETF (for different impact time frames) is added to correct for emissions timing. The 
GHG balance distribution skews increasingly towards the right for shorter ETF impact 
time frames. 

 
Figure A - 15: PDF of the GHG balance (no ETF) and for the adjusted GHG balance with 
30-yr, 50-yr, and 100-yr ETF correction factor. 
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Figure A - 16: CDF of the GHG balance (no ETF) and for the adjusted GHG balance with 
30-yr, 50-yr, and 100-yr ETF correction factor. 

Figure A - 17 shows how ETF influences the probability of corn ethanol reducing GHG 
emissions relative to gasoline. The lower two lines (green) show the probabilities of corn 
ethanol meeting the EISA target of 20% GHG emissions reduction without ETF (dotted 
line) and including ETF (solid line). For impact time frames of 30-50 years, the 
probability may decline from 53% to about 7-29%. For longer time frames, the 
probability is still only 40% or less. The upper two lines (violet) show the probabilities of 
corn ethanol emitting equal or less than gasoline. This value is about 99% without ETF. 
However, including ETF reduces this probability to 71-98% depending on the impact 
time frame. 

 
Figure A - 17: Influence of ETF on the probability that corn ethanol either meets the EISA 
target of 20% GHG emissions reduction (green) or has the same or less GHG emissions 
than gasoline (violet). 
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Summary of results 
A statistical model was developed to investigate the influence of emissions timing on the 
probability that corn ethanol meets certain GHG reductions relative to gasoline. The 
EPA has estimated a distribution for the GHG balance of corn ethanol, and uses the 
mean value to test whether corn ethanol meets the 20% GHG reduction target of EISA. 
Perhaps a more meaningful metric to evaluate the GHG performance of corn ethanol is 
the probability that corn ethanol meets the target. Moreover, EPA does not account for 
the fact that LUC emissions from corn ethanol occur early in the life cycle, thereby 
constituting a greater CRF impact than the GHG balance conveys. The combination of 
the climate model and the statistical model addresses both the issue of evaluation 
metric and emissions timing. 
The results show that from an LCA perspective, i.e., how much does ETF increase the 
GHG balance, ETF is fairly insignificant for LUC values of 30 g CO2e/MJ or less and 
impact time frames of 50 years or higher. The small impact of ETF (2-13 percent points) 
is particularly apparent when considering the large uncertainties of LUC itself. It must be 
noted that other analyses (apart from EPA) estimate much larger LUC uncertainties 
than EPA (ranging within an order of magnitude). 
However, ETF is much more significant from a policy perspective. Since EPA estimates 
that corn ethanol barely meets the EISA target (based on its mean value), even a small 
a skew in the distribution can significantly reduce the probability of meeting this target. 
Based on my model, ETF reduces this probability from 53% to 7-29% depending on the 
chosen impact time frame. Thus, switching from the “mean GHG balance” to “probability 
of meeting the target” amplifies the influence of ETF from 2-13 percent points to 24-46% 
in reduced probability of meeting the EISA target. Furthermore, ETF reduces the 
probability of corn ethanol emitting equal or less GHG emissions than gasoline from 
99% to 71-98%. 
The results presented here are subject to limitations. The distribution of total corn 
ethanol emissions that was generated using random number generation and Monte 
Carlo simulation is only a coarse reproduction of EPA estimates. The 97.5th percentile 
value of the final GHG balance distribution has a significant error relative to the original 
EPA estimates. Particularly, the WTW emissions distribution is uncertain because little 
data was available. This analysis could be improved if EPA sample distributions would 
be available. Furthermore, the bin size could be increased from currently 600 to the 
number of samples (10,000) to avoid the coarse PDFs, and to obtain more precise 
Monte Carlo simulation results. 
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Literature survey of OH and stratospheric CH4 removal processes 

Atmospheric CH4 is oxidized through a series of reactions including, primarily, OH. The 
chain reaction initiated via CH4 and OH is described in detail in the literature (91). Since 
OH is highly reactive and has a very short atmospheric residence time (a few seconds), 
it is difficult to measure its concentration throughout the globe. In order to characterize 
atmospheric OH, methyl chloroform (CH3CCl3 or MCF) is often used as a trace species, 
which has relatively well-known anthropogenic sources. Models can help quantify the 
abundance of OH in the atmosphere because MCF has a longer residence time than 
OH, and it is removed only by reaction with OH (185). MCF has been measured since 
1978 revealing a steep increase until it reached a maximum in 1992, after which it 
declined rapidly because it has been phased out under the Montreal Protocol to protect 
the ozone layer (185). However, there is uncertainty regarding the precise amounts of 
MCF emitted to the atmosphere, e.g., due to potentially delayed MCF emissions relative 
to industry accounting (186). Uncertainty of MCF production is a major contributor to 
uncertainty in global OH abundance and thus CH4 lifetime. 
Prinn (186) supports the theory that industry emissions estimates were under-reported 
or at least delayed into the 1990s, which means that given observed MCF 
concentrations, higher or delayed MCF emissions suggest higher OH concentrations 
during this period. Given the observed CH4 concentration during the same time, CH4 
emissions were relatively high in that period, which suggests CH4 lifetime is relatively 
small (9.3 ± 0.7 years) in order to fit model simulations and measurements. Prather 
dissertation. (187) estimate CH4 lifetime based on Monte Carlo simulations of an 
atmospheric/tropospheric chemistry model. The model includes abundances, growth 
rate, and multiple sinks for different species as parameters, and suggests a CH4 lifetime 
of 9.1 ± 0.9 years. Holmes dissertation. (90) simulate CH4 lifetime over the 1997-2009 
period using three different chemical transport models, and then use the results to 
construct a parametric model to predict CH4 lifetime since 1980. The authors focus on 
the tropospheric OH sink, which is the largest, and has the greatest impact on lifetime 
variability (other sinks include oxidation in the stratosphere, oxidation by tropospheric 
chlorine, and uptake into soil). Their CH4 lifetime ranges from 8.5-10.1 years, which is 
within the range of "contemporary tropospheric chemistry models (ACCMIP)”, i.e., 9.7 ± 
1.5 years (188) and 9.3 ± 0.9 yr (189). A range of 9.1-9.7 years is chosen in this work 
based on the best estimates from the above studies. 

  



 

B-2 

Estimation of oil CH4 EFs in Table 4 

 Total CH4 emissions for a base year were given in the EPA (64) and Wilson dissertation. 
(121, 122) studies, and the EFs were calculated using total oil produced in the same 
year as the total emissions. The EPA study estimated CH4 emissions from the NG and 
oil systems separately. Assuming 65% vol-% CH4 content in associated NG (see Table 
2), the EPA EF suggests that 2% of gross NG production from oil wells is released to 
the atmosphere in 2011, which includes both venting and fugitives (64). Note that this 
number is one order of magnitude smaller than the DOE estimate (section 4.2.2). The 
Wilson dissertation. studies reported total CH4 emissions occurring at GOM platforms, 
which produce both NG and oil. EFs for individual processes at the oilrigs were also 
provided on a component-day basis (not per barrel oil or BCF NG), but component-day 
activity data was not documented. This data was also not available upon request. 
Hence, allocation of emissions between NG and oil was needed to calculate EFs for oil. 
Two different allocation methods were used to yield a range of EFs: (i) allocating 
emissions according to the oil-to-NG emissions ratio from the EPA 2012 study (low 
estimate), and (ii) allocating all reported emissions to oil (high estimate). Detailed 
information about the allocation process and data is provided in Table B - 1. GOM total 
CH4 emissions (2010) are based on activity data reported from platform operators and 
EFs from EPA authors. The emissions are likely underestimated because only about 
75% of GOM platform operators (3,026 platforms (122) out of ~4,000 active platforms in 
2006 (190)) reported activity. Furthermore, allocating all emissions to NG would yield a 
NG FE rate of only 0.9%, which is small compared to most recent U.S. estimates in 
Table 3. This suggests that the EFs used in the Wilson dissertation. study (summarized 
in Table 4) are either very small, or total production was underreported by the platform 
operators, thus leading to lower total emissions in the Wilson dissertation. study. Tier 1 
EFs were readily available in the IPCC study for developing and developed countries. 
The largest fraction of oil EFs are due to extraction activities. For instance, according to 
EPA (64), oil refining and transport account for only 1% and 0.3% of total CH4 emissions, 
respectively. 
Table B - 1: Allocation of CH4 emissions to oil and NG based on Wilson dissertation. (121, 
122) 

 Unit 2004 2010 
Reported emissions MT CH4 573,753 422,707  
 Gg CH4 574 423 
GOM FE, gas only % 0.94 1.47 

 

GOM EF, oil only Gg CH4/barrel 1.10E-06 9.99E-07 
Emissions from oil allocated Gg CH4 76.3 56.2 
GOM EF, oil allocated Gg CH4/barrel 1.46E-07 1.33E-07 
Platforms - 2873 3026 
Emissions ratio oil to NG (2005) % 13.3  
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Table B - 2: Calculation of flaring efficiency based on Wilson dissertation. (121, 122) 

0.126 lb CH4/MMBtu flared gas 

57.2 g CH4/MMBtu flared gas 

 3,165,891,305  g CH4/Tg flared CH4 

 0.00032  Tg CH4/Tg flared CH4 

0.032% uncombusted CH4 to atmosphere 

Field measurements in Alberta indicated only 60-80% combustion efficiencies for 
industrial flares (191). The major variables affecting flare performance are flare gas 
composition, gas flow rate, wind speed, steam or air rate for assisted flares, flare tip 
size, design, configuration, exit velocity, and pilot stabilization. A recent experimental 
flare test study using industrial scale flares indicates 95-98% flaring efficiency with flare 
tips ranging from 3-6 inches in diameter (192). Flaring efficiency decreases with greater 
crosswind speed and pipe diameter and lower fuel mass flow (fuel exit velocity). Pipe 
diameter of >6 inches are possible in Canada (and up to 12 inches in other countries) 
because greater velocity means greater flaring capacity, which is needed in regions 
where less NG is transported to market (193). The larger pipe diameter causes an 
efficiency drop. Fuel mass flow may vary due to fixed capacity of installed NG 
infrastructure (NG equipment capacity is optimized for a given NG flow), i.e., mass flow 
at the flare tip is small when production is low and less NG is sent to flare. If NG flow 
drops while maintaining pipeline pressure, fuel mass flow in flare drops, which causes 
efficiency drop. Furthermore, flaring efficiency may decrease by corroding of pipes due 
to high NG sulfur content (193). As a result, the above flaring efficiency of 95-98% may 
be considered a high estimate compared to what is obtained in practice. 
As discussed in section 4.2.2, flaring is particularly high in developing countries due to 
missing infrastructure to transport and process the associated NG, and sell it to the 
market (129, 130). Figure B - 1 illustrates this phenomenon more clearly by showing the 
ratio of NG flaring to oil production. Countries with high NG flaring relative to oil (and 
therefore associated NG) production make relatively little use of their associated NG, 
likely due to the inability to capture this gas. No OECD country is among the Top 10 
flaring countries in Figure B - 1, likely due to existing infrastructure to capture associated 
NG (129, 130). As described in more detail in section 4.3, the ratio of NG flaring to 
produced NG over time is used to estimate flaring amounts for years prior to the start of 
flaring observations in 1994. 
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Figure B - 1: Ratio of NG flaring to oil production as an indicator of missing infrastructure 
to transport and process associated NG based on data from Elvidge dissertation. and 
EIA (128, 134). 
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EFs of coal emissions literature review (section 4.2.3) 

Emissions factors from coal mining depend mainly on the CH4 content of coal. Global 
Tier 1 EFs are provided where country-specific EFs are not available. For comparison, 
the 2009 EPA estimate for the U.S. is 12 m3 CH4/t weighted average (range is 4-60 
m3/t) based on state-level data (148). This includes avoided emissions from CH4 
recovery and utilization, and excludes post-mining and abandoned mine emissions, 
which are shown in Table B - 4 and Table B - 5. 
Table B - 3: CH4 emissions factors for underground coal production in major coal 
producing countries, and Tier 1 emissions factors globally (120). Units are m3 CH4/t coal. 

 
Low High 

Former Soviet Union    17.8    22.2 
U.S.    11.0    15.3 
Germany    22.4    22.4 
UK    15.3    15.3 
Poland      6.8    12.0 
Czech Republic    23.9    23.9 
Australia    15.6    15.6 
Tier 1 recommended 10 25 

Average U.S. post-mining emissions are 1.5 m3/t (underground mining) and 0.2 m3/t 
(surface mining), and abandoned mine emissions are 1.3 m3/t (Table B - 4). The 
recommended Tier 1 post-mining emissions in IPCC range from 0.9-4.0 m3/t (120), 
which are due to coal processing, transportation, and final crushing and pulverization at 
the coal plant (131). Tier 1 abandoned mines EFs depend largely on the number, dates, 
and types (vented, sealed, flooded) of mines closed, of which little data is available 
(120).  
Table B - 4: Estimates of U.S. coal post-mining CH4 emissions (64). 

 Units 1990 2005 2010 Average 
Emissions 

UG Million m3 CH4  550   457   403  
 Surface  139   154   152  
 U.S. underground coal production 

UG Million MT   385   296   265  
 Surface  548   730   719  
 Emissions Factors 

UG m3 CH4/MT coal  1.43   1.54   1.52   1.50  
Surface  0.25   0.21   0.21   0.23  

As a proxy for global abandoned mines emissions, Table B - 5 calculates an EF based 
on reported total U.S. abandoned mines emissions and coal production over the period 
1990-2010. The EF is in the order of only 5-10% compared to coal mining activities. 
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This is likely a low estimate with respect to the period 1980-2011 given that CH4 
recovery from U.S. abandoned mines was substantial over the last decade (64, 194). 
U.S. post-mining and abandoned mine emissions in the EPA 2012 GHG inventory are 
10% and 7% of total CH4 emissions from the coal industry (64). Uncertainty range in the 
EPA 2012 GHG inventory is -19% to +30% (95% C.I.). 
Table B - 5: Estimates of U.S. abandoned coal mine CH4 emissions (64). 

 Units 1990 2005 2010 Average 
Emissions 

Abandoned UG 
Million m3 CH4 

 430   499   543  
 Recovered & used  -     104   188  
 Net emissions  430   394   355   

Emissions Factors 
Abandoned UG 

m3 CH4/MT coal 
 1.1   1.7   2.0  

 Recovered & used  -     0.3   0.6  
 Net emissions  1.1   1.4   1.5   1.3  

Coal-bed methane estimates are accounted separately from CH4 recovery (134). 1989 
CBM production is equal to 50% of coal mine CH4 emissions in the same year (2.6 
billion m3 CBM). According to EPA, 1.1 billion m3 produced from a single mine in 
Alabama using gob wells over 6 years at a 30-40% capture rate at this mine (131). 2010 
CBM production is equal to 1,400% of coal mine CH4 emissions in the same year (134). 
Recent CBM production may be an order of magnitude greater than coal mine CH4 
emissions because CBM can be produced at much larger rates than coal on a per mine 
basis, i.e., the annual coal seam volume tapped for CBM production is larger than that 
for coal production. Vertical wells are used to drain CH4 from coal beds 10 years prior to 
mining in order to produce CBM (131). 
China is the world’s largest coal producer accounting for 53% of global underground 
coal production over 1980-2010 (134). Since a Chinese EF is not listed in (120), further 
research was necessary. EPA provides average EFs for state-owned coal mines in all 
Chinese provinces, which account for about one third of Chinese coal production in 
1994 (132, 133). Average EFs range from 2 to 38 m3/t by province with a weighted 
average ranging from 10 to 12 m3/t. The majority of produced coal in 1994 came from 
low CH4 emissions mines. While coal production shifted among provinces from 1996 to 
2009, the weighted average EFs did not change significantly (11.0 and 11.7 m3/t in 1994 
and 2009, respectively). The share of underground production is 90% (133) as opposed 
to 95% elsewhere (132). According to Raven Ridge Resources, the contractor for the 
above EPA report, individual province level EFs are trustworthy because this 
information is critical for safety reasons, i.e., avoiding hazardous mine CH4 
concentrations (135). 
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EFs and data for coal emissions inventory methods (section 4.4.2) 

International hard and lignite production data were used for underground and surface 
production, respectively, unless if better data was not available. Abandoned mines 
emissions were included only if countries reported them. Estimated emissions mitigation 
is in the order of 7% of emissions globally (195, 196), but U.S. CH4 recovery increases 
from 8% to 26% from 1990-2010 (64, 148). A challenge in establishing accurate 
emissions inventories is the lack of data or anecdotal nature of reported data. For 
example, China and India, among other countries, have extensive uncontrolled fires in 
their coal mining regions which may add to fugitive emissions, but are not included in 
the estimates (197). A database listing global coal CH4 recovery projects with data on 
mitigated CH4 exists online (194), but only 14 out 315 listed projects document the 
amount of CH4 drained and/or vented. Table B - 6 summarizes underground and 
surface mining by country for major coal producing countries. 
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Table B - 6: Literature survey of underground and surface mining of major coal producing countries 
 Percentage of world 

primary coal 
production during 
1980-2010 

Underground 
mining 

Surface 
mining 

Year, if 
available 

Source Additional source notes 

China 28.9% 90% 10% - (133), 
(198) 

Reserves mineable in opencast pits are relatively low, and most of the mining is 
pursued in underground mines 

United States 18.7% 31% 69% 1990-2009 (148) - 

Germany 6.6% Hard coal/lignite split - (198), 
(199) 

- 

India 6.5% 10% 90% 2010 (198), 
(200) 

25%/75% split in 2004 

Russian 
Federation 

6.4% 31% 69% 2010 (201) - 

Australia 5.2% 23% 77% - (198), 
(201) 

43%/57% hard coal split in 2002, and all lignite is surface mining (that's 34.5% 
underground of total in 2002) 

South Africa 4.1% 47% 53% 2002 (198) Nearly half of the production comes from surface mining operations (2010) 

Poland 4.0% Hard coal/lignite split - (199), 
(202) 

Poland’s lignite deposits are exclusively mined in opencast mines. All hard coal is 
deep mined at an average working depth of some 600 metres. 

Kazakhstan 2.4% see notes - (198) By the end of 2002, many high-cost underground coal mines have been closed, and 
its more competitive surface mines have been purchased, and are now operated 

Ukraine 2.0% 98% 2% - (198) Only three out of 149 active coal mines are surface mines 

Czech 
Republic 

1.8% Hard coal/lignite split - (202) - 

Indonesia 1.7% 5% 95% - (198) Coal is almost entirely extracted in opencast operations 
Canada 1.3% 5% 95% - (198), 

(203) 
Coal mining in the western provinces is confined to opencast pits. Over 90% of all 
deposits are concentrated in the western provinces of Saskatchewan, Alberta and 
British Colombia. The Canadian coal industry is privately owned. Output is mainly 
from surface mines. 

United 
Kingdom 

1.3% 65% 35% 1980-2011 (204) - 

Greece 1.1% see notes - (199) Lignite is mostly mined […] exclusively in opencast mines. 

Turkey 1.0% see notes - (199) Almost 90% of Turkey’s total lignite production is from opencast mines. 

Romania 0.8% see notes - (199) 95% of lignite deposits are situated in the Oltenia mining basin and more than 80 % 
of these can be mined in opencast mines. The remaining lignite deposits have low 
economic potential, explaining why the extraction in most other areas has stopped. 

Spain 0.6% see notes  - (199) Over 60% of the hard coal is mined in opencast mines 
Brazil 0.1% 35% 65% 2005 (203) - 
Venezuela 0.1% 5% 95% - (198) Most of the coal is mined in opencast pits 
Slovenia 0.1% 100% 0% - (202) - 
Slovakia 0.0% 100% 0% - (202) - 
Sum 94.7%  
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Country-specific activity data used in the emissions inventory 

British Petroleum (BP) data is available for 49 countries, the remaining countries being 
grouped in world regions. Oil, NG, and coal production statistics start in 1965, 1970, and 
1981, respectively (205). The complete International Energy Agency/OECD database is 
available through paying a fee (206). E-books are free, but the temporal resolution is 
sparse (207). BP and IEA/OECD data mostly matches EIA data, and the largest 
observed discrepancies are in the order of 10-20%. 
Country-specific FF production and consumption data was analyzed from 1980-2010. 
For coal, the average difference between production and consumption in a given 
country is up to 75% of production (Australia, Indonesia) due to import and export 
activities. The difference worldwide weighted by production is 10%, which does not 
account for larger differences in individual years and countries. For NG, the average 
difference is up to 93% of production (Norway, Turkmenistan, Algeria), and worldwide 
weighted by production is 22%. For oil, the average difference is well above 50% of 
production for most countries, and worldwide weighted by production is 56%. 
Table B - 7: List of countries included in the emissions inventory using country-specific 
EFs. Percentage refers to fraction of global production (coal: primary coal production). 

 
NG Oil Coal 

 
Country Percentage Country Percentage Country Percentage 

1 United States 22.9% United States 13.4% China 30.0% 
2 Russia 24.7% Saudi Arabia 11.9% United States 18.7% 
3 Canada 6.0% Russia 12.5% Germany 6.6% 
4 Netherlands 3.5% Iran 4.6% India 6.1% 

5 
United 
Kingdom 2.9% Mexico 4.4% Russia 6.4% 

6 Algeria 2.7% China 4.3% Australia 5.2% 
7 Indonesia 2.3% Venezuela 3.6% South Africa 4.1% 
8 Iran 2.4% Canada 3.5% Poland 4.0% 

9 Norway 2.2% 
United Arab 
Emirates 3.2% Kazakhstan 2.4% 

10 Saudi Arabia 1.9% United Kingdom 3.1% Ukraine 2.0% 
11 Uzbekistan 2.1% Norway 3.0% Czech Republic 1.8% 
12 Mexico 1.5% Nigeria 2.7% Indonesia 1.7% 
13 Malaysia 1.4% Kuwait 2.6% Canada 1.3% 

14 
United Arab 
Emirates 1.4% Iraq 2.4% 

United 
Kingdom 1.3% 

15 China 1.4% Algeria 2.0% Greece 1.1% 
16 Turkmenistan 2.1% Libya 2.0% Turkey 1.1% 
17 Argentina 1.2% Indonesia 1.9% Romania 0.8% 
18 Australia 1.2% Brazil 1.8% Spain 0.6% 
19 Qatar 1.2% Egypt 1.1% Brazil 0.1% 
20 Romania 1.0% Angola 1.1% Venezuela 0.1% 
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NG Oil Coal 

 
Country Percentage Country Percentage Country Percentage 

21 Venezuela 1.0% Oman 1.0% Slovenia 0.1% 
22 Pakistan 0.9% Qatar 1.0% Slovakia 0.0% 
23 Egypt 0.9% India 1.0% 

  24 India 0.8% Argentina 1.0% 
  25 Italy 0.7% Malaysia 0.9% 
  

26 
Trinidad and 
Tobago 0.7% Australia 0.8% 

  27 Thailand 0.6% 
    28 Germany 0.9% 
    29 Ukraine 0.8% 
    30 Nigeria 0.5% 
    31 Brunei 0.4% 
    32 Oman 0.4% 
    33 Bangladesh 0.4% 
    34 Libya 0.3% 
    35 Bahrain 0.3% 
    36 Kuwait 0.3% 
    37 Poland 0.2% 
    Sum 

 
96.2% 

 
90.8% 

 
95.4% 
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Procedure for scaling EDGAR grid maps 

Individual grid maps for NG, oil, and coal in NetCDF file format (94) were imported to 
Matlab. A 1,800 x 1 array and a 1 x 3,600 array was generated in Matlab, with each row 
and column including and signifying the number of the latitude and longitude position of 
a 0.1° x 0.1° world grid. The next step was generating a matrix representing this 0.1° x 
0.1° world grid, which identifies the country belonging to each grid cell. This is important 
for scaling the grid maps where each country has a different scaling factor. A country 
identifier text file was provided by EDGAR (85), which included latitude and longitude 
(i.e., a rectangle on a world grid), the area percentage of the particular country in the 
rectangle (i.e., bordering countries share the same rectangle), and the country identifier 
code (latitude, longitude, and percentage were separated into one file “numdata”, and 
the country identifier code into one file “country” in order to avoid Matlab data type 
conflicts when using strings and numerics). EDGAR’s country identifier data was used, 
and the latitude and longitude entries with the associated grid rows and columns from 
the aforementioned 1,800 x 1 and 1 x 3,600 arrays were replaced 
(convert_numdata_lat.m and convert_numdata_lon.m; this converts numdata to 
numdata_matrix). Next, a 1,800 x 3,600 matrix was created for each country to be 
scaled (see Table B - 7). In each country matrix, every cell belonging to this country 
contains a value between 0 and 1, where 1 is a cell belonging to this country, decimal 
values representing the percentage of a borderline country described above, and 0 for 
all other cells (make_country.m). A similar procedure was conducted for adding country 
identifiers to grid cells referring to maritime areas, which were not included in EDGAR’s 
country identifier file using instead the VLIZ Maritime Boundaries Geodatabase Version 
v6.1_20110512 (add_maritime.m). The resulting grid maps are contained in 
gridded_NG_countries.mat, gridded_oil_countries.mat, and gridded_coal_countries.mat. 
For each FF source (NG, oil, coal) and year, each country grid map was scaled 
individually in Matlab (convert_emissions_coal.m, convert_emissions_oil.m etc.) using 
the scaling factors generated in Excel spreadsheets (Global CH4 emissions from 
FFs.xlsx). The scaling factors were generated by calculating the relative difference 
between the total annual CH4 emissions developed in section 4.3 (for each FF source, 
country and year) and EDGAR (note this is EDGAR v4.2). For each FF source (NG, oil, 
coal) and year, all scaled country grids were added along with the remaining un-scaled 
countries from EDGAR to yield a single grid map containing the emissions from all 
countries. There were two major challenges in obtaining the scaling factors due to 
missing or erroneous data in the EDGAR database. First, the global sum of the country 
totals in the EDGAR coal emissions spreadsheet does not match the totals of the grid 
maps indicating that the individual country emissions in the spreadsheet are erroneous. 
Second, country totals for oil and natural gas are aggregated in the EDGAR 
spreadsheet, and need to be disaggregated to calculate scaling factors for oil and NG 
individually. The EDGAR country totals for all three FF sources were determined in a 
“re-engineering” process by using the emissions from the grid maps in combination with 
national identifier maps, and then checking the world totals with the numbers provided 
by EDGAR. 
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GFED daily grid maps were first aggregated into monthly grid maps to yield an annual 
cycle defined by monthly total values (aggregate_daily_to_monthly.m). Next, the 
aggregated monthly grid maps were scaled to match annual totals from EDGAR 
(ag_waste_Lori_scale.m). In order to maintain compatibility between Matlab grid map 
files and NOAA’s CT-CH4, the 0.1° x 0.1° grid resolution was compressed to 1° x 1° grid 
(aggregate_to_1x1.m), and converted to text files. 
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Annual NG well sample analysis results, pipeline composition 
standards, and chemical properties of NG 

Figure B - 2 shows hydrocarbon composition of the 6,109 samples from 1948-1997, the 
period over which all hydrocarbon and N2 and CO2 data was available. The large inter-
annual variation is likely due to differences in sampling sites each year and/or small 
sample size in particular years, rather than composition changes over time. For instance, 
the CH4 drop in 1960 is partially due to only 15 samples in that year. Other components 
not shown, e.g., oxygen and argon, are generally below 1 mol-% of NG. 

 
Figure B - 2: U.S. well sample gas composition analysis results by year using BLM data 
(104). 

In order to check whether the mass balance calculations in sections 4.2.1 and 4.4.1 are 
reasonable, the energy content of the resulting dry gas composition can be compared 
with literature values of pipeline quality standards. As described above, NG from the 
wellhead or field facility meets pipeline quality standards in only few cases (99). Mostly, 
NGLs and other components are separated in a processing plant, which changes the 
composition of the NG. Condensates are often removed from the gas stream at the 
wellhead through the use of mechanical separators. NGL rich gas is often found in 
deep-water GOM and the Rocky Mountain area, which must be processed to meet 
pipeline company standards. Standards include a specific energy content range, e.g., 
1,035 Btu per cubic feet, +/- 50 Btu (99). Other sources give a wider range including 950 
- 1,150 Btu/scf (157, 208). To achieve the standards, processing facilities sometimes 
blend some heavy hydrocarbons into the gas stream (extract less NGLs) in order to 
bring it within acceptable Btu levels and/or absorb some of the NGLs if their market 
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prices are too low. The quantity of NGLs and other byproducts actually produced 
depends on current market prices (99). 
Table B - 8: Chemical properties of NG components used for conversion from mol-% to 
wt-% (209, 210). 

Conversion metric Units CH4 C2H6 C3H8 C4H10 CO2 N2 
Molar mass g/mol 16.04 30.07 44.1 65.3 32 28 
Gas densitya (ρ) g/m3 680 1,282 1,910 2,510 1,870 1,165 
Energy content Btu/cft 1,011 1,783 2,572 3,603 n/a n/a 

a At 1.013 bar and 15 °C 
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Global NG industry C2H6 emissions for all FE rate and C2H6 scenarios 

 
Figure B - 3: Global NG industry C2H6 emissions based on FE rates applied gobally and 
constant over time (see section 4.4). Dotted, dashed, and solid lines are high, medium, 
and low NG C2H6 content scenarios. 
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Country-level prior emissions differences between this work and 
EDGAR 
Table B - 9: Country-level prior emissions differences between this work and EDGAR (85) 
for NG, oil, and coal. Results are differences relative to EDGAR, i.e., positive percentage 
values indicate higher emissions in this work compared to EDGAR. The NG column 
assumes a 3% FE rate applied globally. 

NG Oil Coal 
United States 63% United States 71% China -10% 
Russia -22% Saudi Arabia 14% United States -4% 
Canada 316% Russia 32% Germany 41% 
Netherlands 552% 

  
India 4% 

United Kingdom 95% Iran -32% Russia -13% 
Algeria 28% Mexico 6% Australia 30% 
Indonesia 15% China 12% South Africa 44% 
Iran -29% Venezuela 12% Poland -55% 
Norway 697% Canada -63% Kazakhstan -16% 
Saudi Arabia 53% United Arab Emirates 24% Ukraine 171% 
Uzbekistan 3% United Kingdom 266% Czech Republic 289% 
Mexico -32% Norway 46% Indonesia -57% 
Malaysia -8% Nigeria -52% Canada 4% 
United Arab Emirates 58% Kuwait 17% United Kingdom 22% 
China -44% Iraq -28% Greece 6% 
Turkmenistan 10% Algeria -40% Turkey -8% 
Argentina -9% Libya -31% Romania 31% 
Australia 138% Indonesia -27% Spain -10% 
Qatar 26% Brazil 26% Brazil -37% 
Romania -28% Egypt -15% Venezuela -87% 
Venezuela -24% Angola -46% Slovenia 41% 
Pakistan -55% Oman -37% Slovakia 579% 
Egypt -6% Qatar -16% 

  India -11% India -19% 
  Italy 1% Argentina 3% 
  Trinidad and Tobago 77% Malaysia -22% 
  Thailand 35% Australia -9% 
  Germany 27% 

    Ukraine -80% 
    Nigeria 3% 
    Brunei 169% 
    Oman -16% 
    Bangladesh -2% 
    Libya -27% 
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NG Oil Coal 
Bahrain 92% 

    Kuwait 26% 
    Poland -37% 
    

      Total 10% Total -4% Total -2% 
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Oil and coal emissions grid maps 

 
Figure B - 4: Grid maps (1° x 1°) for oil CH4 emissions from this work (left) in comparison 
with data from EDGAR (94) (right) for the year 2008. Note that the legend units are in kg 
CH4/yr/grid cell on a logarithmic scale (numbers indicating exponents to base 10). 

 
Figure B - 5: Grid maps (1° x 1°) for coal CH4 emissions from this work (left) in 
comparison with data from EDGAR (94) (right) for the year 2008. Note that the legend 
units are in kg CH4/yr/grid cell on a logarithmic scale (numbers indicating exponents to 
base 10). 
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Observational data and comparison of box-model and CT-CH4 results 

 
Figure B - 6: Observational CH4 (blue, left axis) and C2H6 (red, right axis) data from NOAA 
(83) and UC-Irvine (via personal communication with Lori Bruhwiler at NOAA; see (84) for 
details), respectively, and trends (dashed lines) used for box-model simulations. 
Uncertainty of global average CH4 concentrations is 1.1 ppb (one std. dev.) averaged 
across years (165). Corresponding C2H6 data was not available at time of dissertation 
submission. 

Box-model simulations were performed using the same prior emissions dataset as in a 
previous global inversion study using CT-CH4 (39) in order to analyze how well the box-
model reproduces the globally averaged 3D-simulation results. The global and annual 
averages of the observational data used in CT-CH4 were applied in the box-model. 
Figures Figure B - 7 and Figure B - 8 show that the total posteriors, the inter-annual 
variations as well as the allocation among sources is well reproduced in the box-model. 
The box-model posteriors are slightly higher than CT-CH4 posteriors because Figure B - 
7 excludes the ocean source, which would another 10-15 Tg CH4/yr. The posterior 
uncertainties in the box-model are significantly larger than in CT-CH4, which was 
expected given that there is more observational data in the 3D model to constrain each 
source. As shown in Figures Figure B - 9 and Figure B - 10, the box-model also 
provides a good reproduction of the long-term trends of concentrations, while seasonal 
variations cannot be represented, which was expected as well. Figure B - 10 shows that 
despite using reasonable observational uncertainties (+/- 20 ppb), the box-model 
posteriors will closely match the global budget, i.e., the measurements. This was also 
expected because posteriors in CT-CH4 are the result of minimizing differences between 
priors and measurements at all sites, which causes measurements at some sites to be 
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weighted less. Since the box-model works with only a single globally averaged 
observation per year, such weighting scheme is absent in the box-model. 

 
Figure B - 7: Globally averaged CT-CH4 inversion results (graph from (39)), which uses an 
approximate CH4 lifetime τ=9.45. Note that the ocean source (~10-15 Tg CH4/yr) is not 
included in this graph. 

 
Figure B - 8: Box-model inversion results with CH4 lifetime τ=9.45, observational 
uncertainties of +/- 20 ppb, and using the same prior emissions dataset as in the CT-CH4 
inversion (see Figure B - 7). 
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Figure B - 9: Globally averaged CT-CH4 forward modeling results (graph from (39)), which 
uses an approximate CH4 lifetime τ=9.45. 

 
Figure B - 10: Box-model forward simulation results using the posterior emissions from 
the box-model inversion (see Figure B - 8) for a range observational uncertainties.  
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Linear optimization problem for isotope mass balance 

Eq. 36 and Eq. 37 were re-arranged to give: 

!!! =
!!×! − !!"#× ! − !!! − !!!×!!!

!!! − !!"#
 

Eq. B - 1, 

!!"# = ! − !!! − !!! Eq. B - 2, 

 

where units for z and ! are in Tg/yr and ‰, respectively. The optimization problem is to 
minimize Eq. B - 1, such that: 

!!! ≥ 25 Eq. B - 3, 

−38 ≥ !!! ≥ −42 Eq. B - 4, 

−59 ≥ !!"# ≥ −63 Eq. B - 5, 

−22 ≥ !!! ≥ −26 Eq. B - 6. 

Eq. B - 3 ensures that there are only two unknowns in the problem of two linear 
equations with δq and Q known as described in section 5.2. The solutions in Table 18 
were found using the Generalized Reduced Gradient method in Microsoft Excel Solver. 
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Illustration of the box-model mass balance approach 

 
Figure B - 11: Qualitative illustration of mass balance approach using inversion box-
model results. Priors and posteriors on the left represent a single year from the box-
model. FF prior and posterior uncertainties are nearly zero, and FF estimates represent 
conservative (i.e., low) estimates for oil and coal (see Chapter 4) and one of several 
modeled scenarios for NG. Reducing the NG FE rate scenario will reduce the total prior 
emissions, thereby reducing the mismatch between total priors and total observation 
based posteriors. The combined prior non-FF uncertainties on the right are the sum of 
Ag/waste, natural, and BB uncertainties as described in Figure 17 and Table 16. For a 
given FF scenario, the associated NG FE rate is too high (as a best estimate) if the prior 
mean is greater than the posterior mean. For a given FF scenario, the associated NG FE 
rate is too high (as an upper bound) if the prior lower bound is greater than the posterior 
mean. Note that both the best estimate and upper bound NG FE rates estimated here are 
skewed towards higher values because conservative oil and coal EFs were chosen in 
Chapter 4. 
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Additional box-model and CT-CH4 results 

 
Figure B - 12: Box-model C2H6 inversion results using global, annually constant NG FE 
rates and low C2H6 hydrocarbon gas content. The low and high budget scenarios refer to 
C2H6 measurements scaled (Tg/ppt) using (161) best estimate and uncertainties, 
respectively. Negative posterior emissions indicate FF priors are too high to 
accommodate non-fossil emissions in the budget. 
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Figure B - 13: Prior minus posterior C2H6 emissions for different years and global C2H6 
budgets and low C2H6 hydrocarbon gas content. Positive values indicate incompatibility 
of NG FE rates with measurements and priors. Upper panel: prior mean – posterior mean 
(best estimate NG FE). Lower panel: prior lower bound – posterior mean (upper bound 
NG FE). 
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Figure B - 14: Box-model CH4 inversion results including a global natural seepage 
emissions source of 40 Tg CH4/yr. 

 
Figure B - 15: Prior minus posterior CH4 emissions for different years including a global 
natural seepage emissions source of 40 Tg CH4/yr. 
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Figure B - 16: Box-model C2H6 inversion results for medium C2H6 hydrocarbon gas 
content including a global natural seepage emissions source of 2 Tg C2H6/yr. 

 
Figure B - 17: Prior minus posterior C2H6 emissions for different years and medium C2H6 
hydrocarbon gas content including a global natural seepage emissions source of 2 Tg 
C2H6/yr. 
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Table B - 10: Summary of possible NG FE rates (in % of production) based on box-model 
inversion δ13C-CH4 isotope mass balance under different scenarios including a natural 
seepage source of 40 Tg CH4/yr and 2 Tg C2H6/yr. The isotope results assume that 80% of 
seeped CH4 is isotopically indistinguishable from FFs (145). 
 CH4 C2H6 

(medium C2 content) 
δ13C-CH4 

Global budget Low High Low High - 
Best estimate 
(mean non-FF priors) 

2010 <1 1 <1 <1 1 
2000 <1 1 <1 <2 <3 
1990 <1 <2 <1 5 <3 

High confidence 
(low non-FF priors) 

2010 7 9 <1 3 6 
2000 9 >9 <1 4 <9 
1990 >9 >9 <3 <9 >9 

 

 
Figure B - 18: CT-CH4 global average forward modeling results for three NG FE scenarios 
with decreasing FE rates over time as well as NOAA’s measurements (165). 
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Figure B - 19: Simulated CH4 concentrations across 41 latitudinal bands and time 
compared with NOAA’s measurements (174). 

 
Figure B - 20: CarbonTracker-CH4 simulated CH4 concentration contributions from 
agriculture/waste and wetland sources at two sites of similar latitute as Barrow Alaska in 
Figure 33.

!90$ !30$ 0$ 30$ 90$

!90$ !30$ 0$ 30$ 90$
1,650&

1,700&

1,750&

1,800&

1,850&

1,900&

1,950&

2,000&

2,050&

2,100&

+90& +30& 0& 30& 90&

1,650&

1,700&

1,750&

1,800&

1,850&

1,900&

1,950&

2,000&

2,050&

2,100&

+90& +30& 0& 30& 90&

CH
4$c
on

ce
nt
ra
,o

ns
$(p

pb
)$

La,tude$(Degrees)$

High$NG$FE$rate$scenario$

Medium$

Low$

Observa,on$

Year$1995$ 2000$

2005$ 2010$

400#

500#

600#

700#

800#

900#

1,000#

2001# 2002# 2003# 2004# 2005# 2006# 2007# 2008# 2009# 2010# 2011#

CH
4$c
on

ce
nt
ra
,o

ns
$(p

pb
)$

Year$

Summit,$Greenland$(72.6°$N)$

PallasBSammaltunturi,$Finland$(68.0°$N)$

Agriculture/waste$

Wetlands$
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Matlab code for emissions timing model (Chapter 2) 

Note: Matlab file imports emissions data generated in Excel spreadsheets using 
methods described in Chapter 2, but not shown here. 
 
% *********************************************************** 
% *                                                         * 
% *          Emissions timing model for Biofuels            * 
% *                                                         * 
% *                  Stefan Schwietzke                      * 
% *                                                         * 
% *              Carnegie Mellon University                 * 
% *                                                         * 
% *  Equations for estimating RF from literature sources    * 
% *             as described in Chapter 2                   * 
% *                                                         * 
% *********************************************************** 
  
% +++ Basic formulas used in the model+++ 
% + 
% + RF_biofuel(t) = Radiative forcing due to biofuel emissions in year t [W/m2] 
% +  
% + add_CO2_conc(t)  = Additional atmosph. CO2 concentration due to biofuel emissions in 
% + year t [ppmv] 
% +  
% + RF_CO2(t) = Radiative forcing from a unit increase in CO2 concentration in year t 
% + [W/m2/ppmv] 
% +  
% + RF_CH4(t) = Radiative forcing from a unit increase in CH4 concentration in year t  
% + [W/m2/ppmv] 
% +  
% + RF_N2O(t) = Radiative forcing from a unit increase in N2O concentration in year t  
% + [W/m2/ppmv] 
% +  
% + Bern_model(t) = Decay function of atmospheric CO2 
% +  
% + Decay_CH4_function(t) = Decay function of atmospheric CH4 
% +  
% + Decay_N2O_function(t) = Decay function of atmospheric N2O 
% +  
% + Profile_CO2(t) = Emission flux in year t [g CO2] 
% +  
% + Profile_CH4(t) = Emission flux in year t [g CH4] 
% +  
% + Profile_N2O(t) = Emission flux in year t [g N2O] 
% +  
% + Rad_eff(CO2(t)) = Radiative efficiency of CO2 [W/m2/ppmv] as a function of  
% + atmospheric CO2 concentration 
% + 
% + Rad_eff(CH4) = Radiative efficiency of CH4 [W/m2/ppmv]; constant (simplified) 
% + 
% + Rad_eff(N2O) = Radiative efficiency of N2O [W/m2/ppmv]; constant (simplified) 
% + 
% + CO2(t) = Future atmospheric CO2 concentration as projected by IPCC 
% + 
% + RF_biofuel(t) = (add_CO2_conc(t) * RF_CO2(t)) + (add_CH4_conc(t) * RF_CH4(t) +  
% + (add_N2O_conc(t) * RF_N2O(t)) 
% + 
% + add_CO2_conc(t) = Profile_CO2(t) * (10e+6 ppmv/44 g CO2/mol) / (5.14e+21 g air/28.9 g  
% + air/mol); Mass of atmosph. air: Lide, David R. Handbook of Chemistry and Physics.  
% + Boca Raton, FL: CRC, 1996: 14-7. 
% +  
% + add_CH4_conc(t) = Profile_CH4(t) * (10e+6 ppmv/16 g CH4/mol) / (5.14e+21 g air/28.9 g  
% + air/mol) 
% +  
% + add_N2O_conc(t) = Profile_N2O(t) * (10e+6 ppmv/44 g CH4/mol) / (5.14e+21 g air/28.9 g  
% + air/mol) 
% +  
% + RF_CO2(t) = Rad_eff(CO2(t)) * Bern_model(t) 
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% + 
% + RF_CH4(t) = Rad_eff(CH4) * Decay_CH4_function(t) 
% + 
% + RF_N2O(t) = Rad_eff(N2O) * Decay_N2O_function(t) 
% + Rad_eff(CO2(t) = 5.35/C [W/m2/ppmv]; C = atmosph. CO2 concentration as projected in  
% + t; d(delta_F)/d(C) with delta_F = 5.35 ln(C/C0) 
% + 
% + Rad_eff(CH4) = 0.37 [W/m2/ppmv] 
% + 
% + Rad_eff(N2O) = 3.03 [W/m2/ppmv] 
% + 
% + Bern_model(t) = a0+a1*exp(-t/theta1)+a2*exp(-t/theta2)+a3*exp(-t/theta3); Bern model  
% + with a0=0.217, a1=0.259, a2=0.338, a3=0.186, theta1=172.9, theta2=18.51, theta3=1.186 
% + 
% + Decay_CH4_function(t) = 1*exp(-t/theta); theta=11.3 
% + 
% + Decay_N2O_function(t) = 1*exp(-t/theta); theta=114 
% + 
% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% +++ The impact horizon and concentration scenario will be determined by the user +++ 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
disp('Which emissions scenario should be used?') 
disp('For "All LUC in first year", enter 1') 
disp('For "Distributed LUC", enter 2') 
emiss_scenario = input('Emissions scenario:   ') 
  
disp('Which future IPCC atmospheric CO2 concentration scenario should be used?') 
disp('For low scenario B1,     enter 1') 
disp('For medium scenario A1B, enter 2') 
disp('For high scenario A1FI,  enter 3') 
conc_scenario = input('Concentration scenario:   ') 
  
if emiss_scenario == 1 
    Emissions = xlsread('Emissions_file.xlsx', 5, 'A1:O500') % file including emissions 
profiles for ethanol (6 scenarios) and gasoline (6 scenarios), and instantaneous RF of 
CO2 
else 
    Emissions = xlsread('Emissions_file.xlsx', 6, 'A1:O500') 
end 
  
if conc_scenario == 1 
    conc_column=10 
elseif conc_scenario == 2 
    conc_column=11 
else 
    conc_column=12 
end 
    
% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% + Create Radiative efficiency matrices, Decay matrices (using Bern model function and +  
% + first order exponential decay), and conversion from emissions to concentrations     + 
% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
TH = 100 % determines number of years in the emissions profile (Time Horizon), 
Emissions_file has rows stacked on top of each other 5 times 
t = 100 % impact time frame 
  
% Radiative efficiency of CO2 [W/m2/ppmv] 
Rad_eff_matrix_CO2=zeros(TH,t) % create matrix containing radiative efficiency of CO2 of 
each year (correlating to atmospheric CO2 concentration from IPCC); each row has the same 
values 
for column=1:t % for all columns of the radiative efficiency matrix 
    Rad_eff_matrix_CO2(:,column)=Emissions(column,conc_column) % read in the data from 
file 
end 
  
% same for CH4, but CH4 is assumed constant (due to relatively fast decay) 
Rad_eff_matrix_CH4=ones(TH,t) 
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Rad_eff_matrix_CH4=Rad_eff_matrix_CH4*Emissions(1,14) 
% same for N2O 
Rad_eff_matrix_N2O=ones(TH,t) 
Rad_eff_matrix_N2O=Rad_eff_matrix_N2O*Emissions(1,15) 
Decay_matrix_CO2_noshift=zeros(TH,t) % create matrix containing the decay rate of CO2; 
this is then shifted so that decay does not apply to the first impact year of emissions 
released in the 2nd year and so on 
Decay_CO2=Bern_model(t) % Bern model contains the formula to calculate decay of each year 
    for column=1:t % for all rows of the decay matrix 
        Decay_matrix_CO2_noshift(:,column)=Decay_CO2(column-1) % calculates RF of a year 
within the TH from a_C_year formula; read in the data from file 
    end 
Decay_matrix_CO2_shift_long=zeros(TH,2*t)% Shift Decay matrix to count emissions starting 
from the year they occur 
shift=0 % column in which RF starts counting for each emission year 
for THyear=1:TH 
    shift=shift+1 
    Decay_matrix_CO2_shift_long(THyear,shift:shift+t- 
    1)=Decay_matrix_CO2_noshift(THyear,:) 
end 
Decay_matrix_CO2=Decay_matrix_CO2_shift_long(:,1:t) % truncate the columns after t 
  
% same for CH4 and N2O 
Decay_matrix_CH4_noshift=zeros(TH,t); 
Decay_matrix_N2O_noshift=zeros(TH,t) 
Decay_CH4=Decay_CH4_function(t) 
Decay_N2O=Decay_N2O_function(t) 
    for column=1:t 
        Decay_matrix_CH4_noshift(:,column)=Decay_CH4(column-1) 
        Decay_matrix_N2O_noshift(:,column)=Decay_N2O(column-1)  
    end 
Decay_matrix_CH4_shift_long=zeros(TH,2*t) 
Decay_matrix_N2O_shift_long=zeros(TH,2*t) 
shift=0 
for THyear=1:TH 
    shift=shift+1 
    Decay_matrix_CH4_shift_long(THyear,shift:shift+t-
1)=Decay_matrix_CH4_noshift(THyear,:) 
    Decay_matrix_N2O_shift_long(THyear,shift:shift+t-
1)=Decay_matrix_N2O_noshift(THyear,:) 
end 
Decay_matrix_CH4=Decay_matrix_CH4_shift_long(:,1:t) 
Decay_matrix_N2O=Decay_matrix_N2O_shift_long(:,1:t) 
  
% Multiply both matrices for further multiplication with CO2 conc. matrices 
% This is stacked 5 times to match CO2 conc. matrices 
RF_per_ppmv_CO2_TH_by_t=Rad_eff_matrix_CO2.*Decay_matrix_CO2 
Rad_forc_per_ppmv_CO2=vertcat(RF_per_ppmv_CO2_TH_by_t, RF_per_ppmv_CO2_TH_by_t, 
RF_per_ppmv_CO2_TH_by_t, RF_per_ppmv_CO2_TH_by_t, RF_per_ppmv_CO2_TH_by_t) 
  
% same for CH4 and N2O 
RF_per_ppmv_CH4_TH_by_t=Rad_eff_matrix_CH4.*Decay_matrix_CH4 
Rad_forc_per_ppmv_CH4=vertcat(RF_per_ppmv_CH4_TH_by_t, RF_per_ppmv_CH4_TH_by_t, 
RF_per_ppmv_CH4_TH_by_t, RF_per_ppmv_CH4_TH_by_t, RF_per_ppmv_CH4_TH_by_t) 
RF_per_ppmv_N2O_TH_by_t=Rad_eff_matrix_N2O.*Decay_matrix_N2O 
Rad_forc_per_ppmv_N2O=vertcat(RF_per_ppmv_N2O_TH_by_t, RF_per_ppmv_N2O_TH_by_t, 
RF_per_ppmv_N2O_TH_by_t, RF_per_ppmv_N2O_TH_by_t, RF_per_ppmv_N2O_TH_by_t) 
  
% additional CO2 concentration [ppmv]; see above 
add_CO2_conc_per_gCO2=(1e+6/44)/(5.14e+21/28.9) 
  
% same for CH4 and N2O 
add_CH4_conc_per_gCH4=(1e+6/16)/(5.14e+21/28.9) 
add_N2O_conc_per_gN2O=(1e+6/44)/(5.14e+21/28.9) 
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% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% ++++++++++++ Create RF matrices for biofuel emissions  +++++++++++++++++ 
% +                                                                      + 
% +            M1 (LCA Model 1 = Tyner 2010 (GTAP)                       + 
% +            M2 (LCA Model 2 = USEPA 2010 (FAPRI)                      + 
% +            M3 (LCA Model 3 = Searchinger 2008 (FAPRI)                + 
% +                                                                      + 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
profile_M1_CO2=zeros(5*TH,t) % will contain CO2 emissions released each year for all 3 M1 
scenarios (low volume, low annualized, high volume) and 2 according gasoline scenarios 
(low, high volume) 
profile_M2_CO2=zeros(5*TH,t) 
profile_M3_CO2=zeros(5*TH,t) 
profile_M1_CH4=zeros(5*TH,t) % same for CH4 
profile_M2_CH4=zeros(5*TH,t) 
profile_M3_CH4=zeros(5*TH,t) 
profile_M1_N2O=zeros(5*TH,t) % same for N2O 
profile_M2_N2O=zeros(5*TH,t) 
profile_M3_N2O=zeros(5*TH,t) 
profile_reference_CO2_elec=zeros(TH,t) % emissions profile of first reference case (US 
electricity emissions) 
profile_reference_CO2_fuel_red=zeros(TH,t) % emissions profile of second reference case 
(10% gasoline reduction) 
  
for column=1:t % for each column of the profile 
    % profile_M1_CO2 has the CO2 emissions 
    % (Ethanol low [row 1:100], ann. [row 101:200], high [row 201:300], and Gasoline low 
[row 301:400], high [row 401:500]) 
    % of each year (i.e., each loop) written in every row 
    % (as a check instead of just using Emissions directly), so it can be 
    % multiplied (after converting into conc.) with rad. eff. and decay matrices 
    % to get RF impacts for each impact year 
    profile_M1_CO2(1:5*TH,column)=Emissions(1:5*TH,1) 
    % do the same for M2, M3, and reference case 
    profile_M2_CO2(1:5*TH,column)=Emissions(1:5*TH,2) 
    profile_M3_CO2(1:5*TH,column)=Emissions(1:5*TH,3) 
    % same for CH4 
    profile_M1_CH4(1:5*TH,column)=Emissions(1:5*TH,4) 
    profile_M2_CH4(1:5*TH,column)=Emissions(1:5*TH,5) 
    profile_M3_CH4(1:5*TH,column)=Emissions(1:5*TH,6) 
    % same for N2O 
    profile_M1_N2O(1:5*TH,column)=Emissions(1:5*TH,7) 
    profile_M2_N2O(1:5*TH,column)=Emissions(1:5*TH,8) 
    profile_M3_N2O(1:5*TH,column)=Emissions(1:5*TH,9) 
    % same for reference CO2 emissions 
    profile_reference_CO2_elec(1:TH,column)=Emissions(101:200,13) 
    profile_reference_CO2_fuel_red(1:TH,column)=Emissions(11:110,15) 
end 
add_CO2_conc_M1=profile_M1_CO2.*add_CO2_conc_per_gCO2 % convert emissions in additional 
CO2 concentration 
add_CO2_conc_M2=profile_M2_CO2.*add_CO2_conc_per_gCO2 
add_CO2_conc_M3=profile_M3_CO2.*add_CO2_conc_per_gCO2 
add_CH4_conc_M1=profile_M1_CH4.*add_CH4_conc_per_gCH4 
add_CH4_conc_M2=profile_M2_CH4.*add_CH4_conc_per_gCH4 
add_CH4_conc_M3=profile_M3_CH4.*add_CH4_conc_per_gCH4 
add_N2O_conc_M1=profile_M1_N2O.*add_N2O_conc_per_gN2O 
add_N2O_conc_M2=profile_M2_N2O.*add_N2O_conc_per_gN2O 
add_N2O_conc_M3=profile_M3_N2O.*add_N2O_conc_per_gN2O 
add_CO2_reference_elec=profile_reference_CO2_elec.*add_CO2_conc_per_gCO2 
add_CO2_reference_fuel_red=profile_reference_CO2_fuel_red.*add_CO2_conc_per_gCO2 
  
% Multiply (element by element) CO2 concentrations matrix with Rad. eff. matrix and Decay 
matrix 
RF_M1_CO2=add_CO2_conc_M1.*Rad_forc_per_ppmv_CO2 
RF_M2_CO2=add_CO2_conc_M2.*Rad_forc_per_ppmv_CO2 
RF_M3_CO2=add_CO2_conc_M3.*Rad_forc_per_ppmv_CO2 
% same for CH4 
RF_M1_CH4=add_CH4_conc_M1.*Rad_forc_per_ppmv_CH4 
RF_M2_CH4=add_CH4_conc_M2.*Rad_forc_per_ppmv_CH4 
RF_M3_CH4=add_CH4_conc_M3.*Rad_forc_per_ppmv_CH4 
% same for N2O 
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RF_M1_N2O=add_N2O_conc_M1.*Rad_forc_per_ppmv_N2O 
RF_M2_N2O=add_N2O_conc_M2.*Rad_forc_per_ppmv_N2O 
RF_M3_N2O=add_N2O_conc_M3.*Rad_forc_per_ppmv_N2O 
% Add RFs from CO2, CH4, and N2O 
RF_M1=RF_M1_CO2+RF_M1_CH4+RF_M1_N2O 
RF_M2=RF_M2_CO2+RF_M2_CH4+RF_M2_N2O 
RF_M3=RF_M3_CO2+RF_M3_CH4+RF_M3_N2O 
% RF for reference case 
RF_reference_CO2_elec=add_CO2_reference_elec.*RF_per_ppmv_CO2_TH_by_t 
RF_reference_CO2_fuel_red=add_CO2_reference_fuel_red.*RF_per_ppmv_CO2_TH_by_t 
  
% Add RFs of each year of the impact time (t); every line is a different 
% scenario (ethanol low, ann., high) and fuel (gas. low, high) 
Total_RF_M1=zeros(5,t) 
Total_RF_M1(1,:)=sum(RF_M1(1:100,:),1) 
Total_RF_M1(2,:)=sum(RF_M1(101:200,:),1) 
Total_RF_M1(3,:)=sum(RF_M1(201:300,:),1) 
Total_RF_M1(4,:)=sum(RF_M1(301:400,:),1) 
Total_RF_M1(5,:)=sum(RF_M1(401:500,:),1) 
% same for M2, M3, reference case 
Total_RF_M2=zeros(5,t) 
Total_RF_M2(1,:)=sum(RF_M2(1:100,:),1) 
Total_RF_M2(2,:)=sum(RF_M2(101:200,:),1) 
Total_RF_M2(3,:)=sum(RF_M2(201:300,:),1) 
Total_RF_M2(4,:)=sum(RF_M2(301:400,:),1) 
Total_RF_M2(5,:)=sum(RF_M2(401:500,:),1) 
Total_RF_M3=zeros(5,t) 
Total_RF_M3(1,:)=sum(RF_M3(1:100,:),1) 
Total_RF_M3(2,:)=sum(RF_M3(101:200,:),1) 
Total_RF_M3(3,:)=sum(RF_M3(201:300,:),1) 
Total_RF_M3(4,:)=sum(RF_M3(301:400,:),1) 
Total_RF_M3(5,:)=sum(RF_M3(401:500,:),1) 
Total_RF_reference(1,:)=sum(RF_reference_CO2_elec,1) 
Total_RF_reference(2,:)=sum(RF_reference_CO2_fuel_red,1) 
  
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% ++++++ Calculating the Delta of RFs (biofuel-gasoline) and CRF   +++++++ 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% RF absolute difference between biofuel and gasoline 
Total_RF_diff_to_gas(1,:)=Total_RF_M1(1,:)-Total_RF_M1(4,:) % M1 low 
Total_RF_diff_to_gas(2,:)=Total_RF_M1(2,:)-Total_RF_M1(4,:) % M1 annualized 
Total_RF_diff_to_gas(3,:)=Total_RF_M1(3,:)-Total_RF_M1(5,:) % M1 high 
Total_RF_diff_to_gas(4,:)=Total_RF_M2(1,:)-Total_RF_M2(4,:) % M2 low 
Total_RF_diff_to_gas(5,:)=Total_RF_M2(2,:)-Total_RF_M2(4,:) % M2 annualized 
Total_RF_diff_to_gas(6,:)=Total_RF_M2(3,:)-Total_RF_M2(5,:) % M2 high 
Total_RF_diff_to_gas(7,:)=Total_RF_M3(1,:)-Total_RF_M3(4,:) % M3 low 
Total_RF_diff_to_gas(8,:)=Total_RF_M3(2,:)-Total_RF_M3(4,:) % M3 annualized 
Total_RF_diff_to_gas(9,:)=Total_RF_M3(3,:)-Total_RF_M3(5,:) % M3 high 
  
% Truncate total RF vector to 30 ... 90 years (to compare with GHG balance over 30 to 100 
years) 
Total_RF_diff_to_gas_30=Total_RF_diff_to_gas(:,1:30) 
Total_RF_diff_to_gas_40=Total_RF_diff_to_gas(:,1:40) 
Total_RF_diff_to_gas_50=Total_RF_diff_to_gas(:,1:50) 
Total_RF_diff_to_gas_60=Total_RF_diff_to_gas(:,1:60) 
Total_RF_diff_to_gas_70=Total_RF_diff_to_gas(:,1:70) 
Total_RF_diff_to_gas_80=Total_RF_diff_to_gas(:,1:80) 
Total_RF_diff_to_gas_90=Total_RF_diff_to_gas(:,1:90) 
  
% Make reference vector for plotting electricity, ethanol, and ethanol difference (EPA) 
RF_reference_vector(1,:)=Total_RF_reference(1,:) % electricity 
RF_reference_vector(2,:)=Total_RF_M2(3,:) % M2 high 
RF_reference_vector(3,:)=Total_RF_M2(1,:) % M2 low 
RF_reference_vector(4,:)=Total_RF_diff_to_gas(6,:) % M2 ethanol-gasoline high 
RF_reference_vector(5,:)=Total_RF_diff_to_gas(4,:) % M2 ethanol-gasoline low 
RF_reference_vector(6,:)=Total_RF_M1(3,:) % M1 high 
RF_reference_vector(7,:)=Total_RF_M1(1,:) % M1 low 
RF_reference_vector(8,:)=Total_RF_diff_to_gas(3,:) % M1 ethanol-gasoline high 
RF_reference_vector(9,:)=Total_RF_diff_to_gas(1,:) % M1 ethanol-gasoline low 
RF_reference_vector(10,:)=Total_RF_M3(3,:) % M3 high 
RF_reference_vector(11,:)=Total_RF_M3(1,:) % M3 low 
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RF_reference_vector(12,:)=Total_RF_diff_to_gas(9,:) % M3 ethanol-gasoline high 
RF_reference_vector(13,:)=Total_RF_diff_to_gas(7,:) % M3 ethanol-gasoline low 
RF_reference_vector(14,:)=Total_RF_reference(2,:) % gasoline reduction 
  
% Calculate CRF balance of biofuels relative to gasoline over 30 to 100 years (in %) 
Total_RF_gas_vector=[Total_RF_M1(4,:); Total_RF_M1(4,:); Total_RF_M1(5,:); 
Total_RF_M1(4,:); Total_RF_M1(4,:); Total_RF_M1(5,:); Total_RF_M1(4,:); Total_RF_M1(4,:); 
Total_RF_M1(5,:)] 
Total_RF_gas_vector_30=Total_RF_gas_vector(:,1:30) 
Total_RF_gas_vector_40=Total_RF_gas_vector(:,1:40) 
Total_RF_gas_vector_50=Total_RF_gas_vector(:,1:50) 
Total_RF_gas_vector_60=Total_RF_gas_vector(:,1:60) 
Total_RF_gas_vector_70=Total_RF_gas_vector(:,1:70) 
Total_RF_gas_vector_80=Total_RF_gas_vector(:,1:80) 
Total_RF_gas_vector_90=Total_RF_gas_vector(:,1:90) 
  
Total_RF_balance(:,1)=sum(Total_RF_diff_to_gas_30,2)./sum(Total_RF_gas_vector_30,2)*100 
Total_RF_balance(:,2)=sum(Total_RF_diff_to_gas_40,2)./sum(Total_RF_gas_vector_40,2)*100 
Total_RF_balance(:,3)=sum(Total_RF_diff_to_gas_50,2)./sum(Total_RF_gas_vector_50,2)*100 
Total_RF_balance(:,4)=sum(Total_RF_diff_to_gas_60,2)./sum(Total_RF_gas_vector_60,2)*100 
Total_RF_balance(:,5)=sum(Total_RF_diff_to_gas_70,2)./sum(Total_RF_gas_vector_70,2)*100 
Total_RF_balance(:,6)=sum(Total_RF_diff_to_gas_80,2)./sum(Total_RF_gas_vector_80,2)*100 
Total_RF_balance(:,7)=sum(Total_RF_diff_to_gas_90,2)./sum(Total_RF_gas_vector_90,2)*100 
Total_RF_balance(:,8)=sum(Total_RF_diff_to_gas,2)./sum(Total_RF_gas_vector,2)*100 
  
% Calculate CRF balance of biofuels relative to electricity use and relative to 10% 
gasoline reduction over 100 years (in %) 
RF_reference_balance_elec=sum(RF_reference_vector,2)./sum(RF_reference_vector(1,:),2)*100 
RF_reference_balance_fuel_red=sum(RF_reference_vector,2)./sum(RF_reference_vector(14,:),2
)*100 
  
% Export data to Excel 
if emiss_scenario == 1 
    xlswrite('RFWI.xlsx', Total_RF_balance, 'Total_RF_balance', 'A1:H9') 
else 
    xlswrite('RFWI.xlsx', Total_RF_balance, 'Total_RF_balance', 'A13:H21') 
end 
GHG_balance=zeros(3,8) 
GHG_balance(1,:)=Emissions(3,15) 
GHG_balance(2,:)=Emissions(4,15) 
GHG_balance(3,:)=Emissions(5,15) 
xlswrite('RFWI.xlsx', GHG_balance, 'Total_RF_balance', 'A10:H12') 
  
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% +++++++++++++++++++++++++++   Plotting   +++++++++++++++++++++++++++++++ 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
% plot RF difference for low volume scenario 
RF_difference = figure; 
axes1 = axes('Parent',RF_difference,'GridLineStyle','--'); 
% ylim(axes1,[-0.001 0.002]) 
plot1 = plot(Total_RF_diff_to_gas([4 1 7],:)','Parent',axes1,'Color',[0 0 0]); 
set(gca,'box','off') 
set(plot1(1),'DisplayName','EPA'); 
set(plot1(2),'LineStyle',':','DisplayName','Tyner'); 
set(plot1(3),'LineStyle','--','DisplayName','Hertel'); 
xlabel('Time since first emission release (years)') 
ylabel('\DeltaRF, corn ethanol minus gasoline (W\timesm^{-2})') 
% title('Delta RF, (corn ethanol minus gasoline), 15 bgal') 
legend(axes1,'show'); 
  
% plot RF difference for actual and annualized emissions (EPA, low volume scenario) 
RF_difference = figure; 
axes1 = axes('Parent',RF_difference,'GridLineStyle','--'); 
% ylim(axes1,[-0.001 0.002]) 
plot1 = plot(Total_RF_diff_to_gas([4 5],:)','Parent',axes1,'Color',[0 0 0]); 
set(gca,'box','off') 
set(plot1(1),'DisplayName','EPA, actual emissions profile'); 
set(plot1(2),'LineStyle','--','DisplayName','EPA, annualized LUC emissions'); 
xlabel('Time since first emission release (years)') 
ylabel('\DeltaRF, corn ethanol minus gasoline (W\timesm^{-2})') 
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% title('Delta RF, (corn ethanol minus gasoline), 15 bgal') 
legend(axes1,'show'); 
  
% plot RF reference case 
if emiss_scenario == 1 
    RF_reference = figure; 
axes1 = axes('Parent',RF_reference,'GridLineStyle','--'); 
plot2 = plot(RF_reference_vector([1 4 5 14],:)','Parent',axes1,'Color',[0 0 0]); 
set(gca,'box','off') 
set(plot2(1),'DisplayName','U.S. electricity consumption'); 
set(plot2(2),'LineStyle',':','DisplayName','\DeltaRF, Corn ethanol minus gasoline, 102 
bgal/yr (EPA)'); 
set(plot2(3),'LineStyle','--','DisplayName','\DeltaRF, Corn ethanol minus gasoline, 15 
bgal/yr (EPA)'); 
set(plot2(4),'DisplayName','10% U.S. gasoline reduction','LineWidth',2.5); 
xlabel('Time since first emission release (years)') 
ylabel('RF (W\timesm^{-2})') 
% title('RF of U.S. electricity consumption and corn ethanol use') 
legend(axes1,'show'); 
else 
    RF_reference = figure; 
axes1 = axes('Parent',RF_reference,'GridLineStyle','--'); 
plot2 = plot(RF_reference_vector([1 4 5 14],:)','Parent',axes1,'Color',[0 0 0]); 
set(gca,'box','off') 
set(plot2(1),'DisplayName','U.S. electricity consumption'); 
set(plot2(2),'LineStyle',':','DisplayName','\DeltaRF, Corn ethanol minus gasoline, 45 
bgal/yr (EPA)'); 
set(plot2(3),'LineStyle','--','DisplayName','\DeltaRF, Corn ethanol minus gasoline, 15 
bgal/yr (EPA)'); 
set(plot2(4),'DisplayName','10% U.S. gasoline reduction','LineWidth',2.5); 
xlabel('Time since first emission release (years)') 
ylabel('RF (W\timesm^{-2})') 
% title('RF of U.S. electricity consumption and corn ethanol use') 
legend(axes1,'show'); 
end 
  
% plot RF of ethanol and gasoline individually, low volume 
if emiss_scenario == 2 
    RF_individual_EPA = figure; 
axes1 = axes('Parent',RF_individual_EPA,'GridLineStyle','--','FontSize',16); 
plot3 = plot(Total_RF_M2([1 2 4],:)','Parent',axes1,'Color',[0 0 0]); 
set(gca,'box','off') 
set(plot3(1),'LineStyle','--','DisplayName','Corn ethanol, actual 
(EPA)','LineWidth',1.5); 
set(plot3(2),'LineStyle',':','DisplayName','Corn ethanol, annualized 
(EPA)','LineWidth',1.5); 
set(plot3(3),'DisplayName','Gasoline (EPA)','LineWidth',1.5); 
xlabel('Time since first emission release, t (years)','FontSize',16) 
ylabel('RF (W\timesm^{-2})','FontSize',16) 
% title('RF of corn ethanol (EPA) and gasoline, 15 bgal') 
legend(axes1,'show'); 
RF_individual_Tyner_Hertel = figure; 
axes(1) = subplot(2,1,1); 
plot1 = plot(Total_RF_M1([1 4],:)','Parent',axes(1),'Color',[0 0 0]); 
set(gca,'box','off') 
set(plot1(1),'DisplayName','Corn ethanol (Tyner)'); 
set(plot1(2),'LineStyle',':','DisplayName','Gasoline (Tyner)'); 
ylabel('RF (W\timesm^{-2})') 
legend(axes(1),'show'); 
  
axes(2) = subplot(2,1,2); 
plot2 = plot(Total_RF_M3([1 4],:)','Parent',axes(2),'Color',[0 0 0]); 
set(gca,'box','off') 
set(plot2(1),'DisplayName','Corn ethanol (Hertel)'); 
set(plot2(2),'LineStyle',':','DisplayName','Gasoline (Hertel)'); 
xlabel('Impact time (years)') 
ylabel('Emissions (g CO_{2}e/MJ)') 
legend(axes(2),'show'); 
else 
    RF_individual_all = figure; 
axes(1) = subplot(3,1,1); 
plot1 = plot(Total_RF_M2([1 4],:)','Parent',axes(1),'Color',[0 0 0]); 
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set(gca,'box','off') 
set(plot1(1),'DisplayName','Corn ethanol (EPA)'); 
set(plot1(2),'LineStyle',':','DisplayName','Gasoline (EPA)'); 
ylabel('RF (W\timesm^{-2})') 
legend(axes(1),'show'); 
  
axes(2) = subplot(3,1,2); 
plot2 = plot(Total_RF_M1([1 4],:)','Parent',axes(2),'Color',[0 0 0]); 
set(gca,'box','off') 
set(plot2(1),'DisplayName','Corn ethanol (Tyner)'); 
set(plot2(2),'LineStyle',':','DisplayName','Gasoline (Tyner)'); 
ylabel('RF (W\timesm^{-2})') 
legend(axes(2),'show'); 
  
axes(3) = subplot(3,1,3); 
plot3 = plot(Total_RF_M3([1 4],:)','Parent',axes(3),'Color',[0 0 0]); 
set(gca,'box','off') 
set(plot3(1),'DisplayName','Corn ethanol (Hertel)'); 
set(plot3(2),'LineStyle',':','DisplayName','Gasoline (Hertel)'); 
xlabel('Impact time (years)') 
ylabel('RF (W\timesm^{-2})') 
legend(axes(3),'show'); 
end!  
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Matlab code for generating emissions grid maps (Chapter 4) 

Matlab file names are as described in Appendix B. 
 
Note: Matlab files import emissions data generated in Excel spreadsheets using 
methods described in Chapter 4, but not shown here. 
 

convert_numdata_lat.m: 
 
for row = 1:1633314 
    search = numdata(row,1); 
    rows_found = find(numdata(:,1)==search); 
    for x = 1:length(rows_found) 
        numdata_new(row,1) = find(abs(lat(:,1)-search) <= 0.5e-1); 
    end 
end 

 
convert_numdata_lon.m: 
 
for row = 1:1633314 
    search = numdata(row,2); 
    if search == 0 
        numdata_matrix_lon(row,1)=1; 
    else 
        rows_found = find(numdata(:,2)==search); 
        for x = 1:length(rows_found) 
            numdata_matrix_lon(row,1) = find(abs(lon(1,:)-search) <= 0.5e-1); 
        end 
    end 
end 

 
make_country.m 
 
country_code = 'DEU'; % reads in country code, e.g., Germany (DEU) 
DEU = zeros(1800,3600); 
country_cell = find(ismember(country,country_code)==1); % finds rows in "country" 
containing that code 
y = length(country_cell); % determines length of vector above 
for x = 1:y % do for each index containing the country code 
    row_value = country_cell(x,1); % determine value of the index (pertaining to a grid  
    cell) 
    cell_lat = numdata_matrix(row_value,1); % latitudinal value of cell 
    cell_lon = numdata_matrix(row_value,2); % longitudinal value of cell 
    DEU(cell_lat,cell_lon) = numdata_matrix(row_value,3)/100; 
end 

 
add_maritime.m 
 
% data 
data = input('Grid: '); 
max_data = max(data(:)); 
max_round = roundsd(max_data,1); 
max_order = order(max_data); 
min_data = min(nonzeros(data(:))); 
min_round = roundsd(min_data,1); 
min_order = order(min_data); 
x=linspace(0, 359.9, 3600); 
y=linspace(-89.9, 90, 1800); 
[X,Y] = meshgrid(x,y); 
% myscale=[10^min_order 10^max_order]; 
% myscale=[10^1 10^9]; 
myscale=[10^1 10^9]; 
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% log plot 
figure 
pcolor(X,Y,log10(data)) 
shading flat 
caxis(myscale) 
h=colorbar; 
% ticks_wanted=10.^(min_order:max_order); 
ticks_wanted=10.^(1:max_order); 
caxis(log10(myscale)) 
set(h,'YTick',log10(ticks_wanted)); 
set(h,'YTickLabel',ticks_wanted); 
 
convert_emissions_oil.m (for example of oil grid maps) 
 
% Convert gridded emissions from EDGAR to LCA 
  
% Year of emissions 
Year = input('Year: '); 
Y = Year - 1979; 
% Input file 
File = input('EDGAR file: '); 
EDGAR_oil_prior = File; 
% read in calculated LCA emissions for each of the top 26 countries from spreadsheet 
Excel_emissions_oil = xlsread('Global CH4 emissions from fossil fuels.xlsx', 17, 
'C145:AH171'); 
Excel_emissions_oil = Excel_emissions_oil * 1e9; 
% read in the emissions differences of the top 37 countries relative to EDGAR 
Oil_rel_diff = xlsread('Global CH4 emissions from fossil fuels.xlsx', 17, 'AJ145:BP171'); 
  
% Gridded relative LCA emissions factors of only the top 37 countries 
EF = USA*Oil_rel_diff(1,Y) + SAU*Oil_rel_diff(2,Y) + RUS*Oil_rel_diff(3,Y) + 
IRN*Oil_rel_diff(5,Y) + MEX*Oil_rel_diff(6,Y) + CHN*Oil_rel_diff(7,Y) + 
VEN*Oil_rel_diff(8,Y) + CAN*Oil_rel_diff(9,Y) + ARE*Oil_rel_diff(10,Y) + 
GBR*Oil_rel_diff(11,Y) + NOR*Oil_rel_diff(12,Y) + NGA*Oil_rel_diff(13,Y) + 
KWT*Oil_rel_diff(14,Y) + IRQ*Oil_rel_diff(15,Y) + DZA*Oil_rel_diff(16,Y) + 
LBY*Oil_rel_diff(17,Y) + IDN*Oil_rel_diff(18,Y) + BRA*Oil_rel_diff(19,Y) + 
EGY*Oil_rel_diff(20,Y) + AGO*Oil_rel_diff(21,Y) + OMN*Oil_rel_diff(22,Y) + 
QAT*Oil_rel_diff(23,Y) + IND*Oil_rel_diff(24,Y) + ARG*Oil_rel_diff(25,Y) + 
MYS*Oil_rel_diff(26,Y) + AUS*Oil_rel_diff(27,Y); 
% gridded LCA emissions factors 
LCA_oil_prior = EDGAR_oil_prior + EDGAR_oil_prior .* EF; 
% gridded absolute LCA emissions, world 
LCA_oil_prior_sum = sum(LCA_oil_prior(:)); 
% gridded absolute LCA emissions, top 37 countries only 
LCA_oil_prior_Top26 = LCA_oil_prior .* Top_26; 
LCA_oil_prior_Top26_sum = sum(LCA_oil_prior_Top26(:)); 
 

aggregate_to_1x1.m 
 
% data 
data = input('Grid: '); 
max_data = max(data(:)); 
max_round = roundsd(max_data,1); 
max_order = order(max_data); 
min_data = min(nonzeros(data(:))); 
min_round = roundsd(min_data,1); 
min_order = order(min_data); 
x=linspace(0, 359.9, 3600); 
y=linspace(-89.9, 90, 1800); 
[X,Y] = meshgrid(x,y); 
% myscale=[10^min_order 10^max_order]; 
% myscale=[10^1 10^9]; 
myscale=[10^1 10^9]; 
  
% log plot 
figure 



 

C-11 

pcolor(X,Y,log10(data)) 
shading flat 
caxis(myscale) 
h=colorbar; 
% ticks_wanted=10.^(min_order:max_order); 
ticks_wanted=10.^(1:max_order); 
caxis(log10(myscale)) 
set(h,'YTick',log10(ticks_wanted)); 
set(h,'YTickLabel',ticks_wanted); 

 
heatplot.m (for plotting grid maps) 
 
% data 
data = input('Grid: '); 
max_data = max(data(:)); 
max_round = roundsd(max_data,1); 
max_order = order(max_data); 
min_data = min(nonzeros(data(:))); 
min_round = roundsd(min_data,1); 
min_order = order(min_data); 
x=linspace(0, 359.9, 3600); 
y=linspace(-89.9, 90, 1800); 
[X,Y] = meshgrid(x,y); 
% myscale=[10^min_order 10^max_order]; 
% myscale=[10^1 10^9]; 
myscale=[10^1 10^9]; 
  
% log plot 
figure 
pcolor(X,Y,log10(data)) 
shading flat 
caxis(myscale) 
h=colorbar; 
% ticks_wanted=10.^(min_order:max_order); 
ticks_wanted=10.^(1:max_order); 
caxis(log10(myscale)) 
set(h,'YTick',log10(ticks_wanted)); 
set(h,'YTickLabel',ticks_wanted); 
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Matlab code for inversion box-model (Chapter 5) 

Note: Matlab file imports emissions data generated in Excel spreadsheets using 
methods described in Chapter 4, but not shown here. 
 
Inversion box-model: 
 
% *********************************************************** 
% *                                                         * 
% *          Global CH4 and C2H6 inversion box model        * 
% *                                                         * 
% *                  Stefan Schwietzke                      * 
% *                                                         * 
% *              Carnegie Mellon University                 * 
% *                                                         * 
% *   Equations for estimating posteriors from literature   * 
% *          sources as described in Chapter 5              * 
% *                                                         * 
% *********************************************************** 
 
disp('Which emissions scenario should be used?') 
disp('For "NOAA" (CH4 only), enter 1') 
disp('For "LCA low to high", enter 2') 
disp('For "LCA 1% NG FE rate flat", enter 3') 
disp('For "LCA 3% NG FE rate flat", enter 4') 
disp('For "LCA 5% NG FE rate flat", enter 5') 
disp('For "LCA 7% NG FE rate flat", enter 6') 
disp('For "LCA 9% NG FE rate flat", enter 7') 
emiss_scenario = input('Emissions scenario:   ') 
disp('For CH4 lifetime 9.7 years and ethane budget "best guess",             enter 1') 
disp('For CH4 lifetime 9.7 years and ethane budget "high uncertainty bound", enter 2') 
disp('For CH4 lifetime 9.1 years and ethane budget "best guess",             enter 3') 
disp('For CH4 lifetime 9.1 years and ethane budget "high uncertainty bound", enter 4') 
ethane_obs = input('CH4 and C2H6 budget scenario:   ') 
disp('For plotting since 2000, enter 1') 
disp('For plotting since 1984, enter 2') 
plotting = input('Plotting choice:   ') 
  
Emissions = xlsread('Emissions and observations inputs box model v6.xlsx', 1, 'E2:AF82'); 
  
sp = zeros(364,1); % NG_CH4, Oil_CH4, Coal_CH4, Ag/Waste_CH4, Nat_CH4, BB_CH4, 
Seepage_CH4; NG_C2H6, Oil_C2H6, Coal_C2H6, BB_C2H6, Biofuel_C2H6, Seepage_C2H6 (for 1984-
2011, i.e., 28 years); so 13*28=364 
Emis_total_CH4 = zeros(28,2); % Total emissions for 28 years and two species (CH4 and 
C2H6) 
Q = zeros(364,364); % Uncert_NG_CH4, Uncert_oil_CH4, Uncert_coal_CH4, 
Uncert_Ag/Waste_CH4, Uncert_Nat_CH4, Uncert_BB_CH4; Uncert_NG_C2H6, Uncert_Oil_C2H6, 
Uncert_Coal_C2H6, Uncert_BB_C2H6, Uncert_Biofuel_C2H6 (11*28 diagonal) 
R = zeros(56,56); % Observational uncertainty (28 years for CH4 and 28 years for C2H6, 
diagonal) 
  
row = 1; 
if emiss_scenario == 1 % NOAA 
    for i = 1:28 % years 
        sp(row,1) = Emissions(26,i); % Seepage_CH4 (pseudo) 
        sp(row+1,1) = Emissions(15,i); % FF_CH4 
        sp(row+2,1) = Emissions(16,i); % Oil_CH4 (pseudo) 
        sp(row+3,1) = Emissions(17,i); % Coal_CH4 (pseudo) 
        sp(row+4,1) = Emissions(1,i); % Ag/Waste_CH4 
        sp(row+5,1) = Emissions(2,i); % Nat_CH4 
        sp(row+6,1) = Emissions(3,i); % BB_CH4 
        Emis_total_CH4(i,1) = Emissions(24,i); % total CH4 emissions 
        Q(row,row) = Emissions(46,i); % Uncert_Seepage_CH4 (pseudo) 
        Q(row+1,row+1) = Emissions(42,i); % Uncert_FF_CH4 
        Q(row+2,row+2) = Emissions(43,i); % Uncert_oil_CH4 (pseudo) 
        Q(row+3,row+3) = Emissions(44,i); % Uncert_coal_CH4 (pseudo) 
        Q(row+4,row+4) = Emissions(28,i); % Uncert_Ag/Waste_CH4 
        Q(row+5,row+5) = Emissions(29,i); % Uncert_Nat_CH4 
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        Q(row+6,row+6) = Emissions(30,i); % Uncert_BB_CH4 
        R(i,i) = Emissions(48,i); % CH4 
        row = row + 7; 
    end 
    for i = 1:28 % years 
        R(i+28,i+28) = Emissions(81,i); % C2H6 
    end 
    % for plotting priors 
    sp_Seepage_CH4(:,1) = Emissions(26,:); % Seepage_CH4 
    sp_NG_CH4(:,1) = Emissions(15,:); % FF_CH4 
    sp_Oil_CH4(:,1) = Emissions(16,:); % Oil_CH4 (pseudo) 
    sp_Coal_CH4(:,1) = Emissions(17,:); % Coal_CH4 (pseudo) 
    sp_AW_CH4(:,1) = Emissions(1,:); % Ag/Waste_CH4 
    sp_Nat_CH4(:,1) = Emissions(2,:); % Nat_CH4 
    sp_BB_CH4(:,1) = Emissions(3,:); % BB_CH4 
    Q_NG_CH4(:,1) = Emissions(39,:); % Uncert_FF 
    Q_Oil_CH4(:,1) = Emissions(40,:); % Uncert_oil_CH4 (pseudo) 
    Q_Coal_CH4(:,1) = Emissions(41,:); % Uncert_coal_CH4 (pseudo) 
    Q_AW_CH4(:,1) = Emissions(25,:); % Uncert_Ag/Waste_CH4 
    Q_Nat_CH4(:,1) = Emissions(26,:); % Uncert_Nat_CH4 
    Q_BB_CH4(:,1) = Emissions(27,:); % Uncert_BB_CH4 
else 
    if emiss_scenario == 2 % LCA low to high 
        for i = 1:28 % years 
            sp(row,1) = Emissions(25,i); % Seepage_CH4 
            sp(row+1,1) = Emissions(7,i); % NG_CH4 
            sp(row+2,1) = Emissions(13,i); % Oil_CH4 
            sp(row+3,1) = Emissions(14,i); % Coal_CH4 
            sp(row+4,1) = Emissions(4,i); % Ag/Waste_CH4 
            sp(row+5,1) = Emissions(5,i); % Nat_CH4 
            sp(row+6,1) = Emissions(6,i); % BB_CH4 
            Emis_total_CH4(i,1) = Emissions(18,i); % total CH4 emissions 
            Q(row,row) = Emissions(45,i); % Uncert_Seepage_CH4 
            Q(row+1,row+1) = Emissions(34,i); % Uncert_NG_CH4 
            Q(row+2,row+2) = Emissions(40,i); % Uncert_oil_CH4 
            Q(row+3,row+3) = Emissions(41,i); % Uncert_coal_CH4 
            Q(row+4,row+4) = Emissions(31,i); % Uncert_Ag/Waste_CH4 
            Q(row+5,row+5) = Emissions(32,i); % Uncert_Nat_CH4 
            Q(row+6,row+6) = Emissions(33,i); % Uncert_BB_CH4 
            R(i,i) = Emissions(48,i); 
            row = row + 7; 
        end 
        row = 197; 
        for i = 1:28 % years 
            sp(row,1) = Emissions(65,i); % Seepage_C2H6 
            sp(row+1,1) = Emissions(51,i); % NG_C2H6 
            sp(row+2,1) = Emissions(57,i); % Oil_C2H6 
            sp(row+3,1) = Emissions(58,i); % Coal_C2H6 
            sp(row+4,1) = Emissions(49,i); % BB_C2H6 
            sp(row+5,1) = Emissions(50,i); % Biofuel_C2H6 
            Emis_total_C2H6(i,1) = Emissions(59,i); % total C2H6 emissions 
            Q(row,row) = Emissions(78,i); % Uncert_Seepage_C2H6 
            Q(row+1,row+1) = Emissions(70,i); % Uncert_NG_C2H6 
            Q(row+2,row+2) = Emissions(76,i); % Uncert_oil_C2H6 
            Q(row+3,row+3) = Emissions(77,i); % Uncert_coal_C2H6 
            Q(row+4,row+4) = Emissions(68,i); % Uncert_BB_C2H6 
            Q(row+5,row+5) = Emissions(69,i); % Uncert_Biofuel_C2H6 
            R(i+28,i+28) = Emissions(81,i); 
            row = row + 6; 
        end 
        % for plotting priors 
        sp_Seepage_CH4(:,1) = Emissions(25,:); % Seepage_CH4 
        sp_NG_CH4(:,1) = Emissions(7,:); % NG_CH4 
        sp_Oil_CH4(:,1) = Emissions(13,:); % Oil_CH4 
        sp_Coal_CH4(:,1) = Emissions(14,:); % Coal_CH4 
        sp_AW_CH4(:,1) = Emissions(4,:); % Ag/Waste_CH4 
        sp_Nat_CH4(:,1) = Emissions(5,:); % Nat_CH4 
        sp_BB_CH4(:,1) = Emissions(6,:); % BB_CH4 
        sp_Seepage_C2H6(:,1) = Emissions(65,:); % Seepage_C2H6 
        sp_NG_C2H6(:,1) = Emissions(51,:); % NG_C2H6 
        sp_Oil_C2H6(:,1) = Emissions(57,:); % Oil_C2H6 
        sp_Coal_C2H6(:,1) = Emissions(58,:); % Coal_C2H6 
        sp_BB_C2H6(:,1) = Emissions(49,:); % BB_C2H6 
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        sp_Biofuel_C2H6(:,1) = Emissions(50,:); % Biofuel_C2H6 
        Q_Seepage_CH4(:,1) = Emissions(45,:); % Uncert_Seepage_CH4 
        Q_NG_CH4(:,1) = Emissions(34,:); % Uncert_NG_CH4 
        Q_Oil_CH4(:,1) = Emissions(40,:); % Uncert_oil_CH4 
        Q_Coal_CH4(:,1) = Emissions(41,:); % Uncert_coal_CH4 
        Q_AW_CH4(:,1) = Emissions(31,:); % Uncert_Ag/Waste_CH4 
        Q_Nat_CH4(:,1) = Emissions(32,:); % Uncert_Nat_CH4 
        Q_BB_CH4(:,1) = Emissions(33,:); % Uncert_BB_CH4 
        Q_Seepage_C2H6(:,1) = Emissions(78,:); % Uncert_Seepage_C2H6 
        Q_NG_C2H6(:,1) = Emissions(70,:); % Uncert_NG_C2H6 
        Q_Oil_C2H6(:,1) = Emissions(76,:); % Uncert_oil_C2H6 
        Q_Coal_C2H6(:,1) = Emissions(77,:); % Uncert_coal_C2H6 
        Q_BB_C2H6(:,1) = Emissions(68,:); % Uncert_BB_C2H6 
        Q_Biofuel_C2H6(:,1) = Emissions(69,:); % Uncert_Biofuel_C2H6 
    else 
        if emiss_scenario == 3 % LCA 1% NG FE rate flat 
            for i = 1:28 % years 
                sp(row,1) = Emissions(25,i); % Seepage_CH4 
                sp(row+1,1) = Emissions(8,i); % NG_CH4 
                sp(row+2,1) = Emissions(13,i); % Oil_CH4 
                sp(row+3,1) = Emissions(14,i); % Coal_CH4 
                sp(row+4,1) = Emissions(4,i); % Ag/Waste_CH4 
                sp(row+5,1) = Emissions(5,i); % Nat_CH4 
                sp(row+6,1) = Emissions(6,i); % BB_CH4 
                Emis_total_CH4(i,1) = Emissions(19,i); % total CH4 emissions 
                Q(row,row) = Emissions(45,i); % Uncert_Seepage_CH4 
                Q(row+1,row+1) = Emissions(35,i); % Uncert_NG_CH4 
                Q(row+2,row+2) = Emissions(40,i); % Uncert_oil_CH4 
                Q(row+3,row+3) = Emissions(41,i); % Uncert_coal_CH4 
                Q(row+4,row+4) = Emissions(31,i); % Uncert_Ag/Waste_CH4 
                Q(row+5,row+5) = Emissions(32,i); % Uncert_Nat_CH4 
                Q(row+6,row+6) = Emissions(33,i); % Uncert_BB_CH4 
                R(i,i) = Emissions(48,i); 
                row = row + 7; 
            end 
            row = 197; 
            for i = 1:28 % years 
                sp(row,1) = Emissions(65,i); % Seepage_C2H6 
                sp(row+1,1) = Emissions(52,i); % NG_C2H6 
                sp(row+2,1) = Emissions(57,i); % Oil_C2H6 
                sp(row+3,1) = Emissions(58,i); % Coal_C2H6 
                sp(row+4,1) = Emissions(49,i); % BB_C2H6 
                sp(row+5,1) = Emissions(50,i); % Biofuel_C2H6 
                Emis_total_C2H6(i,1) = Emissions(60,i); % total C2H6 emissions 
                Q(row,row) = Emissions(78,i); % Uncert_Seepage_C2H6 
                Q(row+1,row+1) = Emissions(71,i); % Uncert_NG_C2H6 
                Q(row+2,row+2) = Emissions(76,i); % Uncert_oil_C2H6 
                Q(row+3,row+3) = Emissions(77,i); % Uncert_coal_C2H6 
                Q(row+4,row+4) = Emissions(68,i); % Uncert_BB_C2H6 
                Q(row+5,row+5) = Emissions(69,i); % Uncert_Biofuel_C2H6 
                R(i+28,i+28) = Emissions(81,i); 
                row = row + 6; 
            end 
            % for plotting priors 
            sp_Seepage_CH4(:,1) = Emissions(25,:); % Seepage_CH4 
            sp_NG_CH4(:,1) = Emissions(8,:); % NG_CH4 
            sp_Oil_CH4(:,1) = Emissions(13,:); % Oil_CH4 
            sp_Coal_CH4(:,1) = Emissions(14,:); % Coal_CH4 
            sp_AW_CH4(:,1) = Emissions(4,:); % Ag/Waste_CH4 
            sp_Nat_CH4(:,1) = Emissions(5,:); % Nat_CH4 
            sp_BB_CH4(:,1) = Emissions(6,:); % BB_CH4 
            sp_Seepage_C2H6(:,1) = Emissions(65,:); % Seepage_C2H6 
            sp_NG_C2H6(:,1) = Emissions(52,:); % NG_C2H6 
            sp_Oil_C2H6(:,1) = Emissions(57,:); % Oil_C2H6 
            sp_Coal_C2H6(:,1) = Emissions(58,:); % Coal_C2H6 
            sp_BB_C2H6(:,1) = Emissions(49,:); % BB_C2H6 
            sp_Biofuel_C2H6(:,1) = Emissions(50,:); % Biofuel_C2H6 
            Q_Seepage_CH4(:,1) = Emissions(45,:); % Uncert_Seepage_CH4 
            Q_NG_CH4(:,1) = Emissions(35,:); % Uncert_NG_CH4 
            Q_Oil_CH4(:,1) = Emissions(40,:); % Uncert_oil_CH4 
            Q_Coal_CH4(:,1) = Emissions(41,:); % Uncert_coal_CH4 
            Q_AW_CH4(:,1) = Emissions(31,:); % Uncert_Ag/Waste_CH4 
            Q_Nat_CH4(:,1) = Emissions(32,:); % Uncert_Nat_CH4 
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            Q_BB_CH4(:,1) = Emissions(33,:); % Uncert_BB_CH4 
            Q_Seepage_C2H6(:,1) = Emissions(78,:); % Uncert_Seepage_C2H6 
            Q_NG_C2H6(:,1) = Emissions(71,:); % Uncert_NG_C2H6 
            Q_Oil_C2H6(:,1) = Emissions(76,:); % Uncert_oil_C2H6 
            Q_Coal_C2H6(:,1) = Emissions(77,:); % Uncert_coal_C2H6 
            Q_BB_C2H6(:,1) = Emissions(68,:); % Uncert_BB_C2H6 
            Q_Biofuel_C2H6(:,1) = Emissions(69,:); % Uncert_Biofuel_C2H6 
        else 
            if emiss_scenario == 4 % LCA 3% NG FE rate flat 
[…] (code truncated here; repeats until emissions scenario 7 (9% NG FE) 
end 
  
if ethane_obs == 1 
    z = xlsread('Emissions and observations inputs box model v6.xlsx', 2, 'C1:C56'); 
else 
    if ethane_obs == 2 
    z = xlsread('Emissions and observations inputs box model v6.xlsx', 2, 'D1:D56'); 
    else 
        if ethane_obs == 3 
        z = xlsread('Emissions and observations inputs box model v6.xlsx', 2, 'E1:E56'); 
        else 
            z = xlsread('Emissions and observations inputs box model v6.xlsx', 2,  
            'F1:F56'); 
        end 
    end 
end  
   
H = zeros(56,364); 
H_value_CH4 = ones(1,7); % 7 sources (Seepage, NG, oil, coal, ag/waste, nat, BB) 
column = 1; 
for i = 1:28 
    H(i,column:column+6) = H_value_CH4; 
    column = column + 7; 
end 
H_value_C2H6 = ones(1,6); % 6 sources (Seepage, NG, oil, coal, BB, biofuel) 
column = 197; 
for i = 29:56 
    H(i,column:column+5) = H_value_C2H6; 
    column = column + 6; 
end 
     
Ht = transpose(H); 
  
s_post = sp + Q * Ht * (R + H * Q * Ht)^(-1) * (z - H * sp); 
s_post_Seepage_CH4 = zeros(28,1); 
s_post_NG_CH4 = zeros(28,1); 
s_post_Oil_CH4 = zeros(28,1); 
s_post_Coal_CH4 = zeros(28,1); 
s_post_AW_CH4 = zeros(28,1); 
s_post_Nat_CH4 = zeros(28,1); 
s_post_BB_CH4 = zeros(28,1); 
s_post_sum_CH4 = zeros(28,1); 
s_post_Seepage_C2H6 = zeros(28,1); 
s_post_NG_C2H6 = zeros(28,1); 
s_post_Oil_C2H6 = zeros(28,1); 
s_post_Coal_C2H6 = zeros(28,1); 
s_post_BB_C2H6 = zeros(28,1); 
s_post_Biofuel_C2H6 = zeros(28,1); 
s_post_sum_C2H6 = zeros(28,1); 
Q_post = Q - Q * Ht * (R + H * Q * Ht)^(-1) * H * Q; 
Q_post_Seepage_CH4 = zeros(28,1); 
Q_post_NG_CH4 = zeros(28,1); 
Q_post_Oil_CH4 = zeros(28,1); 
Q_post_Coal_CH4 = zeros(28,1); 
Q_post_AW_CH4 = zeros(28,1); 
Q_post_Nat_CH4 = zeros(28,1); 
Q_post_BB_CH4 = zeros(28,1); 
Q_post_Seepage_C2H6 = zeros(28,1); 
Q_post_NG_C2H6 = zeros(28,1); 
Q_post_Oil_C2H6 = zeros(28,1); 
Q_post_Coal_C2H6 = zeros(28,1); 
Q_post_BB_C2H6 = zeros(28,1); 
Q_post_Biofuel_C2H6 = zeros(28,1); 
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row = 1; % CH4 
for i = 1:28 % years 
    s_post_Seepage_CH4(i,1) = s_post(row,1); 
    s_post_NG_CH4(i,1) = s_post(row+1,1); 
    s_post_Oil_CH4(i,1) = s_post(row+2,1); 
    s_post_Coal_CH4(i,1) = s_post(row+3,1); 
    s_post_AW_CH4(i,1) = s_post(row+4,1); 
    s_post_Nat_CH4(i,1) = s_post(row+5,1); 
    s_post_BB_CH4(i,1) = s_post(row+6,1); 
    s_post_sum_CH4(i,1) = s_post_Seepage_CH4(i,1) + s_post_NG_CH4(i,1) +  
    s_post_Oil_CH4(i,1) + s_post_Coal_CH4(i,1) + s_post_AW_CH4(i,1) + s_post_Nat_CH4(i,1)  
    + s_post_BB_CH4(i,1); 
    Q_post_Seepage_CH4(i,1) = Q_post(row,row); 
    Q_post_NG_CH4(i,1) = Q_post(row+1,row+1); 
    Q_post_Oil_CH4(i,1) = Q_post(row+2,row+2); 
    Q_post_Coal_CH4(i,1) = Q_post(row+3,row+3); 
    Q_post_AW_CH4(i,1) = Q_post(row+4,row+4); 
    Q_post_Nat_CH4(i,1) = Q_post(row+5,row+5); 
    Q_post_BB_CH4(i,1) = Q_post(row+6,row+6); 
    row = row + 7; % 7 sources (Seepage, NG, oil, coal, ag/waste, nat, BB) 
end 
row = 197; % C2H6 
for i = 1:28 % years 
    s_post_Seepage_C2H6(i,1) = s_post(row,1); 
    s_post_NG_C2H6(i,1) = s_post(row+1,1); 
    s_post_Oil_C2H6(i,1) = s_post(row+2,1); 
    s_post_Coal_C2H6(i,1) = s_post(row+3,1); 
    s_post_BB_C2H6(i,1) = s_post(row+4,1); 
    s_post_Biofuel_C2H6(i,1) = s_post(row+5,1); 
    s_post_sum_C2H6(i,1) = s_post_Seepage_C2H6(i,1) + s_post_NG_C2H6(i,1) +  
    s_post_Oil_C2H6(i,1) + s_post_Coal_C2H6(i,1) + s_post_BB_C2H6(i,1) +  
    s_post_Biofuel_C2H6(i,1); 
    Q_post_Seepage_C2H6(i,1) = Q_post(row,row); 
    Q_post_NG_C2H6(i,1) = Q_post(row+1,row); 
    Q_post_Oil_C2H6(i,1) = Q_post(row+2,row+1); 
    Q_post_Coal_C2H6(i,1) = Q_post(row+3,row+2); 
    Q_post_BB_C2H6(i,1) = Q_post(row+4,row+3); 
    Q_post_Biofuel_C2H6(i,1) = Q_post(row+5,row+4); 
    row = row + 6; % 6 sources (Seepage, NG, oil, coal, BB, biofuel) 
end 
  
% write CH4 priors and posteriors in (84,7) matrix (7 columns for 7 emissions sources 
% and 28 years for prior and posterior each + 1 empty row each year as space between 
years) 
  
s_CH4 = zeros(84,7); 
row = 1; 
for i = 1:28 % years 
    s_CH4(row,1) = sp_Seepage_CH4(i); 
    s_CH4(row,2) = sp_NG_CH4(i); 
    s_CH4(row,3) = sp_Oil_CH4(i); 
    s_CH4(row,4) = sp_Coal_CH4(i); 
    s_CH4(row,5) = sp_AW_CH4(i); 
    s_CH4(row,6) = sp_Nat_CH4(i); 
    s_CH4(row,7) = sp_BB_CH4(i); 
    s_CH4(row+1,1) = s_post_Seepage_CH4(i); 
    s_CH4(row+1,2) = s_post_NG_CH4(i); 
    s_CH4(row+1,3) = s_post_Oil_CH4(i); 
    s_CH4(row+1,4) = s_post_Coal_CH4(i); 
    s_CH4(row+1,5) = s_post_AW_CH4(i); 
    s_CH4(row+1,6) = s_post_Nat_CH4(i); 
    s_CH4(row+1,7) = s_post_BB_CH4(i); 
    row = row + 3;    
end 
  
if plotting == 1 
    s_CH4 = s_CH4(49:84,:); 
end 
  
% write C2H6 priors and posteriors in (84,6) matrix (6 columns for 6 emissions sources 
% and 28 years for prior and posterior each + 1 empty row each year as space between 
years) 
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if emiss_scenario ~= 1 % is not 1 (don't need C2H6 for NOAA emissions) 
  
s_C2H6 = zeros(84,6); 
row = 1; 
for i = 1:28 % years 
    s_C2H6(row,1) = sp_Seepage_C2H6(i); 
    s_C2H6(row,2) = sp_NG_C2H6(i); 
    s_C2H6(row,3) = sp_Oil_C2H6(i); 
    s_C2H6(row,4) = sp_Coal_C2H6(i); 
    s_C2H6(row,5) = sp_BB_C2H6(i); 
    s_C2H6(row,6) = sp_Biofuel_C2H6(i); 
    s_C2H6(row+1,1) = s_post_Seepage_C2H6(i); 
    s_C2H6(row+1,2) = s_post_NG_C2H6(i); 
    s_C2H6(row+1,3) = s_post_Oil_C2H6(i); 
    s_C2H6(row+1,4) = s_post_Coal_C2H6(i); 
    s_C2H6(row+1,5) = s_post_BB_C2H6(i); 
    s_C2H6(row+1,6) = s_post_Biofuel_C2H6(i); 
    row = row + 3;    
end 
  
if plotting == 1 
    s_C2H6 = s_C2H6(49:84,:); 
end 
  
end % end if 
  
% calculate CH4 uncertainties for checking with spreadsheet (priors) and output graphs 
(posteriors) 
  
Uncert_prior_Seepage_CH4 = zeros(28,2); 
Uncert_prior_NG_CH4 = zeros(28,2); 
Uncert_prior_Oil_CH4 = zeros(28,2); 
Uncert_prior_Coal_CH4 = zeros(28,2); 
Uncert_prior_AW_CH4 = zeros(28,2); 
Uncert_prior_Nat_CH4 = zeros(28,2); 
Uncert_prior_BB_CH4 = zeros(28,2); 
Uncert_post_Seepage_CH4 = zeros(28,2); 
Uncert_post_NG_CH4 = zeros(28,2); 
Uncert_post_Oil_CH4 = zeros(28,2); 
Uncert_post_Coal_CH4 = zeros(28,2); 
Uncert_post_AW_CH4 = zeros(28,2); 
Uncert_post_Nat_CH4 = zeros(28,2); 
Uncert_post_BB_CH4 = zeros(28,2); 
Uncertainty_CH4 = zeros(84,7); % difference high-mean (or mean-low) for 7 columns (7 
emissions sources) and 84 rows (28 years for prior and posterior each + 1 empty row each 
year as space between years 
row = 1; 
 
for i = 1:28 % years 
Uncert_prior_Seepage_CH4(i,:) = norminv([0.05 0.95], sp_Seepage_CH4(i), 
sqrt(Q_Seepage_CH4(i))); 
    Uncert_prior_NG_CH4(i,:) = norminv([0.05 0.95], sp_NG_CH4(i), sqrt(Q_NG_CH4(i))); 
    Uncert_prior_Oil_CH4(i,:) = norminv([0.05 0.95], sp_Oil_CH4(i), sqrt(Q_Oil_CH4(i))); 
    Uncert_prior_Coal_CH4(i,:) = norminv([0.05 0.95], sp_Coal_CH4(i), 
    sqrt(Q_Coal_CH4(i))); 
    Uncert_prior_AW_CH4(i,:) = norminv([0.05 0.95], sp_AW_CH4(i), sqrt(Q_AW_CH4(i))); 
    Uncert_prior_Nat_CH4(i,:) = norminv([0.05 0.95], sp_Nat_CH4(i), sqrt(Q_Nat_CH4(i))); 
    Uncert_prior_BB_CH4(i,:) = norminv([0.05 0.95], sp_BB_CH4(i), sqrt(Q_BB_CH4(i))); 
     
    Uncert_post_Seepage_CH4(i,:) = norminv([0.05 0.95], s_post_Seepage_CH4(i),  
    sqrt(Q_post_Seepage_CH4(i))); 
    Uncert_post_NG_CH4(i,:) = norminv([0.05 0.95], s_post_NG_CH4(i),  
    sqrt(Q_post_NG_CH4(i))); 
    Uncert_post_Oil_CH4(i,:) = norminv([0.05 0.95], s_post_Oil_CH4(i),  
    sqrt(Q_post_Oil_CH4(i))); 
    Uncert_post_Coal_CH4(i,:) = norminv([0.05 0.95], s_post_Coal_CH4(i),  
    sqrt(Q_post_Coal_CH4(i))); 
    Uncert_post_AW_CH4(i,:) = norminv([0.05 0.95], s_post_AW_CH4(i),  
    sqrt(Q_post_AW_CH4(i))); 
    Uncert_post_Nat_CH4(i,:) = norminv([0.05 0.95], s_post_Nat_CH4(i),  
    sqrt(Q_post_Nat_CH4(i))); 
    Uncert_post_BB_CH4(i,:) = norminv([0.05 0.95], s_post_BB_CH4(i),  
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    sqrt(Q_post_BB_CH4(i))); 
     
    Uncertainty_CH4(row,1) = Uncert_prior_Seepage_CH4(i,2) - sp_Seepage_CH4(i); 
    Uncertainty_CH4(row,2) = Uncert_prior_NG_CH4(i,2) - sp_NG_CH4(i); 
    Uncertainty_CH4(row,3) = Uncert_prior_Oil_CH4(i,2) - sp_Oil_CH4(i); 
    Uncertainty_CH4(row,4) = Uncert_prior_Coal_CH4(i,2) - sp_Coal_CH4(i); 
    Uncertainty_CH4(row,5) = Uncert_prior_AW_CH4(i,2) - sp_AW_CH4(i); 
    Uncertainty_CH4(row,6) = Uncert_prior_Nat_CH4(i,2) - sp_Nat_CH4(i); 
    Uncertainty_CH4(row,7) = Uncert_prior_BB_CH4(i,2) - sp_BB_CH4(i); 
    Uncertainty_CH4(row+1,1) = Uncert_post_Seepage_CH4(i,2) - s_post_Seepage_CH4(i); 
    Uncertainty_CH4(row+1,2) = Uncert_post_NG_CH4(i,2) - s_post_NG_CH4(i); 
    Uncertainty_CH4(row+1,3) = Uncert_post_Oil_CH4(i,2) - s_post_Oil_CH4(i); 
    Uncertainty_CH4(row+1,4) = Uncert_post_Coal_CH4(i,2) - s_post_Coal_CH4(i); 
    Uncertainty_CH4(row+1,5) = Uncert_post_AW_CH4(i,2) - s_post_AW_CH4(i); 
    Uncertainty_CH4(row+1,6) = Uncert_post_Nat_CH4(i,2) - s_post_Nat_CH4(i); 
    Uncertainty_CH4(row+1,7) = Uncert_post_BB_CH4(i,2) - s_post_BB_CH4(i);     
    row = row + 3; 
end 
 
if plotting == 1 
    Uncertainty_CH4 = Uncertainty_CH4(49:84,:); 
end 
  
% calculate C2H6 uncertainties for checking with spreadsheet (priors) and output graphs 
(posteriors) 
 
[…] truncated here; analogous to CH4 above 
 
% generate emissions files for plotting both positive and negative values 
% (http://www.mathworks.com/matlabcentral/answers/17728) 
% errorbarbar still gets called with s_C2H6, but s_C2H6_neg and s_C2H6_pos is used in 
errorbarbar 
  
s_CH4_neg = s_CH4; 
s_CH4_neg(s_CH4_neg>0) = 0; 
s_CH4_pos = s_CH4; 
s_CH4_pos(s_CH4_pos<0) = 0; 
  
Uncertainty_CH4(s_CH4<0) = 0; 
  
if plotting == 1 
    errorbarbar_since_2000_v5(s_CH4,Uncertainty_CH4); 
else 
    errorbarbar_v5(s_CH4,Uncertainty_CH4); 
end 
  
if emiss_scenario ~= 1 % is not 1 (don't need C2H6 for NOAA emissions) 
    % generate emissions files for plotting both positive and negative values 
    % (http://www.mathworks.com/matlabcentral/answers/17728) 
    % errorbarbar still gets called with s_CH4, but s_CH4_neg and s_CH4_pos is used in 
errorbarbar 
  
    s_C2H6_neg = s_C2H6; 
    s_C2H6_neg(s_C2H6_neg>0) = 0; 
    s_C2H6_pos = s_C2H6; 
    s_C2H6_pos(s_C2H6_pos<0) = 0; 
  
    Uncertainty_C2H6(s_C2H6<0) = 0; 
     
    plot_C2H6 = 1; 
    if plotting == 1 
    errorbarbar_since_2000_v5(s_C2H6,Uncertainty_C2H6); 
else 
    errorbarbar_v5(s_C2H6,Uncertainty_C2H6); 
    end 
end 
  
% CH4 policy graphs 
  
% plotting policy graphs in units of % of FF 
  
if emiss_scenario == 3 % 1% NG FE 
    Summary_mean_CH4 = zeros(5,4); 
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    Summary_uncertainty_CH4 = zeros(5,4); 
    Summary_mean_CH4(1,1) = (sp_AW_CH4(2)+sp_Nat_CH4(2)+sp_BB_CH4(2)-s_post_AW_CH4(2)- 
    s_post_Nat_CH4(2)-s_post_BB_CH4(2))/(sp_NG_CH4(2)+sp_Oil_CH4(2)+sp_Coal_CH4(2))*100; 
    Summary_mean_CH4(1,2) = (sp_AW_CH4(7)+sp_Nat_CH4(7)+sp_BB_CH4(7)-s_post_AW_CH4(7)- 
    s_post_Nat_CH4(7)-s_post_BB_CH4(7))/(sp_NG_CH4(7)+sp_Oil_CH4(7)+sp_Coal_CH4(7))*100; 
    Summary_mean_CH4(1,3) = (sp_AW_CH4(17)+sp_Nat_CH4(17)+sp_BB_CH4(17)- 
    s_post_AW_CH4(17)-s_post_Nat_CH4(17)- 
    s_post_BB_CH4(17))/(sp_NG_CH4(17)+sp_Oil_CH4(17)+sp_Coal_CH4(17))*100; 
    Summary_mean_CH4(1,4) = (sp_AW_CH4(27)+sp_Nat_CH4(27)+sp_BB_CH4(27)- 
    s_post_AW_CH4(27)-s_post_Nat_CH4(27)- 
    s_post_BB_CH4(27))/(sp_NG_CH4(27)+sp_Oil_CH4(27)+sp_Coal_CH4(27))*100; 
    Summary_uncertainty_CH4(1,1) =  
    (Uncert_prior_AW_CH4(2,1)+Uncert_prior_Nat_CH4(2,1)+Uncert_prior_BB_CH4(2,1)- 
    s_post_AW_CH4(2)-s_post_Nat_CH4(2)- 
    s_post_BB_CH4(2))/(sp_NG_CH4(2)+sp_Oil_CH4(2)+sp_Coal_CH4(2))*100; 
    Summary_uncertainty_CH4(1,2) =  
    (Uncert_prior_AW_CH4(7,1)+Uncert_prior_Nat_CH4(7,1)+Uncert_prior_BB_CH4(7,1)- 
    s_post_AW_CH4(7)-s_post_Nat_CH4(7)- 
    s_post_BB_CH4(7))/(sp_NG_CH4(7)+sp_Oil_CH4(7)+sp_Coal_CH4(7))*100; 
    Summary_uncertainty_CH4(1,3) =  
    (Uncert_prior_AW_CH4(17,1)+Uncert_prior_Nat_CH4(17,1)+Uncert_prior_BB_CH4(17,1)- 
    s_post_AW_CH4(17)-s_post_Nat_CH4(17)- 
    s_post_BB_CH4(17))/(sp_NG_CH4(17)+sp_Oil_CH4(17)+sp_Coal_CH4(17))*100; 
    Summary_uncertainty_CH4(1,4) =  
    (Uncert_prior_AW_CH4(27,1)+Uncert_prior_Nat_CH4(27,1)+Uncert_prior_BB_CH4(27,1)- 
    s_post_AW_CH4(27)-s_post_Nat_CH4(27)- 
    s_post_BB_CH4(27))/(sp_NG_CH4(27)+sp_Oil_CH4(27)+sp_Coal_CH4(27))*100; 
else 
    if emiss_scenario == 4 % 3% NG FE 
 
[…] truncated here; analogous to 1% NG FE above 
 
end 
     
figure2 = figure; 
set(figure2, 'Position', [1000 400 700 360]) 
    % Create axes 
    axes2 = axes('Parent',figure2,'YGrid','on',... 
    'XTickLabel',{'1%','3%','5%','7%','9%'},... 
    'XTick',[1 2 3 4 5],... 
    'Position',[0.0617577197149644 0.114232209737828 0.923990498812352 
0.814606741573034],... 
    'FontSize',20); 
    % box(axes2,'on'); 
    hold(axes2,'all'); 
    b = bar(Summary_mean_CH4,'grouped'); 
    ylim(axes2,[-100 100]); 
%     % Create ylabel 
%     ylabel('CH_{4} emissions relative to FF prior (%) ','FontSize',20); 
%     % Create xlabel 
%     xlabel(NG FE rate','FontSize',20); 
%     l = cell(1,4); 
%     l{1}='1985'; l{2}='1990'; l{3}='2000'; l{4}='2010'; 
%     legend_mean = legend(b,l,'Orientation','horizontal'); 
%     set(legend_mean,'Location','SouthEast'); 
%     title('Prior mean - Posterior mean '); 
     
figure3 = figure; 
set(figure3, 'Position', [500 400 700 360]) 
    % Create axes 
    axes3 = axes('Parent',figure3,'YGrid','on',... 
    'XTickLabel',{'1%','3%','5%','7%','9%'},... 
    'XTick',[1 2 3 4 5],... 
    'Position',[0.0707162284678151 0.114232209737828 0.915031990059501 
0.811776758872037],... 
    'FontSize',20); 
    % box(axes3,'on'); 
    hold(axes3,'all'); 
    b = bar(Summary_uncertainty_CH4,'grouped'); 
    ylim(axes3,[-250 100]); 
%     % Create ylabel 
%     ylabel('CH_{4} emissions relative to FF prior (%) ','FontSize',20); 
%     % Create xlabel 
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%     xlabel('NG FE rate','FontSize',20);  
%     l = cell(1,4); 
%     l{1}='1985'; l{2}='1990'; l{3}='2000'; l{4}='2010'; 
%     legend_mean = legend(b,l); 
%     set(legend_mean,'Location','SouthEast'); 
%     title('Lower bound prior uncertainty - Posterior mean '); 
  
% C2H6 policy graphs 
 
[…] truncated here; analogous to CH4 graphs above 
 

errorbar_v5 (function used in box-model code above; adapted using external 
model code as referenced below): 
 
function [b,e] = errorbarbar(x,y,E,barSettings,lineSettings) 
  
% load workspace into function (need that for variable plot_C2H6) 
evalin('base','save myvars.mat'); 
load myvars.mat 
  
% function to plot bar plots with error bars 
%   [b,e] = errorbarbar(y,E) 
%   [b,e] = errorbarbar(x,y,E) 
%   [b,e] = errorbarbar(x,y,E, barSetings, lineSettings) 
% Inputs barSettings and lineSettings are cells containing settings for 
% bars and lineSettings. If you want to set only one of them, set the other 
% to empty. 
% Outputs b and e are the handles to the bar and the errorbar plotted. 
%  
% NOTE: Currently does NOT support errorbar(x,y,L,U) directly. It is  
% possible as a trick using lineSettings appropriately. 
%  
%  See Also: 
%       bar, errorbar 
%  
%  Dependencies: 
%       No additional files are required. 
%  
  
% Created by Venn on 2009-JUL-13 (vennjr@u.northwestern.edu) 
% Modified: 
%   2011-Jun-22. Removed the legends for the error bars. 
%   2009-Jul-15. Now works with stacked bars too. Woot! 
%   2009-Jul-14. Fixed minor bug in the input settings and fixed a bug when 
%                either barSettings or lineSettings are empty. 
  
%% use the appropriate setting 
if nargin<5 || isempty(lineSettings) 
    lineSettings = {'linestyle','none'}; 
end 
if nargin<4 
    barSettings = {}; 
end 
  
%% plot the bars CH4 
  
% in this case "errorbarbar(x,E)", x and E are both 84x3 matrices 
  
if plot_C2H6 == 0 % plot CH4 
  
if nargin<3 % if no x is provided 
    % Create figure 
    figure1 = figure; 
    set(figure1, 'Position', [10 400 720 300]) 
    % Create axes 
    axes1 = axes('Parent',figure1,'YGrid','on','XTick',zeros(1,0),... 
    'Position',[0.053585500394011 0.048 0.924747832939323 0.923119133574007],... 
    'FontSize',20); 
%     axes1 = axes('Parent',figure1,'YGrid','on',... 
      'XTickLabel',{'1984','1985','1986','1987','1988','1989','1990','1991','1992', 
      '1993','1994','1995','1996','1997','1998','1999','2000','2001','2002','2003', 
      '2004','2005','2006','2007','2008','2009','2010','2011'},... 
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%     'XTick',[1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76  
      79 82],... 
%     'FontSize',16); 
%     xlab = get(gca,'XTickLabel');  
%     set(gca,'XTickLabel',xlab);  
%     rotateXLabels(gca, 45)  
%     box(axes1,'on'); 
    hold(axes1,'all'); 
%     b = bar(x,1,'stacked','Parent',axes1); % "1" reduces space between bars to zero 
    hold on 
    bar(s_CH4_neg,1,'stacked','Parent',axes1); 
    b = bar(s_CH4_pos,1,'stacked','Parent',axes1); 
    hold off   
%     Create ylabel 
%     ylabel('Global CH_{4} emissions (Tg/yr)   ','FontSize',16); 
%     Create xlabel 
%     xlabel('Year  ','FontSize',16); 
%     % Create legend 
%     lg = cell(1,6); 
%     lg = {'NG' 'Oil' 'Coal' 'Ag/waste' 'Natural' 'BB'}; 
%     order=[6 5 4 3 2 1]; 
%     legend_mean = legend(b(order),lg{order}); 
%     set(legend_mean,'Location','NorthWest'); 
    xlim(axes1,[0 84.5]); 
    ylim(axes1,[0 800]); 
%     Resize the axes in order to prevent it from shrinking. 
    set(axes1,'Position',[0.053585500394011 0.137658227848101 0.838734372923487 
0.833460905725906]); 
    E = y; 
    y = x; 
else 
%   b = bar(x,y,barSettings{:}); 
    b = bar(x,y,1,'stacked'); 
end 
  
end 
  
%% plot the bars C2H6 
 
[…] truncated here; analogous to CH4 above 
  
%% get the xdata to plot the error plots 
c = get(b,'Children'); 
if iscell(c) 
    for i = 1:length(c) 
        xdata(:,i) = mean(get(c{i},'xdata')); 
        tempYData  = get(c{i},'ydata'); 
        ydata(:,i) = mean(tempYData(2:3,:))'; 
    end 
else 
    xdata = mean(get(c,'xdata')); 
    tempYData  = get(c,'ydata'); 
    ydata = mean(tempYData(2:3,:))'; 
end 
  
%% plot the errorbars 
hold on; 
e = errorbar(xdata,ydata,E,lineSettings{:}); 
  
for i = 1:length(e) 
    hasbehavior(e(i), 'legend', false); 
end 
hold off; 
 

 


