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Abstract

Modern organizations (e.g., hospitals, banks, social networks, search

engines) hold large volumes of personal information, and rely heavily on

auditing for enforcement of privacy policies. These audit mechanisms

combine automated methods with human input to detect and punish vi-

olators. Since human audit resources are limited, and often not su�cient

to investigate all potential violations, current state-of-the-art audit tools

provide heuristics to guide human e�ort. However, numerous reports

of privacy breaches caused by malicious insiders bring to question the

e�ectiveness of these audit mechanisms.

Our thesis is that e�ective audit resource allocation and punishment

levels can be e�ciently computed by modeling the audit process as a

game between a rational auditor and a rational or worst-case auditee.

We present several results in support of the thesis. In the worst-case

adversary setting, we design a game model taking into account orga-

nizational cost of auditing and loss from violations. We propose the

notion of low regret as a desired audit property and provide a regret

minimizing audit algorithm that outputs an optimal audit resource al-

location strategy. The algorithm improves upon prior regret bounds in

the partial information setting. In the rational adversary setting, we en-

able punishments by the auditor, and model the adversary's utility as a

trade-o� between the bene�t from violations and loss due to punishment

when detected. Our Stackelberg game model generalizes an existing de-

ployed security game model with punishment parameters. It applies to

natural auditing settings with multiple auditors where each auditor is

restricted to audit a subset of the potential violations. We provide novel

polynomial time algorithms to approximate the non-convex optimization

problem used to compute the Stackelberg equilibrium. The algorithms

output optimal audit resource allocation strategy and punishment lev-

els. We also provide a method to reduce the optimization problem size,

achieving up to 5x speedup for realistic instances of the audit problem,

and for the related security game instances.
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Chapter 1

Introduction

Preventive access and information �ow control mechanisms form the cornerstone of

modern information security and privacy, but are inadequate to enforce desired poli-

cies in many practical scenarios. In particular, modern organizations that hold large

volumes of personal information (e.g., hospitals, banks, and Web services providers

like Google and Facebook) rely heavily on audit mechanisms for enforcement of pri-

vacy laws and policies. The importance of auditing in these settings arises from

several considerations.

First, privacy policies go beyond access control policies in that they restrict the

use of personal information to certain purposes. For example, the HIPAA Privacy

Rule for healthcare privacy in the US restricts use of protected health information to

purposes like treatment, payment, and operations. Violations occur when healthcare

professionals use information that they have a legitimate right to access for purposes

that are not permitted. Recent studies have revealed that numerous policy viola-

tions occur in the real world as hospital employees access records of celebrities,

family members, and neighbors motivated by general curiosity, �nancial gain, child

custody lawsuits and other considerations [1, 2, 3, 4]. Prior research [5] argues that

audit mechanisms are essential for enforcement of purpose restrictions in privacy

policies since there is not su�cient information at the time of access to determine

whether the policy is being complied with. Furthermore, while automated methods

for detecting purpose violations can direct the e�ort of human auditors, they can-

not replace the human auditors since they can produce false positives. Second, in

addition to purpose restrictions, privacy policies often permit or deny information

1



CHAPTER 1. INTRODUCTION 2

�ows based on other subjective predicates that cannot be automatically checked.

For example, the HIPAA Privacy Rule permits healthcare organizations to share

protected health information with law enforcement o�cials when they believe that

the data subject was involved in a crime. While large parts of the HIPAA Privacy

Rule can be automatically checked, subjective predicates pertaining to such beliefs

typically have to be reviewed by human auditors since audit logs do not contain suf-

�cient information to make a conclusive determination about policy compliance [6].

Third, machine learning based tools [7, 8, 9] as well as state-of-the-art healthcare

audit tools like FairWarning [10] (that perform SQL queries over audit logs) also

produce false positives and require review by human auditors.

Human auditors are a limited resource. They typically cannot inspect every po-

tential violation. Given the resource constraints and lack of quantitative auditing

guarantees, auditing tools employ heuristics to direct the e�ort of human auditors.

For example, Fairwarning [10], a popular tool for HIPAA privacy auditing in hospi-

tals, enables auditing all the accesses made to a celebrity's electronic health record

(EHR). Following detected violations, hospitals punish the violators using a punish-

ment policy decided by the higher management that may include monetary �nes,

suspension or even �ring from job. An example maybe a $90 cut in paycheck for

copying sensitive data to a portable device. Often the punishments vary in degree

depending on the severity of the violations. This approach to auditing and pun-

ishments is indeed reasonable, because HIPAA violations for celebrities are much

more costly for the hospital than a non-celebrity case and punishments should be

proportional to the crime. However, the approach is not based on any mathematical

models and thus has no optimality guarantees. Would it perhaps be more e�ective

to randomly audit 95% of all accesses to celebrity EHRs and increase the auditing

of non-celebrity EHRs? Also, would it perhaps be more e�ective to impose a �ne

of $100 for copying sensitive data to a portable device? These questions can be

addressed by studying the economics of auditing in an appropriate mathematical

model, that in turn yields notions of optimal auditing.

In more detail, the auditor needs to balance auditing costs, potential economic

damages due to violations and the economic impact of the punishment policy. Pun-

ishment policy has economic consequences for the auditor (organization) since pun-

ishment levels a�ect the productivity of auditees that in turn a�ects the revenue.

The auditees, if rational, will weigh their gain from violating policies against loss
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from getting caught by an audit and punished. The actions of one party impact the

actions of the other party: if auditees never violate, the auditor does not need to

audit; likewise, if the organization never audits, auditees can violate policies in total

impunity. Given this strategic interdependency, we model the auditing process as a

game between the auditor and auditees. The game is parameterized by quanti�able

variables such as the cost of breach, and the cost of auditing, among others. For

example, the economic impact of a violation is a combination of direct and indirect

costs ; direct costs include breach noti�cation and remedial cost, and indirect costs

include loss of customers and brand value. The 2010 Ponemon Institute report [11]

states that the average cost of privacy breach per record in health care is $301 with

indirect costs about two thirds of that amount. Of course, certain violations may

result in much higher direct costs, e.g., in the case of snooping on a celebrity's

records in Kaiser Permanente's Bell�ower hospital in the state of California, cost

were $25, 000 per record (up to $250, 000 in total) in �nes alone. [3].

More generally, our thesis is as follows:

E�ective audit resource allocation and punishment levels can be e�-

ciently computed by modeling the audit process as a game between a

rational auditor and a rational or worst-case auditee.

Our results in support of the thesis explore di�erent assumptions about the ra-

tionality of the auditee, notions of audit optimality, and algorithms for e�ciently

computing optimal resource allocation and punishment levels. We present a brief

overview of our results in the following sections. Finally, the generality of our eco-

nomic model of auditing enables its application to areas beyond information security

and privacy. For instance, tra�c inspections coupled with �nes, ticket inspections

in rail systems and �nancial audits are all audit scenarios that are instances of our

model.

1.1 The Worst-case Adversary

Our �rst cut at modeling the audit process explores what could be done without

restricting the adversary's (auditee's) behavior in any manner. We model the adver-

sary as an agent that performs certain tasks (e.g., accesses to EHR), and a subset

of these tasks are policy violations. The auditor inspects a subset of the tasks, and
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detects violations from among the inspected set. As di�erent types of violations may

have a di�erent impact on the organization, we consider the auditee's action as a

vector of tasks and the auditor's action as a vector of inspections with each compo-

nent of the vector denoting a particular type. For example, in a hospital there could

be two types: celebrity record accesses and non-celebrity record accesses. The au-

ditor can choose to inspect accesses of a certain type lightly, moderately, or heavily,

thus, the auditor has 9 possible pairs of inspections.

Next, we talk about the utilities for each type; the total utility is a sum of the

utilities of each type. The auditor pays an audit cost that increases monotonically

with the number of inspections, and it su�ers a loss due to violations. The loss

also increases monotonically with the number of violations. Further, the loss from

externally detected violations is higher than the loss from internally detected viola-

tions. Thus, the auditor has an incentive to perform more inspections in order to

detect violations on its own. Governmental audits, whistle-blowing, patient com-

plaints [12, 13] are all examples of situations that could lead to external detection

of violations. Externally detected violations usually cause more economic damage

to the organization than internally caught violations. The 2011 Ponemon Institute

report [14] states that patients whose privacy has been violated are more likely to

leave (and possibly sue) a hospital if they discover the violation on their own than if

the hospital detects the violation and proactively noti�es the patient. The auditor-

auditee interaction is repeated in every audit cycle, which we capture by modeling

the interaction as a repeated game.

It may seem impossible to provide any guarantee with a worst-case adversary

in a post-hoc inspection setting. However, we use the concept of regret from game

theory [15] to provide a desirable mathematical property of auditing in such a model.

Informally, low regret of a strategy S captures the notion that S performs as well

as any strategy in a given set of strategies �xed prior to the start of the game. The

performance of a strategy is measured by the average utility obtained by playing

the strategy in T rounds. Hence, regret for T rounds is the di�erence is average

utility after T rounds, with low regret meaning that the regret is not more than

zero as T goes to in�nity. We propose low regret as the desirable property of an

audit mechanism in this setting. Continuing our hospital example, the auditor has

9 actions in each round, and the set of strategies she considers is to play the same 9

actions in every round. Then, a low regret strategy S would guarantee an average
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utility that approaches the best average utility that any of the 9 strategies provides.

A regret minimizing algorithm computes a strategy that achieves low regret with

respect to any given �nite set of strategies of cardinality N . There are a number

of regret minimizing algorithms proposed in the learning theory literature [15]. A

measure of the quality of any regret minimization algorithm is the rate at which

regret converges to zero. The best regret minimization algorithm in the basic setting,

named multiplicative weight updates [16], provides a regret bound of O

(√
logN
T

)
,

where T is the number of rounds.

Our model presents additional challenges beyond the basic regret minimization

setting; these are imperfect information (also called partial information) and sleeping

experts. Imperfect information refers to the scenario where the adversary's action is

not observed for sure; instead some signal of that action is observed. This is the case

in our model also, as the number of violations may not be perfectly observed, since

only a subset of the accesses are inspected. Sleeping experts refers to the scenario

where the action space of the defender may change in di�erent rounds of the game.

Indeed, due to the possibly di�erent budgetary constraints imposed exogenously,

the maximum number of inspections that the auditor can perform can di�er from

round to round. Both these problems of imperfect information [15] and sleeping

experts [17] have been addressed in the literature. The best regret bounds in such

cases is O
(
N1/3 logN

T 1/3

)
.

Main Result. We build on existing algorithms to propose Regret Minimizing Au-

dits (RMA) [18], a mechanism to achieve low regret in our model. RMA improves

upon existing algorithms obtaining regret bounds of O

(√
logN
T

)
, under the mild

assumption that we can obtain an unbiased estimator of the actual action from the

observed signal about the action. We discuss the details of the model, algorithm

and assumptions in Chapter 3.

1.2 The Rational Adversary

A natural intuition is that stronger guarantees could be provided if we constrain

the adversary's behavior. Following this intuition, we propose an audit model with

rational adversaries. Building on our model with arbitrary adversary, we model the
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payo� for the adversary as the sum of bene�t gained from committing a violation

and the loss from punishment if the violation is detected. The bene�t is quanti�-

able using information from existing studies or by human judgment. For example,

reports [19, 20] indicate that on average the personal bene�t of a hospital employee

from selling a common person's health record is $50. As punishments do a�ect the

behavior of the adversary, it is critical for the auditor to choose the right level of

punishment. As a consequence, we add the choice of a punishment level to the

action space of the auditor.

However, punishment is not free for the auditor�the intuition being that a high

punishment level creates a hostile work environment, leading to lack in productivity

of employees that results in loss for the organization (auditor). As a consequence,

the auditor cannot impose in�nite punishment and deter any adversary. We model

the auditor's cost for a punishment level as a loss proportional to the choice of

the punishment level. The auditor moves �rst by committing to an inspection and

punishment strategy, followed by the best response of the adversary. Our model

results in a game that generalizes security games [21] with punishments. Security

games is an area of extensive research in the AI community, that has also found real

life application in airport security, airline security, etc. Similar to security games we

use the concept of Stackelberg equilibrium in our game. However, distinct from that

work, the punishment parameter in our model makes the equilibrium computation

a non-convex optimization problem. Non-convex optimization is known to be hard

to even approximate in the general case [22].

Single defender resource. As a �rst cut, we demonstrate a fully polynomial time

approximation scheme (FPTAS) for a simple rational model where the auditor has

just one inspection, and the adversary commits one violation [23]. Following termi-

nology of security games, we call each task of the adversary a target, and a violation

as an attack on the target. Our approach to computing the Stackelberg equilibrium

is based on the multiple LPs technique of Conitzer and Sandholm [24]. Assume

the targets are t1, . . . , tn. The defender solves multiple optimization problem that

maximizes her utility, one each with the constraint that target ti is attacked. Then,

the defender chooses the best solution from among these n maximizers. Mathemat-

ically, for each optimization problem, the defender chooses p1, . . . , pn (probability of

auditing target ti) and x (punishment level) in order to maximize her utility under
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the constraint that the adversary attacks target ti. The adversary attacking target

ti is mathematically stated as the utility of the adversary in attacking target ti is not

less than the utility in attacking any other target (these adversary utilities depends

on p1, . . . , pn, x).

The main idea in the FPTAS optimization is the property that at the optimal

point there is a subset of targets such that all targets in the subset are most (and

equally) attractive for the adversary and are audited by the defender, and all the

other targets are not audited at all. Further, the number of such subsets of targets

that we need to consider is just linear in the number of targets.

Then, iterating over each such subset, solving the resultant sub-problem and tak-

ing the best solution from all the sub-problems provides a global best solution. We

show that it is possible to reduce each sub-problem to a two variable optimization

problem. Next, the two variable optimization problem can be reduced to �nding the

roots of single variable polynomials. The roots of a polynomial can be approximated

e�ciently using methods of Schonage [25]. Hence, the overall algorithm runs e�-

ciently providing an approximate algorithm. The details of the model and algorithm

is presented in Chapter 4.

Multiple defender resources. We extend the result to the more realistic sce-

nario of multiple inspections with constraints on the targets that each inspection

can inspect. We treat each available inspection as an resource, thereby, imposing

the natural constraint that each resource can inspect at most one target. Further,

some special types of targets may only be inspected by specialized human auditors,

which imposes constraints on the set of targets that each resource can potentially

inspect. Examples of specialized auditing include scenarios such as billing related

case investigated by �nancial auditors from billing department, localized auditing

in which managers audit their direct reportees and the same localized auditing,

but with company wide auditors for cases that some mangers are not capable of

auditing. Mathematically, we introduce variable pji , the probability of inspection re-

source j inspecting target i. Some of these variables are forced to be zero, re�ecting

the specialized auditing scenario. Then, the probability of inspecting a target ti is

pi =
∑

j p
j
i .

We �rst provide an intuitive �xed parameter tractable (FPT) solution, obtained

by discretizing the punishment parameter x and solving the resultant linear pro-
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grams for every �xed punishment level. The FPT can also handle multiple (con-

stant) number of violations by the adversary. Then, we present an approach to

reduce the problem size by eliminating many variables of the optimization problem,

namely all the pji 's, though at the cost of increasing the number of constraints (in

pi's and x) in the problem. We characterize the conditions under which the number

of constraints do not increase exponentially, and hence allow for solving the au-

dit game problem e�ciently (FPTAS). These conditions capture many specialized

auditing scenarios including all the specialized auditing examples we listed above.

In more detail, given polynomially many number of constraints in pi's and x, we

can reduce the problem to n− 1 number of sub-problems using the exact technique

used in the single defender resource case. Then, building on the approach in the

single defender resource case, each sub-problem can be reduced to a two variable

optimization problem, which can be further be reduced to �nding roots of polyno-

mials. As stated earlier, the roots of a polynomial can be approximated e�ciently

using methods of Schonage [25]. The approach of reducing the problem size also

helps in greatly reducing the equilibrium computation time in the analogous secu-

rity games scenario, and in the FPT approach for audit games. We demonstrate

this improvement in running time experimentally for the FPT approach, achieving

improvement of 5x in running time with 200 targets, 10 human auditors with 10

inspections each (100 inspection resources) in a localized auditing structure, where

each auditor inspects 20 targets.

Target speci�c punishments. Finally, we extend the model to the scenario

where an auditor can choose a di�erent punishment level (x1, . . . , xn) for di�erent

targets t1, . . . , tn. This extension to the model re�ects the common practice in law

of proportional punishment [26]. The naive approach of discretizing each x1, . . . , xn

does not yield a FPT algorithm. We provide a FPT for this scenario by discretizing

only pi, xi (for the case when ti is the target under attack) and reducing the resultant

optimization problem to a second order cone program (SOCP), that is known to be

solvable e�ciently. The details of the extension are presented in Chapter 5.
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1.3 Repeated Rational Audit Games

As stated earlier, the auditor-auditee interaction is repeated in every audit cycle. We

prove that repeating the one round Stackelberg commitment of the auditor results in

a sub-game perfect equilibrium of the repeated game. Sub-game perfect equilibrium

is a re�nement of Nash equilibrium that is considered apt for repeated games.

Further, relaxing the rationality assumption for the adversary, we propose a near-

rational model of the adversary. In the near-rational model the adversary plays his

best response, except, she may take any other action with a small probability. This

models an adversary with trembling hand [27].

We de�ne an asymmetric approximate sub-game perfect equilibrium , and prove

that repeating the Stackelberg equilibrium from each round with a near-rational

adversary leads to such an equilibrium of the game. The asymmetry in the equilib-

rium is particularly relevant for security settings. Approximate equilibrium in game

theory allows players to deviate from the equilibrium action as long as they achieve

their equilibrium payo� within an additive factor of ε. In our asymmetric version,

we restrict the adversary to ε = 0, i.e., the rational adversary is not allowed to de-

viate at all. The defender is still allowed to deviate within approximation factor ε.

It is important to disincentivize the adversary from deviating, or else both players

deviating could result in huge loss for the defender.

Finally, we demonstrate that our model can explain phenomena that happen

in real world auditing scenarios, and also provide informed suggestions on policies

that could encourage organizations to perform more auditing. For example, one

way to encourage more auditing is to increase the probability of external detection

and the cost of externally detected violations, possibly by more external audits and

higher �nes for lax internal auditing. An interesting counterintuitive prediction

of our model is that increasing both the cost of external detected violation and

internally detected violations equally may not incentivize organizations to audit

more. An example of increasing cost of internally detected violations is mandating

that organizations send out noti�cation to a�ected parties in case of a breach. While

such laws appear e�ective, our model predicts that they will not lead to better

auditing practice by organizations.
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1.4 Scope of Work

This dissertation aims to provide techniques that enable organizations to audit in a

cost-optimal manner. We emphasize that cost-optimality for the organization may

not align with the goal of deterring the employees from committing violations. In-

deed, as we demonstrate in Chapter 6.4, if its too costly to deter an employee then

the cost-optimal strategy is to not punish the employee at all. However, our tech-

niques can be easily extended to change the goal from cost-optimality to deterrence,

an example of which is presented in Chapter 4.2 where we use a dummy target to

symbolize no attack and solve the scenario when the dummy target is attacked.

While deterrence is a desirable property of auditing, the natural goal of a rational

organization is cost-optimality. Our focus on cost-optimality captures phenomenon

that occur in auditing in the real world; in the process enabling the study of interven-

tions that encourage deterrence. We discuss some examples of possible interventions

in Chapter 6.4, such as increased external audit of organizations and increased �nes

for organizations.

Also, our abstraction contains a number of assumptions, some of which could be

removed easily while relaxing other assumptions requires solving hard research prob-

lems. These assumptions include abstractions such as a violation is caught for sure

when inspected, every violation is independent of other violations and adversaries

do not collude. We discuss these assumptions in the Chapter 7.1.

1.5 Summary of Contributions

The main contributions of this dissertation are as follows:

� Identifying regret as a notion of optimality in the worst-case adversary audit

setting.

� A regret minimizing audit algorithm with regret bound O

(√
logN
T

)
, which

is better than known regret bounds in the imperfect (partial) information

setting [15].

� A leader-follower game model of auditing with rational adversaries that gener-

alizes a standard security game model [21] with a punishment level parameter.

� E�cient algorithms for computing the Stackelberg equilibrium in the rational
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setting. In particular, we provide novel ways of obtaining FPTAS for particular

instances of non-convex optimization problems and also provide novel ways of

improving the running time for the FPT algorithm for the same instances. We

achieve a 5x improvement for instances with 200 targets and 100 inspection

resources.

� An asymmetric notion of approximate sub-game perfect equilibrium in games

with particular relevance for security. This notions allows the defender to

deviate from equilibrium with an ε additive factor bound on the di�erence from

optimal utility considering �xed equilibrium play by the adversary. However,

it restricts the adversary to not deviate at all. This is important, because

deviation by the adversary could result in signi�cant loss for the defender.

� Policy guidelines on the steps that could be taken to provably encourage or-

ganizations to audit better. For example, increased external inspection of

organization coupled with appropriate �nes will encourage organizations to

audit more e�ectively.



Chapter 2

Background and Related Work

2.1 Game Theory

Game theory is an area of study that seeks to model strategic interaction, and

predict outcomes of such interaction. Seminal work by John von Neumann [28] and

John Nash [29] in 1940's laid the foundations of modern game theory, which has

been followed by extensive work on game models in the economics community and

more recently, on game models and algorithmic aspects in the computer science

community. We provide a basic overview of game theory here; the interested reader

can �nd much more details in books dedicated to game theory [27].

We restrict our attention to two players games, call them Pa, Pb. Each player has

an action space given by sets A,B. Actions are the choices available to the players.

Each player also has a utility function Ua, Ub, and the signature of both functions

is U : A × B → R. Note that the dependence of ones utility on the action of the

other player, di�erentiates this set-up from decision theory. Every player is assumed

rational, i.e., all players prefer higher utility for themselves. An action pro�le (a, b)

is a pair of actions, one taken by each player ((a, b) ∈ A × B). An action pro�le

may be mixed, i.e., a player may choose a probability distribution over actions. Let

∆X denote all probability distributions over set X, then a mixed action pro�le is

(a, b) ∈ ∆A × ∆B. The utilities with mixed actions are expected values over the

distribution of actions.

For sake of completeness, we de�ne the Nash Equilibrium (NE) for a simultaneous

move game, but, we do not use NE in this dissertation. An (mixed) action pro�le

12
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(a∗, b∗) is called a (mixed) NE if

∀a′. Ua(a∗, b∗) ≥ Ua(a
′, b∗) and ∀b′. Ub(a∗, b∗) ≥ Ub(a

∗, b′) .

A game maybe simultaneous move game, i.e., players move simultaneously, or a

sequential move game, i.e., players move in a sequence. The one round sequential

move game is called a Stackelberg game. This game involves a leader moving �rst,

followed by the follower playing a best response. The best response of follower Pb is

de�ned as the function br such that

∀a, br′. Ub(a, br(a)) ≥ Ub(a, br
′(a)) .

Observe that the best response function may not be unique, since, there can be

two action of Pb such that both are best responses to a given action of Pa. Best

response functions have an equivalent de�nition as above in case of mixed action

a∗, except the utilities are expectations taken over the distribution of a∗. Since the

leader moves �rst, a particular function br automatically chooses the action of the

follower. Thus, the action of the Pb can be regarded as choice of function br. Then,

(a∗, br) (a∗ could be mixed) is the Stackelberg equilibrium in a sequential move game

if

∀a′. Ua(a∗, br(a∗)) ≥ Ua(a
′, br(a′)) .

As a result of the completely di�erent dynamics in sequential games, the set of

Stackelberg equilibrium may be di�erent from the set of NE in the corresponding

simultaneous move game. The following example makes this clear.

Player Pb

b1 b2

Player Pa

a1 4, 2 2, 1

a2 5, 2 3, 3

The NE in this game is (a2, b2), and, the Stackelberg equilibrium is (a1, b1).
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Adding another condition on the Stackelberg equilibrium�that the follower

breaks ties in favor of the leader�yields a strong Stackelberg equilibrium. We

refer the reader to a paper by Korzhyk et al. [30] for details of strong Stackelberg

equilibrium, including the result that the leader always obtains better utility in a

strong Stackelberg equilibrium than the utility in a NE of the simultaneous move

game. Another point to note is that we consider best responses to be pure actions

(rather than mixed), and this can be done without loss of generality as any action

in the support of the mixed action is by itself a best response. The details of Stack-

elberg equilibrium and its computation can be found in Conitzer et al. [24], which

we elaborate on in the next section.

2.2 Stackelberg Equilibrium Computation and Op-

timization

In a Stackelberg equilibrium, the best response of the followers induces a partition

of the action space of the leader, such that in each partition the best response of the

adversary is same. Given �nite action spaces, it is possible to �nd the best leader

action in each such partition by solving an optimization problem. This optimization

problem maximizes the leader's utility, subject to the constraint that a given action

is the best response of the follower. This it the multiple optimization approach.

The complexity of this approach for the basic leader-follower game and Bayesian

Stackeleberg games was studied in a seminal paper by Conitzer and Sandholm [24].

They demonstrate that for a two player game, the Stackelberg equilibrium can be

computed e�ciently for bi-matrix games using linear programs.

However, under additional constraints on the game, computing Stackelberg equi-

librium is not easy. The computation of Stackelberg equilibrium in security games [21]

is not easy in many cases. Security games has a model similar to our audit games

model, but, without punishments. However, security games has many variations

not explored in audit games yet, such a resource inspecting multiple targets simul-

taneously. These aspects make the computation of Stackelberg equilibrium hard in

many instances of security games [31].

However, distinct from the bi-matrix games considered in that paper, our sce-

nario involves an action that is continuous and the utility function of the following in
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non-convex in the actions of the leader. These considerations make our optimization

problem non-convex.

While linear programs and many instance of convex programs can be solved in

polynomial times using interior point methods [32], it is known that non-convex

optimization is even hard to approximate [22]. However, there are some instances

of non-convex optimization problems that have been solved or approximated e�-

ciently [22], such as concave objectives with low rank (see the de�nition of low rank

in [22]). Also, many apparently non-linear convex programs, such as semi-de�nite

and second order cone programs [32], are linear programs in disguise and can be

solved extremely e�ciently.

2.3 Regret Minimization

Regret (referred to as external regret in learning theory) was proposed way back in

1950's [33, 34], along with algorithm that minimized regret. We de�ne regret here in

the discrete case relying on the de�nition in the book Algorithmic game theory [15].

Consider a game played by Pa and Pb. Consider a strategy employed by player

Pa which we refer to as Alg. Alg outputs an action to be played by Pa in every round

t. The action output maybe a mixed action. Alg depends on the whole history of

actions played and payo�s received by Pa. Consider other strategies s ∈ S, that also
outputs action to be played by Pa in every round t. Regret of Alg with respect to s

is de�ned as the average di�erence in expected utility

Regret(Alg, s, T ) =
1

T

T∑
t=1

Ua(s(t),~bt)− Ua(Alg(t),~bt)

where s(t) denotes the action s output in round t, and ~bt is the t
th component of

the length T vector ~b which provides the actions played by the other player in the

T rounds. This is also the perfect information model, since the actions of the Pb are

observed by Pa; perfect information coupled with the knowledge of the game matrix

allows Pa to �gure out the payo� had it played any other action. We can extend

the above de�nition with respect to a set of strategies S as

Regret(Alg, S, T ) = max
s∈S

Regret(Alg, s, T )
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Alg is a regret minimization algorithm if it guarantees that for any sequence ~b and

any set S of bounded size

lim
T→∞

Regret(Alg, S, T )→ 0

Thus, a regret minimization algorithm Alg is a randomized algorithm for playing

in a repeated game. The weighted majority algorithm [16] is a regret minimization

algorithm. The weighted majority maintains weights ws for each of the |S| �xed
strategies of the defender. wts is the weight of the strategies before round t has been

played. The weights determine a probability distribution over actions, pts denotes

the probability of playing s at time t. In any given round the algorithm attempts to

learn the optimal distribution over actions by increasing the weights of experts that

performed better than its current distribution and decreasing the weights of experts

that performed worse. This algorithm obtains a bound on regret of O

(√
logN
T

)
,

which goes to 0 as T goes to in�nity.

An extension of the above scenario is when the action b of the other player is

not observed; such settings are called imperfect information or partial information.

It is possible to perform regret minimization in this setting also [15], by using the

perfect information algorithm as a sub-routine. However, the convergence rate of

regret to 0 becomes worse, with a rate of O
(
N1/3 logN

T 1/3

)
achieved in [35].

2.4 Auditing and Risk Management

There are di�erent directions explored in research on auditing. A line of work in

computer security uses evidence recorded in audit logs to understand why access was

granted and to revise access control policies if unintended accesses are detected [36,

37, 38]. In contrast, we use audits to detect violations of policies, such as those

restricting information use to speci�ed purposes, that cannot be enforced using

access control mechanisms.

Cederquist et al. [39] present logical methods for enforcing a class of policies,

which cannot be enforced using preventive access control mechanisms, based on

evidence recorded on audit logs. The evidence demonstrating policy compliance

is presented to the auditor in the form of a proof in a logic and can be checked
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mechanically. In contrast, our focus is on policies that cannot be mechanically

enforced in their entirety, but require involvement of human auditors. In addition,

the new challenges in our setting arises from the imperfect nature of audits.

Garg et al. [6] present an algorithm that mechanically enforces objective parts

of privacy policies like HIPAA based on evidence recorded in audit logs and outputs

subjective predicates (such as beliefs) that have to be checked by human auditors.

This work provides evidence of our claim that human intervention is necessary in

auditing. In the same vein, machine learning based tools for auditing [8, 9] su�er

from false positives and negatives, requiring human intervention in auditing.

Zhao et al. [40] recognize that rigid access control can cause loss in productivity

in certain types of organizations. They propose an access control regime that allows

all access requests, but marks accesses not permitted by the policy for posthoc audit

coupled with punishments for violating policy. They assume speci�c utility function

for the organization and the employees and use a single shot sequential game to

analyze the optimal behavior of the players, obtaining closed-form solutions for the

audit strategy. Our approach of using a permissive access control policy coupled with

audits is a similar idea. However, we also consider a worst-case adversary (employee)

because we believe that it may be di�cult to identify the exact incentives of the

employee in scenarios such as outsourced work. For the rational case, our results

apply to any utility function and we present an e�cient algorithm for computing

the audit strategy. Finally, we restrict the amount of audit inspections because of

budgetary constraints. Thus, our game model is signi�cantly more realistic than

the model of Zhao et al. [40].

Cheng et al. [41, 42] also start from the observation that rigid access control is

not desirable in many contexts. They propose a risk-based access control approach.

Speci�cally, they allocate a risk budget to each agent, estimate the risk of allowing

an access request, and permit an agent to access a resource if she can pay for

the estimated risk of access from her budget. Further, they use metaheuristics

such as genetic programming to dynamically change the security policy, i.e. change

the risk associated with accesses dynamically. Our approach to the problem is

fundamentally di�erent: we use a form of risk-based auditing instead of risk-based

access control. Also, genetic programming is a metaheuristic, which is known to

perform well empirically, but does not have theoretical guarantees [43]. In contrast,

we provide mechanisms with provable guarantees. Indeed an interesting topic for
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future work is to investigate the use of learning-theoretic techniques to dynamically

adjust the risk associated with accesses in a principled manner.

Feigenbaum et al. [44] report work in progress on formal de�nitions of account-

ability capturing the idea that violators are punished with or without identi�cation

and mediation with non-zero probability, and punishments are determined based on

an understanding of �typical� utility functions. Operational considerations of how

to design an accountability mechanism that e�ectively manages organizational risk

is not central to their work.

Our work is an instance of a risk management technique [41, 45] in the context

of auditing and accountability. As far as we know, our technique is the �rst instance

of managing risk in auditing using a game formalism. Risk assessment has been

extensively used in many areas [46, 47]; the report by American National Standards

Institute [20] provides a risk assessment mechanism for healthcare. Our model also

models data breaches that happen due to insider attacks. Reputation has been used

to study insider attacks in non-cooperative repeated games [48]; we di�er from that

work in that the employer-employee interaction is essentially cooperative. Also, the

primary purpose of interaction between employer and employee is to accomplish

some task (e.g., provide medical care). Privacy is typically a secondary concern.

Our model captures this reality by considering the e�ect of non-audit interactions

in parameters like Pf . There are quite a few empirical studies on data breaches and

insider attacks [11, 12, 49] and qualitative models of insider attacks [50]. We use

these studies to estimate parameters and evaluate the predictions of our model.

2.5 Security Games

Our rational game model is closely related to security games [21]. Security games is

a model of physical security and has found application in the real world in scheduling

of patrols in LAX airport, scheduling of air marshals in �ight and scheduling coast

guard patrols. There are many papers (see, e.g., [31, 51, 52]) on security games, and

our model adds the additional continuous punishment parameter.

The basic security game model involves a defender with resource constraints de-

fending a large set of targets from an attacker. The attacker is rational and attacks

one target, speci�cally, the target that is most attractive in terms of cost of attack
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and gain from attack. The problem becomes challenging with combinatorial con-

straints on the use of resources. For instance, di�erent resources may be restricted to

defending di�erent subsets of resources�called schedules in that literature. Sched-

ules could be singletons, implying each resource defends maximum of one target.

Further, resource may be constrained in the schedules they can take up for defense;

resources are homogeneous if they can take up any schedule.

In our most general model of rational audit games, we treat each inspection as

a resource, and hence singleton schedules arises naturally in our setting. Further,

as di�erent auditors may be equipped to inspect di�erent targets, our problem has

heterogeneous schedules. As stated earlier, our main contributions include recogniz-

ing that punishments should be chosen judiciously to maximize ones owns bene�t.

The technical problem in audit games is more challenging as it involves non-convex

optimization; we rely on speci�c properties of this problem to obtain a FPTAS.

Further, we explore variations speci�c to audit games such as di�erent punishment

for di�erent targets.

There are many approaches to solving security games. One approach [21] is

to formulate the problem as a mixed integer linear program (MILP) and employ

heuristics such as column generation to solve large instances of the problem. Along

the same lines, another paper [53] employs the same approach to solve just for

coverage probabilities (the probability of defending a resource), and demonstrating

the decomposition into equivalent mixed strategy for the unconstrained case (no

scheduling constraints). For the constrained case, the solution only solves for cov-

erage probabilities and does not provide for decomposing the coverage probabilities

into mixed strategy. In contrast, our approach transforms the audit game (applica-

ble to security games also) problem with singleton heterogeneous schedules into an

equivalent problem with additional linear constraints on the coverage probabilities,

such that the coverage probabilities obtained can always be decomposed into mixed

strategies. We provide a theoretical proof of the correctness of the above trans-

formation. We also identify conditions in which the number of additional linear

constraints are polynomial in number, and demonstrate that in the worst case the

number of constraints are exponential.

Another approach [31] focuses on the computational complexity of the problem

and demonstrates the complexity of the problem for di�erent types of schedules. In

particular, they demonstrate a polynomial time approach to solving the scenario of
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singleton heterogeneous schedules. Our approach studies the complexity of solving

audit games. However, in contrast to solving for the the probability of each resources

inspecting each target, we transform the problem by introducing additional linear

constraints on the coverage probabilities, and then solve a system of linear equations

to obtain the probability of each resource inspecting each target. This is required to

obtain a polynomial time solution for audit games because of the non-convexity of

the optimization problem in audit games. We demonstrate that audit games have a

polynomial time solution when the number of new linear constraints is polynomial.

Moreover, we show that the transformation improves the running time for solving

audit games using the FPT approach, and hence also improves the running time for

related (singleton, heterogeneous schedules) security games.

Overall, our approach of transforming the problem to a problem with only cov-

erage probabilities in audit games provides for a speed-up for solving security games

for singleton heterogeneous schedules. Our approach is also accompanied by theo-

retical proofs of correctness.



Chapter 3

Regret Minimizing Audits

A formal study of privacy regulations [54] shows that a large fraction of clauses in

the HIPAA Privacy Rule [55] requires some input from human auditors to enforce.

We seek to develop an appropriate mathematical model for studying audit mecha-

nisms involving human auditors, in the worst case scenario of arbitrary adversaries.

Speci�cally, the model should capture important characteristics of practical audit

mechanisms (e.g., the periodic nature of audits), and economic considerations (e.g.,

cost of employing human auditors, brand name erosion and other losses from policy

violations) that in�uence the coverage and frequency of audits.

This chapter presents the �rst principled learning-theoretic foundation for au-

dits of this form. Our �rst contribution is a repeated game model that captures

the interaction between the defender (e.g., hospital auditors) and the adversary

(e.g., hospital employees). The model includes a budget that constrains the num-

ber of actions that the defender can inspect thus re�ecting the imperfect nature of

audit-based enforcement, and a loss function that captures the economic impact of

detected and missed violations on the organization. We assume that the adversary

is worst-case as is standard in other areas of computer security. We also formulate

a desirable property of the audit mechanism in this model based on the concept

of regret in learning theory [15]. Our second contribution is a novel audit mecha-

nism that provably minimizes regret for the defender. The mechanism learns from

experience and provides operational guidance to the human auditor about which

accesses to inspect and how many of the accesses to inspect. The regret bound is

signi�cantly better than prior results in the learning literature. We start with an

21
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overview of our results before describing the model and algorithm in details.

3.1 Overview of Results

Mirroring the periodic nature of audits in practice, we use a repeated game model [27]

that proceeds in rounds. A round represents an audit cycle and, depending on the

application scenario, could be a day, a week or even a quarter.

Adversary model: In each round, the adversary performs a set of actions (e.g.,

accesses patient records) of which a subset violates policy. Actions are classi�ed into

types. For example, accessing celebrity records could be a di�erent type of action

from accessing non-celebrity records. The adversary capabilities are de�ned by pa-

rameters that impose upper bounds on the number of actions of each type that she

can perform in any round. We place no additional restrictions on the adversary's be-

havior. In particular, we do not assume that the adversary violates policy following

a �xed probability distribution; nor do we assume that she is rational. Furthermore,

we assume that the adversary knows the defender's strategy (audit mechanism) and

can adapt her strategy accordingly.

Defender model: In each round, the defender inspects a subset of actions of each

type performed by the adversary. The defender has to take two competing factors

into account. First, inspections incur cost. The defender has an audit budget that

imposes upper bounds on how many actions of each type she can inspect. We assume

that the cost of inspection increases linearly with the number of inspections. So,

if the defender inspects fewer actions, she incurs lower cost. Note that, because

the defender cannot know with certainty whether the actions not inspected were

malicious or benign, this is a game of imperfect information [35]. Second, the

defender su�ers a loss in reputation for detected violations. The loss is higher

for violations that are detected externally (e.g., by an Health and Human Services

audit, or because information leaked as a result of the violation is publicized by

the media) than those that are caught by the defender's audit mechanism, thus

incentivizing the defender to inspect more actions.

In addition, the loss incurred from a detected violation depends on the type of

violation. For example, inappropriate access of celebrities' patient records might

cause higher loss to a hospital than inappropriate access of other patients' records.
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Also, to account for the evolution of public memory, we assume that violations

detected in recent rounds cause greater loss than those detected in rounds farther in

the past. The defender's audit mechanism has to take all these considerations into

account in prescribing the number of actions of each type that should be inspected

in a given round, keeping in mind that the defender is playing against the powerful

strategic adversary described earlier.

Note that for adequate privacy protection, the economic and legal structure has

to ensure that it is in the best interests of the organization to invest signi�cant e�ort

into auditing. Our abstraction of the reputation loss from policy violations that

incentivizes organizations to audit can, in practice, be achieved through penalties

imposed by government audits as well as through market forces, such as brand name

erosion and lawsuits.

Regret property: We formulate a desirable property for the audit mechanism by

adopting the concept of regret from online learning theory. The idea is to compare

the loss incurred when the real defender plays according to the strategy prescribed

by the audit mechanism to the loss incurred by a hypothetical defender with perfect

knowledge of the number of violations of each type in each round. The hypothetical

defender is allowed to pick a �xed strategy to play in each round that prescribes how

many actions of each type to inspect. The regret of the real defender in hindsight

is the di�erence between the loss of the hypothetical defender and the actual loss of

the real defender averaged over all rounds of game play. We require that the regret

of the audit mechanism quickly converge to a small value and, in particular, that it

tends to zero as the number of rounds tends to in�nity.

Intuitively, this de�nition captures the idea that although the defender does

not know in advance how to allocate her audit budget to inspect di�erent types of

accesses (e.g., celebrity record accesses vs. non-celebrity record accesses), the recom-

mendations from the audit mechanism should have the desirable property that over

time the budget allocation comes close to the optimal �xed allocation. For example,

if the best strategy is to allocate 40% of the budget to inspect celebrity accesses and

60% to non-celebrity accesses, then the algorithm should quickly converge towards

these values.

Audit mechanism: We develop a new audit mechanism that provably minimizes

regret for the defender. The algorithm, which we nameRMA (forRegretMinimizing

Audit) is e�cient and can be used in practice. In each round of the game, the
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algorithm prescribes how many actions of each type the defender should inspect.

It does so by maintaining weights for each possible defender action and picking an

action with probability proportional to the weight of that action. The weights are

updated based on a loss estimation function, which is computed from the observed

loss in each round. Intuitively, the algorithm learns the optimal distribution over

actions by increasing the weights of actions that yielded better payo� than the

expected payo� of the current distribution and decreasing the weight of actions that

yielded worse payo�.

Our main technical result (Theorem 1) is that the exact bound on regret for

RMA is approximately 2
√

2 lnN
T

where N is the number of possible defender actions

and T is the number of rounds (audit cycles). This bound improves the best known

bounds ofO
(
N1/3 logN

3√T

)
for regret minimization over games of imperfect information.

The main novelty is in the way we use a loss estimation function and characterize its

properties to achieve the signi�cantly better bounds. Speci�cally, RMA follows the

structure of a regret minimization algorithm for perfect information games, but uses

the estimated loss instead of the true loss to update the weights in each round. We

de�ne two properties of the loss estimation function�accuracy (capturing the idea

that the expected error in loss estimation in each round is zero) and independence

(capturing the idea that errors in loss estimation in each round are independent

of the errors in other rounds)�and prove that any loss estimation function that

satis�es these properties results in regret that is close to the regret from using an

actual loss function. Thus, our bounds are of the same order as regret bounds

for perfect information games. The better bounds are important from a practical

standpoint because they imply that the algorithm converges to the optimal �xed

strategy much faster.

The rest of the chapter is organized as follows. Section 3.2 presents the game

model formally. Section 3.3 presents the audit mechanism and the theorem showing

that the audit mechanism provably minimizes regret. Section 3.4 discusses the

implications and limitations of these results. Section 3.5 describes in detail the

loss estimation function, a core piece of the audit mechanism. Section 3.6 presents

the outline of the proof of the main theorem of the paper (Theorem 1) while the

complete proofs are presented in the appendices.
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3.2 Model

We model the internal audit process as a repeated game played between a defender

(organization) and an adversary (employees). In the presentation of the model we

will use the following notations:

� Vectors are represented with an arrow on top, e.g., ~v is a vector. The ith

component of a vector is given by ~v [i]. ~v ≤ ~a means that both vectors have

the same number of components and for any component i, ~v [i] ≤ ~a [i].

� Random variables are represented in boldface, e.g., x and X are random vari-

ables.

The repeated game we consider is fully de�ned by the players, the time granularity

at which the game is played, the actions the players can take, and the utility the

players obtain as a result of the actions they take. We next discuss these di�erent

concepts in turn and illustrate them using a running example from an hospital.

Players: The game is played between the organization and its employees. We refer

to the organization as D (defender). We subsume all employees into a single player

A (adversary). In this paper, we are indeed considering a worst-case adversary, who

would be able to control all employees and coerce them into adopting the strategy

most damaging to the organization. In our running example, the players are the

hospital and all the employees.

Round of play: In practice, audits are usually performed periodically. Thus, we

adopt a discrete-time model for this game, where time points are associated with

rounds. Each round of play corresponds to an audit cycle. We group together all of

the adversary's actions in a given round.

Action space: A executes tasks, i.e., actions that are permitted as part of their

job. We only consider tasks that can later be audited, e.g., through inspection

of logs. We can distinguish A's tasks between legitimate tasks and violations of

a speci�c privacy policy that the organization D must follow. Di�erent types of

violations may have a di�erent impact on the organization. We assume that there

are K di�erent types of violations that A can commit (e.g., unauthorized access

to a celebrity's records, unauthorized access to a family member's records, ...). We

further assume that the severity of violations, in terms of economic impact on the

organization, varies with the types.
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Figure 3.1: Feasible audit space, represented by the shaded area.

In each audit cycle, the adversary A chooses two quantities for each type k: the

number of tasks she performs, and the number of such tasks that are violations. If

we denote by Uk the maximum number of type k tasks that A can perform, then

A's entire action space is given by A × A with A =
∏K

i=1{1, . . . , Ui}. In a given

audit cycle, an action by A in the game is given by 〈~a,~v〉, where the components

of ~a are the number of tasks of each type A performs, and the components of ~v are

the number of violations of each type. Since violations are a subset of all tasks, we

always have ~v ≤ ~a. In our hospital example, we consider two types of patient medical

records: access to celebrity records and access to regular person's record. A typical

action may be 250 accesses to celebrity records with 10 of them being violations and

500 accesses to non-celebrity records with 50 of them being violations. Then A's
action is 〈〈250, 500〉, 〈10, 50〉〉.

We assume that the defender D can classify each adversary's task by types.

However, D cannot determine whether a particular task is legitimate or a violation

without investigating. D can choose to inspect or ignore each of A's tasks. We

assume that inspection is perfect, i.e., if a violation is inspected then it is detected.

The number of inspections that D can conduct is bounded by the number of tasks

that A perform, and thus, D's actions are de�ned by a vector ~s ∈ A, with ~s ≤ ~a.

That is, D chooses a certain number of tasks of each type to be inspected. Further,

in each round t, D has a �xed budget Bt to allot to all inspections. We represent the
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(assumed �xed) cost of inspection for each type of violation by ~C. The budgetary

constraints on D are thus given by ~C · ~s ≤ Bt for all t. Continuing our hospital

example, the maximum number of tasks of each type thatD can inspect is 〈250, 500〉.
Assuming a budget of 1500 and cost of inspection vector 〈4, 5〉, D's inspection space

is further constrained, and then the feasible inspections are {〈x, y〉 | 4x + 5y ≤
1500, 0 ≤ x ≤ 250, 0 ≤ y ≤ 500}. The discrete feasible audit points are indicated

(not all points are shown) with the asterisks in Figure 6.1.

Violation detection: Given the budgetary constraints D faces, D cannot, in

general, inspect all of A's tasks (i.e., ~C · ~a > Bt). Hence, some violations may

go undetected internally, but could be detected externally. Governmental audits,

whistle-blowing, information leaks are all but examples of situations that could lead

to external detection of otherwise unnoticed violations. We assume that there is

a �xed exogenous probability p (0 < p < 1) of an internally undetected violation

getting caught externally.

Formally, we de�ne the outcome of a single audit cycle as the outcome of the

internal audit and the number of violations detected externally. Due to the prob-

abilistic nature of all quantities, this outcome is a random variable. Let ~Ot be the

outcome for the tth round. Then ~Ot is a tuple 〈~Ot
int,

~Ot
ext〉 of violations caught in-

ternally and externally. By our de�nitions, the probability mass function for ~Ot
int is

parameterized by 〈~a,~v〉 and ~s, and the probability mass function for ~Ot
ext conditioned

on ~Ot
int is parameterized by p. We make no assumptions about this probability mass

function. Observe that, because not all tasks can be inspected, the organization does

not get to know the exact number of violations committed by the employees, which

makes this a game of imperfect information. In our hospital example, given that

A's action is 〈〈250, 500〉, 〈10, 50〉〉. In one possible scenario the hospital performs

〈125, 200〉 inspections. These inspections result in 〈7, 30〉 violations detected inter-

nally and 〈2, 10〉 violations detected externally.

Utility function: Since we consider a worst-case adversary, A's payo� function is

irrelevant to our model. On the other hand, the utility function of D in�uences the

organization's strategy. We de�ne D's utility as the sum of D's reputation and the

cost of inspecting A's actions. In essence, D has to �nd the right trade-o� between

inspecting frequently (which incurs high costs) and letting violations occur (which

degrades its reputation, and thus translates to lost revenue).
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We assume that the cost of inspection is linear in the number of inspections for

each type of action. Hence, if D's action is ~s then inspection costs are ~C · ~s. In our

running example of the hospital, this cost is 〈4, 5〉.〈125, 200〉 = 1500, which is the

also the full budget in our example.

We assume that any violation caught (internally, or externally) in a round a�ects

D's reputation not only in that round, but also in future rounds and that the

exact e�ect in any future round is known. We capture this by de�ning a function

rtk : {1, . . . , Uk} × {1, . . . , Uk} × N → R for each type k of violation. In round t, rtk
takes as inputs the number of violations of type k detected internally, the number

of violations of type k caught externally, and an integer argument τ . rtk outputs the

e�ect of the violations (measured as the loss in reputation) occurring in round t on

D's reputation in round t + τ . We assume that violations of a given type always

have the same e�ect on reputation, that is, rtk is actually independent of t, which

allows us to use the shorthand notation rk from here on.

Violations caught far in the past should have a lesser impact on reputation

than recently caught violations, thus, rk should be monotonically decreasing in the

argument τ . We further assume violations are forgotten after a �nite amount of

rounds m, and hence do not a�ect reputation further. In other words, if τ ≥ m then

for any type k, any round t, and any tuple of violations caught 〈 ~Ot
int[k], ~Ot

ext[k]〉,
rk( ~O

t
int[k], ~Ot

ext[k], τ) = 0.

Moreover, externally caught violations should have a worse impact on reputation

than internally detected violations, otherwise the organization has a trivial incentive

never to inspect. Formally, rk has the following property. If for any two realized

outcomes ~Ol and ~Oj at rounds l and j, we have ~Ol
int[k] + ~Ol

ext[k] = ~Oj
int[k] + ~Oj

ext[k]

(i.e., same number of total violations of type k in rounds j and l) and ~Ol
ext[k] >

~Oj
ext[k] (i.e., for type k, the number of violations caught externally is more than

the number caught internally) then for any τ such that 0 ≤ τ < m, rk( ~O
l[k], τ) >

rk( ~O
j[k], τ).

We use rk to de�ne a measure of reputation. Because, by construction, viola-

tions only a�ect at most m rounds of play, we can write the reputation R0 of the

organization at round t as a random variable function of the probabilistic outcomes
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~Ot, ..., ~Ot−m+1:

R0(~Ot, ..., ~Ot−m+1) = R−
K∑
k=1

t∑
j=t−m+1

rk(~O
j[k], t− j) ,

where R is the maximum possible reputation. We assume that at the start of the

game the reputation is R, and that rk's are so that R0 is always non-negative.

We cannot, however, directly useR0 in our utility function. Indeed,R0 is history-

dependent, and the repeated game formalism requires that the utility function be

independent of past history. Fortunately, a simple construction allows to closely

approximate the actual reputation, while at the same time removing dependency on

past events. Consider the following function R:

R(~Ot) = R−
K∑
k=1

m−1∑
j=0

rk(~O
t[k], j) .

Rather than viewing reputation as a function of violations that occurred in the past,

in round t, the reputation function R instead immediately accounts for reputation

losses that will be incurred in the future (in rounds t + τ , 0 ≤ τ < m) due to

violations occurring in round t.

While R and R0 are di�erent reputation functions, when we compute the dif-

ference of their averages over T rounds, denoting by ~vmax the maximum possible

number of violations, we obtain:

1

T

t+T∑
τ=t

|R(~Oτ )−R0(~Oτ , . . . , ~Oτ−m)| ≤ 1

T

K∑
k=1

m−1∑
j=1

j · rk(~vmax(k), j) .

The right-hand side of the above inequality goes to zero as T grows large. Hence,

using R to model reputation instead of R0 does not signi�cantly impact the utility

function of the defender. We de�ne the utility function at round t in the repeated

game by the random variable

Lt(〈~at, ~vt〉, ~st) = R(~Ot)− ~C · ~st .
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Since utility gains are only realized through loss reduction, we will equivalently refer

to L as a loss function from here on.

An example of the loss of reputation function rk is rk(O, t) = ck(Oint+2×Oext)δ
t

for 0 ≤ t < m and rk(O, t) = 0 for t ≥ m, where δ ∈ (0, 1). Observe that rk decreases

with t and puts more weight on external violations. Also for the same number of

violations and same value for argument t rk has di�erent values for di�erent types

of violations due to ck that varies with the types. Then, considering only one type

of violation, the loss function can be written as

Lt(〈~at, ~vt〉, ~st) = R− c1

m−1∑
j=0

(Ot
int + 2×Ot

ext)δ
j − ~C · ~st .

Observe that we can expand the summation in the above equation to get c1(1 +

δ... + δm−1)Ot
int + 2c1(1 + δ... + δm−1)Ot

ext. Then let Rint = c1(1 + δ... + δm−1) and

similarly let Rext = 2c1(1 + δ...+ δm−1). We can rewrite the loss equation above as

Lt(〈~at, ~vt〉, ~st) = R−Rint ·Ot
int −Rext ·Ot

ext − ~C · ~st .

3.3 Audit Mechanism and Property

In this section, we present our audit mechanism RMA and the main theorem that

characterizes its property. RMA prescribes the number of tasks of each type that the

defender should inspect in each round of the repeated game. The property compares

the loss incurred by the defender when she follows RMA to the loss of a hypothetical

defender who has perfect knowledge of how many violations of each type occurred in

each round, but must select one �xed action ~s to play in every round. In particular,

we obtain exact bounds on the defender's regret and demonstrate that the average

regret across all rounds converges to a small value relatively quickly.

3.3.1 Audit Mechanism

Our Regret Minimizing Audit (RMA) mechanism is presented as Algorithm 1. In

each round of the game, RMA prescribes how many tasks of each type the defender

should inspect. It does so by maintaining weights for each possible defender action

(referred to as �experts� following standard terminology in the learning literature)
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and picking an action with probability proportional to the weight of that action. For

example, in a hospital audit, with two types of tasks�celebrity record access and

regular record access�the possible defender actions ~s are of the form 〈k1, k2〉 mean-

ing that k1 celebrity record accesses and k2 regular record accesses are inspected.

The weights are updated based on an estimated loss function, which is computed

from the observed loss in each round. γ is a learning parameter for RMA. Its value

is less than but close to 1. We show how to choose γ in sub-section 3.3.2.

Algorithm 1: RMA

Set w0
~s = 1 for each expert.

while true do

〈~at, ~vt〉 ← action of the adversary in round t.

AWAKEt ← {~s : ~s ≤ ~at ∧ ~C · ~s ≤ Bt }
W t =

∑
~s∈AWAKEt w

t
~s

pt~s ←
wt~s
W t for ~s ∈ AWAKE. Otherwise pt~s ← 0.

Play ~s with probability p~s (randomly select one expert to follow).

L̃← est
(
~Ot, ~st

)
.

L̃t(RMA) =
∑

~s p
t
~sL̃

t(~s)

for ~s ∈ AWAKEt do

wt+1
~s ← wt~sγ

L̃t(~s)−γL̃t(RMA)

RMA is fast and could be run in practice. Speci�cally, the running time of RMA

is O (N) per round where N is the number of experts.

In more detail, RMAmaintains weights wt~s for all experts [16]. w
t
~s is the weight of

the expert before round t has been played. Initially, all experts are equally weighted.

In each round, an action is probabilistically selected for the defender. As discussed

in the Section 3.2 there are two factors that constrain the set of actions available

to the defender: the number of tasks performed by the adversary and the budget

available for audits. In our hospital example we had the feasible audit space as

{〈x, y〉 | 4x+ 5y ≤ 1500, 0 ≤ x ≤ 250, 0 ≤ y ≤ 500}. These considerations motivate

the de�nition of the set AWAKEt of experts that are awake in round t (Step 1). Next,

from this set of awake experts, one is chosen with probability pt~s proportional to the

weight of that expert (Steps 2, 3, 4). Continuing our hospital example, 250 celebrity
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record accesses and 500 regular record accesses will be inspected with probability 0.3

in a round if the expert 〈250, 500〉 is awake in that round and its weight divided by

the total weight of all the experts who are awake is 0.3. Technically, this setting is

close to the setting of sleeping experts in the regret minimization literature [15, 17].

However, we also have to deal with imperfect information. Since only one action

(say ~st) is actually played by the defender in a round, she observes an outcome
~Ot for that action. For example, the 〈250, 500〉 inspection might have identi�ed 5

celebrity record access violations and 3 regular record access violations internally;

the same number of violations may have been detected externally. Based on this

observation, RMA uses an algorithm est to compute an estimated loss function L̃

for all experts (not just the one she played). We describe properties of the loss

function for which this estimation is accurate in subsection 3.5. We also provide

an example of a natural loss function that satis�es these properties. Finally, the

estimated loss function is used to update the weights for all the experts who are

awake. Intuitively, the multiplicative weight update ensures that the weights of ex-

perts who performed better than their current distribution increase and the weights

for those who performed worse decrease. In RMA the weight for expert ~s increases

when L̃t(~s) − γL̃t(RMA) is negative, i.e., L̃t(~s) < γL̃t(RMA), and since γ is close

to 1, the loss of expert ~s is less than the loss of RMA, i.e., the expert ~s performed

better than RMA.

3.3.2 Property

The RMA mechanism provides the guarantee that the defender's regret is minimal.

Regret is a standard notion from the online learning literature. Intuitively, regret

quanti�es the di�erence between the loss incurred by the defender when she follows

RMA and the loss of a hypothetical defender who has perfect knowledge of how

many violations of each type occurred in each round, but must select one �xed

action (or expert) to play in every round. Our main theorem establishes exact

bounds on the defender's regret.

Let T denote the total number of rounds played, I(t) be a time selection function

whose output is either 0 or 1, Lt(~s) = Lt (〈~at, ~vt〉, ~s) be the loss function at time

t after the adversary has played 〈~at, ~vt〉, and pt~s be the probability of choosing the
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action ~s in round t while following RMA. We de�ne the total loss of RMA as follows:

Loss (RMA, I) =
T∑
t=1

∑
~s

I(t)pt~sL
t(~s) .

Similarly for each �xed expert ~s we set the following loss function

Loss (~s, I) =
T∑
t=1

I(t)Lt(~s) .

We use Regret (RMA, ~s) to denote our regret in hindsight of not playing the �xed

action ~s when it was available. Formally,

Regret (RMA, ~s) = Loss (RMA, I~s)− Loss (~s, I~s) .

Here, I~s(t) is the time selection function that selects only the times t that action ~s

is available.

As before, we use N to denote the total number of �xed actions available to the

defender. If T is known in advance we can obtain the bound in Theorem 1 below

by setting γ to be 1 −
√

2 lnN
T

. Otherwise, if T is not known in advance we can

dynamically tune γ to obtain similar bounds. See Remark 7 for more details on

dynamic tuning.

Theorem 1. For all ε > 0,

Pr

 ∃~s, Regret(RMA,~s)
T

≥ 2
√

2 lnN
T

+

2

√
2 ln( 4N

ε )
T

+ 2
T

lnN

 ≤ ε .

Remark 1. To prove this theorem we need to make several reasonable assumptions

about the accuracy of our loss function estimator est. We discuss these assumptions

in Section 3.5. We also assume that losses have been scaled so that Lt(x) ∈ [0, 1].

Remark 2. This bound is a worst case regret bound. The guarantee holds against

any attacker. Regret may typically be lower than this, e.g. when hospital employees

do not behave adversarially.

In order to understand what this bound means, consider the following example

scenario. Suppose that an employee at a hospital can access two types of medical
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records�celebrity or regular. The defender can choose to inspect accesses of a

certain type lightly, moderately, or heavily. In this case, the defender has N = 9

possible pairs of actions in each round. If the hospital performs daily audits (which

some hospitals currently do for celebrity record accesses) over a 5 year period, then

T = 365 × 5 = 1825. For simplicity, assume that each action ~s is available every

day. In this case, the theorem guarantees that except with probability ε = 1
100

, the

average regret of RMA does not exceed 29%:

Regret (RMA, ~s)

T
< 0.29 .

Note that there are several existing algorithms for regret minimization in games

with imperfect information [35, 56, 57, 58]. These algorithms do guarantee that as

T →∞ the average regret will tend to 0, but the convergence rate is unacceptably

slow for our audit model (see Section ?? for a more detailed comparison). The

convergence rate of RMA is signi�cantly faster. Also, in contrast to prior work, we

focus on exact (not asymptotic) regret bounds for our algorithm. This is important

because in practice we care about the value of the bound for a �xed value of T (as

in the example above), not merely that it tends to 0 as T →∞.

3.4 Discussion

A few characteristics of the model and algorithms described above may not neces-

sarily be evident from the technical presentation given above, and warrant further

discussion.

Figure 3.2 shows the variation of average regret with time for di�erent values

of N and ε. As can be seen, the RMA algorithm produces smaller average regret

bounds for higher values of time T and lower values of N . In other words, and quite

intuitively, a high audit frequency ensures low regret. Some medical centers carry

out audits every week; RMA is particularly appropriate for such high frequency

audits. Lower values of N means that RMA's performance is compared to fewer

�xed strategies and hence yields lower regret. One situation in which N could be

low is when the �xed strategies correspond to discrete levels of audits coverage used

by the organization. Also, higher values of ε yield smaller average regret bounds.

Indeed, ε is a measure of uncertainty on the stated bound. Thus, when higher values
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Figure 3.2: Worst case Average Regret vs Time for di�erent values of N and ε

of ε are tolerable, we obtain tighter regret bounds, but at the expense of greater

uncertainty on whether those bounds are met.

We have already noted that all actions may not be available at all times. The

result in Theorem 1 bounds the average regret taken over all rounds of the game.

It is easy to modify the proof of Theorem 1 to obtain average regret bounds for

each expert such that the average is taken over the time for which that expert is

awake. The bound thus obtained is of the same order as the bound in Theorem 1,

but all instance of T in Theorem 1 are replaced by T~s, where T~s is the time for which

expert ~s is awake. Similar result for the traditional sleeping experts setting can be

found in Blum et al. [17]. The modi�ed bound equation exhibits the fact that the

average regret bound for a given inspection vector (average taken over the time for

which that inspection was available) depends on how often this inspection vector is

available to the defender. If a given inspection vector is only available for a few audit

cycles, the average regret bound may be relatively high. The situation is analogous

to whitewashing attacks [59], where the adversary behaves in a compliant manner

for many rounds to build up reputation, attacks only once, and immediately leaves

the game after the attack. For instance, a spy in�ltrates an organization, becomes a

trusted member by behaving as expected, and then suddenly steals sensitive data.

However, we argue that, rather than being an auditing issue, whitewashing attacks

can be handled by a di�erent class of mechanisms, e.g., that prevent the adversary
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from vanishing once she has attacked.

Furthermore, RMA guarantees low average regret compared to playing a �xed

action (i.e., inspection vector) in the audit cycle in which that action was available;

it does not guarantee violations will not happen. In particular, if a certain type

k of violation results in catastrophic losses for the organization (e.g., losses that

threaten the viability of the organization itself), tasks of type k should always be

fully inspected.

While the discussion surrounding the RMA algorithm focused only on one kind

of experts (which recommend how many tasks of each type to inspect in any round),

RMA applies more generally to any set of experts. For example, we could include

an expert who recommends a low inspection probability when observed violations

are below a certain threshold and a higher inspection probability when observed

violations are above that threshold. Over time, the RMA algorithm will perform

as well as any such expert. Note. however, that if we make the size (N) of the set

of experts too large, the regret bounds from Theorem 1 will be worse. Thus, in any

particular application, the RMA algorithm will be e�ective if appropriate experts

are chosen without making the set of experts too large.

Finally, we note that non-compliance with external privacy regulations may not

only cause a loss of reputation for the organization, but can also result in �nes being

levied against the organization. For instance, a hospital found in violation of HIPAA

provisions [55] in the United States will likely face �nancial penalties in addition

to damaging its reputation. We can readily extend our model to account for such

cases, by forcing the defender (organization) to perform some minimum level of audit

(inspections) to meet the requirements stipulated in the external regulations. For

example, we can constrain the action space available to the defender by removing

strategies such as �never inspect.� As long as the budgetary constraints allow the

organization to perform inspections in addition to the minimal level of audit required

by law, the guarantees provided by RMA still hold. Indeed, Theorem 1 holds as long

as there is at least one awake expert in each round.

3.5 Estimating Losses

RMA uses a function est
(
~Ot, ~st

)
to estimate the loss function L̃t.
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In this section, we formally de�ne two properties�accuracy and independence;

the regret bound in Theorem 1 holds for any estimator function that satis�es these

two properties. We also provide an example of a loss function estimator algorithm

that provably satis�es these properties, thus demonstrating that such estimator

functions can in fact be implemented. The use of an estimator function and the

characterization of its properties is a novel contribution of this paper that allows us

to achieve signi�cantly better bounds than prior work in the regret minimization

literature for repeated games of imperfect information (see Section ?? for a detailed

comparison).

Estimator Properties The function L̃t = est
(
~Ot, ~st

)
should be e�ciently com-

putable for practical applications. Note that the loss estimation at time t depends

on the outcome ~Ot (violations of each type detected internally and externally) and

the defender's action ~st at time t. Intuitively, the function outputs an estimate of

the loss function by estimating the number of violations of each type based on the

detected violations of that type and the probability of inspecting each action of that

type following the defender's action.

For each defender action (expert) ~s, we de�ne the random variable

Xt
~s = L̃t(~s)− Lt(~s).

Intuitively, Xt
~s is a random variable representing our estimation error at time t

after the actions 〈~vt,~at〉 and ~st have been �xed by the adversary and the defender

respectively.

Because we have assumed that our loss functions are scaled so that L̃t(~s),Lt(~s) ∈
[0, 1] we have Xt

~s ∈ [−1, 1]. This property of Xt
~s is useful in bounding the regret as

we discuss later.

Formally, we assume the following properties about est:

1. Accuracy: E
[
Xj
~s

]
= 0 for 0 ≤ j ≤ T .

2. Independence: ∀~s, X1
~s, . . . ,X

T
~s are all independent random variables.

Any estimation scheme est that satis�es both properties can be plugged into

RMA yielding the regret bound in Theorem 1. Informally, accuracy captures the

idea that the estimate is accurate in an expected sense while independence captures
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the idea that the error in the estimate in each round is independent of the error in

all other rounds. We motivate these properties by way of an example.

Remark 3. In fact if our estimation scheme only satis�ed δ-accuracy, i.e.,
∣∣E [Xj

~s

]∣∣ <
δ, then we could still guarantee that the average regret bounds from Theorem 1 still

hold with an extra additive term δ. Formally, the following property holds: for all

ε ∈ (0, 1)

Pr

 ∃~s, Regret(RMA,~s)
T

≥ δ + 2
√

2 lnN
T

+

2

√
2 ln( 4N

ε )
T

+ 2
T

lnN

 ≤ ε .

Example Loss Function We return to our running example of the hospital. We

use the example reputation (loss) function from the previous section:

Lt(~s) = R−
(
~Ot
int · ~Rint + ~Ot

ext · ~Rext + ~C · ~s
)
.

To simplify our presentation we assume that there is only one type of violation.

It is easy to generalize the loss function that we present in this example to include

multiple types of violations.

Lt(s) = R−
(
Ot
int ×Rint + Ot

ext ×Rext + C × s
)
.

Here Ot
int represents the number of violations caught internally after the actions

〈vt, at〉 and st are played by the adversary and the defender respectively, Rint (resp.

Rext) captures the damage to the hospital's reputation when a violation is caught

internally (resp. externally), and C is the cost of performing one inspection. Notice

that

E
[
Ot
ext ×Rext

]
= p

(
vt − E

[
Ot
int

])
×Rext ,

where p is the probability that an undetected violation gets caught externally. There-

fore,

E
[
Lt(s)

]
= R−

(
E
[
Ot
int

]
(Rint − p×Rext) + p× vt ×Rext + C × s

)
.



CHAPTER 3. REGRET MINIMIZING AUDITS 39

We can set R′ = (Rint − p×Rext) and then

E
[
Lt(s)

]
= R−

(
E
[
Ot
int

]
×R′ + p× vt ×Rext + C × s

)
.

In our loss model, we allow the defender to use any recommendation algorithm REC

that sorts all at actions at time t and probabilistically recommends st actions to

inspect. We let pd ≤ 1 denote the probability that the dth inspection results in a

detected violation, where this probability is over the coin �ips of the recommendation

algorithm REC. Because this probability is taken over the coin �ips of REC the

outcome Ot
int is independent of previous outcomes once 〈~at, ~vt〉, ~st have been �xed.

For example, a naive recommendation algorithm REC might just select a few

actions uniformly at random and recommend that the defender inspect these actions.

In this case pj = vt

at
for each j. (Remember that in this example we consider only

one type of violation, so vt and at are scalars). If REC is more clever, then we will

have p1 >
vt

at
. In this case the pj's will also satisfy diminishing returns (pj > pj+1).

We assume that inspection is perfect, i.e., if we inspect a violation it will be

caught with probability 1. Thus, if we inspect all at actions we would catch all vt

violations, i.e.,
at∑
j=1

pj = vt.

Set pj = vt
(

1−β
1−βat

)
βj−1, where the parameter β could be any value in (0, 1). Notice

that
a∑
j=1

pj = vt
(

1− β
1− βat

) at−1∑
j=0

βj = vt ,

and pj > pj+1 so our model does satisfy diminishing returns. Furthermore, if β =

max{1− 1
at
, 1

2
} then we have pj ≤ 1 for each j. We can express E [Oint] =

∑st

i=1 pj.

E
[
Lt(s)

]
= R−

(
R′

st∑
i=1

pj + p× vt ×Rext + C × s

)
.

Example Loss Estimator Our loss function estimator est (Ot
int, s

t) is given in

Algorithm 2.

Assuming that the defender understands the accuracy of his recommendation
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Algorithm 2: Example of estimator est (Ot
int, s

t)

Data: Ot
int, s

t

ṽt ← 1−βat

1−βstO
t
int

L̃(x)← R−

 R′ × ṽt ×
∑x

j=1

(
1−β
1−βaβ

j−1
)

+p× ṽt ×Rext + C × x


Result: L̃t

algorithm REC1 β is a known quantity so that this computation is feasible and

can be performed quickly. Independence of the random variables Xt
s follows from

the independence of Ot
int. Now we verify that our estimator satis�es our accuracy

condition.

Claim 1. When L̃t = est (Ot
int, s

t) from Algorithm 2 E [Xt
s] = 0.

The proof can be found in Appendix A.1. The main insight here is that because of

the way the probabilities pj's are scaled, the expectation of the estimated number of

violations is equal to the number of actual violations, i.e. E [ṽt] = vt. Consequently,

the expected value of the error turns out to be 0, thus satisfying the accuracy

property.

Remark 4. If there are multiple types of actions then we can estimate ṽtk, the

number of violations of type k at time t, separately for each k. To do this est should

substitute ~Ot
int[k] and ~st[k] for Ot

int and v
t and set

ṽtk :=

(
1− βat

1− βst

)
Ot
int .

Then we have

L̃t(x) = R−

(
~R′ · 〈ṽtk〉k ×

1−βx[k]

1−βa

+p× 〈ṽtk〉k · ~Rext + ~C · ~x

)
.

3.6 Proof Outline

In this section, we present the outline of the proof of our main theorem (Theorem

1) which establishes high probability regret bounds for RMA. The complete proof

1If the algorithm recommends actions uniformly at random, then the accuracy is certainly

understood.
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is in the appendices. The proof proceeds in two steps:

1. We �rst prove that RMA achieves low regret with respect to the estimated loss

function using standard results from the literature on regret minimization [15,

17].

2. We then prove that with high probability the di�erence between regret with

respect to the actual loss function and regret with respect to the estimated

loss function is small. This step makes use of the two properties�accuracy

and independence�of the estimated loss function est presented in the previous

section and is the novel part of the proof. The key technique used in this step

are the Hoe�ding inequalities [60].

Let T denote the total number of rounds played, T~s denote the total number of

rounds that the action ~s was awake and I as before is a time selector function. We

de�ne

L̃oss (RMA, I) =
T∑
t=1

∑
~s

I(t)pt~sL̃
t(~s) ,

to be our total estimated loss. Notice that L̃oss is the same as Loss except that we

replaced the actual loss function Lt with the estimated loss function L̃t. We de�ne

L̃oss (~s, I) and R̃egret (RMA, ~s) in a similar manner by using the estimated loss

function.

Lemma 1 and Lemma 2 below bound the regret with respect to the estimated

loss function. They are based on standard results from the literature on regret

minimization [15, 17]. We provide full proofs of these results in Appendix A.3.

Lemma 1. For each expert ~s we have

R̃egret(RMA, ~s) ≤ 1

L− 1
T + 2L lnN ,

where N is the total number of experts and γ, our learning parameter has been set

to γ = 1− 1
L

Remark 5. We would like to bound our average regret:

R̃egret(RMA, ~s)

T~s
.

There is a trade-o� here in the choice of L. If L is too large, then L lnN will be
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large. If L is too small, then 1
L−1

T will be large. If we know T in advance, then we

can tune our learning parameter γ to obtain the best bound by setting

L =

√
T

2 lnN
+ 1 .

After substituting this value for L in Lemma 1, we immediately obtain the

following result:

Lemma 2. For each expert ~s we have

R̃egret(RMA, ~s) ≤ 2
√

2T lnN + 2 lnN ,

where N is the total number of experts and learning parameter γ = 1−
√

2 lnN
T

.

Remark 6. This shows that RMA can achieve low regret with respect to the esti-

mated loss functions L̃t. This completes step 1 of the proof. We now move on to

step 2.

Notice that we can write our actual loss function (Loss (RMA, I)) in terms of

our estimated loss function
(
L̃oss (RMA, I)

)
and Xt

~s.

Fact 1.

Loss (RMA, I) = L̃oss (RMA, I) +
T∑
t=1

I(t)Xt
~s .

We know that E [Xt
~s] = 0 (from the accuracy property of the loss estimation

function) and that X1
~s, . . .X

T
~s are independent (from the independence property),

so we can apply the Hoe�ding inequalities to bound
∑

tX
t
~s obtaining Lemma 3.

Appendix A.2 contains a description of the inequalities and the full proof of the

following lemma.

Lemma 3.

Pr
[
∃~s,Regret (RMA, ~s)− R̃egret (RMA, ~s) ≥ 2K

]
≤ ε ,

where K =
√

2T ln
(

4N
ε

)
.

After straightforward algebraic substitution we can obtain our main result in

Theorem 1 by combining Lemma 3 with Lemma 2 (see Appendix A.4).

Observe that the optimal value of γ is dependent on T . But, it is conceivable

that the time T for which the game is played is not known in advance. The following
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remark shows that we can overcome this problem by choosing a dynamic value for

γ. This makes RMA usable in the real world.

Remark 7. Even if we don't know T in advance we can tune γ dynamically using

a technique from [61]. We set

γt =
1

1− αt
,

where

αt =

√
2

lnN

Lt − 1
.

where Lt is the minimum loss of any expert till time t (calculated using the estimated

loss). Before playing round t we recompute the weights wt~s, pretending that our

learning parameter γ had been set to γt from the beginning i.e.

wt~s = γ
∑t
i=1 I~s(t)(L̃t(~s)−γtL̃t(RMA))

t .

In this case our �nal guarantee (similar to Theorem 1) would be that:

Pr

 ∃~s,
Regret(RMA,~s)

T
≥ 2
√

2 lnN
T

+

2

√
2 ln( 4N

ε )
T

+ 10
T

lnN+
4
T

(lnN) (ln(1 + T ))

 ≤ ε .



Chapter 4

Audit Game: Single Defender

Resource

In a seminal paper, eminent economist Gary Becker [62] presented a compelling

economic treatment of crime and punishment. He demonstrated that e�ective law

enforcement involves optimal resource allocation to prevent and detect violations,

coupled with appropriate punishments for o�enders. He described how to optimize

resource allocation by balancing the societal cost of crime and the cost incurred by

prevention, detection and punishment schemes. While Becker focused on crime and

punishment in society, similar economic considerations guide enforcement of a wide

range of policies. In this and the following chapter, we present e�ective enforcement

mechanisms for this broader set of policies in a rational adversary setting. Our

study di�ers from Becker's in two signi�cant ways�our model accounts for strategic

interaction between the enforcer (or defender) and the adversary; and we design

e�cient algorithms for computing the optimal resource allocation for prevention or

detection measures as well as punishments.

Our Model

We model the audit process as a game between a defender (e.g, a hospital) and

an adversary (e.g., an employee). The defender audits a given set of targets (e.g.,

health record accesses) and the adversary chooses a target to attack. The defender's

action space in the audit game includes two components. First, the allocation of its

inspection resources to targets; this component also exists in a standard model of

44
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security games [21]. Second, we introduce a continuous punishment rate parameter

that the defender employs to deter the adversary from committing violations. How-

ever, punishments are not free and the defender incurs a cost for choosing a high

punishment level. For instance, a negative work environment in a hospital with high

�nes for violations can lead to a loss of productivity (see [62] for a similar account

of the cost of punishment). The adversary's utility includes the bene�t from com-

mitting violations and the loss from being punished if caught by the defender. Our

model is parametric in the utility functions. Thus, depending on the application,

we can instantiate the model to either allocate resources for detecting violations or

preventing them. This generality implies that our model can be used to study all

the applications previously described in the security games literature [21].

To analyze the audit game, we use the Stackelberg equilibrium solution con-

cept [63] in which the defender commits to a strategy, and the adversary plays an

optimal response to that strategy. This concept captures situations in which the

adversary learns the defender's audit strategy through surveillance or the defender

publishes its audit algorithm. In addition to yielding a better payo� for the de-

fender than any Nash equilibrium, the Stackelberg equilibrium makes the choice

for the adversary simple, which leads to a more predictable outcome of the game.

Furthermore, this equilibrium concept respects the computer security principle of

avoiding �security through obscurity�� audit mechanisms like cryptographic algo-

rithms should provide security despite being publicly known.

Our Results

Our approach to computing the Stackelberg equilibrium is based on the multiple

LPs technique of Conitzer and Sandholm [24]. However, due to the e�ect of the

punishment rate on the adversary's utility, the optimization problem in audit games

has quadratic and non-convex constraints. The non-convexity does not allow us to

use any convex optimization methods, and in general polynomial time solutions for

a broad class of non-convex optimization problems are not known [? ].

However, we demonstrate that we can e�ciently obtain an additive approxi-

mation to our problem. Speci�cally, we present an additive fully polynomial time

approximation scheme (FPTAS) to solve the audit game optimization problem. Our

algorithm provides a K-bit precise output in time polynomial in K. Also, if the so-
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lution is rational, our algorithm provides an exact solution in polynomial time. In

general, the exact solution may be irrational and may not be representable in a �nite

amount of time.

4.1 The Audit Game Model

The audit game features two players: the defender (D), and the adversary (A). The

defender wants to audit n targets t1, . . . , tn, but has limited resources which allow

for auditing only one of the n targets. Thus, a pure action of the defender is to

choose which target to audit. A randomized strategy is a vector of probabilities

p1, . . . , pn of each target being audited. The adversary attacks one target such that

given the defender's strategy the adversary's choice of violation is the best response.

As our model is parametric in the utility functions, we do not use the explicit

formulas for utility from the last section; this also helps in ease of exposition. Let the

utility of the defender be Ua
D(ti) when audited target ti was found to be attacked, and

Uu
D(ti) when unaudited target ti was found to be attacked. The attacks (violation)

on unaudited targets are discovered by an external source (e.g. government, inves-

tigative journalists,...). Similarly, de�ne the utility of the attacker as Ua
A(ti) when

the attacked target ti is audited, and U
u
A(ti) when attacked target ti is not audited,

excluding any punishment imposed by the defender. Attacks discovered externally

are costly for the defender, thus, Ua
D(ti) > Uu

D(ti). Similarly, attacks not discovered

by internal audits are more bene�cial to the attacker, and Uu
A(ti) > Ua

A(ti).

The model presented so far is identical to security games with singleton and

homogeneous schedules, and a single resource [31]. The additional component in

audit games is punishment. The defender chooses a punishment �rate� x ∈ [0, 1]

such that if auditing detects an attack, the attacker is �ned an amount x. However,

punishment is not free�the defender incurs a cost for punishing, e.g., for creating a

fearful environment. For ease of exposition, we model this cost as a linear function

ax, where a > 0; however, our results directly extend to any cost function polynomial

in x. Assuming x ∈ [0, 1] is also without loss of generality as utilities can be scaled to

be comparable to x. We do assume the punishment rate is �xed and deterministic;

this is only natural as it must correspond to a consistent policy.

We can now de�ne the full utility functions. Given probabilities p1, . . . , pn of
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each target being audited, the utility of the defender when target t∗ is attacked is

p∗U
a
D(t∗) + (1− p∗)Uu

D(t∗)− ax.

The defender pays a �xed cost ax regardless of the outcome. In the same scenario,

the utility of the attacker when target t∗ is attacked is

p∗(U
a
A(t∗)− x) + (1− p∗)Uu

A(t∗).

The attacker su�ers the punishment x only when attacking an audited target.

Equilibrium. The Stackelberg equilibrium solution involves a commitment by

the defender to a strategy (with a possibly randomized allocation of the resource),

followed by the best response of the adversary. The mathematical problem involves

solving multiple optimization problems, one each for the case when attacking t∗ is

in fact the best response of the adversary. Thus, assuming t∗ is the best response of

the adversary, the ∗th optimization problem P∗ in audit games is

max
pi,x

p∗U
a
D(t∗) + (1− p∗)Uu

D(t∗)− ax ,

subject to ∀i 6= ∗. pi(Ua
A(ti)− x) + (1− pi)Uu

A(ti)

≤ p∗(U
a
A(t∗)− x) + (1− p∗)Uu

A(t∗) ,

∀i. 0 ≤ pi ≤ 1 ,
∑

i pi = 1 ,

0 ≤ x ≤ 1 .

The �rst constraint veri�es that attacking t∗ is indeed a best response. The auditor

then solves the n problems P1, . . . , Pn (which correspond to the cases where the best

response is t1, . . . , tn, respectively), and chooses the best solution among all these

solutions to obtain the �nal strategy to be used for auditing. This is a generalization

of the multiple LPs approach of Conitzer and Sandholm [24].

Inputs. The inputs to the above problem are speci�ed in K bit precision. Thus,

the total length of all inputs is O(nK). Also, the model can be made more �exible

by including a dummy target for which all associated costs are zero (including pun-

ishment); such a target models the possibility that the adversary does not attack

any target (no violation). Our result stays the same with such a dummy target,

but, an additional edge case needs to be handled�we discuss this case in a remark
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at the end of Section 4.2.2.

4.2 Computing an Audit Strategy

Because the indices of the set of targets can be arbitrarily permuted, without loss

of generality we focus on one optimization problem Pn (∗ = n) from the multiple

optimization problems presented in Section 4.1. The problem has quadratic and

non-convex constraints. The non-convexity can be readily checked by writing the

constraints in matrix form, with a symmetric matrix for the quadratic terms; this

quadratic-term matrix is inde�nite.

However, for a �xed x, the induced problem is a linear programming problem.

It is therefore tempting to attempt a binary search over values of x. This naïve

approach does not work, because the solution may not be single-peaked in the values

of x, and hence choosing the right starting point for the binary search is a di�cult

problem. Another naïve approach is to discretize the interval [0, 1] into steps of ε′,

solve the resultant LP for the 1/ε′ many discrete values of x, and then choose the

best solution. As an LP can be solved in polynomial time, the running time of this

approach is polynomial in 1/ε′, but the approximation factor is at least aε′ (due to

the ax in the objective). Since a can be as large as 2K , getting an ε-approximation

requires ε′ to be 2−Kε, which makes the running time exponential in K. Thus, this

scheme cannot yield an FPTAS.

4.2.1 High-Level Overview

Fortunately, the problem Pn has another property that allows for e�cient methods.

Let us rewrite Pn in a more compact form. Let ∆D,i = Ua
D(ti) − Uu

D(ti), ∆i =

Uu
A(ti)−Ua

A(ti) and δi,j = Uu
A(ti)−Uu

A(tj). ∆D,i and ∆i are always positive, and Pn

reduces to:

max
pi,x

pn∆D,n + Uu
D(tn)− ax ,

subject to ∀i 6= n. pi(−x−∆i) + pn(x+ ∆n) + δi,n ≤ 0 ,

∀i. 0 ≤ pi ≤ 1 ,∑
i pi = 1 ,

0 ≤ x ≤ 1 .
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The main observation that allows for polynomial time approximation is that,

at the optimal solution point, the quadratic constraints can be partitioned into a)

those that are tight, and b) those in which the probability variables pi are zero

(Lemma 4). Each quadratic constraint corresponding to pi can be characterized by

the curve pn(x+∆n)+δi,n = 0. The quadratic constraints are thus parallel hyperbolic

curves on the (pn, x) plane; see Figure 4.1 for an illustration. The optimal values

pon, x
o partition the constraints (equivalently, the curves): the constraints lying below

the optimal value are tight, and in the constraints above the optimal value the

probability variable pi is zero (Lemma 5). The partitioning allows a linear number

of iterations in the search for the solution, with each iteration assuming that the

optimal solution lies between adjacent curves and then solving the sub-problem with

equality quadratic constraints.

Next, we reduce the problem with equality quadratic constraints to a problem

with two variables, exploiting the nature of the constraints themselves, along with

the fact that the objective has only two variables. The two-variable problem can

be further reduced to a single-variable objective using an equality constraint, and

elementary calculus then reduces the problem to �nding the roots of a polynomial.

Finally, we use known results to �nd approximate values of irrational roots.

4.2.2 Algorithm and Main Result

The main result of our paper is the following theorem:

Theorem 2. Problem Pn can be approximated to an additive ε in time O(n5K +

n4 log(1
ε
)) using the splitting circle method [25] for approximating roots.

Remark 8. The technique of Lenstra et al. [64] can be used to exactly compute

rational roots. Employing it in conjunction with the splitting circle method yields a

time bound O(max{n13K3, n5K +n4 log(1/ε)}). Also, this technique �nds an exact

optimal solution if the solution is rational.

Before presenting our algorithm we state two results about the optimization

problem Pn that motivate the algorithm and are also used in the correctness analysis.

The proof of the �rst lemma is in Appendix B.5.

Lemma 4. Let pon, x
o be the optimal solution. Assume xo > 0 and pon < 1. Then,

at pon, x
o, for all i 6= n, either pi = 0 or pon(xo + ∆n) + δi,n = pi(x

o + ∆i), i.e., the i
th

quadratic constraint is tight.
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−∆n x

pn

1

1

δ = −1

δ = −2

δ = −3

δ = 1

(pon, x
o)

Figure 4.1: The quadratic constraints are partitioned into those below (pon, x
o) that

are tight (dashed curves), and those above (pon, x
o) where pi = 0 (dotted curves).

Lemma 5. Assume xo > 0 and pon < 1. Let pon(xo + ∆n) + δ = 0. If for some i,

δi,n < δ then pi = 0. If for some i, δi,n > δ then pon(xo + ∆n) + δi,n = pi(x
o + ∆i).

If for some i, δi,n = δ then pi = 0 and pon(xo + ∆n) + δi,n = pi(x
o + ∆i).

Proof. The quadratic constraint for pi is p
o
n(xo + ∆n) + δi,n ≤ pi(x

o + ∆i). By

Lemma 4, either pi = 0 or the constraint is tight. If pon(xo + ∆n) + δi,n < 0, then,

since pi ≥ 0 and xo + ∆i ≥ 0, the constraint cannot be tight. Hence, pi = 0. If

pon(xo+∆n)+δi,n > 0, then, pi 6= 0 or else with pi = 0 the constraint is not satis�ed.

Hence the constraint is tight. The last case with pon(xo+∆n)+δi,n = 0 is trivial.

From Lemma 5, if pon, x
o lies in the region between the adjacent hyperbolas given

by pon(xo+∆n)+δi,n = 0 and pon(xo+∆n)+δj,n = 0 (and 0 < xo ≤ 1 and 0 ≤ pon < 1),

then δi,n ≤ 0 and pi ≥ 0 and for the kth quadratic constraint with δk,n < δi,n, pk = 0

and for the jth quadratic constraint with δj,n > δi,n, pj 6= 0 and the constraint is

tight.

These insights lead to Algorithm 3. After handling the case of x = 0 and pn = 1

separately, the algorithm sorts the δ's to get δ(1),n, . . . , δ(n−1),n in ascending order.

Then, it iterates over the sorted δ's until a non-negative δ is reached, assuming the

corresponding pi's to be zero and the other quadratic constraints to be equalities,

and using the subroutine EQ_OPT to solve the induced sub-problem. For ease of
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exposition we assume δ's to be distinct, but the extension to repeated δ's is quite

natural and does not require any new results. The sub-problem for the ith iteration

is given by the problem Qn,i:

max
x,p(1),...,p(i),pn

pn∆D,n − ax ,

subject to pn(x+ ∆n) + δ(i),n ≥ 0 ,

if i ≥ 2 then pn(x+ ∆n) + δ(i−1),n < 0 ,

∀j ≥ i. pn(x+ ∆n) + δ(j),n = p(j)(x+ ∆j) ,

∀j > i. 0 < p(j) ≤ 1 ,

0 ≤ p(i) ≤ 1 ,
∑n−1

k=i p(k) = 1− pn , 0 ≤ pn < 1 ,

0 < x ≤ 1 .

The best (maximum) solution from all the sub-problems (including x = 0 and

pn = 1) is chosen as the �nal answer.

Lemma 6. Assuming EQ_OPT produces an ε-additive approximate objective value,

Algorithm 3 �nds an ε-additive approximate objective of optimization problem Pn.

The proof is present in Appendix B.5.

EQ_OPT solves a two-variable problem Rn,i instead of Qn,i. The problem Rn,i

is de�ned as follows:

maxx,pn pn∆D,n − ax ,
subject to

pn(x+ ∆n) + δ(i),n ≥ 0 ,

if i ≥ 2 then pn(x+ ∆n) + δ(i−1),n < 0 ,

pn

(
1 +

∑
j:i≤j≤n−1

x+∆n

x+∆(j)

)
= 1−

∑
j:i≤j≤n−1

δ(j),n
x+∆(j)

,

0 ≤ pn < 1 ,

0 < x ≤ 1 .

The following result justi�es solving Rn,i instead of Qn,i.

Lemma 7. Qn,i and Rn,i are equivalent for all i.

Proof. Since the objectives of both problems are identical, we prove that the feasible

regions for the variables in the objective (pn, x) are identical. Assume pn, x, p(i), . . . , p(n−1)

is feasible in Qn,i. The �rst two constraints are the same in Qn,i and Rn,i. Divide

each equality quadratic constraint corresponding to non-zero p(j) by x+ ∆(j). Add
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Algorithm 3: APX_SOLVE(ε, Pn)

l← prec(ε, n,K), where prec is de�ned after Lemma 10

Sort δ's in ascending order to get δ(1),n, . . . , δ(n−1),n, with corresponding

variables p(1), . . . , p(n−1) and quadratic constraints C(1), . . . , C(n−1)

Solve the LP problem for the two cases when x = 0 and pn = 1 respectively.

Let the solution be S0, p0
(1), . . . , p

0
(n−1), p

0
n, x

0 and S−1, p−1
(1), . . . , p

−1
(n−1), p

−1
n , x−1

respectively.

for i← 1 to n− 1 do

if δ(i),n ≤ 0 ∨ (δ(i),n > 0 ∧ δ(i−1),n < 0) then

p(j) ← 0 for j < i.

Set constraints C(i), . . . , C(n−1) to be equalities.

Si, pi(1), . . . , p
i
(n−1), p

i
n, x

i ← EQ_OPT(i, l)

else

Si ← −∞

f ← arg maxi{S−1, S0, S1, . . . , Si, . . . , Sn−1}
pf1 , . . . , p

f
n−1 ← Unsort pf(1), . . . , p

f
(n−1)

return pf1 , . . . , p
f
n, x

f

all such constraints to get:

−
∑

j:1≤j≤i

p(j) + pn

( ∑
j:1≤j≤i

x+ ∆n

x+ ∆(j)

)
+
∑

j:1≤j≤i

δ(j),n

x+ ∆(j)

= 0

Then, since
∑

k:1≤k≤i p(k) = 1− pn we get

pn

(
1 +

∑
j:i≤j≤n−1

x+ ∆n

x+ ∆(j)

)
= 1−

∑
j:i≤j≤n−1

δ(j),n

x+ ∆(j)

.

The last two constraints are the same in Qn,i and Rn,i.

Next, assume pn, x is feasible in Rn,i. Choose

p(j) = pn

(
x+ ∆n

x+ ∆(j)

)
+

δ(j),n

x+ ∆(j)

.
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Since pn(x+ ∆n) + δ(i),n ≥ 0, we have p(i) ≥ 0, and since pn(x+ ∆n) + δ(j),n > 0 for

j > i (δ's are distinct) we have p(j) > 0. Also,

n−1∑
j=i

p(j) = pn

( ∑
j:i≤j≤n−1

x+ ∆n

x+ ∆(j)

)
+

∑
j:i≤j≤n−1

δ(j),n

x+ ∆(j)

,

which by the third constraint of Rn,i is 1 − pn. This implies p(j) ≤ 1. Thus,

pn, x, p(i), . . . , p(n−1) is feasible in Qn,i.

The equality constraint in Rn,i, which forms a curve Ki, allows substituting

pn with a function Fi(x) of the form f(x)/g(x). Then, the steps in EQ_OPT in-

volve taking the derivative of the objective f(x)/g(x) and �nding those roots of the

derivative that ensure that x and pn satisfy all the constraints. The points with

zero derivative are however local maxima only. To �nd the global maxima, other

values of x of interest are where the curve Ki intersects the closed boundary of the

region de�ned by the constraints. Only the closed boundaries are of interest, as

maxima (rather suprema) attained on open boundaries are limit points that are not

contained in the constraint region. However, such points are covered in the other

optimization problems, as shown below.

The limit point on the open boundary pn(x + ∆n) + δ(i−1),n < 0 is given by

the roots of Fi(x) +
δ(i−1),n

x+∆n
. This point is the same as the point considered on

the closed boundary pn(x + ∆n) + δ(i−1),n ≥ 0 in problem Rn,i−1 given by roots of

Fi−1(x) +
δ(i−1),n

x+∆n
, since Fi−1(x) = Fi(x) when pn(x + ∆n) + δ(i−1),n = 0. Also, the

other cases when x = 0 and pn = 1 are covered by the LP solved at the beginning

of Algorithm 3.

The closed boundary in Rn,i are obtained from the constraint pn(x+∆n)+δ(i),n ≥
0, 0 ≤ pn and x ≤ 1. The value x of the intersection of pn(x + ∆n) + δ(i),n = 0

and Ki is given by the roots of Fi(x) +
δ(i),n
x+∆n

= 0. The value x of the intersection

of pn = 0 and Ki is given by roots of Fi(x) = 0. The value x of the intersection

of x = 1 and Ki is simply x = 1. Additionally, as checked in EQ_OPT, all these

intersection points must lie with the constraint regions de�ned in Qn,i.

The optimal x is then the value among all the points of interest stated above that

yields the maximum value for f(x)
g(x)

. Algorithm 4 describes EQ_OPT, which employs

a root �nding subroutine ROOTS. Algorithm 4 also takes care of approximate results
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Algorithm 4: EQ_OPT(i, l)

De�ne Fi(x) =
1−

∑
j:1≤j≤i−1

δj,n
x+∆j

1+
∑
j:1≤j≤i−1

x+∆n
x+∆j

De�ne feas(x) =

true (x, Fi(x)) is feasible for Rn,i

false otherwise

Find polynomials f, g such that f(x)
g(x)

= Fi(x)∆D,n − ax
h(x)← g(x)f ′(x)− f(x)g′(x)

{r1, . . . , rs} ← ROOTS(h(x), l)

{rs+1, . . . , rt} ← ROOTS(Fi(x) +
δ(i),n
x+∆n

, l)

{rt+1, . . . , ru} ← ROOTS(Fi(x), l)

ru+1 ← 1

for k ← 1 to u+ 1 do

if feas(rk) then

Ok ← f(rk)
g(rk)

else

if feas(rk − 2−l) then

Ok ← f(rk−2−l)
g(rk−2−l)

; rk ← rk − 2−l

else

if feas(rk + 2−l) then

Ok ← f(rk+2−l)
g(rk+2−l)

; rk ← rk + 2−l

else

Ok ← −∞

b← arg maxk{O1, . . . , Ok, . . . , Ou+1}
p(j) ← 0 for j < i

p(j) ←
pn(rb + ∆n) + δ(j),n

rb + ∆(j)

for j ∈ {i, . . . , n− 1}

return Ob, p(1), . . . , p(n−1), pn, rb

returned by the ROOTS. As a result of the 2−l approximation in the value of x, the

computed x and pn can lie outside the constraint region when the actual x and pn

are very near the boundary of the region. Thus, we check for containment in the
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constraint region for points x± 2−l and accept the point if the check passes.

Remark (dummy target): As discussed in Section 4.1, we allow for a dummy

target with all costs zero. Let this target be t0. For n not representing 0, there is

an extra quadratic constraint given by p0(−x0 −∆0) + pn(x + ∆n) + δ0,n ≤ 0, but,

as x0 and ∆0 are 0 the constraint is just pn(x+ ∆n) + δ0,n ≤ 0. When n represents

0, then the ith quadratic constraint is pi(−x − ∆i) + δi,0 ≤ 0, and the objective is

independent of pn as ∆D,n = 0. We �rst claim that p0 = 0 at any optimal solution.

The proof is provided in Lemma 18 in Appendix. Thus, Lemma 4 and 5 continue to

hold for i = 1 to n− 1 with the additional restriction that pon(xo + ∆n) + δ0,n ≤ 0.

Thus, when n does not represent 0, Algorithm 3 runs with the the additional

check δ(i),n < δ0,n in the if condition inside the loop. Algorithm 4 stays the same,

except the additional constraint that p0 = 0. The other lemmas and the �nal results

stay the same. When n represents 0, then x needs to be the smallest possible, and

the problem can be solved analytically.

4.2.3 Analysis

Before analyzing the algorithm's approximation guarantee we need a few results

that we state below.

Lemma 8. The maximum bit precision of any coe�cient of the polynomials given

as input to ROOTS is 2n(K + 1.5) + log(n).

Proof. The maximum bit precision will be obtained in g(x)f ′(x)− f(x)g′(x). Con-

sider the worst case when i = 1. Then, f(x) is of degree n and g(x) of degree n− 1.

Therefore, the bit precision of f(x) and g(x) is upper bounded by nK + log(
(
n
n/2

)
),

where nK comes from multiplying n K-bit numbers and log(
(
n
n/2

)
) arises from

the maximum number of terms summed in forming any coe�cient. Thus, us-

ing the fact that
(
n
n/2

)
≤ (2e)n/2 the upper bound is approximately n(K + 1.5).

We conclude that the bit precision of g(x)f ′(x) − f(x)g′(x) is upper bounded by

2n(K + 1.5) + log(n).

We can now use Cauchy's result on bounds on root of polynomials to obtain a

lower bound for x. Cauchy's bound states that given a polynomial anx
n + . . .+ a0,
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any root x satis�es

|x| > 1/ (1 + max{|an|/|a0|, . . . , |a1|/|a0|}) .

Using Lemma 8 it can be concluded that any root returned by ROOTS satis�es

x > 2−4n(K+1.5)−2 log(n)−1.

Let B = 2−4n(K+1.5)−2 log(n)−1. The following lemma (whose proof is omitted due

to lack of space) bounds the additive approximation error.

Lemma 9. Assume x is known with an additive accuracy of ε, and ε < B/2. Then

the error in the computed F (x) is at most εΨ, where Ψ = Y+
√
Y 2+4X
2

and

X = min
{ ∑
j:i≤j≤n−1,

δj,n<0

|δj,n|
(B + ∆j)2

,
∑

j:i≤j≤n−1,

δj,n>0

2δj,n
(B + ∆j)2

}

Y = min
{ ∑
j:i≤j≤n−1,

∆n−∆j<0

|∆n −∆j|
(B + ∆j)2

,
∑

j:i≤j≤n−1,

∆n−∆j>0

2(∆n −∆j)

(B + ∆j)2

}

Moreover, Ψ is of order O(n2(8n(K+1.5)+4 log(n)+K).

We are �nally ready to establish the approximation guarantee of our algorithm.

Lemma 10. Algorithm 3 solves problem Pn with additive approximation term ε if

l > max{1 + log(
∆D,nΨ + a

ε
), 4n(K + 1.5) + 2 log(n) + 3}.

Also, as log(
∆D,nΨ+a

ε
) = O(nK + log(1

ε
)), l is of order O(nK + log(1

ε
)).

Proof. The computed value of x can be at most 2 ·2−l far from the actual value. The

additional factor of 2 arises due to the boundary check in EQ_OPT. Then using

Lemma 9, the maximum total additive approximation is 2 · 2−l∆D,nΨ + 2 · 2−la. For
this to be less than ε, l > 1 + log(

∆D,nΨ+a

ε
). The other term in the max above arises

from the condition ε < B/2 (this ε represents 2 · 2−l) in Lemma 9.

Observe that the upper bound on ψ is only in terms of n and K. Thus, we can

express l as a function of ε, n and K�l = prec(ε, n,K).

We still need to analyze the running time of the algorithm. First, we brie�y

discuss the known algorithms that we use and their corresponding running-time
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guarantees. Linear programming can be done in polynomial time using Karmakar's

algorithm [65] with a time bound of O(n3.5L), where L is the length of all inputs.

The splitting circle scheme to �nd roots of a polynomial combines many varied

techniques. The core of the algorithm yields linear polynomials Li = aix + bi (a, b

can be complex) such that the norm of the di�erence of the actual polynomial P

and the product
∏

i Li is less than 2−s, i.e., |P −
∏

i Li| < 2−s. The norm considered

is the sum of absolute values of the coe�cient. The running time of the algorithm

is O(n3 log n+ n2s) in a pointer based Turing machine. By choosing s = θ(nl) and

choosing the real part of those complex roots that have imaginary value less than

2−l, it is possible to obtain approximations to the real roots of the polynomial with

l bit precision in time O(n3 log n + n3l). The above method may yield real values

that lie near complex roots. However, such values will be eliminated in taking the

maximum of the objective over all real roots, if they do not lie near a real root.

LLL [64] is a method for �nding a short basis of a given lattice. This is used

to design polynomial time algorithms for factoring polynomials with rational coe�-

cients into irreducible polynomials over rationals. The complexity of this well-known

algorithm is O((n12 + n9(log |f |)3), when the polynomial is speci�ed as in the �eld

of integers and |f | is the Euclidean norm of coe�cients. For rational coe�cients

speci�ed in k bits, converting to integers yields log |f | ' 1
2

log n + k. LLL can be

used before the splitting circle method to �nd all rational roots and then the irra-

tional ones can be approximated. With these properties, we can state the following

lemma.

Lemma 11. The running time of Algorithm 3 with input approximation parameter

ε and inputs of K bit precision is bounded by O(n5K+n4 log(1
ε
)) . Using LLL yields

the running time O(max{n13K3, n5K + n4 log(1
ε
)})

Proof. The length of all inputs is O(nK), where K is the bit precision of each

constant. The linear programs can be computed in time O(n4.5K). The loop in Al-

gorithm 3 runs less than n times and calls EQ_OPT. In EQ_OPT, the computation

happens in calls to ROOTS and evaluation of the polynomial for each root found.

ROOTS is called three times with a polynomial of degree less than 2n and coe�-

cient bit precision less than 2n(K + 1.5) + log(n). Thus, the total number of roots

found is less than 6n and the precision of roots is l bits. By Horner's method [66],

polynomial evaluation can be done in the following simple manner: given a polyno-



CHAPTER 4. AUDIT GAME: SINGLE DEFENDER RESOURCE 58

mial anx
n + . . .+ a0 to be evaluated at x0 computing the following values yields the

answer as b0, bn = an, bn−1 = an−1 + bnx0, . . . , b0 = a0 + b1x0. From Lemma 10 we

get l ≥ 2n(K + 1.5) + log(n), thus, bi is approximately (n + 1 − i)l bits, and each

computation involves multiplying two numbers with less than (n+ 1− i)l bits each.
We assume a pointer-based machine, thus multiplication is linear in number of bits.

Hence the total time required for polynomial evaluation is O(n2l). The total time

spent in all polynomial evaluation is O(n3l). The splitting circle method takes time

O(n3 log n+ n3l). Using Lemma 10 we get O(n4K + n3 log(1
ε
)) as the running time

of EQ_OPT. Thus, the total time is O(n5K + n4 log(1
ε
)).

When using LLL, the time in ROOTS in dominated by LLL. The time for LLL is

given by O(n12 +n9(log n+nK)3), which is O(n12K3). Thus, the overall the time is

bounded by O(max{n13K3, n4l), which using Lemma 10 is O(max{n13K3, n5K +

n4 log(1
ε
)}).

4.3 Discussion

We have presented a simple model of audit games, that reveals the hard nature of the

technical problem at hand. Modulo the punishment parameter our setting reduces

to the simplest model of security games. However, the security game framework is

in general much more expressive. The security games model [67] includes a defender

that controls multiple security resources, where each resource can be assigned to one

of several schedules, which are subsets of targets. For example, a security camera

pointed in a speci�c direction monitors all targets in its �eld of view. As audit

games are also applicable in the context of prevention, the notion of schedules is

also relevant for audit games. We explore these and other extensions of audit games

in the following chapter.



Chapter 5

Audit Game: Multiple Defender

Resources

Building on the model in the last chapter, we generalize the model with multiple

inspections, and allow for constraints on how the inspections can be used (analo-

gous to schedules in security games [21]). We develop e�cient algorithms for such

scenarios, and as part of that algorithm also improve upon algorithms for special

cases of security games.

Our approach captures a number of practical audit scenarios. Often, even when

the total number of targets to be audited is very large, many similar targets can

be clubbed together as a type, e,g., celebrity record accesses, �nance related issues,

etc. The types of targets are typically signi�cantly fewer than the number of targets.

Our algorithm utilizes the types to run faster on such instances.

Our model also captures a number of other audit settings: (1) localized audit-

ing, i.e., managers inspect actions of their direct reportees or (2) central auditors

that audit targets that the managers are not capable of auditing (all such targets

collapse into one node) or (3) a sub-ordinate being managed by a two managers

or (4) a constant number of sub-ordinates managed by at-most a constant number

of managers or (5) punishment levels chosen speci�c to targets. These variations

capture many realistic scenarios.

We discuss our contributions brie�y before describing the model and algorithms

in detail.

59
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Our Model

We allow multiple inspections by the auditor, treating each inspection as a resource.

This naturally restricts each resource to inspecting one target at most. However,

inspection resources may be constrained in the targets that they can potentially

inspect; this captures scenarios where only some specialized auditors can investigate

certain cases. Examples of specialized auditing include scenarios such as billing

related case investigated by �nancial auditors from billing department, localized

auditing structure in which managers audit their direct sub-ordinates and the same

localized structure, but, with company wide auditors for cases that some mangers

are not capable of auditing. Mathematically, building on the model from the last

chapter, we introduce variable pji , the probability of inspection resource j inspecting

target i. Some of these variables are forced to be zero, re�ecting the specialized

auditing scenario. Then, the probability of inspecting a target ti is pi =
∑

j p
j
i . We

also informally present the simple extension to the model with multiple m attacks

by the adversary. This extension involves introducing constraints that capture the

scenario when the adversary's utility in attacking any of the givenm targets is higher

than the utility in attacking any of the other n−m targets.

Further, later in the chapter, we extend the model to the scenario where an

auditor can choose a di�erent punishment level (x1, . . . , xn) for di�erent targets

t1, . . . , tn. This extension to the model re�ects the common practice in law of pro-

portional punishment [26]. As earlier, our choice of optimal punishment levels is

still based on optimizing the utility of the defender, instead of qualitative means

employed in law.

Our Results

As in the last chapter, our approach to computing the Stackelberg equilibrium is

based on the multiple LPs technique of Conitzer and Sandholm [24]. We demon-

strate that the intuitive approach of discretizing the punishment level x and solving

the resulting linear programs for each �xed x makes the problem �xed parameter

tractable (FPT), i.e., the problem can be solved e�ciently given the bit precision of

the input is considered a constant. The FPT approach can also tackle the problem

where the adversary attacks upto m targets, where m is a constant.

Next, we present an approach to reduce the problem size by eliminating many
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variables of the optimization problem, namely all the pji 's, though at the cost of

increasing the number of constraints (in pi's and x) in the problem. We characterize

the conditions under which the number of constraints do not increase exponentially,

and hence allow for solving the audit game problem e�ciently (FPTAS). These

conditions capture many specialized auditing scenarios including all the special-

ized auditing examples we listed above. We show that it is possible to obtain an

FPTAS if the number on constraints are still polynomially many. Further, if the

number of such constraint are small they also reduce the running time of the FPT.

We demonstrate this improvement in running time experimentally for the FPT ap-

proach, achieving improvement of 5x in running time with 200 targets, 10 human

auditors with 10 inspections each (100 inspection resources) in a localized auditing

structure, where each auditor inspects 20 targets.

Finally, we show that solving the case with multiple punishment levels is also

a FPT problem, but not solved in the naive manner by simply discretizing each

punishment level. We provide a FPT for this scenario by discretizing only pi, xi (for

the case when ti is the target under attack) and reducing the resultant optimization

problem to a second order cone program (SOCP), that is known to be solvable

e�ciently.

5.1 Audit Game Model with Multiple Inspections

The audit game features two players: the defender (D), and the adversary (A). The

defender wants to audit n targets t1, . . . , tn, but has limited resources which allow

for auditing only some of the n targets. The defender employs human auditors, with

each human auditor performing a �xed number of inspections. Viewing each inspec-

tion of an auditor as a resource, the defender has k inspection resources {s1, . . . , sk}
at his disposal. An important point to emphasize is that each inspection resource

can audit only one target. Also, a human auditor may not have the expertise to

audit some of the targets. To capture this idea we de�ne a set of tuples R such that

any tuple (j, i) ∈ R means that inspection resource sj cannot audit target ti. Thus,

inspections are constrained by the set of targets that they can audit.

A pure action of the defender is to choose the allocation of inspection resources

to targets. Such an allocation can be represented by a matrix a where aji is 1 (rows
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are resources, columns targets) if resource sj is allocated to target ti, otherwise it

is 0. A randomized strategy is a matrix of probabilities, with pji the probability of

inspection sj auditing target ti subject to the following constraints

∑k
j=1 p

j
i ≤ 1,

∑n
i=1 p

j
i ≤ 1 for all i, j and

pji = 0 for all (j, i) ∈ R and ∀(j, i). pji ≥ 0 .

We call these constraints the grid constraints, as they can be represented in a grid

as follows (with pi's the probability of inspecting target ti):

t1 . . . . . . tn

s1 p1
1 ... ... p1

n

∑
i p

1
i ≤ 1

... ... ... ... ... ...

... ... ... ... ... ...

sk pk1 ... ... pkn
∑

i p
k
i ≤ 1

p1 =
∑

j p
j
1 ≤ 1 . . . . . . pn =

∑
j p

j
n ≤ 1

This choice of randomized strategy is justi�ed by the fact that such a matrix can

be decomposed into pure actions e�ciently (see below for details). The adversary

attacks one target such that given the defender's strategy the adversary's choice of

violation is the best response.

For the sake of completeness, we state the Birkho�-von Neumann theorem from

Korzhyg et al. [31], that is used to decompose the probability matrix into pure ac-

tions e�ciently.

(Birkho�-von Neumann [68]). Consider an m × n matrix M with real numbers

aij ∈ [0, 1], such that for each 1 ≤ i ≤ m,
∑n

j=1 aij ≤ 1, and for each 1 ≤
j ≤ n,

∑m
i=1 aij ≤ 1. Then, there exist matrices M1,M2, . . . ,Mq, and weights

w1, w2, . . . , wq ∈ (0, 1], such that:

1.
∑q

k=1wk = 1

2.
∑q

k=1wkMk = M

3. for each 1 ≤ k ≤ q, the elements of Mk are akij ∈ {0, 1}
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4. for each 1 ≤ k ≤ q, we have: for each 1 ≤ i ≤ m,
∑n

j=1 a
k
ij ≤ 1, and for each

1 ≤ j ≤ n,
∑m

i=1 a
k
ij ≤ 1.

Moreover, q is O((m+n)2), and the Mk and wk can be found in O((m+n)4.5) time

using Dulmage-Halperin algorithm [69].

Clearly, our variables pji 's can be considered as the matrixM in the result above,

and hence can be decomposed into pure actions e�ciently.

We follow notational convention similar to earlier papers on security games:

let the utility of the defender be Ua
D(ti) when audited target ti was found to be

attacked, and Uu
D(ti) when unaudited target ti was found to be attacked. The attacks

(violation) on unaudited targets are discovered by an external source. Similarly,

de�ne the utility of the attacker as Ua
A(ti) when the attacked target ti is audited, and

Uu
A(ti) when attacked target ti is not audited, excluding any punishment imposed

by the defender. Attacks discovered externally are costly for the defender, thus,

Ua
D(ti) > Uu

D(ti). Similarly, attacks not discovered by internal audits are more

bene�cial to the attacker, and Uu
A(ti) > Ua

A(ti).

Following the naming convention of Korzhyk, et al. [31], we have a game model

with heterogeneous resources and singleton schedules, but with a critical di�erence.

The additional component in audit games that makes the problem technically chal-

lenging is punishments. The defender chooses a punishment �rate� x ∈ [0, 1] such

that if auditing detects an attack, the attacker is �ned an amount x. However,

punishment is not free�the defender incurs a cost for punishing, e.g., for creating a

fearful environment. For ease of exposition, we model this cost as a linear function

ax, where a > 0; however, our results directly extend to any cost function poly-

nomial in x. Assuming x ∈ [0, 1] is also without loss of generality as utilities can

be scaled to be comparable to x. We do assume the punishment rate is �xed and

deterministic; a natural assumption that corresponds to a consistent policy.

We can now de�ne the full utility functions. The probabilities p1, . . . , pn of each

target being audited is given by pi =
∑k

j=1 p
j
i . Then, the utility of the defender

when target t∗ is attacked is

p∗U
a
D(t∗) + (1− p∗)Uu

D(t∗)− ax.

The defender pays a �xed cost ax regardless of the outcome. In the same scenario,
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the utility of the attacker when target t∗ is attacked is

p∗(U
a
A(t∗)− x) + (1− p∗)Uu

A(t∗).

The attacker su�ers the punishment x only when attacking an audited target.

Equilibrium. The Stackelberg equilibrium solution involves a commitment by

the defender to a strategy (with a possibly randomized allocation of the resource),

followed by the best response of the adversary. The mathematical problem involves

solving multiple optimization problems, one each for the case when attacking t∗ is

in fact the best response of the adversary. Thus, assuming t∗ is the best response of

the adversary, the ∗th optimization problem P∗ in audit games is

max
pij ,x

p∗U
a
D(t∗) + (1− p∗)Uu

D(t∗)− ax ,

subject to ∀i 6= ∗. pi(Ua
A(ti)− x) + (1− pi)Uu

A(ti)

≤ p∗(U
a
A(t∗)− x) + (1− p∗)Uu

A(t∗) ,

∀j. 0 ≤
∑n

i=1 p
j
i ≤ 1 ,

∀i. 0 ≤ pi =
∑k

j=1 p
j
i ≤ 1 , ∀(j, i). pji ≥ 0 ,

∀(j, i) ∈ R. pji = 0 , 0 ≤ x ≤ 1 .

The �rst constraint veri�es that attacking t∗ is indeed a best response. The auditor

then solves the n problems P1, . . . , Pn (which correspond to the cases where the best

response is t1, . . . , tn, respectively), and chooses the best solution among all these

solutions to obtain the �nal strategy to be used for auditing. This is a generalization

of the multiple LPs approach of Conitzer and Sandholm [24].

Inputs. The inputs to the above problem are speci�ed in K bit precision. Thus,

the total length of all inputs is O(nK).

Multiple Attacks. The adversary attacking multiple targets can be modeled as

a simple extension, which we state informally. Suppose the attacker attacks m

targets. Then, the objective of the optimization must account for the utility when

these m targets are attacked; the objective is then a linear function of corresponding

probabilities of attacking the m targets and x. Then, add additional constraints to

enforce the condition that the m targets are most attractive to the attacker, i.e., the

utility of the attacker in attacking any of the m targets is higher than the utility in

attacking any of the other n−m targets. The Stackelberg equilibrium would then
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need to solve
(
n
m

)
such optimization problems, which is polynomial in number when

m is a constant. Also, the case of at-most m attacks will require solving
∑m

i=1

(
n
i

)
optimization problems, which again is polynomially many.

5.2 Algorithms

We �rst describe an intuitive approach to the solve the problem. This approach

proves that the problem is a �xed parameter tractable problem.

5.2.1 Fixed Parameter Tractable Problem.

Our �rst algorithmic result is as follows:

Lemma 12. The intuitive approach of discretizing x yields a FPT (�xed parameter

tractable) algorithm for problem Pn, when the bit precision is considered a constant

and the smallest value of x is restricted to be any constant greater than 0.

The proof is in Appendix C.8.

The optimization problem for any �xed value of x is a linear programming prob-

lem. Obtaining an additive approximation of ε requires discretization intervals of

size θ(ε) (See Appendix C.8). Thus, the running time is O(LP(n)/ε), where LP(n)

is the time to solve a linear program with n variables. The result is in FPT only

when the bit precision is �xed because the running time is exponential in the bit

precision K that is used to specify the input. We note that a binary search on x

does not work as the solution is not single-peaked in x, thus, we cannot obtain a

FPTAS using a binary search over x. See Section 5.4.2 for the counterexample.

This FPT approach can also deal with scenario in which attackers attacks mul-

tiple targets bounded by a constant. Suppose the attacker attacks m targets. Dis-

cretizing x would yield linear programs for each �xed value of x. As m is a constant

the size of these linear programs is within a constant factor of the single attack FPT.

In the last chapter, an FPTAS algorithm was proposed to compute equilibrium

in audit games for the simple case of one inspection. We extend this approach to

solve audit games with multiple inspections and single attack in fully polynomial

time, but with certain restrictions. We �rst transform the optimization problem into

another equivalent problem with much fewer variables, but more constraints. We
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obtain a FPTAS when the set of new constraints obtained by the transformation is

polynomial is size.

We also claim that this transformation reduces the running time (by a constant

factor) of the FPT algorithm, as the transformation leads to a huge reduction in

the number of variables of the problem. We describe this transformation before

discussing the algorithm and conditions under which polynomially many new con-

straints are produced.

5.2.2 Extracting constraints for pi's

The transformation eliminates variables pji 's and instead extracts inequalities (con-

straints) for the variables pi's from the constraints below (referred to as grid con-

straints)

∀j. 0 ≤
∑n

i=1 p
j
i ≤ 1 ,∀i. 0 ≤ pi =

∑k
j=1 p

j
i ≤ 1 ,

∀(j, i). pji ≥ 0 , ∀(j, i) ∈ R. pji = 0 .

Consider any subset of inspection resources L with the resources in L indexed

by s1, . . . , s|L| (|L| ≤ k). Suppose, the set of targets M can only be audited by L.

Let M be indexed by t1, . . . , t|M |. Then, in case |L| < |M |, we obtain a constraint

pt1 + . . . + pt|M| ≤ |L|. Call such a constraint cML. Consider the set of all such

constraints

C = {cML | L ∈ 2S,M ∈ 2T audited by L only, |L| < |M |}

where S = {s1, . . . , sk} and T = {t1, . . . , tn}.
Then, we claim the following

Lemma 13. The optimization problem P∗ is equivalent to the optimization problem

obtained by replacing the grid constraints by C ∪ {0 ≤ pi ≤ 1}.
The proof is in Appendix C.7.

Observe that the de�nition of C is constructive and provides an algorithm to

obtain C. However, the algorithm has running time complexity Ω(2k), whereas, in

some scenarios the size of C may be polynomial in k. We return to this issue later

in Section 5.2.4, where we explore alternative ways of extracting the constraints in

C. For now, we present the FPTAS assuming that the set C has polynomially many

constraints.
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5.2.3 Optimization Algorithm

We present a FPTAS under the condition that the set C has polynomially many

constraints.

FPTAS. Our algorithm builds on our earlier algorithm from the last chapter for

the restricted auditing scenario. We solve the problem after extracting constraints

C. Thus, the variables in our problem are just pi's and x. The �nal solution involves

computing feasible values of pji 's (this can be done in polynomial time since it is

a linear feasibility problem), followed by the Birkho�-von Neumann decomposition

(see details shown in Section 5.1) to obtain the distribution over pure allocations.

First, we simplify our problem P∗ by eliminating variables pji and introducing

constraints in C, and (wlog) letting ∗ be n.

max
pi,x

pnU
a
D(tn) + (1− pn)Uu

D(tn)− ax ,

subject to ∀i 6= n. pi(U
a
A(ti)− x) + (1− pi)Uu

A(ti)

≤ p∗(U
a
A(tn)− x) + (1− pn)Uu

A(tn) ,

∀i. 0 ≤ pi ≤ 1 , 0 ≤ x ≤ 1 ,

c ∈ C .

We rewrite Pn in a more compact form. Let ∆D,i = Ua
D(ti)− Uu

D(ti), ∆i = Uu
A(ti)−

Ua
A(ti) and δi,j = Uu

A(ti)− Uu
A(tj). ∆D,i and ∆i are always positive, and Pn reduces

to:

max
pi,x

pn∆D,n − ax ,

subject to ∀i 6= n. pi(−x−∆i) + pn(x+ ∆n) + δi,n ≤ 0

c ∈ C, ∀i. 0 ≤ pi ≤ 1 , 0 ≤ x ≤ 1 .

Property of an optimal point. First, observe that the quadratic inequality can

be rewritten as
pn(x+ ∆n) + δi,n

x+ ∆i

≤ pi .

Suppose p∗i 's and x
∗ is an optimal point, and suppose for some j we have the strict

inequality
p∗n(x∗ + ∆n) + δj,n

x∗ + ∆j

< p∗j .
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Let p′j = min(0,
p∗n(x∗+∆n)+δj,n

x∗+∆j
). Then, we claim that p∗1, . . . , p

∗
j−1, p

′
j, p
∗
j+1, p

∗
n, x

∗ is

also an optimal point. This is easy to see since decreasing pj is not restricted by any

inequality other than the quadratic inequality and the objective only depends on

pn. As a result, we can restrict the problem to be equalities for all those quadratic

constraints for which p∗n(x∗ + ∆n) + δj,n ≥ 0, and restrict pj = 0 in case p∗n(x∗ +

∆n) + δj,n < 0.

Decomposing into sub-problems. Then, similar to the approach in Chapter 4, we

sort δi,n's to get a sorted array δ(i),n in ascending order. Then, split the optimization

problem Pn into sub-problems EQ(j), where in each problem EQ(j) it is assumed

that pn, x lies between the hyperbolas pn(x + ∆n) + δ(j),n (open boundary) and

pn(x + ∆n) + δ(j+1),n (closed boundary) in the plane spanned by pn, x. Thus, in

EQ(j), pn(x + ∆n) + δ(j),n is non-negative for all (k) > (j) and negative otherwise.

For the negative case, using the property of the optimal point above, we claim that

for all (k) ≤ (j) we can set p(k) = 0. The optimal value for Pn can be found by

solving each EQ(j) and taking the best solution from these sub-problems.

The optimization problem for EQ(j) :

max
pi,x

pn∆D,n − ax ,

subject to ∀(i) > (j). 0 ≤ pn(x+∆n)+δ(i),n
x+∆(i)

= p(i) ≤ 1

pn(x+ ∆n) + δ(j),n < 0

pn(x+ ∆n) + δ(j+1),n ≥ 0

∀(i) ≤ (j). p(i) = 0 , 0 ≤ x ≤ 1

c ∈ C .

As no pi (except pn) shows up in the objective, and due to the equality constraints

on particular pi's, we can replace those pi's by a function of pn, x. Other pi's are

zero. Then, denote by c(pn, x) the inequality obtained after substituting pi with the

function of pn, x (or zero) for constraints c ∈ C. Thus, we get the following two
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variable optimization problem

max
pi,x

pn∆D,n − ax ,

subject to ∀(i) > (j).
pn(x+∆n)+δ(i),n

x+∆(i)
≤ 1

pn(x+ ∆n) + δ(j),n < 0

pn(x+ ∆n) + δ(j+1),n ≥ 0

0 ≤ pn ≤ 1 , 0 ≤ x ≤ 1

c(pn, x) ∈ C .

Observe that we removed the 0 ≤ condition in the �rst set of constraints because

that is implied by the next two constraints. Next, note that any constraint (indexed

by b) with two variables pn, x can be expressed as pn ≤ fb(x) (closed boundary) for

constraint-speci�c ratio of polynomials fb(x) or by pn <
−δ(j),n
x+∆n

(open boundary).

However, we close the open boundary, i.e., pn ≤
−δ(j),n
x+∆n

, and solve the problem,

returning an infeasible solution in case the solution is on the boundary pn =
−δ(j),n
x+∆n

.

This is justi�ed by the fact that the curve pn =
−δ(j),n
x+∆n

is included in the other

optimization problem EQ(j−1), and would be output by that sub-problem if it indeed

is the global maximizer. Thus, we represent the optimization problem as

max
pi,x

pn∆D,n − ax ,

subject to ∀b ∈ {1, . . . , B}. pn ≤ fb(x)

0 ≤ pn ≤ 1 , 0 ≤ x ≤ 1 ,

where B is the total number of constraints described as above.

Solving sub-problem. We �rst claim that it is easy to solve the problem with

pn = 1 or pn = 0 and x = 0 or x = 1. The �xed x case is obvious, since the problem

is a linear program for �xed x. The �xed pn case is equivalent to minimizing x

with constraints that are of the form f(x) ≤ 0, where f is a polynomial in x. For

any polynomial constraint f(x) ≤ 0, it is possible to approximate the roots of the

polynomial with an additive approximation factor of 2−l and hence �nd the intervals

of x that satis�es the constraint f(x) ≤ 0 within additive approximation factor of

2−l. Doing so for the polynomially many constraints and �nding the intersection of

intervals yields the minimum value of x with additive approximation factor of 2−l

that satis�es all constraints.
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Algorithm 5: APX_SOLVE(l, EQ(j))

Solve the problem for pn = 0, 1 and x = 0, 1
Collect solutions (pn, x) from the above in M
for b← 1 to B do

Replace pn = fb(x) in the objective to get F (x) = fb(x)∆D,n − ax
Take the derivative to get F ′(x) = ∂F (x)

∂x

R← ROOTS(F ′(x), 2−l, (0, 1))
R′ ← MAKEFEASIBLE(R)
From R′ obtain set M ′ of potential solutions (pn, x)
M ←M ∪M ′

for (b, b′) ∈ {(b, b′) | b ∈ B, b ∈ B, b′ > b} do
Equate fb(x) = fb′(x) to get F (x) = 0
R← ROOTS(F (x), 2−l, (0, 1))
R′ ← MAKEFEASIBLE(R)
From R obtain set M ′ of potential solutions (pn, x)
M ←M ∪M ′

(p∗n, x
∗)← arg maxM{pn∆D,n − ax}

return (p∗n, x
∗)

Next, we claim that the optimal point cannot be an interior point of the region

de�ned by the constraints, i.e., it cannot be the case that all the inequalities are

strict for the optimal point. We can derive an easy contradiction for this scenario.

Assume p∗n, x is optimal. As fb is continuous in x, if all inequalities are strict, then it

is possible to increase the value of optimal p∗n by a small amount, without violating

the constraints. Clearly, this increased value of pn results in a higher objective value,

contradicting the assumption that p∗n, x
∗ is optimal.

Hence, given the above claims, the procedure in Algorithm 5 �nds the maximum

of the optimization under consideration. Algorithm 5 �rst searches the maximizer on

the boundaries (in the �rst loop) and then searches the maximizer at the intersection

of two boundaries (second loop). The roots are found to an additive approximation

factor of 2−l in time polynomial in the size of the polynomial and l and similar to our

earlier approach [23] in the last chapter, the case of roots lying outside the feasible

region (due to approximation) is taken care of by the functionMAKEFEASIBLE. The

�rst loop iterates a maximum of n times, and the second loop iterates a maximum

of
(
n
2

)
times. Thus, the above claims prove the following result

Theorem 3. The optimization problem Pn can be solved with an additive approxi-
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mation factor of 2−l in time polynomial in the input size and l, i.e., our algorithm

to solve Pn is a FPTAS.

5.2.4 Conditions for Polynomial Number of Constraints

The de�nition of the constraints set C provides an algorithm to construct the set.

However, as discussed earlier, that algorithm is always exponential. We provide an

alternate algorithm to �nd constraints in C and su�cient conditions under which

the number of constraints is polynomial in number. First, the following counterex-

ample reveals that in the worst case the number of constraints in C will be super-

polynomial. Consider k resources s1, . . . , sk and 2k targets t1, . . . , t2k. Each resource

si can inspect targets t1, . . . , t2i. Consider any set of k targets formed by picking

k/2 target pairs among t2i−1, t2i for any i, except i = 1. The number of such sets are(
k−1
k/2

)
. Each such set of targets results in a valid constraint, since the number of re-

sources that can audit these targets in less than k. This is because the �rst resource

only inspects t1, t2, and that pair is never chosen. Thus, we get
(
k−1
k/2

)
constraints,

which is clearly not polynomial.

The intuition behind the alternate algorithm is that instead of iterating over

sets of inspection resources, we could iterate over sets of targets. As a �rst step,

we identify similar targets and merge them. More precisely, any targets that can

be audited by the exact same set of inspections are equivalent. The algorithm to

determine constraints is described in Algorithm 6.

The algorithm builds an intersection graph from the merged target, i.e., treat

every merged target as a node and two nodes are linked if the two sets of inspection

resources corresponding to the nodes intersect. The algorithm iterates through every

connected induced sub-graph and builds constraints from the targets associated with

the nodes in the sub-graphs and the set of inspection resources associated with them.

Next, we prove the correctness of the Algorithm 6. After that, we investigate

the conditions under which the Algorithm 6 runs e�ciently, and yields a polynomial

sized C.

Lemma 14. Algorithm 6 outputs constraints that de�nes the same convex polytope

in p1, . . . , pn as the constraints output by the naive algorithm (iterating over all

subsets of resources).

Proof. Assume constraint c is in the output of the naive algorithm. Restrict the
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Algorithm 6: CONSTRAINT_FIND(T,K,R)

Compute F , the map from T to 2{s1,...,sk} using R.
Let PV (t) be the probability variable pt for target t
Merge targets with same F (T ) to get set T ′ and map W , with W (t′) the no.
of merged targets that yielded t′

Let PV (t′) be the set of probability variables associated with t′

Form an intersection graph G with nodes t′ ∈ T ′ and each node denoting set
F (T ′)
L← CONNECTEDSUBGRAPH(G)
C ← φ
for l ∈ L do

Let V be all the vertices on l
P ← ∪v∈V PV (v)
k ←

∑
v∈W W (t′)

if |P | > k then
C ← C ∪ {

∑
p∈P p ≤ k}

return C

constraint c to be a non-implied constraint, i.e., c cannot be written as the sum of

two or more other constraints in C. Note that such a restriction does not change

the region de�ned by the set C. By the description of the naive algorithm, this

constraint must correspond to a set of inspection resources, say S, and the set of

targets TS inspected only by inspection resources in S, and there exists no subset

of TS and S such that the subset of targets is inspected only by the subset of

inspection resources. The constraint c is of the form P (TS) ≤ |S|, where P (TS)

is the sum of the probability variables for targets in TS. Now, for the intersection

graph representation, every node x represents targets that are inspected by a given

subset xs of inspection resources. For our case, we claim that every t ∈ TS is either

equivalent to or linked to another target in TS, otherwise we have the subset {t} ⊂ S

inspected only by ts ⊂ TS. Thus, the targets in TS form a connected induced sub-

graph. Thus, we conclude that the CONSTRAINT_FIND algorithm will consider

this set of targets and �nd the non-implied constraint c.

Next, assume that CONSTRAINT_FIND �nds a constraint c. As this corresponds

to a connected induced sub-graph (with targets as nodes), we obtain a set of targets

T and a set of inspection resources ∪t∈TF (t) such that targets in T are audited
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by ∪t∈TF (t) only. Thus, by de�nition of the construction of c, this constraint is

same as the constraint c′ obtained by the naive algorithm when it considers the set

∪t∈TF (t). That is, c will also be found by the naive algorithm.

The algorithm CONSTRAINT_FIND is clearly not polynomial time in the worst

case because of the iteration over all connected sub-graphs. We state here su�-

cient conditions for CONSTRAINT_FIND to be polynomial. These conditions also

correspond to natural auditing scenarios; we discuss this later in Section 5.4.

Lemma 15. CONSTRAINT_FIND runs in polynomial time if

� The intersection graph has O(log n) nodes.

� The intersection graph has constant max degree and constant number of nodes

with degree ≥ 3.

Proof. � Graphs with O(log n) nodes. The maximum number of connected in-

duced subgraphs in a graph with t nodes is 2t (take any subset of vertexes).

Thus, clearly a graph with O(log n) nodes will have polynomially many con-

nected sub-graphs.

� Graphs with constant max degree and constant number of nodes with degree

≥ 3. The number of connected induced subgraphs in a tree with max degree d

and t vertexes with degree ≥ 3 is bounded from above by 2(2(d+1))t+1
n(d+1)t+1

.

To prove this result, denote by T (n, d, t) the worst case number of connected

induced sub-graphs in a graph with n vertices, and max degree d and t vertices

with degree ≥ 3.

Remove a vertex X with degree ≥ 3 to get k ≤ d disconnected components.

Each connected sub-graph in any component that was linked to X could be

combined with any connected sub-graph of any other component linked to X,

yielding a new connected sub-graph. Thus, considering every subset of the k

components, we get

T (n, d, t) ≤ 2k (T (n− 1, d, t− 1))k

Observing that k < d+ 1, and T (n− 1, d, t− 1) ≤ T (n, d, t− 1) we get

T (n, d, t) ≤ (2T (n, d, t− 1))d+1
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Thus, we see that T (n, d, t) = 2(2(d+1))t+1
(n)(d+1)t+1

satis�es the above equation.

As part of the induction, the base case requires reasoning about a graph with

max degree either 1 or 2 (t = 0, d = 1 or 2). Thus, we need to show that

the connected sub-graphs is less than nd+1, which is n2 for max-degree 1 and

n3 for max-degree 2. The max-degree 1 case is trivial. For the max-degree 2

case, such graphs can be decomposed into paths and cycles, and the number

of connected sub-graphs on cycles and paths is less that n2.

Useful in practice. The condition for polynomially many constraints capture a

number of practical audit scenarios. Often many similar targets can be clubbed

together as a type, e,g., celebrity record accesses, �nance related issues, etc. The

types of targets are typically signi�cantly fewer than the number of targets. We

capture such scenarios in the case when the number of equivalence classes of targets

(nodes in the intersection graph) is small.

Another scenario commonly practiced is localized auditing, i.e., managers inspect

actions of their direct reportee. Localized auditing does not allow us to collapse

targets inspected by di�erent managers into the same equivalent class, because of

the di�erent set of inspection resources that each target can be inspected by. As

a result, the number of equivalence classes of targets can be still high. However,

the inspection resources auditing an equivalence class is disjoint from the inspection

resources auditing any other equivalence class. Thus, our representation of the

equivalence classes as an intersection graph has no edges. i.e., max degree is zero.

Our algorithm can also handle sever other audit settings: (1) central auditors

that audit targets that the managers are not capable of auditing (all such targets

collapse into one node) or (2) a sub-ordinate being managed by a two managers

(nodes with degree two) or (3) a constant number of sub-ordinates managed by at-

most a constant number of managers (constant max degree and constant number of

nodes with degree three or more). These variations capture many realistic scenarios.

5.3 Target-speci�c Punishment

It is natural in many scenarios to consider di�erent punishments for di�erent targets.

While this can be modeled as a simple extension to the optimization problem Pn,
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solving the optimization problem becomes more challenging. The change to Pn

just involves using punishment levels x1, . . . , xn for each target instead of the same

punishment x for each target. Then, the new optimization problem PXn is

max
pi,x

pn∆D,n −
∑

j∈{1,...,n} ajxj ,

subject to ∀i 6= n. pi(−xi −∆i) + pn(xn + ∆n) + δi,n ≤ 0

∀j. 0 ≤
∑n

i=1 p
j
i ≤ 1 ,∀i. 0 ≤ pi =

∑k
j=1 p

j
i ≤ 1 ,

∀(j, i). pji ≥ 0 ,∀(j, i) ∈ R. pji = 0 ,

0 ≤ x ≤ 1 .

Note that the penalty term for punishment level is now a linear combination of each

punishment level.

The naive way to approach the above problem is to discretize each of x1, . . . , xn

and solve the resulting LP sub-problems. However, such a discretization of size ε,

even if yielding a θ(ε) additive approximation, will run in time O((1/ε)n), which is

not polynomial for constant ε. However, we show that it is possible to design an

algorithm that runs in time polynomial in ε. We do so by discretizing only pn and

xn, and casting the resulting sub-problem as a second-order cone program (SOCP).

SOCP can be solved in polynomial time. Let S(n) denote the running time of the

SOCP [32]. Then, we obtain a running time of O(S(n)(1/ε)2), by showing that such

a discretization produces an additive approximation of θ(ε), given �xed bit precision.

Assume poi 's and x
o
i 's are an optimal point. Reducing the value of pn by εp (≤ ε)

and xn by εn (≤ ε) always yields a feasible point, as the quadratic inequality is still

satis�ed and so are the linear inequalities. The value of εp and εn are chosen so

that the new values of pn and xn lie on the discrete grid for pn, xn. Thus, the new

feasible point F is poi 's for i = 1 to n − 1, xoi ' for i = 1 to n − 1 and pn = pon − εp,
xn = xon− εn. The objective at this feasible point F is o� from the optimal value by

a linear combination of εp, εn with constant coe�cients, which is less than a constant

times ε. Then, the SOCP with the new values of pn and xn yields an objective value

at least as high as the feasible point F on the grid. Thus, using our approach, we

obtain a maximizer that di�ers from the optimal only by θ(ε).
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Next, we describe a general SOCP problem.

max
y

fTy ,

subject to ∀i ∈ {1, . . . ,m}. ||Aiy + bi||2 ≤ cTi y + di

Fy = g .

where the optimization variable is y ∈ Rn, and all constants are of appropriate

dimensions. A special case of the above general problem, which we use, is when A, b

is chosen such that Ay + b = [k (yi − yj − k′)]T for some constants k, k′, and c, d

chosen such that cy + d = yi + yj + k. Note that it is always possible to choose such

A, b, c, d. Then, the second-order inequality

||Ay + b||2 ≤ cTy + d

is same as

k2/4 ≤ yi(yj + k′)

Our problem can be cast as a SOCP as follows: we can rewrite the quadratic con-

straints as follows

pn(xn + ∆n) + δi,n ≤ pi(xi + ∆i)

Using our discretization approach (discretizing pn, x only) the LHS of the above

inequality is a constant. If the constant is negative we throw out the constraint, since

the RHS is always positive. If the constant is positive, we rewrite the constraint as

a second-order constraint as described above. The rest of the constraints are linear,

and can be rewritten in the equality form by introducing slack variables. Thus, the

problem for each �xed value of pn, xn is a SOCP, and can be solved e�ciently. The

claims above prove the following result

Lemma 16. The method described above is an FPT algorithm for solving PXn.

The extension to multiple attacks is immediate; the only change required would

be to discrete pj, xj for j belonging to the index set of the m targets under consid-

eration. Then, the resultant problem for each �xed values of pj, xj for j belonging

to the index set of the m targets can be cast as a SOCP similar to the single attack

case.

Allowing di�erent punishments for di�erent targets re�ects the common law
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principle of punishment proportional to the crime [26]. In our case, we allow the

defender to choose the best cost optimal punishment levels that deter the adversary.

5.4 Experimental Results

We show the experimental results that demonstrate the usefulness of reducing the

problem size by getting rid of the grid constraints. After that, we show the coun-

terexample that demonstrates that we cannot obtain a FPTAS just by a binary

search on the punishment parameter x.

5.4.1 Performance Improvement with Reduced Constraint Set

We show our experimental results that provide evidence of the reduction in running

time as a result of reducing the problem size by eliminating the grid variables. Our

experiments were run on a desktop with quad core 3.2 GHz processor and 8GB

RAM. We used Matlab as our programming language, using the inbuilt large scale

interior point method implementation of linear programming. Our implementations

are not optimized for speed, but only serve to compare the naive approach with

our reduced problem size approach. We implemented two FPT algorithm, one with

reduced problem size and other with the grid variables and constraints intact. For

both the algorithms, we used the exact same problem inputs, utilities were generated

randomly from the range [0, 1], a was �xed to 0.01, x was discretized with interval

size of 0.05 and it was allowed to vary from 0 to 10 (the upper bound of 10, instead

of 1, is not important as utilities can be scaled accordingly).

Our �rst experiment used 100 targets and 10 inspection resources. The 10 re-

sources were divided into groups of two resources each, with each group of resource

capable of inspecting 20 of the targets. The targets that any group of resources were

capable of inspecting was disjoint from the target set for any other group. We sam-

pled 10 random instances of the problem. The results are shown in Figure 5.1, with

green marks for the reduced problem scenario. Clearly, the reduction in problem

size leads to better time performance.

Our second experiment used 200 targets and 100 inspection resources. The 100

resources were divided into groups of 10 resources each, with each group of resource

capable of inspecting 20 of the targets. The targets that any group of resources
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Figure 5.1: FPT algorithm running time with 100 target, 10 inspection resources.
Green marks for reduced problem case, blue with the grid constraints

were capable of inspecting was disjoint from the target set for any other group. We

sampled 5 random instances of the problem. The results are shown in Figure 5.2,

with green marks for the reduced problem scenario. In addition to the reduction in

problem size leading to better time performance, we observe that the improvement

is much greater for this bigger problem than in the case with 100 targets and 10

resources.

These results suggest that our approach can be used to signi�cantly speed up

computing strategies in related security games. As our FPT approach is equivalent

to solving the corresponding security game optimization for each discrete value of

x, the running time improvements for the FPT algorithm experiments carry over to

security games also.
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Figure 5.2: FPT algorithm running time with 200 target, 100 inspection resources.
Green marks for reduced problem case, blue with the grid constraints.

5.4.2 Maximum Value of Objective is Not Single-peaked

As stated in Section 5.2.1, the solution of the optimization problem is not single

peaked in punishment x. Here we show the counterexample that proves this fact.

We choose a problem instance with just one defender resource and 7 targets, and

we consider only the case when the seventh target is the target under attack. The

value of a was chosen to be 0.01, and x was discretized with interval size of 0.005.

The various values of utilities are shown in Table 5.1. The variation of maximum

utility with x is shown in Figure 5.3. It can be seen that the maximum value is not

single peaked in x.



CHAPTER 5. AUDIT GAME: MULTIPLE DEFENDER RESOURCES 80

Ua
D Uu

D Ua
A Uu

A

0.614 0.598 0.202 0.287

0.719 0.036 0.869 0.999

0.664 0.063 0.597 0.946

0.440 0.322 0.023 0.624

0.154 0.098 0.899 0.902

0.507 0.170 0.452 0.629

0.662 0.371 1.000 0.999

Table 5.1: Utility values for the counterexample
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Figure 5.3: Variation of maximum utility with x showing multiple peaks.



Chapter 6

Towards Repeated Audit Games

In the last two chapters on rational adversaries, we have considered one time in-

teraction only, whereas, auditing happens repeatedly. There are multiple ways to

approach the repeated setting. Clearly, with myopic adversaries, i.e., adversaries are

only concerned about current rewards, repeating the single round interaction over

and over is the optimal defender strategy. We demonstrate that such a strategy

leads to a sub-game perfect equilibrium of the repeated game with any adversary.

In addition, we propose a near-rational model of the adversary which models the

adversary that act rationally with high probability and in a byzantine manner oth-

erwise (similar to a trembling hand assumption [27]). The Stackelberg equilibrium

repeated in every round, with the near-rational adversary model, provably yields an

asymmetric approximate subgame perfect equilibrium (Theorem 4). This equilibrium

concept implies that the adversary does not gain at all from deviating from her best

response strategy (see Section 6.1). We de�ne this equilibrium concept by adapt-

ing the standard notion of approximate sub-game perfect equilibrium, which has

a symmetric �avor and permits both players to obtain small gains by unilaterally

deviating from their equilibrium strategy. The symmetric equilibrium concept is

unsuitable for our security application, where an adversary who deviates motivated

by a small gain could cause a big loss for the auditor. Finally, we demonstrate that

predictions from our model match real world occurrences, strengthening our claim

of practical applicability of our model.

This chapter presents results from our paper [70], skipping lot of details and

notation, in order to bring forth the main points from that paper. That model uses

81
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explicit utilities as shown in Chapter 3 in the context of a rational commitment set-

up similar to Chapter 4 and 5. The model is slightly more general than the rational

setting, where the resources are not �xed, but, can be increased till the limitation

set by budget. We present the main results from that paper.

We start by introducing our new equilibrium concepts.

6.1 Equilibrium Concepts

We begin by introducing standard terminology from game theory. We use the fol-

lowing notations in this paper:

� Vectors are represented with an arrow on top, e.g., ~v is a vector. The ith

component of a vector is given by ~v (i). ~v ≤ ~a means that both vectors have

the same number of components and for any component i, ~v (i) ≤ ~a (i).

� Random variables are represented in boldface, e.g., x and X are random vari-

ables.

� E(X)[q, r] denotes the expected value of random variable X, when particular

parameters of the probability mass function of X are set to q and r.

In a one-shot extensive form game (Stackelberg game for two players) players

move in order. We assume player 1 moves �rst followed by player 2. An extensive

form repeated game is one in which the round game is a one-shot extensive game.

The history is a sequence of actions. Let H be the set of all possible histories. Let

Si be the action space of player i. A strategy of player i is a function σi : Hi → Si,

where Hi ⊂ H are the histories in which player i moves. The utility in each round

is given by ri : S1 × S2 → R. The total utility is a δi-discounted sum of utilities of

each round, normalized by 1− δi.
The de�nition of strategies extends to extensive form repeated games with public

signals. We consider a special case here that resembles our audit game. Player 1

moves �rst and the action is observed by player 2, then player 2 moves, but, that

action may not be perfectly observed, instead resulting in a public signal. Let the

space of public signals be Y . In any round, the observed public signal is distributed

according to the distribution ∆Y (.|s), i.e., ∆Y (y|s) is the probability of seeing

signal y when the action pro�le s is played. In these games, a history is de�ned as

an alternating sequence of player 1'a action and public signals, ending in a public
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signal for histories in which player 1 has to move and ending in player 1's move for

histories in which player 2 has to move. The actual utility in each round is given

by the function ri : Si × Y → R. The total expected utility gi is the expected

normalized δi-discounted sum of utilities of each round, where the expectation is

taken over the distribution over public signals and histories. For any history h, the

game to be played in the future after h is called the continuation game of h with

total utility given by gi(σ, h).

A strategy pro�le (σ1, σ2) is a subgame perfect equilibrium (SPE) of a repeated

game if it is a Nash equilibrium for all continuation games given by any history

h [27]. One way of determining if a strategy is a SPE is to determine whether the

strategy satis�es the single stage deviation property, that is, any unilateral deviation

by any player in any single round is not pro�table. We de�ne a natural extension of

SPE, which we call asymmetric subgame perfect equilibrium (or (ε1, ε2)-SPE), which

encompasses SPE as a special case when ε1 = ε2 = 0.

De�nition 1. ((ε1, ε2)-SPE) Denote concatenation operator for histories as ;. Strat-

egy pro�le σ is a (ε1, ε2)-SPE if for history h in which player 1 has to play, given

h′ = h;σ1(h) and h′′ = h; s1,

E(r1(σ1(h),y))[σ1(h), σ2(h′)] + δ1E(g1(σ, h′;y))[σ1(h), σ2(h′)]

≥ E(r1(s1,y))[s1, σ2(h′′)] + δ1E(g1(σ, h′′;y))[s1, σ2(h′′)]− ε1

for all s1. For history h in which player 2 has to play, given a(h) is the last action

by player 1 in h, for all s2

E(r2(σ2(h),y))[a(h), σ2(h)] + δ2E(g2(σ, h;y))[a(h), σ2(h)]

≥ E(r2(s2,y))[a(h), s2] + δ2E(g2(σ, h;y))[a(h), s2]− ε2

We are particularly interested in (ε1, 0)-SPE, where player 1 is the defender and

player 2 is the adversary. By setting ε2 = 0, we ensure that a rational adversary will

never deviate from the expected equilibrium behavior. Such equilibria are particu-

larly important in security settings, since ε2 > 0 could incentivize the adversary to

deviate from her strategy, possibly resulting in signi�cant loss to the defender.
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6.2 Game Model

We presented a simpli�ed version of the model in our paper [70]. This rational

model uses notation from the Regret Minimizing Audit chapter, and di�ers from

our earlier rational model as the resource cost is also considered in the defender's

utility. Also, the utilities are stated explicitly in the manner of Regret Minimizing

Audit chapter. However, distinct from RMA, the total utility is a δ-discounted sum

of utility in each round, rather than the average utility. This follows the typical

convention in rational repeated game theory.

We use the notation and model from Regret Minimizing Audit chapter (Chap-

ter 3). The action space of the defender and adversary is the same, except, an

additional action of punishment level ~P t (each component is the punishment level

for each type of violation) for the defender. Then, the defender's utility for round t

is

Lt(〈~at, ~vt〉, ~st) = R−Rint ·Ot
int −Rext ·Ot

ext − ~C · ~st − ~a · ~P t ,

where ~a is a constant (one for each type of violation).

The adversary's utility is given by

Rt(〈~at, ~vt〉, 〈~st, ~P t〉,Ot) = ~I · ~vt − ~P t ·
(
Ot
int + Ot

ext

)
.

where ~I is the private bene�t of the adversary for each type of violation.

We simplify the notation by writing the utilities for each type (removing vec-

tor notation, considering Rint and Rext as constants), considering only a partic-

ular round (dropping superscript t) and also considering expected utility, where

E(Ot
int) = vν(α) and E(Ot

ext) = pv(1 − ν(α)). Recall that p is the probability of

external detection, α stands for s/a and ν(α) stands for actual e�cacy of α fraction

inspection. We assume that ν(α) is µ(α)α, where µ(α) is a �xed function greater

than 1, and µ(α)α ≤ 1. Observe that the worst case e�cacy is achieved in the case

of random sampling of accesses to inspect, for which µ = 1.

The expected utility in each round for the defender is

R−Rintv(1− ν(α))−Rextvν(α)− Cs− aP
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Figure 6.1: Non-deterred (×) and deterred (+) region for I = $6. I = $11 has
empty deterred region.

and the utility for the adversary is

Iv − Pv(ν(α) + p(1− ν(α)))

Graphical representation: A graphical representation of the utilities helps illus-

trate the ideas presented in the next two sections. (See Figure 6.1). Consider the

2-dimensional plane Rα,P spanned by α and P . We de�ne a feasible audit space in

Rα,P given by 0 ≤ α ≤ 1 and 0 ≤ P ≤ Pf = 10. We assume ν(α) = µα− (µ− 1)α2,

with e�ciency factor µ = 1.5. D's actions are points in the feasible region. The ex-

pected utility of the adversary in each round is given by v(I−P (ν(α)+p(1−ν(α)))).

Thus, the curve in Rα,P given by I = P (ν(α) + p(1 − ν(α))) is the separator be-

tween positive and negative expected utility regions for the adversary in each round.

Within the feasible region, we call the region of positive expected utility the non-

deterred region and the region of negative utility the deterred region.

The equilibrium considered in this model is the myopic optimization presented in

the last two chapters on rational adversaries, which results in a Stackelberg equilib-

rium. However, the interesting scenario is when the myopic optimization is repeated

in each round, with the additional consideration of trembling hand of the adversary.
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We discuss these in the next chapter.

6.3 Equilibrium in the Audit Game

Our �rst result is that repeating the same commitment in each round (una�ected

by history) followed by the best response of the rational adversary is a SPE. As this

result is not surprising or di�cult to prove, we prove it informally, relying on the

single stage deviation property of SPE. First, as the adversary plays a best response

in each round, clearly deviating in one round followed by sticking to its strategy is

not bene�cial for it (given the defender keeps playing his strategy). Second, given

the adversary plays a best response in each round, if the auditor deviates from

the per-round Stackelberg commitment then it obtains lower payo� (by de�nition

of Stackelberg equilibrium). Thus, single stage deviation is not bene�cial for the

auditor also.

The more interesting scenario is with near-rational adversaries. Instead of being

perfectly rational, we model the adversary as playing with a trembling hand [27].

Whenever the adversary chooses to attack some number of targets v of a given type

in given round t, she does so with probability 1−εth, but, with (small) probability εth

she attacks some other number of target. In other words, we allow the adversary to

act completely arbitrarily when she makes a mistake. Then we obtain the following

result

Theorem 4. Repeating the optimal commitment strategy for given targets from last

section with the adversary playing the best response with trembling hand probability

εth, yields a (ε1, 0)-SPE with near-rational adversaries, where ε1 is

εth max
α

UK,α

where UK,α is

R−RintK(1− ν(α))−RextKν(α)− Cs− aP

that is, the expected utility of the defender when the maximum possible number of

accesses K are made and all are violations with defender's action α.

Proof. The max. reduction in utility when the adversary attacks some other number

of targets than the number v it should have attacked is given by maxα UK,α. Since
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this happens only with probability εth the maximum di�erence in expected payo�

for the defender is εth maxα UK,α. As this bound on di�erence is same in all the

rounds, choosing ε1 as εth maxα UK,α satis�es the de�nition of (ε1, 0)-SPE. The zero

approximation for the adversary is obvious, but, due to the near-rationalness the

adversary will tremble in his move.

In addition, we can also consider uncertainty in the knowledge about the adver-

sary. In such a scenario, the defender must make his optimization robust by account-

ing for the uncertainty in the constraints for the adversary. In our paper [70], we

show the e�ect of this uncertainty is to add to the approximation factor of the SPE.

Since that result is quite intuitive and straightforward we skip the description here.

In fact, we refer the reader to recent work on uncertainty [71] about a model that

handles many nuances of uncertainty in the single shot setting. The approximation

in the single shot setting carries over to the approximation factor in the SPE, as

shown in the proof above.

6.4 Predictions and Interventions

In this section, we use the model to predict observed practices in industry and the

e�ectiveness of public policy interventions in encouraging organizations to adopt

accountable data governance practices (i.e., conduct more thorough audits) by an-

alyzing the equilibrium audit strategy under varying parameters. The explanation

of observed practices provides evidence that our audit model is not far from reality.

For this part, we assume all targets (accesses made to EHR) have the same value

for the adversary and for the defender, i.e, they are of the same type. We remind

the reader of parameters of our model, namely Rext the cost of external detection,

Rint the cost of external detection, p the probability of external detection and a the

factor for cost of setting a punishment level. The predictions are based on the data

provided in our paper [70]. In that paper, we used $10 as the upper bound on x, used

εth = 0.03, adversary's utility in committing a violation as $6 (both when audited

or not), the average cost of auditing C was assumed $50 and ν(α) = µα− (µ− 1)α2

with µ = 1.5.

Prediction 1: Increasing Rext and p is an e�ective way to encourage organizations

to audit more. We vary Rext from $5 to $3900, with Rint �xed at $300. The
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Rext x α

5 0 0

31 10 0.2

3308 9 0.35

3695 8 0.5

Table 6.1: x, α for varying Rext with p = 0.5

equilibrium results are shown in Table 6.1 and Table 6.2 for the two cases: p = 0.5

and p = 0.9. Graphically, we show the same data in Figure 6.2. In fact, when p∗Rext

is low organization's may not audit at all. Thus, organizations audits to protect

itself from greater loss incurred when violations are caught externally. Surprisingly,

organizations may continue to increase inspection level α (incurring higher cost)

beyond the minimum level necessary to deter a rational employee. They do so

because the employee is not fully rational: even if the employee is deterred there is

an εth probability of violations occurring.

Suggested Intervention 1: Subject organizations to external audits and �nes when

violations are detected. For example, by awarding contracts for conducting 150

external audits by 2012 [72], HHS is moving in the right direction by e�ectively

increasing p. This intervention is having an impact: the 2011 Ponemon study on

patient privacy [73] states��Concerns about the threat of upcoming HHS HIPAA

audits and investigation has a�ected changes in patient data privacy and security

programs, according to 55 percent of respondents.�

Prediction 2: Interventions that increase the expected loss for both external and

internal detection of violations are not as e�ective in increasing auditing as those

that increase expected loss for external detection of violations only. Table 6.3 shows

the equilibrium inspection level as Rext and Rint are both increased at the same rate.

While the inspection level may initially increase, it quickly reaches a peak. As an

example, consider the principle of breach detection noti�cation used in many data

breach laws [49]. The e�ect of breach detection noti�cation is to increase both Rint

and Rext since noti�cation happens for all breaches. While there isn't su�cient data

for our model to predict whether these laws are less e�ective than external audits
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Rext x α

5 7.5 0

1671 7 0.2

1909 7 0.35

2140 7 0.5

2578 7 0.7

3077 7 0.85

3684 6.5 1.0

Table 6.2: x, α for varying Rext with p = 0.9

(see suggested study below), prior empirical analysis [49] indicate that the bene�t

in breach detection from these laws is only about 6% (after adjusting for increased

reporting of breaches due to the law itself).

Suggested study: An empirical study that separately reports costs incurred when

violations are internally detected from those that are externally detected would be

useful in quantifying and comparing the e�ectiveness of interventions. Existing

studies either do not speak of these distinct categories of costs [11, 49] or hint at

the importance of this distinction without reporting numbers [12, 13].

Prediction 3: Employees with higher value for a (e.g., doctors have higher a; sus-

pending a doctor is costlier for the hospital than suspending a nurse) will have lower

punishment levels. If punishments were free, i.e., a = 0, (an unrealistic assumption)

organizations will always keep the punishment rate at maximum according to our

model. At higher punishment rates (a = 1000), organizations will favor increasing

inspections rather than increasing the punishment level (see Table 6.4). While we do

not know of an industry-wide study on this topic, there is evidence of such phenom-

ena occurring in hospitals. For example, in 2011 Vermont's O�ce of Professional

Regulation, which licenses nurses, investigated 53 allegations of drug diversion by

nurses and disciplined 20. In the same year, the Vermont Board of Medical Prac-

tice, which regulates doctors, listed 11 board actions against licensed physicians for

a variety of o�enses. However, only one doctor had his license revoked while the
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Figure 6.2: Separators for two values of external detection probability p indicated
by dashed lines. Equilibrium punishment and inspection rates (P, α) marked on
solid lines (see legend) as the reputation loss from external detection Rext varies;
the Rext values are labeled above the corresponding equilibrium points.

Rext and Rint x α

5 to 26 0 0

26 to 3900 10 0.2

Table 6.3: x, α for constant (0) di�erence in Rint, Rext

rest were allowed to continue practicing [4].

Prediction 5: If audit cost C decreases or the e�ciency factor µ increases, then

the equilibrium inspection level increases. The data supporting this prediction is

presented in Table 6.5 and 6.6. Intuitively, it is expected that if the cost of auditing

goes down then organizations would audit more, given their �xed budget allocated

for auditing. Similarly, a more e�cient audit tool with fewer false positives will

enable the organization to increase its audit e�ciency within the �xed budget. For

example, MedAssets claims that Stanford Hospitals and Clinics saved $4 million by

using automated tools for auditing [74].
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Rext x α

5 to 443 0 0

443 to 3900 6.5 1

Table 6.4: x, α for a = 1000

C x α

10 6.5 1

20 6.5 1

30 7.0 0.85

40 7.5 0.65

50 8.0 0.5

60 9.5 0.25

70 10.0 0.2

Table 6.5: x, α for varying C

6.5 Discussion

As public policy and industry move towards accountability-based privacy gover-

nance, the biggest challenge is how to operationalize requirements such as internal

enforcement of policies. This chapter provides evidence that the mechanisms we

have studied provides a sound basis for informed practical enforcement regimes. We

point out a number of studies that can be used to infer data required for the game

model, while recognizing the need for more scienti�c studies with similar goals, and

suggest speci�c studies that can help estimate other parameters. While this chap-

ter captures a number of important practical considerations, it leaves many open

problems unanswered, such as what is the best SPE for the defender, or how to

handle colluding adversaries? We discuss these and other open problems in the next

chapter.
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µ P α

1.0 10.0 0.3

1.2 9.5 0.35

1.3 9.5 0.35

1.40 9.0 0.45

1.5 9.0 0.45

1.6 8.5 0.5

1.7 8.5 0.5

Table 6.6: P, α for varying µ



Chapter 7

Conclusion and Future Directions

Motivated by the inadequacy of access control in many scenarios and the heuristic

approaches to auditing in practice, we embarked on the study of auditing process.

Our thesis is as follows:

E�ective audit resource allocation and punishment levels can be e�-

ciently computed by modeling the audit process as a game between a

rational auditor and a rational or worst-case auditee.

We presented the following results in support of this thesis

� We proposed the �rst game model for auditing with worst-case adversaries.

The auditor balances between the cost of inspecting potential violations (tar-

gets) and the loss from violations committed by the auditee. We identi�ed

regret as a notion of optimality in the worst-case adversary audit setting.

� We provided a regret minimizing audit algorithm with regret boundO

(√
logN
T

)
,

which is better than known regret bounds in the imperfect (partial) informa-

tion setting [15].

� We proposed a Stackelberg game model of auditing with rational adversaries

that generalizes a standard security game model [21] with a punishment level

parameter. The auditee balances between bene�t from violations (attacking

targets) and loss from punishment when detected. We regard each inspection

as a resource with the natural consequence that a resource can inspect only

one target. Computing the Stackelberg equilibrium in this model requires

solving a non-convex optimization problem. The non-convexity arises due to

93
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the punishment parameter x. The equilibrium computation yields probability

values pji : the probability of inspection resource sj inspecting target tj. These

values can be decomposed into pure actions by using the known Birkho�-von

Neumann theorem.

� We provided novel ways of obtaining FPTAS for particular instances of non-

convex optimization problems used in computing the Stackelberg equilibrium.

In particular, we provided a reduction of the optimization problem to the

problem of �nding roots of a polynomial in x. We appeal to known methods

of FPTAS for root �nding to provide e�cient approximation for the opti-

mization problem. We also provided an intuitive FPT algorithm obtained by

discretizing x.

� We provided novel ways of improving the running time for the FPT algorithms

for some instances. The reduction resulted from the ability to eliminate vari-

ables pii and keep only the variables pi =
∑

j p
j
i in the optimization problem,

with increase in the number of constraints of the problem. If the number of

new constraints are small, the optimization problem can be solved faster. We

identi�ed conditions under which the number of new constraints is small, also

showing that these conditions capture many real audit scenarios. We achieved

a 5x improvement for instances with 200 targets and 100 inspection resources.

We additionally proposed an asymmetric notion of approximate sub-game perfect

equilibrium in games with particular relevance for security. This notions allows

the defender to deviate from equilibrium with an ε additive factor bound on the

di�erence from optimal utility considering �xed equilibrium play by the adversary.

However, it restricts the adversary to not deviate at all. This is important, because

deviation by the adversary could result in signi�cant loss for the defender. We also

proposed a near-rational model of the adversary, in which the adversary was allowed

to play any other action other than his equilibrium action with a small probability.

7.1 Limitations and Future directions

This dissertation takes a �rst step in the direction of computing optimal resource al-

location and punishment levels in the context of auditing. There are several promis-

ing directions to explore in models, algorithms and applications.
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One direction is to explore variants of our models that re�ect constraints that

occur in di�erent real world scenarios. A good source for such variants is the lit-

erature on security games [21]. As rational audit games generalize security games,

many of these variations can be explored for rational audit games also. An example

of such variation is considering the cost of resources in the equilibrium computation

instead of �xing them apriori, as we do for our worst-case adversary case. Also, it

is interesting to explore the possible impacts of punishment, speci�cally exemplary

punishments, i.e., using the actual act of punishment as an example and warning

for other potential violators.

Another set of interesting research problems is obtained by relaxing the assump-

tions in our model. Our model includes assumption such as attack on a target does

not a�ect the security of other targets (no propagation of attack), adversaries do not

collude and every target can be audited by a single inspection resource. Relaxing

these assumptions results in challenging research problems. An assumption that can

be relaxed easily is that violations are caught when inspected; this can be modeled

by introducing a probability of catching violations when inspected.

There are a number of open problems in the rational repeated games settings.

In our treatment of the rational repeated games setting, we repeat the single round

commitment in every round. This approach is limited by the fact that it fails to

capture the adversary's adaptiveness in the repeated interaction scenario, thereby

providing solution only for a myopic adversary. Another challenging research prob-

lem is to explore the dynamics of the equilibrium as we increase the rationality

approximation factor εth. The study of adaptiveness in the repeated setting could

enable explanation of commonly observed punishment practices, such as three strikes

policy, i.e., harsh punishment after three violations.

From an algorithmic perspective, some of the challenging problems to explore

are as follows: First, while our FPT approach works for the general case of audit

games, does there exist a FPTAS for the general case? Second, we show su�cient

conditions for polynomially many induced connected sub-graphs of a given graph;

can there be a tight(er) characterization of graphs that have polynomially many

induced connected sub-graphs? Additionally, some of the variants of the model we

suggested above will require algorithmic techniques beyond those we have presented

in this dissertation.

For applications, one immediate direction is to optimize for punishment levels
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in the application of security games, whenever possible. In applications of security

games punishments are considered �xed. However, if the defenders are not bound

by law to �x the punishment level, optimizing the punishment level should lead

to better utility for the defender. This is especially true for scenarios when the

adversaries are motivated by monetary gains, such as train travelers not buying

tickets [75]. In the long term, we envision that this work will produce tools that will

help organizations to better manage their auditing e�orts.
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Appendix A: Proofs for Chapter 3

Our main goal is to prove our main theorem from section 3.3.2, showing that our

audit mechanism (RMA) achieves low regret with high probability.

First, we prove an orthogonal result in appendix A.1. We prove that our example

estimator function from section 3.5 is accurate for the example loss function that

we provided.

In appendix A.2 we prove that Lemma 3 holds for any estimator function est that

satis�es the accuracy and independence properties outlined in section 3.5. So, with

high probability the defender's actual regret will be close to his estimated regret.

In appendix A.3 we review standard regret bounds from the literature on regret

minimization [15, 17]. We prove that our algorithm achieves low regret with respect

to our estimated loss function.

Finally, in appendix A.4 we combine our results to prove our main theorem in

section 3.3.2. This theorem shows that, except with probability ε, RMA will achieve

low regret.

A.1 Estimating Losses

Recall that our regret bounds for algorithm 1 depended on the accuracy of the loss

function estimator est. We prove that our example estimator (Algorithm 2) from

section 3.5 is accurate.

Reminder of Claim 1. When L̃t = est (Ot
int, s

t) from algorithm 2

E
[
Xt
s

]
= 0 .
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Proof. First observe that

E
[
ṽt
]

=
1− βat

1− βst
E
[
Ot
int

]
=

1− βat

1− βst
st∑
i=1

pj

=
1− βat

1− βst
st∑
i=1

vt
1− β

1− βat
βj−1

=
1− β

1− βst
vt

st∑
i=1

βj−1

= vt .

From which it follows that

E
[
Xt
s

]
= E

[
L̃t(~s)

]
− E

[
Lt(~s)

]
= R−R′

x∑
i=1

pj − p× vt ×Rext − C × s− E
[
Lt(~s)

]
= R−R′

x∑
i=1

pj − p× vt ×Rext − C × s

−R +R′ × E
[
ṽt
]
×

x∑
j=1

(
1− β
1− βa

βj−1

)
+ p× E

[
ṽt
]
×Rext + C × s

= R′ × E
[
ṽt
]
×

x∑
j=1

(
1− β

1− βat
βj−1

)
−R′

x∑
i=1

pj

=

(
R′ ×

x∑
j=1

(
1− β

1− βat
βj−1v

))
−R′

x∑
i=1

pj

=

(
R′ ×

x∑
j=1

pj

)
−R′

x∑
i=1

pj

= 0 .
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A.2 Hoe�ding Bounds

Hoe�ding Bound [60] bounds the probability of the deviation of a sum of independent

random variables from the mean of the sum of random variables. The statement of

Hoe�ding Bound is as follows: if X1, X2, ..., Xn are independent real valued random

variables and ai ≤ Xi ≤ bi, then for t > 0,

Pr

[∣∣∣∣∣
n∑
i=1

Xi − E

[
n∑
i=1

Xi

]∣∣∣∣∣ > t

]
≤ 2 exp

(
−2t2∑n

i=1(bi − ai)2

)
.

Claim 2. For every ~s

Pr
[∣∣∣Loss (~s, I~s)− L̃oss (~s, I~s)

∣∣∣ ≥ K
]
≤ ε

2N
,

where K =
√

2T ln 4N
ε
.

Proof. Notice that we can rewrite

Loss (~s, I~s)− L̃oss (~s, I~s) =
T∑
t=1

I~s(t)X
t
~s .

By the independence property of of loss estimator est, the random variables Xt
~s are

independent. By the accuracy property of our loss function estimator est we have

E

[
T∑
t=1

I~s(t)X
t
~s

]
= 0 .

By de�nition there are exactly T~s times when I~s(t) = 1 so the sum contains T~s in-

dependent random variables. We also have −1 ≤ Xt
~s ≤ 1 so we can apply Hoe�ding

Bounds directly to obtain.

Pr

[∣∣∣∣∣
T∑
t=1

I~s(t)X
t
~s

∣∣∣∣∣ ≥ K

]
≤ 2 exp

(
−2K2

22 × T~s

)
.
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Plugging in for K and using the fact that T~s ≤ T ,

Pr

[∣∣∣∣∣
T∑
t=1

I~s(t)X
t
~s

∣∣∣∣∣ ≥ K

]
≤ 2 exp

(
−T ln 4N

ε

T~s

)

≤ 2 exp

(
− ln

4N

ε

)
=

ε

2N
.

Claim 3. For every ~s

Pr
[∣∣∣Loss (RMA, ~s)− L̃oss (RMA, ~s)

∣∣∣ ≥ K
]
≤ ε

2N
,

where K =
√

2T ln 4N
ε
.

Proof. Notice that we can rewrite

Loss (RMA, ~s)− L̃oss (RMA, ~s) =
T∑
t=1

∑
~s

I~s(t)p
t
~sX

t
~s .

Set Yt =
∑

~s p
t
~sX

t
~s, and observe that the random variables Yt are independent and

that Yt ∈ [−1, 1]. Substituting we get

Loss (RMA, ~s)− L̃oss (RMA, ~s) =
T∑
t=1

I~s(t)Y
t .

Applying Hoe�ding Bounds we have

Pr

[∣∣∣∣∣
T∑
t=1

I~s(t)Y
t

∣∣∣∣∣ > K

]
≤ 2 exp

(
−2K2

22T~s

)
.
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Set K =
√

2T ln 4N
ε
. Then,

Pr
[ ∣∣∣Loss (RMA, ~s)− L̃oss (RMA, ~s)

∣∣∣ > K
]

= Pr

[∣∣∣∣∣
T∑
t=1

I~s(t)Y
t

∣∣∣∣∣ > K

]

≤ 2 exp

(
−2K2

22T~s

)
≤ 2 exp

(
− ln

4N

ε

)
≤ ε

2N
.

Lemma 17. Except with probability ε, for all ~s we have∣∣∣Loss (~s, I~s)− L̃oss (~s, I~s)
∣∣∣ < K ,

and ∣∣∣Loss (RMA, ~s)− L̃oss (RMA, ~s)
∣∣∣ < K ,

where K =
√

2T ln 4N
ε
.

Proof. There are N �xed actions ~s and thus 2N total events. Applying the union

bound to claims 2 and 3 yields the desired result immediately.

Claim 4. Suppose that for all ~s we have∣∣∣Loss (~s, I~s)− L̃oss (~s, I~s)
∣∣∣ < K ,

and ∣∣∣Loss (RMA, ~s)− L̃oss (RMA, ~s)
∣∣∣ < K ,

where K =
√

2T ln 4N
ε
. then for every ~s we have

Regret (RMA, ~s)− R̃egret (RMA, ~s) ≤ 2K .

Proof. We use the de�nition of Regret (RMA, ~s) and R̃egret, and then apply
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Lemma 17.

Regret (RMA, ~s)− R̃egret (RMA, ~s) = (Loss (RMA, ~s)− Loss (~s, I~s))

−
(
L̃oss (RMA, ~s)− L̃oss (~s, I~s)

)
≤

∣∣∣Loss (RMA, ~s)− L̃oss (RMA, ~s)
∣∣∣

+
∣∣∣Loss (~s, I~s)− L̃oss (~s, I~s)

∣∣∣
≤ 2K .

We are now ready to prove Lemma 3 from section 3.6.

Reminder of Lemma 3.

Pr
[
∃~s,Regret (RMA, ~s)− R̃egret (RMA, ~s) ≥ 2K

]
≤ ε ,

where K =
√

2T ln
(

4N
ε

)
.

Proof. We combine claim 4 and Lemma 17.

A.3 Standard Regret Bounds

We prove upper bounds on our estimated R̃egret. The proof techniques used in

this section are standard [15, 17]. We include them to be thorough. The following

claims will be useful in our proofs.

Claim 5. ∑
~s∈AWAKEt

wt~sL̃
t(~s) =

∑
~s∈AWAKEt

wt~sL̃
t(RMA) .
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Proof. We plug in the de�nition of L̃t(RMA):∑
~s∈AWAKEt

wt~sL̃
t(RMA) =

∑
~s∈AWAKEt

wt~s
∑
~σ

L̃t (~σ)

=
∑

~s∈AWAKEt

wt~s
∑
~σ

pt~σL̃
t (~σ)

=
∑
~σ

∑
~s∈AWAKEt

wt~sp
t
~σL̃

t (~σ)

=
∑
~σ

L̃t (~σ)

 ∑
~s∈AWAKEt

wt~sp
t
~σ


=

∑
~σ

L̃t (~σ)
(
wt~σ
)

Relabel ~σ

=
∑
~s

L̃t (~s)
(
wt~s
)
.

Claim 6. For all times t, ∑
~s

wt~s ≤ N .

Proof. Initially, w0
~s = 1 so initially the claim holds,∑

~s

w0
~s = N .

The sum of weights can only decrease. At time t we only update the weights for

those experts ~s ∈ AWAKEt.∑
~s∈AWAKEt

wt+1
~s =

∑
~s∈AWAKEt

wt~sγ
L̃t(~s)−γL̃t(RMA)

=
∑

~s∈AWAKEt

wt~sγ
L̃t(~s)γ−γL̃

t(RMA)

≤
∑

~s∈AWAKEt

wt~s

(
1− (1− γ) L̃t(~s)

)(
1 + (1− γ) L̃t(RMA)

)
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≤

 ∑
~s∈AWAKEt

wt~s

− (1− γ)

 ∑
~s∈AWAKEt

wt~sL̃
t(~s)


+(1− γ)

 ∑
~s∈AWAKEt

wt~sL̃
t(RMA)


Apply Claim 5

≤
∑

~s∈AWAKEt

wt~s ,

where we used the following two facts

Fact 2.

∀γ, y ∈ [0, 1], γy ≤ 1− (1− γ)y ,

and

Fact 3.

∀γ, y ∈ [0, 1], γ−y ≤ 1 + (1− γ)
y

γ
.

Therefore, ∑
~s

wt+1
~s =

∑
~s/∈AWAKEt

wt+1
~s +

∑
~s∈AWAKEt

wt+1
~s

=
∑

~s/∈AWAKEt

wt~s +
∑

~s∈AWAKEt

wt+1
~s

≤
∑

~s/∈AWAKEt

wt~s +
∑

~s∈AWAKEt

wt~s

≤ N .

Claim 7. For each expert ~s we have

L̃oss(RMA, I~s) ≤
L̃oss(~s, I~s) + lnN

ln 1
γ

γ
,

where N is the total number of experts.
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Proof. By assumption, L̃t(~s) is independent of ~st so we can think of L̃t(~s) as being

�xed before the defender selects its action ~st. Notice that for all times j we have

N ≥ wj~s = γ
∑j
t=1 I~s(t)(L̃t(~s)−γL̃t(RMA)) .

Taking log 1
γ
we obtain:

log 1
γ
N =

lnN

ln 1
γ

≥ −
j∑
t=1

(
I~s(t)L̃

t (~s)− γL̃t (RMA)
)

= −L̃oss (~s, I~s) + γL̃oss (RMA, Is̃) .

Hence,

L̃oss(RMA, I~s) ≤
L̃oss(~s, I~s) + lnN

ln 1
γ

γ
.

We are now ready to prove Lemma 1.

Reminder of Lemma 1. For each expert ~s we have

R̃egret(RMA, ~s) ≤ 1

L− 1
T + 2L lnN .

where N is the total number of experts and γ, our learning parameter has been set

to γ = 1− 1
L
.

Proof. Set γ = 1− 1
L
and apply claim 7. We have

L̃oss(RMA, I~s) ≤
L

L− 1
L̃oss(~s, I~s) +

L

L− 1

lnN

ln L
L−1

.

Using the de�nition of R̃egret(RMA, ~s) we get

R̃egret(RMA, ~s) ≤ 1

L− 1
L̃oss(~s, I~s) +

L

L− 1

lnN

ln L
L−1

.
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We will use the following fact

Fact 4.
1

L− 1
< 2 ln

(
L

L− 1

)
,

to get

R̃egret(RMA, ~s) ≤ 1

L− 1
L̃oss(~s, I~s) +

L

L− 1

logN

log L
L−1

≤ 1

L− 1
L̃oss(~s, I~s) +

L

L− 1

logN
1

2L−2

≤ 1

L− 1
L̃oss(~s, I~s) + 2L logN .

Lemma 2 follows immediately from 1.

Reminder of Lemma 2. For each expert ~s we have

R̃egret(RMA, ~s) ≤ 2
√

2T lnN + 2 lnN ,

where N is the total number of experts and where our learning parameter has been

set to

γ = 1−
√

2 lnN

T
.

A.4 Main Theorem

We are �nally ready to prove our main theorem from section 3.3.2.

Reminder of Theorem 1. For all ε > 0,

Pr

 ∃~s, Regret(RMA,~s)
T

≥ 2
√

2 lnN
T

+

2

√
2 ln( 4N

ε )
T

+ 2
T

lnN

 ≤ ε .
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Proof. Lemma 2 tells us that for each expert ~s we have

R̃egret(RMA, ~s) ≤ 2
√

2T lnN + 2 lnN .

and Lemma 3 tells us that except with probability ε, for all actions ~s we have

Regret(RMA, ~s)− R̃egret(RMA, ~s) ≤ 2

√
2T ln

(
4N

ε

)
.

Combining Lemma 2 with Lemma 3 we obtain the desired result.
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B.5 Missing proofs

Proof of Lemma 4. We prove the contrapositive. Assume there exists a i such that

pi 6= 0 and the ith quadratic constraint is not tight. Thus, there exists an ε > 0 such

that

pi(−xo −∆i) + pon(xo + ∆n) + δi,n + ε = 0 .

We show that it is possible to increase to pon by a small amount such that all

constraints are satis�ed, which leads to a higher objective value, proving that pon, x
o

is not optimal. Remember that all ∆'s are ≥ 0, and x > 0.

We do two cases: (1) assume ∀l 6= n. pon(xo + ∆n) + δl,n 6= 0. Then, �rst, note

that pon can be increased by εi or less and and pi can be decreased by ε
′
i to still satisfy

the constraint, as long as

ε′i(x
o + ∆i) + εi(x

o + ∆n) ≤ ε .

It is always possible to choose such εi > 0, ε′i > 0. Second, note that for those j's for

which pj = 0 we get pon(xo+∆n)+δj,n ≤ 0, and by assumption pon(xo+∆n)+δj,n 6= 0,

thus, pon(xo + ∆n) + δj,n < 0. Let εj be such that (po∗ + εj)(x
o + ∆∗) + δj,∗ = 0, i.e.,

pon can be increased by εj or less and the jth constraint will still be satis�ed. Third,

for those k's for which pk 6= 0, pon can be increased by εk or less, which must be

accompanied with ε′k = xo+∆∗
xo+∆i

εk increase in pk in order to satisfy the kth quadratic

constraint.

Choose feasible ε′k's (which �xes the choice of εk also) such that ε′i −
∑

k ε
′
k > 0.

116
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Then choose an increase in pi: ε
′′
i < ε′i such that

εn = ε′′i −
∑
k

ε′k > 0 and εn < min{εi,min
pj=0

εj,min
pk 6=0

εk}

Increase pon by εn, pk's by ε
′
k and decrease pi by ε

′′
i so that the constraint

∑
i pi = 1

is still satis�ed. Also, observe that choosing an increase in pon that is less than any

εk, any εj, εi satis�es the quadratic constraints corresponding to pk's, pj's and pi

respectively. Then, as εn > 0 we have shown that pon cannot be optimal.

Next, for the case (2) if pon(xo + ∆n) + δl,n = 0 for some l then pl = 0, , δl,n < 0

and the objective becomes

pn∆n −
δl,n
pn
−∆n .

Thus, increasing pn increases the objective. Note that choosing a lower than xo

feasible value for x, results in an higher than pon value for pn. Also, the k
th constraint

can be written as pk(−x−∆k)+δk,n−δl,n ≤ 0. We show that it is possible to choose

a feasible x lower than xo. If for some j, pj = 0, then x can be decreased without

violating the corresponding constraint. Let pt's be the probabilities that are non-

zero and let the number of such pt's be T . By assumption there is an i 6= l such

that pi > 0 and

pi(−xo −∆i) + δi,n − δl,n + ε = 0 .

For i, it is possible to decrease pi by εi such that εi(x
o + ∆i) ≤ ε/2, hence the

constraint remains satis�ed and is still non-tight.

Increase each pt by εi/T so that the constraint
∑

i pi = 1 is satis�ed. Increasing

pt makes the tth constraint becomes non-tight for sure. Then, all constraints with

probabilities greater than 0 are non-tight. For each such constraint it is possible to

decrease x (note xo > 0) without violating the constraint.Thus, we obtain a lower

feasible x than xo, hence a higher pn than pon. Thus, p
o
n, x

o is not optimal.

Proof of Lemma 6. If pon(xo + ∆n) + δi,n ≥ 0 and pon(xo + ∆n) + δj,n < 0, where

δj,n < δi,n and @k. δj,n < δk,n < δi,n, then the exact solution of the ith subproblem

will be pon, x
o. Now, since 0 < x ≤ 1 and 0 ≤ pn < 1, there is one i for which

pon(xo + ∆n) + δi,n ≥ 0 and pon(xo + ∆n) + δj,n < 0, and thus the solution of this sub-

problem will return the maximum value. The solution of other sub-problems will

return a lower value as the objective is same in all sub-problems. Hence, maximum
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of the maximum in each iteration is the global maximum. The approximation case

is then an easy extension.

Proof of Lemma 9.

∆n −∆j

x− ε+ ∆j

<
∆n −∆j

x+ ∆j

if ∆n −∆j < 0

and using the fact that 1
1−ε < 1 + 2ε for ε < 1/2,

∆n −∆j

x− ε+ ∆j

<
∆n −∆j

x+ ∆j

+ 2ε
∆n −∆j

(x+ ∆j)2

if ∆n −∆j > 0 and ε
x+∆j

< 1/2. The latter condition is true as ε < B/2. Thus,

∑
j:i≤j≤n−1

∆n −∆j

x− ε+ ∆j

<
∑

j:i≤j≤n−1

∆n −∆j

x+ ∆j

+

∑
j:i≤j≤n−1,∆n−∆j>0

2ε(∆n −∆j)

(x+ ∆j)2

∆n −∆j

x+ ε+ ∆j

<
∆n −∆j

x+ ∆j

if ∆n −∆j > 0

and using the fact that 1
1+ε

> 1− ε,

∆n −∆j

x+ ε+ ∆j

<
∆n −∆j

x+ ∆j

− ε ∆n −∆j

(x+ ∆j)2

if ∆n −∆j < 0. Thus,

∑
j:i≤j≤n−1

∆n −∆j

x+ ε+ ∆j

<
∑

j:i≤j≤n−1

∆n −∆j

x+ ∆j

+

∑
j:i≤j≤n−1,∆n−∆j<0

ε|∆n −∆j|
(x+ ∆j)2
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Thus, using the fact that x > B we have

∑
j:i≤j≤n−1

∆n −∆j

xε + ∆j

<
∑

j:i≤j≤n−1

∆n −∆j

x+ ∆j

+

εmin

{ ∑
j:i≤j≤n−1,∆n−∆j<0

|∆n −∆j|
(B + ∆j)2

,

∑
j:i≤j≤n−1,∆n−∆j>0

2(∆n −∆j)

(B + ∆j)2

}
=

∑
j:i≤j≤n−1

∆n −∆j

x+ ∆j

+ εY

Very similar to the above proof we also get

−
∑

j:i≤j≤n−1

δj,n
xε + ∆j

> −
∑

j:i≤j≤n−1

δj,n
x+ ∆j

−

εmin

{ ∑
j:i≤j≤n−1,δj,n<0

|δj,n|
(B + ∆j)2

,

∑
j:i≤j≤n−1,δj,n>0

2δj,n
(B + ∆j)2

}
= −

∑
j:i≤j≤n−1

δj,n
x+ ∆j

− εX

Then given

pn =
1−

∑
j:i≤j≤n−1

δ(j),n
x+∆(j)(

1 +
∑

j:i≤j≤n−1
x+∆n

x+∆(j)

) =
A

B

Using the inequalities above

F (xε) =
1−

∑
j:i≤j≤n−1

δ(j),n
xε+∆(j)(

1 +
∑

j:i≤j≤n−1
xε+∆n

xε+∆(j)

) > A− εC
B + εD

If pn ≤ ψ, then since F (xε) ≥ 0, we have F (x) ≥ pn − ψ. If pn ≥ ψ, then since

B > 1, A > ψ we have

A− εX
B + εY

>
A

B
(1− ε(X

A
+
Y

B
)) > pn(1− ε(X

ψ
+ Y ))
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And, as pn < 1 we have F (xε) > pn−ε(Xψ +Y ). Thus, F (xε) > pn−εmin{ψ, X
ψ

+Y }.
The minimum is less that the positive root of ψ2−Y ψ−X = 0, that is Y+

√
Y 2+4X
2

.

B.6 Dummy Target

Lemma 18. If a dummy target t0 is present for the optimization problem described

in Section 4.1, then p0 = 0 at optimal point pon, x
o, where xo > 0.

Proof. We prove a contradiction. Let p0 > 0 at optimal point. If the problem under

consideration is when n represents 0, the objective is not dependent on pn and thus,

then we want to choose x as small as possible to get the maximum objective value.

The quadratic inequalities are pi(−xo − ∆i) + δi,0 ≤ 0. Subtracting ε from p0 and

adding ε/n to all the other pi, satis�es the
∑

i pi = 1 constraint. But, adding ε/n

to all the other pi, allows reducing x
o by a small amount and yet, satisfying each

quadratic constraint. But, then we obtain a higher objective value, hence xo is not

optimal.

Next, if the problem under consideration is when n does not represents 0, then

an extra constraint is pon(xo + ∆n) + δ0,n ≤ 0. Subtracting ε from p0 and adding

ε/(n − 1) to all the other pi (except p
o
n), satis�es the

∑
i pi = 1 constraint. Also,

each constraint pi(−xo−∆i) + pon(xo + ∆n) + δi,n ≤ 0 becomes non-tight (may have

been already non-tight) as a result of increasing pi. Thus, now xo can be decreased

(note xo > 0). Hence, the objective increases, thus pon, x
o is not optimal.
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C.7 Missing Proofs

Proof of Lemma 13. Since the optimization objective depends on the variables pi's

only, we just need to show that the regions spanned by the variables pi's, as speci�ed

by the constraints, are the same in both problems.

First, let pi's, p
j
i 's belong to region given by the grid constraints. Then, by

the de�nition of C, for any cML we know M is audited only by L. Thus, for i ∈
{t1, . . . , t|M |} the variables pji are non-zero only when j ∈ {s1, . . . , s|L|}. Therefore,∑

i∈{t1,...,t|M|}

pi ≤
∑

i∈{t1,...,t|M|}

∑
j∈{s1,...,s|L|}

pji ≤ |L|

Hence, pi's satis�es all constraints in C ∪ {0 ≤ pi ≤ 1}, and therefore pi's belong to

region given by C ∪ {0 ≤ pi ≤ 1}.
Next, let pi's belong to region given by C ∪{0 ≤ pi ≤ 1}. We �rst show that the

extreme points of the convex polytope given by C ∪ {0 ≤ pi ≤ 1} sets the variables
p1, . . . , pn to either 0 or 1. We show this by contradiction, relying on the fact that

extreme points cannot be written as the convex combination of other points in the

convex polytope.

Assume, that there exists some values of pi's for an extreme point z such that

pk ∈ (0, 1). An extreme point will satisfy some constraints with equality. For any

equality constraint, pk cannot be the only non-integral value, as the constant on the

RHS of any constraint is an integer. Thus, for every equality constraint there exists

a variable di�erent from pk that is non-integral. Choose one such variable from each

equality constraint, and let this set of variables be P .

Now, consider the point x in which pk's value is changed to pk + ε, the values of

121
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variables in P are decremented by ε and all other variable values remain unchanged.

Here ε is a very small value, that is smaller than the change that would make pk = 1,

or make any variable value in P zero, or violate the inequality constraints. Hence, x

lies in the convex polytope. Also, consider the point x′ in which the same operations

are performed, but, with −ε (and small enough value of ε), such that x′ also lies

in the convex polytope. Thus, it is easy to see that z = (x + x′)/2. But, that

contradicts the assumption that z is a extreme point.

Next, it is easy to see that for given pi's and p
∗
i 's, with corresponding feasible

pji 's and p
∗j
i 's, any convex combination p@

i 's of pi's and p
∗
i 's has a feasible solution

p@j
i 's which is the convex combination of pji 's and p

∗j
i 's. Since, any point in a convex

set can be written as the convex combination of its extreme points [], it is enough to

show the existence of feasible pji 's for the extreme points in order to prove existence

of feasible pji 's for any point in the convex polytope under consideration.

The extreme points of the given convex polytope has ones in k′ ≤ k positions

and all other zeros. The k′ ≤ k arises due to the constraint p1 + . . . + pn ≤ k.

Consider the undirected bipartite graph linking the inspections node to the target

nodes, with a link indicating that the inspection can audit the linked target. This

graph is known from our knowledge of R, and each link in the graph can be labeled

by one of the pji variables. Let S ′ be the set of targets picked by the ones in any

extreme points. We claim that there is a perfect matching from S ′ to the the set

of inspection resources (which we prove in next paragraph). Given such a perfect

matching, assigning pji = 1 for every edge in the matching yields a feasible solution,

which completes the proof.

We prove the claim about perfect matching in the last paragraph. We do so

by contradiction. Assume there is no perfect matching, then there must be a set

S ′′ ⊆ S ′, such that |N(S ′′)| < |S ′′| (N is neighbors function, this statement holds by

the well known Hall's theorem). As S ′′ ⊆ S ′ it must hold that pi = 1 for all i ∈ S ′′.
Also, the set of targets S ′′ is audited only by inspection resources in N(S ′′) and, by

de�nition of C we must have a constraint (the function index gives the set of indices

of the input set of targets) ∑
i∈index(S′′)

pi ≤ |N(S ′′)| .
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Using, |N(S ′′)| < |S ′′|, we get ∑
i∈index(S′′)

pi < |S ′′| .

But, since |index(S ′′)| = |S ′′|, we conclude that all pi for targets in S
′′ cannot be

one, which is a contradiction.

C.8 FPT

The quadratic constraint can be rewritten as

x(pn − pi)− pi∆i + pn∆n + δi,n ≤ 0

Suppose we have an optimal point xo, poi 's. Some of the quadratic constraints

are tight (say those indexed by k). We decrease xo by ε and decrease pn by ε
′. This

decrease only a�ects the quadratic constraints and not the others. Then we need to

satisfy

(xo − ε)(pon − pok − ε′)− pok∆k + (p0
n − ε′)∆n + δk,n ≤ 0

Since xo, poi 's are feasible and tight for index k we have

xo(pon − pok)− pok∆k + p0
n∆n + δk,n = 0

Thus, we get

−ε(pon − pok)− ε′xo − ε′∆n ≤ 0

or

ε′ ≥ −ε p
o
n − pok

xo + ∆n

Note that the change in objective is −∆D,nε
′ + aε which is upper bounded by

ε

(
pon − pok
xo + ∆n

∆D,n + a

)
Since x > ψ and ψ is a constant and the bit precision is also a constant, we get

the change in objective to be bounded by bε, where b is a constant. Thus, the
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total running time is O(LP(n)/ε). This argument handles the case when pon is large

enough to be reduced by bε.

The case when pon < bε can be handled by noting that setting pn = 0 and rest

of variables at their optimal value is a feasible point. This changes the objective

by θ(ε). Further note that for feasible xo and pn = 0, all values of x > xo are

also feasible. This can be easily inferred by rewriting the quadratic constraint with

pn = 0 as
δi,n

x+ ∆i

≤ pi

Thus, increasing x by ε with pn = 0 still gives a feasible point and further changes

the objective by θ(ε).
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