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Abstract

Imaging studies are a vital part of accurate medical care for every part of the body. Recent advances

in magnetic resonance imaging (MRI) technology hold promise to uncover structural changes un-

derlying diseases commonly considered medical mysteries. Unfortunately, the changes are of-

ten subtle, spatially distributed and complex, escaping detection by visual inspection. The key

challenge is to disambiguate meaningful information from heterogeneous normal variations. The

assistance of computer-aided techniques is sought to answer the following questions: are there

significant morphologic differences that differentiate these patients? If so, what is the nature of

these differences?

Traditional computer-aided techniques that extract a set of pre-specified descriptors (i.e. vol-

ume, thickness, etc.) or compare images pixelwise can test directed hypotheses about regional dif-

ferences, but do not consider important spatially diffuse effects. Furthermore, current approaches

for assessing statistical differences do not allow recovery or visualization of the images underlying

the associations, hindering physical interpretation. The goal of this research is to develop a new

framework for automated discovery and visualization of discriminating structural markers from

MRI data. We utilize the mathematics of optimal mass transport (OT) to quantify tissue spatial

distribution and transform data to enhance separability of images. Our approach for Transport-

Based Morphometry (TBM) defines a fully invertible transformation, allowing statistically signif-

icant discriminant differences identified in the transform domain to be visualized as morphology

changes through inverse transformation. This thesis extends the mathematics of TBM to enable its

first application to 3D radiology data, and applies the new TBM framework for classification and
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regression tasks in a variety of open clinical and research problems.

Our results based on knee cartilage images indicate that TBM enables detection of osteoarthri-

tis with 86.2% accuracy three years in advance of symptoms. TBM also enables identification

of 16p11.2 duplication, deletion, and control carriers with 96% accuracy based on structural ap-

pearance of the brain alone. Patterns of injury underlying post-concussive cognitive deficits are

identified with the TBM technique. The new technique also finds that aerobic fitness significantly

affects brain tissue distribution in older adults. These are significant improvements over prior de-

tection methods. Moreover, unlike previous approaches, our method allows structural markers to

be visualized.
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Chapter 1

Introduction

1.1 Overview and Goals

On a frosty winter’s day in Germany, Wilhelm Roentgen experienced a curious phenomenon. He

witnessed a peculiar glow emanating from the barium platinocyanide screen in his lab. He paused

for a moment, wondering whether it was an optical illusion. The glimmer, however, was unmis-

takable. In response to x-rays generated in his lab, he was observing fluorescence of the screen

several feet away. Cautious about the implications of his discovery, Roentgen at first told no one

what he saw. Then one day, six weeks later, he invited his wife into the laboratory and took a pic-

ture of the bones in her hand. This would mark the day that medicine would be forever changed.

The ability to visualize its inner workings without needing even a single incision by a scalpel was

a remarkable advance. News of the discovery spread rapidly across the globe and Roentgen was

awarded a Nobel Prize for his discovery [10]. The rest, of course, is history.

Since then, new modalities in imaging have enabled us to see not only the bones, but the or-

gans, soft tissues, blood vessels and cells that comprise the human body. Imaging studies today

are a vital part of accurate medical diagnosis and treatment for every part of the body. Reduced

scan times, increasing resolution, and proliferation of new modalities have provided us with a

look inside the human body at an unprecedented level of precision and accuracy. Cardiologists

1



use echocardiography to assess the heart’s function in real-time. Neurologists use diffusion tensor

imaging (DTI) to assess brain damage acutely during active stroke. Orthopedic surgeons use com-

puted tomography (CT) to plan their surgeries. Pharmacologists use positron emission tomography

(PET) to monitor drug uptake in the body. Neuroscience researchers use functional magnetic res-

onance imaging (fMRI) to understand functional connectivity in the brains of autistic patients. As

we learn more about the details of its inner workings, our enchantment with the human body and

awe of its complexity have only amplified.

IBM Watson estimates that up to 90% of all medical data today is in the form of images [95].

As the proliferation in image modalities, volume of studies ordered, and increase in resolution con-

tinue, new studies are able to detect subtle, complex and spatially distributed changes. However,

many of these changes escape human visual detection. In Figure 1.1a, we see MRIs of knee carti-

lage MRIs belonging to healthy subjects. Following these subjects over a period of three years, we

know that only one of these groups will go on to develop clinical osteoarthirits with pain and bone

degeneration in the knee. However, there appears to be no common feature identifiable by eye that

differentiates these two groups. In Figure 1.1b, we see fractional anisotropy maps of patients who

have suffered mild traumatic brain injury. Following the injury, many of the patients exhibited

cognitive deficits, manifested in their reaction times. However, the differences between the two

groups are not visually discernible.

Relevant questions include:

• Is there a characteristic difference in morphology that differentiates the two groups?

• If so, what is it and how can we visualize it?

• What features should we measure that are most informative for discriminating the groups?

• Which anatomic regions are most important for discrimination?

• How do the regions interact to produce the clinical symptoms?

2



• How can we best model and visualize the relationship between disease state and anatomy?

The help of computer-aided detection (CAD) is sought to help answer the questions such as

the ones above. In addition to high-throughput analysis, the goal of computer-assisted techniques

is to extract patterns, trends, and correlations missed by human visual inspection alone. One area

where CAD tools have already been developed for commercial use is in automated analysis of PAP

smears [18].

However, data mining from medical images and automated inference are complex tasks fraught

with many obstacles and challenges. In this chapter, we will first review several of the current

techniques and challenges. Then, we will state the specific contributions of this thesis. Finally, we

will present an outline for the remainder of the thesis.

Understanding the changes that are as of yet hidden from the human eye would have far reach-

ing impact on early diagnosis, understanding diseases commonly considered medical mysteries,

and contributing objective measures to help clinical assessment.

1.2 Challenges

Challenges exist at every stage of the CAD pipeline, as Figure 1.2 illustrates. First, feature ex-

traction from biomedical images is a challenge. What quantities to measure from the images is an

open question in many problems, and one that often requires human input. The second stage of

the pipeline is modeling. What is the best way to incorporate the features measured into a model

that will produce accurate clinical assessment? Finally, in order to draw new clinical insights, we

must answer, how does the model enable reliable clinical assessment based on imaging? What do

the structural correlates of observed behaviors look like?
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(a)

(b)

Figure 1.1: (a) Knee cartilage MRIs of healthy subjects. Three years in the future, one of these
groups will go on to develop osteoarthritis (Progressors), (b) Fractional anisotropy maps computed
from diffusion tensor images of 10 different post-concussive patients.
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Figure 1.2: Challenges exist at every stage of the pipeline from data mining to automated inference.
Credit: [122]

1.2.1 Feature extraction

In their book Computer Vision, Ballard and Brown [11] draw attention to the importance of picking

good features. They state ”picking good features is the essence of pattern recognition. No elaborate

formalism will work well for bad features.”

Often, the features chosen are pre-specified descriptors. For example, some features quantified

in the commercial devices developed for automated PAP analysis are nuclear area, nuclear density,

cytoplasmic area, etc. [18]. These features are selected based on human input and map the original

image to a set of numbers for statistical analysis.

However, often our prior knowledge of the problems under study is so limited that it is unclear

what features to measure or extract in the first place.

Another challenge is that most feature sets are non-generative; although an arbitrary image can

be mapped to a numerical feature set, images cannot be recovered or visualized given an arbitrary

set of numerical features. The latter poses an impediment in visualizing and inferring physical

meaning from statistical models constructed in the feature space based on numerical descriptors
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[18].

1.2.2 The problem with off-the-shelf machine learning techniques

Machine learning techniques are currently employed in ”big data” applications such as internet re-

tail and media, but these methods cannot generally be applied off-the-shelf to biomedical images.

There are several reasons why. First, there are often far fewer data samples, or patient images, than

dimensionality of the images. Typical MRI research studies include several tens of subjects, per-

haps a hundred, whereas the images may contain millions of voxels. In such high-dimensionality,

low-sample size (HDLSS) data, the sampling of the underlying signal space is sparse; every data

sample appears to be very different, or ”far”, from every other data sample. Even if the cor-

rect features were selected, in a situation with few training samples, classifiers are often prone to

over-fitting the data. As a classifier becomes more complex, its variance increases [89]. Machine

learning approaches based on deep learning require many training samples in order to construct

a representative model - many more training samples than we have often have available. On the

other hand, Occam’s razor reminds us that simpler explanations are preferred over more complex

ones because they require fewer assumptions. Thus, given that the correct features are chosen the

next step is to select simpler models that can predict the data.

1.2.3 Nonlinear modeling

Another complicating factor is that the data is nonlinear. This means that the sum of two images

belonging to Class 1 does not necessarily produce an image that also belongs to Class 1. Figure

1.3 illustrates the nonlinear nature of structural brain images.

Trying to interpolate between an older adult brain I2 and a middle-aged adult brain I1, we

see that the linear sum of pixels (Eulerian in PDE parlance) leads to an interpolated brain has

significant artifacts in the ventricles. However, the image interpolated using a nonlinear transport-
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Figure 1.3: IM is generated using MRIs of a middle-aged (I1) and healthy older subject (I2). I1

and I2 were affinely coregistered before interpolation.
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based model (Lagrangian in PDE parlance) seems to better capture aging-related changes such

as tissue thinning and expansion of ventricles. In this case, a linear combination of normal brain

images does not result in a normal brain image. Thus, the data appear to lie in metric spaces

defined by nonlinear measures of distance.

The need for nonlinear modeling raises the issue of how to define a geometrically meaningful

measure of similarity between samples in the dataset, and furthermore, how to learn the nonlinear

structure of the data, especially given its HDLSS nature.

The following sections will review current approaches for quantifying similarity between radi-

ology images. Given that the data lie in a nonlinear space as Figure 1.3 suggests, the Euclidean

metric is not typically used directly. It is known that Euclidean geometry is not well-suited for

curved spaces and Riemannian geometry is needed [45].

1.3 Current approaches for feature extraction and modeling

What is needed is a distance metric that can adequately capture the level of similarity or difference

between two images. As previously mentioned, the simple Euclidean metric is not adequate to

model anatomical images. Unfortunately, most current approaches are not generative. That is,

although the specific images in the sample can be represented by the model, the model is not able

to generate what new image samples would look like. The latter is a critical impediment because

statistical analyses performed in the feature space (i.e. on model parameters) cannot be translated

to visualizable images in order to infer physical meaning of the found associations [53].

1.3.1 Numerical descriptors

One commonly used method to search for morphologic differences between subjects is to quantify

and compare a set of pre-specified numerical descriptors in a trial and error manner. Commonly

used features for trial and error are numerical descriptors, such as histogram statistics, texture
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Figure 1.4: Some feature extraction techniques. Only transport-based feature extraction is bijec-
tive.

features, gray-level-run-length (GLRL), wavelet features, Zernicke polynomials etc. Then, it is

assessed which features are most useful in discrimination either by statistical tests or by building

classifiers to determine which features lead to the best accuracy.

An example of a software that utilizes the trial and error approach for biomedical image analy-

sis is WND-CHRM [115], which computes over 2600 features for testing. In building a classifier,

features among the initial set are tested and selected for their discriminating ability. The FreeSurfer

software [50] for brain imaging in particular samples∼17,000 points from the cortex and computes

local features such as thickness, convexity, etc. Again, in later tasks of pattern recognition and dis-

crimination, these features (ex. cortical thickness, convexity) are tested and retained based on

discriminating and predictive ability.

There are several drawbacks of the trial and error approach, however. First, mapping an image

into a set of numerical descriptors inevitably discards information present in the original image.

The information discarded may be potentially important in understanding the phenomenon of in-

terest. Second, numerical descriptors do not take into account a priori image models or known

anatomy, missing the opportunity to quantify variation of images as compared to a known tem-

plate. Third, having to choose numerical descriptors enables specific hypotheses to be tested, but

does not enable exploratory analysis. Finally, commonly used numerical descriptors like Haralick

features or Zernicke polynomials, Tamura texture statistics, histogram statistics, etc. have no di-
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rect biological interpretation. Furthermore, as Figure 1.4 illustrates, mapping an image to a set of

numerical descriptors is not generative; although an arbitrary image can be mapped to a feature

set, an arbitrary feature set cannot necessarily be mapped to an image. Thus, direct visualization

of statistical models constructed in the feature domain is often precluded.

1.3.2 Deformation-based methods

The desire to discover trends in a data-driven, exploratory manner gave rise to morphometric tech-

niques by John Ashburner and colleagues based on non-rigid registration. These are Voxel-Based

Morphometry (VBM) [6], Deformation-Based Morphometry (DBM) [8], and Tensor-Based Mor-

phometry [7]. These methods quantify shape variations in images when compared to a common

reference in a deformation field. Subsequent analyses is often performed either on the deformation

field, or the nonrigidly registered images. There are several open-source software packages avail-

able to perform deformation-based analysis. There include Statistical Parametric Mapping (SPM)

[52] and FMRIB Software Library (FSL) [125].

First, deformation fields are best suited to model local volume expansion/contraction and are

unable to capture variations caused by altered biophysical properties of tissue that appear as tex-

ture differences. Figure 1.5 illustrates several neurologic diseases for the main variations are in

texture changes. Furthermore, the results of pixel-wise comparison often suffer from systematic

registration bias, producing results that are a function of pixel misalignment as well as biological

differences [24].

The authors state that while VBM can help index regionally into certain voxels where some

metric of brain morphology may be affected by the factors under study, VBM cannot help answer

the nature of these changes [53]. Another limitation of pixel-wise comparison is that it is mass-

univariate; projecting a multidimensional morphologic space onto individual voxels can capture

effects that are relatively localized but not those that are spatially distributed and involve multiple

structures [40]. Furthermore, assessing group differences based on statistical parametric maps can-
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Figure 1.5: Neurologic conditions where shape analysis is not adequate to capture pathology affecting biophysical
properties of tissue manifesting as texture variation. (a) Multiple sclerosis (source: [74]), (b) metastatic breast cancer
tumor (source: Dept. of Radiology, University of Pittsburgh Medical Center), (c) GBM (left) and debulking procedure
(right) (source: [31])

not necessarily distinguish intra-group variations from those at the interface between two groups

[40]. Therefore, the answers offered are based on a narrow set of hypotheses.

Additionally, as Figure 1.4 illustrates, deformation fields are not unique to the source image;

one image may map to many deformation fields. These methods are not generative and although it

may be possible to localize differences, direct visualization is not possible.

Another class of deformation-based techniques focus on modeling shape and are those based

on differential geometry. For example, approaches in computational anatomy attempt to match

the cortical shape and those of deep nuclei in the brain by minimizing the amount of incremental

effort to match the structures along a time dimension [57]. Similar approaches by Joshi et al [76]

propose a landmark-matching approach to match shapes of structures based on large diffeomorphic

transformations. The advantages of such approaches is that they do not lose information about

shape, are generative, and enable interpolation between shapes that helps researchers understand

and visualize the geometric properties of shape distributions. A limitation of these techniques,

however, is that they focus on the analysis of shape to the exclusion of other variations that may be

present in the dataset, such as texture.
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1.3.3 Other approaches for nonlinear modeling

Active appearance models [38] and morphable models [21] have also been used to model the

appearance of the brain [69]. Morphable models compose the appearance of an unknown object,

such as a brain MRI, using a linear combination of known objects. Active appearance models

compute modes of variation when normalized for the mean shape or texture. Although these

approaches are nonlinear and generative, they require landmarks to be specified and their point-

by-point correspondences.

Finally, manifold-learning techniques have been applied to learn the geometric structure of

variations in MRI databases [28]. However, these techniques are not generative in general. That

is, the graph-based structure is constructed from given samples in the dataset, but cannot be used

to generate new images given an arbitrary point in the feature space.

1.3.4 Linear optimal transport

In contrast to other approaches, the linear optimal transport (LOT) distance metric is promising in

being able to meet the goals of an automated framework for discovering and visualizing structural

markers from MRI that can clinically differentiate patients. By viewing images as normalized

nonnegative probability measures, the similarity between images can be quantified in a transport

map using the Wasserstein distance, which is also known as Earth-Mover’s Distance (EMD) in

the field of computer science. The EMD measures the amount of work, defined by mass times

distance transported, required to re-distribute the pixel intensities in one image to match another

exactly using the mathematics of optimal mass transport (OT). In this process, texture and shape

modeling are performed simultaneously. As Figure 1.7 illustrates, optimal mass transport is able

to match two images exactly, capturing both shape and texture differences up to an interpolation

error. Furthermore, the LOT embedding of the transport map is also generative, meaning that

visualization of images is possible and does not require specification of any landmarks.
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Figure 1.6: Source: [81]. Projecting distances on the manifold to a tangent space with respect to
a template σ. The LOT-based modeling is generative, enabling images corresponding to arbitrary
feature sets to be visualized.

The metric space defined by OT is a Riemannian manifold equipped with an inner product,

where each point on the manifold can define a tangent space. The OT distance between two images

on this manifold is the length of the shortest curve that connects them, also called the geodesic. The

linearized version of this metric is defined by the projection of the OT distance onto the tangent

space with respect to the common reference, as Figure 1.6 illustrates.

The key benefit of the linearized OT metric is that now Euclidean distances defined in the

LOT space correspond to modified versions of the OT metric, which is referred to as a generalized

geodesic [1, 81]. This is important because the implication is that complex, nonlinear morphology

in the image space can be represented as simple, linear relationships in the LOT space. Indeed, re-

cent work [12, 84, 135, 136] has demonstrated that examining 1D and 2D signals in the LOT space

enhances their separability, aiding classification, discrimination, and visualization tasks. However,

the mathematics of LOT have never been expanded to include 3D radiology images.

The distance between any two arbitrary images in the dataset can be computed by a linear

functional of computed transport maps. This means that the number of transport maps that need to
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Figure 1.7: Compared to deformation fields computed using DARTEL [5], transport maps com-
puted using optimal mass transport (OMT) captures both shape and texture differences between I0

and I1 and match images perfectly, up to an interpolation error. However, deformation fields lose
texture variation information, thus resulting in high MSE when attempting to match source and
target images.

be computed is N , where N is the number of images in the dataset, rather than all pairs of images

that would require N(N−1)
2

computations, which saves number of computations needed [81].

This thesis focuses on how the mathematics of LOT can be adapted to create a framework to

assist vision and detection tasks in radiology images.
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1.4 Specific Contributions

This thesis builds upon previous work demonstrating that a linear optimal mass transportation

framework [135, 136] can enhance linear separability of signals [106, 134] and ability to visualize

discriminating changes [12, 81]. This work develops a Transport-Based Morphometry (TBM)

approach for the first time that includes radiology images. The work in this thesis specifically

focuses on analysis of magnetic resonance images. These images are large, often three-dimensional

and easily comprise multiple million voxels. Current numerical OT methods suffer from difficulties

including high computational complexity, non-convergence, and large numerical errors that result

in poor, numerically non-invertible mappings with large medical images. The first part of this work

focuses on developing an OT approach suitable for performing TBM with large medical images.

In subsequent parts, we apply the developed approach toward several open clinical and research

problems to enable state of the art results in these areas. In the process, we demonstrate how the

TBM approach can be combined with simple machine learning techniques to enable classification,

regression, and visualization in practical problems. The specific contributions in this thesis are:

• Contribution 1: Develop a Multiscale OT approach for 3D radiology images.

The basis for this aim is prior work in cell microscopy imaging, which demonstrates that

transforming images from an Eulerian (intensity-based) representation of an image to a La-

grangian (location-based) representation based on optimal transport facilitates problems in

signal detection, classification, modeling and visualization of disease-related changes. Us-

ing concepts from optimal transportation theory, we extend the framework for the first time

to radiology data, enabling analysis of tissue spatial distribution. In the process, we create a

novel, more robust formulation of our Transport-Based Morphometry (TBM) technique and

present a solution using variational optimization. The new formulation enables the TBM

framework to be extended to 3D radiology images and avoids pitfalls and inadequacies of

existing formulations.
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• Contribution 2: Classification and Discrimination tasks.

We apply the new TBM approach to a variety of discrimination and classification tasks in

both clinical and research domains. One application area is in preclinical detection of os-

teoarthritis (OA) based on knee MRI. Results show that our TBM technique can predict

future onset of OA 3 years in the future with 86% accuracy based on T2-weighted image

appearance of cartilage. In studying the effects of 16p11.2 deletions/duplications on brain

structure, we demonstrate that TBM enables 96% accuracy in predicting CNVs of 16p11.2

based on brain imaging studies alone, and illuminates the structural changes that enable high

classification accuracy.

• Contribution 3: Regression and Correlation tasks.

We extend the TBM framework as a discovery tool for statistical relationships between a

continuous clinical variable and imaging data. We demonstrate that TBM is able to assess

structural correlates of cognitive difficulty post-concussion. We also utilize the TBM ap-

proach to investigate the effects of aerobic fitness on brain tissue distribution in older adults.

We discover that aerobic fitness influences areas of the brain that overlap with areas affected

in normal aging.

1.5 Outline

This thesis comprises six core chapters. This chapter describes the problem statement and context

for this work through practical, motivating examples. Chapter 2 lays the mathematical foundation

related to optimal mass transport, including a brief exposition reviewing commonly-used solvers

and key theoretical results. Chapters 3-5 are based on original research work.

Chapter 3 describes a new formulation and solution to the optimal mass transport problem that

enables the Transport-Based Morphometry approach in this thesis for radiology images.

Chapter 4 describes a framework for utilizing TBM for classification and discrimination tasks.
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TBM is applied to enable state of the art results in early detection of osteoarthritis and elucidating

the relationship between gene and brain structure in 16p11.2 duplication/deletion carriers.

Chapter 5 describes a framework for regression and correlation analysis using TBM, and

demonstrates how TBM enables state of the art results in prognosticating cognitive deficits after

concussion and understanding the effects of aerobic fitness on older adult brains.

Finally, Chapter 6 concludes this work with a brief summary and directions for future research.

17



Chapter 2

Optimal Mass Transport and Use in Medical

Image Analysis

2.1 Overview and Goals

The optimal mass transport (OT) problem is not new, but has found important applications in

several fields. The original problem was posed by Gaspard Monge in 1781 [131]. He sought the

most parsimonious way, in the sense of mass transported, to rearrange a pile of dirt into a castle of

the same mass (of course with different distributions). Much of modern OT theory, however, was

developed in 1942 by Leonid Kantorovich for the problem of resource allocation. He shared the

1975 Nobel Prize in Economics with Tjalling Koopmans.

Several formulations and numerical solutions have been proposed. While the discrete version

of the problem can be solved by linear programming, the continuous version of the problem re-

quires optimization to solve in dimensions higher than one. We review some of this work in this

chapter.

Today, OT has found applications in many fields ranging from meteorology to image analysis.

In this chapter, we focus on the applications specifically related to image analysis in content-based

image retrieval, image registration, pattern recognition, and super-resolution imaging.
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2.2 Review of Prior Work Related to Optimal Mass Transport

In this section, we briefly review the theory related to the optimal mass transport problem as well

as describe existing numerical solvers.

Let Ω be a measurable space. Let µ and σ be probability measures defined on Ω, with corre-

sponding positive probability densities I1 and I0, respectively. A mass preserving transform f that

pushes σ to µ, or f#σ = µ, satisfies the following,

∫
A

dσ(x) =

∫
f(A)

dµ(x), ∀A ⊂ Ω. (2.1)

Figure 2.1: What should the optimal coupling be between units of mass in the pile of dirt and units
of mass in the castle such that the transportation cost is minimized? Image credit: Soheil Kolouri

Figure 2.1 illustrates µ and σ, as well as the map f#σ = µ. Such a mass preserving (MP)

mapping f is in general not unique; in fact, infinitely many MP mappings may exist that satisfy

Equation 2.1. However, we are interested in finding the MP mapping that is optimal in the sense of
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mass transport, which we will define further in Equation 2.2. Let MP be the set of all such mass

preserving mappings, MP := {f : Ω → Ω|f#σ = µ}. The optimal MP mapping in the mass

transport sense can be written according to Monge’s formulation, which minimizes the following

cost function,

min
f∈MP

∫
Ω

c(x, f(x))dσ(x) (2.2)

Here, c : Ω × Ω → R+ is the cost functional. The functional c measures mass transportation

cost and is often chosen to be the Lp-norm for which Equation (2.2) becomes the Lp-Wasserstein

distance. The L2-Wasserstein distance, c(x, y) = |x− y|2, in particular has attracted rich attention

in the image analysis, computer vision, and machine learning communities. For c(x, y) = |x−y|2,

Brénier [26] showed that there exists a unique optimal transportation map f ∈MP for which,

∫
Ω

|x− f(x)|2dσ(x) ≤
∫

Ω

|x− g(x)|2dσ(x),

∀g ∈MP (2.3)

when (i) Ω = Rn and the probability measures have finite second-order moments (i.e. their densi-

ties vanish in the limit),

∫
Ω

|x|2dµ(x) <∞ and
∫

Ω

|x|2dσ(x) <∞,

and (ii) when σ is absolutely continuous with respect to Lebesgue measure.

Moreover, Brénier showed through polar factorization [26] that the transport map f must be

the gradient of a convex function φ : Ω → R, f = ∇φ. The preceding property implies that

when Ω is a convex and connected subset of Rn, the optimal transport map is curl free. The
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curl-free characteristic of the optimal transport map has been used in a variety of solvers utilizing

optimization. Angenent et al. [2] and Haker et al. [62] solve for an initial MP map f0 (not

unique or optimal) through the Knothe-Rosenblatt rearrangement [22, 131] and then progressively

update the initial map using composition (with another MP map s that satisfies s#σ = σ) so that it

becomes curl free to signify optimality.

There are, as pointed out by Haber et al. [60] and Rehman et al. [128], two main shortcomings

to the preceding numerical approaches. First, a robust method is needed to obtain an initial MP

mapping, and the obtained initial map is often far from the optimal transport map. Second, and

much more importantly, such methods update the transformation in a space which is tangential to

the linearized MP constraint. Hence, for any finite step update used in the optimization, f0(sk),

the mapping deviates or drifts from the set of mass preserving mappings MP . While the level of

drift may or may not be acceptable in practice for a 2D solution, the drifting is amplified for 3D

images as demonstrated in Section 3.7. The drift phenomenon necessitates solution by alternative

methods for 3D images.

Other convergent methods have also been proposed based on a fluid dynamics formulation of

the problem [16, 88] or based on the solution of the Monge-Ampère equation [17]. Benamou et

al [16], for instance, reformulated Monge’s problem (Equation (2.2)) by considering all possible

smooth enough, time dependent, density and velocity fields subject to the continuity equation. This

formulation comes at the cost of an additional virtual time dimension, which is computationally

expensive. For 2D images, we must solve a 3D problem and for 3D images, we must solve a 4D

problem. Computational demands pose a challenge. Saumier et al [114] proposes a numerical

solution that requires a PDE to be solved using a discrete linear system of equations. In medical

images, and especially in 3D, where the number of voxels can easily number in the millions,

solving a linear system of equations using Gauss-Siedel or Jacobi solvers requires hundreds to

thousands of iterations over each of millions of voxels. The number of matrix systems to be solved

may quickly exceed 1010.
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Another family of solvers [33, 39, 119] are based on Kantorovich’s formulation of the problem.

In short, Kantorovich’s formulation searches for the optimal transport plan π defined on Ω×Ω with

marginals µ and σ that minimizes the following,

min
π∈Π(µ,σ)

∫
Ω×Ω

c(x, y)dπ(x, y) (2.4)

Here Π(µ, σ) is the set of all transport plans with marginals µ and σ. Optimization of Equation

(2.4) in the discrete setting leads to a linear programming problem, which is computationally ex-

pensive. For large 3D images, the computational cost may even become prohibitive. Cuturi et al

[39] used an entropy regularized version of the Kantorovich problem, which leads to an efficient

solver based on the Sinkhorn algorithm. A shortcoming of such methods in medical imaging ap-

plications is that the concept of a deformation map is missing from the obtained transport plan.

The reason is that a transport plan enables mass to be split and redistributed to push one measure

into another. Moreover, the entropy regularized version of the problem encourages mass splitting.

The methods based on the Kantorovich formulation are not readily applicable for medical image

analysis. Chartrand et al. [33], on the other hand, retain the concept of a deformation map by

solving the dual problem to the Kantorovich formulation. Chartrand et al obtain the optimal trans-

port map through a gradient descent solution. The obtained transport map as pointed out in [33]

and reconfirmed in this thesis comes with the tradeoff of undesired artifacts, especially when the

images are not smooth. Thus, additional work is needed to overcome challenges related to quality

of MP match with the Chartrand et al [33] approach.

Finally, there is work that describes an OT solution for shape matching that can match 3D

shapes [121]. However, this work focuses on shape analysis, rather than volumetric density mod-

eling of a 3D image. Second, this kind of method requires specification of landmarks and rigorous

correspondence of these landmarks to be established between images. The need to specify addi-

tional parameters impedes a fully automated approach.
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OT solvers in the existing literature primarily address smaller images, including those in 2D,

and do not scale well to large 3D medical image datasets.

2.3 Applications of OT in Image Analysis

Recently, OT has generated excitement in the imaging community for its utility in image anal-

ysis. OT has been used in content-based image retrieval [113]. In medical imaging, OT is

shown to be advantageous in interpolating time-series data (such as cell growth or migration)

[55, 82], performing pattern recognition on cell microscopy images (classification, regression)

[12, 70, 84, 126, 136], elastically registering images for surgical planning [60, 62, 128], and even

segmenting brain structures [59]. There is high potential for OT-based solutions to play an impor-

tant role in many new advances involving biomedical imaging.

2.3.1 Image Retrieval

Given an image, the retrieval problem consists of finding other images that are similar to the image

in a database, illustrated by Figure 2.2.

A standard way to retrieve images is to measure a set of features from the image, such as

texture features, color statistics etc. These features then lead to histograms of image signatures.

However, the histograms do not always employ the same bins; in fact some histograms utilize

dynamic binning. Comparing these histograms can be a challenge, especially when the binning

does not directly correspond.

Several papers [87, 107, 113] have used the Earth Mover’s Distance (EMD) metric to compare

histograms. Compared to other metrics such as L1 distance, L2 distance, χ2 statistic, and Jeffrey’s

divergence, [113] show that the EMD achieves the highest precision-recall performance.
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Figure 2.2: (a) red cards and (b) horses showing pictures that are alike in a database. Source: [113]
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2.3.2 Registration

Image registration is the problem of computing a geometric transformation between the coordinate

systems of two different images in order to achieve maximal alignment between the images.

Although the registration problem may include many different transformations, such as rigid-

body, affine, elastic, etc., as well as similarity metrics in order to measure degree of alignment,

such as mutual information, cross-correlation, intensity-based, etc., intensity-based elastic regis-

tration is often of interest in medical imaging applications. Lung CT images on expiration and

inspiration contain constant amount of tissue, but different tissue densities as the lung expands and

contracts during breathing. Cardiac MRI that shows the beating heart also shows constant tissue,

but changing tissue density during systole and diastole. Proton-density imaging MRI and fMRI

also show changing densities [61, 62].

Optimal mass transport is an attractive method for computing the transformation to elastically

register two images. First, it is naturally suited to compare two tissue densities, especially when the

tissue mass is fixed such as in lung CT and cardiac MRI. Second, the computed registration by OT

is landmark-free and parameter-free, as it is an intensity-based method. Third, the transformation

is symmetric, meaning that the order of the images does not influence the results. Finally, the

transformation using OT is the solution of a convex problem with a unique minimizer.

Optimal transport has been used for elastic registration in [60, 62, 128]. Some papers have

even utilized the OT-based elastic registration method to enable segmentation of brain structures

[59, 60]. Figure 2.3 shows how elastic registration can quantify the appearance of the brain before

and after a tumor is removed. Figure 2.4 shows how elastic registration using OT can be used to

parcellate cortical structures.
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(a) (b)

Figure 2.3: Source: (a) Pre-operative (left) and post-operative (right) axial slices and deformation
shown (below), (b) Pre-operative (left) and post-operative (right) sagittal slices and deformation
shown (below). Source: [128]

Figure 2.4: Use of OT-based registration to elastically register images for segmenting cortical
structures. Source [60]
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Figure 2.5: Source: [83]. Morphing one face to another, with distance along the OT geodesic
indicated by ρ

2.3.3 Image Reconstruction

Color synthesis [49] and texture synthesis applications, as well as super-resolution imaging have

been addressed using transport-based metrics [83].

The problem of super-resolution involves constructing a high-resolution image from a low-

resolution image. The geodesic on the OT manifold provides a morphing from a template image

to a sample face image. In the training phase, a basis is learned in the transport space for the

displacement maps needed to compose a morphing from any face image to the template. Figure

2.5 is an example of morphing one face to another.

In the testing phase, the morphing is sought that gives the most likely high-resolution face

image in terms of maximum a posteriori probability. In [83], it is demonstrated that modeling

variations in images in the transport space improves image reconstruction quality compared to

modeling variations in the image space.

2.3.4 Pattern Recognition

The specific application of OT that is the focus of this thesis is pattern recognition. The mathe-

matics of LOT described in Section1.3.4 have been used to transform images from a pixel-based

(Eulerian, in PDE parlance) to location-based (Lagrangian, in PDE parlance) representation to
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Figure 2.6: Source: [12]. Projection of data onto the direction in the LOT space that separates
FHB cells from normals. We see that the LOT-based metric is able to model the nonlinear changes
in cell appearance that increase the likelihood that it is malignant.

facilitate information extraction in the transform domain. In fact, separate 1D and 2D signal

transformations for pattern recognition have been defined based on OT mathematics [80, 111].

Prior work has found that 2D microscopy images are generally more or equally separable in the

LOT space, which will be henceforth abbreviated as the ”transport space” or ”transport domain”

[12, 84, 111, 135, 136]. Furthermore, statistical learning in this space is more easily able to dis-

cover trends in the data and facilitates discrimination and regression tasks [12, 84, 111, 135, 136].

Because the LOT embedding is generative, any discriminant or regression direction computed in

the transport space can be inverted to visualize shifts in the morphologic profile.

Using these principles, cell morphology associated with Fetal-type Hepatoblastoma (FHB)

have been investigated in the transform space (see Section 1.3.4) in [12].

Although the LOT framework is a promising technique for automated discovery and visualiza-

tion of structural markers, prior work on LOT is based on 1D and 2D signals. As discussed earlier

in this chapter, the numerical solution of OT for large 3D images faces several challenges.
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2.4 Summary

Although the OT problem is not new, it has many emergent applications in image analysis, espe-

cially in pattern recognition and super-resolution imaging. The LOT framework for quantifying

and visualizing variations in sets of images is promising, although the prior work is based on 1D

and 2D signals. The mathematics of LOT have never been extended to include large medical im-

ages, including 3D radiology images. Numerical OT for large images faces several challenges, es-

pecially for digital image datasets that can easily comprise millions of voxels in 3D. Some of these

challenges include high computational complexity, especially in approaches that require solution

of a discrete system of equations [60, 114] or introduce an additional time variable [16, 17]. For

approaches based on gradient flow [2, 62] and other continuous-domain constraints [33], authors

describe non-convergence on the solution path for digital images [62, 128]. Finally, approaches

for shape matching and comparison [121] require many landmarks to be specified and matched.

Our goal is to address the aforementioned limitations of current OT solvers to enable broader

application of Transport-Based Morphometry (TBM) to large medical imaging data, including

radiology data.
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Chapter 3

Multiscale Variational Optimal Transport

3.1 Introduction

Transport-Based Morphometry [12, 136], an image transformation framework based on the math-

ematics of LOT, can potentially address shortcomings of current techniques that are reviewed in

Chapter 1. However, as described in Chapter 2, solving optimal mass transport for large digital

medical images with multi-million voxels faces multiple challenges, including high computational

complexity, non-convergence, and large numerical errors that result in poor, numerically non-

invertible mappings. In this chapter, we present a new solution to the OT problem using variational

optimization that can be solved using a series of simple gradient descent update equations. The

main contribution of this work is a new technique for analyzing tissue distribution in large medi-

cal images. A novel mathematical formulation of the OT problem resulting in superior numerical

solution for the first time enables application of TBM to large medical images, such as magnetic

resonance imaging.

Applying the proposed OT approach to brain MRIs of healthy older adults, we see that the tech-

nique proposed enables superior results compared to existing OT techniques. Statistical learning

using the proposed technique was able to discover aging-related brain morphology changes that

are well-corroborated and well-accepted in the clinical literature on aging. In contrast, prior OT
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approaches failed to generate mass-preserving (MP) mappings due to aforementioned problems.

The proposed solver especially enables a broader set of applications involving 3D medical images.

This chapter is structured as follows. First, in Section 3.2, we review the equations for Transport-

Based Morphometry for synthesis and analysis. In Section 3.3, we present our approach, including

our modified formulation and multiscale solver that enables superior numerical results compared to

existing methods. Section 3.6 describes experimental methodology. In Section 3.7, we present our

results showing robustness of the proposed OT approach compared to prior work; we also see that

Transport-Based Morphometry is able to accurately assess dependent brain morphology changes

with age. Finally, in Section 3.8, we present discussion of the results and implications for future

work.

This work underscores that there are potentially numerous new applications of TBM to study

diseases for which the genotype-structural-behavioral associations are still unknown.

3.2 Signal Transformation Equations

By treating MRIs as smooth density functions, the similarity in tissue spatial distribution between

two images can be quantified based on the L2-Wasserstein distance. Any MRI modality that gen-

erates scalar intensity maps (i.e. T1-weighted, T2-weighted, FLAIR, fractional anisotropy, etc.) is

amenable to analysis by the TBM framework.

Consider a set of magnetic resonance images I1, ..., IN : Ω → R+, corresponding to exper-

imental subjects i = 1, ..., K, where Ω = [0, 1]3, the images are first intensity normalized to

produce densities such that ∫
Ω

Ii(x)dx = 1. (3.1)

A common reference image I0, is chosen and an optimal transport mapping is calculated from

the reference image to each MRI, Ii, for a total of K maps computed. Let fi : Ω → Ω be a mass

preserving mapping from I0 to Ii. Then, the analysis equation [84] that transforms an image to its
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corresponding representation in transform domain can be written based on

f ∗i (x) = arg min
fi∈MP

∫
Ω

|x− fi(x)|2I0(x)dx,

s.t. det(Dfi(x))Ii(fi(x)) = I0(x) for ∀x ∈ Ω

(3.2)

Here, D denotes the Jacobian matrix and MP is the family of all mass preserving mappings

from I0 to I1. The problem in Equation (3.2) is well-posed and existence of a unique optimal

solution f∗i to above optimization was shown by Brénier [26]. Thus, the transformation is bijective.

The transport maps f ∗i (x) are vector fields that define the direction and quantity of mass

transport needed to match Ii(x) to I0(x) with error zero. Then it can be shown that Îi(x) =

(f ∗i (x) − x)
√
I0(x) provides a natural isometric linear embedding for image Ii with respect to

the LOT [84, 136]. This linear embedding is generative, thus, any geometric analysis in the LOT

domain can be directly visualized in the image domain [84, 136].

An image corresponding to a given linear embedding can be recovered and visualized according

to the synthesis equation [84]

I(x) = det(Df−1(x))I0(f−1(x))

where f−1(x) is the inverse mapping of f(x)

(3.3)

We note that once images have been transformed, Euclidean distances in the transport domain

correspond to linearized versions of the transport metric on the OT geodesic [12, 84, 136]. This

suggests that complex, nonlinear changes modeled by OT can be described by simple linear models

in the transport domain, which will be explored further in Sections 3.5 and 3.7.
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3.3 Formulation

In this section, we present our solution to the OT problem. This section is organized as follows.

First, in subsection 3.3.1, we present a relaxed formulation of the Monge problem. Next, in subsec-

tion 3.3.2, we present gradient descent update equations derived using a variational optimization

approach. Lastly, in subsection 3.3.3, we present a solver based on accelerated gradient descent in

a multiscale scheme that enables superior numerical solution to the OT problem.

3.3.1 Variational formulation of the problem

In order to find the optimal transport map, we reformulate the minimization in (2.2) by relaxing

the MP constraint. Assuming that Ω is a convex and connected subset of Rn, as is the case for most

image analysis problems (i.e. Ω = [0, 1]n), and assuming that the probability measures µ and σ are

atomless and absolutely continuous, we can write the differential counterpart of Equation (2.1) as,

det(Df(x))I1(f(x)) = I0(x), ∀f ∈MP (3.4)

where I1(f(.)) = I1 ◦ f(.), D is the Jacobian matrix, and det(.) denotes the determinant operator.

The minimization in (2.2) for c(x, y) = |x−y|2 can first be relaxed into the following optimization

problem,

arg minf
1

2

∫
Ω

|x− f(x)|2I0(x)dx

s.t. ‖det(Df)I1(f)− I0‖2 ≤ ε (3.5)

for some small ε > 0. Next, we use the result from Brénier’s theorem which states that the optimal

transport map is a curl free mass preserving map. Therefore we propose to modify the optimization
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problem in Equation (3.5) by regularizing the objective function with the curl of the mapping, f ,

arg minf
1

2

∫
Ω

|x− f(x)|2I0(x)dx+
γ

2

∫
Ω

|∇ × f(x)|2dx

s.t. ‖det(Df)I1(f)− I0‖2 ≤ ε (3.6)

where γ is the regularization coefficient and ∇ × (.) is the curl operator. We note that modify-

ing (3.5) to penalize the objective with the curl does not change the optimal solution, but solving

(3.6) in practice helps guide the solution toward the curl free map. We can relax the optimiza-

tion problem above further and write it as a regularized (or penalized) unconstrained optimization

problem,

arg min
f

1

2

∫
Ω

|x− f(x)|2I0(x)dx +
γ

2

∫
Ω

|∇ × f(x)|2dx

+
λ

2

∫
Ω

(det(Df(x))I1(f(x))− I0(x))2dx

(3.7)

Hence the formulation above contains terms explicitly signifying properties of MP mapping

‖det(Df)I1(f)− I0‖2 and a curl-free mapping ‖∇ × f‖2.

The optimization problem in Equation (3.7) is not a convex problem. We use a multiscale

variational optimization technique to solve it. The multiscale scheme helps guide the solution

toward the global optimum. We will see in the results section that the multiscale scheme is able to

achieve solutions comparable to those obtained using convex methods when they apply. Section

2.4 describes the multiscale variational solver we devise for the optimization in (3.7).
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3.3.2 Euler-Lagrange equations

The objective function in (3.7) can be written as,

M(f) =
∫

Ω
L(x, f(x), Df(x))dx. (3.8)

The Euler-Lagrange equations for the transport field f then are of the form,

dM

df i
=
∂L
∂f i
−

n∑
k=1

d

dxk
(
∂L
∂f i

xk

), i = 1, ..., n (3.9)

where the superscripts denote the coordinate index for the vectors, and the subscripts denote partial

derivatives, f i
xk

= ∂f i

∂xk
. Writing the Euler-Lagrange equations for the objective function in (3.7)

leads to,

dM

df
= (f − id)I0 + λ(det(Df)∇I1(f)−∇ · (adj(Df)I1(f)))Ierror

+ γ(∇×∇× f) (3.10)

where id(x) = x is the identity function, adj(.) denotes the adjugate operator, ∇ · (.) is the di-

vergence operator, and Ierror = det(Df)I1(f) − I0. The derivation for the equation above is

presented in the Section 3.4. Equation (3.10) is a key result from our formulation. The complexity

for computing each gradient descent update step here is O(NlogN), where N is the number of

pixels or voxels in the image. The computational complexity is determined by the cost of comput-

ing gradients O(N) in (3.10), but is dominated by the cost of cubic interpolation in computing the

det(Df)I1(f) term.
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3.3.3 Multiscale accelerated gradient descent

Local optimality is guaranteed for non-convex problems, and we can guide the solution toward

the globally optimal solution by a multiscale scheme as depicted in Figure 3.1 based on gaussian

pyramids. Nesterov’s accelerated gradient descent method [96] is used at each scale to find the

corresponding optimal transport map from Equation (3.7). The optimal transport map is then

interpolated and used as the initial point for the accelerated gradient descent method in the next

scale (finer scale).

The accelerated gradient descent update for k’th iteration (k > 1) at each scale is as follows,

 gk = f (k−1) + k−2
k+1

(f (k−1) − f (k−2))

fk = gk − αk dM(g(k))
df

(3.11)

where αk is the gradient descent step size, and is automatically chosen at each gradient descent

update such that the maximum displacement is fixed. The update at k = 1 is the usual gradient

descent update.

Compared to existing solvers, our multiscale approach is based on a relaxed formulation of

the Monge problem and can avoid traditional problems of drifting, computational complexity, and

artifact, as demonstrated in the experimental results.
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Figure 3.1: The schematic of the multiscale approach devised in this chapter. The solution to the
accelerated gradient descent is first calculated at a coarse level and then refined as the optimization
proceeds.

3.4 Derivation of Euler-Lagrange equations

Here we present the derivation of the Euler-Lagrange equation in (3.10). Starting from the objective

function in Eq. (3.7) we have

M(f) =
1

2

∫
Ω

|f(x)− x|2I0(x)dx︸ ︷︷ ︸
M1(f)

+
λ

2

∫
Ω

(det(Df(x))I1(f(x))− I0(x))2dx︸ ︷︷ ︸
M2(f)

+
γ

2

∫
Ω

|∇ × f(x)|2dx︸ ︷︷ ︸
M3(f)

(3.12)
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where the first term, M1(f), is the transport cost, the second term, M2(f), enforces f to be mass

preserving, and the third, M3(f), enforces f to be curl free.

The general Euler Lagrange equation for,

M(f) =

∫
Ω

L(x, f(x), Df(x))dx (3.13)

is given as

dM

df i
=
∂L
∂f i
−

n∑
k=1

d

dxk
(
∂L
∂f i

xk

), i = 1, ..., n (3.14)

Following the above equation for the first term, M1(f), we get,

dM1

df i
= (ui)I0, i = 1, ..., n (3.15)

where u = f − id is the displacement field, and id(x) = x is the identity function.

For the second term we have,

∂L2

∂f i
= λ det(Df)

∂I1(f)

∂f i
Ierror (3.16)

where Ierror = det(Df)I1(f) − I0. Let C be the cofactor matrix of Df . Then det(Df) can be

written as the sum of the cofactors of any columns or rows of Df ,

det(Df) =
n∑
i=1

f ixjCi,j, ∀j ∈ {1, ..., n}

=
n∑
j=1

f ixjCi,j, ∀i ∈ {1, ..., n} (3.17)
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Using the cofactor matrix, C, we can write,

∂L2

∂f i
xk

= λCi,kI1(f)Ierror (3.18)

And from Equations (3.16) and (3.18) we have,

dM2

df i
= λ((det(Df)

∂I1(f)

∂f i
−

n∑
k=1

d

dxk
Ci,kI1(f))Ierror) (3.19)

and writing the vector form of the above equation for all i and using CT = adj(Df) we can write,

dM2

df
= λ((det(Df)∇I1(f)−∇ · (adj(Df)I1(f)))Ierror). (3.20)

Finally for the third term, M3(f), we have

∂L3

∂f i
= 0 (3.21)

Furthermore, assuming that n = 2, 3 and using the Levi-Civita symbol ε we can write the norm

squared of the curl of f as follows,

|∇ × f |2 =
n∑
p=1

(
n∑
l=1

n∑
m=1

εplmfmxl )
2 (3.22)

which leads to,

∂L3

∂f i
xk

= γ

n∑
p=1

εpki(
n∑
l=1

n∑
m=1

εplmfmxl ). (3.23)
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Therefore we have,

dM3

df i
= −γ

n∑
k=1

d

dxk
(
n∑
p=1

εpki(
n∑
l=1

n∑
m=1

εplmfmxl ))

= −γ
n∑
k=1

n∑
p=1

εpki
d

dxk
(
n∑
l=1

n∑
m=1

εplmfmxl )

= γ
n∑
k=1

n∑
p=1

εikp
d

dxk
(
n∑
l=1

n∑
m=1

εplmfmxl )

= γ(∇×∇× f)i (3.24)

Finally, combining Equations (3.20) and (3.24) will lead to,

dM

df
= (f − id)I0 + λ(det(Df)∇I1(f)

−∇ · (adj(Df)I1(f)))Ierror

+γ∇×∇× f (3.25)

3.5 Modeling shape and appearance of the brain

Previous work has established that treating signals as densities increases their separability in the

transport domain [12, 80, 84, 111, 135, 136]. Recall that Euclidean distances in transport domain

correspond to linearized versions of the transport metric on the OT manifold. Here, we describe a

framework for linear regression, discrimination, and blind signal separation in the transport space.

The data matrix X ∈ Rd×K stores the vectorized transport maps xm corresponding to each

subject m ∈ 1, ..., K where d is the number of elements in the vectorized transport map and K is

the number of subjects.
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3.5.1 Regression and correlation analysis with a clinical variable

The influence of an independent clinical variable v ∈ RK×1 on brain tissue distribution can be in-

vestigated by computing the direction in the transport domain wcorr such that the linear correlation

with age is maximized according to (3.26) [12].

wcorr = argmax
w

wTXv√
wTw

=
Xv√

vTXTXv
(3.26)

Here, the direction w = x̄ + νwcorr is a vector field that represents the direction and magnitude

by which tissue is re-distributed due to v and ν represents the increment or decrement to sample

along the maximally correlated direction.

The images corresponding to the computed direction w can be visualized through inverse TBM

transformation by Equation (3.3) and illustrate the morphology that is associated with outcome v.

3.5.2 Discriminant analysis to differentiate groups of subjects

Another class of problems facilitated by the TBM technique is that of discriminating two groups

based on MRI appearance, such as the one posed in Figure 3.2. For these problems, penalized

linear discriminant analysis (PLDA) [134] performed in the transport domain can find the direction

in transport space that maximally separates C classes. The PLDA direction is given by (4.3)

wPLDA = arg max
||w||=1

wTSTw

wT (SW + αI)w
(3.27)

where ST = 1
M

∑
m(xm − x̄)(xm − x̄)T . Here, x̄ = 1

M

∑M
m=1 xm.

The within-class scatter matrix is SW =
∑

C

∑
n∈C(xn − x̄c)(xn − x̄c)

T . The parameter α

controls the tradeoff between the traditional linear discriminant analysis (LDA) direction and one

that lies in the principal component analysis (PCA) subspace. The parameter α can be chosen by

plotting the stability of the subspace as a function of α.
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Figure 3.2: MR images belonging to 10 older adults in their 6th or 7th decades of life. The images correspond to
subjects who are either 2σ above or below the mean aerobic fitness as assessed by vO2 L/min. Is there a common
morphologic feature that separates these groups? If so, what is it?

Sampling along and inverting the direction wPLDA yields images showing the typical morphol-

ogy of a class and how it changes as one progresses from one class to another.

3.5.3 Visualizing principal phenotypic variations in the brain

Given the covariance matrix ST defined in Section 3.5.2, the principal components are given by

the eigenvectors of ST and can be used to explain the main modes of variability in the dataset [12].

The factorization in Equation (3.28) gives both the principal components and eigenvalues,

where the diagonal components of Σ represent the variance for each principal component.

ST = UΣUT (3.28)

Each principal component can be inverted and visualized to yield the principal phenotypic

variations that comprise the images in the dataset.
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3.6 Computational Experiments

Here we describe image acquisition, pre-processing, optimal transport minimization, and statistical

learning steps. The code was prototyped in MATLAB (MathWorks, Natick, MA) using built-in

libraries.

3.6.1 Datasets

Comparing MP registration methods

Healthy, adult brain images were obtained from the IXI dataset, Biomedical Image Analysis Group

at the Imperial College in London [72].

10 images were selected at random from Guy’s Hospital in UK. Subjects were male and ranged

from 41 to 86 years of age at the time of imaging (mean age 57.8 years, standard deviation 15.7

years). The images were T1-weighted images, obtained using a Philips Medical Systems Intera

1.5 T scanner, with the following imaging parameters for T1. Repetition time = 9.813, echo time

= 4.603, number of phase encoding steps = 192, echo train length = 0, reconstruction diameter =

240, flip angle = 8. The images are 128 x 128 x 128, with 1 mm3 resolution.

Modeling healthy aging in the brain

Images of 135 healthy subjects were obtained, ranging in age from 58 to 81 years (mean age 66.6

years, standard deviation 5.9 years). Both male and female subjects are included. T1-weighted

brain images were collected using a 3D Magnetization Prepared Rapid Gradient Echo Imaging

(MPRAGE) protocol with 144 contiguous slices. Images were acquired on a 3 T Siemens Allegra

scanner with repetition time = 1,800 ms, echo time = 3.87 ms, field of view (FOV) 256 mm, and

acquisition matrix 192× 192 mm , flip angle = 8 [47].

These images provide an expanded dataset of older subjects on which age-related brain mor-
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phology can be investigated.

3.6.2 Multiscale variational optimal transport

Image preprocessing

Images were skull-stripped and affinely registered to a common template using Statistical Para-

metric Mapping (SPM) software version 12 [52]. Images were normalized so that the sum of

intensities was equal in both images (equal mass). By normalizing to a large positive number, 106,

numerical precision errors resulting from computations with small numbers were avoided. We also

add a small constant 0.1 to the normalized images and renormalize so that they are strictly positive

[33] to satisfy OT conditions.

Optimization parameters

The step size for accelerated gradient descent is chosen such that the maximum displacement

per update is 0.01 of a pixel, the same for our method and comparison methods. At every step

of gradient descent, there is a check to maintain that the mapping is diffeomorphic and the step

size is reduced as necessary in order to ensure a diffeomorphism. The parameters were obtained

experimentally: λ = 100, γ = 6.5 × 104 when the MSE reaches 25% of the initial MSE to steer

the solution towards a curl-free MP mapping, and number of scales = 3. The multiscale approach

was also implemented for the two comparison methods in this chapter, although the results did not

significantly change when the scheme was used.

The termination criteria for all methods implemented is when MSE of the morphed source

image relative to the template image reaches 0.55%. When the drifting phenomena in the Haker

method [63] produces MSE 100x the initial MSE, we forcibly terminate the code. We report the

mean L2 norm of the curl per voxel and MSE relative to the template.

We use a numerical discretization scheme in which values are placed at pixel or voxel centers.
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A consistent second-order finite difference approximation was used for all differential operators,

utilizing the DGradient toolbox for MATLAB [90].

3.6.3 Experiment 1: Comparing MP registration methods

We compare the approach of Haker et al.[63] and Chartrand et al.[33] to the approach described

in this chapter. The computational complexity of the gradient descent update step for all three

methods implementd is O(NlogN). All methods implemented utilized the same preprocessed

images.

All unique pairs of images were registered to each other for the 10 images, resulting in 45

total registration problems. The statistics reported in this section are based on the registrations

performed in turn with our method, that of Chartrand et al., and that of Haker et al.

3.6.4 Experiment 2: Modeling the effects of aging on brain tissue distribu-

tion

Regression analysis was performed to assess the relationship between brain tissue distribution and

age using the approach in Section 3.5.1. The common reference image I0 was computed by the

Euclidean average of all the subjects. Statistical significance of the computed direction is assessed

using permutation testing with T = 1000 tests.

The reults of regression analysis in the transport space were compared to those obtained using

deformation-based analysis. Images were skull-stripped and the DARTEL [5] toolbox in SPM12

was used to compute deformation fields. DARTEL is commonly used to perform standard VBM

analysis. Images were smoothed (σ = 1) and normalized similar to the OT procedure following

non-rigid registration by DARTEL. The most correlated direction was computed on the raw pixel

intensities of DARTEL-registered images using Equation (3.26).
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3.6.5 Experiment 3: Assessing the effects of aerobic fitness on brain health

Aerobic fitness is measured by vO2 L/min in this study and is assessed based on a graded maximal

exercise test. The individuals were grouped into low fitness and high fitness groups based on those

who had a vO2 L/min greater than one standard deviation above the mean (high fitness: n = 22)

and lower than one standard deviation below the mean (low fitness: n = 16). The PLDA approach

in transport space is used in order to learn discriminating differences between high fitness and low

fitness groups, which is described in Section 3.5.2.

3.6.6 Experiment 4: Visualizing principal phenotypic variations

Unsupervised learning using PCA was performed. The images corresponding to the top three

eigenvectors in transport space were visualized to understand the principal phenotypic variations

using the approach described in Section 3.5.3.

3.7 Results

We compare our approach to current methods in the literature based on both the Monge formulation

(Haker et al.[63]) and Kantorovich formulation (Chartrand et al.[33]).

3.7.1 Comparing MP registration methods

We report results for both 2D and 3D MP registration using optimal transport. The 2D image

dataset was derived from the 3D dataset by extracting the same axial slice from the middle of

every 3D brain image. The solver and accelerated gradient descent update equations are the same

whether working with 2D or 3D images.
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2D optimal mass transport

Table 3.2 displays the mapping statistics for the set of 2D images. The mass transported is lowest

for the Chartrand et al method and compares favorably to the mass transport achieved using our

method. The MSE for Chartrand et al indicates that this method also produces the poorest MP

mapping of the three methods. The MSE achieved is 3-4 times that achieved by the other two

methods.

Our method achieves the lowest MSE in addition to mass transport distance. As reviewed in

Section 2.2, the optimal MP mapping is the MP mapping that achieves minimum mass transport.

The curl, a measure of optimality of the MP mapping, is zero by design for the method of

Chartrand et al as expected (see Section 2.2). The mean curl is the highest for our method compared

to the other two methods, but is still small in an absolute sense (10−4).

Our method produces the best results in terms of mass-preservation and mass transport. In Fig-

ure 3.3, we see the optimal transport fields and their corresponding morphings for several 2D brain

images. Visually, the transport fields and quality of morphings are similar for all three methods.

The proposed method was prototyped in MATLAB using built-in functions. The average run-

time for 256× 256 brain images with 3 scales was 19.36± 7.91 seconds.

3D optimal mass transport

While in 2D all three methods seem to produce visually similar OT mappings, we see in 3D that

several phenomena become evident. Examining Figure 3.5, we compare the plots of curl and

relative MSE over gradient descent iterations for several brain images. We see that the magnitude

of the curl (on the order of 106) is large for the Haker et al method. The curl for the Chartrand et

al method remains at zero by design. Our method produces curls for all images that tend toward

zero with iterations of gradient descent.

We see that relative MSE with the Haker et al approach increases significantly until we forcibly
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Figure 3.3: The source image I1, target image I0, and their calculated optimal transport map ~f , corresponding
determinant of Jacobian matrices, and the error image for the Haker method, the Chartrand method and our method.
All are comparable for 2D OT
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terminate the code when the MSE reaches 100x its initial value. Hence, starting after around

100 iterations of gradient descent, the phenomenon of drift with Haker et al.’s approach becomes

evident. The relative MSE of Chartrand et al.’s approach decreases, but remains large in magnitude

(5-10%) at termination. The large MSE results in visual artifacts in the quality of the MP match,

which we can see in Figure 3.4. In contrast, for our method, all images are able to achieve the

0.55% termination criterion.

Table 3.2 corroborates the plots in Figure 3.5. Our method produces the lowest relative MSE

(best MP mapping), and all brain images are able to achieve the termination criterion of 0.55%.

Furthermore, our curl at termination is 8 orders of magnitude lower than that obtained using the

Haker method.

In terms of mass transported, the Chartrand et al method produces the lowest transport dis-

tance, although the MSE of the MP mapping is about 5-10x higher than that achieved using our

method. We can also see artifacts visually in the mappings produced by the Chartrand et al method

compared to our method (Figure 3.4).

In Figure 3.4, we compare axial, sagittal and coronal slices mapped using our method and that

of Chartrand et al (The method of Haker et al failed to produce a viable solution, which is why it is

not shown.) We see that mappings produced by our method result in visually similar images to the

target image I0, whereas those produced by the Chartrand et al method contain several artifacts.

Overall, our method outperforms both comparison methods for 3D images. Our method achieves

the lowest MP mapping, while at the same time achieving small curl and mass transported.

The median runtime was under 20 minutes per brain in MATLAB using built-in libraries on a

general purpose computer. There is significant opportunity for improvement with an implementa-

tion in native C.

Thus, we see that our approach is able to overcome traditional limitations of drift, artifact,

and computational complexity. Our approach is able to solve numerical OT for MRI data, unlike

most traditional OT solvers. Numerical OT is an active area of research and the emerging OT
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Figure 3.4: The target image (a-c), the morphed image in axial, coronal and sagittal cuts using our method (d-f) and
the method presented by Chartrand et al.[33] (g-i), and the source image (j-l)

literature may highlight other potentially feasible approaches in addition to ours that can enable

Transport-Based Morphometry to be extended to MRI data.
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Figure 3.5: We see the plots for MSE, curl and mass transported for all three methods. The plots for our method are shown only for the last scale of the
GP, using an initial point already close to the final point.
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Table 3.1: Comparing methods of solving OT in 2D

2D OT Mapping Statistics
Method Relative MSE Mean curl Mass transported

Our method 0.23± 0.056% (8.7± 5.3)× 10−4 1.63± 0.57
Chartrand et al. 1.8± 2.9% 0 1.56± 0.46

Haker et al. 0.45± 0.59% (7.0± 0.16)× 10−6 2.37± 0.79

Table 3.2: Comparing methods of solving OT in 3D

3D OT Mapping Statistics
Method Relative MSE Mean curl Mass transported

Our method 0.55± 0.0011% 0.37± 0.61 1.3± 0.50
Chartrand et al. 3.0± 1.8% 0 0.07± 0.04

Haker et al. 9.9± 2.5% (4.5± 1.6)× 106 12.5± 4.8

3.7.2 Modeling the effects of aging on brain tissue distribution

Figure 3.7 shows the fraction of variance captured by principal components of the image domain

(raw voxel values after affine registration) compared to DARTEL registration and optimal mass

transport solved using the described approach. Fewer components are needed to represent more of

the variance in the transport space than either for image domain or DARTEL pixel-wise compar-

ison. Therefore, the information about variability in the dataset appears to be better captured by

examining tissue distribution using OT rather than comparing raw pixel values individually, before

or after nonrigid registration.

The direction maximally correlated with age computed in the transport space is found statisti-

cally significant (Pearson’s r = 0.4605, p < 0.001). Figure 3.8a shows the data when it is projected

onto the maximally correlated direction, with each datapoint representing a subject’s image.

The most correlated direction shown in Figure 3.8a can be inverted to visualize the dynamic

morphology underlying age-related differences, which is shown by Figure 3.8b (images are col-

orized to aid visual interpretation). We see that the changes captured by the TBM regression

framework are well-corroborated by known changes in the clinical literature. The changes we see
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Figure 3.7: Compared to the models utilizing pixel-wise comparison (Eulerian and DARTEL registration), the model
based on OT is able to capture more of the variability in the dataset with fewer principal components.
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(a)

(b)

Figure 3.8: (a) Projection of data onto the direction that maximizes linear correlation with age, (b) Visualization of
changes in tissue distribution that are statistically dependent on age. The vertical axis shows various axial slices from
a 3D dataset from rostral (towards head) to caudal (towards toe). The horizontal axis shows the effect of increasing
age from left to right on that axial slice. We see enlarging ventricles, and global atrophy of both gray matter and white
matter with increasing age. 54



here are enlarging ventricles and global gray matter/white matter thinning, validating that analy-

sis by TBM can discover and visualize biologically meaningful relationships in a fully automated

manner.

Figure 3.6: Heat maps showing the voxels whose inten-
sity levels are linearly correlated as a function of changes
in age.

In contrast, regression analysis performed

on the raw pixels registered by DARTEL was

unable to find a significant relationship be-

tween brain morphology and age (Pearson’s r

= 0.6196, p = 0.1700). The DARTEL toolbox

is commonly used in the standard VBM analy-

sis pipeline. Figure 3.9 shows the images gen-

erated by attempting to fit a regression model

on individual pixel values. The changes re-

lated to aging are not well visualized. Focusing

on the differences identified, Figure 3.6 shows

the heat map corresponding to the change cap-

tured by VBM, showing which isolated pixels

are used in the model, and the magnitude of

their linear increase/decrease with age. Figure

3.6 shows the change in voxel intensity values

with an approximately 5 year increase in age

from the mean. Overall, it appears that aging-related changes are better captured by a tissue distri-

bution analysis than by comparing individual pixels.

3.7.3 Assessing the effects of aerobic fitness on brain health

Using the PLDA approach for discriminant analysis can separate high fitness from low fitness

individuals.
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Figure 3.9: Visualization of aging-related changes captured by pixel-wise comparison after DARTEL registration, a
common practice in Voxel-Based Morphometry.
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(a)

(b)

Figure 3.10: (a) High fitness and low fitness individuals can be perfectly separated based on their images alone when
images are projected onto the most discriminant direction computed by PLDA, (b) images illustrating the differences
between high fitness and low fitness individuals.
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Most importantly, inverting the computed discriminant direction using TBM inverse transfor-

mation shows that along different projection scores, brains corresponding to low fitness individuals

appear to demonstrate changes in tissue distribution that are visually similar to those due to ad-

vancing age in Figure 3.8b. This represents a new finding for more detailed investigation in larger

studies. We note that the measure of aerobic fitness used, vO2 L/min is an absolute measure that

is not corrected for body weight. Future studies will also need to investigate aerobic fitness when

corrected for weight. Therefore, the role of fitness in brain health later in life can be assessed using

the TBM linear discriminant framework to reveal new information about discriminating differ-

ences. Future studies using the fully automated approach are needed to build on these preliminary

findings to yield important biological insights.

3.7.4 Visualizing principal phenotypic variations

We can visualize the top three PCA directions to gain a sense of the principal modes of variation

in the dataset, which capture variability in brain size, level of tissue atrophy, and prominence of

midbrain structures shown by Figure 4.8. Therefore, TBM can capture spatially diffuse patterns of

change that lend to biological interpretation, unlike methods that rely on pixel-wise comparison.

The TBM transformation framework, coupled with tools for statistical learning, can discover

trends in MRI data with regard to regression with a clinical variable, discrimination of classes, and

unsupervised learning. Analyzing tissue distribution enables modeling and discovery of phenom-

ena previously not possible with existing techniques.

3.8 Conclusion

We describe a fully automated MRI analysis technique that facilitates discovery of trends from

patient images. Unlike traditional approaches, our approach examines the images in a transform

domain where the variations are more directly described by measuring differences in tissue spa-
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(a)

(b)

(c)

Figure 3.11: (a) Captures variability in brain size, (b) Captures variability in brain tissue atrophy and size of
ventricles, (c) Captures variability in prominence of midbrain and brainstem structures
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tial distribution using OT. The concept of transforming images to a transform domain for pattern

recognition is based on prior evidence that many 1D and 2D signals become more separable when

they are transformed using OT [12, 84, 111, 135, 136]. Here, we extend the mathematics of LOT-

based transformation to include 3D radiology data for the first time. This is the first application

of TBM to any radiology problem, enabling automated discovery and visualization of structural

trends. The results confirm our hypothesis that tasks of regression, discrimination, and signal

separation are facilitated in the transform domain. Furthermore, Euclidean distances in the trans-

port domain correspond to linearized versions of the transport metric on the OT geodesic, and we

indeed see that linear trends in the transport domain can capture complex, nonlinear changes in

tissue distribution. Our approach is able to correctly discover morphologic changes due to aging

that are well-corroborated by the aging literature, unlike traditional pixel-wise comparison tech-

niques. Additionally, our technique is able to identify that there are morphological differences

between high fitness and low fitness groups and principal phenotypic variations that are biologi-

cally interpretable, demonstrating its use for discrimination and unsupervised learning. The TBM

transformation is bijective and fully invertible, closing an important gap in computer-aided pattern

recognition and modeling. For the first time, Transport-Based Morphometry can yield visualiza-

tion of the dynamic changes in morphology that underlie various clinical outcomes through inverse

transformation. Thus, TBM is a powerful tool to enhance scientific understanding of the mech-

anisms underlying clinical observations or identify image biomarkers for further investigation in

future clinical trials. Our code is made freely available for academic purposes in [104].

Traditional methods for assessing structural correlates in the image domain, such as those that

utilize numerical descriptors or pixel-wise comparison are able to test only a subset of the infor-

mation available. Figure 1.7 shows that compared to deformation fields, transport maps yielded by

OT can capture variations in both shape and texture between two images. At best, traditional tech-

niques may produce statistical maps identifying the location of changes in the form of heat maps

like Figure 3.6. However, current approaches cannot provide insight into the dynamic morphol-
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ogy changes underlying the statistical maps. By analyzing differences in tissue spatial distribution,

TBM can capture phenomena that affect the brain affecting the voxels nonlinearly such as aging. In

contrast, pixel-wise comparison approaches implicitly assume that the changes affecting the brain

can be described via a linear composition of isolated voxel intensities. Many pathologic changes in

biophysical properties of tissue may not be well-modeled by volume/expansion contraction alone

that deformation-based analysis assesses and Figure 3.7 shows that the components of OT bet-

ter capture the natural structure in the data than pixel-wise comparison before or after DARTEL

registration. Also, the tissue spatial distribution is more robust to field inhomogeneities/random

noise compared to raw pixel-wise comparison. Another drawback of deformation-based modeling

(Voxel-Based Morphometry, Deformation-Based Morphometry, Tensor-Based Morphometry, etc.)

is that deformation fields are not unique to the pair of images [24]. Analyzing the deformation field

through DBM or its Jacobian through Tensor-Based Morphometry may produce results that vary

widely according to the particular field that is generated by the algorithm. Methods based on pixel-

wise alignment such as VBM are sensitive to misregistration of voxels [24]. Thus, results obtained

using deformation-based analysis are influenced by limitations of the method, which confound bi-

ological insights. In contrast, transport maps yielded by OT are unique and bijective. Therefore,

statistics computed on transport maps can be mapped unambiguously to source images.

There are several limitations of this work. First, our approach for optimal transport mini-

mization is non-convex. Although the approach does not guarantee that the global minima will

be achieved theoretically, the experimental results demonstrate that the multiscale scheme guides

the minimization to the global minima and the results are comparable to those using convex al-

gorithms in 2D. We pose it as a future problem to couple the TBM framework presented in this

chapter with solvers that can overcome limitations with large 3D images and at the same time are

convex. Another limitation is that analyzing the spatial distribution of voxels requires a normaliza-

tion of images. Thus, the TBM transform does not directly consider whether there are statistically

significant differences in the sum of voxel intensities. However, the sum of voxel intensities can
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be included as a feature when statistical analyses are performed in the feature domain.

We note that our formulation and TBM solver are fully general and applicable to many im-

age modalities. Given the key role of OT-based modeling in numerous applications in medical

imaging, including developments in Transport-Based Morphometry [12, 70, 84, 126, 136], and

super-resolution imaging [83], an efficient numerical solution of OT suited for 2D as well as 3D

digital imaging data opens the door to numerous research and clinical advances.
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Chapter 4

TBM for Classification and Discrimination

4.1 Overview and Goals

In this chapter, we demonstrate how TBM can be applied to facilitate classification and discrimi-

nation tasks integral to several important clinical and research problems:

Osteoarthritis: Today, almost 1 out of 7 adults aged 25 years and older suffer from osteoarthri-

tis, including more than a third of adults aged 65 and older [51]. Currently, clinicians and patients

must wait for symptoms to develop, which include pain and irreversible changes on x-ray before

a diagnosis can be made. However, the best chance at modifying disease trajectory lies in its

early detection. Can osteoarthritis be accurately detected before symptoms develop using TBM to

analyze the appearance of knee cartilage on MRI?

Brain morphology due to 16p11.2 duplications/deletions: Many patients with neurodevel-

opmental and neuropsychiatric disorders such as autism spectrum disorder, cerebral palsy, bipolar

disorder and schizophrenia have copy number variants (CNVs) at the chromosomal locus 16p11.2

[93, 138]. Can the relationship between gene and effects on brain structure as seen on MRI be

better elucidated with the help of TBM?

We demonstrate how transforming images from an Eulerian to Lagrangian representation us-

ing Transport-Based Morphometry can facilitate statistical learning using simple linear classifiers
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and allows visualization of the discriminant changes. TBM enables these problems to be ad-

dressed, enabling state of the art results and closes important gaps in understanding osteoarthritis

and neuroscience of the 16p11.2 genetic locus. Section 4.2 will focus on preclinical detection of

osteoarthritis using TBM, while the work in Section 4.3 elucidates how TBM can be used to better

understand the link between gene and brain structure in carriers of 16p11.2 CNVs.

4.2 Preclinical Detection of Osteoarthritis

4.2.1 Introduction

Articular cartilage in the knee undergoes early biochemical changes that are associated with os-

teoarthritis (OA). The normal biochemical content of articular cartilage consists of water, pro-

teoglycans, and type II collagen. While there is a well-defined spatial organization of molecular

content in healthy cartilage, there is evidence that the normal structure is disrupted in patients who

go on to develop OA. MRI is a tool that can assess these changes in biochemical content and orga-

nization [9, 30, 41, 68, 78, 123, 129, 142]. However, as Figure 4.1 shows, human visual inspection

is not sensitive enough to detect the subtle biochemical changes on MRI. Computer-aided pattern

detection is needed to decipher and illuminate what the complex changes are. Early detection of

OA would enable intervention when it has the largest potential to improve patient outcomes.

However, traditional pattern recognition techniques suffer from several limitations that prevent

them from achieving adequate answers to questions addressed in Figure 4.1 [9, 41, 78, 123, 129].

Some studies have found that certain numerical descriptors, such as texture statistics, appear to be

perturbed in subjects who progress to OA [41], but a fundamental gap in knowledge lies in how

these numerical metrics correspond to appearance of cartilage on imaging. For instance, Tamura

texture features and histogram statistics do not have direct biological interpretation. The potential

for clinical translation as well as understanding the OA pathogenesis are hampered by the inability
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Figure 4.1: Lateral condyle images corresponding to individual subjects. These are T2-weighted
MRI of two groups of asymptomatic subjects. In three years, only one of these groups will go
on to develop clinical OA. Relevant questions include: Can these groups be differentiated based
on image appearance alone? If so, what features are most discriminating? How can we model or
visualize the abnormal variation leading to discrimination between the two groups?
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Figure 4.2: The femoral cartilage consists of two C-shaped segments, the medial and lateral
condyle cartilages. Source: [32]

to model or visualize changes.

We apply TBM [12, 85, 136] to characterize variations in cartilage texture as seen on T2 imag-

ing. The subjects used in this study are selected from the Osteoarthritis Initiative (OAI) database.

These subjects initially show no clinical or radiographic evidence of OA at baseline, but on three-

year follow-up, a subset of these patients go on to develop clinical OA as determined by scores on

the Western Ontario and McMaster Universities Arthritis (WOMAC) questionnaire. Using TBM,

we are able to train a classifier that yields accuracy in prediction of up to 86.2%, the highest of

any result reported in the literature to date. For the first time, the changes that enable preclinical,

pre-symptomatic OA can be visualized and we see that signature patterns of injury to medial and

lateral condyle emerge that are sensitive for future progression to OA.
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4.2.2 Methods

Patient Cohort

The data were obtained from the OAI database, an NIH-sponsored database available for public

access at [103]. The flow diagram in Figure 4.3 summarizes how subjects were selected for the

study. A total of 70 subjects (31 from the unexposed control subcohort and 39 from the incidence

subcohort) were included in the study. Non-progression subjects were chosen from the unexposed

control subcohort, defined as those subjects for whom WOMAC [15] score < 10 and KL score

≤ 2, both at baseline and at three-year follow-up, and no risk factors for OA progression. The

symptomatic OA progression cohort was selected from the incidence subcohort based on initial

baseline criteria of WOMAC score ≤ 10 and baseline KL score ≤ 2, but on three-year follow-up

these subjects were required to have a change in WOMAC score > 10 from baseline indicating

progression to symptomatic OA. Computational analysis included only the subjects for whom

both the lateral and medial condyle segmented cartilage images were available (subsection 4.2.2).

Patients were excluded from the OAI study cohort based on the following criteria: those who had

a history of rheumatoid arthritis, bilateral total knee join replacement, or positive pregnancy test.

Institutional review board approval was obtained at all participating institutions in the OAI, and

informed consent was obtained by all participants in the study [97].

MRI Acquisition

The 3D sagittal double-echo steady-state (DESS) and T2 mapping images were obtained from the

OAI imaging database by request (http://oai.epi-ucsf.org) [108]. The knee radiographs obtained

at baseline were standard bilateral standing posterior-anterior fixed flexion knee radiographs. The

knee radiographs were graded according to the KL scoring system [79].
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OAI Longitudinal Cohort Study (n = 4,796)

OAI Control Cohort 
(n = 122)

OAI Incidence Cohort 
(n = 1,389)

Inclusion Criteria:
1. Baseline: Low 

Radiographic OA KL <=2
2. Baseline: No OA 

Symptoms WOMAC <=10
3. Three Year: Change in 

WOMAC < 10
4. Complete segmentation 

available

Inclusion Criteria:
1. Baseline: Low 

Radiographic OA KL <=2
2. Baseline: No OA 

Symptoms WOMAC <=10
3. Three Year: Change in 

WOMAC > 10
4. Complete segmentation 

available

Non-Progression Group 
(n=31)

Symptomatic OA Progression 
Group (n=39) 

Figure 4.3: Subjects were selected from the OAI cohort based on no radiographic or symptomatic
evidence of OA at baseline. On three-year follow-up, the progression cohort was defined as those
subjects who developed OA symptoms as assessed by change in WOMAC score.
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Registration, Segmentation and Preprocessing

All images were automatically segmented using nonrigid registration to a template image. The

template image was segmented by hand. The algorithm was developed by our collaborators Dr.

Richard Spencer and Beth Ashinsky at the National Institutes of Aging. Further details will be

provided once the publication is available in the public domain.

After segmentation, the sagittal curvature of the femoral condyles (C-shaped) were mapped to

a linear plane (flattened) to facilitate visual interpretation. Landmark-based thin plate spline (TPS)

registration [23] was used to compute a nonrigid mapping. The mapping was done slicewise and

the landmarks were chosen by an automated procedure that extracted the centerline as well as major

and minor curvatures automatically from each slice of the condyle. For each 3D slice, points were

uniformly sampled on the centerline and mapped to a set of points of the same spacing/width apart

on a horizontal line of the same length. The thickness along each condyle slice was preserved

by mapping a pair of points straddling each centerline point, one each on the minor and major

curvatures, to a pair of points placed on either side of the horizontal line landmark points such that

the vertical distance was preserved. The mapping functions to flatten each slice of each condyle

was computed based on the first image in the dataset, and applied to all the remaining images.

Thus, the effect of flattening is standardized across all images in the dataset. Figure 4.4 illustrates

the flattening process that preserves the dimensions of the condyle.

Given sets of corresponding landmark points x1, ..., xN and y1, ..., yN , the parameters p =

A, t, c1, , cN are sought such that

yi = f(xi) = Ax+ t+
N∑
k=1

ckφ(||xi − xk||) (4.1)

where φ(x) are radially symmetric basis functions. In 2D, φ(r) = r2log(r). The mapping

function in Equation 4.1 was computed separately for each sagittal slice based on the first image

in the dataset, and the same function was applied to all subsequent images.
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Figure 4.4: The top row shows the flattening process of a single sagittal slice of the curved condyle
image. The sagittal curvature of the condyle image was mapped to a 3D plane with the same
dimensions (length, width, and thickness), as the bottom row shows through volume rendering.

Quantifying texture variation using Transport-Based Morphometry

Given a set of preprocessed knee cartilage images, I1(x), ..., IN(x) corresponding to experimental

subjects 1, ..., N (where x is a coordinate in 3D space), we can compute the unique TBM transfor-

mation for the image I1(x) according to the analysis equation (3.2).

A transport map fi(x) is computed for each subject i that quantifies the T2 spatial variation

in each image Ii(x) compared to the common reference image I0(x). The direction that best

predicts OA progression in the transport domain can be inverted to visualize signature variations

distinguishing normal from OA progression by the synthesis equation (3.3). All TBM codes were

implemented in MATLAB (MathWorks, Natick, MA).

Classification

Variations that characterize or separate the progressor and non-progressor cohorts are sought us-

ing the linear discriminant analysis (LDA) technique. The LDA technique finds a discriminant

boundary between the control and progressor cohorts in the transport space according to Equation

4.2
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wLDA = arg max
||w||=1

wTSTw

wTSWw
(4.2)

Note that the direction wLDA can equivalently be computed using the formula

wLDA = argmax||w||=1
wTSBw
sTSWw

, where the ”between-class scatter matrix” is SB = ST −SW . Given

the mth TBM transformed image fm, let us call refer to the vectorized version of the transport map

fm as xm. The covariance matrix ST can be written as

ST =
1

M

∑
m

(xm − x̄)(xm − x̄)T such that x̄ =
1

M

M∑
m=1

xm

Here, SW =
∑

C

∑
n∈C(xn − x̄c)(xn − x̄c), and represents the ”within-class scatter matrix.”

Here, where C = 2 and represents the number of classes. The discriminant direction wLDA was

computed and validated using complete leave-two-out cross validation, where all pairs of control

and progressor images were held out sequentially to determine accuracy, sensitivity, and specificity

of the computed discriminant direction.

Before classification using LDA, the principal components analysis (PCA) technique was used

to eliminate dimensions containing little or no contribution to the overall variance in the dataset.

Only the top 95% of the variance was retained for the medial and lateral condyle images. All LDA

and PCA codes were implemented in MATLAB.

Statistics

Group differences were assessed by multivariate analysis of variance (MANOVA) using the SPSS

software. Receiver operator characteristic (ROC) curves were computed using the projection score

when images are projected onto the computed discriminant boundary.
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Table 4.1: Subject demographics

Parameter Progressors (n = 39) Control (n = 31) p
Age 60.2± 9.0 56.5± 9.2 0.09
BMI 29.0± 4.3 25.1± 4.4 3.7× 10−4

Age and body-mass index of subjects in each group at baseline

4.2.3 Results

Age and BMI

There were no statistically significant differences in age between progressor and control cohorts,

but the differences in BMI were statistically significant as Table 4.1 summarizes. In Table 4.2,

we see that age and BMI alone predict OA progression with accuracy above chance, but are not

sufficient to enable discrimination with high sensitivity and specificity.

Multivariate Group Differences

There were significant differences in the signal variation between progressor and non-progressor

cohorts. Multivariate analysis of variance (MANOVA) was performed for the medial condyle

images and lateral condyle images separately on the transport maps. For medial condyle images,

F (29, 40) = 3.530, p = 1.3 × 10−4, Wilks Λ = 0.281. For lateral condyle images, F (30, 39) =

1.845, p = 0.036, Wilks Λ = 0.413. When both condyles were considered jointly, F (40, 29) =

5.983, p = 2× 10−6, Wilks Λ = 0.108.

Classification

The T2 spatial variations were assessed for their ability to discriminate progressor and control

images using TBM. The test accuracy is reported in Table 4.2, computed using an LDA classifier

and complete leave-two-out cross validation as described in Section 4.2.2. The highest predictive

accuracy can be achieved when both condyles are considered jointly rather than considering solely
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Table 4.2: Classification results

Region Test Accuracy Sensitivity Specificity Cohen’s Kappa
Age and BMI only 72.3% 73.6% 71.0% 0.45

Medial condyle 73.0% 77.1% 69.0% 0.46
Lateral condyle 65.6% 66.5% 64.6% 0.31

Both condyles combined 86.2% 86.6% 85.9% 0.72

medial or lateral condyles individually.

Figures 4.5 and 4.6 summarize the LDA classifiers for medial condyles and lateral condyles

respectively. In Figure 4.5a and 4.6a, the histograms show the distribution of the entire subject data

when it is projected onto the computed discriminant direction. The receiver-operator characteristic

curves in Figures 4.5b and 4.6b illustrate the quality of the binary classifiers as the discrimination

threshold is varied. The shape of the ROC curve indicates that a robust classifier can be obtained.

Visualizing Discriminating Variations

The separability of the cohorts when both condyles are considered together is shown by Figure

4.7. Images generated along the direction of the classification boundary are shown in Figures

4.7b and 4.7c. Lower slice numbers for both lateral and medial condyles correspond to the lateral

aspect of the knee, whereas higher slice numbers correspond to medial location. Focal damage in

the center of the medial condyle, as indicated by brightness in intensity, appears to be a sensitive

change associated with future OA. In lateral condyles, especially in the more medial aspect (slices

5-8), the pattern of brightness in intensity appears to become more diffuse for progressor images

compared to control images.
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(a)

(b)

Figure 4.5: Medial condyles. (a) histogram illustrating the projection of the dataset onto the LDA
classifier boundary (b) ROC curve illustrating performance of the classifier for multiple projection
scores 74



(a)

(b)

Figure 4.6: Lateral condyles. (a) histogram illustrating the projection of the dataset onto the LDA
classifier boundary (b) ROC curve illustrating performance of the classifier for multiple projection
scores 75



Figure 4.7: Both condyles combined. (a) histogram illustrating the projection of the dataset onto
the LDA classifier boundary
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Figure 4.7: (b) lateral condyle images showing how cartilage texture changes going from control to progressor images
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Figure 4.7: (c) images showing how medial condyle cartilage texture changes while moving from the control to the progressor
subjects
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We can confirm that the transport domain better captures nonlinear changes in T2 spatial distri-

bution compared to the image domain by examining the scree plots in Figure 4.8. Fewer principal

components are needed to represent the same amount of variability in the dataset in the transport

domain than in the image domain, indicating that the transport domain components better capture

the natural structure in the dataset compared to the image domain components.

4.2.4 Discussion and Summary

We apply the Transport-Based Morphometry (TBM) [12, 85, 136] technique to analyze T2 spatial

distribution in articular cartilage of the knee. The goal was to predict incidence of osteoarthritis

three years in the future based on the appearance of cartilage on T2-weighted imaging. We find

that TBM can enable sensitive prediction of future OA based on analyzing T2 spatial distribution

in cartilage. Furthermore, TBM for the first time allows variations that enable sensitive prediction

to be modeled and visualized, revealing signature patterns of damage on T2-weighted imaging that

can be used as clinical biomarkers for future OA.

The T2 map in normal cartilage shows spatial variation in signal intensity that describes the

distribution of water molecules, proteoglycans, and orientation of collagen fibers [65, 141, 142].

Changes in articular cartilage texture on T2 imaging implies a biochemical change in composition

of the cartilage. It has been reported that in early OA, the water content in the cartilage increases

as well as anisotropy of collagen fiber orientation [142]. We discover by TBM modeling that a

focal increase in brightness at the medial condyle center is sensitive for future OA. The pattern of

T2 hyperintensity appears to become more diffuse in the lateral condyle, especially in the posterior

segments of its medial aspect. The changes in the distribution of signal hyperintensity may suggest

a possible mechanism of damage that includes fissuring and replacement of damaged tensile tissue

with water. A possible mechanistic explanation may include a fissuring process in which fibrous

tissue is damaged and water (bright intensity) diffuses into the holes.

Risk factors for OA include advanced age, BMI, gender, genetic predisposition, joint injury
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Figure 4.8: Scree plots show that fewer components are needed to represent images in the TBM
space than in the image domain. Thus, more of the variations are captured by considering spatial
distribution of intensities rather than voxel-by-voxel comparison. The plots for (a) medial condyle
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Figure 4.8: (b) lateral condyle are shown separately.

81



[51], etc, which all contribute to the ultimate appearance of cartilage on T2 weighted imaging.

However, these are only two of many risk factors that are responsible for damage to cartilage. We

see that the prediction accuracy can be greatly improved when the T2 images of cartilage are used

for prediction rather than individual risk factors that contribute to its appearance (Table 4.2).

Ours is not the first study to investigate association of T2 spatial variation in cartilage to OA

development, but our prediction accuracy of 86.2% is the highest reported to date. Both Urish et

al [129] and Ashinksy et al [9] investigate whether early detection of OA is possible three years

in advance of symptoms (note that KLU is an author on all three studies). The best prediction

accuracy reported by Urish et al is 76.2± 0.7% and Ashinsky et al report 36-70% accuracy when

the images are used in binary classification of progressor and non-progressors using T2 maps. In

addition to enhanced prediction ability, our method additionally confers the ability to model and

visualize the images enabling sensitive prediction for the first time, revealing distinct patterns of

injury that are useful for clinical identification and also for learning more about the pathogenesis

of OA at the structural level.

The Transport-Based Morphometry approach has only recently become available for automated

discovery and visualization of structural markers from radiology images by the enabling work of

Kundu et al [85]. The TBM approach bears some similarity to registration-based image analysis

techniques such as Voxel-Based Morphometry (VBM) [6] and Deformation-Based Morphometry

(DBM) [8], but there are several critical differences that make TBM an ideal tool study T2 spatial

variation. First, VBM and DBM can capture differences only in shape, not texture. Given that

this study focuses on T2 texture variation, VBM and DBM would not be candidate methods for

this analysis. In contrast, TBM can analyze differences in shape as well as texture. Second,

the transport maps produced by TBM enable generative modeling and direct visualization of the

subclinical damage.

There are several limitations of this study. Sources of noise in this study are due to scanner

resolution, and segmentation/registration procedure. The number of subjects used in this study is
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relatively small. Larger scale studies utilizing the TBM technique and clinical studies are needed

to explore and build further on these results.

In the future, the TBM approach can be used to model shape of cartilage as well as texture

simultaneously. In this study, we were interested in studying how T2 spatial variation can be used

to predict OA. However, the TBM technique is entirely general to any imaging modality. In the

future, approaches based on molecular imaging and high-resolution imaging of cartilage can allow

a more detailed investigation of how biochemical structure and molecular composition change as

a function of future OA. There is strong potential for TBM to be coupled with molecular imaging

techniques in the future to enable very detailed analysis of cartilage structure and changes over

time. Thus, the potential for TBM to help solve many mysteries about OA is enormous.

4.3 Understanding brain morphology associated with the 16p11.2

genetic locus

4.3.1 Introduction

There is evidence that genetics play a role in disorders such as autism, but assessing the relation-

ship between genotype and phenotype is challenging because many complex genetic variations

result in the same phenotype. There have been a limited number of studies investigating the

effects of common genes that predispose to neuropsychiatric and neurodevelopmental disorders

using genetically-stratified cohorts. The 16p11.2 chromosomal locus (BP4-BP5) is one of these

genes and copy number variants (CNVs) at this locus are associated with several disorders such

as autism, schizophrenia, epilepsy and others [20, 64, 73, 112, 117]. In fact, carrying a 16p11.2

deletion is associated with 38.7 fold increase (95% CI: 13.4 − 111.8) in developing autism or de-

velopmental delay, and a duplication is associated with 20.7 (95% CI: 6.9 − 61.7) fold increase

[93]. Prior studies have investigated whether group-level differences in brain structure between
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duplication, deletion, and control cohorts exist [105, 109], but these studies do not provide insight

into which differences enable reliable discrimination of these cohorts [53]. No study to date has

investigated whether 16p11.2 copy number variation can be reliably predicted in individuals with a

range of developmental impairments. The latter is important because establishing a causal link be-

tween genotype and phenotype would significantly advance understanding of gene-brain-behavior

relationships.

Unfortunately, predictive studies are generally not performed in analyzing brain structure [53],

as the creators of VBM summarize that ”in [predictive] models, the parameters have no physical

meaning unless the generative model [used to explain the data] is invertible” [53]. Fortunately, we

have demonstrated that Transport-Based Morphometry can bridge the gap in physical interpreta-

tion. In this study, we utilize the TBM image transformation framework to enable both classifica-

tion and visualization of sensitive differences that predict 16p11.2 CNV based on the appearance

of the brain on MRI alone. The regional gray matter and white matter morphological changes that

enable differentiation shed light on the underlying neurobiology of 16p11.2 CNVs.

4.3.2 Methods

Participants

Subjects were recruited as part of the Simons VIP Project [37]. Participants were referred by

clinical genetic centers or testing laboratories, web-based networks, and self-referral of families

who learned about Simons VIP (http://SimonsVIPconnect.org) and underwent an initial screening

and review of medical records by Geisinger and Emory University. Inclusion criteria were those

who had recurrent breakpoints at BP4-BP5 of 16p11.2 without other pathologic CNVs or known

genetic diagnoses/syndromes. Exclusion criteria were those who had a history of environmental

insults with potential influence on neurocognitive status (such as fetal alcohol syndrome), severe

birth asphyxia, severe prematurity, or lack of fluency in English.
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Table 4.3: Subject demographics

Cohort (N = 235) Age (years)
Deletion carriers (N = 51) 15.1± 11.4

Duplication carriers (N = 53) 24.0± 16.0
Controls (N = 131) 24.5± 14.5

There are significant differences between the ages of deletions vs. controls and deletions vs. du-
plications. M:F ratio = 1.35

Behavioral testing included the Autism Diagnostic Observation Schedule (ADOS), Autism Di-

agnostic Interview (ADI) and broad screening measures of social impairment such as the Social

Responsiveness Scale (SRS). The core sites for phenotyping were University of Washington Med-

ical Center, Baylor University Medical Center and Boston Children’s Hospital.

Neuroimaging was performed at University of California (UC) and Children’s Hospital of

Philadelphia (CHOP).

The control cohort consisted of subjects recruited locally near the core imaging sites (UC-San

Francisco, UC-Berkeley, CHOP) from the general population and were matched for age, sex, hand-

edness, and nonverbal IQ. Exclusion criteria included major DSM-IV diagnoses based on clinical

psychologist review or immediate family history of ASD, other developmental disorders, dysmor-

phic features, or genetic abnormalities. Subjects were also excluded for a Symptom Checklist

90 (SCL-90) score > 62, an axis I psychiatric diagnosis on the Diagnostic Interview for Chil-

dren, a Broader Autism Phenotype Questionnaire aloof subscale score > 4/3.5 (male/female), a

pragmatics subscale score > 3.25/3.5, or a rigidity subscale > 4/3.7. Control subjects also had

a chromosome microarray, neurologic exam, a clinical psychologist interview, and a photograph

evaluation for dysmorphology. Subject demographics are summarized in Table 4.3.

Deletion and duplication carriers had a range of neurodevelopmental diagnoses, summarized

in Table 4.4.
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Table 4.4: Diagnoses across duplication and deletion carriers

Diagnoses Number with diagnosis (%)
ADHD 18 (19.8%)

Anxiety, OCD, Phobia 17 (18.7%)
Articulation disorder 21 (39.9%)
Behavioral disorder 9 (9.9%)

Clinical ASD 14 (15.4%)
Coordination disorder 24 (26.4%)

Tic disorder or Tourette syndrome 6 (6.6%)
Enuresis 9 (9.9%)

Language disorder 16 (17.6%)
Learning disorder 6 (6.6%)

Mood disorder 10 (11%)
Intellectual disability 20 (22%)

Stereotypic movement disorder 2 (2.2%)
Mean number of diagnoses per subject 2.0± 1.6

The 16p11.2 duplication and deletion carriers had a range of diagnoses. Abbreviations: ADHD
= attention deficit hyperactivity disorder, OCD = obsessive-compulsive disorder, ASD = autism
spectrum disorder. Note: This table excludes the 13 subjects for which diagnoses were unavailable.

MRI acquisition

Structural imaging was performed at UC and CHOP sites. The images were collected on matched

3T TIM Trio MRI scanners using vendor-supplied 32 channel phased-array radio frequency head

coils. Structural imaging included a high resolution multiecho T1-weighted magnetization-prepared

gradient-echo image (ME-MPRAGE). Scan parameters were as follows: TR = 2350 ms, TI =

1200 ms, TE = 1.64 ms, FA = 7◦, voxel size 1× 1× 1 mm, and FOV = 256 mm.

Images with severe wrapping, poor head coverage, ringing/striping/blurring, ghosting, inhomo-

geneities or susceptibility artifacts were not included in the analysis (13 subjects were discarded

for quality control).
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Figure 4.9: After segmentation, transport maps are computed for both white matter and gray matter
channels as compared to a common reference template using optimal mass transport. Subsequent
statistical analysis is performed on the transport maps that quantify the variation of each image
from the common reference.

Capturing structural variations using Transport-Based Morphometry

Statistical Parametric Mapping (SPM12) [52] was used to affinely coregister and segment white

matter and gray matter tissues.

Common reference images for gray matter and white matter images were computed by taking

the Euclidean average of all of the gray matter and white matter images, respectively.

Subsequently, TBM was applied to generate transport maps to characterize the individual spa-

tial tissue distribution compared to common template images for gray or white matter channels

separately. Equations for analysis (Equation 3.2) and synthesis (Equation 3.3) are described in

Chapter 3.

The transport maps were vectorized and concatenated into a data matrix, which served as the
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feature set for subsequent statistical learning.

Classification

The standard principal components analysis (PCA) technique was applied to reduce the dimen-

sionality of the data matrix before classification. The data was projected onto the components

representing the top 96% of the variance.

After dimensionality reduction, the penalized linear discriminant analysis (PLDA) method was

used for classifying individual samples. A C − 1 dimensional subspace in the transport space is

sought using PLDA method such that the projections of the C = 3 classes (duplication, deletion,

control) are maximally separated. The PLDA directions are given by the solution to the optimiza-

tion problem in Equation 4.3

wPLDA = arg max
||w||=1

wTSTw

wT (SW + αI)w
(4.3)

The matrices ST and SW are defined according to the same convention in Equation (4.2). The

penalty weight α represents the tradeoff between the traditional LDA direction and the topmost

PCA directions. The parameter α is chosen by plotting the stability of the subspace as a function

of α and selecting the value for which the change between subsequent α values is < 3%.

Test accuracy is evaluated using leave-one-subject out cross-validation. First, the discriminant

subspace is computed using the training samples. Based on training sample estimates, the quanti-

ties µ̂j and π̂j that indicate the class mean (i.e. class centroids) and prior probability of each class

j respectively. These quantities are defined as follows.

µ̂j =
1

nj

∑
yi=j

xi (4.4)

π̂j =
nj
n

(4.5)
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Table 4.5: Classification accuracy using PLDA scheme

Tissue Test Accuracy Sensitivity Specificity Cohen’s Kappa
Age and Gender only 32.4% 31.5% 91.6% 0.13

White matter 96% 94% 99% 0.93
Gray matter 92.8% 91.8% 98.3% 0.88

Classification accuracy using age and gender alone does not achieve sufficiently high accuracy
in differentiating duplication vs. deletion vs. controls compared to white matter and gray matter
tissues. (Note: the sensitivity and specificity reported are calculated based on identifying deletion
carriers from all the rest.)

In the above, xi indicates transformed images, and yi indicates their class labels for i ∈ 1, ..., n,

where n is the total number of samples.

To classify a test sample, the class centroids are projected onto the discriminant subspace to

give the transformed centroids µ̃j and the sample is assigned to the class j according to the nearest

centroid, based on minimizing ||µ̃j − x̃||22 − log π̂j .

In order to compare to the classification accuracy using age and gender only, we use the same

PLDA classification scheme setting α = 0.

Visualization and Interpretation

The discriminant subspace was sampled and inverted to generate the corresponding images through

inverse TBM transformation using Equation (3.3). A neuroradiologist with 18+ years of experi-

ence interpreted the final images.

4.3.3 Results

Classification

As Table 4.5 indicates, using white matter alone enables 96% test accuracy in discriminating the

cohorts. Gray matter alone enables 92.8% test accuracy. When the data is projected onto the max-

imally discriminant subspace yielded by PLDA, distinct clusters emerge, as shown in Figure 4.10.
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Figure 4.11 shows a single sample axial slice of white matter images generated by sampling the

discriminant subspace in shown in the scatter plot in Figure 4.10a. These images can be interpreted

to assess characteristic changes in image morphology, described in the next subsection.
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(a)

(b)

Figure 4.10: Projection of all the data onto the maximally discriminant subspace yielded by PLDA
shows that duplication, deletion, and control carriers form distinct clusters. The classifier bound-
aries are drawn in black for (a) white matter, as well as (b) gray matter based on distance to the
nearest centroid
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Figure 4.11: A single axial slice of computer-generated white matter images corresponding to the sampled discriminant space
shown in Figure 4.10a. These images can then be interpreted to understand the differences that enable high classification accuracy.
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Note that the Discriminant direction 1 and Discriminant direction 2 indicated in Figure 4.10

refer to different sets of directions for gray matter and white matter.

Visualizing Discriminating Differences

In Figures 4.12 and 4.13, we show the axial slices that best summarize the white matter differ-

ences discovered among the groups. In slice 85, we see a characteristic increase in white matter

density in the superior cerebral (frontoparietal) white matter (deletion carriers > controls > du-

plication carriers). Slices 73 and 63 show changes in occipital white matter density, including the

splenium of the corpus callosium (deletion carriers > controls > duplication carriers). Slice 53

shows differences in the inferior temporal (duplication carriers > controls > deletion carriers) and

inferior frontal (deletion carriers > controls > duplication carriers) regions, while the brainstem

is unchanged. In slice 47, the superior vermis of the cerebellum is affected (deletion carriers >

controls > duplication carriers). Finally, in slice 39, we see that the cerebellar hemispheric white

matter is affected such that (deletion carriers > controls > duplication carriers).

As for the gray matter differences shown, Figure 4.14 shows the representative axial slices of

gray matter that summarize the discriminating differences between the subjects. Slice 55 shows

increased gray matter density in the orbital frontal regions (deletion carriers > controls > duplica-

tion carriers). Furthermore, there are changes in gray matter density in the dentate nucleus of the

cerebellum (duplication carriers > controls > deletion carriers). Slice 81 shows changes in gray

matter density in the insular regions (deletion carriers > controls > duplication carriers) as well as

in the temporal parietal junction (deletion carriers< controls< duplication carriers). Furthermore,

the posterior cingulate shows changes as well (deletion carriers > controls > duplication carriers).

Finally, slice 90 shows that gray matter density in the inferior perirolandic areas are affected as

well, (duplication carriers< controls< deletion carriers), with left showing more changes than the

right.
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Figure 4.12: Images that show characteristic differences in white matter morphology
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Figure 4.13: Images that show characteristic differences in white matter morphology
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Figure 4.14: Images that show characteristic differences in gray matter morphology
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4.3.4 Discussion and Summary

It is known that copy number variations in the 16p11.2 chromosomal locus (BP4-BP5) are associ-

ated with a range of neurodevelopmental and neuropsychiatric disorders, and this is the first time

that discriminating differences in brain structure have been investigated explicitly. Using the TBM

framework for discrimination, we are able to achieve 96% accuracy for white matter and 92.8%

accuracy for gray matter in blind predictive studies where the task is to determine whether the

subject is a control subject, a duplication carrier, or a deletion carrier. Furthermore, characteristic

gray matter and white matter morphology differences that enable sensitive classification are visu-

alized for the first time. This study establishes a direct link between genotype and brain phenotype,

which is the first step toward understanding the role of genetics in disorders that involve brain and

behavior.

4.4 Summary

In this chapter, we focus on the role that Transport-Based Morphometry can play in facilitating

tasks of discrimination and visualization. Constructing a simple linear discriminant in the transport

domain, we are able to predict OA 3 years in advance of symptoms with 86% test accuracy. The

TBM approach demonstrates extensive subclinical damage in the cartilage of those who progress to

osteoarthritis, which is normally obscured by heterogeneous normal variations in cartilage texture.

Given that copy number variations in the 16p11.2 chromosomal locus (BP4-BP5) are associ-

ated with a range of developmental and psychiatric disorders, TBM also allowed us to perform a

predictive study investigating the influence of genetics on brain structure. We establish that there

is a verifiable link between brain structure and 16p11.2 CNVs that enable up to 96% test accuracy

in blind predictive studies.

We note that both of these problems have previously been studied with traditional computer-
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aided techniques, which were not able to fully close the gap in discovering and visualizing dis-

criminating structural differences. The results reported in this chapter are state of the art for the

respective problem areas, both in classification accuracy as well as the ability to visualize the un-

derlying discriminating differences. In the future, TBM has potentially numerous applications in

early detection and establishing gene-structure-behavioral relationships with discrete variables.
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Chapter 5

TBM for Regression and Correlation

5.1 Overview and Goals

In the previous chapter, we demonstrated how the TBM framework can be used to identify and vi-

sualize discriminating differences from MRI. However, not all clinical data can be summarized by

discrete variables. In fact, most clinical measurements are continuous. For example, from weight

to blood pressure, to enzyme levels and coma scores, we live in a continuous world. Transport-

Based Morphometry defines an image transformation framework that can also be used to perform

regression tasks. Specifically, we may seek the statistical relationship between a patient’s dynamic

anatomy and a certain clinical measurement. For tasks such as these, we need to define how regres-

sion and correlation experiments can be performed in the transport space. We demonstrate through

experimental results on two open problems that TBM can discover the structural changes behind

the clinical symptoms.

Mild Traumatic Brain Injury: Cognitive deficits are predictive of poor prognostic outcomes

after mild traumatic brain injury, but the underlying structural substrates are poorly understood.

Can the TBM technique illuminate a set of white matter tracts on imaging that interact dynamically

to produce post-concussive cognitive difficulty?

Effects of Aerobic Exercise on Older Adult Brains: Aerobic fitness has many positive effects
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on all aspects of health, and the brain is no exception. Larger cortical and subcortical volumes have

been reported in the brains of people who are more aerobically fit, but the tissue characteristics that

underlie these changes have never been studied. Can TBM help assess what effect aerobic fitness

has on brain tissue distribution in older adults? How do the areas in the brain affected by aerobic

fitness compare to the areas that are affected by normal aging?

Here, we add new insights and knowledge in problems related to uncovering how intercon-

nected structural changes result jointly in clinical measurements of interest. What we find is that

TBM enables the state of the art in these open problems.

5.2 Assessing Post-Concussive Reaction Time from Diffusion

Tensor Imaging

5.2.1 Introduction

Cognitive changes are common after mild traumatic brain injury (mTBI) and predictive of poor

post-concussive outcome [4, 19, 66, 67, 77, 140]. However, the underlying structural substrates

are poorly understood. The mechanism mediating mTBI-related damage is diffuse axonal injury

(DAI) caused by unequal shear-strain forces during injury [99]. DAI is responsible for transient

decline in cognitive functions including processing speed, attention and working memory; it may

also contribute to persistent post-concussive symptoms [99]. Advanced imaging with diffusion ten-

sor imaging (DTI) holds promise to better detect white matter injuries underlying post-concussive

cognitive changes. Unfortunately, the patterns specific to post-concussive cognitive deficits are

not easily assessed by visual inspection because they are complex and obscured by other varia-

tions (Figure 5.1). However, identifying any patterns of relationship would represent a significant

advance in understanding the underlying neurobiology of post-concussive cognitive deficits and

may provide an objective assessment of post-concussive sequelae in the future. We investigate
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Figure 5.1: FA maps of 10 different post-concussive patients. The same axial slice is shown for
patients with the best reaction time percentiles and worst reaction time percentiles. The FA maps
corresponding to the best and worst reaction times are not easily differentiated by visual inspection
because the abnormal variations related to reaction time are obscured by heterogeneous variations
due both to normal and abnormal processes.

computer-aided techniques to discern the structural substrates that escape visual detection.

Traditional computer-aided approaches [99, 140] rely on human input for selecting which vari-

ations to examine. Ad hoc selections prevent exhaustive analysis of morphologic patterns. Often,

not enough is known about the structural substrates a priori to inform prior input. Thus, a trial and

error based approach is common. Typical methods include testing size, volume, or thickness of

pre-specified regions of interest (ROI) to test association with post-concussive symptoms. How-

ever, testing features sequentially is a tedious process and spatially diffuse patterns are missed,

including relationships across multiple regions of the brain [56]. Other approaches involve pixel-

wise comparison after aligning images using registration. While registration can capture brain

shape variations, it cannot assess variations in tissue texture or topology. Furthermore, the re-

sults of pixel-wise analysis depend on the registration algorithm used [24], and it is difficult to

ensure structural and functional alignment. Therefore, traditional approaches that compare images

through ROI volumes or pixel-wise intensities miss variations that are not adequately assessed by

these metrics. If variations are detected, ROI and pixel-wise approaches can at best localize them

to specific brain regions but cannot visualize the dynamic influence of changes in volume or pixel
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intensity on outcome.

The purpose of this study was to investigate white matter injury associated with post-concussive

reaction time using the new Transport-Based Morphometry (TBM) [12, 85, 136] technique. Unlike

traditional techniques, TBM quantifies all variations in brain morphology by comparing the spatial

distribution of pixels in two images using the mathematics of optimal mass transport (OT) [131].

Unlike ROI or pixel-wise approaches, the OT-based metric does not lose information in measuring

similarity between images and enables structural correlates to be assessed in a modern, data-driven

manner based on machine learning rather than trial and error. Furthermore, unlike traditional ap-

proaches, TBM can recover the images enabling statistical association, which allows visualization

of the anatomic changes. We hypothesize that the knowledge gap between brain structure and

post-concussive reaction time can be closed using the TBM technique.

5.2.2 Methods

Patient cohort

In this retrospective study, Institutional Review Board approval was obtained and informed consent

was waived. The electronic medical record was searched for DTI studies performed for mTBI be-

tween January 1, 2006 and March 1, 2013. Studies were identified using the keywords concussion,

mild traumatic brain injury, and diffusion tensor imaging. Included subjects met the following

criteria: 10 to 50 years of age, witnessed closed head trauma, no focal neurologic deficit, loss of

consciousness of <1 minute, posttraumatic amnesia of <30 minutes, and English language pro-

ficiency. Subjects were excluded for the following reasons: prior neuropsychiatric illness (2 pa-

tients), abnormal CT or conventional brain MR imaging findings (3 patients), history of substance

abuse (3 patients), lack of DTI (4 patients), lack of neurocognitive assessment (6 patients), total

symptom score of zero (3 patients), and inability to align FA images (2 patients). The final patient

cohort consisted of 64 total subjects. Demographics are summarized in Table 5.2 and causes of
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Table 5.1: Causes of mTBI in subject cohort

Sports injury (%) 46(65.6%)
Motor vehicle accident (%) 6(9.4%)

Bicycle accident (%) 2(3.1%)
Fell down stairs (%) 2(3.1%)

Fell off horse (%) 2(3.1%)
Other (%) 10(15.6%)

Causes of concussive injury in patient cohort

injury in Table 5.1. Based on the time from injury, most patients in the study were in the sub-acute

phase of concussion.

Neuropsychological examination was performed by a neuropsychologist with >15 years of

experience in treating patients with mTBI. Reaction time was determined as part of a battery of

computerized neurocognitive tests in the Immediate Post-Concussion Assessment and Cognitive

Testing (ImPACT) test [92]. Reaction time for each subject is a percentile based on normative

data from baseline testing of over 17,000 athletes as part of pre-sport participation. Percentile

information accounts for both sex and age.

MRI acquisition

All subjects underwent an identical imaging protocol on the same system despite the large time

range of the study. Conventional MR imaging and DTI were performed with a 1.5T unit (Signa;

GE Healthcare, Milwaukee, Wisconsin) and standard head coil. DTI was performed with a single-

shot echo-planar sequence (TR 4000 ms; TE 80 ms; NEX 2; section thickness, 5 mm; 128×128

matrix; FOV, 260 mm). Diffusion gradients were set in 25 noncollinear directions by using 2

b-values (b=0 and 1000 s/mm2).
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Figure 5.2: System diagram. Transport-Based Morphometry transforms images from a represen-
tation in image space (I1(x) and I2(x)) to an equivalent representation in transport space (f ∗1 (x)
and f ∗2 (x)) with respect to a common reference (I0(x)). The representation in transport space fa-
cilitates discovery of trends by statistical learning algorithms. Modeling functions constructed in
the transport space can be inverted to directly visualize the corresponding clinically interpretable
images.

Registration, Segmentation, and Preprocessing

Fractional anisotropy (FA) maps were generated as a measure of white matter integrity using the

Brain Diffusion Toolbox [14, 125], which is part of the DTI pipeline of the Functional MRI of the

Brain Functional Software Library (FSL) [54, 75]. The FA maps included both gray and white

matter and were registered to the Montreal Neurological Institute atlas by using a 12-parameter

affine transformation. A study population mean FA map was computed by taking the Euclidean

average of all images in the dataset and served as the common reference image.
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Analyzing spatial FA distribution using Transport-Based Morphometry

The Transport-Based Morphometry (TBM) [12, 85, 136] technique analyzes FA spatial distribution

in each image by measuring its similarity to a common reference image using the mathematics

of optimal mass transport (OT) [131]. The variations in FA spatial distribution compared to the

reference are quantified in a transport map for each subject. A transport map is a vector field that

describes how to transform FA values in each image to match the common reference. The transport

map generated by OT is one that minimizes the amount of FA transport, defined as FA value over

translated distance, to match the common reference. Figure 5.3 shows FA maps and corresponding

transport maps for four sample subjects.

Transport maps facilitate discovery of trends in the data by representing variations more sparsely

than in the original image space. Specifically, many complex and nonlinear variations in brain im-

ages that challenge humans and computers can be represented as simpler, linear relationships in

transport space. Thus, statistical learning on the transport maps can assess complex brain morphol-

ogy more effectively.

Another key property of TBM is that it guarantees that the mapping from image to transport

map is bijective. Invertibility of TBM ensures that variations and trends discovered based on

transport maps can be visualized and interpreted directly as images. We use the term image domain

representation to refer to the original image and transport domain representation to refer to the

corresponding transport map.

Equations (3.2) and (3.3) define the analysis and synthesis equations for the forward and inverse

transforms, respectively. All TBM code was implemented in MATLAB (MathWorks, Natick, MA).

Assessing statistical relationship with reaction time

Statistical learning is performed in the transport domain to streamline extraction of image fea-

tures. First, transport maps are vectorized and concatenated into a standard data matrix D ∈ Rp×n,
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Figure 5.3: Sample FA maps and corresponding transport maps computed with respect to the
common reference for four different subjects. Only one axial slice is shown from the 3D stack.
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where p is the dimension of each transport map and n is the number of subjects. Then, the stan-

dard principal components analysis (PCA) technique (3.28) is used to remove the data dimensions

containing little contribution to the overall variance in the dataset. The data matrix is projected

onto the topmost d eigenvectors associated with 90% of the variance in transport maps to create

the reduced-dimension data matrix X ∈ Rd×n (d << p). Let v ∈ Rn×1 be reaction time per-

centile mapped to squared values (to increase separation of lower from higher percentiles), either

corrected or uncorrected for age as a covariate. The direction in transport space is computed that

results in the strongest linear correlation with reaction time percentile v (Equation (5.1)).

wcorr = argmaxw
wTXv√
wTw

=
Xv√

vTXTXv
(5.1)

Here, wcorr is another vector field in the transport domain that quantifies the direction and

amount of FA re-distribution that is most correlated with reaction time percentile. These changes

can be inverted using Equation (3.3) and visualized as generated FA images.

The effects of covariates are removed according to Equation (5.2).

v = y − Z(ZTZ)−1ZTy (5.2)

Here, v describes the residual from reaction time percentile (y ∈ Rn×1) that is decorrelated and

orthogonal to the c confounding variables in Z ∈ Rn×c. This study corrects for age as a covariate.

Statistical significance of the computed direction was assessed using permutation testing with

T = 1000 tests. The p-value reported is the fraction of times over T tests that Pearson’s correlation

coefficient was higher when labels v are randomly assigned to the subject data compared to the

original labels.

All statistical analysis code was implemented in MATLAB (MathWorks, Natick, MA).
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Table 5.2: Subject demographics

Age (years) 10− 28(16.1± 2.9)
Number Male (percent) 42(65.5)

Time from injury to imaging (days) 65± 124

Demographic characteristics of subject cohort

5.2.3 Results

Assessing statistical relationship with reaction time

The direction in transport space most correlated with reaction time percentile was statistically sig-

nificant (Pearson correlation coefficient 0.44, p = 0.004). After correcting for the effect of age as a

covariate, the computed direction remained statistically significant (Pearson correlation coefficient

0.39, p = 0.015). There appears to be a positive correlation between FA spatial distribution and

reaction time percentile.

Figure 5.4a is the scatter plot of the patient data when it is projected onto the most correlated

direction computed in the transport space. Each point in the scatter plot represents a brain image in

the dataset. According to the linear regression model constructed in the transport space, increasing

reaction time percentile (faster reaction times) is associated with increasing projection scores and

decreasing reaction time percentile (slow reaction times) is associated with decreasing projection

scores. The mean image I0(x) maps to a projection score of zero.

Visualizing statistically significant associations

In addition to investigating whether a statistically significant model exists between FA spatial dis-

tribution and reaction time percentile, projection scores have direct clinical interpretation through

inverse TBM transformation. Figure 5.4b shows visualizations of brain morphology changes that

correspond to the different projection scores. It is important to note that the linear relationship with

reaction time percentile in the transport domain maps to complex, nonlinear white matter injury
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Figure 5.4: Most correlated direction. (a) scatter plot showing projection of FA maps onto most
correlated direction.
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patterns in the image domain.

The projection scores indicated by the horizontal axis in Figure 5.4b correspond to those in the

vertical axis of Figure 4a. The images shown represent points sampled along the line of best fit for

which projection score ranges from −2 to +2 standard deviations from the mean. Two axial slices

are shown that best summarize the morphology differences from low reaction time percentile to

high reaction time percentile. The population mean image I0(x) is indicated by projection score

zero in Figure 5.4b. The images at negative projection scores correlate most strongly with low

reaction time percentile, while the images at positive projection scores correlate most strongly

with high reaction time percentiles, as suggested by Figure 5.4a. As one progresses from low

reaction time percentile to high reaction time percentile, the statistical model illustrates that FA in

the corpus callosum decreases, and the FA in the optic radiations, corticospinal tract, and anterior

thalamic tracts increases.
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Figure 5.4: (b) images corresponding to most correlated direction in transport space show decreasing FA in the corticospinal tracts,
anterior thalamic radiations, and optic radiations with low reaction time percentile corresponding to scatter plot. The FA in the
corpus callosum increases as reaction time decreases.
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Individual assessment of white matter injury associated with reaction time

In addition to identifying structural correlates of reaction time on a group level, TBM also facili-

tates identification of white matter injury patterns in individual patients. The direction computed

in transport space provides a way to assess whether the patterns of white matter injury identified

by Figure 5.4b are present in an individual FA image. Projecting the computed transport map onto

this direction yields a projection score for each patient. The projection scores can be interpreted

based on the relationship in Figure 5.4a to prognosticate whether cognitive deficits may be present.

Figure 5.5 illustrates that the FA map of a patient with a fast reaction time in the 94th percentile

maps to a high positive projection score and that of a patient with slow reaction time in the 21st

percentile maps to a low negative projection score, providing a metric by which to differentiate

these patients. Thus, a key strength of TBM is its ability to assess spatially distributed and com-

plex white matter patterns that are not easily identified visually, as Figure 5.1 illustrates, or by an

ROI-based perspective.

Furthermore, Figure 5.5 illustrates that the transport map can capture information not readily

accessible from the FA maps. The determinant of the Jacobian is computed from the transport maps

and measures the joint changes in FA concentration across multiple white matter tracts. Increase in

FA concentration is indicated by value > 1 and decreases are indicated by value < 1. We see that

the direction of FA change compared to the common reference in white matter tracts for a patient

with high and low reaction time corroborate those identified by Figure 5.4b.

5.2.4 Discussion and Summary

This study investigates structural correlates of reaction time percentile in sub-acute post-concussive

patients. The new Transport-Based Morphometry (TBM) [12, 85, 136] technique was used because

it overcomes a major limitation of traditional approaches in visualizing dependent brain morphol-

ogy changes associated with post-concussive outcome. Current techniques do not enable a full
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Figure 5.5: TBM can help assess cognitive deficits in individual patients by using the computed
direction to assess whether the complex and spatially distributed patterns of white matter injury
identified by Figure 5.4b are present. When transport maps are projected onto this direction, a
projection score is yielded that can be used to differentiate patients according to the relationship
in Figure 5.4a. The subjects shown correspond to i=3 and 4 in Figure 5.3. The direction of FA
change with respect to the reference in individual patients corroborate the patterns identified in
Figure 5.4b.
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data-driven analysis free from human bias or easy visual interpretation of complex, interconnected

white matter injury patterns found to be statistically dependent on reaction time percentile. A sig-

nificant correlation was discovered between FA spatial distribution and reaction time percentile.

The correlation remained robust after adjustment for age. A set of clinically interpretable FA

images were generated through inverse TBM transformation illustrating patterns of white matter

injury associated with a range of reaction time percentiles. Images reveal not only the location

of abnormalities associated with post-concussive reaction time, but also the relationship across

these regions to identify how bidirectional changes in FA affect reaction time changes. Thus, the

study hypothesis is affirmed that TBM can overcome the limitations of traditional computer-aided

methods to enable a broader analysis and produce clinically interpretable image findings.

Prior studies have suggested that certain metrics quantified from images may correlate with

reaction time in post-concussive patients [99, 140], however, these study methods suffer several

limitations. At the most basic level of investigation, histogram analysis does not provide region-

ally specific answers [58, 100]. ROI-based techniques are not exhaustive [100], and Voxel-Based

Analysis (VBA) is only as accurate as the degree of structural/functional alignment [24, 58, 100].

By analyzing variations in FA spatial distribution, TBM addresses limitations of many current tech-

niques. First, TBM is able to assess the interconnected nature of white mater injuries by analyzing

their joint influence on clinical outcome. Second, the fully automated approach is exhaustive and

free from human bias because statistical machine learning is used to discover morphology changes.

Third, TBM allows the influence of white matter injury on outcome to be directly visualized, rather

than simply localized. Unlike deformation-based approaches (i.e. Voxel-Based Morphometry [7]

and Deformation-Based Morphometry [8]), TBM can analyze variations in both shape and tex-

ture simultaneously. Deformation-based approaches analyze shape differences only and in fact,

deformation fields cannot match two images with error zero unlike the transport maps generated

by TBM. Furthermore, TBM provides advantages in mixed-age patient populations, where differ-

ences in head size may confound traditional voxel-based techniques. Unlike voxel-based methods,

114



TBM quantifies FA spatial distribution and is therefore robust to the effects of head size influencing

misalignment.

Our findings of abnormalities in the corpus callosum, optic radiations, corticospinal tract, and

anterior thalamic radiations correlate well with the known anatomic circuits key to reaction time

beginning with visual-spatial interpretation, executive attention, interhemispheric transmission,

and finally, response selection. Beginning with the initial visual spatial interpretation, the optic

radiations are key to interpreting the initial stimulus and could contribute to inter-individual vari-

ability in reaction time [127]. Next, frontally-mediated supervisory circuits related to attention

focus help to process the observed stimulus, centered in the anterior thalamic radiations. An-

terior thalamic radiations have been implicated as the major frontalsubcortical circuit mediating

cognitive impairment [110]. Indeed, damage to the anterior thalamic radiations impairs cognitive

function [25] and is associated with reaction time deficits [110]. Executive outcome is translated

into a physical response through interhemispheric transmission of the data. Integrity of the corpus

callosum, a key mediator of interhemispheric transmission, is correlated with reaction time in both

normal and cognitively impaired individuals [3]. Finally, corticospinal tract activation generates

a motor response as the final step in cortical processing of stimulus interpretation and response

selection [86].

TBM reveals that the direction of FA changes with reaction time is different among the corpus

callosum and visual tracts, corticospinal tracts, and anterior thalamic radiations. The sub-acute

time period during which imaging was performed may be responsible for this finding. White matter

injury in mTBI is a dynamic pathological process, demonstrating increased FA early, presumably

related to cytotoxic edema, and decreased FA late, reflecting decreased white matter integrity and

axonal loss [44]. Our finding of mixed increased and decreased FA likely reflects a transitional

time period, in which some regions of injury have progressed to axonal loss while others still

remain in the earlier stages of edema and swelling. This mixed response has been seen in both

the heterogeneity of findings during the semi acute interval, [13, 71, 91, 94] as well as within
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individual studies performed during this time period [118].

There are several limitations of this study. We conducted a retrospective, single center study

with only 64 patients. Future multi-center studies are needed to build on our results. Additionally,

our patients ranged in age from pediatric to adult. Although aging-related changes in reaction time

have been reported [42, 43], our model remained significant even after accounting for age as a

covariate. Furthermore, as many mTBI patients do not seek medical attention, there is a possibil-

ity of selection bias towards more seriously injured or symptomatic patients. However, this bias

may help direct towards the patients that would benefit most from imaging biomarkers. Finally,

quantitative use of DTI metrics in the clinical setting is currently limited by the lack of universally

accepted normative data. Demonstrating injured regions associated with cognitive impairment is

the first step towards an individual diagnostic tool.

We demonstrate that it is possible to bridge the knowledge gap between brain structure and

clinical outcomes in post-concussive injury using Transport-Based Morphometry. In the future, the

application of TBM to analyze DTI imaging in prospective longitudinal studies may help provide

prognostic markers to assess either recovery or progression to chronic stages [58, 100].

5.3 Aerobic Fitness and Brain Tissue Distribution in Older Adults

5.3.1 Introduction

Despite the apparent ubiquity of age-related changes in brain morphology and function including

atrophy and cerebral shrinking, there remain several promising approaches for mitigating these

declines and promoting brain health in late life. Aerobic exercise interventions remain one of the

most promising approaches. For example, 12-month exercise interventions increase the size of

the hippocampus in older adults [48, 98, 124], a brain region susceptible to age-related losses in

size and associated with conversion to dementia. Also, 6 and 12-month interventions increase
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the size of the prefrontal cortex [35] and increase its functional connectedness with other areas

[29, 36, 133]. Unfortunately, exercise interventions are often expensive and challenging, leading

many to use cross-sectional markers of exercise participation including measures of actigraphy and

aerobic fitness. Along these lines, several studies have demonstrated that cross-sectional associa-

tions between aerobic fitness and brain morphology and function closely overlap with those that

are found in randomized interventions [34, 46, 47, 101, 130, 137, 139].

The brain morphology differences associated with aerobic fitness are robust, but there remains

many unanswered questions about the relationship between morphology and the underlying tissue

characteristics that account for volumetric differences in older adults. Unfortunately, traditional

computer-aided techniques have not been adequate to provide answers to some of these questions

as they suffer from well-known limitations in biological interpretation of the morphologic patterns.

One limitation of traditional region-of-interest (ROI) approaches is that they do not enable a simul-

taneous analysis of multiple brain regions. For example, a commonly-used approach is to measure

the volume of pre-specified ROIs (e.g., hippocampus) and test which of these pre-specified re-

gions are association with aerobic fitness levels. There are certainly benefits of this approach

as it requires a theoretical position about regions that may and may not be associated with the

variable of interest. However, this is also a potential limitation - ROI approaches are only able

to test directed hypotheses and could potentially miss spatially diffuse effects happening outside

the ROI. On the other hand, voxelwise comparison techniques (e.g., Voxel-Based Morphometry,

Deformation-Based Morphometry, Tensor-Based Morphometry) provide a whole-brain analysis of

associations and do not require a priori assumptions about particular regions associated with the

variable of interest (i.e., fitness), they do require proper alignment to a standard template in order

to produce meaningful results [24]. This has the potential of inflating or masking statistical pat-

terns testing associations between morphology and fitness. Furthermore, voxel-based approaches

using non-rigid registration techniques can capture variations in brain shape and volume, but not

those related to tissue topology or texture. Thus, traditional approaches have provided important
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information about the role of fitness in brain aging, but have been critiqued based on some of the

methods used to assess morphology.

This study investigated the association between aerobic fitness and brain morphology in older

adults using the Transport-Based Morphometry (TBM) technique [12, 85, 136], which overcomes

some of the limitations of current ROI and voxel-based methods and also enables visual interpreta-

tion of fitness-related associations with brain morphology. The TBM technique is fully automated

and uses T1-weighted brain images. TBM produces visualizations that illustrate the differences

in brain morphology most strongly associated with aerobic fitness levels (if one exists). Further-

more, TBM addresses some of the limitations of traditional morphometry techniques by enabling

simultaneous analysis of the entire brain on a voxel-wise basis while avoiding the use of regis-

tration techniques typically employed in traditional voxel-based approaches. TBM utilizes shape

and texture information simultaneously when providing an assessment of whether the variable of

interest (e.g., fitness) is related to morphology. Using the TBM technique, we examined whether

higher aerobic fitness levels would be associated with differences in gray and white matter tissue

distribution across the brain. Based on prior studies of brain morphology and fitness we predicted

that higher fitness levels would be associated with differences in tissue distribution in prefrontal

and temporal brain regions.

5.3.2 Methods

Participant characteristics

In this cross-sectional study, we recruited 172 healthy older adult subjects, and an informed consent

approved by the University of Illinois Institutional Review Board was obtained for each subject.

Subject demographics are summarized in Table 5.3. Inclusion criteria included being physically

inactive as defined by engaging in ≤ 30 min of exercise each week in the prior 6 months [48],

demonstrated strong right handedness determined by score of≥ 75% on the Edinburgh Handedness
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Questionnaire [102], score ≥ 51 on modified Mini Mental Status Examination [120] to rule out

clinical cognitive impairment, normal color vision, visual acuity of at least 20/40, and no history

of neuropsychiatric conditions or neurological diseases or infarcts including Parkinsons disease,

multiple sclerosis, Alzheimers disease, or stroke. Subjects were excluded from the study on the

basis of having a score greater than 3 on the Geriatric Depression Scale [116], history of Type

II diabetes and cardiovascular disease, evidence of chronic inflammation (i.e., severe arthritis,

psoriasis, inflammatory bowel disease, asthma, polyneuropathies, Lupus), and metal implants or

contraindications for MRI.

MRI Acquisition

High-resolution T1-weighted images of the brain were collected on a 3T head-only Siemens Alle-

gra MRI scanner. Images were acquired using a 3D MPRAGE (Magnetization Prepared Rapid

Gradient Echo Imaging) protocol in which 144 contiguous axial slices collected in ascending

fashion parallel to anterior posterior commissures. Scan parameters were as follows: echo time

(TE) = 3.87 ms, repetition time (TR) = 1800 ms, field of view (FOV ) = 256 mm, acquisition

matrix 192× 192, slice thickness= 1.3 mm, flip angle= 8◦ [132].

Aerobic fitness assessment

All participants in the study obtained required consent from their personal physician before car-

diorespiratory fitness testing was conducted. Graded maximal exercise testing on a motor-driven

treadmill was used to assess aerobic fitness (V O2 max). Each participant walked at a speed slightly

faster than their normal walking pace (approximately 30–100m per minute) with increasing grade

increments every two minutes of 2%. A cardiologist and a nurse continuously monitored mea-

surements of heart rate, blood pressure, and oxygen uptake. Oxygen uptake (V O2) was measured

from expired air samples taken at 30-second intervals until a maximal V O2 was attained or to the

point of test termination due to symptom limitation and/or volitional exhaustion. V O2 max was
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defined as the highest recorded V O2 value when two of following three criteria were satisfied: (1)

a plateau in V O2 peak between two or more workloads; 2) a respiratory exchange ratio >1.00; and

(3) a heart rate equivalent to their age predicted maximum (i.e. 220− age).

Registration, segmentation, preprocessing

T1-weighted images were co-registered using a 12-parameter affine transformation with respect

to the native space of the first image, then segmented into gray matter (GM) and white matter

(WM) channels using the Statistical Parametric Mapping (SPM12) software [52]. Images were

then smoothed using a Gaussian filter with σ = 1, and intensities were normalized to sum to 1

in order to enable analysis of T1 spatial distribution. The Euclidean average of all GM and WM

images were taken separately in order to generate study population sample mean images that served

as the common reference for each channel.

Analyzing brain tissue spatial distribution using Transport-Based Morphometry

Gray matter and white matter were analyzed separately. The Transport-Based Morphometry (TBM)

[12, 85, 136] approach described by Kundu et al [85] was used to measure similarity between each

subject image and the common reference using the mathematics of optimal mass transport (OT)

(Figure 5.6). A transport map was generated for both gray and white matter images that quanti-

fied the individual variation in T1 tissue distribution compared to the common reference image in

native space. Transport maps are vector fields describing how to transform individual images in

order to match the reference image. The transport maps generated by TBM are optimal in terms

of minimizing T1 transport (amount of T1 intensity over distance moved). Each element of the

transport map contains the coordinates to which the intensity value at the present location should

be mapped.

The transport maps facilitate information extraction by quantifying variations from a mean im-

age. Euclidean operations in the transport space correspond to complex and nonlinear morphologic
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Figure 5.6: Transport-Based Morphometry system diagram. Images are mapped to corresponding
transport maps through a unique, one-to-one transformation using optimal mass transport to fa-
cilitate statistical learning and modeling. Modeling functions computed in transport space can be
inverted to visualize and interpret the corresponding images.
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shifts in tissue distribution in the image space. Therefore, statistical analysis in the transport space

facilitates discovery of dependent morphologic features.

Furthermore, another key property of TBM is that the mapping requiring the minimum mass

transport is unique because TBM satisfies several constraints imposed by OT theory [27, 85]. OT

theory ensures that TBM is an invertible transformation. Thus, statistical analyses performed in

the transport space can be directly inverted to visualize the MR images corresponding to varying

levels of aerobic fitness.

Equations for analysis (Equation (3.2)) and synthesis (Equation (3.3)) are described in Chapter

3. All TBM codes were implemented in MATLAB (MathWorks, Natick, MA).

Assessing statistical relationship with clinical variables

Statistical learning was performed using the set of transport maps as the feature set. First, the

transport maps are vectorized and concatenated as column vectors into a standard data matrix for

subjects 1, ..., n. The standard principal components analysis (PCA) technique is used to remove

the data dimensions containing little or no data before computing the most correlated direction with

reaction time. Then, the data matrix is projected onto the d topmost eigenvectors associated with

90% of the variance in the dataset to create the reduced-dimension data matrix X ∈ Rd×n. The

direction in transport domain that best describes the relationship between an independent variable

v ∈ Rn×1 and the T1 spatial variation is computed according to Equation (5.1) [12].

This direction wcorr is the best in the sense of highest linear correlation coefficient between

independent variable v and T1 spatial distribution as characterized in transport domain.

Assessing statistical relationship with age

The statistical relationship between GM and WM morphology and age was assessed by com-

puting the direction in transport space most correlated with age. Let y ∈ Rn×1 be the column vector

representing the ages for the subjects in the study. The most correlated direction in transport space

is computed by setting v = y in Equation (5.1).
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Assessing statistical relationship with aerobic fitness

We also assess the relationship between aerobic fitness and GM and WM morphology using

Equation (5.1). In this case, y is set as the V O2 mL/kg for the subjects, and we correct for the

influences of confounding variables before performing the regression analysis using the formula in

Equation (5.2), where Z ∈ Rn×c is the matrix containing c covariates. In this study, the covariates

were age, gender, and level of education. The variable v represents the component of y that is

decorrelated and orthogonal to the confounding variables in Z.

The analyses were performed separately for GM and WM channels. Statistical significance of

the computed directions wcorr was assessed by permutation testing with T = 1000 tests.

Assessing interaction between age and aerobic fitness

The interaction effect between age and fitness was assessed by performing regression on brain

morphology in the transport space and setting v = (age−age)(vO2 mL/kg - vO2 mL/kg), where the

mean-subtracted age and vO2 mL/kg were multiplied to test whether aerobic fitness significantly

modifies the effect of age on brain tissue distribution. Covariates of gender and years of education

were included in the model.

To visualize the associations and interaction terms, subjects were categorized into high fitness

(fitness above the median level) and low fitness (fitness below the median level) to perform separate

regressions with age, correcting for gender and years of education.

5.3.3 Results

Variation captured by transport-based morphometry

For both white matter and gray matter images, fewer principal components are needed to capture

the same amount of variance in the transport domain compared to the image domain (Figure 5.7).

Therefore, an image representation based on the spatial distribution of T1 (transport domain) better

captures the natural structure in the dataset than examining a combination of the individual pixels
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Table 5.3: Subject demographics

Age (years) 58− 81(66.5± 5.7)
Gender (M:F) 60 : 112

Education level 2− 8(5.7± 1.3)†

V O2 mL/kg 12.9− 34.7(21.1± 4.7)

Demographic characteristics of subject cohort.† :1 = less than 7th grade; 2 =9th grade (junior high); 3 =
partial high school; 4 = high school graduate; 5 =1-3 years of college or 2 year college ; 6 = college/university degree;
7 = master’s degree; 8 = PhD or equivalent

(image domain representation). Thus, representation in the transport space can lead to a more

natural representation of the data requiring fewer principal components than in the image domain.

Age-related brain tissue distribution

There was a significant positive correlation between gray matter and white matter tissue distribu-

tion assessed in the transport space with age. Pearson’s r = 0.36 and p = 0.00013 for white matter

images and Pearson’s r = 0.36 and p < 0.00001 for gray matter images. Figure 5.8a and 5.9a

show the scatter plots corresponding to subject projection scores when the data is projected onto

the direction computed in transport space. Each data point represents a subject’s brain image. The

mean image is mapped to projection score zero in the transport space. A line of best fit is shown

that best captures the linear relationship between brain tissue morphology and age in the dataset.

The nature of the relationship with age can be interpreted through visualization of the brain

morphology differences through inverse TBM transformation. Figures 5.8b and 5.9b show selected

axial slices of brain images generated by sampling along the line of best fit. The axial slices

that best summarize the morphology differences are shown, with the mean image represented by

projection score zero. The changes correspond to an average 0.66 mm shift in GM distribution and

0.31 mm shift in WM distribution across the brain with every 10 year increase in age.

124



(a)

(b)

Figure 5.7: Scree plots showing number of principal components needed to capture the variation
in the data for (a) white matter channels and (b) gray matter channels. Far fewer components are
needed to capture the variance in the transport space compared to the image space, suggesting that
the transport domain features capture structure in the data better.
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Figure 5.8: (a) Scatter plot showing relationship between subject age and white matter morphology.
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Figure 5.8: (b) images generated by Transport-Based Morphometry modeling white matter morphology changes. Select images
in the z-plane are shown that best summarize the morphology differences.
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Figure 5.9: (a) Scatter plot showing relationship between subject age and gray matter morphology.
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Figure 5.9: (b) images generated by Transport-Based Morphometry modeling gray matter morphology changes. Select images in
the z-plane are shown that best summarize the morphology differences.
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Aerobic fitness mediated effects on brain tissue distribution

The relationship between brain tissue distribution and aerobic fitness was significant even after

correcting for covariates of age, gender, and years of education. The relationship for white matter

(Pearson’s r = 0.30, p = 0.004) as well as gray matter (Pearson’s r = 0.40, p < 0.00001) with V O2

mL/kg were significant.

Figures 5.10a and 5.11a show the data when it is projected onto the most correlated direction

in the transport domain. The line of best fit represents the relationship between WM and GM

morphology with V O2 mL/kg in the transport domain. Interpretable images corresponding to

the linear relationship in transport domain computed are shown in Figures 5.10b and 5.11b. The

differences correspond to an average 0.31 mm shift in GM tissue distribution and 0.21 mm shift in

WM tissue distribution for every 10 V O2 mL/kg difference in aerobic fitness.
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Figure 5.10: (a) Scatter plot showing relationship between subject V O2 mL/kg and white matter
morphology.
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Figure 5.10: (b) images generated by Transport-Based Morphometry modeling white matter morphology changes. Select images
in the z-plane are shown that best summarize the morphology differences.
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Figure 5.11: (a) Scatter plot showing relationship between subject V O2 mL/kg and gray matter
morphology.
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Figure 5.11: (b) images generated by Transport-Based Morphometry modeling gray matter morphology changes. Select images
in the z-plane are shown that best summarize the morphology differences.
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Aging by aerobic fitness effect on brain tissue distribution

The interaction effect between aerobic fitness and age was not significant for either gray matter or

white matter when using V O2 mL/kg as a measure of fitness. The GM interaction had Pearson’s

r = 0.1750 and p = 0.2180 when corrected for gender and education and the WM interaction had

Pearson’s r = 0.1607 and p = 0.5640 when corrected for gender and education.

5.3.4 Discussion and Summary

In this paper, we investigated the associations between brain morphology and aerobic fitness in

older adults using the Transport-Based Morphometry (TBM) technique. While higher fitness levels

have been linked with greater cortical and subcortical volumes, limitations of current computer-

aided approaches have prevented analysis of tissue characteristics underlying the volume changes.

Consistent with our predictions, we found that both gray matter and white matter tissue distribution

are significantly associated with aerobic fitness levels in older adults using TBM, yielding both a

statistical model and images illustrating the effects.

In addition to visualization, analyzing tissue spatial distribution using TBM has other advan-

tages over traditional techniques. TBM enables a fully automated analysis of structural substrates

without human biases. Approaches that rely on human input, such as manually traced ROI ap-

proaches, etc. do not enable a whole-brain analysis and may miss associations with other brain

areas. Additionally, these methods do not offer insight into the morphology underlying the volume

differences. Compared to deformation-based techniques, such as VBM, DBM, etc., the Transport-

Based Morphometry technique can capture variations in both brain shape and tissue topology.

VBM and DBM can only capture variations in brain shape and in fact, deformation fields yielded

by these techniques cannot match two images with zero error, unlike TBM. Furthermore, methods

that rely on non-rigid registration such as VBM and DBM are reliable only if there is accurate struc-

tural and functional alignment [24] a requirement that is difficult to achieve in practice. Voxelwise
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comparison can result in heat maps identifying which voxels are found statistically significant. As

we demonstrate, a nonlinear model based on T1 spatial distribution (transport domain representa-

tion) better captures the natural structure in the data than a model based on pixel-wise comparison

(image domain representation). Furthermore, analyzing tissue spatial distribution has the advan-

tage of assessing how different regions are jointly associated with aerobic fitness. At best, ROI

and deformation-based methods can localize statistical associations to certain regions, but cannot

visualize the nature of the changes underlying these statistical associations. Furthermore, Neither

ROI nor deformation-based methods allow insight into the dynamic relationship among the regions

that are jointly involved. Lastly, although these methods may enable regions to be identified in the

form of heat maps, information related to the morphology of tissue is not recoverable. TBM is

advantageous as an analysis tool because it does not lose any image information in the statistical

analysis.

Our results add to the growing literature on the promising associations between fitness, ex-

ercise, and brain health. Previous studies in this literature have focused on gray matter volume

[34, 35, 47, 48, 137], white matter microstructure [101], and cortical thickness. However, as de-

scribed in the previous paragraph, a full analysis of tissue characteristics has not been performed to

date due to limitations of traditional techniques. Our results represent a major advance in knowl-

edge, demonstrating that specific morphology patterns are associated with aerobic fitness in older

adults, even after correcting for the effects of age, sex, and years of education. The morphology

pattern visually appears to overlap with regions affected in aging, although in opposite directions.

The results suggest that aerobic fitness is important for maintaining brain health across all ages.

There are several limitations to this study. First, our study was cross-sectional in nature and

so we cannot determine from this study that changing fitness levels causes the changes in tissue

distribution found here. Future randomized control trials are needed to assess the causal influence

of exercise on brain morphology. Future studies can also examine how these associations reported

here are related to cognitive, affective, or other behavioral outcomes.
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In summary, we demonstrate that the Transport-Based Morphometry technique can be used

to bridge the knowledge gap between brain tissue distribution and aerobic fitness in older adults.

Although prior studies have determined that cortical and subcortical volumes are increased with

higher levels of aerobic fitness, TBM is the first method to overcome limitations in traditional

computer-aided techniques to analyze tissue characteristics underlying volume differences by study-

ing tissue spatial distribution.

5.4 Summary

In this chapter, we studied two application areas related to TBM and regression with a continuous

variable. Specifically, we study how TBM can be used to yield a set of objective findings relating

cognitive deficits post-concussion to diffusion tensor imaging findings. We find that white matter

tracts in the brain that are associated with efferent and afferent aspects of reaction time are dynam-

ically correlated with post-concussive reaction time. This is the first time that a set of objective,

clinically useful markers have been described based on data-driven techniques.

We studied how aerobic fitness influences tissue distribution in the brains of older adults. We

find that the areas of the brain that are affected by healthy aging overlap with areas that are in-

fluenced by aerobic fitness. Ours is the first study to yield visualization of the relationship with

brain tissue distribution. Future randomized control trials can be designed to understand whether

aerobic fitness can modify or change the trajectory of changes due to healthy aging.
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Chapter 6

Conclusion

6.1 Summary

Medical care has come a long way since the invention of magnetic resonance imaging (MRI) in the

1970s by Paul Lauterbur and Sir Peter Mansfield. Today, imaging studies are a vital part of accurate

medical diagnosis and treatment for every part of the body. While advances in imaging hardware

have enabled us to collect images faster, more accurately, and measure many different properties

of tissue, paralleled progress in image analysis software is needed to make sense of this data

and extract relevant information. Visual inspection is not sufficient to capture complex, spatially

diffuse, and subtle differences, which motivates the work in this thesis. The goal is to design an

automated technique to discover and visualize clinically discriminating structural markers.

In Chapter 1, we highlighted the challenges and obstacles that needed to be overcome to ac-

complish the outlined goal. The first challenge is what to quantify from the images. Choosing a

finite set of descriptors requires a priori knowledge about the most important features, which we

often do not have. Second, even if there were a way to ensure that the most informative quantities

were measured from the image, machine learning on high-dimensional, low-sample size (HDLSS)

data is encumbered by poor generalizability that comes from high variance, especially as the com-

plexity of classification and regression models increase. Third, another challenge is that the signals
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often lie in a nonlinear metric space, where simple Euclidean operations are not sufficient to model

the underlying signal space. Nonlinear modeling techniques are paramount to understanding the

signal structure, but how to design a nonlinear model that explains the data is a challenging task.

Furthermore, how to design a nonlinear generative model, which enables new data instances to be

generated from the model is an even harder task. We described some current methods and their

shortcomings in addressing the listed challenges. Finally, we offered that a technique based on the

mathematics of optimal mass transport (OT) may be have the potential to close the gap.

In Chapter 2, we delved into the mathematical foundations of OT and reviewed some of its

applications in image analysis today. We described some promising prior work demonstrating

that 1D and 2D signals can become more separable when they are transformed by OT, as well

as how nonlinear operations can be modeled as simple Euclidean operations in the OT-defined

transform space. However, we also described that there are several computational challenges in

solving OT for 3D signals such as MRI. We postulated that if a feasible OT solver for 3D images

were developed, its mathematics could be extended to develop a Transport-Based Morphometry

(TBM) approach for MRI. We hypothesized that a new TBM framework for MRI could meet the

dual goals of discovering and visualizing clinically discriminating structural markers in a fully

automated manner.

Chapter 3 described the approach we propose for solving numerical OT for large 3D images

and validation of the approach on MR images of older adult brains. We show that our approach

is able to overcome computational difficulties that affect other numerical OT techniques. We state

that a solver that is able to produce viable transport maps for 3D images, such as ours, can en-

able TBM to be performed for the first time on MRI. We demonstrate several examples showing

how the proposed approach could enable TBM-assisted tasks of regression, discrimination, and

unsupervised learning on brain MRI.

In Chapters 4 and 5 concerned application of the new TBM framework for tasks of classification

(Chapter 4) and regression (Chapter 5) analysis. In Chapter 4, we see how the TBM framework
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can be applied to enable early detection of osteoarthritis 3 years in advance of symptoms with

86% accuracy. Furthermore, we see how gene-brain-behavior relationships can be explored using

TBM. Given that 16p11.2 copy number variants are associated with increased risk of several de-

velopmental and psychiatric disorders, we were able to elucidate the structural changes caused by

duplications and deletions of the gene, compared to control subjects. We see opposing, spatially

diffuse effects that enable determination of the 16p11.2 duplication carrier, control, or deletion car-

rier genotype with 92.8% accuracy using gray matter appearance and 96% accuracy using white

matter appearance. Furthermore, discriminant directions along which the diseases under study in

this chapter shifted the morphology of the normal population were readily visualized. These are

both state of the art results in the respective problems.

Finally, Chapter 5 concerned regression tasks to understand statistical relationships between

anatomy and continuous clinical measurements. We studied the relationship between the appear-

ance of the brain post-concussion, as measured by DTI, and cognitive deficits. With TBM, we

discovered clinical markers on imaging that are predictive of poor cognitive outcome after con-

cussion as well as dynamic visualization of the changes spanning multiple brain regions. We also

examined the effects of aerobic exercise on brain tissue distribution of older adults and found that

the areas affected overlap with those that are affected in normal aging. This is the first time for

both problems that visualization of the underlying structural changes has been possible.

More broadly, the results in this chapter confirm our hypothesis through experimentation that

complex, nonlinear changes across the images can be adequately captured by using the Transport-

Based Morphometry technique we describe. Examining images in the transport domain enhances

discovery of trends as is the case for 1D and 2D signals previously described. Furthermore, a

unique contribution of TBM is that it can offer the ability to visualize the shifts in morphologic

profile that enable sensitive classification or regression. The TBM approach described has broad

application to multiple image modalities and supervised problems to advance both scientific under-

standing and yield potential clinical biomarkers to aid objective diagnosis and treatment monitoring
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in the future.

6.2 New Directions

This work opens several new areas for investigation, both on technical and applied aspects of TBM.

6.2.1 Theoretical Properties of TBM for 3D

We leave it as an open problem to ”convexify” the formulation of the numerical OT solver we

present in this thesis. Or, we propose coupling the TBM framework with alternative numerical OT

solvers if they exist for faster processing times and more accurate numerical solutions.

In the 1D and 2D cases, important theoretical results have been proven showing that under

certain assumptions, signals that are not separable in the image space become separable in the

transform space. Experimentally, by analyzing MRI data in this thesis, we see that this principle

generalizes in the sense that many 3D image classes that are not well-discriminated in the im-

age space become more separable in the transform space. A theoretical characterization of this

experimental observation in 3D is the subject for future work.

6.2.2 Exploration of Other Modalities and Problems

We note that the TBM framework is fully general to multiple image modalities and problems.

Here, we focus on MRI applications, but in the future, applying the foundations in this thesis to

many other problems has the potential for significant impact in these problem areas. TBM opens

the door to many more predictive clinical studies, not just those that analyze group differences.

Availability of more data samples offers the opportunity for an expanded study using training and

testing data to fully validate the markers found.
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6.2.3 TBM for Subtype Analysis

The applications in this thesis focus on supervised learning, or, problems where the data comes

with labels. In classification tasks, the data is discretely labeled and in regression tasks, it is

continuously labeled. However, there are problems where the data do not come with labels. One

of these problems is in subtype analysis, where a heterogeneous population must be categorized

into smaller subtypes that share characteristics in etiology, responsiveness to treatment, etc. In

many psychiatric diseases, common symptoms are due to many genotypes and etiologies. A future

direction for this research is in exploring the applications of TBM in the unsupervised realm, to

discover subtypes that can validated clinically. For example, being able to identify several subtypes

of pre-osteoarthritis would aid in designing directed therapy for different subgroups of patients,

aiding the movement toward personalized medicine. We briefly touched on the potential of PCA

analysis to yield meaningful visualizations of the variations in the dataset in Chapter 3.
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discrete optimal transport. SIAM Journal on Imaging Sciences, 7(3):1853–1882, 2014. 2.3.3

[50] Bruce Fischl and Anders M Dale. Measuring the thickness of the human cerebral cor-

tex from magnetic resonance images. Proceedings of the National Academy of Sciences,

97(20):11050–11055, 2000. 1.3.1

[51] Centers for Disease Control and Prevention. Osteoarthritis (oa), 2015. 4.1, 4.2.4

[52] Wellcome Trust Centre for Neuroimaging. Spm12, 2016. 1.3.2, 3.6.2, 4.3.2, 5.3.2

[53] KJ Friston and J Ashburner. Generative and recognition models for neuroanatomy. Neu-

roimage, 23(1):21–24, 2004. 1.3, 1.3.2, 4.3.1

[54] Fmrib software library v5.0, Oct 2015. 5.2.2

[55] Yi Gao, Liang-Jia Zhu, Sylvain Bouix, and Allen Tannenbaum. Interpolation of longitudinal

shape and image data via optimal mass transport. In SPIE Medical Imaging, pages 90342X–

90342X. International Society for Optics and Photonics, 2014. 2.3

[56] A Ghodadra, L Alhilali, and S Fakhran. Principal component analysis of diffusion ten-

sor images to determine white matter injury patterns underlying postconcussive headache.

American Journal of Neuroradiology, 2015. 5.2.1

[57] Ulf Grenander and Michael I Miller. Computational anatomy: An emerging discipline.

Quarterly of applied mathematics, 56(4):617–694, 1998. 1.3.2

[58] Elan J Grossman, Matilde Inglese, and Roland Bammer. Mild traumatic brain injury: is

diffusion imaging ready for primetime in forensic medicine? Topics in magnetic resonance

imaging: TMRI, 21(6):379, 2010. 5.2.4

149



[59] Eldad Haber, Kilian M Pohl, Steven Haker, Michael Halle, Florin Talos, Lawrence L Wald,

Ron Kikinis, Allen R Tannenbaum, et al. Multimodal registration of white matter brain

data via optimal mass transport. In The MIDAS Journal-Computational Biomechanics for

Medicine (MICCAI 2008 Workshop), pages 27–36, 2008. 2.3, 2.3.2

[60] Eldad Haber, Tauseef Rehman, and Allen Tannenbaum. An efficient numerical method

for the solution of the L 2 optimal mass transfer problem. SIAM Journal on Scientific

Computing, 32(1):197–211, 2010. (document), 2.2, 2.3, 2.3.2, 2.4, 2.4

[61] Steven Haker, Allen Tannenbaum, and Ron Kikinis. Mass preserving mappings and image

registration. In Medical Image Computing and Computer-Assisted Intervention–MICCAI

2001, pages 120–127. Springer, 2001. 2.3.2

[62] Steven Haker, Lei Zhu, Allen Tannenbaum, and Sigurd Angenent. Optimal mass transport

for registration and warping. International Journal of Computer Vision, 60(3):225–240,

2004. 2.2, 2.3, 2.3.2, 2.4

[63] Steven Haker, Lei Zhu, Allen Tannenbaum, and Sigurd Angenent. Optimal mass transport

for registration and warping. International Journal of Computer Vision, 60(3):225–240,

2004. 3.6.2, 3.6.3, 3.7

[64] Ellen Hanson, Raphael Bernier, Ken Porche, Frank I Jackson, Robin P Goin-Kochel,

LeeAnne Green Snyder, Anne V Snow, Arianne Stevens Wallace, Katherine L Campe, Yuan

Zhang, et al. The cognitive and behavioral phenotype of the 16p11. 2 deletion in a clinically

ascertained population. Biological psychiatry, 77(9):785–793, 2015. 4.3.1

[65] Mark M Harrison, T Derek V Cooke, Bryn S Fisher, and Malcolm P Griffin. Patterns of knee

arthrosis and patellar subluxation. Clinical orthopaedics and related research, 309:56–63,

1994. 4.2.4

150



[66] Deborah J Hellawell, Robert Taylor, and Brian Pentland. Cognitive and psychosocial out-

come following moderate or severe traumatic brain injury. Brain injury, 13(7):489–504,

1999. 5.2.1

[67] Leena Himanen, Raija Portin, Heli Isoniemi, Hans Helenius, Timo Kurki, and Olli Tenovuo.

Cognitive functions in relation to mri findings 30 years after traumatic brain injury. Brain

injury, 19(2):93–100, 2005. 5.2.1

[68] DH Hoch, AJ Grodzinsky, TJ Koob, ML Albert, and DR Eyre. Early changes in mate-

rial properties of rabbit articular cartilage after meniscectomy. Journal of Orthopaedic Re-

search, 1(1):4–12, 1983. 4.2.1

[69] Michal Horemuz. Morphable brain model for monitoring disease related brain changes.

Master’s Thesis, 2015. 1.3.3

[70] Hu Huang, Akif Burak Tosun, Jia Guo, Cheng Chen, Wei Wang, John A Ozolek, and Gus-

tavo K Rohde. Cancer diagnosis by nuclear morphometry using spatial information. Pattern

recognition letters, 42:115–121, 2014. 2.3, 3.8

[71] Thierry AGM Huisman, Lee H Schwamm, Pamela W Schaefer, Walter J Koroshetz, Neetha

Shetty-Alva, Yelda Ozsunar, Ona Wu, and A Gregory Sorensen. Diffusion tensor imaging

as potential biomarker of white matter injury in diffuse axonal injury. American Journal of

Neuroradiology, 25(3):370–376, 2004. 5.2.4

[72] http://brain-development.org/ixi-dataset/, accessed 3-21-16. 3.6.1
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