
CARNEGIE MELLON UNIVERSITY

BEHAVIORAL MODELING OF BOTNET POPULATIONS VIEWED THROUGH INTERNET
PROTOCOL ADDRESS SPACE

A DISSERTATION SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS

for the degree of

DOCTOR OF PHILOSOPHY
In

STATISTICS

by
RHIANNON LISA WEAVER

Department of Statistics
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

May, 2012

2

Thanks to all the faculty, staff, friends, family, and co-workers who helped me along the way.

This endeavor is dedicated in memory of

Colleen Kilker

whose passion for simplicity, precision, and pure mathematics, ignited my own.

3

4

Abstract

A botnet is a collection of computers infected by a shared set of malicious software, that main-
tain communications to a single human administrator or small organized group. Botnets are
indirectly observable populations; cyber-analysts often measure a botnet’s threat in terms of
its size, but size is derived from a count of the observable network touchpoints through which
infected machines communicate. Activity is often a count of packets or connection attempts,
representing logins to command and control servers, spam messages sent, peer-to-peer com-
munications, or other discrete network behavior. Front line analysts use sandbox testing of a
botnet’s malicious software to discover signatures for detecting an infected computer and shut-
ting it down, but there is less focus on modeling the botnet population as a collection of ma-
chines obscured by the kaleidoscope view of Internet Protocol (IP) address space. This research
presents a Bayesian model for generic modeling of a botnet due to its observable activity across
a network. A generation-allocation model is proposed, that separates observable network activ-
ity at time t into the counts yt generated by the malicious software, and the network’s allocation
of these counts among available IP addresses. As a first step, the framework outlines how to
develop a directly observable behavioral model informed by sandbox tests and day-to-day user
activity, and then how to use this model as a basis for population estimation in settings using
proxies or Network Address Translation (NAT) in which only the aggregate sum of all machine
activity is observed. The model is explored via a case study using the Conficker-C botnet that
emerged in March of 2009.

5

6

Contents

1 Introduction 11

1.1 Botnets and size estimation . 12

1.2 Developing and informing population models of network phenomena 16

1.2.1 Statistical population estimation . 16

1.2.2 Informing a behavioral model . 22

2 Modeling Generic Machine Populations by Countable Behaviors in a Network 25

2.1 Network protocols . 25

2.2 Representing machines and network connections in a graph 27

2.2.1 Generation and allocation . 28

2.2.2 Reducing the full model . 30

2.2.3 Generation models for open populations . 31

2.2.4 Some specific allocation models . 32

2.3 Posterior inference and Markov Chain Monte Carlo estimation 34

2.3.1 Overview . 34

2.3.2 Detailed balance and reversible jumps . 36

2.3.3 Blocking and sweep strategies . 38

2.4 Updating strategy for the graph . 40

3 Case Study: The Conficker Botnet 43

3.1 History . 43

3.2 Behavior . 45

7

3.2.1 Domain check-ins . 45

3.2.2 Peer-to-peer communication . 47

3.3 Observing a single infected machine . 50

3.4 Data collection . 52

3.4.1 Passive scan data . 52

3.4.2 Geolocation and alignment of behavioral rate spikes 57

4 Inference for a Directly Observable Population 61

4.1 Generation model for the Conficker-C UDP scan rate . 62

4.1.1 Hourly scan rate . 62

4.1.2 Transitions between off/spike/decay states . 63

4.2 Birth process . 67

4.3 Death process and immunity . 69

4.4 Summary of single-host parameters . 73

4.5 Estimation . 74

4.5.1 Full likelihood . 74

4.5.2 Priors . 76

4.5.3 Conditional distributions and sampling strategies 79

4.5.4 Population hyperparameters . 87

4.6 Analysis and Results . 89

4.6.1 Finding “single host” data . 89

4.6.2 Modeling decisions and starting values . 91

4.6.3 MCMC estimation details . 93

4.6.4 Population distribution of parameters . 95

4.6.5 Assessing individual machines . 100

4.6.6 Discussion . 116

5 Inference For Non-informative Network Allocation 121

5.1 Inference for a NAT device, gateway or other proxy . 123

8

5.2 NAT inference for Conficker-C . 125

5.2.1 Updating yit . 125

5.2.2 Merging and splitting machines . 126

5.2.3 Generating merge-split candidates for continuous parameters 128

5.2.4 Component merge-split steps and ordering . 130

5.2.5 Population priors and sampling adjustments . 139

5.3 Preliminary analysis . 141

5.3.1 Data sets . 142

5.3.2 Non-informative MCMC estimation details . 147

5.3.3 Fixed population parameters . 151

5.3.4 Activity profiles for fixed populations . 155

5.3.5 Output analysis for Merge-Split steps . 166

5.3.6 Adaptations to the single host model . 171

5.3.7 Discussion . 174

6 Recommendations and Future Work 179

6.1 Future work . 179

6.1.1 Single machine modeling . 179

6.1.2 Marginal likelihood methods . 181

6.1.3 Informative networks . 183

6.1.4 Statistical theory . 184

6.2 Concluding remarks . 186

A Code 189

9

10

Chapter 1

Introduction

This document outlines a Bayesian methodological framework for modeling the behavior of machines in a

botnet given their contact points through observed network addresses, and provides a case study based on

the behavior of the Conficker-C botnet that emerged in March of 2009. The analysis begins by formulating

a probability model for the observable behavior of a single infected machine, informed by traditional defen-

sive malware analytic techniques. The single-machine model is then used together with knowledge about

common network resource allocation policies and typical user behavior to simulate the population as it is

viewed through the lens of IP address space. Because botnets share the same or very similar code bases,

the model of a single host can generalize to the population with only a few well-studied examples. Because

most malware tries to stay hidden in the normal activity of the network, an infected machine will generally

not influence either user or network administration and allocation policies. The population model is thus

split into two parts: generation of malicious activity when machines are turned on and active, and allocation

of malicious activity from the infected machine to the IP address that it will use to send its message out

across the Internet.

Section 1.1 introduces botnets and motivates the reasons for studying botnet population size. Section 1.2

discusses the motivations for the generation and allocation model. Chapter 2 presents the generation and

allocation model as a graph of unobserved machines linked to observed network touchpoints, and outlines

broadly the estimation strategies to employ. Chapter 3 introduces the case study for the Conficker botnet,

and describes the data set that was used in the case study. Chapter 4 presents the generation model for

11

the C variant of the Conficker worm and analyzes a directly observable population. Chapter 5 extends the

generation model to an allocation model for a non-informative network–one where the allocation model

does not provide any additional information about the population size or the machine-specific behavior–and

analyzes several networks that can be considered as non-informative. Chapter 6 discusses the results and

presents some preliminary thoughts for moving forward with simple informative network structures.

1.1 Botnets and size estimation

When it comes to measuring the threat of a botnet, the consensus among researchers and cyber-analysts

is that size matters. Botnets–collections of infected computers that maintain communications to a single

human administrator or small organized group–continue to be a relevant vehicle for malicious activity in the

cyber landscape, causing damage through Distributed Denial of Service (DDoS) attacks, distributed large-

scale sending of spam email, or other co-ordinated activities such as click-fraud and brute force password-

cracking. While worry about catastrophic large-scale botnet attacks has lessened, businesses still listed

targeted and sophisticated botnet-driven DDoS attacks as the number one concern for security coming into

2010 (Worth, 2010), and use of botnet-driven DDoS attacks is common against political, human rights, and

independent media sites (Zuckerman et al., 2010), as evidenced by the recent DDoS attacks perpetrated

by the Anonymous group against businesses refusing to support Wikileaks, and the 2011 attacks on the

Livejournal infrastructure, theorized to be politically motivated as an attempt to silence Russian political

bloggers on the site (Shuster, 2011). Botnets are a commodity in underground economies; they can be

rented or sold among malicious actors for use and profit.

But what do we mean when we talk about botnet’s “size”, and why do we want to measure it? Intuitively,

the larger the botnet network is, the more “zombie machines” are available at a controller’s behest for causing

damage. In popular literature such as blogs and security reports, the size of a botnet is mainly measured by

the number of infected machines. This metric is generally what is used in the underground communities,

and it has the advantage of an easy interpretation for communicating the scope of the botnet’s threat to

laypersons. An infected computer is something that can be visualized, catalogued and tabulated. Tracking

the number of infections over time can yield information about clean-up measures such as patching systems

against new infections, blacklists, or takedowns. Security analysts rely on population estimates to prioritize

12

threats and to measure the efficacy of clean-up strategies. But the uncertainty associated with estimating

machine infections from network communication points is not well understood, and differences among

published numbers are often substantial enough to leave analysts unsure of which numbers are realistic

or trustworthy. Furthermore, population metrics inherently treat all individuals as equals, but it may be

advantageous to target critical assets preferentially, or to use distribution of activity across observed network

touchpoints vs. inferred machines to determine the type of countermeasures that would be most effective.

Botnets are feared as an attack vehicle specifically because of their ability to distribute large scale attacks

widely across a large number of assets. A staple of defense against a large-scale attack from a botnet is to

blacklist the botnet’s network Internet Protocol (IP) addresses: to add them to a list of firewall rules so that

any communication attempt from these addresses is dropped automatically without wasting more critical

network and system resources. But a botnet is dynamic: if a central controlling machine is seized, a botnet’s

administrator can often stand up a new machine in its place, or propagate instructions through sideline

peer-to-peer channels. This gives an attacker both flexibility to avoid network-level countermeasures, and

resilience to move, grow and recruit new machines when faced with take-downs, even of central controllers

(Leydon, 2010). Botnets also provide a layer of anonymity for their controllers, routing activity through

unsuspecting third parties and acting as a buffer between malicious actors and malicious acts. In some

cases, it is helpful just to inform network administrators of the extent of infection on their network, and a

useful way to prioritize whom to contact is in terms of the extent of infection among devices on the network.

A last resort strategy for combatting botnets is infiltration and take-down of a botnet’s central command

structure; this kind of effort can be difficult to co-ordinate among global law enforcement communities.

Several factors cloud the landscape when it comes to counting the number of infected machines in a

botnet population. Unlike wildlife studies, where individual animals are directly observable, individual

machines in a botnet are often visible only by their behavior. Physically, infected machines can be located

anywhere in the world, but the malicious applications running on these machines need to communicate over

the Internet–with each other, with a central controller, or with potential targets–in order for the botnet to

survive as a co-ordinated large-scale threat. But behavior viewed through an IP address is not the same

as directly observing an infected machine. Indirect observation also makes it difficult to track individual

infections over time. And while infected machines are an intuitive measure of botnet size, a botnet’s threat

13

is also related to the distribution of activity among its assets.

Enumeration of individual machines usually requires the ability to infiltrate the botnet and observe it

“from the inside,” as was done for example with botnets such as Storm (Holz et al., 2008), Torpig (Stone-

Gross et al., 2009), and Waledac (Kang et al., 2009; Nunnery et al., 2010). Web-based working groups, that

combine front-line mentality with both industry and academic contributions, are a staple of botnet research

and collaboration that often drive botnet infiltration and monitoring. Well-established wide-range groups

such as the SANS Internet Storm Center (2001) and the Shadow Server Foundation (2004) publish web-

based reports on bots and botnets that they currently track. More recently, botnet-specific working groups

have arisen, for example the Conficker Working Group (2009) and the Mariposa Working Group (2009).

While researchers and working groups may have the resources to monitor a botnet from the inside, this

avenue is often not available or is limited by legal restrictions for corporations or other security providers

tasked with mitigating botnet threats.

The metric used for enumeration when individuals are indirectly observed is a count of IP addresses.

Although botnets do produce behavior that can be seen at the network level, mobile devices as well as

network policies such as Network Address Translation (NAT) and Dynamic Host Configuration Protocol

(DHCP) complicate the relationship between machines and IP addresses. Security researchers and working

groups often do not quantify the effect of measuring IP addresses on a size estimate meant to represent

individual infections. For example, when the Mariposa botnet was seized in March 2010, Panda security

officials reported that the botnet was associated with 13 million unique IP addresses. As reported in PC

World online, “It’s hard to pinpoint the exact size of the botnet from that number, but it appears to be one

of the world’s largest. Researchers studying the notorious Conficker botnet have linked it to half as many IP

addresses.”(McMillan, 2010). The Conficker working group also reports population size in terms of unique

IP addresses, with a caveat that the number of machines may be anywhere from “25% to 75%” of the cited

IP address counts 1, but the methods used to reach this conclusion are unclear.

Additionally, botnets are open populations; they can grow from new infections, churn through address

space, or shrink over time due to cleanups. This leaves several alternatives for counting size, with different

interpretations. Cumulative counts of all unique individuals (either IP addresses or machines) over time can

1See ”Population Numbers” at http://www.confickerworkinggroup.org/wiki/pmwiki.php/ANY/
InfectionTracking

14

give an indication of the spread or impact of a botnet over its history, but may not accurately represent the

strength of a botnet at any particular point in time during its lifecycle. Indirect observation of individuals

through IP addresses also makes tracking cleanup efforts more difficult, as it can be hard to distinguish

between one long-lived mobile infection, and many short-lived static infections.

Rajab et al. (2007) provide the current standard for size measurement of botnets in the security research

community. They define two different metrics for population size, implicitly measured across infected

machines: a footprint size, that is a cumulative count of all infected individuals observed from the botnet’s

life, and active size, which measures the number of machines active in any given period of time. They focus

on measurement when individuals can be directly observed, and outline several methods that have been

successful in the past for enumerating individual infections. They do not quantify the effect of measuring IP

addresses instead of infected machines on perceived botnet size according to either its footprint or active size

measurements. Formally, individual botnets can be conceived as dynamic distributions of activity over the

respective space of individuals (machines or IP addresses). The importance of activity-based measurement

of botnets is well known, and security companies such as Sophos already measure overall botnet activity

by the volume of spam output across a large number of recipients, but they do not track individual botnets

(Vaugh-Nichols, 2010, parag. 3).

Estimating machine counts separately from IP address allocation can help guide defenders on both the

takedown and blacklisting fronts. Understanding where the largest infections lie can help watchdog groups

and service providers prioritize cleanups, both in terms of notifying administrators and in co-ordinating

takedowns with law enforcement. Additionally, understanding a botnet’s local neighborhoods–its relative

size and spread among global assets–can help defenders to determine where to blacklist, what proportion of

activity the blacklist contains, and how wide the blacklist should be to block machines that use ephemeral

connections.

15

1.2 Developing and informing population models of network phenomena

1.2.1 Statistical population estimation

Traditional statistical population estimation is based on capture-recapture models and their extensions to

a wide class of generalized linear models (Fienberg et al., 1999) that account for heterogeneity among

individuals and capture methods. Past study of botnet populations has drawn on these methods, but has

treated IP addresses as the directly observable individuals of interest, without generally accounting for the

heterogeneity that arises from different numbers of machines residing behind those addresses. Observation

based on network behavior, as occurs with botnet activity, is similar to counting animals based on tracks,

song recording, photos (in which animals may or may not be confounded), or other indirect methods as

opposed to directly tagging each individual.

Botnet behavior is quantifiable as a count or rate measured over each time period, and is visible up to

aggregation. In that way, the model of observable behavior per time period is similar to a convolution of the

underlying unobserved machines. The result is the need for a model where births, deaths, and heterogeneity

are interpreted similarly to the traditional capture-recapture literature, but that also includes a hidden layer

that explains the link between machines visible up to aggregation through their network touchpoints. The

allocation of behavior among unobserved individuals is similar to the broad framework of finite mixture

models, where observed behavior is attributed to an underlying set of groups with an unknown dimension.

Traditional capture-recapture methods

Capture-recapture population estimation is so named for its genesis in wildlife population studies. The

simplest form, dating to Petersen (Petersen, 1896), requires repeated independent samples (J = 2) of a

closed, homogenous population with the ability to mark and identify individuals. No births or deaths can

occur between samplings, and the probability of sampling individual i is constant across all individuals.

Table 1.1 shows an example. Capture profiles {yij : j = 1, 2} for individuals are summarized as counts mj

in a 2 × 2 table, with the entry m00 equal to the (unknown) number of individuals not observed in either

sample.

Let + indicate a row or column summation. Peterson’s estimate of the total population n = N + m00 is

16

In Sample 1?
No Yes

In Sample 2?
No m00 m01

Yes m10 m11

Table 1.1: Arrangement of counts for a 2-way simple capture-recapture study into a 2x2 table. The cell
labeled m00 is the (unobserved) number of individuals that were not captured in either sample.

based on the fact that p̂ = m11
m1+

is an estimate of the proportion of marked individuals in the population, and

thus as a plug-in estimate, m+1 = p̂n. This leads to an estimate of the total population as:

n̂ =
m+1m1+

m11
.

The natural extension to multiple independent samples (J > 2) for closed, homogenous populations

followed in the early 20th century (Schnabel, 1938). For dependence among samples, Fienberg (Fienberg,

1972, 1980) introduced the use of the log-linear model, which was echoed by Cormack (1989). Let πj(`i)

be the probability of observing a capture profile `i, `i ∈ [0, 1], associated with an individual i and a sampling

period j, j ∈ {1, . . . , J}. For J independent samples in a homogenous population, the probability of a full

binary capture profile `i = (`i1, . . . , `iJ) does not depend on the individual i, and can be written as a product

of capture probabilities associated with each sampling period:

p(`i) =
J∏
j=1

πj(`ij)

Aggregating across individuals, the expected cell count µ` of the 2J -way table of then number of individuals

m` with capture profile ` = {`i, . . . , `j} can be written as a linear combination of parameter values for each

sampling period on the log scale;

logµ` =

J∑
j=1

uj(`j)

This model can be seen as a multiplicative model of main effects. Accounting for dependence among

sampling periods equates to adding interaction terms into the log-linear model for the cell counts. This can

account for situations where the probability of capture for one period is linked to the probability of capture

17

on other periods. For example in wildlife studies, an individual may become “trap shy” if caught in the first

sampling period, and may be more difficult to catch in subsequent sampling periods. In the case of botnets

and other Internet phenomena, sampling for spam emails and phishing scams is often done by collecting

information from spam filters associated with many different email accounts, each with a different address.

Dependence among sampling periods can equate to the fact that botnets tend to use a compromised email

address as a seed, and then attempt to infect all of the addresses in that account’s contact list. Lists of

potential contacts are also bought and sold on the black market, inducing a dependency in the probability

that a single email scam shows up in several different email in-boxes.

Multiple recapture is most widely used as a method to model more than one sampling period across

an open population, or to model a closed population that is surveyed by multiple samples at the same

time, for example in analyzing list data. Applications to list data first arose in the mid-20th century in

the context of human health studies, where researchers had access to records from multiple institutions for

tracking individuals. Sekar and Deming (1949) used multiple lists to track birth and death rates as well

as registration. Multiple ordered sampling methods such as dual-system estimation and post-enumeration

survey have a history of use in the US Census dating back to the 1940s for example with Shapiro (1949).

Heterogeneity of individuals is typically modeled as covariate information in a general GLM framework

when groups or distinguishing features are known. Sekar and Deming demonstrate that population estimates

based on aggregations across correlated sub-strata are biased toward an undercount of the true population.

Seber (1982) provides general results describing bias as a function of correlation among capture probabilities

of individuals, with the intuition that correlation of capture probabilities would generally be positive and

would lead to consistent underestimation of populations, a particular form of Yule’s association paradox

(Yule, 1903). Kadane et al. (1999) formalize this argument by providing necessary and sufficient conditions

under which this is the case.

In the case of heterogeneity due to unobserved differences, latent class or latent trait models are used.

Darroch et al. (1993) present a multiple-recapture approach to heterogeneity of capture in the Census, using

ordered repeated random samples to generate multiple views. They introduce the latent trait Rasch model

(Rasch, 1980) to incorporate multiplicative heterogeneity in individuals and lists. Fienberg et al. (1999)

explored the link between multiple list capture models, the Rasch model for heterogeneity of individuals,

18

and a hierarchical Bayesian formulation of the Rasch model that explicitly calculates posterior distributions

for individual parameters θi and list parameters βj .

Extensions of capture-recapture methods to open populations generally focus on experiments where

the sampling periods themselves are ordered in discrete time intervals, and assuming births, deaths and

migrations occur between samplings, for example in Schwarz and Arnason (1996). Dupuis and Schwarz

(2007) present a model for population estimation in open, heterogeneous populations when heterogeneity

can be modeled as a series of observable, nominal classes. In this case, posterior inference is based on

multinomial models arising from categorical heterogeneous classes and the binary response associated with

marked or unmarked animals at each sampling period.

Capture-recapture models have direct applications to the study of networking and Internet characteri-

zation. Bradlow and Schmittlein (2000) apply a Bayesian model of heterogeneous catchability in a closed

population to explore the relative performance of six search engines, as well as to obtain population esti-

mates of web pages characterized by key words. Briand et al. (2000) evaluate the use of capture-recapture

models for estimating the number of errors or bugs in software applications. Chan and Hamdi (2003) use

capture-recapture methods to estimate the extent of total network resources in queue management schemes

for routers. They apply both a homogenous capture-recapture model and a heterogeneous model based on

the Jackknife estimator (Burnham and Overton, 1978), that treats individual capture probabilities as nuisance

parameters. In both cases, repeated samplings are modeled as independent draws over a closed population.

Mane et al. (2005) use a capture-recapture method based on random walk sampling to estimate the number

of nodes in a closed peer-to-peer network, assuming homogeneity among nodes, with motivations toward

the study of open networks.

Indirect observation and behavioral modeling

In traditional capture-recapture models, the individuals of interest and the heterogeneity in capture proba-

bilities are treated as directly observable. Heterogeneity in botnet behavior often arises on several scales.

Within a single machine, behavior changes over time due to variations in continuous, latent behavioral traits

such as scan rates. Though machines can be recorded as simply marked or unmarked in any sampling pe-

riod, this marking loses information regarding the stochastic behavior that is used to identify individuals.

19

An individual yi is often observed because it is performing some action xit ∼ f , where f is a pdf or pmf for

the sampling period t that affects the probability of “capture”, and xit is correlated across sampling periods

t, t + 1, t + 2, and so forth. This data admits a sparser multinomial model than the Jolly-Seber model de-

scribed by Dupuis and Schwarz, due to a more complex set of observable categories, measured over a much

shorter scale than traditional capture-recapture studies. And although infected machines share the same code

base, network resources and availability can also cause individual differences in activity rates and therefore

capture probabilities, akin to a random intercept model.

A model for population estimation of infected machines in a botnet also needs to adapt the traditional

capture-recapture models to address indirect observations, particularly when behavior cannot be reliably

linked to a single machine. Wildlife-based capture-recapture models do not generally address ambiguity in

the identification of distinct animals, which arises when studying machines through a lens of IP addresses.

Indirect observation in wildlife populations is associated mostly with photography and with natural signs

of habitation. Photography is used for large animals who can be identified as individuals based on visual

characteristics, such as patterns of stripes or scales, which allows for the direct application of traditional

mark-recapture methods (Karanth and Nichols, 1998) or Bayesian modeling of uniquely identified indi-

viduals using multiple sources of information (Gopalaswamy et al., 2012). Acoustic detection focuses on

determining presence or absence of a group or species as opposed to modeling the volume and pattern as-

sociated with one individual. For example, Armitage and Ober (2010) use machine learning techniques to

detect the presence or absence of different species of bats based on acoustic recordings of their calls, but

they do not attempt to link these calls to individuals for the purposes of population density estimation.

Heinemeyer et al. (2008) address the use of indirect observation through natural signs of habitation,

in the form of animal tracks and scats. In traditional wildlife studies, these signs are used to determine

prevalence of species in geographic areas; wildlife research has focused on using DNA markers to link these

indirect signs back to individuals in order to use them in mark-recapture population studies. When surveys

are standardized to control for outside sources of variation, the abundance of natural sign indices correlates

to known population density and other indirect indices of population abundance. Additional data collection

is required to inform the behavioral links between the indirect signs and the population. Capture-recapture

models are augmented by methods such as line-transect photographic sampling, that helps link the density of

20

tracks to the number of animals that produced them. These indirect surveys require careful validation of the

additional modeling assumptions in order to produce valid estimates. Hierarchical models and techniques

are widely used in the community to account for spatial characteristics that lead to heterogeneity in capture-

recapture models (Royle and Gardner, 2011), but they do not seem to be widely applied for building a

stochastic model of variable behavior to represent an indirectly observed individual.

Links to finite mixture models

When the individuals are identifiable only by a behavioral pattern, estimating the size of the underlying pop-

ulation can be similar to estimating the number of underlying groups in a finite mixture model (McLachlan

and Peel, 2000), where instead of having weighted sums across groups, one views the absolute sum of

behavior aggregated from many identical (or nearly identical) individuals.

Suppose a population x1, . . . , xn consists of H groups of generative probability models, that cannot be

observed directly, and suppose group h has density function fh(x; θh). Denote the prior proportion of group

h in the population as πh, such that
∑

h πh = 1. The distribution of an individual x, averaging across the

unseen group assignments, has density function:

f(xi) =

H∑
h=1

πhfh(xi; θh)

Estimation of mixture models is facilitated by data augmentation; the unobserved class assignments are

explicitly modeled as draws of H-dimensional indicator vectors Zi from a Multinomial(π1, . . . , πh) distri-

bution. Estimation of individual group parameters θh is straightforward in the situation whereZi is observed.

Data augmentation can be used in the context of the Expectation and Maximization (EM) algorithm to find

maximum likelihood estimates or posterior modes (Demptser and Rubin, 1977), or within a Markov Chain

Monte Carlo simulation as a way to simplify complete conditional distributions (Tanner and Wong, 1987).

In the case of indirect observation of network phenomena, the H individuals are assumed independent,

each generating a count yh from an identical generation model f(yh; θ). A set of J network interfaces are

known and observed, and the observed count xj is a sum of counts from one or more unseen individuals

from the population of H total individuals. In this case a J-dimensional indicator vector Wh is drawn that

21

assigns yh to a network interface, and

xj =
H∑
h=1

Whjyj

The marginal distribution of the count xj is an H-fold convolution g representing the sum of yh for the indi-

viduals for whomWhj = 1. When the count generations are Poisson-distributed, the conditional distribution

of {yh;Whj = 1} given the observed value xj has the form of a multinomial (possibly with correlated mean

structure) across the values q = 0 to q = xj , where the probability πqj is proportional to the density function

f(q; θ), and arrangements y1, . . . , yh have positive probability only if
∑

h yh = xj .

Data augmentation methods can be used for assignment of aggregated data among a collection of in-

dividuals while preserving the summation; for example Park (2011) use a Bayesian method to distribute

choice data among aggregated survey results. Richardson and Green (1997) present a Bayesian method

for exploring the group structure in a mixture model within a Markov Chain Monte Carlo simulation that

includes merging and splitting of adjacent groups. A similar method can be used for exploring the space

of individuals and behavior, where individuals can be merged or split based on the relative likelihood of

proposed arrangements of counts yh among individuals. In the application to finite mixture models, groups

are identifiable due to different centroids. In the case of individuals, identifiability of individuals is not as

important as obtaining information about the population size. The allocation of counts yh among individu-

als H is a facilitating data augmentation step for exploring the posterior distribution of H based on simpler

forms of its complete conditional distribution. A chain may relabel unobserved individuals exchangeably,

but the information regarding the number of individuals comes from a well-informed behavioral model for

a single host.

1.2.2 Informing a behavioral model

Applying traditional mark-recapture models to machines, as opposed to IP addresses, requires a model that

links behavior by address to behavior by machine. On the other hand, models for directly counting IP

addresses include heterogeneity among individuals that is informed by the behavior of a single machine; for

example, an address shared in parallel by 100 infected computers is observed if at least one of its underlying

hosts is observed, whereas an address leased serially to a network of one infected machine and 99 clean

22

machines is observed only if it is currently allocated to the infected machine, and the machine’s behavior is

observed. For either case–measuring heterogeneous IP addresses or directly measuring machines–the natural

place to start modeling is with the behavior of a single infected machine. Without profiling information for

typical machine behavior as compared to typical network behavior, it is nearly impossible to distinguish

machines from their network touchpoints.

There are two ways that network defenders learn about malware: reverse engineering and dynamic

analysis. Reverse engineering focuses on learning about the static code that infects computers, akin to per-

forming a dissection in order to learn about the inner workings of the virus. Most malware code is encrypted

and obfuscated, and the process of reverse engineering unpacks and pulls apart the binary executable code,

finding the starting pointers and functions that define the code’s architecture. Dynamic analysis focuses on

setting up virtual testing environments, often called sandboxes, in which to run the malicious code and to

see how it attempts to compromise the system and to communicate with the outside world. Both kinds of

analyses produce very detailed accounts of how the malware works in order to develop signatures for detect-

ing infections on a host level. But because network security is more focused on front line operations, these

detailed descriptions are rarely used as the basis of stochastic behavioral models applied to large populations.

Both static and dynamic analysis focus on detection of an infection on an active, compromised machine.

Behavioral profiles built from these analyses do not take into account the day-to-day activity and individual

differences that arise in active botnets due to user behavior or network administration policies. However,

day to day activity profiles are built in industry tools that specialize in Network Behavioral Anomaly De-

tection (NBAD) for baselining normal network activity 2. With information from both, it is useful to split

a population model into a generation model and an allocation model. The generation model describes the

information gained from reverse engineering and sandbox testing, as well as possibly incorporating a model

of active vs. inactive periods due to the user profile of a machine–for instance, a work desktop may only be

turned on during business hours, while an email server would be shut off only for rare maintenance periods,

and a home computer may only be turned on once per week. The allocation model is informed by typical

network administration policies and historical baseline and user population studies. Both kinds of studies

can provide the strong prior information needed to tease apart machines from network allocations.

2examples include McAfee’s Network Threat Behavior Analysis, Juniper STRM, Plixer Scrutinizer, Enterasys Dragon, and
Sourcefire 3D, among others.

23

24

Chapter 2

Modeling Generic Machine Populations by

Countable Behaviors in a Network

Viewing a population of machines through a network telescope is like looking at an image through a kalei-

doscope: individuals can seem distorted, masked, or fractured.

This chapter outlines the basic data structures, estimation strategy and model diagnostics for inference

about the behavior of machines as observed through the lens of IP addresses. Section 2.1 defines some

terminology for network protocols and Internet address space that are used throughout this document. Sec-

tion 2.2 introduces a graph structure framework for modeling network allocations as a combination of traffic

generation and allocation processes, and describes several forms of sub-models that arise in real networks.

Section 2.3 presents an overview of Bayesian estimation and Markov Chain Monte Carlo (MCMC) strate-

gies that can be used for estimation of the unknowns in the graph-based models. Section 2.4 presents a

general strategy for application of MCMC to the generation and allocation models.

2.1 Network protocols

A set of well-known instructions and rules that defines how software applications communicate with each

other is called a protocol. Network protocols are the space of directly observable behavior from infected

machines in a botnet. Whether outsiders can detect control channel or peer-to-peer communications between

25

infected machines, or observe large-scale attacks from the botnet to an outside target, such as DDoS attacks

or the sending of bulk spam email, the behavior is catalogued by development of a signature based on

network protocols.

Similar to most non-malicious applications, malicious programs mainly communicate using either the

Transmission Control Protocol (TCP), or the User Datagram Protocol (UDP). These protocols all also rely

on Internet Protocol version 4 (IPv4), that defines the recognizable IP address for network communication.

In the remainder of this document, any reference to IP addresses is implicitly associated with IPv4, and not

with the definition of IP addresses associated with the newly emerging protocol Internet Protocol version 6

(IPv6).

An IP address is a 32-bit integer that identifies a machine to others in a network, for the duration of a

connection. IP addresses are generally represented in the dotted decimal format of four octets, which are

unsigned 8-bit integers ranging from 0 to 255 (for example, “192.168.12.2”). In any network connection, the

initiator (or source) specifies its own IP address, and specifies an intended target (or destination) IP address

with which to establish a connection.

Both TCP and UDP protocols also require that a port is associated with both the source and destination

IP addresses in a network connection. A port is an integer between 0 and 65535 that is used as a channel to

disambiguate individual connections between the same communicating hosts.

Often, network traffic monitors cannot identify infected machines directly, but they can identify IP

addresses, protocols and ports through which infected machines are communicating. As with people and

“snail mail” addresses, the map between machines and IP addresses is not one-to-one. Device mobility

can arise from the physical change in location; users switch connectivity of devices such as smart phones

or laptops among different network resources over the course of a day. In addition, two widely adopted

network administration practices complicate the relationship between IP addresses and individual machines

even in static network settings:

• Network Address Translation (NAT, many-to-one): A network of many machines is configured to ac-

cess the Internet through a single connection point with one external-facing IP address, often called a

gateway or proxy. Gateway traffic is also often shuffled among two or more IP addresses over time to

balance bandwidth across several assets, a technique known as load-balancing.

26

• Dynamic Host Configuration Protocol (DHCP, one-to-many): a machine leases an IP address tem-

porarily through an Internet Service Provider (ISP), which often has a pool of available addresses.

Depending on the network configuration, DHCP leases can be valid for hours or days. One-day leases

are common. Ephemeral machines which spend significant time turned off or disconnected from the

network are more likely to receive a different IP address upon re-connecting.

Networks of IP addresses are usually allocated in contiguous blocks to entities such as companies,

countries, academic institutions or Internet service providers. These blocks can range widely in size. A /N

net block (read “slash N net block”) is the collection of addresses obtained by fixing the first N bits of an IP

address. Often, net blocks are sized by octets. A /24 net block, denoted for example by 192.168.12.0/24,

collects together the 256 IP addresses in the last octet range 0 through 255. A /16 net block, denoted for

example by 192.168.0.0/16, collects together 2562 or 65536 IP addresses.

In the remainder of this document, the labels for observed data for /24 net blocks are reported only

for the third octet; the first two octets are anonymized to “100.100.” to maintain privacy of the owners of

infected networks.

2.2 Representing machines and network connections in a graph

In the general setup of a population study, H machines communicate through J network interfaces, for

example IP addresses, over a period of time. Communications from machines are observed as a count of

activity over discrete time periods t = 1, . . . , T ; at any point t, a machine i produces a count yit. This count

can also be subdivided into counts that are divided up among network interfaces. Let wijt be the count at

time t originating from machine i and sent through network interface j, such that

yit =

J∑
j=1

wijt.

Each network interface j also has an associated aggregated count xjt, where

xjt =

H∑
i=1

wijt.

27

The number of IP addresses used to transmit yit in the time period t is given by

Jit =
J∑
j=0

1{wijt>0}

The collection W of host-to-network counts {witj > 0; i = 1 . . . H, t = 1 . . . T, j = 1 . . . J} can

be envisioned as a weighted graph linking individual machine activity to network interfaces over time.

Inference about the system comes from deriving a model Pr(wijt) for witj ∈ W. In practice in botnet

studies, J and xjt, t = 1 . . . T are observed quantities, while H , yit and wijt are unobserved but informed

by static analysis and network administration policies. Define a machine i and network j as associated over

the time period t = 1 . . . T if j exists as a possible communication point for i when it is active. For any

network j and machine i that are not associated, Pr(wijt > 0) = 0 for all t.

2.2.1 Generation and allocation

The graph is modeled as a “generate and allocate” system, where the individual machine generates a count

y, and then y is allocated among the set of J potential interfaces. The generation can be modeled by a

suitable discrete, non-negative distribution, and the allocation can be modeled as splitting y multinomially

among possible interfaces with some suitable probability vector. For a machine i and time t, let wit be the

collection {wijt : j = 1 . . . J}, and let W1,..t−1 be the history of the system up to time t − 1, with a set of

system parameters θ. The joint likelihood for a single count yit and its associated allocations wit is written

as the product of the probability mass functions for generation of yit and the allocation conditional on yit:

Pr(yit,wit|W1,...,t−1, θ) = Pr(yit|W1,...,t−1, θ)Pr(wit|yit,W1,...,t−1, θ)

= f(yit|W1,...,t−1, θ)
yit!∏J

j=1wijt!

∏
j

[gijt(W1,...,t−1, θ)]
wijt . (2.1)

Here, f(·) is the density function of the generating process for yit, and the sub-counts enter into the like-

lihood through the Multinomial probability density function, parameterized by a total equal to yit and a

collection of J allocation probabilities. Like a traditional generalized linear model framework (McCullagh

and Nelder, 1989), the function g(·) is a suitable polytomous link function of the graph history and system

parameters, that describes the probability of allocating one instance of activity to each network touchpoint.

28

When the time window t is small, it is likely that gijt(W1,...,t−1, θ) ≈ 1 for a single network interface j.

Botnets may employ peer-to-peer communications for transferring orders, but in executing orders for

large-scale scanning or spamming, machines can generally be modeled as acting independently from each

other, conditional on some shared resources in local networks. This independence assumption suggests that

the generation process for a single machine can depend on past values from that machine, but usually does

not depend on counts from other machines, or on allocation of counts once they are generated. Using this

simplification, the joint likelihood of a graph W of machine allocations for a collection x = {xjt : j =

1 . . . J ; t = 1 . . . T} of observed network counts generated by independent machine activity can be written

as the product of the machine-specific terms given in Equation 2.1:

`(W, θ; x) =
T∏
t=1

H∏
i=1

f(yit|W1,...,t−1, θ)
yit!∏
j wijt!

J∏
j=1

[gijt(W1,...,t−1, θ)]
wijt . (2.2)

In a population study, the joint posterior distribution p(H, y,W, θ | x) is proportional to the product of

Equation 2.2 and the prior distributions for H and θ:

p(W, θ | x) ∝ π(H)π(θ)`(W, θ; x) (2.3)

The assumption of independent priors for H and θ implies that, in terms of the generation model,

behavior of an individual in the botnet is not linked with the overall size of the botnet. In other words,

the individual is generally not aware of the whole. Botnet propagation relies on infecting new computers

with static software, and it is this static software that drives the behavior of individuals. As the botnet

grows, large behavioral changes are typically phased in via software updates from the botmaster, similar

to new “version releases” of non-malicious software, but these changes would follow more of a punctuated

equilibrium model, that would describe the motivations and goals of the botmaster. For the allocation model,

the independence ofH and θ assumes that allocation of activity among network touchpoints does not change

with the size of the botnet. This is generally true, as most networks housing infected machines are unaware

that the machines exist. As a botnet grows in activity or number of machines, administrators may recognize

problems and move to balance resources or to clean up infected machines, but this process is related more

to modeling of take-downs and machine deaths than a priori ideas about the overall ability of a network to

29

be infected depending on its allocation policies.

Equation 2.3 makes use of conditionally independent machine activity as well as independent prior

assumptions on the population size and the system parameters. Section 2.2.2 examines reasonable simplifi-

cations of this general model.

2.2.2 Reducing the full model

Network connectivity is often transparent to the end user. As long as an active network interface is avail-

able, user behavior or malicious software activity does not change its characteristics. For example, most

non-administrative users who connect to their ISP, university, or corporate network in order to browse to

www.google.com are not cognizant of whether their Hypertext Transfer Protocol (HTTP) sessions are

sent directly from their client IP address, or are first rerouted through an HTTP proxy server. Changing

the HTTP proxy IP address also would not affect the look or feel of a client web session. But IP address

allocation can follow a user’s physical location throughout the day, if they connect a mobile device like a

laptop to different networks such as a home network, work or university network, or a wireless hotspot.

Allocation of resources within an autonomous network is generally independent of machine activity

except for two cases:

• Load balancing: traffic is switched to a new proxy (and possibly IP address) when the bandwidth for

the current proxy exceeds some threshold. In these case, the network policy depends on the overall

volume of traffic going though the network touchpoint.

• Machine shut-down/start-up in DHCP pools: When a machine’s DHCP lease expires, it is typical for

a DHCP server to reassign the machine its previous IP address if that address is available in the pool.

When the number of machines competing for addresses exceeds the number of available addresses, it

is more likely that a machine’s IP address is unavailable, if that machine has been turned off for the

expiration of its lease. Thus machines that start up after long periods of shut-down time (longer than

the DHCP lease time of the network) may be more likely to be reassigned arbitrary addresses in the

pool, and thus appear to “travel” around IP space.

These relationships can be modeled explicitly, but they are rarely directly observable to network tele-

scopes. Covariates, such as time of day, may sufficiently capture the information from these interactions

30

between generation and allocation. For simplification, it is assumed that the allocation process depends only

on the counts y generated from the machines, and not on the parameters for the generating process. In this

case, system parameters can be divided into θ = (ξ, φ), where ξ are the generation parameters and φ are the

allocation parameters.

Even in the case where botnets all share a common set of malware (and thus behaviors for the generating

process), network configurations and speeds, as well as differing machine hardware and software capabilities

can lead to individual differences in the generating process f(yit). In modeling, the prior π(θ) can be

thought of as a population distribution, possibly dependent on another layer of hyperparameters κ, which

generates a machine specific parameter ξi ∼ π(ξ | κ), so that the generation process can be written as

f(yit|ξi, yi1 . . . yit−1), and a network specific parameter φj so that the allocation functions can be written as

gijt(W1,...,t−1, φ), where W1,...,t−1 is the history of all connections wij up to time t− 1.

Substituting these constraints into the generation function f(·) from Equation 2.2, the reduced model

posterior distribution has the form:

p(W, θ | x) ∝ π(H)π(κ)π(φ | κ) (2.4)

×
H∏
i=1

π(ξi | κ)
T∏
t=1

f(yit|ξi, yi1, . . . , yit−1)
yit!∏
j wijt!

∏
j

[gijt(W1,...,t−1, φj)]
wijt

Under this format, the dependency between generation and allocation at time t relies only on the count

yt. This is a reasonable simplification for many network phenomena, that also simplifies the estimation

scheme for the graph. Section 2.2.3 introduces activity profiles for the generation process in this framework.

Section 2.2.4 presents some common allocation methods in increasing order of complexity. Section 2.4

outlines the general estimation strategy for model parameters using Markov Chain Monte Carlo (MCMC)

methods.

2.2.3 Generation models for open populations

In order to obtain both footprint and active size measurements of a botnet over its history, it is necessary

to keep track of machine availability. Malware rarely controls the physical aspects of a computer, such

as whether it is turned off or on, and information about malware behavior is naturally predicated on the

31

machine having an active network connection and being turned on. It is useful to model the activity profile

and generation processes separately because the information informing priors on single-host behavior is

often gained via sandbox testing, which provides data on the behavior of the infection but not on the day-

to-day activity patterns of an infected machine. The prevalence of various network activity profiles in a

collection of infections depends on both the distribution of typical activity profiles across the Internet, and

on malware propagation techniques, targets, and software requirements that might bias a population to favor

certain profiles over others.

For open populations, at time t any machine in the population can be considered as belonging to one of

four discrete states:

1. Not yet infected (*);

2. Infected and active;

3. Infected and turned off;

4. Patched and cleaned of infection (†).

A “birth” in the population occurs when a machine transitions from the uninfected state (*) to one of

infected and active. A “death” occurs when a machine transitions from either infection state to patched and

cleaned of infection (†). In between the birth and death states, an infected machine can be either switched

on or switched off. A machine that is switched off at time t has Pr(yt = 0) = 1, while a machine that is

switched on follows the generation model f(y).

2.2.4 Some specific allocation models

This section introduces allocation models in increasing order of complexity required for updating the unob-

served population size H and the edge links wijt. The order is:

1. One to one allocation;

2. Non-informative network allocation;

3. Independent informative allocation;

4. Dependent informative allocation.

32

One to one allocation: In the very simplest case, a machine i is statically allocated to a single IP address

j, with gijt(·) = 1 for all t, and gikt(·) = 0 for all k 6= j and all t. This allocation structure defines a

directly observable population. Essentially, H is known and is equal to J , and wijt = yit = xjt. This is the

trivial case where the generation parameters ξ and network population parameters κ can be updated through

traditional MCMC methods. Often, small sub-populations of a large botnet can be labeled as one-to-one

allocations a priori with high probability, and the resulting posterior inference on ξ can help to inform the

generation model “in the wild” (including individual differences arising from network heterogeneity) as

opposed to solely using sandbox tests.

Non-informative network allocation: A non-informative network allocation is one for which the alloca-

tion function gijt(·) ∝ c, an equally likely constant value across all network touchpoints j for any generated

activity Wi at any time t. In this case the conditional distribution of H and yit given φ, w, and xjt depends

only on
∑

j xjt. An example of a non-informative network allocation arising in practice is a persistent

“many to one” allocation scheme, for example a NAT address that is known never to change. A population

can also be comprised of collections of non-informative networks based on strict boundaries, for example

a collection of static NATs where it is known that machines never migrate between addresses. Another ex-

ample (that does not generally arise in real world situations) is a DHCP pool where every address is equally

likely to be assigned to any host at any time. In these cases, the only information available for inference

on H is through the generation model and the behavioral profiles of host availability, and any conditional

distributions involving H or w depend only on the generation model f(yit|ξi, yi1, . . . , yit−1).

Under non-informative network allocations, the Levy central limit theorem can be used in the simplest

case (or with an appropriately marginalized generation model) to obtain active size estimates for each sam-

pling period without requiring simulations of graph edges w (Weaver, 2010b, for example). But it takes

more work to understand the footprint size and to track the life of individual machines.

Independent informative network allocation: In this case, the count allocations are informed by both

sides of the generation and allocation model. There is some kind of movement distribution that describes

how likely it is for a host to switch IP addresses given its prior allocations. A count of active IP addresses

is often available, and the population estimate is informed by the fact that with DHCP pools, for example, it

33

is comparatively unlikely for a machine to split its allocation across two IP addresses within an hour, or for

more than one machine to use a single IP address within an hour.

Dependent informative network allocation: This is the case when allocations among multiple machines

switch at once, for example a switch en masse of all hosts behind one gateway or proxy to another as a result

of load-balancing.

2.3 Posterior inference and Markov Chain Monte Carlo estimation

2.3.1 Overview

Suppose data y exists that informs a parametric model with a set of parameters θ. Let `(θ; y) be the likeli-

hood of the data when θ is fixed, and describe the prior beliefs of θ by a distribution π(θ). The parameter

θ can be multi-dimensional, and it can also include unobserved quantities from different levels of a hier-

archical model. The functional form of the likelihood `(θ; y) and the parameter θ together comprise a set

of unobserved but theorized quantities, that can be interpreted as anything from a useful way to explain

data variations and to assess confidence and make predictions, to an interpretable generative model of the

processes by which y was created (Cox, 1990). The data y consists of directly observable quantities.

Bayesian inference is based on understanding the posterior distribution of the parameters θ in light of

the prior beliefs π(θ) and the likelihood `(θ; y). Call this distribution p(θ | y). By Bayes rule, the posterior

distribution is defined as

p(θ | y) =
π(θ)`(θ; y)∫
θ π(θ)`(θ; y)

(2.5)

The posterior distribution can be used to make joint, conditional or marginal probability statements about

components of θ, to produce point estimates–such as means, modes, or quantiles–that have well-understood

large-sample properties, and to produce credible intervals in order to describe uncertainty.

The denominator integral in Equation 2.5 is a function of y alone, and is known as the marginal dis-

tribution of the data, or m(y). In addition to being interpretable as a relative measure of fit for the model

(Kass and Raftery, 1995), m(y) is the normalizing constant for the posterior distribution, as it ensures that

34

the distribution integrates to 1. In some simple cases, the integral can be computed analytically, and the

posterior distribution has a closed form. When the normalizing constant cannot be computed analytically,

there are several options for pursuing posterior inference:

• Numeric integration: approximate m(y) by evaluating the numerator of Equation 2.5 on a grid of

values of θ (more useful when θ is low-dimensional)

• Approximation: posterior densities or posterior expectations can be approximated using closed form

distributions, for example the Laplace (Tierney and Kadane, 1986) or Saddlepoint (Daniels, 1954)

approximations based on Normal distributions.

• Monte Carlo sampling: bypass the need to calculate m(y) by instead obtaining a sample θ1 . . . θM

drawn from p(θ | y) using a method that does not require normalization. Approximate the expected

value integral E[g(θ)] =
∫
g(θ)p(θ | y) of any function g(θ) using the monte carlo estimate:

̂E[g(θ)] =
1

M

M∑
m=1

g(θm)

Quantiles, modes and other functions of p(θ | y) can also be approximated by their sample quantities,

using resampling techniques (for example bootstrapping) to estimate variability.

Monte Carlo methods require use of a distribution q(θ) that is easy to sample from and in some way

“close” to the target distribution p(θ | y). Random deviates θ1 . . . θM ∼ q(θ) are generated and then

further transformed to represent draws from the target distribution. The transformations can be iterative

or non-iterative. Examples of non-iterative Monte Carlo methods that do not require calculation of m(y)

are rejection sampling (also called the acceptance-rejection method or simply the rejection method), which

requires only the calculation of the posterior mode up to a constant C to ensure that Cq(θ) ≥ m(y)p(θ | y)

for all θ (q(θ) covers the target distribution), or importance sampling, which uses ratios of the sampling

and target distribution. Importance sampling does not require that q(θ) cover the target distribution, but

importance sampling estimates can suffer from high variability if the importance ratios [q(θ)]/[m(y)p(θ |

y)] are very large.

Markov Chain Monte Carlo (MCMC) is an iterative method that is useful for obtaining samples from

high-dimensional parameter spaces. In MCMC, sampling from the target distribution p(θ | y) is obtained

35

by constructing a Markov chain with a stationary distribution equal to p(θ | y). A distribution π over a set

of states is stationary for a transition matrix P if it satisfies the equation π = πP , that is, the distribution

π(Xn ∈ A) does not depend on n.

For MCMC sampling, an initial state θ0 is set, and successive sampling of the next value θm+1 is

performed conditional only on the most recent value θm. The chain is let run until the influence of the

initial starting state is negligible and θm, θm+1, . . . are drawn from the stationary distribution. MCMC uses

Metropolis-Hastings (M-H) sampling to achieve the correct form of the stationary distribution. The general

M-H step uses a proposal distribution g(· | θm), based on the current state θm of the chain, to produce a

candidate value θ∗. The candidate is accepted as θm+1 with probability

r = min

(
1,

`(θ∗; y)π(θ∗)g(θm | θ∗)
`(θm; y)π(θm)g(θ∗ | θm)

)

If the candidate is rejected, then θm+1 is set equal to θm. It is important to choose a proposal distribution

that allows for efficient exploration of the posterior distribution; if candidates are chosen too far from the

current value, the chain may spend many iterations rejecting candidates before it moves to a new value. On

the other hand, if candidates are chosen too close to the current value, the chain will accept nearly everything

but may take a long time to explore the space. An efficient M-H chain should show good mixing, with the

proportion of accepted candidates generally around 0.60 to 0.70.

2.3.2 Detailed balance and reversible jumps

Suppose a Markov chain θn at step n has pdf π(θ), such that for any set A, Pr(θn ∈ A) =
∫
A π(θ)dθ,

and time independent transition distribution P (θ′ | θ) = Pr(θn+1 = θ′ | θn = θ). The Markov chain is

reversible if for any two states θ′ and θ, the property holds that

π(θ′)P (θ | θ′) = π(θ)P (θ′ | θ).

When the chain is reversible, the distribution π(θ) is invariant. In order for the MCMC chain to be reversible,

it must maintain this detailed balance. Often the distribution P (θ′ | θ) is written as a transition kernel

p(θ, θ′) that maps θ to θ′. To help recall the directions (as this notation is parsed in the opposite direction

36

of conditional probability statements), I use the kernel notation of p(θ → θ′). In MCMC, this kernel is

comprised of the product of the jumping distribution g(θ → θ′) and the acceptance ratio α(θ → θ′).

By using well-crafted proposal distributions, MCMC chains built with Metropolis-Hastings steps are

reversible with respect to the posterior distribution p(θ | y), which ensures that p(θ | y) is the invariant

distribution of the chain. But when the dimensionality and format of the parameter space θ is one of the

uncertain quantities in the model, it is not immediately clear how to construct a proposal distribution that

links parameters in one space to interpretably “close” parameters in another, while also maintaining detailed

balance. This change in dimensionality arises for example when the model is a mixture distribution with an

unknown number of components, which requires a proposal distribution that can accommodate dimensional

jumps (for example, adding a new group and its parameters, or removing a group). If standard proposal

distributions, such as Normal distributions centered at the current value of the parameter vector, are used, the

MCMC chain becomes reducible amongst the sub-chains corresponding to different sets of dimensionality.

On the other hand, parameters should maintain deterministic interpretability across dimensions; when two

groups are merged, the mean value of the new group should be close to the average of the current means

weighted by the prior group proportions.

The solution is to augment the proposal distributions to include proposing new steps that link these

different spaces in interpretable or useful ways. But in order to keep the posterior distribution p(θ | y) as

the invariant distribution of the chain, detailed balance should be maintained. To achieve this, Green (1995)

outlines a method called Reversible Jump Markov Chain Monte Carlo (RJMCMC).

Suppose a model space S can be partitioned into sub-spaces Sk, k = 1, · · · ,K, possibly with different

dimensions or interpretations of the parameters θk. To traverse the entirety of S, different types of proposal

moves are required for exploring each Sk and for traveling between sub-spaces Sk and Sj , k 6= j. Let

gm(θ → θ′) be a move type that proposes to take the state θ to θ′, that is accepted with probability αm(θ →

θ′). It can be shown that for detailed balance to hold between arbitrary states θ and θ′, it is sufficient to prove

that it holds for each move type, that is:

p(θ | y)gm(θ → θ′)αm(θ → θ′) = p(θ′ | y)gm(θ′ → θ)αm(θ′ → θ),

for each θ, θ′, and m. Traditional Metropolis-Hastings steps can be used for within-subspace moves, and

37

it suffices to provide cross-subspace moves that maintain detailed balance across any transformations that

are used to map θ to θ′ when they reside in different subspaces. This is done via “dimension matching”:

using a joint, common dominating measure across the subspaces that puts positive probability only on valid

moves in both directions. For example if S1 = R1 and S2 = R2, with parameters θ and (θ1, θ2), a typical

cross-subspace jump from S2 to S1 at step n may be the function θn+1 = h(θ1, θ2) = 1
2(θn1 + θn2). Thus for

the move to maintain detailed balance, the reverse jump from (θ1, θ2) in S2 to θ in S1 needs to put positive

probability only on the set {(θ1, θ2) : 1
2(θ1 + θ2) = θ}. This is achieved, for example, by generating a

random variable u with distribution g(u) = U(0, 1) and setting (θn1 , θ
n
2) = h−1(θ, u) = (2θu, 2θ(1− u)).

The acceptance ratios still depend on the proposal distributions g in their respective spaces, but must be

multiplied by the determinant of the Jacobian of the variable transformation h that takes (θ′, u1) to (θ, u2)

(and vice versa) in either direction, in order to account for the ratio of the two densities. In general, when

variables u1 and u2 are used to match dimensions between Sk and Sj with proposal distributions qk(u1) and

qj(u2) that map θ to θ′, detailed balance is maintained with the acceptance ratio

αm(θ → θ′) = min

{
1,
p(θ′ | y)gk(u1)

p(θ | y)gj(u2)

∣∣∣∣∂h(θ′, u1)

∂(θ, u2)

∣∣∣∣} .
The reciprocal move is used for the jump from Sj to Sk. The jumps are designed in tandem, so that the

reverse jump from θ′ to θ uses the function h−1. In practice, the dimension of one of u1 or u2 is 0 when

parameters are shared across models using deterministic transformations. However, when parameters are

not shared, the dimension matching can allow for more degrees of freedom. For example, a sampler jumping

between a merged state with parameter θ and two split states with parameters θ1, θ2 can match dimensions

across a space (θ, u) → (θ1, θ2) with only a single degree of freedom, or it can match dimensions across a

space (θ, u1, u2) → (u, θ1, θ2). The first case can be used to preserve exact transformation between θ and

θ′, while the second case can be used to relax the constraint, for example by enforcing the map between h

and h−1 in expected value.

2.3.3 Blocking and sweep strategies

MCMC is useful for high-dimensional and variable-dimensional problems because Metropolis-Hastings

steps can be applied to individual components, to lower-dimensional sub-blocks, or to different config-

38

urations of θ when it is multidimensional, without changing the limiting distribution of the chain. If

θ = (θ1, . . . , θK) is the vector-valued parameter, the full conditional distribution (Gilks et al., 1996,

ch 1.4.1) of the k − th component, denoted by π(θk | θ−k, y), is the distribution obtained by treating

θ−k = (θ1, ...θk−1, θk+1, . . . , θK) as constants and normalizing the quantity `(θ; y)π(θ) as a function of θk

alone. When the full conditional distribution is used as the proposal distribution g(θk | θ−k, y), then the

ratios in Equation 2.6 cancel and the acceptance ratio is always equal to 1. This is known as a Gibbs step.

The term data augmentation usually refers to the practice of expanding a distribution π(θ | y) that is

costly to evaluate by a set of unobserved values η such that π(y, η | θ) is easy to write down (Tanner and

Wong, 1987). Traditionally, the unobserved values η are strictly a device for ease of computation, but the

method is unchanged if these values represent quantities of interest. Data augmentation arises for example in

mixture models where the class assignments are unknown. Taking expectations of the expanded likelihood

across unobserved variables and iteratively refining maximum likelihood or a posteriori estimates produces

the Expectation and Maximization (EM) algorithm, while in Markov Chain Monte Carlo sampling, the un-

known values η enter in to the chain as another hierarchy of parameters to simulate using full conditional

distributions, and the expanded form of the likelihood makes each Metropolis or Gibbs step easier to com-

pute. The expanded full conditional distributions π(η | θm, y) and π(θ | ηm, y) may also lack closed form

expressions, but they are often easier to sample from than the unexpanded conditional distributions, and they

can facilitate smaller-dimensional steps and better mixing in a chain.

Updating sub-components of a k-dimensional parameter θ can be done either deterministically or ran-

domly. In deterministic updating, one round of component-wise or block-wise updating of θ1 . . . θk is con-

sidered as a single “sweep” of the Gibbs or Metropolis-within-Gibbs algorithm, and each sweep is counted

as an iteration of the Markov Chain. Detailed balance holds for each individual component step, if not the

whole transition of θ to θ′ considered as a single iteration. Implementing deterministic sweeps on different

component-wise reversible move types does not invalidate the theory of the stationary or limiting distribu-

tion of the chain, as long as all move types and states are guaranteed to be visited infinitely often (Roberts,

1996).

In random updating, each different component-wise step is considered as a move type. One iteration

of the chain consists of selecting a move type according to a discrete probability distribution, and then

39

performing the steps necessary for that move type. This version assures that all iterations (where an iteration

is considered as a single-component move that is selected among move types) are completely reversible, as

long as the move selection probabilities are incorporated into the detailed balance equations. If selection

probabilities are uniform over all move types, then they will cancel from the Metropolis-Hastings ratio. The

only difficulty may be encountering states for which only subsets of move types are available. But when the

number of move types is small, and the computational cost of proposing a move type and then immediately

rejecting it in states where all moves are not available, uniform selection can still be used to good effect.

Sub-chains of deterministic sub-components can also be updated within move types. As before with

the simple Gibbs sampler, moving deterministically between sub-component updating steps or iterations of

them does not change the limiting or stationary distribution away from p(θ | y). However, the choice of how

to select between deterministic sweeps vs. random move types can affect empirical observable mixing in

the chain, as well as the theoretical convergence rates. Amit and Grenander (1991) discuss the differences

in convergence between deterministic vs. random sweep strategies for Normal models, and Levine (2005)

shows that deterministic sweeps are a special case of random scans.

2.4 Updating strategy for the graph

MCMC methods can take advantage of the decomposition of the posterior into generation and allocation

parts conditional on the edge links wijt. There are several types of updating steps that can be implemented

either as Gibbs or Metropolis-Hastings steps within the chain:

1. Update ξi for a single machine;

2. Update the machine and network population parameters κ;

3. Re-allocate machine-to-address counts w conditional on observed counts x and allocation parameters

for an observed network touchpoint at a single hour;

4. Update H by merging or splitting machines;

5. Update H by adding or deleting an empty (off) machine associated to one network;

6. Associate or disassociate machines among networks.

40

7. Update the network allocation parameters φ for a single network or collection of network touchpoints;

Directly observable populations in one-to-one network allocations require steps 1 and 2. In addition to

1 and 2, non-informative network allocation requires steps 3, 4 and 5 to disambiguate machines from the

sum total of all observed network activity. Finally, for informative networks, steps 6 and 7 are also required

in order to fully explore the posterior distribution. Steps 1, 2, 3, and 6 can be implemented using traditional

Metropolis-Hastings or Gibbs steps. Steps 4 and 5 require reversible jump steps in order to match the new

dimensions. Depending on how parameters are associated with network touchpoints, step 7 can also require

a reversible jump step.

For directly observable populations, steps 1 and 2 can be implemented as a fixed sweep; update each

machine in turn with a pre-set number of iterations, and then update the population parameters. For both

non-informative and informative network allocation, it is less evident how to perform a sweep. The number

of machines is subject to change, as are (possibly) the groupings, association and parameters among network

touchpoints. A uniform, random selection among the possible move types is thus proposed for each iteration.

Once the move type is selected, deterministic sweeps or multiple sub-move iterations can be chosen in

order to aid mixing. Using this strategy, it is necessary only to check that within-move detailed balance is

maintained, and that the chain maintains its irreducibility.

Conditional on choosing step 1, a machine i is selected at random from the current population, and the

machine-specific parameters ξi are updated in a series of one or more sweeps of the dimensions needed.

For step 2, all hyperparameters are updated in one or more sweeps of the dimension needed. For step 3, a

network or association of networks is chosen at random, and for one or more hours in that network, counts

are rearranged among the machines. Since associations/disassociations are performed only in step 6, step 3

can be augmented to choose only networks with more than one machine associated to them, without having

to change the detailed balance of the sub-step.

For step 4, a coin flip is used to choose a merge or a split. Then a machine is chosen at random, and if

the merge step is chosen, another machine that is connected via network association is chosen to pair with

the first chosen machine, and the merge/split step is proposed using a reversible jump step. For step 5, a coin

flip is used to determine whether to add or delete a machine. If addition is chosen, a network is sampled at

random and an empty machine associated with all touchpoints within that network is proposed. If deletion

41

is chosen, an empty machine is sampled at random and is proposed to be deleted.

Step 6 and 7, the updating of associations among machines to networks, can be implemented on a

network-by-network basis with reversible jumps. Two unassociated networks can be chosen for merging

together or a single network can be chosen to split apart, with reversible jumps needed in order to accommo-

date any shared network parameters such as DHCP lease rates. All machines that reside behind the proposed

collection of IP addresses now carry associations with all of those addresses, whether or not the machine

currently directs traffic to each individual IP address. Because IP addresses are often assigned to institutions

in contiguous blocks, the likelihood of network allocation can also depend on IP address distance between

the two blocks.

Allowing a specific step for association/disassociation makes it easier to maintain detailed balance in

the count rearranging steps. To facilitate the reversible jumps in the network merging step, any network

selected for splitting should have at least two strongly connected components in its allocation of counts

among machines and IP addresses (that is, its graph of machine-to-IP address assignments for traffic must

be decomposable into at least two unconnected sub-graphs).

42

Chapter 3

Case Study: The Conficker Botnet

3.1 History

Conficker is a self-propagating software worm that was initially released in the autumn of 2008. Also known

as Downup, Downadup, and Kido, the worm targeted a specific vulnerability in the Remote Procedure

Call (RPC) software package, that allowed it to force the victim host to connect to external machines,

download malicious content, and execute arbitrary code. Conficker was one of a new vanguard of botnets

that moved from Internet Relay Chat (IRC) protocols to the Domain Name Service (DNS) protocol as their

main method of communication. Though other, earlier botnets such as Storm (Stover et al., 2007) were using

similar technology, Conficker implemented it on a larger, more “elegant” scale, as Rendon (2011) explains

in the Lessons Learned document published from the Conficker Working Group. Due to its domain-based

control structure, encrypted communications channels, and robust communications including peer-to-peer

capability, Conficker emerged as one of the largest and most resilient botnets of its time.

Five different variations of Conficker were released between November, 2008 and April, 2009. Each

variant adapted the botnet’s ability to evade detection and maintain communication in the face of defensive

countermeasures:

• Conficker-A: Released on November 21, 2008, this was the initial version of the code. It exploited the

MS08-067 vulnerability in the RPC service, and focused on spreading infections through computers

connected via local intranets. Corporations that did not install patches were especially hard hit, giving

43

rise to many infected computers residing behind network gateways and proxies. Conficker-A used

many different methods for propagation and for obfuscation, including limiting its use of network

resources so that users would not notice a slow-down in computer performance. Conficker-A used a

static set of 250 domain names as the control channel for receiving instructions.

• Conficker-B: Released on December 29th, 2008, this variant used much of the same code as Conficker-

A, but updated its list of control channel domain names to exclude those that had been registered and

taken over by researchers (see more in Section 3.2), and to include 100 new domains. It also updated

the malware’s encryption, making it more difficult to reverse engineer. The quick updating in light of

countermeasures indicated that the writers of the botnet were closely following developments in the

cybersecurity community.

• Conficker-B++: (Designated C by Microsoft) Released February 16, 2009, this variant shared almost

all of its code with Conficker-B, but included some new protocols and the beginnings of a peer-to-peer

method for communication among infected machines, obviating the need for machines to check in to

the static domains in order to receive instructions.

• Conficker-C: (Designated D by Microsoft) Released in late February, 2009, this was a major redesign

of the code that increased the number of domains used in control channels from a static 350 to a

dynamic list of 50, 000 that changed from day to day. This variant also introduced peer-to-peer scan-

ning and other security countermeasures to prevent computers from being cleaned of an infection and

rebooting.

• Conficker-E: Released April 7, 2009, this variant was an update to computers infected with Conficker-

C. It downloaded and installed a malicious code package called Waledac, that presents users with

a fake anti-virus software scam. This variant was programmed to delete itself and revert back to

Conficker-C on May 3, and may have been a result of the Conficker botnet owners renting the botnet

out to a third party criminal organization.

There has been much speculation as to the botnet’s origins and to its overall purpose. An April 1, 2009

date that was discovered hard-coded into the Conficker-C software led to some speculation that Conficker

would initiate some sort of activity on that date, such as a high profile DDoS. But despite its threat capability

44

the botnet has remained passive and generally silent since its inception. Though the Conficker-C variant has

ended activity as of February 2010, the A and B variants continue to show activity with roughly 3.5 million

unique IP addresses still attempting to check in daily to their control channels as of Fall 2011.

3.2 Behavior

Two ways that infected hosts maintained contact in the Conficker botnet were domain check-ins and Peer

to Peer (P2P) communication. Both methods were potentially visible to an external observer, although

monitoring domain check-ins required more active and expensive collection techniques than monitoring

P2P communication passively from a large network.

3.2.1 Domain check-ins

Infected machines were programmed to “check in” with a control channel at regular intervals. For Conficker-

A and Conficker-B, machines checked in every 3 hours, while for Conficker-C the interval increased to

every 24 hours. An observer wishing to curtail Conficker infections could register all known domains used

by the botnet as Command and Control (C&C) channels, and link each domain to a monitored IP address,

or “sinkhole”, thus throttling the botnet’s ability to communicate and to retrieve instructions. Rather than

specifying a single IP address or pool of addresses that could be easily blacklisted by network adminis-

trators, Conficker-C used domain names as the basis for control channels. Domain names (for example

“www.google.com”) can be registered and tied to an IP address on short notice, and they can be cheaply

discarded after one use. The Conficker-C software upgraded from using a static list of 250 domain names

as the control channels to using a deterministic algorithm to generate 50, 000 unique domain names per day.

To check in, each infected host would randomly select 500 domain names from the 50, 000 possibilities, and

contact them by initiating a web connection. To propagate instructions, the botnet controllers could register

only a few of these domains and leave instructions; the P2P capability ensured that, even if only a fraction of

machines successfully updated from a C&C check-in, they could propagate these instructions to each other

across peer lists.

Researchers reverse-engineered the Domain Generation Algorithm (DGA) for Conficker-C’s domains,

and were able to pre-emptively publish the 50, 000 control channel domain names daily. As opposed to the

45

Figure 3.1: UDP Connection attempts per hour originating from a /16 net block allocated to an Israeli ISP
(left) and a Russian Telecom company (right). Each row represents one of the 256 /24 net blocks that
comprise the /16 network. Time ranges from March 5 through April 24, 2009. Color intensity (black to
bright yellow) is a log-scale measure of the number of connection attempts originating from each /24 in the
picture, directed at a large monitored network.

early variants where it was easy to register and sinkhole 250 domains from a static list, cutting off the central

controller for the new strain would involve registering and sinkholing a new set of 50, 000 domains daily,

which was not feasible. However, the monitored sinkholes were used for data collection. Though only a

fraction of active machines would contact any one particular monitored sinkhole, inference on population

size followed from the hypergeometric model used in the selection of 500 possibilities from the set of

50, 000. Several researchers on various security blogs used this method (some incorrectly substituting a

binomial model for the hypergeometric) to estimate the size of the botnet. However, while web requests

gave a bit more information than just an IP address (for example the browser used, and a “q-count” detailing

possibly the machine’s successful attempts at infecting its peers), it was still not possible to link individual

check-ins to individual machines.

46

3.2.2 Peer-to-peer communication

Each infected machine kept a list of up to 2048 peers that it occasionally connected with, looking for

software updates or propagation of instructions from a control channel. But an infected Conficker-C host

also had a method for bootstrapping new addresses into its peer list, in case its own list was lost, cleaned, or

corrupted.

Whenever an infected host was turned on, with one or more open Internet connections, it surreptitiously

used those connections to continuously scan the Internet. The host determined connection ports using an

algorithm based on the source IP address and date, which was cracked by several independent researchers

(Porras et al., 2009a, eg.). As a result, Conficker-C P2P requests could be identified with high reliability in

large-scale network summary information, with no need to inspect the content of messages.

For the outside observer, Conficker-C hosts were visible (up to IP addresses) when they chose to connect

to an IP address that the observer monitored. Because the population of Conficker-C hosts was quite large

after its inception, and each host generated many requests per hour, an observer monitoring even a relatively

small network had a good chance of seeing some randomly generated P2P requests.

An example of observed passive scan data by network is displayed in Figure 3.1. Color intensity (black

to bright yellow) in both figures represents the number of connection requests per hour sent from Conficker-

C infected machines in a /16 net block, to uninfected machines located on a large monitored network. Each

row in the figure corresponds to a /24 net block, with brighter yellow colors indicating higher numbers of

connection requests (on the log scale) initiated from that net block.

The leftmost figure shows a network allocated to an Israeli ISP. The /24 blocks in this network show

patterns that might be expected with single-machine activity per net block. Intensity is uniformly low-

scale, with daily trends evident in some blocks, and little correlation of activity between rows. Comparing

these patterns to the figure on the right, which is allocated to a Russian Telecom company, the effects of

administration policies such as NAT, load-balancing, and DHCP become more evident. Intensity varies

among blocks, with the highest belonging to a single net block (94.25.61.0/24) that appears to be acting as

a proxy for a comparatively large number of infected hosts. Daily patterns are also evident as users come

on- and off-line, but the effect seems to be correlated across multiple adjacent blocks, evidence of DHCP

leasing or load-balancing. There are also several places where large blocks of activity appear to “jump”–

47

scans cease abruptly in one location and appear abruptly in another–possibly due to load-balancing or other

administrative decisions.

Figure 3.2 provides a clear illustration of the difficulties that arise when trying to measure the size of

the botnet by a count of IP addresses. The connection attempts (flows) per hour from Conficker-C infected

machines are displayed for IP addresses in a /17 network assigned to a Ukrainian Telecom company. Again,

each row represents a /24 net block (256 IP addresses), with intensity represented by the heat colors on the

log scale. Aggregates of total IP addresses per hour, total /24 net blocks per hour, and total connection

attempts per hour are shown in the underlying plots. Over the 51-day period, a total of 26830 of the possible

32768 IP addresses in the /17 were observed sending Conficker-C infected traffic, with an average of 104

IP addresses active per hour.

The network allocation plot shows what appears to be a random allocation of activity across the entire

range of available addresses from March 3rd through to April 1st. Starting abruptly on April 1st, a drastic

change in allocation occurs as the 8192 IP addresses in the upper /18 go almost completely dark for 11

days, and a descending daily pattern is implemented across the lower /18 net block that appears to activate

half as many /24 net blocks per hour at peak activity times, in a matched sequential pattern. Despite the

concentration of activity to only a few /24 net blocks during that period, the IP address plot shows that

the number of active IP addresses per hour actually increases over the interval. The random pattern is re-

implemented for another 11 days starting on April 12, and then on April 23, all activity is moved to the 1024

IP addresses in the lowest /21 on the network for 24 hours.

Counting the number of active IP addresses alone, the botnet appears to grow drastically on April 1. On

the other hand, counting the number of active /24s, the botnet appears to shrink on this interval. But the rate

of connection attempts per hour, from active infected machines communicating through these addresses,

tells a different story. Behaviorally, despite all of this re-allocation and re-arranging, the total number of

connection attempts per hour remains fairly constant. The bottom time series plot shows what appears to

be only a gradual decline in active rates across the entire 51-day window. Using a “ballpark” estimate of 4

connection attempts per hour per active machine, and assuming that infections are long-lived, it is possible

that the infection activity across over 26000 IP addresses on this /17 network could be a wide footprint for

as few as 200 infected machines being slowly taken offline and cleaned.

48

Time

3/05 3/08 3/11 3/14 3/17 3/20 3/23 3/26 3/29 4/01 4/04 4/07 4/10 4/13 4/16 4/19 4/22

100.100.128.0

100.100.136.0

100.100.144.0

100.100.152.0

100.100.160.0

100.100.168.0

100.100.176.0

100.100.184.0

100.100.192.0

100.100.200.0

100.100.208.0

100.100.216.0

100.100.224.0

100.100.232.0

100.100.240.0

100.100.248.0

Conficker−C on a Ukrainian Telecom: FL/hr

0

100

200

300

400

500

600

IP
 A

dd
re

ss
es

0

20

40

60

80

100

120

25
6−

IP
 B

lo
ck

s
(/

24
)

0

200

400

600

800

1000

1200

C
on

ne
ct

io
ns

Figure 3.2: UDP Connection attempts per hour originating from a /17 net block allocated to a Ukrainian
Telecom company. Each row represents one of the 128 /24 net blocks that comprise the network. Time
ranges from March 5 through April 24, 2009. Color intensity (black to bright yellow) is a log-scale measure
of the number of connection attempts originating from each /24 in the picture, directed at a large monitored
network. The bottom three time series plots are IP addresses active per hour, /24 blocks per hour, and
Connection attempts per hour.

49

3.3 Observing a single infected machine

Suppose an observer monitors a proportion δ of destination IP addresses over a period where Conficker-C

hosts are active. In one hour t, a single infected machine actively scanning at rate λt initiates Mt random

UDP connection requests from a source IP address, of which yt are directed at destinations within the

monitored network. The quantity Mt is modeled as a Poisson process:

Mt ∼ Poisson(λt)

This a reasonable model for small-packet scanning activity programmed at regular intervals. Network

traffic is often cited as “bursty” in behavior, but Paxson and Floyd (1995) note that this self-similarity is

more common in packet inter-arrival times once connections have been established, as opposed to multiple

connection requests. Published experiments with the Conficker-C malware in controlled settings (Porras

et al., 2009b) show relatively smooth scanning rates, within both 30-minute and 6-hour time frames.

The Poisson count Mt is assumed to be conditionally independent from Mt−1 given its rate λt. The

conditional distribution π(yt | Mt, δ) is Binomial(Mt, δ), which yields a Poisson marginal model for yt in

terms of λt and δ:

yt ∼ Poisson(λtδ). (3.1)

The proportion δ is measured empirically, and the scan rates are unknown; without loss of generality, the

rate λt can be modeled as an observed hit rate (subsuming the parameter δ).

In September 2009, Porras et al. (2009c) provided a de-obfuscated reverse engineering of the Conficker-

C P2P binary image as it appeared on March 5, 2009. When initiated, the P2P module spawns a UDP

scanning process for each valid network connection discovered, in order to bootstrap a peer list of up to

2048 peers. Up to 32 processes can run simultaneously. Each process alternates between a 5-second sleep

cycle and a scan phase where it randomly generates a list of up to 100 IP addresses to contact. At each

selection, the machine chooses an IP address from its list of n peers with probability equal to

Pr(existing peer chosen | n) =

(
1000−

⌊
950n

2048

⌋)−1

. (3.2)

50

0

5

10

15

20

C
on

ne
ct

io
ns

3/26 3/27 3/28 3/29 3/30

0

5

10

15

20

25

30

C
on

ne
ct

io
ns

3/26 3/27 3/28 3/29 3/30

0

5

10

15

20

25

30

C
on

ne
ct

io
ns

3/26 3/27 3/28 3/29 3/30

0

2

4

6

8

C
on

ne
ct

io
ns

3/26 3/27 3/28 3/29 3/30

0

1

2

3

4

5

6

7

C
on

ne
ct

io
ns

3/26 3/27 3/28 3/29 3/30

0

1

2

3

4

5

C
on

ne
ct

io
ns

3/26 3/27 3/28 3/29 3/30

Figure 3.3: Connection attempts per hour over a 5-day period, from six different IP addresses.

The speed at which UDP connection requests are sent out over a connection depends on the hardware and

network capabilities of the infected machine, as well as the amount of bandwidth and drop percentage of the

network. The P2P protocol has a maximum of 1200 scanning connection attempts per minute, but observed

accounts of Conficker-C P2P scan activity cite lower numbers. Porras et al. (2009b) performed a sandbox

test of an infected Conficker-C host with a single network interface and observed scanning rates starting at

approximately 1000 to 2000 IP addresses per 5 minute interval, and decreasing over the first two hours of

activity to a steady rate of approximately 200 IP addresses per 5 minutes. Figure 3.3 shows the number

of connection requests per hour sent from six different Conficker-C infected IP addresses, to uninfected

machines located in a large monitored network over a five-day period. Several of the series display spikes

of activity. It is speculated that each of these time series plots represents a single machine; empirically, low

overall scan rates in these net blocks suggest they are not NAT gateways. Each address also resides in an

“isolated” section of otherwise dormant (non-scanning) IP addresses that do not appear to be DHCP pools.

51

Based on the information from the reverse engineering and sandbox tests, two reasons for spikes can be

postulated:

• Clearing of peer lists: The proportion of random vs. peer-directed connection attempts depends on

the size of the machine’s peer list. When a peer list is lost or cleaned (for example after a machine is

rebooted), the rate of random scanning will increase due to the effects of Equation 3.2 and gradually

decrease as the machine rebuilds its peer list.

• User-driven network connections: Reboots and other user behavior can initiate multiple network con-

nections (for example, requesting IP addresses from servers, downloading Windows updates, or open-

ing web browsing sessions), that cause a multiplicative increase in scanning rates due to the malicious

Conficker-C software initiating multiple concurrent scanning threads.

3.4 Data collection

This work focuses on the modeling of the Conficker-C UDP scan rate, so the main data set used in analysis

is hourly counts of P2P communication requests sent into a large private network. Sinkhole data was also

available from earlier variants of the worm, Conficker-A and Conficker-B, prior to the switch to the 50, 000

new daily infections. Because Conficker-C was installed on platforms already infected with the earlier

variants, these data sets had many overlapping IP addresses. For this analysis, the sinkhole data was used

only to vet the passive scan observations as true positives given the network signature.

3.4.1 Passive scan data

The monitored network used in this study is a large private network of approximately 21, 000 /24 net

blocks, or 0.15% of IPv4 address space. The network is instrumented with a set of sensors running the

System for Internet-Level Knowledge (SiLK) 1 tool set. SiLK is an open-source capability for collecting

and analyzing network flow data, which provides a high-level summary of network communications without

inspecting or storing the content of messages. A flow record is a summary of the time, ports, protocols,

packet header information and bytes transferred between two IP addresses, one designated as the source and

1http://tools.netsa.cert.org/silk

52

one as the destination of a communication. Because the network signature for Conficker-C P2P scanning

was a deterministic function of the IP address, the source port and the timestamp, it was possible to detect

UDP connection requests in SiLK flows. From the period of March 5th through April 24th, 2009, inbound

Conficker-C UDP P2P connection attempts were collected using a SiLK plug-in tool (Faber, 2009) based on

the reverse engineering performed by Porras et al. The plug-in related each connection attempt to a single

flow record, and so a count of connection attempts could be proxied by a count of flow records that were

flagged by the Conficker-C signature.

The large network telescope, coupled with typical UDP scan rates on the order of 1000 per hour or

more, resulted in a good chance that an active host would be observed with at least one flow per hour into

the monitored network. A total of 33.6 million unique IP addresses were observed performing Conficker-C

P2P scans over the 2-month window. Hourly flow counts were collected, and aggregated by /24 net block

to reduce the sparsity and size of the data set, as well as to account for ephemeral DHCP leases allocated

over a small number of addresses. A total of 1.1 million unique /24 net blocks were observed performing

Conficker-C P2P scans. A manual examination of the destination IP addresses by source IP address revealed

a few anomalies in terms of repeated attempts from a single source IP to the same destination IP, but the vast

majority of the connection attempts from single IP addresses each went to unique destination IP addresses

within the hour.

The raw data set is represented as two matrices, Y and A, each of 1.1 million rows (one for each unique

/24 that showed activity) by 1224 columns (one per hour), where yit is the number of requests seen from

net block i at time t, and ait is the number of distinct IP addresses (from 0 to 256) seen communicating

from net block i at time t. Figure 3.4 summarizes a random sample of 1000 net blocks from the larger

set and displays the rate of flows per active IP address per hour for each net block across the observation

period. Color intensity (black to bright yellow) is a log-scale measure of the number of connection attempts

originating from each /24 in the picture, directed at destinations within the monitored network. Daily

activity patterns can be seen in some traces, as well as the effect of NAT in several bright yellow traces

across the spectrum. Figure 3.5 shows the count of active IP addresses observed per hour for the duration of

the data collection period. The Conficker-C update appeared to take a tiered approach, with a small number

of infected machines updating on March 3rd, and then propagating the new instructions to the rest of the

53

Time

3/05 3/10 3/15 3/20 3/25 3/30 4/04 4/09 4/14 4/19 4/24

100.100.67.0

100.100.28.0

100.100.189.0

100.100.255.0

100.100.81.0

100.100.206.0

100.100.186.0

100.100.53.0

100.100.191.0

100.100.105.0

Random Sample: RT/hr

Figure 3.4: Observed scan rate (Flows/IP/Hour) for a random sample of 100 /24 net blocks from the popu-
lation. Color intensity (black to bright yellow) is a log-scale measure of the number of connection attempts
originating from each /24 in the picture, directed at a large monitored network. A suspected NAT device is
evident as a bright yellow line on the plot.

botnet on or near the 17th of March. After the March 17th spike, the counts appear to decline to a level

baseline toward the end of April. This decline is most likely due to clean-ups; the P2P scanning allowed

for a robust communication channel, but it also created network “chatter” that was more easily noticeable

to administrators. Figure 3.6 shows plots of the average number of connection attempts per IP address per

active hour (left), and of the live range (right), for each /24 network. Connection attempts are measured

with observed flows; for each hour with a non-zero count of activity, the number of flows seen for that hour

is divided by the number of active IP addresses seen for that hour. The average value for each net block

54

C
ou

nt
 (

th
ou

sa
nd

s)

120

240

360

480

600

720

840
960

1080
1200
1320

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

Conficker Volume: March/April 2009

Figure 3.5: Active IP addresses per hour across the observation window.

is calculated across all of the net block’s active hours. The plot shows a log-log scale histogram of these

averages, rounded to the nearest integer. Most net blocks have average values of less than 10 (mean = 4.67,

median = 4.25). Based roughly on the sandbox analysis by Porras et. al, a computer that spikes in activity

every 24 hours, and decays back down to the rate of approximately 200 connection attempts per 5 minute

interval, would send out roughly 89, 000 connection requests per day. A network telescope of 0.015% of

IPv4 space would see an average rate of approximately 5.5 connections per active hour (though this also

includes hours where the machine is active but yields a count of 0), which appears reasonably consistent

with the mode of the data. However, the long tail of this rate distribution also provides evidence for the

presence of NAT devices and proxies, with some rates of over 500 to 1000 per hour. A machine that does

55

not have typical spike activity would tend to have an average rate of approximately 3.6 connections per

active hour. Smaller average rates (1 to 2 per hour) may also be indicative of non-spiking activity or of

more ephemeral use of IP addresses: the address could be used in smaller increments than a single hour, or

a small number of observed active hours could also yield a higher variability in the low end of the spectrum

of observed counts.

The live range (right plot) is calculated as the difference of the last active hour and the first active hour as

seen in the observation window. The y-axis is a log-scale plot of the count of net blocks that have live range

of the value x on the horizontal axis. The saw-toothed pattern is a periodicity of 24 hours. The red points

highlight live ranges of 24 hours, 168 hours (one week), and 920 hours (approximately 38 days, the length

of the observation window starting from the March 17th spike in activity). The saw tooth pattern persists

for net blocks that have observed start and end times cushioned at least one week from the start and end of

the observation window, so this pattern does not appear to be an effect of the constrained collection window.

The regularity of the 24 hour pattern suggests that activity within net blocks tends to initiate and cease at

the same hour of the day. This suggests, possibly, that some net blocks (or IP addresses within blocks) are

assigned or re-arranged according to very structured schedules, evidence of widespread DHCP pools and

leases on the scale of days. A total of 38295 (3.5%) net blocks were observed active for only one single

hour in the data set. Figure 3.7 shows a plot of these ephemeral net blocks over time. An anomalous spike

occurs just prior to the general March 17th surge. On average, each hour of the data set saw 31 net blocks

both initiate and end all activity, with 96% of hours admitting fewer than 60 of these highly ephemeral

blocks. On March 15th, 12:00:00 UTC time, a total of 284 net blocks both initiated and ended all activity

within the same hour, mostly across the countries of the United States, Japan, France, Great Britain and

Canada. This activity took place approximately 32 hours prior to the surge in scan rates. According to the

Conficker Working Group (2009), March 15th, 2009 coincided with the activation of the malicious domain

“rmpezrx.org”, and allowed for “many hosts” to update to the C variant via DNS 2. But it is unclear why this

large number of seemingly unrelated network blocks appeared and disappeared so rapidly from observation

via passive UDP scans, unless they were somehow blocked or taken down almost immediately by their

owners.

2http://www.confickerworkinggroup.org/wiki/pmwiki.php/ANY/Timeline

56

Average Flows/IP for Active Hours

C
ou

nt
 (

/2
4

ne
t b

lo
ck

s)

1 10 100 1000

1
10

10
0

10
00

10
00

0
10

00
00

0 200 400 600 800 1000 1200

Live Range (hours)

C
ou

nt
 (

/2
4

ne
t b

lo
ck

)

●

●

10
0

10
00

10
00

0

●

Figure 3.6: Log-log plot of average connection attempts per IP address per active hour for each /24 net block
(left), and log histogram of the live range of last active hour observed minus first active hour observed (right)
for the data set. The long tail in the left plot is evidence of NATs, while the 24-hour periodic component of
the right plot is evidence of structured DHCP leases.

3.4.2 Geolocation and alignment of behavioral rate spikes

Geolocation information for each net block was obtained using a database of country codes associated with

IP addresses (MaxMind, 2010). Each net block was also assigned roughly to a time zone based on its

country code, with 1% of blocks remaining unassigned due to satellite locations or unavailable country

codes. Table 3.1 shows a breakdown of the top 20 countries appearing in the data set, by both IP address,

and by /24 net block. The countries that appear in only one of the two lists are marked by a (*). Large

telecom companies in Eastern Europe and Southeastern Asia appear to contribute many more IP addresses

than Europe and North America, but due to allocation policies and possibly to widespread DHCP use, the

activity is spread across fewer /24s. On the other hand, Japan, the U.S. and Western Europe appear to have

sparser allocations of infected IP addresses by net block. Weaver (2010a) examines these results in detail.

Widespread Conficker-C activity occurs on a /15 net block belonging to Ukraine telecom, and on telecom

companies located in Indonesia and Viet Nam.

To capture the tendency of machines to spike in their scan rates at regular 24-hour intervals, a periodic

alignment value t∗ was also estimated for each /24 net block in the data set, using flow quantity percentiles

57

Date

C
ou

nt
 (

/2
4

ne
t b

lo
ck

s)

3/5 3/12 3/19 3/26 4/2 4/9 4/16 4/23

0

50

100

150

200

250

300

Figure 3.7: Count of “ephemeral” /24 net blocks by date. An ephemeral block is a block that both initiates
and ceases all scanning activity (from the viewpoint of the 2-month observation window) within the same
hour.

by hour of day. The value of t∗ is an offset that normalizes the hour of the day such that the periodic spikes,

if they exist, are aligned with hour 5 out of the hours 0 − 23 of the day. Figure 3.8 shows an example of

the calculation for four different net blocks. Alignment is calculated using the median, 75th, 85th, or 90th

percentiles of the flow counts for each hour of the day, or the maximum value observed if all other quantiles

are equal to 0 across the observation window. The maximum value for each hour is plotted in red to indicate

that it is a more highly variable estimate of trend. The spike hour is taken as the hour with the maximum

value of the lowest level quantile for which there is at least one hour with a non-zero quantile value. For

example, if the median value of the count across all hours between the first and last observed active time

58

By IP Address By /24 net block
Rank Country #IPs %IPs Cumul.% Country #/24s %/24s Cumul.%
1 China 10317667 26.81 26.81 China 202425 17.82 17.82
2 Brazil 4012459 10.43 37.23 *United States 102614 9.04 26.86
3 Russia 2920027 7.59 44.82 Germany 89046 7.84 34.70
4 India 1742319 4.53 49.35 South Korea 65623 5.78 40.48
5 Italy 1729420 4.49 53.84 *Japan 55669 4.90 45.38
6 Taiwan 1185604 3.08 56.92 Brazil 47936 4.22 49.60
7 Argentina 1125793 2.93 59.85 *France 46468 4.09 53.69
8 Germany 1077345 2.80 62.65 *United Kingdom 44325 3.90 57.60
9 *Viet Nam 1037676 2.70 65.34 Italy 41256 3.63 61.23
10 *Thailand 891329 2.32 67.66 Russia 38709 3.41 64.64
11 *Ukraine 835716 2.17 69.83 Spain 38207 3.36 68.00
12 South Korea 701623 1.82 71.65 Mexico 24902 2.19 70.19
13 Spain 645119 1.68 73.33 Taiwan 22447 1.98 72.17
14 *Malaysia 638925 1.66 74.99 Turkey 18390 1.62 73.79
15 Turkey 567354 1.47 76.46 *Australia 17036 1.50 75.29
16 Romania 565670 1.47 77.93 India 16757 1.48 76.76
17 Mexico 540947 1.41 79.34 *Poland 16624 1.46 78.23
18 *Indonesia 516460 1.34 80.68 Argentina 13604 1.20 79.43
19 *Chile 488220 1.27 81.95 *Canada 11931 1.05 80.48
20 *Philippines 478989 1.24 83.19 Romania 11561 1.02 81.49

Table 3.1: Top 20 Country Codes per IP address and per /24 net block (address x.x.x.0 as proxy for the
block). (*) highlights countries which appear only in one list. Large telecom companies in Eastern Europe
and Southeastern Asia appear to contribute many more IP addresses but spread across fewer /24s. On the
other hand, Japan, the U.S. and Western Europe appear to have sparser allocations of infected IP addresses.

is 0, then the spike hour is chosen from 75th percentile. If the 75th percentile is also equally 0 across all

hours, then the 85th is examined, etc. This reduces the noise of, for example, a very occasional spike at an

off hour that may overwhelm the overarching trend. For example in the top left, the median value was used

to align the tendency for spikes; even though some of the higher quantiles indicate ephemeral spikes, the

largest consistent trend is captured by the blue line. Not all machines exhibit regular spikes, for example

the top two net blocks show very prominent trends, whereas the bottom two net blocks seem to have a more

even distribution. A single-machine model should be flexible enough to parameterize both cases. In some

cases, the periodicity appears to be over or under 24 hours. However, the alignment only takes into account

the 24-hour case.

59

0
10

20
30

40
50

hour of day

qu
an

til
es

100.100.73.0

4 6 8 10 12 14 16 18 20 22 0 2

Median
P0.75
P0.85
P0.90
Max

0
20

40
60

80
10

0
hour of day

qu
an

til
es

100.100.188.0

3 5 7 9 11 13 15 17 19 21 23 1

Median
P0.75
P0.85
P0.90
Max

0
5

10
15

20
25

30

hour of day

qu
an

til
es

100.100.67.0

15 17 19 21 23 1 3 5 7 9 11 13

Median
P0.75
P0.85
P0.90
Max

0
5

10
15

20
25

30

hour of day

qu
an

til
es

100.100.94.0

17 19 21 23 1 3 5 7 9 11 13 15

Median
P0.75
P0.85
P0.90
Max

Figure 3.8: Alignment values for spike tendency in a 24-hour period. The maximum value for each hour is
plotted in red to indicate that it is a more highly variable estimate of trend. Not all machines exhibit regular
spikes, for example the top two net blocks show very prominent trends, whereas the bottom two net blocks
seem to have a more even distribution of activity. A single-machine model should be flexible enough to
parameterize both cases.

60

Chapter 4

Inference for a Directly Observable

Population

A directly observable population is one for which machines are linked one-to-one with IP addresses, or

for which communications can be observed on a machine-by-machine basis in some other way. For obser-

vational network telescopes studying botnets, this is rarely the case. However, in some cases, researchers

and other network defenders have infiltrated botnet C&C channels or have studied individual infections on

their own internal networks. Obviously, it is easy to obtain population estimates when machines are directly

observable. More importantly, directly observable populations can be used to inform the generation model

f(y) and–in some cases–its interaction with daily user activity patterns that may not be evident through

sandbox analysis alone.

In a directly observable population, the number of machines H is fixed equal to J , and the counts are

visible such that wijt = yit = xjt with probability 1 for all t. The allocation model is trivial, and the

graph W is thus the collection y11, . . . , yHT of all counts generated from infected machines throughout the

observation window. The prior π(H = J) = 1 is also trivial, and the posterior distribution in equation 2.5

has the form:

p(κ, ξ |W) ∝ π(κ)
H∏
i=1

π(ξi | κ)
T∏
t=1

f(yit|ξi, yi1, . . . , yit−1) (4.1)

61

Inference for the generation-allocation model reduces to inference for an independent sample of the

single-host generation model, with one added hierarchical level comprising the population hyperparameters.

The remainder of this chapter develops this model for the Conficker-C botnet and presents results for a

subset of /24s in the collected data that could be verified via external information as probable examples of

individual machines.

4.1 Generation model for the Conficker-C UDP scan rate

This section develops the form of the generation function f(y) for observed counts from a single machine

infected by Conficker-C. The malware is observed in this study through its random scanning process. The

observed count y at each hour t is the number of times that an infected host sends a UDP connection attempt

to one of the machines that the observer monitors.

4.1.1 Hourly scan rate

For a single machine i, the generation function f(yit|ξi, yi1, . . . , yit−1) is modeled as a Poisson process with

a time-dependent mean λit. In this section the host index i is suppressed for ease of notation. The overall

observed scan rate λt at time t is parameterized by a baseline active rate q that represents the stable rate

of connection attempts sent by a machine when it is turned on, a parameter ω > 1 that multiplicatively

increases the baseline rate during a spike, and a parameter α that controls the geometric decay of spike rates

back to the baseline. Let θ = {q, ω, α}. The generation function is given by:

f(yt) ∼ Pois(λt(θ, ηt))

ηt ∼ π(ηt−1)

where ηt is a discrete active state that denotes the tendency and frequency of the hosts to spike in rate due to

the malware’s programming. The priors for the baseline, spike and decay rates are informed by the sandbox

analysis and by the size of the monitored network used for the study. The activity profile of a machine is

a mixture of this generation model with a dormant (zero) rate associated with an inactive state. Inactive

states (where the computer is turned off or disconnected) can also be modeled by the Markov progression;

62

but patterns of inactivity tend to be more evenly centered around the mean. Section 4.1.2 discusses the

modeling decisions that arise from this interpretation.

Denote by O, S, and D the set of hours at which the machine is off, spiking, or decaying, respectively.

The rate of observed connection attempts λt is equal to 0 for all t ∈ O. Given t ∈ S, define the spike rate as

λt = qω, ω > 1 (4.2)

For an hour t ∈ D, define

λt = q + max[0, α(λt−1 − q)], 0 < α < 1 (4.3)

The overall observed scan rate λDt for decay states can also be expressed in terms of the most recent

state change. If a decay state directly follows an off state (t + 1 ∈ D | t ∈ O), then the rate is equal to the

baseline rate q until the machine either spikes or is turned off. For any decay state that follows k steps after

a spike state with no intervening off states (t + k ∈ D | t ∈ S, t + 1, . . . , t + k − 1 ∈ D) , the rate can be

expressed as

λt = q(1 + αk(ω − 1)) (4.4)

A spike state corresponds to k = 0, resulting in the rate qω as described in Equation 4.2.

4.1.2 Transitions between off/spike/decay states

Depending on the configuration and use of the infected hosts, rate spikes can appear at relatively regular in-

tervals (for example, approximately every 24 hours, on weekdays only), at sporadic intervals corresponding

to rare or unscheduled user events, or as a mixture of both scheduled and unscheduled activity. Rate spikes

are also more likely to follow periods of inactivity, regardless of the hour at which a machine turns on.

A discrete 3 × 3 transition matrix is used to characterize the state changes (spiking, decaying, or off)

from hour to hour. Let a ∈ {o, s, d} be an index representing the state of activity at time t. To capture these

varying levels of periodicity on a 24-hour scale from host to host, the transition probabilities from each state

63

are defined with a periodic component that controls for amplitude with a scaling parameter νa > 0 and a

baseline parameter 0 ≤ ρa ≤ 1, as well as an aperiodic choice parameter 0 ≤ γa ≤ 1. Let t∗ be the centered

time index (t∗ = t − d) such that a value of 0 aligns the periodicity with the desired hour of the day, for

example, aligning troughs with midnight and peaks with noon. Define p(ρa, νa, t∗) as a 24-hour periodic

probability function parameterized by ρa and νa relative to t∗:

p(ρa, νa, t
∗) =

ρa
νa + 2

[sin(2πt∗/24) + νa + 1]

Figure 4.1 shows some examples of p(ρa, νa, t∗) across a 24-hour window for various values of ρa and

νa. The value ρa represents the maximum or peak probability achieved across the 24-hour window, while the

scaling parameter νa controls the strength of the sinusoidal pattern across the 24-hour period. The function

p(ρa, νa, t
∗) is a sinusoidal pattern that can be used to model transitions between two discrete states. For

parameterizing transition probabilities π·|a(t) = Pr(ηt+1 ∈ {o, s, d} | ηt = a) between three states relative

to the 24-hour period, the sinusoidal probability function is multiplied by the aperiodic choice parameter

γa. This parameter is used to model state transitions that are most common across the observations. For

example, a spike state is very rarely followed by another spike state, irrespective of the time at which the

spike occurs. This constraint can be modeled into the probability structure π·|s(t) as follows:

πo|s(t) = (1− γs)(1− p(ρs, νs, t∗))

πs|s(t) = γs

πd|s(t) = (1− γs)(p(ρs, νs, t∗))

The transition probability model can be further informed by a strong prior on γs that penalizes large

values.

Decay states tend to occur in long sequences as a machine stays turned on and idle. The model for decay

states uses an aperiodic estimate of πd|d(t) and a periodic component to model the conditional probability of

switching to a spike or off state given a transition away from a decay state. This is modeled in the probability

64

T (hour of the day)

p(
rh

o,
 n

u,
 T

)

0 2 4 6 8 10 13 16 19 22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rho = 0.9 : nu = 0

T (hour of the day)

p(
rh

o,
 n

u,
 T

)

0 2 4 6 8 10 13 16 19 22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rho = 0.9 : nu = 5

T (hour of the day)

p(
rh

o,
 n

u,
 T

)

0 2 4 6 8 10 13 16 19 22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rho = 0.9 : nu = 25

T (hour of the day)

p(
rh

o,
 n

u,
 T

)

0 2 4 6 8 10 13 16 19 22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rho = 0.5 : nu = 0

T (hour of the day)

p(
rh

o,
 n

u,
 T

)

0 2 4 6 8 10 13 16 19 22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rho = 0.5 : nu = 5

T (hour of the day)

p(
rh

o,
 n

u,
 T

)

0 2 4 6 8 10 13 16 19 22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rho = 0.5 : nu = 25

T (hour of the day)

p(
rh

o,
 n

u,
 T

)

0 2 4 6 8 10 13 16 19 22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rho = 0.1 : nu = 0

T (hour of the day)

p(
rh

o,
 n

u,
 T

)

0 2 4 6 8 10 13 16 19 22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rho = 0.1 : nu = 5

T (hour of the day)

p(
rh

o,
 n

u,
 T

)

0 2 4 6 8 10 13 16 19 22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rho = 0.1 : nu = 25

Figure 4.1: 24-hour profiles of p(ρa, νa, t∗) for different values of ρ and ν.

structure as:

πo|d(t) = (1− p(ρd, νd, t∗))(1− γd)

πs|d(t) = p(ρd, νd, t
∗)(1− γd)

πd|d(t) = γd

Figure 4.2 shows an example of the transition probabilities from these parameterizations. The left plot shows

transitions from spike states for a machine that has few spike-to-spike transitions and a moderate propensity

to turn off in late hours after a spike. The right plot shows transitions from decay states for a machine whose

65

runs of decay states follow a geometric distribution with success rate of approximately 2/3, and that follows

a strong conditional periodic trend (ρ = 0.81) when transitioning away from a decay state.
P

(
. |

 s
pi

ke
)

Hour

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

Spike Trans.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22

●

Spike
Decay
Off

rho = 0.82, nu = 3.09, gamma = 0.03

P
(

. |
 d

ec
ay

)

Hour

● ●

Decay Trans.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22

●

Spike
Decay
Off

rho = 0.81, nu = 7.63, gamma = 0.66

Figure 4.2: Transition probability profile for a machine transitioning out of a spike state (left), and transi-
tioning out of a decay state (right).

The periods of inactivity for a machine are tied not to the specific malware that resides on it, but on its

typical use. For example a desktop computer in a corporate network will most likely be turned on during

business hours and turned off on nights and weekends. Conversely, a computer in a university laboratory

may be turned off only for sporadic scheduled maintenance, but show definite patterns of higher use during

daytime hours. Other home desktops or laptops may show much more sporadic periods of activity among

long stretches (days or weeks) of inactivity. In most cases, the time spent turned off does not really follow

a Markov interpretation, as in for example a geometric decay. So, instead of parameterizing an off-to-off

transition πo|o(t) using the three-state transition matrix parameterization, contiguous blocks of off-to-off

state transitions are treated as realizations from a Poisson(λo) distribution. This leads to a more symmetric

distribution around the mean λo than a geometric interpretation. The periodic function p(ρo, νo, t∗) is then

used to determine the probability of the first state seen after a run of off states concludes. Let ct be the

number of consecutive off-to-off transition states following an initial transition to an off state at time t. The

66

model for off-state transitions is:

ct ∼ Pois(λo)

πo|s(t) = 1− p(ρo, νo, t∗)

πo|d(t) = p(ρo, νo, t
∗)

These parameterizations are flexible for capturing individual differences in the patterns of behavior across

machines. As part of the estimation process, the parameterizations themselves could also be estimated,

in terms of how to combine the conditional periodic and aperiodic probabilities to create the transition

probabilities. However in the initial single-host model, the parameterizations were fixed.

4.2 Birth process

Prior information regarding birth times (as opposed to start times) comes from security experts. The UDP

scanning signature for Conficker-C was not observed prior to March 3rd, 2009. An analysis of the P2P

bootstrapping technique indicated that new software updates could propagate throughout the botnet in ap-

proximately 24 hours. The Conficker-C update appeared to take a tiered approach, with a small number

of infected machines updating on March 3rd, and then propagating the new instructions to the rest of the

botnet on or near the 17th of March. Conficker-C was known to propagate only from infected Conficker-A

and Conficker-B hosts, and security experts estimated that the population of those infections was dropping

due to clean-ups. So in effect the Conficker-C worm had two major growth spurts; the initial trial test on the

3rd of March and the resulting botnet-wide communication on the 17th, with generally a 24-hour window

representing saturation of instructions amongst the botnet. However, the 24-hour estimate does not take into

account the user activity of turning off machines infected with Conficker-A and Conficker-B prior to either

of the large-scale software updates, and leaving these machines turned off for a long period of time. These

machines would obtain updates as they “woke up” and checked in, and would represent a longer tail in births

than the 24-hour window.

Figure 4.3 shows the distribution of the first observed activity by /24 for the data set. The start times

are augmented to incorporate new machines starting at later times within a network block, but only for the

67

Date

C
ou

nt
 (

/2
4

N
et

 B
lo

ck
s,

 T
ho

us
an

ds
)

3/5 3/12 3/19 3/26 4/2 4/9 4/16 4/23

0

5

10

15

20

25

Figure 4.3: Augmented start times for /24 net blocks in the Conficker-C population.

possibility of an increased activity period occurring on March 17th, 2009. 28, 752 network blocks with an

empirical start time initiated prior to March 17th also showed an increase in the mean active scan rate after

March 17th of 4 or more hits per hour. In the figure, the start times for these net blocks were considered

a split case between the early start date and the March 17th surge, weighted by the ratio of pre-17th to

post-17th flow averages per hour. This allocation contributes to the large spike seen on the 17th. The pattern

clearly shows two main initializations of activity, with surges spread across a few days, and trailing tails

showing 24-hour periodicity.

Because the Conficker-C update took place across machines already infected with earlier variants of the

virus, the distinction between “infection date” and “turn-on date” for these machines is hard to draw. For

68

simplification, we choose to model two discrete “birth” times for a machine, either the initial March 5th

midnight (UTC) observation hour, or March 17th (actually March 16th, 19:00:00 UTC) with equal prior

probability, and to model any delays in observations after those dates as off states representing an infected

but inactive machine.

4.3 Death process and immunity

Although clean-ups do lead to use of fewer IP addresses in the population, a virus death due to clean-up of an

infected machine is different than an observed “end time” for a net block in the data set. Infected machines

can be turned off for long periods of time only to resurface when they are turned back on, or they can switch

between several IP addresses due to DHCP practices. Furthermore, an infected machine is generally going

to be turned off for some amount of time before it is cleaned of infection. Because the cleanup process after

a machine’s final shutdown is not observable (nor is it of interest in this study), we will define a “death” as

the last active hour the infected machine admits before being taken offline for clean-up.

Figure 4.4 shows the distribution of the last observed activity by /24 for the data set. This figure excludes

the final 48 hours of the observation window, as toward the end of the window, the last active hour becomes

less indicative of a possible clean-up time and more indicative of ephemeral activity such as daily activity

patterns, that would generally persist beyond the last time point of record. The plot shows that even at the

/24 level, net blocks disappear regularly from view, indicating some measure of transience or decay in the

population. The spike in end dates occurring prior to the March 17th surge is due to the anomalous initiation

of 284 ephemeral net blocks during that hour, as discussed in Section 3.4.

Figure 4.5 shows the decay by week of Ĥ , a naive estimate of the number of active hosts per hour

(Weaver, 2010b), for the weeks after the March 17th surge. Each boxplot shows the distribution of the

ratio Ĥt+168/Ĥt for the 168 hours comprising the week. A value below 1.0 indicates geometric decay.

The drop-off in activity appears most pronounced for the first week following the surge, and then levels

out toward a more gradual decline. Although the P2P scanning was implemented to help strengthen the

botnet’s communication and resilience, it also made infected machines more visible to administrators upon

its initiation. This suggests that the hazard of discovery for Conficker-C infections increased after the surge,

and that machines would be in in danger of discovery while they were turned on. The computer’s “death

69

Date

C
ou

nt
 (

/2
4

N
et

 B
lo

ck
s,

 H
un

dr
ed

s)

3/5 3/12 3/19 3/26 4/2 4/9 4/16 4/23

0

5

10

15

20

25

30

35

Figure 4.4: Last observed activity by /24 net block. This plot excludes net blocks with activity in the final
48 hours of the study. 52% of net blocks had a last active hour prior to the last two days of the observation
window, and appear on the chart.

date” t† can be set as either t† = T + 1, indicating that the infection survives at least up through the

observation window of the study, or as the last active state: t† = maxt(ηt ∈ {s, d}), indicating that the

machine is turned off and cleaned at that time within the study.

A single survival rate for all machines is a simplification of the discovery risk among the population.

In particular, most botnets have a core component of very persistent machines that are in little to no dan-

ger of being cleaned of infection. Computers running older operating systems or pirated software, poorly

administered network computers, or little-used home computers can all be late adopters to patching against

infections or cleaning infections when they occur, if either of these mitigations is used at all. To account for

70

●

●

●
●

●

●

●
●
●

●

●

●

●●●
●
● ●

●●

●●

●

●
●
●

●

●

●

●
●
●

●

●

●

●

●

●●●

●

●

●
●●

●
●
●

●

●

●
●

●
●

●

2 3 4 5 6

0.
7

0.
8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

Weeks after March 17th Surge

H
[t+

1]
/H

[t]
 b

y
W

ee
k

Figure 4.5: Decay rates by week (periodicity = 168 hours) for a preliminary estimate (Weaver, 2010b) of
active hosts per hour. Values below 1.0 indicate a decline in population.

these resilient infections, a sub-population of the botnet is modeled as immune from discovery and remedi-

ation. Similar to the model introduced by Mariano and Kadane (2001), let εi = 1 if machine i is immune

from discovery, and εi = 0 if it is not, where

εi ∼ Ber(ζ).

Conditional on εi = 1, transitions between states for machine i include only the 3×3 matrix described in

Section 4.1.2. For εi = 0, a new absorbing state representing cleanup is added to the transition model. Any

transition probability from an active state to a non-cleanup state, π·|s(t) or π·|d(t), is multiplied by a survival

71

probability φt that describes the risk of being discovered and shut off for remediation in that hour, with a

transition probability of (1−φt†) for transitioning to the cleanup state at the death date t†. For a preliminary

treating of cleanups, we set φt = φ, a constant for all hours. Survival rates may also be correlated within

related networks.

72

4.4 Summary of single-host parameters

Parameter Description Def. Prior MCMC Proposal dist.

θ
q Baseline active scan rate Γ(1.5, 3.0) Gibbs Γ(·, ·)
ω Multiplier of baseline rate during a spike β∗(10, 50, 1, 24) M-H N∗(·, 0.70)
α Geometric decay rate per hour from spike to base-

line
β(10, 15) M-H N∗(·, 0.05)

ψ

λo Mean off-to-off state transition run (unused if γo
is used instead)

β∗(1, 1, 6, 1000) M-H N∗(·, 3.0)

ρo Maximal periodic probability for off-state transi-
tions

β(1, 1) M-H N∗(·, 0.15)

νo Periodic scaling parameter for off-state transitions Γ(1, 2) M-H N∗(·, 0.25)
γo Aperiodic parameter for off-state transitions (un-

used if λo is used instead)
β(1, 1) Gibbs β(·, ·)

ρs Maximal periodic probability for spike-state tran-
sitions

β(1, 1) M-H N∗(·, 0.15)

νs Periodic scaling parameter for spike-state transi-
tions

Γ(1, 1) M-H N∗(·, 0.25)

γs Aperiodic parameter for spike-state transitions β(1, 100) Gibbs β(·, ·)
ρd Maximal periodic probability for decay-state tran-

sitions
β(1, 1) M-H N∗(·, 0.15)

νd Periodic scaling parameter for decay-state transi-
tions

Γ(1, 2) M-H N∗(·, 0.5)

γd Aperiodic parameter for decay-state transitions β(1, 1) Gibbs β(·, ·)
ε Immune (= 1) vs. non-immune (= 0) indicator Ber(ζ) Gibbs Discrete

η
ηt Active state (off, spike, decay) at time t Discrete M-H Discrete
tβ Initial infection date Discrete Gibbs Discrete
t† Cleanup (death) date Discrete Gibbs Discrete
φt Survival probability per active hour for non-

immune machines
β(2, 1) Gibbs β(·, ·)

ζ Population proportion of immune machines β(2, 4) Gibbs β(·, ·)

Table 4.1: Summary of parameters, priors and MCMC steps for the single-host model. A (·) indicates that
the proposal value depends on the current state of the chain. The function β∗(α, β, i, j) is a Beta(α, β)
distribution scaled to the range [i, j]. The function N∗(·, σ2) is a normal distribution centered at the current
value, truncated appropriately to the values with non-zero prior probability.

Table 4.1 provides a summary of the parameters included in the single-host model, as well as the pop-

ulation parameters for immunity and survival rates. Prior distributions listed are those used in the MCMC

documented in this chapter. They will be discussed in more detail in section 4.5.2. The type of MCMC step,

Metropolis-Hastings or Gibbs, is also listed for each parameter, as well as proposal distributions for each

parameter. These will be discussed further in section 4.5.3.

73

4.5 Estimation

Posterior distributions for the generation parameters of a single host can be estimated on a machine-by-

machine basis, using Markov Chain Monte Carlo techniques designed for data augmentation (Tanner and

Wong, 1987). Let ηt be the state of the machine at time t : ηt ∈ {o, s, d}, and define η = {η0, . . . , ηT , t
β, t†}.

Let yt be the observed count at time t, and define y = {y0, . . . , yT }. Letψ = (ρ{o,s,d}, ν{o,s,d}, γ{o,s,d}, λo, ε)

be the collection of the transition probability parameters and θ = (q, ω, α) be the collection of rate parame-

ters. An updating strategy iterates between the following steps:

1. Update parameters ψ from the complete conditional distribution p(ψ | η) using a combination of

Gibbs sampling and Metropolis-Hastings sampling.

2. Update parameters θ from the complete conditional distribution p(θ | η,y) using a combination of

Gibbs sampling and Metropolis-Hastings sampling.

3. Update a randomly chosen state ηt0 ∈ {ηtβ , . . . , ηt†} from the distribution π(ηt0 | η, ψ, θ,y), using

Metropolis-Hastings sampling.

4. Update birth state, death state and immunity designation jointly from the complete conditional distri-

bution π(tβ, t†, ε | η, θ, ψ) using Gibbs sampling.

Steps (3) and (4) can be considered a data augmentation step, where the states facilitate the parameter

updating described in steps (1), and (2). The relative frequency of steps chosen in each sequence can be

changed to facilitate mixing in the chain. Sections 4.5.1, 4.5.2, and 4.5.3 describe the details of these steps.

Section 4.5.4 expands the estimation strategy to include population parameters for a collection of machines

where H is known and the relationship between machines and network touchpoints is exactly one-to-one.

4.5.1 Full likelihood

For machines with no off-to-off state transitions, the likelihood `(ψ, θ,η;y) can be written as the product of

an initial probability p(η0), state-to-state transition probabilities, and Poisson count probabilities conditional

74

on the rates defined for each underlying state:

`(ψ, θ,η;y,φ, ε) = p(ηtβ)

t†∏
t=tβ+1

p(ηt | ηt−1, ψ, φt, ε)

t†∏
t=tβ

p(yt | ηt, θ) (4.5)

Let O, D, and S be the set of hours t in off, decay, or spike states, respectively. Let Ts2|s1 be the set of

hours t that transition to state s2 at t+ 1 from state s1 at t, when at least one of s1 or s2 is active. Let To|o be

the set of times t that start each string of consecutive off states, and let ct be the count of off-to-off transition

states following time t ∈ To|o. Define the following sets of lag states relative to spike and decay states:

LB: all decay times t that follow an off state with no intervening spike states. At any hour t ∈ LB ,

the infected machine broadcasts at the baseline rate q.

Lk, k = 0, 1, 2, ...: all states that follow k steps after a spike state, with k = 0 indicating spike states

themselves. At any hour t ∈ Lk, the infected machine broadcasts at the rate q(1 + αk(ω − 1)).

Let T δβ = t† − tβ + 1 be the total machine lifetime, and let φT+1 = 0 to indicate a machine that has

not been cleaned as of the latest hour in the data set. Collecting like terms for immunity, survivability, and

hourly scan rates, as well as incorporating off-to-off transitions, the full likelihood can then be expressed as

the following product:

`(ψ, θ,η,φ, ζ;y) = ζε

[
(1− ζ)(1− φt†)

∏
t∈S∪D

φt

]1−ε

×
∏
t∈To|o

e−λoλcto
ct!

×

 ∏
s1,s2∈{o,s,d}−{s1=s2=o}

∏
t∈Ts1|s2

πs1|s2(t)

×

∏
t∈O

1{yt=0}
∏
t∈LB

e−qqyt

yt!

T δβ∏
k=0

∏
t∈Lk

eq(1+αk(ω−1))
[
q(1 + αk(ω − 1))

]yt
yt!

(4.6)

The first term is the additional survival rates multiplied into the transition probabilities to incorporate

the cleanup state for non-immune machines. The second term is the Poisson likelihood for each string

of consecutive off-to-off state transitions. The third term is the product of 3-state transition probabilities

75

for each collection of observed state-to-state transitions that are not off-to-off transitions. Recall that each

transition probability is a function of ψ. The final term is the same product of Poisson probabilities that was

expressed as a time series in Equation 4.5, but collected together into subsets of hours that have equal means

as a function of the lag k from a spike or off state. The form of Equation 4.6 is useful for collecting like

terms in the derivation of complete conditional distributions for system parameters.

4.5.2 Priors

Table 4.1 provides a summary of the prior distributions used for parameters in the single host model. When

possible, prior hyperparameters are informed by previous knowledge, and parametric forms are chosen with

the physical limits of the parameter in mind as well as ease of functional form for conditional distributions.

Distribution Hyperparameters p.d.f. π(ϕ | ·) E(ϕ)

Gamma (Γ) k > 0; s > 0 1
skΓ(k)

ϕk−1e−ϕ/s ks

Beta (β) a > 0; b > 0 Γ(a+b)
Γ(a)Γ(b)ϕ

a−1(1− ϕ)b−11{0≤ϕ≤1}
a
a+b

Scaled Beta (β∗) a > 0; b > 0 Γ(a+b)
(u−l)Γ(a)Γ(b)

(
ϕ−l
u−l

)a−1 (
1− ϕ−l

u−l

)b−1
1{l≤ϕ≤u}

ua+lb
a+b

−∞ < l < u <∞

Table 4.2: Summary of parametric prior distributions and hyperparameters

In addition to general finite discrete distributions, the model makes use of three parametric families

for prior distributions: the Beta (β) distribution parameterized by success shape a and failure shape b, the

Gamma (Γ) distribution parameterized by shape parameter k and scale parameter s, and the scaled Beta

(β∗) distribution which uses success and failure shapes a and b along with a set of scaling bounds, l and

u. For a model parameter ϕ, any relevant associated hyperparameter is designated using a subscript, for

example, kq and sq to designate the shape and scale parameters for a Gamma distribution used as a prior

for the parameter q. Table 4.2 summarizes the functional forms of these parametric distributions in terms of

their hyperparameters. The Gamma distribution Γ(k, s) is differentiated from the analytic Gamma function

Γ(x) by specification of the two hyperparameters.

Prior distributions for the rate parameters θ are informed by the results of sandbox testing and network

76

telescope parameters. The baseline rate q > 0 uses a Gamma(kq = 1.5, sq = 3.0) distribution, yielding a

prior mean of 4.5 with reasonable deviations allowing for different network speeds and uncertainty about

the size of the monitored network for the study.

The spike rate ω was chosen to reflect both the results of the sandbox tests, and the dependence of UDP

spikes on the number of open network connections. Information collected from the sandbox tests indicated

that rate spikes between two and ten times the baseline rate were common, with the possibility of much

larger spikes occurring due to opening of many multiple network connections. A hard limit for the number

of simultaneous scanning threads from the reverse engineering led to setting a strict maximum value mω of

the mean spike multiplier. The maximum number of allowable open threads is 32 in the botnet’s source code,

although most day-to-day user activity rarely initiate this many threads at once. In initial MCMC runs the

maximum value was set to 24, and preliminary estimates based on EM for a test set of probable individual

machines showed no initial spike values greater than 16 (see next section). The spike rate was also restricted

to take values greater than 1 for interpretability. A Scaled Beta(aω = 10, bω = 50, lω = 1, uω = 24) is used

to model this distribution.

The prior on the geometric decay rate α uses a Beta(aα = 10, bα = 15) distribution in order to em-

phasize the empirical observation of decay to baseline occurring generally within 2 to 6 hours after a spike

occurs. Low values for α also help to differentiate between possible ambiguity in the model between spike

and decay states, that can occur if decay rates are slow enough (α ≈ 1) to admit long strings of high values.

Figure 4.6 shows density plots of these three distributions.

Prior distributions for the transition probability parameters reflect the uncertainty about the distribution

of different kinds of day-to-day activity among the population of infected hosts. Uniform priors (Beta or

Scaled Beta distributions with a = b = 1) are chosen for the average off-to-off state transition run λo,

the maximal periodic probability ρ for each of off, spike and decay states, and the aperiodic transition

probability γd for decay states, to allow for a range of activity types from sporadic activity, to workday

patterns, to machines that are rarely turned off. Periodic scaling parameters ν for off and decay states

are modeled with a Gamma(kνo = kνd = 1, sνo = sνd = 2), where the scale parameter 2 is also the

value of the prior mean. These priors are strongly informative due to the fact that the parametric form of

p(ρa, νa, t
∗) flattens out appreciably as ν increases, with changes in values greater than 10 causing little

77

0 5 10 15 20 25

0.
00

0.
05

0.
10

0.
15

Baseline (q)

P
ri(

q)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Decay rate (alpha)

P
ri(

al
ph

a)

5 10 15 20

0
2

4
6

8

Spike rate (omega)

P
ri(

om
eg

a)

Figure 4.6: Prior distributions for the Poisson rate parameters q, ω, and α.

change to the functional shape of the transition probability. The prior for ν for spike states is chosen as a

Gamma(kνs = 1, sνs = 1), which focuses slightly more weight on values that admit a larger 24-hour time-

dependent curve when transitioning away from a spike to either a decay or off state. This parameterization

should also help to coax the underlying states of aperiodic baseline machines toward progressions of decay

states as opposed to spike states.

The exception to these non-informative priors is the prior for the aperiodic parameter for spike to spike

state transitions, γs, which is modeled as a Beta(aγs = 1, bγs = 100) in order to keep the interpretability

78

of spike states as events that rarely occur in sequence. Setting spike-to-spike transitions as rare events

disambiguates (to some extent) the modes in likelihood that can occur between a baseline value of b with

many decay states in a row, as opposed to a baseline value of b/c and a spike multiplier of c with many spike

states in a row, although this ambiguity does still appear in the test data for machines that have very few

hours with non-zero counts.

For discrete state values, η0, tβ and t†, discrete uniform priors are used. For η0, equal probability among

off, decay or spike states is assumed. The birthdate is assumed uniformly likely as either the start time

t = 0 or the start of the March 17th surge at t = 284. A priori, death dates are assumed equally likely

among the 1225 possibilities (including “survived beyond time T = 1224”). This could use improvement

in future models, particularly to include the first few weeks past the March 17th surge as higher likelihoods

for cleanup of a machine. Prior values for the population parameters φt and ζ are discussed in Section 4.5.4.

4.5.3 Conditional distributions and sampling strategies

Let ϕ ∈ {ψ, θ,η,φ, ζ} be a parameter in the model, and let {ψ, θ,η,φ, ζ}|ϕ be the vector of all parameters

except for ϕ. The complete conditional distribution of ϕ has the general form:

π(ϕ | {ψ, θ,η,φ, ζ}|ϕ,y) =
π(ϕ)`(ϕ, {ψ, θ,η,φ, ζ}|ϕ;y)∫
ϕ π(ϕ)`(ϕ, {ψ, θ,η,φ, ζ}|ϕ;y)

, (4.7)

where all parameter values in Equation 4.6 except for ϕ are considered fixed constants. Any multiplicative

terms not containing ϕ in the numerator product can also be pulled out from the denominator integral as

constants and thus canceled out of the equation. The collection of prior and likelihood terms containing ϕ

in the numerator of Equation 4.7 are called the kernel of the complete conditional distribution of ϕ. When

the functional form of this kernel is recognizable as a parametric family (or the denominator integral can

be computed analytically via other means), a new value ϕm+1 can be sampled at m + 1-st iteration of

the Markov Chain using a Gibbs step dependent on the current state of all other parameters. A conjugate

conditional distribution has the same parametric form as the prior distribution. When the form of π(ϕ | ·) is

the same as that of π(ϕ), then the calculation of this complete conditional distribution reduces to describing

updated values for the prior hyperparameters, as a function of the current hyperparameter, the m-th state of

parameters and the observed data y. For conjugate Gibbs steps, denote by h∗ the updated value of the prior

79

hyperparameter h.

When the kernel cannot be solved analytically, a Metropolis-Hastings step is used instead of a Gibbs

step. The Metropolis-Hastings step generates a candidate value ϕc from a proposal distribution g(ϕ | ϕm),

and then sets ϕm+1 = ϕc with probability r:

r = min

{
1,

π(ϕc)`(ϕc, {ψ, θ,η,φ, ζ}|ϕ;y)

π(ϕm)`(ϕm, {ψ, θ,η,φ, ζ}|ϕ;y)

g(ϕm | ϕc)
g(ϕc | ϕm)

}
(4.8)

If ϕc is rejected, then the step concludes by setting ϕm+1 = ϕm.

For Metropolis-Hastings steps for continuous parameters, a truncated Normal distribution is used for

proposals. If l < ϕ < u for a parameter ϕ, with a current iteration ϕm in the Markov chain, then the

proposal distribution g(ϕc | ϕm) with variance σ2
ϕ is

g(ϕc | ϕm, σ2
ϕ, l, u) =

[
Φ
(
u−ϕm
σϕ

)
− Φ

(
l−ϕm
σϕ

)]−1
1√

2πσϕ
exp

[
(ϕc−ϕm)2

2σ2
ϕ

]
, l < ϕc < u

0, otherwise

Here, Φ(·) is the CDF of the Standard Normal distribution.

Updating θ

In this section, denote by NA the cardinality of a set A, and note that for the set Lk from Equation 4.6

(including the baseline set LBwhere k =∞),

∏
t∈Lk

eq(1+αk(ω−1))
[
q(1 + αk(ω − 1))

]yt
yt!

=
exp

[
−NLkq(1 + αk(ω − 1))

] [
q(1 + αk(ω − 1))

] ∑
t∈Lk

yt

∏
t∈Lk

yt!
,

where the denominator term is a function of the observed data alone and thus cancels in the kernel for any

parameter ϕ. The range of positive probability for each parameter is specified in bold in the description;

conditional distributions have value 0 outside the specified parameter ranges.

80

For q > 0 : The kernel for the baseline rate q has the following form:

π(q | η,y, θ|q, kq, sq) ∝ q
(kq−1+

∑
Tδ
β
yt)

exp

− q

sq

(T δβ −NO) +

T δβ∑
k=0

NLkα
k(ω − 1)

This is a conjugate conditional distribution; it has the functional form of a Gamma distribution with param-

eters

k∗q = kq − 1 +
∑
T δβ

yt;

s∗q = sq

(T δβ −NO) +

T δβ∑
k=0

NLkα
k(ω − 1)

−1

.

Updated values of q can be sampled using a Gibbs step with the Gamma(k∗q , s
∗
q) distribution.

For lω < ω < uω : The kernel for the spike rate ω has the following form:

π(ω | η,y, θ|ω, lω, uω, aω, bω)

∝
(
ω−lω
uω

)aω−1 (
lω−ω
uω

)bω−1
exp

−ωq T δβ∑
k=0

NLkα
k

 T δβ∏
k=0

(
1 + αk(ω − 1)

) ∑
t∈Lk

yt

.

This distribution can be sampled using a Metropolis-Hastings step with a truncated Normal proposal in the

interval [lω, uω].

For 0 < α < 1 : The kernel for the decay rate α has the following form:

π(α | η,y, θ|α, aα, bα) ∝ αaα−1(1− α)bα−1 exp

−q(ω − 1)

T δβ∑
k=0

NLkα
k

 T δβ∏
k=0

(
1 + αk(ω − 1)

) ∑
t∈Lk

yt

.

This distribution can be sampled using a Metropolis-Hastings step with a truncated Normal proposal in the

interval [0, 1].

81

Updating ψ

For conditional distributions of the transition probability parameters ρ, ν, and γ, it is useful to consider a

set of hours comprising “success” vs. “failure” transition states for each parameter, relative to the format of

the transition probabilities π·|·(t). For the function g(ϕ) equal to either the identity function or the periodic

transition function p(ρa, νa, t∗), a transition πs1|s2(t) at hour t is a “success” transition for a parameter ϕ

if ϕ enters into the probability as g(ϕ) alone, and it is a “failure” transition if ϕ enters into the probability

through a (1− g(ϕ)) term instead. Denote by Sϕ,a and Fϕ,a the set of hours comprising success transitions

and failure transitions for ϕa from state a, respectively. As an example, Section 4.1.2 outlines the transitions

away from a spike state as:

πo|s(t) = (1− γs)(1− p(ρs, νs, t∗))

πs|s(t) = γs

πd|s(t) = (1− γs)(p(ρs, νs, t∗))

Using this parameterization and the set notation T·|s from Section 4.5.1, the set of success transitions for

ρs is the set Sρ,s = Td|s, and the set of failure transitions for ρs is the set Fρ,s = To|s. A similar argument

shows that these are the success and failure sets for νs as well. The set of success transitions for γs is the set

Sγ,s = Ts|s, and the set of failure transitions for γs is the set Fγ,s = To|s ∪ Td|s.

For 0 < ρa < 1 : Using a Beta(aρa , bρa) prior distribution, the kernel for the periodic amplitude ρa for a

state a ∈ {o, s, d} has the following form:

π(ρa | η, ψ|ρa , aρa , bρa) ∝ (ρa)
aρa−1+NSρ,a (1− ρa)bρa−1

∏
t∈Fρ,a

(
1− ρa

νa + 2
[sin(2πt∗/24) + νa + 1]

)
.

This distribution can be sampled using a Metropolis-Hastings step in the Markov chain. Note that as νa →

∞, this conditional distribution approaches a conjugate Beta distribution with parameters a∗ρa = aρa+NSρ,a

and b∗ρa = bρa + NFρ,a . This distribution can also be sampled using a rejection method based on this Beta

distribution.

82

For νa > 0 : The kernel of the periodic baseline νa for state a ∈ {o, s, d} has the following form:

π(νa | η, ψ|νa , kνa , sνa) ∝ (νa)
kνa−1 exp

[
νa
sνa

]
×

∏
t∈Sν,a

(
ρa

νa + 2
[sin(2πt∗/24) + νa + 1]

)

×
∏

t∈Fν,a

(
1− ρa

νa + 2
[sin(2πt∗/24) + νa + 1]

)

This distribution can be sampled using a Metropolis-Hastings step with a truncated Normal proposal distri-

bution.

For 0 < γa < 1 : The kernel of the aperiodic transition parameter γa for a ∈ {o, s, d} has the following

form:

π(γa | η, ψ|γa , aγa , bγa) ∝ (γa)
aγa−1+NSγ,a (1− γa)bγa−1+NFγ,a

This is a conjugate conditional distribution; it has the functional form of a Beta distribution with parameters

a∗γa = aγa +NSγ,a

b∗γa = bγa +NFγ,a

Updated values of γa can be sampled using a Gibbs step with the Beta(a∗γa , b
∗
γa) distribution.

For lλo < λo < uλo : Using the scaled Beta(aλobλo , lλo , uλo) prior distribution, the kernel for the mean

number of hours spent in consecutive off states, λo, has the following form:

π(λo | η,y, ψ|λo , lλo , uλo) ∝ exp
[
−NTo|oλo

]
λ
aλo−1+

∑
t∈To|o

ct

o (1− λo)bλo−1

When bλo = 1, as in the case for example with a Uniform(lλo , uλo) prior, the complete conditional distri-

bution π(λo | ·) is the kernel of a Gamma distribution restricted to the interval [lλo , uλo]. The parameters

83

are

kλo = aλo +
∑
t∈To|o

ct

sλo = [NTo|o]
−1

It can be sampled in the chain using either a Metropolis-Hastings step, or a Gibbs step using for example

the rejection method on an unrestricted Gamma distribution with the same parameters. The only difference

between using a Gibbs step with a rejection method, and using a Metropolis-Hastings step with the same

Gamma distribution as a proposal, is that the Gibbs step would repeatedly draw proposal values until it

obtained a value that was accepted, whereas each Metropolis-Hastings step would perform only one draw

and accept or reject it.

Sampling of ε is discussed in the section addressing updating birth and death times.

Updating ηt

It is useful to consider the likelihood as its time series progression from Equation 4.5 for updating states,

as the conditional distribution of a state at hour t depends on ψ, θ, and also on subsections of η|ηt . Let

tβ ≤ ηt0 ≤ t† be a state selected to be updated. Because of the geometric link between spike and decay

states, changing the state at time t0 also changes the mean scan rates in neighboring hours. Define u0 and

v0 as the interval affected by a change of state at time t0. The definition of this interval depends on the value

of the observed count at the chosen state.

For yt0 > 0: When there is no possibility of transitioning to an off state, the interval of affected states is

defined as:

u0 = max
t

[(tβ, {tβ ≤ t < t0 : ηt ∈ {o, s}})] (4.9)

v0 = min
t

[(t†, {t0 < t ≤ t† : ηt ∈ {o, s}})]

84

When yt > 0, the conditional path likelihood [p(t, a;η, θ, ψ,y)]vu is defined by the product:

[p(t, a;η, θ, ψ,y)]vu = πa|ηt−1
(t− 1)πηt+1|a(t)p(yt | ηt = a, θ)

v∏
`=u,` 6=t

p(y` | η`, θ)

This is the product of the 3× 3 transition probabilities to and from state ηt, multiplied by the product of the

likelihood of the data given the scan rate parameters for the entire block between u and v.

For yt0 = 0: When there is a possibility to transition to or from an off state, the interval of affected states

depends on the values at t0−1 and t0 +1. if ηt0−1 6= o, then u0 is defined as in Equation 4.10. If ηt0−1 = o

then,

u0 = max
t

[(tβ, {tβ ≤ t < t0 : ηt ∈ {d, s}})]

Similarly, if ηt0+1 6= o, then v0 is defined as in Equation 4.10, but if ηt0+1 = o then

v0 = min
t

[(t†, {t0 < t ≤ t† : ηt ∈ {d, s}})]

These new definitions find the start or end of the run of off states that abut t0, as opposed to the start or end

of the run of decay states. When yt0 = 0, the conditional path likelihood [p(t, a;η, θ, ψ,φ, ε,y)]vu is defined

by the product:

[p(t, a;η, θ, ψ,φ, ε,y)]vu =
∏

t∈To|o,u≤t≤v

e−λoλcto
ct!

(4.10)

× [(φt−1)
(1−ε)1{ηt−1 6=o}πa|ηt−1

(t− 1)]
1{(ηt−1,a)6=(o,o)}

× [(φt+1)(1−ε)1{a6=o}πηt+1|a(t)]
1{(a,ηt+1)6=(o,o)}

× p(yt | ηt = a, θ)
v∏

`=u, 6̀=t
p(y` | η`, θ)

This product accounts for the transition probabilities that may change within the affected interval due to

addition or subtraction of ηt0 from a consecutive run of off states.

The kernel of the complete conditional distribution of ηt0 is a discrete distribution where the probability

85

of ηt0 = a is proportional to the appropriate conditional path likelihood [p(t0, a;η, θ, ψ,y)]v0u0 . The full con-

ditional distribution is normalized by dividing by the sum of conditional path likelihoods for a ∈ {o, s, d}:

π(ηt0 = a | η, θ, ψ,y) =
[p(t0, a;η, θ, ψ,y)]v0u0∑

x∈{o,s,d}[p(t0, x;η, θ, ψ,y)]v0u0
(4.11)

When yt0 > 0, the probability that η0 = o is 0 due to the indicator function 1yt=0 for off states in the path

likelihood.

This distribution can easily be normalized to create a Gibbs step, but a Metropolis-Hastings step is used

in order to avoid proposing the same state as the current iteration. Suppose ηt0m = a0. When yt0 > 0,

the proposal distribution places probability 1 on the remaining alternative state η∗ = a1, and the acceptance

ratio r reduces to the likelihood ratio:

r =
[p(t0, η

∗;η, θ, ψ,y)]v0u0
[p(t, ηt0m;η, θ, ψ,y)]v0u0

For yt0 = 0, at iteration m a proposal η∗ = a1 is chosen from the two alternative states a1 and a2 to the

current state η0m, according to the re-normalized conditional probabilities in Equation 4.11, and accepted

with probability:

r =
[p(t0, η

∗;η, θ, ψ,φ, ε,y)]v0u0 + [p(t0, a2;η, θ, ψ,φ, ε,y)]v0u0
[p(t, ηt0m;η, θ, ψ,φ, ε,y)]v0u0 + [p(t0, a2;η, θ, ψ,φ, ε,y)]v0u0

If the last non-off state is proposed to change to an off state, and it is also the death date t† for a non-immune

machine, then the proposal step includes the effect of changing the death date to the next earliest observed

non-off state.

Updating tβ , t†, and ε

With the path η considered fixed, let t` be the latest non-off state in η. there are six possible states for the

collection of discrete parameters (tβ, t†, ε). These are described in Table 4.5.3.

For switching a birthdate from 284 to 0, all newly entered states between 0 and 284 are assigned to an off

state. For switching a death date from t` to 1224, all newly entered states between t` and 1224 are assigned

86

tβ t† ε Description
0 1224 1 Immune, infected throughout the entire observation period.
0 1224 0 Not immune, infected throughout the entire observation period.

284 1224 1 Immune, infected from March 17th through the end of the obser-
vation period.

284 1224 0 Not immune, infected from March 17th through the end of the
observation period

0 t` 0 Not immune, infected from March 3rd and cleaned on the last ob-
served non-off state.

284 t` 0 Not immune, infected from March 17th and cleaned on the last
observed non-off state.

Table 4.3: Candidate states for (tβ, t†, ε) when η is fixed.

to an off state. The complete conditional distribution π((tβ, t†, ε) | η,φ, ζ, ψ) has the following form:

π((tβ, t†, ε) | η,φ, ζ, ψ) (4.12)

∝ ζε
[
(1− ζ)(1− φt†)

∏
t∈S∪D φt

]1−ε e−2λoλ
cmin(t∈To|o)

+cmax(t∈To|o)
o

cmin(t∈To|o)
!cmax(t∈To|o)

!

∏
t∈O 1yt=0

This distribution is normalized by summing across the six possibilities listed in Table 4.5.3, and is updated

using a Gibbs step.

4.5.4 Population hyperparameters

The single-host model generalizes to populations of independent machines where the number of machines

H is known and the counts yit are directly observable, for example within a network where a one-to-one

relationship exists between machines and IP addresses. To generalize the estimation for the population, the

updating strategy is:

• Repeat steps (1)-(4) above for machines i = 1, . . . ,H , with appropriate repetitions of steps to ensure

mixing.

• Update population parameters φ and ζ, conditional on the current states and parameters of all ma-

chines in the population, using Gibbs sampling.

87

Using a Beta(aφt , bφt) prior, the complete conditional distribution of φt has the following form:

π(φt | η1, . . . ,ηH) ∝ (φt)
aφt
−1

(1− φt)bφt−1
∏

{i:ηit∈S∪D,t†i 6=t}

(φt)
1−εi

∏
{i:t†i=t}

(1− φt)1−εi

The first product term is taken across machines that are not turned off or cleaned at time t, and a survival

rate φt is multiplied to the likelihood for all non-immune machines. The second product is taken across

machines that have a cleanup date of t, in which case (1 − φt) is multiplied into the likelihood. For any

t < T , t†i = t only if the machine is not immune. This distribution is a conjugate conditional distribution; it

has the functional form of a Beta distribution with parameters

a∗φt = aφt +
H∑
i=1

(1− εi)1{ηit∈S∪D}1{t†i 6=t}

b∗φt = bφt +
H∑
i=1

(1− εi)1{t†i=t}

Updated values of φt can be sampled using a Gibbs step with the Beta(a∗φt , b
∗
φt

) distribution.

Using a Beta(aζ , bζ) prior, the complete conditional distribution of the immune rate ζ has the following

form:

π(ζ | η1 . . .ηH) ∝ (ζ)aζ−1+
∑
i εi(1− ζ)bζ−1+H−

∑
i εi

This is a conjugate conditional distribution; it has the functional form of a Beta distribution with parameters

a∗ζ = aζ +
∑
i

εi

b∗ζ = bζ +H −
∑
i

εi

Updated values of ζ can be sampled using a Gibbs step with the Beta(a∗ζ , b
∗
ζ) distribution.

88

4.6 Analysis and Results

4.6.1 Finding “single host” data

The characteristics of individual machines are nuisance parameters for the overall population estimates

when a one-to-one association does not exist between machines and IP addresses. But population estimates

depend on an accurate model of active behavior based both on sandbox testing, and on how the activity

varies among individuals “in the wild”. Validating the single-host model is contingent on finding /24s in

the data set that likely map consistently to a single machine. To do this, /24s from the Conficker-C data set

were compared to a data set obtained from the Waledac botnet in 2009. Waledac is a malicious program that

used infected hosts in the Conficker botnet to propagate fake anti-virus software.

Researchers infiltrated the Waledac Command and Control channel for an 18-day period in December of

2009, and they were able to tie unique identifiers of machines to IP addresses through which the machines

checked in to a central Command and Control server. This allowed the researchers to explicitly model the

IP-machine dynamic in the botnet.

Data on Waledac was collected from December 4th through 22nd, 2009. Of the 1, 091, 013 /24s appear-

ing in the Conficker-C data set, 180, 347 of them (16.5%) also appeared in the Waledac data set. Many of the

links in the Waledac graph were “singleton pairs”, that is, a machine ID and IP address pair that exclusively

appeared together and nowhere else. A list of 870 “persistent singleton” IP-machine pairs was compiled

from the set of singleton pairs in Waledac that overlapped the Conficker-C data set. These persistent single-

tons appeared consistently throughout at least 7 days of the 18-day window of data collection for Waledac.

These persistent singletons comprised 837 /24 net blocks, with 804 isolated net blocks containing only a

single IP address in the Waledac data.

This set of 804 isolated persistent singletons in Waledac was used as the starting place to search for

/24 net blocks with high probability of a one-to-one ratio to machines in the Conficker-C data set. In

the Conficker-C data set, the set was further reduced to 179 /24s for which a maximum of one unique IP

address was recorded for Conficker-C data in the two-month window. This set included two obvious NATs

with average hit rates of over 100 connections per hour, which were removed. A further 23 machines with

fewer than 8 hours of activity across the 51-day window were also excluded, resulting in a set of 154 /24s

89

with evidence of single-machine activity in Waledac. Figure 4.7 shows a graph of the scan hits per hour

originating from this set (Note that the blocks are not contiguous but are plotted in IP address order). Color

intensity (black to bright yellow) is a log-scale measure of the number of connection attempts originating

from each /24 in the picture, directed at destinations within the monitored network.

Time

3/05 3/10 3/15 3/20 3/25 3/30 4/04 4/09 4/14 4/19 4/24

100.100.89.0

100.100.55.0

100.100.95.0

100.100.90.0

100.100.90.0

100.100.71.0

100.100.93.0

100.100.154.0

100.100.67.0

100.100.162.0

100.100.91.0

100.100.245.0

100.100.183.0

100.100.61.0

100.100.197.0

100.100.175.0

Waledac Singletons: FL/hr

Figure 4.7: Conficker-C UDP scan hits per hour from a set of 154 /24 net blocks marked as persistent
singletons (1 IP address to 1 machine) in an observational study of the Waledac botnet. Color intensity
(black to bright yellow) is a log-scale measure of the number of connection attempts originating from each
/24 in the picture, directed at a large monitored network.

For this analysis, the value of t∗ estimated independently for each net block (see Section 3.4.2) was used

as a fixed measurement of periodic alignment, as opposed to being updated within the MCMC structure.

90

4.6.2 Modeling decisions and starting values

Parameter Description Start S1 Start S2 Start S3

θ
q Baseline active scan rate 4.0 9.0 by machine
ω Multiplier of baseline rate during a spike 3.0 2.0 by machine
α Geometric decay rate per hour from spike to

baseline
0.5 0.9 by machine

ψ

λo Mean off-to-off state transition run by machine by machine by machine
ρo Maximal periodic probability for off-state

transitions
0.8 0.5 by machine

νo Periodic scaling parameter for off-state tran-
sitions

0.5 0.5 by machine

γo Aperiodic parameter for off-state transitions unused unused unused
ρs Maximal periodic probability for spike-state

transitions
0.8 0.5 by machine

νs Periodic scaling parameter for spike-state
transitions

0.5 0.8 by machine

γs Aperiodic parameter for spike-state transi-
tions

0.5 0.5 by machine

ρd Maximal periodic probability for decay-state
transitions

0.8 0.5 by machine

νd Periodic scaling parameter for decay-state
transitions

0.5 0.5 by machine

γd Aperiodic parameter for decay-state transi-
tions

0.9 0.5 by machine

ε Immune (= 1) vs. non-immune (= 0) indica-
tor

Stochastic Stochastic Stochastic

η
ηt Active state (off, spike, decay) at time t by machine by machine by machine
tβ Initial infection date 0 0 0
t† Cleanup (death) date 1224 1224 1224
φ Survival probability per active hour for non-

immune machines
Stochastic Stochastic Stochastic

ζ Population proportion of immune machines Stochastic Stochastic Stochastic

Table 4.4: Three schemes for starting values for parameters in the single-host generation model. Stochastic
or machine-dependent starting values are described further in the text.

Each IP address in the set of Waledac-informed singletons was considered as the complete record of a

single machine for the duration of the study. The graph was initialized and fixed to match one machine per

net block for the 154 observed /24s. For simplicity, the survival rate φt was set such that φt = φ for all t.

Starting values for the non-state system parameters are shows in Table 4.6.2. Three different sets of

starting values were used for the system parameters, in order to assess the effect of starting values on chain

91

convergence. The population parameters ζ0 and φ0 were initialized by a random draw from the prior. The

initial immunity state for each machine was determined by a coin flip using the starting value ζ0.

For starting values S1 and S2, the state vector ηt and off rate λo were initialized for each machine as

follows:

1. Let P95,1+ be the 95-th percentile of the counts at hours {t : yt > 0}. Set η0
t = s for the set

{t : yt ≥ P95,1+}.

2. if y0 = 0, set η0
0 = o, and assume that the machine was turned off for the three hours prior to the start

of the observation window.

3. Set η0
t = o for the set {t : yt = 0 and yt−1 = yt−2 = yt−3 = 0}.

4. Set η0
t = d for all remaining hours.

5. Let C0 be the number of strings of consecutive off states. Initialize λo as :

λo =
|{t : η0

t = o}|
C0

.

For the third set of starting values, S3, estimates were set on a machine-by-machine basis using a Poisson

mixture analysis, with starting values of q and ω set empirically using the two groups. Given the set of active

hours described by the starting scheme for S1 and S2, a further refinement to the starting values of both spike

vs. decay states, as well as q, ω and the transition probability parameters was set as follows.

1. Use the spike vs. decay states from the 95-th percentile analysis from S1 and S2, and the respective

sample averages for each group, as starting points in a 2-parameter Poisson mixture model,

p(yt) = π0f(yt;λ0) + π1f(yt;λ1),

where f(y;λ) is the Poisson density of x with mean λ, Zt is the group assignment (0 or 1) of yt, and

λ0 < λ1. Refine these estimates using E-M until convergence.

2. Compare the BIC of the 2-parameter model to the BIC of a single parameter model, assuming all

92

active values broadcast at a shared baseline rate q. Select starting values according to the model

chosen.

3. If the 2-parameter model is chosen:

• Set q = λ0, ω = λ1/λ0, and α = 0.65.

• Set ηt = s if Pr(Zt = 1|yt) ≥ 0.75 (this tries to account for decay values that may still seem

like higher spikes).

• Keep the starting values for ψ as in the starting values from S2.

4. If the 1-parameter model with mean λ is chosen:

• Set q = λ, ω = 6.0, and α = 0.25.

• Set γs = 0.001 and γd = |{t : ηt 6= o}|/1224.

• Flatten the starting values for the periodicity by setting νo = νd = 15.0.

• Keep other starting values for ψ as described in scheme S2.

Figure 4.8 shows a plot of the EM -based initial starting values (S3) for q and ω for the 154 IP addresses

in the sample set. Red indicates machines for which the 1-parameter model was chosen over the 2-parameter

model (13 machines). Despite the existence of a few outliers with baseline values > 20, most of the initial

parameters show consistency with the result of the sandbox testing and the prior distributions for single

hosts.

4.6.3 MCMC estimation details

MCMC chains were run for 30, 000 iterations using the fixed starting states from S1, and for 30, 000 itera-

tions using the starting values based on EM refinement. Each iteration consisted of the following steps:

1. For each of the 154 machines:

• Perform one updating step (Metropolis-Hastings or Gibbs) in sequence for each system param-

eter in (θ, ψ|{tβ ,t†,ε});

93

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●● ●

baseline (q) initial

sp
ik

e
ra

te
 (

om
eg

a)
 in

iti
al

0 2 4 6 8 10 12 14 16 18 20 22 24

2

4

6

8

10

12

14

16

Figure 4.8: Starting states for q and ω informed by fitting a time-independent Poisson mixture model to the
active states determined using the S3 starting value algorithm.

• Perform updating steps in sequence for 100 states chosen randomly from between the current

birth and death dates of the machine;

• Perform a joint updating step to sample a valid configuration of birth date, death date, and

immunity status for the machine.

2. Update the survival rate φ for the population

3. Update the immunity rate ζ for the population.

All chains were thinned by a value of 5 for ease of storage: at the end of every fifth full iteration of

steps (1) through (3), the values of all states and all parameters for each machine, as well as the population

parameters, were written to disk. The first 500 thinned iterations were removed from each parameter chain

as burn-in. The remaining data points were used to calculate posterior means. The state iterations were used

to build an empirical marginal distribution of states for each hour t in the sample, in order to analyze the

94

estimation results. For continuous parameters, Geweke’s test of equality of means for the beginning and end

of the chain was used as a rough assessment of convergence within each chain. Summaries are shown for

the S1 starting states, with discussions of comparisons to the EM-based S3 starting states.

The marginal distribution of states at each time t does not preserve the order of the states visited during

iterations of the chain. In order to assess mixing, the distribution of runs of consecutive states in the chain

was summarized for each time t for each machine. Let M be the total number of iterations of the chain

after removing burn-in. For the discrete-valued state at time t, the number of runs of consecutive states, Rt

is recorded to obtain an understanding of how the marginal proportions are distributed across the length of

the chain. This measure is coupled with the Kullback-Liebler divergence of the marginal distribution with

the distribution of states the first 50% of the chain and the last 25% of the chain, to measure stationarity. A

well-mixing chain should have a relatively large number of runsRt with respect to the marginal proportions,

and should show only small differences in the K-L divergence from the beginning vs. the end of the chain.

4.6.4 Population distribution of parameters

The distribution of the individual differences in θ and ψ can help to inform the population distribution

hyperparameters for analysis of networks where H is unknown. Figure 4.9 shows the posterior mean values

for q and ω in the population. As compared to the starting values, the baseline rates are generally lower

and more clustered between 0 and 10. A surprising number of machines (44) showed evidence of q vs. ω

confusion. These machines show up as a cluster at the top right corner of the graph. They had very low q

values (< 1), and ω values near the hard coded upper limit of 24. Another 5 machines show baseline rates

q > 10, which is possibly an indication of more than one host residing behind the IP address.

Figure 4.10 shows density plots of the posterior distribution of the common survival rate φ and the

immune rate ζ from the population. The modeling of a single survival rate does not appear to be flexible

enough to capture the difference between immune and non-immune machines. The posterior means of the

death dates of all but 3 machines were equal to 1224, and the posterior means of all birth dates were set at 0,

indicating that the timelines were rarely set to shorter intervals than the entire range. A more flexible model

for survival rates with time can help alleviate this problem.

Acceptance rates for the state proposals (aggregated across all 1224 states) were universally low for all

95

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

baseline (q) posterior mean

sp
ik

e
ra

te
 (

om
eg

a)
 p

os
te

rio
r

m
ea

n

0 2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

22

24

Figure 4.9: Posterior means of q and ω in the population. Baseline rates are more contained within the range
of 1 to 10 than the rates that were used as starting values. But there are a large number of machines (44) in
the upper left-hand corner that exhibit some confusion between spike and decay states, yielding low baseline
rates coupled with high spike rates to model generally sparse observations.

machines (∼ 2% of all proposals were accepted in many cases). In some cases this was due to obvious

spikes or to long strings of low counts clearly indicating decay states. Many states with 0 counts were not

changed throughout the model iterations. The median number of runs per chain for chains with an observed

count of 0 was 35 runs per chain. For each discrete observation size y0 > 0, the median number of runs

per hour across all hours with yt = y0 and all machines was generally less than 5 runs per chain, but the

distribution and average values (see Figure 4.11) show decent mixing of switches between states for middle-

sized counts. Very small and very large counts show less mixing between states, but these counts are also a

priori well-informed as either spikes or small baselines. On the other hand, changing the proposal method

for updating states from one hour at a time to updating runs of states at once, may aid mixing in some chains.

Profiles of states over time are further examined in Section 4.6.5.

96

0.70 0.75 0.80 0.85 0.90 0.95 1.00

Survival Rate (1000*phi−999)

D
e

n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

Immune Rate

D
e

n
s
it
y

Figure 4.10: Posterior density plots of the common survival rate φ and the immune rate ζ in the population.
The survival rate is very high, and thus the difference between immune and non-immune is difficult to detect.
The result is uncertainty about the immune rate. The posterior mean of the death date t† was near 1224 for
all machines, indicating that very few timelines were listed as cleaned at the last non-off state. Adapting the
survival rate to depend on t and including λo in a joint update may alleviate this problem.

Many machines showed evidence of non-convergence from the Geweke test. The model is an attempt at

a flexible structure to fit varying profiles of activity, with reasonable defaults for proposal values, but it does

not appear to have provided a good fit for all machines in the Waledac data set. This could be due to differing

behavior profiles in some machines, or to the inclusion of NAT and DHCP networks in the vetted data set.

Figure 4.12 shows a plot of the number of non-zero counts in the machine vs. the number of continuous

parameters flagged as showing convergence issues based on the Geweke test of means for the first 50% of

the chain after burn-in vs. the last 10% of the chain. The machines that show more problems tend to be the

ones that have fewer observed non-zero counts. This could be indicative of a difficulty with the transition

probabilities and the underlying states.

A total of 105 machines with greater than 48 hours of non-zero activity had 4 or fewer chains flagged

as non-convergent by the Geweke test. Out of these 94 machines, 19 displayed evidence of very low base-

line rates coupled with large spike rates, and were flagged as possible examples of model mis-fit or non-

identifiability of parameters. Machines with baseline rates less than 0.25 or spike rates greater than 20 were

set aside, leaving a total of 82 out of the 154 machines in the data set with persistent activity for more than

48 hours, few flagged convergence issues, and no obvious identifiability problems from the S2 starting state.

97

Observed Count

N
um

be
r

of
 R

un
s

0 10 25 50 100 200 300 400

0

300

600

900

1200

1500

Figure 4.11: Plot of the number of runs Rt (switches from one state to another) vs. the observed count ytfor
all hours for all 154 machines. Axes are on the x1/2 and y1/2 scale. The blue line shows the average of Rt
for each observed count value y = y0. Very small or very large counts on average show fewer fluctuations in
the chain than middle values (10− 100), which can switch more often between spike states and early decay
states.

A total of 10 of these machines displayed some noticeable changes in posterior means between the S1 and

S3 starting states, mostly consistent with the difficulty in estimating the baseline rate q in the presence of

a large decay rate α, when the machine is turned off for non-workday periods (Machine 50, discussed in

the next section, shows an example of this phenomenon). The KL-divergence of state distributions for these

machines (beginning vs. total, and end vs. total) showed some signs of poorer mixing for the beginnings of

the chains, but in general were well behaved for the end of the chain vs. the total.

Figure 4.14 shows plots of the posterior means for S2 (x axis) vs. S3 (y axis) for these machines for the

12 continuous parameters in the model. The center line is y = x, and the blue dashed lines represent the

boundary of points for the other 72 machines in the set. Each of the machines displaying outliers is marked

by its ID label. Blue lines represent±2.5 standard deviations beyond the typical variability in the population

98

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●●

● ●● ●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

0 200 400 600 800 1000 1200

0
2

4
6

8
10

12

Number of nonzero counts

N
um

be
r

of
 c

ha
in

s
fla

gg
ed

 n
on

−
co

nv
er

ge
nt

Figure 4.12: Plot of the number of non-zero counts vs. the number of chains flagged with convergence
difficulties using a simple Geweke test of means of the first 50% of the chain post burn-in vs. the last
10% of the chain. 104 machines had 3 or fewer parameter chains flagged with convergence problems at a
significance level of 0.01. The chains that show large-scale problems tend to have fewer observed non-zero
counts.

along the y = x line.

Table 4.6.4 summarizes the distribution of posterior means of continuous parameters for these machines,

and Figure 4.13 shows marginal density plots. Visual diagnostics were used to examine individual machines

further, in order to assess the results of the Geweke test and to examine behavioral profiles of the machines

that exhibited problems.

99

Parameter Min. Q1 Median Mean Q3 Max. Avg. σ

θ
q 0.36 2.45 2.97 4.39 4.56 20.71 0.11
ω 1.02 3.39 5.01 5.22 6.76 16.77 0.83
α 0.22 0.40 0.53 0.54 0.64 0.92 0.04

ψ

λo 6.01 8.89 17.02 29.18 31.80 151.32 2.06
ρo 0.05 0.32 0.47 0.50 0.65 0.91 0.12
νo 0.71 1.88 2.58 3.01 3.92 7.49 2.17
ρs 0.04 0.87 0.96 0.84 0.98 0.99 0.07
νs 0.33 2.38 6.23 5.97 8.88 14.15 1.62
γs 0.01 0.01 0.04 0.13 0.25 0.52 0.03
ρd 0.05 0.47 0.69 0.66 0.92 0.99 0.10
νd 0.13 2.22 4.70 6.40 10.58 20.93 2.27
γd 0.62 0.88 0.95 0.92 0.98 0.99 0.02

Table 4.5: Summaries of population posterior means for 82 postulated machines in the Waledac informed
data set. Summaries are restricted to the set of machines with at least 48 hours of non-zero activity (median
767), with few indications of non-convergence or model non-identifiability. The last column is the average
standard deviation of the posterior distribution of the parameter among the 82 machines.

4.6.5 Assessing individual machines

Output analysis graphs for each machine were created using R, for visual model checking. A dashboard

visualization was created using a time series plot of the observed counts for each machine, along with four

types of diagnostic plots using the thinned MCMC iterations that were not discarded as burn-in:

1. A posterior predictive plot summarizing simulated data for each time point;

2. A barplot summary of the state information for each time point;

3. Transition probability profiles of the parameterized state transitions;

4. MCMC sparkline plots for each of the continuous parameters in the model.

Posterior predictive plot: The posterior predictive plot is a goodness of fit diagnostic for a chain that

compares the observed data y to an empirical predictive distribution y∗1 . . . y
∗
M generated from the model.

At each iteration m of the MCMC, the parameter values θm are used to simulate y∗m. Assuming that burn-in

iterations have been discarded, a posterior predictive p-value p̃y for the goodness of fit of the observation to

100

0 5 10 15 20

q

| | |||| || || | |||| ||| | ||| ||| | | ||| | || ||| ||| || |||| || || | ||| ||| | |||| ||| | ||| ||| |||| || ||| ||

0.2 0.4 0.6 0.8 1.0

alpha

|| ||| | || ||| | ||| | || ||| || |||| ||| | | | ||| || || ||| | | || ||| ||| || || | || ||| | | |||| |||| | | ||| || | |

0 5 10 15

omega

| ||| || || ||| | || || || || || |||| |||| || || ||| || || || ||| ||| ||| || | || || ||| |||| |||| ||| || ||| || ||

0 50 100 150

OffLambda

|||| ||| |||| || || | |||| | || || ||| |||| |||||| || || || | |||||| ||| || || ||||||| || | ||| |||| | || | || |

0.0 0.2 0.4 0.6 0.8 1.0

rho.off

| |||| | | || |||| | ||| |||| | || | ||| ||||| || ||| || | |||| ||| ||| ||| || ||| || || |||| |||| |||| || || |||

0 2 4 6 8

nu.off

| || || |||| || ||| ||| || || ||| | | || ||| | ||| || || | | || ||| || |||| || || |||| || |||| | |||| | | ||| | || |||

0.0 0.2 0.4 0.6 0.8 1.0

rho.spike

| |||| ||| ||| | || |||| |||||||| |||| ||| ||| ||| |||||| |||| |||| |||| ||| || ||||||| |||| | ||| ||| ||

0.0 0.2 0.4 0.6

gamma.spike

| | ||| | || |||| || ||| | | ||| || || ||| | |||| || | || || || ||| ||| | || ||||| || ||| | || | ||||||| | ||| ||| ||

0 5 10 15

nu.spike

| |||| | || || | | || | ||| | ||| |||| |||| ||| || |||| || |||| |||| | || | |||| ||| || ||| ||||| ||| | ||| ||| ||

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

rho.decay

|| |||| | | ||| || || ||| || || | || | | ||| | || ||| || | | || ||| ||| | | ||| ||| | ||| || | | |||| ||| || | | || ||| ||

0.6 0.7 0.8 0.9 1.0

gamma.decay

|| | | ||| || || || ||| |||| | || | ||| | ||| |||||| | || || | |||| | || | ||| || ||| | ||| | || || || | |||| | || | || |

−5 0 5 10 15 20 25

nu.decay

| |||| | || || | | || | |||| || | |||| |||| ||| || || || || ||| | |||| | ||| |||| ||| || | || ||||| ||| | ||| |||| |

Figure 4.13: Density plots of parameter posterior means highlighting marginal individual differences in a
population of 82 IP addresses believed to represent individual machines.

the model is given by

p̃y =
1

m

M∑
m=1

1{y≤y∗m}

Generally, observed values that fall within likely empirical percentiles of the predictive distribution are an

indication of good fit, while values falling far outside the empirical percentiles are an indication of a poor

fit.

Full predictive simulation for the Waledac data set would require saving the joint information about

both the 1224-dimensional state vector ηm and the generation parameters θm at each iteration. The posterior

101

0 50 100 150

0
50

10
0

15
0

postmean[is.good & (flaggeddiff > 0) & (abs(scalediff$OffLambda) <
 2.5), i]

 2

.5
),

 i]

19
46

56
5762

73

103112134138

OffLambda

0 1 2 3 4 5 6

0
1

2
3

4
5

6

postmean[is.good & (flaggeddiff > 0) & (abs(scalediff$OffLambda) <
 2.5), i]

E
M

po
st

m
ea

n[
is

.g
oo

d
&

 (
fla

gg
ed

di
ff

>
 0

)
&

 (
ab

s(
sc

al
ed

iff
$O

ffL
am

bd
a)

 <

 2

.5
),

 i]

19465657

62

73
103

112

134

138

q

0.4 0.5 0.6 0.7 0.8 0.9

0.
4

0.
6

0.
8

postmean[is.good & (flaggeddiff > 0) & (abs(scalediff$OffLambda) <
 2.5), i]

E
M

po
st

m
ea

n[
is

.g
oo

d
&

 (
fla

gg
ed

di
ff

>
 0

)
&

 (
ab

s(
sc

al
ed

iff
$O

ffL
am

bd
a)

 <

 2

.5
),

 i] 19

46
5657

62

73

103

112

134

138

alpha

5 10 15 20

5
10

15
20

postmean[is.good & (flaggeddiff > 0) & (abs(scalediff$OffLambda) <
 2.5), i]

 2

.5
),

 i]

19465657

6273

103

112

134

138

omega

0.2 0.4 0.6 0.8
0.

2
0.

4
0.

6
0.

8

postmean[is.good & (flaggeddiff > 0) & (abs(scalediff$OffLambda) <
 2.5), i]

E
M

po
st

m
ea

n[
is

.g
oo

d
&

 (
fla

gg
ed

di
ff

>
 0

)
&

 (
ab

s(
sc

al
ed

iff
$O

ffL
am

bd
a)

 <

 2

.5
),

 i] 19

46

56

57

6273

103

112

134

138

rho.off

2 4 6 8

2
4

6
8

postmean[is.good & (flaggeddiff > 0) & (abs(scalediff$OffLambda) <
 2.5), i]

E
M

po
st

m
ea

n[
is

.g
oo

d
&

 (
fla

gg
ed

di
ff

>
 0

)
&

 (
ab

s(
sc

al
ed

iff
$O

ffL
am

bd
a)

 <

 2

.5
),

 i]

19

46

56

57

62

73

103

112

134

138

nu.off

0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

1.
0

postmean[is.good & (flaggeddiff > 0) & (abs(scalediff$OffLambda) <
 2.5), i]

 2

.5
),

 i]

19
46

5657

6273

103

112

134

138

rho.spike

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

postmean[is.good & (flaggeddiff > 0) & (abs(scalediff$OffLambda) <
 2.5), i]

E
M

po
st

m
ea

n[
is

.g
oo

d
&

 (
fla

gg
ed

di
ff

>
 0

)
&

 (
ab

s(
sc

al
ed

iff
$O

ffL
am

bd
a)

 <

 2

.5
),

 i]

194656
57

62

73

103

112

134

138

gamma.spike

2 4 6 8 10 12 14

2
4

6
8

12
postmean[is.good & (flaggeddiff > 0) & (abs(scalediff$OffLambda) <

 2.5), i]

E
M

po
st

m
ea

n[
is

.g
oo

d
&

 (
fla

gg
ed

di
ff

>
 0

)
&

 (
ab

s(
sc

al
ed

iff
$O

ffL
am

bd
a)

 <

 2

.5
),

 i]

19

46

56

57

62

73

103

112

134

138

nu.spike

0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

1.
0

 2

.5
),

 i]

19
46

56

57

6273

103 112

134

138

rho.decay

0.75 0.80 0.85 0.90 0.95 1.00

0.
75

0.
85

0.
95

E
M

po
st

m
ea

n[
is

.g
oo

d
&

 (
fla

gg
ed

di
ff

>
 0

)
&

 (
ab

s(
sc

al
ed

iff
$O

ffL
am

bd
a)

 <

 2

.5
),

 i]

19
46

5657

62

73

103

112

134

138

gamma.decay

5 10 15

5
10

15

E
M

po
st

m
ea

n[
is

.g
oo

d
&

 (
fla

gg
ed

di
ff

>
 0

)
&

 (
ab

s(
sc

al
ed

iff
$O

ffL
am

bd
a)

 <

 2

.5
),

 i]

1946
56

57

62

73

103

112

134

138

nu.decay

Figure 4.14: Comparison of posterior means for two different sets of starting values: S1 (x axis) and S3

(y axis), for 82 IP addresses believed to represent individual machines. Blue lines represent ±2.5 standard
deviations beyond the typical variability in the population along the y = x line. ID values for machines
showing deviations of > 2.5 in at least one parameter (10 machines) are marked on the graph.

predictive plot was adapted slightly because the individual state information was not saved at this granularity

for the output analysis. Two methods for generating an approximate posterior predictive distribution y∗mt

using θm in conjunction with a set of states η∗m were considered:

1. Parametric generation: At each iteration m, use the transition parameters ψm to generate states η∗m;

2. Empirical generation: At each iteration m, use the marginal empirical distribution of the state values

to generate a set of states η∗m independently for each hour. For each hour t, let πot, πst and πdt be the

proportion of MCMC iterations spent in off, spike or decay states, respectively. A state η∗mt is chosen

102

according to these discrete probabilities.

The second method ignores the correlation between states, but is easier to compute than the first method.

The resulting intervals are generally more conservative than the intervals obtained using method 1; for

example, parametric state generation can result in simulation of a spike state even when πst = 0 in the

empirical distribution. Method 2 can be used to check the suitability of the Poisson distribution, as opposed

to checking the goodness of fit of the parametric transition model, which can be assessed in a separate

analysis.

An example of a posterior predictive plot using empirical state generation for a machine in the Waledac

data set (Machine 34) is shown in Figure 4.15. The observed counts are shown as points, while the gray bars

indicate the posterior predictive interval given by the percentiles labeled on the graph. A blue line shows the

mean of the simulated counts y∗1 . . . y
∗
m for each hour. Points colored in red indicate an observation falling

outside of the predictive interval.

●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

5

10

15

20
empirical generated states, percentiles=(0.01,0.99)

Figure 4.15: A posterior predictive plot for Machine 34 in the Waledac data set. Gray shading indicates the
interval between percentiles 0.01 and 0.99 in the simulated counts. Observations are shown as points, with
red indicating an observation falling outside of the predictive interval. The blue line indicates the mean of
the simulated observations at each hour.

Barplot summary: The barplot summary graph is a visual display of the state information for each hour.

Each hour t admits a discrete distribution πot, πst and πdt (such that
∑

a πat = 1), representing the propor-

103

tion of times that hour t was set to each state in the chain. The barplot summary displays a color-coded,

stacked plot of this discrete distribution for each hour. An example, again for Machine 34, is shown in

Figure 4.16. Red, blue, and gray colors indicate the proportion of spike, decay, and off states seen for each

hour, stacked in that order from 0 to 1. Ordering the distributions this way presents an intuitive picture of the

activity profile for each hour. Hours with zero observed activity appear as a grey background on the graph,

while hours with non-zero counts appear blue, and indicate the propensity of spike activity in the hour with

the red line.

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.16: A barplot summary of the empirical state distribution for Machine 34 in the Waledac data set.
Distributions of states for each hour are displayed as vertical stacks of probabilities that sum to 1. Red, blue,
and gray colors indicate the proportion of spike, decay, and off states seen for each hour, stacked in that
order from 0 to 1.

Transition probability profile: The transition probability profile plot is a version of the periodic curves

shown in Figure 4.1 in Section 4.1.2. The probability profile is a graphical display of the 24-hour profile

for state-to-state transition probabilities πa|·(t) from state a to off, spike or decay states (or just to spike or

decay states, if a = o). The profile is computed using the posterior mean estimates for νa, ρa, and γa. Red

upward-facing triangles represent transitions to spike states, blue downward-facing triangles to decay states,

and gray circles to off states. Transitions are connected hour-to-hour by dashed lines to highlight the effect

of the periodic component p(ρa, νa, t∗). Vertically per hour, each set of three probabilities sums to 1. When

104

state by state information is available, the empirical distribution of transitions, calculated from the MCMC

output, can also be plotted to gauge goodness of fit of the periodic transition model to the constraints of the

observed data.

Figure 4.17 shows a transition probability profile for Machine 34 as it transitions away from a spike

state. Empirical transition probabilities are shown as color-coded X points on the graph. These indicate that

the spike state favors transition to a decay state more often (and transition to off states less often) than is

suggested by the parametric profile evaluated at the posterior mean.

P
(

. |
 s

pi
ke

)

Hour

●

●
●

●
●

● ● ●
●

●
●

●

●

●
●

●
● ● ● ● ●

●
●

●

Spike Trans.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22

●

Spike
Decay
Off

Figure 4.17: A transition probability profile for transitions from a spike state to either off (gray), decay
(blue), or spike (red). The parametric curve, generated using the posterior mean of the transition proba-
bilities ψ, is shown in solid colors. Empirical transition probabilities calculated from the simulated state
values in the MCMC are shown as color-coded X points on the graph. These indicate that the spike state
favors transition to a decay state more often (and transition to off states less often) than is suggested by the
parametric profile evaluated at the posterior mean.

MCMC sparkline: The MCMC sparkline plot provides a visual summary of the output and iterations

for any continuous parameter in the chain. The design attempts to remove clutter from the graphs so that

they may be stacked for comparison and analyzed on a relatively small visual scale. Figure 4.18 shows

two examples; the top plot from Machine 34 is a stable parameter q that appears to have converged, while

the bottom plot from Machine 111 is a parameter q that shows signs of instability. The sparkline has two

components: a time series plot of the iterations on the left, and a density plot of the posterior distribution

105

on the right, both using the same scale. To show scale, the minimum and maximum values of the observed

iterations are marked as red lines bracketing the density plot. The posterior mean value is labeled on the

density plot and represented as a dotted blue line that marks both the iteration plot and the density plot.

Iterations of the chain are shown as a gray background, with a black line indicating trends over time using a

lowess smoother. Acceptance ratios are also labeled (in the case of the baseline rate q, the acceptance ratio

is equal to 1 because it is a Gibbs step).

c(xlb:0)

3.61

4.17

3.89

34 : q : acc= 1

0.133

0.252

0.168

111 : q : acc= 1

Figure 4.18: MCMC sparklines for the baseline rate parameter q from two different machines, shown at a
large scale to highlight the features of the graph. Machine 34 (top) shows a well behaved chain with little
pattern to the iterations over time, and a symmetric, unimodal posterior distribution with mean equal to 3.89.
A slight upward trend of the estimate is seen in the smoothed iterations. Machine 111 shows obvious signs
of instability and non-convergence.

Dashboard visualization: The dashboard visualization is a summary of the MCMC output for each ma-

chine, using the components described above in conjunction with a time series plot of the observed data.

Figure 4.19 shows the layout of the full visualization for Machine 34, on which the model appears to be sta-

ble and generally well-behaved. There is an obvious change to the off state mean λo, resulting in a bimodal

posterior distribution that nonetheless does not appear to have much of an effect on the rest of the param-

eters. From the barplot summary, it is likely that the model started out with all “off” states prior to March

17th, then suggested several active decay states to break up the run of consecutive off states. All activity for

106

Machine 34 begins after the late birth date of March 17th, but the model does not appear to suggest the later

birth date, a sign of poor mixing for the birth, death and immunity updating step in the chain.

Machine 34 also appears to show a slight uptick in its baseline rate activity during the March 17th surge,

a pattern that was seen in several machines in the data set. This suggests that part of the observed surge in

the overall population numbers could be attributable to a change in the malware instruction set, that resulted

in a short period of increased activity for already infected machines, along with the rise of new infections.

The visualization was customized to reasonable default values and automated in order to create dash-

boards for all 154 machines in the Waledac data set. Analysis of machines revealed several different kinds of

patterns, a selection of which are explored in the graphs below as representatives of some typical behavior.

Figure 4.20 shows an example of very stable baseline rate behavior, with only occasional spikes. Like

Machine 34, Machine 23 appears to be a machine which is rarely turned off, does not appear to follow

workday usage patterns, and is rarely used in a way that opens new network connections (thus causing a

UDP rate spike). The MCMC iterations show no signs of non-convergence, and the posterior distribution of

the baseline rate q appears to agree with the prior information from the sandbox testing. The state values are

very stable, not due to lack of mixing, but to a good fit to the data. The decay-to-decay transition rate γd is

estimated near 1.

Machine 24, shown in Figure 4.21, again seems to be a stable baseline rate q as well as well behaved

MCMC iterations, but this machine is much more likely to spike in its daily use. The spike rate of 6.5 agrees

with the spike rate of approximately 5 to even 10 times the baseline rate that was observed in sandbox

testing. Despite the large spikes, Machine 24 consistently reverts back to its baseline, with a steep geometric

decay rate multiplier of 0.43. The model captures this periodic spiking behavior relatively well and does not

show any obvious signs of mis-fit. A total of 65 out of the 154 machines had baseline rates q between 1 and

6, with spike rates ω less than 10.

Despite being included in the set of possible singleton machines as cross-referenced by the Waledac data,

“Machine” 54, shown in Figure 4.22, displays some evidence of multiple infected hosts communicating

through it. The estimated baseline rate is 20.7, approximately 4 times higher than was estimated from

sandbox tests. Obvious daily patterns follow workday cycles and could be the result of multiple users

initiating network connections during business hours. There also appear to be several categorical shifts in

107

the baseline, possibly a result of one or more of the underlying machines being turned off. Parameters show

no signs of non-convergence, except for some fluctuations in the off-state transition probability parameters.

This is not surprising, since there are no hours with 0 counts in the machine history. The decay rate for

this machine is also relatively slow (0.68) as compared with machine 24, which could be explained by more

variability among the times when spikes are initiated among the underlying machines.

Machine 111, shown in Figure 4.23, is an example of a possible model mis-fit. The model suggests that

nearly every observed non-zero count is a spike, but that the machine is mostly turned on with a baseline

rate too low to admit many observations. This interpretation results in a baseline rate that sinks toward 0 in

the model, and a spike rate that raises proportionately such that qω is approximately equal to 4, matching the

mean of the non-zero counts. The MCMC displays show obvious signs of non-convergence, and the spike

rate raises to the ceiling of the limit of 24 that was built into the model.

A machine with a very low baseline rate and a high spike rate is not impossible; the low rate does

contradict the prior information found in sandbox tests, but network properties or rate-limiting on the al-

location side may cause the transmission rate of UDP packets to drop. However, it is more likely that the

current transition model provides a bad fit to these types of machines, or that the higher variability without

an observable baseline is the result of a profile of user activity that is not captured well by the spike-decay

model.

Machine 50, shown in Figure 4.24, is another example of a machine with a very low baseline rate and

high spike rate. This machine is typical of the 12 machines observed with persistent activity, low baseline

rates (q < 0.25) and high spike rates (ω > 23), that nonetheless showed few convergence issues according

to the Geweke test. These machines show sporadic activity following workday patterns. It appears that the

activity does not last long enough to “settle down” to a visible baseline, before machines are turned off.

Partly, the low baseline rate may be affected by weekday vs. weekend patterns, which were not taken into

account in the transition model. But the sinking of the rate q does not appear to be due to confusion in the

state space, as with Machine 111. It is difficult to tell from the time series plot in the dashboard whether

Machine 50 spikes in its patterns, but the pattern is clearly evident in an hourly quantile plot (Figure 4.25),

such as was used in Section 3.4.2 to find the periodic offsets for each network.

It appears as though a stricter lower bound for the baseline rate q–for example a lower bound of q = 1.0–

108

would have little effect on the model’s overall fit to these machines besides lowering the spike rate. This

bound can aid interpretability of the stable baseline rate that would be observed if machines were left on for

longer periods of time. A stricter prior on the decay rate α may also help to disambiguate these situations;

the rate α for Machine 50 is estimated as 0.87, which is high relative to the prior π(α).

109

date.sequence

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

5

10

15

20
Machine 34 TZ= 13 T*= −2

●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

5

10

15

20
empirical generated states, percentiles=(0.01,0.99)

0.0

0.2

0.4

0.6

0.8

1.0 acc=0.00759

Off Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

●
●

●
● ● ● ● ● ● ●

●
●

●
●

●
● ● ● ● ● ● ●

●
●

Spike Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

● ●

Decay Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

c(xlb:0)

x

80.6

177135
34 : OffLambda : acc= 0.87

c(xlb:0)

x

3.61

4.17
3.89

34 : q : acc= 1

c(xlb:0)

x

0.502

0.8540.73134 : alpha : acc= 0.47

c(xlb:0)

x

2.37

3.87
3.03

34 : omega : acc= 0.24

c(xlb:0)

x

6.04e−05

0.998

0.301

34 : rho.off : acc= 0.85

c(xlb:0)

x

0.000342

7.98

1.77

34 : nu.off : acc= 0.95

c(xlb:0)

x

0.577

1
0.935

34 : rho.spike : acc= 0.42

c(xlb:0)
x

7.47e−07

0.089

0.0107

34 : gamma.spike : acc= 1

c(xlb:0)

x
0.415

12.2

4.01

34 : nu.spike : acc= 0.94

c(xlb:0)

x

0.516

1
0.90734 : rho.decay : acc= 0.52

c(xlb:0)

x

0.96

0.9950.981
34 : gamma.decay : acc= 1

x

0.512

18.8

5.26

34 : nu.decay : acc= 0.93

Figure 4.19: A complete dashboard visualization for Machine 34. A bimodal distribution in the mean time
spent in off states can be explained by a categorical change in states prior to March 17th. The fact that
the model does not iterate through states where the birthdate is March 17th as opposed to March 5th is an
indication of either model mis-fit or poor mixing in the chain.

110

date.sequence

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

5

10

15

20

Machine 23 TZ= 7 T*= −1

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

5

10

15

20

25

empirical generated states, percentiles=(0.01,0.99)

0.0

0.2

0.4

0.6

0.8

1.0 acc=0.00117

Off Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

●
●

●
● ● ● ● ● ● ●

●
●

●
●

●
● ● ● ● ● ● ●

●
●

Spike Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

● ●

Decay Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

c(xlb:0)

x

34.1

65.8
49

23 : OffLambda : acc= 0.81

c(xlb:0)

x

2.73

3.1
2.91

23 : q : acc= 1

c(xlb:0)

x

0.157

0.7270.502
23 : alpha : acc= 0.75

c(xlb:0)

x

2.8

8.42

4.67

23 : omega : acc= 0.65

c(xlb:0)

x

0.0241

10.69423 : rho.off : acc= 0.85

c(xlb:0)

x

0.00176

10.0

2.06

23 : nu.off : acc= 0.96

c(xlb:0)

x

0.082

1
0.76423 : rho.spike : acc= 0.78

c(xlb:0)
x

2.00e−06

0.0863

0.0129

23 : gamma.spike : acc= 1

c(xlb:0)

x
0.0133

9.28

2.07

23 : nu.spike : acc= 0.93

c(xlb:0)

x

0.00183

10.592
23 : rho.decay : acc= 0.91

c(xlb:0)

x

0.99

1
0.99823 : gamma.decay : acc= 1

x

0.00413

13.9

2.76

23 : nu.decay : acc= 0.9

Figure 4.20: A steadily scanning machine with very few spikes. The MCMC iterations show no obvious
signs of non-convergence. The decay-to-decay transition rate γd is estimated near 1.

111

date.sequence

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

10

20

30

Machine 24 TZ= 7 T*= −7

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●●●●●●●

●

●

●●

●●

●

●

●

●

●

●●

●●

●

●

●●●●●●●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●●

●

●

●●

●

●●

●

●

●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●●

●

●

●●

●●●

●

●●

●

●

●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●●●●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

●

●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●●●●●●●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●●●●●

●●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●●●●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

10

20

30

empirical generated states, percentiles=(0.01,0.99)

0.0

0.2

0.4

0.6

0.8

1.0 acc=0.0207

Off Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

● ●

Spike Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

● ●

Decay Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

c(xlb:0)

x

6

7.48

6.34

24 : OffLambda : acc= 0.16

c(xlb:0)

x

2.52

3.09
2.79

24 : q : acc= 1

c(xlb:0)

x

0.363

0.491
0.430

24 : alpha : acc= 0.29

c(xlb:0)

x

5.71

7.47
6.57

24 : omega : acc= 0.23

c(xlb:0)

x

0.594

10.87824 : rho.off : acc= 0.53

c(xlb:0)

x

1.86

19.1

5.99

24 : nu.off : acc= 0.95

c(xlb:0)

x

0.852

1
0.97424 : rho.spike : acc= 0.22

c(xlb:0)
x

0.0341

0.222
0.112

24 : gamma.spike : acc= 1

c(xlb:0)

x
3.06

15.4

7.47

24 : nu.spike : acc= 0.96

c(xlb:0)

x

0.213

0.668
0.431

24 : rho.decay : acc= 0.43

c(xlb:0)

x

0.902

0.9740.94824 : gamma.decay : acc= 1

x

0.658

15.7

4.29

24 : nu.decay : acc= 0.9

Figure 4.21: A machine that shows obvious periodic spiking patterns. The model appears to capture this
pattern well. The MCMC iterations show no obvious signs of non-convergence, and the baseline rate is
consistent with sandbox tests (between 3 and 5 per hour), with a spike rate of 6.5. Despite the periodic
spikes, the machine very regularly reverts back to the baseline rate.

112

date.sequence

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

50

100

150
Machine 54 TZ= 13 T*= −1

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●●
●
●●

●●
●

●●

●

●
●●

●
●

●●

●

●

●
●
●

●
●

●

●

●

●
●
●

●

●

●
●●

●
●●

●●

●
●

●
●

●

●
●●

●

●

●●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●
●

●●

●●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●
●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●
●

●●

●

●

●

●
●●

●

●

●
●

●●

●

●

●

●●●
●

●

●

●
●●

●
●

●

●●

●

●

●●

●

●●●●

●

●

●●
●●
●

●

●
●

●
●
●●

●

●●●
●

●

●

●

●

●

●
●

●
●●●●

●
●

●

●●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●●

●●

●

●

●●
●
●
●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●●

●

●

●

●
●

●
●●●

●

●●

●

●

●

●

●

●●
●

●
●●

●
●●

●

●
●

●●

●
●●
●

●

●
●

●

●

●

●

●●
●

●
●

●
●●●

●●●

●
●
●

●
●
●●

●

●

●

●
●

●
●

●
●●

●

●

●
●●
●
●●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●●
●
●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●
●●●

●

●

●
●
●

●

●

●●

●

●●

●

●

●
●

●●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●

●
●●

●
●●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●●
●
●●

●●

●
●
●

●

●●

●

●

●

●

●

●●
●
●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●●
●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●●
●●
●

●

●
●

●●●

●

●

●

●●

●

●

●●

●

●

●

●
●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●
●●
●

●●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●●
●●

●●

●
●

●●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●
●
●●
●●

●

●

●

●

●

●

●

●

●

●
●●
●
●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●●

●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●
●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●
●●
●
●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●●●

●
●●

●

●

●

●

●
●

●●●
●●
●

●

●

●

●

●

●
●●

●
●●

●

●●

●

●
●
●

●
●

●
●●●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●●

●
●

●

●●

●

●
●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●
●

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

50

100

150
empirical generated states, percentiles=(0.01,0.99)

0.0

0.2

0.4

0.6

0.8

1.0 acc=0.0141

Off Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

● ●

Spike Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

● ●

Decay Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

c(xlb:0)

x

6

17.7

8.09

54 : OffLambda : acc= 0.57

c(xlb:0)

x

20

21.4
20.7

54 : q : acc= 1

c(xlb:0)

x

0.644

0.715
0.683

54 : alpha : acc= 0.12

c(xlb:0)

x

3.68

4.09
3.86

54 : omega : acc= 0.056

c(xlb:0)

x

0.000124

0.981

0.363

54 : rho.off : acc= 0.89

c(xlb:0)

x

0.000201

12.3

2.37

54 : nu.off : acc= 0.95

c(xlb:0)

x

0.836

1
0.979

54 : rho.spike : acc= 0.18

c(xlb:0)
x

0.217

0.451
0.329

54 : gamma.spike : acc= 1

c(xlb:0)

x
0.81

12.1

4.99

54 : nu.spike : acc= 0.95

c(xlb:0)

x

0.844

1
0.98

54 : rho.decay : acc= 0.18

c(xlb:0)

x

0.923

0.9730.953
54 : gamma.decay : acc= 1

x

0.00322

20.3

5.05

54 : nu.decay : acc= 0.94

Figure 4.22: A “machine” that shows evidence of multiple active hosts. The estimated baseline rate is 20.7,
approximately 4 times higher than was estimated from sandbox tests. Obvious daily patterns follow workday
cycles and could be the result of multiple users initiating network connections during business hours. There
also appear to be several categorical shifts in the baseline, possibly a result of one or more of the underlying
machines being turned off. Parameters show no signs of non-convergence, except for some fluctuations in
the off-state transition probability parameters. This is not surprising, since there are no hours with 0 counts
in the machine history.

113

date.sequence

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

2

4

6

8

10

Machine 111 TZ= 8 T*= −16

●●

●

●●●●

●

●

●

●

●

●●●●●●●●

●

●

●

●●

●

●●●●●

●

●

●

●●●●●●●●●●●

●

●●●

●

●

●

●●●

●●

●

●

●

●●●●●●●

●●●

●●●

●

●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●●●●●●●●●

●●

●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●●

●

●●●●●●●●●

●

●●●●●

●

●

●●●●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●●

●●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●

●

●●●

●

●

●●●●●●●

●

●

●●●●●●●●●●●●●●

●

●

●

●●

●

●

●●

●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●●

●

●●●●●●●●●●●●●

●

●●

●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●●

●

●

●●●●●●●●●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●

●

●●

●●●

●

●

●●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●●●●

●

●

●●●●●●

●

●

●

●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●

●

●

●●●●●

●

●

●●●

●●●●●●●●●●

●

●

●●●●

●

●

●●

●

●

●

●●●●●●●●●●●

●

●

●●●

●

●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●

●

●

●●●

●

●

●●●●●●●●●●●●●●●●●

●●

●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●●●●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●●●●

●

●

●●●●●●●●●●●●●●

●●

●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

2

4

6

8

10

empirical generated states, percentiles=(0.01,0.99)

0.0

0.2

0.4

0.6

0.8

1.0 acc=0.0959

Off Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

● ●

Spike Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

● ●

Decay Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

c(xlb:0)

x

6

9

6.54

111 : OffLambda : acc= 0.14

c(xlb:0)

x

0.133

0.237

0.164

111 : q : acc= 1

c(xlb:0)

x

0.174

0.71
0.411

111 : alpha : acc= 0.62

c(xlb:0)

x

20.5

24
23.4111 : omega : acc= 0.6

c(xlb:0)

x

0.284

0.988
0.645

111 : rho.off : acc= 0.45

c(xlb:0)

x

0.134

13

2.81

111 : nu.off : acc= 0.92

c(xlb:0)

x

0.0179

0.98

0.403

111 : rho.spike : acc= 0.5

c(xlb:0)
x

0.0952

0.6710.477111 : gamma.spike : acc= 1

c(xlb:0)

x
9.47e−05

5.21

1.22

111 : nu.spike : acc= 0.88

c(xlb:0)

x

0.0797

0.863
0.449

111 : rho.decay : acc= 0.5

c(xlb:0)

x

0.857

0.990.946111 : gamma.decay : acc= 1

x

0.00667

20.4

2.57

111 : nu.decay : acc= 0.84

Figure 4.23: Machine summary typical of a machine with q vs. ω “confusion” brought about by mis-fit of
the transition model. Though the machine appears to have a steady scan rate, overuse of spike states with
nearly every non-zero count leads to a low value of q (0.16) to account for decay states with 0 counts, and
a high value of ω (23.4) to compensate. The product qω = 3.93 which typifies the active scan rate in the
population. MCMC iteration chains plotted after the burn-in period (right column) show obvious signs of
non-convergence.

114

date.sequence

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

2

4

6

8

10

12 Machine 50 TZ= 13 T*= −2

●●●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●

●

●

●●

●

●

●

●●●●●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●●

●

●●

●

●

●●●●●●●●●●●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●●

●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●

●●

●

●

●

●

●●

●

●

●

●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●●

●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●●●

●

●

●

●

●

●●●●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●●●●●●●●●●●●●

●

●

●

●

●

●●

●

●●

●●●●●●●

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

2

4

6

8

10

12 empirical generated states, percentiles=(0.01,0.99)

0.0

0.2

0.4

0.6

0.8

1.0 acc=0.0349

Off Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

●
●

●
● ● ● ● ● ● ●

●
●

●
●

●
● ● ● ● ● ● ●

●
●

Spike Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

● ●

Decay Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

c(xlb:0)

x

12.1

17.7
14.5

50 : OffLambda : acc= 0.22

c(xlb:0)

x

0.174

0.262
0.211

50 : q : acc= 1

c(xlb:0)

x

0.827

0.909
0.87

50 : alpha : acc= 0.17

c(xlb:0)

x

20.2

24
23.450 : omega : acc= 0.62

c(xlb:0)

x

0.517

10.82850 : rho.off : acc= 0.53

c(xlb:0)

x

0.000641

8.9

1.47

50 : nu.off : acc= 0.9

c(xlb:0)

x

0.683

1

0.966
50 : rho.spike : acc= 0.28

c(xlb:0)
x

8.25e−07

0.107

0.0159

50 : gamma.spike : acc= 1

c(xlb:0)

x
0.0424

10.6

3.13

50 : nu.spike : acc= 0.94

c(xlb:0)

x

3.14e−05

0.723

0.100

50 : rho.decay : acc= 0.49

c(xlb:0)

x

0.97

1
0.99550 : gamma.decay : acc= 1

x

0.00268

12.4

1.79

50 : nu.decay : acc= 0.85

Figure 4.24: Machine summary typical of the 12 machines with few convergence issues and persistent
activity, but low baseline rates (q < 0.25) and high spike rates (ω > 23). These machines show sporadic
activity following workday patterns. The transition model appears to provide a good fit, but it also appears
that the activity does not last long enough to “settle down” to a visible baseline, before the machine is turned
off.

115

0
2

4
6

8
10

hour of day

qu
an

til
es

100.100.71.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Median
P0.75
P0.85
P0.90

Figure 4.25: Quantile plot of connection attempts by hour of day for Machine 50. Though the estimates
of q and ω show signs of non-identifiability, the problem is not due to the same confusion as is evident in
Machine 111; Machine 50 does display a clear daily pattern of spike and decay that follows workday hours.

4.6.6 Discussion

The single-host model developed in Section 4.1 was informed more by sandbox tests of Conficker-C than by

the observation of machines “in the wild”, where behavior can depend more on network properties and on

how the malware interacts with day to day user activity. Sandbox tests have historically been geared toward

discovering signatures of infection in a machine’s operating system, as opposed to studying the variability

of behavioral network profiles. Sandbox tests are expensive to carry out, and they are often performed

in the context of studying thousands of malicious files, so it is not unusual for a malicious executable to

be run through a sandbox only once, with one operating system configuration, for only a few minutes,

116

before moving to the next malicious file. For this reason, the model of active times and the association of

on/off activity and network connections with spikes is preliminary and could benefit from further analysis

of infected machines in a more representative network environment than an isolated sandbox–for example

a honeynet, or an external network that can be strongly vetted as a one-to-one static allocation of machines

to IP addresses. Still, the preliminary model provided a good fit to many of the 154 IP addresses that were

later observed as static one-to-one allocations with machines infected by Waledac.

Studying the Waledac IP addresses invites the question: to what extent do we trust that these IP addresses

represent individual machines? If the addresses could be truly vetted as individual machines representative

of the Conficker-C population as a whole, then the analysis of these IP addresses can be used to inform

the priors to account for the interaction between malicious behavior and user activity, as well as informing

the distribution of active behavior profiles in the overall population. But while the one-to-one relationship

observed in the Waledac data does suggest some stability in these IP addresses, it is by no means a certain

indication of a directly observable population.

Is Machine 54 really a small population of infected machines? A UDP scanning process could theo-

retically initiate a maximum of 72000 scan requests in a single hour, which, on the network telescope used

in this study, would result in an approximate hit rate of 108 requests per hour for a spiking machine. This

seems consistent with the observed counts on Machine 54, if at the high end of the spectrum of rates. Fur-

thermore, UDP processes can be initiated for multiple network connections on one machine, which could

explain large baseline rates with categorical changes over time. Information on the prevalence of such

“heavy hitting” UDP scan machines (if they exist at all) is necessary for better clarification of the tails of

the population prior distribution for the generation parameters q, ω, and α, which in turn affect population

estimates in networks that are not directly observable.

Population estimates for the generation-allocation model are sensitive to the prior information in the

single host model; without an informed prior, the likelihood cannot distinguish one large heavy hitter from

many smaller machines. But this prior sensitivity does not necessarily relegate population estimates to a

purely subjective interpretation. Many of the quantities that account for prior uncertainty in this study can

be measured and estimated through a careful survey or census of user profiles and of network administration,

hardware, throughput, and behavior. A more thorough study of Conficker-C’s behavior in honeynets and

117

on infected networks can help to provide information to disambiguate these situations. In general, when

a broad population study is of interest for a botnet, it may be useful to run the botnet’s malicious code

through multiple sandbox tests that simulate common virtual environments where infected machines reside,

for example:

• A corporate desktop with typical workday activity;

• A university computer lab;

• A personal laptop;

• A family PC;

• An Internet cafe;

• An email server or other kind of network infrastructure machine;

• A small business network contracting space through an ISP.

Although some questions remain about the veracity of the Waledac data set representing individual

machines, analysis of the data set did reveal the need for some adaptations to the single host model and to

the estimation scheme, that can be incorporated into future versions:

• Modeling hourly survival with a single parameter is not sufficient to capture clean-ups and deaths in

the population; the model should be adapted to estimate probability of cleanup on an hour-by-hour

basis.

• To help mixing in proposals of new birth and death times for a machine, it may be advantageous to

update (tβ, t†, ε) jointly with the mean time in off states λo, to avoid rejecting later birth times or

earlier death times due to a sudden removal or addition of a large outlier to the collection of strings of

consecutive off states.

• To avoid the difficulty of q sinking toward 0, institute a strict lower bound in the prior, that still admits

reasonable baseline rates in accordance with sandbox testing.

• To help mixing for states, consider a joint proposal for runs of consecutive states.

118

• Incorporate a single-model rate increase for the hours following the March 17th, to account for ma-

chines that may have received new instructions as opposed to an increase in the overall population or

in active machines.

• The decay rate α should be fairly steep for a single machine; high decay rates (and thus slow decay)

could be an indication of churn or tail-off of activity among larger populations of infected machines.

• It may be useful to define a joint prior for the parameters θ = (q, ω, α) in order to alleviate some of

the identifiability and model mis-fit difficulties in the MCMC estimation.

119

120

Chapter 5

Inference For Non-informative Network

Allocation

A non-informative network allocation is one for which all possible allocations between generated counts and

IP addresses are equally likely, possibly within a set of strict boundary thresholds. This arises most notably

in practice with many-to-one assignments. The IP address space for IPv4 consists of 232 possible addresses,

although not all of these addresses are routable. The Internet Assigned Numbers Authority (IANA) coordi-

nates the assignment of IP address space to entities such as governments, companies, and universities. IP

addresses are also allocated to and ISPs, who portion out their space among many sub-networks associated

with organizations and individuals. There are several reasons why institutions may not wish to assign every

machine on their network to an externally facing, routable IPv4 address. Firstly, these addresses are scarce

and costly resources. Secondly, stricter control of external access points can facilitate network monitoring

and security measures. If all communications are required to pass through a single point of contact, it is

easier to implement firewalls, access control lists and behavioral monitoring.

NAT is a common protocol used on the Internet IPv4 infrastructure. A network that is configured to

use NAT often has only a single routable IP address, that is used as a gateway for any number of internal

machines connected to the network. Internally, machines are assigned IP addresses corresponding to private

address space according to the Internet Engineering Task Force (IETF) Request For Comments (RFC) doc-

121

ument RFC1918 1. Address blocks 10.0.0.0/8, 192.168.0.0/16, and 172.16.0.0/12 are reserved for private

allocation and are considered un-routable or sinkholed when requested over the Internet. Administrators set-

ting up internal networks do not need to coordinate with IANA in order to assign addresses in these blocks

to their internal devices. The NAT protocol then acts as a bridge between the local network and the global

Internet.

Any internal machines wishing to connect to external resources do so by communicating with the NAT

gateway device, which forwards these requests through the external, routable IP address, and keeps track

of the communications on a machine-by-machine basis by maintaining tables of open connections and by

routing requests to the appropriate private addresses. From the perspective of the outside observer, all

communications from any machine in the internal network are seen as originating from the single routable

IP address. In practice, the term NAT is used interchangeably to describe the protocol or the IP address that is

seen as the external gateway. The same kind of non-informative network allocation also arises for behavior

observed via the HTTP (web traffic), on networks that use HTTP proxies in order to provide security and

content filtering. Again, internal machines wishing to connect with the outside world are all routed through

a single access point, which forwards the connections using its own IP address as the local end point.

A collection of IP addresses that are known proxies or NAT devices, each housing a distinct popula-

tion of machines behind it, is a practical example of a non-informative network structure; within the NAT

network, all traffic passes through the same IP address with probability 1, at any time of the day. Prior in-

formation can be used to determine the boundaries of IP addresses that can host possible NAT devices with

distinct populations of machines behind them. IANA net block assignments, as well as sub-assignments

among Regional Internet Registries, are publically available and can provide information on hard IP ad-

dress boundaries across which overlap or switching of machines is highly unlikely. Furthermore, NAT is a

popular configuration for large corporate networks, and the machines residing behind a gateway are often

homogenous in their operating systems and policies. Corporate networks also tend to display regular spikes

of activity in concordance with typical working hours (8am to 6pm), with nearly all machines residing in the

same time zone. This homogeneity helps to distinguish corporate NAT traffic, which may travel between IP

addresses due to load-balancing, from aggregations of more diverse activity across net blocks assigned to

1 http://tools.ietf.org/html/rfc1918

122

other institutions such as ISPs.

Section 5.1 presents the network model for a proxy, NAT device, or gateway, and describes inference for

H and the generation process parameters ξ and κ in this case. Section 5.2 describes the complete conditional

distribution for counts yt, as well as the reversible jump steps for merging and splitting machines in a NAT

environment for the Conficker-C single host model. Section 5.3 presents an analysis and preliminary results

from a subset of /24s in the data set, with the goal of adapting the constraints of the single-host model and

assessing the estimation methods.

5.1 Inference for a NAT device, gateway or other proxy

In the directly observable population, the number of machines H is known and equal to J , and the counts

are visible such that wijt = yit = xjt for all t. For a NAT device, these equalities no longer hold; H

is unobserved, as is wijt and yit. Both of the latter quantities can be considered as data augmentation

variables; they are not particularly of interest in the study of the malware behavioral model or in estimation

of the population size, but including them in the joint distribution for the generation and allocation model

makes the likelihood easy to write down, and leads to simpler proposal steps in the MCMC.

For a NAT with a single outward-facing IP address, the allocation model in equation 2.5 reduces to

J = 1 and wi1t = yit with probability 1. The graph W is thus the collection y11, . . . , yHT of all counts

generated from infected machines throughout the observation window. The observed value xt at each hour

is the sum of the activity generated from all infected machines in that hour. The posterior distribution has

the form:

p(W, H, κ, ξ | x) ∝ π(H)π(κ)
H∏
i=1

π(ξi | κ)
T∏
t=1

f(yit | ξi, yi1, . . . , yit−1) (5.1)

×
T∏
t=1

1{
∑
i yit=xt},

where 1{C} is the indicator function that returns 1 when the expression C is true, and 0 otherwise. The

changes in this distribution from the directly observable population model are the prior π(H) for the un-

123

observed population size, and the summation constraint on the machine counts. The model is invariant

to permutation of labels among machines 1, . . . ,H; to induce identifiability, the machines can be labeled

according to an ordering of the parameters ξi.

The conditional distribution π(κ, ξ | H,W,x) does not depend on the IP address counts x, and is

proportional to the posterior distribution of hyperparameters and generation parameters given the machine

counts y in the directly observable population. Thus the steps designed for updating κ and ξ in the directly

observable MCMC scheme can be used in the model for the NAT as well. It remains to design the steps for

updating the counts y11 . . . yHT as they are assigned among machines, and for updating the population H .

For any single count yit in the graph, the summation constraint
∑

i yit = xt forces the conditional

distribution π(yit | W|yit , H, x1, . . . , xT , κ, ξ) to put probability 1 on the current value. Conditional in-

dependence in the generation model among the observations yi1, . . . , yiT yield a simplified expression

for the joint conditional distribution of counts y1t, . . . , yHt for a given time t. Suppose the generation

function f(yit | ξi, yi1, . . . , yit−1) can be written as f(yit | ξi), a function of yit and the parameter

ξi. This arises for example in a hierarchical Hidden Markov structure where the time dependence in

generation is modeled through the parameters ξi1, . . . , ξit. Then the complete conditional distribution

π(y1t, . . . , yHt |W|y1t,...,yHt , H, xt, κ, ξ) has the form:

π(y1t, . . . , yHt |W|y1t,...,yHt , H, xt, κ, ξ) ∝ 1{
∑
i yit=xt}

H∏
i=1

f(yit | ξi). (5.2)

The population hyperparameters κ and the counts in times 1, . . . , t − 1, t + 1, . . . , T all cancel from the

expression, and the conditional distribution can thus be written then as π(y1t, . . . , yHt | H,xt, ξ).

The space of probable population values H cannot be explored by a traditional Metropolis-Hastings

or Gibbs step due to the necessity to change the dimensions of the parameter space. Within an MCMC

framework, the posterior distribution of H is explored by adding or deleting machines to the graph, using

a merge and split technique. A merge of two machines into one decrements H by 1, while a split of one

machine into two increments H by 1. The value H can also be envisioned as an index to a family of models

for model selection. As it resides in a discrete space, the marginal posterior distribution p(H = h | x)

is equal to the prior π(h) multiplied by the normalizing constant m(x) of the posterior distribution of all

model parameters and hyperparameters given the IP address counts with the population size fixed at h.

124

5.2 NAT inference for Conficker-C

5.2.1 Updating yit

For the Conficker-C model, the count yit at time t is a Poisson distributed variable conditionally independent

of yi1, . . . , yit−1 given the mean parameter λit = λ(ηit, qi, ωi, αi), as described in Section 4.1. Consider the

conditional distribution of counts across infected machines for a fixed hour t; the time index is suppressed in

the following expressions for ease of notation. The complete conditional distribution π(y1, . . . , yH | H,x, ξ)

in equation 5.2 has the form:

π(y1, . . . , yH | H,x, ξ) =

∏H
i=1 e

−λiλyii (yi!)
−11{

∑
i yi=x}∑

y1...yH :
∑
i yi=x

∏H
i=1 e

−λiλyii (yi!)−1

This expression is the kernel of a multinomial distribution. The term e−
∑
i λi does not depend on the obser-

vations y1 . . . yH and cancels from the numerator and denominator. Multiply the numerator and denominator

by x! to obtain:

π(y1, . . . , yH | H,x, ξ) =

x!∏
i yi!

∏
i λ

yi
i 1{

∑
i yi=x}∑

y1,...,yH :
∑
i yi=x

x!∏
i yi!

∏
i λ

yi
i

By the Multinomial Theorem, the denominator reduces to (
∑

i λi)
x =

∏
i(
∑

k λk)
yi . This normalizes the

mean values λ1, . . . , λH in the numerator to a set of probabilities that sum to 1, and the complete conditional

distribution is:

π(y1, . . . , yH | H,x, ξ) =

 x

y1, . . . , yH

 H∏
i=1

(
λi∑
k λk

)yi
1{

∑
i yi=x},

where

 n

k1, . . . , kH

 is the multinomial coefficient for partitioning n into H subsets of size k1 through

kH .

Thus at each time t the conditional distribution of observed counts from equation 5.2 is multino-

mial with probability vector equal to the renormalized mean vector, and total equal to the summation

125

constraint xt. This multinomial result also holds for the conditional distribution of any sub-collection

yst : s ⊂ {1, . . . ,H}, with the means again normalized across elements of s, and the total equal to
∑

i∈s ys,

subtracting the sum of fixed elements {s}C from the summation constraint xt. Updating (or rearranging)

of counts at any hour can thus be achieved by a Gibbs step in the chain. In a random sweep strategy, if

the count rearrangement move type is selected, then a network or NAT proxy with more than one associ-

ated machine is selected at random from the population, and a series of hours are selected at random from

t ∈ [0, ..., T − 1]. Then the observed network counts xt are arranged among each machine i according to its

mean λit.

5.2.2 Merging and splitting machines

Merging and splitting machines is a very high-dimensional move, with many possible points of failure in

generating “close” candidates. LetM = (η, tβ, t†, ε, ψ, θ,y) be the full set of machine and graph parameters

that need to be generated for a new machine in a merge-split step. There are two proposal distributions to

consider: g2→1(M12 | M1,M2) and g1→2(M1,M2 | M12). Note that the updating of the number of

machines H is implicit: a merge decrements H and a split increments H .

In traditional MCMC methods across high dimensions, blocking and Gibbs or Metropolis-within-Gibbs

steps can be used to update a vector of parameters one element (or one small group) at a time. Suppose

θ = (θ1, . . . , θI) is a multidimensional parameter. In a sweep strategy, each component may be updated

in sequence, such that the i-th element or block can be updated at step m with a draw from the complete

conditional distribution π(θ∗i | y, θm1 , . . . θmi−1, θ
m−1
i+1 , θm−1

I), without violating the detailed balance condi-

tion. In essence each component updating step can be seen as a different move type that transitions the state

along only the i-th block dimension using a transition kernel gi. In this case each component can be updated

independently of other move types using the acceptance ratio:

αi = min

{
1,

`(y; θ : θi = θ∗i)π(θ∗i)gi(θ
∗
i → θmi)

`(y; θ : θi = θmi)π(θmi)gi(θmi → θ∗i)

}

But this acceptance ratio can only be calculated component-wise when the state can be held fixed for all

components except θi, in which case both likelihoods are well-defined. In a merge-split situation, this is

not the case. For any state in the graph, assume that the probability of choosing a merge vs. a split state is

126

a constant, p2→1, with p1→2 = 1 − p2→1. Let s∗ be the probability of selecting the candidate machine or

machines from the graph for the move type attempted. The detailed balance condition to uphold is

`(y;M12)π(H,M12)(p1→2)(s1→2)g1→2(M1,M2 |M12) (5.3)

= `(y;M1,M2)π(H + 1,M1,M2)(p2→1)(s2→1)g2→1(M12 |M1,M2)

For the general case, suppose M is the state at the current iteration and M∗ is the proposal. Although the

components of M∗ cannot be accepted/rejected individually, they can be designed in blocks. Let M∗i ∈M∗

be a sub-block of parameters in the proposal, with corresponding block of parameters Mi ∈ M interpreted

as their paired components for merged vs. split machines (for example, q12 and its corresponding rates

(q1, q2)). Let δi and δ
′
i be the variables required to match dimensions in M∗i and Mi, with candidate pro-

posals gi(δi), gi′(δ
′
i) and transformation hi(Mi, δi)→ (M∗i , δ

′
i) independent of any other block j 6= i; this

transformation has Jacobian |Ji| =
∣∣∣∣∂(M∗i ,δ

′
i)

∂(Mi,δi)

∣∣∣∣ and its reciprocal J−1
i for the reverse move. The full merge-

split step of all components can be seen as a composite of the functions hi with a block diagonal Jacobian

matrix, and detailed balance holds across the entire space when the acceptance ratio α = min{1, A} where

A =
`(y;M∗)π(H∗,M∗)

`(y;M)π(H,M)

p s

p∗s∗

∏
i

gi′(δ
′
i)

gi(δi)
|Ji|

A similar result holds if the transformations hi are designed as a strict sequence of conditional distributions

based on variables sampled from blocks k < i. In this case the joint distribution of the proposal is the product

of the conditional distributions gi(δi|δ1, . . . , δi−1), and the Jacobian matrix is lower block triangular, which

again has determinant equal to
∏
i |Ji|.

The strict sequence of conditional distributions is the approach used for the Conficker-C merge-split

step. Green’s reversible jump MCMC dimension matching technique (Green, 1995) is used to account

for relationships across dimensions in the continuous variables, while categorical variables can be updated

using discrete probability tables. The scheme for updating a component block must try to find a good

balance between a proposal that has overall high likelihood and interpretability relative to the dimensions

already sampled, but that is also “close” to the parameters of the current machine or machines in the graph.

Section 5.2.3 outlines the general form of proposal distribution that is used for transformations of continuous

127

parameters across dimensions in a component. Section 5.2.4 discusses proposal distributions and ordering

strategies for updating each component in M . Section 5.2.5 outlines selection probabilities of move types

and candidates, suggests a prior for H , and briefly addresses identifiability.

5.2.3 Generating merge-split candidates for continuous parameters

Suppose a parameter l < θ < u is linked interpretably to its differently-dimensional counterpart l < θ′ < u

through a function g(θ). A simple example is an unbounded average with l = −∞, u = ∞, g(θ) = θ and

g−1(θ′1, θ
′
2) = 1

2(θ′1 + θ′2). A 2-dimensional mapping could, for example, generate δ ∼ N(0, 1) and set

g(u, θ) as:

θ′1 = θ + δ

θ′2 = θ − δ,

with the inverse g−1(θ′1, θ
′
2) = ((θ′1 + θ′2)/2, (θ′1 − θ′2)/2), and Jacobians equal to 2 and 1

2 for g and g−1.

This produces symmetric candidates in a split step that always exactly satisfy the constraint of g. If θ′1 and

θ′2 are generated as the i-th component proposal of a larger split step, the acceptance ratio for the step is

adjusted by the RJMCMC ratio:

αi = 2

[
1√
2πσ

exp{−u2/2σ2}
]−1

,

and its reciprocal for the merge step,

α−1
i =

1

2

1√
2πσ

exp{−[(θ′1 − θ′2)/2]2/2σ2}

For bounded variables on [l, u], a rescaled asymmetric average can be used, for example by simulating

a variate δ on the range [0, u− θ] and setting

θ′1 = θ + δ

θ′2 = θ − δ

q − u
(q − l).

128

When δ ∼ β∗(θ, u− θ, α, β) is a scaled Beta value, candidates satisfy the constraint

θ =
uθ′2 − lθ′1

(u− θ′1) + (θ′2 − l)
.

This method produces symmetric candidates around θ when θ = u−l
2 , and the expected value of the distance

D = θ′1− θ′2 is independent of the position of θ across the range. The Jacobian of the transformation g(θ, δ)

is

∣∣∣∣ ∂(θ, u)

∂(θ′1, θ
′
2)

∣∣∣∣ =

∣∣∣∣ ∂θ∂θ′2
∣∣∣∣ =

uθ′1 − lθ′2 + l2

[(u− θ′1) + (θ′2 − l)]
2 ,

and the acceptance ratio for a split step is adjusted by the product of the Jacobian and the scaled Beta p.d.f.

of the candidate δ.

The result is also asymmetric in that θ′1 is the maximum value and θ′2 is the minimum. It is equivalent

either to assign the generated deviates θmax and θmin among θ′1, θ′2 using a coin flip of probability p, or to add

a step to the simulation that with probability p uses the reciprocal interval [l, θ] as the basis for generating

the deviate δ, and sets θ′1 = θ− δ with appropriate rescaling to obtain the maximum value θ′2, and adjusting

αi by p to account for the choice.

Finding a suitable interpretable transformation on a bounded interval can result in changes of scale.

For example, suppose that the relationship is a scaled average, θ = φ
2 (θ′1 + θ′2), where 1 < φ < 2 is a

deterministic calculation of θ′1, θ′2 and external state variables from a prior block proposal. This arises in

the component-wise updating if, for example, candidate state values η are proposed before baseline rate

parameters q. Suppose that two machines have only baseline level activity across their ranges. When

merging machines with overlapping active hours, the merged rate q12 should be near the sum of the two

individual rates, q1 +q2. However, if the two individual machines operate mutually exclusively, the resulting

merged baseline rate q12 should be closer to the average of the two individual rates in order to minimize the

deviance of the counts yt from the mean. The function φ
2 (q1 + q2) = q12 maps [l, u] × [l, u] to [lφ, uφ].

To enforce detailed balance in the case of overlapping regions, it becomes impossible to split a machine

into overlapping regions when the merged rate q12 < lφ, and impossible to merge two machines when

q1 + q2 > uφ. These candidates cause an immediate rejection of the merge/split step. When the necessary

129

constraints hold, an asymmetric average centered at q12/φ can be used to generate two candidates, with the

Jacobian adjusted accordingly and the appropriate reciprocals and inverses used for the merge step.

Another way to proceed is to add another degree of freedom while preserving the interpretable rela-

tionship g(θ) in expected value. Detailed balance is maintained with a suitable proposal f that generates

deviates θ′ such that l < θ′ < u and E(θ′) = g(θ). For the reverse step, a proposal function f ′ is used

to generate deviates θ such that E(θ) = g−1(θ′). This scheme is more of a traditional MCMC step than

Green’s example, as it does not rely on deterministic transformations of the variables θ and θ′. Instead of

a two-dimensional mapping from (θ, δ) → (θ′1, θ
′
2), the dimension matching for the merge-split RJMCMC

step occurs over the three-dimensional mapping of (δ1, δ2, θ) → (θ′1, θ
′
2, δ). For the simple unbounded

average, let δ ∼ N(1
2(θ′1 + θ′2), σ), and let δ1, δ2 ∼ N(θ, σ). Set the identity transformation:

δ = θ

θ′1 = δ1

θ′2 = δ2

The Jacobian
∣∣∣∂(θ,δ1,δ2)
∂(δ,θ′1,θ

′
2)

∣∣∣ = 1 in both directions, and the interpretability arises through the mean values.

When the proposals f1(δ1|θ), f2(δ2|θ) and f3(δ|θ′1, θ′2) are the i-th components of a larger merge-split that

preserves order of operations in both directions, the overall acceptance ratio is adjusted by the ratio of

proposal densities:

αi =
f12(δ|θ′1, θ′2)

f1(δ1|θ), f2(δ2|θ)

for a split step, and (αi)
−1 for its paired merge step. This three-dimensional scheme can also be used for

independence steps, or for steps in a block i that depend only on proposal values in previously sampled

blocks and not on the cross-dimensional parameters.

5.2.4 Component merge-split steps and ordering

Merging and splitting machines requires generating new sets of parameters M , consisting of the high-

dimensional vector (η, tβ, t†, ε, ψ, θ,y), for any new machine that is added into the graph. The goal is to

130

block the variables suitably into subcomponents Mi and to find an order of updating M1 → ...→ Mk, and

a resulting set of candidate proposal distributions, that will simplify the detailed balance condition and lead

to good mixing in the chain. It is useful to examine the format of the machine-specific components of the

acceptance ratio as a product of candidate proposal distributions and path likelihood ratios, with the path

likelihoods expressed in terms of priors for the continuous variables, an expression for birth/death/immunity

and off states, and a product of state transition probabilities and Poisson count ratios over time.

Conditional on both η and θ, the connection rate at any time t is given by equation 4.4 in Chapter 3 as:

λt(η1, . . . , ηt−1, q, ω, α) = q(1 + αk(ω − 1)), (5.4)

where the lag k depends on the last encountered spike or off state. The dependence of λt on η and θ is

suppressed for ease of notation, and the connection rate at time t is written as λt. Let

Oη =
∑
t∈To|o

ct

be the number of off-to-off state transitions in the path characterized by η, and let
[
Oη
]v
u

be the number

restricted to the range u ≤ t ≤ v. Let

Rη = |To|o|

be the number of runs of off states observed in the path characterized by η, and let
[
Rη
]v
u

= |u ≤ t ≤ v :

t ∈ To|o| be the number of runs of off states restricted to the interval [u, v]. Given φ, ζ and λo, the complete

conditional distribution of off states, birth, death and immunity can be written as

π(tβ, t†, ε,O | φ, ζ, λo) ∝ ζε

[
(1− ζ)(1− φt†)

∏
t∈S∪D

φt

]1−ε

(5.5)

×
exp

{
λo
[
Rη
]t†
tβ

}
λ

[
Oη

]t†
tβ

o∏
t∈To|o ct!

∏
t∈O

1yt=0. (5.6)

This follows the form of Equation 4.13 from Section 4.5.3, but includes the likelihood of all runs of off-

131

state transitions as opposed to only the ones that may be affected by a change in the birth or death dates.

The dependence on φ, ζ and λo is suppressed for ease of notation, and the likelihood of off states, birth,

death, and immunity is written as π(tβ, t†, ε,O). Finally, for t < T − 1, denote the active state transition

probabilities as

π(ηt+1 | ηt, ψ) =
[
πηt|ηt+1

(t, ψ)
]1{ηt 6=o,ηt+1 6=o} ,

where π·|·(t, ψ) is the transition probability defined in Section 4.1.2 as a function of the parameters ψ, and

π(ηT | ηT−1, ψ) = 1 to indicate no further transitions on the last hour of the observation period.

To construct the acceptance ratio, firstly suppose that each component of the parameter vector M is

proposed independently (such that order of the proposals does not matter). For a split step that takes M12

to individuals M1 and M2, let α1→2 be the acceptance ratio excluding the prior on H and adjustments for

move type and machine selection:

α1→2 =
`(M1,M2;x)π(M1,M2)g2→1(M12 |M1,M2)

`(M12;x)π(M12)g1→2(M1,M2 |M12)
.

The format of α1→2 is as follows:

α1→2 = (α1→2|θ)(α1→2|ψ)(α1→2|η)(α1→2|βδε)(α1→2|y)

=
∏
θi∈θ

π(θi,1)π(θi,2)

π(θi,12)
× gi(θi,12 | θi,1, θi,2)

gi(θi,1, θi,2 | θi,12)
|Ji| (5.7)

×
∏
ψk∈ψ

π(ψk,1)π(ψk,2)

π(ψk,12)
×
gk(ψk,12 | ψk,1, ψk,2)

gk(ψk,1, ψk,2 | ψk,12)
|Jk| (5.8)

×
T−1∏
t=0

π(ηt+1,1 | ηt,1, ψ1)π(ηt+1,2 | ηt,2, ψ2)

π(ηt+1,12 | ηt,12, ψ12)
× gη(ηt,12 | ηt,1, ηt,2)

gη(ηt,1, ηt,2 | ηt,12)
(5.9)

× π(tβ, t†, ε,O)1π(tβ, t†, ε,O)2

π(tβ, t†, ε,O)12
×
gβδε((t

β, t†, ε)12 | (tβ, t†, ε)1, (t
β, t†, ε)2)

gβδε((tβ, t†, ε)1, (tβ, t†, ε)2 | (tβ, t†, ε)12)
(5.10)

×
T−1∏
t=0

exp {−(λt,1 + λt,2)}λyt,1t,1 λ
yt,2
t,2

exp {−λt,12}λ
yt,1+yt,2
t,12

(yt,1 + yt,2)!

(yt,1)!(yt,2)!
× gy(yt,12 | yt,1, yt,2)

gy(yt,1, yt,2 | yt,12)
(5.11)

This format highlights several relationships useful for developing order among candidate proposals.

132

Observed counts yt : The splitting of yt,12 into yt,1 and yt,2 should take place after both states η and

Poisson parameters θ are generated. At any hour t, the counts yt,1 and yt,2 of the component split machines

must sum to the value yt,12 of the merged machine, in order to preserve the observed sum xt of the network

touchpoint when counts for all other machines are held fixed. This requirement leads to a fully deterministic

step for the component merge step gy(yt,12 | yt,1, yt,2), and allows for y12 to be treated as a fixed constant in

any proposal distribution g across any order of updating. It is also clear from the discussion in Section 5.2.1

that at all t, the conditional distribution of y1, y2 given sampled candidates λ1, λ2 and total y12 is Binomial

with total count equal to y12 and probability of assignment of a single hit to machine 1 equal to the ratio

λ1
λ1+λ2

. If this Binomial distribution is used as a proposal distribution in the last stage of the block updating,

then the component log-ratio in Equation 5.11 has the form:

log(α1→2|y) =

T∑
t=0

{λt,12 − λt,1 − λt,2 + (yt,12)[log(λt,1 + λt,2)− log(λt,12)]} . (5.12)

The value is equal to 0 at hours t when λt,12 = λt,1 + λt,2, so any updating strategy for the components

will be balanced for both merge and splits when the proposals η and θ yield rates comparable in magnitude

across all hours. Inequalities between rates are magnified for large observed values yt,12. Equality of rates

across all t cannot generally be achieved when T > dim(θ,η) since λt is a deterministic function of the

states and Poisson rate parameters. However, a general updating strategy should aim to balance positive vs.

negative magnitudes in the difference between λ12 and λ1 + λ2 across all t.

Transition probabilities ψ : Transition probabilities ρ, ν and γ enter into the acceptance ratio through

priors and proposals in Equation 5.8 and in the path likelihoods in Equation 5.9. The off-state sequence

average λo enters through Equation 5.8 and through the likelihood of observed off-to-off transitions and

runs in Equation 5.10. In the single host model, both λo and γ can be sampled conditional only on path

parameters η using a Gibbs step. Detailed balance for an independence step for a parameter φ ∈ ψ can be

maintained across the three-dimensional space h(φ12, u1, u2) → h−1(u, φ1, φ2), with the map h equal to

the identity function. This results in a determinant equal to 1 and a jumping ratio equal to the appropriate

ratio of component proposal distributions.

With candidates η, tβ and t† sampled prior to ψ for the merge or split, the single-model Gibbs step can

133

be used again in both directions for λo and γ, resulting in a cancellation of posterior and proposal terms and

a net contribution of 1 to the product of component acceptance ratios. For ρ and ν, the single-host model

requires a Metropolis-Hastings step, which relies on moving only a short distance away from the current

value. This tactic cannot be generalized as easily to apply to the merge-split step, as a current value for a

sampled candidate does not exist, only for its corresponding merged or split parameters. Existing state-to-

state transitions from the candidate path η can be used to obtain an empirical periodic transition probability

profile curve similar to Figure 4.17 in Section 4.6.5. These can be used to obtain simultaneous maximum

likelihood estimates for ρ and ν.

Alternatively, a scaled Beta proposal distribution can be used to generate ν1, ν2 from ν12 and vice versa,

under the assumption that high vs. low periodicity tends to be preserved between merged and split ma-

chines. With ν fixed, simple weighted least squares methods can be used to obtain a point estimate for ρ;

alternatively, the expected value of the empirical probability at the peak value (corresponding to t∗ = 6) is

equal to ρ. A candidate proposal can use a Beta distribution with mean equal to a weighted average of the

empirical least squares or peak estimator, and the prior mean for ρ. When no transitions are available to yield

information from η, the candidate reduces to a sample from the prior. If amplitudes can be considered as

linked across the merged vs. split machines, the weighted average could use a function of the amplitude or

amplitudes at the current state of the machine(s) sampled from the population as merge or split candidates,

as opposed to the prior mean.

The true similarity between periodicity in M12 and its sub-machines M1 and M2 hinges both on the

periodicity in the total counts y12 and on the mechanism for merging and splitting states in η. For designing

the order of the candidate machine parameters, it seems that the more intuitive method is to use the exist-

ing states from the selected machine or machines, along with the observed counts to inform the candidate

state vector(s), and then to use each candidate state vector to inform birth, death, immunity and transition

probabilities for the new machine(s).

Birth, death and immunity (tβ, t†, ε) : Birth, death and immunity enter into the acceptance ratio through

the proposals and likelihood ratios in Equation 5.10. If two immune machines always merge into an immune

machine, the component acceptance ratio is equal to ζ. It is convenient to rely on the proposal η in order

to generate new birth, death, and immunity states, as the conditional distribution of (tβ, t†, ε) has at most

134

six possible configurations when η is set. Detailed balance can thus be maintained using an appropriate

probability table conditional on the states η for both the current machine(s) and candidate machine(s) that

preserves immunity for the merge of two immune machines.

Sampling λo using a Gibbs step for any merge or split attempt accounts for the contribution to the

acceptance ratio of the extra set of off states accrued by a change in birth or death dates (Equation 5.6).

With η set, the remaining effect of immunity vs. susceptibility in the acceptance ratio is due to the relative

likelihood of immunity in the population vs. the product of survival probabilities at all active states if

the machine were not immune; this is the tradeoff between the terms indexed by ε and (1 − ε) in the

conditional distribution in Equation 5.5. The immune rate and the survival probabilities in Equation 5.5 are

global parameters and not machine-specific, thus the conditional distribution of a machine’s immunity vs.

susceptibility can be calculated for both candidate machines and current machines. Candidate immunity

status and death dates can be sampled in proportion to this likelihood ratio, independent of the immunity

status of the current machine or machines; alternatively, a mapping between the candidate(s) and the current

machine(s) can be implemented using a probability table suitably renormalized for merges vs. splits.

States and rate parameters : Order of operations for updating η vs. θ is not as evident from the format

of α1→2 as for the rest of the parameter vector. Once a candidate path η is sampled, the proposal distribu-

tions for transition parameters and birth/death/immunity status can be designed to minimize impact on the

acceptance ratio. But equation 5.12 demonstrates that the acceptance ratio is highly sensitive to the overall

hit rate λt at each t, especially when yt,12 is large. Mixing of the merge-split steps in the chain is dependent

mainly on finding a good method for proposing states, and on controlling the deviation of the merged vs.

split hit rates λt from the total counts. A preliminary implementation explores splitting of the state at time t

conditional on the observed total count yt,12 and on the lag admitted at time t by the split steps performed

at times 0, . . . , t − 1 for each candidate machine, with updating of θ following conditional on the sampled

states.

States η : It is reasonable to implement a proposal distribution for states that preserves off to (off,off)

state transitions and vice versa. A state ηt,12 = o cannot be split into anything except ηt,1 = o, ηt,2 = o.

Two states ηt,1 = o, ηt,2 = o cannot be merged into anything except ηt,12 = o. Conversely, a state η 6= o

135

cannot be split into two off states ηt,1 = o, ηt,2 = o, even if yt,12 = 0, and for a merge, if either ηt,1 6= o or

ηt,2 6= o, then ηt,12 6= o even if yt,12 = 0. This requirement preserves shared runs of off states, and ensures

that every nonzero count yt > 0 is associated with at least one underlying state that admits an overall scan

rate λt > 0. It also ensures that runs of activity in split candidate machines will be at most equal to the runs

of activity in the merged machine.

It is also reasonable to preserve dual spike states ηt,1 = s, ηt,2 = s mapping to a spike state ηt,12 = s

for a merge step, although the split step need not map a spike ηt,12 = s to two spike states in the candidate

machines; a split should have the flexibility to propose machines with non-overlapping activity profiles.

A simple merge-split step for states, shown in Table 5.1 deterministically maps ηt,1 and ηt,2 to the

maximum state (ordered by o < d < s) for a merge of two states and is uniform among possibilities for a

split of one state into the possible components that could have generated it. This simple mapping ignores

information from observed counts and from previously updated hours; in practice, this leads to arbitrary

assignment of on/off states between split step candidates and to large state-dependent discrepancies between

the hit rates λt,1 + λt,2 and λt,12 in spite of attempts to keep θ12 close to θ1 and θ2.

ηt,1 ηt,2 ηt,12

o o o
o d d
o s s
d o d
d d d
d s s
s o s
s d s
s s s

Table 5.1: A simple merge-split step for states, depending only on the value of ηt for the current machines.
Uniform selection among split steps gives one choice for an off state, three choices for a decay state, and
five choices for a spike state. However, a uniform selection among split states for this deterministic merge
generally leads to low acceptance rates. A more careful probabilistic selection of split states, for example
based on yt,12 and the lags accrued from earlier hours, can be used to propose more interpretable candidates.

Non-uniform split probabilities: Keeping the merge step deterministic, the following adaptation can be

used to generate candidates for the split states that are more interpretable with respect to the sum of observed

counts yt,12 and to the transition model. For updating hour t, define kt,1 and kt,2 as the current lag value

136

calculated for state t − 1 if ηt−1 is on, and −1 otherwise. If k = ∞ (indicating a pure baseline state), or

if t = 0, then set k equal to T for ease of computation. For off states, define ot,1 and ot,2 as the length of

the current consecutive run of off states leading up to t − 1 for machines 1 and 2 respectively. Finally, let

pt(y12) be the empirical CDF value of counts yt,12 associated with active states ηt,12 in the current machine

(possibly renormalized to bound pt(max[yt,12]) away from 1.0 and pt(min[yt,12]) away from 0.0).

The CDF probability pt(y12) is used to choose the (high, high) state, while the lag probabilities are used

to determine which machine is switched off (or set to the lower lag value for a selection of (s, d) states

from a spike state). Under this strategy, states corresponding to larger observed values yt,12 have a higher

probability of being assigned to higher state configurations.

For splitting ηt,12 = d, choose ηt,1 = ηt,2 = d with probability equal to pt(y12), and with probability

1 − pt(yt,12), set one machine to an off state. For splitting ηt,12 = s, choose ηt,1 = ηt,2 = s again with

probability equal to pt(y12). If this state is rejected, perform another step with probability pt(y12) to choose

an ordering of (s, d), and with probability equal to (1− pt(y12))2, choose an ordering of (o, s).

If both machines are currently on at time t− 1, then machine 1 is set to the lower state with probability

equal to
(

1
2

) kt,1+1

kt,2+1 . This strategy favors turning off or decaying machines that have been active longer and

are closer to their respective baselines. If machine M1 is currently turned off at time t− 1, and machine M2

is on, then M1 is chosen to be turned off at time t with probability equal to 1 −
(

1
2

)ot,1+1, and similar for

when machine M2 is off and M1 is on. This strategy favors turning one machine off in longer progressions

and instituting non-overlapping machine activity for middle-to-low valued counts, as opposed to switching

between random assignment of off and decay states among machines. If both machines are off at time t− 1,

then machine M1 is chosen to be switched on with probability equal to
(

1
2

) ot,1+1

ot,2+1 . Both machines M1 and

M2 are set to off states at time t if and only if ηt,12 = o.

Rate parameters θ : For a very simple merge-split step, each of q, ω and α can be updated independently,

using information from their corresponding value(s) in the current machine(s) and minimal information from

states η. A 3-dimensional dimension mapping step, as outlined in Section 5.2.3, that preserves expected

values up to boundary constraints, is implemented for the proposal distributions g1→2(q12 | q1, q2) and

g2→1(q1, q2 | q12). Let A1 be the number of states for which machine M1 is active, A2 be the number of

states for which machineM2 is active, andA1∪2 be the number of states for which both machines are active.

137

The proposal generates candidates such that:

E

(
A1

A1∪2
q1 +

A2

A1∪2
q2

)
= q12 (5.13)

and vice versa. If the machines completely overlap, this constraint sets q1+q2 = q12 in expectation, whereas

if they do not overlap, it sets q12 as the weighted average of the two split rates in expectation, allowing for

some flexibility due to upper and lower bounds. The spike rates ω and decay rates α are generated using

scaled Beta values preserving the merged rate as the average of the two split rates. In practice however, this

simple method is not robust enough to admit reasonable acceptance ratios in light of Equation 5.12.

Enforcing stricter constraints in θ : Both the candidate states and the aggregated counts yt,12 for non-

overlapping values can be used to help inform the values of q, ω and α. Infinite or very large lag values

yield a sample of counts near to the baseline rate q, while spikes (at lag 0) provide direct information on the

spike rate ω. Because large values of y12 can inflate small differences in λ1 + λ2 vs. λ12, a first strategy for

choosing candidates is to enforce the relationship

q12ω12 = q1ω1 + q2ω2 (5.14)

in the merge-split step, while simultaneously preserving all upper and lower bounds on parameters. This

format sets the overall hit rates equal in Equation 5.12 when ηt,12 = ηt,1 = ηt,2 = s. Once the baselines q

and spike rates ω have been set, candidates for the decay rates α can be proposed with expected value that

minimizes Equation 5.12.

A strategy for dimension matching between parameters (q12, δq1 , δq2 , ω12, δω) and (δq12 , q1, q2, ω1, ω2)

is to generate first the baseline rates conditional on current baseline values and state variables, and then

to generate the spike rates conditional on the proposed baseline rates in order to enforce the constraint in

Equation 5.14.

The difficulties in interpreting the hourly rate λt across the sampling period arise mainly due to the fact

that decay states admit many different possible values of λt. This is due to the dependence in Equation 5.4 on

the lag k and the decay rate α. As a preliminary measure for generating viable merge and split candidates, a

138

reduced and simplified single host model can be used for suspected NATs, that fixes α = 0. As a function of

η and θ, this reduced model admits only three possible connection rates for a machine: turned off (λt = 0),

spiking (λt = qω), or baseline (λt = q). This reduced model sacrifices the ability to estimate the correlations

in decaying rates after a spike that are observed in sandbox tests and in single machines. But the prior mean

values for θ (Table 4.1) suggest that on average, individual machines decay back to very near baseline rates

by 4 or 5 hours after spiking. The quick return to baseline is also reflected in the study of the Waledac

machines in Chapter 4. For non-informative estimation, using the reduced model has the possibility of

causing overestimation in H , as a population with more machines yields more degrees of freedom for fitting

the patterns of decay seen in NATs and DHCP regions due to machines spiking patterns after turning on.

5.2.5 Population priors and sampling adjustments

Accounting for π(H): At iteration m of the Markov chain, the population size Hm is incremented with

an accepted split step and decremented with an accepted merge step. Adjusting the likelihood ratio for the

graph requires a term of π(Hm+1)
π(Hm) for a split, and π(Hm−1)

π(Hm) for a merge. A negative binomial distribution

is used for the prior on the number H of infected machines behind a typical NAT device, as the negative

binomial can be interpreted as an over-dispersed Poisson distribution with more flexibility in the relationship

between its mean and variance than a standard Poisson distribution. The negative binomial distribution with

parameters n and p represents the number of failures which occur in a sequence of Bernoulli trials with

success probability p until n successes are reached. But it also arises as a mixture of overdispersed Poisson

distributions, each with scale parameter equal to 1−p
p and shape parameter equal to n. The mean is equal

to n(1−p)
p and the variance is n(1−p)

p2
. The ratio of the relevant p.m.f values for a negative binomial variable

with parameters n and p are:

π(Hm + 1)

π(Hm)
=

(Hm + n+ 1)(1− p)
Hm + 1

π(Hm − 1)

π(Hm)
=

Hm

(Hm + n− 1)(1− p)

For situations where allocations are non-informative but general network properties may hold informa-

tion about H (for example, the average number of active IP addresses per hour in a DHCP pool), the prior

139

mean and variance can be written as functions of the network properties; the information is only used to re-

weight the likelihoods for merges and splits, and does not affect the inference for generation and allocation

among proposed machines.

Accounting for unequal sampling probabilities: The example of a set of mutually exclusive NAT de-

vices can be modeled as a collection of non-informative network spaces, that possibly may share global

parameters such as hourly survival rates and rates of immunity among the population. In such a situation,

not all pairs of machines are valid to merge together. A split step requires that only one machine be sampled,

but a merge step requires that two machines within the same NAT boundary be sampled. This asymmetrical

sampling enters into the detailed balance and acceptance ratio through the probabilities s2→1 and s1→2 in

Equation 5.4. Let Hm be the total number of machines in the graph at iteration m, and for any bounded

sub-network j, let Hjm be the number of machines in that sub-network at iteration m.

Merge step: A candidate M1 is chosen with probability equal to 1
Hm

. Within the sub-network j

to which M1 belongs, a candidate M2 is chosen amongst its peers with probability equal to 1
Hjm−1

(excluding M1 itself). The order of selection and the assignment of identities 1 and 2 to the candidate

individuals does not matter, and thus there are two ways to select the pair, each with this probability.

For the reverse step, the merged candidate M12 is chosen from the updated graph with probability

equal to 1
Hm−1 , accounting for the new size of the network due to the merge. Thus the proposal ratio

for a merge step must be adjusted by the ratio:

s1→2

s2→1
=

Hm(Hjm − 1)

2(Hm − 1)

Split step: A candidate M12 is chosen with probability equal to 1
Hm

. For the reverse step, the candi-

date M1 is chosen from the updated graph with probability equal to 1
Hm+1 . Within the sub-network j

to whichM1 belongs, the candidateM2 is chosen amongst its peers with probability equal to 1
Hjm+1−1

(accounting for the new size of the sub-network due to the merge, and discounting the machine al-

ready selected). Again, the order of selection and assignment of identities 1 and 2 is arbitrary, thus

there are two ways to select the pair. Thus the proposal ratio for a split step must be adjusted by the

140

ratio:

s2→1

s1→2
=

2Hm

(Hm + 1)Hjm

Identifiability of labels in the likelihood: At any iteration m, the graph is equivalent up to permutation

of the labels assigned to machines. For a graph with H machines, this yields H! unique permutations of

labels 1, . . . ,H that represent the same state. However, when merging or splitting machines, the labels of

all non-selected machines are held fixed, and the acceptance ratio need only take into account the arbitrary

labeling of new machines. In a merge step, there is only one choice of labeling for the new machine, and

no multipliers are necessary. In a split step, the likelihood must be adjusted for the fact that the assignment

of labels M1 and M2 from M12 is arbitrary. Barring the spawning of two identical machines (which due to

continuous-valued parameters has probability 0 of occurring), the new state of the graph can be reached by

splitting M12 into candidates arbitrarily labeled M1 and M2, or into candidates arbitrarily labeled M2 and

M1. Thus the proposal distribution g1→2(M1,M2 | M12) for the two-machine state for a split is multiplied

by 2 for both forward and reverse moves. This multiplicity cancels with the multiplicity of the selection

probabilities, resulting in the fact that the basic merge-split step is invariant to the effect of permutations.

5.3 Preliminary analysis

A C++ library was built for performing random sweeps of MCMC steps from Chapter 4, with a few adapta-

tions to the single-machine model (discussed in Section 5.3.6), augmented to update y using the Multinomial

model from Section 5.2.1 in order to apply across a fixed population of H machines observable only up to

its aggregated counts. The implementation also included methods for updating H by merging and splitting

machines using the component progression of η → (tβ, t†, ε) → q → ω → α → ψ → y suggested by

the analysis in Section 5.2.2. Four networks were chosen as case studies. Due to low acceptance rates of

merge-split steps, a “within-model” strategy was used for preliminary analysis, with four different underly-

ing populations proposed for each network. MCMC output was analyzed in order to assess the simultaneous

effects of the modeling decisions and parameter updating steps implemented for the three main components

of population estimation under the non-informative generation and allocation framework:

141

1. the single-machine malware behavioral model;

2. the user activity transition model;

3. the birth/death/immunity model.

Although designed in separate stages, these three components are not estimated in isolation; the decisions

made for one setting can change the posterior interpretability of the others. Understanding and adapting

these components in the non-informative setting is also a crucial step to designing informative network

models as well.

5.3.1 Data sets

Non-informative MCMC chains were studied for four different aggregated network counts or suspected NAT

devices in the collected data. Machine 54 from the Waledac informed data set (Figure 4.22) was selected as

an example of a small-scale suspected NAT device likely housing fewer than 10 individual machines with

what appears to be relatively stable birth and death rates before and after the March 16th surge. From the

sample of 1, 091, 013 network blocks observed across the study, the 15 blocks with fewer than 3 active IP

addresses and the highest average connection rates per IP per hour were examined. Two net blocks were

selected as interesting case studies. To compare the effects of corporate NAT activity to a suspected DHCP

pool, one collection of net blocks with suspected re-allocations of machines among touchpoints was also

selected for further study, with all IP address information ignored and treated as non-informative. For each

of these four networks, the aggregated counts were first treated as a single machine in a directly observable

population in order to provide a preliminary network profile. Markov chains were run using the single-host

model and estimation details from Section 4.6, assuming a single immune machine was responsible for all

observed activity in the network. Chains were run for 100, 000 iterations and thinned by 50.

Network 109143, shown in Figure 5.1, corresponds to a United States IP address in Virginia. This

network had similar patterns and structure as Machine 54 but on a much larger scale, with a baseline estimate

of approximately 247 connections per hour, which spiked regularly to between 3 and 4 times that number

as computers were turned on during the work week (barring Friday April 10th, the Good Friday holiday

before Easter). A shift in baseline rates after April 5 may indicate the start of cleanup procedures, but as

142

with Machine 54, the activity appears relatively stable across the observation window.

Network 58644, shown in Figure 5.2, corresponds to an Indian IP address. This network displayed

weekday vs. weekend patterns but had less regularity than the US network. It also had an obvious cleanup

pattern that started on approximately the 30-th of March, where the baseline rate appeared to drop from near

300 connections per hour, to fewer than 100. The single-machine model cannot account for this drop as a

changing baseline rate, and as a result the MCMC estimates a global baseline of 85 reached only toward the

end of the collection window. Despite the obvious daily pattern that persists, the model infers that all spike

activity occurs in the early days of the data collection, and that the “machine” has a very slow decay rate.

Allowing for non-immunity in this case would not help the single-model estimates, as all activity is posited

to come from a single machine that has observable infection activity (albeit decreasing) across the entire

observation period.

The final network studied is an aggregate of 128 /24 networks belonging to a Ukrainian Telecom com-

pany, described in Figure 3.2 in Section 3.2. The network displayed three different and distinct IP address

patterns during the observation period, which suggests that IP addresses were not reliably linked one-to-one

with machines. A non-informative network model ignores all information from IP addresses and uses only

the connection attempts per hour as the indication of machine activity. In contrast to the suspected NAT

addresses in Figures 5.1 and 5.2, the aggregated activity across the Ukrainian /17, shown in Figure 5.3,

appeared to have more sustained “spikes” during daylight hours that dropped off overnight, irrespective of

workdays vs. weekends. The single-host model estimates sustained spike activity as more machines come

online, with a baseline rate corresponding to the nightly lull and a very sharp decay rate (0.47, as opposed

to 0.89 and 0.86 for the suspected NAT devices).

Despite the irregularities that are apparent in these aggregated networks, the MCMC chains for contin-

uous parameters generally appear stable. However, large systematic deviations in the empirical predictive

plots indicate that while the estimates may converge, the single-host model fits poorly. The models also

stray wildly from the informative priors for Poisson rate parameters based on sandbox testing. For example,

using the Gamma(1.5, 3) prior from Section 4.5.2, the prior density of the baseline rate q = 247 seen for

Network 109143 is equal to approximately 6× 10−36.

143

date.sequence

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

500

1000

1500 Machine 109143: TZ= 7 T*= −7

●●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●
●

●●
●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●●●
●●●
●●

●●
●●

●●

●
●●●●

●

●
●

●●
●
●●●●

●
●
●

●●

●
●
●
●
●
●

●

●●●●●
●●

●●
●●●●
●
●
●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●
●
●●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●●●
●

●

●

●

●

●

●●●

●●
●

●

●

●

●●

●

●
●
●

●

●

●

●●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●●●
●
●

●

●
●
●

●
●
●

●
●
●●

●
●

●
●
●

●

●

●●
●●
●●
●●

●
●●●
●●●
●●
●
●
●
●
●●

●

●

●

●●
●
●

●

●

●

●

●
●
●
●

●
●

●
●

●

●
●

●
●
●●
●
●

●

●
●

●

●

●

●●
●
●
●●

●

●

●
●

●
●
●●
●●
●

●
●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●●
●●●

●
●

●
●
●
●
●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●●
●
●

●
●
●●●

●

●

●

●

●

●●
●●

●

●
●

●
●
●
●●
●●●●

●

●

●

●
●

●

●

●
●
●●●●●

●
●

●●
●

●

●●●
●●●●
●
●●●

●

●●●●
●
●
●
●
●
●●●
●●
●
●●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●
●

●

●●

●
●●

●●
●

●

●

●

●

●

●●
●●●

●
●

●

●
●
●●

●●●
●●
●
●

●

●

●

●

●●
●

●

●

●

●

●

●●

●●
●
●
●

●●●●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●
●
●

●●

●

●

●
●
●●
●
●
●●
●
●●●
●
●

●

●
●●

●●●●
●
●

●
●
●●
●
●
●
●
●
●●
●

●●
●

●

●●●

●

●●●●
●●

●●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●●

●

●
●●
●

●●●●
●

●

●

●

●

●
●●

●●
●

●

●

●
●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●●
●

●
●
●

●

●
●

●

●
●●●

●
●
●
●
●●

●

●

●

●

●●●●

●

●

●

●
●

●●
●

●
●●
●

●

●●●

●

●

●

●

●
●
●●
●●

●

●
●

●

●

●●●
●

●●

●
●
●
●

●
●

●
●

●

●●●●
●●
●●●●●

●●
●

●●

●
●

●●
●●
●●
●
●

●●
●●
●
●●●●●

●
●●●●

●

●

●

●

●●
●●
●

●

●●

●

●●●
●
●●

●
●●●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●●
●
●

●
●

●
●
●●●

●

●

●

●

●

●●

●
●●

●
●

●

●
●

●●
●
●

●
●●
●
●

●

●

●

●
●
●

●

●
●

●

●

●

●
●

●

●●
●
●

●
●

●
●●
●

●●
●
●●●●
●●
●●●●●

●●●●●●●●●●

●●
●
●●
●
●●●●●

●

●●●●●
●
●
●●
●●●●●

●
●●
●

●
●●●●●

●●
●
●●●●
●
●
●●

●

●

●

●

●
●●
●

●●

●

●●

●
●

●
●
●

●

●
●
●
●●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●●●
●●

●
●

●●
●

●

●

●

●●

●

●

●

●
●

●
●

●●●●
●●●●●

●●●

●

●

●

●
●

●

●

●●
●

●
●

●
●
●

●●
●

●
●●●●●

●

●

●

●

●●

●

●
●
●

●

●

●
●
●●
●
●
●
●
●

●
●
●●

●
●

●
●
●
●
●

●

●●●
●
●
●
●●●●
●●
●
●●
●

●
●●
●

●
●●●●
●
●
●●
●●

●
●●
●●●
●●

●

●

●

●

●

●

●
●●●

●
●

●

●●●

●

●

●●●

●●
●

●

●

●

●
●●

●

●
●●

●

●

●
●●
●
●●
●

●●
●●
●

●

●

●

●

●●●

●
●●

●

●

●
●

●
●
●●●

●

●
●●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●●●●
●
●●
●

●
●

●

●

●

●

●
●

●

●
●●

●
●

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

500

1000

1500 empirical generated states, percentiles=(0.01,0.99)

0.0

0.2

0.4

0.6

0.8

1.0 acc=0.002

Off Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

● ●

Spike Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

● ●

Decay Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

c(xlb:0)

x

6

12.5

7.1

0 : OffLambda : acc= 0.017

c(xlb:0)

x

244

250
247

0 : q : acc= 1

c(xlb:0)

x

0.86

0.867
0.863

0 : alpha : acc= 0.013

c(xlb:0)

x

3.71

3.83
3.77

0 : omega : acc= 0.013

c(xlb:0)

x

0.000194

0.998

0.381

0 : rho.off : acc= 0.9

c(xlb:0)

x

0.000143

8.64

1.82

0 : nu.off : acc= 0.95

c(xlb:0)

x

0.857

1
0.98

0 : rho.spike : acc= 0.17

c(xlb:0)
x

0.151

0.399
0.263

0 : gamma.spike : acc= 1

c(xlb:0)

x
2.53

15.9

7.25

0 : nu.spike : acc= 0.96

c(xlb:0)

x

0.829

1

0.981
0 : rho.decay : acc= 0.17

c(xlb:0)

x

0.925

0.972
0.95

0 : gamma.decay : acc= 1

x

5.03

28.6

13.0

0 : nu.decay : acc= 0.96

Figure 5.1: A complete dashboard visualization for Network 109143 (one IP address in the United States).
This network follows a very strong workday vs. weekend pattern that suggests it belongs to a single corpo-
rate entity.

144

date.sequence

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

200

400

600

800

1000 Machine 58644: TZ= 17 T*= −1

●●

●

●

●

●

●●

●

●

●

●
●

●

●●●
●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●
●
●

●

●
●

●

●

●

●●
●●

●

●●
●

●●

●

●
●
●
●●
●●●
●●
●
●●
●

●

●

●

●
●●

●
●
●

●●

●
●
●
●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●
●●●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●●
●●
●

●●●
●
●
●

●

●

●
●

●●

●

●

●

●

●

●●

●●●●●

●
●

●

●●●

●●

●
●●
●

●

●
●
●
●
●
●●●

●
●●

●

●
●●
●●

●
●

●

●

●
●

●●●●
●
●

●
●

●●●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●
●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●●
●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●
●

●
●

●●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●●●●
●
●
●

●
●●

●
●

●
●
●

●

●

●●

●
●

●
●●
●
●

●●●
●

●

●●
●●

●

●●

●●●

●
●

●
●

●

●

●
●●●
●
●

●●●●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●

●

●●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●
●●●
●
●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●●
●
●
●

●
●●●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●●●

●●

●
●●●●●●

●
●

●
●
●

●

●

●

●
●
●
●●

●
●●

●

●●
●●
●

●●

●●●
●

●
●
●

●
●

●●

●

●
●●

●
●

●
●

●
●
●

●●●●●●
●
●●●
●●

●

●
●

●

●●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●
●

●

●●

●●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●
●

●
●●
●

●
●●

●

●

●
●

●●

●

●

●●

●

●

●●

●
●
●
●
●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●●●

●●
●●

●
●

●●

●

●
●
●

●

●

●

●●

●
●

●
●

●●
●●●●

●

●

●
●

●
●
●

●●

●

●
●

●

●
●
●●●
●
●
●●
●●●
●

●●
●
●

●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●●
●

●●●
●

●●
●
●●●

●

●
●
●
●

●●
●
●●
●

●●●

●

●

●●

●●●●●
●
●
●●●

●

●

●
●
●

●●
●
●
●●

●

●
●●

●
●
●●●●
●
●
●●

●

●
●●●●
●

●

●

●

●
●●

●●●●●●
●●
●●

●●
●
●●●●
●
●●

●●
●
●●●
●●●●

●●●●●●●●●●●●●●●●●●

●●

●●
●●●●●

●●
●●
●●●
●●●
●

●●
●●●●●●●●●●●

●
●

●

●●

●●

●

●

●
●●

●

●●

●
●
●●●
●
●
●
●
●
●

●

●●
●
●

●

●
●

●
●●●●●●

●●●●●●●

●
●

●

●

●

●●

●

●
●
●
●●

●●●
●●
●

●●●
●●●
●

●●
●
●
●●
●
●
●
●

●●●
●
●●●●
●

●●
●●
●
●

●
●

●
●

●

●

●●●●●

●●●●●●
●●
●●●●●

●●●●●
●

●

●
●
●●
●
●
●●●●●●●●

●
●
●

●●●●●●
●●
●

●●
●●●
●
●●●●●●●●

●
●●●●

●

●

●
●●
●
●●●
●

●●●●●●●●
●●

●●●

●

●
●
●
●

●●
●●●
●●●●●

●●●
●
●
●●●
●
●
●●●
●
●
●
●
●
●●
●●●●●●

●
●●●
●●●●●●●

●
●●
●
●
●●

●

●●●●●●
●●
●●

●●●●

●
●●●
●●●
●●●
●
●●

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

200

400

600

800

1000 empirical generated states, percentiles=(0.01,0.99)

0.0

0.2

0.4

0.6

0.8

1.0 acc=0.005

Off Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

● ●

Spike Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

● ●

Decay Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

c(xlb:0)

x

6.14

20.3

12

0 : OffLambda : acc= 1

c(xlb:0)

x

83.6

87.4
85.4

0 : q : acc= 1

c(xlb:0)

x

0.895

0.9
0.898

0 : alpha : acc= 0.015

c(xlb:0)

x

5.81

6.07
5.95

0 : omega : acc= 0.022

c(xlb:0)

x

0.0111

0.999
0.504

0 : rho.off : acc= 0.9

c(xlb:0)

x

0.000819

12.5

1.66

0 : nu.off : acc= 0.93

c(xlb:0)

x

0.874

1
0.983

0 : rho.spike : acc= 0.15

c(xlb:0)
x

0.392

0.591
0.495

0 : gamma.spike : acc= 1

c(xlb:0)

x
2.76

17.2

7.3

0 : nu.spike : acc= 0.96

c(xlb:0)

x

0.847

1
0.978

0 : rho.decay : acc= 0.19

c(xlb:0)

x

0.903

0.965
0.934

0 : gamma.decay : acc= 1

x

1.16

20.4

7.08

0 : nu.decay : acc= 0.94

Figure 5.2: A complete dashboard visualization for Network 58644 (one IP address in India). This network
follows some daily patterns but also appears to be subject to significant cleanup during the month of April.

145

date.sequence

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

200

400

600

800

1000

1200

Ukraine Telecom Network TZ= 14 T*= −10

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●

●

●

●
●

●●

●●

●

●

●

●
●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●●
●
●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●
●

●
●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●●●
●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●
●
●

●

●●

●

●
●●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●
●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●
●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

200

400

600

800

1000

1200

empirical generated states, percentiles=(0.01,0.99)

0.0

0.2

0.4

0.6

0.8

1.0 acc=0.002

Off Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

● ●

Spike Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

● ●

Decay Trans.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

c(xlb:0)

x

0.0764

4.48

1

0 : OffLambda : acc= 1

c(xlb:0)

x

89.4

93.3
91.2

0 : q : acc= 1

c(xlb:0)

x

0.468

0.482
0.475

0 : alpha : acc= 0.045

c(xlb:0)

x

7.05

7.35
7.2

0 : omega : acc= 0.019

c(xlb:0)

x

0.00539

0.968

0.297

0 : rho.off : acc= 0.84

c(xlb:0)

x

0.000438

12.7

1.95

0 : nu.off : acc= 0.88

c(xlb:0)

x

0.943

1
0.990 : rho.spike : acc= 0.089

c(xlb:0)
x

0.677

0.785
0.736

0 : gamma.spike : acc= 1

c(xlb:0)

x
4.82

26.7

13.1

0 : nu.spike : acc= 0.95

c(xlb:0)

x

0.88

1
0.986

0 : rho.decay : acc= 0.14

c(xlb:0)

x

0.723

0.856
0.782

0 : gamma.decay : acc= 1

x

7.46

30.8

16.5

Figure 5.3: A complete dashboard visualization for aggregated counts (ignoring all IP address information)
for the Ukrainian /17 network described in Figure 3.2 in Section 3.2. As opposed to the single-IP suspected
NAT networks, the aggregated suspected DHCP region shows more sustained “spikes” corresponding to
widespread activity across both weekdays and weekends, with drops due to nightly lulls irrespective of
weekends vs. weekdays.

146

5.3.2 Non-informative MCMC estimation details

Implementation: An object-oriented implementation of the non-informative generation and allocation

model, including individual machine updating, global parameter updating, count rearranging steps, and

non-informative merge-split updating, was built using C++ and the GNU scientific library. The model was

designed using several different kinds of C++ classes, including objects representing Machines and Net-

works as well as their associated parameters, counts, and allocations. A virtual Parameter Updater class

was implemented, which acted on Machines and contained derived classes with the relevant prior and like-

lihood information for updating each of the parameters in (ψ, θ,η, tβ, t†, ε). Global Parameter objects were

included that maintained the proper sufficient statistics necessary for efficiently updating survival and im-

munity rates as the Machine states changed within the graph. Network parameters included a boundary ID

which allowed for modeling of a population of mutually exclusive NATs or network spaces that nonetheless

may share global immunity and survival rates across boundaries. The top-down approach facilitates treating

the mathematical form of the generation model f(y) from Equation 5.2 as a module that can be adapted for

different models of Conficker-C behavior, new user activity models, or other behavioral count models, with-

out redesigning the mechanisms for manipulating the structure of the graph due to MCMC updating steps.

At the top layer, the graph mechanisms rely only on Machines and Networks. All virtual Parameter Updater

classes rely on the parameter and data object classes contained in Machines and Networks, without relying

directly on the structure of their content; only derived classes describe the specific conditional distribution

functions that access parameters and counts.

The implementation also included a Count Rearranger object, which acted on a Network object and its

linked Machine objects in order to perform both the Multinomial Gibbs step updating yit for fixed H , and

the assignment of counts among M1 and M2 in the Split step of the merge-split updating. Implementation

included efficient copy constructors for both Machines and Networks, as well as insertion and deletion

functions, and efficient methods for randomly sampling objects from the graph. Merge-Split Updaters were

also implemented as a virtual class acting on a set of connected components (both Machines and their

associated Network touchpoints for the eventual incorporation of informative allocation) with derived sub-

classes for the progression of component steps outlined in Section 5.2.4, although the initial component

steps that were implemented were too simplistic to admit reasonable acceptance ratios (see Section 5.3.5).

147

Fixed population study: For a preliminary analysis of the effect of multiple machines on active size

estimates and machine-level parameter estimates behind a NAT, several different fixed population sizes

were run for each of the four networks chosen for study. Fixed sample sizes were set at the ratio of the

posterior mean q̃y estimated under the single machine model, to the prior mean q̃ from the restricted Gamma

distribution, as well as the ratio of the posterior spike state rate q̃yω̃y to the prior mean q̃, and two other

proposed sample sizes along the range between these extremes.

The ratio of the baseline posterior mean to the baseline prior mean can be interpreted as a ballpark

estimate of the population, assuming that the baseline represents saturated activity from all infected hosts,

and that the spike patterns observed in the data are due solely to these machines’ spike and decay patterns.

The ratio of the spike state posterior mean to the baseline prior mean can be interpreted as a ballpark estimate

of the population, assuming that the observed spike patterns arise due to an influx of machines turning on

at these times and beaconing at a common baseline rate. The truth of the underlying machine activity for

a NAT or DHCP region is likely some combination of these extremes. The lower bound of the footprint is

informed by the distribution of simultaneous activity at low-level hours such as weekends and holidays. The

upper bound for the footprint depends not only on simultaneous activity at high-level hours, but also on the

user activity model that informs the extent of “churn” and overlap in activity among the underlying users.

To initialize the graph for the one-to-many allocations of fixed size H described by Table 5.2, a single

Network object was created containing the aggregated observed counts xt for the NAT or DHCP region of

study, as well as the estimated offset parameter t∗ for the transition model. A total of H Machine objects

were created, each linked to the single Network object, with offset value t∗ fixed and shared among all

constituents. For each hour t, counts were assigned to each Machine object using a Multinomial(N =

xt, π1 = · · · = πH = 1
H) distribution. Afterward, initial parameters for each Machine were set using the

method S3 outlined in Section 4.6.2 and Table 4.6.2.

Move selection and output: For updating the graph, a random sweep strategy was used that chose one of

three steps with equal probability at each iteration:

1. Select a machine at random; perform one update step for (ψ, θ), one update step for each of 15 states

at randomly chosen times between (tβ, t†), and 10 update steps for parameters (tβ, t†, ε);

148

Network Sample H Iterations Burn-in M Mh My M̄t

Machine 54 q̃y/q̃ 5 374968 299974 767 5000 306 2.0
Mid. 1 8 599922 479937 1223 5000 490 3.4
Mid. 2 12 899927 719941 1786 5000 735 5.0
q̃yω̃y/q̃ 17 1274989 1019991 2608 5000 1042 7.3

Network 109143 q̃y q̃ 55 1462458 1169966 2875 1806 1195 8.1
Mid. 1 100 931977 745881 1880 628 761 4.9
Mid. 2 150 658367 526693 1357 295 538 3.6
q̃yω̃y q̃ 207 495513 396410 996 160 404 2.8

Network 58644 q̃y/q̃ 19 1999996 1599996 3897 7407 1634 10.9
Mid. 1 50 1628504 1302803 3180 2171 1330 8.8
Mid. 2 83 1155761 924608 2269 928 944 6.2
q̃yω̃y/q̃ 113 896979 717583 1832 529 733 5.3

Ukrainian Telecom Network q̃y/q̃ 20 999814 799851 1973 3333 817 5.9
Mid. 1 65 1393067 1114453 2731 1429 1138 7.5
Mid. 2 110 905904 724723 1840 549 740 4.9
q̃yω̃y/q̃ 146 706250 565000 1498 322 577 3.8

Table 5.2: Fixed population sizes, MCMC iterations and burn-in used for four different MCMC runs for
each of the four aggregated networks in the preliminary non-informative network study. Each iteration was
one realization of a random sweep between three different move types. All output was thinned by approxi-
mately 1 in 100 iterations, leading to the total number of iterations M sampled for estimating simultaneous
active size counts and machine parameters in each model. The value Mh is the approximate number of up-
dates performed on each machine h in the chain after burn-in, and My is the approximate number of count
rearrangement steps performed in the chain per hour after burn-in. The value M̄t is the average number of
counts sampled for each hour in the chain, used for summarizing individual hourly machine traces.

2. Perform one updating step for each global survival and immunity rate;

3. Select 150 hours t at random and rearrange counts yit among all machines at each of the selected

hours.

Each Network was treated as a separate graph, with no sharing of information among survival and

immunity parameters. Markov Chains were run concurrently for 12 hours on a MacBook Pro personal

laptop, resulting in between 300, 000 and 2 million iterations per graph, with fewer iterations run for larger

graphs due to the increase in computational complexity for searching the machine space, and the increased

memory and Input/Output details required for those graphs. Chains were directed to produce output at each

selected iteration with probability 0.01. As output, the MCMC chain logged the current iteration number,

the current state of (ψ, θ) for each machine, as well as aggregated counts of the number of active (non-

149

off) machines per hour and the number of infections at each hour. Rearranged counts were also logged at

a thinned rate of approximately 1 per 100 instances of the count rearranging step. As output, the count

rearranger step logged the current iteration number, the Network and boundary ID selected (always the sole

aggregated Network object from the graph in this case), the hour t chosen, the aggregated count xt, and

the machine ID number, mean value and count total sampled using the multinomial distribution for each

machine at that step. From that output, posterior estimation of parametric hit rates λit per hour and counts

yit per hour could be calculated for each machine i.

Posterior means calculated from single-model output were used to summarize (ψ, θ) for each machine

in the population. Output from the count rearranging steps was used to summarize λt and yt by hour to

display a profile of activity for each machine. Posterior means of the number of active machines per hour

were used to generate active size estimates under the assumption of a fixed population size of H machines.

Machine summaries were examined in two different ways: by fixed machine ID, and by baseline order.

All posited machines behind the suspected NAT or DHCP region are interchangeable up to ID, which re-

sults in the label-switching problem as described by Stephens (2000). Because labels are arbitrary among

machines, a perfectly mixing chain will eventually lead to multi-modal posterior distributions of parameters

for unique IDs in a heterogeneous underlying machine population. These posterior distributions can be in-

terpreted jointly among continuous parameters and states, but the posterior mean becomes less interpretable

as a summary for an individual parameter. To combat evidence that this problem was arising at least for

the rate parameters θ, machines 1, · · · , H were re-labeled at each iteration according to the order statistics

q(1), · · · , q(H) for their baseline rates. The posterior means calculated from MCMC output then summarize

the parameters and activity profile of the machine with the smallest baseline at each iteration, through to the

machine with the largest baseline at each iteration. This does not protect against multi-modal distributions in

other parameters, but it can at least help to provide some interpretable identification for heterogeneous ma-

chine populations. All estimates discarded approximately the first 80% of iterations of the chain as burn-in.

The reason for using such a long burn-in rate is twofold: firstly, each iteration updated only small subsets of

model parameters in very large spaces, thus likely increasing the amount of iterations needed for the chain to

converge. Secondly, using a smaller percentage of iterations can be interpreted as a snapshot of a chain that

may still be subject to categorical shifts in estimates due label-switching or multiple modes. Shorter chains

150

can be more easily interpreted as representing one of several local and interpretable modes, with posterior

means summarizing these local modes for the preliminary analysis.

The non-informative model used several adaptations to the to the model from Section 4.6, as suggested in

the Chapter 4 discussion. These changes included instituting a lower bound for the baseline rate q, updating

the survival and immunity models to be time dependent, and jointly proposing a new off state mean λo for

state updating steps that can split or merge runs of off states. Section 5.3.6 describes the details.

5.3.3 Fixed population parameters

Preliminary analysis of the MCMC output for the non-informative model indicated several broad trends

across all networks in the case study:

1. As the population size increased, machine-specific parameter estimates tended to favor a population

with a few outliers with larger baseline rates, and most other machines with small baseline rates and

comparatively large spike rates;

2. As the population size increased, more machines were shown to be turned off during lulls in activity

on the aggregated network; however, in most cases the majority of machines were modeled as active

at any given hour.

3. Model traces showed little evidence of long periods of inactivity, and no evidence of clean-up or

non-immunity among postulated machines.

4. Flexibility in the decay rate parameter α enabled the transfer of large systematic problems for the

single-machine model on the aggregate network to the postulated machines with the largest baseline

rates.

Tables 5.3, 5.4, 5.5, and 5.6 summarize the population posterior means for the estimated populations

for each of the four networks studied. Baseline-ordered posterior means are summarized in each table;

for each network and sample size, both ordered and unordered posterior means for q and ω were similar.

Baseline rates and spike rates were generally negatively correlated, leading to similar overall hit rates at

spike states among postulated machines. MCMC traces for rate parameters still showed some evidence of

multi-modality, attributed to small sample sizes and poorer mixing. Figures 5.4 and 5.5 show examples for

151

the baseline, spike rate, and overall hit rate at spike state for the machines with the largest baseline rates q in

the populations for the large NAT behind Network 109143 and the DHCP region for the Ukrainian Telecom

company.

c(xlb:0)

2.50

2.91

2.71

206 : q Network 109143 max baseline

c(xlb:0)

13.6

18.1

16.8

206 : omega Network 109143 max baseline

34.7

50.6

45.4

206 : qw Network 109143 max baseline

Figure 5.4: MCMC sparkline plots for the baseline rate q, spike rate ω and their product, for the machine
with the largest ordered baseline in the model for Network 109143 with 207 machines.

In general, the populations were modeled as collections of relatively homogenous machines, although

ordering among the baseline rates q did impose some structure. The models favored populations of persis-

tently active machines with very low baseline rates and comparatively high spike rates for the NAT networks,

with only a few machines with higher baseline rates. The apparent sinking of q toward the lower bound for

a majority of machines in the population does not agree with the informed priors from sandbox testing;

however, the directly observable Waledac data set also showed similar tendencies, arising at least partially

from the complexities in the relationship between rate parameters θ and states η. For the non-informative

populations, the a posteriori inference for large fixed populations is that activity at lulls in the network is

152

c(xlb:0)

19.5

24

22.4

145 : q UK Telecom Network max baseline

c(xlb:0)

3.28

4

3.48

145 : omega UK Telecom Network max baseline

72.7

89.1

78

145 : qw UK Telecom Network max baseline

Figure 5.5: MCMC sparkline plots for the baseline rate q, spike rate ω and their product, for the machine
with the largest ordered baseline in the model for the Ukrainian Telecom DHCP region with 146 machines.

comprised mainly of a few “heavy hitters” with large baselines, and many more ephemeral machines with

very low rates at these times; that nonetheless spike dramatically during peak activity. A more robust model

for active vs. inactive states may help the interpretation of this model. The baseline and spike rates for the

large population of ephemeral machines could settle closer to the prior modes if these machines could be

modeled as turned off during lulls in activity, as opposed to spiking dramatically from a low-baseline active

state as the workday begins.

The average time spent consecutively turned off increased as population size H increased for all net-

works, but even for the largest populations modeled, no machines appeared to be modeled as persistently

turned off, and most populations were modeled as having a majority of machines turned on in any given

hour. This result is likely partly due to the focus on a 24-hour periodic transition model with a generally

low prior for the parameter λo, but it is also likely that the updating steps for ηt may not mix well enough

153

Waledac Machine 54 Correlation
H Par. Min. Q1 Med. Mean Q3 Max. Avg. σ q ω α λo

5

q 1.80 2.26 3.62 4.05 5.99 6.60 0.300 1.00 -0.87 0.10 -0.97
ω 3.87 4.07 8.48 8.71 9.19 17.95 1.900 -0.87 1.00 -0.13 0.77
α 0.38 0.63 0.67 0.63 0.70 0.76 0.057 0.10 -0.13 1.00 0.08
λo 1.77 1.87 3.76 3.76 5.36 6.02 0.650 -0.97 0.77 0.08 1.00

8

q 1.05 1.17 1.36 2.00 2.34 4.33 0.180 1.00 -0.90 -0.72 -0.81
ω 5.83 8.37 12.70 12.07 15.74 17.56 2.800 -0.90 1.00 0.38 0.56
α 0.58 0.64 0.67 0.66 0.68 0.75 0.110 -0.72 0.38 1.00 0.79
λo 3.67 4.08 4.70 4.46 4.81 4.92 3.500 -0.81 0.56 0.79 1.00

12

q 1.02 1.08 1.20 1.72 1.53 5.01 0.130 1.00 -0.91 -0.27 -0.28
ω 3.69 12.05 15.35 13.21 16.29 16.63 2.700 -0.91 1.00 0.51 -0.04
α 0.49 0.58 0.58 0.58 0.59 0.60 0.094 -0.27 0.51 1.00 -0.02
λo 3.83 4.56 5.18 5.24 5.79 6.70 2.500 -0.28 -0.04 -0.02 1.00

17

q 1.01 1.04 1.09 1.21 1.24 2.00 0.057 1.00 -1.00 0.72 0.93
ω 9.66 14.55 15.64 14.90 16.18 16.37 3.000 -1.00 1.00 -0.71 -0.94
α 0.54 0.54 0.55 0.55 0.55 0.58 0.150 0.72 -0.71 1.00 0.62
λo 5.38 6.16 6.92 7.90 8.84 13.00 4.700 0.93 -0.94 0.62 1.00

Table 5.3: Summaries of population means for Off State transition and Poisson rate parameters for four
populations posited for Machine 54 from the Waledac informed singleton set. Machines were identified in
the MCMC chain by ordering of the baseline rate q.

to explore local modes that include long runs of off-to-off state transitions. The method for setting initial

states and counts yt among the proposed machines favored initializations that did not generally include long

strings of inactive states. Randomly updating ηt one state at a time, even with the proposal of a new mean λo

simultaneously, did not appear to mix well enough to encourage configurations with large runs of off-to-off

transitions.

Locality in the off-to-off state transitions also affected the model for clean-up and immunity. In the

model, a machine is more likely to be considered a candidate for clean-up if its current configuration includes

a long string of inactive states at the end of the observation window. Despite expanding the survival model

to include hour-by-hour survival rates, the survival trend (see section 5.3.6) was informed by the trends

across all observed networks, and was not yet flexible enough to adapt to the pattern of decay observed in

Network 58644. In the current configurations of the single-machine model, the user activity trends, and the

survival model, the a posteriori conclusions from modeling indicate that populations in the range between

the active size at lulls in the network, and the active size at peaks, are stable and active throughout the period

154

Network 109143 Correlation
H Par. Min. Q1 Med. Mean Q3 Max. Avg. σ q ω α λo

55

q 1.02 1.38 1.91 3.61 3.81 21.40 0.220 1.00 -0.86 0.90 0.49
ω 3.21 12.74 17.12 15.19 18.60 19.92 3.600 -0.86 1.00 -0.76 -0.44
α 0.39 0.46 0.47 0.51 0.51 0.94 0.180 0.90 -0.76 1.00 0.54
λo 0.16 1.04 1.28 1.35 1.56 2.85 1.800 0.49 -0.44 0.54 1.00

100

q 1.00 1.18 1.46 2.00 2.00 11.62 0.081 1.00 -0.86 0.88 0.71
ω 8.70 16.30 16.60 16.00 17.10 17.90 4.800 -0.86 1.00 -0.91 -0.55
α 0.34 0.40 0.41 0.46 0.44 0.94 0.160 0.88 -0.91 1.00 0.71
λo 0.97 1.55 1.68 1.79 1.85 4.69 2.400 0.71 -0.55 0.71 1.00

150

q 1.00 1.10 1.25 1.47 1.57 6.22 0.031 1.00 -0.59 0.92 0.26
ω 6.94 16.03 16.44 16.23 16.72 17.81 5.500 -0.59 1.00 -0.62 -0.30
α 0.40 0.43 0.45 0.47 0.47 0.96 0.190 0.92 -0.62 1.00 0.41
λo 0.42 1.65 1.86 1.88 1.98 4.72 2.200 0.26 -0.30 0.41 1.00

207

q 1.00 1.03 1.08 1.15 1.17 2.71 0.011 1.00 0.58 0.83 -0.39
ω 14.60 15.50 15.90 16.30 16.70 22.50 5.900 0.58 1.00 0.40 -0.47
α 0.33 0.42 0.42 0.44 0.43 0.91 0.180 0.83 0.40 1.00 -0.27
λo 0.63 1.32 1.69 1.94 2.35 4.55 9.300 -0.39 -0.47 -0.27 1.00

Table 5.4: Summaries of population means for Off State transition and Poisson rate parameters for four
populations posited for the US network (109143) located at 63.96.204.0/24. Machines were identified in
the MCMC chain by ordering of the baseline rate q.

of observation.

5.3.4 Activity profiles for fixed populations

For further diagnostics, population profiles including the average number of active machines per hour, and

traces of the mean counts yit assigned to the machines with the top and bottom ordered baseline rates, were

also produced for each population. Figures 5.6 and 5.7 show examples for Network 58644. Posterior mean

activity counts (all machines not turned off) per hour, averaged across all iterations post burn-in, are plotted

in the top left corner, with a lowess curve added to summarize large-scale trends. A scatter-plot of the

ordered posterior baseline and spike rates (q and ω) is shown at the top right. Traces of the average count yt

for the top 3 ordered baselines as well as the bottom 2 ordered baselines are plotted to indicate the range of

machine activity in the population. Each trace is accompanied by a parametric profile of the spike-to-decay

pattern for the machine, using the posterior means for q(i), ω(i), and α(i) for the i-ordered machine.

Because output from the count rearranger did not include ranked baselines (only the means λit), the

155

Network 58644 Correlation
H Par. Min. Q1 Med. Mean Q3 Max. Avg. σ q ω α λo

19

q 1.28 1.69 2.24 3.02 3.06 10.86 0.220 1.00 -0.93 0.76 -0.87
ω 7.48 20.34 20.72 19.79 21.83 22.49 2.000 -0.93 1.00 -0.64 0.68
α 0.37 0.42 0.48 0.54 0.56 0.95 0.150 0.76 -0.64 1.00 -0.74
λo 12.50 14.90 15.50 15.20 15.80 16.50 2.600 -0.87 0.68 -0.74 1.00

50

q 1.00 1.04 1.11 1.28 1.30 2.76 0.031 1.00 0.89 0.79 -0.74
ω 20.50 20.60 20.70 21.10 21.20 23.40 2.400 0.89 1.00 0.87 -0.64
α 0.55 0.56 0.59 0.61 0.61 0.82 0.170 0.79 0.87 1.00 -0.41
λo 12.60 16.20 16.30 16.10 16.40 17.40 3.100 -0.74 -0.64 -0.41 1.00

83

q 1.00 1.02 1.04 1.08 1.09 1.71 0.012 1.00 0.96 0.98 0.72
ω 17.50 17.90 18.20 18.60 18.80 23.30 5.500 0.96 1.00 0.95 0.75
α 0.54 0.55 0.56 0.59 0.59 0.95 0.170 0.98 0.95 1.00 0.61
λo 12.10 12.40 12.60 12.80 13.10 14.60 3.600 0.72 0.75 0.61 1.00

113

q 1.00 1.01 1.02 1.04 1.04 1.92 0.006 1.00 0.81 0.95 0.79
ω 14.80 15.30 15.80 16.10 16.40 23.60 7.800 0.81 1.00 0.92 0.93
α 0.49 0.51 0.53 0.54 0.54 0.98 0.180 0.95 0.92 1.00 0.90
λo 9.44 9.88 10.09 10.20 10.34 13.02 3.300 0.79 0.93 0.90 1.00

Table 5.5: Summaries of population means for Off State transition and Poisson rate parameters for four
populations posited for the Indian network (58644) located at 59.145.136.0/24. Machines were identified
in the MCMC chain by ordering of the baseline rate q.

count traces are calculated using machine ID order, with IDs sorted by the highest to lowest posterior mean.

This makes it more difficult to discern persistent periods of inactivity for the ordered machines in the trace

plots. However, despite this change in identifiability, traces for the extrema of ID-ordered mean counts

appear relatively similar to the profiles described by their respective ordered posterior means.

Figure 5.6 shows the activity profile for a population of 50 machines postulated for Network 58644. The

proposed population size is too small to admit significant downtime for any of the 50 proposed machines,

and the declines are explained by a decrease in spike activity for the population. Despite the inclusion of

survival and clean-up components in the model, posterior inference attributes the decline in observed counts

to a small set of machines with high decay rates that dramatically decline at the onset of decline in the

observed network counts. Figure 5.7 shows the activity profile for the same network with a population of

113 machines. Activity is still modeled as saturated among all machines leading up to April 5th, but activity

is shown to drop to levels similar to the levels seen for the 50-machine population during the course of the

declining trend in the observed aggregated counts for the network. Again, the decrease in activity among

156

Ukrainian Telecom Network Correlation
H Par. Min. Q1 Med. Mean Q3 Max. Avg. σ q ω α λo

20

q 1.83 2.85 6.79 6.81 10.09 13.85 0.360 1.00 -0.93 -0.31 -0.60
ω 5.01 5.34 8.01 11.80 19.61 23.26 1.100 -0.93 1.00 0.10 0.62
α 0.13 0.16 0.17 0.18 0.21 0.26 0.053 -0.31 0.10 1.00 0.21
λo 1.07 1.30 1.99 2.06 2.34 3.59 0.830 -0.60 0.62 0.21 1.00

65

q 1.00 1.02 1.05 2.62 2.52 13.42 0.110 1.00 -0.96 0.42 0.45
ω 5.94 20.67 22.48 19.72 22.63 23.37 1.400 -0.96 1.00 -0.24 -0.48
α 0.16 0.23 0.24 0.24 0.24 0.35 0.064 0.42 -0.24 1.00 0.11
λo 0.87 0.98 1.11 1.65 2.28 3.86 1.000 0.45 -0.48 0.11 1.00

110

q 1.00 1.01 1.03 1.74 1.12 20.15 0.059 1.00 -0.95 0.48 0.02
ω 4.37 22.52 22.63 22.15 22.86 23.79 1.400 -0.95 1.00 -0.37 0.23
α 0.24 0.26 0.27 0.29 0.27 0.47 0.066 0.48 -0.37 1.00 0.51
λo 1.58 2.17 2.33 2.57 2.68 4.36 1.500 0.02 0.23 0.51 1.00

146

q 1.00 1.01 1.04 1.67 1.36 22.41 0.041 1.00 -0.93 0.49 -0.41
ω 3.48 22.79 22.93 22.58 23.19 23.58 1.000 -0.93 1.00 -0.29 0.61
α 0.27 0.30 0.31 0.32 0.32 0.46 0.076 0.49 -0.29 1.00 -0.01
λo 1.51 3.39 3.71 3.69 4.10 4.64 1.300 -0.41 0.61 -0.01 1.00

Table 5.6: Summaries of population means for Off State transition and Poisson rate parameters for four pop-
ulations posited for the Ukrainian Telecom Network located at 94.179.128.0/17. Machines were identified
in the MCMC chain by ordering of the baseline rate q.

low-baseline machines is attributed partly to a decrease in spiking activity. But the off-to-off state transition

means λo estimated for this network were the highest of any of the four networks studied, with a mean

of 10.2 hours for the largest population size. The value of λo estimated for each machine still drops as a

function of population size, indicating that the decline in activity is modeled as mixed homogenously among

available machines, rather than attributed to a few machines being cleaned up and permanently switched off.

The flexibility of the decay rate α to inflate in order to model large trends is shown in the profile for the

machine with the maximum baseline. The decay rate prior is sharply peaked around 0.4; in this example

the maximum posterior mean for α is 0.98, leading to a poor interpretation of the most active machine in

the underlying population. Similar decay rate inflation is seen for the NAT network 109143 (Figure 5.8). It

is interesting to note the difference between the trends for baselines and spike rates in this largest NAT, vs.

the same trends in the DHCP region for the Ukrainian Telecom company. The sharp daily drops in observed

counts are sufficient to keep posterior decay rates small in the population. However, as opposed to the NAT

network that universally estimates low baseline rates among machines as the population grows, the baseline

157

rates for the DHCP region settle into several large outliers, still with similar overall hit rates at spike states

among machines.

MCMC chains were also run for 2 million iterations for the largest population size for each network,

with the decay rate α fixed at the prior mean of 0.4. Figures 5.10 and 5.11 shows the results for the large

NAT networks 58644 and 109143. Fixing α = 0.4 resulted in a slight drop in average active machines per

hour as the baseline rates increased toward the prior mode, and in more interpretable patterns of activity

among all of the resulting machines in the population.

According to posterior inference for the non-informative model, no machines in the study had long

periods of inactivity, and all machines were immune to clean-ups. Though this result could partially be

due to population sizes that are still too low to admit any churn or deaths among active machines, it is also

likely due to an inadequate survival model and to the difficulties in updating individual machines to include

long periods of inactivity. As an exploratory measure, a population of 100 machines was postulated for

Waledac Machine 54 and a Markov chain run for 3 million iterations. Assuming all machines are active,

this population size is unreasonable for the given network; it is well above both the stable baseline of 20.7

connections per hour for the single-machine model and the spike state rate of 80 connections per hour.

Figure 5.12 shows the resulting active state counts as well as ordered baseline rate and spike rate poste-

rior means for the population. The activity profile follows very closely with the patterns of observed counts

for the machine, and for the most part, baseline rates q for the population are close to 1, and spike rates ω

range between 1 and 2. The largest baseline machine (q(100) = 1.62) is the only machine with a spike rate

above 2; the machine has a spike rate of ω(100) = 22.04 and an off-to-off state transition mean λo = 25.3

hours. Transition probabilities for this machine suggest that it tends to turn off regularly and then to spike

at regular intervals. The average off-to-off state transition mean for baselines q(1) · · · q(99) is 6.8 hours. It

appears that the model uses the machine associated with q(100) to account for the very large spikes in the

observed counts for Waledac Machine 54, with associated churn among smaller machines, but again there

is less evidence for long periods of inactivity among the churning machines. This could also be an effect of

the lack of spike activity on the weekends; the large value of λo suggests a day-to-day pattern of inactivity

for this machine.

This population is the first that starts to show minor evidence of non-immunity among machines, with

158

some posterior probabilities of immunity among machines sinking very slightly below 1.0. However the

death dates for non-immune machines (the last non-off state) are on average the last hour of the data collec-

tion window. This model may benefit from a reversible jump Add/Delete step, that at a Delete step proposes

to remove the machine with the lowest baseline rate from the graph, while rearranging counts among all

remaining machines, and at an Add step, proposes to add a machine with a low baseline and activity profile

to the graph.

159

ac
tiv

e
si

ze

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

10

20

30

40

50

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●●
●●

●●
●
●●●●

●
●
●
●●●
●●
●
●

●

●

●

●●●

●

●
●●

q

om
eg

a

1.0 1.5 2.0 2.5

20.5

21.0

21.5

22.0

22.5

23.0

23.5

M
ax

 b
as

el
in

e

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0
10
20
30
40
50
60
70

Inf Inf 2 4 6 8 11 14 17

0
10
20
30
40
50
60
70

ba
se

lin
e_

(4
8)

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0
10
20
30
40
50
60
70

Inf Inf 2 4 6 8 11 14 17

0
10
20
30
40
50
60
70

ba
se

lin
e_

(4
7)

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0
10
20
30
40
50
60
70

Inf Inf 2 4 6 8 11 14 17

0
10
20
30
40
50
60
70

ba
se

lin
e_

(1
)

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0
10
20
30
40
50
60
70

Inf Inf 2 4 6 8 11 14 17

0
10
20
30
40
50
60
70

M
in

 b
as

el
in

e

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0
10
20
30
40
50
60
70

Inf Inf 2 4 6 8 11 14 17

0
10
20
30
40
50
60
70

Figure 5.6: Activity profile for a population of 50 machines postulated for Network 58644. The proposed
population size is too small to admit significant downtime for any of the 50 proposed machines, and the
declines are explained by a decrease in spike activity for the population. Despite the inclusion of survival
and clean-up components in the model, posterior inference attributes the decline in observed counts to a
small set of machines with high decay rates that dramatically decline at the onset of decline in the observed
network counts.

160

ac
tiv

e
si

ze

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

20

40

60

80

100

●

●●

●
●

●●

●
●

●
●●
●
●
●
●●
●●●

●
●
●

●
●
●

●
●

●

●
●
●●●●●

●●
●
●
●
●●
●
●
●
●
●●

●●
●
●

●

●
●●
●

●
●●●●●●●●●●●●
●●

●

●

●

●●●●●

●

●

●●
●
●●

●

●
●●●
●

●
●
●

●

●
●

●
●

●

●
●
●
●

●

●
●
●
●

●

q

om
eg

a

1.0 1.2 1.4 1.6 1.8

16

18

20

22

M
ax

 b
as

el
in

e

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

10

20

30

40

50

Inf Inf 2 4 6 8 11 14 17

0

10

20

30

40

50

ba
se

lin
e_

(1
11

)

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

10

20

30

40

50

Inf Inf 2 4 6 8 11 14 17

0

10

20

30

40

50

ba
se

lin
e_

(1
10

)

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

10

20

30

40

50

Inf Inf 2 4 6 8 11 14 17

0

10

20

30

40

50

ba
se

lin
e_

(1
)

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

10

20

30

40

50

Inf Inf 2 4 6 8 11 14 17

0

10

20

30

40

50

M
in

 b
as

el
in

e

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

10

20

30

40

50

Inf Inf 2 4 6 8 11 14 17

0

10

20

30

40

50

Figure 5.7: Activity profile for a population of 113 machines postulated for Network 58644. Activity is still
modeled as saturated among all machines for the pre-cleanup period leading up to April 5th, but activity
is shown to drop to levels similar to the levels seen for the 50-machine population during the course of the
declining trend in the observed aggregated counts for the network. Again, the decrease in activity among
low-baseline machines is attributed to a decrease in spiking activity. The flexibility of the decay rate α to
inflate in order to model large trends is shown in the profile for the machine with the maximum baseline.
The decay rate prior is sharply peaked around 0.4; in this example the maximum posterior mean for α is
0.98, leading to a poor interpretation of the most active machine in the underlying population.

161

ac
tiv

e
si

ze

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

50

100

150

200

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●●

●

●

●●●
●

●●●
●

●
●●

●
●
●
●●

●

●

●

●

●

●●●

●

●
●

●●

●

●●

●●

●

●

●
●●

●
●●●

●

●
●

●●●

●●
●

●

●
●●

●

●●

●

●●●
●

●
●●
●

●
●

●

●

●

●

●

●
●

●

●●
●
●

●
●

●

●●

●●●

●●
●●

●
●
●
●
●●●
●
●
●

●●

●

●
●

●●
●
●

●●

●●●●
●

●

●

●●
●●

●
●
●

●
●
●●●●
●●

●
●●●
●●
●
●
●

●●

●
●

●
●
●
●
●

●

●

●●

●
●
●●

●●

●

●
●●

q

om
eg

a

1.0 1.5 2.0 2.5

16

18

20

22
M

ax
 b

as
el

in
e

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

10

20

30

40

50

60

Inf Inf 2 4 6 8 11 14 17

0

10

20

30

40

50

60

ba
se

lin
e_

(2
05

)

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

10

20

30

40

50

60

Inf Inf 2 4 6 8 11 14 17

0

10

20

30

40

50

60

ba
se

lin
e_

(2
04

)

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

10

20

30

40

50

60

Inf Inf 2 4 6 8 11 14 17

0

10

20

30

40

50

60

ba
se

lin
e_

(1
)

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

10

20

30

40

50

60

Inf Inf 2 4 6 8 11 14 17

0

10

20

30

40

50

60

M
in

 b
as

el
in

e

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

10

20

30

40

50

60

Inf Inf 2 4 6 8 11 14 17

0

10

20

30

40

50

60

Figure 5.8: Activity profile for a population of 207 machines postulated for Network 109143. Machines
with the largest baseline rates q also admit large decay rates α that do not coincide with the priors for
single machines informed by sandbox testing. The transition model for user activity also does not appear
to adequately explain the spikes as lulls due to machines being turned on which were turned off overnight.
Activity patterns instead indicate that machines are almost always turned on, but a few in the population are
turned off for only one or two hours prior to being turned on again and subsequently spiking. The average
off-to-off state transition mean λo for this population was only 1.94 hours.

162

ac
tiv

e
si

ze

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

20

40

60

80

100

120

140

●

●

●

●

●

●
●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●

q

om
eg

a

5 10 15 20

5

10

15

20
M

ax
 b

as
el

in
e

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

20

40

60

80

100

Inf Inf 2 4 6 8 11 14 17

0
10
20
30
40
50
60
70
80
90

100
110

ba
se

lin
e_

(1
44

)

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

20

40

60

80

100

Inf Inf 2 4 6 8 11 14 17

0
10
20
30
40
50
60
70
80
90

100
110

ba
se

lin
e_

(1
43

)

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

20

40

60

80

100

Inf Inf 2 4 6 8 11 14 17

0
10
20
30
40
50
60
70
80
90

100
110

ba
se

lin
e_

(1
)

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

20

40

60

80

100

Inf Inf 2 4 6 8 11 14 17

0
10
20
30
40
50
60
70
80
90

100
110

M
in

 b
as

el
in

e

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

20

40

60

80

100

Inf Inf 2 4 6 8 11 14 17

0
10
20
30
40
50
60
70
80
90

100
110

Figure 5.9: Activity profile for a population of 146 machines postulated for the Ukrainian Telecom network
DHCP region. Machines appear much more homogeneous in daily activity patterns and overall spike rates
than for the NAT networks in the study. Daily drops in activity in the network are transferred to daily
turn-offs among machines. Decay rates α are low due to the very steep drops in daily vs. nightly counts.

163

ac
tiv

e
si

ze

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

20

40

60

80

100

●

●

●

●

●

●
●

●
●●

●

●
●

●●

●●
●●

●
●●●

●
●

●
●●●●

●
●

●●
●
●●

●

●●
●

●●●

●
●●●●

●

●●
●

●●

●
●●●

●

●
●
●
●

●

●

●●

●●

●
●●●
●●
●
●

●

●●
●
●
●●

●
●●●
●
●●

●
●

●
●●

●
●

●●
●●

●
●

●
●●●
●

●

●
●

q

om
eg

a

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

17

18

19

20

21

M
ax

 b
as

el
in

e

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

10

20

30

40

50

Inf Inf 2 4 6 8 11 14 17

0

10

20

30

40

50

ba
se

lin
e_

(1
11

)

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

10

20

30

40

50

Inf Inf 2 4 6 8 11 14 17

0

10

20

30

40

50

ba
se

lin
e_

(1
10

)

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

10

20

30

40

50

Inf Inf 2 4 6 8 11 14 17

0

10

20

30

40

50

ba
se

lin
e_

(1
)

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

10

20

30

40

50

Inf Inf 2 4 6 8 11 14 17

0

10

20

30

40

50

M
in

 b
as

el
in

e

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

10

20

30

40

50

Inf Inf 2 4 6 8 11 14 17

0

10

20

30

40

50

Figure 5.10: Activity profile for 113 machines associated with Network 58644, treating the decay rate α
as fixed at the prior mean 0.4. Hourly activity profiles decrease slightly while baseline rates q increase in
the population toward the prior mode. Although the decay patterns in the overall network are still attributed
partially to fewer spikes among machines, the patterns of counts yt for the machines with large baseline
rates appear more interpretable as single-machine activity.

164

ac
tiv

e
si

ze

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

50

100

150

200

●

●●

●●

●
●●

●

●
●●●

●
●

●
●●●●

●●
●
●●●●●

●
●●

●
●●●

●●●●●●
●
●●
●
●●

●●
●●
●
●

●

●●
●

●

●

●
●●●●

●
●
●
●

●●●
●
●●●
●
●
●
●●●●

●●●●●
●
●●●●●

●●
●●●●
●●
●
●
●
●
●
●

●

●

●
●●●

●
●
●
●
●
●●●
●
●●
●●
●●●●●●
●

●●
●
●●●

●
●●●
●
●
●●
●●●●●
●
●●
●●●●●●

●
●
●●
●●
●
●
●
●●
●
●●

●
●
●●●
●
●●●●
●
●●●●●
●●

●●●

●

●●
●

●
●

●

●

●

●

●

q

om
eg

a

1.0 1.5 2.0 2.5 3.0 3.5

17

18

19

20

21

22

M
ax

 b
as

el
in

e

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0
10
20
30
40
50
60

Inf Inf 2 4 6 8 11 14 17

0
10
20
30
40
50
60

ba
se

lin
e_

(2
05

)

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0
10
20
30
40
50
60

Inf Inf 2 4 6 8 11 14 17

0
10
20
30
40
50
60

ba
se

lin
e_

(2
04

)

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0
10
20
30
40
50
60

Inf Inf 2 4 6 8 11 14 17

0
10
20
30
40
50
60

ba
se

lin
e_

(1
)

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0
10
20
30
40
50
60

Inf Inf 2 4 6 8 11 14 17

0
10
20
30
40
50
60

M
in

 b
as

el
in

e

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0
10
20
30
40
50
60

Inf Inf 2 4 6 8 11 14 17

0
10
20
30
40
50
60

Figure 5.11: Activity profile for 207 machines associated with Network 109143, treating the decay rate α
as fixed at the prior mean 0.4. Again, hourly activity profiles decrease as the baseline rates increase among
the population, with more interpretable patterns of activity attributed to the constituent machines.

165

ac
tiv

e
si

ze

03/05 03/12 03/19 03/26 04/02 04/09 04/16 04/23

0

20

40

60

●

●

●●

q

om
eg

a

1.0 1.1 1.2 1.3 1.4 1.5 1.6

5

10

15

20

Figure 5.12: Activity count profile for 100 machines associated with Machine 54, treating the decay rate α
as fixed at the prior mean 0.4. The largest baseline rate is also associated with the longest posterior off-to-
off state transition mean λo. The active number of machines follows closely to the patterns in the observed
counts for Machine 54, with one machine attributed to a daily pattern of ephemeral large spikes (ω = 22.04,
the only spike rate higher than 2.0 in the population).

5.3.5 Output analysis for Merge-Split steps

A preliminary implementation of Merge-Split updating was also included in the C++ graph structure. The

order of parameters followed the progression η → (tβ, t†, ε) → q → ω → α → ψ → y. States were

merged deterministically according to Table 5.1, and were split with non-uniform probabilities outlined

in Section 5.2.4 in order to help interpretability. Conditional on the state, the birth, death and immunity

updates were implemented using the merge probabilities shown in Table 5.7. Definitions follow Table 4.5.3

in Section 4.5.3: t·` is the latest hour for which ηt 6= o, and ε = 0 implies susceptibility to cleanup while

ε = 1 implies immunity. The table was suitably renormalized for split steps. In split situations where the

proposed states η1 and η2 prohibited birth before time 284 for both proposed machines, the corresponding

columns are replaced by zeroes in the probability table.

Independent Gibbs steps based solely on η were implemented for the parameters λo, γs and γd. The

periodic baseline νa was merged and split using a 3-dimensional step that mapped ν12,a to 1
2(ν1,a + ν2,a)

in expected value and vice versa. The value of ρa was sampled based on η alone, using a Beta distribution

166

centered at the value obtained by measuring the proportion of the relevant state transitions in η observed

at the apex time t∗ = 6, weighted by one additional observation centered at the prior mean of 0.5 for ρ.

Counts were merged deterministically and split according to the Binomial distribution with N = yt,12 and

probability equal to the renormalized means λt,1 and λt,2.

Several different approaches were tried for sampling rate parameters, with little success. The merge-

split step for the baseline rate q was implemented using a 3-dimensional step preserving interpretability due

to Equation 5.13, adjusting the modes of the scaled Beta proposal distribution when this value was out of

range for the value of the parameter(s) in the current machine(s). The spike rate ω and decay rate α were

updated using the same simple 3-dimensional step as the periodic baseline νa. Alternatively, the decay rate

α was set to 0, and baseline rates and spike rates were proposed using simple method of moments estimators

applied to Equation 5.12. Overall, the goal was to sample rate parameters close to the mode of the complete

conditional distribution given η, but this is still a heuristic design in the trial-and-error phase.

Tight sample sizes (σ = 600) and looser sample sizes (σ = 100) were attempted for the scaled Beta

proposal distributions for all three-dimensional merge-split steps. These peaked distributions were chosen

as an attempt to implement near equivalence as in Green’s two-dimensional case, without having to account

for one-to-one mappings across the changes of scale that arose in the interpretable transformations. Further-

more, tight sampling bounds cause difficulty with the reverse move as the chain settles in to its steady state;

if the parameter values at the current iteration are far from the conditional mode, it will reduce the likelihood

of acceptance due to inclusion of the reverse step in the numerator of the acceptance ratio.

To aid analysis and design for merging and splitting in the future, the C++ implementation can be set

to print the full trace of all component steps for merge-split updaters. A typical example for Machine 54 is

shown in Figure 5.13. From an initial population of 8 machines proposed to be responsible for the observed

activity, an attempt is made to merge two machines together into one. This is an example of a reduced

model in which decay rates α have been set universally to 0. The log-candidate values shown at the end

of each proposal line are the ratios g1→2

g2→1
for each component step, multiplied by the prior ratios for ψ and

θ, and also by the full component log-likelihood for the conditional Gibbs steps (resulting in a value of

0). The partial sum shown for the counts at each of the 1224 hours is the accumulation of both likelihood

and jumping ratio due to Equation 5.12. The likelihood ratios for the remaining transition probabilities

167

and birth/death/immunity status are added at the end of the step. The likelihood ratios appear healthy for

the birth/death/immunity and transition probability components. However this step has a large negative

contribution from the proposals for η (−1503), ω (−876) and the accumulation of the log-acceptance ratios

associated with yt (−224). The proposal for ω seems to be an effect of the peaked Scaled Beta proposal

distribution, and from the trace output it seems like the spike rate should be lower than what is proposed.

More troublesome are the contributions from state proposals and the slow accumulation of negative values

for the hourly counts. Chains including merge-split updating were run multiple times through 10, 000+

iterations for the four networks in the case study under various starting population sizes and using several

different modeling and updating schemes, but produced no acceptances.

168

M12

M1 M2 (0, t12,`, 0) (0, T, 0) (0, T, 1) (284, t12,`, 0) (284, T, 0) (284, T, 1)

(0, t1`, 0) (0, t2`, 0) 0.50 0.25 0.25 0 0 0
(0, t1`, 0) (0, T, 0) 0.33 0.33 0.33 0 0 0
(0, t1`, 0) (0, T, 1) 0.33 0.33 0.33 0 0 0
(0, t1`, 0) (284, t2`, 0) 0.33 0.33 0.33 0 0 0
(0, t1`, 0) (284, T, 0) 0.33 0.33 0.33 0 0 0
(0, t1`, 0) (284, T, 1) 0.33 0.33 0.33 0 0 0
(0, T, 0) (0, t2`, 0) 0.33 0.33 0.33 0 0 0
(0, T, 0) (0, T, 0) 0.25 0.50 0.25 0 0 0
(0, T, 0) (0, T, 1) 0.33 0.33 0.33 0 0 0
(0, T, 0) (284, t2`, 0) 0.33 0.33 0.33 0 0 0
(0, T, 0) (284, T, 0) 0.33 0.33 0.33 0 0 0
(0, T, 0) (284, T, 1) 0.33 0.33 0.33 0 0 0
(0, T, 1) (0, t2`, 0) 0.33 0.33 0.33 0 0 0
(0, T, 1) (0, T, 0) 0.33 0.33 0.33 0 0 0
(0, T, 1) (0, T, 1) 0 0 1.00 0 0 0
(0, T, 1) (284, t2`, 0) 0.33 0.33 0.33 0 0 0
(0, T, 1) (284, T, 0) 0.33 0.33 0.33 0 0 0
(0, T, 1) (284, T, 1) 0 0 1.00 0 0 0
(284, t1`, 0) (0, t2`, 0) 0.33 0.33 0.33 0 0 0
(284, t1`, 0) (0, T, 0) 0.33 0.33 0.33 0 0 0
(284, t1`, 0) (0, T, 1) 0.33 0.33 0.33 0 0 0
(284, t1`, 0) (284, t2`, 0) 0 0 0 0.50 0.25 0.25
(284, t1`, 0) (284, T, 0) 0 0 0 0.33 0.33 0.33
(284, t1`, 0) (284, T, 1) 0 0 0 0.33 0.33 0.33
(284, T, 0) (0, t2`, 0) 0.33 0.33 0.33 0 0 0
(284, T, 0) (0, T, 0) 0.33 0.33 0.33 0 0 0
(284, T, 0) (0, T, 1) 0.33 0.33 0.33 0 0 0
(284, T, 0) (284, t2`, 0) 0 0 0 0.33 0.33 0.33
(284, T, 0) (284, T, 0) 0 0 0 0.25 0.50 0.25
(284, T, 0) (284, T, 1) 0 0 0 0.33 0.33 0.33
(284, T, 1) (0, t2`, 0) 0.33 0.33 0.33 0 0 0
(284, T, 1) (0, T, 0) 0.33 0.33 0.33 0 0 0
(284, T, 1) (0, T, 1) 0 0 1.00 0 0 0
(284, T, 1) (284, t2`, 0) 0 0 0 0.33 0.33 0.33
(284, T, 1) (284, T, 0) 0 0 0 0.33 0.33 0.33
(284, T, 1) (284, T, 1) 0 0 0 0 0 1.00

Table 5.7: Merge-split probability table for (tβ, t†, ε) conditional on η and η∗. Definitions follow Table 4.5.3
in Section 4.5.3: t·` is the latest hour for which ηt 6= o, and ε = 0 implies susceptibility to cleanup while
ε = 1 implies immunity. In split situations where the proposed states η1 and η2 prohibit birth before time
284 for both proposed machines, the corresponding columns are replaced by zeroes in the probability table.

169

:
:
M
e
r
g
e
/
S
p
l
i
t
,

R
e
p
e
a
t

1
t
i
m
e
s
:
:

4
7
8

M
e
r
g
e
S
p
l
i
t

P
r
i
o
r
:

M
e
r
g
e

S
t
e
p
:

c
u
r
r
e
n
t

H
=

8
P
a
i
r

b
o
u
n
d
a
r
y

=
8

p
r
i
o
r

a
n
d

s
e
l
e
c
t
i
o
n

l
o
g
-
l
i
k
e
l
i
h
o
o
d

=
1
.
2
5
4
3
5

4
7
8

M
e
r
g
e
S
p
l
i
t
_
s
t
a
t
e
:

M
e
r
g
e

S
t
e
p
|

c
u
r
r
e
n
t
=

7
:

(
4

o
f
f
,

9
3

s
p
i
k
e
,

1
1
2
7

d
e
c
a
y
)

|
0
:

(
5

o
f
f
,

8
1

s
p
i
k
e
,

1
1
3
8

d
e
c
a
y
)

|
p
r
o
p
o
s
e
d
=

1
6
8
:

(
4

o
f
f
,

1
2
5

s
p
i
k
e
,

1
0
9
5

d
e
c
a
y
)

|
l
o
g
-
c
a
n
d
i
d
a
t
e
=
-
1
5
0
3
.
6
5

4
7
8

M
e
r
g
e
S
p
l
i
t
_
B
i
r
t
h
/
D
e
a
t
h
/
I
m
m
u
n
e
:

M
e
r
g
e

S
t
e
p
|

c
u
r
r
e
n
t
=

7
:

(
0

1
2
2
4

1
)

0
:

(
0

1
2
2
4

1
)

|
p
r
o
p
o
s
e
d
=

1
6
8
:

(
0

1
2
2
4

1
)

|
l
o
g
-
c
a
n
d
i
d
a
t
e
=
-
1
.
2
5
2
7
6

4
7
8

M
e
r
g
e
S
p
l
i
t
_
q
:

M
e
r
g
e

S
t
e
p

|
c
u
r
r
e
n
t
=

7
:

3
.
0
5
1
7
5

0
:

2
.
9
6
3
5
8

|
p
r
o
p
o
s
e
d
=

1
6
8
:

5
.
2
1
0
3

|
l
o
g
-
c
a
n
d
i
d
a
t
e
=
1
6
.
5
4
9
6

4
7
8

M
e
r
g
e
S
p
l
i
t
_
o
m
e
g
a
:

M
e
r
g
e

S
t
e
p

|
c
u
r
r
e
n
t
=

7
:

6
.
0
3
0
2
1

0
:

4
.
6
6
5
2
5

|
p
r
o
p
o
s
e
d
=

1
6
8
:

6
.
3
9
8
2
6

|
l
o
g
-
c
a
n
d
i
d
a
t
e
=
-
8
7
6
.
6
9
9

4
7
8

M
e
r
g
e
S
p
l
i
t
_
O
f
f
L
a
m
b
d
a
:

M
e
r
g
e

S
t
e
p

|
c
u
r
r
e
n
t
=

7
:

4
.
0
5
2
0
9

0
:

0
.
8
5
8
7
3
3

|
p
r
o
p
o
s
e
d
=

1
6
8
:

5
.
0
8
0
8

|
l
o
g
-
c
a
n
d
i
d
a
t
e
=
6
.
3
3
7
1
3

4
7
8

M
e
r
g
e
S
p
l
i
t
_
n
u
.
o
f
f
:

M
e
r
g
e

S
t
e
p

|
c
u
r
r
e
n
t
=

7
:

4
.
4
7
6
6
1

0
:

5
.
7
4
6
5
1

|
p
r
o
p
o
s
e
d
=

1
6
8
:

4
.
5
4
8
1
7

|
l
o
g
-
c
a
n
d
i
d
a
t
e
=
2
.
2
0
7
5

4
7
8

M
e
r
g
e
S
p
l
i
t
_
r
h
o
.
o
f
f
:

M
e
r
g
e

S
t
e
p

|
c
u
r
r
e
n
t
=

7
:

0
.
2
9
9
8
7

0
:

0
.
1
4
1
0
1

|
p
r
o
p
o
s
e
d
=

1
6
8
:

0
.
0
3
7
9
4
3
9

|
l
o
g
-
c
a
n
d
i
d
a
t
e
=
0

4
7
8

M
e
r
g
e
S
p
l
i
t
_
g
a
m
m
a
.
s
p
i
k
e
:

M
e
r
g
e

S
t
e
p

|
c
u
r
r
e
n
t
=

7
:

0
.
1
4
7
2
8
7

0
:

0
.
1
9
9
0
3
1

|
p
r
o
p
o
s
e
d
=

1
6
8
:

0
.
3
2
7
3
0
9

|
l
o
g
-
c
a
n
d
i
d
a
t
e
=
-
5
.
4
8
6
7
7

4
7
8

M
e
r
g
e
S
p
l
i
t
_
n
u
.
s
p
i
k
e
:

M
e
r
g
e

S
t
e
p

|
c
u
r
r
e
n
t
=

7
:

4
.
0
7
4
6
8

0
:

7
.
3
5
1
4
6

|
p
r
o
p
o
s
e
d
=

1
6
8
:

5
.
7
7
4
8
1

|
l
o
g
-
c
a
n
d
i
d
a
t
e
=
-
0
.
4
5
5
1

4
7
8

M
e
r
g
e
S
p
l
i
t
_
r
h
o
.
s
p
i
k
e
:

M
e
r
g
e

S
t
e
p

|
c
u
r
r
e
n
t
=

7
:

0
.
9
6
1
9
4
2

0
:

0
.
9
9
9
9
7
6

|
p
r
o
p
o
s
e
d
=

1
6
8
:

0
.
4
4
5
7
2
5

|
l
o
g
-
c
a
n
d
i
d
a
t
e
=
0

4
7
8

M
e
r
g
e
S
p
l
i
t
_
g
a
m
m
a
.
d
e
c
a
y
:

M
e
r
g
e

S
t
e
p

|
c
u
r
r
e
n
t
=

7
:

0
.
9
4
9
7
2
6

0
:

0
.
9
5
9
3
9
7

|
p
r
o
p
o
s
e
d
=

1
6
8
:

0
.
9
4
9
2
8
5

|
l
o
g
-
c
a
n
d
i
d
a
t
e
=
3
.
5
3
4
7
3

4
7
8

M
e
r
g
e
S
p
l
i
t
_
n
u
.
d
e
c
a
y
:

M
e
r
g
e

S
t
e
p

|
c
u
r
r
e
n
t
=

7
:

5
.
4
1
7
2
1

0
:

4
.
3
4
6
8

|
p
r
o
p
o
s
e
d
=

1
6
8
:

5
.
5
5
8
6
1

|
l
o
g
-
c
a
n
d
i
d
a
t
e
=
1
.
1
6
8
0
2

4
7
8

M
e
r
g
e
S
p
l
i
t
_
r
h
o
.
d
e
c
a
y
:

M
e
r
g
e

S
t
e
p

|
c
u
r
r
e
n
t
=

7
:

0
.
9
8
5
2
6
7

0
:

0
.
9
9
1
7
7
4

|
p
r
o
p
o
s
e
d
=

1
6
8
:

0
.
8
5
3
8
1

|
l
o
g
-
c
a
n
d
i
d
a
t
e
=
1
.
2
1
9
0
1

4
:

C
o
u
n
t
s

9
<
-

6
3

:
S
t
a
t
e
s

2
<
-

2
2

:
R
a
t
e
s

5
.
2
1
0
3

<
-

3
.
0
5
1
7
5

2
.
9
6
3
5
8

:
l
o
g
-
l
i
k
e
l
i
h
o
o
d

=
-
0
.
4
8
8
0
3
7

p
a
r
t
i
a
l

s
u
m

=
-
0
.
4
8
8
0
3
7

5
:

C
o
u
n
t
s

7
<
-

5
2

:
S
t
a
t
e
s

2
<
-

2
2

:
R
a
t
e
s

5
.
2
1
0
3

<
-

3
.
0
5
1
7
5

2
.
9
6
3
5
8

:
l
o
g
-
l
i
k
e
l
i
h
o
o
d

=
-
0
.
2
0
0
6
8
8

p
a
r
t
i
a
l

s
u
m

=
-
0
.
6
8
8
7
2
4

6
:

C
o
u
n
t
s

4
<
-

2
2

:
S
t
a
t
e
s

2
<
-

2
2

:
R
a
t
e
s

5
.
2
1
0
3

<
-

3
.
0
5
1
7
5

2
.
9
6
3
5
8

:
l
o
g
-
l
i
k
e
l
i
h
o
o
d

=
0
.
2
3
0
3
3
6

p
a
r
t
i
a
l

s
u
m

=
-
0
.
4
5
8
3
8
9

7
:

C
o
u
n
t
s

1
9

<
-

4
1
5

:
S
t
a
t
e
s

1
<
-

2
1

:
R
a
t
e
s

3
3
.
3
3
6
8

<
-

3
.
0
5
1
7
5

1
3
.
8
2
5
8

:
l
o
g
-
l
i
k
e
l
i
h
o
o
d

=
-
3
.
5
2
6
3
9

p
a
r
t
i
a
l

s
u
m

=
-
3
.
9
8
4
7
7

8
:

C
o
u
n
t
s

1
4

<
-

8
6

:
S
t
a
t
e
s

2
<
-

2
2

:
R
a
t
e
s

5
.
2
1
0
3

<
-

3
.
0
5
1
7
5

2
.
9
6
3
5
8

:
l
o
g
-
l
i
k
e
l
i
h
o
o
d

=
-
1
.
2
0
6
4
1

p
a
r
t
i
a
l

s
u
m

=
-
5
.
1
9
1
1
8

9
:

C
o
u
n
t
s

8
<
-

4
4

:
S
t
a
t
e
s

2
<
-

2
2

:
R
a
t
e
s

5
.
2
1
0
3

<
-

3
.
0
5
1
7
5

2
.
9
6
3
5
8

:
l
o
g
-
l
i
k
e
l
i
h
o
o
d

=
-
0
.
3
4
4
3
6
2

p
a
r
t
i
a
l

s
u
m

=
-
5
.
5
3
5
5
5

[
.

.
.

]
1
2
2
0
:

C
o
u
n
t
s

0
<
-

0
0

:
S
t
a
t
e
s

2
<
-

2
2

:
R
a
t
e
s

5
.
2
1
0
3

<
-

3
.
0
5
1
7
5

2
.
9
6
3
5
8

:
l
o
g
-
l
i
k
e
l
i
h
o
o
d

=
0
.
8
0
5
0
3
3

p
a
r
t
i
a
l

s
u
m

=
-
2
2
5
.
2
0
3

1
2
2
1
:

C
o
u
n
t
s

6
<
-

2
4

:
S
t
a
t
e
s

2
<
-

2
2

:
R
a
t
e
s

5
.
2
1
0
3

<
-

3
.
0
5
1
7
5

2
.
9
6
3
5
8

:
l
o
g
-
l
i
k
e
l
i
h
o
o
d

=
-
0
.
0
5
7
0
1
3
3

p
a
r
t
i
a
l

s
u
m

=
-
2
2
5
.
2
6

1
2
2
2
:

C
o
u
n
t
s

6
<
-

3
3

:
S
t
a
t
e
s

2
<
-

2
2

:
R
a
t
e
s

5
.
2
1
0
3

<
-

3
.
0
5
1
7
5

2
.
9
6
3
5
8

:
l
o
g
-
l
i
k
e
l
i
h
o
o
d

=
-
0
.
0
5
7
0
1
3
3

p
a
r
t
i
a
l

s
u
m

=
-
2
2
5
.
3
1
7

1
2
2
3
:

C
o
u
n
t
s

2
<
-

1
1

:
S
t
a
t
e
s

2
<
-

2
2

:
R
a
t
e
s

5
.
2
1
0
3

<
-

3
.
0
5
1
7
5

2
.
9
6
3
5
8

:
l
o
g
-
l
i
k
e
l
i
h
o
o
d

=
0
.
5
1
7
6
8
4

M
e
r
g
e
S
p
l
i
t
_
C
o
u
n
t
s
:

M
e
r
g
e

S
t
e
p
|

c
u
r
r
e
n
t
=

7
:
(
1
.
1
0
1
0
7

C
h
i
-
s
q
,

1
2
2
0

d
f
)

0
:
(
1
.
0
9
4
6
3

C
h
i
-
s
q
,

1
2
1
9

d
f
)

|
p
r
o
p
o
s
e
d
=

1
6
8
:
(
0
.
0
3
3
9
6
8
9

C
h
i
-
s
q

1
2
2
0

d
f
)

|
l
o
g
-
l
i
k
e
l
i
h
o
o
d
=
-
2
2
4
.
7
9
9

4
7
8

T
o
t
a
l

l
o
g
-
j
u
m
p

r
a
t
i
o

=
-
2
5
8
1
.
3
3
:

l
o
g
-
j
u
m
p

+
p
r
i
o
r

=
-
2
5
8
0
.
0
7

4
7
8

O
f
f

s
t
a
t
e

a
n
d

i
m
m
u
n
i
t
y

l
o
g
-
r
a
t
i
o

=
-
4
.
2
1
8
8
2

4
7
8

T
r
a
n
s
i
t
i
o
n

p
r
o
b
a
b
i
l
i
t
y

l
o
g
-
r
a
t
i
o

=
5
3
.
9
5
5

4
7
8

F
u
l
l

L
o
g
-
l
i
k
e
i
h
o
o
d

r
a
t
i
o

f
o
r

p
r
o
p
o
s
a
l

v
s
.

c
u
r
r
e
n
t

=
4
9
.
7
3
6
1

4
7
8

T
o
t
a
l

l
o
g
-
l
i
k
e
l
i
h
o
o
d

r
a
t
i
o

f
o
r

t
h
e

p
r
o
p
o
s
a
l

=
-
2
5
3
0
.
3
4

:
l
o
g
(
a
l
p
h
a
)

=
-
1
.
7
5
1
7
7

:
r
e
j
e
c
t
e
d

4
7
8

D
e
l
e
t
e
d

p
r
o
p
o
s
e
d

m
a
c
h
i
n
e

1
6
8

Figure
5.13:M

C
M

C
outputtrace

fora
m

erge
step

applied
to

M
achine

54.L
arge

negative
accum

ulations
in

com
ponentlog-candidate

ratios
for

the
state

proposalsasw
ellassinking

partiallog-likelihood
valuespercountassignm

entperhourshow
the

im
portance

ofgenerating
interpretable

splitstates,as
w

ellas
the

sensitivity
ofthe

m
erge-splitstep

to
sm

alldeviations
in

the
proposed

param
eters.A

n
apparentm

is-step
in

proposing
a

spike
rate

ω
results

in
a

low
log-candidate

value
and

an
overly

high
m

erged
rate

q
1
2 ω

1
2

thatpropagates
through

the
entire

run
ofcounts.

170

5.3.6 Adaptations to the single host model

The non-informative network models used several adaptations to the single host model outlined in chapter

4:

• Instituting a lower bound of 1.0 and an upper bound of 2000 on the baseline rate parameter q.

• Updating the survival probabilities to be time-dependent, with a piecewise linear prior on the hyper-

parameters for each hour;

• Changing the State proposal and Birth/Death/Immune proposal steps to include proposing a new off

state mean λo in conjunction with changes to states with yt = 0 and for the long runs of states added

or deleted for the births and deaths.

• Instituting an unrestricted Gamma prior for the off state mean λo, to avoid unstable calculations in

the likelihood when the MLE of λo given the states η is sharply peaked below the lower bound in the

scaled Beta prior.

Survival rates A piecewise linear prior is used to relate the survival likelihoods for each hour. The prior is

constructed to reflect greater susceptibility to detection with the onset of the March 16th surge, and a gradual

increase in survival probability as the surge dies down. Figure 5.14 shows the prior with set points at the

start and end of the data collection, and at March 16th, 20:00 hours UTC, March 19th, 20:00 hours UTC,

and March 30, 04:00 hours UTC. The line at hour t describes the prior mean µ of the survival probability for

that hour with a sample size ν = 10 across all hours, using a the parameterization of the Beta distribution

characterized by α = µν and β = (1 − µ)ν. Survival rates are universally high because the penalty

accumulates geometrically on an hourly basis. Prior means are set to 0.98 hourly for all hours between the

start of the data collection and the March 16th surge. At the start of the surge, the prior sinks linearly to a

low of 0.9 occurring three days into the surge. The prior then grows linearly to 0.95 for two weeks following

the low point. For the remainder of the data collection window, the prior increases linearly from 0.95 back

up to 0.98.

171

● ●

●

●

●

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Time

P
rio

r
S

ur
vi

va
l P

ro
ba

bi
lit

y

03/05 03/11 03/17 03/23 03/29 04/04 04/10 04/16 04/22

Figure 5.14: A piecewise linear prior for hourly active survival rates.

Joint updating in state proposals Both Birth/Death/Immunity steps and state-changing steps that propose

an on-to-off count have the possibility to drastically change the distribution of runs of consecutive off-to-

off transitions. In order to aid mixing for updating these discrete parameters, at MCMC step m, they are

augmented to include the proposal of a new value for λo. The theory for states ηt is described below; the

step for the discrete distribution of (tβ, t†, ε) is similar.

A joint proposal distribution g((ηt, λo) | ψm, θm,ηm, κ,y) is used to generate both a new discrete state

and a new value of λo, when the state value ηt has the possibility to change the distribution of off states in

the data (that is, yt = 0). The proposal distribution is built in sequence:

g((η∗, λ∗o) | ψm, θm,ηm, κ,y) = g1(η∗ | ψm, θm,ηm, κ,y)g2(λ∗o | ψm, θm,η∗, κ,y)

Suppose the current state ηmt = a0. Since there are only two possible states for the proposed η∗t = a1, the

first proposal can be a simple discrete probability. The generation of a value λ∗o can be done based on the

selected new path variable using the proposal step outlined in Section 4.5.3. When π(λo) = U(lλo , uλo),

172

the complete conditional distribution for λo given the selected state η∗ is a Gamma distribution restricted to

the interval [lλo , uλo].

Let [p(t, a;η, θ, ψ,φ, ε,y)]vu be the conditional path likelihood from Equation 4.11, restricted to the

relevant run of states affected by a change at time t. Let Γ(x, α, β) be the CDF of the Gamma distribution

with parameters α and β and mean equal to αβ. Let Oη be the number of off-to-off state transitions in

the path characterized by η, and let
[
Oη
]v
u

be the number restricted to the range u ≤ t ≤ v, as defined

in Section 5.2.4. Also as defined in Section 5.2.4, let Rη be the number of runs of off states observed in

the path characterized by η, and let
[
Rη
]v
u

= |u ≤ t ≤ v : t ∈ To|o| be the number of runs of off states

restricted to the interval [u, v]. Using this notation, the acceptance ratio for the proposed value (η∗, λ∗o)

becomes

r = 1{lλo<λ
∗
o<uλo}

g1(a0 | ψm, θm,η∗, κ,y)

g1(a1 | ψm, θm,ηm, κ,y)

[p(t, a1;η∗, θm, ψ∗,φm, εm,y)]vu
[p(t, a0;ηm, θm, ψm,φm, εm,y)]vu

(5.15)

×
exp(λ∗o [Ra1]vu)(λ∗o)

−[Oa1]
v

u

exp(λmo [Ra0]vu)(λmo)−[Oa0]
v

u

R
Oa0+1
a0 (Oa1)![Γ(uλo , Oa1 + 1, 1/Ra1)− Γ(lλo , Oa1 + 1, 1/Ra1)]

R
Oa1+1
a1 (Oa0)![Γ(uλo , Oa0 + 1, 1/Ra0)− Γ(lλo , Oa0 + 1, 1/Ra0)]

.

In practice, although the rejection method can be used to sample from a Gamma distribution restricted

to a range [lλo , uλo], it becomes inefficient when the likelihood is sharply peaked outside the allowed range;

generally this occurs when the maximum likelihood estimate of λo given the states η lies below the lower

bound lλo . Finding an efficient covering distribution for the tail of the Gamma is a non-trivial task. When

the MLE lies below the lower bound, both CDF terms in the acceptance ratio are close to 0. This leads to

computational errors in the MCMC code. If π(λo) = Γ(αλo , βλo), unrestricted in its range, the complete

conditional distribution for λo is a conjugate Gamma distribution, and the CDF terms in the likelihood ratio

from equation 5.16 are not needed. To retain the interpretation that off states tend to occur in runs of gen-

erally 6 to 8 hours (following traditional weekday traffic patterns), a prior is chosen with shape parameter

αλo > 1, which puts comparatively low density on very low mean values. On the other hand, the scale

parameter should be large to accommodate days or possibly weeks of inactivity for more ephemeral ma-

chines. Figure 5.15 shows the Γ(2, 50) distribution (mean = 100 hours) that was used as the prior on λo for

non-informative network modeling.

173

0 100 200 300 400 500

0.000

0.002

0.004

0.006

Lambda_off

P
ri(

La
m

bd
a_

of
f)

Figure 5.15: Unrestricted Gamma distribution used as the prior π(λo) for non-informative network model-
ing.

5.3.7 Discussion

This preliminary study of a few interesting non-informative networks is useful for assessing modeling

decisions and estimation techniques for future analysis of both Conficker-C specifically and the general

generation-allocation framework.

Modeling: The reduced non-informative network model from Equation 5.2 arises from a hidden Markov

structure in which the count yt at time t depends only on the values ξ. For the Conficker-C model, this means

that the dependence structure of counts from hour to hour relies only on the parameters ψ and the hit rates λt

which are functions of the states η and Poisson rate parameters θ. Using this structure, the non-informative

network model is essentially a collection of convolutions of counts that are conditionally independent given

the underlying structure, but not identically distributed.

Prior information available for the likelihood of high and low counts for a single active machine can help

to inform the breakdown of counts among active machines at any given time, which can help to place a lower

174

bound on the footprint population size that underlies a set of observed aggregates. But the footprint estimate

itself is sensitive to the transition model that describes the likelihood of long periods of activity or inactivity

for single machines. In cases where the populations are open to births and deaths, the footprint estimate

is also sensitive to the survival model that generates new infections and clean-ups. If little information is

available for these components, or if the functional forms are not chosen well, the posterior estimates of

activity for even an informed sandbox generation model can be difficult to interpret.

For large NATs, it may be useful to derive a transition model that accounts for workday vs. weekend

activity among users, and to posit a population consisting of several different types of machines. The

transition model that was used for Conficker-C accounted only for a 24-hour periodicity, which was not

robust enough to capture the fact that many machines did not turn on during the weekends. The transition

model can be adapted to incorporate a mixture of persistently active machines (from users who rarely turn

their computers off) and ephemeral machines that turn on only for the course of the workday. A hierarchical

model that gives some flexibility in estimating the prior proportions of these two machine types may help to

make population estimates for completely non-informative corporate NAT environments more interpretable,

and keep posterior estimates of single-machine activity in confirmation with information from sandbox tests

and directly observable populations.

Large DHCP regions such as the Ukrainian Telecom Network are not strictly non-informative, but it is

interesting to study the differences between aggregated activity profiles for such networks versus corporate

NATs. The main difference seems to be that the effect of machines turning off and on is spread across wider

ranges of time. For this preliminary study, the periodic peak hour t∗ was fixed at the weighted average of

the values estimated for all /24 net blocks within the Telecom network. Relaxing this value and letting it

be estimated separately for different machines may help the model account for the smoother shape of spike

and decay in less homogenous DHCP regions.

The decay patterns seen in the Indian Network 58644 seemed to be evidence of clean-up behind the

NAT network. Although the survival model was informed by broad patterns across all 33 million Conficker-

C-infected IP addresses seen during the two-month observation period, posterior estimation for Network

58644 did not attribute the decline to deaths. Including hyperparameters for the piecewise linear survival

model can help to make it more interpretable across the different patterns of clean-up that may arise within

175

different networks. Network administration policies and self-policing can certainly increase or decrease the

chances of an infection being noticed and cleaned up versus general immunity of machines. Susceptibility to

clean-up may also be more “bursty” for non-immune machines than can be modeled by a geometric survival

rate that prohibits any hourly survival rate equal to 1. Thus it may be helpful to model survival probabilities

at a higher granularity than hourly machine activity. For example, susceptibility to clean-up can be modeled

as a daily risk rather than an hourly risk. The effect would be like a smoother or histogram bin size applied

to clean-ups, and may help alleviate some of the difficulties arising from multiplying many hundreds of

Beta-distributed geometric decay rates together to obtain survival probabilities.

Finally, though the peaked Beta prior on the decay parameter α was sufficiently constrained to produce

interpretable results for the directly observable population from Chapter 4, it too easily increased to absorb

large-scale shifts in baselines for aggregate counts in the non-informative setting. This slow decay was

propagated across all observed hours for the machines with large baseline rates in the proposed populations,

and led to high mean values and subsequent assignment of large counts yt to these machines. The low prior

weight of the large decay rate was not enough to pull the non-informative MCMC estimation scheme away

from these configurations. Sandbox testing showed clearly that machines settled into baseline within only a

few hours of spiking, and the posterior distribution of α among the directly observable population confirmed

this analysis. It is enlightening to allow α some flexibility for treating aggregations as single machines, as

it was used for fitting single-machine models to the four suspected NAT and DHCP networks in the non-

informative analysis. But in order to maintain interpretability of individual machines as H is changed, the

decay rate should either be fixed to an interpretable value, or implemented with a strict upper bound uα < 1.

Estimation: The biggest question that arises from this preliminary study is whether or not a practical

method for exploring the posterior distribution of the population size H can be achieved for the generation-

allocation model. This can be done using either a between-model approach, that updates H in concurrence

with other machines and parameters in a single MCMC, or a within-model approach that treatsH as an index

to a model family. Section 6.1.2 addresses the latter approach as future work, and this discussion focuses on

improving the methods for adding or deleting machines into the population during a single MCMC run.

The evidence for the practicality of a within-model approach to H is still entwined with the question

of properly informing and identifying the components of the single-machine model as well as efficiently

176

exploring the posterior parameter space when H is fixed. Interpretability is gained by fixing the range

of possibilities for the decay rate α and adapting the survival and transition models to better reflect the

populations studied. After implementing these adaptations, three steps are proposed for aiding estimation:

• Proposing runs of off states associated with 0 counts in updating individual machines

• Including a Metropolis-Hastings version of the count rearranging step that proposes changes of state

ηit in addition to new arrangements of counts yit.

• Redesign of the Merge-Split step and exploration of some other possibilities for adding or deleting

machines.

From the preliminary study, it is apparent that efficient exploration of the posterior space of H machines

behind aggregate network touchpoints requires some larger-dimensional updating steps for single machines,

and perhaps also for arrangement of counts among machines. The model adaptations for Chapter 5 were also

used in further analysis of the Waledac informed singleton set from Chapter 4, with preliminary indications

that the new survival model and off-state updating step were admitting non-immune machines and death

dates t† < T among the population. The analysis of the over-large population for Machine 54 suggests that

the mechanics of the birth, death, and immunity model were working in the non-informative setting, but that

few machines were estimated with long strings of inactive states. To address this, the single-machine model

can be adapted to include joint proposals of consecutive strings of states with yt = 0 to runs of decay or off

states. Similar to the adaptation proposing a new value of λo for a change in a single state ηt associated with

a 0 count, for long strings of counts, new values of both λo and q can be proposed simultaneously.

Despite using information from all machines at each hour, the Gibbs step for rearranging counts can

be considered as a low-dimensional or “short” step among machines. This is especially true for machines

at the extreme values for baseline and spike rates; a few machines with large overall rates λit will tend to

dominate the assignment of aggregate counts, which in turn reinforces the large estimates for rate parameters

θ. One way to implement a “wider” step at the count rearranging step is to propose not only a rearrangement

of counts among machines at time t, but also an update of the underlying state, for example proposing a

change of some decay states associated with 0 counts to off states, thus increasing the weight of remaining

decay states among active machines to counteract large contributions from the extreme rates at the hour. The

177

step would be adapted from a Gibbs step to a Metropolis-Hastings step that included terms similar to those

developed in Chapter 4 for updating a single state in the chain.

The merge-split strategy was chosen as an initial methodology for updating H based on the similarities

of the non-informative network model to finite mixture models akin to those studied in Richardson and

Green (1997). But for the generation-allocation model, the updating step is highly multidimensional and

difficult to control. Merge-split steps have been noted as poorly-mixing for other less highly-dimensional

contexts (Al-Awadhi et al., 2004), and even with relatively good mixing, MCMC chains would need to be

run for many millions of iterations in order to explore fully the posterior space. Simplifying the generation

model to admit fewer overall hit rates λ can help in designing steps that lead to reasonable acceptance

ratios. When starting out from a single large machine, a split step can be designed that uses information

about categorical shifts in the deviations of yt at high-decay and baseline states from the baseline rate q.

Reversing the order of updating for η vs. θ may also make it easier to design interpretable 2-dimensional

steps that map (θ1, θ2) to (θ12, δ) and vice versa. It may also be useful to re-imagine the merge-split step as

time-dependent; though the Conficker-C study was a retrospective across all hours, ongoing study of botnets

involves updating counts on a time-by-time basis.

Another way forward is to re-imagine the updating of H with steps other than merge-split steps. For ex-

ample, the study of the large population for Machine 54 suggests that a useful step may be adding or deleting

a machine with generally low-valued rates across the observation period. When the current population size

is equal to 1 this step is similar to a merge-split step, but for larger population sizes it would be able to spread

allocation of counts to and from small-valued machines across all other machines in the population, possi-

bly reducing the effect of a change in counts on the associated Poisson log-likelihoods. An Add/Delete step

that adds a machine with very low activity can also be seen as a kind of weak non-identifiability centering

method in an RJMCMC context, as suggested by Brooks et al. (2003). This step would add very low-valued

machines, but coupled with a wider count-rearranging step that updated larger components of the parameter

vector M , may be able to quickly build up a non-trivial activity profile for the proposed machine.

178

Chapter 6

Recommendations and Future Work

This research has outlined a general framework for modeling botnet behavior through the lens of IP space, by

modeling the measurable, observable activity–in the form of a count representing a log-in, communication

attempt, or volume of information sent across a network–as the result of a machine-level generation model

informed by sandbox tests and user activity profiles, and a network-level allocation model informed by

network protocols and IP address assignment. Preliminary analysis focused on showing how to develop

the functional form of the behavioral model, and on how to use it in estimation for a directly observable

population and for a non-informative population such as a collection of machines behind a NAT device. A

proof of concept was explored using the Conficker-C botnet as a case study. Section 6.1 outlines some future

directions and recommendations for expanding analysis beyond non-informative networks and Conficker-C.

Section 6.2 provides some concluding remarks.

6.1 Future work

6.1.1 Single machine modeling

Suggestions for future modeling efforts for Conficker-C specifically are addressed in Sections 4.6.6 and 5.3.7.

The case study with Conficker-C also highlights several broader goals for developing behavioral models that

can help to inform machine- or device-based population estimates when activity is observed via IP address:

179

• Simplicity: A flexible model for counts can be useful for directly observable populations, but even

informed priors may be overwhelmed by low-likelihood configurations of counts when T is large.

Flexible priors that seem reasonable for the directly observable case can nonetheless cause strange

configurations when the individual counts yit are visible only up to the aggregated counts xt. If pos-

sible, a simple model for counts would relegate all dependence between time periods to the transition

model for user activity. Of course, some kinds of activity–such as user-initiated functionality in the

malware–may be correlated directly with user activity patterns as well as previously generated vol-

umes. Modeling the dependencies in rates as short-lived (for example allowing spiking in activity

but forcing quick returns to baseline), can help to translate the interpretability of the single-machine

model to the larger population.

• Functional accuracy: Even for behaviors that do not change rate with increased user activity, a be-

havioral model will need to account for active vs. inactive machines. The model for user activity

should be flexible enough to include weekday versus weekend patterns, and to allow for both persis-

tent and ephemeral users. Though the parametric form for transitions in the Conficker-C study was

efficient in the number of parameters estimated, analysis of both the directly observable and non-

informative populations indicated that it fit the data poorly. For future studies, it may be a better

choice to estimate independent 24-hour periodic probabilities of activity, with flexibility to account

for weekends and holidays. For large NAT networks, a mixture of multiple models of activity may

be required to account for machines that have persistent low levels of activity versus machines whose

activity follows much more closely with the Monday through Friday work schedule.

• Granularity: Generation and allocation is a continuous process that is aggregated across discrete

time periods t for a first attempt at modeling. Depending on the type of behavior that is modeled, the

time period can be as short as a few seconds, or as long as a day. The granularity for a model should

be selected to minimize the conflation of variability that arises due to changes in the generation rate

with variability that arises due to changes in user activity. This active versus inactive variation is not

modeled by sandbox tests. For example, if the malicious software is programmed to check in every

24 hours, then a time period aggregating counts by t = 1, 2, 3 . . . days would still sum homogenous

activity volumes from all underlying machines, conflated only with active vs. inactive patterns. But

180

for counts such as spam volumes, it is more useful to pick a level of granularity that does not aggregate

more continuous measures of volume across potentially different profiles of active vs. inactive hours

within the day. Conficker-C was modeled by hour because machines tend to stay either active or shut

down for periods longer than 1 hour.

6.1.2 Marginal likelihood methods

The value H can be seen as an index to a model family, with the reversible jump MCMC merge/split

or add/delete step seen as a “between-model” method for traversing the model indexing space (Friel and

Pettitt, 2008). Alternatives to reversible jump MCMC methods are “within-model” methods for calculating

the marginal likelihood. These methods are employed in situations where, for example, the number of

components in a mixture model is of more interest than the model parameter estimates. The normalizing

constant m(y) is the marginal probability of the data y under the model with parameter θ, which can be

calculated using MCMC output.

There are several options for applying marginal likelihood to the generation and allocation model. In

cases such as mid-sized NATs, the marginal likelihood π(m(x) | h) may tail off quickly toward 0 for

relatively small values of h. A good approximation of the marginal posterior of H can be obtained by

calculating π(h)π(m(x) | h) for a finite set of values h = 1, . . . H0, using MCMC output to estimate the

marginal likelihood for each value, for example using the method of power posteriors (Friel and Pettitt,

2008). When the priors π(H) and π(κ) are constrained to the effect that the probability of large accumula-

tions of counts yit for a single machine approaches 0 fast enough, then a Central Limit theorem may hold

for H . In this case, for larger NATs, a Normal approximation to the marginal posterior distribution can be

efficiently employed, again using MCMC iterations, if the mode H̃ can be found quickly. Then p(H | x)

can be approximated as Normal with mean equal to H̃ and standard deviation derived from the ratio of

Bayes factors [π(H̃)π(m(x) | H̃)]/[π(H̃ + 1)π(m(x) | H̃ + 1)] (Kass and Raftery, 1995).

One caveat on the use of marginal likelihood as opposed to a within-model setting, is that information is

lost when models have shared parameters. For generation-allocation models, shared information can refer

to global survival and immunity rates across populations, or for any hyperparameters κ associated with

the prior distributions of generation parameters ξ, for example in the Conficker-C model, including prior

181

distributions on the hyperparameters aα and bα for the decay rate α. Marginal methods such as those used

by Basu (1998) and Fienberg et al. (1999) avoid the need for RJMCMC in this situation by decomposing

the parameter vector θ into θ = (κ, {ξ}H1), and sampling a value H from the conditional distribution

π(H | κ), marginalized across all parameters whose dimension depends on H , and then sampling {ξ}H1

from the distribution π({ξ}H1 | H,κ). This method avoids the explicit use of RJMCMC but requires that

the hyperparameters κ provide enough transfer of information to make generating the parameters {ξ}H1

efficient. When hyperparameters are fixed in the non-informative model, Basu’s method reduces to the

calculation of the full marginal likelihood in for finding the conditional distribution of H , as the aggregated

counts xt are the only observed values in the study, and all machine-specific parameters M depend on H .

Estimation for informative networks may be able to use the method to transfer information from a set of

fixed or high-confidence one-to-one allocations among smaller blocks of obscured activity, similar to the

Add/Delete steps suggested in the discussion section for Chapter 5.

Marginal likelihood is also more difficult to calculate using MCMC output when there are large dis-

crepancies among the likelihood values at different iterations. One way to address this is to use the ratio of

likelihoods for machines to a mean or average machine at each step, to try and center the likelihood values.

Even if the model for activity rates is very simple, exploring the space of H + 1 machines as opposed to

H machines introduces many new parameters due to the different ways to arrange counts yt among ma-

chines for each time period t. One way to account for this may be to use approximations based on posterior

population distributions and posterior means or modes (akin to the information in the summary tables from

Section 5.3.3) for the integrals of continuous parameters in the single-machine model, with appropriate mul-

tiplicity to account for the rearrangement of labels and the wider spread due to many more possibilities for

arrangements of counts.

Overall, adding or deleting machines involves a tradeoff between increasing the population size versus

adapting the parameters of the current configuration of machines to best account for the aggregated counts

xt. When the history of counts 1 . . . T gets large, the effect from non-zero prior probabilities can be out-

weighed by the sheer number of terms in the joint likelihood, even when those prior probabilities are very

small. But many of the terms arise from what are essentially nuisance parameters in the likelihood; the

interpretability of the underlying components as machines comes from the generation parameters ξ that are

182

well informed, and from interpretable patterns of activity in the population. The measure of “fit” of a model

depends on how well the flexibility of added machines can fit the aggregated counts, and in a confirmatory

sense, how well the posterior distributions of single-host population parameters conform to the informed

priors. A model selection method such as DIC (Spiegelhalter et al., 2002) may be useful for a “between-

model” approach to inference for H , but it is necessary to determine an interpretable but tractable focus for

the hierarchical model, and to account for label-switching among the constituent machines.

6.1.3 Informative networks

Informative network allocation uses the full generation-allocation structure from Equation 2.5 for modeling

and estimation:

p(W, θ | x) ∝ π(H)π(κ)π(φ | κ)

×
H∏
i=1

π(ξi | κ)

T∏
t=1

f(yit|ξi, yi1, . . . , yit−1)
yit!∏
j wijt!

∏
j

[gijt(W1,...,t−1, φj)]
wijt

The observed counts xjt are still aggregations of the machine-generated activity, but an added hidden layer

of allocations wijt are also present and must be proposed and updated within the MCMC estimation struc-

ture. The generation and allocation models are again linked through the machine-level counts yit, and the

information about allocation comes from the allocation parameters φ. The updating of machine-specific

parameters, conditional on observed counts, uses the same conditional distributions as both the directly ob-

servable population and the non-informative network setting. But the method for both rearranging counts

as well as updating H by merge/split or add/delete methods must now also incorporate new proposals of

allocations, or changes in the likelihood of allocations given the newly proposed machines. The complete

conditional distribution of allocations depends on graph-connected components of machines and their asso-

ciated networks. Rearranging of counts, now among the sub-allocations w1jt . . . wHjt can be done with a

Gibbs step similar to the non-informative Gibbs step, but that adjusts the generation rates by the respective

allocation probabilities to account for the multinomial component of the generation-allocation model.

A simple application of informative networks is to include information about the a priori probability

183

of assigning multiple machines to a single IP address within the time period t over which counts yit are

aggregated. While NAT devices allocate all activity to the same network touchpoint, large-scale DHCP

regions tend to assign devices one-to-one with IP addresses, up to the extent of time a leased IP address is

allocated. This means that while DHCP regions may churn through many IP addresses over long periods of

observations, the active size counts at any particular time period (when aggregation periods are sufficiently

shorter than a typical lease window), are close to one-to-one allocations. Malicious networks engaged in

subterfuge to avoid blacklisting may employ very short leases in an effort to spread activity across large

portions of IP address space; depending on the granularity of collection, these can show up as either one-

to-one allocations over short intervals or even as unusually low activity rates across many machines. As an

example, the Ukrainian Telecom network summarized in Figure 3.2 in Chapter 3 and analyzed in Chapter

5 churned through over 26000 IP addresses across the 51-day window of observation for Conficker-C.

Intuition suggests that the first few weeks of activity shown in that network correspond roughly to one-

to-one allocation per hour, but this changes during the week of April 1st, when the IP address counts rise but

the connection rates per IP address sink below the sandbox-informed prior mode for baseline rates q. A first

attempt at modeling an informative network would propose a typical DHCP lease rate for large networks

such as this one, and then use that model in conjunction with user activity models and hourly IP address

counts to inform H within the MCMC architecture.

6.1.4 Statistical theory

There are several implications of the theoretical framework for the generation-allocation model that have

been posited but not fully explored or proven.

The general non-informative network: A NAT is one practical example of a non-informative network,

with only one IP address to which all activity is assigned. But the generic example is a network with J

addresses, among which all allocations at any time period have probability equal to 1
J . One can consider,

for example, ignoring information from behind an unreliable or malicious DHCP network similar to the

Ukrainian Telecom Network in the non-informative study. It remains to be proven that in this case, the

sub-counts xt1, . . . , xtJ among all IP addresses at each hour are nuisance parameters for the inference on

generation parameters ξ and on the populationH . Intuitively, the likelihoods associated with each sub-count

184

among networks are equivalent up to the constant 1
J to the model that treats the non-informative network

as a simple NAT with observed counts xt =
∑

j xtj . The goal is to show that in a truly non-informative

network, the aggregate counts xt are sufficient statistics for inference regarding the generation process and

the population size. A first approach is to start with the simple case where J = 1, that is, the corporate NAT

network, and to complete the proof by induction on J .

Links to continuous time models: The discrete time generation-allocation model outlined in Equation 2.5

is a useful empirical summary of counts as they are aggregated among time periods, allocated among IP ad-

dresses and reported as summaries. This interpretation is similar to an empirical model as suggested by Cox

(1990). But in reality, a machine is assigned to an IP address for lengths of time, and activity is generated in

continuous time using for example a Poisson process. Thus if allocation could be measured instantaneously,

it would be similar to a continuous time Markov state machine that assigned all communications through

an IP address with probability 1 over a specific amount of time. This corresponds to a kind of degenerate

multinomial model across networks associated with the machine. At any instantaneous point in time, one

of the associated IP addresses has probability 1, and all others have probability 0. But data collection, espe-

cially of scan attempts, is expensive to do instantaneously. It requires every communication point to have a

corresponding timestamp saved. Instead, what is generally recorded is a time interval and an aggregation of

counts. The question to address is, does integration and aggregation of counts over time result in the discrete

time generation-allocation model? If so, the model can be considered more as a generative or substantive

model, as opposed to just a useful summary.

Preliminary analysis suggests that there is at the least a very simple link between the continuous time

Poisson process Wt and Markov models, and the discrete time generation-allocation model. Suppose that

a generation Poisson process f(t) produces activity with rate λt, and furthermore that the possibly non-

homogenous rate λt can be broken up into sections t0, t1, . . . , tK such that λt = λk, a constant, for tk−1 ≤

t ≤ tk. Suppose that the finite-state, continuous-time Markov process Yt with states 1, . . . J representing

allocation among J IP addresses, is observed over the interval [tk−1, tk]. With the allocations observed,

suppose that activity is aggregated so that only a value Xk = Wk −Wk−1 is observed. The distribution of

Xk is Poisson with rate equal to λk(tk − tk−1). Conditional on the sum Xk across the interval [tk−1, tk],

the constant rate across the interval implies that the interarrival times of the activity points are uniformly

185

distributed across the interval. This results in a Multinomial distribution for assigning sub-counts to the IP

addresses assigned in the interval, with probabilities equivalent to the ratios of time that the Markov process

Yt spent in each address within the interval, to the total time interval.

This argument provides some support for a substantive view of the generation-allocation model, as well

as some support for modeling activity counts at a granularity that can be considered piecewise constant.

But the theory must be expanded in order to account for aggregation not only of a discrete count across the

interval, but of a joint set of tuples that represent a timestamp at which activity was seen, and an associated

IP address through which the activity was directed.

6.2 Concluding remarks

As the Internet moves more toward ephemeral addressing systems and away from a one-to-one association of

devices with IP addresses, the question of “how big is it?” will continue to evolve beyond simple observable

metrics. Malicious actors already use multiple techniques to obscure the sizes of their networks and to try

to spread activity among many different IP addresses in order to avoid blacklisting. Even benign network

assignment policies can make population estimation based on IP address alone difficult. But a botnet cannot

obscure its behavior, whether that behavior arises from spam emails, DDoS volume attacks, or maintaining

its own internal communications. These measurements, informed by malware analysis, provide a clear

indication of “size” at a device level, that can be used as the basis for measuring the true number of devices

that lay behind the network of observable communication points. The Conficker-C case study is a concrete

example of behavior-based model development, with a few suggestions for posterior inference for both

population size and for studying individual differences in activity pertaining to the malware’s behavior.

A behavioral model for a population “in the wild” needs to account for more than just a static study of

malicious software, and the generation-allocation model uses several components which need to be modeled

well in order to provide useful information:

1. the single-machine malware activity model;

2. the user activity transition model;

3. the birth/death/immunity model;

186

4. the network allocation model.

The data required to inform these components is a synthesis of avenues of research that already exist

in cyber-security. Sandbox testing is a well-established practice in the operational security and malware

research communities, but rarely has such information been collected with behavioral network modeling

in mind, as opposed to signature development. Statistical formalism is broadly applicable in this situation,

and models can improve if data collection focuses on accounting for different possible sources of variability

common to infected networks. Baselining activity by device is a staple of network behavioral anomaly de-

tection; the approach is generally taken from an internal as opposed to external perspective, but these results

as well as broad-scale observations can all be used to inform user activity models and network allocation

models. Botnet propagation is another popular avenue of research, and traditional survival analysis and

multiple recapture models for open populations can provide a starting point for modeling births and deaths

in a virtual environment.

The Bayesian generation-allocation model and graph structure developed in this report can be used as

a general framework for modeling Internet populations based on machine-level behavior. Though estima-

tion methods are preliminary, they provide a formal method for incorporating both the knowledge and the

uncertainty from these disparate data sources into the overall study of a botnet’s size, power and threat.

187

188

Appendix A

Code

C++ code was created using the GNU Scientific Library 1 for estimation of Conficker-C behavior in the

graph structure outlined in Chapter 2. Specification files are included for:

• Classes for data and parameters associated with the Conficker-C single-host model for Chapter 4;

• A Global parameter class;

• Machine and Network classes;

• A Distribution class that encapsulates the set-up and tear-down of the GSL random number distribu-

tions for log-density evaluation and simulation;

• A Parameter updater class that implements generic MCMC steps for parameters and data for a single

machine;

• Parameter sub-classes implementing the MCMC estimation outlined in Table 4.1 from Chapter 4;

• A Count Rearranger class that implements the Multinomial Gibbs step for a conditional Poisson model

as outlined in Chapter 5;

• A Merge-Split updater class that implement the merge-split progressions described in Chapter 5 for

sets of machines;

1http://www.gnu.org/software/gsl/

189

• A Network Graph object that consists of fixed sets of Network touchpoint objects that can spawn

associated Machine objects, and that implements Random Sweep MCMC at the level of Machines

and Networks;

• Various configuration files for initializing Network and Machine data from collections of counts.

Output analysis and dashboard graphics were produced using the R environment. For more information

about the code, please contact the author at rweaver@cert.org

190

Bibliography

Al-Awadhi, F., Hurn, M., and Jennison, C. (2004). Improving the acceptance rate of reversible jump MCMC

proposals. Statistics and Probability Letters, 69(2):189–198.

Amit, Y. and Grenander, U. (1991). Comparing sweep strategies for stochastic relaxation. Journal of

Multivariate Analysis, 37:197–222.

Armitage, D. and Ober, H. (2010). A comparison of supervised learning techniques in the classification of

bat echolocation calls. Ecological Informatics, 5(6):465 – 473.

Basu, S. (1998). Bayesian estimation of the number of undetected errors when both reviewers and errors

are heterogenous, pages 19–36. Singapore: World Scientific.

Bradlow, E. and Schmittlein, D. (2000). The little engines that could: modeling the performance of world

wide web search engines. Marketing Science, 19(1):43–62.

Briand, L., Emam, K., Freimut, B., and Laitenberger, O. (2000). A comprehensive evaluation of capture-

recatpure models for estimating software defect content. IEEE Transcripts of Software Engineering,

26:518–540.

Brooks, S., Giudici, P., and Roberts, G. (2003). Efficient construction of reversible jump Markov chain

Monte Carlo proposal distributions. Journal of the Royal Statistical Society, Series B, 65(1):3–55.

Burnham, K. and Overton, W. (1978). Estimation of the size of a closed population when capture probabil-

ities vary among animals. Biometriks, 65:25–633.

191

Chan, M. and Hamdi, M. (2003). An active queue management scheme based on a capture-recapture model.

IEEE Journal on Selected Areas in Communications, 21(4):572–583.

Cormack, R. (1989). Log-linear models for capture-recapture. Biometrics, 45:395–413.

Cox, D. (1990). Role of models in statistical analysis. Statistical Science, 4:169–174.

Daniels, H. (1954). Saddlepoint approximations in statistics. Annals of Mathematical Statistics, 25:631–

650.

Darroch, J., Fienberg, S., Glonek, G., and Junker, B. (1993). A three-sample multiple-recapture approach

to census population e stimation with heterogenous catchability. Journal of the American Statistical

Association, 88:1137–1148.

Demptser, A. and Rubin, N. L. D. (1977). Maximum likelihood from incompelte data via the EM algorithm.

Journal of the Royal Ssatistical Society, Series B, 39:1–38.

Dupuis, J. and Schwarz, C. (2007). A Bayesian approach to the multistate Jolly-Seber capture-recapture

model. Biometrics, 63:1015–1022.

Faber, S. (2009). Silk Conficker.C Plug-in. http://tools.netsa.cert.org/wiki/display/

tt/SiLK+Conficker.C+Plugin. CERT Code release.

Fienberg, S. (1972). Multiple-recapture census for closed populations and incomplete contingency tables.

Biometrika, 59:591–603.

Fienberg, S. (1980). The Analysis of Cross-Classified Categorical Data. MIT Press.

Fienberg, S., Johnson, M., and Junker, B. (1999). Classical multilevel and bayesian approaches to population

size estimation using multiple lists. Journal of the Royal Statistical Society: Series A, 162(3):383–405.

Friel, N. and Pettitt, A. (2008). Marginal likeihood estimation via power posteriors. Journal of the Royal

Statistical Society, Series B, 70(3):589–607.

Gilks, W., Richardson, S., and Spiegelhalter, D. (1996). Markov Chain Monte Carlo in Practice. Chapman

Hall.

192

Gopalaswamy, A., Royle, J., Delampady, M., Nichols, J., Karanth, K., and Macdonald, D. (2012). Den-

sity estimation in tiger populations; combininb information for strong inference. http://www.

esajournals.org/doi/pdf/10.1890/11-2110.1. Pre-publication draft for the Ecological

Society of America.

Green, P. (1995). Reversible jump Markov chain Monte Carlo computation oand Bayesian model determi-

nation. Biometrika, 84(4):711–732.

Heinemeyer, K., Ulizio, T., and Harrison, R. (2008). Natural Sign: Tracks and Scats. Island Press.

Holz, T., Steiner, M., Dahl, F., Biersack, E., and Freiling, F. (2008). Measurements and mitigation of

peer-to-peer-based botnets: a case study on storm worm. In Proceedings of the 1st Usenix Workshop on

Large-Scale Exploits and Emergent Threats, pages 9:1–9:9, Berkeley, CA, USA. USENIX Association.

Kadane, J., Meyer, M., and Tukey, J. (1999). Yule’s association paradox and ignored stratum heterogeneity

in capture-recapture studies. Journal of the American Statistical Association, 94(447):855–859.

Kang, B., Chan-Tin, E., Lee, C., Tyra, J., Kang, H. J., Nunnery, C., Wadler, Z., Sinclair, G., Hopper, N.,

Dagon, D., and Kim, Y. (2009). Towards Complete Node Enumeration in a Peer-to-Peer Botnet. In ACM

Symposium on Information, Computer and Communication Security (ASIACCS 2009.

Karanth, K. and Nichols, J. (1998). Estimation of tiger densities in India using photographic captures and

recaptures. Ecology, 79(8):2852–2862.

Kass, R. and Raftery, A. (1995). Bayes factors. Journal of the American Statistical Association,

90(430):773–795.

Levine, R. (2005). A note on Markov chain Monte Carlo sweep strategies. Journal of Statistical Computa-

tion and Simulation, 75(4):253–262.

Leydon, J. (2010). Google: botnet takedowns fail to stem spam tide. http://www.theregister.co.

uk/2010/04/18/google_botnet_takedowns/. Online article for The Register (UK).

Mane, S., Mopuru, S., Mehra, K., and Srivastava, J. (2005). Network size estimation in a peer-to-peer

193

network. Technical Report TR 05-030, University of Minnesota Department of Computer Science and

Engineering.

Mariano, L. and Kadane, J. (2001). The effect of intensity of effort to reach survey respondents: a Toronto

smoking study. Survey Methodology, 27:131–142.

MaxMind (2010). GeoLite City. http://www.maxmind.com/app/geolitecity.

McCullagh, P. and Nelder, J. (1989). Generalized Linear Models. Chapman and Hall/CRC.

McLachlan, G. and Peel, D. (2000). Finite Mixture Models. John Wiley & Sons, Inc.

McMillan, R. (2010). Spanish Police Take Down Massive Mariposa Botnet. http://www.pcworld.

com/businesscenter/article/190634/spanish_police_take_down_massive_

mariposa_botnet.html. Online article in PCWorld.

Nunnery, C., Sinclair, G., and Kang, B. (2010). Tumbling Down the Rabbit Hole: Exploring the Idiosyn-

crasies of Botmaster Systems in a Multi-Tier Botnet Infrastructure. In The 4th USENIX Conference on

Large Scale Exploits and Emergent Threats (LEET 2010).

Park, T. (2011). Bayesian analysis of individual choice behavior with aggregate data. Journal of Computa-

tional and Graphical Statistics, 20(1):158–173.

Paxson, V. and Floyd, S. (1995). Wide-area traffic: The failure of poisson modeling. IEEE/ACM Transac-

tions on Networking, 3(3):226–244.

Petersen, C. (1896). The yearly immigration of young plaice into the limfjord from the german sea. Report

of the Danish Biological Station, 6:5–84.

Porras, P., Saidi, H., and Yegneswaran, V. (2009a). Conficker C Actived P2P scanner. http://www.mtc.

sri.com/Conficker/contrib/scanner.html. SRI international Code release/document.

Porras, P., Saidi, H., and Yegneswaran, V. (2009b). Conficker C analysis. Technical report, SRI International.

Porras, P., Saidi, H., and Yegneswaran, V. (2009c). Conficker C P2P protocol and implementation. Technical

report, SRI International.

194

Rajab, M., Zarfoss, J., Monrose, F., and Terzis, A. (2007). My botnet is bigger than yours (maybe, better

than yours): Why size estimates remain challenging. In Proceedings of the First Annual Workshop on

Hot Topics in Botnets.

Rasch, G. (1960 (expanded 1980)). Probabilistic models for some intelligence and attainment tests. The

University of Chicago Press.

Rendon (2011). Conficker Working Group: lessons learned. http://www.

confickerworkinggroup.org/wiki/uploads/Conficker_Working_Group_

Lessons_Learned_17_June_2010_final.pdf. Technical Report produced for the De-

partment of Homeland Security, Air Force Research Contract FA8750-08-2-0141.

Richardson, S. and Green, P. (1997). On Bayesian analsis of mixtures with an unknown number of compo-

nents. Journal of the Royal Statistical Society: Series B, 59(4):731–792.

Roberts, G. (1996). Markov chain concepts related to sampling algorithms, chapter 3. Chapman and

Hall/CRC.

Royle, J. and Gardner, B. (2011). Hierarchical spatial capture-recapture models for estimating density from

trapping arrays, pages 163–190. Springer.

Schnabel, Z. (1938). The estimation of the total fish population of a lake. American Mathematical Monthly,

45:348–352.

Schwarz, C. and Arnason, A. (1996). A general methodology for the analysis of capture-recapture experi-

ments in open populations. Biometrics, 52(3):860–873.

Seber, G. (1982). The estimation of animal abundance and related parameters. London: Charles Griffen.

Sekar, C. and Deming, E. (1949). On a method of estimating birth and death rates and the extent of regis-

tration. Journal of the American Statistical Association, 44(245):101–115.

Shapiro, S. (1949). Estimating birth registration completeness. Journal of the American Statistical Associ-

ation, 45:261–264.

195

Shuster, S. (2011). Why have hackers hit Russia’s most popular blogging service? Time Magazine. http:

//www.time.com/time/world/article/0,8599,2063952,00.html.

Spiegelhalter, D., Best, N., Carlin, B., and van der Linde, A. (2002). Bayesian measures of model complexity

and fit. Journal of the Royal Statistical Society, Series B, 64(4):583–639.

Stephens, M. (2000). Dealing with label switching in mixture models. Journal of the Royal Statistical

Society, Series B, 62(4):795–809.

Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmer, R., Kruegel, C., and Vigna,

G. (2009). Your Botnet is My Botnet: Analysis of a Botnet Takeover. In The 16th ACM Conference on

Computer and Communications Security (CCS 2009.

Stover, S., Dittrich, D., Hernandez, J., and Deitrich, S. (2007). Analysis of the Storm and Nugache Trojans

- P2P is Here. Login.

Tanner, M. and Wong, W. (1987). The calculation of posterior distributions by data augmentation. Journal

of the American Statistical Association, 82(398):528–540.

the Conficker Working Group (2009). www.confickerworkinggroup.org.

the Mariposa Working Group (2009). http://www.defintel.com/mariposa.shtml.

the SANS Internet Storm Center (2001). http://isc.sans.edu/.

the Shadow Server Foundation (2004). http://www.shadowserver.org.

Tierney, L. and Kadane, J. (1986). Approximations of posterior moments and marginal densities. Journal

of the American Statistical Association, 81(393):82–86.

Vaugh-Nichols, S. (2010). Big Botnets and How to Stop Them. http://www.computerworld.com/

s/article/9177574/Big_botnets_and_how_to_stop_them. online entry for ITWorld.

Weaver, R. (2010a). Beyond the Top Talkers: Empirical Correlation of Conficker-C Infected IP

Space. In FloCon 2010. http://www.cert.org/flocon/2010/presentations/Weaver_

BeyondTheTopTalkers.pdf.

196

Weaver, R. (2010b). A probabilistic population study of the Conficker-C botnet. In PAM 2010, LNCS 6032,

pages 181–190. Springer-Verlag Berlin Heidelberg.

Worth, D. (2010). Businesses fear rise in DDoS attacks in 2010. http://www.v3.co.uk/v3/news/

2256353/businesses-fear-rise-cloud. article for the V3.co.uk technology blog.

Yule, G. (1903). Notes on the theory of association of attributes in statistics. Biometrika, 2:121–134.

Zuckerman, E., Roberts, H., McGrady, R., York, J., and Palfrey, J. (2010). Distributed denial of service

attacks against independent media and human right sites. http://cyber.law.harvard.edu/

sites/cyber.law.harvard.edu/files/2010_DDoS_Attacks_Human_Rights_and_

Media.pdf. report by the Berkman Center for Internet and Society at Harvard University.

197

198

Glossary

active size A measure of a botnet’s size based on the profile of active assets within a short time period.

blacklist A collection of IP addresses that have been marked as suspicious, malicious, or otherwise untrust-

worthy by network administrators or security analysts. Communications between internal machines

on a network and blacklisted external IP addresses are often prohibited. Blacklist is also used as a

verb to describe the act of putting an IP address onto a blacklist.

botnet A collection of infected computers that maintain communications to a single human administrator

or small organized group of administrators, for the purpose of co-ordinated large-scale attacks.

Command and Control (C&C) channel A dedicated communication line between botnet administrators

and their armies of infected machines. Infected machines often check in to Command and Control

channels at regular intervals in order to receive instructions.

Distributed Denial of Service (DDoS) Attack A type of cyber attack that aims to shut down servers or

resources by bombarding them with connection requests. A distributed denial of service attack is a

denial of service attack that originates from many different machines, making it difficult to block or

blacklist all incoming requests.

Domain Generation Algorithm (DGA) Any algorithm used by malicious software to generate many ran-

dom domain names in order to spread communications channels across the space of DNS as opposed

to IP addresses.

Domain Name Service (DNS) The architecture and protocol used for translating IP addresses to domain

names (eg, www.google.com) across the Internet.

199

Dynamic Host Configuration Protocol (DHCP) A protocol for automatically assigning an IP address from

a defined range to a machine or device. Assignments are generally temporary with the assignments

expiring after a determined lease period.

Expectation and Maximization (EM) An iterative method for finding the posterior mode in Bayesian in-

ference.

flow data A high level summary of communications over networks, including IP addresses, ports, protocols

and volume of information sent.

footprint size A measure of a botnet’s size based on activity measured across its entire history.

gateway A single device or IP address that communicates to the Internet on behalf of multiple internal

machines.

Hypertext Transfer Protocol (HTTP) The set of rules for transferring files and data over the World Wide

Web .

Internet Assigned Numbers Authority (IANA) Authority responsible for the global co-ordination of the

top level hierarchy of the Domain Name Service as well as allocating IP addresses to requesting

entities such as companies, universities, service providers or individuals.

Internet Engineering Task Force (IETF) A co-operative group that develops and promotes Internet stan-

dards.

Internet Protocol (IP) The principal communications protocol suite for relaying packets of information

across a network.

Internet Relay Chat (IRC) A chat environment commonly used as a Command and Control channel for

botnets.

Internet Service Provider (ISP) An organization that provides access to the Internet and other related ser-

vices such as Web access and security to its clients.

200

load-balancing An administrative practice that re-routes traffic during times of heavy volume among sev-

eral different access points in order to reduce bandwidth.

Markov Chain Monte Carlo (MCMC) An iterative method for exploring the posterior distribution of a

parameter θ using specially designed Markov Chains.

Metropolis-Hastings (M-H) A type of Markov Chain Monte Carlo estimation that does not require sym-

metric candidate proposal distributions.

Microsoft Remote Procedure Call (RPC) A Windows technology that allows client machines to run pro-

cedures located on remote servers.

Network Address Translation (NAT) A protocol for translating private IP addresses from an internal net-

work through an external, routable IP address for communication over the Internet. Refers to either

the protocol or the device or IP address that is visible as the external gateway.

Network Behavioral Anomaly Detection (NBAD) Methods employed in security software for baseline-

ing typical behavior of assets on an internal network according to a layout of devices and respective

protocols, and producing security alerts when behavior deviates from the baseline.

network touchpoint An IP address through which a device communicates over the Internet.

Peer to Peer (P2P) communication An alternative to the traditional client-server architecture that decen-

tralizes the communication structure among related entities in a network by allowing each entity to

directly contact another .

protocol A set of well-known instructions and rules that defines how software applications communicate

with each other.

proxy A device that communicates over the Internet on behalf of another device.

Request For Comments (RFC) A memorandum in computer network engineering published by the Inter-

net Engineering Task Force, that describes best practices, standards, research or innovations that can

be applied to the Internet and related systems.

201

Reversible Jump Markov Chain Monte Carlo (RJMCMC) A method of Markov Chain Monte Carlo es-

timation that can be used to explore a parameter space where the dimension of the unobserved vari-

ables is also unobserved.

sinkhole To direct or redirect all traffic from a suspicious or malicious IP address to an unused or nonexis-

tent IP address. Can also describe the unused or nonexistent IP address that receives the traffic.

System for Internet-Level Knowledge (SiLK) An open source, command-line tool suite used for collect-

ing and summarizing flow data, high level summaries of network communications.

Transmission Control Protocol The principal protocol for synchronous communication between two ma-

chines across a network. TCP is an extension of the IP protocol that provides methods for initiation

and shutdown of connections to maintain reliability of data transmission. TCP is comparable to a

phone call in telecommunications, with an established protocol for setup, in-line data transmission,

acknowledgement of received packets, and teardown of a connection.

User Datagram Protocol The principal protocol for asynchronous communication between two machines

across a network. UDP is an extension of the IP protocol that provides methods for fast transmission of

datagram packets between two machines, without the need for establishing a synchronous connection,

and without checking the integrity, ordering, or completeness of messages sent. UDP is comparable

to text messaging in telecommunications; the sender does not require an acknowledgement of receipt,

nor a synchronized conversation.

202

Acronyms

C&C Command and Control.

DDoS Distributed Denial of Service.

DGA Domain Generation Algorithm.

DHCP Dynamic Host Configuration Protocol.

DNS Domain Name Service.

EM Expectation and Maximization.

HTTP Hypertext Transfer Protocol.

IANA Internet Assigned Numbers Authority.

IETF Internet Engineering Task Force.

IP Internet Protocol.

IPv4 Internet Protocol version 4.

IPv6 Internet Protocol version 6.

IRC Internet Relay Chat.

ISP Internet Service Provider.

MCMC Markov Chain Monte Carlo.

203

M-H Metropolis-Hastings.

NAT Network Address Translation.

NBAD Network Behavioral Anomaly Detection.

P2P Peer to Peer.

RFC Request For Comments.

RJMCMC Reversible Jump Markov Chain Monte Carlo.

RPC Remote Procedure Call.

SiLK System for Internet-Level Knowledge.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

204

