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Abstract

DNA amplification or the Polymerase Chain Reactions (PCR) is the workhorse

of nearly every modern molecular biology laboratory, as well as the burgeon-

ing discipline of personalized medicine. Despite the apparent simplicity of the

PCR reaction, the method is often fraught with difficulties that can decrease

the cycle efficiency or result in competitive amplification of undesired side

products. The focus of this work is to derive an optimal reaction condition for

a given PCR using the engineering discipline of control theory that can au-

tomatically derive prescriptions for the optimal temperature cycling protocols

of a PCR reaction, if a suitable kinetic model exists.

We first developed a theoretical model to estimate the sequence and tem-

perature dependent rate parameters of a oligonucleotide hybridization or an-

nealing reaction. Rate constants that were estimated using our model is in

good agreement with the experimentally estimated rate constants of the same

oligonucleotide hybridization reaction. Using the theory of enzyme proces-

sivity the kinetic parameters of enzyme binding and extension reactions were

estimated experimentally. Thus, a first sequence-dependent biophysical model



for DNA amplifications has been developed. It is shown that amplification

efficiency is affected by dynamic processes that are not accurately represented

in simplified models of DNA amplification that are the basis of conventional

temperature cycling protocols. Based on this analysis; a modified temperature

protocol that improves the PCR efficiency is suggested. Use of this sequence-

dependent kinetic model in a control theoretic framework to determine the

optimal dynamic operating conditions of DNA amplification reactions, for any

specified amplification objective, is discussed.

Using these control systems, we demonstrate that there exists an optimal

temperature cycling strategy for geometric amplification of any DNA sequence

and formulate optimal control problems that can be used to derive the optimal

temperature profile. Strategies for the optimal synthesis of the DNA ampli-

fication control trajectory are proposed. Analogous methods can be used to

formulate control problems for more advanced amplification objectives corre-

sponding to the design of new types of DNA amplification reactions. Finally,

a PCR optimal control problem is solved and an optimal temperature profile

that maximizes the desired DNA concentration as well as minimizes the total

reaction is obtained.
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Chapter 1

Introduction

DNA amplification is the process of geometric growth of the number of double-

stranded DNA (dsDNA) molecules in solution through repeated replication of

single-stranded DNA (ssDNA) templates. Due to the universal need to amplify

DNA for applications ranging from molecular cloning to DNA sequencing, such

methods have arguably become the central technology of modern molecular

biology. The polymerase chain reaction (PCR), the most common DNA am-

plification reaction, is a cyclic amplification process that can produce millions

of copies of double-stranded DNA molecules starting from a single molecule.

The traditional three-step PCR reaction cycle consists of

1. Denaturation of double stranded DNA into single-stranded DNAs.

2. Oligonucleotide primer annealing to the resulting ssDNAs.

3. Polymerase-mediated extension steps to produce two dsDNA molecules.

2



1.1. Background

Figure 1.1: Schematic of PCR. Temperature vs Time profile of a typical PCR
is represented in blue line.

This cycle is repeated 20-30 times, resulting in geometric growth of the num-

ber of DNA molecules. The base of the exponent for geometric growth is

termed the amplification efficiency of a cycle. Fig. 1.1 shows the typical PCR

temperature profile.

1.1 Background

Despite the fact that the notion of thermal cycling is based on a dynamic

picture of DNA amplification, there are currently no models of DNA amplifi-

cation kinetics that are capable of predicting the evolution of reaction products

for general sequences and operating conditions. Without such a model, the

optimal temperature cycling protocol for the reaction which is sequence spe-

cific - cannot be computed, and reductions in cycle efficiency (either through

decreased reaction yield or specificity compared to the theoretical maximum

Chapter 1. Introduction 3



1.2. Systems Biology Approach

values) can occur. Due to geometric growth, reductions in the cycle efficiency

can result in dramatically diminished efficiency of the overall reaction, and

substantial efforts have hence been dedicated to improving the efficiency of

DNA amplification reactions (Chakrabarti and Schutt (2001) ,Chakrabarti and

Schutt (2001)).

In the absence of predictive models for DNA amplification, the operating

conditions for PCR reactions are typically selected based on qualitative anal-

ysis of their kinetics and thermodynamics, given the desired amplification ob-

jective. Over the past two decades, many variants of DNA amplification have

been invented based on the notions of DNA denaturation, annealing and poly-

merization, each tailored to a particular amplification objective. Each such

reaction (which is typically assigned its own acronym) is based on a tempera-

ture cycling protocol determined through analysis of reaction thermodynamics

and a qualitative analysis of kinetics. A simple example of a temperature cy-

cling protocol that involves modifications to the conventional prescription is

the use of two-step PCR cycles (Skladny et al. (1999)), wherein annealing and

extension occur simultaneously at a properly chosen temperature.

1.2 Systems Biology Approach

A general approach to kinetic modeling of DNA amplification has applica-

tions to the design of new types of amplification reactions, in addition to

enhancement of existing reactions. In the language of systems engineering,

Chapter 1. Introduction 4



1.2. Systems Biology Approach

the selection of the optimal trajectory of a manipulated input variable such as

temperature is referred to as dynamic optimization or optimal control (Stengel

(1994)). This work is concerned with the establishment of a foundation for

the dynamic optimization of DNA amplification reactions, which can be used

for the automated computation (rather than qualitative selection) of temper-

ature cycling protocols. To date, quantitative sequence-dependent modeling

of DNA amplification has been largely restricted to the thermodynamics of

the reaction. Prior reports of kinetic models for PCR have proven inadequate

for the purposes of dynamic PCR optimization. For example, Rychlik et al.

(1990) developed an empirical equation to determine an optimal annealing

temperature that maximizes the final DNA concentration. Fig. 1.2 illustrates

the different types of PCR optimization. Using a probabilistic PCR kinetic

model, Stolovitzky and Cecchi (1996) developed a method to calculate the cy-

cle efficiency for PCR quantification. Velikanov and Kapral (1999) proposed a

Markov process approach to optimize the extension step of PCR . Yang et al.

(2005) discussed the effect of annealing temperature on the concentration of

different targets in a multiplex reaction and gave the temperature vs. con-

centration profile for all the targets. Though the above-developed approaches

predict the PCR efficiency, they have several fundamental limitations. For

example, Rychlik et al. (1990)’s model does not have a theoretical foundation

for prediction of the optimal annealing temperature and their empirical cor-

relation is purely based on the limited number of experiments. Stolovitzky

and Cecchi (1996) and Velikanov and Kapral (1999)’s, kinetic model did not
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Figure 1.2: Types of PCR optimization

account for the sequence dependence of amplification kinetics or were limited

to a single step of the reaction.

A so-called state space model is required for dynamic optimization of DNA

amplification. State space models are systems of differential equations that,

when solved, describe the dynamics of the system, along with algebraic con-

straints and specified parameters (e.g., rate parameters such as activation en-

ergies and pre-exponential factors) whose values are either predicted based on

first-principles theory, independently measured in off-line experiments, or indi-

rectly estimated through on-line measurement of observable quantities during

the evolution of the system. Across the published literature, proposed state

space models (Mehra and Hu (2005); Hsu et al. (1997); Gevertz et al. (2006);

Lee et al. (2006); Griep et al. (2006)) have been incapable of predicting PCR

amplification efficiencies. This is because no generalization has been made

regarding the dependence of kinetic parameters on both i) the DNA sequence
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and ii) temperature. None of these kinetic models are both sequence- and

temperature-dependent. It is quite evident from the nearest neighbor method

which can be used to calculate the DNA annealing reaction free energy equilib-

rium constant of DNA hybridization is temperature and sequence-dependent.

Data and LiCata (2003) reported temperature-dependent equilibrium disso-

ciation constants for the enzyme binding reaction. Hung et al. (1992) and

Innis et al. (1988) reported temperature-dependent enzyme extension reaction

rates. Therefore, the kinetic parameters of the three steps of PCR are highly

dependent on the sequence composition and temperature of the reaction. Ac-

curate and computationally efficient sequence-dependent state space models,

which are essential to solve such problems, require a combination of funda-

mental biophysical modeling with dynamical systems theory. This notion of

sequence-dependent modeling of the kinetics of biochemical reaction networks,

which has various applications in dynamical systems biology, is introduced here

as one of the contributions of the present work.

1.3 Research Objectives

In this work, we develop the first sequence-dependent kinetic model for PCR

reactions that is suitable for engineering control, validating this state space

model through comparison to experimental data. First principles models are

essential for proper prediction of DNA kinetic rate parameters for any arbi-

trary DNA sequence. The model introduced herein is based on quantitative
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biophysical modeling of DNA melting, annealing, and polymerization, which

together enable a mapping of a given DNA sequence and polymerase enzyme

onto temperature-dependent kinetic rate constants for the DNA amplifica-

tion reaction. Such sequence-dependent modeling of amplification kinetics

has been enabled, based on the theory of relaxation kinetics. One benefit of

such complete state space models for PCR is the ability to achieve similar

or enhanced amplification efficiencies or specificities in greatly reduced time,

through the exploitation of dynamic processes such as simultaneous annealing

and extension - that are not represented in simplified models of DNA amplifi-

cation, but which play a major role in determining the evolution of chemical

species. Prospects for the application of these sequence-dependent models in

the formulation of optimal control problems that can enable the computation

of optimal cycling strategies, for any specified objective, are discussed. Fur-

ther, we formulate a PCR optimal control problem and solve it to obtain the

optimal reaction conditions. Fig. 1.3 illustrates our systems biology approach

for PCR optimization.

1.4 Thesis Outline

This thesis is organized as follows

1. In Chapter 2, a theoretical approach to the prediction of the sequence and

temperature-dependent rate constants for oligonucleotide hybridization

reactions has been developed based on the theory of relaxation kinet-
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Figure 1.3: Systems Biology Approach for PCR optimization

ics. The model-predicted rate constants are compared to experimentally

determined rate constants for the same oligonucleotide hybridization re-

actions.

2. In Chapter 3, a theoretical framework for prediction of the dynamic

evolution of chemical species in DNA amplification reactions, for any

specified sequence and operating conditions, is reported. Using the Poly-

merase Chain Reaction (PCR) as an example, we developed a sequence-

and temperature-dependent kinetic model for DNA amplification using

first principles biophysical modeling of DNA hybridization and polymer-

ization.

3. In Chapter 4, a theoretical framework for determination of the opti-

mal dynamic operating conditions of DNA amplification reactions, for

any specified amplification objective, has been developed based on first-

principles biophysical modeling and control theory.
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4. In Chapter 5, a numerical approach to solve a PCR optimal control prob-

lem is provided and it is implemented to obtain an optimal temperature

profile. A strategy to solve a time optimal control problem for PCR is

discussed along with its results.

5. In Chapter 6, a summary of the main results and future direction of this

work is provided.
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Chapter 2

Sequence-Dependent

Oligonucleotide Hybridization

Kinetics

2.1 Introduction

Oligonucleotide hybridization is a reversible chemical reaction in which two

short single-stranded DNA/RNA molecules (generally < 50 base pairs) hy-

bridize to give a double-stranded DNA/RNA molecule. This reaction is an

integral part of a wide range of molecular biology technologies ranging from

microarrays to the Polymerase Chain Reaction (PCR) (Fish et al. (2007);

Horne et al. (2006); Hadiwikarta et al. (2012)). Ever since these techniques

were invented, DNA hybridization reactions have been studied extensively

(Hadiwikarta et al. (2012)). In particular, the thermodynamics of DNA hy-

11



2.1. Introduction

bridization reactions has been well-studied both experimentally and theoret-

ically (Chalikian et al. (1999); SantaLucia Jr and Hicks (2004); SantaLucia

(1998); Breslauer (1994); Breslauer et al. (1986); Garel and Orland (2004)).

However, kinetic study of DNA hybridization has received only limited atten-

tion, with the majority of prior work being focused on homopolymers. For

applications such as PCR that are time-dependent, the kinetics of DNA hy-

bridization reactions can play an important role. Methods for the prediction

of sequence-dependent rate constants could enable, for example, the optimal

choice of temperature cycling protocols for PCR. In the late 1960s and early

1970s, a few experimental methods for the estimation of kinetic parameters

of oligonucleotide hybridization reactions were proposed and using these, the

rate constants of a series of AnUn oligonucleotides were estimated at a speci-

fied set of temperatures (Craig et al. (1971); Breslauer and Bina-Stein (1977);

Pörschke and Eigen (1971)). Though these studies addressed the kinetics of a

few homogeneous oligonucleotide hybridization reactions, there was no gener-

alization made to the rate constants of arbitrary homogeneous/heterogeneous

oligonucleotide hybridization reactions at specific temperatures. More recent

work on modeling hybridization kinetics (Wang and Drlica (2003)) was based

on simplified models that, due to the nature of the applications, did not de-

mand physical consistency with hybridization thermodynamics.

With methodologies such as PCR being applied to different oligonucleotide

sequences every day in modern molecular biology laboratories for various ap-

plications (Pfaffl (2001)), it is not feasible to experimentally estimate the ther-
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modynamic and kinetic parameters for all possible DNA/RNA sequences of

interest. This is one of the main reasons for the development of the Nearest

Neighbor (NN) method, which can be used to calculate the thermodynamic

properties of the oligonucleotide hybridization reactions (SantaLucia Jr and

Hicks (2004); SantaLucia (1998); Breslauer et al. (1986)). However, thermo-

dynamic properties are insufficient to analyze and optimize reactions such as

PCR. Therefore, it is essential to develop a theoretical model to estimate the

rate parameters for oligonucleotide hybridization reactions.

Although numerous experimental studies of the kinetics of oligonucleotide

hybridization have been reported (Gao et al. (2006); Bloomfield et al. (2000);

Chen et al. (2007); Bonnet et al. (1998)), to the best of our knowledge, no

theoretical methods for estimation of the rate constants of arbitrary oligonu-

cleotide sequences based on the fundamental biophysics of DNA hybridization

have been developed to date. In this work we have developed the first theoret-

ical method to predict sequence- and temperature-dependent rate parameters

that is applicable to either homogeneous or heterogeneous oligonucleotide hy-

bridization reactions.

Experimentally, the rate constants of an oligonucleotide hybridization re-

action are determined by measuring its a) relaxation time using a temperature

jump apparatus, b) equilibrium melting curve, a relationship between the equi-

librium conversion and temperature of the DNA hybridization reaction (Craig

et al. (1971); Breslauer and Bina-Stein (1977); Pörschke and Eigen (1971)).

The relaxation time of an equilibrium reaction is a measure of time needed
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for the reaction to return to equilibrium when it is perturbed from its original

equilibrium state. Theoretical estimation of hybridization rate constants is

based on estimation of the relaxation time and the equilibrium melting curve.

The equilibrium melting curve of an oligonucleotide sequence is determined

theoretically using the NN model. In this work we have developed a theoreti-

cal model to estimate the relaxation time of any oligonucleotide hybridization

reactions at a specified temperature. We have combined our model for relax-

ation time prediction with the NN model to estimate the hybridization rate

constants of arbitrary oligonucleotide sequences. In order to develop a theo-

retical model for relaxation time prediction, we have considered two different

hybridization reaction mechanisms: one-sided melting (Wetmur and David-

son (1968); Applequist and Damle (1965); Pörschke and Eigen (1971); Craig

et al. (1971)) and two-sided melting (Schwarz Jr and Poland (1975, 1976);

Anshelevich et al. (1984)). We have analyzed these two reaction mechanisms

and proposed a modified reaction mechanism that is consistent with the laws

of chemical reaction kinetics. Our kinetic model can be used not only to es-

timate appropriate reactions conditions for DNA hybridization, but also for

systematic optimization and control of PCR reactions.

In this chapter we

� Describe our theoretical approach to estimate the temperature and sequence-

dependent rate parameters of a oligonucleotide hybridization

� Develop a theoretical method to estimate the relaxation times of oligonu-
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cleotide hybridization reactions;

� Estimate the model parameters and experimentally validate our theoret-

ical model;

� Analyze our model and discuss the properties of its solutions;

� Consider illustrative applications of kinetically controlled DNA hybridiza-

tion reactions.

2.2 Theoretical Model for Annealing Kinetics

The forward and reverse rate constants of an equilibrium reaction can be

expressed as a function of its equilibrium constant (Keq) and relaxation time

(τ) (Espenson (1995)) as shown below.

2.2.1 Prediction of Equilibrium Properties

Consider the following oligonucleotide hybridization reaction

S1 + S2

kf


kr
D (R1)

Where kf and kr are forward and backward reaction rate constants. D and

S represent the double stranded and single stranded oligonucleotide. The hy-

bridization reaction, (R1), is assumed to follow ’all or none’ or ’two state’

hybridization (Chalikian et al. (1999); SantaLucia Jr and Hicks (2004); San-
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taLucia (1998); Breslauer (1994); Breslauer et al. (1986); Garel and Orland

(2004); Craig et al. (1971); Breslauer and Bina-Stein (1977); Pörschke and

Eigen (1971)). Typically a DNA with less than 50 base pairs follows two state

hybridization (Koehler and Peyret (2005)). Reaction (R1) can be assumed to

be an elementary reaction with respect to the fully single-stranded and double-

stranded DNA (Craig et al. (1971); Breslauer and Bina-Stein (1977); Pörschke

and Eigen (1971)); hence the rate expression is written

d[D]

dt
= kf [S1][S2]− kr[D], (2.1)

where [ ] represents the molar concentration of respective species. Since usu-

ally the DNA hybridization reaction mixture is dilute, the following relation-

ship between the equilibrium concentration, equilibrium constant, forward and

backward rate constants is written (Smith et al. (2005))

Keq (T ) = exp

(
−∆G (T )

RT

)
(2.2a)

=
([D]/[C0])

([S1]/[C0]) ([S2]/[C0])
(2.2b)

=
kf

kr[C0]
(2.2c)

where Keq is an equilibrium constant, C0 is a reference concentration whose

value is 1M (Smith et al. (2005); Jost and Everaers (2009)) and ∆G is the Gibbs

free energy of reaction (R1) estimated based on the NN model. (SantaLucia

(1998); SantaLucia Jr and Hicks (2004); Koehler and Peyret (2005)). We use
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unified NN model parameters to estimate ∆G of reaction (R1) (SantaLucia

(1998)). In Section 2.2.3 we have explained about the NN model.

2.2.2 Relationship between Relaxation time and Rate

constants

As per the definition of the relaxation time, when the reaction (R1) is disturbed

from its equilibrium, the following equation is written.

d[Deq + δ]

dt
= kf [S1eq − δ][S2eq − δ]− kr[Deq + δ] (2.3)

δ is a small perturbation from the equilibrium due to an external disturbance.

Expanding Eq. (2.3) both sides and neglecting δ2 term, the following rate

equation for the perturbation parameter δ is obtained

d[δ]

dt
= −[δ](kf [S2eq + S1eq] + kr) (2.4)

Above equation represents the first order kinetics of the perturbation parame-

ter δ with a characteristic time constant which is called relaxation time. Thus,

an expression for the relaxation time is obtained as follows

τ =
1

(kf [S2eq + S1eq] + kr)
(2.5)
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If the left hand side of Eq. (2.2) and (2.5) is known, then these equations can

be solved to obtain kf and kr. A detailed derivation of the expression that

relates relaxation time and equilibrium concentration for a self complementary

and non-self complementary sequences have been provided in Appendix F.

2.2.3 Nearest Neighbor Model

Nearest Neighbor parameters are a set of enthalpy and entropy parameters for

all possible neighboring base pairs in a DNA. The overall enthalpy and entropy

of formation of a double stranded DNA is expressed as a sum of enthalpy and

entropy of the pairs of neighboring base pairs. From the enthalpy and entropy

of formation, Gibbs free energy of a DNA hybridization (or DNA formation)

reaction is calculated as follows.

∆G (T ) = ∆H − T∆S (2.6)

We use the unified NN parameters (SantaLucia (1998)) to predict ∆H and ∆S

of a oligonucleotide hybridization. Thermodynamic properties of the Oligonu-

clotides of length up to 50 base pairs are predicted using NN parameters

(Koehler and Peyret (2005)). The accuracy of the prediction increases when

the length of a sequence decreases. For sequence length from 4 to 16 base pairs,

the melting point is predicted with an average deviation of 1.6 0C (SantaLu-

cia Jr and Hicks (2004)) and for a sequence length from 6 to 24 base pairs the

melting point is predicted with an average deviation of 2.3 0C (SantaLucia Jr
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and Hicks (2004)). These predictions are considered to be the best among all

other available methods that predict DNA melting thermodynamic properties

(SantaLucia (1998)). In Table B.1 NN parameters have been given and in

Appendix B, an example is presented to explain how to calculate ∆G for a

oligonucleotide hybridization reaction using NN method. All the NN parame-

ters are estimated at a salt concentration of 1M . Usually, for example in PCR,

the salt concentration is around 50mM . Therefore these NN parameters need

to be corrected for a specific salt concentration. Owczarzy et al presented a

set of empirical equations to correct the NN parameters for a specific KCl or

NaCl and MgCl2 salt concentration (Owczarzy et al. (2008, 2004)). These

equations have been provided in Appendix C.1 and D. Though usually it is

assumed that ∆H and ∆S of reaction R1 are independent of temperature,

Rouzina and Bloomfield (Rouzina and Bloomfield (1999)) reported the effect

of change in heat capacity with respect temperature on the estimation of δH

of a hybridization reaction.

2.3 Theoretical Estimation of Relaxation Time:

Unimolecular Elementary Step Model

The relaxation time of a reaction can be determined if its elementary steps are

known. In this section we consider two reaction mechanisms for reaction (R1)

to estimate the rate of the elementary steps and then estimate the relaxation
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time of reaction (R1).

2.3.1 Nucleation of Oligonucleotide Hybridization

The kinetics of reaction (R1) depends on the following two processes:

� A pre-equilibrium step that forms the first few base pairs to create a sta-

ble nucleus (Wetmur and Davidson (1968); Craig et al. (1971); Pörschke

and Eigen (1971)).

� Once a stable nucleus is formed, rapid addition of base pairs to complete

the hybridization reaction.

In a DNA hybridization reaction, each base pair has a specific stability (stack-

ing + base pairing free energy). The following equations express the stability

constants of AT and GC base pairs as functions of temperature (Wetmur and

Davidson (1968)):

sAT (T ) = 1.04× 10−5exp

(
8000

RT

)
(2.7)

sGC (T ) = 1.04× 10−5exp

(
8935

RT

)
(2.8)

Unlike NN models, these relations approximate the stabilities of different types

of base pairs without specification of the identities of the neighboring base

pairs. The formation of the first or first few base pairs is quite different from
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the formation of other base pairs (Wetmur and Davidson (1968); Craig et al.

(1971); Pörschke and Eigen (1971)). Once the first base pair is formed, in

order for the second base pair to form, the single strands must align in a

specific manner. The strands can easily dissociate until a critical number of

base pairs (termed a stable “nucleus”) has formed. The stability of a duplex

with one or few base pairs is thus smaller than the product of their stability

constants. In order to represent the reduction in stability of such duplexes, a

parameter σ (different literature uses different notations and we use σ here)

is multiplied (Wetmur and Davidson (1968); Craig et al. (1971); Pörschke and

Eigen (1971)) with the product of stability constants. Thus, σ accounts for the

resistance to the formation of first few base pairs and hence the following reac-

tion mechanism for a oligomer hybridization reaction was proposed (Wetmur

and Davidson (1968); Craig et al. (1971); Pörschke and Eigen (1971)):

S1 + S2

σ1k0


k−0

D1

σ2k1


k−1

............
σN−2kN−2



k−(N−2)

DN−1

σN−1kN−1



k−(N−1)

DN (R2)

In the above reaction, N denotes the total number of base pairs and Di is a

hybridized duplex with i base pairs in the double-stranded state. ki and k−i

are the forward and reverse rate constants of the ith step of (R2). At a fixed

temperature, ki is roughly constant for sequences of a given length and it can

be assumed to be the same for all the steps; hence we denote it by k1 (Wetmur

and Davidson (1968); Suyama and Wada (1984)). The ratio of k1 and k−i is
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defined as a stability constant, si of ith base pair.

si =
k1

k−i
(2.9)

As we explained above, once a stable nucleus is formed, it facilitates subsequent

base pair formation. Let x be the number of base pairs that melt before forming

a stable nucleus; then

lim
i→x

σi = 1 =⇒
N−1∏
i=x

σi (T ) = 1 (2.10)

The overall stability constant of reaction (R1) in terms of individual stability

constants of base pairs and σi is expressed as

Keq (T ) = exp

(
−∆G (T )

RT

)
=

N−1∏
i=0

σi (T ) si (T ) (2.11)

Substituting Eq. (2.10) in Eq. (2.11), we obtain

Keq (T ) =
x−1∏
i=0

σi (T )
N−1∏
i=0

si (T ) (2.12)

In Eq. (2.12) there are x unknown parameters (σi) that account for the re-

sistance to form a stable nucleus. If these parameters are clubbed together,

they can be represented as a single parameter and assigned as a resistance to

the formation of the first base pair. Since all the resistances are then assigned

to the first base pair formation, this represents a worst case scenario for for-
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mation of a stable nucleus. Thus, using equations (2.7), (2.8) and (2.11) and

assuming that all resistance to formation of a stable nucleus is associated with

the first base pair, the following equation for σ can be written.

x−1∏
i=0

σi (T ) = σ (T ) = Keq (T )

(
N−1∏
i=0

si

)−1

(2.13)

2.3.1.1 Estimation of Sigma

Eq. (2.13) is rewritten to represent a general form of the equilibrium relation-

ship as follows:

Keq (T ) = σ (T )

(
N−1∏
i=0

si (T )

)
(2.14)

Keq is calculated based on the overall Gibbs free energy of hybridization

for the sequence, which can be decomposed as follows:

∆Gseq = ∆Gnuc + ∆Gst +
N−1∑
i=0

∆Gbp (i)︸ ︷︷ ︸
∆Gdup

(2.15)

where ∆Gnuc is the Gibbs free energy of nucleation (Manyanga et al. (2009))

and ∆Gdup is the Gibbs free energy of a duplex. ∆Gdup can be decomposed

into the Gibbs free energy for stacking ∆Gst and the Gibbs free energy for

the formation ∆Gbp(i) of ith base pair. NN methods provide the length-

independent nucleation enthalpy (∆Hnuc) and entropy (∆Snuc) and they are

usually called initiation enthalpy and entropy, respectively (Manyanga et al.

(2009)). Whereas for DNA, ∆Gnuc depends on the terminus at which nucle-
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ation occurs, for RNA it is sequence and terminus-independent (Xia et al.

(1998)). For self-complementary sequences, an additional term ∆Gsym must

be added to the right hand side of Eq. (2.15) (SantaLucia Jr and Hicks (2004)).

There are several issues that complicate the use of NN parameters in ki-

netic models for oligonucleotide hybridization. First, although DNA melting

can occur simultaneously from both sides of a sequence, ∆Gnuc assumes that

the first base pair formation occurs at one or the other terminus. ∆Gnuc pa-

rameters reported in the literature are base pair-specific and available only for

nucleation at one or the other end of the duplex. This reflects the fact that

models for DNA hybridization have typically assumed the hybridization is nu-

cleated at the termini of the polymer. Parameters have thus been estimated

under this assumption. However, as will be discussed below, DNA hybridiza-

tion can in fact be nucleated at any position in the sequence. Typically, the

sum of ∆Gnuc for the two termini is used to calculate the nucleation free en-

ergy, and we follow this precedent here in the context of our kinetic models.

Second, it is not possible to obtain the stability constants for each base pair in

a sequence using NN parameters, since there are only n−1 NN parameters for

an n base pair sequence. This issue does not arise in thermodynamic models

for DNA hybridization since one is only interested in the total hybridization

free energy, not the stability of each base pair. In kinetic models, these base

pair stabilities are required for the computation of sequence-dependent rate

constants, as will be shown below. Due to the computation of ∆Gseq as sum

of n− 1 pairwise NN parameters rather than a sum of n individual ∆Gbp(i)’s
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plus a sum of n− 1 stacking interactions ∆Gst(i),i > 0, in the NN approach

to modeling free energies, there is no unique way to assign the free energy

change due to the hybridization of each successive base. Free energy changes

are only available for sequences of two neighboring bases. 1

In the absence of this information, we apply an approach that approxi-

mates ∆Gdup in Eq. (2.15) as follows: ∆Gdup ≈
∑

i ∆Gst(i) + ∆Gbp(i), where

∆Gst(i) + ∆Gbp(i) = −RT ln si, with the si calculated according to Eqs. (2.7)

and (2.8).
∑

i ∆Gst(i) 6= ∆Gst,NN because the sequence dependence of stack-

ing free energies is not represented in Eqs. (2.7) and (2.8). We then use the

accurate NN parameters to compute ∆Gseq and ∆Gnuc in Eq (2.15). Intro-

ducing the notation

∆Gσ ≡ ∆Gnuc + ∆Gst −
∑
i

∆Gst(i), (2.16)

we can rewrite Eq. (2.15) as

∆Gseq = ∆Gσ +
∑
i

∆Gst(i) + ∆Gbp(i) (2.17)

Since the product of stability constants is calculated based on
∑

i ∆Gst(i)+

∆Gbp(i), the ratio Keq/
∏N−1

i=0 si accounts for a combined stacking and nucle-

1Some cancellation of errors induced by the non-unique assignment ofNN free energies to
individual base pair hybridization events can occur in kinetic models for DNA hybridization
that allow hybridization to nucleate at any position along the sequence and assign free
energy changes in a consistent fashion
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Figure 2.1: Effect of temperature and length of a DNA sequence on nucle-
ation factor, σnuc and combined nucleation and stacking factor σ. Nucle-
ation/Initiation free energy for AU, AT and GC base pairs have been obtained
from NN model. To calculate σ we assumed two different DNA sequences with
10 and 14 base pairs. Keq for these sequences have been calculated using NN
model and stability constants have been calculated based on Eqs. (2.7) and
(2.8).

ation factor, σ. This can be seen as follows:

Keq = σnucσst,corr︸ ︷︷ ︸
σ

N−1∏
i=0

si (2.18)

where σst,corr = exp
[
−∆Gst,NN−

∑
i ∆Gst(i)

RT

]
. We denote by σ the statistical

weight of the product of stacking and nucleation factors. σ calculated accord-

ing to (2.18), with Keq computed according to (2.2) using ∆Gseq obtained from

NN parameters, will be used in our kinetic models to represent the resistance

to formation of the first base pair. Since ∆Gst(i) is much smaller than ∆Gbp(i),

we assume the former is the same for all base pairs. This approach maintains

thermodynamic consistency between Eqs. (2.14) and (2.15). These approxi-
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mations are validated below through comparison to experimental kinetic data.

Fig 2.1 compares the nucleation factor σnuc calculated based on ∆Snuc and

∆Hnuc to the combined nucleation and stacking factor σ for sequences of length

10 and 14 base pairs. There are only three possible values for σnuc, since the

first base pair for DNA/RNA can be any one of A − U , A − T and G − C,

whereas, σ is length-dependent. The difference between σ and σnuc is due to

∆Gst,NN−
∑

i ∆Gst(i), which is generally < 0, since the sequence-independent

stacking energies represented in Eqs (2.7) and (2.8) generally overestimate the

magnitude of the actual stacking free energies. This adds a positive ∆Hσ to

the ∆Gσ, which contributes to the apparent temperature dependence of sigma.

When N increases, x, the number of base pairs that melt before forming a

stable nucleus, also increases. As a result of this, the overall resistance to form

a stable nucleus increases. Hence σ decreases or resistance increases when

N increases. ∆Gst,NN −
∑

i ∆Gst(i) also contributes to the observed length

dependence of σ.

2.3.2 One-Sided Melting

In one-sided melting mechanisms, hybridization/ melting progresses from any

one side of a DNA and we assign σ to the first step. Fig. 2.2 and the reaction

(R2) (Wetmur and Davidson (1968); Craig et al. (1971); Baldwin (1968)) shows

the mechanism of one-sided hybridization. Schwarz and Poland (Schwarz Jr

and Poland (1975)) presented the same mechanism as a biased continuous
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Figure 2.2: Reaction Mechanism of One-sided Hybridization. k1 is the forward
rate constant for each base pair formation and k−i is a dissociation rate con-
stant. σ, a nucleation/stacking parameter, accounts for the resistance to the
formation of the first base pair. Di represents the state of a hybridized duplex
with i base pairs in double-stranded form.

time one dimensional random walk (CTRW) with partially reflecting boundary

conditions (Gardiner (2004)). The walk is biased because the forward and

reverse reaction rates are not equal.

2.3.2.1 Estimation of Relaxation Time Under the Steady-State Ap-

proximation

Using the steady state approximation (Baldwin (1968)), the concentrations of

the intermediate components in (R2) can be assumed to be equal to the same

constant value. Therefore, the rate of formation of double helix is equal to

the rate of disappearance of single strands. Hence, the rate of formation of

double helix is the net forward rate at each intermediate step. To estimate the

relaxation time, a perturbation δ is introduced to the equilibrium. The net

forward rate, r of ith step is

r =


σk1[D0eq][δi]− k−i[δi+1], i = 0

k1[δi]− k−i[δi+1], ∀1 ≤ i ≤ N − 1

(2.19)
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The association of the single strands in the first step of (R2) is a second-order

reaction and the rate equation for this step in terms of δ and σ is obtained by

linearizing the actual rate equation around the equilibrium concentration of

the single strands, which is denoted as [D0eq] (the factor 2 that was obtained

after linearizing has been clubbed together with [D0]eq). Manipulation of Eq.

(2.19) leads to the following equation for the rate r in terms of δ0 (a detailed

derivation is provided in the Appendix A).

r

k1

=
δ0

N
C (2.20)

where

C =

(
C1 −

[
C1C2 −Nσ[D0eq]

C1 −N
∏N−1

i=0
1
si

])
,

C1 =

[
1 +

N−2∑
i=0

i∏
j=0

1

sj

]
,

C2 = σ[D0eq] +
1

s
− 1.

Relaxation time is defined as

τ−1 = − 1

δ0

dδ0

dt
(2.21)

Substituting r = −dδ0
dt

in equation Eq. (2.21), an equation for the relaxation

time is obtained as follows.

τ−1 =
k1

N
C (2.22)
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The stability constant s in Eq. (2.22) is a geometric mean of the stability

constants of individual base pairs (Wetmur and Davidson (1968)):

s = (s1s2.......sN)
1
N (2.23)

Thus, for a given DNA sequence and temperature, the relaxation time can be

found using Eq. (2.22).

2.3.2.2 Estimation of Relaxation Time: State space representation

for non-steady state solution

Baldwin (Baldwin (1968)) indicates the following requirements for validity of

the steady state approximation:

� Πn−1
i=0 si = Πn−1

i=0
ki
k−i

>> n

� σ << 1

For short sequences, it may be possible that the product of individual stability

constants less than n. Although the value of σ for the oligomer hybridization is

always less than 1, in a long DNA melting problem, nucleation is not required

for the hybridization of all domains, and hence σ = 1 for these domains. For

these as well as other reasons discussed below, the steady state model is not

always useful and a non-steady state solution for the relaxation time is essential

as will be shown below.
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A detailed unsteady state balance for the chemical reaction network (R2)

yields a set of coupled first order differential equations after linearization

around the equilibrium:

dx

dt
= Ax, x(0) = xinit, (2.24)

where x = [D0, · · · , Dn]T . The state space matrix A is

A =



−σ[D0eq]k1 k−0 0 0 · · ·

σ[D0eq]k1 −k1 − k−0 k−1 0 · · ·

0 k1 −k1 − k−1 k−2 · · ·

0 0 k1 −k−2 · · ·

...
...

...
...

. . .


(2.25)

A is a banded diagonal (tridiagonal) asymmetric matrix (A 6= AT ). The

solution to the initial value problem (2.24) (or equivalently, the solution to

the Chapman-Kolmogorov equation (Gardiner (2004)) for the corresponding

discrete state space stochastic process) is

x(t) = exp(At)x(0)

= exp
[
V ΛtW †] , W †V = I

x(t) = V exp(Λt)W †x(0) (2.26)

= V diag{exp(λ0t), · · · , exp(λnt)}W †x(0)
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W = [w0, · · ·wN ], w†iA = λiw
†
i and V = [v0, · · · , vN ], Avi = λivi denote the

matrices of left, right eigenvectors of the fundamental matrix A, respectively,

since A is an asymmetric matrix. Λ = diag{λ0, · · · , λN} is the matrix of eigen-

values. Let P (t) = exp
[
V ΛtW †], which is called the dynamical propagator

or the transition probability matrix. The eigenvectors are modes of motion of

the dynamical system. These eigenvectors form a complete set since A is a

normal matrix. In the non-orthogonal basis W , we have

W †x(t) = diag{exp(λ0t), · · · , exp(λN t)}W †x(0)

x̃(t) = diag{exp(λ0t), · · · , exp(λN t)}x̃(0). (2.27)

In this basis, the solution for the evolution of each species is

x̃i(t) = exp(λit)x̃i(0), i = 0, · · · , N

= exp[λi)t]x̃i(0) (2.28)

One examines the mode with eigenvalue Re(λi,max) ≤ 0 to identify the relax-

ation time for hybridization as the associated time constant:

τ = τi,max = − 1

Re(λi,max)
. (2.29)

The above expressions are simplified if we exploit the specific structure of A as

a chemical kinetics transition rate matrix. Further properties of the solution

Chapter 2. Sequence-Dependent Oligonucleotide Hybridization Kinetics 32



2.3. Theoretical Estimation of Relaxation Time: Unimolecular Elementary
Step Model

(2.26) are considered below.

Schwarz and Poland (Schwarz Jr and Poland (1975)) considered transient

dynamics of the homopolymer (but not heteropolymer) melting problem using

state space and Kolmogorov master equation methods, for reasons of analyti-

cal tractability. As will be discussed below, homopolymer approximations are

not typically capable of accurately predicting relaxation times for heteropoly-

mers. The master equation for the continuous-time random walk is a system

of partial differential equations for the occupation probability p(i, t) equivalent

to the state space system of ordinary differential equations, where i denotes

the number of hybridized bases. Master equation solutions (obtained, e.g.,

by the method of characteristic functions (Gardiner (2004))) are expressed in

terms of modified Bessel functions rather than a sum of exponential functions,

and are not convenient for calculation of relaxation times or rate constants.

2.3.2.3 Comparison between Transient and Steady State(SS) model

The relaxation time of a DNA hybridization reaction varies from 10−1 to 102

seconds (Craig et al. (1971)). Since this reaction is very fast, steady-state

assumptions that do not account for the initial transient behavior may be

inaccurate. The system of algebraic equations solved in the steady state for-

mulation is inconsistent when the additional constraint corresponding to to-

tal mass balance (conservation of probability) is applied. This inconsistency

would be observed if one were to solve for the concentrations of the inter-

mediate species. In order for the steady state approximation to be valid,
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τss ≈ τmax >> τi, i 6= max should hold, where τss denotes the relaxation time

obtained in the steady state formulation, and τmax should be associated with

a mode of motion that converts x0 to xn. The validity of the steady state

approximation can thus be evaluated based on the eigenvalues of the transient

model. Properties of the eigenvectors and eigenvalues are considered further

in Section 2.4.

2.3.3 Two-Sided Melting

An obvious issue with one-sided melting models is the arbitrariness in the

choice of the end of the sequence at which initiation occurs. Schwarz and

Poland (Schwarz Jr and Poland (1975)) and Anshelevich et al.(Anshelevich

et al. (1984)) proposed a two-sided melting reaction mechanism for (R1) and

analyzed it for a homogeneous DNA. According to this model, DNA melt-

ing/hybridization can be initiated anywhere on the single strands and subse-

quent hybridization can occur simultaneously on both sides of the first formed

base pair. In this section, we modify this mechanism and develop a transient

model for the heterogeneous oligonucleotide melting/hybridization reactions.

Fig. 2.3 illustrates two-sided melting, and the reaction mechanism of the two-

sided melting reaction R3 is given below. For clarity, we present the mechanism

for N = 2.
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Figure 2.3: Two-sided melting reaction mechanism. m is the number of base
pairs melted from the left side and n is the number of base pairs melted from
the right side. k−i and k−i represent the dissociation rate constant for left and
right side melting respectively. N - total number of base pairs of the given
DNA sequence.
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Dm,n represents the state of a DNA molecule wherem and n denote the number

of base pairs melted from the left and right side of the DNA molecule, respec-

tively. In reaction R3, the horizontal direction represents right-sided melting

and the vertical direction represents left-sided melting. The total number of

possible states in an N base pair hybridization reaction is (N+1)× (N+2)/2.

Out of these, there are N states that have only one base pair hybridized, in

N different positions. The σ parameter is associated with the rate constant

for formation of each of these N states. The number of states in the one-sided
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melting model is of O(N), whereas in the two-sided melting model, it is of

O(N2). Using the convention that states with the same m value are grouped

together, the state vector for two-sided melting is

x = [D0,0, D0,1, D0,2, D1,0, D1,1, D2,0]T
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and the state space matrix for the reaction (R3) is given as

A =



−(k−1 + k−1) k1 0 k1 0 0

k−1 −(k−2 + k−1 + k1) σ[D0,2eq]k1 0 σ[D1,1eq]k1 0

0 k−2 −σ[D0,2eq]k1 0 0 0

k−1 0 0 −(k−1 + k−2 + k1) σ[D1,1eq]k1 σ[D2,0eq]k1

0 k−1 0 k−1 −2σ[D1,1eq]k1 0

0 0 0 k−2 0 −σ[D2,0eq]k1



(2.30)
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Each diagonal block of this two-sided melting matrix corresponds to melt-

ing from the right side with a constant number m of base pairs dissociated

from the left side. In the two-sided melting mechanism, there are N + 1 states

representing fully dissociated single-stranded DNA (m+n = N). These can be

represented using one notation, D0,N . By doing this we also correct the rates

that were counted twice in the above state space matrix (2.30). For example,

in reaction R3, D1,0 gives D1,1 and D2,0, which represent the single-stranded

state. Hence the disappearance rate of the molecule D1,0 has been counted

twice. Thus, from the above state matrix A, two redundant states (in general

N states) should be removed and the rates that were counted twice should

also be corrected to obtain the correct state space matrix for two-sided melt-

ing. Note the total number of states is (N + 1)× (N + 2)/2−N . Hence, the

Corrected Reaction Mechanism (CRM) R4 for two-sided melting (considering

N = 2) is given below.

D0,0
k−1

k1

D0,1
k−2

σk1

D0,2

k
−

1

k
1

D1,0

k
−

2

σ
k

1

D0,2

(R4)

The state space matrix for two-sided melting (N = 2) based on the above
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modified reaction mechanism is thus given by

A =



−(k−1 + k−1) k1 k1 0

k−1 −(k−2 + k1) 0 σ[D0,2eq]k1

k−1 0 −(k−2 + k1) σ[D0,2eq]k1

0 k−2 k−2 −2σ[D0,2eq]k1


(2.31)

x = [D0,0, D0,1, D1,0, D0,2]T

Just as we have calculated the relaxation time for one sided melting from

its state space matrix, the relaxation time for the two sided melting can be

calculated from the above state space matrix (2.31). Anshelevich et al. (An-

shelevich et al. (1984)) considered the double counting model, but not the

more accurate single counting model, and only in the absence of σ, possibly

due to the greater simplicity of the former model; due to the omission of σ,

the solutions therein are not applicable to oligonucleotide hybridization, and

moreover, double counting can result in measurable differences in the predicted

reaction times (data not shown).

2.4 Properties of Solutions to the Transient

Melting Models

In this section we analyze the state space matrices and give a physical interpre-

tation to the solutions to the state space models. To simplify our analysis we
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assume that size of the state space system is n (the corresponding number of

states can be back calculated based on one- and two-sided melting) and start-

ing in this section the indices i, j, k will run from 1 to n. The transition rate

matrices A for both one- and two-sided melting have rank n−1, since the rows

of these matrices are subject to the single algebraic constraint
∑

iAij = 0, ∀j.

In addition, these matrices satisfy the property of detailed balance:

Aijπj = Ajiπi, ∀ i, j ∈ {1, · · · , n} (2.32)

for some state π. Since

n∑
j=1

Aijπj = πi

n∑
j=1

Aji = 0,

due to the transition rate property of A, the state π, which is called the

stationary distribution, is the eigenvector associated with the null eigenvalue,

which we denote by λ1 = 0. Now since

P (t) = exp(At)

= exp
[
V ΛtW †]

= V diag{exp(0t), exp(λ2t), · · · , exp(λnt)}W †

= V diag{1, exp(λ2t), · · · , exp(λnt)}W †, (2.33)
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the transition probability matrix P (t) has one eigenvector (π, a probability

vector that is scalar multiple of equilibrium state) with a unit eigenvalue and

is a stochastic matrix. If the system starts in this state, it does not evolve. We

now derive the general solution for x(t), including properties of the eigenvectors

and eigenvalues. First note that the detailed balance condition Eq. (2.32) or

Aij

Aji
= πi

πj
implies

diag(
1

π1

, · · · , 1

πn
)A = ATdiag(

1

π1

, · · · , 1

πn
).

since

Aik
πi

=
∑
j

δij
1

πi
Ajk

=

[
diag(

1

π1

, · · · , 1

πn
)A

]
ik

=
Aki
πk

(detailed balance)

=
∑
j

Ajiδjk
1

πj

=

[
ATdiag(

1

π1

, · · · , 1

πn
)

]
ik

.

Let M = diag( 1
π1
, · · · , 1

πn
). Then

MA = M

n∑
i=1

λiviw
†
i = A†M =

n∑
i=1

λ∗iwiv
†
iM. (2.34)
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Since MA = A†M , Mvi is a (right) eigenvector of A† with eigenvalue λi

and hence we have wi = Mvi for the i-th left eigenvector of A, i.e. the

eigendecomposition of A can be written:

A =

(
n∑
i=1

λiviv
†
i

)
M. (2.35)

wi is a right eigenvector of A with eigenvalue λ∗i , and a left eigenvector of A

with eigenvalue λi. Since W †V = W †W = I, the left and right eigenvectors

must be associated with the same eigenvalue and hence λj = λ∗j . We can write

W = MV for the matrix of left eigenvectors.

The negativity of eigenvalues λ2, · · · , λn also follows from the properties

of the transition rate matrix A. It can be shown that the Kullback-Leibler

(K-L) distance between x(t) and π, namely K(t) =
∑

i xi(t) ln xi(t)
π

, decreases

monotonically with time since

d

dt
K(t) =

∑
i,j 6=i

Aijxj(t)

{
ln

(
xi(t)

πi

πj
xj(t)

)
+ 1− xi(t)

πi

πj
xj(t)

}

≤ 0,

according to the transition rate property of A and the properties of the K-L

distance. Based on these properties, the solution to the state space model can
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then be expressed

x(t) = V diag(1, exp(λ2t), · · · , exp(λnt))W
†x(0)

= π

n∑
j=1

xj(0) +
n∑
i=2

viv
†
idiag(

1

π1

, · · · , 1

πn
) exp(λit)x(0), (2.36)

λi ∈ R−, i = 1, · · · , n. Further, due to the stochastic property of the transition

probability matrix P (t), we have

n∑
j=1

xj(t) =
n∑
j=1

xj(0) +
n∑
j=1

n∑
i=2

vijv
†
idiag(

1

π1

, · · · , 1

πn
) exp(λit)x(0)

= lim
t→∞

n∑
j=1

xj(t) =
n∑
j=1

xj(0),

where vij denotes the jth element of the ith eigenvector, and hence

n∑
j=1

n∑
i=2

vijv
†
idiag(

1

π1

, · · · , 1

πn
) exp(λit)x(0) = 0, ∀x(0). (2.37)

From this it follows that
∑n

j=1 vij = 0,∀ i in (2.36). A given mode of motion

corresponds to a single step of reaction scheme (R2) if all but two elements

(j, j + 1 in the one-sided melting model) of vi are equal to 0. If x(0) is an

initial state corresponding to a perturbation of the equilibrium (R1) by, for

example, a temperature jump or addition of a small amount of either duplex or

single-stranded DNA, Eq. (2.36) describes the time evolution of concentration

perturbations of the various partially hybridized states Di as the system at-

tains a new equilibrium consisting of a perturbation of the original equilibrium
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distribution of these hybridized states represented by π.

2.5 Estimation of the model parameters

In Section 2.3 we have developed a functional relationship between relaxation

time and measurable thermodynamic and kinetics parameters of reaction (R1)

using two different reaction mechanisms and model formulations. Generally

such a functional relationship is represented as follows

τ = f([D]eq, σ, sAT , sGC , k1, N) (2.38)

While σ, sAT , and sGC , depend on the thermodynamics of reaction R1, k1

depends on the kinetics. In Section 2.3.1, the estimation of σ, sAT , and sGC

has been considered (In Appendix G we have provided temperature dependent

stability constant,s and its Arrhenius relationship). In this section we discuss

the estimation of k1.

2.5.1 Estimation of k1

Estimation of k1 is a nonlinear parameter estimation problem in which a func-

tional relationship between model parameters and experimentally measured

dependent variables (2.38) is available. For a known set of relaxation time

vs equilibrium concentration of single strands data, a least square objective

function equal to the sum of squared differences between actual and predicted
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relaxation times can be minimized to estimate k1. Given a set of τ vs. [Deq]

data, such a parameter estimation problem can formulated and k1 can be

estimated at a specific temperature.

However, at the current time, only limited experimental τ vs. [D]eq data

is available for oligonucleotides. At a specified temperature, only a single

relaxation time data is available. Due to this limitation, we solved (2.38)

algebraically for k1 given τ for a specified sequence, and used the relaxation

time data available for the other sequence for out-of-sample prediction.

Under the steady-state assumption, Craig et al (Craig et al. (1971)) de-

rived the following equation that relates τ (here expressed in terms of the

hybridization rate constant kf ) to s, N , σ and k1:

k1 =
kf

2 (N − 1)σs
(2.39)

From Eq. (2.39) it is evident that k1 is a function of N and as long as N is of

the same order of magnitude, k1 does not vary much with respect to length of

a sequence. In Section 2.3.1, we have shown that σ decreases up to an order

of magnitude when N increases from 8 to 14 base pairs. Further, Wetmur and

Davidson (Wetmur and Davidson (1968)) and Porschke and Eigen (Pörschke

and Eigen (1971)) showed that kf increases with respect to the length of a

sequence. Hence, for a fixed temperature, when N increases k1 should increase.

This can be explained with more physical arguments and reasoning as follows.

For a fixed temperature, a sequence with more base pairs is more stable than
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a sequence with fewer base pairs. The individual stability constant si is equal

to the ratio k1
k−i

. Though at a fixed temperature s is a constant since a shorter

sequence dissociates more quickly than a longer sequence, k−i for a shorter

sequence should be higher, and k−1 should be lower than those of a long

sequence.

k1 for the transient models can be calculated by using the characteristic

equation of the state space matrix A, with the negative reciprocal of the relax-

ation time τ substituted in it as the eigenvalue λ, for the functional relationship

(2.38). Since the state space matrix is relatively large, we implemented a bi-

section method that is described below to solve for k1 based on the transient

models.

� Assume an interval, [a, b] for k1. Note that at a, the eigenvalue of the A

should be greater than the actual eigenvalue (λactual) and at b it should

be less than the actual value.

� Let c = a+b
2

.

� Find the eigenvalue of A at c.

� If (λc − λactual < 0), b = c , else a = c

� Repeat until (λc − λactual) ≈ 0

Using the above algorithm for the transient models and Eq. (2.39) for the

steady-state model, we have determined k1 for four different sequences, A4U4,

A5U5, A6U6, and A7U7, using their relaxation time and initial concentration
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of single strands data that were provided by Craig et al. (Craig et al. (1971)).

Henceforth, all our analysis is based on the reaction conditions given in Craig

et al (Craig et al. (1971)), which are similar to the standard PCR reaction

conditions. Fig. 2.4 shows the variation of k1 with respect to temperature

for the sequences A5U5 and A7U7. The variation of apparent rate constant

k1 with respect to temperature follows an Arrhenius relationship and it is

similar to kf with a negative apparent activation energy that is a function

of actual activation energy and the heat of base pair formation (Breslauer

and Bina-Stein (1977); Pörschke and Eigen (1971)). At a fixed temperature,

the difference between k1 values that were calculated based on one and two-

sided melting theories is negligible. However, there is an appreciable difference

between k1 values that are calculated based on the steady-state and transient

models. Between the one and two-sided models, the negative activation energy

of k1 based on one-sided melting theory is lower than that from the two-sided

melting theory.

Fig. 2.5 shows the variation of the activation energy with respect to N . As

we explained above, when N increases, k1 increases, and hence the negative

apparent activation energy decreases. For a fixed N , though we expect that

there will be a difference in apparent activation energy for homogeneous and

heterogeneous sequences, this difference may may lie within an acceptable error

bound. Thus, we use the same k1 that was estimated using the homogeneous

sequences for heterogeneous sequences as long as their lengths are the same.

In the absence of experimentally measured relaxation time data for different
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Figure 2.4: The effect of temperature on forward rate constant,k1, of each step
of oligonucleotide hybridization reaction. There is no appreciable difference
between k1 estimated based on the one and two-sided melting mechanisms.
k1 estimated based on steady-state models differs that predicted based on the
transient models.

N, we can extrapolate the reaction parameters for different lengths of DNA

sequences. However, more experiments can be conducted with different com-

positions (see, e.g. Williams et al. (1989)) and lengths of DNA sequences to

estimate k1 using least squares estimation rather than nonlinear root finding.

2.6 Experimental Validation of relaxation time

models

In order to validate our theoretical model, we considered two sequences, A10U10

(Pörschke and Eigen (1971)) and (A7U7)2 (Breslauer and Bina-Stein (1977)),

which are either completely different or studied independently at a different

reaction conditions from those that were used to estimate the model parame-
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Figure 2.5: Length dependent activation energy for k1 that was determined
based on two sided melting theory. At a fixed temperature, when the number
of base pairs of a oligonucleotide sequence increases, the magnitude of the
apparent activation energy increases.

ters. To estimate the relaxation time of A10U10, we used k1 that was estimated

from the relaxation time of (A5U5)2. It should be noted that (A5U5)2 (self com-

plementary sequence) and A10U10 (non self complementary) are different from

each other. Fig.2.6 compares the relaxation time values that are estimated us-

ing, experiments, one sided melting theory, two sided melting theory and the

steady state model. While one and two sided melting models are in agreement

with the experimental data within an acceptable experimental error limit, the

steady state model deviates much from the experimental results. Therefore,

the steady state assumption may not be valid always and the exact model is

recommended. As we have seen in Section 2.5, since there is no difference in

the model parameter, k1 that was estimated using one and two sided melting

theory, there is no difference in the relaxation time that was estimated using

these two models.
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Figure 2.6: Comparison between the experimentally and theoretically esti-
mated relaxation time for A10U10. k1 that is used to estimate the relaxation
time of A10U10 has been estimated using the relaxation time of a completely
different oligomer sequence, (A5U5)2 (note that (A5U5)2 is a self complemen-
tary oligomer sequence and it is different from the non self complementary
sequence A10U10). There is no appreciable difference between the experimen-
tally estimated relaxation time and theoretically estimated relaxation time
using one and two sided melting theory. The steady state model is not in
agreement with the experimental results.
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Figure 2.7: Comparison between experimentally and theoretically estimated
relaxation time for (A7U7)2. The experimental data for (A7U7)2 is obtained
from (Breslauer and Bina-Stein (1977)). Though we have used k1 that was
estimated from (A7U7)2 (Craig et al. (1971)), these two study were entirely
independent and conducted at a different set of temperatures. As it was ob-
served in A10U10, in this case also, there is no appreciable difference between
the experimentally estimated relaxation time and theoretically estimated re-
laxation time using one and two sided melting theory. The steady state model
is not in agreement with the experimental results.

Fig.2.7 compares the experimentally and theoretically estimated relaxation

for (A7U7)2. Though we have used k1 that was estimated from (A7U7)2 (Craig

et al. (1971)), these two study were conducted entirely independently at a

different set of temperatures. As it was observed in A10U10, in this case also,

there is no appreciable difference between the experimentally estimated relax-

ation time and theoretically estimated relaxation time using one and two sided

melting theory. The steady state model is not in agreement with the exper-

imental results. Thus, our theoretical model matches with the experimental

results.
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2.7 Relaxation time of a Heterogeneous oligonu-

cletide

In this section we predict the relaxation times of heterogeneous DNA using

one-sided and two-sided melting theory and compare these predictions. Since

we have established in Section 2.6 that the steady state model is not useful, we

neglect it. We consider the effects of N, σ, temperature, and GC content on

the relaxation time. As we have mentioned in Section 2.3, in oligonucleotide

hybridization the σ parameter accounts for the resistance to formation of first

base pair. In a specific case of domain melting of long DNA, σ is fixed to

be 1. Although we did not undertake a thorough analysis of domain melting

here, we investigated the effect of setting the σ to 1 to understand the effect

of the nucleation parameter on relaxation times for DNA melting. The se-

quences of different lengths and GC content that were used in our study are

given in Table 2.1. The initial concentration of single strands for this study

is 1µM . We have shown that the kinetic parameter k1 varies both with re-

Table 2.1: Heterogeneous Oligonucleotide Sequences

Sequence N % GC

GATTGTGTAGATAA 14 57
GACTGTGTAGCTCC 14 29

GACTGTGC 8 63
GATTGTGT 8 38

spect to length of a sequence and temperature. We therefore use k1 that was

estimated for a AnUn sequence of the same length. The effects of GC content
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Figure 2.8: Comparison between the one and two-sided melting theory for
heterogeneous oligonucleotide hybridization. Number of base pairs is 14 and
the initial concentration of the single strands is 1µM .

and temperature on the relaxation time for N=14 are shown in Fig. 2.8. For

a fixed GC content, when the temperature increases, the relaxation time de-

creases. At a fixed temperature and concentration, when the GC content of a

sequence increases, the relaxation time also increases. When the overall sta-

bility of a sequence increases, the relaxation time increases. In contrast to the

homopolymers studied in the previous section, the relaxation times predicted

by the one and two-sided models differ for the heteropolymers considered here.

The difference between the relaxation times that were obtained using one and

two-sided melting theories increases when the temperature increases. All of

the above analysis was repeated for σ = 1 and the results are shown in Fig.

2.9. When σ = 1, there is no resistance to the formation of the first base

pair. The qualitative change of behavior in relaxation time with respect to

temperature and GC content for σ = 1 is similar to that observed for oligonu-
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Figure 2.9: Comparison between the one and two-sided melting theory for
heterogeneous oligonucleotide for σ = 1. Number of base pairs is 14 and the
initial concentration of the single strands is 1µM .

cleotide hybridization. At a fixed temperature and GC content, however, the

relaxation time for σ = 1 is less than that for oligonucleotide hybridization.

We also estimated the relaxation time for a short sequence with 8 base pairs

using one and two-sided melting theories (Fig. 2.10). At a fixed temperature

and GC content, the relaxation time of a short sequence is lower than that of

a long sequence. Unlike the long oligonucleotides, for short oligonucleotides

there is a significant difference between the predictions of one and two-sided

melting theories at all temperatures.

2.7.1 Unimolecular Hybridization Dynamics of Hetero-

geneous Oligonucleotides

In this section we study the properties of solutions to the more general two-

sided melting model derived in Section 2.4 to systematically analyze the dy-
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Figure 2.10: Comparison between the one and two-sided melting theory for
heterogeneous oligonucleotide. Number of base pairs is 8 and the initial con-
centration of the single strands is 1µM .

namics of CRM (R4). With relaxation time alone, it is impossible to determine

whether a particular step of CRM (R4) controls the kinetics of reaction (R1).

The evolution of x̃i(t) given by Eq. (2.27) can be used to identify the rate

limiting mode. We have shown that one of the eigenvalues of the state space

matrix should be zero and it represents the equilibrium. The x̃i(t) corre-

sponding to this eigenvalue, π, does not evolve with respect to time. The x̃i(t)

corresponding to all other eigenvalues converge to zero. x̃i(t) corresponding to

the largest eigenvalue will converge most slowly. If the difference between the

time values at which x̃i(t) corresponds to the largest and the second largest

eigenvalues converges is considerable compared to the reaction time, a single

mode controls the kinetics of reaction (R1). According to Eqs. (2.36, 2.37),

this mode corresponds to a single reaction step of CRM (R4) only if elements

of the associated eigenvector vi that are coupled in CRM (R4) are nonzero.
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We considered the second sequence that is given in Table 2.1 and performed

the above explained study for

� Oligonucleotide hybridization

� In unimolecular DNA melting processes (domain melting), the nucleation

parameter σ = 1.

2.7.1.0.1 Case 1: σ corresponds to oligonucleotide hybridization,

Low temperature Fig. 2.11 shows the evolution of x̃(t) for oligonucleotide

hybridization at 40 0C. Except a x̃i(t) that corresponds to the largest nonzero

eigenvalue, all other x̃i(t) converge very fast. Note that because these x̃i(t)

converge very fast compared to x̃i(t) corresponds to the largest eigenvalue,

they superimpose on one another in Fig. 2.11 over the chosen time scale. It

is clear from Fig. 2.11 that the x̃i(t) corresponding to the largest eigenvalue

controls the corrected reaction network (R4). Furthermore, it can be noted

that the time at which x̃i(t) corresponding to the largest eigenvalue converges

to zero is approximately equal to the relaxation time of a chosen sequence at a

chosen temperature. Nonetheless, the associated vi in Eq. (2.36) has multiple

nonzero elements (data not shown), indicating that no single reaction step in

CRM (R4) is rate-limiting. This is consistent with nucleation occurring at

any position along the sequence, unlike the case of one-sided melting, where

nucleation is associated with only one reaction step in CRM (R4).
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Figure 2.11: Convergence of x̃(t)(described in Eq. (2.27)) for oligonucleotide
hybridization at 40 0C. Equilibrium was perturbed by adding δ = 0.01µM
with the equilibrium concentration of single strands.

2.7.1.0.2 Case 2: σ corresponds to oligonucleotide hybridization,

High temperature The oligonucleotide that is considered in this study

melts at 70 0C. Therefore, the reverse direction of reaction (R1) is dominant

compared to forward direction. Unlike the hybridization reaction, the melting

reaction does not have a resistance in the first step. Therefore, no single mode

completely dominates the kinetics of CRM (R4) at high temperatures. Hence,

almost all x̃i(t) converge to zero at a same time and this time is approximately

equal to the relaxation time at 70 0C.

2.7.1.0.3 Case 3: σ = 1 We analyzed the reaction mechanism of reaction

(R1) with σ = 1. As expected, both at higher and lower temperatures, ˜x(t)

corresponding to all the intermediates converges to zero at a same time very

quickly. This confirms that no single mode controls the kinetics when σ = 1.
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Figure 2.12: Variation of the ratio of largest and the second largest non zero
eigenvalues of state space matrix with respect to temperature for oligonu-
cleotide hybridization and domain melting. If this ratio is very high then a
specific step of reaction R4 determine its rate otherwise all the steps partici-
pates in determining the rate of reaction R4.

2.7.1.1 Eigenvalues Analysis

Above analysis can also be done using the eigenvalues of the state space matrix.

We know that the largest non negative eigenvalue of the state space matrix

determines the rate of the reaction R4. If other eigenvalues are in the same

order of magnitude as the largest eigenvalues, then largest eigenvalue alone

does not control the kinetics. Essentially, if the ratio between the largest and

the second largest eigenvalue is very high then a specific step of reaction R4

controls the kinetics, otherwise all the steps plays an equal role in determining

the rate of reaction R4. Figure 2.12 shows the variation of the above discussed

eigenvalue ratio with respect to temperature for oligonucleotide hybridization

as well as domain melting. In both cases, at lower temperatures, the eigenvalue

ratio is very high and when temperature increases it reaches to 1.
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2.8 Experimental Validation of Hybridization

model

In this Section, we calculate oligonucleotide hybridization rate constants by

solving Eq. (2.2) and (2.5) for A5U5 and compare them with those estimated

experimentally. Relaxation times were obtained from the results in Section

2.6. To calculate Keq, we did not apply the NN method because experimen-

tally estimated ∆Gseq were available. Fig. 2.14 compares theoretically and

experimentally estimated rate constants for A10U10. While the sign of the ap-

parent activation energy is negative for the forward rate constant, it is positive

for the reverse rate constant. The apparent activation energy for the forward

rate constant is a function of an actual activation energy and reaction enthalpy

of base pair formation (Craig et al. (1971)). Since the base pair formation is an

elementary reaction, the actual activation energy would be positive and small.

In other words, the temperature dependence of rate constants is mainly due

to the Gibbs free energy. The reverse rate constant, however, shows a strong

dependence on the temperature. At any chosen temperature, the difference

between experimentally and theoretically estimated rate constants is small.

We have already shown in Section 2.6 that the difference between the vari-

ation of theoretically and experimentally estimated relaxation times with re-

spect to temperature lies within an acceptable error bound. Each experimental

data point compared here was estimated by fitting Eq. (2.5) for various total

concentrations, whereas, theoretical rate constants are calculated by solving
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forward(kf ) and reverse rate constant(kr) of reaction (R1) for the hybridization
of A10U10.

Eq. (2.5) with one relaxation time and a corresponding total concentration,

because the different total concentration values that were used in the exper-

iments are not available. This could be a reason for the difference between

experimental and theoretical results. Assessment of the accuracy of sequence-

dependent rate constant prediction for a broad spectrum of sequences should

be carried out systematically with larger datasets including sequences with re-

laxation times spanning a larger range. The availability of more comprehensive

experimental relaxation time data, especially for non-self-complementary se-

quences with a range of GC contents, should facilitate the development of more

accurate parameter sets for oligonucleotide hybridization kinetics. The cur-

rent work is focused on providing a systematic theory for sequence-dependent

oligonucleotide hybridization kinetics with a few representative examples.

We also investigated the robustness of our model by studying the effect
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of the difference between theoretically and experimentally estimated rate con-

stants on the evolution of reaction products. Fig. 2.15 shows the evolution of

product, D, of reaction (R1) that was predicted using the experimentally and

theoretically estimated rate constants. It can be observed from this Figure

that only at low temperatures there is a small deviation between experimen-

tal and theoretical prediction. At all other temperatures there is almost no

difference. Within the given temperature interval in which the most of the

hybridization occurs, the difference between experimentally and theoretically

predicted evolution of D of reaction (R1) is negligible. The given dimension-

less concentration in Fig. 2.15 should be multiplied with the micromolar or

nanomolar units to get the actual concentration; hence, the difference between

the experimental and theoretically predicted concentrations is well within ex-

perimental error. Although in this case, the system reaches equilibrium within

few seconds, it is shown below that there are different cases of hybridization

where sequence-dependent kinetics have a strong influence on the evolution of

product over experimentally relevant time scales.

2.9 Application: PCR Simplex Hybridization

Reaction

In the context of PCR, oligonucleotide hybridization is called annealing. An-

nealing reactions can be competitive or noncompetitive depending on the stage
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Figure 2.15: Robustness of our kinetic model. The deviation between the
evolution of DNA which has been calculated using the theoretically (dotted
line) and experimentally (solid line) estimated hybridization rate parameters.

of PCR. In the annealing step of a simplex PCR, there are several following

annealing reactions can occur.

1. Two primer molecules bind on a specific part of respective templates

separately.

2. Single strands that are formed by melting the template can also anneal

each other as they are complementary.

3. Both primers can hybridize on each other.

4. Hybridization of primer 2 on the single strand 1.

5. Hybridization of primer 1 on the single strand 2.

Further, in this study, we assume that stability of the items 3, 4 and 5 are too

low to be neglected. Thus the following reaction scheme is written to represent
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the simplex PCR annealing reaction.

S1 + P1

k1f


k1r

S1P1 (R6)

S2 + P2

k2f


k2r

S2P2 (R7)

S1 + S2

k3f


k3r

DNA (R8)

In a typical PCR conditions, the primer concentration is always higher than

the template concentration and due to this, the primers annealing reactions R6

and R7 don’t allow the single strands to hybridize R8. This is, however, always

not true as the template concentration increases and primer concentration

decreases during the course of PCR. In microarray applications concentration

of both primers and single strands are the same. In this section we investigate

the kinetics of reactions R6 to R7 for various initial concentrations of single

strands and primers. In order to study the kinetics of reactions R6, R7 and

R8 we represent the state equations for the reactions species in dimensionless

form. For a fixed initial single strand concentration, a dimensionless quantity,

the ratio of the initial primer and single strand concentration (PS ratio), can

be used to study the evolution of the reaction species.

d[SiPi]
∗

dt∗
= ki∗f [Si]

∗[Pi]
∗ − ki∗r [SiPi]

∗ ∀i = 1, 2 (2.40)

d[DNA]∗

dt∗
= −k3∗

r [DNA]∗ + k3∗
f [S1]∗[S2]∗ (2.41)

Chapter 2. Sequence-Dependent Oligonucleotide Hybridization Kinetics 64



2.9. Application: PCR Simplex Hybridization Reaction

where

[Si] = [Si0]− [SiPi]− [DNA] ∀i = 1, 2

[Pi] = [Pi0]− [SiPi] ∀i = 1, 2

[Si]
∗ =

[Si]

[S10]
, [Pi]

∗ =
[Pi]

[S10]
, [SiPi]

∗ =
[SiPi]

[S10]

[DNA]∗ =
[DNA]

[S10]
, t∗ =

t

ttotal

ki∗f = ttotalk
i
f [S10], ki∗r = ttotalk

i
r

[S10] - Initial Concentration of single strand 1

ttotal - Total reaction time

In order to solve the state equations 2.40 and 2.41 the algebraic constraints for

[Si] and [Pi] needs to be included. At the start of a PCR, the concentration

of both single strands is the same. Though indirectly we include the effect

of initial concentration of primers in the form of the mole balance of single

strands and by non dimensionalizing the rate constants, it is convenient to

use initial PS ratio as a single parameter to study the kinetics of annealing

reaction. In this section we study

� Effect of PS ratio on annealing reaction kinetics.

� Effect of GC content on annealing reaction kinetics.

� Effect of mismatch on annealing reaction kinetics.
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2.9.1 Effect of PS ratio on annealing dynamics

In order to study the effect of PS ratio on annealing dynamics, initial con-

centration of the primer is fixed to be 10−6M and the concentration of single

strand is varied from 10−14 − 10−6M . For our simulations we have considered

the following primer molecules.

Primer1 : GCTAGCTGTAACTG

Primer2 : GTCTGCTGAAACTG

All our simulations have been conducted at one single hybridization temper-

ature. To select such a temperature, the equilibrium melting curve is gener-

ated for both primers at all the above mentioned SP ratios. Melting curves

for primer 1 is presented in figure 2.16. Since the GC content for the both

primers are same the melting profile is also expected to be the same for them.

Therefore, we present the melting profile for only primer 1. To ensure the 100

% hybridization, we have selected 20 0C at which the equilibrium conversion

is always 1 for all PS ratios, as an annealing temperature.

At high PS ratios, reaction R8 can be neglected as the primer molecules

can easily hybridize on the the single strands and will now allow single strands

to hybridize each other. When the primer ans single strands concentration is

comparable, reaction R8 needs to considered along with reactions R6 and R7.

While the rate constants for the reactions R6 and R7 have been estimated as
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Figure 2.16: Melting Curve for Primer 1 at different S/P ratios. Primer con-
centration is fixed to be 1µM and the single strand concentration is increased
from 10−14M . For all SP ratio > 1 melting point is almost the same. In this
figure we show the melting curves for only few SP ratios for the better clarity
of the plot

explained in Flow chart 2.13, the forward and reverse rate constant for the

reaction R8 should be the maximum that of the rate constants of reactions R6

and R7 for the following reasons.

It should be noted that primers 1 and 2 will be similar to some part of

the single strands 2 and 1 respectively. Let us say the initial concentration

of the primer and single strands are the same. Therefore, there is an equal

opportunity for the annealing of S1 and P1 and S1 and a part of S2 which is

has the same sequence composition of P1. Hence, the rate constant for the

annealing of S1 and the part of S2 which has the same sequence of P1 should

be equal to that of annealing of S1 and P1. If this rate constant is higher than

that of reaction 2, then, annealing of S1 and the part of S2 which has the same

sequence of P1 will occur first and then the annealing of S2 and the spot on S1
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which has the same sequence of P2 will follow. On the other hand, if the rate

constant of reaction 2 is higher than reaction R6, then the annealing between

S2 and the part of S1 which has the similar sequence of P2 will occur first.

Once any one annealing occurs between S1 and S2 then those molecules are

not available for P1 and P2. Thus, the forward rate constant for the reaction

R8 should be maximum that of reactions R6 and R7. It can be argued that

during the single strands annealing, one should consider all parts of the single

strands rather than the part at which primer binds. It should be, however,

observed that there is no competition for the annealing of all such parts and

annealing of those will be faster. If the primer concentration is in excess or

low compared to the single strand concentration then, the rate constants kfP1,

krP1 kfP2, krP1, kf t and krt should be calculated separately in two stages.

� Calculate the rate constants kfP1, krP1, kfP2 and krP1 for a known primer

and single strands concentration and those rate constants should be used

for reactions R1 and R2.

� Calculate these rate constants by assuming primer concentration is equal

to that of single strands and calculate them. Then, find the maximum

forward rate constant value and use it for reaction R8.

The above procedure will avoid the confusion that to what extend of length

of single strands that needs to be considered to find the Gibbs free energy of

reaction R8.

Chapter 2. Sequence-Dependent Oligonucleotide Hybridization Kinetics 68



2.9. Application: PCR Simplex Hybridization Reaction

2.9.1.1 Case 1: High PS ratio

At high PS ratio the formation of [DNA] can be neglected and hence reaction

R8 as well. Under this condition, the resulting state equations are independent

to each other. Further, the change in concentration of primer through out the

reaction is also negligible. Therefore, a pseudo first order kinetics can be

assumed for reactions R6 and R7.Thus, the state equations for high PS ratios

can be rewritten as follows

d[SiPi]
∗

dt∗
= ki∗f [Si]

∗[Pi0]∗ − ki∗r [SiPi]
∗ ∀i = 1, 2 (2.42)

Equations 2.42 has been solved and the following analytical solution for the

evolution of [SiPi] is obtained.

[SiPi (t)]
∗ =

c1 (1− exp (−c2t))

c2

(2.43)

where

c1 = ki∗f [Pi0]∗[S10]∗

c2 = ki∗f [Pi0]∗ + ki∗r

From Equation 2.43, an equation to calculate time required to produce a spe-

cific concentration of [SiP
∗
i ] is obtained as follows

t = − 1

c2

(
1− ln

(
c2[SiP

∗
i ]

c1

))
(2.44)
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Figure 2.17: Dynamics of Annealing Reaction for a high PS ratio. Annealing
Temperature is 20 0C. Primer concentration is 1µM and the single strand
concentration is 0.01pM . As expected the reaction reached the equilibrium
state within a second due to a high concentration of primers. The evolution
of the reaction species when the single strand concentration is varied from
0.1pM to 10nM is exactly same as this case.(Hence, Pesudo first order kinetics
assumption is valid)

Figure 2.17 presents the evolution of single strands, SP and DNA molecules.

Note that though we derived an analytical expression for the evolution of

SP molecules by assuming a pseudo first order reaction kinetics, we solved

equations 2.40 and 2.41 and presented the evolution of the reaction molecules

in Figure 2.17. In this way, the pseudo first order kinetics assumption is

validated. Annealing temperature and primer concentration is fixed to be 20

0C and 1µM . The single strand concentration is varied from 0.01pM to 10nM .

As expected, due to a high primer concentration, reaction reaches equilibrium

in less than a second. Though in Figure 2.17 we present the evolution for

a single strand concentration of 0.01pM , evolution of reaction species for all

other single strands concentration up to 10nM is exactly same as this.
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2.9.1.2 Case 2: PS ratio = 1

In this section we study the kinetics of the reaction scheme represented by

R6 to R8 for an equimolar concentration of single strands and primers. While

we keep the PS ratio to be 1 and we vary the initial concentration of the

primers from 1nm to 1µM . Figure 2.18 and Figure 2.19 present the evolution

of the reaction species for the primer concentrations 1nM and 1µM . When

PS ratio is 1, single strands molecules are subjected to a two ways competitive

annealing. Even though the primer and single strands concentration is equal

since the order of the reaction R6 to R8 is 2, their kinetics depends on the initial

concentration of the primer. At a higher concentration of primer, the reaction

reaches the equilibrium faster compared to at a lower concentration of primer.

Note that y-axis is dimensionless and it experess the relative concentration

with respect to initial concentration of single strands.

2.9.2 Effect of GC content on Annealing dynamics

In this section we have investigated the effect of GC content on the annealing

reaction dynamics for a fixed PS ratio and annealing temperature. Initial

concentration of Primer and single strands is assume to be 1nM . Figure 2.20

presents the effect of GC content on the annealing dynamics at annealing

temperature of 20 0C. When GC content increases then the reaction takes

less time to reach the equilibrium. The high GC content sequence are more

stable and the equilibrium constant of the hybridization reaction of GC rich
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Figure 2.18: Dynamics of Annealing Reaction for a PS ratio = 1. Annealing
Temperature is 20 0C. Primer concentration is varied from 1nM to 10nM .
Due to competitive annealing at equal concentration of the single strands
and primers, there is a formation of DNA. When the concentration of primer
decreases the reaction takes long time to reach equilibrium. Note that y-axis
is dimensionless and it expresses the relative concentration with respect to the
initial concentration of single strands.
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Figure 2.19: Dynamics of Annealing Reaction for a PS ratio = 1. Annealing
Temperature is 20 0C. Primer concentration is varied from 0.1µM to 1µM .
Since the initial concentration of single strand is relatively higher, the reaction
reaches equilibrium within 10 seconds.
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Figure 2.20: Effect of GC content on Annealing Dynamics. When the GC
content increases, the reaction takes less time to reach the equilibrium. Initial
concentration of Primer and single strands is 1nM .

sequences is higher compared to low GC content. Therefore, sequences that

has more GC content reaches equilibrium faster.

2.9.3 DNA hybridization with mismatching

So far, we have discussed the hybridization of Watson and Crick type DNA

sequences which are complementary to each other. While the complementary

sequences posses the maximum stability, sequences with few mismatches are

also reasonable stable and it is sufficient for them to hybridize. Typically, in

genome sequencing techniques such as PCR, primers (probe) are designed in

such a way that, they will hybridize on a specific location of the single strand

molecules.It is, however possible for a primer molecule to hybridize on a dif-

ferent location of the same single strand with a reasonable stability. Thus,

once a non desired hybridization occurs,this can reduce the formation of the
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Table 2.2: Perfectly and mismatched sequences

Type Primer Complementary Sequence

Perfect Match 1 GCTAGCTGTAACTG CGATCGACATTGAC
Mismatch GCTAGCTGTAACTG CGATTGACATTGAC

Perfect Match 2 GTCTGCTGAAACTG CAGACGACTTTGAC

desired perfectly matched product. Therefore, it is important to analyze the

formation and evolution of the mismatched products during the formation of

a perfect hybridization. In this section this phenomena is systematically ana-

lyzed and evolution of perfectly and mismatched product is studied. Though

there are nearest neighbor parameters to predict the Gibbs free energy for

the single mismatches (Allawi and SantaLucia (1998); Peyret et al. (1999);

Allawi and SantaLucia (1998); SantaLucia Jr and Hicks (2004)), they are not

available to predict the Gibbs free energy of tandem mismatch hybridization.

Bourdélat-Parks and Wartell (Bourdélat-Parks and Wartell (2004)) investi-

gated the thermodynamic stability of DNA tandem mismatches for 9 different

hairpin DNAs. Fish et al (Fish et al. (2007)) estimated the ∆G for DNA

sequences with tandem mismatches. In this work we have considered only

an internal mismatch. Table C in Appendix C provides the NN parameters

for a single mismatch. Table 2.2 provides the sequences with mismatches.

Reactions R9 to R12 represents a scenario of a mismatching that can occur

in a PCR. Primer 1 molecules can form both perfectly matched as well as

mismatched products with single strand 1. SPr1 and SM1 represent the loca-

tions where P1 can hybridize to form the perfectly matched and mismatched
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Figure 2.21: Melting curve of Perfectly and Mismatched products. Though
mismatched product is not as stable as the perfectly matched products, if the
annealing temperature is chosen to be 32 0C at which perfectly matched prod-
ucts hybrize 100%, the equilibrium conversion of mismatched hybridization is
60%.

products.

SPr1 + P1

kfS
Pr
1



krSPr

1

SPr1 P1 (R9)

SM1 + P1

kfS
M
1



krSM

1

SM1 P1 (R10)

SPr1 + S2

kfS
Pr
1 S2



krSPr

1 S2

SPr2 S2 (R11)

S2 + P2

kfP2



krP2

S2P2 (R12)

In a PCR usually the length of single strands are much higher than the primers.

Therefore, on the same single strand molecules, primers can bind on multiple

locations based on the composition of a single strand. Hence, the number of

single strand molecules available for both perfectly and mismatched hybridiza-

tion remains the same. In other words, there is no competitive hybridization
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between perfectly and mismatched product. If a specific single strand is hy-

bridized both on a perfectly and mismatched location, it is assumed to be a

mismatched product. The same strategy which has been followed to to calcu-

late the rate constants of perfectly matched hybridization reaction is followed

for the mismatched hybridization as well.

Here SPr1 and SM1
1 represent the location on the single strands that can

form perfect, mismatched hybridized product.

2.9.3.1 Scenario 1 - P/S ratio > 1

Figure 2.22 presents kinetics of reaction R9 to R12 for a PS ratio > 1. The

PS ratio and the annealing temperature is fixed to be 108 and 30 0C with

1µM initial primer concentration. Since the primer molecules are in excess

compared to the single strand molecule, initially a part of primer molecules

binds on a location to form a perfectly matched product. If the reaction is

allowed to proceed further, the excess primer molecules binds on a location that

gives mismatched product. Thus, when the reaction time increases, formation

of the mismatched product increases.

2.9.3.2 Scenario 2 - P/S ratio = 1

If the PS ratio is 1, then there is a competitive hybridization between single

strands and primers. Figure 2.23 presents the evolution of reaction species

for PS ratio of 1. Since the rate constants of reaction R9 and R11 higher

than reaction R10, initially there is a competition between reaction R9 and
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Figure 2.22: Evolution of mismatched product when PS ratio is > 1. If the
reactions are allow to carry for long time, with excess primers available in the
reaction mixture, mismatched products are formed.

R11. Almost all the products has been formed with in a few seconds then

the available primer molecules bind on the a different location that forms a

mismatched products. Due to competitive annealing, not all the single strands

available for the primer hybridization and that is why there is less formation

of mismatched product.

2.10 Conclusion

In this work we have presented a theoretical approach to the prediction of

sequence and temperature-dependent rate constants for oligonucleotide hy-

bridization reactions using the equilibrium and relaxation theories of chem-

ical reactions. We considered one-sided and two-sided melting theories to

determine the relaxation times of oligonucleotide hybridization reactions, with

important modifications to those proposed in past literature on homopoly-
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Figure 2.23: Evolution of mismatched product when PS ratio is 1. Due to com-
petitive annealing between primers and single strands, mismatched products
is not formed.

mers. The two-sided melting theory that is proposed in the past literature

has been modified so that it is consistent with the laws of reaction kinet-

ics. The significance of model parameters has been analyzed in detail and

methods for the estimation of these parameters using available experimental

data have been presented. Steady-state models were found to be inaccurate,

whereas the proposed one-sided and two-sided theoretical models were found

to be consistent with the available experimental data. The difference between

the predicted and experimental rate constants lies within an acceptable er-

ror bound and the difference between the predicted and measured activation

energies is negligible. Important differences between one and two-sided melt-

ing model predictions are observed for heteropolymers, especially for shorter

sequences, indicating that the more physically realistic two-sided models are

generally preferred. Transient dynamical analysis of two-sided models shows
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that no single elementary reaction step is rate-determining. Finally, we stud-

ied the applications of oligonucleotide hybridization reactions in the context of

PCR and showed the importance of hybridization kinetics in PCR annealing

reactions. Our kinetic model is suitable for the purpose of optimal control

studies of PCR, among many other applications.
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Chapter 3

Sequence-dependent Modeling

of DNA Amplification

3.1 Introduction

In this chapter, a theoretical framework for determination of the optimal dy-

namic operating conditions of DNA amplification reactions, for any specified

amplification objective, has been developed based on first-principles biophys-

ical modeling and control theory. Amplification of DNA is formulated as a

problem in control theory with optimal solutions that can differ considerably

from strategies typically used in practice. Using the Polymerase Chain Reac-

tion (PCR) as an example, sequence-dependent biophysical models for DNA

amplification are cast as control systems, wherein the dynamics of the reaction

are controlled by a manipulated input variable. Using these control systems,

we demonstrate that there exists an optimal temperature cycling strategy for

80
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geometric amplification of any DNA sequence and formulate optimal control

problems that can be used to derive the optimal temperature profile. Two op-

timal control problems corresponding to the most common objectives of maxi-

mization of amplification efficiency for a fixed reaction time and minimization

of reaction time for a specified amplification efficiency are formulated. Finally,

strategies for the optimal synthesis of the DNA amplification control trajectory

are proposed. Analogous methods can be used to formulate control problems

for more advanced amplification objectives corresponding to the design of new

types of DNA amplification reactions.

3.2 Kinetic Model for PCR

As shown in Fig. 1.3 a kinetic model of PCR consists of kinetic models of

melting, annealing, enzyme binding and extension reactions. In this work we

have developed a sequence- and temperature dependent state space model for

PCR and analyzed its kinetics.

3.2.1 Annealing Kinetics

Reaction A − R1 represents an annealing reaction between the single strands

(S) and primers (P ).

S + P
kf


kr
SP (A−R1)
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In Chapter 2 we developed a sequence and temperature dependent method

to estimate the annealing reaction rate constants. Here we summarize our

method that needs to be followed to estimate annealing rate constants.

1. Determine the overall Gibbs free energy and hence the equilibrium con-

stant Kannealing for a given sequence at the chosen annealing temperature

using the Nearest Neighbor model.

Kannealing =
kf
kr

= exp

(
−∆Gannealing

RT

)
(3.1)

2. Determine the relaxation time, a characteristic time constant that deter-

mines the evolution of reaction coordinates toward equilibrium, at a cho-

sen temperature using either one - or two-sided melting. Here we briefly

review our method for calculating the relaxation time of such systems,

including the more general case of two-sided heteropolymer melting.

� For the given length of primer write the reaction mechanism, for

example, for N = 2.

D0,0
k−1

k1

D0,1
k−2

σk1

D0,2

k
−

1

k
1

D1,0

k
−

2

σ
k

1

D0,2

(R4)
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� Obtain the values of the rate constants and other parameters as

explained in Chapter 2 and form the following state space matrix

based on the above reaction mechanism

A =



−(k−1 + k−1) k1 k1 0

k−1 −(k−2 + k1) 0 σ[D0,2eq]k1

k−1 0 −(k−2 + k1) σ[D0,2eq]k1

0 k−2 k−2 −2σ[D0,2eq]k1


(3.2)

� Calculate the Eigenvalues λi of A.

� Calculate the relaxation as per the following equation.

τ =
1

max (λi)

3. Relaxation time for the reaction (A− R1) in terms of kf and kr can be

expressed as

τ =
1

kf ([CSeq] + [CPeq]) + kr

[Seq] and [Peq] should be determined based on the initial concentration

of single strands and primers that are used to determine relaxation time

in step 2.

4. Solve the two equations in steps 1 and 3 to determine kf and kr.
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Figure 3.1: Arrhenius plot of the forward (kf ) and reverse (kr) rate constants
for the primer set 1

Fig. 2.13 shows the above procedure as a flowchart.

3.2.2 Example

Using the above steps we have estimated the forward and reverse rate con-

stants for a set of primers and given the reaction parameters in Table 3.1.

Arrhenius plots for the annealing rate constants kf and kr have been given in

Fig. 3.1. From the melting curve (it is not shown here) of the chosen primers

Table 3.1: Rate parameters of primers. Subscript f and r denotes forward
and reverse rate constant, respectively

Sequence
(
Ea

R

)
f

(K−1)
(
Ea

R

)
r

(K−1) (k0)f (k0)f
GCTAGCTGTAACTG -7385 46341 2× 10−4 5× 1063

GTCTGCTGAAACTG -8202 45926 2× 10−5 1063

it can be inferred that 100 % equilibrium conversion for reaction (A−R1) can

be achieved at any temperature less than 300C. A very low annealing temper-
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ature could form mismatched products, therefore, the annealing temperature

is be fixed to be 300C and it also reduces the range of the PCR operating

temperature that may lead to a long transition time between the annealing

and other two steps of the PCR reaction.

3.2.3 DNA Melting

DNA
km


k−m

S1 + S2 (M −R1)

DNA melting is the reverse part of the DNA annealing reaction M −R1. The

kinetics of a short DNA melting can be modeled using the ’all or none’ or ’two

state’ model (Craig et al. (1971); Pörschke and Eigen (1971)). Based on this

model a DNA is assumed to be either in a single strand or double stranded state

and this assumption is valid only when the number of base pairs is less than 50

(Koehler and Peyret (2005)). Long DNA melting obeys co-operative melting

in which different regions of a DNA melt simultaneously in a different manner.

Poland - Scheraga (PS) model (Garel and Orland (2004); Jost and Everaers

(2009); Richard and Guttmann (2004)) can be used to predict this behavior

and identify the different regions that can melt independently. To the best

of our knowledge the kinetics of long DNA melting has not been investigated.

Mehra and Hu (2005) assumed a rate constant that corresponds to the melting

of a short DNA. Gevertz et al. (2006) and Stolovitzky and Cecchi (1996)

assumed that DNA melting is always 100% efficient and neglected the melting

step in the overall PCR model. Unlike in the annealing step where both
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annealing, enzyme binding and extension reactions can occur simultaneously,

in the melting step, due to very high temperature, only the melting reaction

can occur. Moreover, as long as the given DNA does not form a secondary

structure, it can melt completely. Based on these assumptions, in our study

we have also assumed that the DNA melting reaction is always 100% efficient

in our PCR model. This approach allows us to simplify the treatment of

the melting step; however, it does not consider the effect of template melting

during the extension step at 720C which is moderately a high temperature

at which a long DNA may melt. Furthermore, in applications like COLD

PCR, the melting temperature is lower than the typical PCR DNA melting

temperatures (Li et al. (2008)). In order to account all these factors, the

temperature-dependent melting rate constants need to be estimated. Although

we did not consider these effects in the numerical simulations of the present

study, we present a method that can be used to model the kinetics of long

DNA melting.

3.2.3.1 Statistical Mechanical Model for the Kinetics of the Melt-

ing of a long DNA

As mentioned above, long DNA molecules melts based on co-operative melting.

Using the Poland - Scheraga (PS) model, a given DNA sequence can be divided

in to the following 5 discrete domains.

1. Internal Loops.
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2. Ends

3. Pre Existing coils

4. Expansion of loops

5. Coalescence of neighboring loops

There are many numerical methods and software such as MELTSIM (Blake

and Delcourt (1998); Blake et al. (1999); Dwight et al. (2011)) developed to

identify the above mentioned domains and solve P-S model for a given long

DNA sequence. Once these domains are found, for each domain an overall

stability constant is calculated based on the following equation.

Kloop = σcf(N)
N∏
i=1

si (3.3)

In the above Eq. (3.3), σc is referred as a co-operative parameter (Blake

et al. (1999)) and it is different from the nucleation parameter σ that has

been discussed in annealing model. σc is a penalty to statistical weight for

melting of domain due to free energy cost of dissociating an internal base pair.

Both σc and f(N) have been universally estimated and Blake et al. (1999)

provided the expressions to calculate them. Each of the above regions melts

independently based on the two-sided melting theory (Azbel (1979)). These

regions can be identified and the overall stability constant can be estimated as

explained above. Once the regions have been identified, the relaxation time of

the melting of overall DNA can be found as follows.
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3.2.3.2 Relaxation Time of a long DNA

As shown in Section 3.2.1 an exact state space model for the melting of each

base pair in each domain can be formulated. Since we know all the domains

based on P-S model, now the state space system of each domain can be con-

nected to find the state space system of overall DNA melting. The state space

matrix of each domain will be coupled to only one other block, and in the

following wayassuming that domain i+ 1 melts after domain i, only the fully

molten domain i, fully annealed i + 1 state will be coupled to all the fully

molten i, single base dissociated i+ 1 states. Based on the type of a domain,

the state space system for each domain can be modeled using one-sided or

two-sided melting. Once the state space matrix of the overall DNA melting

is formed, from the largest eigenvalue of the state space matrix, the relax-

ation time can be estimated. The following steps can be used to find the rate

constants of long DNA melting.

1. Using the MELTSIM identify different domains for a given DNA se-

quence.

2. Order the domains based on their melting temperatures (ascending or-

der).

3. Construct the state space matrices based on two sided or one sided ma-

trix for each domain.

4. Associate the σ. the nucleation parameter with individual states in the
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last block according to the method described in Chapter 2.

5. Diagonalize each block and rank order eigenvalues of all blocks.

6. For each domain find the relaxation time using −1
max(λi)

7. Compare all the relaxation time and maximum value of the relaxation

time is the relaxation time of the whole DNA sequence

3.2.4 Enzyme Binding Kinetics

In extension step, enzymatic addition of nucleotides converts the duplex (SP )

into a complete dsDNA. Both deterministic as well as stochastic (Velikanov

and Kapral (1999)) approaches have been proposed to develop a model for

the extension reaction. Velikanov and Kapral (1999) presented the following

chemical master equation (CME), a probabilistic description of the extension

reaction system, with its analytical solution:

∂P (l, t)

∂t
= wl−1→lP (l − 1, t)− wl→l+1P (l, t) (3.4)

where P (l, t) denotes the probability distribution of the duplexes with l base

pairs inserted in the extension reaction, and wl−1→l denotes the transition

probability rate of addition from l−1 to l base pairs. Even though, the solution

of the above CME can provide the time required to complete the extension

reaction, this formulation is not useful in the present context because

� It omits enzyme dissociation/processivity as one of its major drawbacks;
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hence it only applies to perfectly processive polymerases (see below for

discussion of processivity). Since thermo-stable enzymes are not per-

fectly processive, it cannot be applied to PCR.

� It cannot be integrated with the models for other steps of PCR. There-

fore, it is impossible to analyze annealing, enzyme binding and extension

reactions simultaneously. Therefore, we consider an alternative approach

with an appropriate reaction mechanism to develop a model for enzyme

binding and extension reaction.

3.2.4.1 Reaction Mechanism:

There are several reaction mechanisms proposed for the enzyme binding and

extension reactions (Patel et al. (1991); Boosalis et al. (1987); Mendelman

et al. (1990); Huang et al. (1992)) and Fig. 3.2 represents a general reaction

mechanism (Brown and Suo (2009)). Note that the rate constants in this reac-

tion mechanism are different from those presented in Section 3.2 and Chapter

2. In step 1, enzyme binds with Di molecule to form a binary complex E.Di.

In step 2, a deoxynucleotide triphosphate (dNTP) binds with E.Di to form

a ternary complex, E.Di.dNTP , which undergoes a protein conformational

change in step 3 and forms E ′.Di.dNTP . In step 4, a the nucleotide is in-

corporated and a pyrophosphate molecule is released from Di and as a result

E ′.Di+1.PP i is formed. E ′.Di+1.PP i undergoes a conformational change in

step 5 leading to the formation of E.Di+1.PPi. In step 6, PPi is completely
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Figure 3.2: A general reaction mechanism of Enzymatic Primer Extension
reaction. Note that the rate constants in this reaction mechanism are different
from those presented in Section 3.2 and Chapter 2

released from E.Di+1.PPi and E.Di+1 is formed. Finally the dissociation of

E.Di+1 produces Di+1 and E. Besides these steps, there are parallel disso-

ciation reactions represented by step 7 and 8 would also possible to occur.

Kuchta et al. (1987), Patel et al. (1991), Brown and Suo (2009), Capson et al.

(1992), Fiala and Suo (2004) studied the extension reaction kinetics for DNA

polymerase I Klenow, T7 DNA polymerase, S. solfataricus P2 DNA polymerase

B1, T4 gene 43 protein, and S. solfataricus P2 DNA polymerase IV, respec-

tively, at either 200C or 370C. Using their rate constant data, we simplify the

above reaction mechanism. Step 6 is the last step of the reaction mechanism

that produces E.Di+1. According to Patel et al. (1991), k6 = 1000 s−1 and

k−6 = 0.5(µM)−1s−1. These rate constant values suggest that the association

of E.Di+1 with PPi is impossible. In addition to this comparing k−6 with

k1(11(µM)−1s−1) and k2(> 50(µM)−1s−1), it can be negligible. Hence, the
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final step 6 is irreversible with a rate constant k6. Step 3, 4 and 5 which are

all a first order reversible reactions represent the conformational change of a

ternary complex and their rate constants values are higher than k2 (Patel et al.

(1991)) and the forward rate constants of each step is higher than the reverse

rate constant (Patel et al. (1991)). Hence, the overall dynamics is controlled

by step 2 which forms a ternary complex, E.Di.dNTP and the final step is

irreversible. Thus, as proposed by Boosalis et al. (1987); Mendelman et al.

(1990); Huang et al. (1992), the above reaction mechanism can be represented

using the simplified reaction schemes given by reaction (E −Rn).

E +Di

k1


k−1

E.Di +N
k2


k−2

[E.Di.N ]
kcat→EDi+1

k−1



k1
E +Di+1 (E −Rn)

We now show how the kinetic parameters k1, k−1, kcat and KN = (k−2+kcat)/k2

in this reaction scheme can be estimated for any polymerase using polymerase

processivity and initial rate experiments.

3.2.4.2 Single-hit conditions

In single hit conditions, enzyme concentrations are sufficiently low that the

probability of re-association is approximately zero. Therefore, they do not

allow enzyme re-association. Hence enzyme-template association occurs only

during the initial equilibration of enzyme with SP . Thus, the following reac-
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tion scheme for the addition of n base pairs is written

E +D0(SP )
k1


k−1

E.D0 +N
k2


k−2

[E.SP.N ]
kcat→ED1 (E −R1)

E +Di
k−1←−E.Di +N

k2


k−2

[E.Di.N ]
kcat→EDi+1 ∀i = 1, 2, ....n− 2 (E −Ri)

E +Dn−1
k−1←−E.Dn−1 +N

k2


k−2

[E.Dn−1.N ]
kcat→E.Dn

k′cat→ E +Dn (E −Rn−1)

Single hit conditions are used to estimate polymerase processivity parameters

(with an appropriate kinetic model and associated rate constants or equations

relating the rate constants). Processivity is defined as the number of nucleotide

incorporated per DNA-enzyme binding event.

3.2.4.3 Processivity of an enzyme

Let i index be the sequence positions on the template. In a Markov chain for-

mulation of dissociation, the index i at which dissociation occurs is called the

stopping time/index and is denoted ioff . Let p denote the conditional proba-

bility of the polymerase not dissociating at position/time i, given that is was

bound to the template at position/time i− 1. The probability of dissociation

at position/time i is then

poff (i) = (1− p) pi−1 (3.5)
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p is called the microscopic processivity parameter. The expected position of

dissociation of the polymerase (expected stopping time) sometimes called the

processivity, can be written as

E [ioff ] =
1

(1− p)
(3.6)

E [ioff ] is sometimes reported as the processivity instead of the microscopic

processivity parameter. The above expression is derived for a template of

infinite length. Usually, in processivity experiments long templates are used

to estimate p. For finite length,

poff (n) = 1−
n−1∑
i=0

(1− p) pi−1 (3.7)

For heterogeneous templates, p will vary with position. From processivity

experiments, one can obtain the p at each position since we will have

poff (n) = (1− pi)
i−1∏
j=0

pj ∀i (3.8)

These equations can be used to solve uniquely for each pi. However, it is im-

practical to do processivity experiments for each new template. Hence, one

can do processivity experiments on templates with different types of nearest

neighbor motifs (including hairpins) for a given polymerase, and then near-

est neighbor processivity parameters can be used in modeling of an arbitrary

sequence.

Chapter 3. Sequence-dependent Modeling of DNA Amplification 94



3.2. Kinetic Model for PCR

3.2.4.4 Relationship between Processivity and Enzyme binding and

Extension rate constants

Now, at a fixed temperature, we seek a relationship between processivity of an

enzyme and the rate constants of the reaction scheme (E − Ri). In order to

do this, we write the state space model for the reaction scheme (E −Ri). We

omit E.Dn
k′cat→ E+Dn. from the state space model for simplicity as it does not

affect equilibrium and we are not estimating the corresponding rate constant.

Since the substrate, dNTP, concentration is always in excess compared to

enzyme, Michaelis-Menten (MM) kinetics is valid and hence the steady state

assumption for the intermediate concentration is valid. Therefore,

d

dt
[E.Di.N ] = − [E.Di.N ] (k−2 + kcat) + k2 [E.Di] [N ] = 0 (3.9)

=⇒ [E.Di.N ] =
[E.Di] [N ]

KN

(3.10)

Let k = kcat
KN

[N ], then the state space matrix A of the reaction scheme (E−Ri)

is given as

dx

dt
= Ax =⇒ dx

d (t (k1 + k−1))
=

1

k + k−1

A =⇒ dx

dt
= A′x, (3.11)

where

x = [E.D0, D0, E.D1, D1, ....E.Di, Di, ..., Dn−1, E.Dn]
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A′ =



−1 0 0 0 0 · · · 0

k−1

k−1+k
0 0 0 0 · · · 0

k
k−1+k

0 −1 0 0 · · · 0

0 0 k−1

k−1+k
0 0 · · · 0

0 0 k
k−1+k

0 −1 · · · 0

...
...

...
...

...
. . .

...

0 0 0 0 0 · · · 0



(3.12)

k−1dt : conditional probability of transition from state E.Di → E+Di in time

dt

kdt : conditional probability of transition from state E.Di → E.Di+1 in time

dt

In a single molecule continuous time Markov chain formulation, Eq. (3.11) can

be written in terms of the probability distribution of states [ρD0 , ρE.D0 , .....]

instead of the vector of species concentrations. An equivalent master equation

formulation is:

∂

∂t
ρ (0, t) = (k + k−1) ρ (0, 0)

∂

∂t
ρ (1, t) = k−1ρ (0, 0)

∂

∂t
ρ (2, t) = kρ (0, 0) ; ρ (0, 0) = 1; (3.13)

where ρ (i, t) denotes the probability of the polymerase being in state i at time

t. The equilibrium distribution of this master equation can be obtained by
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solving for the generalized eigenvectors of the state space system Eq. (3.11).

The eigenvector corresponds to the zero eigenvalue that represent the equilib-

rium distribution of the reaction species is given below.

π =

[
0,

k−1

k + k−1

, 0,
kk−1

(k + k−1)2 , 0,
k2k−1

(k + k−1)3 , ......, 1−
n−1∑
i=1

ki−1k−1

(k + k−1)i

]T
(3.14)

It is found that this distribution has the form specified by Eq. (3.5) with

poff (i) = poff (i, t =∞)and the following value of the microscopic processivity

parameter:

p =
kcat
KN

[N ]
kcat
KN

[N ] + k−1

(3.15)

Hence,

k−1

kcat
KN

[N ] + k−1

= (1− p) =⇒ k−1 =
kcat
KN

[N ] (1− p)
p

(3.16)

and Eq. (3.16) can be written as follows in terms of processivity:

k−1 =
kcat
KN

[N ]

(
1

E [ioff ]− 1

)
(3.17)

As per Eq. (3.16), if kcat
KN

and processivity of a polymerase is known at a specific

temperature, it is possible to estimate k−1 for any polymerase. Eq. (3.16) is

valid under the approximations applied in the derivation of reaction (E−Rn).

A comprehensive analysis of these approximations and more general models

Chapter 3. Sequence-dependent Modeling of DNA Amplification 97



3.2. Kinetic Model for PCR

Figure 3.3: Temperature dependence of Extension reaction rate constant for
Taq polymerase

.

are considered in a separate work. For each such model, an equation for k−1

analogous to reaction (E−Rn) can be derived based on the associated single hit

A matrix, in terms of processivity and other model parameters. We estimated

kcat
KN

for Taq polymerase at various temperatures based on a bireactants MM

kinetics formulation. Fig. 3.3 shows the temperature dependent extension rate

constant kcat
KN

. In Eq. (3.17) k−1 andkcat
KN

are concentration independent terms

and hence, the processivity E [ioff ] or the conditional probability p depends

on [N ]. In order to use Eq. (3.17) to estimate k−1, [N ] and E [ioff ] should be

consistent or one should use the value [N ] at which E [ioff ] is estimated. Wang

et al. (2004) and Davidson et al. (2003) determined the value of at a specific

temperature and nucleotide concentration. The following Table 3.2 provides

the values of E [ioff ] and the conditions at which they are measured. Using

the above values, kcat
KN

and Eq. (3.16), we have estimated k−1 at 60 0 C and
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Table 3.2: Processivity of Taq polymerase

Reference Temperature (0C) [N ] (µM) E [ioff ]

Wang et al. (2004) 72 250 22
Davidson et al. (2003) 60 800 50-80

Figure 3.4: Temperature dependence of Enzyme dissociation rate constant for
Taq polymerase

.

72 0C, respectively. We have the k−1 for S. solfataricus P2 DNA polymerase

B1(36) at 37 0 C and we use the same value for Taq polymerase enzyme as

their equilibrium constants are of the same order of magnitude. Thus, we

could obtain k−1 at three different temperatures and hence an Arrhenius rela-

tionship is fitted as shown in Fig. 3.4 to estimate the temperature dependent

dissociation rate constant k−1. Fig. 3.6 explains the steps involved in enzyme

binding and extension model parameter estimation. Equilibrium thermody-

namic analysis for enzyme binding reaction has been done extensively with

Thermus aquaticus enzyme by Data and LiCata (2003). They estimated the

temperature dependent equilibrium constant which is a ratio of k1
k−1

. There-
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Figure 3.5: Temperature dependence of Enzyme binding rate constant for Taq
polymerase

.

fore, based on the temperature dependence of k−1 and Kbinding, k1 has been

estimated and its Arrhenius plot is shown in Fig. 3.5. Fig. 3.6 explains the

steps involved in enzyme binding and extension model parameter estimation.

3.3 Analysis of PCR Kinetics

Using the kinetic model developed in Section 3.2, we seek an optimal temper-

ature vs. time profile. In order to do this, we first analyze the kinetic model in

this Section to assess the importance of such simulations in making accurate

predictions of the amplification efficiency of PCR reactions. In particular, we

demonstrate that the conventional picture of PCR kinetics, which assumes a

single reaction is rate-limiting for each step, and which presumably estimates

reaction temperatures and times for each step based on this assumption with-

out solving the associated state equations, is highly inaccurate. Except for
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Figure 3.6: Estimation of enzyme binding and extension rate constants
.
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the annealing temperature, the reaction conditions are the same as the typical

PCR conditions recommended by, for example, Invitrogen (2006). Reactions

(A − R1), (M − R1), and (E − Rn) have been written for a simplex PCR

reaction and they are given along with their state equations below.

3.3.1 PCR Reactions

3.3.1.1 Melting Reaction

DNA
km


k−m

S1 + S2 (M1)

3.3.1.2 Annealing Reactions

S1 + P1

kfS1



krS1

S1P1 (A1)

S2 + P2

kfS2



krS2

S2P2 (A2)

S1 + S2

km


k−m

DNA (A3)
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3.3.1.3 Extension Reactions

S1P1 + E
k−e



ke
E.S1P1 (E1)

S2P2 + E
k−e



ke
E.S2P2 (E2)

E.S1P1 +N
k2


k−2

[E.S1P1.N ]
kcat→ED1

1

ke


k−e

D1
1 + E (E3)

E.S2P2 +N
k2


k−2

[E.S2P2.N ]
kcat→ED2

1

ke


k−e

D2
1 + E (E4)

ED1
1 +N

k2


k−2

[E.D1
1.N ]

kcat→ED1
2

ke


k−e

D1
2 + E (E5)

ED2
1 +N

k2


k−2

[ED2
1.N ]

kcat→ED2
2

ke


k−e

D2
2 + E (E6)

...

ED1
n−1 +N

k2


k−2

[E.D1
n−1.N ]

kcat→EDn (E7)

ED2
n−1 +N

k2


k−2

[E.D2
n−1.N ]

kcat→EDn (E8)

EDn
k‘cat→E +DNA (E9)

3.3.2 State Equations

3.3.2.1 Melting

d[DNA]

dt
= −km[DNA] + km[S1][S2] (3.18)
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3.3.2.2 Annealing

d[SiPi]

dt
= kfPi

[Si][Pi]− krPi
[SiPi] ∀i = 1, 2 (3.19)

−d[Pi]

dt
=
d[SiPi]

dt
∀i = 1, 2 (3.20)

d[DNA]

dt
= −km[DNA] + k−m[S1][S2] (3.21)

d[Si]

dt
= −kfPi

[Si][Pi] + krPi
[SiPi]−

d[S1S2]

dt
∀i = 1, 2 (3.22)

3.3.2.3 Extension

d[SiPi]

dt
= −ke[E][SiPi] + k−e[E.SiPi] ∀i = 1, 2 (3.23)

d[E.SiPi]

dt
= ke[E][SiPi]− k−e[E.SiPi]−

kcat
KN

[E.SiPi][N ] ∀i = 1, 2

(3.24)

d[E.Ti]

dt
=
kcat
KN

([E.Ti−1]− [E.Ti]) [N ] + ke[E][Ti]− k−e[E.Ti] (3.25)

Ti = Dj
1, D

j
2, ..........D

j
n−1&j = 1, 2

d[Dj
i ]

dt
= −ke[E][Dj

i ]− k−e[E.D
j
i ] ∀i = 1, 2, ....n− 1&j = 1, 2 (3.26)

d[E.Dn]

dt
=
kcat
KN

(
[E.D1

n−1] + [E.D2
n−1]

)
[N ]− k‘

cat[E.Dn] (3.27)

d[DNA]

dt
= k‘

cat[E.Dn] (3.28)

d[N ]

dt
= −Kcat

KN

[N ]

 D1
n−1∑

T=S1P1

[ET ] +

D2
n−1∑

T=S2P2

[E.T ]

 (3.29)

d[E]

dt
= −ke[E] {[S1P1] + [S2P2]}+ k−e {[E.S1P1] + [E.S2P2]}+

d[DNA]

dt

(3.30)
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Figure 3.7: Sequence and Temperature dependent PCR Model (Rate Con-
stants)

.

In Fig. 3.7.we have shown which rate constants are sequence and temperature

dependent. We summarize the simulation results as follows (data not shown

here).

� If the ratio of single strand concentration to primer concentration (SP

ratio) S0/P0 is ¡1, then, the annealing reaction nearly instantaneous.

� If the SP ratio is close to 1, then there is a transient behavior in the

evolution of S1P1.

When the SP ratio is low, since the primer concentration is very high compared

to the single strand concentration, the primer molecule easily binds on the sin-

gle strand molecule and does not allow single strands to anneal to each other.

On the other hand, when the SP ratio is 1, since the primer and single strand

molecules are equal in concentration, there is a competition between them to
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anneal on their respective complementary sequences. Since the single strands

participate in a two-way competition with both primers, they eventually lose

in this competition. Thus, the annealing reaction is not the rate-limiting step

during the early stages of PCR but it may be the rate limiting step towards

the end of PCR. In PCR, study of the annealing reaction separately may be

misleading in deriving conclusions about the optimal annealing time. From

Section 3.2.4, it is evident that enzyme binding can occur at the annealing

temperatures. This can affect the annealing and hence the overall dynamics

of the PCR. Data and LiCata (2003) experiments reveal that the Gibbs free

energy of the enzyme binding reaction goes through the minimum at around

50 0C. In a conventional PCR model, however the enzyme binding is consid-

ered to occur during the extension reaction (Mehra and Hu (2005); Hsu et al.

(1997)). In the next section we motivate full time-varying models by show-

ing that simultaneous annealing and extension reactions, result in significant

differences in reaction efficiency that can be exploited through such modeling.

These effects are not captured in conventional models of PCR kinetics, as will

be considered in more generality in the next section.

3.3.3 Combined Annealing and Extension

At any instant, since all the reactants for annealing, enzyme binding and ex-

tension reactions are available in the reaction mixture, these reactions in prin-

ciple can occur simultaneously. The combined annealing and extension model
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allows us to simulate arbitrary PCR reaction cycling protocols that do not

follow the standard 3-step scheme, hence extending beyond the types of on-

off behavior commonly assumed in models of PCR. Due to this phenomenon,

molecular biologists often run PCR reaction with only two steps per cycle -

one step for melting and one step for annealing/extension. However, there

is no quantitative prescription available for the temperatures of the anneal-

ing/extension steps. In order to provide such prescriptions, in this section

we do not distinguish between the annealing and extension steps and solve

the kinetic equations corresponding to all these steps together for the overall

reaction time. This is one of the main reasons for the need of temperature-

dependent rate parameters. The reaction conditions are the same as those in a

typical PCR. Annealing and extension times are fixed to be 45 and 30 seconds,

respectively, and the length of the target DNA is assumed to be 500 base pairs

(bp). The extension reaction temperature is 72 0C. At a given time since any

one of the 3 steps of a PCR kinetically dominating, the rates of the all the

reactions are not uniform. This difference in reaction rate creates a stiff state

space system that needs to be solved carefully. We used a MATLAB routine

ode15s (MATLAB (2012)) to solve this system of stiff differential equations.

Though the annealing reaction is very fast at low temperatures, its efficiency is

determined by the kinetics of the enzyme binding reaction. Therefore, even at

high annealing temperatures at which the equilibrium conversion of the anneal-

ing reaction in the absence of enzyme binding is lower, it is possible to obtain

100% overall efficiency. The evolution of single strands, single strand-primer
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Figure 3.8: Three different temperature cycling samples.

duplex and final DNA for a single cycle at the annealing temperatures 35 0C,

40 0C and 45 0C are presented in Fig 3.9. The temperature cycling profile for

each annealing temperature is shown in Fig 3.9. At annealing temperature of

40 0C the annealing reaction can’t reach 100% equilibrium conversion. The

equilibrium conversion of the enzyme binding reaction at this temperature is

less than 70%. Nevertheless, the overall PCR conversion is nearly 100% at

40 0C. This is due to the combined annealing, enzyme binding and extension

reactions. As soon as the Taq polymerase binds to the SP duplexes, the ex-

tension reaction or E.Di dissociation can occur, and hence the equilibrium of

the enzyme binding reaction is disturbed and more enzymes bind to the SP

duplexes. The extension reaction rate increases when temperature increases.

Thus, during the annealing step all SP is converted into E.Di molecules

which then dissociate into Di. Fig. 3.9 shows the concentration profile of

sum of concentration of Di. During the annealing step, since the enzyme dis-
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Figure 3.9: Transient behavior of reaction constituents (Di and DNA
molecules) for Primer set 1. The annealing temperatures are 35 0C, 40 0C and
45 0C and the length of the target is 1000 bp. Annealing time is 45 seconds
and extension time is 30 seconds. Primer, enzyme, and dNTP concentrations
are 0.2 µM , 10 nM, 800 µM , respectively.

.

sociation rate constant is comparable to the extension rate constants, E.Di

molecules dissociate. When the temperature of the reaction is increased to 72

0C during the extension step, equilibrium of E.Di dissociation is disturbed by

the rapid nucleotide addition and eventually all Di molecules are converted

to E.Di which are in turn converted into target DNA. The melting temper-

ature of the primer in this study is less than 35 0C and as a result of this

combine annealing and extension 40 0C annealing time produced more DNA.

However, very high annealing temperature such as 45 0C didn’t produce more

DNA. Even though the equilibrium conversion of annealing at 30 and 35 0C

greater than 40 0C, low temperature annealing didn’t yield more DNA due to

slower enzyme binding reaction rate at these temperatures. Thus, it is evi-

dent that annealing temperature shouldn’t be fixed based on the equilibrium
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Figure 3.10: Transient behavior of reaction constituents for Primer set 2. The
annealing temperatures are 35 0C, 40 0C and 45 0C and the length of the target
is 500 bp. Annealing time is 45 seconds and extension time is 30 seconds.
Primer, enzyme, and dNTP concentrations are 0.2 µM , 10 nM, 800 µM ,
respectively.

.

melting temperature and it should be determined by considering the kinetics

of the PCR. We have repeated the above analysis for a different set of primer

sequences of the same length and same reaction conditions. The sequences

are given below and the rate parameters have been calculated as explained in

Section 2. Fig. 3.10 shows the evolution of DNA and sum of Di molecules.

Unlike in the above case, in this case the favorable annealing temperature is

35 0C. Furthermore for the same overall reaction time the overall conversion is

different for the two cases. This suggests that the sequence-dependent kinetic

model is important.

Forward primer - AATAGCTGTAACTG.

Reverse primer - TTCTTCTGAAACTG.

In the above study, the enzyme concentration is in excess compared to the
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single strand concentration. If this condition does not hold, which is the case

for the later stages of PCR, the kinetics could be very different. Also, during

every PCR cycle, the target DNA concentration increases. Due to this the

overall number of nucleotide additions will also increase. Therefore, the re-

action conditions that have been maintained during the initial stages of PCR

may not be appropriate for the later stages of the PCR. This effect is more

pronounced for longer sequences. It should be noted that above discussed re-

sults are applicable to the first cycle of a PCR. Furthermore, note that even

though our model considers the melting of SP molecules during the extension

reaction, it didn’t consider the melting of Di molecules during the extension

reaction for the following reasons:

� Our simulation results suggest that even though
∑

iDi is considerable at

the end of annealing step as shown in Fig. 3.9 and 3.10, the summation

of the concentrations of D1 to D15 molecules is negligible. Therefore, we

assume that these molecules arent present in the reaction mixture.

� The stability/ melting temperature of a duplex increases when the num-

ber of base pairs increases. In the present study we have considered a

primer of length 14 base pairs. Therefore, the minimum number of base

pairs in Di is greater than 30 and we assume that these duplexes are

stable at 72 0C.

Thus in this section we have established that

� Even during the annealing step, enzyme binding and extension reactions
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can occur simultaneously. Hence the state equations of annealing, en-

zyme binding and extension reaction should be solved together. As will

be shown below, it is possible to exploit these simultaneous reactions

to improve PCR reaction efficiency through appropriate model-implied

choices of temperature cycling strategies.

� As an example, the kinetic model for annealing and extension can provide

a quantitative prescription for two-step PCR (melting and combined

annealing/extension).

� There should be an optimal annealing temperature at which the reaction

is fastest and reaches 100% completion. Importantly, this temperature

cannot be computed based on primer melting temperatures alone.

� When the length of the target DNA increases, or in other words, when

more nucleotides must be added, the reaction temperature should be

higher and reaction time should be increased. Again, the kinetic model

for the annealing and extension can provide quantitative prescription for

annealing time and temperature.

3.3.4 Geometric Growth

For a fixed annealing and extension time of 45 and 30 seconds, respectively, the

state equations of the PCR reaction scheme have been solved at three differ-

ent temperatures. The temperature cycling profile is shown in Fig. 3.11. Fig.

3.12 shows the geometric growth of DNA concentration. When the annealing
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temperature is 40 0C, the DNA concentration saturates at around 35 nM after

25 cycles. On the other hand, at 45 0C annealing temperature, after 29 cycles,

the DNA concentration is approximately equal to 35 nM. Even though the

efficiency at 35 0C annealing temperature is higher than at 45 0 in the first

cycle as shown in Fig. 3.9, when the number of cycles increases, the DNA con-

centration differs. At 50 0C, the DNA concentration is much lower than that

at other temperatures. Furthermore, it should be noted that when the target

DNA concentration is comparable with enzyme concentration, the dynamics

of the PCR reaction depends on the temperature and concentration. Ideally,

the maximum concentration of the target DNA should be equal to primer con-

centration. Therefore, during the beginning stage of the PCR, target DNA

concentration is the limiting reactant. Once the target DNA concentration

exceeds the enzyme concentration, the latter is the limiting reactant. From

Fig. 3.12 it is clear that in the second stage the PCR efficiency is lower and a

different reaction condition needs to be maintained to improve the efficiency.

3.4 Conclusion

In this chapter, we have developed the first sequence- and temperature-dependent

kinetic model for DNA amplification, through biophysical modeling of coupled

DNA melting and polymerization processes. Using this model, the kinetics of

PCR have been analyzed for various temperature cycling strategies. Based

on the results of this kinetic analysis, the need for systematic optimization of
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Figure 3.11: Temperature profile for the first cycle at five different annealing
temperatures. The same temperature profile is followed for all other cycles.
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Figure 3.12: Geometric Growth of DNA. Annealing and Extension reaction
time in each step of the PCR is 45 and 30 seconds, respectively. The extension
temperature is fixed to be 72 0C. Initial concentration of template, primer,
enzyme, and nucleotide is 0.2 µM , 10 nM, 800 µM , respectively.
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temperature cycling strategies has been established. The theory of optimal

control of dynamical systems (4) provides a framework for the computation

of the optimal temperature cycling protocols for DNA amplification. Use of

the proposed sequence-dependent kinetic model in a control-theoretic frame-

work should enable determination of the optimal dynamic operating condi-

tions of DNA amplification reactions, for any specified amplification objective.

Through the application of this kinetic state space model, it may be possible

to i) improve the overall amplification efficiency of the reaction by orders of

magnitude for the same number of cycles; ii) substantially reduce the overall

time of the reaction compared to conventional PCR protocols.
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Chapter 4

Theory of Sequence-dependent

DNA Amplification reaction

Dynamics and Optimal Control

4.1 Introduction

This chapter is concerned with the establishment of a foundation for the op-

timal control of DNA amplification reactions, which can be used for the au-

tomated computation (rather than qualitative selection) of temperature cy-

cling protocols. This is accomplished through the use of sequence-dependent

state space models for DNA amplification dynamics. We use these sequence-

dependent kinetic models to formulate amplification of DNA as a problem in

control theory with optimal solutions that can differ considerably from strate-

gies typically used in practice. First, the notion of sequence-dependent control
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systems of biochemical reaction networks, which have various applications in

dynamical systems biology, is introduced. Control systems corresponding to

several DNA amplification models are then formulated and compared. Next,

we demonstrate by simulation that through the application of sequencedepen-

dent kinetic state space models,

� The overall amplification efficiency of the reaction can be improved by

orders of magnitude for the same number of cycles.

� The overall time of the reaction can be substantially reduced compared

to conventional PCR protocols.

We then formulate an optimal control problem based on the sequence-dependent

kinetic model for DNA amplification and specified objectives. Two control

problems are formulated: maximization of amplification efficiency for a fixed

reaction time and minimization of reaction time for a specified amplification

efficiency. The general control problem of DNA amplification is stated and

then the specific case of temperature control is discussed.

Besides sequence dependence, another novel feature of control of DNA

amplification is the cyclic nature of optimal temperature control strategies.

Typically these are assumed to be periodic, with the same control strategy

applied every cycle. However, geometric growth leads to dramatic changes

in the relative magnitudes of state variables over time. We show based on

kinetic modeling why the optimal control strategy for DNA amplification will

change depending on the stage of the reaction and how the control problem be
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formulated to enable prediction of aperiodic manipulated input functions. A

staged approach to optimal control of DNA amplification is hence presented.

Control systems for each stage are formulated and strategies for the optimal

synthesis are proposed. Control system formulations that reduce the compu-

tational complexity of the problem are then considered. Next, it is shown

that methods for updating parameter estimates using dynamic filtering can be

accommodated within the proposed framework, control system formulations

suitable for accurate online parameter estimation are introduced. Finally,

prospects for the application of the methodology to other amplification objec-

tives, including the automated design of new types of PCR reactions, through

proper specification of the objective function and augmentation of the state

space system, are discussed.

4.2 Dynamic models and control systems for

DNA amplification

In this section we establish a control theoretic framework for dynamic opti-

mization of DNA amplification. Several classes of control systems, differing in

their representations of the sequence and temperature dependence of chemi-

cal kinetic rate constants, are introduced. The most general control system

is based on the sequence- and temperature-dependent state space model for

DNA amplification described in the Methods section. Other control systems
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are based on simplified PCR models previously proposed in the literature

Mehra and Hu (2005); Hsu et al. (1997); Gevertz et al. (2006); Stolovitzky

and Cecchi (1996) and correspond to approximations to the model described

in Methods.

For these latter models, we only consider the previously developed model

structures and not the rate constants. Marimuthu et al (Marimuthu, K.,

Jing, C., and Chakrabarti, R. Submitted to Biophysical Journal) have shown

that the rate constants that were used in the previously proposed models are

thermodynamically inconsistent. Therefore, we use the rate constants that

are estimated based on the approach described in Methods together with the

previously developed model structures.

Denoting by ui the ith rate constant, which can be manipulated as a func-

tion of time, and by x the vector of species concentrations, a general state

space model for chemical reaction kinetics can be written as follows:

dx

dt
= f(x, u) = g0 (x) +

m∑
i=1

uigi (x) x(0) = x0 (4.1)

where

x ∈ Rn, u ∈ Rm, gi (x) : Rn → Rn

The above form is called a control-affine system and g0 (x) is called the drift

vector field. The gi’s associated with ui’s are referred to as control vector

fields. The notation ui is conventionally used to denote manipulated input
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variables in control theory. However, in what follows we will use the notation

ki since we will be dealing exclusively with chemical rate constants. For PCR

amplification reactions, a general dynamic model (assuming all gi’s are control

vector fields coupled to time-varying rate constants) can be written

dx(t)

dt
=

10∑
i=1

kigi (x (t)) (4.2)

k ∈ R10; k ≥ 0, x, gi (x) ∈ R4n+9, x ≥ 0, h (x) ∈ R5, h (x) = 0

k =

[
km k−m k1

1 k1
2 k2

1 k2
2 ke k−e

kcat
KN

k′cat

]

where n denotes the number of base pairs, g1 (x) to g2 (x) represent the melt-

ing reaction alone, g3 (x) to g6 (x) represent the annealing reactions alone and

g7 (x) to g10 (x) represent the extension reactions and h (x) denotes a set of

5 independent nonlinear constraints enforcing chemical mass balance, which

cause the system to evolve on a state manifold X ⊂ R4n+9 that is of dimension

4n+ 4. Hence the dimension of the state manifold is also sequence-dependent.

Additional constraints, including equality constraints, may also be applied to

the vector of rate constants k, due e.g. to their dependence on a single manipu-

lated input variable, temperature. As shown in Marimuthu et al (Marimuthu,

K., Jing, C., and Chakrabarti, R. Submitted to Biophysical Journal) except

for the extension reaction rate constants, all other rate constants are sequence-

dependent. Therefore, the equality and inequality constraints on controls are

sequence-dependent. As a result of this the kigi in Eq. (4.2) are also sequence-
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dependent. x, g (x) and h (x) for a simplex PCR with n = 2 are presented

below.
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g1(x) = [x13 0 0 0 0 0 x13 0 0 0 0 0 − x13 0 0 0 0]T

g2(x) = [−x1x7 0 0 0 0 0 − x1x7 0 0 0 0 x1x7 0 0 0 0]T

melting (Sequence-Dependent (SD))

g3(x) = [−x1x14 x1x14 0 0 0 0 0 0 0 0 0 0 0 − x1x14 0 0 0]T

g4(x) = [x2 − x2 0 0 0 0 0 0 0 0 0 0 0 x2 0 0 0]T

g5(x) = [0 0 0 0 0 0 − x7x15 x7x15 0 0 0 0 0 0 − x7x15 0 0]T

g6(x) = [0 0 0 0 0 0 x8 − x8 0 0 0 0 0 0 x8 0 0]T


annealing (SD)

g7(x) = x17 [0 − x2 x2 − x4 x4 0 0 − x8 x8 − x10 x10 0 0 0 0 0 − (x2 + x4 + x8 + x10)]T

g8(x) = [0 x3 − x3 x5 − x5 0 0 x9 − x9 x11 − x11 0 0 0 0 0 (x3 + x5 + x9 + x11)]T

 enzyme binding (SD)

g9(x) = x16 [0 0 − x3 0 x3 − x5 x5 0 0 − x9 0 x9 − x11 x11 0 0 0 (x3 + x5 + x9 + x11) 0]T

g10(x) = [0 0 0 0 0 − x6 0 0 0 0 0 − x12 0 0 0 0 x6 + x12]T

 extension

x =
[
S1, S1P1, E.S1P1, D

1
1, E.D

1
1, E.D

1
2, S2, S2P2, E.S2P2, D

2
1, E.D

2
1, E.D

2
2, DNA,P1, P2, N,E

]
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Additional equality constraints for the state variables are given below

h1 (x) = x0
14 − x0

1 + x1 − x14 (4.3)

h2 (x) = x0
15 − x0

7 + x7 − x15 (4.4)

h3 (x) = x0
1 + x0

7 −

(
13∑
i=1

xi

)
−
(
x16

KN

)( ∑
i=3,5,9,11

xi

)
(4.5)

h4 (x) =
x0

16 −
(∑

i=4,5,10,11 xi

)
− 2 (x6 + x12 + x13)(

1 + 1
KN

)(∑
i=5,11 xi

) − x16 (4.6)

h5 (x) = x0
17 −

(
1 +

x16

KN

)( ∑
i=3,5,9,11

xi

)
− x6 − x12 (4.7)

We now introduce several types of control systems that are based on the above

general formulation, but differ in terms of additional constraints they apply to

the controls ki and the approximations they make regarding the sequence and

temperature dependence of these controls.

4.2.1 Staged Time Invariant (On-Off) DNA Amplifica-

tion Model (STIM)

Mehra and Hu Mehra and Hu (2005) treated melting, annealing and extensions

steps independently and did not consider the dissociation of E.Di molecules

into E and Di in reactions E5 to E8 (Methods section). The state equations

of the melting, annealing, and extension reactions were solved independently.

Also, the rate constants of the respective reactions were held constant Mehra

and Hu (2005). The initial condition for the annealing step has been generated
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based on the assumption that the melting reaction is 100% efficient. The initial

condition of the SP molecule concentrations used to solve the state equations

of the extension step is essentially the same as its value at the final time of the

annealing step. We call this kind of PCR model a ’Staged’ or ’On-Off’ time

invariant DNA amplification model, since the control vector fields are assumed

to be either turned on or off at each step of a PCR cycle. Table 4.1 presents

its model structure. The system is controlled by manipulating the switching

times between steps.

4.2.2 Time Invariant DNA Amplification Model (TIM)

Stolovitzky and Cecchi Stolovitzky and Cecchi (1996) combined melting, an-

nealing and extension together and formed a state space system for an overall

reaction time (summation of the reaction times of melting, annealing, and

extension). The rate constants are, however, held constant; i.e., k is not a

function of time. For example, annealing (primer hybridization) rate con-

stants are not changed based on the annealing and extension temperatures.

We call this kind of PCR model a time invariant DNA amplification model

and its model structure is given in Table 4.1. The definitions of xi, ki and gi

are the same as those given in the staged time invariant DNA amplification

model. Note that, unlike the STIM, the TIM system is formally not a control

system since there are no manipulated input variables.
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4.2.3 Time Varying DNA Amplification Model with Drift

(TVMD)

As we have discussed above, Mehra and Hu Mehra and Hu (2005) developed

a staged time invariant model. For the same model structure, one might vary

the rate constants in each step to develop a staged time varying model. The

staged time varying PCR model is a special case of a time varying model with

drift. In a state space model, if a specific set of control variables are kept

constant, then the type of state space system is called a time-varying model

with drift. During the melting step, the control variables corresponding to the

other two steps can be kept constant and the corresponding approximations

can be made in the annealing and extension steps as well. Table 4.1 presents

such a model structure. The accuracy of drift approximations can be evaluated

by comparison of the relative magnitudes of the reaction rate constants at

specified temperatures, which are presented in Fig. 4.1. It can be seen that if

drift is set to zero in the above model, it reduces to a staged time varying PCR

model. Note that drift vector fields for DNA amplification control systems are

sequence-dependent due to sequence dependence of the associated ki’s.

4.2.4 Time Varying DNA Amplification Model (TVM)

The time-varying PCR model allows the melting, annealing, and enzyme bind-

ing/extension vector fields to be applied simultaneously and allows time vary-

ing manipulation of the corresponding temperature-dependent rate constants
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4.2. Dynamic models and control systems for DNA amplification

described in Methods. x (t) and gi (x (t)) are the same as in the time invariant

model. The only change here is that k (t) is a function of time. Since the

rate constants vary with respect to time, this model structure is useful for

optimal control calculations that provide the optimal temperature profile by

considering the whole state space. Hence, fully time-varying models do not

require specification of annealing and extension steps in advance.
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Table 4.1: Classification of DNA amplification control systems

STIM TIM TVM TVMD
Reaction Steps f (x, k) f (x, k) f (x, k) g0 (x) f (x, k)

Melting
∑2

i=1 kigi (x (t))
∑10

i=1 kigi (x (t))
∑10

i=1 ki (t) gi (x (t))
∑10

i=3 kigi (x (t))
∑2

i=1 kigi (x (t))

Annealing
∑6

i=3 kigi (x (t))
∑10

i=1 kigi (x (t))
∑10

i=1 ki (t) gi (x (t))
∑10

i=1,2,7 kigi (x (t))
∑6

i=3 kigi (x (t))

Extension
∑10

i=7 kigi (x (t))
∑10

i=1 kigi (x (t))
∑10

i=1 ki (t) gi (x (t))
∑8

i=1 kigi (x (t))
∑10

i=7 kigi (x (t))

For STIM, TIM and TVM for all the three steps, g0 (x) = 0
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4.3. Comparison of model-predicted DNA amplification dynamics

4.3 Comparison of model-predicted DNA am-

plification dynamics

Several of the control systems introduced above (STIM, TIM, TVMD) make

approximations regarding the magnitudes and temperature variation of the

rate constants ki that enable the corresponding vector fields to be treated

either as drift or to be turned off during certain steps of PCR. In temperature-

controlled DNA amplification, where ki = ki(T ), these approximations may

not be valid for arbitrary DNA sequences. The variation of melting, annealing,

enzyme binding and extension rate constants with respect to time in each step

of a standard PCR protocol, depicted in Fig. 4.1, clearly indicates simulta-

neous annealing, enzyme binding and extension. The effects of 2 0C changes

in the temperatures of each step are depicted to assess the validity of drift

approximations. Fig. 4.2 compares the evolution of the DNA concentration

in a first PCR cycle based on the above three models. It is clear from Fig.

4.2 that the time invariant model is unrealistic as it completes the annealing

and extension within 20 s during the annealing step. The predictions of the

time-varying model are consistent with the general Real-Time PCR tempera-

ture cycling prescription. The staged time invariant model does not account

for the E.Di dissociation and enzyme binding during the annealing step. As a

result of this, it can be seen in Fig. 4.2 that the whole extension reaction is

completed within 5 seconds and this contradicts the general Real-Time PCR

experimental conditions.
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Figure 4.1: Temperature Variation of the DNA Amplification Rate constants.
Annealing rate constants have been obtained for a primer with 15 base pairs.
The second order forward annealing rate constant, forward enzyme binding
rate constant and extension rate constants have been multiplied with Primer
concentration (1 µM), Enzyme concentration (10 nM) and Nucleotide Con-
centration (800 µM). Annealing and extension temperatures are assumed to
be 35 and 72 0C, respectively. The step changes in rate constants depict the
effects of change in 2 0C in temperature. During the melting step all other
rate constants have been assumed to be zero and the melting rate constant is
assumed to be 104.
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Therefore, we conclude that the time-varying PCR model is required for

dynamic optimization of reaction conditions that can exploit the simultane-

ous reactions that have been demonstrated to play an important role in PCR

dynamics (Marimuthu, K., Jing, C., and Chakrabarti, R. Submitted to Bio-

physical Journal). Proper modeling of temperature-controlled DNA amplifi-

cation requires equality constraints to be applied to the components of the

vector of rate constants k, based on biophysical modeling of the temperature

dependence of the rate constants. In the absence of an accurate sequence-

and temperature-dependent kinetic model for DNA amplification that pro-

vides these equality constraints, prior work was not able to assess the validity

of the approximations made in the STIM, TIM and TVMD models. In the

Discussion section, we impose on the components of k in the TVM model

several sequence-specific equality constraints, which follow from the tempera-

ture dependence of the respective rate constants and are required for optimal

control of DNA amplification through manipulation of the temperature.

4.4 Suboptimally Controlled Geometric Am-

plification of DNA

Standard PCR cycling strategies are based on approximations (like the STIM

in Table 4.1) to the true dynamics of PCR. In this section, we show that these

cycling strategies are suboptimal given the actual sequence- and temperature-
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Figure 4.2: Comparison between staged time-invariant (on-off), time-invariant
and time-varying models. Annealing time and temperature are fixed to be 45
seconds and 30 0C. Extension time and temperature are fixed to be 30 seconds
and 72 0C. Since the melting step is neglected in this simulation, the reaction
time is sum of the annealing and extension times only. The time-varying model
with drift is not shown since the choice of drift vector field is not unique.

dependent dynamics. We simulate the geometric growth of DNA concentra-

tion, using the sequence- and temperature-dependent TVM model for DNA

amplifi cation, for various choices of manipulated inputs, establishing lower

bounds on the margin of improvement that can be achieved through use of

optimal cycling strategies. We consider the amplification of a gene for which

the primers and kinetic parameters are given in the Materials and Methods

section. For every PCR simulation, the number of cycles and length of the

target DNA are fixed to be 30 and 500 bp respectively. For fixed annealing and

extension reaction times, the annealing temperature is varied from 30 0C to 50

0C with an increment of 5 0C. This simulation is carried out at two different

annealing times, 45 seconds (low reaction time) and 120 seconds (high reaction

time). The concentration profile of DNA in a typical PCR and the effects of
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annealing time and temperature on the final DNA concentration are studied

in order to demonstrate the suboptimality of conventional PCR cycling strate-

gies and the need for optimal control of DNA amplification. Figs 4.4 and 4.6

depict the temperature cycling protocols considered. In (Marimuthu, K., Jing,

C., and Chakrabarti, R. Submitted to Biophysical Journal), the importance

of simultaneous annealing and extension (vector fields g3 to g6 and g7 to g10,

respectively) was demonstrated through transient dynamics simulations of sin-

gle PCR cycles. Generally, lower annealing temperatures increase the primer

hybridization efficiency, but higher annealing temperatures increase the poly-

merase binding and extension rates. The initial species concentrations and

reaction time determine which effect dominates. Here, we examine the net

effect of these vector fields on the geometric growth rate of DNA concentra-

tion using the aforementioned choices of manipulated inputs, illustrating the

role played by the initial species concentrations at the start of a cycle (which

vary with the stage of PCR) in determining the growth rate. DNA concen-

trations at the end of each PCR cycle at annealing temperatures 30 0C to

50 0C are presented in Figs. 4.5,4.7. Usually, the reaction conditions for the

final cycle of PCR are different from those for the other cycles, due to the use

of a prolonged extension step followed by low-temperature cooling to ensure

the hybridization of any unreacted ssDNA. Hence, for our kinetic study we

consider only 29 cycles.
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4.4.1 Geometric growth of DNA at low reaction time

The geometric growth of DNA concentration in Fig. 4.5 is similar to that of a

typical real time PCR. In Fig. 4.5, the aim is to maximize the concentration of

DNA at a specified time by modifying the temperatures of the PCR reaction

steps. When the annealing and extension times are 45 and 30 seconds, respec-

tively, there is a difference in DNA concentration at the end of every cycle for

an annealing temperature range of 30 to 50 0C. At 50 0C, as shown in Fig.

4.5, the efficiency is much lower than that at 30 to 45 0C, due to the lower

melting temperature of the primer (equilibrium melting curves for the primers

are shown in Fig. 4.3). When the enzyme concentration is in large excess com-

pared to the DNA concentration during the initial stage of PCR, the enzyme

binding reaction is a pseudo-first order reaction. Therefore, the evolution of

the DNA concentration in a particular cycle in this stage does not depend on

enzyme concentration. While at 35 and 40 0C, the DNA concentration profile

enters the plateau phase at the 24th cycle, at 30 0C it enters at the 29th cycle.

Due to the comparable enzyme and target DNA concentrations at this stage of

PCR, which leads to a second-order enzyme binding reaction after 24 cycles,

the lower enzyme binding and extension rates reduce the efficiency at 30 0C

annealing temperature. At 40 0C more DNA is formed after 29 cycles (35 nM

@ 40 0C vs. 20 nM @ 35 0C). At 45 0C, the primer hybridization efficiency

is lower; this effect dominates and decreases the geometric growth rate in the

initial stage of PCR, but the higher polymerase binding and extension rates
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Figure 4.3: Melting curves of the primers
.

dominate in the later cycles of PCR, resulting in a final DNA concentration

similar to that at 40 0C after 29 cycles. Once the DNA concentration is equal

to the enzyme concentration in the second stage of PCR, the latter will become

the limiting reactant. In order to convert all the ssDNA that are available at

the beginning of the every cycle, an equivalent amount of enzyme is needed.

The enzyme concentration, however, is fixed at the start of PCR. Given more

reaction time, the enzyme could bind to and polymerize excess SP templates

after it dissociates from fully-extended dsDNA.

4.4.2 Geometric growth of DNA at high reaction time

The maximum amount of DNA that can be obtained from PCR is equal to

the initial concentration of primers in a PCR. When the overall reaction time

is low, as shown above, the maximum DNA concentration that is obtained,

however, is less than the initial concentration of primers in the final stage of
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PCR. This suggests that there can be some improvement in the final DNA

concentration if the reaction times are also changed appropriately. Therefore,

the annealing time was increased to 120 seconds. As presented in Fig. 4.7 ,

with this change, the DNA concentration after 25 cycles is higher than that of

the previous study. A maximum concentration of 70 nM at 40 0C is obtained

at the end of 25 cycles when annealing time is increased to 120 seconds. As

shown in Fig. 4.5., when the reaction time is increased at high annealing

temperature (here, 45 0C) more DNA is produced than at lower temperature.

Once the enzyme has become the limiting reactant, unless the enzyme

molecules are released after converting the equivalent number of ssDNA into

dsDNA, all the ssDNA cannot be converted into dsDNA. As noted above, since

the enzyme binding and extension reactions are faster at higher annealing

temperatures, these temperatures produce more DNA than lower annealing

temperatures. Note that once the reaction turns to extension mode, even

though the enzyme molecules can be released in this step, they cannot bind

with additional SP molecules, since these melt at the extension temperature.

Thus, from this study, we conclude that

� The typical temperature cycling protocol followed (based, e.g., on the

STIM model in Table 4.1) often does not maximize target DNA concen-

tration.

� Lower annealing temperature and shorter annealing time are preferred
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Figure 4.4: Temperature vs Time profile for an annealing time of 45 seconds
and extension time of 30 seconds
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Figure 4.5: Initial concentrations of template, primer, enzyme, and nucleotide
are 0.2 µM , 10 nM, 800 µM , respectively and the annealing temperature is
varied from 30 0C to 50 0C using grid based sampling. Geometric growth
of DNA with shorter reaction reaction time (45 s of annealing time). In the
geometric growth curves that do not monotonically increase with cycle number,
the decreases in DNA concentration are due to denatured single strands that
did not react with enzyme to form dsDNA
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Figure 4.6: Temperature vs Time profile for an annealing time of 120 seconds
and extension time of 30 seconds
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Figure 4.7: Initial concentrations of template, primer, enzyme, and nucleotide
are 0.2 µM , 10 nM, 800 µM , respectively and the annealing temperature is
varied from 30 0C to 50 0C using grid based sampling. Geometric growth of
DNA with prolonged reaction reaction time (120 s of annealing time). In the
geometric growth curves that do not monotonically increase with cycle number,
the decreases in DNA concentration are due to denatured single strands that
did not react with enzyme to form dsDNA

Chapter 4. Theory of Sequence-dependent DNA Amplification reaction
Dynamics and Optimal Control

137



4.5. Multistep PCR: development of new cycling strategies using dynamic
DNA amplification models

for the initial stages of PCR. High annealing temperature and longer

annealing time are preferred for the final stages of PCR.

� A systematic procedure should be formulated to obtain optimal anneal-

ing time and temperature. Due to geometric growth, there can be a

considerable difference between the final DNA concentrations produced

by control strategies (T (t)) based on misspecified and properly specified

DNA amplification models. We show below how to formulate optimal

control problems that can provide optimal annealing temperature and

times for the objectives of a) maximizing DNA concentration for a spec-

ified reaction time; b) minimizing reaction time for a specified target

DNA concentration.

4.5 Multistep PCR: development of new cy-

cling strategies using dynamic DNA am-

plification models

New cycling strategies can be designed based on kinetic models for DNA am-

plification. For example, we have shown that after a certain number of cycles,

annealing reaction time needs to be increased in order to maximize the DNA

concentration, since enzyme must rebind to excess SP molecules after disso-

ciating from fully extended dsDNA. Though it is possible to consume all the

ssDNA by fixing a long annealing time, this does not exploit the higher rate of
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extension at higher temperatures.Therefore, in a single PCR cycle, we propose

to conduct annealing and extension multiple times in order to obtain arbitrar-

ily high cyclic efficiency. For example, if the target concentration is 10 nM,

the total ssDNA concentration will be 20 nM and therefore, we need 20 nM

of enzyme to convert all the ssDNA in to target DNA. Since we have only 10

nM of enzyme in the reaction mixture, we need to conduct 2 annealing and 2

extension steps in this cycle. At the end of the 1st extension reaction, we will

have produced nearly 2 nM of target and the enzyme molecules will be free to

bind to the unreacted ssDNA. Therefore, after the 1st extension, if we reduce

the temperature to the annealing temperature, the required enzyme binding

will occur very quickly. Once all the enzyme molecules bind to single strand

primer duplex, the temperature of the reaction can be increased to the exten-

sion temperature to produce the target DNA. If the initial concentration of the

target DNA at the beginning of a cycle is D0, which is greater than or equal to

the enzyme concentration, then the number of annealing and extension steps

that needs to be conducted within a given cycle to double the concentration

of D0 is given as

Ns =
2D0

E0

(4.8)

Based on Eq. (4.8), the number of annealing and extension steps required

to double the target concentration is O(D0/E0). By using the appropriate

number of annealing and extension steps per cycle, we can reduce the overall

PCR reaction time required to achieve a specified DNA concentration. Fig.
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Figure 4.8: Multistep PCR - Temperature profile for multiple annealing step
(multi-step) and single annealing step PCR

4.9 shows the evolution of DNA and enzyme molecules in a single annealing

step and multistep PCR for a cycle in which the initial concentration of target

and enzyme are 10 and 20 nM, respectively and the goal is to achieve 40 nM

DNA concentration. Fig. 4.8 compares the temperature profiles for regular

and multistep PCR.

The optimal number of annealing and extension steps per cycle cannot be

identified without the use of computational kinetic models. Also, in the above

simulation, we have arbitrarily fixed the annealing and extension times for the

multistep PCR. These can be optimized along with temperatures using control

theory in order to minimize the overall reaction time, as described in the next

section.
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Figure 4.9: Multistep PCR - DNA concentration profile in multi-step PCR. In
multi-step PCR, in a PCR cycle, annealing and extension was repeated four
times. In a single annealing step PCR, a long annealing time was maintained.
Enzyme and template concentrations are 10 nM and 20 nM, respectively, the
primer concentration is 200 nM and the nucleotide concentration is 800 µ M.

4.6 Control Strategy

In the previous section, we introduced control systems for DNA amplification

and studied the dynamics of geometric growth of DNA for several types of

manipulated inputs. We showed that when the annealing time and tempera-

ture were varied, due to geometric growth, there was a considerable difference

in the final DNA concentration after 25 cycles. Therefore, the determination

of optimal time and temperature is essential. In this section we show how to

formulate and solve an optimal control problem to obtain not just the optimal

annealing time and temperature, but the optimal PCR temperature cycling

strategy for a particular amplification objective.
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4.6.1 Optimal Control Problem formulation

In the previous section of this article, we have motivated the need for optimal

control of DNA amplification. In this section, we formulate optimal control

problems for PCR. In optimal control, the optimal evolution of a manipulated

variable is sought by minimizing or maximizing a desired objective function. In

a PCR, the manipulated variable is the reaction temperature and the desired

objective is to maximize the target DNA concentration at the end of every

cycle. We classify PCR optimal control problems into two types as follows:

� Fixed time optimal control problem - Here we obtain the optimal tem-

perature profile that maximizes the desired DNA concentration profile

in a given fixed reaction time. If the cycle time is known in advance,

instead of following a grid based optimization approach as shown in Fig.

4.5, it is possible to obtain the optimal temperature profile by solving a

fixed time optimal control problem.

� Minimal time optimal control problem - Here we obtain the optimal tem-

perature profile that minimizes the overall reaction time for achievement

of a specified level of amplification. This allows automated determina-

tion of the cycle time and avoids the need for sampling cycle times as

was shown in Figs. 4.4 and 4.6.
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The desired objective can be expressed in the general form:

J = F (x(tf )) +

∫ tf

0

L(x(t), u(t))dt (4.9)

F (x(tf )) is referred to as an endpoint or Mayer cost and
∫ tf

0
L(x(t), u(t))dt is

referred to as a Lagrange cost.

4.6.2 Fixed-time DNA amplification optimal control prob-

lem

In Fig. 4.5, for a fixed reaction time, we varied the reaction temperature

to maximize the DNA concentration. This grid-based sampling approach is

not an efficient way to obtain the optimal temperature profile. Therefore, we

solve an optimal control problem with a desired objective function that maxi-

mizes the DNA concentration. Typically a lower limit (Tmin) for the annealing

temperature is applied to reduce the operating temperature range. The up-

per limit of the operating temperature range could be the maximum melting

temperature (Tmax). Hence lower and upper limits for the PCR reaction tem-

perature can be applied and this can be expressed as an inequality constraint

for the optimal control problem. Thus the following optimal control problem

can be formulated to maximize the target DNA concentration at the end of
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each cycle:

min
T (t)

J =
4n+4∑
i=1

xi (tf ) (4.10)

s.t.
dx(t)

dt
=

10∑
i=1

ki,seq (T (t)) gi (x (t)) , x(0) = x0 (4.11)

Tmin ≤ T (t) ≤ Tmax (4.12)

x, gi (x) ∈ R4n+9, x ≥ 0, (4.13)

h (x) ∈ R5, h (x) = 0 (4.14)

where ki,seq(T ) denote the sequence- and temperature-dependent rate con-

stants described in Material and Methods section. i in the objective function

(Eq. (4.10)) indexes all the state variables except for DNA, P1, P2, E, and

N . Note that due to the equality constraints h(x) = 0 on the state vector,∑4n+4
i=1 xi (tf ) uniquely determines x4n+5, which is the DNA concentration, such

that minimization of the former maximizes the latter. Eq. (4.10) specifies a

Mayer functional with F (x(tf )) =
∑4n+4

i=1 xi(tf ) and L(x(t), u(t)) = 0. The so-

lution of the above optimal control problem provides the optimal trajectory for

temperature (T ∗ (t)) and concentration (x∗ (t)) profiles with respect to time.

Note that in this formulation, the control (manipulated input) variable is the

temperature T , since in PCR reactions the rate constants are varied through

temperature cycling. This variable appears in the state equations through the

rate constants. Eq. (4.10) assumes a fixed total reaction time for a given cycle.

Since the objective function is a Mayer functional, there are multiple solutions
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possible for the above optimal control problem.

4.6.2.1 Rate constant as a control variable: Relationship between

PCR Rate Constants

The relationship between the temperature and the rate constants is typically

given by the Arrhenius equation (Eq. (4.15))

ki = k0i exp

(
−Eai
RT

)
(4.15)

Ea is the activation energy and k0 is the pre-exponential factor. Ea represents

the apparent activation enthalpy of the reaction, whereas k0 is a function of the

apparent activation entropy of the reaction. In general, these thermodynamic

parameters may vary with temperature. Temperature-dependent apparent ac-

tivation enthalpy and entropy can be accommodated through generalizations of

Eq. (4.15). However, we have shown that Eq. (4.15) can provide a reasonable

approximation for the temperature variation of PCR reaction rate constants.

Though in Eq. (4.11) we specified temperature as a control variable, as we see

in Eq. (4.15) it appears in the exponential term. This may introduce a strong

nonlinearity and hence causes computational difficulty to solve this optimal

control problem. In order to avoid this issue, it is possible to use all these 5

rate constants as the control variables and find their optimal evolution. In this
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formulation, the optimal control problem can be re-written as

min
k(t)

J =
4n+4∑
i=1

xi (tf ) (4.16)

dx(t)

dt
=

10∑
i=1

ki(t)gi(x(t)), x(0) = x0 (4.17)

x, gi (x) ∈ R4n+9, x ≥ 0 (4.18)

k ∈ R10, k ≥ 0, kmin1,seq ≤ k1 (t) ≤ kmax1,seq (4.19)

kj = αj,seqk
βj,seq
1 , j = 2, ..., 10 (4.20)

αj,seq = (k0j,seq/k01,seq)
βj,seq , βj,seq = Eaj,seq/Ea1,seq

h (x) ∈ R5, h (x) = 0 (4.21)

Where kmin1,seq and kmax1,seq are the lower and upper bounds for the rate constants

k1,seq correspond to Tmin and Tmax. The subscript seq indicates the sequence

dependency. The control system defined by Eq. (4.17) is a special case of

Eq. (4.1). Thus, the optimal control and concentration trajectory is denoted

as
(
k∗seq (t) , x∗seq (t)

)
. This trajectory can then be mapped onto the optimal

trajectory (T ∗seq(t), x
∗
seq(t)) using Eq. (4.15).

4.6.3 DNA amplification in minimal time: Time Opti-

mal Control

In Fig. 4.5 and Fig. 4.7 an arbitrary reaction time has been chosen to ob-

tain the DNA concentration profile. Even though the amplification efficiency
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at certain temperatures is nearly 100 %, the cycle reaction time and hence

the overall reaction time (sum of reaction time of all the PCR cycles) can

be further reduced. To achieve a specified level of DNA amplification in the

shortest possible time, the optimal control problem should be formulated in

such a way that the solution minimizes the overall reaction time. In practice

it is desirable to minimize the overall reaction time and there were several

attempts to do this in the past and we summarize them below. Two-step

PCR, which uses a combined annealing/extension step at a temperature that

lies between the standard annealing and extension temperatures, was an early

attempt to decrease total reaction time by reducing cycle time and relying on

geometric growth to achieve high overall efficiency. Rapid-cycle PCR (Wittwer

and Herrmann (1999); Wittwer and Garling (1991)) is based on fast thermal

cycling with short hold times for each step. It also aims to exploit simul-

taneous annealing and extension. In some incarnations, the temperature is

continuously varied. These attempts to reduce PCR reaction time have been

empirical studies, with no quantitative basis for the choice of temperatures

and times. In particular, use of overly short thermal cycles will result in an

increase in overall reaction time. Prior literature provides no mathematical

basis for the computation of the optimal cycle switching time. Minimization

of the overall reaction time for DNA amplification can be achieved through

a minimum time optimal control framework. In particular, the time optimal

control framework provides prescriptions for the optimal cycle switching time

on a formal mathematical basis. In time optimal control, in addition to state
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variables, evolution time also must be optimized. A Lagrange cost of the form∫ tf
0
dt corresponding to the evolution time is used as an objective function and

state vector is constrained to achieve a specified level of DNA amplification at

the end of a cycle as follows:

min
k(t)

J =

∫ tf

0

dt (4.22)

s.t.
dx(t)

dt
=

10∑
i=1

ki(t)gi(x(t)), x(0) = x0 (4.23)

x4n+5 (tf ) = x4n+5,f , x4n+5,f ≥ 2mx4n+5(0), m ∈ Z0+ (4.24)

x, gi (x) ∈ R4n+9, x ≥ 0, (4.25)

k ∈ R10, k ≥ 0, kmin1,seq ≤ k1 (t) ≤ kmax1,seq (4.26)

kj = αj,seqk
βj,seq
1 , j = 2, ..., 10 (4.27)

αj,seq = (k0j,seq/k01,seq)
βj,seq , βj,seq = Eaj,seq/Ea1,seq

h (x) ∈ R5, h (x) = 0 (4.28)

Note that x4n+5 = x0
1 + x0

2n+3 −
∑4n+4

i=1 xi. Where x0
1 and x0

2n+3 are the ini-

tial concentrations of first and second single strand. m denotes the number

of cycles for which the time optimal solution is required. Thus, if m = 1,

x4n+5,f ≥ 2x4n+5(0), which implies that the time is minimized for amplifi-

cation efficiency greater than 1, which in turn implies that more than one

cycle will be generated. The single cycle time optimal solution is obtained by

considering k(t) up to the switching time between cycles. In addition to the

regular first order conditions for optimality, additional optimality conditions
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must be satisfied for the time optimal control problem (Eq. (4.22)) and these

are described in Stengel (1994).

4.6.4 A Strategy for Optimal Synthesis of the DNA

Amplification Control Trajectory

From the enzyme concentration and the evolution of DNA concentration through-

out the amplification reaction, it can be separated into two stages. Stage

1 corresponds to a resource-unlimited environment for sequence replication.

Stage 2 begins when environmental resource limitations affect the probability

of sequence replication.

4.6.4.1 Stage 1

This stage is comprised of all the cycles at which the enzyme concentration is

higher than the target DNA concentration by 2 orders of magnitude so that

a pseudo first order kinetics for the enzyme binding reaction can be assumed.

Using grid-based sampling of experimental conditions, we have shown that

the annealing time for this stage could be around 45 s at a specific annealing

temperature. In order to find the optimal time and temperature protocol that

improves upon the results in Fig. 4.5 (cycles 1 to 15) in a systematic manner,

a fixed time optimal control problem can be formulated (Eq. (4.16)). Alterna-

tively, it is possible to formulate the time optimal control problem (Eq. (4.22))

wherein the objective is the minimization of the reaction time for a specified
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target DNA concentration. For both problems, an important feature of the

solution k∗ (t) for multiple cycles is that they are periodic under the pseudo-

first order approximation. This means that problem (Eq. (4.22)) need only be

solved once. Here we consider the solution to such a problem where the temper-

atures as well as switching times for the denaturation and annealing steps are

constrained such that k(t) = f(t). Note that application of this constraint re-

sults in a control system of the STIM type, wherein the only manipulated input

parameter is the switching time between the cycles. However, the vector fields

applied in each step are
∑10

i=1 ki(T1)gi(x),
∑10

i=1 ki(T2)gi(x)
∑10

i=1, ki(T3)gi(x),

respectively, where T1, T2, T3 denote the temperatures of the melting, anneal-

ing and extension steps, rather than the vector fields listed for the STIM in

Table 4.1.

4.6.4.2 Minimal extension time for control of geometric growth

In this section, for a given temperature profile and hence rate constant trajec-

tory k(t) we find the optimal switching time between cycles. For example, in

Fig 4.5 for a fixed reaction time of 105 seconds, at three different temperatures

we have estimated the target DNA concentration profile. Now we will analyze

those DNA concentration profiles and estimate the optimal cycle time that

minimizes the overall reaction time in stage 1 of the PCR. Since the optimal

control profile is periodic in stage 1, the optimal cycle time for all the cycles

in this stage will be the same. Let 0 ≤ η ≤ 1 be the efficiency in the first cycle
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and n (η) be the number of cycles in stage 1, then

(1 + η)n(η) = y (4.29)

Where

y =
[DNA]n
[DNA]0

[DNA]n - Concentration of DNA after n cycles and [DNA]0 - Initial concen-

tration of DNA. From Eq. (4.29), the number of cycles n (η) can be expressed

as follows:

n (η) =
log (y)

log (1 + η)
(4.30)

Let t (η) be the time required for a cycle to achieve an efficiency of η and the

overall reaction time for stage 1 be ttotal(η); then

ttotal(η) = n (η) t (η) = t (η)
log (y)

log (1 + η)
(4.31)

Now we consider the following optimization problem to minimize the overall

reaction time ttotal:

min
η

ttotal(η) = min
η

t (η)
log (y)

log (1 + η)
(4.32)

Hence we seek η such that

d
(
t (η) log(y)

log(1+η)

)
dη

= 0 =⇒ 1

t (η)

dt

dη
=

1

(1 + η) (log (1 + η))
(4.33)
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We solve the above equation graphically by plotting the left hand side and the

right hand side with respect to η. From the given DNA concentration profile,

it is possible to estimate the optimal efficiency (ηmin) and hence, t (ηmin) that

minimizes the overall reaction time for geometric growth in stage 1, subject

to the specified constraints. Note that the computation of the optimal cycle

switching time with a given STIM model, as above, does not provide the

minimal cycle time that can be achieved with a TVM model. Let t(η, T ∗),

where T ∗ is time optimal input obtained from solution of problem (Eq. (4.22)),

denote the optimal single cycle time for stage 1 as a function of specified cycle

efficiency η. Hence t (η) ≥ t (η, T ∗). Since t (η) ≥ t (η, T ∗), ηmin = arg min t(η)

computed above for the suboptimal t (η) is smaller than ηmin for t (η, T ∗); i.e.,

the cycle should be run at least as long as computed based on the suboptimal

t (η) using the above model, and

min
η

ttotal(η) ≥ min
η

t (η, T ∗)
log (y)

log (1 + η)
(4.34)

4.6.4.2.1 Minimal reaction time example We consider a PCR reaction

with primers and reaction conditions that are considered in Fig 4.5 and Fig

4.7. We consider annealing temperatures, 35 and 40 0C from Fig. 4.5 and 40

0C from Fig. 4.7. It should be noted that cycle time including melting step

in Fig. 4.5 is 105 seconds and in Fig. 4.7 it is 270 seconds. Fig. 4.10 shows

the optimal efficiency for these three conditions and from this, in each case

the overall reaction time to reach the specific DNA concentration (100 nM)
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Figure 4.10: Optimal cycle efficiency at three different reaction conditions.
Temperature and time in the legend represent the annealing temperature and
time. Y axis represents the LHS and RHS of Eq. (4.33). The intersection
points specify the optimal switching times between cycles.

has been calculated. This is a constrained optimization version of the time

optimal problem (Eq. (4.22)) with the additional constraint that k(t) = f(t).

The problem is hence only to find tf (since k(t) does not change). Table 4.2

compares the overall reaction time under these three conditions and it can be

observed that given this sample set, it is possible to reduce the overall reaction

time at the specific reaction temperatures. Fig. 4.12 compares the geometric

Table 4.2: Comparison between optimal cyclic efficiency under different reac-
tion conditions

Annealing Annealing Optimal Optimal Number of Overall
Temperature reaction Efficiency reaction of reaction (s)

(0C) time (s) (%) time cycles time (s)

35 45 76.09 102.2 16.2 1664
40 45 90.62 99.5 14.2 1421
40 120 98.68 165.3 13.4 2218

growth of DNA with respect to reaction time under the above three reaction
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Figure 4.11: Optimized cycling protocol at three different reaction conditions
computed based on the cycle switching time criterion depicted in Fig. 4.10.
The legends refer to annealing temperatures and times; b)Geometric growth
of DNA for three different conditions

conditions. Fig. 4.11 illustrates the modified temperature protocol based on

this analysis.

Thus, we have shown that for a specified control vector trajectory k(t) for a

cycle, it is possible to reduce the overall reaction time by application of the time

optimal cycle switching criterion for geometric growth. In the above case, the

optimal choice of annealing temperature is 40 0C. In the above study, however,

we did not consider optimization of the annealing step for the minimization

of overall reaction time and hence this method naturally optimizes only the

extension reaction time at the end of each cycle. This constraint will be relaxed

in future work to solve the time optimal control problem (Eq. (4.22)) using a

TVM model.
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Figure 4.12: Geometric growth of DNA for three different conditions

4.6.4.3 Bilinear time-varying PCR model with and without drift

In stage 1, the primer and nucleotide concentrations are always much higher

than the target DNA concentration and the change in their values is negli-

gible compared to the primer and nucleotide concentrations. Therefore, the

primer and nucleotide concentration can be treated as constant and hence the

annealing and extension reactions are pseudo-first order. The enzyme binding

reaction can also assumed to be a pseudo first order reaction, but not for all

the cycles in stage 1. In the last few cycles of this stage, enzyme concentration

can be comparable with the target DNA concentration; therefore, except for

the last two cycles, it can be assumed that even enzyme binding reaction also

is a pseudo first order reaction. Furthermore, it is also possible to assume that

the melting reaction is irreversible, as hybridization of ssDNA is negligible due

to large excess of primers. Thus, the whole PCR model can be expressed as

a linear time variant first order state space system. Since both control and
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state variables vary with respect to time, to be precise, the PCR model can

be expressed as a bilinear control system as follows

dx (t)

dt
=

(
A+

9∑
i=1

Biki (t)

)
x (t) (4.35)

k ∈ R9; k ≥ 0, x, gi (x) ∈ R4n+5, x ≥ 0, Φx = 0

where

Φ = [S10/S1 − 1,−1,−c,−1,−c,−1, S20/S2 − 1,−1,−c,−1,−c,−1,−1]

c =

(
1 +

[N0]

KN

)

Since the association of ssDNA is neglected, the corresponding rate constants

have been eliminated and therefore, the total number of rate constants is 9

and the total number of states is 4n + 5. If the whole system is time variant

then A = 0 and Bi is a 4n+ 5× 4n+ 5 matrix and

Bix (t) = gi (x (t)) (4.36)

x1 = [S1] , x2 = [S1P1] , x3 = [E.S1P1] , x2i+2 =
[
D1
i

]
x2i+3 =

[
E.D1

i

]
∀i = 1, 2, ...n− 1

x2n+3 = [S2] , x2n+4 = [S2P2] , x2n+5 = [E.S2P2]

x2i+2n+4 =
[
D1
i

]
, x2i+2n+5 =

[
E.D1

i

]
∀i = 1, 2, ...n− 1
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x2n+2 =
[
E.D1

n

]
, x4n+4 =

[
E.D2

n

]
, x4n+5 = [DNA]

k =

[
km k1

1 k1
2 k2

1 k2
2 ke k−e

kcat
KN

k′cat

]

B1 represents the melting reaction. B2 and B3 represent the annealing of the

1st single strand and primer. B4 and B5 represent the annealing of the 2nd

single strand and primer. B6 and B7 represent the enzyme binding reactions.

B8 and B9 represent the extension reaction. Eq. (4.35) specifies a TVM model

for stage 1.

� If the melting and annealing rate constant alone is varied (TVMD for

annealing step) then

dx (t)

dt
=

(
A+

5∑
i=1

Biki (t)

)
x (t) (4.37)

Here A is a 4n+ 5× 4n+ 5 matrix and

Ax (t) = f (x (t)) =

(
9∑
i=6

kiBi

)
x (t) (4.38)

� If the enzyme binding and extension rate constant alone is varied (TVMD

for extension step) then

dx (t)

dt
=

(
A+

9∑
i=6

Biki (t)

)
x (t) (4.39)
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Here A is a 4n+ 5× 4n+ 5 matrix and

Ax (t) = f (x (t)) =

(
5∑
i=1

Aki

)
x (t) (4.40)

For temperature control, constraints analogous to those in Eq. (4.15) are

imposed on the vector of rate constants. The linear structure of the PCR

state equations in Stage 1 is convenient for refinement of kinetic parameter

estimates via linear filtering Stengel (1994), which will be discussed in future

work Moreover, it enables analytical solution of the state equations for each

step of PCR. For one single strand, primer annealing and extension reactions,

the bilinear matrices have been given below. Note that for this case the number

of bilinear matrices will be 7.

B1 =



0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −1


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B2 =



−1 0 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



B3 =



0 1 0 0 0 0 0

0 −1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



B4 =



0 0 0 0 0 0 0

0 −1 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 −1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


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B5 =



0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 −1 0 0 0 0

0 0 0 0 1 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



B6 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 −1 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 −1 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0



B7 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 1 0


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Here, B1 represents the melting reaction. B2 and B3 represent the annealing

of the 1st single strand and primer. B4 and B5 represent the enzyme binding

reactions. B6 and B7 represent the extension reaction.

4.6.5 Stage 2

This stage is comprised of all the cycles at which the enzyme concentration is

comparable to or less than the target DNA concentration. We have presented

a multi-step approach in Fig. 4.9 for these conditions and shown that the

efficiency can be improved. For both the fixed time problem (Eq. (4.16))

and minimal time problem (Eq. (4.22)), a multi-step strategy is generally a

property of the optimal solution. In each of cycle of this stage, in order to

double to concentration of the template DNA, annealing and extension needs

to be conducted multiple times. In minimum time optimal control of geometric

growth we have shown that 100% efficiency need not be achieved. In such cases

the number of steps in a cycle will be less than or equal to the number of steps

that was predicted by Eq. (4.8). In order to determine the optimal number of

steps, the minimal time optimal control problem described above needs to be

solved, either for a single cycle (if the desired single cycle efficiency is known)

or for m ≥ 1 (for more than 1 cycle). For both the fixed time and minimal

time problems, the optimal solutions k∗(t) for stage 2 are not periodic.
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4.7 Conclusion

In this chapter , the dynamics of DNA amplification reactions have been for-

mulated from a control theoretic standpoint. An optimal control problem for

maximization of a desired target DNA concentration has been specified and

a strategy for the optimal synthesis of the temperature cycling protocol has

been presented.
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Chapter 5

Optimal Control of DNA

Amplification

5.1 Introduction

In Chapter 4 we have formulated the PCR optimal control problem and dis-

cussed the strategies for solving it. In this chapter, we implement those strate-

gies and solve a simple PCR optimal control problem. The foundational con-

cepts of Optimal Control were developed as early as the 1750s in classical

mechanics as the principle of least action, a variational approach that mini-

mizes the action (the time integral of a Lagrange cost) of a moving particle

to derive the equations of motion in Hamilton’s form. A more general and

formal version of the optimal control problem, especially from a control engi-

neering perspective, was developed by Pontryagin, who also derived the con-

ditions for the optimality which now comprise Pontryagin Maximum Principle
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(PMP) (Stengel (1994); Bryson and Ho (1975)). Optimal control is used in

a diverse applications ranging from satellite control to chemical plant control,

from quantum control to biological process control, etc. As a result of this,

there are several classes of optimal control problems such as constrained op-

timal control, time optimal control, etc. The complexity of optimal control

problems pose challenging issues in developing efficient numerical schemes.

There are a tremendous research efforts directed towards to develop various

numerical schemes to solve various optimal control problem. Though the pri-

mary objective of our work is to solve a PCR optimal control problem, in

this chapter we also briefly review several numerical approaches that are avail-

able to solve a large scale dynamic optimization problem so that it will be

useful in future development of an efficient software to solve PCR optimal

control problems. Development of an efficient numerical scheme for the op-

timal control of PCR is beyond the scope of this work. The primary goal

of this work is the development of a foundation for the derivation of optimal

control laws for amplification of DNA sequences through application of the

PMP to sequence-dependent models of DNA amplification. When applied to

a given DNA sequence, these laws prescribe the optimally controlled dynamics

of amplification of that sequence.
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5.2 Solution of the Optimal Control problem

In order to solve the optimal control problem that we have formulated in (Eq.

(4.10)) Chapter 4 we keep temperature (T ) as control variable. Even though

the upper and lower limits for the temperature are specified as inequality con-

straints in Eq. (4.12), the optimum lies in the interior of the constraint set;

hence, if the algorithm does not sample manipulated variables that are outside

the constraint set, the constraints can be ignored. Hence, we solve an uncon-

strained optimization without any bounds on the temperatures. Moreover, by

appropriately applying the equality constraints h(x) to eliminate variables, we

can reduce the number of state variables by 5 and solve the control problem

on a reduced dimensional state manifold. The conditions for optimality for

the above optimal control problem are given below as per the PMP.

5.2.1 Solution of the Optimal Control Problem

Necessary conditions for optimal solutions to the above optimal control prob-

lem are derived using Pontryagin’s Maximum principle, and they are given

as

H [x(t), φ(t), T (t)] = φTr(t)
10∑
i=1

ki,seq(T (t))gi(x(t)) (5.1)

dφ

dt
= − ∂H

∂x(t)
= −

10∑
i=1

ki,seq(T (t))
∂gi(x(t))Tr

∂x(t)
φ(t) (5.2)

φ(tf ) =

[
∂F (x(t))

∂x(t)

]
t=tf

=

[
∂

∂x(t)

4n+4∑
i=1

xi(t)

]
t=tf

(5.3)

Chapter 5. Optimal Control of DNA Amplification 165



5.2. Solution of the Optimal Control problem

∂H

∂T (t)
[x∗ (t) , φ∗ (t) , T ∗ (t)] = φ∗,T r(t)

10∑
i=1

∂ki,seq(T (t))

∂T (t)

∣∣∣∣
T ∗(t)

gi(x
∗(t)) = 0

(5.4)

∀t ∈ [0, tf ]

H[x(t), φ(t), T (t)] is the PMP-Hamiltonian function. φ represents the co-state

(a function of time similar to a Lagrange multiplier and analogous to mo-

mentum in Hamiltonian mechanics). Equations 4.11,5.2 and 5.4 represent a

system of differential algebraic equations (DAE) with the initial and termi-

nal boundary conditions for state and co-state variables. Eq. (5.4) specifies

the first order condition for optimality that must be satisfied by the solution

T ∗ (t). An optimal control T ∗(t) must also satisfy the second order (Legendre-

Clebsch) conditions for optimality, ∂2H
∂T (t)∂T (t′)

≥ 0, i.e., that the Hessian of the

Hamiltonian must be positive semidefinite at T ∗. For Mayer cost functionals

like that in Eq. (4.10), the Hessian is generally semidefinite at T ∗ due to the

existence of a level set of solutions. This DAE should be solved simultane-

ously to obtain the optimal temperature profile T . If the target length is n,

the number of state equations is 4n + 4 and typically n will be on the order

of 103. Thus, the PCR optimal control problem is a large scale optimization

problem which requires an efficient numerical algorithm to be solved.
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5.2.2 Classification of Optimal Control Problem Solu-

tion Strategies

While we developed the necessary conditions for the optimality in the previous

section, in this section several numerical strategies to solve an optimal control

problem are briefly discussed. Numerical schemes that were developed to solve

optimal control problems are broadly classified as Optimize then Discretize

and Discretize then Optimize (Biegler (2010)). These two methods can be

further classified into many types as shown in Figure 5.1. In the first type,

the optimal conditions for the optimal control problem is derived using PMP

principle using the variational approach and then the resulting differential

algebraic system of equations is solved using an appropriate numerical solver.

In the second type, the given optimization problem is discretized to convert

it into a Nonlinear Linear Programming Problem (NLP) which is then solved

using efficient solvers.

One variational approach to solving optimal control problems is the so-

called shooting approach. In shooting algorithms one solves for the optimal

control u∗(t) in terms of x(t), φ(t) using the algebraic constraint from the

PMP optimality condition and then integrates the x, φ ODEs simultaneously

in terms of known x(0) and unknown φ(0) initial conditions. Although φ(0)

is unknown, terminal boundary conditions are available in terms of either

x(tf ) = xf (Lagrange functionals) or φ(tf ) = ∇xF (x(tf )) (Bolza or Mayer

functionals). This is known as a system of differential equations with split
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boundary conditions or a two-point boundary value problem. For nonlinear

problems, ∂H
∂u(t)

is an explicit function of u(t) and hence one can solve for

u(t) in terms of x(t),φ(t), even for Mayer functionals. There are multiple

solutions to this problem and one can find an approximate solution via line

search. Shooting algorithms converge iteratively upon the target x(tf ) = xfor

φ(tf ) vector by making successive changes in the initial conditions φ(0); i.e.,

they shoot from x(0),φ(0), trying to hit the terminal boundary conditions.

Numerical algorithms for this problem are typically based on a combination

of Newton-Raphson and Runge-Kutta (RK) ODE integration; RK is used to

integrate the state/costate ODEs at each step, given x(0) and a guess for

φ(0); NR is used to solve for roots of the boundary condition equations, i.e.,

φ(tf )− φf = 0 or x(tf )− xf = 0. Denoting these by fi and the initial costate

parameters by φi(0) = ci, the NR step is δc = αJ−1F (c), where the elements of

the Jacobian J are Jij = ∂fi
∂cj

. Shooting algorithms are particularly convenient

for Lagrange functionals for which u(t) can be expressed analytically in terms

of x(t), φ(t). Shooting algorithms applied to nonlinear problems wherein u(t)

cannot be expressed analytically in terms of x(t), φ(t) require integration of the

state,co-state equations simultaneously with nonlinear root finding to obtain

u at each time step. Hence we did not apply them here. In this work we

used the variational control vector iteration (CVI) method to solve a fixed

time simplex PCR optimal control problem. The software implementation of

this algorithm was developed fully by the authors. CVI is commonly used for

Bolza or Mayer functionals since φ(tf ) = ∇F (x(tf )) is available from solution
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of the state equations and an expression for u = g(x(t), φ(t)) is not required.

5.2.3 Solution to Fixed time optimal control problem

for PCR

For stage 1, we solve a fixed time optimal control problem (Eq. (4.10)) for a

short reaction time (45 seconds of annealing time and 30 seconds of extension

time). In stage 1, pseudo first order kinetics for the primer annealing and

enzyme binding reaction is applicable. In addition to this, nucleotide concen-

tration can also be assumed to be a constant throughout the cycle. Hence, the

algebraic mass balance equations h(x) for these variables need not be solved

along with the minimum number of state equations Since the concentrations

of primers, enzyme and nucleotides are constants, they can be multiplied with

the second order rate constant. Note that the minimum number of state equa-

tions is 4n+ 4. Under these conditions, the costate and first order optimality

conditions in the PMP become:

dφ

dt
= − ∂H

∂x(t)
=

10∑
i=1

ki,seq(T (t))BTr
i φ(t) (5.5)

∂H

∂T (t)
=

10∑
i=1

∂ki,seq(T (t))

∂T (t)

∣∣∣∣
T ∗(t)

Bix
∗(t) = 0, ∀t ∈ [0, tf ]. (5.6)

We use the methods of optimize and discretize (Variational approach) which

gives a set of Differential Algebraic Equations (DAE) that provide a solution

for the optimal control problem. Due to the reasons mentioned above, we use
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Control Vector Iteration (CVI) (Biegler (2010); Stengel (1994)), which is also

called the self consistent iterative method (D’Alessandro (2008)) to solve the

above DAE. This iterative process starts with the specification of the initial

conditions for the state variables and an assumed manipulated variable profile.

The state equations are now integrated for the fixed reaction time from t0 to

tf . The boundary condition for the co-state variables are obtained as per Eq.

(5.2) and the co-state equations are integrated backwards.With the available

state and co-state variables, the manipulated variable is updated based on

the steepest descent method such that the nominal control profile satisfies Eq.

(5.4). The following equation describes the steepest descent method.

Ti+1 (t) = Ti (t)− α
∂H

∂T (t)
(5.7)

Where α is a steepest descent parameter which is generally assumed to be

a constant in a conventional CVI (Stengel (1994)), In order to speed up the

iterative process, α can be estimated through line search via the following

minimization.

min
α

F (α(t)) = H

[
x(t), φ(t), T (t)− αdH

dt
(t)

]
(5.8)

We used a golden section search algorithm for the above minimization. The

following steps and Fig. 5.2 explains the implementation of CVI.

1. For a given initial trajectory of T0(t) and initial condition x0, the state
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equations are integrated from t0 to tf and x(t) is obtained.

2. Boundary condition for the co-state vector is obtained using Eq. (5.4).

3. Co-state equations are integrated backwards from tf to t0 and φ (t)

4. Using x(t), φ (t) and T0(t), at each t, ∂H
∂T (t)

was found.

5. Using x(tf ), the objective function value J was found.

6. If J ≤ Jdesired and ‖ ∂H
∂T (t)
‖ ≤ ε, the iterative process was stopped at this

point, otherwise the iteration was continued to the next step.

7. Golden section line search method was followed to estimate the optimal

α(t).

8. Control profile is updated as per Eq. (5.7)

9. With the updated control profile, step 1 is started again and other steps

are followed till the iteration satisfied the convergence criteria, J ≤ 0.05

and ‖ ∂H
∂T (t)
‖ ≤ 10−4

5.3 Fixed time optimal control profile

A fixed time PCR optimal control problem with the primer sequences men-

tioned in Chapter 3.2 and the same reaction conditions (length of target =

500 base pairs) has been solved using the CVI. The reaction time is fixed to

be 75 seconds. Figs. 5.3 and 5.4 shows the optimal temperature profile and
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Figure 5.2: Control Vector Iteration to solve optimal control problem

the corresponding optimal DNA concentration profile. The efficiency at the

optimal operating condition is 96%. As discussed in Chapter 4 the optimal

control solutions T ∗ (t) for stage 1 are periodic. Hence the T ∗ (t) from Fig. 5.4

can be applied repeatedly for the first 14 PCR cycles. These are optimal PCR

cycling strategies for fixed cyclic time. The same algorithm can be applied to

multi-step PCR cycles by appropriate choice of tf in Eq. (4.10). Since the

experimental parameter estimation for the denaturation model in Chapter 3.2

has not yet been completed, we don’t solve the multi-step fixed time problem

here. Note that since the cycle time is arbitrarily fixed in Fig. 4.8, greater

efficiency could be achieved in a specified reaction time. In the next section

we consider how to obtain the optimal reaction time tf .
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Figure 5.3: Optimal DNA concentration profile that was obtained by solving
PCR optimal control problem using control vector iteration.
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Figure 5.4: Optimal temperature profile that was obtained by solving PCR
optimal control problem using control vector iteration.
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Figure 5.5: Variation of the ‖dH
du

(t) ‖ with respect to number of iterations of
control vector iteration

Figure 5.6: Variation of the Objective function value with respect to number
of iterations of control vector iteration
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5.4 Time optimal control problem

In order to obtain the optimal cycle time for PCR, a multiple cycle time

optimal problem of the form (Eq. 4.22) can be solved. In particular, this

provides the optimal switching time between cycles. In stage 1, for the reasons

discussed in Chapter 4, solution of Eq. (4.10) for m = 2 provides the optimal

cycling strategy for all cycles in the stage. The PMP-Hamiltonian for time

optimal control problem (4.22), expressed using temperature as the control

variable, is:

H [x(t), T (t), φ(t)] = L [x(t), T (t)] + φTr(t)
10∑
i=1

ki,seq(T (t))gi(x(t))

= 1 + φTr(t)
10∑
i=1

ki,seq(T (t))gi(x(t)) (5.9)

The first-order conditions for the minimal time problem are:

dφ

dt
= − ∂H

∂x(t)
= −

10∑
i=1

ki,seq(T (t))
∂gi(x(t))Tr

∂x(t)
φ(t) (5.10)

∂H

∂T (t)
[x∗ (t) , φ∗ (t) , T ∗ (t)] = φ∗,T r(t)

10∑
i=1

∂ki,seq(T (t))

∂T (t)

∣∣∣∣
T ∗(t)

gi(x
∗(t)) = 0

(5.11)

∀t ∈ [0, tf ]

In addition to the 4n + 4 initial conditions, the following 4n + 4 terminal

boundary conditions are applied to the co-state and state to provide the two-
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point boundary value problem:

φi(tf ) = 0, i = 1, ..., 4n+ 4 (5.12)

4n+4∑
i=1

xi(tf ) = S10 + S20 − x4n+9,f , x4n+9,f > 2x4n+9(0). (5.13)

We choose x4n+9,f = 2 to obtain the time optimal stage 1 cycle protocol; the

resulting tf corresponds to less than 2 cycles unless the time optimal cyclic

efficiency is >
√

2. The PMP first-order optimality conditions for time optimal

control include an additional so-called algebraic transversality condition for the

final time tf :

H

∣∣∣∣
tf

= 0 =⇒ φTr(tf )
10∑
i=1

ki,seq(T (tf ))gi(x(tf )) = −1. (5.14)

For stage 1, Eqs. 5.10 and 5.14 are replaced by

dφ

dt
= −

10∑
i=1

ki,seq(T (t))BT
i φ(t)

φTr(tf )
10∑
i=1

ki,seq(T (tf ))Bix(tf ) = −1.

Various optimization algorithms are available for solving the DAE correspond-

ing to this two-point boundary value problem subject to the algebraic and

transversality constraints Eqs. and 5.14. The transversality constraint can be

associated with a new Lagrange multiplier. The solution provides both the

optimal control function T ∗(t) and the minimal time tf , which is greater than
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the period of the function in stage 1. The minimal time cycling strategy for

stage 1 is the period of the function. A property of the solution to this problem

is that it will satisfy the time optimal cycle switching conditions for geomet-

ric growth discussed in Chapter 4. Recall from Chapter 4 that the following

bound applies:

min
η

ttotal(η) ≥ min
η

t (η, T ∗)
log (y)

log (1 + η)
(5.15)

Since experimental data for estimation of DNA denaturation model parame-

ters are not yet available, we do not solve the multi-step time optimal problem

here. In the absence of a denaturation model, assuming a fixed denaturation

time, solution of the stage 1 time optimal problem requires tracking of possi-

ble cycle efficiencies and computation of t∗ (η) to identify the optimal cyclic

efficiency. Due to the computational complexity of this problem, here we use

an approximate approach to the optimal time synthesis for a single cycle for

each possible η.

5.4.1 Approximate approach to time optimal control:

high processivity assumption

In Section 5.3 we have obtained the optimal control profile for a fixed reaction

time. In this section we seek the temperature profile that minimizes the overall

reaction time for a target level of amplification. In Chapter 4, the time optimal

cycle switching analysis was introduced for a TIM model (equality constrained
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controls). Here, we consider the true time optimal cycle switching analysis

for the fully time-varying PCR control system. Generation of the full cycle

switching curve requires computation of the function t(η) for 0 ≤ η ≤ 1, an

interval over which η(t) is injective. In an approximate approach to generation

of this curve, the efficiency of PCR is defined based on the disappearance of

single strand molecules (S1 and S2) and single strand primer duplexes (S1P1

and S2P2). Under the assumption of very high polymerase processivity (where

enzyme does not dissociate from partially extended primer-template duplexes),

disappearance of SP molecules is the rate limiting step. Indeed, the traditional

3-step PCR cycling protocol can be justified based on the assumption of high

polymerase processivity. Since nucleotide addition at the optimal extension

temperature is faster than enzyme binding, we define the efficiency of a PCR

cycle as

η = 1− S1P1 + S1

S10

− S2P2 + S2

S20

(5.16)

We repeated the minimum time optimal control analysis (in Section 4.6.4.2

of Chapter 4.6) with the above defined efficiency to generate the cycle time

switching curve and estimate the optimal cycle efficiency - and hence the over-

all optimal reaction time. Fig. 5.7 shows existence of an optimal cyclic effi-

ciency (92.3%) and the corresponding optimal reaction time is 94.1 seconds.

According to this, the total number of PCR cycles needed to multiply the

initial concentration of the DNA into 104 time is 14 and the corresponding

overall reaction time is 1325 seconds. This is 100 seconds less than what has
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Figure 5.7: Optimal PCR cycle efficiency that minimizes the overall reaction
time. Y-axis represents the LHS and RHS of the Eq. (4.33) and the point of
intersection is the solution of the Eq. (4.33). t(η) used to calculate the LHS
and RHS was computed at each η via the approximation method described in
the text. The intersection point specifies the optimal switching time between
cycles.

been estimated to be the optimal reaction time using the grid-based sampling

approach. Note that in this analysis we have fixed the extension time based on

our minimum extension time analysis in Section 4.6.4.2 of Chapter 4.6. Fig.

5.8 shows the optimal temperature profile that minimizes the reaction time.

Though the performance of the grid-based sampling approach is comparable

to that of the above minimal time strategy, the former is computationally

very expensive. Furthermore, these kind of optimal temperature profiles can

be used as initial guesses for the multi-step PCR fixed time and time optimal

control problem. Note that bound (5.15) still applies to the t(η) generated by

this approach.
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Figure 5.8: Optimal temperature profile that minimizes the overall reaction
time by cycling switching at the intersection point in Fig. 2.6.

5.5 Conclusion

In this chapter we have solved a fixed time PCR optimal control problem and

obtained the optimal temperature profile. Furthermore, we have proposed an

approximate solution for the time optimal control problem and formulated a

formal time optimal control problem with it’s solution.
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Chapter 6

Conclusion and Future

Directions

6.1 Notable Contributions

DNA amplification reactions have arguably become the central technology

of modern molecular biology. The global PCR market is projected to reach

around US$27.4 billion by 2015, with a Compounded Annual Growth Rate

(CAGR) of 13.9% for the analysis period, 2009-2015. (Quoted from on-line

summary of Polymerase Chain Reaction (PCR) In Medical Application - An

Analytical Report, 2009-2015 Published in June 2013). There are many mod-

ified versions of traditional PCR available today in the market for various

application ranging from diagnosis to genome sequencing. In order to system-

atically invent new types of PCR, fundamental understanding of the reaction

mechanism and kinetics of these reactions is required. In this work, we have de-
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veloped the first sequence and temperature dependent kinetic model for PCR

and, using the concepts of systems biology, shown that our kinetic model can

be used to automatically generate PCR reaction protocols.

Our first contribution in this work was on the development of the sequence-

dependent theory of oligonucleotide hybridization kinetics. We considered

several kinetic modeling approaches with different reaction mechanisms and

compared the predictive power of these approaches using experimental data

on hybridization reaction rates. These kinetic models are parameterized not

only by the standard nearest neighbor parameters that are used to model DNA

hybridization thermodynamics, but also a kinetic parameter associated with

the elementary step of the hybridization reaction. We have formulated the

problem of estimating this additional parameter, based on our kinetic models

and available experimental kinetic data. The methodology presented in the

current work establishes a foundation for the automated selection of PCR

annealing protocols for any DNA sequence. The methodology developed was

illustrated through its application to the modeling of PCR annealing reactions.

Using the theory of enzyme processivity and Michaelis Menten kinetics, we

have developed for the first time a sequence and temperature dependent kinetic

model for thermostable polymerase enzyme binding and extension reactions.

These models have been interfaced with the sequence dependent hybridiza-

tion kinetics model and hence first sequence and temperature dependent PCR

model has been developed. Using our model, we have reported the first theo-

retical framework for prediction of the dynamic evolution of chemical species
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in DNA amplification reactions, for any specified sequence and operating con-

ditions. This establishes a foundation for the dynamic optimization of DNA

amplification reactions, which can be used for the automated computation

(rather than qualitative selection) of temperature cycling protocols. The model

introduced herein is based on quantitative biophysical modeling of DNA melt-

ing, annealing, and polymerization that together enable a mapping of a given

DNA sequence and polymerase enzyme onto temperature-dependent kinetic

rate constants. This framework is based on the notion of sequence-dependent

modeling of the kinetics of biochemical reaction networks, which has various

applications in dynamical systems biology and is another contribution of the

present work.

Based on this biophysical model, it has been shown that DNA amplification

efficiency is affected by dynamic processes that are not accurately represented

in simplified models of DNA amplification, which are the basis of conventional

temperature cycling protocols. Use of this sequence-dependent kinetic model

in a control-theoretic framework to determine the optimal temperature cy-

cling protocol of a DNA amplification reaction, for any specified amplification

objective, has been discussed. This would enable the automated design of

new types of amplification reactions, in addition to enhancement of existing

reactions.

We demonstrated by simulation that through the application of sequence

dependent kinetic state space models,
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� The overall amplification efficiency of the reaction can be improved by

orders of magnitude for the same number of cycles

� The overall time of the reaction can be substantially reduced compared

to conventional PCR protocols.

We then introduced control systems based on the sequence-dependent kinetic

model for DNA amplification. Using these control systems, we have demon-

strated that there exists an optimal temperature cycling strategy for geometric

amplification of any DNA sequence and formulated optimal control problems

that can be used to derive the optimal temperature profile that maximizes the

DNA amplification efficiency. Strategies for the optimal synthesis of the DNA

amplification control trajectory have been proposed. Finally we have solved

a PCR optimal control problem and obtained the optimal temperature pro-

file that maximizes the DNA concentration and minimizes the overall reaction

time.

6.2 Future Work

6.2.1 Software Interface

In our current work we have used the control vector iteration technique to

solve the PCR optimal control problem. This technique is computationally

very expensive. There are very efficient dynamic optimization solvers as re-

viewed in Fig. 5.1 available. We plan to analyze those methods and choose an
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Figure 6.1: On-line prediction of optimal reaction condition for PCR

appropriate dynamic optimization solver that can solve the PCR optimal con-

trol problem in a reasonably short time. With this solver we envision creating

an on-line software such as those available to predict DNA melting thermo-

dynamic properties, protein sequence alignment, etc, to estimate the optimal

reaction conditions for a given template and primer set; Fig.6.1 shows such

interface. Since there is no on-line software to predict the optimal PCR reac-

tion conditions, we expect that our work would be potentially useful within

the PCR community.

6.2.2 Robust Control Analysis

We plan to create a larger database of heterogeneous DNA sequences and ex-

perimentally validate our model parameters to enhance the generality of our
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methods. We will also use the methods of robustness analysis to test the sen-

sitivity of our model predictions to parameter uncertainty. The robustness of

the optimal control trajectory to the model uncertainty can be obtained for

a given model parameter uncertainty distribution using robust control tech-

niques (Nagy and Braatz (2003) and Ma et al. (1999)). In this study, the

expectation value of the of the objective function, E(J), and it’s variance, σ2
J

are estimated. Incorporation of uncertainty at the outset of formulation of

an OCT problem for PCR can help resolve some of the problems with lack

of robustness for problems like minimal time optimal control - since the opti-

mization approach will locate minimum time temperature protocols that are

inherently more robust to enzyme binding rate constant uncertainty.

6.2.3 Real-time filtering

In real time PCR machines, which are often used to conduct PCR reactions,

it is possible to determine the DNA concentration on-line after every cycle

through fluorescence measurements. With these measurements and the state

space models which we have presented above, online filtering - a state esti-

mation technique - can be used to estimate other state vector components as

well as kinetic model parameters. In this way, the model parameters can be

refined based on the real time reaction conditions and the control strategy can

be modified on-line in response to state estimates.
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Appendix A

Derivation for the relaxation

time under steady state

assumption

The net forward rate of the ith step

r = ki[δi]− k−i[δi+1] ∀0 ≤ i ≤ N − 1 (A.1)

Note that equation A.1 has been written by applying the equilibrium condition

for the formation of the first base pair. Defining the stability constant for the

ith base pair formation as

si =
ki
k−i

(A.2)
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Now equation A.1 can be re-written as

r

ki
= [δi]−

1

si
[δi+1] (A.3)

si can be obtained from the free energy formation of the respective base pair.

For i = 0, equation A.3 can be written as

r

k0

= σ[δ0]− 1

s0

[δ1] (A.4)

For all other i

r

ki
= [δi]−

1

si
[δi+1] ∀1 ≤ i ≤ N − 1 (A.5)

At a fixed temperature the forward rate constant (ki) for the formation of

each base pair can be assumed to be a constant Wetmur and Davidson (1968)

and it is represented as k1. Using this assumption and summing equation A.5

through the index i and equation A.4, the equation A.6 is obtained.

N
r

kf
= σ[δ0]− 1

s0

[δ1] +
N−1∑
i=0

[δi]−
N−1∑
i=0

1

si
[δi+1] (A.6)

As the perturbation parameter δi is very small and the stability constant si is

> 1, the last term in L.H.S of equation A.6 can be approximated as follows

N−1∑
i=0

1

si
[δi+1] =

1

s

N−1∑
i=0

[δi+1]

Appendix A. Derivation for the relaxation time under steady state
assumption
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Since stability constant of all possible base pair formation is in the same or-

der of magnitude and the perturbation parameter is a small quantity, above

approximation is valid. Hence,

N
r

k1

= σ[δ0]− 1

s0

[δ1] +
N−1∑
i=0

[δi]−
1

s

N−1∑
i=0

[δi+1] (A.7)

Further simplifying the equation A.7

N
r

kf
= σ[δ0]− 1

s0

[δ1] +
N−1∑
i=0

[δi]−
1

s

N−1∑
i=0

[δi]−
1

s
δN +

1

s
δ1 (A.8)

Since

δ1

[
1

s
− 1

s0

]
≈ 0

N
r

k1

= σ[δ0] +
N−1∑
i=1

[δi]

[
1− 1

s

]
− 1

s
δN (A.9)

A.4 +
1

s0

× A.5(i = 1) =⇒ r

k1

=

[
1 +

1

s0

]
σ[δ0]− 1

s0s1

[δ2] (A.10)

A.10 +
1

s0s1

× A.5(i = 2) =⇒

r

k1

=

[
1 +

1

s0

+
1

s0s1

]
σ[δ0]− 1

s0s1s2

[δ3] (A.11)

Similarly repeating the above steps for all i

r

k1

[
1 +

N−2∑
i=0

i∏
j=0

1

sj

]
= σ[δ0]− δN

n−1∏
i=0

1

si
(A.12)

Appendix A. Derivation for the relaxation time under steady state
assumption
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The mass balance for the perturbation parameter can be written as

δ0 + δN = −
N−1∑
i=1

δi (A.13)

Substituting the equation A.13 in equation A.9,

N
r

k1

= σ[δ0]− ([δ0] + [δN ])

[
1− 1

s

]
− 1

s
δN (A.14)

=⇒ r

k1

=
δ0

N

[
σ +

1

s
− 1

]
− δN
N

(A.15)

Let [
1 +

N−2∑
i=0

i∏
j=0

1

sj

]
= C1

Comparing equation A.12 and A.15, an expression for δN is obtained as follows

δN = δ0

 [σ+ 1
s
−1]

N
− σ

C1

1
N
−

∏N−1
i=0

1
si

C1

 (A.16)

Substituting δN in equation A.15

r

kf
=
δ0

N

([
σ +

1

s
− 1

]
−

[
C1

(
σ + 1

s
− 1
)
−Nσ

C1 −N
∏N−1

i=0
1
si

])
(A.17)

Relaxation time is defined as

τ−1 = − 1

δ0

dδ0

dt
(A.18)

Appendix A. Derivation for the relaxation time under steady state
assumption
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Substituting r from equation A.16 for dδ0
dt

in equation A.17, we obtain the

following expression for the relaxation time

τ−1 =
kf
N

([
σ +

1

s
− 1

]
−

[
C1

(
σ + 1

s
− 1
)
−Nσ

C1 −N
∏N−1

i=0
1
si

])
(A.19)

Appendix A. Derivation for the relaxation time under steady state
assumption
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Appendix B

Nearest Neighbor Parameters

for Watson-Crick DNA

sequences

Consider a oligonucleotide sequence GCTAGCTGTAACTG for which ∆G

needs to be calculated at a temperature, T and a salt concentration 1M (Nacl).

∆G (T ) = ∆H − T∆S (B.1)

Assuming that ∆H and ∆S are independent of temperature, above equation

can be used to calculate ∆G at a given temperature. ∆H of the above sequence
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Table B.1: Nearest-neighbor thermodynamic parameters for DNA Watson-
Crick pairs in 1 M NACl

Propagation ∆H ∆S ∆G370C

Sequence (kcal/mol) (cal/K/mol) (kcal/mol)

AA/TT -7.6 -21.3 -1.00
AT/TA -7.2 -20.4 -0.88
TA/AT -7.2 -21.3 -0.58
CA/GT -8.5 -22.7 -1.45
GT/CA -8.4 -22.4 -1.44
CT/GA -7.8 -21.0 -1.28
GA/CT -8.2 -22.2 -1.30
CG/GC -10.6 -27.2 -2.17
GC/CG -9.8 -24.4 -2.24
GG/CC -8.0 -19.9 -1.84

Initiation +0.2 -5.7 1.96
Terminal AT penalty +2.2 +6.9 +0.05
Symmetry correction 0.0 -1.4 +0.43

is calculated as follows

∆H

 GCTAGCTGTAACTG

CGATCGACATTGAC

 = ∆H (GCini) + ∆H

 GC

CG



+∆H

 CT

GA

+ ∆H

 TA

AT

+ ∆H

 AA

TT

+ ∆H

 AG

TC

+ ∆H

 GC

CG



+∆H

 CT

GA

+ ∆H

 TA

AT

+ ∆H

 AG

TC

+ ∆H

 GC

CG

+ ∆H

 CT

GA


Table B.1 provides the values for the terms in L.H.S of the above equation.

Similarly ∆S is also calculated using the entropy values provided in Table B.1.

Once ∆H and ∆S for a whole sequence is calculated, Eq B.1 can be used to

calculate ∆G.
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Appendix C

Nearest Neighbor Parameters

for an internal mismatch

Nearest Neighbor Parameters for an internal single base pair mismatch.

MM ∆H ∆S MM ∆H ∆S

(kcal/mol) (cal/K/mol) (kcal/mol) (cal/K/mol)

GC/GG -6 -15.8 CC/GT -0.8 -4.5

CT/GT -5 -15.8 AC/CG -0.7 -3.8

CG/GG -4.9 -15.3 AG/TA -0.7 -2.3

GC/TG -4.4 -12.3 CA/GG -0.7 -2.3

GC/GT -4.1 -11.7 AA/TG -0.6 -2.3

AG/GC -4.0 -13.2 GA/CG -0.6 1.0

AG/TG -3.1 -9.5 TA/GT -0.1 -1.7

AC/AG -2.9 -9.8 AC/TC 0 -4.4
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CT/GG -2.8 -8.0 TA/TT 0.2 -1.5

AT/TT -2.7 -10.8 AC/GG 0.5 3.2

AT/TG -2.5 -8.3 AG/CC 0.6 -0.6

GT/CT -2.2 -8.4 AC/TT 0.7 0.2

CC/GC -1.5 -7.2 GA/AT 0.7 0.7

CG/TC -1.5 -6.1 AG/TT 1 0.9

TT/AG -1.3 -5.3 TT/AC 1 0.7

AT/TC -1.2 -6.2 AA/TA 1.2 1.7

AG/AC -9.0 -4.2 TA/CT 1.2 0.7

GA/GT 1.6 3.6 CA/GC 1.9 3.7

AA/TC 2.3 4.6 GC/CT 2.3 5.4

AA/GT 3.0 7.4 GG/CT 3.3 10.4

CA/AT 3.4 8.0 CC/CG 3.6 8.9

GT/TG 4.1 9.5 AA/AT 4.7 12.9

CC/AG 5.2 14.2 CC/TG 5.2 13.5

GA/CC 5.2 14.2 AC/TA 5.3 14.6

GG/TT 5.8 16.3 CA/CT 6.1 16.4

AA/CT 7.6 -20.2
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C.1. Effect of Na+ concentration on NN parameters

C.1 Effect of Na+ concentration on NN pa-

rameters

∆G (T ) = ∆H − T∆S
(
Na+

)
(C.1)

∆S
(
Na+

)
= ∆S

(
1MNa+

)
+ C (C.2)

C = (4.29fGC − 3.95)× 10−5ln[Na+] + 9.40× 10−6
(
ln2[Na+]

)
(C.3)

fGC is a fraction of GC content of a given oligonucleotide sequence. [Na+] is

a concentration of either [Na+] or [K+] salts.
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Appendix D

Effect of Mg2+ Concentration on

NN parameters

∆G (T ) = ∆H − T∆S
(
Mg2+

)
(D.1)

∆S
(
Mg2+

)
= ∆S

(
1MNa+

)
+ C (D.2)

C = (4.29fGC − 3.95)× 10−5ln[Mon+] + 9.40× 10−6
(
ln[Mon+]

)2
(D.3)

C = ∆H0

[
a+ bln[Mg2+] + fGC

(
c+ dln[Mg2+]

)
+

6 + fln[Mg2+] + g (ln[Mg2+])
2

2 (Nbp − 1)

]

(D.4)
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Table D.1: Parameter for Mg2+ Correction factor equations

Parameter Value (K−1) Standard Error (K−1)

a 3.92× 10−5 0.2× 10−5

b −9.11× 10−5 0.5× 10−5

c 6.26× 10−5 0.4× 10−5

d 1.42× 10−5 0.08× 10−5

e −4.82× 10−5 0.7× 10−5

f 5.25× 10−5 0.2× 10−5

g 8.31× 10−5 0.2× 10−5

a = 3.92× 10−5
(
0.843− 0.352[Mon+]0.5× ln[Mon+]

)
(D.5)

d = 4.12× 10−5
(
1.279− 4.03× 10−3ln[Mon+]− 8.03× 10−3

(
ln[Mon+]2

))
(D.6)

g = 8.31× 10−5
(
0.486− 0.258ln[Mon+] + 5.25× 10−3

(
ln[Mon+]3

))
(D.7)

fGC is a fraction of GC content of a given oligonucleotide sequence. [Mon+] is

a concentration of mono-valent salt concentration. [Mg2+] is a concentration of

Magnesium salt concentration. Table D.1 present the above model parameters.

Figure D.1 explains the algorithm that needs to be followed to calculate the

correction factor for Mg2+ concentration.
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Start

Is [Mon+]=0 ?

R = [Mg2+]0.5

[Mon+]

Use Eq D.4
with Parameters
from Table D.1

Is R < 0.22? Use Eq D.3

Is R < 6?

Use Eq D.4 with
parameters from
Table D.1 and
calculate the

parameters a,d
and g using Eq

D.5,D.6 and D.7

Use Eq D.4
with parameters
from Table D.1

yes

no

yes

no

yes

no

Figure D.1: Calculation of Entropy correction factor for a given [Mg2+]
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Appendix E

Calculation of the Equilibrium

Concentration

E.0.1 Self Complementary Sequences

—

2S
kf


kr
D (R1)

Kannealing =
[D]

[S2]
(E.1)

(E.2)

Let x be the conversion of reaction R1

Kannealing =
[D0] + [S0]x/2

[S0]2(1− x)2
(E.3)
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Assuming [D0] = 0.

Kannealing =
x

2[S0](1− x)2
(E.4)

From the above equation, the following equation for the conversion can be

written

x2 − x
(

2 +
1

2[S0]
Kannealing

)
+ 1 = 0 (E.5)

E.0.2 Non Self Complementary Sequences

—

S1 + S2

kf


kr
D (R1)

Kannealing =
[D]

[S1][S2]
(E.6)

(E.7)

Let x be the conversion of reaction R1 and assume that initial concentration

of S1 and S2 is equal

Kannealing =
[D0] + [S10]x

[S10]2(1− x)2
(E.8)
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Assuming [D0] = 0.

Kannealing =
x

[S0](1− x)2
(E.9)

From the above equation, the following equation for the conversion can be

written

x2 − x
(

2 +
1

[S0]
Kannealing

)
+ 1 = 0 (E.10)

If the concentration of S1 and S2 is not equal and S1 is the limiting reactant

Kannealing =
[D0] + [S10]x

[S10](1− x) ([S20]− [S10]x)
(E.11)

Assuming [D0] = 0.

Kannealing =
x

[S10](1− x)(M − x)
(E.12)

Here M = [S20]/[S10]. From the above equation, the following equation for

the conversion can be written

x2 − x
(
M + 1 +

1

[S10]
Kannealing

)
+M = 0 (E.13)
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Appendix F

Calculation of the Relaxation

time for Self Complementary

Sequences

d[Deq + δ]

dt
= kf [Seq − 2δ]2 − kr[Deq + δ] (F.1)

Expanding both sides of the above equation and neglecting the [δ2] term,

d[δ]

dt
= −δ(4kf [Seq] + kr) (F.2)

τ =
1

(4kf [Seq] + kr)
(F.3)
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Appendix G

Stability Constant Of AU

Polymer

Craig et al. (1971) estimated the stability constants of AU base pairs at various

temperatures. Figure G.1 presents the Arrhenius relationship of those stability

constants and using this relationship it is possible to estimate stability constant

at any temperature.
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Figure G.1: Stability Constant of AU polymer
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