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ABSTRACT 

Parametric resonance provides a sharp jump in resonance amplitude at the bifurcation 

setpoint and is, therefore, ideal for ultrasensitive detection of mass or stress shifts that modify the 

resonance frequency and hence the bifurcation frequency.  This work investigates a bi-state 

controller capable of servoing along the microelectromechanical (MEMS) parametric resonant 

bifurcation point at large displacement amplitudes.  The control plant is a large-stroke (8 μm) 

parametric resonator excited by an in-plane “shaped-finger” electrostatic comb drive fabricated 

using a 15 μm-thick silicon-on-insulator MEMS (SOI-MEMS) process. The large-stroke 

parametric resonance and the ability to track the bifurcation jump point promote future 

implementation of ultrasensitive bifurcation-based chemical gravimetric sensors, strain gauges, 

and mode-matched gyroscope applications. 

The controller feedback states are two levels of the electrostatic-drive voltage that shift the 

nonlinear resonance characteristics. The system is driven at a fixed frequency. The feedback 

states correspond to two steady-state conditions: the “on” state experiencing parametric 

resonance and the “off” state at zero amplitude.  The states are cycled by 200 kHz pulse-width-

modulation that circumvents the slow hysteretic latch-on that would occur in steady-state 

operation. The closed-loop control avoids the necessary setup and ring-down time that are 

required to settle between the “on” and the “off” states.  The exemplary system demonstrated has 

1.9 µm servo amplitude with a minimum normalized Allan deviation of 2.36×10–4.  A second 
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experimental embodiment of the bi-state bifurcation-based controller uses a crab-leg Duffing 

resonator to servo at the maximum “on” point (5 μm) prior to the bifurcation jump.   

A quadratic capacitance-displacement response is synthesized by engineering a “shaped-

finger” comb profile. The excitation of the nonlinear parametric resonance is realized by 

selecting an appropriate combination of the electrostatic stiffness coefficients through a specific 

varying-gap comb-finger design.  A large frequency tuning range of 17% is demonstrated in an 

example crab-leg resonator.   

A predictive simulation methodology for the nonlinear parametric resonance systems uses 

elemental behavioral models to compose the system.  The mixed MEMS/analog behavioral 

composable modeling methodology is validated by the characterization of a canonical CMOS-

MEMS non-interdigitated comb finger resonator.  
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CHAPTER 1 INTRODUCTION 

esonant-based sensing has long been exploited to gauge micromechanical system 

parameters such as mass and spring constant. Gravimetric sensors and mass flow 

meters that measure the mass change and the stress sensors that link to changes in 

suspension spring constant all exemplify this approach. As harmonic resonators 

suffer from a direct link between amplitude and frequency noise that degrades sensitivity, there 

is interest in using a class of nonlinear parametric resonators to develop an extremely sensitive 

mechanism [1] to detect very small (e.g. millihertz) changes in resonance frequency. This 

improved sensitivity stems from an instantaneous “jump” transition from near-zero to high 

displacement at the bifurcation frequency.  

1.1. BENEFITS OF PARAMETRIC RESONANCE 

One of the benefits of the parametric resonance is the bifurcation phenomenon in the case of 

a directional sweep of parametric drive frequency in the region around twice the resonant 

frequency.  The bifurcation occurs in a system that exhibits bi-stability.  A bi-stable system has 

two states.  A simple example of the bi-stable system is a digital bit which has “0” and “1” states.  

A state transition from “0” to “1” is analogous to the bifurcation phenomenon.  In a parametric 

resonator, a sharp jump in the mechanical displacement amplitude from zero to a non-zero value 

takes place at a “pitch-fork” bifurcation frequency.  The frequency at which the jump happens 

R 
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depends upon the direction of the frequency sweep, providing a hysteresis effect.  Detecting this 

sharp jump enables sensitive detection of changes in the resonant frequency, which can either be 

caused by a change in mass [1] or stress which affects the spring constant.   

The bi-stability at the bifurcation point makes measurement of the bifurcation frequency 

possible to extremely good precision. Because of this ability, this class of nonlinear resonators is 

a good candidate for highly sensitive mass (i.e., gravimetric) and stress detectors.  Measuring the 

frequency shift on the sharp boundary of the parametric resonance relates directly to any change 

in the vibrating mass [1]. Compared to a harmonic-mode resonant mass sensor, the parametric-

mode gravimetric detector is immune to the injected amplitude noise [2] because the bifurcation 

response retains its sharpness in the presence of the detection noise. The prior demonstration of 

attogram mass sensitivity by enhancing frequency resolution in a parametrically excited mass 

sensor [3] offers motivation for bifurcation–based control [4], which can then result in extremely 

sensitive detection of mass or stress. 

Certain kinds of mechanical and electrostatic nonlinearity give rise to flat and large 

amplitude response over relatively wide frequency ranges that are potentially useful in making 

manufacturable resonant devices.  Wide-band response of electrostatic drives encompasses 

mismatched modes and avoids the need for tuning. Matched-mode gyroscopes in the presence of 

process mismatch [5], scanning tunneling microscopes [6], scanning mirrors [7], and sensors that 

need motion for chopper stabilization all benefit from this behavior.   

Parametric resonance finds further applications in noise squeezing [8] and signal parametric 

amplification [9] for effective Q enhancement, mechanical modulation [10], and parasitic signal 

Sensing 
application 

Wide-band 
response 

Other 
applications 



Chapter 1: Introduction 
 

 
3 

reduction. Some classes of nonlinear systems can induce chaos [11] and the random motion 

might be used for random number generation.  

1.2. PARAMETRIC RESONANCE 

A system is excited parametrically when its state is modified by time-varying parameters.  A 

classic example is a pendulum with its rotational moment of inertia varying at twice the resonant 

frequency to “pump” it into resonance. In electrostatically driven resonant MEMS, the most 

effective time-varying parameter arises from nonlinear electrostatic actuators that introduce an 

equivalent electrostatic stiffness that varies with excitation voltage. The mechanical flexure 

stiffness is another design variable that is set by spring topology and dimensions and that can be 

set to intentionally introduce essential nonlinearity to the system behavior.  Turner et al. [6] 

experimentally measured five parametric resonant modes in a torsional oscillator, and verified 

that, as predicted by theory, parametric resonance occurs near drive frequencies of nr /2ω , where 

ωr is the natural mechanical resonant frequency and n is an integer larger or equal to 1.  The 

scope of this work covers the principal parametric resonance occurring at twice the resonant 

frequency ( rω2 ). 

The harmonic and parametric resonators differ in the way the resonance is excited. The 

harmonic resonator has a fixed spring constant, with an external drive that is sinusoidal in time t 

and invariant in displacement x. Electrostatically-driven parametric excitation arises when the 

electrostatic force applied on a MEMS resonator is not only a function of the time but also a 

function of the displacement of the resonator [15]. An electrostatic drive actuates the parametric 

Definition 
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force 
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resonator at an electrical frequency, ωd, which creates a time-varying displacement-dependent 

spring constant, keff.  Parametric resonance conditions are satisfied when the periodic variation of 

keff is at twice the resonance frequency, i.e., ωd = 2ωr. A typical electrostatic sinusoidally varying 

parametric force, Fp, can be expressed as 

( ) ( )[ ]tVVxxF r
2

ac
2

dc
3

31p 2cos ωγγ ++−=  (1.1) 

where t is time, x is the x-directed displacement of the mass, and Vdc and Vac are the voltages 

applied on an electrostatic drive comb that are designed to create a voltage-controlled linear 

spring constant, γ1, along with a cubic-displacement nonlinearity, γ3.   

The second-order differential equation describing a mass-spring-damper system is 

( )xtFxkxkxbxm ,p
3

31 =+++   (1.2) 

where m is mass, b is the damping coefficient, and k1 and k3 are linear and cubic spring 

constants, respectively. x  is the first derivative of x with respect to time t.  Substituting the force 

in (1.1) into (1.2) and rearranging terms yields a nonlinear Mathieu equation 

( ) ( ) ( ) ( )tVxxxVkxVkxbxm r
2

ac
3

31
32

dc33
2

dc11 2cos ωγγγγ +−=+++++   (1.3) 

An example of parametric excitation is conceptually shown in Figure 1-1.  A block material 

suspended by a spring experiences a parametric excitation in the form of (1.1).  Simplifying (1.1) 

by enforcing Vdc = 0 and γ3 = 0, (1.1) can be rewritten as 

( )tVxF r
2

ac1p 2cos ωγ−=  (1.4) 

The waveforms of the displacement, x, velocity, x , parametric voltage, ( )tV racp, 2cos ω , and 

parametric force, Fp, are plotted in Figure 1-2.  The applied parametric force is always in the  

Mathieu 
equation 

Example 
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Fp

x

x
 

Figure 1-1: A block material suspended by a spring experiencing a parametric excitation. 

t

x

Fp

( )tV r
2

ac 2cos ω

x

t

t

t

2π/ωrπ/ωr0

2π/ωr

2π/ωr

2π/ωr
 

Figure 1-2: The waveforms of the displacement, x, velocity, x , parametric voltage, 

( )tV racp, 2cos ω , and parametric force, Fp, for the conceptual example in Figure 1-1. 
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same direction of the velocity, pumping energy into the system at a rate equal to twice the 

system’s resonant frequency. 

One solution to (1.3) is x = 0.  The parametric force degenerates to zero when the resonator is 

at rest, which is generally realized by symmetric electrode design [16] that is force-balanced 

when the displacement is zero.  With the existence of thermomechanical noise due to the air 

damping, a very small but non-zero noise displacement on the order of 10 fm/rtHz is present and 

as a result, the force becomes non-zero and is proportional to the displacement. In a second-order 

mechanical system, electrostatic mechanical force exerted on a moving mass acts like a spring. 

This electrostatic spring constant is controlled by the applied voltage. With non-zero displacement 

and parametric drive voltage, the mass-spring-damper system periodically increases (hardens) or 

decreases (softens) the total effective spring constant.  The excitation parametric force and the 

velocity of the resonator are in phase, pumping the mass into parametric resonance at 2ωr.  

When parametrically excited, the effective spring constant is periodically modified twice 

within one period of the oscillation by the time-varying pump voltage.  The system establishes 

parametric resonant amplification which builds exponentially-growing oscillation amplitude. The 

pumped displacement amplitude and phase are strong functions [17] of the system parameters 

such as the resonator mass, mechanical spring constant, and electrostatic spring constant of the 

actuator that excites the parametric resonance.  The exponential growth is limited by the 

mechanical and electrostatic nonlinearities; the latter is controlled by the drive voltage.  Detailed 

description of the perturbation analysis in solving (1.3), and the amplitude and phase responses 

can be found in Appendix A and [40]. 

Qualitative 
description 
of 
parametric 
resonance 



Chapter 1: Introduction 
 

 
7 

 

1.3. EXCITATION OF PARAMETRIC RESONANCE 

Parametric excitation in (1.1) arises from several different electromechanical drive 

topologies.  One simple example is a parallel-plate capacitive voltage-force transducer (shown in 

Figure 1-3 (a)), which provides a linear softening electrostatic spring constant for sufficiently 

small displacement relative to the gap.  A class of non-interdigitated finger (NIF) comb 

drives [16], [17], and [18] (Figure 1-3 (b)) has been widely used to provide a well-defined 

displacement-dependent force source.  The NIF comb drive is constrained to move in a direction 

orthogonal to the finger length and makes use of the fringing electric field generated between 

non-overlapping comb fingers.  Both the linear and cubic stiffness can be independently tuned by 

the percentage of the finger width to its pitch [19] so the parametric frequency response can be 

adjusted correspondingly.   

x

y

z

Stator

Rotor

x

a) b)

StatorR
ot

or

xRotor

Stator
x

c)
 

Figure 1-3: Methods of achieving parametric excitation in the form of (1.1) include (a) parallel-

plate drive, (b) NIF, and (c) shaped-finger comb.  x indicates the direction of motion. 
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However, the NIF design is limited in displacement stroke to a maximum of ±1/2 of the 

comb pitch (usually on the order of 1 µm).  This design constraint is due to the necessary 

nonlinearity required to excite the parametric resonance.  Many applications, e.g., 

gyroscopes [20] and scanning mirrors, benefit from a large motional stroke to provide a better 

signal-to-noise ratio.   

Towards this end, a compact electrostatic comb is synthesized to have a large stroke with a 

small design footprint.  This “shaped-finger” comb (Figure 1-3 (c)) utilizes a nonlinearly varying 

electrode gap to provide the necessary electrostatic stiffness for exciting parametric resonance 

with much larger stroke (up to 8 µm).  Like the parallel-moving straight-finger capacitive comb 

(the same comb as Figure 1-3 (a) but moves in y), the shaped-finger comb moves laterally in the 

plane of the wafer, allowing sufficient clearance for large displacement motion.  For a resonator 

that utilizes the shaped-finger comb, separate linear displacement sensing combs can be included 

to electronically measure the parametric resonance in these large-stroke systems.   

The shaped-finger comb concept was originally introduced by Hirano [21] to achieve a 

smaller gap beyond the fabrication constraints.  Further studies of the finger shape focus on its 

tuning applications, in which the planar comb shape is designed such that an electrostatic force 

with specific nonlinearity is applied.  The analytic model and its tuning dynamics were reported 

in [22] and [25].  Several patents also cover a variety of in-plane curved features [23] and out-of-

plane shaped structures using chemical mechanical polishing [24].   

The possibility of a shaped-finger comb in exciting the parametric mode was briefly 

mentioned in a prior paper [22] but no further work was done.  This work presents analysis, 

Limitation 
of NIF 

Benefits of 
shaped-
finger comb 

Prior art 

Thesis 
contribution 
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simulation, and experimental validation of large-stroke parametric resonance using a “quadratic-

shaped-finger” comb.  Study of the shaped-finger comb in exciting high-stroke parametric 

resonance represents a major contribution of this thesis.  A quadratic-shaped-finger comb 

parametric drive and the characterization of a nonlinear parametric resonator utilizing this class 

of comb design will be discussed in detail in Chapter 3. 

 

1.4. NONLINEAR MATHIEU EQUATION AND PERTURBATION ANALYSIS 

Quantitative descriptions of MEMS parametric resonance have been extensively studied in 

[17], [16], and [18] by solving the nonlinear Mathieu equation with perturbation techniques.  The 

governing nonlinear Mathieu equation (1.3) of the nonlinear resonators under investigation is a 

second-order differential equation with an oscillating external excitation, which is difficult to 

solve analytically.  Perturbation techniques [15] provide a mathematical approach to an 

estimated solution.  In particular, the method of multiple scales and the method of averaging 

[17], [18], and [30] provide an approximate closed-form solution to (1.3).   

The perturbation approach starts with normalizing (in Appendix A.1) the dimensional 

equation into a general form. It then finds the steady-state amplitude and phase solutions, i.e. 

equilibria, using the method of averaging [30], and linearizes the equations about these 

equilibria.  The details of the derivations are located in Appendix A.2 and A.3.  The stability of 

these equilibria, described in Appendix A.4, is determined by allowing the system state to move 

along the linearized approximation by a small amount.   

Perturba-
tion 
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of perturba-
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This work expands on the perturbation method used in [17] and details the stability analysis 

using a two-step straightforward linear transformation, in the interest of establishing the 

relationship between the transition frequencies and amplitudes with system parameters.  In this 

section, we will focus on three important aspects of the Mathieu equation solutions: the steady-

state amplitudes; the bifurcation frequencies, i.e., the transition frequencies between the “stable” 

and “unstable” states; and the frequency response.  The steady-state frequency response plots the 

steady-state amplitude versus the frequency of the sweep and denotes the stability of each 

amplitude solution branch.   

1.4.1. NONLINEAR MATHIEU EQUATION 

The equation of motion of a nonlinear parametric resonator describes a mass-spring-damper 

system with linear and cubic stiffness coefficients, driven by an electrostatic force that is not 

only a function of time but also of the displacement.  The nonlinear Mathieu equation (1.3) may 

be written into the more general form: 

( ) ( ) 23
31p

3
31 , VxxxtFxkxkxbxm γγ +−==+++  , (1.5) 

Taking MEMS resonators described in Appendix B as examples, the sources of damping are 

usually dominated by the Couette damping of the plate mass interacting with the underlying 

substrate, as well as Stokes damping of the plate, and the squeeze-film damping between the 

gaps of any interdigitated comb fingers that are used as the capacitive sensing electrostatic drive. 

At rest, the damping force, xb , and inertial force, xm  , are zero valued. In this case, the 

spring force, 3
31 xkxk + , is equal to the parametric force term, ( ) 23

31 Vxx γγ +− , and 0=x  is a 

Focus of 
this section 
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solution. The parametric force, Fp, exerted by the nonlinear electrostatic drive is an odd function 

of the displacement.  The force term, Fp, is generally realized by a symmetric electrode actuator 

design [16] (i.e., drive combs located on both sides of the resonating mass) that is force-balanced 

when the displacement is zero (i.e., Fp = 0).  In the presence of thermomechanical noise due to 

the air damping, a small displacement takes place and as a result, the force becomes non-zero 

and is approximately proportional to the displacement for these small motions.  When the 

parametric excitation frequency is around twice the natural frequency, the excitation parametric 

force and the velocity of the resonator are in phase, pumping the device into resonance, as 

graphically shown in Figure 1-2.  The effective spring constant is modified twice within one 

period of the oscillation by the time-varying pump voltage. The pumped displacement amplitude 

and phase are strong functions [17] of the system parameters, which include the resonator mass, 

the mechanical spring constant, and the electrostatic spring constant of the actuator.   

 

1.4.2. PARAMETRIC DRIVE AND PARAMETRIC FORCE 

The voltage applied across the parametric excitation comb fingers is  

)cos()( dacp,dcp, tVVtV ω+= , (1.6) 

where ωd is the electrical excitation frequency and V p,dc and V p,ac are the effective DC and AC 

parametric drive voltages.  Squaring both the left-hand-side and right-hand-side of (1.6) yields 

)(cos)cos(2)( d
22

acp,dacp,dcp,
2
dcp,

2 tVtVVVtV ωω ++= , (1.7) 

which can be rewritten as 

Drive 
voltage 
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)cos()( d
2

ac
2

dc
2 tVVtV ω+≅ , (1.8) 

in the case of Vdc
2 >> Vac

2, where Vdc = Vp,dc, and Vac = acp,dcp,2 VV . These drive conditions 

provide a DC force term and an AC force term with one frequency ωd [29] that decouples the 

parametric and direct harmonic excitation and adds independent control of Vdc and Vac. If Vac
2 is 

close in value to Vdc
2, higher-order frequency term ( ) ( )

22 2dcac d2 cosV V tω⋅  becomes significant 

that cannot be neglected.   

As a comparison, using the same voltage in (1.8), for a class of parallel-moving interdigitated 

linear comb fingers (shown in Figure 1-3(a) whose movable comb moves in y, where the gap 

remains constant), the capacitance – displacement profile is linear along y. The electrostatic force 

is only a function of time and not of displacement: 

[ ])cos(
d
d

2d
d

2 d
2

ac
2

dc
2

p tVV
y
CV

y
CF ω+

1
=

1
= . (1.9) 

where the derivative of capacitance 
y
C

d
d  is a constant because C is a linear function of y.   

However, when driven by a parametric drive [for example, a non-interdigitated comb 

(Figure 1-3b) or a shaped-finger-comb (Figure 1-3c)], the force is both a function of time and 

displacement.  For the special case of a linear parametric drive (i.e., 3γ  = 0), 

[ ]xtVVF )cos( d
2

ac
2

dc1p ωγ +−= . (1.10) 

This linear parametric force periodically modulates the total effective spring constant of the 

system, leading to linear parametric resonance effect. 

Inter-
digitated 
comb v.s. 
Non-inter-
digitated 
comb 
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Substituting (1.10) into (1.5) and neglecting the mechanical cubic nonlinearity, k3x, yields the 

linear Mathieu equation 

( ) xtVxVkxbxm )cos( d
2

ac1
2

dc11 ωγγ −=+++  . (1.11) 

The resonant frequency of the linear Mathieu equation, taking into account the linear 

electrostatic spring effect, is  

m
Vk

r

2
dc11 γ

ω
+

= . (1.12) 

More generally, including the nonlinear term, γ3 and k3, yields the expanded nonlinear Mathieu 

equation given in (1.3). 

 

1.4.3. STEADY-STATE SOLUTIONS 

In general, the perturbation methods linearize the equation about its equilibria and use an 

asymptotic expansion to determine their stability.  A nondimensionalization step is used to 

rewrite the nonlinear Mathieu equation (1.3) into a general form so its solutions can be 

universally applied in comparison of system behavior.   

0)2cos()2cos2( 33
3 =+++++ TrsTsss δεεδµε   (1.13) 

The dimensionless displacement is 

0x
x

s =  (1.14) 

Linear 
Mathieu 
equation 
resonance 
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Normaliza-
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where x0 is the characteristic displacement.  For example, x0 may be the comb finger pitch 

(center-to-center distance between fingers in Figure 1-3b) for a non-interdigitated finger 

resonator, or the maximum stroke of a lateral comb resonator.  The dimensionless time is 

2
tT dω= , (1.15) 

The dimensionless damping, μ, is 

dm
b
ωε

µ 2
= . (1.16a) 

The dimensionless linear mechanical stiffness, δ, is 

2

2
dc11 )(4

dm
Vk

ω
γ

δ
+

= . (1.16b) 

The dimensionless parametric linear electromechanical stiffness, ε, is 

2

2
ac12

dm
V
ω

γ
ε = . (1.16c) 

The dimensionless cubic mechanical stiffness, δ3, is 

2
ac1

2
0

2
dc33

3
)(2

V
xVk

γ
γ

δ
+

= . (1.16d) 

The dimensionless parametric cubic electromechanical stiffness, r3, is 

1

2
03

3
2
γ
γ x

r = . (1.16e) 

The magnitude of these dimensionless parameters represents their relative importance. 

To arrive at the steady-state solution, an assumed solution  Assumed 
solutions 
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[ ])(cos)()( TBTTATs +Ω= , (1.17) 

and its time derivative 

[ ])(sin)()( TBTTATs +ΩΩ−= , (1.18) 

are imposed to rewrite the normalized Mathieu equation into a state-space model in the 

amplitude, A, and phase, B, domain.  The dimensionless mechanical frequency is 

r

d

ω
ω
2

∆Ω . (1.19) 

The method of averaging yields normalized steady-state amplitude by discarding fast-varying 

transients.  The averaged equations are in the form of first derivative of amplitude and phase: 

( ) ( )[ ]BArAxA 2sin44
8
1 2

30 ++−= µε . (1.20) 

( ) ( )[ ]BArAB 2cos2483
8
1 2

313
2 ++−= ωδε . (1.21) 

where a detuning parameter, ω1, is defined as 

11 εω+=Ω . (1.22) 

The quantity εω1 measures the closeness of excitation frequency, ωd, to the principal parametric 

resonance frequency (equal to twice the resonance frequency, 2ωr).  The averaged model is then 

used to determine the steady-state response and stability as in [17] and [18].   

The dimensional steady-state amplitude, αi, and phase solutions, βi, are considered constants 

with respect to time.  In the case when the effect of the air damping can be neglected, one steady-

state stable trivial (zero) and three steady-state non-trivial responses [17] are derived by setting 

0=A  and 0=B . 

Averaged 
equations 
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33

1
01 23

212
r

x
−

+
±=

δ
ω

α ; (1.23a) 





 +±=

2
1

1 nπβ , where n = 0, 1, 2, …; (1.23b) 

33

1
02 23

212
r

x
+
+−

±=
δ

ω
α ; (1.23c) πβ n±=2 , where n = 0, 1, 2, …; (1.23d) 

3
03

4
r

x −±=α ; (1.23e) 







−−±= 1

3

3
3 2

3
arccos

2
1 ω

δ
β

r
; (1.23f) 

04 =α  ; (1.23g) ( )14 2arccos
2
1 ωβ ±=  , (1.23h) 

 

The resulting four dimensional steady-state solutions are [αi βi]T, where i = 1, 2, 3, and 4.   

 

1.4.4. FREQUENCY RESPONSE 

This section describes the denormalized transition frequency and its dependence on the 

observable system parameters such as the excitation voltages and frequency. With the parametric 

amplification occurring at excitation frequency, rd ωω 2≅ , the dimensional mechanical response 

is 

( )[ ])(1cos)( r1 tttx ii βωεωα ++= . (1.24) 

The stability of the steady-state amplitude and phase in (1.23) was extensively studied in [29] 

and [31]. A special case of the generalized stability analysis is included in Appendix A.4 to 

derive the “boundaries” between the stable and unstable solution branches.  The stability analysis 

determines the bifurcation frequencies where bi-stable jumps occur. These transition frequencies 

are defined in (A.48).   
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Using an experimental non-interdigitated finger (NIF) parametric resonator described in 

Chapter 2 as an example, four denormalized steady-state mechanical response amplitudes αi and 

the corresponding denormalized transition excitation frequencies ( )ijrij fff ,1tran 12 εω+==  are 

plotted in Figure 1-4, where i denotes the ith steady-state solution, and j denotes the jth bifurcation 

frequency.  The design variables are from Table 2-1 and Table 2-2 in Chapter 2 and the 

dimensional bifurcation frequency values are summarized in Table 1-1. The driving voltages are 

Vdc = 40 V and Vac = 20 V.   

 

 
Table 1-1: The dimensional bifurcation frequencies of the NIF resonator 

Symbol Physical interpretation Value (kHz) 
11f  pitchfork bifurcation from trivial solution to the unstable region of 1α  29.2 

12f  saddle-node bifurcation of 1α  to 3α  25.0 

21f  pitchfork bifurcation where 2α  annihilates into the trivial solution 30.0 

22f  saddle-node bifurcation of 2α  to 3α  24.2 
 

 

The frequencies 11f  and 21f  are called “pitchfork” bifurcation frequencies and 12f  and 22f   

are called the “saddle-node” bifurcation frequencies. At parametric resonance, two “pitchfork” 

bifurcation frequencies spread out symmetrically corresponding to ω1,i1 = ±0.5, where i = 1,2 on 

the frequency axis. 
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Figure 1-4: Measured steady-state response of a MEMS nonlinear resonator driven by the 

aligned NIF showing softening nonlinearity.   

 

The non-zero stable solutions emanating from the bifurcation points 11f  and 21f  in 

Figure 1-4 emerge when the amplitude solutions are real-valued. Specifically for the amplitude 

solutions in (1.23), because 3δ3 ± 2r3 < 0, the solution 1α  becomes real-valued when ω1 < –½. 

Similarly, the solution 2α  is real-valued when ω1 < ½.  The direction of the bending is 

determined by the sign of the combined nonlinearity (3δ3 ± 2r3) in (1.23). For this particular 

aligned NIF resonator example, 3δ3 ± 2r3 < 0, the amplitude-frequency solutions bend to the left, 

indicative of a “cubic softening” nonlinearity. The linear electrostatic stiffness, 1γ , changes the 

normalized parameter ε, which affects the resonance frequency and frequency scaling but not the 

bending behavior. The resonant amplitude is limited by the cubic stiffness nonlinearity.  The 

Figure 1-4 
explanation 
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resonator maintains resonating state along the non-zero solution curves. The type of nonlinearity 

can vary from spring softening as reported in [16] and [17], to mixed nonlinearity and further to 

spring hardening with different NIF placement. 

The steady-state response amplitude and phase versus the frequency (known as the frequency 

response) are experimentally validated by chirping the frequency slowly and recording the 

steady-state displacement by a lock-in amplifier or an optical vibration testbed.  Details of 

experimental validation are described in Section 2.3 and 3.4. 

 

1.4.5. HYSTERESIS AND BIFURCATION BEHAVIOR 

The “bending” of the curve results in multi-valued solutions at the same excitation frequency 

to the left of pitchfork bifurcation point 21f . Depending on the initial condition, the response 

amplitude will land on one of the two solution branches.  When the frequency is swept from low 

to high values (frequency up-sweep), the system amplitude first follows the trivial (zero) solution 

with a very small motion in x created by the thermomechanical noise, until it reaches the 

bifurcation frequency 11f  of solution 1α  where the parametric stable trivial solution intersects 

with the parametric unstable region of 1α  (point A).  At point A, solution 1α  is unstable while 

2α  is stable.  With the presence of a small motion perturbed from the zero displacement by the 

Brownian noise force, the system jumps from the zero solution to the stable region of 2α  (red 

line from A to B) as soon as its trajectory passes through bifurcation frequency 11f .  The jump 

amplitude trana  is defined as the amplitude difference between B and A.  At the “pitchfork” 

Experi-
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bifurcation A, 5.011,1 −=ω , the denormalized up-sweep transition frequency and the jump 

amplitude are  

( )
2 21 dc 1 ac

11 1,11 0
1 1

2 1 2 1 1
4r r

V V
f f f

k k

γ γ
εω

 
 = + ≅ + −
 
 

 (1.25) 

( )2
ac3

2
dc33

2
ac1

2tran 233
2

11 VVk
V

aa
ff γγ

γ
++−

==
=

 (1.26) 

where ( ) mkfr 10 21 π=  is the natural frequency and the rest of the terms are independent of 

mass m.  Using the design parameters in Table 2-1 in Chapter 2, the perturbation parameter ε = 

0.028 yields a very small perturbed term 014.011,1 −=εω . The up-transition frequency, though 

perturbed, is very close to twice the resonance frequency, which provides guidance to the search 

of the bifurcation setpoints. Equation (1.25) also indicates that Vdc provides an electrostatic 

tuning effect that shifts the location of the bifurcation. Vac affects the location of the bifurcation 

and the width of the non-zero solution region for non-zero Vdc. In the case of extremely small 

Vac, both the non-zero solution branches, namely 1α  and 2α , converge, making it difficult to 

search for the bifurcation because of the very small jump step.  With a large enough DC 

polarization voltage Vdc, (1.25) is approximately a linear function of Vdc, which is later verified 

by behavioral modeling results in Chapter 2. 

When frequency is swept from high to low values (frequency down-sweep), the system 

amplitude first follows the stable solution branch of 2α  until it reaches the saddle-node 

bifurcation point E where a stable solution turns into a saddle point.  The amplitude step jumps 
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from the edge of 2α  to the trivial solution 4α .  The corresponding saddle-node bifurcation 

frequency at E is 
3

3
22,1 2

3
5.0

r
δ

ω −−= , giving a denormalized down-sweep transition frequency 
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All the terms in the expression except the natural frequency, 0rf , are independent of mass.  

 

1.5. BIFURCATION-BASED CONTROL 

To explore the capability of parametric resonance in making an ultrasensitive mass sensor or 

a sensitive strain gauge, a drive scheme is needed to excite the parametric resonance and reveal 

the bifurcation behavior.  An open-loop frequency sweep had been extensively used by Turner, 

et al. [1], [13] to measure the change in the bifurcation frequency point.  This change had been 

exploited to establish a link between the bifurcation frequency and the mass [1] or chemical 

absorption [2].  However, the open-loop method is slow due to a long transient frequency chirp 

tests (on the order of minutes) that exploits quasistatic operation points.  This drawback makes 

the open-loop sweep method impractical for sensor applications.  

An operation point servo at or near the bifurcation setpoint can be designed to facilitate the 

control right at the “jump” event.  However, the nonlinear parametric resonance system exhibits 

latch-up instability in the quasistatic operation.  This instability is due to the slow-time scale that 

is required to collapse from a zero state and move along the bifurcation manifold [14] to a non-

zero state.   Due to salient nonlinearity, such a system also has hysteretic behavior, which limits 
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the range of the servo operation.  Moreover, these underdamped systems have relatively long 

ring-down and build-up time.  The latch-up instability, hysteresis, and long resettling time render 

classical linear control possibilities ineffective.   

Different approaches exist for the closed-loop control at the bifurcation point. Both 

amplitude- and phase-based bifurcation analog controllers were previously implemented.   

Burgner et al. implemented a bifurcation-based analog control scheme [4] by observing the 

coherency of the signal phase.  The controller is designed such that the resonant amplitude is 

kept very small (140 pm) in order to lock into the phase coherency to avoid the slow-time 

bifurcation jump event that is required to travel from the zero state to the non-zero state.  The 

separation of the time scales is accomplished by adjusting the pump drive voltage to maintain a 

near-zero state.  The controller is impractical for on-chip integration, at least in current 

technology, since it is implemented in a field-programmable gate array and takes as the input the 

statistics of the phase.  The loop relies on a small stroke to avoid the jump and the long reset time 

that follows, leading to low ratio of steady-state amplitude to the system noise.  A year later, 

Burgner et al. reported an improved controller with vibration amplitude as the controlled variable 

[26].  The technique settles at relatively small amplitude of below 1.5 nm, making it unsuitable 

for robust control applications.   

Chapter 4 proposes a bi-state parametric controller that utilizes both “on” and “off” drive-

amplitude states to avoid the latch-up instabilities and address the issue of limit cycle and 

instability.  The servo controls the system at a bifurcation frequency setpoint with relatively high 

drive amplitude (on the order of 1.9 μm).  The control plant is a large-stroke shaped-finger comb 
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parametric resonator [25] made in a silicon-on-insulator-MEMS (SOI–MEMS) process. An 

electrostatic comb comprising a set of interdigitated “quadratic-shaped-finger” is the parametric 

drive.   

Chapter 5 presents details on a bi-state controller for the control of a Duffing microresonator 

on the falling edge of the instability [34].  The Duffing servo point was chosen at the maximum 

“on” amplitude prior to the bifurcation jump event.   

 

1.6. THESIS CONTRIBUTIONS 

This work demonstrates a novel drive-amplitude state control technique capable of servoing 

along the microelectromechanical parametric resonant bifurcation jump point.  The controller is 

capable of large amplitude operation, which enhances its robustness in the presence of detection 

noise.  The servo states are cycled by a fast pulse width modulation that circumvents the latch-up 

or latch-off instability and slow amplitude build-up or ring-down as would happen in quasistatic 

operation with analog feedback. The controller is experimentally validated to achieve sensitive 

detection of bifurcation frequency curve shifts down to millihertz range.  The predicted 

equivalent minimum detectable mass change is 12 pg if the controller were to form the core of a 

future mass sensor.  The controller plant is driven by a high-stroke parametric-mode 

electromechanical drive with 8 μm amplitude and 17% large frequency tuning range.  This 

“shaped-finger” comb drive topology is achievable by tailoring the finger shape of a laterally-

moving comb.  The high-stroke shaped-finger drive enhances the ratio of steady-state amplitude 

to the minimum Allan deviation beyond 120 dB.  

Duffing 
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The primary contributions of this work are: 

• The first experimental validation of large-stroke parametric resonance driven by a 

laterally-moving “shaped-finger” comb topology with differential capacitive 

transducer readout.  Two embodiments of “quadratic-shaped-finger” comb parametric 

resonators are successfully fabricated to accommodate up to 8 μm bifurcation jump.  

Frequency domain and time domain bifurcation response are characterized.  

Experimentation matches the analytic model within 2%. 

• Design and analysis of the finger profile of the “shaped-finger” comb to customize 

the linear and cubic electrostatic spring stiffness coefficients.  The effective 

electrostatic spring constant in combination with system mechanical nonlinearities 

generate a large-displacement parametric response. Both the design space and the 

tuning dynamics of the “quadratic-shaped-finger” comb are discussed. 

• Invention and successful implementation of a DC drive-amplitude state closed-loop 

bifurcation-point parametric controller to control on the bifurcation edge with a large 

drive amplitude while avoiding latch-up instabilities.  The controller uses the 

“quadratic-shaped-finger” comb resonator as the control plant and off-chip 

electronics as the feedback controller.  An exemplary system is demonstrated at 

1.9 µm amplitude with 4.5 Å resolution in a 0.2 Hz bandwidth and a predicted 

equivalent mass sensitivity of 12 pg. 

• Implementation of an AC drive-amplitude state closed-loop bifurcation-point 

controller to control a crab-leg Duffing resonator on the falling edge of the instability.  

Itemized 
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• Behavioral simulation of MEMS parametric resonance that provides insights into the 

response of the nonlinear system and its dependence on system parameters.  In this 

work, behavioral models are built with mechanical primitives from a hierarchical 

MEMS circuit library to simulate and explore the controller topology and optimize 

control loop parameters. 

Other supporting work includes:  

• Design and characterization of a CMOS-MEMS version of a non-interdigitated finger 

resonator that validates the general parametric resonance theory and its behavioral 

simulation model. 

• Design and characterization of a prototype CMOS-MEMS tangential drive “T-drive” 

resonator demonstrating large-stroke parametric response.  

• Developed 2-DoF twisting-type electrothermal actuator for scanning laser rangefinder 

application by independently actuating two parallel metal-polysilicon-oxide CMOS-

MEMS vertical electrothermal actuators. 

• Co-developed an in-house silicon-on-insulator (SOI)-MEMS fabrication process to 

promote electromechanical ideations such as the shaped-finger comb parametric 

drives and mode-matched gyroscopes. 

• Designed integrated stress and temperature sensors for investigating the interaction 

effects of temperature and packaged stress gradients on the mode-matched 

gyroscopes.  Developed stress sensing techniques and prototyping boards.  Mapped 

stress gradient by piezoresistive inversion layer transducers. 
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1.7. THESIS OUTLINE 

The thesis is organized as follows.  Chapter 1 starts with general descriptions of parametric 

resonance, its benefits, and excitation methods.  It then introduces the perturbation analysis and 

the steady-state solutions of the governing nonlinear Mathieu equation, its frequency response 

and the associated bifurcation diagram.  Detailed mathematical treatments to the nonlinear 

Mathieu equation, including nondimensionalization, method of averaging, and the stability 

analysis, are described in rich detail in Appendix A.  Circuit-level interoperable behavioral 

modeling for accurate predictive designs is presented in Chapter 2 using a CMOS-MEMS non-

intedigitated comb finger resonator as a modeling example. Chapter 3 focuses on synthesizing a 

class of high-stroke parametric-mode electromechanical drives, together with experimental 

verification of a quadratic-shaped-finger comb parametric resonator.  Experimentation regarding 

the frequency domain and time domain responses is presented.  Chapter 4 and Chapter 5 discuss 

technical challenges in building a feedback servo on the edge of the bifurcation jump point, and 

presents amplitude-state bifurcation controllers that successfully servo along the pitch-fork 

bifurcation manifold of a parametric resonator in Chapter 4 and on the falling edge of a Duffing 

resonance in Chapter 5.  Chapter 6 concludes the thesis and suggests possibilities for future 

work.  

 

 

(end) 
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CHAPTER 2 CMOS-MEMS NON-INTERDIGITATED 

COMB FINGER PARAMETRIC RESONATOR 

arametric resonance in electrostatically actuated MEMS gives rise to complex 

nonlinear phenomena. The need for accurate predictive design of nonlinear systems 

featuring parametric resonance provides motivation to refine mixed MEMS/analog 

behavioral composable modeling and simulation methodologies.  As a first step 

toward validating these methodologies, a parameterized schematic of a canonical parametric 

resonator testbed is built with primitive beam, plate and gap models from a MEMS Verilog-A 

library [32] and with a macro model of the nonlinear drive with coefficients extracted from a 

finite element simulation [16].  The behavioral models are coded in Verilog-A and the 

composable MEMS schematic [17] is simulated in Cadence Spectre.  For an example 

micromechanical non-interdigitated comb parametric resonator, the behavioral modeling and the 

analytic perturbation solutions are validated by optical vibration measurements matching to 0.6% 

and 2.1%, respectively.  The simulation schematics and modeling methodology were reported in 

[16], [17], and [40].  Full description of this methodology using circuit-level interoperable 

behavioral modeling for accurate predictive designs is presented in this chapter, where a CMOS-

MEMS non-interdigitated comb finger resonator is used as a modeling example. 

This work presents details on system-level modeling of the example non-interdigitated comb 

resonator and its transient chirp frequency response [16], and elaborates on the schematic-based 

Motivation P 
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composable modeling methodology. To investigate the dynamics on the edge of the instability, 

the transient behavior at the bifurcation jump and the step turn-on transient of the parametric 

drive are presented.  The effects of damping and parametric voltage amplitude on the bifurcation 

frequency and amplitude are characterized.  A testbed using video microscopy is used to validate 

the analytical solution of the transition frequency and its jump amplitude along with the 

behavioral modeling simulation results.  Using the validated behavioral simulation, the variation 

in the jump behavior is quantified by statistical analysis considering the process variation and 

mismatch in the beam width, thickness, Young’s modulus, and density. 

 

2.1. NON-INTERDIGITATED COMB FINGER RESONATOR EXAMPLE 

Shown in Figure 2-1 is an SEM image of the fabricated CMOS-MEMS nonlinear plate-mass 

resonator as a first exploration of parametric resonance.  The resonator is characterized in air to 

accommodate the optical-based measurement.  Four serpentine springs exhibiting a small cubic 

stiffening nonlinearity suspend the 224 μm by 264 μm perforated plate mass of 461 ng. The curl-

match frame allows the stator and rotor fingers to align evenly in the presence of the vertical 

residual stress gradient in the released CMOS metal-oxide stack. The curl-matched structure is 

borrowed from a prior CMOS-MEMS accelerometer design [42]. Electrostatic force from the 

aligned non-interdigitated comb fingers (NIF), modulated by the parametric drive voltage 

amplitude, excites the resonator. The NIF design makes use of the symmetric fringing field 

between non-interlocking comb fingers to generate a cubic force–displacement relationship 

adopted from [1], [18], [43], and [44]. Four sets of parallel-plate interdigitated comb fingers (IF) 

Device 
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are included in the design to directly excite natural resonance to measure the system’s resonant 

frequency ωr during a separate test state. In the designed resonator, mechanical limit stop fingers 

are used to limit the displacement of the motion to protect against electrical short circuit. These 

fingers constrain the x-directed motion of the resonator to the range of –1.6 μm < x < 1.6 μm.  

The design parameters are summarized in Table 2-1.  The nonlinear stiffness k3 is obtained by 

fitting the force-displacement curve to a 3rd order polynomial xkxkFk 1
3

3 += .   

100 µm

curl-match frame

IF SP

y
x

z

LS

NIF

anchor

 

Figure 2-1: SEM of a CMOS-MEMS nonlinear parametric resonator that moves in x, with zoom-

in view of non-interdigitated comb fingers (NIF), interdigitated comb fingers (IF), serpentine 

spring (SP), and mechanical limit stop fingers (LS). 

 
From symmetry, the non-interlocking fingers exert zero net force when aligned directly or 

when evenly staggered. Near equilibrium, the electrostatic force can exhibit either a hardening or 

softening nonlinearity as depicted in Figure 2-2. This chapter uses an aligned finger setup 

providing a cubic electrostatic hardening nonlinearity. 
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Figure 2-2: Steady-state force-displacement relationships of a) aligned fingers exhibiting 

electrostatic hardening nonlinearity, b) evenly staggered fingers showing electrostatic softening 

nonlinearity. 

 

Table 2-1: Design parameters of the NIF resonator 

Symbol Dimensional parameter Value 
0x  NIF x-directed spatial period 5.00 μm 

lNIF NIF length 2.55 μm 
wNIF NIF width 1.84 μm 
gNIF NIF y-directed gap 0.81 μm 
tNIF NIF equivalent thickness 5.40 μm 
γ1 NIF linear electrostatic stiffness  6.1×10–4 N/m/V2 
γ3 NIF cubic electrostatic stiffness  –1.0×108 N/m3/V2 
wf flexure width 1.41 μm 
lf flexure length 83.10 μm 
tAl flexure Al total thickness 2.90 μm 
tox flexure oxide total thickness 1.90 μm 
k1 flexure linear spring constant (4 sets) 3.3 N/m 
k3 flexure cubic spring constant (4 sets) 4.8×106 N/m3 
b damping coefficient 141×10−9 nkg/s 

rf  plate-mass resonator resonant frequency 14 kHz 
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Analytical solutions to the governing Mathieu equation are introduced in Chapter 1 and 

Appendix A.  For the NIF resonator, Table 2-2 summarizes the dimensionless parameters with 

values when Vac = 20 V and Vdc = 40 V.  The dimensionless parameters are used in the analysis 

of the steady-state responses and their stability.  The steady-state frequency response is 

graphically shown in Figure 1-4 with ensuing discussion on the instability and the hysteretic 

operation.  This chapter focuses on the behavioral modeling of this class of nonlinear resonator 

and the simulation of the bifurcation behavior as well as the step turn-on dynamics. 

  

Table 2-2: The normalized dimensionless parameters of the NIF resonator 

Symbol Dimensionless parameter Value  
(unitless) 

δ linear mechanical stiffness ~1 
ε parametric linear electromechanical stiffness 0.028 
δ3 cubic mechanical stiffness –33.465 
r3 parametric cubic electromechanical stiffness –8.367 
μ damping 0.1084 

 
 

2.2. SYSTEM SIMULATION METHODOLOGY 

Replacing a rather complex nonlinear coupled-domain electromechanical system with its 

equivalent behavioral model not only aids in model-order reduction but also incorporates 

secondary effects that would not be accounted for in an analytic analysis.  The inadequacy of 

analytical perturbation methods in simultaneously dealing with damping and nonlinearities, 

together with the constraint of the nonlinear Mathieu equation in handling only x and x3 

nonlinearities, motivates the use of behavioral modeling and simulation of the complete system.  

Analytic 
frequency 
response 
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A conceptual schematic of the parametric resonator is built in Figure 2-3. The beam, plate, 

and gap models composing the resonator are the primitives from an interoperable MEMS 

behavioral model library – NODAS, implemented in the Verilog-A analog hardware description 

language [32]. In NODAS, the MEMS translational discipline is defined such that the 

Kirchhoffian through variable, force, is analogous to electrical current; and the across variable, 

displacement, is analogous to electrical voltage. The mass, damping, and spring forces are 

lumped to the mechanical ports of the models.  Primitives from this library are used to form 

mechanical subsystems, such as a mass-spring-damper subsystem.  These subsystems are 

combined with electrical subsystems, i.e., voltage source and low-pass-filter module, to form 

functional electromechanical systems. 
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Figure 2-3: Conceptual MEMS schematic of the nonlinear parametric resonator, together with 

the excitation and oscillation waveforms at the parametric resonance. The piecewise linear 

voltage source Vp controls the output frequency of the V/f model to perform transient chirp 

simulation. 
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2.2.1. NONLINEAR ELECTROSTATIC FORCE MODEL 

The non-interdigitated comb actuators were first introduced by Adams et al. [43]. By 

adjusting the softening and stiffening comb ratio, the total linear and cubic stiffness can be tuned 

independently so the parametric frequency response can be adjusted. The nonlinearity of the NIF 

was treated in [44] by a polynomial fit localized to the augmentation (stiffening) and reduction 

(softening) regions with vibration amplitude below half of the comb finger pitch.  General 

behavioral modeling and simulation of the NIF, however, requires modeling of the NIF beyond 

±½ of the comb pitch to include the periodicity of the NIF comb and for the NODAS simulation 

to converge to a self-consistent solution.  The force-displacement curve is fit numerically to a 

spatial Fourier series to be capable of simulating displacement stroke beyond one pitch of the 

NIF comb.  Although the validation experiments in section 2.3 are limited to within one comb 

pitch, the development of the behavioral nonlinear actuator model can be used towards exploring 

parametric excitation of high stroke [25] and is an augmentation to the well-established small-

stroke NIF model. 

Finite element methods provide the energy–displacement relationship [17]. The NIF comb is 

fabricated in a CMOS-MEMS process [36] that results in comb fingers composed of three 

stacked CMOS aluminum layers with interposing oxide. The modeling of the NIF combines the 

results of two planar finite-element analysis (FEA) simulations: a plan view FEA to compute 

fringe fields in plane (x and y directed) and a cross-section FEA to compute fileds out of plane (z 

directed). The simulated electric energy density–displacement behavior spanning five finger 

periods is shown in Figure 2-4.  
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Figure 2-4: a) The top view of the electric energy density distribution for 1 μm x-displacement 

over a region of five finger periods. b) The cross-section spanning the comb fingers overlaid with 

the electric energy density distribution. c) An SEM of the sidewall profile of the fabricated NIF. 

 

As shown in Figure 2-5, the nonlinear force by the NIF is realized by moving one set of 

fingers perpendicular to the direction of the electric field in such a way that the change in electric 

energy density We including fringe field effects gives rise to a periodic electrostatic force Fe 

acting along the direction of motion. The resonator is then assumed to operate in a small 

displacement around a setpoint that forms a null in the force.  This small displacement stroke is 

limited roughly to a quarter of the finger pitch (5.0 μm) for the required nonlinearity.  Under this 

stroke, the electrostatic force can be approximated as a 3rd order polynomial in x in the 

perturbation analysis.  In the behavioral simulation, however, a spatial Fourier series is applied to 

capture not only the electrostatic spring constants for small displacement but also the periodic 

variation of the capacitance and the force. 
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Figure 2-5: Periodicity of capacitance C and x-directed electrostatic force Fe with respect to the 

x-displacement for y-directed gap of 1 μm.  The callouts are the relative positions of the non-

interdigitated comb fingers. 

 

Modeling the capacitance C as the energy storage element for an applied voltage of 1 V, 

( )e,plan2 , d dAC t W x y x y= ∫ , (2.1) 

where We, plan(x, y) is provided by the 2D x-y plan-view FEA (Figure 2-4a). The equivalent 

parallel-plate finger thickness is 

0cse,NIF2 εWgt = , (2.2) 

where We, cs is determined from the 2D z-y cross-section FEA [17], as described in Figure 2-4b. 

The equivalent thickness value is 5.4 μm for fingers made from the three metal-oxide stack in the 

CMOS-MEMS process. The surface integration is carried out through the total air area 

surrounding the NIF.  In the behavioral NIF model, the capacitance  
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are modeled as spatial Fourier series.  Coefficients for eight spatial harmonics an are fit to the 

capacitance–displacement plot in Figure 2-5. The flexure, the NIF electrode dimensions and the 

gap are measured using SEM images and calibrated against the pitch of the etch holes on the 

plate mass. 

 

2.2.2. TRANSIENT CHIRP SIMULATION 

A transient chirp simulation using Cadence Spectre is used to sweep the excitation frequency 

to yield the frequency response relationship. The simulation uses the design values specified in 

Table 2-1.  The behavioral modeling preserves the same form of voltage excitation as that of the 

perturbation analysis in (1.8).  A piecewise-linear voltage source supplies a time-varying control 

voltage in ( )v τ  to the voltage-controlled oscillator (VCO) model whose output is out ( )v t , so that 

[ ]2 2 2
out ac in 0 inidc 0( ) cos 2 ( ) 2 ( )tv t V V Kv f d k tπ τ τ π ϕ = + + − +  ∫ , (2.5) 

where K (Hz/V) is the frequency gain, f0 is the center frequency, t is the “fast” varying time, 

which is on the order of the reciprocal of the resonant frequency, and τ is the “slow” varying 

time, which is related to the time rate change of the control voltage and is usually 3 to 4 orders of 

magnitude longer than t.  φini represents the initial phase, and k(t) is an integer chosen such that 
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the phase [ ]ππϕ ,)( −∈t . The control voltage in ( )v τ  is chosen such that the output frequency is 

swept through the principal parametric resonance condition (2ωr).  The amplitude of the response 

is extracted in schematic simulation by passing the displacement signal through an envelope 

detector.   

Transient chirp frequency response of the parametric mode is shown in Figure 2-6 with the 

zoom-in view of the transient exponential growth on the edge of the bifurcation point. The 3 s 

transient chirp simulation ramps frequency from 27 kHz to 32 kHz and reveals a “pitchfork” 

bifurcation emerging at 29.31 kHz. The simulation uses the same voltage values as those of 

Figure 1-4. 
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Figure 2-6: Transient chirp frequency response of the NIF plate-mass resonator in the parametric 

mode, together with the transient exponential growth on the edge of the bifurcation point. 

 

The transition frequencies around the principal parametric resonance and the type of 

nonlinearity have a strong relation with finger placement, DC bias voltage, oscillating AC 
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magnitude, mass of the resonating plate, linear stiffness of the spring, and linear electrostatic 

stiffness coefficient of the NIF comb.  
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Figure 2-7: Transient for a step turn-on of the parametric drive, whose frequency is fixed at 

29.5 kHz (within the non-trivial resonance region). 

 

2.2.3. SYSTEM TRANSIENTS AND DAMPING 

Turn-on transient is shown in Figure 2-7 for a step turn-on of the parametric drive voltage. 

The parametric drive frequency is fixed at 29.50 kHz, which is within the non-zero resonance 

region. The lower-left inset shows the initial exponential growth occurring at 6 ms. An 

amplitude-modulated transient follows immediately after the growth and dies out on the order of 
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Q/ωr, where Q is the quality factor of 50. The steady-state oscillation is included in the lower-

right inset. In the time range after the exponential growth settles, the system resonates at 

14.75 kHz, as shown by the DFT of the steady-state waveform in the upper right inset.  A similar 

turn-on transient experiment is found in [12]. 

For a fixed polarization voltage, Vdc, from (1.25), increasing the oscillating pump drive Vac 

increases ε, and thus moves the up-transition setpoint to a lower frequency. This fact is verified 

by the behavioral modeling results in Figure 2-8; the transition frequency decreases by 9% as Vac 

varies from 10 V to 50 V, whereas the jump amplitude increases, consistent with (1.25) and 

(1.26). This justifies the choice of Vac in the experimental setup to be 20 V to excite 

approximately 1 μm amplitude motion while not risking using higher voltage that could result in 

an electric breakdown. 
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Figure 2-8: The up-sweep transition frequency f11 and the jump amplitude atran with varying AC 

oscillating amplitude Vac, with Vdc fixed to 40 V. Also plotted are the experimentally measured 

transition frequency (triangle) and jump amplitude (circle).  
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Increasing the DC bias voltage Vdc shifts the principal bifurcation frequency to a higher 

value, because the NIF used is an electrostatic stiffening comb (i.e., γ1 > 0). Thus, the upper and 

lower bounds of the hysteresis effect shift to higher frequencies. The up-sweep transition 

frequency f11 and jump amplitude atran are plotted in Figure 2-9 with varying DC bias voltage Vdc 

and damping coefficient b. The up-sweep transition frequency varies in an approximately linear 

fashion with large DC actuation voltage, which also follows the analytic results in (1.25) [16]. 
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Figure 2-9: The up-sweep transition frequency (upper) increases while jump amplitude (lower) 

decreases with increasing DC bias voltage Vdc, with Vac fixed to 20 V. The damping has little 

effect on the transition frequency and decreases the jump amplitude by 10 nm for each 

10−8 kg·s−1 increase in damping coefficient. 
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2.3. DEVICE CHARACTERIZATION 

2.3.1. VIBRATION MEASUREMENT TESTBED 

A transition sweep measurement using video microscopy with stroboscopic illumination [37] 

was set up to characterize the bi-directional transition frequencies and their jump amplitude. The 

diagram of the measurement testbed built around the MIT Microvision optical vibration test 

system [16] is shown in Figure 2-10. The testbed generates an oscillating voltage without an 

offset that is fed into an off-chip frequency doubler circuit to yield the voltage in (1.6) [16]. The 

validation experiments carried out using this optical vibration measurement setup operate under 

atmospheric pressure. 
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Figure 2-10: Testbed using video microscopy with stroboscopic illumination and an off-chip 

frequency doubling circuit. 
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After a preliminary estimation of the stiffened resonance frequency given by (1.12), a sweep 

of electric excitation frequency around the predicted principal parametric resonance rff 2= = 

29.6 kHz was performed until a “jump” in amplitude was observed and the corresponding 

transition frequency was recorded. The measurement resolution was limited by the frequency 

increment of the signal generator of the Microvision system. For the up-sweep and down-sweep 

measurements, the frequency increments were 50 Hz and 100 Hz, allowing ±100 Hz and 

±200 Hz resolution, respectively. All testing was performed in air and observed under 500X 

magnification. 

 

2.3.2. VIBRATION MEASUREMENT RESULTS 

Characteristics of both parametric resonance excited by the non-interdigitated comb and the 

harmonic resonance excited by the interdigitated comb are plotted with respect to the mechanical 

frequency in Figure 2-11.  Both responses are plotted with respect to the mechanical frequency.  

Harmonic response reveals a small spring softening effect.  The parametric resonance gives rise 

to a sharp resonant peak at the “jump” point, despite that the harmonic mode has only a quality 

factor (Q) of 50 in air. The sharp transition in the parametric mode at relatively high damping 

was demonstrated previously [8].  The sharpness of the transition boundary is independent of the 

quality factor [33] which is inversely proportional to the system loss due to the air damping, 

anchor loss, and thermoelastic damping. 
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Figure 2-11: Experimental up-sweep frequency response of the harmonic mode excited by the 

interdigitated comb and the parametric mode excited by the non-interdigitated comb in air.  

 

Figure 2-12 is an overlaid comparison of the analysis, behavioral model simulation and 

experimental results for both up-sweep and down-sweep tests. When performing a frequency 

down-sweep, the system amplitude first follows 2α  until the displacement is 1.6 μm when the 

mechanical limit stop fingers hit each other (point C), forcing the bi-stable system to degenerate 

to the trivial state of motion (dashed line from C to D), far before it reaches the “saddle-node” 

bifurcation at point E in Figure 1-4.  The measured transition frequencies are compared with 

perturbation analysis and behavioral simulation in Table 2-3. As discussed in Chapter 1, the 

sharp transition property is applicable for many ultra-sensitive sensor applications such as mass 

flow rate sensors [2] and magnetometers [9], and is used in noise-squeezing applications for 

parametric amplification [8].  For both sweep directions, the behavioral model simulation 

matches within 0.2% and the analytical model matches within 2.1%. The down-sweep analytic 

model neglects the effects of damping and the limited displacement. These effects may give rise 

to the discrepancy between the measured and analytic results. The maximum achievable 
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displacement is constrained by the limit stop fingers, thus leading to the measured result being at 

a higher transition frequency than the predicted saddle-node bifurcation. 

 

Table 2-3: Comparison of bi-directional bifurcation frequencies for the aligned NIF testbed 

Transition  
frequency [kHz] Analysis NODAS Measurement Comparison vs measurement 

Analysis NODAS 
Up-sweep 29.20 29.31 29.30 –0.34% 0.03% 

Down-sweep 28.78 28.15 28.20 2.06% –0.18% 
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Figure 2-12: Analytic solution, behavioral simulation, and experimental results for bi-directional 

sweeps. The experimental results are obtained with Vdc = 40 V and Vac = 20 V. The contact of the 

mechanical limit stop fingers forces the down-sweep to degenerate to the trivial solution. 

 

In order to better predict the down-sweep transition frequency, a revision in design could be 

made to increase the comb pitch such that it exceeds the maximum possible displacement 
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amplitude. In this case, the bifurcation at point E in Figure 1-4 could be experimentally 

validated; however, such a design revision is beyond the current scope of work.  To predict the 

down-sweep bifurcation point with the presence of the limit stop fingers, a behavioral model of 

the limit-stop fingers is included to accurately predict the down-sweep transition frequency with 

the existing device in Figure 2-13.  
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Figure 2-13: Amplitude response of the behavioral simulation for the frequency down-sweep 

with zoomed-in transients of the two bifurcation points (R and F). A limit stop model is included 

in the simulation to model the maximum allowable amplitude. 

 

The transients at the “pitchfork” bifurcation point R and the transition point F at 1.6 μm 

(maximum displacement allowed by the limit stop) are shown in the zoom-in plots. The jump 

happens after the amplitude reaches the limit stop followed by a 190 ms dwell time, during 
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which time the limit stop fingers are in mechanical contact, creating the transients as shown in 

the zoomed-in plot F. The length of the dwell time depends on the speed at which the frequency 

is swept. The simulated down-sweep transition frequency with the limit stop model improves the 

match of the experiment to within 0.2%. The simulated frequency response is overlaid with 

analysis and experimental results in Figure 2-12. 
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Figure 2-14: Repeatability of the parametric resonance envelope for bi-directional sweep tests. 

Each data point on the transition frequency–jump amplitude parameter space represents one test. 

 

Repeatability tests are performed on the same testbed within a 12 hr time frame. The 

resonance state is observed optically at several ROI (region of interests) on the resonating plate 

and NIF. Measurement results are plotted in Figure 2-14 in the transition frequency–jump 

amplitude parameter space.  Mechanical noise gives rise to variations in the bifurcation 

frequency and the amplitude. The variation in the down-sweep transition frequency is due to the 

relatively large frequency range that needs to be scanned in order to find the transition point, 
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which leads to a larger increment given the maximum number of measurement points allowed in 

the Microvision system.  

Statistical analysis of the up-sweep transition frequency and the jump amplitude is performed 

under the presence of the uncertainty. The histograms produced from the Monte Carlo analysis 

of 100 samples are shown in Figure 2-15. The sidewall deposition of the metal-oxide stack which 

forms the CMOS-MEMS suspension contributes to the beam width uncertainty, which in turn, 

varies the spring stiffness coefficients. The effective Young’s modulus of 70 GPa [38] also 

varies in the CMOS process. The bifurcation frequency, as a function of the mass, varies with 

metal layer area defining the moving structure, with the density of aluminum interconnect and 

inter-layer dielectric (ILD), and with the thickness of the metal-oxide stack, which is 4.83 μm 

measured from a FIB (focused ion beam)-etched cross section. Gaussian distribution is assumed 

in the uncertainty of the beam width w (standard deviation σ = 23 nm), thickness t (σ = 0.05 t), 

Young’s modulus E (σ = 0.05 E), density ρ (σ = 0.05 ρ) and the air gap (σ = 20 nm). These 

statistical data are from prior process test structures that were used to quantify the process and 

mismatch variation. The statistical analysis reveals that the mean of the bifurcation frequency 

and mean of the amplitude are 29.40 kHz and 1.36 μm, respectively, with corresponding 

standard deviations of 0.86 kHz and 0.02 μm. In the Monte Carlo analysis, the parametric 

resonance envelope in Figure 2-12 changes from run to run; the variation in the bifurcation 

frequency and amplitude are indicated by the horizontal axes of the histograms in Figure 2-15. 

Process variation of w, E and t are the three main contributors to the uncertainty of the 

bifurcation behavior, as determined by evaluating the correlation between these parameters. The 
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transition frequency and the jump amplitude are negatively correlated, as demonstrated by 

plotting all the data points on the frequency-amplitude parameter space. 
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Figure 2-15: Statistical analysis of the transition frequency and the jump amplitude in the 

presence of the process variation and mismatch.  

 

2.4. SUMMARY 

This chapter validates the use of behavioral modeling in the analysis and design of nonlinear 

parametric systems.  A non-interdigitated finger comb resonator fabricated in the CMOS-MEMS 

process is used as the modeling example. A perturbation approach introduced in Chapter 1 is 

used to analyze the bifurcation phenomenon and provide physical interpretation of the jump 

event. The abilities of schematic-based simulation in exploring the transient behavior and 

damping facilitate the understanding of the complex system. Using parametric sweep in a 
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hierarchical system simulation, the relationship between the transition frequencies and the 

excitation voltages is established. The analysis and simulation match the experiment within 2.1% 

and 0.2%, respectively.  

The behavioral modeling and the lumped model simulation provides an alternative design 

approach to complex nonlinear systems that could potentially lead to the exploration of new 

physical effects. Applicable to various MEMS dynamic designs, the model building 

methodology and the MEMS circuit library serve as a toolbox to shorten the design phase. 

Specifically, the exploration of parametric resonant topologies and corresponding control 

methods will benefit from the ability to accurately simulate full systems. 

 

(end) 
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CHAPTER 3 HIGH-STROKE PARAMETRIC-MODE 

ELECTROMECHANICAL DRIVES 

lectrostatic excitation of parametric resonance in (1.1) arises from several different 

electromechanical drive topologies. A class of non-interdigitated finger (NIF) comb 

drives [16], [17], and [18] has been widely used to provide a well-defined 

displacement-dependent force source.  The NIF comb drive described in Chapter 2 

has been widely used due to its simplicity in the comb finger design. It makes use of the fringing 

electric field generated between non-overlapping comb fingers to provide both linear and 

nonlinear electrostatic spring constants. However, since the NIF comb motion is constrained in 

the axis orthogonal to the finger length, its use is limited to a small stroke due to the required 

nonlinearity that only extends to a displacement equal to ±1/2 of the comb pitch. The maximum 

displacement is usually on the order of 1 µm, which is illustrated along the x axis in Figure 2-1 in 

Chapter 2.   

Other applications requiring actuation schemes capable of a large motional stroke include 

gyroscopes [20] that need larger displacement for better sensitivity and random number 

generators with high stroke chaos [11] behavior.  Towards these ends, an electrostatic comb is 

synthesized that demonstrates a large stroke for parametric drive with a small design layout 

footprint.  The “shaped-finger” comb utilizes a nonlinearly varying electrode gap to provide the 

necessary electrostatic stiffness for exciting parametric resonance with much larger stroke than 

E 
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NIF combs.  The shaped-finger comb moves laterally in the plane of the wafer, allowing 

sufficient clearance for large displacement motion.   

 

a) b)

c) d)
 

Figure 3-1: Shaped-finger designs for (a) assembly of small gap, (b)-(c) shaping force-engagement 

relationship, and (d) creating vertically-curved membranes. Arrows indicate motional direction. 

 

Hirano et al. first reported the shaped-finger comb concept for the assembly of a small gap 

[Figure 3-1 (a)] to maximize the electrostatic force using a segmented comb with different 

widths [21].  The segmented comb used a stair-stepped finger profile with gradually decreasing 

widths to maximize the force magnitude as the fingers are engaged.  In [22], Jensen et al. 

demonstrated the analytic model of planar shaped combs [Figure 3-1 (b)] for delivering 

electrostatic force with specific nonlinearity and described their tuning dynamics.  The comb 

fingers were shaped by specific “shape functions” to allow customized force-displacement 

History of 
the shaped-
finger comb 



Chapter 3: High-stroke Parametric-mode Electromechanical Drives 
 

 
52 

responses.  Additive curved features on planar rotor structures were extensively studied by 

O’Brien in [23] [Figure 3-1 (c)].  In an alternative design, Graham created out-of-plane shaped 

structures by forming a vertically-curved membrane using chemical mechanical polishing 

(CMP) [24] [Figure 3-1 (d)].   

This chapter introduces a quadratic-shaped-finger comb that is intentionally designed to 

provide a linear electrostatic spring constant.  Section 3.2 follows with the analytical parametric 

resonance solutions. The use of the quadratic-shaped-finger comb in a crab-leg resonator [25] to 

excite large-stroke (5 µm) parametric resonance is characterized in Section 3.3.  A revised design 

with a folded-flexure suspension is characterized in Section 3.4. The revised design is stiff 

enough to constrain the in-plane body rotation while delivering a larger parametric stroke of 

8 µm, providing a robust parametric excitation scheme.   

 

3.1. QUADRATIC-SHAPED-FINGER COMB PARAMETRIC DRIVE 

Shown in Figure 3-2 (a) is a micro optical image of the quadratic-shaped-finger comb 

parametric resonator with a close-up view of part of the folded-flexure suspension in Figure 3-2 

b). The 45° tilted SEM views of the shaped-finger comb drive electrode (labeled I) and the 

straight-finger comb sense capacitor (labeled II) are shown in Figure 3-2 c).  The resonator is 

fabricated in a silicon-on-insulator MEMS (SOI-MEMS) process [25] (Appendix C) with a 

15 µm-thick silicon device layer and a 2 µm-thick buried oxide (BOX) spacer over a 480 µm-

thick <111> silicon handle layer.  The Si device layer is heavily boron doped to have a low 

resistivity of 0.001~0.003 Ω-cm.   

Chapter 
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The H-shaped shuttle mass consists of six stiff cantilevered plates along y and a connecting 

backbone truss along x.  The folded flexure constrains the body rotation while allowing lateral 

motion in x.  Both the shaped and the straight fingers are symmetrically placed along the 

periphery of the plates, and move in the x-direction.  For the shaped-finger comb, the curved 

fingers are anchored and the straight fingers are attached to the rotor mass.   

shuttle 
mass

500 µm
straight finger

shaped finger

20 µm
x

y
z

b)

a)c)

I

II

I

II

 

Figure 3-2: Optical image of an SOI quadratic-shaped-finger comb parametric resonator that 

moves in the x-direction with a folded flexure suspension in (b). Shown in (c) are the close-ups 

of I) shaped-finger comb and II) straight-finger comb. 

 

As schematically shown in Figure 3-3, applying a suitable common-mode AC voltage 

( )tV racp, 2cos ω  at twice the resonance frequency to the shaped fingers and a fixed DC potential 

Vp,dc on the rotor fingers excites the parametric resonance.  Symmetrically placed straight-finger 

combs sense the response dynamics electrically through a pair of external transimpedance 
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amplifiers (TIA) built with LF356 op-amps (Texas Instruments; Dallas, Texas, USA).  

Differential sensing helps to reject the feedthrough from the drive voltage through the substrate 

coupling.  The feedthrough capacitance is matched by symmetric wiring placement on the 

layout.  An HF2LI lock-in amplifier (Zurich Instruments; Zurich, Switzerland) detects the sense 

signal component at the mechanical resonant frequency ωr.  Common-mode pump drive voltage 

Vp,ac at frequency of 2ωr is provided through an off-chip multiplier shown in Figure 3-4 built 

with an AD633 analog multiplier (Analog Devices, Norwood, MA), an LF356 op-amp, and a 

unity gain differential amplifier INA105 (Texas Instruments; Dallas, Texas, USA).   

rω
Lock-
in amp

r2ω

+
–

rω

( )p,ac rcos 2V tω p,dcV
 

Figure 3-3: Schematic view of the shaped-finger comb resonator testbed using two off-chip 

transimpedance amplifiers. 
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Figure 3-4: Schematic view of the analog multiplier circuit. 
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3.1.1. QUADRATIC-SHAPED-FINGER COMB ANALYTIC MODEL 

The large-stroke electrostatic drive is a shaped-finger comb, with a nonlinearly varying gap 

between the electrodes.  The shaped-finger comb design is schematically shown in Figure 3-5.  

The gap profile, g, varies with the position x1 along the finger overlapped region: 

( ) o
1

1 o11
g

g x
x x

=
+

 (3.1) 

where the dimensional constant, x01, is 

ov
o1

o ov 1
x

x
g g

=
−

 (3.2) 

The x1 frame of reference moves with the rotor finger and always has its origin located at the tip 

of the stator finger. 
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Figure 3-5: A schematic view of the quadratic-shaped-finger comb geometry.  

 

Ignoring fringing field, integration of the gap along the overlapped region leads to the 

capacitance for one side of the shaped-finger comb,  
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where x is the displacement of the rotor electrode, ε0 is the permittivity of free space, h is the 

thickness of the Si device layer, and N is the number of straight rotor fingers.  Taking the 

derivative of Cr(x) with respect to x yields the electrostatic force applied to one side of the comb, 
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 (3.4) 

where V = Vp,dc – Vp,ac cos(2ωrt) is the voltage applied across the shaped-finger comb.  Note that 

(3.4) is not symmetric about the origin.  Thus, a non-zero force exerts on one side of the drive. In 

order to generate a parametric excitation force in the form of (1.1), symmetric placement of the 

shaped-finger comb is required and described next.  

 

3.1.2. SYMMETRIC SHAPED-FINGER COMB DESIGN 

Placing shaped-finger combs symmetrically on either side of the resonator results in comb 

finger location schematically shown in Figure 3-3, where combs are located on the outer banks 

of the resonator cantilever-like shuttle mass.  The total capacitance is the sum of the capacitances 

of both sets of shaped fingers on left-hand-side and right-hand-side banks of the shuttle mass.   

( ) ( ) ( )
2 2
ov

r r ovtotal
o o1 o1

2
2oN h x xC x C x C x x

g x x
ε  

= + − = + + 
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 (3.5) 
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The capacitance is a quadratic function of the displacement (i.e., finger engagement), yielding 

the name “quadratic-shaped-finger” comb.  Taking the derivative of Ctotal(x) with respect to x and 

multiplying by V2/2 yield the total electrostatic force, 

( ) ( )2
total 2 2

total 1
o o1

2
2

oC x N hV xF x V xV
x g x

ε
γ

∂  
= = = − ∂  

 (3.6) 

where γ1 is the linear electrostatic stiffness.  Ftotal(x) is a linear displacement-dependent force 

source when a voltage V is applied across the shaped-finger comb. The expression of the 

electrostatic force with only the linear displacement term implies that the net force exerted by the 

nonlinear drive is zero for zero displacement and the force is an odd function with respect to the 

resonator shuttle mass displacement. 

One key feature of this shaped-finger comb is that the denominator of the gap profile 

(1 + x/xo1) in (3.1) corresponds to the displacement-related term (x/xo1) in the parenthesis of the 

force-engagement relationship (3.6).  A desired electrostatic spring constant is set by specifying 

the comb geometry parameters in the denominator of the gap profile in (3.1).  The comb gap 

profile may be designed in a variety of shapes to generate custom nonlinear force-engagement 

responses [22] [25].   

 

Linear electrostatic spring constant 

From (3.2) and (3.6), the linear electrostatic spring constant is 
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(3.7) 

The designed spring constant is a function of the number of rotor fingers per side, N, the gap at 

the curved finger tip, g0, the overlap length, xov, and the gap at the straight finger tip, gov.  

Exploring the design space involving these design parameters, one can optimize the electrostatic 

force given a fixed design area and fabrication constraints. 

 
 

3.1.3. DESIGN SPACE AND SCALING 

The geometric parameters, along with their layout and measured values, are summarized in 

Table 3-1. The gap at the straight finger tip, gov, is set to a minimum value (3 μm), constrained 

by the SOI-MEMS process design rules.  

 

Table 3-1: Shaped-finger comb geometric parameters 

Symbol Parameter Layout Measured 
go gap at the curved finger tip 5.0 μm 5.2 μm 
gov gap at the straight finger tip  3.0 μm 3.5 μm 
xov finger overlap 16.0 μm 13.6 μm 
L straight finger length 31.0 μm 31.4 μm 
w straight finger width 3.0 μm 2.6 μm 
p comb pitch 13.0 μm 13.0 μm 
N number of rotor fingers per side 139 139 
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Interaction effect of gap and overlap 

By the scaling in (3.7), reducing the initial finger overlap, xov, increases the magnitude of the 

linear electrostatic spring constant magnitude, |γ1|, whereas increasing the gap at the curved 

finger tip, go, while keeping N constant gives rise to a larger finger curvature and enhances the 

electrostatic spring constant magnitude. This interaction effect is illustrated in Figure 3-6. 
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Figure 3-6: Scaling of the electrostatic spring constant with the overlapped finger length, xov, and 

the gap at the shaped finger tip, go. 

 

The initial finger overlap (xov) needs to be a few microns larger than the 8 μm stroke to 

ensure ample overlap so the fringing-field remains a second-order effect. Meanwhile, xov must be 

small enough (less than 20 μm) to keep a reasonably big spring constant. The optimization 

between maximizing the electrostatic spring constant and keeping the first-order comb 

capacitance model assumption involves computation through a series of fringing electric field 

Optimizing 
initial 
overlap 
(xov) 
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simulations.  To this end, xov is set to 16 µm to accommodate a 8 µm stroke with ample overlap 

remaining to ensure the first-order comb capacitance model holds.   

Optimization of gap go 

Predicted by the scaling in (3.7), smaller go lowers |γ1|. Larger go widens the finger pitch and 

reduces N hence the spring constant, |γ1|, for a fixed comb area.  To illustrate this design trade-

off, the electrostatic spring constant normalized to the area occupied by the comb, Acomb, is 

plotted against gap at the curved finger tip (g0) in Figure 3-7, while keeping overlap (xov = 

16 μm), gap at the straight finger tip (gov = 3 μm), and number of rotor fingers (N = 139) 

constant. The maximum linear electrostatic spring constant for a fixed comb area occurs for a 

go,m = 6.67 μm gap at the curved finger tip (go).  Below go,m, the decrease in g0 leads to more 

rapid decrease in the electrostatic spring constant compared to the decrease in total comb area; 

beyond go,m, the comb area increase dominates, lowering the normalized electrostatic spring constant.  
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Figure 3-7: Normalized electrostatic spring constant magnitude versus the gap at the curved 

finger tip (g0). 
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The optimum go can also be solved analytically using (3.7) and the comb area, Acomb, 

( ) combcomb 22 LwgNA o +=   (3.8) 

where Lcomb is the length of the comb in x.  The electrostatic spring constant magnitude 

normalized to the area occupied by the comb is 
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Taking the derivative of 1γ  with respect to go yields 
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Optimum go, namely go,m, can be found by setting 0
,

1 =
∂
∂

= moo ggog
γ , thus 
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  (3.11) 

Dropping the negative gap solution yields 

2
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
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


++=   (3.12) 

Since the ratio of w and gov is approximately 1:1 to 1.5:1 because they are set to the minimum 

value limited by the lithography, the optimum go,m is determined predominantly by gov.  For gov = 

w = 3 μm, the maximum linear electrostatic spring constant for a fixed comb area occurs for go,m 

= 6.67 μm.  For gov = 2 μm and w = 3 μm, the maximum linear electrostatic spring constant for a 
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fixed comb area occurs for go,m = 4.65 μm.  The designed gap is rounded to 5 μm for these two 

design scenarios.  This rounding also accounts for possible over-etch during the silicon DRIE 

(Deep Reactive-Ion Etching) and the linewidth decrease during lithography.  

 

3.1.4. FINITE ELEMENT SIMULATION 

Finite element analysis (FEA) is performed using geometric data from the fabricated device 

in Table 3-1.  Figure 3-8 shows the workflow starting from an SEM image of the zoom-in view 

of the fabricated shaped-finger comb of the device under test (DUT).  An edge detection 

technique using WinTopo (SoftSoft Ltd; Bedfordshire, UK) is performed on the SEM image 

followed by vectorization to create a profile that is imported into the FEA software COMSOL 

Multiphysics (COMSOL, Inc; Burlington, MA, USA).   

First, a 2D electrostatic FEA simulation is used to solve for the total capacitance using the 

technique developed in [17].  Integrating the total electric energy density We,s over the area 

occupied by the surrounding air yields the total capacitance per unit thickness.  Silicon DRIE 

attacks the bottom of the device layer, creating notches [45].  These notches on the finger 

consume 1.8 μm of silicon at the interface of the Si device layer and the BOX spacer layer.  A 

second 2D FEA simulation of the cross-section uses a 45º tilted SEM view of the fingers to 

calculate the total thickness of the silicon after the DRIE notching and uses the correction factor 

by including the out-of-plane fringing fields in a separate simulation of a 3 µm gap straight 

finger cross section.  These simulation outputs lead to an effective comb thickness and the total 

capacitance.   

FEA 
workflow 
and 
software 
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Figure 3-8: Finite element methodology for analysis of the fabricated shaped-finger comb.  

 

An overlaid comparison of the analytic and FEA simulated Ctotal(x) and Ftotal(x) curves are 

shown in Figure 3-9.  The simulated force reveals a cubic electrostatic nonlinearity with respect 

to x as the fingers are close to fully-engaged.  This cubic stiffness is partly due to the finger 

profile change during the lithography, to the Si DRIE artifacts, and to the fact that the fully 

engaged fingers are close to the vertical end sidewalls (labeled in Figure 3-5), which yields larger 

electric field strength.  This small nonlinearity is important in determining the overall system 

frequency response explained by the perturbation analysis developed in [17]. 
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Figure 3-9: (a) Total capacitance and (b) electrostatic force versus the finger engagement x 

overlaid with FEA results for the symmetrically-placed quadratic-shaped-finger comb.  

 

3.1.5. COMPARISON OF THE ELECTROSTATIC DRIVES 

Like the interdigitated straight-finger capacitive comb, the shaped-finger comb moves 

laterally in the direction of the finger length perpendicular to the electric-field lines, allowing 

sufficient clearance for large displacement motion.  A comparison of the quadratic-shaped-finger 

comb with the parallel-plate drive and other electrostatic excitation methods is listed in 

Table 3-2.  Note in the table the direction of motion is indicated by the x axis.   

Parallel-plate drive 

For the parallel-plate drive, the electrostatic force is 
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Thus the electrostatic spring constant expression, 

3
o

0
1

2
g

hLN oεγ =  (3.14) 

is only valid for very small displacement x. Thus to accommodate a displacement stroke equal to 

xm = 15.0 μm, the gap go has to be sufficiently larger than xm.  In this calculation, the gap is set to 

go = 3 xm.  To justify the choice of this gap value, a plot of electrostatic force, Fe, with respect to 

the displacement, x; together with the slope of the Fe – x relationship at x = 0, are shown below: 
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Figure 3-10: Electrostatic force, Fe, exerted by the parallel-plate drive is plotted with respect to 

the displacement, x. 

 

The linear least-square fitting is evaluated by the coefficient of determination (a.k.a. R2 value) in 

Figure 3-11.  The fitting is accurate (R2 > 0.99) when the maximum displacement is less than 

15 µm.  
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Figure 3-11: Coefficient of determination (R2 value) of the least-square fitting for the 

electrostatic force of the parallel-plate drive evaluated at different displacement limits.  

 

The area for the parallel-plate drive is 

( )ocomb 2 gwNLA y +=  (3.15) 

Another assumption is imposed so that enough clearance is given in y 

oy LL 2=  (3.16) 

The normalized linear spring constant, |γ1| / Acomb, of the parallel-plate capacitive comb is 

( )
( ) ( )o

3p-pcomb1 23 gwNx
hN

A
m

o

+
=

ε
γ  (3.17) 

 

Quadratic-shaped-finger comb versus the parallel-plate drive 

For the quadratic-shaped-finger comb, the analytical linear spring constant is given by (3.7) 

and the comb area, Acomb, is given by (3.8). The normalized linear spring constant is given by 
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(3.9).  The ratio of the normalized linear spring constant, |γ1| / Acomb, of the quadratic-shaped-

finger comb to the parallel-plate capacitive comb is 
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where Lcomb is the length of the shaped-finger comb and is equal to 

mxxL 2ovcomb +=   (3.19) 

Thus the ratio is roughly proportional to the square of the maximum stroke: 
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Table 3-2: Comparison of the quadratic-shaped-finger comb with other electrostatic comb drives 

 Comb shape Max stroke xm |γ1| / Acomb 

  μm N / m3/ V2 

Quadratic-shaped-
finger comb 

 
 (Geometric 

parameters in 
Table 3-1) 

StatorR
ot

or

x

xm

 

15.0 
(tested 

maximum 
stroke: 8 μm) 

1621.8 

Parallel-plate drive 

Stator

Rotor

go = 3xm

LoLy

x

x

y

z

 

1.25 163471.3 

15.0 13.3 

Non-interdigitated 
comb 

x

go

p
 

1.25 284679.9† 

15.0 142.9†† 

Tangential drive††† 
θ

x

displaced

undisplaced

g0

 

15.0 
(tested 

maximum 
stroke: 
10 μm) 

682.9 
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† Calculated using design parameters in [40]: go = 0.8 μm, p = 5 μm. 

†† Using literature value in [40] and scale to: go = 3 μm, p = 60 μm, such that the maximum 

stroke is p/4 = 15 μm. 

††† Calculated using design parameters in Appendix B.3. 

 

3.2. PARAMETRIC RESONANCE SOLUTIONS 

From (1.5), the nonlinear Mathieu equation that governs the behavioral of parametric 

resonator is repeated here: 

( ) ( ) 23 3
1 3 1 3 p,dc p,ac cosmx bx k x k x x x V V tγ γ ω + + + = − + +    (3.21) 

Definitions and values for the system parameters are given in Table 3-3 using the device 

described in Figure 3-2 as an example.  The design parameters in the table are the measured 

values. 

 

Table 3-3: Shaped-finger comb resonator design parameters 

Symbol Parameter Value 
m total mass 9.0 μg 
b damping coefficient 2.4 μkg/s 
k1 linear mechanical spring constant 17.3 N/m 
γ1 linear electrostatic stiffness –2.8×10–4 N/m/V2 

γ3 cubic electrostatic stiffness 8.9×105 N/m3/V2 

Vp,dc DC parametric drive voltage 60 V 
Vp,ac AC parametric drive voltage 3.3 V 

 

Mathieu 
equation 
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Figure 3-12: Steady-state frequency response of the folded-flexure shaped-finger comb 

parametric resonator revealing hardening nonlinearity.  

 

The nonlinear Mathieu equation (3.21) is a second-order differential equation with a 

periodically time-varying electrostatic parametric excitation.  Its estimated analytical solutions 

are provided by perturbation theory [15] in Chapter 1, Section 1.2.  The steady-state solutions of 

(3.21) and their nonlinear stability analysis are included in Appendix A.  Employing the method 

of averaging [30] to solve (3.21) yields three non-zero steady-state solutions of the form  

[ ])(2cos)( tttx ii βωα += . (3.22) 

Two of the solutions a1 and a2 bend to the right, indicative of stiffening nonlinearity.  The third 

solution a3 is a constant amplitude solution.  Applying the techniques developed in [17] and [40] 

Analytic 
solution 
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to the quadratic-shaped-finger comb resonator, the analytic steady-state response is plotted in 

Figure 3-12 versus the mechanical frequency (the frequency of x).   

The parametric frequency response is obtained by chirping (i.e., sweeping) the excitation 

frequency with time in the region of twice the system’s resonant frequency.  As previously 

described in Chapter 1, for most values of the drive frequency, the system is not stimulated and 

the solution is at x = 0.  After passing the bifurcation frequency, the system establishes automatic 

parametric resonance, which builds oscillation amplitude that would grow without bound if not 

for damping in the system.   

The bifurcation phenomenon demonstrated in Figure 3-12 exhibits the hysteresis effect.  The 

steady-state solutions a1, a2 and a3 are separated by the bifurcation frequencies (i.e., points A, C, 

and D) into different regions with well-defined stability as shown on the figure.  The physical 

steady-state amplitude of the system always lands on the stable branches, while the unstable 

branches are not physically realizable in steady-state.  The zero displacement solution is always 

stable in steady-state, but it is not practical between points A and C, because noise will trigger a 

jump to a2.  For a decreasing frequency sweep, the resonator displacement remains zero until 

reaching the bifurcation point A, where a sharp jump from A to B happens.  The amplitude 

gradually decreases to zero by following the solution a2 from B to another “pitchfork 

bifurcation” point C.  On the other hand, for an increasing frequency sweep, parametric 

resonance builds up after C and increases to a “saddle-node bifurcation” point D in steady-state, 

where the amplitude drops to zero (point D to E).  The bifurcation frequency and the resonance 

Frequency 
response 

Bifurcation 
and 
hysteresis 
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amplitude depend heavily on the system mechanical and electrostatic linear stiffness and the 

combined nonlinearity [17]. 

 

3.3. CHARACTERIZATION OF A SHAPED-COMB RESONATOR WITH CRAB-

LEG SUSPENSION 

The first validation vehicle of large-stroke parametric resonance excited by an in-plane 

“shaped-finger” electrostatic comb drive is a crab-leg resonator.  The custom-shaped comb drive 

electrode geometry used to produce a quadratic capacitance-engagement response was described 

in Section 3.1.   

An SEM of a shaped-finger comb parametric resonator suspended by four crab-leg springs is 

shown in Figure 3-13, with a close-up view of part of the crab-leg suspension. Also shown are 

the zoom-in perspective SEM views of the shaped-finger comb drive electrode and the straight-

finger comb sense capacitor geometries.  The resonator is fabricated in a 15 μm-thick silicon-on-

insulator MEMS (SOI-MEMS) process [25] (Appendix C).  The shuttle mass consists of six stiff 

cantilevered plates along y and a connecting backbone truss along x.  Like the folded-flexure 

resonator in Figure 3-2, both the shaped and the straight fingers are symmetrically placed along 

the periphery of the plates and move in the x-direction.  Parametric drive is realized by applying 

a common-mode voltage Vp,ac to the shaped stator fingers while fixing the straight rotor fingers at 

a DC potential Vp,dc. The DC voltage across the shaped comb can also be adjusted for 

electromechanical frequency tuning. Differential sensing with symmetric wiring placement 

provides feedthrough rejection. 

Motivation 

Device 
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Figure 3-13: SEM of an SOI-MEMS quadratic-shaped-finger comb parametric resonator 

suspended by a crab-leg suspension.  

 

3.3.1. HARMONIC RESPONSE AND TUNING DYNAMICS 

The harmonic vibration test result is shown in Figure 3-14.   In atmospheric pressure, the 

quality factor (Q) of the harmonic resonance is 26 due to significant Couette damping between 

the movable Si plate and the underlying Si substrate, which is 2 µm below the plate.  The 

amplitude at the resonance is 1.5 μm and the designed maximum stroke is 15 μm, so that the 

resonator stays within the linear regime.  Bi-directional frequency sweeps are performed to 

confirm no hysteresis effects happen at low amplitude. 
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Figure 3-14: Crab-leg resonator tested harmonic response in air. Symbol ↑ is the frequency up-

sweep; ↓ is the frequency down-sweep. 
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Figure 3-15: Harmonic response and frequency tuning measurement setup. 

 

In Figure 3-15, the tuning dynamics of the quadratic-shaped comb are investigated by 

applying a DC tuning voltage, VT, on the shaped comb and exciting the straight parallel-plate 

capacitive drive to obtain the shifted resonance frequency.  Figure 3-16 shows a relatively large 
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dynamics 



Chapter 3: High-stroke Parametric-mode Electromechanical Drives 
 

 
75 

tuning of 17.3% at 80 V DC tuning voltage without pull-in issues.  The tuning from the 

experiment matches the analytic prediction within 3.9%. 
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Figure 3-16: The tuned resonance frequency versus the shaped comb tuning voltage VT. 

The system is also operated at 28 mTorr inside a custom vacuum chamber and achieves a Q 

of 14250, as shown in Figure 3-17. 
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Figure 3-17: Crab-leg resonator measured harmonic response in a vacuum of 28 mTorr. 
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3.3.2. PARAMETRIC RESPONSE 

The testbed schematic used to validate the parametric mode is shown in Figure 3-18.  It is 

revised from the optical vibration test setup for detecting the bifurcation and its amplitude in [16] 

and Chapter 2. The drive voltages are Vp,dc = 60 V and Vp,ac = 5 V. The test was performed in air.  

The use of optical vibration test enables observability of spurious mode by imaging the motion.  

CCD  camera
Microvision
computer & 
electronics

Voffset

+

+

substrate

p,dcV ( )tV r0 cos ω

( )tx ωcos0

( )tV racp, 2cos ω

 

Figure 3-18: Optical vibration testbed for parametric response. 

 
The large-displacement bifurcation response of the crab-leg parametric resonator is shown in 

Figure 3-19.  The resonator driven parametrically by a quadratic-shaped comb reveals a 4.8 μm 

bifurcation step at 8.9 kHz, which is three times larger in displacement than the previously 

reported NIF resonators [16] and [17] .  There are discrepancies in bifurcation frequency and the 

jump amplitude with respect to the analytic solution due to the finger profile change during the 

Si structure lithography and DRIE.  An extra theta mode (i.e., body rotation) is observed through 

the blur image taken by the Microvision system.  Compared to the layout design, the additional 

lateral silicon etch in the SOI-MEMS process shifts the second resonance mode (the theta mode) 

Optical 
vibration 
testbed 

Measured 
parametric 
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to lower than 20 kHz, which is sufficiently close to the second harmonic of the drive signal, 

creating a significant body rotation.  This theta mode moves the comb fingers sideways in y, 

reducing the finger gap.  The stator shaped fingers and the rotor straight fingers snap in, resulting 

in the second jump (the leftmost jump in Figure 3-19).  This instability makes it impractical to 

extract the exact resonant frequency of the theta mode.  Section 3.4 introduces a revised design 

that uses the folded-flexure suspension to eliminate this extra theta mode by providing a stiffer 

spring in the y and the rotational axes. 
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Figure 3-19: Tested quadratic-shaped-finger comb crab-leg resonator parametric response with a 

frequency down-sweep. 

 

3.4. CHARACTERIZATION OF A SHAPED-COMB RESONATOR WITH FOLDED 

FLEXURE SUSPENSION 

Extra body rotation that exists in the device described in Figure 3-13 is eliminated with a 

proper design of a spring suspension that predominantly moves in one axis and rejects motion in 

Motivation 
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the orthogonal axis.  One example of this class of spring is a folded-flexure design, shown in 

Figure 3-2.  Measurements are performed to measure large-stroke parametric resonance that is 

excited using the quadratic-shaped-finger comb design in Section 3.1. These measurements 

validate the analytic parametric resonance solution found in Section 3.2.  Prior to characterizing 

the parametric resonance, the device is driven into harmonic resonance by the straight-finger 

comb capacitor to obtain the natural resonant frequency and the quality factor.  Both the 

harmonic and parametric responses were measured using the capacitive sensing circuit from 

Figure 3-3. 

 

3.4.1. HARMONIC RESPONSE 

The harmonic vibration test results are shown in Figure 3-20(a) using a 60 V DC polarization 

voltage and a 1 V AC harmonic actuation voltage.  The measured resonant frequency is 

6.985 kHz.  The quality factor (Q) of the resonator in atmosphere is 51 due to significant Couette 

damping between the movable Si plate and the underlying Si substrate, which is 2 µm below the 

plate.  The low resonant amplitude ensures that the resonator stays within the linear regime under 

harmonic excitation.  The designed maximum stroke is 15 μm.  No hysteresis effects are 

observed in bi-directional frequency sweeps.   

Quality factor was enhanced to 13030 by driving the resonator in a vacuum of 24 mTorr, at 

60 V DC with a reduced 0.5 mV AC drive, as shown in Figure 3-20(b).  A slight asymmetry is 

seen in the phase response of Figure 3-20(b).  This is possibly due to the small but non-zero 

mechanical nonlinearity inherent in the folded-flexure suspension. This small nonlinearity 
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becomes significant when driven at high amplitude or in a vacuum under which the device has a 

high Q.   
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Figure 3-20: Measured harmonic frequency response driven by a straight-finger comb capacitor 

(a) in air, and (b) at 24 mTorr. ↑ and ↓ correspond to the frequency up-sweep and down-sweep, 

respectively. 

 

3.4.2. LARGE-STROKE BIFURCATION – FREQUENCY DOMAIN RESPONSE 

Given the natural resonant frequency from Section 3.4.1, a parametric excitation voltage is 

constructed whose frequency was set around twice the system’s resonant frequency.  The 
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analytic steady-state parametric response driven by a quadratic-shaped-finger comb is validated 

using the experimental testbench schematically shown in Figure 3-3.  A frequency doubler 

located after the lock-in amplifier output provided the AC parametric drive voltage Vp,ac of 3.3 V 

and 13.8 kHz to the shaped fingers.  The 60 V DC parametric polarization voltage Vp,dc is applied 

on the rotor fingers.  The frequency of the parametric drive voltage is double that of the 

displacement |x| signal at 6.88 kHz, as evidenced in Figure 3-21. 
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Figure 3-21: Electrical pump drive voltage ( )tV racp, 2cos ω  and displacement amplitude |x| for 

parametric resonance at operating point D on Figure 3-12. 

 

One benefit of the parametric sensing testbed is its ability to reject the electrical 

feedthrough [6] signal at the parametric drive frequency.  The parametric resonance occurs at an 

electrical drive frequency of 2ωr, while the mechanical response is intrinsically around the 

system’s resonance frequency ωr.  By demodulating the response signal at the resonant 

frequency ωr, a narrow bandwidth low-pass filter with high-order roll-off rejects the electrical 
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drive feedthrough signal that is shifted by demodulation from 2ωr to ωr. Higher-order 

demodulation components at 2ωr and 3ωr are also rejected. 
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Figure 3-22: Measured large-stroke parametric response with bi-directional frequency sweeps for 

(a) 60 V DC and 3.3 V AC, and (b) 55 V DC and 3.3 V AC. 

 

Chirping the frequency bi-directionally yields the large-displacement bifurcation response of 

the resonator, as shown in Figure 3-22(a).  An 8.0 μm step in displacement amplitude at the 
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6.884 kHz bifurcation point is observed for the frequency up-sweep for the drive voltage of 60 V 

DC and 3.3 V AC under a vacuum of 26 mTorr.  This is five times larger in displacement than 

previously reported NIF resonators [16] [17] (Chapter 2). Figure 3-22(b) shows a higher 

bifurcation frequency for the drive voltage of 55 V DC and 3.3 V AC, indicative of the presence 

of a softening nonlinearity.   

A typical parametric resonator has a minimum detectable signal on the order of 5 pm with a 

225 Hz bandwidth in open-loop operation [28].  The frequency down sweep reveals a relatively 

low-amplitude bifurcation jump of 2.3 µm at 6.810 kHz.  The measured bifurcation frequencies 

match the analytic solution plotted in Figure 3-12 within 1%.  The slope increase of the |x| – f 

curve at large amplitude is not predicted analytically by Figure 3-12 and was observed by 

Requa et al. [27].  This phenomenon needs further simulation verification.   

 

3.4.3. TIME-DOMAIN RESPONSE 

The transient response near the bifurcation point D in Figure 3-12 for the frequency up-

sweep is plotted in Figure 3-23.  The frequency is swept with a time step of 1.9 s with an 

increment of 0.6 Hz.  The transient starts at a frequency tripping point X, which is at the saddle-

node bifurcation frequency of 6.884 kHz (near the theoretical saddle-node point D in Figure 3-12 

with a frequency of 6.86 kHz).  The phase is given enough time to settle before a second step 

change in the swept frequency at point Y. The phase reverts continuously to a stable steady-state 

of 50.4° after a transient which lasts approximately 0.7 s.  The coherency in phase after the jump 

is due to the signal feedthrough at frequency ωr from the printed-circuit-board which houses the 
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frequency doubler.  The amplitude drops from 8.0 µm to zero as the phase settles.  The long 

resettling time gives crucial information regarding the stabilization of the bifurcation 

phenomenon at the jump point. The 0.7 s duration of the resettling transient is evidence of the 

complex dynamics in the plant on the edge of the bifurcation point [34].  Measures would have 

to be taken to ensure this long resettling time is avoided to stabilize a closed-loop controller [35] 

to be discussed in Chapter 4 and Chapter 5. 
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Figure 3-23: The transient near the frequency up-sweep saddle-node bifurcation point. 

 
The transients at the bifurcation point due to a step turn-on followed by a step turn-off in the 

AC voltage are shown in Figure 3-24.  The AC parametric drive voltage of 3.3 V is stepped on at 

9.8 s.  When AC voltage is turned on, the frequency of the drive is fixed at 6810.2 Hz, which is 

the down-sweep bifurcation point.  The DC parametric drive voltage of 60 V remains unchanged 

throughout the measurement.  The step response amplitude |x| and phase ∠x are recorded at the 
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rate of 225 samples per second.  As seen in Figure 3-24(b), immediately following the step turn-

on of the AC voltage, after a dead time of 0.2 s, the displacement amplitude increases from zero 

to 2.3 µm.  This transient is partially explained theoretically by a time-domain solution of an 

undamped linear Mathieu equation derived using the method of multiple time scales [15].  At the 

onset of the parametric bifurcation jump, the displacement x as a function of time t is 

( ) ( )r r
1 1
2 2

r r r r

r r r r

cos sin cos sin H.O.T.

1 12cos cosh 2sin sinh H.O.T.
2 2

t t

o

o

x x e t t e t t

x t t t t

ε ω ε ω
ω ω ω ω

ω ε ω ω ε ω

− 
= − + + + 

 
    = × − × +        

 (3.23) 

where x0 is a characteristic dimension that is proportional to the comb length, and H.O.T. stands 

for the higher-order terms.  From (1.16), ε is the dimensionless parametric linear electrical 

stiffness equal to γ1V2
ac / (2k1) = –0.0035.  The theoretical value of the exponential time constant, 

|4π/εωr|, is 0.1 s, which is strongly affected by the nonlinearities.  The measured time constant is 

0.4 s for the turn-off transient.  Improving the analytical model by considering the damping 

effect would improve the match.  Figure 3-24(c) shows the step turn-off in the AC voltage 

amplitude Vp,ac.  The transition between zero and non-zero (2.3 μm) states defines the time-

domain transition of the jump and affects the design of a bifurcation-based controller [34] to be 

discussed in Chapter 4 and Chapter 5. 
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Figure 3-24: (a) The step turn-on, (R), and turn-off, (F), transients at the down-sweep bifurcation 

6.810 kHz. (b) Zoom-in of step turn-on transient, R.  (c) Zoom-in of step turn-off transient, F. 

 

3.5. SUMMARY 

The use of quadratic-shaped-finger combs to customize the linear electrostatic spring 

stiffness coefficient gives rise to a large-displacement (8 μm) parametric response, as validated 

by experimental results.  The design of the comb-finger shape dictates the dependency of the 
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electrostatic force on the rotor finger displacement. The specific design of a quadratic capacitive 

engagement response (i.e., 2xC ∝ ) for the shaped-finger comb leads to a linear voltage-

controlled spring constant such that the large displacement parametric drive is achievable. 

Electrostatic spring nonlinearities, added to the linear spring term, can be designed purposefully 

or may arise as an artifact from incomplete modeling of the three-dimensional nature of the 

electrostatic fields between fingers. Presence of such nonlinearities generally sets the limits on 

the parametric resonance amplitude.   

The quadratic-shaped-finger comb successfully provides the necessary nonlinearity to 

demonstrate large-stroke nonlinear parametric resonance. The ability of providing large 

displacement response for relatively small pump excitation voltages could be applied to future 

low power automatic electrostatic parametric excitation schemes.  The linear electrostatic tuning 

dynamics and the scaling law of the same quadratic-shaped-finger comb drive are essential in 

synthesizing a comb profile that delivers large oscillation amplitude and a high tuning range.   

Characterization of the quadratic-shaped-finger comb parametric resonators with different 

suspensions show that the crab-leg spring gives rise to a parasitic theta rotation mode when 

exciting parametric resonance whereas the folded-flexure suspension eliminates the unwanted 

theta mode.   

Observations of transients on the edge of the bifurcation are useful in experimentally 

investigating the dynamics of the bifurcation behavior, which may provide information on future 

design of a pump drive with optimal system dynamics.  The step turn-on dynamics investigate 

the transitions in the displacement amplitude and the phase on the edge of the parametric jump.  
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These transient responses provides the time necessary for the bifurcation to change between a 

zero displacement state and a non-zero state.  These time-domain transitions, together with the 

hysteresis, are critical in determining parametric controller dynamics as discussed in Chapter 4. 

(end) 
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CHAPTER 4 BIFURCATION-POINT CLOSED-LOOP 

CONTROL TECHNIQUES 

The study of nonlinear dynamics and parametric resonance effects in resonant micro- and 

nanomechanical systems has extended over two decades. Mass [1], chemical absorption [2], and 

stress all contribute to the resonant frequency shift, which links to the parametric bifurcation 

frequency shift.  Since the bifurcation is instantaneous, to the first order, the amplitude noise 

does not affect the bifurcation frequency.  Tracking of the bifurcation frequency shifts enables 

sensitive detection of attogram mass [3] or spring constant change, even with the presence of the 

injected amplitude noise [2].   

Exploring ultrasensitive detection of mass or stress had led to many detection schemes.  

Early implementations use the open-loop frequency sweep method [1], [13] to measure the 

change in the bifurcation frequency point, where the frequency of the drive is swept through the 

parametric resonance region until a jump is identified and its frequency is recorded.  However, 

the open-loop method is slow due to the long time (generally a few minutes) it takes to complete 

one measurement that exploits quasistatic operation points.  This drawback makes the open-loop 

sweep method impractical for automatic sensor applications. 

Continuous automated detection of bifurcation frequency shifts with sub-Hz precision is only 

possible if a control approach can be designed to servo on the bifurcation frequency edge. 

Compared with the harmonic resonator, on which the linear feedback control approach generally 
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suffices, classical linear control approaches applied to the parametric resonator fail due to the 

hysteresis and the latch-up instability on the edge of the bifurcation [35].  The buildup and ring-

down time that are associated with the high-Q mechanical system and the parametric instability 

also destroy the controller stability.  

One bifurcation-based analog control scheme [4] is implemented by observing the coherency 

of the signal phase.  It is designed such that the resonant amplitude is kept very small (140 pm) 

in order to lock into the phase coherency to avoid the slow time bifurcation jump event that is 

required to travel from the zero state to the non-zero state.   

A frequency-state controller that varies the frequency of the parametric drive was first 

attempted in order to servo on the bifurcation edge.  The description of this approach is in 

Section 4.2.3.  The parametric drive voltage is fixed while the drive frequency is varied.  The 

frequency is set by the loop to have only two states.  At one state the frequency is set so the 

resonance amplitude is non-zero; at a second state the frequency is changed so the amplitude is 

zero.  Switching between zero and non-zero effectively places the servo setpoint at the 

bifurcation.  However, this approach fails due to the hysteresis that creates a limit cycle 

comprising alternating amplitude response patterns with non-zero and zero amplitude. 

The balance of this chapter describes a amplitude-state parametric controller to successfully 

control at the bifurcation with large drive amplitude while avoiding latch-up instabilities.  The 

large displacement operation enhances its robustness in the presence of detection noise.  The 

servo uses fine-grained control of the DC drive voltage, Vp,dc, while fixing the drive frequency.  

This DC drive gain is set by the feedback control loop.  The controller tracks on the edge of the 
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bifurcation, and thus on the shifts in nonlinear resonance characteristics.  The servo operates in 

two states: the “on” state enters the rising edge along the amplitude jump manifold; the “off” 

state backs off into the zero solution region so the resonance is about to turn off.  The control 

loop has an adjustable threshold, thus capable of servoing on different preset oscillation 

amplitude levels.  An exemplary system is demonstrated at 1.9 µm amplitude with an equivalent 

4.5 Å resolution. The states are cycled by 200 kHz pulse width modulation that circumvents the 

slow latch-off and turn-on as would happen in quasistatic operation with analog feedback. 

Secondary effects of the parametric resonance such as instability and hysteresis render the 

controller design for such a system intractable analytically.  Accurate system-level modeling of 

the complex nonlinearity of the parametric resonator facilitates the rapid exploration and design 

of the control loop topologies and parameters.  Simulation testbeds built from an interoperable 

hierarchical circuit model library [40] are used for the control topology exploration and 

component selection as well as optimization of the loop parameters.  For example, the control 

plant is modeled with lumped models of explicit governing ordinary differential equations and 

macro models with characteristics extracted from finite element analysis (FEA).  Electrical 

models are incorporated together with the mechanical subsystems to form a complete top-level 

electromechanical system.  The co-simulation of microelectromechanical dynamics with the 

analog circuitry enables the simulation of the complete control loop and the investigation of the 

stability and limit cycle.  The simulated loop parameters assist in building an off-chip parametric 

controller to be used in validation experiments.   
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4.1. BIFURCATION DIAGRAM 

4.1.1. BIFURCATION LOCUS 

Using the non-interdigitated comb resonator in Chapter 2 as an example1, the frequency 

response in Figure 1-4 is re-plotted in Figure 4-1(b) zooming in to the up-sweep bifurcation 

frequency region. The bifurcation points 11f  (point A) and 21f  (point F) are graphically 

represented in Figure 4-1(a), which defines the “tongue” (or “wedge”) as the two loci of the 

pitchfork bifurcation points.  The right curve is the pitchfork bifurcation f21 where the trivial 

solution 4α  intersects with the non-zero stable region of 2α  [point F in Figure 4-1(b)]; the left 

curve is the pitchfork bifurcation f11 where 4α  intersects with the non-zero unstable region of 1α   

[up-sweep jump frequency at point A in Figure 4-1(b)].  Figure 4-1(a) is called the “bifurcation 

diagram” that draws the boundaries between the non-zero solution (“on” region) and zero 

solution regions (“off” regions) for the frequency up-sweep tests in this system with a softening 

nonlinearity.  The amplitude in the non-zero region is limited by the cubic stiffness nonlinearity.  

In Figure 4-1(a), the DC polarization voltage, Vdc, is fixed to 40 V, consistent with Figure 4-1(b). 

The design parameters are summarized in Table 2-1 in Chapter 2. 

                                                 
1 Although the controller plant to be discussed in this chapter is the quadratic-shaped-finger-

comb resonator from Chapter 3, the NIF resonator is chosen to introduce the bifurcation 
diagram concept.  This is due to NIF resonator’s relatively wide separation between two pitch-
fork bifurcation points.  Using NIF as a numerical example helps to better illustrate the “on” 
and “off” regions.  
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Figure 4-1: Bifurcation diagram showing the boundaries between the non-zero solution and zero 

solution regions in the DC bias voltage – frequency parameter space.  

 

The changes in the drive voltages modify the system’s effective spring constant, which 

affects the bending of the resonance curve and the regions where the system enter the non-zero 

solution region.  In a typical nonlinear resonator, the drive voltage shapes the tongue.  The 
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tongue width measured in frequency depends on the AC drive amplitude Vac.  On the boundary 

of the “wedge”, the denormalized transition frequency as functions of DC polarization voltage, 

Vdc, and the AC parametric excitation voltage, Vac, is 

( ) 







±+=

1

2
ac1

1

2
dc1

0acdctran 4
112,

k
V

k
V

fVVf r
γγ

, (4.1) 

where the “–” and “+” terms inside the parenthesis correspond to the left and right wedges, 

respectively.  Figure 4-1(a) quantifies the effect of Vac on the two pitchfork bifurcation points.    

Increasing Vac moves the bifurcation frequency f21 to the right in a quadratic manner.  Similarly, 

f11 decreases with the increasing Vac. 

 

4.1.2. LINEAR ELECTROSTATIC TUNING 

Adjusting the DC polarization voltage, Vdc, shifts the entire frequency response curve in 

Figure 4-1(b), resulting in changes in the locations of points A and F.  The position of the 

bifurcation diagram tongue along the frequency axis is a strong function of Vdc.  Allowing Vac to 

simultaneously change with Vdc (here, Vac = 0.5Vdc), the bifurcation frequencies are 
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Varying Vdc, the curves in Figure 4-1(a) bend and are shown in Figure 4-2.  For a softening 

comb, where linear electrostatic spring constant γ1 < 0, the curves bend to the left, indicative of 

electrostatic softening phenomenon.  For a stiffening comb, where γ1 > 0, the curves bend to the 

right, indicative of electrostatic hardening phenomenon. 
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Figure 4-2: Effect of DC polarization voltage on the bifurcation diagram.  The wedge could bend 

towards (a) left for a softening comb, or (b) right for a stiffening comb. 

 

Figure 4-2(b) uses the design parameters from Table 2-1 and the applied voltages (Vac = 

0.5Vdc) are consistent with Figure 4-1(b), where Vdc = 40 V and Vac = 20 V.  It provides the 

combination of excitation frequency and the DC polarization voltage that define the boundary 

between “on” and “off” regions for an example NIF resonator.  The bifurcation diagram impacts 

the servo topology exploration as well as the choice of its steady-state operation points on the 

edge of the bifurcation [4], [34], and [35].  Details on this can be found in Sections 4.2.3 and 4.3. 
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4.1.3. EFFECT OF AIR DAMPING 

The transition curves Figure 4-3 are overlaid with the simulated pitchfork bifurcation points 

in air with shear and squeeze-film damping effects. The air damping shrinks the non-zero region 

by lifting the boundary curves from the frequency axis and narrowing them in the Vdc–frequency 

plane, which is explained theoretically in [33].  The excitation of the automatic parametric 

resonance (i.e., excitation only through the parametric drive force) requires more energy in air 

than in vacuum.  However, the transition dynamics of the parametric resonance remains sharp 

and the jump boundaries can still be accurately defined [1]. The behavioral modeling testbed 

incorporating air damping in the simulation of bifurcation frequencies and the simulation 

methodology are included in Chapter 2.  
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Figure 4-3: Analytic bifurcation diagram overlaid with simulated frequency boundaries 

considering atmospheric air damping. 
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4.2. BIFURCATION CONTROLLERS – A REVIEW 

4.2.1. LINEAR ANALOG CONTROLLER 

A linear analog parametric controller is used to investigate the possibility of servoing on the 

edge of the instability utilizing linear controllers.  The servo point is chosen at the onset of the 

pitchfork bifurcation point.  The oscillation amplitude is kept small enough to avoid the slow 

buildup time from the zero to the non-zero amplitude.  The parametric drive frequency and the 

corresponding AC excitation voltage amplitude are fixed to 29 kHz and 5 V, respectively.  The 

system is driven near the parametric resonance point.  The DC drive gain is set through the 

control loop and can take continuous values whose range covers the steady-state bifurcation 

point, shown schematically in Figure 4-4.   
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Figure 4-4: Controlled states of the linear analog servo with the range of the DC drive gain 

labeled in red. 
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The controller schematic is shown in Figure 4-5.  The displacement amplitude is compared 

with a preset threshold value to yield error signal that is fed into a proportional-integral-

derivative (PID) controller.  Its output is used to set the required DC polarization amplitude 

through series connected gain and level shifting stages.  The hypothesis is that the feedback 

enables continuous adjustment of the operation point to servo on the edge of the bifurcation. 
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Figure 4-5: Block diagram of the linear analog parametric controller. 

 

The first 20 ms of simulation is shown in Figure 4-6. x is the displacement, LPFx  is the 

displacement signal after passing the low-pass filter (LPF), Poutv  is the output of the peak 

detector, ampε  represents the resulting waveform after the threshold subtraction, PIDoutv  is the 

output after the PID controller with the proportional controller coefficient kp = 0.2 and integrator 

coefficient ki = 20.  The failure mode is evidenced by the buildup of the amplitude.  The 

resonance stays within 2 nm before it starts building up at roughly 7.2 ms and then rings 

afterwards.  The buildup of the resonance disables the loop from tracking the parametric 
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resonance point.  Thus, to author’s knowledge, special control schemes are required to stabilize 

the controller.  
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Figure 4-6: Simulation output of the linear analog bifurcation point controller.  Buildup of 

oscillation amplitude occurs at 7.2 ms.  

 

4.2.2. ANALOG PARAMETRIC CONTROLLER 

Analog parametric controller observes the statistics of the phase in order to servo at the onset 

of parametric resonance.  At the bifurcation, the state of the system changes according to an 

escape trajectory.  Along this trajectory, the zero-state stability is destroyed and the operation 

point moves along a slow-time manifold to a stable focus (i.e., an ultimately stable steady-state 

operation point) of large amplitude.  This trajectory is characterized as having three time scales.  

The fastest time scale is associated with the natural period of the vibration.  The second slower 

time scale is inversely proportional to the damping and represents the collapse onto the slow 
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manifold.  The slowest time scale is the time it takes to get to the large-displacement steady-state 

operation point.  This slowest time is required to reset the system from zero displacement “off” 

state to the non-zero displacement “on” state.  The long reset time (on the order of a few 

seconds) that is required to travel from the zero state to the non-zero state, together with the 

hysteresis, leads to instability in the controller and must be avoided.   

Burgner et al. [4] implemented an analog control scheme by observing the variance of the 

signal phase.  The proposed controller is designed such that the resonant amplitude is kept very 

small (140 pm) in order to lock into the onset of phase coherency to avoid the slow time 

bifurcation jump event.  The separation of the time scales is accomplished by adjusting the 

parametric drive amplitude to maintain a near-zero state.  The controller is impractical for on-

chip integration, at least in current technology, since it is implemented in a field-programmable 

gate array and takes as the input the statistics of the phase.  The loop relies on a small stroke, 

thus low signal-to-noise ratio. 

 

4.2.3. FREQUENCY STATE PARAMETRIC CONTROLLER 

The first exploration of an alternative closed-loop bifurcation control scheme is a frequency-

state controller, which is schematically shown in Figure 4-7.  This topology borrows from a 

sigma-delta control loop and uses a voltage-to-frequency convertor to convert the voltage control 

signal into a frequency control signal.  The DFF (D-type flip-flop) converts the comparator 

output into latched digital signal at clock frequency of 80 MHz.  The use of the sigma-delta 
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topology takes advantage of its noise shaping capability [41] that contributes to a better signal-

to-noise-ratio at the controller output v0.   
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Figure 4-7: Schematic view of the sigma-delta frequency-state controller. 

 

The parametric drive voltage amplitude Vdc and Vac are fixed.  The AC drive frequency, ω(t), 

is changed according to the states indicated in Figure 4-8.  Two frequency states are chosen such 

that one of the states (left blue circle) is within the “off” region, having zero steady-state 

displacement; another state (right blue circle) is in the “on” region, having non-zero steady-state 

displacement.  The switching of the two steady-state frequency states is fast enough in the hope 

of keeping the servo displacement small and avoiding the buildup of parametric resonance.  
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Figure 4-8: Control states of the frequency-state control scheme for an example NIF parametric 

resonator.  The two states are shown as large blue dots. 

 

However, the loop exhibits limit cycling (Figure 4-9) due to the slow time dynamics that are 

required for the zero state to collapse and move along the bifurcation manifold.  This time scale 

(~0.2 s) is inversely proportional to the quality factor (75.8 in air) of the system.  The loop fails 

due to the limit cycle that destabilizes the servo point.  The control parameter is the frequency 

that is switched between the “on” and “off” regions.  However, stepping the frequency from the 

“off” to the “on” region immediately builds up the displacement amplitude, similar to a quasi-

static frequency sweep but with a relatively big frequency step.  Thus the amplitude builds up 

each time when the state is switched to the “on” region. 
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Figure 4-9: Simulation output of a frequency-state controller exhibiting a limit cycle due to the 

time required to build up oscillation. 

 

4.3. AMPLITUDE-STATE PARAMETRIC CONTROLLER 

Three practical challenges hinder successful control at the parametric bifurcation point.  One 

challenge is the instability along the bifurcation edge that is demonstrated by the linear analog 

controller.  The second one is the issue of limit cycling caused by the long settling and ring-down 

time, as shown by the frequency-state controller.  Hysteretic behavior inherent in the nonlinear 

resonators could lead to latch-up instabilities if the operation point travels bi-directionally in 

quasi-static operation [39].   

An amplitude-state controller is proposed to successfully control at the bifurcation jump 

point.  The bi-state controller is capable of servoing along the microelectromechanical 

parametric resonant bifurcation point at large displacement amplitudes. The feedback states are 
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two levels of the electrostatic-drive polarization voltage that shift the nonlinear resonance 

characteristics. The system is driven at a fixed frequency and a fixed AC parametric drive. The 

feedback states correspond to two steady-state conditions: the “on” state experiencing parametric 

resonance where the amplitude response builds up over time, which is limited to steady-state 

amplitude by the system nonlinearity; and the “off” state at zero amplitude. The two states 

correspond to two DC polarization voltage values that are set by the feedback. The states are 

cycled by 200 kHz pulse width modulation that circumvents the slow hysteretic latch-on that 

would occur in quasistatic steady-state operation.  The exemplary system demonstrated has 

1.9 µm servo amplitude with 4.5 Å minimum Allan deviation.  The current loop is capable of 

operating at displacement values of 1.57 μm to 1.95 μm using an adjustable velocity amplitude 

threshold.  Servoing at large displacement amplitude could enhance robustness in the presence of 

detection noise. 

 

4.3.1. CONTROLLER DESCRIPTION 

The block diagram of the control scheme is schematically shown in Figure 4-10.  The control 

plant is the quadratic-shaped-finger comb parametric resonator shown in Figure 3-2 in Chapter 3.  

The device is made in an in-house SOI-MEMS fabrication process [25] with a 15 µm-thick 

structural silicon device layer. The electrostatic drive comb finger [Figure 3-2 (c) I] is shaped to 

create a necessary voltage-controlled linear spring constant γ1
 to excite the parametric resonance.  

A DC bias voltage Vdc is applied to a total of 278 moving straight fingers that are attached to a 

mass of 9 µg. A variable DC drive voltage, vPWM, in series with an AC excitation voltage, vp,ac, is 
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applied on the anchored shaped fingers.  Velocity is sensed with a set of 78 linear capacitive 

comb fingers [Figure 3-2 (c) II] and a pair of transimpedance amplifiers (TIA, labeled A in 

Figure 4-10) made using an operational amplifier LF356 op-amp (Texas Instruments; Dallas, 

Texas, USA).  Multiplier in Figure 3-4 provides the 2ωd AC parametric drive. 
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Figure 4-10: Block diagram of the amplitude-state parametric controller. 

 

Using harmonic resonance testbed in Figure 3-15, an ωr value of 6910.7 Hz was obtained by 

a harmonic resonance test immediately before closing the loop.  A 3.3 V parametric AC drive 

voltage is generated by a frequency doubler. With an appropriate vp,dc, and a near-twice 

resonance frequency component ωe = 2ωd ≈ 2ωr, the resonator operating point is in the proximity 

of the parametric resonance jump point. The amplitude of the velocity signal, |vx|, is measured by 

a lock-in amplifier (LIA) that utilizes the drive frequency, ωd, to demodulate the mechanical 

resonance signal.  The low-pass filter (LPF) attenuates high frequency noise beyond a bandwidth 

of 3.9 Hz centered on the mechanical resonance at 6910.7 Hz. The velocity amplitude output is 

compared with a preset threshold Vthresh = 25 mV, corresponding to 0.076 m/s, to get the error 
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signal εamp. This error signal is fed into a proportional-integral-derivative (PID) controller 

implemented with the HF2LI lock-in amplifier (Zurich Instruments; Zurich, Switzerland) that 

provides the duty-cycle information to the pulse-width-modulation (PWM) module TL5001 

(Texas Instruments; Dallas, Texas, USA). The PWM generates a square waveform with a fixed 

frequency at 200 kHz. The value of the DC drive voltage is set through the feedback to take two 

values, constrained by the high and low voltages of the PWM module.  These values correspond 

to two states of operation for the resonator.  The DC drive gain switching is set to a speed much 

faster than the amplitude response dynamics.  The PID coefficients are chosen to scale the duty 

cycle of the “on” state to maintain the desired servo point. The duty-cycle signal (ranging 

theoretically between 0% to 100%, experimentally ~10% to ~95% with dead zones towards the 

theoretical maximum and minimum) is an ultra-sensitive indicator of the servo setpoint, 

therefore it is chosen as the controller output vo after passing vPWM through another LPF.  The 

parametric DC polarization voltage, 

vp,dc = Vdc + vPWM, (4.3) 

is set by the PWM output, vPWM = [–1.3, 1.6] V, and the DC bias voltage, Vdc = 50 V, on the 

mass. The parametric AC drive voltage amplitude, vp,ac, is 3.3 V.   

 

4.3.2. PLANT DESCRIPTION 

Steady-state frequency response 

Sweeping frequency downwards in the open loop, an instantaneous bifurcation “jump” is 

seen from a near-zero “off” state (point A) to a non-zero high amplitude (2.2 µm) “on” state 
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(point B) in Figure 4-11. The bifurcation is caused by multi-valued solutions for one particular 

frequency, which leads to “bi-stability” in frequency response.  Sweeping the frequency 

upwards, the bifurcation jump happens from a non-zero high amplitude of 8.3 μm (point E) to a 

near-zero “off” state (point F).  The jumps occur at two different bifurcation frequencies 

depending on the direction of the frequency sweep. This well-known hysteretic behavior [40] is 

caused by the nonlinearity inherent in the parametric resonator.  The applied DC polarization 

voltage is 50 V and the AC parametric drive voltage is 3.3 V.  The tests were carried out in a 

vacuum of 18 mTorr.  
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Figure 4-11: Measured steady-state |x| amplitude vs. frequency. The symbols ↑ and ↓ denote the 

frequency up and down sweeps, respectively. Bifurcations in the response occur at 6987.3 Hz for 

the up sweep and 6910.7 Hz for the down sweep. 

 

Transient dynamics on the bifurcation edge 

The bifurcation jump, though sharp in the steady-state frequency spectrum, is slow in its 

dynamic response [49] compared to the period of the natural oscillation. The time it takes for the 
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bi-stable jump transition also relates to the speed at which a bifurcation parameter changes [49], 

for example, a mass absorption rate or a parametric frequency sweep rate.  
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Figure 4-12: Performing frequency down sweep in the time domain, the system experiences 

instability from the “off” state to reach the “on” state. 

 

Figure 4-12 experimentally shows that the jump experiences a delay after a down-sweep step in 

the electrical drive frequency.  This delay is followed by a monotonic increase in the 

displacement that lasts for 1.8 s (amplitude increasing region between “off” and “on”). The jump 

corresponds to the transition from A to B in Figure 4-11. The time it takes for the buildup of the 

resonance is roughly equal to Q/fr = 1.88 s, where the quality factor Q = 13000 and the resonant 

frequency fr = 6910.7 Hz. This slow time manifold along the system trajectory exhibits “latch-

up” instability and sweeping the frequency back up to 6911.1 Hz would increase the amplitude 
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towards the higher branch (red dotted line to the right of point B in Figure 4-11).  This 

complicates the design of an appropriate nonlinear feedback controller. 

 

4.3.3. PRINCIPLE OF BI-STATE CONTROL 
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Figure 4-13: Measured bifurcation diagram of the steady-state “on” (shaded) and “off” regions 

for down-sweep operation. Callout shows two servo states that are marked as circles. 

 

Adjusting the total DC parametric drive voltage, vp,dc, that is applied to the resonator comb 

shifts the entire steady-state frequency response curve (Figure 4-11) in frequency, and as a result, 

shifts the bifurcation frequency. This effect is quantified in Figure 4-13, which records the loci of 

the bifurcation frequencies as a function of vp,dc for down-sweep operation. Solid and dashed 

lines correspond to the bifurcation frequencies at point A and point C in Figure 4-11, 

respectively. Increasing vp,dc shifts the frequency response curves (Figure 4-11) to the left and 

decreases the bifurcation jump frequencies. Bifurcation below vp,dc of 3 V is not shown since the 
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sense signal, which is also proportional to vp,dc, is too small. The bifurcation frequency loci plot 

is used to guide the design of the feedback control loop that aims at servoing on the boundary of 

pitch-fork bifurcation instability. The “on” state wedge region bends to the left, revealing 

softening nonlinearity, which is different from Figure 4-3, where stiffening NIF comb is used. 

The working principle of the bi-state control is to fix the parametric drive frequency at 

6910.7 Hz and the AC drive amplitude vp,ac at 3.3 V, such that the system can be readily moved 

between states with appropriate values of the DC parametric polarization voltage vp,dc.  The DC 

voltage is the feedback signal and constrained to take one of the two values: 48.7 V for the “on” 

state and 51.6 V for the “off” state. The filled circles in Figure 4-13 indicate these two states. 
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Figure 4-14: Measured steady-state frequency responses for “on” state at 48.7 V and “off” state 

at 51.6 V. Both states are operated at the same frequency of 6910.7 Hz. 

 

Figure 4-14 provides a view of the servo operating point shown in relation to the steady-state 

operating curves. Operation at vp,dc = 48.7 V has one steady-state operating point indicated as a 

yellow-filled circle labeled “S.S. “on””. Operation at vp,dc = 51.6 V has two viable steady-state 
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operating points, one indicated as a yellow-filled circle labeled “S.S. “off”” and the other 

indicated as a green-filled circle labeled “latched”. In proper loop operation, the oscillation 

amplitude never approaches the “latched” state, leading to the labeling of vp,dc = 51.6 V operation 

as the “off” state.  

At turn-on, the steady-state operation for vp,dc = 48.7 V lands inside the “on” region, thus the 

displacement builds up towards the steady-state “on” amplitude. However, before the state 

completely settles to the “on” operating point, a revised value of vp,dc = 51.6 V is applied, with 

steady-state operation residing in the “off” region, moving the state back from “on” towards 

“off”.  Immediately at the second cycle of the PWM signal, vp,dc = 48.7 V is applied to move the 

state from steady-state “off” to “on”. 

Due to cycling between states, the frequency of the drive is always operating on the edge of 

the bifurcation. The servo point, shown as the blue circle, labeled “Servo”, in Figure 4-14, is 

chosen to take a non-zero displacement amplitude of 1.9 µm that is slightly smaller than the 

maximum “on” steady-state amplitude of 2.2 µm.  

The choices of the polarization voltage levels, of the servo setpoint and of the timing of the 

feedback cycling are critical to avoid latch-up conditions. Assume, for example, that the vp,dc = 

48.7 V state of operation is allowed to settle at the steady-state “on” state before a revised value 

of vp,dc = 51.6 V is applied.  Due to inherent hysteresis (demonstrated in experimental 

observations in the next section), once the feedback voltage switched to 51.6 V the system state 

would slide to the “latched” state shown as the green-filled circle in Figure 4-14.  Since the servo 

loop then indicates that the system should be turned “off”, the feedback would pin to the vp,dc = 
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51.6 V state. This is a failure mode of the servo and can be circumvented by sufficiently fast 

switching between the “on” and “off” states to avoid settling to a steady-state operating point.  

The minimum speed of the switching that avoids the latched modes will be determined by 

characterizing the “recapture” dynamics in the following section. 

 

4.4. CHARACTERIZATION OF THE BI-STATE PARAMETRIC CONTROLLER 

4.4.1. OPEN-LOOP RECAPTURE DYNAMICS 

In open-loop operation, “recapture” dynamics are illustrated in Figure 4-15.  Prior to 0 s, the 

resonator is operated at the steady-state “off” state.  A step change of vp,dc from 51.6 V to 48.7 V 

occurs at t = 0 s, starting to drive the displacement towards the steady-state “on”.  The time  
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Figure 4-15: Measured step response dynamics by varying the “on” state time. 
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period during which vp,dc = 48.7 V is applied is called the “on-state” time, Γ.  After the duration 

of the “on-state” time, vp,dc is turned back to the 51.6 V, returning to the steady-state “off”.   

 

Successful recapturing of the resonator state by switching back to the “off” state is 

guaranteed provided that Γ is kept shorter than 603 ms.  Shorter Γ does not allow the system to 

reach the steady-state “on” amplitude. The system hysteresis creates a latch-up condition if the 

on-state time is set beyond this critical time, as evidenced by the Γ = 3858 ms case.  During the 

long “on-state” time, the displacement settles to a steady-state value of 2.1 μm.  At t = 3.86 s, a 

subsequent step change in vp,dc back to the “off” state moves the resonator operation to the high 

amplitude region in Figure 4-14, on which the “latched” state resides.  Thus, in quasi-static 

operation, it is impossible to fix the servo operation point due to the inherent hysteresis.  

In a practical control loop that servos on large amplitude, when backing off from steady-state 

“on” to “off”, before settling at “off”, vp,dc is switched back to the “on” state again. The 

imposition of the bi-state parametric drive voltages with a switching speed (i.e., 200 kHz) that is 

much faster than the slow amplitude dynamics (on the order of 1 s) sets the servo point. The 

maximum pulse width that allows the amplitude to back to the "off" state is 603 ms.  This sets 

the minimum bound to the PWM frequency (1.7 Hz).  However, at this low PWM frequency, the 

ripple would be very large. 
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4.4.2. CLOSED-LOOP DYNAMICS 

Turn-on dynamics of this bi-state control loop in a vacuum of 18 mTorr is shown in 

Figure 4-16. Prior to enabling the servo, the resonator is turned to the maximum “on” steady-

state operating point. The PID controller and PWM are enabled at 23.3 s. The proportional and 

derivative controller coefficients are kp = –141 and kd = –7.1 s, respectively.  The PID 

coefficients are obtained using the open-loop step response in Figure 4-15 that finds the system’s 

root-locus. The “on” and “off” states are switched back and forth with pulse widths below 5 µs, 

which is at a much higher speed than the recapture pulses in Figure 4-15. The controlled 

displacement amplitude backs off from the maximum “on” value and settles at 1.9 μm along the 

slow time manifold, with only a very small maximum cyclical amplitude variation of 80 pm. The 

duty cycle “rings” as the servo turns on, and then settles from 0.69 to 0.34. 

To demonstrate that a bi-state feedback is needed and a continuous-time linear feedback 

controller would fail under the same loop condition, turn-on dynamics of the bi-state feedback 

loop (labeled as “PWM” in black) are overlaid with that of the continuous-time feedback 

(labeled as “No PWM” in red).   The continuous-time linear analog controller is formed with the 

same schematic in Figure 4-10 except removing the PWM module.  The absence of the PWM 

module requires the PID coefficients to be scaled by the PWM gain to emulate the exact loop 

condition as that of the bi-state controller.  The PWM output is vPWM = [–1.3, 1.6] V and its input 

is [–0.7, 1.3] V, thus the PWM gain is 4.8.  As a result, the PID coefficients for an equivalent 

continuous-time controller are kp = –679 and kd = –34 s.  The PID output voltage vPID is revised 

to [–1.3, 1.6] V to match the bi-state controller PWM output.  All other loop parameters remain 
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unchanged.  The hypothesis is that the slow time amplitude build up is so fast that a continuous-

time vp,dc control will not servo and instead the latch-up phenomenon in Figure 4-14 occurs.  The 

use of the bi-state switching is one approach to reset the amplitude build-up.  This is 

implemented by stepping the voltage to drive the system state to the steady-state “off” region 

when a latch-up scenario would otherwise occur. 
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Figure 4-16: Measured turn-on transients of the PWM bi-state controller (black) overlaid with 

those of an equivalent continuous-time linear analog controller (red).   

 

Successful operation of the bi-state controller is demonstrated by the variation of the loop 

parameters such as but not limited to the threshold voltage, the mass change, and the PID 

coefficients. A closed-loop step response is shown in Figure 4-17 illustrating the effect of the 
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derivative controller coefficient.  The symbol |x| in the plot refers to the output voltage from the 

lock-in amplifier low-pass filter.  The servo is active throughout the duration of the 

measurement.  The servo threshold, Vthresh, is changed at 0 s from 25 mV to 28 mV. With 

kp = −141 and kd = 0 s, the displacement amplitude changes from 1.89 µm (equivalent to 27 mV)  
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Figure 4-17: Shifts in the servo setpoint illustrating closed-loop dynamics. Solid curves are 

obtained with only proportional control and the dashed curves are obtained using proportional-

derivative control. 

 

to 2.04 µm (29 mV) with a significant amount of ringing (solid line). This ringing is alleviated 

by introducing a derivative control coefficient, kd = –7.1 s, which results in a near critically 

damped amplitude response (dashed line). 
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4.4.3. ALLAN DEVIATION AND SYSTEM SENSITIVITY 

Allan standard deviation of the controller duty-cycle output, shown in Figure 4-18, represents 

the servo-point variation versus the integration time. The test was initiated after the pressure had 

reached a constant value of 18 mTorr and continuously ran for 18 hr.  The signal is sampled at 

14.1 samples per second. The duty-cycle signal is compensated to eliminate the effect of 

temperature on the bifurcation frequency variation and hence the servo setpoint.  The average 

temperature throughout the duration of the measurement is 26.2 ºC. 
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Figure 4-18: Allan deviation plot of the controller duty cycle output quantifying the stability. 

 

The loop operates at a large displacement value of 1.9 μm.  The minimum detectable duty 

cycle is 2.36×10–4 at an integration time of 4.3 s.  The calculation of the system sensitivity is 

obtained by varying the DC polarization voltage, Vdc, from 50.4 V to 47.8 V while keeping all 

other loop parameters (e.g., PID coefficients and PWM levels) the same.  The values of the duty 
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cycle and the servo displacement are recorded.  The two vp,dc voltage values corresponding to the 

“on” and “off” states change from 49.1 V and 52.0 V for Vdc = 50.4 V, to 46.5 V and 49.4 V for 

Vdc = 47.8 V.  The loop breaks down outside this range.  Varying the DC polarization voltage Vdc 

requires the feedback control loop to change the PWM duty cycle so as to keep the servo stable.  

As a result, duty cycle variation also changes the servo displacement amplitude.  The measured 

servo displacement amplitude is plotted against the duty cycle in Figure 4-19. The minimum 

Allan deviation of the duty cycle corresponds to 1.9 μm × 2.36×10–4 × 0.441 = 2 Å resolution in 

the displacement amplitude |x| for the bandwidth of 0.2 Hz. 

|x| = –0.441 × duty cycle + 2.017
1.5

1.6

1.7

1.8

1.9

2.0

0.0 0.2 0.4 0.6 0.8 1.0

|x
| (

μm
)

Duty cycle  

Figure 4-19: Measured displacement amplitude, |x|, versus the duty cycle variation. 

 

The negative slope of –1/2 prior to τ = 4.3 s is caused by thermal amplitude noise that may be 

dominated by the electronics noise from the TIA gain impedance, PWM pull-up resistor, and the 

frequency doubler circuit.  The current noise from the TIA is   

Sources of 
noise 



Chapter 4: Bifurcation-point Closed-loop Control Techniques 
 

 
118 

TIA
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, (4.4) 

where kB is the Boltzmann’s constant, T = 299.2 K is the temperature, and RTIA is the resistance 

value of the TIA, which is 1 MΩ in this design.  To relate the TIA current noise to the input-

referred displacement noise, the motional current is 
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where C0 = 8.1 × 10–14 F is the total capacitance of the 78 straight finger sense comb capacitor, 

and Lsense = 15.7 μm is the overlapped length of the sense combs.  The input-referred 

displacement noise is 
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B=

∆
, (4.6) 

which evaluates to 11.5 pm/rtHz.  The differential readout is implemented with a pair of TIAs, 

thus giving rise to a combined noise displacement of 16.3 pm/rtHz.  TL5001 PWM module 

(Texas Instruments; Dallas, Texas, USA) uses an external pull-up resistor [47] of 3.4 kΩ to set 

the output voltage levels due to the open-collector output design.  The pull-up resistor gives rise 

to the noise in the vp,dc DC voltage levels.  The frequency doubler circuit in Figure 3-4 also 

contributes voltage noise to the parametric AC drive.  Aside from the circuit noise, the Brownian 

noise of the mechanical resonator in the vacuum of 18 mTorr is 1.4 fm/rtHz, which is much 

smaller than the TIA input-referred noise.  Figure 4-20 shows the overlaid plot of the thermal 

noise (blue line) corresponding to the 16.3 pm/rtHz TIA noise by converting from the noise 

displacement to the equivalent noise duty cycle of 1.9 × 10–5 (rtHz)–1.  The green line is the 
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thermal noise fit of the Allan deviation plot.  The measured thermal noise corresponds to a noise 

duty cycle of 3.6 × 10–4 at 1 Hz bandwidth.  The discrepancy shows the possibility of other 

dominating noise sources that will need to be identified.  
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Figure 4-20: Allan deviation plot overlaid with the TIA noise.  The green line is the fit of the 

thermal amplitude noise to the measured Allan deviation. 

 

High frequency noise is attenuated by the 4th-order 3.9 Hz bandwidth low-pass filter of the 

lock-in amplifier.  Random-walk frequency noise dominates beyond τ = 4.3 s.  Drift in the servo 

point limits the minimum detectable signal. 

Equivalent minimum detectable frequency shift and the equivalent mass sensitivity are 

calculated based on the measured system sensitivity values.  Frequency variation is linked to the 

duty cycle by computing the sensitivity 
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dc11
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δδ
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δ
δ

=≡ , (4.7) 

where D is short for the duty cycle and f11 is the corresponding mechanical “pitch-fork” 

bifurcation frequency.  The numerator is obtained by the slope (–0.32 V–1) of the duty cycle 

versus the DC polarization voltage shown in Figure 4-21.  The denominator is obtained using the 

bifurcation frequency expression in (1.25): 
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Figure 4-21: Measured duty cycle variation versus the DC polarization voltage, Vdc. 

 

which evaluates to –6.17 Hz/V.  Thus the sensitivity value is S = 0.053 Hz–1.  The minimum 

detectable frequency corresponding to the minimum duty cycle Allan deviation of 2.36×10–4 is 

min,11fσ  = 4.5 mHz.   
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The normalized equivalent minimum detectable mass variation is calculated using the 

minimum equivalent frequency Allan deviation min,11fσ  

r

fm

fmm
m min,min,min 112d σσ

== , (4.9) 

which evaluates to –1.3ppm.  The total mass of the parametric resonator is 9 μg, leading to an 

equivalent absolute mass variation of 12 pg.  

 

4.4.4. DRIVE AMPLITUDE TO NOISE RATIO 

Calculated in the above section, the example bi-state parametric controller has an equivalent 

2 Å Allan deviation in the displacement amplitude |x| for the bandwidth of 0.2 Hz, which relates 

to the signal resolution. Defining the ratio of steady-state drive amplitude to the system noise 

(the “ratio”) as the figure of merit, we yield a figure of merit that is used to compare with other 

devices.  The large servo displacement of 1.9 µm yields a ratio of drive amplitude to the system 

noise of 20 × log(1.9 × 10-6 / 2 × 10-10) = 80 dB, a value that is much larger compared with the 

analog bifurcation control scheme [4] where the steady-state amplitude is 140 pm and the noise 

floor is 0.6 pm, leading to a “ratio” of 47 dB. 

In open-loop operation, the control plant – a shaped-finger comb parametric resonator has a 

steady-state amplitude of 8 μm and a minimum detectable displacement on the order of 5 pm.  

The use of the shaped comb to excite parametric resonance boosts the “ratio” to 124 dB.  

Whereas for a non-intergiditated finger comb parametric resonator discussed by DeMartini 

Equivalent 
minimum 
mass 
variation 

Definition 

“Ratio” of 
the shaped-
finger comb 
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in [12] and by Guo in [16], the amplitude is constrained to a stroke of 1.0 ~ 1.25 μm. The “ratio” 

for such comb designs is limited to 106 dB.  

The ratio of steady-state drive amplitude to the system noise could be used to evaluate 

parametric resonant systems and are linked to the signal-to-noise ratio (SNR) of a sensor that 

uses parametric resonator as the sensing element.  Higher steady-state drive amplitude yields a 

more robust signal in the presence of injected detection noise.  Smaller systematic noise 

contributes to better sensor resolution.  The ratio of the steady-state drive amplitude to the 

system noise could be used as a comparable metric to evaluate mechanical systems that are 

potentially useful in the sensing applications. 

 

(end) 

 

Conclusion 



 

 
123 

 

CHAPTER 5 BI-STATE CONTROL OF A DUFFING 

RESONATOR ON THE FALLING EDGE OF THE 

INSTABILITY 

s another validation example towards the investigation of a control technique 

capable of servoing on the bifurcation setpoint, an electrostatically-driven Duffing 

microresonator, fabricated in the SOI-MEMS process, was chosen as the control 

plant.  Mechanical nonlinearity inherent in the Duffing resonator gives rise to a sharp jump in 

oscillation amplitude at the bifurcation and is, therefore, ideal for further validation of the bi-

state amplitude control approach.  Without substantial contribution from electrical nonlinearity, 

the presence of only one mechanical nonlinearity component from the spring suspension 

underlines its reduced complexity.   

Bifurcation-based detectors provide an ultrasensitive approach to reveal parametric small 

changes in bifurcation frequency if a control approach is designed to servo at the bifurcation 

point.  However, a system exhibiting bifurcation behavior is difficult to control due to the long 

settling and ring-down time [49], hysteresis [16]-[17], and the instability [39] as described in 

Section 4.3 of Chapter 4.  This chapter describes a bi-state servo of a MEMS Duffing resonator 

that lands on the maximum amplitude “on” point prior to the bifurcation jump event, which leads 

to a significantly higher controlled amplitude (e.g., 4.8 μm) compared to prior works [4] and 

[26]. Open-loop and classic linear control approaches fail near the maximum amplitude “on” 

Motivation A 
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point due to the hysteretic behavior of the resonance.  An alternative approach to the closed-loop 

control of Duffing resonance is realized through tracking the phase [50], which is beyond the 

scope of this thesis.  

 

5.1. DUFFING RESONANCE 

5.1.1. CRAB-LEG RESONATOR DESIGN 

capacitive comb

x
y

z

250 µm
Drive Sense

Drive Sense

shuttle mass

20 µm

 

Figure 5-1: Optical microscope image of the Duffing microresonator with zoomed-in SEM views 

of the drive comb and the crab-leg spring. 

 
Shown in Figure 5-1 is the 15 µm-thick SOI-MEMS Duffing resonator reported in [25] as the 

control plant, with a perspective view of the lateral capacitive comb electrode geometry.  The H-

Device 
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shaped perforated shuttle mass is symmetrically suspended by four crab-leg springs. The 

nonlinearity inherent in the system is dominated by the mechanical crab-leg suspension 

nonlinearity because of the absence of electrostatic spring constants from the constant-force 

straight-finger capacitive comb drive.  

 

The capacitive combs are symmetrically placed on both sides of the shuttle mass; the left set 

serves as the electrostatic drive and the right set serves as the capacitive sense electrode, as 

shown in Figure 5-2.  The use of laterally-moving linear displacement sensing comb promotes 

large-displacement Duffing response.  The design parameters and geometric constants are 

summarized in Table 5-1.   

x

Vdc

Vac

|vx|
A

 

Figure 5-2: Duffing resonance testbed schematic. 

 

Testbed 
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Table 5-1: Crab-leg resonator design parameters 

Symbol Parameter Value 
m total mass 5.8 μg 
b damping coefficient 1.3×10−6  kg/s 
k1 linear mechanical spring constant 3.8 N/m 
k3 cubic mechanical spring constant 4.3×109 N/m3 

Lov overlapped comb finger gap 15.7 µm 
N number of rotor fingers 78 
g comb finger gap 3.5 µm 
t device thickness 13.2 µm 
fres natural frequency 4124 Hz 
Vdc DC polarization voltage 10 V 
Vac AC drive voltage 25 mV 

 

5.1.2. DUFFING EQUATION 

The governing equation for the crab-leg resonator is 

( )tFxkxkxbxm ωcos3
31 =+++  , (5.1) 

where x is the displacement of the resonator, m is the mass, b is the damping coefficient, k1 and 

k3 are the linear and cubic mechanical spring constants, F is the magnitude of the electrostatic 

force, ω is the frequency of the applied force which is around the natural resonance of the 

system.  The crab-leg spring provides the k3 nonlinearity that leads to the Duffing effect [15].  

The electrostatic force Fcos(ωt) is exerted through the straight finger comb, where the AC force 

magnitude F is  

acdc
ov

VV
L
CF = , (5.2) 

Duffing 
equation 
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and where Lov is the overlapped length of the capacitive comb, and Vdc and Vac are the DC and 

AC voltage magnitudes applied on the comb (Figure 5-2).  Total capacitance of the straight 

finger drive comb is 

g
tLN

C ov02 ε
= , (5.3) 

where N is the number of rotor fingers, t is the thickness of the device, and g is the comb finger 

gap. In contrast with the parametric drive force in (1.1), the harmonic force Fcos(ωt) is a 

function of time t but not a function of x.  F equals 0.26 nN using (5.2) and the design values in 

Table 5-1.  

The nonlinearity inherent in the resonator gives rise to the analytic Duffing response curves 

shown in Figure 5-3.  For a linear harmonic resonator, the resonance peak centers at its natural 

resonant frequency (dashed line).  However, using the same resonator topology, adding 

mechanical nonlinearity k3 bends the resonance peak (solid line).  The amount of bending is 

determined by the value of the k3 nonlinearity.  Larger k3 results in more bending.  This bending 

leads to multi-valued solutions for one frequency value around the resonance and thus the 

bifurcation phenomenon (dotted line).  The inherent nonlinearity also leads to a hysteresis effect: 

the loci of the bifurcation depend on the direction of the frequency sweep. 

Analytic 
Duffing 
response 
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Figure 5-3: Analytic Duffing response, overlaid with linear harmonic response, using the design 

parameters in Table 5-1.  Arrows indicate the direction of the frequency sweep.  

 

5.1.3. STEADY-STATE FREQUENCY RESPONSE 

Typical measured frequency response of the Duffing resonator is plotted in Figure 5-4.  The 

crab-leg resonator is driven harmonically around its natural resonance at fres = 4124 Hz.  The 

quality factor of the system is 14250 at 28 mTorr when tested inside a custom vacuum chamber, 

as shown in Figure 3-17.  The polarization voltage on the moving shuttle mass is Vdc = 10 V and 

the AC sinusoidal drive on the lateral capacitive comb rotor is Vac = 25 mV.  The test is 

performed in a vacuum of 25 mTorr.  The frequency response bends towards right, indicative of 

hardening nonlinearity.  On the edge of the bent peak (point B), a jump in the resonance 

amplitude from 4.8 μm to 0 μm occurs.  The frequency at which the instantaneous jump occurs is 

called the “bifurcation frequency” fB, which equals 4167 Hz for the setpoint B in Figure 5-4.  For 

a reverse frequency sweep, the jump happens at a lower frequency of 4125 Hz from 0 μm to 

Measured 
Duffing 
response 
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1.0 μm (point A), evidencing the hysteresis effect.  To the right of point B, the resonance 

amplitude reduces to a small but non-zero value. 
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Figure 5-4: Frequency response of the Duffing resonator at Vdc = 10 V and Vac = 25 mV. ↑ 

symbolizes the frequency up-sweep; ↓ is the frequency down-sweep. 

 

Shown in Figure 5-5, decreasing the AC drive voltage, Vac, decreases the up-sweep 

bifurcation frequency.  The frequency bi-directional sweep tests are performed in vacuum of 

26 mTorr.  The drive voltage magnitudes are 10 V DC and 6 mV AC for both sweep directions.  

Bifurcation jumps are observed at 4126 Hz and 4124 Hz for up- and down- frequency sweeps, 

respectively.   
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Figure 5-5: Frequency response of the Duffing resonator at Vdc = 10 V and Vac = 6 mV. 

 

5.1.4. FREQUENCY SWEEP TRANSIENT 

A time-domain frequency chirp test is performed to explore the transient on the edge of the 

instability.  The frequency is swept up through the bifurcation frequency (fB = 4167 Hz).  The 

initial swept frequency is backed off from the bifurcation frequency fB so the jump can be 

observed.  As the frequency approaches fB, the oscillation amplitude drops from 4.8 μm to a very 

small displacement.  The displacement of 1.8 μm seen in the “off” state of Figure 5-6 

corresponds to a small voltage output (3.0 mV) from the capacitive pick-off circuit (A in Figure 

5-2), which is due to the feedthrough from the Vac drive to the capacitive sense comb.  The 

feedthrough mainly couples through the low resistive silicon substrate.  The single-ended 

capacitive readout in Figure 5-2 lacks the ability in matching and cancelling out the feedthrough.   
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Figure 5-6: Turn-off transient of the Duffing resonator.  The resonator is turned off when the 

frequency is swept beyond the bifurcation frequency at 4167 Hz. 

 

5.2. CONTROLLER DESIGN 

Duffing resonance featuring bifurcation behavior is capable of gauging small resonance 

changes.  These variations in the resonator characteristics are generally modified by the resonant 

mass or suspension spring stiffness.  By probing the shifts in the bifurcation point through the 

use of a feedback control loop, sensitive gravimetric and stress detectors can be built.   

5.2.1. LOCI OF BIFURCATION FREQUENCIES 

 

Motivation 
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Adjusting the AC drive voltage Vac shifts the entire frequency response curve in Figure 5-4, 

thus resulting in changes in the bifurcation points A and B, as evidenced by Figure 5-7.  The 

shifts in up-sweep bifurcation frequency (analogous to point B in Figure 5-4) are graphically 

represented in Figure 5-8, which records the loci of the amplitude jump points as a function of 

Vac.  The upper plot is the up-sweep steady-state frequency response for a particular voltage drive 

gain Vac1 = 25 mV, and the green dot on the lower plot records the bifurcation frequency point 

for Vac1.  The process of varying Vac and recording the corresponding bifurcation frequency 

values builds the bifurcation diagram (Vac – f curve) of the location of the falling edge of the 

instability.  The DC voltage is fixed at 10 V.  

0.0
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5.0
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Figure 5-7: Measured up frequency sweep responses for different Vac values.  The 25 mV and 

6 mV cases correspond to Figure 5-4 and Figure 5-5, respectively. 
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Figure 5-8: Measured loci of the up-sweep bifurcation frequency. ωr is the linear resonance 

frequency. The DC voltage is fixed at 10 V. 

 

Changes in the DC and AC drive voltage magnitudes modify the system’s effective spring 

constant, which affects the bending of the resonance curve, the amplitude of the resonance, and 

the frequency regions where the system experiences Duffing resonance.  In a typical nonlinear 

resonator, the AC drive voltage, Vac, and the DC polarization voltage, Vdc, shape the bifurcation 

diagram.  Varying Vac shifts the frequency response (|x| – f) curve, which leads to the bending of 

the Vac – f curve.  The up-sweep bifurcation frequency as a function of drive voltage is 
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where ωr is the resonant frequency.  Higher Vac increases the frequency of the bifurcation.   

 

5.2.2. CONTROLLER PRINCIPLE 

The filled circles in Figure 5-9 identify the states for a bi-state control loop.  Two states – the 

high and low displacement states are associated with high and low Vac, respectively.  The high 

displacement state (“on” state) driven by 25.6 mV is to the left of the Vac – f curve which has a 

5 µm steady-state amplitude response; the low displacement state (“off” state) driven by 

24.1 mV is to the right of the Vac – f curve, representing a low but non-zero steady-state 

amplitude response (on the order of 20 nm). The two states center around Vac = 25 mV and have 

the same fixed frequency at the bifurcation frequency fB = 4167 Hz for the Vac = 25 mV setpoint. 

The DC polarization voltage is kept at 10 V.  The two states are set through design of the AC 

drive gain and land on opposite sides of the bifurcation point.  The measured frequency response 

on the upper plot shows a large bifurcation frequency shift for a relatively small Vac shift.  Due to 

the small difference in Vac, the two frequency response curves prior to the jump seem overlapped 

but the red curve corresponding to the high Vac is slightly higher in displacement than that of the 

low Vac (black curve). 
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Figure 5-9: Controller principle of the bi-state Duffing servo.  The high and low displacement 

states are associated with high and low Vac, respectively. 

 

5.2.3. CONTROLLER DESCRIPTION 

The control loop is schematically shown in Figure 5-10.  The control setpoint of the loop is 

0.2 μm below point B in Figure 5-4.  The AC drive frequency (fB = 4167 Hz) and the DC 

polarization voltage (Vdc = 10 V) are fixed to values such that the system can be moved between 

large-displacement “on” and low-displacement “off” states in Figure 5-9 with appropriate bi-

state values of AC amplitude Vac.  The Duffing resonator is driven by Vac whose amplitude and 

frequency are set by the pulse-width-modulator (PWM) output and the lock-in amplifier (LIA), 

Controller 
schematic 
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respectively.  A transimpedance amplifier (labeled A) followed by the LIA picks off the 

resonator velocity amplitude |vx|.  The loop tracks |vx| to a fixed setpoint, Vthresh = 8.1 mV, 

corresponding to 0.132 m/s and to 5 μm displacement amplitude.  The error output is fed into a 

proportional-integral-derivative (PID) controller to generate the input signal to the PWM 

representing the pulse-train duty cycle.  Through a gain stage, the output of the PWM provides 

the two voltage levels [9.92, 9.34] V for an intermediate voltage Vac,m, which, multiplied by Vac,i 

= 25.8 mV and divided by 10 (set by the multiplier module shown in Figure 3-4), sets the AC 

drive amplitude Vac of [25.6, 24.1] mV through an analog multiplier AD633 (Analog Devices; 

Norwood, MA). 

The voltage Vac is controlled by the feedback and rapidly switches between the “on” and 

“off” states at 300 kHz to achieve the servo at the maximum “on” point without turning off the 

resonator.  This switching is graphically represented by alternating the “on” state (green circle) 

and the “off” state (red circle) in Figure 5-9.  The fast switching avoids the long ring-down 

transient needed to settle from the maximum displacement to the zero displacement.  This 

resettling time is inversely proportional to the air damping and is on the order of 1 s for the 

resonator operated under a vacuum of 22 mTorr.  The speed of switching is determined by 

characterizing the “recapture” dynamics in the following section.  

PWM two 
states 
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Figure 5-10: Block diagram of the bi-state Duffing controller with a crab-leg resonator in 

Figure 5-1 as the plant. 

 

5.3. CONTROLLER CHARACETERIZATION 

5.3.1. OPEN-LOOP RECAPTURE DYNAMICS 

A time-domain open-loop analysis of the dynamics on the edge of the bifurcation jump 

provides information on how fast the controller should switch between two states to guarantee 

successful recapturing of the steady-state “on” state.  These “on” state recapture dynamics are 

characterized in Figure 5-11.  In the open-loop operation, prior to 0 s, the resonator is operated at 

the steady-state maximum displacement “on” state.  At 0 s, a step change in Vac is introduced 

from 25.6 mV to 24.1 mV, at which voltage the resonator is not fully in the steady-state low 

displacement “off” state but rather just starting to turn off.  Vac is then turned to 25.6 mV, driving 

back to the steady-state “on”, after a prescribed amount of time Г, called the “off” state time, Γ.   
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When Г is less than 394.6 ms, the Duffing resonance is successfully recaptured as presented 

by the red curves in Figure 5-11.  When Г is larger than 395.0 ms, the resonance degenerates to 

the “off” state, even though Vac drives the system back to the steady-state “on” at t = Γ.  This is 

shown as the black curves in Figure 5-11, where the Duffing resonance is turned-off by 

increasing the off-state time to  Γ = 550.6 ms.  The critical off-state time Г at which the 

resonance is on the edge of being recaptured is 394.6 ms.  A shorter Γ of 340 ms (thin blue 

curves) is overlaid with the 394.6 ms case to show a faster recovery and less ringing.  
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Figure 5-11: Measured step response dynamics by varying the “off” state time Γ.  Successful 

recapture (red curves) of the Duffing resonance is guaranteed by rapidly switching back to the 

“on” state.  
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After t = 0, the resonator starts to turn off and provides the initial condition for later step 

turn-on at t = Γ, when the system exhibits a step response due to the step turn-on in the drive 

amplitude Vac.  The black and red curves are the same prior to t = 394.6 ms and starts to deviate 

afterwards.  For the black curve, between 394.6 ms and 550.6 ms, the displacement experiences a 

steep decrease in the displacement amplitude.  The recapture is impossible after the “collapse” of 

the “on” state.  Beyond t = 550.6 ms, capacitive feedthrough from the drive voltage dominates, 

as evidenced by the phase value of almost 90°. 

The recapture dynamics in Figure 5-11 gauge the “slow time” (i.e., time scale that is much 

longer than the resonance period) behavior of the plant and provides information on the speed of 

switching for a practical controller.  Depending on the length of Γ, the system can either recover 

from the decreased amplitude (red curves in Figure 5-11) for a small Γ or completely turns off 

(black curves in Figure 5-11) for a large Γ.  The closed-loop bi-state signal in Figure 5-10 has an 

“off” state pulse width of less than 3.3 µs, which is much shorter than the critical Γ of 394.6 ms 

to avoid the latch-off scenario.   

 

5.3.2. CLOSED-LOOP TURN-ON TRANSIENTS 

Figure 5-12 is the turn-on transient of the closed-loop controller with an initial approaching 

phase. During region (1), the resonator is off, and the phase is incoherent.  In region (2), an AC 

voltage Vac = 25 mV is applied to the resonator drive fingers at 15 s, with a frequency of 

4123 Hz.  Due to the capacitive feedthrough, the turn-on in Vac results in a step response in the 

displacement signal output to a non-zero value of 3 mV (equivalent to a displacement of 

Further 
explanation 
of 
Figure 5-11 

Conclusion 

Measured 
turn-on 
transient 



Chapter 5: Bi-state Control of a Duffing Resonator on the Falling Edge of the Instability 
 

 
140 

1.8 µm).  The choice of the initial frequency ensures the resonator is within its “off” region and 

to the left of bifurcation point A in Figure 5-4 so as to build up resonance from a zero 

displacement.  Region (3) is the necessary “approach” process when the resonator is turned on to 

the steady-state maximum displacement operation point (point B in Figure 5-4) by increasing the 

drive frequency from 4123 Hz to 4167 Hz, just before the bifurcation jump.  The PID controller  
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Figure 5-12: Turn-on transient of the bi-state Duffing controller.  
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threshold Vthresh is set in (4) after reaching this maximum operation point, turning on the servo.  

The PWM output voltage, vPWM, switches at 300 kHz, with its duty cycle centered on 0.5.  The 

amplitude during the servo is maintained at 5 µm. At 75 s in region (5), the servo is disabled by 

turning off Vac. The phase is well-defined during the time the controller is on and loses track of 

the input Vac when the controller is turned off. 

 

5.3.3. ALLAN DEVIATION 
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Figure 5-13: Allan deviation plot of the normalized velocity amplitude quantifying the stability. 

 

The Allan deviation of the normalized velocity amplitude |vx| is plotted in Figure 5-13 

quantifying the stability of the loop.  The control system output is sampled at 14.1 Hz for 13.5 hr.  

The test was initiated after the vacuum level had reached 19 mTorr and was maintained at 
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19 mTorr throughout the test.  The output is normalized to the steady-state amplitude of 4.8 μm.  

The minimum Allan deviation is 1.59 × 10–4, corresponding to a minimum detectable 

displacement of 5 μm × 1.59 × 10–4 = 0.76 nm at the integration time of 127 s.  As a comparison, 

for the parametric controller, the minimum detectable duty cycle is 2.36×10–4 at an integration 

time of 4.3 s, leading to 0.2 nm resolution in |x| for the bandwidth of 0.2 Hz.   

The Allan deviation at small integration time shows a 1/τ dependence, which is related to the 

white phase noise.  The Allan deviation in Figure 5-13 measures the duty cycle stability, which 

varies with the oscillation amplitude.  The 1/τ dependence suggests a direct relationship between 

the amplitude and frequency fluctuation in the Duffing resonator.  This may be partially 

explained by the frequency response of the Duffing equation.  The amplitude, x, and the 

frequency, ωbifurcation, at the Duffing bifurcation are related by (derived from [15]) 









+= 2

2

2
03

nbifurcatio 8
31 x

m
xk

r
r ω

ωω , (5.5) 

where ωr is the resonance frequency and x0 is the spatial period of the comb. Further 

investigation is slated to investigate the nature of noise for small integration time.  

 

 

 (end) 
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CHAPTER 6 CONCLUSIONS AND FUTURE WORK 

6.1. CONCLUSIONS 

 resonator is said to be excited parametrically when the state of the system is 

modified by time-varying parameters.  In an electrostatically-driven resonant 

micromechanical system, the main design parameters are the supporting flexure 

stiffness and the equivalent electrostatic stiffness.  The electrostatic stiffness is set 

by nonlinear capacitive geometry and excitation voltage amplitude. By selecting appropriate 

nonlinear parametric settings, the principal parametric resonance mode is excited around twice of 

the system’s natural resonance frequency.  The nonlinear parametric resonance features a sharp 

transition at the bifurcation point on the boundary of instability, making it a good candidate for 

highly sensitive mass (i.e., gravimetric) and stress sensing. 

MEMS parametric resonance provides significant advantages over its simple harmonic 

resonance (SHR) alternatives, but these advantages come with a complex analytic model.  The 

governing nonlinear Mathieu equation of the class of resonator under investigation is a second-

order differential equation with an oscillating external excitation, whose closed-form solution 

including all nonlinear effects and damping is not possible to solve analytically.  Perturbation 

theory [15] provides a mathematical approach to an estimated solution.  In particular, the method 

of averaging was employed in [17] and [18] with normalized dimensionless parameters to arrive 
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at the steady-state frequency response and the nonlinear stability analysis around parametric 

resonance.  For most values of parametric drive frequency, the system is not stimulated and the 

solution is a very small bounded oscillation that is close to x = 0. With a parametric drive 

frequency at or near twice the resonant frequency, parametric resonance is established, which 

builds oscillation amplitude that would grow without bound if not for the damping and the 

inherent nonlinearity in the system. The exact combinations of the parametric drive frequency, 

the parametric drive amplitude, and the DC polarization voltage that cause this parametric 

amplification effect depend on the values of the system parameters. 

The accurate design of nonlinear systems including simultaneous effects from nonlinearities, 

damping, and parametric stimulus is of particular interest. One of many design approaches is 

through behavioral modeling and simulation, as previously demonstrated by [16], [17], and [40]. 

To enable modeling of complex nonlinearity inherent in the system, behavioral modeling is 

employed with lumped models of explicit governing ordinary differential equations and macro 

models with characteristics extracted from finite element analysis (FEA). The nonlinear 

parametric micromechanical resonators discussed in this work are modeled using primitives from 

a MEMS behavioral model library [32]. The behavioral models are coded in Verilog-A and the 

composable MEMS schematic [17] is simulated in Cadence Spectre. The enabling capability of 

this methodology in modeling electromechanical actuators [46] and sensors facilitate the 

modeling in environments that emulate end applications. The behavioral modeling of the control 

possibilities helped in exploring the system design space and obtaining a high-stroke robust 

controller setting. 
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Nonlinearity inherent in electrostatically-actuated MEMS arises from several different 

electromechanical drive topologies. One simple example is a laterally-moving parallel-plate 

capacitor able to provide large softening nonlinearity for a sufficiently small gap.  To deliver a 

well-designed nonlinearity, past research made use of the symmetric fringing field generated 

between the non-interdigitated comb fingers (NIF) [16], [17], and [18].  In this case, the fingers 

do not overlap.  Both the linear and nonlinear electrostatic stiffness can be independently tuned 

by alignment and percentage of finger width to the pitch [19]. 

Exciting parametric resonance through a NIF comb exhibits a small stroke due to the 

necessary parametric nonlinearity from the fringing fields that only extends to a displacement 

equal to ±1/2 of the comb pitch. However, resonant sensors such as gravimetric sensors, stress 

sensors and gyroscopes that have superior sensitivity require actuation schemes capable of a 

large motional stroke.  For a laterally-moving comb, nonlinearly varying the comb gap profile 

generates a custom-shaped force-engagement response [22].  A tailored custom profile “shaped-

finger comb” utilizes a nonlinearly varying electrode gap to provide the required effective spring 

stiffness for parametric resonance.  The shaped-finger comb moves along the direction of the 

fingers (i.e., lateral movement), allowing sufficient clearance for large resonant displacement.  

The possibility of using a large-stroke shaped-finger comb in exciting the parametric mode was 

briefly mentioned in a prior paper [22] but no further work was done.  This work examines the 

large-stroke parametric resonance using this class of shaped-finger comb and explores the design 

parameter space of the shaped-finger comb to obtain the optimum finger shape considering the 

fabrication constraints.  The quadratic-shaped-finger comb resonator, when used as the controller 
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plant, provides the capability for large amplitude servo operation.  Linear displacement sense-

comb capacitors were included to electronically measure the parametric resonance in these large-

stroke systems to experimentally study the time-domain transients of the bifurcation and the 

dynamics when the polarization or AC parametric voltages change.  These transient studies 

enable rapid verification of the analytical parametric response regions and the study of system 

root locus for later optimization of controller parameters.  

Three practical challenges hinder successful control at the parametric or Duffing bifurcation 

point.  One challenge is the jump along the bifurcation edge that destroys the servo of a linear 

analog controller.  The second one is the issue of limit cycling, as shown by the failure of a 

frequency state controller.  Another known challenge is the hysteretic behavior inherent in the 

nonlinear resonators, which leads to a latch-up scenario if the operation point travels bi-

directionally in quasi-static operation.  The design and implementation of a bi-state drive-

amplitude bifurcation-point closed-loop control scheme is our first step in developing an 

understanding of control of the oscillation amplitude that tracks the bifurcation setpoint.  

This work validates control at the bifurcation instability point for a MEMS quadratic-shaped-

finger comb parametric resonator using a bi-state amplitude switching methodology. Through 

pulse-width-modulation (PWM) fine-grained control, the DC polarization voltage amplitude is 

only allowed to take one of the two possible steady-state values (one non-zero “on” state, and the 

other zero “off” state).  The bi-state amplitude servo interplays with the system dynamics that 

enables the control at the bifurcation without the limit cycling and the latch-up failures. The “on” 

and “off” states are pulsed at 200 kHz that is much faster than the slow amplitude response and 
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circumvents the latch-on condition that would happen in quasistatic operation.  The minimum 

PWM frequency is set by the open-loop recapture dynamics that explore the system’s transients 

when experiencing a step change in the DC polarization voltage.  Lower PWM frequency results 

in longer pulse width and larger ringing, which lead to less stable duty cycle output.  The control 

scheme is a building block for ultra-sensitive platforms for detecting parameter changes that give 

rise to resonance frequency (and thus bifurcation frequency) shifts.  The potential of the 

controller in achieving high ratio of steady-state drive amplitude to the system noise could 

eventually link to a high signal-to-noise ratio parametric sensor with an excellent precision. 

Another validation example builds a bi-state servo that operates on the falling edge of the 

microelectromechanical Duffing resonant bifurcation setpoint.  The loci of the Duffing 

bifurcation are recorded as a function of AC drive gain.   Two control states are set through the 

AC drive gain near the locus of the bifurcation while operating at a fixed drive frequency and a 

fixed DC polarization voltage.  One of the system states experiences resonance at the maximum 

amplitude whereas the second state has a small but non-zero amplitude motion.  The amplitude 

servo point is chosen at the maximum “on” amplitude prior to the jump event.  The states are 

cycled by the PWM that is set much faster than the amplitude response dynamics and inhibits the 

system from latching off as would happen in static operation.  The bi-state amplitude control for 

the Duffing resonator is done through switching the AC parametric drive voltage values.  This is 

different than the DC polarization voltage switching in the parametric controller.  It is possible to 

employ the bi-state control scheme to vary other system parameters to control the amplitude 
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gain.  This exploration may lead to other parametric gain control mechanisms and inspire new 

parametric excitation schemes. 

 

6.2. FUTURE WORK 

The bifurcation jump setpoint is inherently a sensitive indicator of the mass and spring 

constant of micromechanical devices.  The detection of this sharp bifurcation jump promises a 

robust sensing mechanism.  The capability to servo on the edge of the instability promotes future 

implementation of an ultrasensitive bifurcation-based mass (i.e., gravimetric) or stress (strain) 

detector.   

The example bi-state parametric controller in this work is experimentally validated to achieve 

sensitive detection of resonant frequency shifts down to millihertz range, limited by the 

electronics noise of the sense circuitry and the feedback control loop.  The equivalent normalized 

minimum detectable mass change is –1.3ppm if the controller were to form the core of a future 

mass sensor.  Redesigning the device to a smaller mass would further reduce the current 

minimum detectable mass variation of 12 pg toward creating an ultrasensitive gravimetric 

sensor.  Making the moving plate mass smaller would reduce the available layout area for 

placing the drive comb fingers.  Increasing the drive comb fingers would also reduce the number 

of sense comb fingers given a fixed layout area.  One would need to explore the design space to 

find the optimum combination of the mass area and comb finger number to maximize the 

normalized mass sensitivity.  
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The current SOI-MEMS shaped-finger comb parametric resonator has a relatively large 

finger gap limited by lithography, lowering obtainable linear electrostatic spring constant.  In 

current designs, the effect of air damping is large enough to require a significantly large 

actuation voltage.  The minimum drive voltage to excite the onset of the parametric amplitude 

buildup is a function of the air damping.  With current technology and characterization 

environment, significant air damping requires a high parametric excitation voltage. To avoid 

possible electric breakdown, the devices were tested in the vacuum environment.  However, the 

operation in air is necessary for making a useful gravimetric sensor.  Future work is slated to run 

the device in atmosphere pressure with a necessary larger voltage drive to excite parametric 

resonance.  Such tests in air would be used to compare the minimum detectable mass variation 

with the current results in the vacuum.  The parametric drive is ideally zero with zero 

displacement.  Thus larger air damping would give rise to more noise displacement that perturbs 

the operation point sufficiently away from zero.  With a correct drive voltage setting, the 

automatic parametric resonance may be excited with a low voltage in air.  Alternative 

approaches towards a gravimetric sensor include but are not limited to the implementation of the 

shaped-finger comb resonator in the CMOS-MEMS [36] fabrication technology.  Benefiting 

from finer line-width and the flexibility of electrical routing, by designing smaller electrode gaps 

to obtain larger drive ability, one can reduce the maximum voltage required to excite parametric 

resonance in air.  The bi-state control scheme serves as the foundation for the future monolithic-

chip implementation of the control electronics with the on-chip MEMS nonlinear resonators to 

make a robust single-chip bifurcation-based gravimetric or chemical sensor suite. 
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The potential stress sensing capability of the bi-state control technique is exemplified by the 

use of a parametric resonator with fixed-fixed beam suspensions, as shown in Figure 6-1.  The 

fixed-fixed beam provides mechanical stiffening nonlinearity that modifies the linear spring 

constant of the system in x when its anchors experience an applied stress in y.  The modified 

spring constant shifts the location of the parametric bifurcation, which can be tracked precisely 

by the bi-state control technology developed in this work.  The device had been implemented in 

the latest SOI-MEMS run, and will be used as the plant of the bi-state control loop that forms the 

core of a future parametric stress sensor. 

x
y
z

shuttle mass 40 µm

500 µm
 

Figure 6-1: SEM of a parametric resonator suspended by four sets of fixed-fixed flexures to be 

used in the bi-state control loop that makes a stress sensor. 

 

The use of the shaped-finger comb is our first demonstration of the large displacement 

parametric response for relatively small parametric excitation voltages.  Further modification of 
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the finger shapes could potentially result in future low power automatic electrostatic parametric 

excitation schemes.   

(end) 
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APPENDIX A NONLINEAR MATHIEU EQUATION 

his chapter presents details on the perturbation solution of the nonlinear Mathieu 

equation.  It explains the derivation of “slow” equations of amplitude and phase, 

followed by a coordinate transformation of the Jacobian matrix used to examine the 

stability of each solution branch.  In deriving the “averaged” equation, a general 

procedure called “nondimensionalization” is used to evaluate the relative magnitude of multiple 

parameters in a system and discard the parameters that are of little importance. The choice of the 

normalized dimensionless parameters affects the final form of the estimated solution. 

 

A.1. NONDIMENSIONALIZATION 

The relative order of magnitude of the parameters in an equation can be used to decide 

whether solutions are strongly affected by a certain group of parameters. Normalization is a 

technique which compares the dimensional system parameters with basic system characteristics 

to yield comparable dimensionless quantities.  These dimensionless quantities allow 

measurements of relative importance when comparing their order of magnitude.  The 

dimensional analysis is applied such that all variables are made dimensionless so the equation 

can be universally applied.  

To apply the nondimensionalization technique, the nonlinear Mathieu equation (1.11) is 

rewritten in the form 

T 
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where dimensional constants, x, m, b, k1, k3, γ1, γ3, ω, and t, in (1.11) are replaced by the same 

variable with tilde in (A.1).  Tildes are associated with dimensional variables (except voltage, 

capacitance, force, and device dimensions). 

The dimensionless displacement is 
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where ox~  is the characteristic displacement.  For example, ox~  may be the electrostatic comb 

finger pitch (center-to-center distance between fingers) for a non-interdigitated finger resonator 

(Chapter 2), or the maximum stroke of a lateral comb resonator. 

The dimensionless time is 
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where ω~ is the electric excitation frequency.  Dividing (A.1) by mass m~  and rearranging terms 
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The first and second derivatives are found from the chain rule: 
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where 

dt
dxx ∆

  (A.6) 

Combining (A.2), (A.4), and (A.5) into (A.3) produces the normalized equation, 
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Written in a dimensionless form, the normalized version of (A.1) is 
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where the dimensionless parameters are defined in (A.9).  The dimensionless damping, b, is 
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The dimensionless linear mechanical stiffness, δ, is 
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The dimensionless parametric linear electromechanical stiffness, ε, is 
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The dimensionless cubic mechanical stiffness, δ3, is 
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The dimensionless parametric cubic electromechanical stiffness, γ3, is 
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The magnitude of these dimensionless parameters represents their relative importance. 

In parametric resonance, the electrical drive frequency is around twice the resonant 

frequency rω~2 . Substituting (1.12) and rωω ~2~ =  into (A.9d) gives δ = 1.  Similarly, Substituting 

(1.12) and rωω ~2~ =  into (A.9c) yields 
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Assuming 2
ac1

~Vγ  << 1
~k  and 2

dc1
~Vγ  << 1

~k , the dimensionless perturbation parameter ε << 1.  

Perturbation theory is used to find solutions around this setpoint δ = 1 and ε = 0. When ε 

approaches zero, (A.8) becomes 

0=+ xx δ . (A.11) 

The system is a harmonic oscillator with a normalized frequency, ω, given by  

δω =2 . (A.12) 

where δ = 1.  Thus,  

1== δω . (A.13) 

When ε ≠ 0 but small, we assume that the frequency of (A.8) is still given by (A.12) but with a 

frequency that is perturbed away from 1.  This method is called the variation of parameters [15]. 

The normalized frequency, ω, the dimensional electrical excitation frequency, ω~ , and the 

resonant frequency, rω~ , are related by 
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rω
ωω ~2
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∆ . (A.14) 

At parametric resonance frequency rωω ~2~ = , ω is in the neighborhood of 1.  A detuning 

parameter ω1 [17] [18] is introduced, where 

11 εωω += . (A.15) 

The quantity εω1 measures the closeness of excitation frequency to the principal parametric 

resonance (equal to twice of the resonance frequency). Using (A.15), the relationship between 

the electrical excitation frequency and the normalized frequency is rewritten as 

( )11~2~ εωωω += r  (A.16) 

 

A.2. METHOD OF AVERAGING 

The method of averaging [15] is used to solve the second-order differential equation (A.8) 

for steady-state amplitude and phase with a constant angular frequency.  It is applicable when the 

evolution of the system can be separated into two time scales, and one time scale changes much 

more rapidly than the other time scale [30].  The assumed solution to the normalized equation 

(A.8), written in the amplitude and phase parameter space, is  

))(cos()()( ttttx βωα +=  (A.17) 

The normalized time-varying amplitude α(t) and phase β(t) are assumed to be slowly varying 

with respect to the normalized frequency, ω. Differentiating (A.17) with respect to time yields 

( ) )sin()cos()sin( βωβαβωαβωαω +−+++−= ttttx 

 . (A.18) 
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Since we are only interested in the steady-state solutions of α and β, we can assume that they 

do not change in the region of parametric resonance.  Thus 0== βα 

 .  This leads to an 

additional condition on velocity to derive the “slow” equations of the amplitude and phase: 

( ) ( ) sin( ( ))x t t t tα ω ω β= − +  (A.19) 

Setting (A.18) and (A.19) equal yields 
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  (A.20) 

Twice differentiating (A.19) gives 
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  (A.21) 

Using (A.12), the assumed solution (A.17), x  and x  are substituted into (A.8) to rewrite the 

time derivatives of the amplitude α into a linear combination of sinusoidal components: 
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Equations (A.20) and (A.22) are solved to find independent equations in terms of α and β .  

First, (A.22) is multiplied by )sin( βω +− t , (A.20) is multiplied by )cos( βωω +t  and the 

resulting two equations are added to eliminate β .  Utilizing trig identities and simplifying as a 

sum of different frequency components, 
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Equation (A.23) is a linear combination of two kinds of terms depending on whether or not the 

term has a non-zero time average and can be generalized as: 

( ) ( ) ( )( )sin ( , )i i i i
i

A t g cωα ε α κ ω ρ θ β α ω ω
   = + + + +  
  
∑  (A.24) 

where Ai(α), (κiω + ρi), and θi(β), are the amplitude, angular frequency, and phase of the ith 

component, respectively, κi ∈ {0, 2, 4}, ρi ∈ {0, ±2}, and g(α, ω) + c(ω) is an offset. The 

derivative of phase, β , has an analogous form.  Since 1)sin(1 ≤⋅≤−  , 1)cos(1 ≤⋅≤− , and ε is 

small, assume α is bounded, )(εα O=  and )(εβ O= . Thus α and β vary slowly in the time 

interval [0, 2π/(κiω + ρi)], i.e. major parts of α and β are slowly varying functions.    

Upon integration of (A.24) from 0 to the greatest common factor of 2π/(κiω + ρi), the slow-

varying components have zero angular frequency (κi ω + ρi = 0), and evaluates to a non-zero 

value after the integration with respect to time t.  In contrast, the fast-varying terms with non-

zero angular frequency (κi ω + ρi ≠ 0) evaluate to zero after the integration. Recall (A.13), at or 

near parametric resonance, 1≈ω .  Because )(εα O= , upon performing integration on (A.23) 

over its full period, α  can be pulled out of the integral.  Keeping slowly varying term that has 

0)1( ≈−ωκ i  and dropping out the fast-varying terms result in the averaged equation: 

Case: ω ≈ 1 
α solution 
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( )( )[ ] ( )( )[ ]βωαεγαωεβωεαωα 212sin
8
1

2
1212sin

2
1 3

3 +−+−+−= tbt  (A.25) 

In the neighborhood of the parametric resonance, 1≈ω , thus 

( ) ( )[ ]βαγεαβαα 2sin44
8
1),( 2

31 ++−== bf . (A.26) 

Similarly, another state equation of the phase β can be derived by multiplying (A.22) by 

)cos( βω +t , multiplying (A.20) by )sin( βωω +t , and adding the two resulting equations.  

The resulting equation is written in a linear combination of sinusoidal terms and averaged over 

its full period: 

( )( ) ( ) ( )( )βωαεγαεδωδβωεωβ 212cos
4
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8
3

2
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1 2
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3
2 +−++−++−= tt . (A.27) 

Applying the detuning parameter 1ω  in (A.15) to (A.27) requires the knowledge of relative 

magnitude of the two terms where ω appears: ( )( )βωε 212cos +− t  and 2ωδ − .  Using a Taylor 

series expansion in the order of ε gives 
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(A.28) 

( ) ( ) H.O.T.211 1
2

1
2 +−−=+−=− εωδεωδωδ  (A.29) 

where H.O.T. stands for higher-order terms.  Dropping out higher order terms for ε in (A.27) 

yields  

Case: ω ≈ 1 
β solution 
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311 ++−−+=+ . (A.30) 

On the left-hand side, because )(εβ O= , dropping out higher order terms of ε yields β .  

Applying δ ≈ 1 to the right-hand side of the equation yields, 

( ) ( )[ ]βαγωδαεβαβ 2cos2483
8
1),( 2

313
2

2 ++−== f . (A.31) 

Equations (A.26) and (A.31) form a 2nd order nonlinear time invariant system, which can be 

written as a state-space model ( )XfX = , where TtttX )]()([)( βα= , and ( )Tfff 21 ,=  is 

continuously differentiable. 

When ω ≈ 1/2, dropping out fast varying terms in (A.23) yields, 

( )( )βωαεγαωεωα 4122sin
16
1

2
1 3

3 +−+−= tb  (A.32) 

Because 1≈ω /2,  

( )βαεγαεωα 4sin
16
1

4
1 3

3+−= b  (A.33) 

Similarly, the time derivative of β is 

( ) ( )( )[ ]βωαεγαεδωδωβ 4122cos
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3
2 +−++−= t  (A.34) 

Plugging in 1≈ω /2 and using the conclusion from (A.28) and (A.29) yield 

( )



 +−= βαγωαδεωβ 4cos

2
183

8
1 2

31
2

3
  (A.35) 

Case: 
ω ≈ 1/2 
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The averaged equations of α and β in the case of 1≈ω /2 correspond to a secondary 

parametric resonance that happens near rωω ~~ = .  This is beyond the content of this thesis and its 

full description can be found in [6]. 

When ω is away from 1 and 1/2, the parametric resonance condition no longer holds, and all 

the terms on the right-hand side of (A.24) are fast varying terms with zero time-average. Thus by 

setting 0=α  and 0=β , the constant and trivial zero solution branches are derived. 

 

A.3. STEADY-STATE SOLUTIONS 

The steady-state equilibrium point TX ][ *** βα=  satisfies ( ) 0*
* ==

=
XfX

XX
 .  Consider 

the case when the effect of the air damping can be neglected, three nontrivial and one trivial 

(zero) steady-state responses [17] are derived by setting 0=α  and 0=β . 

33
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Case: ω ≠ 1 

Normalized 
steady-state 
solution 
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The resulting four equilibria are Xi
* = [αi

* βi
*]T, where i = 1, 2, 3, and 4.  The matrix form of the 

equilibrium is ][ *
4

*
3

*
2

*
1

* XXXXX = .  The denormalized steady-state amplitude solutions 

oii xaa *=  and phase solutions *
ii ββ =  are shown in (1.23). 

Four normalized steady-state solutions are plotted in Figure A-1.  The stability of the 

solutions noted on the figure is explained in section A.4. 

-8 -6 -4 -2 0 2 4
0

0.2

0.4

0.6

0.8

ω 1

N
or

m
al

iz
ed

 a
m

pl
itu

de

*
3a

*
1a

*
2a

*
4a

▬ stable solution
■■ unstable solution

ω1,11 = –0.5 
ω1,21 = 0.5 

ω1,12
ω1,22

 

Figure A-1: Normalized steady-state response of a nonlinear parametric resonator. 

 

A.4. STABILITY ANALYSIS 

The stability of the response amplitude and phase in (A.36) was extensively studied in [29] 

and [31]. A special case of the generalized stability analysis is included in this section to derive 

the “boundaries” between the stable and unstable solution branches.  A two-step intuitive linear 

Graphical 
representa-
tion 
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transformation is used to analyze the branching of the multi-valued solutions in (A.36) and the 

frequencies where the bifurcation “jump” takes place. 

To perform stability analysis, (A.26) and (A.31) are expanded into a Taylor series only to the 

first order terms around equilibrium points Xi
* (i = 1, 2, 3, and 4).  

( )* *
iXX J X X≅ ⋅ − . (A.37) 

where TT ffX ][][ 21== βα 



  and the Jacobian matrix, J, is 

1 1
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. (A.38) 

Defining a linear coordinate transformation [ ] *2,1 XXrrR T −==  , because 

R X=  , (A.39) 

this yields a nonlinear partial differential equation (PDE) 

*
iXR J R≅ ⋅ . (A.40) 

In polar coordinates, ignoring damping, b, the coefficients of the Jacobian matrix are 
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The eigenvalues λi and eigenvectors Ui of J satisfy 

0)()(trace2 =+− JDJ λλ ,  (A.42) 

Lineariza-
tion 

Eigenvalue 
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and 



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
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0
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λ
dJJMM , (A.43) 

where D(J) denotes the determinant of a square matrix J, Jd is the Jordan matrix and M denotes 

the eigenvector pair [U1 U2].  The eigenvalues determine the stability of the nonlinear system in 

the neighborhood of the equilibrium points.  The trace of J equals to zero for the equilibria of the 

nonlinear system considered herein, because 
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(A.44) 

Hence the eigenvalue, λ, is given in terms of steady-state amplitude, phase, and normalized 

system parameters: 

( )( ) ( ) ( ) ( )[ ] ( )ββγδαγαβαγαγελ 2cos2cos2342sin234
4
1)( 33

2
3

222
3

2
3 +++++±=−±= JD . (A.45) 

By a second coordinate transform RMZ 1−= , the PDE R J R≅ ⋅  is linearized to 

ZJJMZMJRMRMZ d==≅= −−− 111
 . (A.46) 

 The solution to (A.46) is 
1 21 2(0) (0)

Tt tZ z e z eλ λ =   
. (A.47) 

where z1(0) and z2(0) are the two initial states of Z. When D(J) < 0, λi are real and λ1λ2 < 0. If z1 

exponentially increases then z2 decreases, and vice versa.  One of the solutions always grows 

without bound and is hence unstable.  This case results in an unstable saddle point, which is not 

physically realizable.  When D(J) > 0, λi are complex conjugates λi = ± jθ. The zero real part 

Relate λ to 
stability 
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leads to a marginally stable center point (i.e. the solution follows a circular trajectory, thus 

bounded or ultimately bounded).  Thus the roots of D(J) = 0 mark the “transition” between the 

stability and instability, defined as the “bifurcation” point.  

For each equilibrium ( ) 3,2,1,, ** =iii βα  in (A.36), a Jacobian matrix is uniquely defined as a 

function of ω1. Calculating the roots of its determinant yields four distinct normalized transition 

frequencies ij,1ω , where i denotes the ith equilibrium, and j denotes the jth transition. 
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Out of six transition frequencies, there are four distinct bifurcation points.  The transition 

points of equilibrium ( )*
3

*
3 ,βα  coincide with those of the other two equilibria: 

( ) ( )* * * *
1 1 3 3

1,12 1,31, ,α β α β
ω ω= , 

( ) ( )* * * *
2 2 3 3

1,22 1,32, ,α β α β
ω ω= . 

(A.49) 

The fourth solution ( )*
4

*
4 ,βα  is always stable, thus D(J) > 0.  

Normalized 
bifurcation 
frequencies 

Four 
distinct 
bifurcation 
frequencies 
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With the presence of a small perturbation from thermomechanical noise, the bifurcation 

“jump” event occurs at the transition frequency where stable and unstable regions meet [17].  As 

graphically presented in Figure A-1, the normalized frequency transitions 11,1ω  and 21,1ω  

represent the “pitchfork” bifurcation from the zero (trivial) solution branch *
4α  to the nontrivial 

branches *
1α  and *

2α , and 12,1ω ( 31,1ω ) and 22,1ω  ( 32,1ω ) are the “saddle-node” bifurcation on the 

frequency boundaries of the constant solution *
3α . The stable solution regions are the ones with 

D(J) > 0, while the unstable regions are determined by D(J) < 0. 

 

(end) 

 

 

Graphical 
representa-
tion 
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APPENDIX B DESIGNS AND SCRIPTS 

he non-interdigitated finger (NIF) comb, the tangential drive “T-drive”, and the 

“shaped-finger” comb resonators are chosen as verification vehicles for the 

nonlinear parametric resonance theory and the behavioral simulation.  Using 

symmetrical drives, these designs provide a force-displacement curve with an odd 

symmetry about the origin.  The work on the NIF resonator verifies the parametric resonance 

theory and the behavioral modeling approach for complex nonlinear systems, which lays the 

foundation for the thesis work.  A canonical NIF resonator, its analytic model, and experimental 

validation are described in detail in Chapter 2.  Appendix B.1 includes the scripts in generating 

the steady-state frequency responses using the Mathieu equation perturbation solutions from 

Chapter 1 and Appendix A.  The investigation of a tangential parametric drive is our first 

demonstration of a large-stroke parametric response and is included in Appendix B.3 to 

supplement Chapter 3.  The “quadratic-shaped-finger” comb layout is synthesized using the 

SKILL scripts described in Appendix B.4.  Customizing the finite-element simulator with 

Matlab® scripting language helps to facilitate electrostatic simulation and parametric sweeps, as 

described in Appendix B.5.  Exploring independent tuning of linear and cubic electrostatic spring 

constants enables a “quartic-shaped-finger” comb in Appendix B.6. 

 

T 
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B.1. NIF RESONATOR STEADY-STATE FREQUENCY RESPONSE SCRIPTS 

Normalized steady-state frequency response of the nonlinear Mathieu Equation in Figure 

A-1, denormalized frequency response in Figure 1-4 and Figure 3-12 are generated with the 

following Matlab® scripts: 

 

function steadyFreqResMathieuCMU 
clear; clc 
global omg_r f_n f_r eps delta3 gamma3 
% linear electrostatic spring constant, uN/(um*V^2) 
r1 = 0.000604990744449093;  
% cubic electrostatic spring constant, uN/(um^3*V^2) 
r3 = -101234078.913912;  
% linear mechanical spring constant, uN/um 
k1 = 3.3;  
% cubic mechanical spring constant, uN/um^3 
k3 = 4.79E+06;   
% mass of the resonator, kg 
m = 4.928E-10;  
% damping 
b_tilde = 1.410E-07;  
 
% distance between two capacitive comb fingers, units in meters 
x0 = 5e-6; 
 
% applied voltages in (1.8) 
Vdc = 40; 
Vac = 20; 
% natural frequency 
omg_n = sqrt(k1/m); 
% resonant frequency 
omg_r = sqrt((k1 + r1*Vdc^2)/m); 
f_n = omg_n/2/pi 
f_r = omg_r/2/pi 
% around parametric resonance of 2*omg_r 
omg = 2*omg_r; 
 
% dimensionless parameters 
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eps = 2*r1*Vac^2/m/omg^2 
delta3 = 4*(k3 + r3*Vdc^2)*x0^2/m/omg^2/eps 
gamma3 = 4*Vac^2*x0^2/m/omg^2*r3/eps 
b = 2*b_tilde/eps/m/omg 
 
% Min and max of the omg value specifying plotting range 
omgSta = -7; omgEnd = 3;  
step1 = 0.05; step2 = 0.1; step3 = 0.1; 
 
 
%------------------------------------------------------------------------% 
% Determine the bifurcation and define the frequency ranges 
% The bifurcation points where a stable center bifurcates to an unstable 
% saddle. omgij denotes the boundary in the normalized frequency response 
% (the amplitude-excitation frequency detuning parameter curve), where i = 
% 1,2, refers to the bifurcation point corresponding to solution branch i, 
% and j = 1 denotes the bifurcation emanates from the trivial solution, 
% whereas j = 2 denotes the bifurcation to the constant amplitude branch.  
%-------------------------solution branch 1-------------------------% 
omg11 = -0.5 
omg12 = 0.5 - 3*delta3/2/gamma3 
% Calculated and print denormalized frequency, using function rfrq defined later 
freq11 = rfrq(omg11) 
freq12 = rfrq(omg12) 
 
% Determine whether it’s hardening nonlinearity depending on the value of omg11 and omg12 
if omg11 < omg12 
    fHard1 = 1; 
    omgReg11 = omgSta:step1:omg11; 
    omgReg12 = omg11:step1:omg12; 
    omgReg13 = omg12:step1:omgEnd; 
else 
    fHard1 = 0; 
    omgReg11 = omgSta:step1:omg12; 
    omgReg12 = omg12:step1:omg11*0.85; 
    omgReg13 = omg11:step1:omgEnd; 
end 
 
%smaller value of omg11 and 12 
omg1s = (omg11*fHard1+omg12*(1-fHard1));  
%the larger value of 11 and 12 
omg1l = (omg12*fHard1+omg11*(1-fHard1));  
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%-------------------------solution branch 2-------------------------% 
omg21 = 0.5 
omg22 = -0.5 - 3*delta3/2/gamma3 
% Print denormalized frequency 
freq21 = rfrq(omg21) 
freq22 = rfrq(omg22) 
 
if omg21 < omg22 
    fHard2 = 1; 
    omgReg21 = omgSta:step2:omg21; 
    omgReg22 = omg21:step2:omg22; 
    omgReg23 = omg22:step2:omgEnd; 
else 
    fHard2 = 0; 
    omgReg21 = omgSta:step2:omg22; 
    omgReg22 = omg22:step2:omg21*1.15; 
    omgReg23 = omg21:step2:omgEnd; 
end 
omg2s = (omg21*fHard2+omg22*(1-fHard2));  
omg2l = (omg22*fHard2+omg21*(1-fHard2));  
 
%-------------------------solution branch 3-------------------------% 
% The solution branch 3 always connects the two center-saddle bifurcation 
% points, as picked by the determinant of Jacobian matrix evaluated at the   
% equilibria of solution branch 3 
omgReg3 = min(omg12,omg22):step3:max(omg12,omg22); 
 
 
%--------------------------- Normalized frequency response ----------------------------% 
figure 
 
% Plot line color and linewidth handle, used to globally change the line properties 
ColorSta = 'k-';  
ColorUnsta = 'k:';  
lineW = 3; 
 
%Calculate the amplitudes of each of the three regions for the three solution branches 
a11 = 2.*sqrt((1 + 2.*omgReg11)./(3*delta3 - 2*gamma3)); 
a12 = 2.*sqrt((1 + 2.*omgReg12)./(3*delta3 - 2*gamma3)); 
a13 = 2.*sqrt((1 + 2.*omgReg13)./(3*delta3 - 2*gamma3)); 
a21 = 2.*sqrt((-1 + 2.*omgReg21)./(3*delta3 + 2*gamma3)); 
a22 = 2.*sqrt((-1 + 2.*omgReg22)./(3*delta3 + 2*gamma3)); 
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a23 = 2.*sqrt((-1 + 2.*omgReg23)./(3*delta3 + 2*gamma3)); 
a3 = sqrt(-4./gamma3) .* ones(1,length(omgReg3)); 
 
% Calculate and display amplitude at bifurcation 
a_bif = x0*2*sqrt((-1 + 2*omg11)/(3*delta3 + 2*gamma3)) 
 
% Determine the stability of the solution branches 
% Use the sign of the determinant of the Jacobian matrix for the state-space  
% model (the RHS of dot(x) and dot(y)), solved at omg's neighborhood 
 
%-------------------------solution branch 1-------------------------% 
% Plot region 1 of solution branch a1 
if det1(omg1s-0.01) > 0 
    %omgReg11 is a locally stable region 
    plot(omgReg11, a11, ColorSta, 'Linewidth', lineW) 
else 
    %omgReg11 is a locally unstable region 
    plot(omgReg11, a11, ColorUnsta, 'Linewidth', lineW) 
end 
hold on 
 
%Plot region 2 of solution branch a1 
if det1(omg1s+0.01) > 0 
    %omgReg12 is a locally stable region 
    plot(omgReg12, a12, ColorSta, 'Linewidth', lineW) 
else 
    %omgReg12 is a locally unstable region 
    plot(omgReg12, a12, ColorUnsta, 'Linewidth', lineW) 
end 
text((omg1s+omg1l)/3,2*sqrt((1 + 2*(omg1s+omg1l)/3)/... 

(3*delta3 - 2*gamma3)),'a1 \rightarrow','HorizontalAlignment','right'); 
 

%Plot region 3 of solution branch a1 
if det1(omg1l+0.01) > 0 
    %omgReg13 is a locally stable region 
    plot(omgReg13, a13, ColorSta, 'Linewidth', lineW) 
else 
    %omgReg13 is a locally unstable region 
    plot(omgReg13, a13, ColorUnsta, 'Linewidth', lineW) 
end 
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%-------------------------solution branch 2-------------------------% 
%Plot region 1 of solution branch a2 
if det2(omg2s-0.01) > 0 
    %omgReg21 is a locally stable region 
    plot(omgReg21, a21, ColorSta, 'Linewidth', lineW) 
else 
    %omgReg21 is a locally unstable region 
    plot(omgReg21, a21, ColorUnsta, 'Linewidth', lineW) 
end 
%Plot region 2 of solution branch a2 
if det2(omg2s+0.01) > 0 
    %omgReg22 is a locally stable region 
    plot(omgReg22, a22, ColorSta, 'Linewidth', lineW) 
else 
    %omgReg22 is a locally unstable region 
    plot(omgReg22, a22, ColorUnsta, 'Linewidth', lineW) 
end 
text((omg2s+omg2l)*.2*0.8,2*sqrt((-1 + 2*(omg2s+omg2l)*.2)/... 
    (3*delta3 + 2*gamma3)),'\leftarrow a2','HorizontalAlignment','left'); 
%Plot region 3 of solution branch a2 
if det2(omg2l+0.01) > 0 
    %omgReg23 is a locally stable region 
    plot(omgReg23, a23, ColorSta, 'Linewidth', lineW) 
else 
    %omgReg23 is a locally unstable region 
    plot(omgReg23, a23, ColorUnsta, 'Linewidth', lineW) 
end 
 
%-------------------------solution branch 3-------------------------% 
% Plot constant amplitude solution branch a3 
% omgReg3 is a locally unstable region since its determinant is always negative 
if -4/gamma3 > 0 
    plot(omgReg3, a3, ColorUnsta, 'Linewidth', lineW) 
    text((omg12+omg22)/2/0.93,sqrt(-4/gamma3)*1.01, ... 
        'a3\downarrow','VerticalAlignment','bottom', ... 
        'HorizontalAlignment','center'); 
end 
 
xlabel('\omega_1'); ylabel('Normalized amplitude'); 
title('Normalized frequency response'); 
set(gca,'FontName','Times New Roman','FontWeight','bold','FontSize', 18); 
set(get(gca,'YLabel'),'FontName','Times New Roman','FontWeight','bold','FontSize', 18) 
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set(get(gca,'XLabel'),'FontName','Times New Roman','FontWeight','bold','FontSize', 18) 
 
 
 
% ---------------------Denormalized frequency response -------------------------% 
figure 
%-------------------------solution branch 1-------------------------% 
% Plot region 1 of solution branch a1 
if det1(omg1s-0.01) > 0 
    %omgReg11 is a locally stable region 
    plot(rfrq(omgReg11), x0.*a11, ColorSta, 'Linewidth', lineW) 
else 
    %omgReg11 is a locally unstable region 
    plot(rfrq(omgReg11), x0.*a11, ColorUnsta, 'Linewidth', lineW) 
end 
hold on 
 
% Plot region 2 of solution branch a1 
if det1(omg1s+0.01) > 0 
    %omgReg12 is a locally stable region 
    plot(rfrq(omgReg12), x0.*a12, ColorSta, 'Linewidth', lineW) 
else 
    %omgReg12 is a locally unstable region 
    plot(rfrq(omgReg12), x0.*a12, ColorUnsta, 'Linewidth', lineW) 
end 
 
%Plot region 3 of solution branch a1 
if det1(omg1l+0.01) > 0 
    %omgReg13 is a locally stable region 
    plot(rfrq(omgReg13), x0.*a13, ColorSta, 'Linewidth', lineW) 
else 
    %omgReg13 is a locally unstable region 
    plot(rfrq(omgReg13), x0.*a13, ColorUnsta, 'Linewidth', lineW) 
end 
 
%-------------------------solution branch 2-------------------------% 
%Plot region 1 of solution branch a2 
if det2(omg2s-0.01) > 0 
    %omgReg21 is a locally stable region 
    plot(rfrq(omgReg21), x0.*a21, ColorSta, 'Linewidth', lineW) 
else 
    %omgReg21 is a locally unstable region 
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    plot(rfrq(omgReg21), x0.*a21, ColorUnsta, 'Linewidth', lineW) 
end 
 
% Plot region 2 of solution branch a2 
if det2(omg2s+0.01) > 0 
    %omgReg22 is a locally stable region 
    plot(rfrq(omgReg22), x0.*a22, ColorSta, 'Linewidth', lineW) 
else 
    %omgReg22 is a locally unstable region 
    plot(rfrq(omgReg22), x0.*a22, ColorUnsta, 'Linewidth', lineW) 
end 
 
% Plot region 3 of solution branch a2 
if det2(omg2l+0.01) > 0 
    %omgReg23 is a locally stable region 
    plot(rfrq(omgReg23), x0.*a23, ColorSta, 'Linewidth', lineW) 
else 
    %omgReg23 is a locally unstable region 
    plot(rfrq(omgReg23), x0.*a23, ColorUnsta, 'Linewidth', lineW) 
end 
 
%-------------------------solution branch 3-------------------------% 
% Plot constant amplitude solution branch a3 
% omgReg3 is a locally unstable region since its determinant is always negative 
if -4/gamma3 > 0 
    plot(rfrq(omgReg3), x0.*a3, ColorUnsta, 'Linewidth', lineW) 
end 
 
%---------------------Trivial solution branch -----------------------% 
% Plot trivial (zero) solution branch a4 
% Trivial solution is physically stable in an aligned comb setup 
omgReg4 = omgSta:min(step2,step1):omgEnd; 
plot(rfrq(omgReg4), zeros(length(omgReg4)), ColorSta, 'Linewidth', 4) 
 
xlabel('Frequency [Hz]'); ylabel('Amplitude [m]'); 
title('Un-normalized frequency response'); 
 
 
%----------------Functions to avoid duplicate calculations----------------------% 
% Determinants of the Jacobian matrix evaluated at an equilibrium point 
function d1 = det1(omg1) 
global delta3 gamma3 
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d1 = (1+2*omg1)*(3*delta3 - gamma3 + 2*omg1*gamma3)/(3*delta3 - 2*gamma3); 
    
function d2 = det2(omg1) 
global delta3 gamma3 
d2 = (1-2*omg1)*(3*delta3 + gamma3 + 2*omg1*gamma3)/(3*delta3 + 2*gamma3); 
    
% Calculate denormalized electrical excitation frequency 
function denormfre = rfrq(normfreq) 
global f_r eps 
denormfre = 2.*f_r.*(1 + eps.*normfreq);  

 

B.2. TRANSIENT CHIRP SIMULATION VERILOG-A MODEL 

The transient chirp simulation using Cadence® Spectre is used to sweep the excitation 

frequency to yield the frequency response curve.  A key element in this simulation is a voltage-

controlled force source (VCF) model whose output, ( )tFout , is controlled by a piecewise-linear 

voltage ( )tvin .  The VCF model is implemented in Verilog-A. This section describes the 

encoding of the model and its performance in benchmark simulations. 

The oscillation frequency of the VCF is related to the control voltage by 

( ) ( )tvGftf inVCOcenterout += , (B.1) 

where fcenter is the center frequency and GVCO is the frequency gain.  Typically, a VCF behavior 

model integrates the oscillation frequency to compute the phase of the output force 

( ) ( )∫
∞−

=
t

ft ττπψ d2 outout . (B.2) 

and assign it to a sinusoidal function to form the output force waveform 

( ) ( )[ ]0outout sin ψψ += tFtF m . (B.3) 

VCF model 
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where Ψ0 is the initial phase and Fm is the force amplitude.   

The control voltage ( )tvin  generally varies slower than the frequency of the output sinusoidal 

force ( )tFout .  Thus the VCF model must be capable of “tracking” the fast varying output signal 

whose frequency is not a constant.  The Verilog-A code of the VCF model starts with the 

calculation of controlled frequency and then notify the simulator of the fast-varying sinusoidal 

output waveform whose frequency is modulated by a slowly varying control voltage. 

 

module vco_sin(va, fout); 
// Port declaration and the assignment of the corresponding disciplines 
   input va; 
   output fout; 
   electrical va; 
   mems_kinematic_translational fout; 
 
// Definition of the parameters 
   parameter real  amplitude = 1; 
   parameter real  center_freq = 1K; 
   parameter real  vco_gain = 1; 
   parameter real  phase = 0;  
// Time steps per output waveform period 
   parameter integer step = 32;  
 
   real frequency; 
   real inst_phase; 
   real ini_phase; 
 
   analog begin 
      // Calculate the controlled frequency and the initial phase 
      frequency = center_freq + V(va) * vco_gain; 
      ini_phase = phase * `M_PI / 180.0; 
      // Limit the internal simulator time step so it’s always within 1/step of the period 
      $bound_step(1.0 / (step*frequency)); 
 
      // Calculate the instantaneous phase using the idtmod function 
      inst_phase  = idtmod(frequency,0.0,1.0,-0.5); 



Appendix B: Designs and Scripts 
 

 
177 

      // Assign the output using the instantaneous phase 
      f(fout) <+ amplitude*sin(2* `M_PI * inst_phase + ini_phase);  
   end 
endmodule 

 

The instantaneous phase is calculated by the idtmod function, a bounded “circular integrator” 

defined in Verilog-A. Unlike idtmod, the idt function (integration of time) is unbounded. The 

function idtmod always keeps the sinusoidal function within the range of [–π, π]. On the other 

hand, the idt produces unbounded output which is susceptible to tolerance and round-off errors. 

It’s important to notify the simulator to limit the internal time step, so that simulator can 

successfully “keep track of” the smooth changes in a sinusoidal waveform.  Using the simulator 

directive $bound_step(1.0 / (step*frequency)), the simulator changes the output at specified time 

points specified by the user even if there’s no change in the input.  “Step” (unitless) is the time 

step per period that is used to specify at what phase point the output must be updated.  The larger 

the step, the smoother the output waveform becomes.   

 

B.3. TANGENTIAL DRIVE (T-DRIVE) RESONATOR 

A “tangential drive” parametric resonator is our first device to study the parametric 

resonance in systems with high energy storage. In a prior demonstration by [48], one way of 

electrostatically achieving a large motional stroke is through the use of the tangential motion of a 

“T-drive” (short for the name “tangential drive”): rotor electrode suspended by a slanted-beam 

flexure, as shown in Figure B-1.   

idtmod 
function 

bound_step 
function 

T-drive 
topology 
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Figure B-1: Plane view of the T-drive flexure and its finite element simulated deformed shape.  Λ 

and T indicate the axial and lateral displacements of the rotor electrode, respectively. 

 

Figure B-2 shows a slanted flexure design exhibiting nonlinear in-plane motion used as a 

suspension to a parallel-plate capacitor.  The bases of the slanted beams are attached to a curl-

match frame.  The plate mass in the center of Figure B-2 is connected to the T-drive rotor 

electrode through the decoupling springs.  The design parameters are shown in Table B-1. 

 

Table B-1: T-drive resonator geometric parameters 

Symbol Parameter Layout Fabricated 
wf slanted flexure width 2.00 μm 2.62 μm 
lf slanted flexure length 221.8 μm 222.3 μm 
θ slanted flexure angle 5.0º  
wr drive electrode width 6.0 μm 6.2 μm 
lr drive electrode length 100.0 μm 99.8 μm 
t structure thickness 4.83 μm  
g0 initial electrode gap 1.00 μm 0.89 μm 

 

Device 
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Figure B-2: A large displacement T-drive parametric resonator, with zoom-in view of the 

electrode gap. 

 

       

  

 

 

 

Capacitance
Electrostatic force

C
(f

F)

16

10

–1

y-displacement (μm)
100–10

7

13

1

0

F
e (nN

)C

Fe

1
~γ

    

Figure B-3: Capacitance and force versus the y-displacement for a symmetric T-drive.  

 

The large displacement is realized by taking advantage of the large parallel-plate motion 

capability in y and the high electrostatic force in x due to the small gap.  The T-drive generates a 

large parallel-plate electrostatic force while the flexures constrain motion parallel to the electric 

field, which allows large-amplitude motion.  Figure B-3 is the force-displacement relationship of 

C-x and Fe-
x curves 
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a symmetric T-drive (force calculation includes both the top and bottom slanted flexures in 

Figure B-2).  Nonlinearly varying the gap between the aligned electrodes leads to electrostatic 

cubic stiffness when the slanted beam deflects. 

Both harmonic and parametric responses are directly excited with the T-drive.  Figure B-4 is 

the measured frequency response in air under a harmonic drive voltage.  The first and second in-

plane resonance modes are at 18.67 kHz and 44.60 kHz, respectively. Out-of-plane modes at 

22.67 kHz and 38.20 kHz are also observed which can be moved far away from the in-plane 

modes by an increased device layer thickness.   
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Figure B-4: The measured frequency response of the T-drive resonator under a single-sided 

excitation. 

 

The analytic parametric steady-state response is experimentally validated by a frequency up-

sweep.  The electric excitation frequency was swept around the predicted principal parametric 

resonance at f21 = 87.08 kHz until a “jump” in amplitude was observed. The measured parametric 

Harmonic 
response 

Parametric 
response 
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resonance response is shown in Figure B-5.  At 88.27 kHz a jump occurs from a small driven 

response to a large amplitude of around 7 μm. 
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Figure B-5: The measured parametric resonance response corresponding to the second in-plane 

resonance mode. 

 

B.4. QUADRATIC-SHAPED-FINGER COMB LAYOUT SYNTHESIS 

SKILL scripts are used to synthesize the shaped-finger comb layout.  The scripts are made 

from the Pcells commands in the Cadence Virtuoso® environment.  Pcells (parameterized cells) 

enable a designer to generate a canonical line or shape, assign parameters that describe the 

profile of the shape and then instantiate the Pcell with parameter values that span the design 

space.  SKILL scripts using Pcell eases layout generation and enable users to create a wider 

range of shapes than allowed by the graphical user interface of the Pcell. 

Intro to 
SKILL 
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This section documents the Pcell SKILL scripts for generating shaped-finger comb layout in 

the Cadence Virtuoso® environment. Details about the use of Pcell commands to create an initial 

SKILL script can be found in the Cadence documentation. 

 

; library and name of the cell that will be generated  
pcDefinePCell(list(ddGetObj("soi001") "shaped_stator_half_noTip_go5_gov3_xov16_1260pt" 
"layout") nil  
; user-specified parameters 
 go = 5.0 
 gov = 3.0 
 xov = 16.0 
 xo = xov/(go/gov - 1.0) 

; finger length 
 length = 15.0 + xov 

; impose the smallest tip width (determined by litho, mask etc) 
; calculate the tip location “xstart” 

 tipWidth = 0.8 
 xstart = xo*(go/(-tipWidth/2.0 + go) - 1.0) 
 

; number of points excluding the last point that encloses the shape 
 numpt = 1260 

; make a null point list “ptList” 
 ptList = nil 
 
; add first two points which define the straight portion of the tip 
firstListEntry = list((xstart:0.0) (xstart:-tipWidth/2.0)) 
; append the first two entries to the point list 
ptList = append(ptList firstListEntry) 
 
; calculate the point coordinates defined by the shape function and 
; the list operation that appends calculated coordinates to the end of the list 
for( i 0 numpt-1 
 x = length/(numpt - 1.0)*i 
 ; only generate the points other than the "tip region" 
 if( (x >= xstart) then 
  ; enter the function that governs the shape here 
  y = go/(1.0 + x/xo) - go 
  ; make a new list entry based on the x and y coordinates 
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  newListEntry = list((x:y)) 
  ; append the new entry to the point list 
  ptList = append(ptList newListEntry) 
; for debugging purpose, one can print the list out using: printf("x = %f, y = %f\n" x y) 
 ) 
) 
 
 
; finally append the last point which encloses the polygon 
x = length*1.0 
y = 0.0 
lastListEntry = list((x:y)) 
; append the last entry to the point list 
ptList = append(ptList lastListEntry) 
 
 
; let function scopes the variables so they can only be referenced within this function 
    let((pcMember pcStretchGroup stretchOffsetX stretchOffsetY pcLib 
     pcMaster pcInst pcTerm pcPin pcPinName 
     pcNet pcTermNet pcNetName pcTermNetName pcMosaicInst 
     pcParameters pcParamProp pcStep pcStepX pcStepY 
     pcRepeat pcRepeatX pcRepeatY pcIndexX pcIndexY 
     pcLayer pcPurpose pcLabelText pcLabelHeight pcPropText 
     pcParamText pcCoords pcPathWidth pcPolygonMargin 
 )  
 (pcLib = (pcCellView~>lib))  
 (pcParameters = ((pcCellView~>parameters)~>value))  
; “pcLayer” specifies drawing layer 
 (pcLayer = 1)  
 (pcPurpose = "drawing") 
; generate the shape using the list of coordinates that defines the freeform shape – ptList 
 (pcInst = dbCreatePolygon(pcCellView  
  list(pcLayer pcPurpose)  
; point list variable that stores the list that defines the polygon 
  ptList 
     )) t 
    ) 
) 
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B.5. ELECTROSTATIC SIMULATION OF THE SHAPED-FINGER COMB 

Comsol Multiphysics® (3.5a with Matlab®) is used to perform electrostatic simulation of the 

shaped-finger comb and provide the capability for parametric sweeping.  The model m-file was 

built in Matlab® R2012a. 

 

function [C, skipedDisp] = swp_func_shapedComb_3rotor_SEM(numPt,plotV,plotW,plotE) 
flclear fem 
 
% COMSOL geometric file, saved with the help of COMSOL GUI 
flbinaryfile='shapedComb_3rotor_SEM_v2.mphm'; 
 
 
% Draw the initial geometry, take the geometries from the .mphm file 
% Alternatively, one can use geomedit or similar commands to build the geometry from scratch 
clear draw 
g1=flbinary('g1','draw',flbinaryfile); 
g4=flbinary('g4','draw',flbinaryfile); 
g8=flbinary('g8','draw',flbinaryfile); 
draw.s.objs = {g1,g4,g8}; 
draw.s.name = {'CO1','CO2','R1'}; 
draw.s.tags = {'g1','g4','g8'}; 
fem.draw = draw; 
% Plot enable 
% Enables postplot of electric potential 
plotEnable_V = plotV;  
% Enables postplot of electric energy density 
plotEnable_W = plotW;  
% Enables postplot of electric field 
plotEnable_E = plotE;  
 
% Number of straight rotor fingers 
N = 47; 
 
% Thickness of electrodes from SEM 
thickness = 13.15E-06; 
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% Start to sweep the displacement 
ini_disp = -10e-6; 
fin_disp = 10e-6; 
step_disp = (fin_disp - ini_disp) / numPt; 
% index of capacitance matrix 
i = 1;  
 
 
% Begin sweeping the lateral motion 
% Initially move the rotor electrode to the ini_disp (negative max disp)  
% Move the electrode in x direction 
g1=move(g1,[ini_disp,0]);  
 
% skipedDisp records the skipped displacement values in case of mesh difficulty 
skipedDisp = []; 
 
 
for disp = ini_disp: step_disp : fin_disp 
    % Define constants since fem will be cleared at the end of each loop 
    fem.const = {'Vnlosc','1'}; 
 
    % Re-analyze geometry 
    clear s 
    s.objs={g1,g4,g8}; 
    s.name={'CO1','CO2','R1'}; 
    s.tags={'g1','g4','g8'}; 
 
    fem.draw=struct('s',s); 
    fem.geom=geomcsg(fem); 
 
    % Initialize mesh 
    % It is possible to have mesh difficulties when the finger engagement changes  
    % because this also changes the instantaneous gap 
    flag_skip = 0; 
    try 
        fem.mesh=meshinit(fem,'hauto',2); 
    catch 
        fprintf('An error occurred when trying extra fine mesh at x = %e. Try finer mesh.\n',disp); 
        try 
            fem.mesh=meshinit(fem,'hauto',3); 
        catch 
            fprintf('->An error occurred while trying the finer mesh. Now try normal mesh.\n'); 
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            try 
                fem.mesh=meshinit(fem,'hauto',5); 
            catch 
                fprintf('->An error occurred when trying normal mesh.Try extremely coarser mesh.\n'); 
                try 
                    fem.mesh=meshinit(fem,'hauto',9); 
                catch 
                    fprintf('-->An error occurred while trying the extremely coarser mesh. \n'); 
                    fprintf('Now skip displacement = %e.\n',disp); 
                    flag_skip = 1; 
                    skipedDisp = [skipedDisp disp]; 
                end 
            end 
        end 
    end 
     
 
    % If there is an error on mesh even for the extremely coarse mesh, skip this 
    % block and move g1 to the next iteration 
    if (~flag_skip) 
        % Refine mesh 
        fem.mesh=meshrefine(fem, 'mcase',0, 'rmethod','regular'); 
 
        % Application mode 1 
        clear appl 
        appl.mode.class = 'EmElectrostatics'; 
        appl.module = 'MEMS'; 
        appl.sshape = 2; 
        appl.border = 'on'; 
        appl.assignsuffix = '_emes'; 
 
        % Define boundary conditions 
        clear bnd 
        bnd.V0 = {0,'Vnlosc',0}; 
        bnd.type = {'V0','V','nD0'}; 
        bnd.name = {'gnd','nlosc','zero charge'}; 
 
 
        % ---------------------Boundary condition assignment-----------------------% 
        % Find the boundary index number from each object 
        % The corresponding boundary conditions (BC) and their indices are 
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% object rotor air stator 
% s.objs g1 g8 g4 
% s.name CO1 R1 CO2 
% BC gnd zero nlosc 
% bnd.ind 1 3 2 

 
        % Get boundary index (stored in matrices in ctx) that corresponds to 
        % each of the objects in the object list 
        ctx = geomcsg({g1, g4, g8},'Out','ctx'); 
        % NOTE: ctx is a cell so ctx{1,1} retrieves the first sparse matrix that 
        % corresponds to the first g1 on the list enclosed in {}; 
 
        % COMSOL stores all the boundary indices in a sparse matrix whose 
        % nonzero element row index is just the boundary index.  
        % "find" function locates the nonzero indeces in a sparse matrix 
        % and thus gets the boundary indices and store them in ctxbndind1.   
 
        [ctxbndind1, col1] = find(ctx{1,1}); 
        for p = 1:length(col1)  
            if col1(p) ~= p 
                fprintf('Something seems to be wrong in ctx structure at col1 index = %e.\n',p) 
            end 
        end 
 
        [ctxbndind2, col2] = find(ctx{1,2}); 
        for p = 1:length(col2) 
            if col2(p) ~= p 
                fprintf('Something seems to be wrong in ctx structure at col2 index = %e.\n',p) 
            end 
        end 
 
        [ctxbndind3, col3] = find(ctx{1,3}); 
        for p = 1:length(col3) 
            if col3(p) ~= p 
                fprintf('Something seems to be wrong in ctx structure at col3 index = %e.\n',p) 
            end 
        end 
 
        % Sweep all the ctxbndind matrices to find boundaries that 
        % correspond to their own BC and assign the BC number. 
        % Total number of boundaries 
        totalnoboundaries = length(ctxbndind1) + length(ctxbndind2) + length(ctxbndind3); 
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        % create empty bnd.ind matrix 
        bnd.ind = zeros(1,totalnoboundaries);  
 
        % Store boundary indices into bnd.ind which is then used by COMSOL to 
        % solve for the boundary value problem 
        bnd.ind(ctxbndind1) = 1; 
        bnd.ind(ctxbndind2) = 2; 
        bnd.ind(ctxbndind3) = 3; 
 
 
        appl.bnd = bnd; 
        clear equ 
        equ.epsilonr = {1,'mat1_epsilonr'}; 
        equ.name = {'air','Si'}; 
        equ.ind = [1,2,2]; 
        appl.equ = equ; 
        fem.appl{1} = appl; 
        fem.frame = {'ref'}; 
        fem.border = 1; 
        clear units; 
        units.basesystem = 'SI'; 
        fem.units = units; 
 
        % Library materials 
        clear lib 
        lib.mat{1}.name='Si(c)'; 
        lib.mat{1}.varname='mat1'; 
        lib.mat{1}.variables.nu='0.28'; 
        lib.mat{1}.variables.E='170e9[Pa]'; 
        lib.mat{1}.variables.epsilonr='11.7'; 
        lib.mat{1}.variables.alpha='2.6e-6[1/K]'; 
        lib.mat{1}.variables.C='700[J/(kg*K)]'; 
        lib.mat{1}.variables.rho='2329[kg/m^3]'; 
        lib.mat{1}.variables.k='130[W/(m*K)]'; 
 
 
        fem.lib = lib; 
 
        % ODE Settings 
        clear ode 
        clear units; 
        units.basesystem = 'SI'; 
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        ode.units = units; 
        fem.ode=ode; 
 
        % Multiphysics 
        fem=multiphysics(fem); 
 
        % Extend mesh 
        fem.xmesh=meshextend(fem); 
 
        % Solve problem 
        fem.sol=femstatic(fem, 'solcomp',{'V'}, 'outcomp',{'V'}, 'blocksize','auto'); 
 
        % Save current fem structure for restart purposes 
        fem0=fem; 
         
        % Calculate and save capacitance by integrating it along the fingers 
        % energy per thickness, Comsol assumes thickness = 1 m 
        C(1,i) = disp; 
        C(2,i) = postint(fem,'We_emes','unit','J/m','recover','off','dl',1);  
             
        % This simulation is for 3 comb fingers, N is the total number of straight rotor fingers 
        % C = 2*thickness*energy per thickness 
        C(2,i) = N / 3 * thickness * 2 * C(2,i);  
 
        % clear fem in case the new instance of simulation overwrites the previous one 
        flclear fem 
 
        % Plot electric energy density and normal electric field 
        plotfemsoln(fem0,plotEnable_V,plotEnable_W,plotEnable_E) 
 
        % increase the index 
        i = i + 1; 
 
    % end of flag_skip block 
    end  
     
 
    % Move the rotor electrode 
    g1=move(g1,[step_disp,0]);  
     
% end of for block 
end  
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function plotfemsoln(fem,plotEnable_V,plotEnable_W,plotEnable_E) 
% Plot solutions from fem 
 
% Axis limit for COMSOL postplot function 
axis_limit_postplot = [1.5E-5,8.4E-5,2.27E-5,5.0E-5]; 
 
% Plot electric potential 
if plotEnable_V 
    figure; postplot(fem, ... 
             'tridata',{'V','cont','internal','unit','V'}, ... 
             'trimap','Rainbow', ... 
             'title','Surface: Electric potential [V]', ... 
             'axis',axis_limit_postplot); 
end 
 
 
% Electric energy density heatmap rendering 
if plotEnable_W 
    figure; postplot(fem, ... 
             'contdata',{'We_emes','cont','internal','unit','J/m^3'}, ... 
             'contlevels',[colon(0,0.5/49,0.5)], ... 
             'contlabel','off', ... 
             'contmap','Thermal', ... 
             'contmapstyle','reverse', ... 
             'contfill','on', ... 
             'title','Contour: Electric energy density [J/m^3]', ... 
             'axis',axis_limit_postplot); 
    box on 
end 
 
 
% Normal electric field heatmap rendering 
if plotEnable_E 
    figure; postplot(fem, ... 
             'contdata',{'normE_emes','cont','internal','unit','V/m'}, ... 
             'contlevels',50, ... 
             'contlabel','off', ... 
             'contmap','Thermal', ... 
             'title','Contour: Electric field, norm [V/m]', ... 
             'axis',axis_limit_postplot); 
end 
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B.6. QUARTIC-SHAPED-FINGER COMB RESONATOR 

To deliver a well-designed electrostatic nonlinearity, a revised comb shape can be 

synthesized to incorporate a nonlinear cubic displacement term in the denominator of (3.1).  This 

leads to the design and analysis of a “quartic-shaped-finger” comb parametric drive.  It is used to 

provide independent control of both linear and cubic electrostatic spring constants.   

straight finger
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Figure B-6: SEM of (a) an SOI quartic-shaped comb parametric resonator that moves in x, (b) 

perspective view of the quartic-shaped comb fingers. 

 

The “quartic-shaped-finger” comb resonator investigates the saddle-node bifurcation at a 

high amplitude solution branch shown as f22 in Figure 1-4.  A fabricated SOI resonator with 

quartic-shaped-finger combs is shown in Figure B-6(a) with the perspective view of the finger 

shape in Figure B-6(b).  Suspended by a linear flexure that only moves in x, the plate mass is 

Quartic-
shaped-
finger comb 

Device 



Appendix B: Designs and Scripts 
 

 
192 

perforated for the purpose of release.  The flexure beams have fins on both sides to protect the 

sidewall from lateral etch during the silicon DRIE step of the SOI-MEMS process [25].   

The gap profile takes the form of  

( ) o
1 3

1 1

o1 o3
1

g
g x

x x
x x

=
+ +

. (B.4) 

The capacitance, C(x), of this class of quartic-shaped-finger comb is a 4th order polynomial: 

( ) 4
3

2
10 5.0 xxCxC n γγ −−= . (B.5) 

where the capacitance when the displacement is zero is 
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the linear electrostatic spring constant is 









+−=

o3

2
ov

o1o
1

312
x
x

xg
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and the cubic electrostatic spring constant is 

o3o
3

2
xg

hN oεγ −= . (B.8) 

Taking the derivative of the capacitance and multiply by Vp
2 / 2 give the electrostatic force, 

( ) ( ) 2
p

3
31e VxxxF γγ +−= . (B.9) 

where Vp is the voltage applied across the comb finger gap.  The capacitance and the force are 

plotted in Figure B-7. 
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Figure B-7: Force-engagement and capacitance-engagement curves for the symmetrically-placed 

shaped comb. 

 

The geometry-related parameters xo1 and xo3 are optimized to yield a maximum 3 1γ γ  ratio 

given the fabrication constraints and the linear spring constant is chosen such that the saddle-

node bifurcation amplitude is well below the stroke of the comb.   

The analytic frequency response of this type of nonlinear resonator provides a high amplitude 

bifurcation response shown in Figure B-8.  The frequency down sweep indicated by the green 

arrow can possibly follow two directions: one bifurcates to the zero solution, the other follows 

the purple arrow to point F where a maximum stroke is reaches and then drops to zero again.  

This design can be used to explore a large-stroke saddle-node bifurcation from point D to E.   

 

Choice of 
design 
parameters 

Steady-state 
frequency 
response 



Appendix B: Designs and Scripts 
 

 
194 

 

 

 

 

  

A
m

pl
itu

de
 (μ

m
)

Electric pump drive frequency (kHz)
21.86               21.90              21.94            21.98

11
~
f

21
~
f

22
~
f 12

~
f

*
3

~a

*
1

~a

*
2

~a

B

G
A

▬ stable
■■ unstable

*
4

~a
C

16

12

10

8

6

4

0

14

2

D

E

F
Limit stop

 

Figure B-8: Steady-state frequency response of the quartic-shaped-finger comb. 

 

The device was successfully fabricated using the SOI-MEMS process.  The experimental 

validation can serve as a validation vehicle for large-amplitude saddle-node bifurcation.  

Applying the quartic-shaped-finger comb to the controller in Chapter 4, a bi-state bifurcation-

point controller may be realized that works at large-displacement saddle-node bifurcations.  It is 

possible to implement a amplitude-state controller that servos at the falling edge of the saddle-

node bifurcation point.  The design and modeling can be validated through behavioral modeling 

and by the closed-loop implementation with off-chip electronics.  However, this type of 

bifurcation and its control are beyond the current scope of this thesis work. 

(end) 
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work 
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APPENDIX C SOI-MEMS FABRICATION PROCESS 

C.1. PROCESS FLOW 

he shaped comb resonators are prototyped by a silicon-on-insulator MEMS (SOI-

MEMS) process.  The development of the SOI process is for MEMS ideation and 

prototyping and while this kind of process is now common, it represents a 

contribution of this thesis work by providing the capability at CMU. 

 

 Si SiO2 Au PR

<111>
a) d)

e)

f )

LOR

b) c)
   

Si device
Si subs.

SiO2
removed

Si subs.

Si device

 

(a)   (b) 

Figure C-1: (a) Schematic cross-section of the SOI process. (b) SEM of the released device 

cross-section. 

 

Motivation T 



Appendix C: SOI-MEMS Fabrication Process 
 

 
196 

The fabrication flow is schematically shown in Figure C-1. The process starts with a bare 

SOI wafer [Figure C-1 (a)] with a 15 μm thick Si <111> 0.001~0.003 Ω-cm device layer, a 2 μm 

buried oxide layer (BOX), and a 480 μm handle substrate.  The handle resistivity is 1~20 Ω-cm 

to avoid floating substrate potential.  A lift-off process is developed in patterning the Au pads.  

In Figure C-1 (b), a bi-layer lift-off resist (LOR 5B) is used to create an undercut layer beneath 

the photoresist (PR) to limit sidewall deposition of metal in order to facilitate a clean lift-off.  

Electrical contact is realized through a sputtered 380 nm thick Cr / Au pad layer [Figure C-1 (c)].  

The Si trenches to define the microstructures are formed with DRIE (Deep Reactive-Ion Etching) 

in Figure C-1 (e).  The device is released by a timed BHF (buffered HF) etch of the BOX layer 

[Figure C-1 (f)], followed by DI water, IPA and methanol rinse to avoid stiction of the device to 

the substrate.  A Tousimis Automegasamdri®-915B, Series B critical point drier had also been 

used in replace of the wet method to facilitate a stiction-free release.  

 

C.2. DETAILED RECIPES 

C.2.1. AU PAD PATTERNING 

The pad layer lithography is graphically described in Figure C-1 (a-d).  The bi-layer resists 

used in this process are the LOR 5B resist and the AZ4210.  The detailed recipe is listed in Table 

C-1. 

Description 
of steps 
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Table C-1: Au pad layer patterning recipe using the LOR resist 

Purpose Process detail Unit Condition 

Surface 
treatment 

wash  acetone + IPA + DI 
dehydrate time min 5~10 
dehydrate temp. ºC 185 

LOR 
spin-

coating 

resist  LOR 5B 
LOR spin recipe  600 RPM, 10 s + 2500 RPM, 45 s; 

Ramp = 600 † 
LOR bake min 5.5 (± 0.5) 
LOR bake temp ºC 185 
LOR thick μm 0.7 
LOR undercut μm 4.5~5.5 

AZ4210 
coating 

resist  AZ4210 
res spin recipe  600 RPM, 6 s + 3000 RPM, 30 s 
soft bake min 2 
res thick μm 2.69 

Litho 

exposure type  Vacuum contact ("VAC" in MA-6) 
exposure s 190 
developer  1:3 AZ400K 
develop min 0.8~0.9 

Bake Hard bake  0.7min @ 100C 
Surface 

treatment 
descum min 2 
BHF s 45 

Au 
sputtering 

metal  Cr 
Cr recipe  10 min presputter + 45 s sputter 
Cr thickness nm 10 
metal  Au 
Au recipe  1 min PS + 2min SP + 1 min PS + 

2min SP + 30s PS + 2min SP + 30s 
PS + 2min SP 

Au thickness μm 0.4 

Lift-off 

lift-off chemical  PG remover (PG) 
lift-off  PG overnight + IPA rinse + 5min US 

in PG + IPA + DI + Acet + PG + IPA 
+ DI 

Piranha recipe  1 H2SO4: 1 H2O2 
Piranha time min 10 
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† Recipe applicable on the Solitec Photoresist Spinner.  The ramp has no unit.  The higher 

the number is, the slower the acceleration is reached. 

 

C.2.2. SILICON DRIE 

The structural trenches to define mechanically isolated microstructures are formed with 

silicon DRIE in Figure C-1 (e).  The detailed recipe is listed in Table C-2.  

 

Table C-2: Silicon structure patterning recipe 

Purpose Process detail Unit Condition 

Surface 
treatment 

descum  if start wafer with previous PR striped 
HMDS oven  10min dehydration + 2min HMDS 

vapor 

AZ4210 
coating 

resist  AZ4210 
res spin recipe RPM 600 RPM, 6 s + 4000 RPM, 30 s 
soft bake min 2 
res thick μm 2.18 
pad mesa thick μm 0.4 

Litho 

exposure type  Vacuum contact ("VAC" in MA-6) 
exposure s 42.5 
developer  1:4 AZ400K 
develop time min 1.0 (±0.5) 

Si DRIE 

DRIE recipe  stdaniso (12s etch + 8s passivation) 
DRIE cycles  31+6 
DRIE time min 10.33+2 
DRIE depth μm 16.8 (PR included, measured at the 

100 μm dicing lane) 
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C.2.3. BUFFERED HF RELEASE 

The device is released by a timed BHF etch of the BOX layer in Figure C-1 (f). The detailed 

recipe is listed in Table C-3.  

 

Table C-3: Buffered HF release recipe 

Purpose Process detail Unit Condition 

PR 
coating† 

resist  AZ4620 
res spin recipe  600 RPM, 6 s + 2000 RPM, 45 s 
bake time min ~15 
bake 
temperature 

ºC gradually increase from 20 to 40 to 
60 and finally to 90 

Dicing 

wafer dicing   
die wash  2min ultrasonic in DI + 1min acetone 

(partial stripe PR) + DI + complete 
PR stripe in acetone + DI + piranha x 
2 

    
BHF BHF release  50~60 min + DI x 2 

Release 
method 1 

deplete DI  IPA x 3, each time for 5 min 
release  use CO2 critical point drier 

Release 
method 2 

wet release  acetone + IPA + methonal 

 
† AZ4620 coating to cover the whole wafer to protect the devices from dicing particles 

 

(end) 
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