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Abstract

This thesis describes a brain-computer interface (BCI) system that was

developed to allow direct cortical control of 7 active degrees of freedom

in a robotic arm. Two monkeys with chronic microelectrode implants in

their motor cortices were able to use the arm to complete an oriented

grasping task under brain control. This BCI system was created as a clin-

ical prototype to exhibit (1) simultaneous decoding of cortical signals for

control of the 3-D translation, 3-D rotation, and 1-D finger aperture of a

robotic arm and hand, (2) methods for constructing cortical signal decod-

ing models based on only observation of a moving robot, (3) a generalized

method for training subjects to use complex BCI prosthetic robots using

a novel form of operator-machine shared control, and (4) integrated kine-

matic and force control of a brain-controlled prosthetic robot through a

novel impedance-based robot controller. This dissertation describes each

of these features individually, how their integration enriched BCI control,

and results from the monkeys operating the resulting system.
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Chapter 1

Introduction

Over the past decade, research and development of robotic arms and hands has ac-

celerated to the extent that robots that eclipse the controllable complexity of the

human limb are starting to become available. While these advanced robots are in-

tended for use as prosthetic devices, their development has not been matched by an

understanding of how they can be controlled efficiently by prosthetic users. The po-

tential clinical utility of these robots will be limited by the maximum bandwidth of

the control interface with which they are operated. While existing prosthetic control

schemes in use by patients are generally based upon residual patient movement, those

with the least ability to move have the greatest need for rich control of sophisticated

prosthetic devices.

To meet the challenge of affording people with the greatest level of disability the

ability to control sophisticated prosthetics, brain-computer interface (BCI) control

schemes allow the movement of a robot to be guided by signals directly recorded from

the brain. Patients with conditions ranging from spinal cord injury to amyotrophic

lateral sclerosis (ALS) and locked-in syndrome could potentially greatly benefit from

control schemes based on BCI. Even for amputees and patients capable of a significant

amount of volitional motor movement, direct brain interface may be the most intuitive

way to control complex devices.

BCI experiments in which subjects control a device continuously have focused

almost exclusively on controlling the linear movement of a cursor or robotic gripper

in point or space partition target acquisition tasks. In contrast, human arm behaviors

include a much larger range of movements by integrating rotation of the wrist with
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hand translation. These movements do not take place in an empty, dynamically

unconstrained environment; force interactions between the limb and its environment

shape the evolution of arm movements. Both of these factors are essential features of

the way humans perform activities of daily living and are important goals for designing

BCI prosthetic systems to restore meaningful function to people with disabilities.

In this work, we address integrated BCI kinematic (motion) and dynamic (force)

control of the translation, orientation, and finger aperture of a robotic hand. In a

series of experiments, two monkeys were able to use a BCI to control a robotic arm in

a task requiring simultaneous control of linear and rotational movements. This task

was completed in an environment that resembled the real world in that the robot

interacted directly with external objects; force interactions with these objects could

be controlled via the BCI. This work represents a transition beyond point acquisition

tasks for BCI, moving towards control systems for complete prosthetic limbs that can

functionally replace physiologic ones.

Creation of the BCI robot control system that made this possible was not a

task of knowing exactly what brain activity would allow 7-DoF control of a robot

to take place then engineering the system that would effect that intended behavior

physically. There is no way to know this model a priori ; brain control of a robot

is not a natural process that can be examined in a normally behaving subject. The

connection between thought and robot movement must be instantiated for the subject

to incorporate control of the robot into the existing motor control schema and allow

the subject to embody the limb. To make adoption of control over the BCI possible,

we relied on two related processes: (a) the transfer of features from the control of

natural movements into a BCI decoding system that was compatible with adoption

by the subject and (b) implementation of a systematic method to allow this adoption

to take place without the subject becoming overwhelmed by the challenge. The

components of the BCI system that support these two processes are described in this

dissertation.

1.1 Contributions of this Work

While the end result of our work is a significant advance in the number of degrees of

freedom (DoF) and quality of control that has been exhibited with a brain-computer

interface, it is also the first demonstration of a new general model for establishing
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control of complex BCI devices. This model incorporates a set of features that are

desirable in BCI systems as the state of the art moves towards clinical replacement

of full limb function in the disabled. These features include

Direct Control of Complex Robotic Systems

Microelectrode interface BCI control methods have generally been based on

techniques originally developed for the control of the linear movement of cursors.

The techniques and extraction algorithms that have been used are identical to

those used for control of 3-D cursors on a display, with movement of the cursor

transferred to the movement of a robot arm. In this work, methods used for

cortical decoding and robot control are designed to work directly with general

robotic hardware, with no intermediary vestigial layer derived from linear cursor

control.

No Movement Required

Under the assumption that BCI control of prosthetics is closely related to brain

activity involved in executing natural movements, control paradigms have often

relied on real or intended natural subject movements in the process of building

cortical decoding models. Real movements cannot be relied upon in disabled

subjects, while intended movements – “imagine moving your hand” – become

less useful if prosthetic devices diverge structurally from subject physiology

or the representation of natural movement in the brain has diminished as the

result of a motor deficit. An alternative method to build a cortical decoding

model is to rely on cortical activity elicited by observation of movement of the

effector device. Previous studies have used this as a basis for control, but in

each case a previous motor task had been performed that established an initial

connection between natural and robot movement before moving to observation.

In this work, we expose naive subjects to the motor task and create the decoding

model based on observation alone, with no physiologic motor task performed at

any stage in the process.

Building-block structure for developing skill

After building a cortical decoding model to enable brain control of a device, it

cannot be assumed that the subject will then be able to control it immediately.

A useful decoding model is only one part of what is needed to develop control

ability with a BCI. The other part is practice, but it may be extremely difficult

to immediately control a complex robot in which the controlled DoF cannot be
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selectively manipulated. Our system presents a systematic way to control the

difficulty of a complex BCI task so that a subject will not be overwhelmed on

the way to developing full control. Instead, the difficulty can be incrementally

increased on a per-control dimension basis until competence is achieved.

Modular construction

The evolution of BCI control system design is a user-centered process of fitting

the control pathway to the behavior of the user and demands of the task. The

closed-loop nature of brain-computer interface systems makes offline evaluation

of the effectiveness of the parts of its parts very difficult. We have created a

modular system architecture for BCI that facilitates the development process

by allowing the rapid interchange of highly cohesive system components in real

time. Using this process, candidate modules for performing tasks such as neural

extraction and robot control could be developed and evaluated rapidly.

To promote these features, a set of novel engineered systems have been created

that form a large portion of this dissertation. These systems are

1. A new formulation of algorithms used for cortical decoding that extends BCI

to the control of 3-D rotational velocity and to other first-order systems.

2. A novel method for operator-machine shared control that was developed to

provide a substrate for observation-based decoder calibration and allow subjects

to incrementally learn BCI control of a specific device. While developed for this

application, it is also relevant to shared-control methods used in telerobotic and

robotic surgical applications.

3. A new method for controlling robotic manipulators based on the recursive

Newton-Euler equations that was developed to provide a straightforward way

to implement force and kinematic control systems. Using this method, brain

control of robot endpoint kinematics was integrated with a Cartesian impedance

control algorithm that allowed indirect control of interaction forces between the

prosthetic robot and objects in the environment.

1.2 Contents of Dissertation

• Chapter 2 contains a review of brain-computer interface control systems and an

overview of the 7-DoF brain control system that is presented in this dissertation.
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• Chapter 3 discusses the 6-DoF cortical decoding system that was used to trans-

late neural activity into linear and rotational robot motion commands.

• Chapter 4 presents a novel shared-control algorithm that can be applied to tele-

robotic, haptic, and prosthetic systems.

• Chapter 5 contains a discussion of how a shared control system based on the

one in Chapter 4 can be employed in the control of brain-computer interface

prosthetic devices.

• Chapter 6 presents the robot controller that was used to provide kinematic and

dynamic control of the robot.

• Chapter 7 contains a self-contained review of the complete brain-computer in-

terface experiment with overall results.

• Chapter 8 contains detailed descriptions and methods regarding the BCI system.

• Chapter 9 concludes the dissertation of what has been accomplished and its role

in how future brain-computer interface systems can be built.



Chapter 2

Background and Overview

This chapter contains a short summary of brain-computer interface (BCI) technolo-

gies and research, focusing on the control of motor prostheses. This is followed by

an overview of the BCI robot arm control experiment and system that is the sub-

ject of this dissertation. Some of the main component parts of this system do not

originate with BCI research and have limited shared history with it. Background

material relating to each of these component parts is located within chapters of this

dissertation that discuss them. Chapter 3 reviews the population vector algorithm

that relates cortical activity to movement and have been used for BCIs. Chapter 4

discusses methods used in telerobotics and computer-integrated surgery to augment

the control of robots with artificial control signals. Chapter 5 discusses the distrib-

uted representation of movement in the brain and learning in the context of BCIs.

Chapter 6 includes a brief background on kinematic and dynamic control systems for

robot manipulators.

2.1 Progress in BCI

Motor brain-computer interfaces are systems that translate neural activity measured

in the brain into control signals that command an external device. Figure 2.1 shows

a diagram illustrating the basic components of this type of BCI system. Electri-

cal signals are recorded in the brain, these signals are processed to produce control

command signals of some kind of computer or robotic effector system, then they are

executed in the output device. Not shown is the feedback pathway that provides
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visual or other feedback to the subject to close the control loop.

Subject
Cortical Signal
Acquisition

Signal Extrac-
tion / Decoder

Output Device

Figure 2.1: General schematic representation of brain-computer
interface systems.

BCIs were first envisioned in the 1970s by Vidal while observing activity recorded

by an electroencephalogram (EEG) [122]. EEGs, which measure electrical potentials

from the brain at the scalp, have been used clinically for the diagnosis of epilepsy since

the 1930s [111]. Attempts to use these devices for BCI had begun by 1990 [22, 69, 128]

and has continued since that time to eventually enable its use by a relatively large

number of human patients [71, 99, 100, 104, 129]. EEG systems are noninvasive,

which has made them readily available for BCI experimentation, but the bandwidth

of information that can be transmitted over an EEG interface is inherently limited

by recording through layers of tissue and bone.

To bypass this limitation, a related interface method that has been used more

recently for BCI is the elecrocorticogram (ECoG). ECoG was developed by Penfield

and Jasper for the identification of epileptogenic zones over 50 years ago [44], but

incorporated into a BCI in 2004 [66]. ECoG arrays consist of a plastic membrane

in which a matrix of electrodes are embedded. This membrane sits on top of the

brain surface, under the layer of dura, and records synchronized postsynaptic po-

tentials (local field potentials) with a spatial resolution of approximately 1 cm [6].

Its proximity to the brain and density of electrodes allows for a significantly higher

bandwidth signal to be communicated. Recent ECoG BCI experiments have showed

the potential of ECoG for use in continuous BCI control [72, 85, 101]. This interface

method is more invasive than EEG, but it allows for a significantly higher level of

control signal transmission. It is also a longstanding clinical technology that does not

involve penetration of the brain.

A third BCI interface method uses microelectrodes that are placed directly in

the brain to record the activity of neurons individually. The use of microelectrode

recordings for BCI has its roots in early experiments that used an operant condition-

ing paradigm to train monkeys to modulate the activity of individual neurons [26, 28].

This paved the way for mapping real-time recordings of this modulated activity to the

output of some effector device. As techniques for recording individual action poten-

tials over longer periods in the brain were developed [51], these techniques were used
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in the first intracortical BCIs [16, 43, 50]. Progress in using intracortical microelec-

trodes for BCI control continued to 2-D and 3-D control of cursors [9, 106, 113] and

robots [13, 112] with primate subjects. A study in our laboratory enabled a monkey

to control a robot arm in a 4-D self-feeding task that included control of a gripper

(Figure 2.2). Because of the highly invasive nature of microelectrode implants, hu-

man studies with these devices have been limited. In the experiments that have been

conducted, subjects have been able to show intentional modulation of a neural signal

[50] and closed-loop control of a computer interface [15, 40, 55].

Figure 2.2: BCI self-feeding experiment of Velliste et
al [121] that exhibited 4 degree-of-freedom continuous
control of a robot arm and gripper using a chronic mi-
croelectrode interface.

2.2 Clinical Potential of Brain-Computer Interfaces

Brain-computer interfaces hold the potential to aid people who suffer from a wide

range of neuromuscular deficits; any pathology that disrupts the normal pathway

from movement intent to movement execution could potentially be remedied by a

BCI. Instead of repairing the disrupted physiologic pathway, these systems allow the

brain to bypass the lesion to control an artificial device. An alternative type of

BCI formulation stimulates the muscles of a patient directly instead of relying on an

electromechanical effector [80, 81].

The patient population for whom BCIs could provide the most benefit are those
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who are paralyzed with at most one or a few voluntary functions left [8]. Described

as locked-in syndrome, this condition can occur as the result of amyotrophic lateral

sclerosis (ALS), Guillian-Barré syndrome, or pontine stroke. Other patients that

may possess more voluntary movement but are candidates for BCI include the large

population of people with spinal cord injury (> 100,000 in the United States [36]),

cerebral palsy, muscular dystrophy, and potentially stroke. Stroke often affects the

movement of a single limb and is the main cause of long-term disability in adults. BCI

may also be appropriate for prosthetic device control for amputees and people with

more isolated peripheral pathologies [64, 67], especially for the control of advanced

prosthetic devices that have a large number of controlled degrees of freedom.

While only a few experiments have as yet been conducted using invasive micro-

electrodes in humans, noninvasive BCIs have reached a stage in which a few people

are using EEG systems at home on a day-to-day basis [84, 105]. EEG systems have

been most effective in allowing people with little to no voluntary movement to com-

municate using spelling applications [10, 14], though input rates to these systems are

limited to about 6 characters per minute. A higher information transmission rate of

roughly 17 characters/min was achieved using an ECoG interface [12], corresponding

to the higher bandwidth of information transfer using this modality. Testing of sim-

ilar systems with microelectrode interfaces in primate models has not been able to

produce positive results.

2.3 Models for Control of Cursors and Robots

Algorithms for the continuous control of effector devices using BCIs predict a set of

kinematic variables Y from a set of neural data X. Neural data usually consists of

samples of spike rates from a set of neural units. Units define the electrical activity

of one or more neurons that is grouped together as a single input to the model. We

will briefly review two types of prediction algorithms that have been used for BCI

control with microelectrode interfaces. These prediction algorithms fall into classes

of discriminative and generative models, each described below.



2.3 Models for Control of Cursors and Robots 10

2.3.1 Discriminative Models

Discriminative models compute predictions based on the conditional probability dis-

tribution P (Y = y|X = x). Models of this type are not based on known features of

motor neural activity, but instead on established models for prediction of time-series

data [97]. The most basic filter of this type that has been used in BCI is the Wiener

filter or multidimensional linear regression model [13, 40, 78, 106]. This model was

originally developed during World War II for aiming antiaircraft batteries [127] and

has been widely used for time series prediction since. A version of the linear filter

algorithm which includes time-lagged inputs and has been used for BCI [13] is

y(t) = b+
n∑

u=−m

a(u)x(t− u) + ε(t)

In this equation, x(t − u) is an input vector of firing rates at time t and time lag

u, y(t) is a vector of kinematic and dynamic variables at time t, a(u) is a vector of

weights at time lag u, b is a vector of y-intercepts, and ε(t) are the residual errors.

The matrix form of the filtering model is

Y = XA (2.1)

and its calibration model is

A = (XTX)−1XY (2.2)

where each row in each variable is in time and each column is a data vector. Each

entry in the input X holds a neural firing rate, and each column includes lagged

data from each neuron so that it has a column for each lag at each neural recording

channel. The calibration Equation 2.2 fits the model A to a set of observed data in

Y and X so that predictions can be made using Equation 2.1.

This lag-linear prediction model is a type of moving average (MA) model or

FIR filter over the input, also equivalent to a single-layer feedforward neural network.

Another type of discriminative model that has been used for BCI are multilayer neural

networks with feedback [16] that model nonlinear relationships between the input and

output. Backpropagation learning or other methods can be used to adjust the weights
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between nodes in the network to more optimally fit kinematic data to firing rates.

2.3.2 Generative Models

Generative models are movement prediction algorithms that are based on some model

for reconstruction of the neural firing rates from subject behavior or environmental

stimuli. Rather than determining only the conditional distribution P (Y = y|X = x),

these models first calculate some “inverse” model for generating firing rates based on

observed behavior. The inverse model for a neural population is then inverted to form

the “forward” model for prediction of behavior from the firing rate. While this would

seem to be an extra step, this type of model has the advantage of incorporating some

knowledge of state information of the firing neurons into movement predictions.

A popular type of generative model is the Population Vector Algorithm (PVA)

[31, 102, 103] based on original observations of the population encoding of hand

movement direction in monkeys. The prediction and calibration equations for this

algorithm are described in Chapter 3 with the related Optimal Linear Estimation

(OLE) algorithm that was used in our BCI system. As we will show in Chapter

3, embedded into the process of calibrating the OLE decoding model is an implicit

two-step process for (a) fitting a generative model of the neural state of each unit to

kinematic data, followed by (b) fitting a model to predict a kinematic state given a

population of neural state estimates.

Generative encoding models similar to those used in PVA have been extended

over other movement variables such as position, velocity, acceleration, and force

[73, 118, 125, 126]. More sophisticated state-space models incorporate the neural

or kinematic state of the system explicitly as variables and use some form of Bayesian

model for state transitions in time. State-space models are based on some form of

maximizing the likelihood of a model M given a set of data D. These types of models

are based on the Bayes’ formulation

P (Mi|D) =
P (D|Mi)∑

k P (D|Mk)P (Mk)
P (Mi) (2.3)

where the maximally probable state-space model is found given a set of observed

data, based on the fit of each candidate model Mi to the data (P (D|Mi)) and some

prior probability of each model (P (Mi)). The prior is generally based on a previous
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observed or calculated state. Monte-Carlo or similar methods can be used to compute

the posterior probability distribution across all models for equation 2.3 [97]. Kalman

filters are the primary sequential algorithms of this type that have been employed for

BCI, which assume a linear relationship between input and output variables as well

as Gaussian noise in the observed firing activity [3, 130]. Particle filters, which lift

the linear and gaussian restrictions of the Kalman filter have also been used [11].

2.3.3 Reconstruction vs. On-line Control

An important distinction to be made when evaluating algorithms to use for BCI de-

coding is between the quality of reconstruction of a set of movement data from spiking

activity and the performance of a decoding algorithm for on-line control. Many of

the above models that incorporate a significant amount of lagged spike data, ad-

ditional movement parameters, or state-space models into decoding equations show

significantly better reconstructions of movement data than simpler algorithms such

as those based on OLE or PVA. It is then implied that this makes these algorithms

superior for BCI control. However, this ignores the role that the subject learning the

decoding model plays in the development of closed-loop control skill. While these

algorithms may indeed produce better reconstructions of data recorded from natural

movement and potentially higher-quality offline reconstructions of BCI external ef-

fector movements, they may be difficult to learn because of their complexity. These

types of algorithms have not been shown to be superior for on-line control [56].

As BCI moves towards the control of increasingly complex manipulators, cor-

respondence between the movement of an effector device and the natural movement

of the subject decreases. Because of this, some of the more complex neural decod-

ing models that are based on reconstruction of subject movements decrease in their

usefulness for BCI. Instead, the process of developing skilled BCI control becomes

primarily one of learning a decoding model so that intent can be linked to action.

The process of learning during development of BCI control been studied previously

[13, 38]. It has already been shown that subjects can compensate for models that pro-

vide inferior kinematic reconstructions [17]. More complex models that abstract the

direct connection between intent and changes in effector device output may be more

difficult to control. Considering BCI as a special case of human-computer interfaces

in general, it may be important to preserve a direct connection between short-term in-

tent and device output. Intuitively, turning the steering wheel on a car is expected to
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turn the wheels; superposition of a complex control model that incorporates a range

of considerations into whether or not the wheels should turn would be of questionable

benefit.

2.4 Brain-Computer Interface Experiment Overview

A brief overview of our brain-computer interface experiment is given here, intended to

provide context for following chapters that discuss its component parts. The overall

experiment is then returned to in Chapter 7, followed by a detailed explanation of

the construction of each part of the BCI system in Chapter 8.

2.4.1 Brain Controlled 7-DoF Manipulator Experiment

Two monkeys were implanted with chronic cortical microelectrode arrays in their

motor cortices. Signals recorded from these electrode arrays were used to drive a

robotic arm in a reach-to-grasp task that required control over 7 robotic degrees of

freedom (DoF) in an environment that permitted controlled collision and interaction

with a target object and other objects in the experimental workspace. The robot

arm used in this experiment, a Barrett Technology WAM Robot Arm, has 7 active

DoF that are similar to the human arm. An attached 3-fingered Barrett Hand robot

had 3 DoF of controlled individual finger flexion and 1 DoF of finger spread. In this

experiment, the 3-D linear and 3-D rotational velocity of the hand in a Cartesian

task space were controlled by the monkey, along with 1-D finger closure velocity of

all three fingers simultaneously.

The WAM robot was mounted horizontally to approximate the joint configuration

of the primate shoulder. The monkey subject was seated in a chair to the left of the

arm robot. The monkey, monkey chair, experimental framing apparatus, and other

objects were within the robot’s reach. The left arm of the monkey was restrained

during the experiment to keep it from turning around in the chair, but the right arm

was left unrestrained. A cylindrical grasp target object was mounted to a 6 DoF rigid

target presentation robot. The presentation robot faced the prosthetic arm such that

the target could be placed at set locations and orientations within a roughly 50cm

diameter workspace spanned by both robots. This setup is shown in Figure 2.3.
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Figure 2.3: 7-DoF BCI Experimental Setup

Monkeys initiated experimental trials by pressing a button with their right hand.

At that time, the presentation robot moved the cylinder to one of six target orienta-

tions while the prosthetic robot hand moved to one of six starting positions. After

an audible cue, the monkey controlled the robot hand linear, rotational, and grip ve-

locities in the grasping task. If this was completed successfully, the monkey received

a liquid reward. If the trial timed out (after 12-14 seconds) or the monkey stopped

trying to complete the task, a buzzer activated and the system reset for the next trial.

Experimental sessions consisted of a short brain signal decoder calibration phase

followed by a subject training and practice session that lasted for as long as the

monkey subject participated in the task. During the calibration period, the monkey

watched the robot complete the task autonomously. Cortical activity recorded during

this period was used to calibrate the decoding system. Additional “coadaptive” trials

could then be performed in which the monkey’s brain control signals partially affected

the movement of the robot, with the cortical decoding model periodically recalibrating

based on partially brain-controlled movements.

When the decoder calibration phase was complete, the system entered a training

and practice phase. During this period, the monkeys received assistance from a system

that adjustably reduced the amount of control error that passed from monkey brain

activity to robot control commands, setting the challenge level that the monkey was

exposed to in the task. Over time, the amount of assistance given was decreased so

that the monkeys eventually fully controlled the robot.
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2.4.2 Brain Control System Architecture

A simplified schematic of the BCI robot control experiment control pathway is shown

in figure 2.4. This system was comprised of two robot control streams which were

mixed to form commands that moved the robotic arm:

Monkey
Cortical Signal
Acquisition

BCI Com-
mand Decoder

Shared Control
(BSC) System WAM Robot

Autonomous
Controller

Experimental
Control

Figure 2.4: Simplified schematic of the experimental system.

Brain-Control Command Stream: In the brain-control command stream, cor-

tical activity was recorded and decoded into robot motion commands. The

cortical decoding system that translated these spike rates into robot movement

commands is discussed in Chapter 3. Output commands from the cortical ex-

traction system were emitted in 30 ms intervals and composed in the 7-DoF

space of robot hand linear, rotational, and grip closure velocities.

Autonomous Control Stream: The autonomous control stream paralleled the brain-

control stream, providing a set of idealized task-related robot control commands

in the same 30 ms intervals. The autonomous controller generated commands

based on the pose of the robot and the immediate goal of the task (reach-

ing, orienting, gripping) to move the robot toward task completion. Because a

cylindrical object can be grasped in multiple ways by the WAM robot, the au-

tonomous controller generated multiple commands simultaneously that would

each lead toward grasping.

The two command streams entered into the bimodal shared control (BSC) ar-

bitrator module, which mixed them to form a unitary output command stream to

the robot. The mixing of incoming commands was dependent on the phase of the

experiment and the BCI control skill of the monkey. During the observation-based

calibration phase of the experiment, the output from the arbitrator was a copy of

the autonomous control stream, driving automatic completion of the reaching and
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grasping trials. During coadaptive trials, robot commands were primarily automat-

ically driven, with a small amount of control information derived from the cortical

decoder mixed in. This was accomplished using an “active” shared-control method in

which user and automatic control were directly combined. During the later training

and practice phase of the experiment, a different “passive” shared-control method

was employed in which the autonomous control was used as a template against which

deviant subject control commands were treated as error and attenuated.

The passive shared control algorithm, otherwise known as “flexible fixturing”,

is described in Chapter 4. The role of active and passive shared control in BCI is

described in Chapter 5. Composite robot commands emitted by the shared control

arbitrator directed the endpoint velocity of the WAM robot. Movements of the WAM

were governed by a type of kinematic-impedance control algorithm that allowed the

robot to smoothly respond to a noisy stream of movement commands while control-

lably interacting with objects. The robot control algorithms that allowed for this

behavior are discussed in Chapter 6.



Chapter 3

Cortical Decoding of Translation

and Rotation

One of the most basic components of a brain-computer interface system is the cortical

decoding or extraction system that translates spiking activity of neurons into device

control commands. This chapter reviews the unified model for cortical decoding of

3-D rotation and 3-D translation that was used in our BCI experiment. 1-D hand

aperture decoding was also performed, but this was done separately and in parallel

to the decoding of whole hand movement. The use of these two decoding models

together is reviewed in Chapter 7.

3.1 Neural Coding of Hand Translation

A concise and well-known generative model for the relationship between the activity

of motor cortical neurons and hand movement is the “cosine tuning” model originally

proposed by Georgopoulos [32]. This model describes the firing rate of individual

neurons with respect to the direction of hand movements such that neurons fire at

a maximal rate when the hand is moving in the “preferred direction” (PD) of the

neuron. These neurons are “cosine tuned” in that this rate drops off with the cosine

between the PD and the direction of movement. The PD model was originally used

to describe firing rates in cortical area M1 during 2-dimensional hand translations

performed by monkeys. This 2D model was later extended to translation in 3D [52].
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In the PD tuning model, 3-D hand movement in direction v is related to the

firing rate λi of neuron i by the tuning parameters βi = [βix, βiy, βiz], offset by the

neuron’s baseline firing rate βi0. The preferred direction for neuron i, the direction of

movement for which its maximal firing rate occurs, is the direction indicated by the

vector βi.

The scalar PD model is

λi = βixvx + βiyvy + βizvz + βi0 + ε (3.1)

or in matrix/vector form, for multiple samples of λi and vx,y,z suitable for fitting the

model,

λi = v · βi + βi0 + ε (3.2)

where v is an m × 3 matrix of m samples of movement direction, λi is a vector of

spike rates, and βi is a 3×1 preferred direction vector. ε is a vector of residual values

related to noise or neural activity not related to the model. βi coefficients are fit by

regression over a set of recorded movements and spike rates. In past studies of hand

motion that have used the PD tuning model, the data used for model fitting was the

averaged firing rates over whole reaches and overall reach directions, so that m = the

number of reaching trials.

3.1.1 Population Vector Algorithm

Relying on the PD model, the Population Vector Algorithm (PVA) [31, 103] was

designed to reconstruct or predict movement directions from the firing rates of a

population of directionally tuned neurons. The PVA algorithm is a voting scheme in

which a predicted direction of movement p∗ is formed by summing a contribution from

each neuron in its normalized preferred direction, scaled by w∗i , neuron i’s activity

relative to its baseline firing rate. λ∗i is a firing rate to be used for prediction.

w∗i = λ∗i − βi0

p∗ =
∑

i

w∗i
βi
||βi||

(3.3)
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The use of the direction of movement alone in the PD or PVA equations con-

strains the representation of movement from each individual neuron to the unit sphere,

so that 1-DoF of information (speed) is lost in the process. In a study by Moran [73],

speed was determined to influence the PD model in both an additive way as well as

with a gain component that modulated the directional tuning:

λi = ||w|| βis +w · βi + βi0 + ε (3.4)

where βi is the (non-normalized) preferred velocity, and βis is an omnidirectional

speed-modulated component of the neural firing rate. Using even the basic PD tuning

model (Equation 3.2), speed information will be contained in the reconstruction of

movement because speed-tuned neurons modulate the w∗i of PVA (Equation 3.3).

Thus, even though the 3-D PD calibration process produces 2-D preferred directions,

a representation of the speed component is recovered during assembly of the movement

vector using PVA. However, a gain factor must still be applied to match the velocity

output of PVA to the original scale of the movement input velocity.

PVA in Brain-Computer Interfaces

In BCI experiments using the PD model and PVA, model calibration was at first per-

formed as in natural movement experiments using hand movement recordings [113].

Later, a robot gripper was used as a substitute for the subject hand so that the di-

rection of robot movements and averaged firing rates over movement periods were

used in the PD model calibration, as in in Velliste et al [121]. In this experiment,

the movement of a robotic gripper was also controlled using a 4-D version of the PD

model. The distance from the starting position to a target in each movement segment

(reaching, gripping, bringing the hand to the mouth) were regressed against the av-

erage neural firing rates during that segment. Each of these components (x-y-z-grip)

were multiplied by a scaling factor so that the magnitude of the movement direction

was about -1 to 1 in each component ([121] Supplemental Material). The velocity of

the robot arm during later control was then derived from neural population activity

using PVA with different scaling parameters assigned to the linear and grip DoF.
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3.2 6 Dimensional Movement Coding

We now extend the 3-D PD directional tuning model to 6-D linear and rotational

velocities. In our BCI prosthetic experiment, we describe the PD equation as the

“inverse” model relating movement to firing rates. The calibrated inverse model is

then used to obtain the “forward” model for translation of firing rates to movements

in Section 3.3.2. Our model for the encoding of 6-D movements supposes that the

firing rate of individual motor neurons is related to linear and rotational velocity of

the hand using a 6-element movement vector

λi = u · bi + bi0 + ε (3.5)

u = [ v ω ]

bi = [ βi β′i ]

where u contains the 3-D linear (v) and rotational (ω) movement velocities, and

the preferred direction bi for neuron i is composed of its linear βi and rotational β′i
preferred directions. bi0 is the baseline firing rate of neuron i, and ε is residual activ-

ity. Actual movement velocity is used here instead of direction alone to simplify the

relationship between linear and rotational movement parameters in the model. This

takes advantage of the speed gain modulation of PD equation (3.4), preserving the

full 6-DoF of the input during PD model calibration. Complications that would oc-

cur during normalization between types of movement (linear, rotational) are avoided;

if linear and rotational motion are normalized together, the apparent magnitude of

movement in one type of movement can change based on movement of the other

type. Instead, we fit a simpler model that simply relates measured robot velocities

to neural firing rates. A side effect of this is that it facilitates comparison of the re-

gression coefficients between experiments and conditions; assuming the independence

of regressors (in the brain), regression coefficient magnitudes are unaffected by the

addition of other DoF representing distinct types of movement into the model.

Neural Coding of Hand Rotational Velocity

While the cortical basis of linear hand movements has been studied extensively, hand

rotation has not. In a study by Kakei [46], cortical activity was found to be more

related to the Cartesian direction of hand movement in space than joint movements,

but particular movements at the wrist joint in this study correlated with the ori-
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entation of the hand. In a more recent study by Wang et al [126], rotation of the

hand in the frontal plane was studied in a 3-D reaching task. A gain-field (nonlinear

multiplicative) relationship was found in the effect on neural firing rates between lin-

ear and rotational coordinates in monkey hand movements. The potential nonlinear

relationship between linear and rotational motions is dealt with by a sequential PD

model calibration process that is outlined in Section 3.4.

Cosine Tuning in 3D is Inner Product Tuning in 6D

In describing control models for translation, the relationship between movement di-

rections and PDs is often described with respect to the angle between them. As

rotational velocity is added to the model, it is simpler to think of the preferred direc-

tion model as simply relating the equivalent inner product of the the coefficient vector

and the direction of movement with some offset b0. Otherwise, angles between vectors

representing different movement types (linear, rotational) will make little sense. Ac-

cordingly, angles derived from the inner product projection (with the inverse cosine)

in spaces that relate different types of movement are dependent on the units of mea-

surement used. Therefore, it may be more useful to think of the PD tuning model as

one that relates firing rates to the inner product of a preferred direction vector and

a movement vector. This is mathematically equivalent to the cosine tuning model in

3D, but much easier to understand moving to higher-dimensional decoding models.

3.3 Calibration of the 6-D Prediction Model

We now discuss the method that was used to calibrate the inverse model relating 6-D

movements to single-unit firing rates, followed by the derivation of the forward model

from a population of calibrated PD models. This section includes a concise matrix

description of the PD and OLE calibration process, which may provide a simplified

way of looking at how these algorithms function. At the very least, it facilitates direct

comparison to other decoding algorithms that have been used for BCI.
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3.3.1 Optimal Linear Estimation

Because of the many-to-one relationship of movement parameters to firing rates in

the PD model (Equation 3.5), using the activity of a single neuron to predict 6-D

movement is insufficient. Given a single neuron’s firing rate, the possible encoded

movement vector has 5 remaining degrees of freedom in the control space of the ex-

periment. An equivalent way of looking at this is that the activity of each neuron

is the scalar quantity describing the projection of the movement along its PD vec-

tor. PVA sums these projections over a neural population to form an estimate of

the desired movement vector in the control space. It is easy to see that when the

basis (PD) vectors are unevenly distributed, the resulting vector sums will be biased

towards more densely represented movement directions. This problem exists in 2-D

and 3-D decoding, and is only compounded for 6-D decoding.

Optimal Linear Estimation (OLE) [49, 96] is used to reduce bias in the recon-

struction of the movement from the population of projections. OLE is equivalent

to PVA for uniform distributions of preferred directions, but eliminates bias due to

uneven ones. From Salinas et al [96], Optimal Linear Estimation estimates a control

vector vest from a set of firing rates λ as:

vest =
∑

i

λi pi

where

pi =
∑

j

Q−1ij kj

kj =

∫
fj(v)v dv

Qij is the entry in a correlation matrix Q of calibration firing rate data. The “true”

movement vector corresponding to the given set of firing rates from the calibration

is v. Neurons are assumed to have Gaussian distributions of firing rates over v,

with average firing rate fj(v) when the movement vector takes on the value v. The

end result of OLE is that vest is the best linear estimator for the desired movement

direction given a set of firing rate data and movement vectors in the calibration. This

is equivalent to the ordinary least-squares fit of a population of PD-modeled neurons

to movements, which we will show in the next section.
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3.3.2 Matrix formulations for decoding model calibration and

OLE inversion

We now present a matrix formulation for the PD regression and OLE steps of decoder

calibration. This is equivalent to the unit-by-unit calibration model that has been

commonly used (Equation 3.1) combined with various descriptions of OLE [17, 96].

A preferred direction matrix representing bi (in Equation 3.5) for an entire pop-

ulation of neurons can be determined with a single matrix inversion by arranging the

problem as follows:

λ = U ·B



λ11 λ12 . . . λ1m

λ21 λ22 . . . λ2m
...

...
...

...

λs1 λs2 . . . λsm




=




1 u11 u12 . . . u1n

1 u21 u22 . . . u2n
...

...
...

...
...

1 us1 us2 . . . usn







b01 b02 . . . b0m

b11 b12 . . . b1m

b21 b22 . . . b2m
...

...
...

...

bn1 bn2 . . . bnm




B = U+λ (3.6)

where λ are measured firing rates of m units over s samples, elements u are kinematic

data of n dimensions over s samples, and, b are the PD model coefficients to be fit.

U+ denotes the generalized matrix of matrix U . As U is not a square matrix, the

Moore-Penrose pseudoinverse gives the equivalent to the least-squares regression over

each unit. Calibration of the B matrix establishes the inverse model relating firing

rate to movement. To drive the kinematics of the robot using neural activity, we

derive the forward model that uses PD models of the neural population to estimate

desired kinematics, based on the generalized inverse of B:

D∗ = λ∗B+

where D∗ are the predicted kinematic quantities for a set of firing rates λ∗ for pre-

diction. The Moore-Penrose pseudoinverse gives

X+ = (XTX)−1XT

which is the “minimal OLE” solution as described by Chase [17]. This is a least-

squares estimate of the kinematic data given the modeled state of the population
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determined in Equation 3.6 [56] . There is no need to apply additional scaling factors

in this step if movement velocities were used for the samples in U .

Comparing the OLE model to the type of linear filter described in Section 2.3.1,

the difference in the two approaches can be described as a difference in how error is

minimized during model calibration. In the filter method, the model error is mini-

mized over the prediction variables directly based on samples of raw spike rates from

a population. In the PD/OLE calculation, error is first minimized in the genera-

tive model of firing rates during the PD calculation over the raw recorded data. In

the OLE step, the least-squares error is then minimized over the prediction variables

based on the modeled population of neurons.

As noted in [17], the assumption for using ordinary least squares for multiple units

is that the neural activity is homoscedastic and there are no correlations between the

residuals and the regressors. As these assumptions often do not hold for recorded

neural data, we can perform a version of weighted least squares where we transform

the data such that the assumptions of least squares hold. Given a model B, then a

set of movement and spike data U and λ.

First, the residuals are formed into R

λP = UB

R = λ− λP

then the covariance matrix of the residuals is calculated

Ω = cov(R)

and generalized least-squares regression [45] is applied.

PD = α(BTΩ−1B)−1BTΩ−1

which is the ”full OLE” solution from Chase et al [17], and is equivalent to a linear

transformation of the data to standardize the scale of and decorrelate the residuals.

The ”variance only” OLE method uses only the diagonal entries in Ω, corresponding

to standardizing the scale of residuals to adjust for mean firing rate differences between

units.
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3.4 Observation-based Model Calibration

In our BCI experiment, an observation-based paradigm was used to collect data on

which the PD coefficients in Equation (3.5) were calibrated. This process was similar

to that used by Velliste [121] and Wahnoun et al [123] previously in BCI, except

that in our work the monkey was never trained in any physical task that originally

caused the robot to move. At the beginning of a daily experimental session, the robot

autonomously completed grasping trials as samples of filtered spike rates and filtered

robot velocities were buffered for use in fitting the coefficients in Equation 3.5. Sam-

pled spike rates and Cartesian robot velocities were used for model calibration instead

of averaged distances to target and averaged firing rates over task periods. This sim-

plified the process of acquiring calibration data to fit the relationship between the

two observed processes, especially for experiments with multiple periods of different

movements (reaching, orienting, grasping) occurring during individual trials.

Figure 3.1: A monkey observing motion of
the robotic arm.

The use of observed movements of the robot directly instead of goal-related prox-

ies in calibration supports the notion that cortical activity used for model calibration

is based upon the congruence of neural activity between action and the observation

of action. Tkach et al have observed this phenomenon when a well-trained monkey

observes replay of a motor task involving a robot [115, 116]. The difference in our

experiment is that the monkey observes the arm moving with no learned connection

to the monkey’s own motor movement, so that any cortical activity is elicited by a

natural response to viewing the robot alone.

Observation-based activity may be related to a mirroring phenomenon first de-
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scribed by Rizzolatti et al in cortical area F5 [30]. Congruent single-unit activa-

tion was observed while a monkey performed a manipulation task and a human ex-

perimenter performed a similar task. Rizzolatti and others propose that mirroring

processes are responsible for cortical activation during observation of other motor

and non-motor process, including emotion [24]. These conclusions for areas outside

of cortical area F5 were drawn mainly through studies using noninvasive recording

methods. In one of these studies, similar cortical areas are activated when humans

observe humans or robots grasp an object [74].

In our experiment, observation trials were completed in a sequence of each move-

ment type individually; the robot first moved in the linear DoF to a point near the

target. Next, it rotated to the target with no translation. This was done for two

reasons: (a) isolation of movement types eliminated a potential confound if the corti-

cal representation of linear and rotational motion interact in a nonlinear fashion and

(b) isolation of movement types allowed us to evenly sample the space of targets with

fewer trials. In the study previously mentioned of Wang et al [126], the gain-field

relationship between cortical activity and linear and 1-D rotational hand movements

would be difficult to calibrate in a timely manner for use in BCI. By calibrating

each movement type individually, we removed potential interaction effects that would

skew the linear model. On the other hand, we did not need to collect data over the

large number of combinations of movements needed for nonlinear model calibration.

While we wished to afford the monkey a natural basis for movement control, a factor

that simplifies BCI is that the designer of the system implements the actual model

for translating cortical activity that is applied to the robot. Thus, we could esti-

mate the independent parameters in the model by presenting a degenerate case in

which interaction between linear and rotational DoF did not take place. The result-

ing model could then ignore the nonlinear aspect of the relevant natural movement

tuning equation that would be much more difficult to use for control of a robot.

3.5 BCI Rotational Control of a Robot Manipula-

tor

This section reviews how control commands from the decoder were applied to move-

ment of the robot. This section is motivated by some particular methods for con-

trolling robot rotation that seem to arise in control schemes by default which would
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make BCI robot control more difficult.

3.5.1 Parameterization of Rotation

There are multiple ways to represent 3D rotations, one of which must be chosen for use

in the study of motor control and in brain-computer interfaces. There are significant

issues with some of these rotation representations that are commonly underrepre-

sented when orientation or rotation are discussed. Parameterizations of rotation such

as Euler angles (yaw-pitch-roll) are not independent (Figure 3.2), and arrays com-

prised of Euler angle values have a nonlinear relationship with the magnitude of the

rotation that they represent. Other rotation representations such as quaternions and

rotation matrices each have 3 degrees of freedom but require more than 3 parameters,

making them harder to integrate into straightforward control models. Because of its

dependence on a reference pose, axis-angle representations (using 3-element arrays)

of orientation cannot be compared using vector arithmetic. This representation of

orientation also has a discontinuity at magnitudes greater than 180 degrees, further

complicating large rotations (Figure 3.3).

A representation of rotation that does not suffer from these problems is the

simple 3-component angular velocity vector. This representation identifies a 3 di-

mensional rotation command space that operates like linear velocity in that it is a

consistent vector space. Its relationship to hand orientation, however, is unlike the

relationship between linear velocity and position. 3-component representations of

orientation cannot be subtracted to find meaningful difference vectors that represent

a direction of movement. A rotational velocity that would bring a robot from one

particular orientation toward another must be calculated using methods specific to

each parameterization for orientation. For these reasons, the angular velocity vector,

without reference to orientation, is used in the 6-D decoding model.

3.5.2 Choice of Control Coordinate Frames

The exact definition of translation and rotation to be used in the movement of a

robot arm is an important factor in reducing the complexity of a BCI control system

capable of producing rotational and linear movement simultaneously. We take a

common point for which hand translation and orientation are controlled to be at the
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Figure 3.2: Rotations subtended by indi-
vidual Euler angles are not independent.
The rotation of β1 is different than β2 for
identical values of φ̂ “longitude” at differ-
ent θ̂ “latitudes”.

.

.

.

Figure 3.3: Multiple representations of a single rotation
exist for 3-D rotation arrays using an axis representation.
Changes in heading plotted on the unit sphere (red arc) are
represented with 3 sets of arrows in scaled Euler axis rep-
resentations of orientation (right). On the top and bottom
are arrows of increasing and decreasing magnitudes repre-
senting the same orientations achieved during the rotation.
If a boundary condition is used (middle, if the red arrow
represents a > 180◦ rotation from the origin), there is a
discontinuity at the boundary.
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(a) Rotation at the robot wrist requires translation to reapproximate the center of the target.

(b) Rotation near the object preserves the linear rela-
tionship.

Figure 3.4: A comparison of two methods of applying rotation to a robot, showing how
rotation near the object being grasped can help to maintain independence between
linear and rotational DoF.

terminal portion of the robot hand; this is a point at the intersection of the hand and

an object. While the use of a single point at the effector for application of control is

not a unique concept in robotics, it may have special significance for brain-controlled

interfaces. In this object centered coordinate system, linear and rotational degrees-

of-freedom approach independence during interaction between robot and object to

be grasped; rotation about the object requires minimal linear movement to maintain

approximation to it. This property has been useful in allowing isolated rotational and

linear movement during the observation-based calibration phase of our primate BCI

experiment. Otherwise, the use of separate places on the robot to control rotational

and linear movement would create interdependence between the two reference frames.

As an example, consider an arm control system where linear movement acts on a point

at the base of the wrist and rotation is applied distal to it in extrinsic or intrinsic (joint

angle) coordinates. If the arm has approximated an object for grasping, application

of a rotation command would require additional linear movement to bring the hand

back to its original position with respect to the object (Figure 3.4). While this is

easily compensated for by a robot trajectory planner or controller, it may complicate

BCI control of the same device.
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An alternative method to providing full control over hand translation and rota-

tion that avoids interaction between component DoFs is to control the joints of the

arm directly. Intrinsic-space arm control using brain-computer interfaces in partic-

ular may present unique sets of challenges based on the specific design of the robot

used. Processes such as cortical activity evoked by observation of robot arm move-

ment used here for model calibration and underlie embodiment of the arm during

control learning (Chapter 5) may be hampered when using intrinsic control schemes

if the mechanical design of the robot arm differs from a natural one. In the case of

directly controlling the joint angles of the 7-DoF robotic arm used in our primate

experiment, primates have an abduction/adduction joint at the wrist, while the ro-

bot has an additional pronation/supination joint at the same point in the kinematic

chain. While the same orientations of the robot endpoint can be achieved using either

joint configuration, there is limited correspondence between the robotic and natural

joint-space poses for achieving these orientations. Even though cortical activity and

joint angular velocities are correlated during natural movement [93], extension of this

to robotic prostheses of arbitrary design is potentially problematic.



Chapter 4

Shaped Fixtures for

Shared-Control Manipulation

4.1 Introduction

The “Virtual Fixture” (VF) was introduced by Rosenburg et al [95] to describe the

concept of embedded guidance or constraint within human-machine interactive sys-

tems. In a system that uses virtual fixturing, a human controls the movement of

an effector robot but the virtual fixturing algorithm modulates the movement to en-

hance task performance. Current virtual fixturing methods have been used to guide

the control of a robot towards or away from certain areas of a workspace [1, 95]

or along trajectories or paths [57]. These methods are intended for applications in

robotic surgery and telerobotic micromanipulation where movement of a robot into

certain poses could potentially injure a patient [79] or more generally where precise

or stable control is needed but where task requirements can exceed human abilities

[88]. In haptic experiments, force feedback can be used to communicate the effect of

the fixture to the user. Haptic virtual fixtures have been used for training users in a

2 dimensional control task by reinforcing desired movement behaviors [75].

Existing virtual fixturing applications have been defined in 2-D or 3-D transla-

tional movement tasks, in which movement attenuation or resistance occurs when the

endpoint of a manipulator enters certain regions in the workspace of the robot. The

interactions between the robot and fixtures are generally computed in specific ways

depending on the geometry of the task. In Bettini et al [7], virtual fixturing methods
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were applied across a set of geometric primitive types. In other studies, motion was

constrained to a plane or line [57] depending on the relationship between the robot

endpoint and task geometry.

In this chapter, we present a novel type of “flexible fixturing” (FF) algorithm

that generalizes virtual fixturing over convex submanifolds of robot configuration

spaces. Using FF, the robot can be constrained to movement towards or along any

convex shape in pose space with a unified algorithm. In this chapter, the FF control

law will be presented. Next, we will discuss the application of flexible fixturing to

existing virtual fixturing control schemes. This will be followed by a simulated task

that shows the operation of the FF system in a “tube-following” paradigm. Finally,

we will present results from an experiment in which subjects used a joystick to control

an arm robot in both linear and rotational movements with FF assistance applied.

4.2 Flexible Fixturing Algorithm

Haptic virtual fixtures have been described as a control law governing the relationship

between a vector of control inputs u and a vector of output robot control commands v

[57]. The relationship between the input modality and robot movement in examples

of Virtual Fixturing teleoperation experiments has been admittance-type, relating

forces applied to an interface joystick to output robot velocities [114], or impedance-

type, where input velocity of a manipulandum is transmitted to output force of a

robot [75]. In either type of control, scaled directional motions are transmitted from

input to output. For instance, pushing a joystick to the right produces rightward

motion in a robot, with some gain or scaling parameter between input and output

systems. Control and output degrees of freedom (DoF) have been generally described

in terms of linear Cartesian forces and velocities.

In the FF system, the vectors u and v are n-dimensional vectors of any direc-

tional control signal. That is, they represent movement commands to the system

such as forces, torques, linear or rotational velocities, or changes in joint angles. The

FF control law is agnostic towards the admittance or impedance nature of the spe-

cific robot-operator system being used, while it could be easily integrated into either.

Instead, we view FF as a method of adaptively gating user control signals; the rela-

tionship and scaling between the input and output movement types is assumed to be

an independent problem and defined outside of the fixturing algorithm.
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A matrix D is defined whose columns contain unit vectors of desired directions.

Desired directions point from the current robot state towards the boundaries of a

desired set of robot poses or over a range of desired robot commands. The FF system

computes v from u and D as

Algorithm 1 Flexible Fixturing Algorithm

v = (S(D,u) +CpK(D,u))u (4.1)

S(D,u) = D̂(D̂TD̂)+D̂T

D̂ = MaxPosSpanBasis(D,u) (4.2)

K(D,u) = I − S(D,u)

where

u is an n × 1 vector of commands supplied as input, where n is the number of
controlled degrees of freedom.

Cp is a n× n diagonal matrix of attenuation parameters in the range 0 . . . 1

v is an n× 1 vector of output commands.

D is a n× p matrix of p desired command column vectors.

S is the projection of u onto the positive desired command vectors.

K is the portion of u that is orthogonal to S. D can be of any rank (D̂ will always
be returned full rank). An empty D matrix is taken as D = 0.

Algorithm 2 Maximum Positive Span Basis Algorithm

function MaxPosSpanBasis(D,u)
if D is empty then

return ∅
end if
P ←DTu
q, indexq ← max(P )
if q > 0 then
Dq,D−q ← column indexq in D, remaining cols in D
u−q ← u− qDq

return append(Dq, MaxPosSpanBasis(D−q, u−q))
else

return ∅
end if

end function
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The FF algorithm is derived from existing virtual fixturing algorithms [7, 57],

but replaces the projection of a command vector onto the span of a set of vectors

with the projection to the maximal positive span of these vectors. The positive span,

as originally described by Mason [70], is [D] =
∑
aizi | ai ≥ 0, zi ∈D. The maximal

positive span takes into account the non-orthogonal component column vectors of D

so that the fewest possible vectors from D are used to describe the overall projec-

tion. That is, D̂ is the set of column vectors from D with the largest magnitude of

unique positive projections onto u. The MaxPosSpanBasis function (Algorithm 2)

consists of a novel recursive positive span vector determination algorithm that works

by finding the D vector that has the greatest positive projection onto u, subtracting

that projection from the input, then recursively calling the function on the residual

and the set of unselected vectors. The algorithm ends when the remainder of u no

longer has a positive projection on any vectors remaining in the set, at which time

all vectors found by the algorithm are returned.

The FF algorithm separates the command vector u into two parts, (1) The

projection of the command onto the vectors in D that maximally positively span the

input, and (2) The portion of the command orthogonal to the first part. The positively

spanned portion of the input is preserved in the output, while the remainder of u

is attenuated by the matrix Cp with diagonal elements cp,i, 1 ≤ i ≤ n, which vary

between 0 and 1 to control the amount of error that can propagate from the user

command signal to the output.

As long asD does not positively span Rn, motion away from the convex subspace

bounded by the columns of D will be attenuated. In practice, D vectors can trace

the outline of a target command set for robot motion. The target command set can

guide motion towards or along arbitrary shapes and paths in the configuration space

of the robot, some examples of which will be illustrated in Section (4.2.1).

All of the inputs to the FF algorithm are assumed to change over time. In addi-

tion to changes in the command vector u each time that the algorithm is evaluated,

D and Cp can change as a function of robot state, task parameters, and time. Thus,

D here is really D(Ω) and Cp is actually Cp(Ω), where Ω is the set of robot and

task parameters used in a particular application of FF at a particular time.

Some notes about use of the FF algorithm:

1. Rotational velocity and torque vectors can be used in the FF algorithm as easily
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as linear velocities or forces. As long as some vector space is defined on the u

and D, the FF algorithm is valid.

2. The algorithm will not work as written if the set of desired commands is not

the smallest region bounded by the vectors in D ( e.g. spread > 180 degrees

in 2-D); in this case, the definitions of positive span and kernel can simply be

interchanged (see Section 4.2.1).

3. The speed of the algorithm is dependent on the size of p and n, but is generally

fast enough for real-time computation. An unoptimized C language implemen-

tation of the FF algorithm tested with n = 8 for many sets of randomly gen-

erated u and D matrices executes in under 5 ms for p = 100 on contemporary

PC hardware.

4.2.1 Selection of D

The effect of the FF algorithm on incoming control commands is highly dependent on

the selection of the D matrix. Here, we show a variety of examples of constructing

D matrices for different purposes and their effect on robot control output.

Point Targeting

For the simple case of point targeting, as in Figure 4.1, m = 1 so that D has a single

column; control commands are filtered through an anisotropic compliance such that

portions of commands not pointed towards the target are attenuated by factors in

the matrix Cp. If m = 2 and D2 = −D1, movement both towards and away from

the target point can occur freely. We say that the point target is a “control point”,

such that the D matrix vector points from the current robot configuration towards

that control point.

Region Targeting

For region pursuit towards convex manifolds, control points can be determined at

vertices or prominent points on the boundary of the shape, and p is set to some

number that sufficiently captures the precision with which fixturing is desired. Figure

4.2 shows one method of determining control points for a cube-shaped spatial target.
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Figure 4.1: Illustration of a D matrix
consisting of a single column vector di-
rected from the end of the manipulator
to a point

Directional command vectors are then formed from the current robot state to the

target to form the column vectors in D. There are no requirements for what points

are taken; points in the interior of the target shape or proximal to each other work

just as well as any other, they are just less descriptive of the target region bounds.

Convex hull algorithms work well within this context for finding a good set of target

points on the surface of a set of target robot poses (“target cloud”). If the robot is in

a configuration on the interior of a target region, the robot will move freely if enough

spread out control points are chosen such that D spans the control DoF, as in Figure

4.3.

Separation of Subspaces

Special considerations may apply when FF is applied over distinct types of movement,

for instance both linear translation and rotation. Consider a case analogous to Fig. 1

of point target pursuit in the 6-D control space of both linear and rotational velocities.

A vector from the current robot state to the target control point is formed. In the

linear DoF, those 3 components of D are formed using the difference between the

current and target location. Some method of finding the vector (axis of rotation)

rotational direction to the target is also defined; this method is dependent on the

representation of orientation that is used. A velocity command aimed toward the

target in any of the 6 controlled dimensions will project onto that 6-D vector, so

that for instance a linear velocity command alone will produce a rotational velocity

command directed towards the target, at some relative scale dependent on the units
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Figure 4.2: Illustration of a 4-column D ma-
trix directing motion towards a cube. Vectors
from the manipulator to the control points (X)
define the range of desired directions.

Figure 4.3: Column vectors of D point at
the corners of the cube, allowing free mo-
tion in its interior.
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of measurement used for each type of movement. This may or may not be the desired

behavior of the system, depending on the application. If it is not, u and V can be

separated into K subspaces, each of νk dimensions so that
∑
νk = n. The number

of vectors in D can then be expanded such that p′ = Kp. Elements of the p vectors

corresponding to each k are set to zero except for the rows corresponding to the

control dimensions of νk. This causes the FF algorithm to handle each ”domain” of

movement individually, so that for instance in the 6-D case commands directed at

the target in linear dimensions does not generate command velocities towards the

target in the rotational dimensions. If coupling is desired between the different types

of movement, then the motion domains need not be separated.

Path Following

To place a fixture that constrains the robot to follow a curved path in space, columns

in D can be set to point towards the nearest point on the path and a point further

along it in the desired direction of motion. Bidirectional freedom is gained by setting

D vectors to point to control points forward and backward on the path. For both

types of path following, if the robot leaves the path these control points lead the robot

back to it while allowing some ability to progress along it simultaneously. The tight-

ness with which the path is followed is dictated by the proximity of the control points

to the closest point on the path (Figure 4.4). Additional control points between the

closest robot point and outer control points may be needed if the path is sufficiently

curved (Figure 4.5).

Figure 4.4: (a) Tight bidirectional path-following with the manipulator on the path,
(b) the same control points guide the robot when the manipulator leaves the path,
and (c) loose path following.
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C
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Figure 4.5: A situation where intermediate control
points should be used in a path following task. The
closest point on the path to the manipulator is point
A. If point C is the only additional control point
selected for path following, the manipulator cannot
follow along the curve. To account for the high
curvature of the path, an additional control point
(B) is added.

It is straightforward to combine region pursuit and path following if it is desired

that the robot stay within a “tube” leading to the target. Control points are taken

as usual at the boundaries of the target tube (Figure 4.6). The distance along the

target tube at which control points are determined controls the tightness with which

staying inside the tube is enforced, as in the case of the curved line path. Movement

away from the tube segment inside the D vectors pointed toward the control points

is attenuated. A simulation of tube following is contained in Section 4.3.1.

Region Avoidance

Region avoidance is the opposite problem of region pursuit, where the manipulator

is directed to avoid a particular region. Like region pursuit, control points are found

that span the allowed area of the command space. One potential difference is that

this application may more commonly require reversing the positive span and kernel

definitions if more directional commands are allowed than restricted, as in Figure 4.7.

Another is that for finite forbidden regions, once the manipulator enters the region

it will allow all movement, because movement in any direction will point toward the

region boundary. To enforce movement out of the region in a particular direction, a

chosen subset of the control points must be used to direct the manipulator out in a
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Figure 4.6: Illustration of control points andD
vectors for a tube following application.

specific way.

Figure 4.7: The definitions of Span and Ker-
nel can be swapped in this case to support the
avoidance of small regions.
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4.2.2 Selection of Cp

In the FF system, Cp controls the per-dimension error admittance of the system. Cp

is comprised of diagonal elements cp. While each element can be set individually, for

most applications they will be set to the same value within each movement domain

(e.g. each subspace of the control degrees-of-freedom governing for example linear or

rotational movement). We write cp = .5 here to mean all of the relevant diagonal

elements of Cp = 0.5. Between domains, however, differentially setting Cp allows

different levels of assistance based on the nature of the different types of movement

in a task.

In applications where FF is used to keep a robotic manipulator in a specific

region for safety, Cp values will be set to “hard” fixturing, at or near 0. For collab-

orative applications where FF guides the system without fully dictating movement

trajectories, a “soft” virtual fixture can be set with each cp > 0. Because Cp itself

does not govern admittance inside a target region, these parameters can stay constant

throughout execution of a task without other methods of detecting entry of the robot

into an allowed or forbidden region. If needed, however, cp values can be adjusted

dynamically. If cp values remain relatively constant throughout task execution, it

represents a constant level at which error in the control signal is discarded. One

application of the FF algorithm is as a training mechanism to help a user to complete

a task using a robot. In these applications, the highest cp level at which the user can

complete the task can be used as an estimate of control skill; when an operator can

complete a task with no assistance from FF, they are proficient in using the device

to complete the task.

4.3 Validation

4.3.1 Tubular Path Following Simulation

A simulation of a tube following task was created to validate the operation of the FF

algorithm. In this simulation, a curved tube admittance region was created, centered

on a path following the equation y = x0.5, z = x0.3, 0 ≤ x ≤ 0.3 with radius of 0.05.

A simulated robot endpoint was initially placed at a location outside the tube. At

each time step in the simulation, the closest point on the tube to the position of the
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robot was found and a set of control points were set on the circumference of the tube

at 15 degree intervals around the tube at that location (Figure 4.8). Another set of

control points were added at circumferential locations at a distance of 0.01 further

along the tube, forming a unidirectional tube following application of FF. Columns of

D were set to vectors leading from the current robot position to each control point.

At each time step t, a simulated user issued a velocity command. This command was

modulated by the FF system and the resulting velocity was added to the position to

obtain the new position at time step t + 1, so that the change in the robot position

followed the update rule:

p(t+ 1) = p(t) + FF (D,u(t))δt (4.3)

FF (u) = (S(D,u) +K(D,u))u (4.4)

where FF is the application of the flexible fixturing algorithm with a current

input and D matrix, and p is the position.

Three sets of simulation results are shown using different types of control inputs

to the FF algorithm. The robot starts at the same position in each figure. Control is

evaluated for 250 time steps in each simulation. Three trajectories are shown in each

figure, corresponding to identical command sequences but different cp entry levels.

In Figure 4.8, the control input to each trajectory was a random walk; commands

at each time step in each dimension were selected from a uniform distribution in the

range [−0.01 . . . 0.01]. The control points and vectors generating the columns in D

at the first time step are indicated in this figure. The path of the trajectory resulting

directly from the input commands (cp = 1) wanders away from the target path. The

path corresponding to cp = 0, which preserved only movements towards the target

region proceeds more or less directly towards it while allowing some variability of

movement within the range of the target target directions. Once entering the target

region, the target wanders in the tube but with a bias towards progression to the

right. If the bidirectional path following command points were used, this would have

been a random walk bounded by the tube. The path corresponding to cp = 0.5

discards half of the vector sum of movements not directed toward the target region.

Accordingly, it displays more randomness than the red trajectory but is still biased

towards the target tube.

Figure 4.9 illustrates trajectories resulting from a command issued at each t with
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a similar random walk, plus a bias vector leading from the current position towards

the mean of the control points at a magnitude of 0.005. This kind of control input

would result from an operator issuing correct commands, but using a very noisy input

system. Because the on-target bias vector is always preserved in FF output, each path

makes it into the target region during the simulation. However, deviation from the

direct path is decreased in proportion to FF attenuation levels.

In Figure 4.10, a bias vector is added to the command directed at the control

point centroid. This vector is in the direction of the cross product between the mean

D vector and the tube central path tangent vector. The FF system reduces the

systematic deviation from the direct path to target in this case. Once inside the

target region the movements were not attenuated and followed an identical corkscrew

pattern due to the bias applied.

Figure 4.8: Results from simulation of a tube pur-
suit application with random walk input. The mesh
tube is the desired region. Vectors leading from the
starting position to the tube define the columns of
D used in at that time step. The red trace is the in-
tegrated raw command signal and output if entries
cp = 1. The green trace is the output for cp = 0.5,
and blue shows cp = 0.

4.3.2 Region Pursuit - Subject Control Experiment

The fixturing system was used in a prototype prosthetic arm control experiment in

which people controlled a robot arm in 6-D with a hand-held controller. The overall
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Figure 4.9: Results from simulation with directed
input plus random error. The simulation is identi-
cal to 4.8 besides the control input. Bias vs. simu-
lation amounts.

Figure 4.10: Results from simulation with ideal
command perpendicular bias applied to control at
each time step.



4.3 Validation 45

purpose of this experiment was to compare the control of a robot by humans with

hand-held controllers with control of the same robot performed by monkeys using

brain signals for control. Here we examine the performance enhancement characteris-

tics of the flexible fixturing control algorithm. The experimental trials were approved

by the Institutional Review Boards at the university of Pittsburgh and Carnegie

Mellon University.

A Barrett WAM robotic arm (Barrett Technologies, Cambridge, Mass., USA)

was mounted across from a DENSO industrial-style 6-DoF arm (Figure 4.11). A

cylindrical object was mounted at the end-effector of the DENSO robot to serve

as a control target. Subjects sat in the room with the robots and controlled the

WAM using a handheld game controller (Sony Sixaxis Controller). 6 proportional

controls were output from the controller. 4 DoF input came from the movement of

two thumb-controlled joysticks, and an additional 2 inputs were provided by two sets

of pressure-sensitive buttons. The control space of the robot was the set of 3-D linear

and 3-D rotational velocities of a Barrett hand mounted at the end of the WAM.

The fingers of the Barrett hand were not controlled in this experiment. One of two

mappings was applied to relate the input and output control DoF. Each input control

was mapped to a command that spanned either the 3 linear or 3 rotational DoF, so

that movement in 1 input DoF produced a linear or rotational control vector pointed

diagonally with respect to the “floating” coordinate axis in Figure 4.11.

Figure 4.11: Robotic setup for human subject control task.
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At the beginning of each experimental trial, the WAM robot moved automati-

cally to one of six starting positions on the sides of a ≈ 40 cm cube in a forward facing

orientation (Figure 7.2). The targeting robot simultaneously moved the cylinder to

one of six orientation targets near the center of the workspace. Each orientation

target was rotated to 40 degrees away from direct opposition of the forward-facing

hand. When the robots had moved into their respective start positions, the user

was given control of the WAM robot. Subject movement commands from the con-

troller were sampled at 30 ms intervals and were passed to a software module running

the FF algorithm. Output from the fixturing module was passed to a low-level ro-

bot controller that implemented a control system that output the desired linear and

rotational velocities of the robot hand.

Each trial consisted of the subject attempting to move the WAM hand from

its starting position to a point in front of the cylinder center, rotated to match the

orientation of the cylinder. If the hand endpoint entered within 12 cm of this point

and rotated within 40 degrees of the correct rotation, the trial was successful. After

a 5-7 second timer elapsed, the trial was registered as a failure and the robots reset

for the next trial.

At the beginning of each experimental trial, a software module generated a set of

FF control points for the current target. These control points were a set of 6-D points

on the boundary of the target range of successful robot poses. Points in the linear

DoF were generated within 12 cm of the target, and points within the rotational

DoF were within 40 degrees of the target using a yaw-pitch-roll parameterization of

the target orientation. While it is possible to optimize the spread of control points

around the target sphere, we used a set of random points on the sphere surface to

better simulate how irregular shapes are compatible with the FF system.

At each 30 ms iteration of the FF system, vectors representing commands lead-

ing towards these control points were generated by the FF module and used as the

columns in the D matrix. Linear command vectors were generated to point from the

current robot position to the control point positions. Rotational command vectors

were generated by converting yaw-pitch-roll control points to a 3x3 orientation ma-

trix, then finding the axis-angle difference between the 3x3 robot orientation and the

control point orientation using Rodrigues’ rotation formula. Linear and rotational

evaluation of FF occurred in separate subspaces as described in Section 4.2.1.

An example of the target space and randomly generated control points used
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for linear FF evaluation are shown with the corresponding vectors that form the D

matrix in Figure 4.12. FF output from to a sample input at different cp levels is also

shown. The equivalent figure for evaluation of FF over rotational DoF is in Figure

4.13. In this figure, the rotational D vectors are shown that outline a desired set of

rotation commands.

Figure 4.12: Illustration of region pursuit with
spherical target in experimental task. Vectors
lead from the current position of the robot to
control points on the sphere (X). The green
vector shows a control input vector and con-
trol output if entries in Cp are 1, yellow the
output vector if entries in Cp = 0.5 and red for
entries in Cp = 0.

4.3.3 Results

9 subjects who had not previously controlled the robot performed 80 experimental

trials with the FF-enabled robot control system. cp values for all 6 DoF were initially

set to 0.2 such that 80% of control error was attenuated (very low Cp values were

found to be not helpful because the robot did not move much even though the subject

was providing input). During the first 60 trials, Cp was increased at a constant rate

per trial until the robot was fully controlled by the subject on the 61st trial.
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Figure 4.13: Illustration of region pursuit over
a space of rotations. Control points on the tar-
get are in the space of yaw-pitch-roll and are
not shown, but form a spherical range of tar-
gets in that space. The green vector shows a
control input vector and control output if en-
tries in Cp = 1, yellow for cp = 0.5 and red for
cp = 0.

A robot simulator was developed that models the dynamic behavior of the 7-

DoF robot in response to velocity commands. Simulated linear robot trajectories

formed from the starting position and velocity command sequences in an actual trial

is shown with solid red lines in Figure 4.14, along with simulated resulting trajectories

from application of FF at cp values set to 0.5 and 0, with the target space (sphere).

While the recorded trajectory and the simulations cannot be compared fairly due to

the closed- vs. open-loop nature of the control taking place, this illustrates how FF

reduces the error during trials.

An error measure applied to linear control trajectories was the deviation from

the direct line from the starting position to the target. Error in rotational trajectories

was generated by generating a direct path from starting position to target using the

Slerp algorithm [107], then finding the rotational deviation from the closest rotation

on the path. This application of FF did not attempt to return the robot to this direct

path once leaving; however, it does give an idea of how far from ideal each trajectory

was. Example linear and rotational error profiles from individual trials in two sessions

are shown in Figure 4.15 for different levels of cp values. While FF reduced the error

applied to the robot in each time step, the actual trajectory error overall was still
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Figure 4.14: Robot trajectories generated from
user commands with different levels of assis-
tance. The mesh sphere shows the target re-
gion. Trajectories with admittance values of
(cp) of 1 (green), 0.5 (yellow), and 0 (red) are
shown.

heavily dependent on the control skill of the subject for value of cp > 0.
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Figure 4.15: Example error profiles in linear and rotational control dimensions for
different levels of cp entries over single successful reaching trials. The X-axis shows
the elapsed time of the trial, while the Y-axis shows the deviation from the direct
path to the target in meters (a) and radians (b). The shading of the lines increase
with increasing FF attenuation level (decreasing cp), ranging evenly over the span
0.8 . . . 0.

FF had an overall effect on reducing the average trajectory error in experimental

trials, even though the subjects had more experience in controlling the robot as the cp
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(a) Linear deviation at different cp levels. Regression slope
= 0.09, p < 0.001
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(b) Rotational deviation at different cp levels. Regression
slope = 0.22, p < 0.001

Figure 4.16: Trial average deviation in meters (a)
or radians (b) at different cp levels (X-axis). Each
data point is the average deviation for one trial.
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Figure 4.17: Residuals from Figure 4.16, showing generally increasing range at higher
cp levels

level was lowered as trials progressed. Linear and rotational deviations were averaged

over individual trials for all sessions and compared to the level of all cp in each trial.

Figure 4.16 shows a plot of this relationship with best-fit lines for trials where all

cp 6= 1. cp = 1 trials were not included in the regressions because many more trials

were conducted at the end of sessions in this condition than trials at other individual

levels of Cp, which would skew the fit of the model. The relationship between cp

level and error variance is shown in Figure 4.17, which suggests decreased variability

between trials at decreased levels of cp.

Fixturing reduced overall error in experimental sessions. Tabular results of com-

paring mean trial deviations for individual sessions and overall are in Table 4.1 and

Table 4.2. Application of FF significantly reduced error overall, at higher levels and at

greater significance in each individual session at higher levels of fixturing assistance.
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Mean Err Dev p Value No Help vs.
Subject No Help High Cp Med Cp Low Cp High Cp Mod Cp Low Cp any Cp

1 0.126 0.089 0.086 0.079 0.095 0.075 0.031 0.006
2 0.149 0.156 0.074 0.053 0.686 0.000 0.000 0.001
3 0.112 0.085 0.081 0.040 0.125 0.105 0.000 0.001
4 0.093 0.091 0.081 0.057 0.865 0.312 0.001 0.088
5 0.142 0.116 0.101 0.047 0.144 0.012 0.000 0.000
6 0.114 0.105 0.107 0.050 0.537 0.659 0.000 0.027
7 0.113 0.100 0.061 0.069 0.408 0.002 0.007 0.002
8 0.103 0.100 0.070 0.063 0.781 0.001 0.000 0.004
9 0.147 0.126 0.097 0.061 0.398 0.032 0.000 0.003

All 0.122 0.108 0.084 0.058 0.017 0.000 0.000 0.000

Table 4.1: Left, average linear deviation from straight trajectory for cp entries at
different levels. High, medium, and low cp levels are in the range 1 > cp ≥ 0.733,
0.733 > cp ≥ 0.467, and 0.467 > cp ≥ 0.2, respectively. Right, p-values for t-test of
differences in mean deviation, p values < 0.05 are in bold.

Mean Err Dev p Value No Help vs.
Subject No Help High Cp Med Cp Low Cp High Cp Mod Cp Low Cp any Cp

1 0.299 0.198 0.209 0.158 0.079 0.147 0.009 0.004
2 0.380 0.359 0.125 0.114 0.699 0.000 0.000 0.000
3 0.382 0.277 0.257 0.106 0.048 0.010 0.000 0.000
4 0.196 0.211 0.212 0.216 0.779 0.711 0.647 0.628
5 0.394 0.388 0.213 0.164 0.918 0.000 0.000 0.001
6 0.198 0.172 0.143 0.065 0.485 0.139 0.000 0.005
7 0.198 0.179 0.134 0.156 0.598 0.067 0.237 0.099
8 0.243 0.221 0.189 0.161 0.478 0.053 0.007 0.016
9 0.396 0.371 0.170 0.125 0.727 0.001 0.000 0.001

All 0.299 0.264 0.183 0.141 0.067 0.000 0.000 0.000

Table 4.2: Average rotational deviation from direct trajectory, identical conditions as
Table 4.1. p values < 0.05 are in bold.



Chapter 5

Shared Guidance For Adaptive

Neural-Prosthetic Control

5.1 Introduction

Prosthetic systems controlled by brain-computer interfaces (BCI) have become a re-

ality within the last decade. Using single-unit recordings from microelectrodes im-

planted in the motor cortex, cursors [106, 113] and then robotic arms [13] have been

controlled via direct brain interface. So far, these experiments have been focused on

the control of computer cursor or robotic hand translation, with an experiment in

our laboratory adding the control of a robotic gripper in 2008 [121]. During the same

period, advanced anthropomorphic robotic arms and hands have been under develop-

ment [2, 119, 120]. While these devices are intended to be used as prosthetics, they

have more controlled degrees-of-freedom (DoF) than have been shown in BCI control.

In order to use the brain to operate advanced prosthetic devices that approach the

complexity of the human limb, systematic methods to extend BCI beyond control of

hand translation and closure to control over more complex robotic behaviors must be

found.

We have recently created a BCI arm and hand control system to afford control

of hand rotation in addition to the translational and hand aperture DoF that have

already been demonstrated. In a series of experiments, two monkeys have learned to

control the 7-DoF robotic manipulator in an oriented grasping task using an implanted

cortical microelectrode interface. The emergence of control skill in the two monkeys
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was the result of two interdependent processes:

(1) A cortical decoding system for robot control was constructed based on brain

activity recorded as subjects observed the moving robot. This established a first

approximation to the link between control intent and robot movement.

(2) The subject then learned to operate the device through practice of a control task.

This was a process of the cortical output changing to realize subject intent within

the decoding system established in (1). To drive this process, the difficulty of the

control task was constrained to be low at first and increased in time as the subject

developed skill.

Both of these processes relied on an adaptation of computer-operator shared

control, in which movement of the robot was driven by a mixture of control informa-

tion from the brain of the subject and synthetic control commands from a computer.

Shared control systems, in which human control of a robot is modified to keep robot

movements within safe boundaries or enhance task performance, originated in tele-

robotic and robotic surgery applications [53, 61, 95]. For neuroprosthetic systems,

shared control has been used in an offline study for stabilizing BCI output in [54], and

in our laboratory for online reduction of error in cursor and robot hand transport con-

trol [121]. Somewhat different interpretations of shared control have been envisioned

for neuroprosthetic interfaces in which a subject and agent learn to cooperatively

complete a motor task using reinforcement learning [98], for actuating coordinated

hand postures in [19], and in operation of a wheelchair with a limited-bandwidth

EEG interface [82].

In this chapter we describe a novel “bimodal” shared control (BSC) algorithm

that was able to drive the processes of observation-based model calibration and con-

trol assistance for training in the 7-DoF robot experiment. The first “active” BSC

mode was similar to one previously used offline for stabilization of recorded BCI con-

trol signals [54]. In our experiment, this type of shared control was used to provide a

movement substrate for observation-based cortical decoder calibration, to provide a

template for patterning task-related behavior in the subject, and to restrict the de-

grees of freedom over which the subject was required to control the device during early

learning. The second “passive” BSC shared-control mode was applied to selectively

reduce control error after the subject had acquired some skill in device operation and

required training in its operation under a consistent task-reward framework. Integra-

tion of the two shared control modes in the BSC system was integral to successful
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achievement of full brain control over the 7-DoF manipulator.

5.2 Recruitment of Neural Activity for Brain-Computer

Interfaces

The connection between the activity of individual neurons in the motor cortex and

actuation of the upper limb at individual muscles or joints is complex. Areas in the

motor cortex that have been used for BCIs contain neurons that innervate distributed

sets of muscles [65], and single neurons often simultaneously encode multiple repre-

sentations of motor movement across joints [86]. Many of these encodings correspond

to coordinated movements of multiple joints or muscle groups, rather than simple

muscle contraction or even actions at a single joint [46]. At the same time, represen-

tations of individual hand movements are distributed among populations of neurons

[5, 91]. A motor control model that has captured the neural encoding of a type of

coordinated motion is the preferred-direction (PD) model for linear Cartesian hand

movements [32]. This model describes how hand movement direction information is

encoded in the activity of populations of neurons, which has led to recruitment of these

populations to drive the movement of cursors and robots using BCIs [13, 106, 113].

Specific population activity occurring during natural movements and BCI control

is a spontaneous and unconscious process resulting from conscious movement inten-

tion. While it has been shown that individual neurons in isolation can be modulated

using processes such as operant conditioning [26, 27], whether or not these units can

be intentionally modulated in isolation without coordinated activation of other neu-

rons is unknown. Either way, conditioning the differential activation of individual

neurons is not a natural way of driving physiologic or robotic movements.

Prosthetic control interfaces such as peripheral nerve transfer [60] and manual

interfaces (e.g. foot control) use the deliberate control of individual body movements

or muscles to effect desired movements of an external device. These types of inter-

faces differ from BCI in that movement at individual joints and activation of some

individual muscles can be consciously individually controlled. The process of learn-

ing to control these interfaces is simplified by the ability of the prosthetic user to

systematically explore the effect of individual inputs on the output of the system.

The clinical population to whom BCIs may be most valuable, however, are those
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who cannot produce movement or peripheral neural activity on their own, such as

those with spinal cord injury or neurological diseases such as ALS. These are also

the patients for whom the highest number of controlled prosthetic DoF will be the

most useful. For these people to use sophisticated neuroprosthetic devices under BCI,

there is no equivalent to a prosthetic control interface based on selective voluntary

activation of individual inputs to the system. Despite popular belief, BCI systems do

not simply read the mind of an operator to decode intended motor movements from

neural activity. Instead, a useful BCI control system must be adapted to the way in

which the subject is able to activate coordinated groups of neurons.

While patterns of neural activation occurring during natural movements can be

adapted for control [13, 113], this will not be available for clinical BCIs. Imagining

the movement of the prosthetic limb may be a useful foundation for building decod-

ing models in human subjects [40], but may be incomplete if the mechanics of the

effector robot are different from the human limb or motor control command signals

are diminished in the brain due to disuse.

Another method that has used to identify movement-related patterns of cortical

activity is to record neural activity during the observation of movement in a device.

Using a monkey that is trained to manually move a robot, it has been shown that

task-related neural activity is produced when the monkey observes the robot moving

autonomously [115, 116]. Observation of a moving robot has been used for building

the cortical decoder used in our laboratory’s 4-DoF BCI robot control task [121].

While these experiments involved a preliminary hand movement task that formed a

model connecting voluntary movements of the monkey to corresponding movement

in the device, we can now show that observation of a moving robot alone can be used

to elicit task-modulated activity. Neural activity from observation may reflect the

kind of visual identification with the movements of other actors as hypothesized in

the study of the “mirror system” of the brain [30, 94]. As task-modulated activity

was recorded in the majority of motor cortical neurons sampled during observation

periods, these results indicate a more fundamental relationship between execution

and observation of movements possibly based on mental simulation [23, 90]. Models

built on observation-based activity allowed the monkeys to successfully operate the

7-DoF robot.

After a cortical decoder is built, the subject must learn to use it to control the

robot. When people approach a set of unlabeled controls for a machine, they delib-

erately explore the controls, observing the effect of manipulating each input on the
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output of the machine. Because of the abstract and unconscious nature of the activity

of individual cortical neurons, there is no correlate to direct exploration of the inputs

in BCI systems of significant complexity. Control based on recording neural activity

is also subject to both the stochastic nature of neural systems as well as apparent

drift and noise resulting from unrelated processes taking place simultaneously. It is

becoming clear that a very important part of establishing quality BCI control is using

closed-loop systems in which the user is given a chance to practice using the device.

While practicing, the user learns the mapping from the activity of a large number of

spiking neurons to some set of controlled robotic DoF. This can be described as the

neurons learning the inverse of the decoder plant [38].

5.3 Bimodal Shared Control Algorithm

The remainder of this chapter describes the “Bimodal” Shared Control (BSC) al-

gorithm that was used to drive the process of building a cortical decoder based on

observation-based activity, then allowing the subject to practice use of the BCI device

while controlling task difficulty. Each part of the BSC algorithm will be discussed,

followed by how they were integrated into a single control law.

5.3.1 Active Shared Control

Active shared control directly mixes subject control commands with control origi-

nating from an artificial source. Weights assigned to each control DoF control the

mixing ratio between the two sources. Artificial control information can come from

any source; in the offline control study of Kim et al [54], artificial control originated

with a set of sensors mounted on a robotic arm to stabilize and enhance task-related

control properties of the robot. In our experiment, artificial control originated with

an autonomous software agent using a model of the running BCI task to continu-

ously compute commands that would help to complete the task. This input was

used in the shared-control scheme to provide the movements of the robot required for

observation-based decoder calibration, as a template to pattern task-related behavior

in the subject, and to isolate the robotic DoF over which brain control information

was required for task completion as the monkey learned.

The active shared control algorithm simply mixes a column vector of subject
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control commands u with a vector of automatic control commands d1 to produce the

mixed control command vector v:

v = Cau+ (I −Ca)d1 (5.1)

An n × n diagonal matrix of active shared control parameters Ca, where n are the

number of controlled robotic DoF, is used to set the portion of control coming from

the user in each DoF. Each entry ca in Ca is in the range 0 ≤ ca ≤ 1. By adjusting

the individual ca, some control dimensions can function more autonomously, while

others can be dominated by control generated by the subject.

5.3.2 Passive Shared Control

The “passive” shared control mechanism is the Flexible Fixturing algorithm described

in Chapter 4. Control command directions embedded into the desired command

matrix D represent directions in the control space of the robot that would move

it towards task completion or towards more desired robot configurations. The D

matrix was generated in our experiment by the autonomous controller, where the

multiple columns in D reflected movement toward different ways of approaching a

cylindrical target object for grasping. Columns in the D matrix could also be formed

by sensors attached to the prosthetic robot. While not shown in our experiments,

the passive shared control system is potentially very useful for sensor-based shared

control applications because it passively attenuates control error rather than driving

the robot directly.

5.3.3 Integrated Active and Passive Shared Control

The complete Bimodal Shared Control algorithm combines both passive and active

shared control methods into a single control law. While the use of both algorithms at

once may at first appear to add a large amount of complexity to the system, the two

types of shared control have different purposes in BCI experimentation and are not

generally active over the same sets of DoF at the same time. While the active shared

control system is more useful when the subject has little or no control skill in control

of a robotic DoF, the passive method is employed to allow the subject to gain skill

in particular DoF by attenuating task error as they practice using them. Integration
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of both types of shared control into the same control law reflects how operation of

the different DoF can be learned in incremental stages. Training sequences that take

advantage of both shared control modes are discussed in Section 5.1

∑ Robot
Controller

d5
d4d3
d2
d1

u

Spike
Decoder

FF Mixer

Ca

I - Ca
v

Cp

I - CpD

d1

Figure 5.1: Schematic for the bimodal shared control system showing two layers of
integration between BCI and automatically generated robot commands.

The Bimodal Shared Control Algorithm

The BSC algorithm takes as input the command vector u, the mixing parameters of

both the active and passive shared control mechanisms Ca and Cp respectively, and

the autonomous control input D and d1. d1 can be one of the columns in D, in

our experiment taken to be a vector pointing towards the center of a region of object

grasp robot poses. While the scale of the columns in D do not matter, the vector

d1 must be scaled appropriately to act as a direct command to the robotic system.

Integration of the active and passive algorithms is sequential such that the user input

is masked or attenuated by the passive algorithm, then mixed directly using the active

control stream, as illustrated in Figure 5.1.

The BSC system computes the output command vector v from the subject control

input u, attenuation target matrix D, and optimal control vector d1 as

v = Ca (S(D,u) +Cp K (D,u)) u+ (I −Ca)d1 (5.2)

S(D,u) = D̂(D̂TD̂)+D̂T

D̂ = MaxPosSpanBasis (D,u)

K(D,u) = I − S (D,u)
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where

u is an n× 1 vector in the input DoF.

Cp is an n × n diagonal matrix of passive shared control parameters in the range

0 . . . 1

Ca is an n×n diagonal matrix of active shared control parameters in the range 0 . . . 1

v is an n× 1 vector of output commands.

D is an n× p matrix of p desired command vectors.

d1 is an n× 1 desired command vector. This can be any vector from D, but it may

be preferable for this to be chosen for optimality.

S is the positive span projection matrix of u on D.

K returns the kernel matrix complementary to S.

MaxPosSpanBasis is a function returning a set of columns in D that maximally

positively span the input u (see algorithm 2 in Chapter 4).

5.3.4 7-DoF Brain-Computer Interface Experiment

The 7-DoF BCI robot control experiment mentioned previously relied heavily on the

BSC algorithm in all phases of cortical decoder building and subject training. We

discuss how the BSC algorithm was used to develop the ability to control the 7-DoF

device here. The overall experiment is discussed in greater detail in Chapters 7 and

8.

Two monkeys had chronic microelectrode arrays implanted in their motor cor-

tices. Recordings of neural activity at these electrodes were processed to form control

commands for a prosthetic robot. This robot, a WAM robot with attached Barrett

hand (Barrett Technologies, Cambridge, Mass., USA) was mounted next to monkey

subjects and across from a rigid target presentation robot. The WAM robot was

controlled by the monkey in the 6-DoF space of linear and rotational velocities of the

robot hand and 1-DoF grip aperture control of the fingers. A cylindrical target object

was mounted at the end-effector of the presentation robot. Targets in each trial were

set to be approximately 30 cm away from and 40 degrees of rotation from the starting

location and orientation of the WAM hand. The experimental task setup is shown in

figure 5.2 with the robot successfully grasping the oriented target.
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Figure 5.2: The experimental setup used for 7-DoF BCI
control. The prosthetic robot is shown grasping the target
object, completing an experimental trial.

Daily experimental sessions consisted of upwards of 100 experimental trial reach-

ing tasks. Control commands to the robot were supplied by a software module running

the BSC system continuously in 30 ms intervals throughout the experiment. The out-

put command vector v from the BSC module directly commanded the movement of

the robot.

When the task began, the autonomous control module supplied a matrix D

whose columns pointed towards a sphere approximating each of the extents of the

linear and rotational space in which the robot could grasp the target cylinder. If

the cylinder was successfully grasped within 12 to 14 seconds, the trial was a success

and the monkey received a liquid reward. If this time elapsed without a successful

grasp, or if the experimenter detected that the monkey had stopped attending to the

task, the trial was manually aborted. Attendance to the task was signified by the

monkey remaining grossly stationary and watching the moving robot arm. Each daily

experimental session consisted of an adaptation period in which a cortical decoding

model was trained using observation-based activity elicited in the robot, followed by

a training session in which the monkey learned to use the trained decoder to complete

robot tasks. The corresponding settings of Ca and Cp used during the session are

discussed in the next two sections.
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5.4 Shared Control Cortical Decoder Calibration

The active shared control mechanism provided a simple method to perform observation-

based calibration. During this process, all ca = 0 so that the subject simply watched

the robot performing the task autonomously. An example autonomous execution of

the robot task is shown in Figure 5.3. Sampled neural activity and robot velocities

were collected from 18-40 trials and used to calibrate the cortical decoder as discussed

in Chapter 3.

After observation-based calibration, a “coadaptive” period could be used in which

the decoder was repeatedly calibrated while mixing increasing amounts of subject

control signals with autonomously generated ones (a similar process was performed

in [121] and [113]). This enabled the robot to continue to successfully perform the

task as in the observation-only segment, but for the trajectories to be influenced to

some degree by commands originating from the BCI. The motivation for this scheme

was that subsequent calibrations were thought to better reflect the control intent of

the monkey, and it could also help to promote understanding of the influence of intent

on the robot trajectories. At the same time, this produced a sort of moving target

for the monkey to learn the decoding system. Coadaptation was used with one of

the two monkeys, but both were able to successfully control the device at the end of

training; the utility of coadaptation remains unclear.

5.5 Shared Control BCI Training

BCI training using the BSC algorithm allowed a consistent motor task to be performed

by a prosthetic robot while the underlying difficulty of the brain-control task was

manipulated. When the monkeys first began to control the robot, active shared

control was applied such that the task was completed almost autonomously. The

function of the shared control mechanism at this stage in training was to establish

the operant conditioning paradigm of associating task completion with reward. A

small amount of monkey control was added to promote understanding that the robot

was under brain control, but once the task pattern had been taught to the monkeys the

passive shared control mechanism was used preferentially. The passive shared control

coefficient matrix entries cp were at first set to low levels, then increased gradually as

the subject gained control skill. The subjects trained sequentially by first operating
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Figure 5.3: A monkey observing a model reach sequence during decoder calibration.
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the linear DoF with gripper actuation, then the rotational DoF and grip, and finally all

of the controlled DoF together. The active shared control mechanism allowed degrees

of freedom not being trained to be automatically controlled. During training in the

complete set of controlled DoF, the linear and rotational shared control parameters

(cp) were often set at different levels for different degrees of freedom, reflecting differing

skill levels in the control of each movement type. The goal was to match the difficulty

of the task to the skill level of the monkey; the skill needed to complete the task was

to be just high enough for the monkey that learning would be promoted, but not so

high that the monkey would become discouraged by task failure.

5.5.1 Task state-dependent shared control application

Each trial in the experiment was organized as series of “task states” that organized the

temporal sequence of events that comprised a complete reaching and grasping trial.

The shared control parameter elements ca and cp were set depending on the task state

of the system. During reward delivery and intertrial periods when the monkey was not

expected to control the robot, ca = 0 so that the robot was controlled automatically.

This provided a convenient mechanism to reset and standardize the robot position at

the beginning of experimental trials, without imposition of a separate control system

to handle procedural rather than task-related control.

The oriented grasping task was divided into five task states (Figure 5.4): Reach-

ing, HandOpening, Orienting, PreGrasp, and Grasp. The action of the robot in each

state was as follows:

HandOpening The hand opened without otherwise moving.

Reaching The closed hand moved from the starting position to the center of the

workspace in a forward orientation.

Orienting The hand oriented toward the target in a fixed position.

PreGrasp In the target orientation, the hand approximated the target cylinder for

grasping.

Grasp The hand closed on the target.

During the reaching and grasping portion of each trial, ca and cp were set to

different levels depending on the monkey’s skill in each task state movement. Task

states in the sequence could also be skipped completely, so that only the specific
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InterTrial

ButtonPress

Presentation

HandOpening

ReachingOrienting

PreGrasp

Grasping

Reward

Figure 5.4: The sequence of task states that comprise a trial. Procedural portions of
the trial in which the robot did not move are more darkly shaded.

movements on which training was desired would need to be performed to complete

the task. By manipulating which task states are skipped and the cp level for the

individual DoF during each task state, a progression of training regimes could be

imposed on the subject. The specific sequence that was conducted in our experiment

is as follows:
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Table 5.1: Shared-Control Training Progression

HandOpening Reaching Rotation PreGrasp Grasp
Phase 1 - Linear/Grip (simplified task)
Linear ca = 0 ca, cp max X X ca = 0
Rotation ca = 0 ca = 0 X X ca = 0
Grip cp max ca = 0 X X cp max
Phase 2 - Rotation/Grip
Linear ca = 0 X ca = 0 X ca = 0
Rotation ca = 0 X cp max X ca = 0
Grip cp max X ca = 0 X cp max
Phase 3 - Sequential Linear/Rotation/Grip
Linear ca = 0 cp max ca = 0 X ca = 0
Rotation ca = 0 ca = 0 cp max X ca = 0
Grip cp max ca = 0 ca = 0 X cp max
Phase 4 - Crossover Linear/Rotation/Grip
Linear cp max cp = 1 cp max X cp max
Rotation cp max cp max cp = 1 X cp max
Grip cp = 1 cp max cp max X cp = 1
Phase 5 - Simultaneous Linear/Rotation/Grip
Linear X X X cp max cp max
Rotation X X X cp max cp max
Grip X X X cp max cp max

where

cp max was the maximization of corresponding parameters to the tolerance of the

monkeys (see below).

ca = 0 was the automatic control of corresponding parameters.

X was skipping the state completely.

The progression through task phases was essentially a method for behavioral

shaping [83] that gradually increased the demands of a BCI motor task until full

control of the robot was performed. The monkeys first learned a simplified reaching

task Phase 1 that was equivalent to previous BCI robot control experiments. The

simplified task was a center-out task that involved no hand rotation but included hand

closure. Entries ca < 1 were used at the same time as cp at first during Phase 1 to

drive association of task completion with reward and set up the operant conditioning

paradigm. When that was completed, the monkeys completed a rotation task Phase

2 that was like linear task but in the space of rotations. By skipping the reaching



5.5 Shared Control BCI Training 67

state, the hand went directly to a central position at the beginning of trials from which

it could perform pure rotation to align with each target. When rotation was complete,

the hand automatically approximated the target and the monkey controlled closure

of the gripper. Next, Phase 3 was begun, which was the complete task that required

linear, rotational, and grip motion to complete. To introduce this more difficult

task to the monkey, we first had it perform a sequential version of the two linear

and rotational tasks that it had already learned. In Phase 4, opposing movement

types slowly became subject controlled during the linear and rotational sequential

task phases, so that the monkey learned simultaneous control of the complete set of 7

control DoF simultaneously. When control was headed towards complete admittance

of monkey commands, Phase 5 was begun, in which the goal from the start of the

trial was to complete the overall task.

5.5.2 Models for Programmed Learning

Within each training phase, a theoretical model for updating cp max is indicated in

Figure 5.5. At first, the cp entries are set at a low level. The inexperienced monkey

would start at a low success rate even with a large amount of assistance. As it

practiced, the success rate would increase. When it reached a high level, entries

cp would be increased to make the task more difficult, and as a result the success

rate would return to a lower level. This process would repeat until the monkey fully

controlled the device. The BSC algorithm functioned in this way like an adjustable

set of training wheels to keep accumulating control error from causing the robot to

enter poses from which successful task completion is very difficult. The use of BSC to

keep difficulty within a manageable range is in accordance with theories of learning

such as the “Challenge Point Hypothesis” [33] and the process of skill acquisition

being promoted during “Flow” states [21]. This also has correlates in calibrating

the difficulty level to skill level in robot-assisted rehabilitation [58, 59, 62], in studies

involving auditory discrimination training [92], and previous brain-computer interface

experiments performed in our laboratory using “deviation gain” [121].

In the actual experiment, the need to sustain monkey motivation made the

process of cp value calibration more complicated. A set of heuristics were devel-

oped that generally followed the theoretical model, but in which special attention to

motivation was given at certain critical points by the experimenters. These points

were usually when high subjective challenge levels were sustained for longer periods
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Figure 5.5: Theoretical model of progress to full control of a device by adjusting the
assistance level.

of time; the difficulty was then dialed back, or supplemental rewards were given to

the monkeys to encourage continued attempts to control the device. Often, monkey

attention was cyclical and the programmed difficulty level was manipulated back and

forth to attempt to match the motivation level of the monkey at a particular moment

in time.

From the beginning of the many weeks of training that one monkey received

using this system, we occasionally attempted to give it full control of the prosthetic

device immediately after decoder calibration. Uniformly, the monkey had difficulty

at the beginning of the training period in performing the task; even in simplified

(3-DoF linear movement) trials, the robot would be controlled poorly at first. This

would lead to task failure and witholding of reward. Quickly, within one or two

failed trials, the monkey would lose focus and stop participating in the task. This

was evidenced by the monkey squirming in the chair, turning away from the robot,

and generally acting in an unsettled way that was incompatible with brain control.

To maintain attention and participation, we had to consistently make it possible for

reward delivery to be achieved by increasing the assistance level. During the latter

portion of the experiment when the monkey was highly trained, it may have been

possible in some sessions to avoid the use of the BSC algorithm for error reduction, as

we were able to decrease the assistance level very quickly. However, it was impossible
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to know in advance on which days this would be possible. Causing the monkey to

enter the non-participatory state made it more difficult to control its behavior over

the entire session, so it was not done. We did not attempt to put the second monkey

into immediate full control of the device. That monkey displayed very high sensitivity

to task failure and it had become clear with the first monkey that the programmed

use of shared control was integral to promotion of the process of learning.

5.6 Results

Observation trials occurred at the beginning of each experimental session in which the

monkeys viewed the robot executing trajectories like those in Figure 5.3. After 18-40

trials were observed, spike rates and robot velocities recorded during observation were

used for decoding model calibration as described in chapter 3.

During the subject training phase of the experiment, the monkeys now used

brain control to acquire the target in the linear, rotational, or all six movement DoF

in addition to the grip DoF if the hand was available. As discussed, shared control

was used to attenuate control error such that the control task was possible for the

monkey to complete. Examples of the passive mechanism of shared-control assistance

in human subject joystick control are in Chapter 4. The task dynamics are the same

as those in the joystick experiments, with the target set to a region of radius 8-12 cm

and 12.5-25 degrees from perfect alignment.

Results from a simulation of how linear assistance altered a brain-controlled

trajectory are in Figure 5.6. In this figure, a dynamic model of the WAM robot

was used to simulate robot movement resulting from recorded BCI and autonomous

control commands under different levels of shared control. The actual trajectory

recorded during the experiment, resulting from linear cp ≈ 0.4 is shown with simulated

trajectories at linear cp = 0, cp = 0.5, and cp = 1.0. The linear target region is the

indicated sphere, approximating a region of valid grasps of the target cylinder. While

the trajectory corresponding to full control moved well outside the target region,

the simulated cp = 0.5 moved the robot to the border of the target and the fully

constrained trajectory went near the target center. Note that even with cp = 0,

lateral movement still directed between the target boundaries was not attenuated.

During training sessions the process for adjusting cp parameters that was used
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Figure 5.6: Results from simulation of a single control trial at dif-
ferent linear assistance cp levels. Recorded brain-control commands
were input into the BSC algorithm that output control commands at
different levels of assistance. This output controlled the trajectory
of a dynamic simulation of the prosthetic robot. Trials at cp = 1
(blue), cp = 0.5 (green) and cp = 0 (red) are shown with the origi-
nal recorded trajectory (cp ≈ 0.4, black). The linear control target
region is denoted by the sphere.

with the monkeys followed the programmed pattern indicated in Section 5.5.2 reason-

ably well. As described earlier, however, heuristic methods for maintaining monkey

motivation were also part of the process for developing skilled control.

The effects of using shared-control assistance for training during three different

BCI sessions are shown in Figures 5.7-5.12. Each successive pair of figures indicates

monkey performance over a single BCI session. Each of these sessions incorporated

some successful 7-DoF control trials, but the pathway towards full control was some-

what different in each. The first panel of each pair shows the relationship between

shared control assistance and success rate throughout the session. Shared control

parameters ca and cp are shown as 1 − ca and 1 − cp to indicate the amount of as-

sistance given to the monkey. The beginning of each session started with high active

shared control levels, corresponding to the observation-only segment. After decoder

calibration near trial 40-60, the monkey was given control of the device by quickly re-

ducing active assistance. Passive parameters were decreased more slowly, in response

to the performance and behavior of the monkey. In the first figure from the first

session (Figure 5.7), the assistance level was decreased monotonically yet the success
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rate was maintained around 50% until the end of the session. While the success rate

gradually decreased, success rates upwards of 50% indicate that general proficiency

in using the device has been achieved, and the success rate can be primarily attrib-

uted to the level of motivation of the monkey. As the session continued, the monkey

became more fatigued and more satiated with water. Near the end of the trial, the

success rate went down rapidly as the monkey’s behavior indicated that it no longer

wanted to participate in the session.

The second panel for each session shows the same success and shared-control

assistance rates, but now a rudimentary measure of skill is added to show how the

monkey’s control changes through the course of training. This measure is simply the

trial average dot product between the monkey’s command vector and the normalized

autonomous controller command vector d1 throughout control periods of trials. The

same measure applied to the composite control command after shared control appli-

cation is also shown in each secondary figure. In the second panel for the first session

(Figure 5.8), these lines merge as expected as (1 − cp) parameters near 0. What is

interesting in this graph is that (1) the apparent skill level is high at the beginning of

training when the shared control assistance level is high, (2) this skill level decreases

as the challenge level is increased, and (3) the skill level increases again at low levels

of assistance before full control is given. The skill level then corresponds to some

extent with the success rate for the remainder of the session. The drop in skill rate

corresponding to the monkey becoming unwilling to continue performing the BCI

task can also be seen near the end of the session.

Moving to the first panel of the second session (Figure 5.9), the trial began much

like Figure 5.7, but the rate of decrease of (1 − cp) parameters was slowed between

trials 50 and 70 to maintain the success rate while the monkey practiced using the

decoder. While the success rate before the slowdown in increasing difficulty did not

drop dramatically, the monkey’s behavior during this period indicated that it was

finding these trials difficult. Certain behaviors such as agitation can be observed

when the monkey is in this state, and challenge levels were not decreased until the

monkey started to find the trials easier. Over the course of the session, the success

rate gradually decreased as the monkey became satiated and fatigued, but once again

was maintained at a level near 50% until the end of the session. The skill measurement

data shown in Figure 5.10 have a similar relationship to the progression through the

session as that in the first session (Figure 5.8).

The same set of figures for a third session are shown in Figures 5.11-5.12. The skill
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Figure 5.7: Shared-
control parameters vs.
success rate, first ses-
sion.
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Figure 5.8: Shared-
control parameters vs.
success rate and skill
measure, first session.
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Figure 5.9: Shared-
control parameters vs.
success rate, second
session.
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Figure 5.10: Shared-
control parameters vs.
success rate and skill
measure, second ses-
sion.
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measures are slightly different for subject and composite commands after 1− cp = 0

due to a synchronization problem in the recording; the actual difference between the

two streams was negligible. In this session, assistance decrease was attempted too

rapidly; note the two instances of decreasing success level and corresponding return

to higher assistance. After additional trials, the (1−cp) levels could be decreased such

that good performance under full brain control could be achieved. Note the decrease in

performance in this session near trial 150, then a return to higher performance within

10 trials. This is an instance of wavering attention and motivation of the monkey.

Instead of decreasing the challenge level, other methods such as extra reward delivery

were used to coax the monkey into executing the task.

Figure 5.11: Shared-
control parameters vs.
success rate, third ses-
sion.
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The variability of the skill measure seen at high success rates during the middle

and latter part of each session is interesting; this corresponds to the monkey com-

pleting the task in less direct ways. The control vector may not point directly at the

target for much of the trial, but the summed effect over time is toward the target in

all trials where the average skill measure is above 0. The converse may be the reason

why the apparent skill is high early in the training period with a large amount of help;

at this level, the robot tends to stay on a path directly from the starting position

to the target. These short and direct trials may make it easier for the monkey to

compose a consistent direct command signal towards the target.

The relationship between shared control assistance level, success rate, and devi-

ation from direct movement to targets was next examined over a large number of 6-D

and 7-D control sessions. In Figure 5.13, every trial from 127 sessions is plotted as
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Figure 5.12: Shared-
control parameters vs.
success rate and skill
measure, third session.
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a mean trajectory deviation at its mean shared-control assistance level. Trajectory

deviation was measured by sampling the vector between the robot starting position

and target to 100 evenly-spaced points, then taking the distance to the closest point

on the path from the robot at each time sample during the movement period of a

trial. The shared-control assistance level on the x-axis is c = (1.0− c̄p) + (1.0− c̄a),
an indicator of the mean overall help given in the trial. Average success rates are also

shown at the different assistance levels. Both success rates and trajectory deviation

are averaged in bins centered on 0.1 intervals of c parameters and plotted, with ±1

standard deviation of the trajectory deviation also shown. Data is shown for a total

of 19343 trials. In this figure, the success rate lowered looking from left to right as the

level of assistance decreased. Mean deviation from straight trajectories also generally

increased at lower levels of assistance, but this effect leveled off as assistance reached

the lower levels. This means that the robot inhabited regions of the workspace gener-

ally at the same range from the target with no assistance and low assistance, but the

slight assistance level was associated with a greater amount of trials fully completed.

In Figure 5.14, a subset of 29 sessions (3590 trials) in which notably high-quality

6 or 7-D control was performed are extracted from Figure 5.13 and plotted alone. In

this figure, success rates were higher and average deviations were correspondingly

lower compared to the full set of 127 sessions. A different pattern was present,

however, in which success rates and deviations did not follow the trend of improving

with increased assistance near the 0.2 c level. Increased performance at lower shared-

control assistance levels indicates increased skill development in training that occurred
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over the course of these sessions. Poorer performance overall may have occurred with

c parameters = 0 because after the session proceeded to full control the cp parameter

level was rarely increased in response to decreased performance, and performance

tended to decrease over the course of long sessions as the monkey became fatigued.

When c = 0.2, however, the monkey is always engaged in the control task on the way

to establishing full brain control.

Figure 5.13: Relation-
ship between shared
control assistance
level, trial success
rate, and linear de-
viation from a direct
path to target, from
over 19000 trials in
127 sessions. Success
rate is graphed in the
darkly shaded region.
Average deviations for
each trial are plotted
as points, with the
mean ±1 std of these
points form the lightly
shaded region. 00.20.40.60.811.21.41.61.82
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Figure 5.14: Relation-
ship between shared
control assistance
level, trial success
rate, and linear devia-
tion from a direct path
to target, from 3590
trials in 29 sessions
in which the monkey
achieved full brain
control of the device.
The quantities plotted
are the same as those
in Figure 5.13.

00.20.40.60.811.21.41.61.82
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average linear trial assistance: (1.0 − Ca) + (1.0 − Cp)

D
e
v
ia

ti
o
n
 f
ro

m
 s

tr
a
ig

h
t 
tr

a
je

c
to

ry
 o

r 
fr

a
c
ti
o
n
a
l 
s
u
c
c
e
s
s
 r

a
te

In figures 5.15 and 5.16 data from the same sessions plotted over the rotational

DoF. Rotational deviation was measured by finding the shortest rotational path from
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starting orientation to target using quaternion interpolation (Slerp algorithm) sam-

pled 100 times from starting position to target. The distance to the closest of those

points to the robot orientation by angular distance at each time sample was used as

the rotational deviation. A similar pattern is seen in the rotational DoF as the linear

ones. The significant dip in success rate and increase in deviation around C = 1

in the record of all sessions is possibly due to early training in composite linear and

rotational commands that included very small amounts of rotational control. While

rotation was very well represented in the neural adaptation data (Chapter 3), it was at

first difficult for the monkeys to perform rotational control in addition to linear con-

trol; a number of sessions with a large amount of rotational assistance were required to

promote learning. As with the linear DoF, success rate and trajectory deviation were

not linked directly to the amount of assistance given, indicating a successful process

of BCI training using shared control. While the success rate overall decreased as the

amount of assistance decreased to 0, this level is still near around 50%, especially in

the sessions that were noted to contain especially high-quality control. These overall

success levels were maintained sometimes for up to about 100 trials at this level of

difficulty. Given the inherent difficulty of controlling a 7-DoF manipulator in real

time, maintenance of even a 50% success rate in the task represents a demonstration

of a large amount of skilled high-dimensional brain control.

Figure 5.15: Relation-
ship between shared
control assistance
level, trial success
rate, and rotational
deviation from a di-
rect path to target,
from over 19000 trials
in 127 sessions. Rota-
tional equivalents to
the quantities plotted
in Figure 5.13 are
shown.
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Figure 5.16: Relation-
ship between shared
control assistance
level, trial success
rate, and rotational
deviation from a di-
rect path to target,
from 3590 trials in 29
sessions in which the
monkey achieved full
brain control of the
device. The quantities
plotted are the same
as those in Figure
5.15.
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Chapter 6

Velocity and Impedance Control of

a Prosthetic Robot

6.1 Introduction

Compliant motion control is an important topic in the design of robots that inter-

act with an unpredictable world. Industrial robots that are designed to move rigidly

and in very precise ways can be unsuitable or dangerous outside of controlled environ-

ments. Beyond safety concerns alone, the design of robots with which both movement

and force can be controlled simultaneously can enhance their utility for many appli-

cations, including interaction with humans. Haptic or human-interactive robots must

operate at least with the ability to safely limit interaction forces, but direct control of

the relationship between robot kinematics and forces will often be desired. In an ideal

robot, interactions between the robot and a human or the environment (intentional

or not) will elicit a controlled disturbance response while it maintains effort towards

following a commanded motion [4].

The application that drove the development of the control system described here

is a brain-computer interface controlled prosthetic arm robot. Our work is an exten-

sion of the work of Velliste et al [121], in which monkeys were able to directly interact

with a brain-controlled arm. Interactions among robot, user, and environment de-

signed to simulate the operation of the primate limb call for a robot controller that

allows for similar compliant and flexible interaction. In this work, the decoded com-

mand signal is typically in the domain of end-effector linear and rotational velocity,
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but the target for reaching and grasping is a solid object that the robot often collides

and interacts with, especially when the monkey subjects are unskilled in operating the

robotic prosthetic device. In this chapter, we present an algorithm to allow force and

kinematic control to be integrated smoothly into a control system so that monkeys

could learn to operate the brain-controlled robot in the presence of obstacles.

In one of his classic papers, Hogan [41] describes the interaction between a com-

pliant robot and its environment as that of an impedance interacting with an admit-

tance or vice versa. A robot control method for impedance is described in which force

interactions between a robot and its environment are directly specified as a second-

order system with six degrees of freedom. This controller causes a robot to behave

like a physical system with a given mass, damping and stiffness. An ideal impedance

controller of this type would completely mask the dynamics of the robot and replace

them with this desired set of force responses to environmental perturbations. This

means that at the point of interaction with the robot, its response to perturbation is

indistinguishable from the physical system specified in the controller.

Impedance control has been implemented using an acceleration-resolved approach

for motion control [108], in which linearized robot dynamics are computed to obtain

the Cartesian acceleration behavior of the robot given a certain set of impedance con-

trol parameters in an absence of interaction. These are then cast into applied torques

at the robot actuators given the relationship between static forces and torques given

by the Jacobian [109]. A position-based impedance control scheme that involved ex-

plicit dynamic masking was given by Kang et al [48]. Another approach to Cartesian

impedance control has been given in a large amount of highly successful work with

the DLR robot[4, 77].

Here we present a new way to approach the application of impedance control

to joint torque-controlled kinematic chain manipulators. Using this method, the

dynamics of a robot are first explicitly masked or compensated for so that in theory it

provides no resistance to environmental admittances. This means that the controller

attempts to regulate the exact joint torques needed to maintain the kinematic state

in the presence of gravity and torques due to the dynamics of the robot. This is

possible using an actual robot to the degree that a complete kinematic and inertial

model of it can be ascertained, including accurate measurement of its joint velocities

and accelerations. Next, a link to the desired impedance behavior of the robot is

given using the concept of “Virtual Links” in a Newton-Euler dynamic model of the

robot. Virtual Links allow desired Cartesian forces and torques to be directly set at
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any point on the robot. Taking advantage of Hogan’s principle of superposition of

impedances [41], an arbitrary number of simultaneous impedance-type controls can

be implemented at the same time. Joint-level impedances or desired torque behaviors

can be similarly superimposed.

We implemented a type of impedance control of at a robot endpoint in which

the kinematic behavior of the robot could also be directly controlled. This was done

using a 7-DoF Barrett whole-arm manipulator (WAM) robot (Barrett Technology,

Cambridge, MA). The WAM robot is a completely backdriveable, cable-driven robot

designed for haptic interaction. This controller was used in a brain-computer interface

prosthetic control experiment in hundreds of hours of continuous operation in which

monkeys often controlled the robot very poorly. Brain-derived kinematic commands

oscillated rapidly and were completely unpredictable, so that no trajectory planning

could be used and collisions with objects in the environment were frequent. This

controller proved to be very robust and useful in this experiment, responding fluidly

to chaotic input and allowing the control of force production between the robot and

external objects.

6.2 Masking Robot Dynamics

In this section, we describe how the robot dynamics are masked such that they can

be replaced with the desired dynamic behavior. The equations of motion that relate

the dynamics (in the case of the WAM, a vector of joint torques, τ ) of a robot to its

kinematics (the joint angles, q, and their first and second derivatives), adapted from

Spong [109] is:

τ = M(q)q̈ +C(q, q̇) +G(q) + F (q̇) (6.1)

where M is the joint-space inertia tensor, C are inertial coupling terms, including

centrifugal and Coriolis torques, F are friction terms, and G are the pose-dependent

torques on the robot links due to gravity. This is a general form of the inverse

dynamics problem that can be solved in multiple ways using Lagrangian [110], Kane’s

equations [47], or Newton-Euler based approaches such as one presented in the next

section.
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6.2.1 Recursive Newton-Euler Dynamics

The recursive Netwon-Euler (RNE) equations efficiently compute the inverse manip-

ulator dynamics (Equation 6.1) of a kinematic chain. Orin [76] originally used the

Newton-Euler equations of rigid body motion applied to links of a robot, while Luh

et al [68] formulated the recursive RNE approach used here. The clear description of

RNE and figure here is based on that of of Corke [20]. The RNE method is a two-step

process:

1. In a first outward recursive step, the forces and moments at the center of mass

(COM) of each link based on propagating robot kinematics (movements of links

based on joint angles, velocities, and accelerations) are calculated.

2. In a second inward recursive step, the forces and torques at each link COM are

propagated backwards through the kinematic chain from the endpoint of the

manipulator to find the total forces and torques acting at the location of each

joint. For rotational joints, the portion of the torque lying in the joint axis is

the actuator torque for that kinematic state of the chain.

This presentation of the algorithm requires a kinematic and inertial model (mass,

COM, moment of inertia) for the robot in reference frames following the standard

Denavit-Hartenberg (D-H) notation [34]. The RNE equations here are for a robotic

manipulator consisting of n + 1 links [0, 1, . . . , n], where link 0 is the base of the

manipulator, and n revolute joints indexed by [1, 2, . . . , n]. Links and corresponding

reference frames are indexed by the variable i. The relationship between links and

joints in the standard D-H notation, as well as many of the variables in the RNE

equation, is shown in Figure 6.1. The left superscript of variables in the equations

below denote the reference frame for the variable. For instance, i+1Ri is the rotation

of link/frame i with respect to link/frame i + 1. The equations shown here are for

kinematic chains with rotational links only, see [20] for prismatic equivalents.

Recursive Newton-Euler Dynamic Equations
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Figure 9: Notation used for inverse dynamics, based on standard Denavit-Hartenberg nota-
tion.

Outward recursion, 1≤ i≤ n.

If axis i+1 is rotational
i+1!i+1 = i+1Ri

(
i!i+ z0q̇i+1

)
(12)

i+1!̇i+1 = i+1Ri
{
i!̇i+ z0q̈i+1+ i!i×

(
z0q̇i+1

)}
(13)

i+1vi+1 = i+1!i+1× i+1p∗
i+1+ i+1Riivi (14)

i+1v̇i+1 = i+1!̇i+1× i+1p∗
i+1+ i+1!i+1×

{
i+1!i+1× i+1p∗

i+1

}
+ i+1Riiv̇i (15)

If axis i+1 is translational
i+1!i+1 = i+1Rii!i (16)
i+1!̇i+1 = i+1Rii!̇i (17)
i+1vi+1 = i+1Ri

(
z0q̇i+1+ ivi

)
+ i+1!i+1× i+1p∗

i+1 (18)

i+1v̇i+1 = i+1Ri
(
z0q̈i+1+ iv̇i

)
+ i+1!̇i+1× i+1p∗

i+1+2 i+1!i+1×
(
i+1Riz0q̇i+1

)

+i+1!i+1×
(
i+1!i+1× i+1p∗

i+1

)
(19)

iv̇i = i!̇i× si+ i!i×
{i!i× si

}
+ iv̇i (20)

iFi = mi
iv̇i (21)

iNi = Jii!̇i+ i!i×
(
Jii!i

)
(22)

Inward recursion, n≥ i≥ 1.
i f i = iRi+1 i+1 f i+1+ iFi (23)
ini = iRi+1

{
i+1ni+1+

(
i+1Rii p∗

i

)
× ii+1 f i+1

}
+

(
i p∗
i + si

)
× iFi+ iNi (24)

Qi =





(ini
)T (iRi+1z0

)
if link i+1 is rotational(

i f i
)T (iRi+1z0

)
if link i+1 is translational

(25)

where

Figure 6.1: Diagram of link notations used in the RNE equations. From Corke [20].

1. Outward Recursion, 0 ≤ i ≤ n.

i+1ωi+1 = i+1Ri(
iωi + z0q̇i+1)

i+1ω̇i+1 = i+1Ri{iω̇i + z0q̈i+1 + iωi × (z0q̇i+1)}
i+1vi+1 = i+1ωi+1 × i+1p∗i+1 + i+1Ri

ivi
i+1v̇i+1 = i+1ω̇i+1 × i+1p∗i+1 + i+1ωi+1 × {i+1ωi+1 × i+1p∗t+1}+ i+1Ri

iv̇i

iFi = mi · (iω̇i × si + iωi × {iωi × si}+ iv̇i)

iNi = Ji
iω̇i + iωi × (Ji

iωi)

2. Inward Recursion, n ≥ i ≥ 1.

ifi = iRi+1
i+1fi+1 + iFi (6.2)

ini = iRi+1{i+1ni+1 + (i+1Ri
ip∗i )× i+1fi+1}+ (ip∗i + si)× iFi + iNi (6.3)

τi = (ini)
T (iRi+1z0) (6.4)

where

z0 is the vector [ 0 0 1]

Ji is the moment of inertia of link i around its center of mass (COM)

si is the position of the COM of link i wrt frame i

ωi is the angular velocity of link i

ω̇i is the angular acceleration of link i

vi is the linear velocity of link i

v̇i is the linear acceleration of link i
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Ni is the moment at the COM of link i due to motion of the link
i−1Ri is the rotation matrix defining the orientation of frame

i wrt the frame attached to link i− 1
ip∗i is the displacement of frame i wrt frame i− 1

Fi is the force at the COM of link i due to motion of the link

ni is the summed moment exerted at joint i by links

i . . . n and outer links acting on it
ifi is the summed force exerted at joint i by links i . . . n

τ is the torque at joint i

If iv̇i is set to the acceleration due to gravity in the base frame, the commanded

torques are modeled to be exactly the same as the actual torques at each joint for a

motorless robot in free fall [68] . If the torques are reversed, the free fall is nullified

so that gravity compensation is performed. The dominant torques in the dynamic

equation (6.1) come from gravity for relatively low-friction and slow-moving robots.

In computed-torque control schemes, the kinematic parameters q, q̇, q̈ are set to

the desired behavior of the robot. The RNE equation then solves for the joint torques

necessary to produce these desired kinematics [25]. However, the purpose of this step

in our formulation is to attempt to compensate for the dynamics of the physical

robot, so that instead we solve for the joint torques necessary to maintain the current

kinematic state. Using only the measured kinematics of the robotic manipulator to

compute the joint torques to actuate the robot, the actual dynamics of the robot are

masked by active compensation. Thus, if the endpoint (or any point) of the robot

is moved by an external force, torques will theoretically be generated such that no

resistance is felt by the external actor. Without the compensation running, pushing

on the robot would be resisted both by gravity as well as the inertia, friction, and

coupling forces of the links of the robot. With the compensation algorithm running,

a current is commanded in the motors to counteract the force which would be felt

externally, so that no resistance is felt. This is of course limited by the bandwidth of

the running model; a resistance to external force will be felt until the running model

can read the new kinematic state of the robot and compensate for it. Masking of the

dynamics is also of course highly dependent on the accuracy of the model used; to

completely mask the dynamics of the robot all of the terms of the dynamic model

would need to be known exactly and the kinematic state accurately measured.

In practice with the WAM, compensating the gravity term alone is sufficient for
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many purposes. The second largest term in terms of torque magnitude in the dynamic

equations are the frictional forces, while the coupling and mass terms produce even

smaller torques in the WAM and similarly lightweight robots. Compensation for these

terms is more difficult to implement for real-time compensation because the velocity

and acceleration parameters are difficult to estimate over different timescales. While

differences between discrete joint angle measurements are noisy, filtering these mea-

surements makes the estimated velocity inaccurate for rapidly changing movements.

A full dynamic masking model has been implemented in simulation, and masking of

the frictional forces has been performed in real-time control. Because of the velocity

measurement problem, it is difficult to account for friction in both the case of large

movements over long time scales as well as when, for instance, the robot endpoint

is grasped and shaken rapidly. Thus, the gravity compensation alone has generally

been used in validation experiments.

6.3 Virtual Links

The RNE equations have a boundary condition in the inward recursion step. This

boundary condition exists at the final link, i = n, when nfn and nnn are calculated.

These parameters for the final link describe the “load” or external force (force in

the remainder of the chapter refers to forces and torques) on the robot imparted by

the environment [25]. While this force has been set to some real imparted load for

computed-torque controllers using RNE, we consider the effect of entering the force

due to a fictional load here. During the backwards recursion step, the RNE algorithm

will compute the joint torques needed to compensate for this fictional force. The

result is that the robot will produce an equal and opposite force at the end effector.

Similarly, fictional forces at any link can be entered into the backwards RNE equation.

Each of these fictional forces can be represented as a virtual link acting on some real

link of the robot. Their effect is calculated in the inwards step as if they were the

forces imparted by a physical link, so that their effect is summed over the center of

mass of each inward link and the torque calculated at each joint to compensate for it.

The end effect is a superposition of torques that compensate for the dynamics of the

real links and torques that produce desired forces at the virtual link interaction points.

While the link calculations for each frame are performed with forces in the frame of

each link, the transform between the base and link frames have been calculated with

the forward kinematics of the robot such that imparting forces in the base frame is
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easily done. Thus, Equations 6.2-6.3 above become:

ifi = iRi+1
i+1fi+1 + iFi + iF̂i

ini = iRi+1{i+1ni+1 + (i+1Ri
ip∗i )× i+1fi+1}+ (ip∗i + si)× (iFi + iF̂i) + iNi + iN̂i

where F̂ and N̂ are the forces and torques due to the summed action of any

virtual links attached to link i. These are with reference to frame i, such that base-

frame forces and torques must be converted to frame i coordinates using the forward-

kinematic transform.

Desired joint-level behavior can also be superposed into the model as well by

directly adding them to the output τi:

τi = (ini)
T (iRi+1z0)

becomes

τi = (ini)
T (iRi+1z0) + τ̂

where τ̂ is a goal torque at joint i. This works because it is equivalent to

the action of a virtual link that produces only a torque directly at the joint at its

axis. As long as these desired torques are added to the sum total of torques at each

joint, rather than replacing them, the desired Cartesian and joint behavior will take

place simultaneously. This is simply an elaboration of the examples of superposition

of impedances given in [42]. The recursive form of RNE is convenient in that it

provides direct access to potential interactions with each link within a single consistent

framework.

While the kinematics of the robot are not directly controlled in this step, the

control of forces and torques at any point or joint on the robot provides the link

to control needed to implement desired force, impedance, or kinematic behaviors,

with gravity and the dynamics of the robot masked. Any control algorithm that

would be used with the joint-torque controlled robot directly can now be applied to

the RNE inward recursion, which will have the same effect except that gravity and
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physical robot dynamics do not have to be accounted for. For instance, in a computed-

torque kinematic control scheme, or in PID control of joint angular positions (two

common algorithms), these can be superimposed on the joint torques in the RNE;

coefficients controlling the tightness of the control loop can be loosened significantly as

the controller does not have to overcome gravity in one direction. A particular choice

of replacement dynamics that affords a combination of impedance and kinematic

control for a robot is given in the next section.

6.4 Impedance-Velocity Controller

We implemented a method of performing integrated Cartesian velocity and impedance

control. The behavior of the robot using this control method was like a PID velocity

controller under changing kinematic inputs, but its steady command state behavior

matched that of a classic impedance controller. Hogan [42] introduced the impedance

equation describing the interface force Fint exerted by an end-effector in dynamic

interaction with the environment:

Fint = K[Xd −Xc] +B[Vd − Vc]−M
dVc

dt
(6.5)

where K, B, and M are matrices describing the force/displacement (stiffness)

relationship, the force/velocity (damping) relationship, and the inertia tensor, all

in end-effector coordinates. X and V are the end-effector positions and velocities,

where 3-D orientation and rotational velocity vectors are concatenated together with

the linear position and velocity values. The subscripts d and c denote the desired

and current positions or velocities. With the off-diagonal terms in K, B, and M

ignored, this system can be thought of as a three sets of linear and rotational spring-

mass-damper systems operating in each endpoint (Cartesian) DoF independently.

The equations of motion given in equation 6.5 can just be implemented directly as

described in Hogan[41], where the torque is computed with reference to a disturbance

from a kinematic setpoint M , X, V . As Cartesian forces are directly accessible

within the Virtual Link framework, this has a straightforward implementation at any

point in the kinematic chain, by setting F̂ = Fint computed for the desired point of

interaction on the robot. It can also be used to control joint torques directly so that

joint-based control can be superimposed.
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In our prosthetic experiment, robot control commands provided by the monkey

subject were in the space of Cartesian linear and rotational velocities at the end-

point. A useful integration of velocity and impedance control was created so that

the robot could move under velocity-based brain control while interacting with the

environment like a mass-spring-damper system. Motion control applications that are

integrated with this type of impedance controller often function by dictating a posi-

tion setpoint Xd, which is like moving one end of the virtual spring around, with the

robot following. We took a related approach to integrating kinematic and impedance

control. Consider an impedance control algorithm operating in a frame with position

Xd and velocity Vd, where the desired movement relative to this frame is always 0

displacement and velocity. The impedance control equation becomes:

Fint = K[dXc] +B[dVc]−M
d[dVc]

dt
(6.6)

where dXc and dVc are the position and velocity of the robot endpoint with

respect to the desired movement frame. Forces are produced by equation 6.6 to

track the desired movement frame, at the same time producing impedance behavior

equivalent to equation 6.5 if the desired movement frame does not change.

Considered as a mass-spring-damper system, this is like attaching a manipulator

with mass parameters B to the moving desired movement frame with a spring of

parameters K and a damper governed by M . From the perspective of the damper,

if the robot is stationary but Vd is set to a velocity ν, the robot is considered to be

suddenly moving with velocity −ν with respect to that frame. The damper issues a

force which reduces this apparent velocity, moving the actual robot manipulator in

the direction of ν relative to the robot’s base (global) frame. This sudden application

of a velocity-dependent force is countered by M acting on the acceleration of the

manipulator (really an apparent acceleration, due solely to the change in command

velocity).

In the next time step, the desired movement frame has been translated by the

desired velocity so that the base of the virtual spring drags the endpoint towards this

new position. If the commands to the robot are issued in velocity and the position

and acceleration terms are the integral and derivative of that velocity, this is just

PID velocity control. For steady-state commanded motions, it acts like the desired

impedance controller. With respect to the base frame of the robot, an equivalent
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control equation is

Fint = K[Xd −Xc] +B[Vd − Vc] +M
d[Vd − Vc]

dt

6.4.1 Implementation in the WAM Robot

An impedance-velocity controller of the type outlined in the previous section was

implemented in the WAM robot. In this robot, the actual torque at each joint is

directly specified so that an equivalent current is regulated at each motor by a fast PID

control loop. Since the robot is backdriveable and these torques are the overall torques

at each joint, joint torques do not need to be separately measured. Joint angles

were also determined from readings from optical encoders at each motor. The robot

controller ran in a 500Hz loop in which the joint angles were read, the impedance-

velocity commands calculated, and torque commands sent to the motor controllers.

The control loop period executed using a real-time system implemented in RTAI (real-

time Linux) on older PC hardware. The basic RNE impedance control algorithm has

been run at upwards of 1kHz loop timing with no modification.

Cartesian velocity commands were received over a network interface asynchro-

nously at ≈ 30 ms intervals. These commands updated the desired movement com-

mands Vd whenever they were received (between control loop executions). These

commands and joint angles from the encoder readings were the changing inputs to

the real-time loop. The endpoint position and orientation of the robot were calcu-

lated using the forward kinematics of the robot. Robot endpoint linear and rotational

velocities were calculated as differences in endpoint position between subsequent it-

erations of the control loop, which was then processed using an exponential decay

filter 15 ms wide with a 2% per-sample falloff rate. The filtered velocities Vc entered

the following discrete-time representation of the impedance control loop evaluated at

time T , with control loop period τ :

Fint = K
T∑

t=0

[Vd,t − Vc,t] τ +B[Vd,T − Vc,T ] +

M ([Vd,T − Vc,T ] − [Vd,(T−τ) − Vc,(T−τ)])/τ

In the WAM implementation, this was a straightforward PID feedback control
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loop with the proportional gain in velocity and the loop output in terms of Cartesian

forces and torques, which entered the RNE equations as a virtual link at the robot

endpoint. K was of a limited magnitude so that the control was primarily over the

velocity of the robot directly. During object interaction, this caused the command

velocity to act as a proxy for forces produced into the object. The quantity of force

due to the position term was capped so that forces could not ramp up very highly over

time if the arm was commanded consistently to move into an object. The performance

of this controller in terms of kinematic and impedance control is discussed in Section

6.5.

Additionally, a variety of other controllers were implemented simultaneously to

keep the WAM within a desired workspace and to limit its output forces and torques.

Additional controllers kept the joints within certain convenient limits, using virtual

torsional springs near these limits superposed with the impedance control output

forces and torques. Another controller provided a joint-torque type virtual link at

the first joint of the robot, controlling the redundant robot DoF (elbow swing) at a

reasonable angle for reaching and grasping. All of these controllers were trivial indi-

vidually, but superimposed on the joint and Cartesian forces and torques providing

input to the RNE inward recursion step, which was calculated to mask the robot

dynamics with the composite desired dynamics at each time step. Output torques

from the RNE inward loop (equation 6.4) were applied directly as current commands

at the robot motors.

6.5 Validation

In this section, we report the results from experiments conducted to validate the

performance of Virtual Links and the impedance-velocity controller. The following

experiments were performed using the 7-DoF WAM manipulator running the gravity

compensation algorithm alone for dynamic masking. WAM kinematic and dynamic

behaviors are compared to theoretical models as well as a simulated WAM dynamics

model in which friction was masked in addition to gravity.

The simulated WAM model was built using the Robotics Toolbox for Matlab [20].

The inverse dynamics model used to define the joint torque output from the RNE

control equations was identical to the one implemented on the WAM robot, except

that the other dynamic parameters (friction, Coriolis torques, etc) in Equation 6.1
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could also be modeled. The forward dynamics were calculated for simulation using

the method of Walker and Orin [124], which relies on inverting the inverse dynamic

model to compute the resulting kinematics of torque application at the joints. While

all of the dynamic parameters were used in the forward model, only the gravity and

friction compensations were used in the control (inverse) model because friction is

the next largest torque component and compensation for it in the real robot is the

most likely to be implemented.

6.5.1 Virtual Link Experiment

In this experiment we masked the dynamics of the WAM, applied a Virtual Link at

the robot endpoint that effected a static force in the “up” (+z) direction in the robot

base frame, then hung weights from the end of the WAM. This setup is shown in

Figure 6.2. The weights were at first held in place by hand below the attachment

point of the chain to the WAM with any slack taken out. The Virtual Link force

was then applied, and after a pause the weights were released in a single motion.

We wished to primarily show that commanded upward forces at the endpoint would

balance weights that produce an identical downward force. The set of weights and

forces that were used are shown as points in Figure 6.3. Additional trials were run

at virtual link forces lower than those needed to balance the weights for analysis

of the dynamic behavior of the robot under force control (the two dynamic trials

that are shown here are below the gravity line in Figure 6.3 at a mass of ≈ 1.25

kg). Resulting trajectories from the static force trials are shown in Figure 6.4. The

balance trajectories are all plotted, but overlap at 0 deflection. Figure 6.5 shows a

trial with a balanced load.

To provide insight into the effects of friction on the model, we look more closely

at the non-balanced trials in Figures 6.6 and 6.7. Recorded z displacements from

trials are plotted against a theoretical model of a falling point mass starting at rest

and moving according to equation 6.7, along with two simulations of the WAM that

did and did not perform friction compensation. While the gravity-only simulation

matches the actual WAM performance fairly well, the addition of friction compensa-

tion causes it to behave like the point model. This suggests that the control model

functions as expected and performance could be increased by applying friction com-
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pensation. The equation governing the behavior of the theoretical mass is as follows:

MedV /dt = Fext + Fint (6.7)

where Me is the mass of the weight, Fext is the force of gravity on the weight

(−Me · g), and Fint is the applied force by the robot.

Figure 6.2: Virtual Link static force validation
setup. X, y, and z axes in the robot base frame
are indicated by red, green, and blue coordinate
axes superimposed on photo.
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Figure 6.3: Masses hung from the WAM end-
point vs. virtual link compensation forces that
were used in experimental trials.
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Figure 6.4: Trajectories from the virtual link exper-
iment. The most deflected trajectory is from the
trial with a ≈ 1.25 kg load with no applied force,
and the other deflected trajectory is with the small
compensatory force.
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Figure 6.5: A balanced load in the virtual link
force compensation experiment.
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Figure 6.6: Real and simulated trajectories, dropping a ≈ 1.25 kg
weight vs. no applied force. The solid black line is the recorded
trajectory. The blue dashed line is the simulated performance of the
WAM with no friction compensation. The red line is the theoretical
trajectory of a falling point mass. The solid blue line is a simulation
of the WAM with friction compensation. Drop times of the simu-
lations are aligned with the point of greatest absolute acceleration
in the recorded trajectory z-dimension because the exact drop time
of the weight was unknown. The curve in the simulated trajectory
after 0.22s is from the WAM reaching a joint limit.
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Figure 6.7: Real and simulated trajectories, dropping a ≈ 1.25 kg
weight vs. 2.25 N compensatory force. The simulated WAM fell
with a different trajectory than that of Figure 6.6.
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6.5.2 Impedance Control Experiment

In this experiment, we tested the impedance response of the controller under force

loads similar to the experiment in the previous section. The impedance control para-

meters used in this experiment are given in Table 6.2. Two sets ofK values were used.

While the arm was in an initial resting state with zero endpoint velocity commanded,

varying masses were added to the endpoint of the arm on a chain and released, as in

the virtual link experiment.

Table 6.2: Control Parameters for the Impedance Experiment

Coord. x y z φx φy φz

K
50, 200 50, 200 50, 200 2.5 2.5 2.5

N
m

N
m

N
m

N ·m
rad

N ·m
rad

N ·m
rad

B
60 60 60 6.5 6.5 6.5
N ·s
m

N ·s
m

N ·s
m

N ·m·s
rad

N ·m·s
rad

N ·m·s
rad

M
0.14 0.14 0.14 0.008 0.008 0.008

kg kg kg kg·m2 kg·m2 kg·m2

We compared the performance of the WAM robot to an idealized model of the

desired impedance behavior. With an external force Fext acting upon a point imple-

menting the desired impedance behavior, we combine Equations (6.7) and (6.5) to

find an overall equation of motion for simulation:

(Me +M)dV /dt = K[X0 −X] +B[V0 − V ] + Fext.

The performance of the robot at the two K and uniform B and M settings

from Table 6.2 are plotted in Figure 6.8 for comparison to each other as well as to

their theoretical performance in four force perturbation trials. The performance of

the WAM with only gravity compensation behaved like the theoretical controller in

these trials, but the addition of friction compensation to the simulation even more

closely reflected ideal performance.

6.5.3 Kinematic Performance Experiment

In this experiment, the impedance-velocity controller described in Section 6.4 was

implemented at the endpoint of the WAM and its performance in responding to
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(b) 2.3 kg weight drop.
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(c) 3.4 kg weight drop.
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(d) 4.5 kg weight drop.

Figure 6.8: B = 60.0,M = 0.14 in each trace, K = 200 (black), K = 50 (blue).
The measured performance is the thick solid line. The theoretical performance is
the dashed line. Simulated WAM performance with friction compensation is the thin
solid line.

kinematic commands was evaluated. A Barrett Hand was attached to the WAM

at the endpoint in this experiment and incorporated into the kinematic and inertial

model of the robot. Input velocity commands to the robot were driven by a handheld

controller (Sony Playstation 3 Sixaxis controller) and delivered to the RNE robot

controller in 30 ms intervals. The impedance parameters were set as listed in Table

6.3. These values correspond to the diagonal terms in the matrices K, B, and M .

In the first free movement trial, controller commands followed no intentional pattern,

but kept the robot endpoint inside of the workspace in front of the WAM base.

The resulting trajectory is plotted in Figure 6.9, with the commanded and measured

velocities of the WAM endpoint in the x, y, and z dimensions following in Figure 6.10.
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These results show good trajectory following performance in the 7-DoF robot.

Table 6.3: Control Parameters for the Kinematic
Performance and Collision Experiments

Coord. x y z φx φy φz

K
550 550 550 2.5 2.5 2.5
N
m

N
m

N
m

N ·m
rad

N ·m
rad

N ·m
rad

B
60 60 60 6.5 6.5 6.5
N ·s
m

N ·s
m

N ·s
m

N ·m·s
rad

N ·m·s
rad

N ·m·s
rad

M
0.14 0.14 0.14 0.008 0.008 0.008

kg kg kg kg·m2 kg·m2 kg·m2
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Figure 6.9: Trajectory of free movement guided by controller input,
starting at the circle and ending at the X.
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Figure 6.10: Kinematics during simultaneous con-
trol of x, y, and z velocities. The commanded and
actual velocities are shown as dotted and solid lines,
respectively.
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6.5.4 Collision Experiment

In this experiment, a movement command from the controller was used to drive

the Barrett Hand first in a short free movement in one direction, then in a similar

trajectory except that the hand collided with a rigid obstacle. The parameters from

the kinematic performance experiment were used in this experiment as well. Fig. 6.11

shows the hand in the starting position and in contact with the rigid object. During

both trials, the commanded velocity, V0, was zero in all dimensions except for the the

+y-direction. The velocity profile of the free movement trial is indicated in Figure

6.12. Starting from rest, the command velocity was rapidly increased to 0.3m
s

. This

command velocity was maintained for ∼ 1.7s prior to dropping back to rest. The

force after release does not decrease to 0 because of the value of K value used in this

trial; the resulting position-dependent force was below the amount needed to move

the arm due to friction.

In the second trial the same commanded input was given to the robot, but the

hand hit the obstacle after ∼1.7s of movement. The kinematics and commanded force

from this trial are displayed in Fig. 6.13. The force response of the robot is stable,

but ramps up quickly due to the relatively rigidB andK parameters in the model. It

levels off after reaching a maximum force level applied to the robot controller output.

Figure 6.11: Experimental setup for response to step velocity input with a collision.

6.6 Discussion

In this chapter we have presented a novel application of the recursive Newton-Euler

dynamics algorithm in which the dynamics of a kinematic chain robot can be masked.
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Figure 6.12: Kinematics and commanded force dur-
ing uninterrupted movement. The solid and dashed
lines show the actual and commanded end-effector
velocities. The dotted line shows the commanded
end-effector force.
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Figure 6.13: Kinematics and commanded force dur-
ing collision. See Fig. The solid and dashed lines
show the actual and commanded end-effector veloc-
ities. The dotted line shows the commanded end-
effector force.



6.6 Discussion 102

We then showed how the RNE equations allow access to the dynamics of each link

in the kinematic chain so that desired behaviors could be inserted using the con-

cept of virtual links. The principle of superposition of impedances allowed multiple

simultaneous dynamic behaviors to take place at different points in the chain. We

then showed a specific type of behavior in an impedance controller that also allowed

for velocity control of the robot endpoint. Different behaviors were tested using this

controller with a 7-link robot.

While compensation for the friction and the other terms of the model could im-

prove its performance, this can significantly increase the complexity of implementing

this control scheme in real situations. (Approximate) kinematic and inertial parame-

ters of the robot can be taken directly from the design model of the robot, and joint

positions can be read directly from joint encoders. Accurate high-speed joint veloc-

ity and acceleration, however, can be difficult to measure robustly and may require

specific methods to measure with specific robots. Likewise, friction parameters are

difficult to estimate and can be tricky to measure. We based the control model here

on the parameters that are easy to obtain, and the result has favorable characteris-

tics for performing control tasks. We showed in simulation that if more accurately

modeled performance characteristics are required, friction and other components of

the dynamics can be incorporated into the model.

Robert Rasmussen was extremely helpful in performing these experiments and

preparing some of the figures in this chapter.



Chapter 7

Overall Results

7.1 Introduction

Since the discovery of models relating arm movement to neuronal population activity

in the motor cortex [32], there have been efforts to recruit this activity to control

external devices directly with the brain. Brain-computer interface (BCI) prosthetic

devices have the potential to aid the over 250,000 people in the US alone who suffer

from debilitating motor deficits such as spinal cord injury and ALS [131]. BCI systems

can do this by bypassing motor lesions located outside of the CNS; cortical activity

reflecting subject intent can instead be expressed directly by action in a machine.

Progressively more sophisticated BCI systems have been demonstrated over the

last decade, moving from 2 and 3-dimensional control of a cursor on a computer screen

[106, 113] to indirect [13, 112] and finally direct control of a 4 degree-of-freedom (DoF)

robot arm [121]. In the 4-DoF experiment, the use of an anthropomorphic physical

arm facilitated the monkey incorporating arm behaviors related to its physical struc-

ture into its control. As we progress towards the control of increasingly sophisticated

prosthetic arms, the related concept of embodiment gains importance; BCI prosthetic

devices that incorporate features of natural movement may be more easily mapped

into familiar patterns of neural control. Natural arm movements integrate hand ro-

tation with translation and are characterized by fluid transitions between arm and

hand motions when reaching to and interacting with objects. While these types of

movements are desired in prosthetic control models, no prosthetic arm will be able to

directly reproduce the exact movements and dynamics of a specific subject’s natural
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arm. Therefore, effective models for BCI control will incorporate general principles

of natural movement without reliance on exact replication of subject physiology. We

have recently developed a brain-computer interface robot control system that directly

addresses these issues. Recording from single units in the motor cortex, we can now

demonstrate brain control of a prosthetic arm that exhibits the following features:

(1) simultaneous 7 DoF brain control over robot hand translation, rotation, and

finger aperture, (2) integrated kinematic (movement) and dynamic (force) BCI con-

trol of a prosthetic robot, (3) simplified methods for constructing cortical extraction

models based on only observation of the moving robot, and (4) a generalized method

for training subjects to use complex prosthetic robot devices using a novel form of

operator-machine shared control.

7.2 7-DoF BCI Experiment

Two monkey subjects (F and G, both naive to brain control) were implanted with

96-channel chronic intracortical microelectrode arrays. Monkey F had a single array

in the right hemisphere while G had three arrays implanted in both hemispheres.

Array locations for both monkeys are shown in Figure 7.3. Cortical activity captured

with these arrays was used to drive the movement of a 7-DoF robot arm with 4-DoF

attached robot hand (Barrett WAM arm and Hand, Barrett Technologies, Cambridge,

MA) that was mounted to the right of the subject (Figure 7.1) in the experiment.

The arrangement of the links of the prosthetic robot were anthropomorphic except at

the robot wrist, which replaced the abduction/adduction joint at the hand with an

additional axial rotation joint. The reachable space of the WAM endpoint was similar

to that of the human arm with different joint space configurations in each endpoint

pose. The brain-controlled movement variables in the experiment were the Cartesian

linear and rotational velocities of the whole hand, along with grasp aperture. Finger

movements of the hand were not always available, so that many control sessions were

reduced to 6-DoF execution (references to the 7-DoF task include some sessions in

which grip closure was not performed).

Spiking activity in the brain was recorded using RZ2 (TDT Inc., Alachua, FL)

signal processing systems. For monkey F, a threshold at each electrode channel was

fixed at 5 to 7.5 times the standard deviation of measured voltage deflections and all

threshold crosses were counted as a neural spike of a single cortical unit. Monkey
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G units were at first manually sorted from within waveforms crossing the threshold,

but later automatic threshold crossing was used with a small number of additional

units (10-15) manually sorted. Spike events were transformed to firing rates using

inter-spike interval times in 30 ms bins. Firing rates were filtered with an exponential

filter (width 15 bins, decay constant 0.95) throughout the experiment.

Figure 7.1: The BCI control experimental setup with mon-
key, prosthetic, and targeting robot. Axes representing ro-
bot base and hand coordinate frames are superimposed.
Red-Green-Blue arrows correspond to the X-Y-Z axes of
experiment.

7.3 Cortical Decoder Calibration

During the first part of each daily control session, subjects observed the prosthetic

robot as it autonomously executed oriented grasping tasks. Each movement execu-

tion was prompted by the monkey reaching out and pressing a button with its own

unrestrained right hand. The presentation robot then moved the target to one of six

orientations while the prosthetic robot moved to one of six positions on the edges of

the robot workspace (Figure 7.2 illustrates the set of starting positions and target

orientations). Next, an audible cue was emitted to begin the trial. The robot hand

autonomously translated, rotated towards, then grasped the target as measured corti-

cal spike rates and robot movement velocities were recorded in 30 ms intervals. When
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Figure 7.2: Starting positions of the hand (spheres)
and orientations of the target object. 2 axial rota-
tion targets are superimposed in the center of the
target set. The robot hand moved backwards from
the sphere closest to the center of the targets before
orienting.

the robot grasped the target, a liquid reward was delivered to the monkey, the robot

positions were reset, and the system waited for the next button press. Trials timed

out and were failed after 12-14 seconds if the hand had not grasped the cylinder.

Trials were also aborted if the monkey stopped attending to the task or was moving

in the chair.

At the end of 18-40 observation trials, a cortical decoder was calibrated to pro-

duce a model for generating movement commands from sampled spike rates. Sampled

robot velocities were filtered with a 15 bin boxcar filter. Samples of firing rates and

velocities in which a significant amount of movement was taking place (> 0.02 m/s

or rad/s total velocity) were used for calibration. 1000-3000 samples were normally

used for model calibration in each session.

The calibration process first fit a preferred-direction (PD) model of the relation-

ship between individual unit firing rates and robot movements that included the 3-D

linear and rotational velocities of the hand (Equation 7.1). A separate PD model

working in parallel was used to relate cortical firing rates to 1-D robotic hand aper-

ture velocity (Equation 7.2). Control over this DoF was separated from the transport

control equation because grip actuation during calibration was identical in each trial

and occurred after transport and just before reward delivery; some cortical activation
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during gripping appeared to be related to rising reward expectation which may not

have fit a linear model incorporating all 7 degrees of freedom.

λi = aivx + bivy + civz + diωx + eiωy + fiωz + bi0 + εi (7.1)

λi = giγ + gi0 + εgi (7.2)

Sampled linear (vx, vy, vz) and rotational (ωx, ωy, ωz) velocities were related

to firing rates by linear (ai, bi, ci) and rotational (di, ei, fi) PD coefficients that

comprised 6-D preferred directions for each unit. For the grip model, γ is the sampled

hand opening and closing speed, while gi is the 1-D preferred direction of neuron i

for grip actuation. By using linear and rotational velocities as the controlled motor

quantities in Equation 7.1, the 6-D PD model can be described as operating over

a 6-D vector space in which linear and rotational quantities are controlled. In this

model, the well-known 3-D linear velocity vector preferred-direction model can be

extended to rotational DoF with no loss of descriptive power. This is not the case

for orientation (heading)-based models, or for other representations of rotation such

as Euler angles (yaw-pitch-roll) or quaternions.

PD model calibration was followed by application of the minimal variance Op-

timal Linear Estimation (OLE) method [17, 96] to produce a decoding matrix that

transformed spikes to movement commands for the remainder of the experimental

session. OLE is similar to the well known Population Vector Algorithm (PVA) but

avoids bias introduced by nonuniform distributions of preferred directions.

7.3.1 Observation-Based Calibration Results

Two examples of modulated neural activity recorded from a subject during observa-

tion of automated robot movements are shown in Figure 7.5. These examples were

taken from a session in which the subject later performed full 7-DoF BCI robot con-

trol. No natural movement task was performed by the monkey previous to observation

sessions, so that the observed modulated activity shown here was a product of spon-

taneous activity elicited by observation of the robot, or from an internal model of

robot control originating from observation.

Goodness-of-fit (R2) statistics for the PD model fit from observation across multi-

ple sessions indicated that the representation of linear and rotational motion was well
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Figure 7.3: Locations of cortical implants in both monkeys. Square
outlines are silhouettes of Utah electrode arrays. Blue = monkey
G right hemisphere arrays. Green = monkey G left hemisphere ar-
ray. Red = monkey F right hemisphere array. M1 = primary motor
cortex. PM(d/v) = dorsal/ventral premotor area. C = central sul-
cus. PCD = precentral dimple. AS = arcuate sulcus. Topography
adapted from He et al [37].

distributed among all units, rather than clustered into groups of neurons representing

distinct linear or rotational movement types. Typical goodness-of-fit parameters for

the model of neural activity to robot movement during observation periods of one

control session in each monkey are represented in Figure 7.4, showing a widespread

distribution of observation-modulated activity among primary and premotor brain

areas and hemispheres. A comparison of linear and rotational partial R2 (coefficient

of partial determination) statistics for individual units is shown in Figure 7.8. Linear

and rotational tuning parameters (linear and rotational preferred directions) from

this session are in Figures 7.6 and 7.7, showing the distribution of PDs for both types

of movement.

7.4 Brain-Computer Interface Operator Training

After the model calibration period of each session, the experiment entered a train-

ing phase in which the monkey learned to use the calibrated model to perform the
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Figure 7.4: Maximal R2 statistic for units at
each channel for fit to 6-D movement model.
Color outlines correspond to arrays in Figure
7.3.

oriented grasping task. When naive monkeys were first introduced to the task, they

started by first performing 3-D linear control while the 4 remaining DoF of the ori-

ented grasping task were controlled automatically. After proficiency was gained, the

monkeys performed the 3-D rotational portion of the otherwise autonomously con-

trolled task. Finally, the 6-DoF control task was performed under brain control. Grip

control was also performed during all phases when the robot hand was available.

For each DoF under brain control, an operator-machine shared control system

adaptively modified subject control commands by comparison to sets of model com-

mands provided by an autonomous software program that modeled the motor task

in real time. The autonomous controller generated multiple movement commands

simultaneously that represented motion toward and approximation of the range of

robot poses that would complete the grasping task. This reflected the fact that there

are many ways that hands grasp objects, so that we allowed that flexibility in using

the brain-controlled arm and hand.

The shared controller decomposed the subject commands into (1) the portion

projected onto the submanifold of (pointing towards) autonomous controller com-
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Figure 7.5: Spiking activity during observation of robot movement during two indi-
vidual trials recorded from monkey G. In this session, the monkey progressed to full
control of the robot. Row E shows traces of 6-D robot velocity in meters and radians.
Highly deflected traces are the rotational velocity equivalent to hand yaw. The blue
vertical line shows the target presentation time. Row A shows pseudoraster (30 ms
bins) of spike activity for units modulated for positive yaw rotation (turning left).
The darkness of each mark represents number of spikes recorded in the bin. Row
B shows pseudoraster for units modulated for negative yaw rotation (turning right).
Row C is histogram of summed spikes from row A. Row D is a histogram of summed
spikes from row B.



7.4 Brain-Computer Interface Operator Training 111

Figure 7.6: Distribution of linear
preferred directions of individual
units from a monkey G calibration
based on observation data. An in-
crease in spike rate for each corti-
cal unit contributes to moving the
overall robot command signal in
the direction of its corresponding
preferred direction. PDs are shown
for units that had significant fits
to the 6-D multivariate regression
(p < 0.05, Equation (eqno))

Figure 7.7: Distribution of rota-
tional preferred directions for same
units as Figure 7.6. Increases
in spike rate for each unit con-
tribute a rotational command with
an axis in the direction of the unit’s
PD. The mean angle between lin-
ear and rotational preferred direc-
tions in this session was 96.79 de-
grees, compared to the 90 degree
expected value for the angle be-
tween two random 3D vectors.

mands, i.e. the ideal commands and (2) the residual of the brain-control command

after subtraction of 1. While (1) was always transmitted to control of the robot, (2)

was multiplied by a set of shared control coefficients cp,i(0 ≤ cp,i ≤ 1, i = 1− 7 DoF)

that controlled the level of admittance of error in each controlled DoF. This is an

extension of a type of error limiting shared control that was used for training by

Velliste et al [121]. Using this system, robot movement was not driven directly by the

autonomous controller during training, but instead provided a template for reducing

noise and error in the brain-control signal. The use of multiple commands in the

template pointing towards the boundaries of allowable grasps allowed flexibility in

how the task was completed, while still providing overall assistance.

The autonomous controller was also aware of the solid-body characteristics of

the target cylinder and hand; when the path towards task completion poses was

obstructed (e.g. the hand was behind the cylinder), generated commands would point
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Figure 7.8: Partial R squared statistic for linear and rotational coefficients for units
from Figure 4. The linear partial R squared measures the proportion of variance
in the spike rate unexplained by the 3 rotational coefficients that is explained by
the linear ones. The rotational partial R squared measures the variance explained
by rotational coefficients not explained by linear ones. Unit activity was generally
related to both linear and rotational DoF of observed robot movement.

toward intermediate poses preceding those from which the task could be completed.

Automatic movements and the shared control algorithm at first provided a method

for the monkey to learn the task sequence by demonstration and to connect grasping

task completion with reward; this set up the operant conditioning paradigm used

for training the monkeys. As the monkeys began to learn the relationship between

intent and movement control, the shared control system prevented cortical activity

unrelated to the task and control error from taking over robot movements. As the

monkeys gained control skill, the shared control algorithm acted like a set of adjustable

training wheels on a bicycle. By manipulating the underlying difficulty of the task

using the cp parameters, successful completion and reward delivery were maintained at

gradually increasing levels of monkey skill, supporting monkey motivation throughout

large numbers of control training trials.

The cp coefficients were raised over time in accordance with heuristics developed

by the investigators as a function of performance and perceived motivation level of

the monkey. By independently changing the rotational and linear shared control

coefficients, control challenges in each movement type could be effected, allowing skill

to be acquired at different rates for each movement component. The goal of using
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the shared control system was to gradually reduce its influence so that the monkey

eventually fully controlled the device. Progress toward full control was represented by

the maximum cp parameter level at which task success could be maintained. Shared

control provides a consistent method to constrain the complexity of the BCI system,

which is a major factor for enabling training to take place when a large number of

effector DoF are present.

7.4.1 Robot Motion Controller

PD model translational and rotational velocities were defined as the movement of

the robot about a control point with a fixed relationship to the hand (Figure 7.1,

coordinate axis attached to robot hand). Linear velocity DoF describe movement of

this point through space, while rotation of the hand around this point was the basis

for the rotational DoF. During grasping of an object, the control point was located

at a location near the interface of the hand and the object. When the hand was

approximated to the object, we described the coordinate system as “object centered”

such that linear and rotational degrees-of-freedom approached independence. Trans-

lational and rotational DoF could be manipulated independently while maintaining

a relatively consistent relationship between the hand and object in the other DoF.

Use of this method allowed us to avoid problems with dependency between the lin-

ear and rotational DoF during grasping which would result from alternate motion

parameterizations.

Velocity commands from the shared control system drove the movement of a

torque-controlled robot arm using a novel low-level motion controller that smoothly

integrated the control of arm kinematics and forces/torques at the hand. This system

was based on a method for Cartesian impedance control [41] with a superimposed

kinematic control model. Robot endpoint velocity was commanded directly during

unconstrained movements, but these commands also indirectly controlled interaction

forces when the arm was under an external load. This control model is similar to one

proposed for the interaction of force and velocity in the cortical control of natural

movements [117]. It allows an intuitive mechanism for transition between movement

and force interactions, in addition to providing a controllably compliant and safe way

to control the prosthetic arm in a realistic environment. While more traditional rigid

robots and robot controllers would not be able to safely interact with objects, the

monkey was able to use impedance-control characteristics of this arm to interact with
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the cylinder target and other objects (including the monkey itself) even when its

control skill was very low.

7.5 BCI Control Results

While control improvement was not a constant process, after monkeys started to

achieve full 6-7D control, the shared control assistance parameters cp could be brought

up to full control over the course of as few as 15 trials (less than three minutes of

control time). More often, however, this process took somewhere in the range of 40-60

trials to take place (about 5-8 minutes of control time). Figure 7.9 shows the relation-

ship between success rate and shared-control assistance in a representative session.

Even though the decoding model was recalibrated daily to account for changes in

the specific cortical activity that was recorded at each electrode over time, a gen-

eral increase in overall performance exhibited across sessions suggests that changes

in cortical organization occurred to allow skill transfer from day to day.

39 sessions have been recorded in which the system was set up such that mon-

key F could perform 6 DoF control of the robot (finger actuation was not available

throughout this period). While F had previously been able to perform high-quality

control over the 3 linear DoF and 3 rotational DoF alone, simultaneous 6 DoF con-

trol has been a substantial challenge for this monkey with a single array. The overall

success rate for this monkey during 6-D training with and without shared-control

assistance is 60.2%. This monkey achieved full control of 6 DoF, with no assistance

from the FF system, in 138 trials in 3 sessions recorded to date. Only 11 of these

full-control trials so far have been successful. In 41% of full-control trials, however,

the robot was within the target region with either or both the linear and rotational

DoF at some point in the trial, suggesting that the monkey was nearly completing

the task in a significant number of trials. The full success rate is projected to increase

as the monkey gains experience in the task, but it is possible that performance will

be limited by the number of recording channels available for on-line control.

Monkey G achieved full 6-DoF control of the device, in which no shared-mode

assistance was supplied, in 49 separate recording sessions. Additional 1-DoF grip

aperture control was possible when the robot hand was available, in roughly half of

these sessions. When available, the monkey nearly always successfully performed a

grip of the object if the task was otherwise completed using 6-DoF arm movement
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Figure 7.9: The relationship between shared control assistance and success rate during
a representative control session. Black bars indicate successful trials. Binary success
values were filtered with a 9-element boxcar filter to produce the success rate (blue
trace). The average assistance levels 1− cp applied across all control dimensions over
movement periods of each trial are shown as the green trace. From the beginning of
the session, 1−cp parameters are decreased rapidly to match control task difficulty to
monkey control skill (point A); they were then held at a relatively challenging level (A
to B) as the monkeys learned the calibrated parameters. When the success rate of the
monkey began to increase due to learning of the calibrated neural extraction model,
the assistance level was quickly lowered to 0, so that the subject fully controlled the
device for the remainder of the session.
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control. A set of recorded 7-DoF brain-controlled trajectories from a contiguous

portion of one session are shown in Figure 7.10. The monkey would often, but not

always, begin reaches by focusing primarily on operating the linear DoF, followed by

rotation of the hand towards the target. Profiles of the linear and rotational distance

to target from a set of control trials is shown in Figures 7.11 and 7.13. After the

monkey became proficient in using the device, linear velocity profiles of movements

usually had bell-shaped profiles (Figure 7.12). In each full control session, the monkey

was able to achieve bursts of successful task completion, but control skill was not the

only factor governing task success; monkey attention and behavior were a major factor

in the success rate throughout trials.

(a) Upward linear, left yaw motion

(b) Downward linear, right twist motion

(c) Forward linear, downward pitch motion

Figure 7.10: Three successful 7-DoF brain control trials with movement in different
linear and rotational dimensions.

In addition to allowing trials to continue through frequent collisions between the

robot arm and objects, controlled compliant force interactions with environmental

objects augmented the realism of the overall task and enhanced the performance of

control trials. For instance, both monkeys were observed to use the vertical extension
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Figure 7.11: Linear distance between the robot
hand and the center of target locations in 24
fully brain-controlled successful grasping trials
from a contiguous portion of a single session
with monkey G. The portion of each trial from
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target (in distance or angle) to when it moved
near to the target center was isolated and in-
terpolated to a uniform time scale across trials.
The average distance from the target (blue line)
at the starting position was 34.3 cm and 9.0 cm
at the end of movement.
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Figure 7.12: Linear velocity of the trials shown in Figure 7.11.
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Figure 7.13: Rotational difference between the
robot hand and the center of target locations in
the same trials shown in Figure 7.11, using the
same methods for normalizing the time scale.
Rotational movement was more difficult to an-
alyze; it is possible to successfully grasp the
cylinder at some individual poses that are at a
considerable angle from the central target rota-
tion, so that while the overall distance to target
went down in each trial, the relative deflection
from the target was less than in the linear DoF.
This does not directly reflect the actual overall
angle of orientation change of the hand during
each trial, which is often larger. The average
starting position distance (blue line) was 0.84
radians (48.1 degrees) from the target. At the
end movement in each trial, the mean distance
from target was 9 cm and 0.394 radians (22.6
degrees).



7.5 BCI Control Results 119

of the fingers and linear translation to tilt the hand towards pitched targets. The

hand often became stuck behind the target cylinder; this was allowed to happen freely.

Both monkeys were observed to pull the hand backwards in cases where the robotic

compliance behavior of the robot would allow it to acquire the target, or around

the object when it would not. The presence of these and many other unrehearsed

movements involving control of forces suggest device embodiment as found in Velliste

et al, which can be extended to dynamic interactions between a brain-controlled limb

and its environment. Please see Chapter 9 for further discussion of these overall

results.



Chapter 8

Detailed Methods

In this chapter the experimental system and procedures that were used to implement

the BCI system will be described in detail. This chapter will first present the surgical

procedures performed to implant the microelectrode arrays, followed by the physical

setup of the experiment and the design of the software architecture that was used to

conduct brain-control sessions.

The brain-computer interface system described in this dissertation was not the

product of a single design that was then executed using two monkeys. Due to the

closed-loop nature of brain-computer interface experimentation, much of the devel-

opment of the system described here was the result of trial and error based on long

experience working with individual subjects. This evolutionary, experience-based

style of development echoes that of previous successful 3D cursor and robotic BCI

experiments [113, 121]. The heuristic nature of arriving at a place where a desired

end result can be obtained has been a large part of BCI, which will continue as it

moves into the realm of clinical therapy. Many of the approaches and steps in this

chapter especially would be very difficult to prove conclusively as superior to some

other approach. To do so would require a series of far more controlled experimental

conditions focused on individual aspects of what was required to develop skilled pros-

thetic robot control. However, we attempt to present some of the reasons why certain

approaches were taken and some of the history of how aspects of the system evolved.

Along these same lines, there is some detail in this chapter on system components

that does not relate directly to the goal of BCI control, but may help others facing

some of the practical problems involved in implementing similar experiments.
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8.1 Surgical Procedures

All surgical procedures were performed using sterile technique in an approved ani-

mal surgical facility and following surgical protocols approved by the University of

Pittsburgh IACUC committee. Monkeys were sedated with ketamine HCl prior to

receiving isoflurane for intrasurgical anaesthesia. Rhesus monkey G was implanted

with two “Utah” 100-lead chronic cortical microelectrode arrays (Blackrock, Salt Lake

City, UT). An incision was made roughly following the midline of the skull and the

skin retracted to expose the cranial vault. A craniotomy of roughly 5 cm diameter

was opened that was centered over the arm and hand area of the primary motor cor-

tex. Removing the free bone flap from the craniotomy, the dura was incised on three

sides of the craniotomy, creating a dural flap that was reflected to expose the brain.

The central and arcuate sulci were visualized within the craniotomy, as well as the

precentral dimple. The goal areas for implantation were the arm and hand regions

of the primary motor cortex. Array 1 was placed on the precentral gyrus between

the dimple and the genu of the arcuate sulcus. Array 2 was placed along the central

sulcus lateral to the arcuate genu (Figure 8.1). A groove for each wire bundle was

drilled into the edge of the craniotomy. Wire bundles leading from each array were

placed into each groove and the attached pedestal-type connectors were fixed to the

skull with bone screws near the anterior and posterior cranial midline. The dural

flap was sutured back into place at each corner, then the bone flap was replaced and

held with titanium straps. Dental acrylic was poured between and around the two

pedestal implants and additional screws to provide additional fixation and protection

to the implanted arrays and wire bundles. Pedestal connectors for each array were

placed to the left of the midline anterior and posterior to the craniotomy and attached

to the skull with bone screws. Additional bone screw anchors were inserted around

the skull between the pedestals and the craniotomy site, surrounding the path of the

wire bundle. Acrylic was poured in these areas to further fix the pedestals to the

head as well as protect the wire bundles. The edge of the acrylic formed a curved

border against which the retracted skin was pulled up and tightened with a purse

string suture. The sutures were removed 7 days later.

After six months of recording, the M1 medial “arm” recording array underwent

significant signal degradation from an unknown cause. An additional surgery was

performed to implant two arrays in the right hemisphere at locations similar to the

left hemisphere arrays, but with the lateral array placed further laterally and rostrally

to potentially span part of the ventral premotor cortex. During the procedure, the
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Anterior

Figure 8.1: Monkey G left hemisphere implants.

Anterior

Figure 8.2: Monkey G right hemisphere implants.

wire bundle leading from the degraded array in the left hemisphere was cut and the

corresponding pedestal was removed. The cause of signal loss in the medial array was

not apparent as the first craniotomy was not reopened during the second surgery.

Similar procedures were used to implant monkey “F” with two arrays in its

right hemisphere. The pedestals for the two implanted arrays were located again to

the anterior and posterior of the craniotomy. Over time, the rear pedestal became

more and more loosely attached to the skull. Eventually, it detached from the skull

completely and recordings from that array were lost. The monkey then underwent

an additional surgical procedure to implant an additional set of arrays in the left

hemisphere, but a suitable site for mounting the additional pedestals could not be

found, and this procedure was not performed.

Anterior

Figure 8.3: Monkey F right hemisphere implants.
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8.2 BCI Experiment Physical Apparatus

8.2.1 Chronic Microelectrode Arrays

Potentials in the brain were recorded using Cereport (Blackrock Inc., Salt Lake City,

Utah) chronic microelectrode arrays (Figure 8.5). These arrays had 100 1.5 mm

electrodes, 96 of which were available for recording. ∼ 40 µm at the tip of each

insulated electrode tip was exposed and recorded potentials at typically 100-750 kΩ

of impedance. The primary motor cortex around which the arrays were implanted is a

region about 3.0 mm in thickness that is relatively sparsely populated with cell bodies

but with a high density of interconnected neural filaments. Broadmann area 4 of the

cortex contains pyramidal cells in laminae II-VI that provide the substrate for regional

output [87]. Most of these cells reside in layer III and V, while layer IV is absent in

this area. These pyramidal cells are widely varied in size and are characterized by

prominent apical dendrites. Some layer V pyramidal cells provide axonal output into

the pyramidal tract that descends to the spinal cord. Non-pyramidal neurons present

in this region are large “basket” cells in layers III and V, providing inhibitory inputs

to the pyramidal cells [39]. The 1.5 mm electrodes extend to the layer III / layer

V boundary of the 3.0 mm thick cortex [89]. Additionally, microelectrode arrays

undergo a process of “sinking” into the cortex over longer periods of time (Figure

8.4) [35], which may place many of the electrodes well within layer V. This factor,

combined with the large mass of apical dendrites from layer V neurons as well as the

high degree of cross-correlation between proximal neurons in area 4 [63] suggest that

significant layer V pyramidal cell activity is being recorded with the microelectrode

arrays.

8.2.2 Neural Recording Apparatus

100-lead wire bundles led from the microelectrode arrays to titanium percutaneous

connectors. These Cereport pedestals (Figure 8.6) were fixed to the skull and provided

external connection to the recording apparatus. When the monkeys were brought into

the experiment room, Cereport Plugs (Blackrock) were connected to the pedestal con-

nectors. The plugs used in our experiment were fitted with custom ICS-96 headstage

pin output to ZIF head stage connector outs (pedestal with adaptor is shown in

Figure 8.7). Tucker-Davis Technologies (TDT, Alachua, Fl) ZCD headstages, which
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Figure 8.4: Histological slice of primate brain
showing ≈ 1 mm deep indentation left by a
“Utah” chronic microelectrode array.

performed the digitization of the voltages read at the electrodes (Figure 8.8), were

clipped to the ZIF connector pins. Digital voltage readings from the ZCD headstages

were processed by TDT PZ2-96 Preamplifiers (Figure 8.9) and sent from the record-

ing room to a recording rack (Figure 8.10) by fiber optic connection. The fiber optic

link isolated the recording system electrically from the computer processing station.

In addition, the PZ2 Preamplifiers are battery operated so that measured potentials

were isolated from electrical supply currents.

Figure 8.5: Utah 96-channel chronic mi-
croelectrode array.

At the rack, TDT RZ2 base stations (up to 3, one for each 96-channel array)

received the digitized voltages at 48kHz. The RZ2 systems are programmable signal

processing systems with 8 programmable DSPs apiece. The RZ2 systems interfaced

with a PC which was used to program and configure their operation.

Spike count outputs from the RZ2s were sent to the spike processing system

(Section 8.3.1) via UDP interface. The pathway in which spikes were translated into
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Figure 8.6: Pedestal connector for Utah
microelectrode array.

Figure 8.7: Cereport plug and ZIF
adapter, showing pedestal connector and
alignment pins.

Figure 8.8: TDT 96-Channel ZIF clip pre-
amplifiers.
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Figure 8.9: RS3 analog to digital convert-
ers.

Figure 8.10: Experimental recording rack.

robot movement commands was distributed among 4 generic PCs using the RTMA

communications layer (Section 8.3) over a gigabit TCP subnetwork. The bulk of

the work was performed on three PCs running Ubuntu Linux, with a Windows PC

dedicated to interfacing with the DENSO robot and the National Instruments NI-

DAQ analog interface, for which only Windows APIs were readily accessible.

8.2.3 Experimental Room Setup

During experimental sessions, monkey subjects sat comfortably in a chair to which

their rigid collar was attached. The left arm was restrained using a tube fit over the
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left armrest, while the right arm was left free. The single arm was restrained only

to keep the monkey from turning backwards or spinning in the chair. The chair was

placed in a slot in an aluminum frame that provided a rigid mount for the robots,

neural recording apparatus, and other physical systems used in the experiment (Figure

8.11).

Start Button

Preamplifier Clips

Figure 8.11: Monkey and robots in experimental frame, with smaller Start Button
and recording system ZCD clips indicated.

A neck plate with integrated water tube was placed over the shoulders of the

monkey. Instead of the neck plate extending laterally to block the monkey from

reaching the water tube and neural recording connectors, a plastic motorcycle visor

was attached to the neck plate. This minimal design reduced obstruction in the

sensor range of an Optotrak movement tracking system mounted overhead, so that

monkey hand movement data could be recorded during trials. The water tube was

of a novel type that facilitated the reduction of compulsive licking behaviors in the

monkey (Figure 8.12). The similarly minimal reward delivery device was a simple

metal tube that led through the neck plate and to the rear of the monkey. The tube

was connected to a small reservoir in the rear of the neck plate. The reservoir was

filled by a siphon leading from a larger reservoir outside the room, with a solenoid-

operated gating mechanism triggered by output from the software Analog Module

(Section 8.4.2). A hole was drilled in the small reservoir so that once the reservoir

was empty, additional attempts to draw reward would draw air from the hole. Very

little water remained in the straw after water was retrieved, so that persistent sucking

on the straw resulted in little to no water retrieval. This was a very useful design that

drastically reduced mouth movements during the trials that had previously interfered



8.2 BCI Experiment Physical Apparatus 128

with the brain control recordings.

Figure 8.12: Monkey chair showing custom neck plate and water
delivery apparatus.

A pushbutton mounted on a sliding arm was located in front of the monkey

(see Figure 8.11). The button completed a simple circuit that was detected by the

analog module (Section 8.4.2). The monkey pressed the button with its free hand

to initiate brain-control trials. Because of the difficulty and length of individual BCI

trials and sessions, it was important to ascertain when the monkey was willing to

attempt a trial. Previously, trials had run autonomously and continuously; when the

monkey was not actually attempting to control the arm, the arm moved anyway and

the process did not contribute to establishing the belief in the monkey that the arm

was under its control. Use of the button established some baseline willingness to

participate in the task, even if attention continued to be a problem after trials had
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begun (Section 8.3.6).

A Barrett Whole-Arm Manipulator (WAM, Barrett Technologies, Cambridge,

MA) robot with attached BH262 hand was mounted to the right of the monkey and

oriented horizontally such that it approximated the kinematic configuration of its right

arm. The Barrett WAM (Figure 8.13) robot is a backdriveable 7 degree-of-freedom

arm robot with roughly the same degrees of freedom of the human arm except at

the wrist. In the robot, there is an additional axial rotation joint distal to the wrist

flexion/extension axis, instead of the physiologic adduction/abduction joint. During

operation, the torque at each joint of the backdriveable WAM is proportional to the

current flow at a brushless motor, which an integrated controller regulates in fast

(32kHz) PID loop. Thus, torque commands to the WAM are very good estimates of

the torque present at the joint at the time resolution of the WAM control loop (500

Hz). The WAM motor controller and encoders communicated over a CAN bus with

a 1.8 GHz Shuttle PC computer running Slackware linux. The WAM control loop

(Chapter 6) was implemented as an RTAI (real-time linux) hard real time process

preempting the linux kernel at 500Hz. The low-level throughput of the robot was

limited by the CANbus communication speed, rather than the processing time of

the control algorithm itself. With an improved communication system, the controller

could run faster.

The Barrett BH262 hand is a 3-fingered non-backdriveable robot hand that pro-

vides direct control of the closure velocity of each finger and the spread of two of

the fingers opposing the thumb. A distal joint in each finger moves at a speed pro-

portional to the main joint, and during grasping the second joint will continue to

close if the first segment of the finger is blocked in a “breakaway” mode. We created

a custom control system using the Barrett real-time mode hand control protocol to

simulate compliant hand control. Repeated maintenance problems with the BH262

Hand led to a significant number of recording sessions in which hand control was

not performed. A more advanced replacement BH280 hand was later acquired and if

shown in the figure, but was not used for control trials reported in this dissertation.

A DENSO 6-axis industrial-style robot arm was placed approximately 1 m in

front of and facing the WAM robot. The target object mounted to the endpoint of

the DENSO robot is a 3 cm diameter, 6 cm long cylinder, attached by an aluminum

rod to the robot such that the long axis is perpendicular to the end link of the

robot. The DENSO robot is an admittance robot that provides very high resolution

positioning of the target, but is completely rigid. It was used to place the target and
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Figure 8.13: Barrett WAM robot and Barrett BH280 Hand.

functioned as a static obstacle during execution of each trial.

Figure 8.14: DENSO 6-axis robot.

An Optotrak 3010 kinematic recording camera set was placed along the ceiling

of the experimental room (Figure 8.15). It was placed such that the free hand of

the monkey and the monkey’s head could be tracked without either robot arm being

in the way of the line of sight of the system. We wanted to track the monkeys’

movements as this is the first BCI experiment in which no motor training was used;

since arm restraints were not required, we wanted to look at the relationship between

the monkey’s movements and movements of the prosthetic arm. We attached a 3-

marker object to the monkeys’ hands so that hand translation and rotation could be

tracked, as well as a single marker on the head of monkey G. The Optotrak recording

had mixed results; monkey G was unwilling to perform difficult brain control with
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the markers attached. We reverted to collecting optotrak data at the conclusion of

brain-control trials, in lieu of training the monkey specifically to tolerate the tracking

markers. This data, along with Optotrak data from monkey F during BCI trials was

recorded in upwards of 20 BCI sessions for later analysis.

Figure 8.15: Optotrak motion recording system.

The experimental frame was designed and constructed by Meel Velliste and

Robert Rasmussen, then later modified by Sam Clanton. The reward device was

designed by Zohny Zohny and Sam Clanton, with the basic water delivery system

implemented by Meel Velliste, Andrew Whitford, and Chance Spalding. The button

was made by Zohny Zohny and Sam Clanton. The Optotrak system was implemented

by Zohny Zohny and Sam Clanton. The DENSO was installed and configured for the

system by Meel Velliste.

8.3 Brain-Control Software Architecture

The overall system architecture of the BCI robot control experiment is shown in

Figure 8.16. While the total system used was complex, it was designed as a distributed

network of reactive agents, each agent performing a very limited set of specific tasks in

reaction to messages sent over the network. The component modules communicated

over a unified network message-passing architecture,“RTMA” (Real Time Messaging

Architecture). Agents registered with the messaging system when they were run and

signed up to receive messages of certain types that were put out on the network. They

would then sleep until activated by one of these message types, execute some reactive

procedure, emit further messages if necessary, and go back to sleep. This promoted

rapid development and testing of experimental subsystems that could function as

plug-in components for completion of some well-defined subtask. The overall system
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Figure 8.16: Schematic of complete Brain-Computer Interface Control System
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would keep running while different candidate modules were plugged into the slots of

Figure 8.16. Over the long (often 2-3 hour) sessions, observed problems could be

reacted to by rapid implementation and substitution of modules providing solutions,

in the best cases without breaking up the session or the monkey realizing the change.

The modular communications and control architecture directly enabled the speed

and flexibility necessary needed to finally achieve brain control of a 7-DoF arm. This

system was intended as a prototype for systems that could facilitate the development

of BCI control over complex robotic prosthetic devices in general, and is the general

architecture that will be used for BCI robotic experimentation in our laboratory

moving forward.

While the complete BCI system was associated with a large amount of process-

ing and computing hardware, a streamlined post-development version of the spike

count processing and control system could readily be put on a single computer. If

thresholding-only approaches to spike counting are used, and the robot controller

were on-board (as in more modern versions of the WAM), the BCI system could run

on a single processor with little modification.

The overall system architecture is divided into the following parts:

Cortical Control Pathway This subsystem transforms brain activity to movement

of a robot. This pathway includes the elements that perform this translation, as

well as those that are necessary for enabling control through the shared control

system described in Chapter 5.

Experimental Control System This part of the system controls the experimental

procedure, including sequencing of brain-control sessions and interfacing with

external devices that control the experimental paradigm.

Manual Intervention System While the entire control of the prosthetic robot arm

takes place within the cortical control pathway, the system did not operate au-

tonomously. Manual intervention by lab personnel was needed for adapting

system parameters to the training requirements of the monkeys. Methods of

shaping monkey behavior formed a large part of optimizing the feedback mech-

anisms used to drive the monkeys to develop control skill.
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8.3.1 Robot Brain-Control Pathway

The core robot brain-control pathway was comprised of a set of modules that work

in concert to form a kind of hierarchical control model that links brain activity to

robot movement, ultimately transforming cortical spike rates to torques at the joints

of a robot. At the top of the hierarchy, cortical single-unit spike rates were sampled.

These spike rates were transmitted to a neural signal decoding system that once

calibrated used these rates to compute high-level robot commands representing the

desired linear, rotational, and finger aperture open/close velocities of a robot hand.

At the same time, an autonomous controller (“Silicon Monkey”) provided an idealized

set of command signals to the robot in parallel with the cortical decoding system.

Control signals from the Silicon Monkey and the cortical decoder provided input to

the “Arbitrator” module that mixed the signals into a unified command that was

sent to the robot. Output from the Arbitrator was sent to a low-level robot controller

which translated the velocity commands into robot movement.

Robot Control Space

The primary messages communicated through the robot brain-control pathway were

robot commands and feedback in the control space of the experiment. This control

space was always a vector containing the 7-DoF linear, rotational, and grip velocity

of the robot. An additional data element contained flags indicating which DoF were

actively controlled by the controller from which the message originated. This facili-

tated a plug-in system for connecting controlling modules to the robot input and the

shared-control arbitration system. Position feedback from the robot that was used

by the Silicon Monkey was issued in a similar space that included a yaw-pitch-roll

orientation reading.

Neural Recording System

Summary Voltages from chronic multielectrode arrays were measured and spike

counts were calculated from discharge events from single neurons or groups of

neurons. Spike counts were output in 30 ms bins over the experimental message-

passing system.

Inputs Voltages in cortex
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Outputs Spike counts

The RZ2 systems were programmed to isolate individual neural spikes from the

incoming voltage streams from the arrays. A voltage threshold was set for each elec-

trode; every time the recorded signal passed this threshold, an epoch of the waveform

surrounding the threshold crossing was isolated. These thresholds were then classified

as spike events or discarded, depending on the method of “spike sorting” used. Spike

events were labeled as “units”, corresponding to the activity of one or more neurons.

Each unit formed a separate control input into the system, and up to 4 could be

present at each individual electrode. Spike events for each unit were counted in 10

ms intervals and exported from the RZ2 systems via a USB interface. The process of

spike sorting was done in one of three ways in this experiment:

Box Sorting Thresholds were set manually or at a multiple (5.5-7x) of the standard

deviation from the mean of all activity recorded at the electrode. Epochs sur-

rounding threshold-crossing events were isolated and displayed on a computer

screen. The experimenter then used a mouse to draw boxes in two areas of the

screen around overlaid epoched waveforms. These boxes corresponded to gates

through which passing voltage traces were labeled; a waveform passing through

both gates belonging to a unit was a spike event of that unit.

Thresholding Only This process was completely automated. Thresholds were au-

tomatically set to the mean plus some multiple of the standard deviation of

voltages recorded at each channel (usually 5.5-7x). A single unit was then as-

signed for any theshold-crossing waveform at each channel.

Hybrid Approach This process was much like the Thresholding-Only type of sort-

ing, but very large, clear individual units (up to 5-10 per array) were separated

into separate units by the box-sorting process.

While the box sorting technique is a more traditional way of manually discrim-

inating units, there had been a persistent belief that better control occurred when

spikes were sorted liberally; that is, when many waveforms that did not directly resem-

ble spikes were sorted into individual units and used for control. In a study from our

lab, Fraser [29] had found that much of the same information is transmitted through

electrodes if simple thresholding is used for spike discrimination. As the time over-

head in sorting 384 channels in one monkey was having an adverse affect on monkey

performance, we started to spike sort using the hybrid approach as a compromise.

After success with this was achieved, we changed to a complete thresholding-only
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approach for monkey F. Successful 7 DoF control occurred using all three methods of

spike sorting. The thresholding-only approach is a method by which clinical brain-

computer interface electrode systems could acquire signals on an ongoing basis with

no manual intervention.

4 bits in each exported spike count packet were allocated to storage for each

sorted unit so that up to 7 spikes per 10 ms period could be counted. Given the

refractory period of individual cortical neurons, a maximum of up to about 3 spikes

per sampling period was usually observed, with the majority of spike rates evaluated

from units with either 0 or 1 spikes occurring per bin. The data blocks contained

space for 4 channels per electrode, 384 4-bit values per array.

Exported 10 ms spike count packets were picked up by computer software module

which accumulated sets of three 10 ms bins and exported the resulting 30 ms spike

count packets over the RTMA network. Each receipt of 3 sequential UDP spike count

packets initiated the cascade of control signals that ultimately resulted in commanded

movement of the robot.

The circuits controlling TDT operation were designed and written by Andrew

Whitford, Sam Clanton, Zohny Zohny, Meel Velliste, and Tim Tucker from TDT. The

UDP-RTMA interface module was written by Andrew Whitford and Meel Velliste.

In the following sections, the individual modules comprising the brain control

pathway will be discussed individually.

8.3.2 Decoder Module

Summary The decoder module operated in two modes. During an initial calibration

phase, the module recorded real-time spike rates and velocities of the moving

robot in order to train a cortical decoding model to translate spikes to movement

commands. After calibration of this model, the module applied it to incoming

spike counts to form real-time robot commands derived from neural activity.

Inputs Spike Counts, Robot Velocity Samples, Task Sequence Cues

Outputs Robot Control Commands

Spike count packets on the RTMA network were monitored by one or more corti-

cal Decoding/Extraction modules (EMs) responsible for translating information into
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robot control commands. As discussed, extraction modules first went through a cali-

bration sequence, then post-calibration would begin to emit robot control commands

upon receipt of spike counts in 30 ms intervals. Multiple decoders were active in the

system at any given time; each decoder could be configured to handle a certain subset

of the 7 controlled DoF, and multiple decoders could provide control commands for

overlapping sets of robot DoF. This open system allowed for the process of incremen-

tal building from multiple 3-dimensional extraction models towards a more unitary

extraction model (Chapter 5) covering 6 of the 7 total control DoF. Grip decoding

remained separate because of some of the differences between whole-hand movement

and grip in the experiment and reliability issues with the robot hand robot itself.

Selection of which extraction modules were responsible for individual robot control

DoF took place in the Arbitrator (Section 8.3.3), and was changed in real time to

support experimentation with different cortical decoding models. Output not applied

directly to the robot could be visualized for evaluation in the Visualization Module

(Section 8.5.1).

Decoder Calibration

As outlined in Chapters 3 and 5, neural decoders were calibrated by recording spike

activity that took place as the monkey observed the moving robot. During each

experimental trial in this phase of the experiment, the arm robot sequentially opened

its hand, performed a linear movement to one of 6 targets, a rotation movement to one

of 6 targets, then gripped a cylindrical target object at that location. Trials in which

the monkey was not paying attention to the robot were manually rejected using a

hand-held controller (Section 8.5.2). Each of these periods of grip, linear, or rotational

actuation was labeled by the experimental controller (Section 8.4.1) such that the

extraction modules could interpret the type of data that they were receiving. Modules

could then choose to buffer particular samples for calibration or not depending on

whether or not they were configured to predict on the corresponding control DoF.

This isolation of linear, rotational, and grip motion was an initial attempt to “divide

and conquer” the task of 7-D control, where linear and rotational control could be

established in isolation and then later integrated (see Chapter 5).

Spike rates were calculated from incoming spike counts using an algorithm that

was geared towards real-time rate estimation with no delay. Packets of spike counts

were transmitted relatively frequently compared to the average spike rate of many
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of the units being sampled. Therefore, rather than calculating spike rate as the

simple inverse of the spike counts, the Optimistic Rate Calculation Algorithm was

used (algorithm 3) in which the algorithm calculated spike rates based on inter-spike

intervals (ISI). If a sample arrived with a 0 spike count, the algorithm assumed that

the rate was as high as the current rate, or that next spike would arrive during the

next sample, whichever was lower. This allowed the spike rate to slowly decay over

periods in which no activity is detected without discontinuities in spike rates that

were not directly measured.

Algorithm 3 Real-time firing rate calculator based on inter-spike interval estimates.
counts is a time series of spike counts, rate is the firing rate calculated for each
sample. T is the sampling period (30 ms).

function OptFRCalculator(counts)
τ ←∞ . τ is the current sample inter-spike interval estimate
τ0 ←∞ . τ0 is a running estimate of optimistic ISI time
for c in counts do

if c > 1 then
τ = T

c
. ISI time for evenly-spaced spikes over multiple samples

τ0 ← τ
2

. Lagging-edge border time for evenly spaced samples
else if c = 1 then

τ ← τ0 + T
2

τ0 ← T
2

. Half-sample time since single spike centered in sample
else

τ0 ← τ0 + T
if τ0 > τ then

τ ← τ0
end if

end if
rate← 1

τ
. If no spikes have been seen, 1

∞ = 0
end for

end function

Incoming kinematic data used for calibration was the real-time 7-DoF robot

velocity reported directly by the low-level robot controller (Section 8.3.7). Buffered

spike and kinematic data was held until the end of the calibration period. This

was usually set to 24 or 30 trials, or (4 − 5) × 6 repetitions of targets and starting

positions requiring movement in both directions for each control DoF. The calibration

procedure was performed during each daily experimental session. While the neural

processes taking place in the cortex relating to control may not change between

calibration sessions, recordings from the implanted arrays suffer from a process of
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drift that does not guarantee consistent recordings over longer periods of time. On

a day to day basis, the spikes observed during the sorting process altered in their

apparent shape, new units appeared in the recordings, and a general overall change

in the mixing of different unit signals occurred. Additionally, it was probable that

the cortical processes involved in brain control underwent changes due to long-term

plasticity as the subject learned the task. Thus, we attempted to track these changes

daily through model calibration.

At the conclusion of model calibration, the decoding models began to emit move-

ment commands in response to incoming spike rates from the neural recording system

8.3.1. The EMs emitted movement commands continuously; the arbitration system

implementing the shared-mode control algorithm downstream controlled the degree

to which these commands were applied to the robot (Section 8.3.3). The EM ex-

traction models thus fixed, the monkey was then tasked with learning to use these

calibrated models to perform effective control of the prosthetic robot.

Progression of Neural Decoders

The initial cortical extraction model used in the experiment with monkey G was

the one used for 4-DoF arm control in the series of experiments published by our

laboratory in 2008 [121]. The first 4-DoF (linear and grip) control was established

using this model in a center-out task. In early 2010, the cortical extraction system

was rewritten to support multiple simultaneous decoding systems based on Optimal

Linear Encoding (OLE). First, 4-DoF rotational and grip control alone were estab-

lished with the new decoder. Next, the separate linear and rotational phases of the

experiment allowed us to allow control of both types of movement without requiring

simultaneous control over all DoF; the idea was to have the monkey complete a series

of 3-DoF subtasks that he had already shown competence in performing, then linear

and rotational control could “bleed” into the opposing task phases over time using

the shared-mode control system (Section 5.5). Copies of this algorithm were run

simultaneously, each operating on a subset of the experimental control dimensions

(linear, rotational, and grip decoders ran in parallel) and in the separate task phases;

each experimental trial essentially became a temporal progression of the two types of

motor tasks already completed, along with the constant gripping subtask. As there

was no real rotation target during the linear task phase, we could quickly give the

monkey control over the rotational DoF during the linear phase of the experiment.
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The ability to do some rotational control during linear movements contributed to

the monkey learning simultaneous control with little penalty for control error. Next,

some linear control was allowed into the rotational control phase of the experiment.

The first 7-DoF control trials were performed using multiple 3-D decoders working in

parallel. The 6-D decoder for linear and rotational robot DoF was then developed.

We were very doubtful at first that linear regression with 6 regressors was going to

be effective; initial evaluation of this regression model produced a lopsided PDs with

better fits for rotational rather than linear DoF. However, it was extremely difficult

to evaluate candidate neural extraction modules offline due to the closed-loop nature

of brain-computer interface control. At the same time, 7-DoF control was working

with the split model. Decoding errors and system problems would often cause the

monkey to stop working, aborting sessions that could otherwise lead to successful

control. To evaluate candidate cortical extraction models online but without the

potential for ruining the experiment, we starting running candidate 6-D extraction

models but not applying their output to the robot. Evaluating decoder performance

post-hoc was even difficult because control skill can only be evaluated when the mon-

key is attempting to control the device; the interaction between monkey attention

and skill was difficult to separate looking at trial data after it occurred. Instead, the

quickest solution was to visualize and evaluate the output candidate 6-DoF decoding

algorithms in real time using the Visualization module (Section 8.5.1). Development

of the attention detection system (Section 8.3.6) may make it possible to evaluate

control algorithms post-hoc or offline using recorded data.

After a few weeks of using the split decoders for robot control while visualizing

the output of the unified model, we noticed that the 6-D model had converged on

control signals that appeared to provide effective control. We shifted control from the

split model to the unified 6-D decoding model in the middle of an experiment in which

the monkey was effectively controlling the robot, and no decrease in performance of

the task was seen at that time. From that point forward, the unified model was used.

The fully-developed 6-D algorithm was used from the beginning of experimentation

with Monkey F.

On the other hand, the 1-D grip controller was never unified into a single decod-

ing model with the other DoF, even though the equivalent was done with the linear

arm control experiment described in Velliste et al [121]. While it was almost certainly

possible to integrate grip control into the more recent set of experiments, it was not

done for two reasons, (1) the robot hand was much less reliable than the robot arm
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that was used in the experiment. Keeping the decoding model separate allowed us

to easily disable the grip control aspects of the experiment in real time and limit the

experiment to the 6-DoF control problem. Results related to neural activity could be

compared from day to day, whether or not the robotic hand was functional. (2) Grip

control occurred in a stereotyped pattern at the end of each trial. Instead of sampling

over a control space in which the monkey had to provide differential control signals

depending on what target was presented, he was able to grasp the target in a single

pattern at the end of each trial. During the 7-DoF control trials, this action occurred

right before reward delivery, so that the neural substrate for calibration appeared to

be related to the task sequence and reward expectation, rather than motor control

signals. Before 7-DoF control was possible, when we were first training the monkey in

the 4-DoF task, we had anticipated this problem. At that time, there was a sequence

of releasing the gripper and moving the arm back towards the starting position be-

fore the monkey received the reward. However, the monkey seemed to understand

that gripping was of primary importance, and never fully participated in moving the

gripper back to the start position. It would anticipate the reward and lick the reward

delivery tube during the gripping, opening, and retraction processes during observa-

tion. The retraction part of the task was eliminated, but the anticipation of reward

behavior remained during gripping. Thus, the neural signals that would operate the

gripper appeared to be derived from different modality of the neurons related more to

reward than movement of the robot. It seemed inappropriate to put it with the other

control signals that were related directly to differentiating intended motion directions

of the arm. This is in contrast with the previous food-retrieval experiment [121], in

which task reward was linked to food retrieval, well after movement of the gripper

occurred.

Co-adaptation

Early in training monkey G to control the arm, the strict line between observation-

based calibration and subject training using the calibrated decoder was blurred. A

process of “co-adaptation” occurred where increasing amounts of partial control of the

arm was given to the monkey as the calibration model continued to recalibrate itself.

In theory, this would allow the calibrated model coefficients become more aligned with

activity relating to intentional movement commands rather than passive responses to

robot movement. In practice, this must be balanced against the moving-target aspect

of changing the model against which the monkey had to learn to operate the robot.
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Using significant amounts of co-adaptation with monkey G seemed to have the affect

of annoying the monkey rather than improving its ability to control the device. Pure

observation-based calibration was used for 6- and 7-DoF control with monkey G. For

monkey F, a small amount of co-adaptive trials seemed to help the monkey learn to

operate the device.

The cortical extraction system was developed by Sam Clanton, with OLE equa-

tion and code from Steve Chase and George Fraser.

8.3.3 Shared Control Arbitrator

Summary The control arbitrator integrated commands from an automatic control

system and cortical decoding modules to form commands sent to the low-level

robot controller.

Inputs Robot control commands from decoders, Robot control commands from au-

tomatic controller, Task-sequence dependent shared-control parameters from

task controller, joystick override commands, attention level

Outputs Robot Control Commands

The control arbitrator implements the bimodal shared control algorithm de-

scribed in Chapter 5 and collates control information from multiple sources. Output

from the Arbitrator is sent to the robot controller as a time series of 7-D control

commands.

The arbitrator serves three purposes in this experiment. These are

1. To provide a substrate for calibration of neural decoding systems.

2. To provide a universal mechanism for creating suitably challenging control prob-

lems that reinforce learning.

3. To integrate information from multiple cortical decoding modules into a single

brain-controlled robot command stream.

If the extraction system did not require calibration, the subject was fully profi-

cient in the use of the device, and the robot control commands came from a single

source, the arbitrator would not be needed as a part of the brain control system. An

exception to this would be a future use of the shared control algorithm for augmen-

tation of BCI control signals that are of a lower bandwidth that what is required to
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fully control a device, but that function was not used in the 7-DoF experiment.

The basic function and purpose of the arbitrator and the shared control algorithm

that it implemented is discussed in Chapter 5. The description here augments that

conceptual description with details of its implementation and integration with the

7-D experiment. As in that chapter, the terms c and cp refer to individual entries

into the Ca and Cp matrices corresponding to the shared control parameters for the

robot control DoF under discussion.

The control arbitrator buffered all robot control commands passed over the

RTMA network from cortical and artificial sources. This included cortical control

input coming from multiple Extraction modules (Section 8.3.2). Mappings between

decoder output DoF and the input DoF that were applied to control by the arbitrator

were reconfigurable in real time. Each input was kept in a state vector representing

the most recent updates to the desired control commands of each of the different

sources. The responsibility of the arbitrator was to mix all of these control inputs

into a single output upon which the robot was to act. The mixing action of the arbi-

trator was triggered by a 30 ms timing signal emitted by the cortical spike processing

system. Upon receipt of the timing signal, the state vector was frozen and the mix-

ing process was performed, ending with a control command being sent to the robot.

Commands sent by the arbitrator were sent synchronously with the timing of spike

recording, at the cost of introducing a potential delay into transmission of individual

decoded commands to the robot.

Because of the plug-in architecture of the decoding system, during development

there were commonly short periods in which no decoder was online to provide move-

ment commands to the robot. The WAM controller used the last received command

to command robot movement. If this command was set to move the robot into the

monkey or into an extreme position where it could get stuck, the WAM controller

would faithfully continue to execute this command. To remedy this, the arbitrator

began self-generating control signals after about 60 ms, attenuating commands from

the decoders at a decreasing level until they contributed zero-velocity input after

about 10 samples. The arbitrator switched its timing back to that of the acquisition

system as soon as that input came back online.

The mixing process occurred as a single evaluation of the BSC algorithm pre-

sented in Chapter (5) over the three separate domains of linear, rotational, and grip

movements. The passive fixturing system attenuated commands based on the auto-
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mated controller inputs for cp entries < 1, then mixed those with the single optimal

command for ca entries < 1. If full control was indicated by the both parameters

allowing full brain-control admittance, the output of the arbitrator was a copy of the

collated brain-control input.

The actual arbitrator further modified the output command in three ways not

indicated in Chapter (5). First, error checking was performed here on the input

to make sure that huge or NaN values are not passed as robot control commands

during development. Second, the arbitrator received input from the attention detector

regarding the attentive state from the monkey (Section 8.3.6). The arbitrator could

gate the output to the robot based on whether or not the monkey was intending to

control the robot at a given time; this reinforced the connection between intention and

movement in the monkey. Third, the arbitrator received control commands from a

Playstation 3 controller (Sony Inc., New York, NY) that were used to override all other

inputs. Handheld controller inputs were mapped to robot control DoF (Section 8.5.2)

and were manipulated by the person running the experiment to disentangle the robot

from objects in the experiment room (stuck with the fingers behind the cylinder, or

with the arm wrapped around under one of the structural supports of the experimental

frame) or to keep the robot from being controlled into these positions. Systems

designed to automatically keep the robot out of these configurations were continuously

improved so that eventually controller input was never needed, but similar manual

intervention might be a potentially necessary feature of real-life BCI robot control

systems in complicated scenarios that are difficult to fully encode into automated

controllers (similar to manual assistive control systems such as that presented in Xu

et al [132]).

Flexible Fixturing Variations

The flexible fixturing algorithm presented in Chapter 4 works well to guide robot

movement toward single enclosed manifolds of points representing successful behav-

ior. As the FF algorithm is intended for use moving forward in the more sophisticated

problem of dextrous hand shaping, the algorithm will work less well when point sets

or manifolds are discontinuous. Using the current system, the arbitrator will atten-

uate command portions not positively spanned by the complete range of exemplar

commands. Given a gap in the solution manifold between these points, the arbitrator

will incorrectly interpret commands as correct that are pointed between them. We
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intend to use a more sophisticated type of FF algorithm that can handle complex

discontinuous manifolds. Two variations on the FF algorithm are briefly mentioned

here as our group moves towards working on the control of dextrous grasping. The

first one is just sufficient for handling discontinuities and has a simple implementa-

tion, while the second is more sophisticated. The difference between the following FF

implementations lie in how the D matrix is interpreted.

Multiple-Point Passive Impedance

Instead of projecting the command vector u onto the positive span of the com-

plete matrix D, the MaxPosSpanBasis function (Chapter 4, Algorithm 3) is simply

run a single time, with no recursion. This implementation then uses the closest ar-

tificial command to the command issued by the subject as the single input. This

version of the control arbitrator is designed to make no assumptions about the nature

of the artificial command input in terms of its shape between points represented or

continuity. Instead of assuming continuity between represented points, it “snaps” the

D matrix to the command most closely aligned with the command input from the

subject.

Future Work - Discontinuous Manifolds

A complete solution to this problem will involve the snapping of the multiple-

point algorithm and the projection to the positive span of the manifold algorithm.

Vectors defining each individual manifold will be input into the modified MaxPosSpanBasis

algorithm. This multiple-point algorithm will be run over all columns of a set of D

matrices. The algorithm (below) simply selects the closest manifold for projection

of the input. A parameter may need to be added to stop the system from rapidly

switching between projection manifolds. It could take into account a time history of

the manifold used and switch only when the closest manifold changes over a longer

time period.
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Algorithm 4 Modified maximum positive span basis algorithm for discontinuous
manifolds.

function MaxPosSpanBasisMulti(u, D1, D2, . . . )
Da ← columns of all D matrices concatenated.
if Da is empty then

return ∅
end if
P ←DT

a u
r, indexr ← max(P )
if r > 0 then

j ←D matrix index corresponding to indexr.
q, indexq ← r, Dj column corresponding to indexr
Dj,q,Dj,−q ← column indexq in Dj, remaining cols in Dj

u−q ← u− qDj,q

return append(Dj,q, MaxPosSpanBasisMulti(u−q,Dj,−q))
else

return ∅
end if

end function

The command arbitration system was written by Sam Clanton.

8.3.4 Autonomous Controller

Summary The autonomous controller provided automated commands to the ar-

bitrator that were used to modify the commands from the cortical decoding

system. At every time step, it generated a set of commands that would lead to

progress through the task. In this experiment, it also detected when interaction

events occurred with the robot that would lead to either task progression or

failure.

Inputs Robot State, Task State, Grasp Poses from Planner

Outputs Robot Control Commands

The cortical decoder and subject training mechanisms in the experiment relied

upon the existence at each time step of a set of exemplar or desired commands that

would drive the robot closer to completion of the reaching and grasping task. The

autonomous control system continuously provided this set of exemplar commands to

the system. The autonomous controller reacted to much the same information that
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the monkey subject had in order to calculate desired commands; it was commonly

called the “Silicon Monkey” in the experiment. The set of commands that it produced

were identical to those that would originate in decoding modules measuring control

intent from monkeys that were each trying to complete the grasping control problem

in a different way. As the monkey saw a cylindrical object to be grasped and not a

single point in space to which he was to guide the arm, the range of possible grasps

of this object was similarly accounted for by the Silicon Monkey.

The autonomous control system was cued by the task phase emitted by the

Task Controller (Section 8.4.1) to guide the robot towards completion of subtasks

that led toward progression through the complete reaching, orienting, and grasping

task. Task phases (discussed in Chapter 5) implemented the procedural order of each

experimental trial - for instance, in the control task of reaching and orienting towards

an object, then grasping, task phases provided a mechanism by which the control

planning system knew to approximate the hand to the target object before closing

the fingers.

Another input to the autonomous controller was a set of robot poses from the

prototype Grasp Planner (Section 8.3.5). These poses, in the position space of the

controlled DoF of the robot, represented the desired range of grasp poses that would

complete the task. The autonomous controller used these poses in conjunction with

the current robot state to form the vectors that were passed to the Grasp Arbitrator

to form the D matrix. It also received the target location directly from the task

controller; formation of a control vector pointed to the target represented the com-

mand used as the optimal command for input into the active shared control system in

the arbitrator, and the only command used for the D matrix in the case that Grasp

Planner input was not available; the reversion to the simpler system was a reliable

fallback mode in case of failure of the planning system during its development.

Commands issued by the control planner were in the same set of control DoF

in which the cortical decoding system delivered commands. Note that while this

subsystem could perform full trajectory planning, there was not any expectation

that the robot would obey any such trajectory; the planning system provided an

appropriate command at each time step given the actual, unpredictable state of the

robot. This ensured that planner commands were consistent even if the actual control

of the robot was the result of large amounts of brain control information, or in the

presence of a large degree of robot interaction with objects in the environment. In

later versions of the Silicon Monkey, it was aware that the target region was not always
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directly accessible from the current robot state. If the hand was behind the planner,

the module cut off the commands based on the planning system and substituted a

single column D that directed the hand to move around the back of the doorknob

and retract towards a vertical plane in front of the target object.

Grasp event detection

A secondary function of the Silicon Monkey in this experiment was the detection of

subtask completion or task failure based on robot position feedback. While progres-

sion through task states was governed by the Experimental Control Module (Section

8.4.1), it relied on event messages sent by the Silicon Monkey to interpret when sub-

tasks were being completed. This was communicated by specific “Grasp Events” sent

by the Autonomous Controller for specific combinations of task and robot state. For

instance, if the system was in the Grasp task state and the autonomous controller

found itself at the target with the fingers closed, it would emit a message indicat-

ing that the target was gripped and the task controller would use this information

to advance the task state. Integration of event detection with autonomous com-

mand generation was aimed toward the autonomous controller system containing all

knowledge of the specific robotic task embedded in a single module. Changing the ex-

perimental task could then be performed by substituting the appropriate autonomous

controller.

Autonomous Controller State Machine

The Silicon Monkey was implemented as a state machine that composed robot com-

mands based on the task phase of the experiment, at the same time checking for

satisfaction of conditions required for producing grasp events. The pseudocode for

the module was as follows:
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Algorithm 5 Pseudocode for Operation of the Silicon Monkey

Basic Controller()
while ExperimentRunning
do

Task State← ReceiveTaskState
Robot Position← ReceiveRobotState
CheckGraspState(Task State, Robot State)

switch Task State
case Reaching :

if TargetOccluded
then BackUp
else GoToCenter

case Homing :
if TargetOccluded

then BackUp
else RotateToTarget

case PreGrasp :
if TargetOccluded

then BackUp
else GoToTarget

case Grasp :
if TargetOccluded

then BackUp
else GraspTarget

case Release :
if TargetOccluded

then BackUp
else GoToTarget

case default :
GoToStartPosition

CheckGraspState(Task State, Robot State)
switch Task State
case Reaching :

if NearCentralPoint
then SendGraspEvent(Near Target)

case Homing :
if NearTarget

then SendGraspEvent(At Target)
if AwayFromTargetOrCenter

then SendGraspEvent(No Longer Near Target)

case Pregrasp :
if AtTarget

then SendGraspEvent(Pregripped)
if AwayFromTarget

then SendGraspEvent(No Longer Near Target)

case Grasp :
if Gripped

then SendGraspEvent(Gripped)
if AwayFromTarget

then SendGraspEvent(No Longer Near Target)

case Release :
if AwayFromTarget and HandOpen

then SendGraspEvent(Safehand)

case default :
if AtStartLocation

then SendGraspEvent(At Start Position)

Command Generation from Current and Target States

The autonomous controller module generated velocity commands based on current

and target points in the control space of the robot using a simple proportional-integral-

derivative (PID) controller. This controller operated in each linear and grip DoF as:
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e(t) =x̂j(t)− xj(t)

dj(t) =Kp
j (e(t) +Kd

j (e(t)− e(t− 1)) +Ki
j

t∑

τ=0

e(τ)

where x̂j(t) is the target pose of the robot in DoF j at time t, and xj is the cor-

responding current position, and Kp, Kd, and Ki are proportional, derivative, and

integral gain parameters implementing the PID controller. dj is the single-dimension

command output from the automated control system. For the rotational DoF, e(t)

was found by finding the 3x3 matrix corresponding to rotation from current to target

orientation, then applying Rodrigues’ formula to find the equivalent rotational veloc-

ity axis and scale. PID parameters Kp, Ki, Kd were tuned manually so that the robot

under automatic control would achieve targets quickly with minimal overshoot.

The autonomous control system was written by Sam Clanton.

8.3.5 Grasp Planner

Summary The Grasp Planner Module generated a set of robot poses that would

complete the grasping task. It provided this set of poses to the autonomous

controller to build the D matrix supplied to the Arbitrator system.

Inputs Target Shape, Position, Orientation

Outputs Robot Poses

The grasp planning module is a prototype of more advanced planning systems that

could incorporate complex grasping and manipulation behaviors into the brain-computer

interface experiment. Given the shape, location, and orientation of the target and

the robotic effector communicated by the Experimental Control module, the grasp

planner creates a set of robot poses that would achieve object grasp. In this trivial

version of the planner, the target poses are based on random point sampling within

a spherical range of positions around the central target point supplied by the Ex-

perimental Control Module (Section 8.4.1). The rotational dimensions of the poses

are similarly generated in a region surrounding the target orientation in the space of

yaw-pitch-roll.
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The planner and autonomous controller are run as separate modules to facilitate

the time-consuming nature of grasp planning. For a non-trivial planner, the idea is

for it to receive a target position/orientation/shape at the beginning of a trial. The

autonomous controller operates under its fallback/single point pursuit mechanism

until the planner generates a cloud of points representing target poses that would

each successfully grasp the object. When the autonomous controller receives that

point cloud, it begins to generate sets of control commands based on the poses sent

by the planner. The autonomous controller operates in the experimental timebase,

while the planner runs separately, providing input to the system asynchronously. The

planner that is intended to replace the trivial planning module is GraspIt!, a grasp

simulation and planning system developed at Columbia University [18]. GraspIt! uses

a process of simulated annealing to find grasp configurations that provide form closure

of an object given a solid model of the object and robot hand. Those poses make up

a target cloud suitable for use for the autonomous control portion of the BCI system.

A prototype system that has incorporated poses generated by the GraspIt planner

into this experiment has been developed and evaluated offline by Rob Rasmussen in

our laboratory.

The trivial grasp planner was written by Sam Clanton.

8.3.6 Attention Detector

Summary The attention detector module attempted to determine if the monkey

was attempting to control the device based on cortical spike rate data

Inputs Spike rates

Outputs Attention level

An auxiliary module in the control system pathway is the attention / lick detection

module. The creation of this module was in response to the presence of high amounts

of activity recorded by arrays present due to arm and head movements of the monkey

during calibration in early brain control sessions. While this activity was omitted from

decoding model calibration by manual rejection of data recorded during movement,

we wanted to find a way to automate this process.

More generally, an important aspect of clinical BCI prosthetic control will be

knowing when the subject is intending to control the device. Neurons that are har-
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nessed for control are simultaneously involved in other normal cortical processes. As

there is no physiologic gating mechanism to indicate when observed activity is to be

applied to robot control or to be ignored, we have integrated this function into the

brain control experiment.

The firing rates of the recorded units tended towards a certain mode or range

during observation and control of the robot. During reward segments or when the

monkey was moving his head or arms, however, the firing of units in the arrays

generally occupied another mode or range of rates. These rates were on average

much higher than those observed during brain control; periods of head and arm

movement were visually identifiable looking spike rasters in real time. Periods of time

in which the monkey was looking away from the experiment or was not intending to

control the device could not be identified visually in the raster. A series of classifiers

have been attempted to detect both of these types of non-brain control behaviors.

These classifiers are trained on manually labeled samples of spike rates across all units

(“attentive” vs. “non-attentive” vs. “moving”) taken during observation periods. An

initial version of the attention detector used a multiclass support vector machine to

discriminate incoming samples, with moderate success. A more recent version of the

detector, written by Meel Velliste relies on clustering within the first two principal

component analysis vector projections and projection of incoming spike rates onto

either one cluster or the other.

After the attention model was calibrated, the detector began to emit Attention

messages that contained either a binary value indicating whether or not the monkey

was paying attention, or a continuous value indicating its level of attention. The

arbitrator could use this to gate outgoing robot control commands.

The original attention detector was written by Sam Clanton and Zohny Zohny,

replaced by a current version authored by Meel Velliste.

8.3.7 Low-Level Robot Control

Summary The Low-Level Robot Control system translated commands in the brain-

controlled DoF to torque commands at the joints of the robot. Along with

the control of robot kinematics, the robot implemented an impedance control

system that governed force and torque interactions between the robot and its

environment.
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Inputs Endpoint velocity commands

Outputs Robot endpoint position and velocity

The low-level robot control system interpreted commands from the high-level control

system and translated them into joint torques of an arm robot. The filter through

which this transformation took place is the impedance control algorithm discussed in

Chapter 6. Velocity commands to the robot endpoint acted to update the kinematic

setpoint from which the actual motion of the robot is compared during evaluation of

the low-level impedance algorithm.

The low-level robot control system was implemented as a single multithreaded

program. The thread subprograms were organized in a hierarchical fashion spanning

the receipt of high-level kinematic commands from the Control Arbitrator at the 33

Hz timebase of the experiment to the issuance of torque commands to the robot at

the 500 Hz timebase of the inner robot control thread. The 500 Hz inner control loop

was implemented using the Linux Real-Time Application Interface (RTAI), which are

a set of Linux extensions that allow segments of code within programs to be run in

real time with a very high degree of reliability. The RTAI subsystem accomplishes

this by running code segments that are declared as real-time operations first, while

the entire Linux kernel and OS is run in the spare time of any real-time code. Each

iteration of the inner 500 Hz control loop was initiated by a timer that guaranteed

reliable execution at the time resolution of the processor.

The responsibilities and timebase of each thread are organized as follows:

Inner Control Thread Computed an impedance model taking into account target

velocity and encoder readings supplied from the shared-control arbitrator. Used

resulting desired Cartesian forces and torques as input to recursive Newton-

Euler (RNE) inverse dynamics model to compute desired motor torques. Imple-

mented simple joint-space control model to control the redundant DoF to keep

the arm in relatively biomimetic reaching poses. Implemented safety system

keeping robot within certain force, velocity, and position limits. Was imple-

mented to run in a 500 Hz hard real-time loop using RTAI.

Network Thread Received target velocities asynchronously for input to inner con-

trol thread. Communicated with rest of BCI system regarding robot kine-

matic and dynamic state. Triggered synchronization pulses fed back into neural

recording system (see Section 8.5.4). The thread was timed on receipt of control
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packet, presumably at 33 Hz timebase of whole system.

Hand Thread Operated Barrett Hand using direct velocity commands in a soft

real-time control loop operating at 50Hz.

Keyboard/Interactive Thread Operated diagnostic display, interpreted manual

control keystrokes, and logged system status at a 25Hz update rate.

Inner Control Thread

At the beginning of execution of each loop iteration, the controller read the encoder

values from the robot and calculated the joint angles. From these values, the forward

kinematics of the WAM were computed. The endpoint velocity of the WAM was

estimated by filtering the position changes using an exponential filter with a 2%

decay/sample applied to a circular buffer holding 30 samples (60 ms). End-effector

rotational velocity was derived by forming a difference rotation RD between two

successive orientation measurement rotation matrices RA and RB, where RD = R−1A ∗
RB, followed by conversion of RD to a vector at the axis of rotation using Rodrigues’

formula. Rotational velocity measurements were found to be relatively noisy, and are

filtered by a 750 ms filter with a decay rate of 0.992. Linear and rotational velocities

were also determined using an endpoint Jacobian given the robot pose and measured

joint velocities in an attempt to reduce the rotational velocity noise, but these were

very similar to those derived from the direct differentials.

The recursive Newton-Euler formulation of the robot dynamics was calculated

with a virtual link at the WAM endpoint effecting the desired impedance and kine-

matic state of the robot (see Chapter 6). The actual model that was used for real-time

computation did not incorporate sampled velocity and acceleration terms, but the im-

pact of velocity and non-gravity acceleration terms are relatively minor compared to

the torque required to counteract gravity given the mass of the WAM robot and the

speed at which it moved during control. We have been able to simulate the WAM

operating with these parameters, but have had trouble with maintaining stability

when a more dynamic model was used.

The desired kinematic state was based on the last received update to the target

velocities from the arbitrator system, which is processed by the RNE kinematic-

impedance control algorithm. The output of this calculation is a set of joint torques

that are commanded to the WAM motor controllers at each joint. Each Barrett motor
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controller (puck) implements a very tight current control algorithm running at 30

kHz which produces the commanded torque at the motors calculated from the model

joint torques.

The impedance-based robot control algorithm was implemented for this experi-

ment because (a) Monkey-derived robot control commands are potentially very ran-

dom; there must be no expectation of smooth trajectories being commanded to the

robot, and (b) interaction with solid objects was desired in this experiment so that

actual movements of the robot were really a product of the movement commands

that are supplied to it as well as contact forces. While it would be possible to create

a model to reconcile the potentially chaotic input and interaction with objects in the

environment in a completely kinematic control scheme (e.g. for admittance-based

robot controllers), a full model of the environment and complete velocity command

trajectories would have to be known beforehand; this model had to deal with these

inputs in real time and without a full model of the robot’s surroundings.

The inner control thread also superimposed a number of other control schemes on

top of the impedance controller. Each of these separate controllers computed desired

forces or torques into the Cartesian or joint torque goals, and were simply added to

each before evaluation in the RNE equations (Cartesian force/torque) or sending to

the robot (joint torque), which had the effect of the robot attempting to achieve all

of the sub-task goals simultaneously.

The additional subcontrollers were:

Elbow Swing Controller This subcontroller implemented a simple and weak con-

trol loop over the angle of arm elbow swing. It attempted to keep the shoulder

from abducting past 90 degrees or adducting more than 10 degrees from vertical

towards the monkey. Additionally, it attempted to achieve a shoulder angle ro-

tated to approximately 90 degrees from the angle of any commanded endpoint

rotation of sufficient magnitude. The joint angle constraints helped to influence

robot poses to look roughly physiologic. Moving the elbow joint in reaction

to the commanded rotation angle facilitated the development of a consistent

proximal arm pose over larger rotations in the wrist joints; the vertical angle of

the forearm dictated the ease of effecting different Cartesian rotations because

of the specific kinematics of the WAM robot in the workspace over which the

robot was operating. Without any sort of calculation of inverse kinematics, this

helped the robot to make specific rotations more easily in some situations.
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Configuration Awkwardness Reducer Because the Cartesian controller did not

calculate inverse kinematics or plan robot trajectories in the joint space of the

WAM, it was possible for the WAM to get into awkward poses from which it was

difficult to achieve Cartesian movement of the hand over the robot workspace.

Soft joint limits were set up for each joint so that movement past these limits

was resisted but not impossible to achieve. This was implemented as a simple

proportional controller with some boundary force offset and hysteresis so that

movement outside the joint range triggered resistance forces that were felt fairly

strongly right at the limit boundary. A set of these types of controllers at each

joint in the wrist were very effective in keeping the WAM robot out of awkward

joint configurations, even over control sessions that lasted up to three hours.

Workspace Limit While our original goal was to let the robot completely inter-

act with the environment in a freeform manner, there were a number of inci-

dents with the robot getting tangled into the experimental frame, threatening

to damage its own wires, or getting caught up into the monkey chair and head

shield. Monkey G was observed grasping the robot hand when it came near

it, and even exhibited what appeared to be grooming behaviors with the hand

in two instances. Usually, the monkey was annoyed by the robot getting too

close during periods that it was not attempting to control it. We implemented

a workspace limit that was actually slightly beyond the boundary of the open

workspace; the robot could still interact with the robot frame and monkey chair

(and monkey), it was just prevented from moving very far into these regions.

These limits were achieved by setting a rectangular workspace, then implement-

ing a simple spring-damper model system that pushed the robot back into the

workspace if it wandered outside of it.

8.4 Experimental Control System

The experimental control system provided the accessory systems necessary to conduct

the BCI system through experimental trials and sessions in the experiment. The

backbone of the experimental control system is the Experimental Control Module,

which timed and sequenced the series of tasks that comprise a trial. The other parts

of the subsystem were the different hardware and software pieces that implemented

the behavioral parts of each trial not directly related to brain control.



8.4 Experimental Control System 157

8.4.1 Experimental Control Module

Summary The experimental control module placed the robot control pathway into

the context of a specific experiment. It controlled the sequence of robot move-

ment events that comprised a successful trial and paced the experiment through

those events. It dictated the specific grasp target presented to the subject on

each trial, controlled the shared-mode control parameters applied during trials,

the reward system, and which data that was supplied to the cortical decoding

system for calibration.

Inputs Grasp event notifications, Monkey button press events, Presentation robot

status notifications, Controller button press events

Outputs Task states, Shared control parameters, Target locations, Decoder collec-

tion settings, Presentation commands, Reward activations, Audio cues

The experimental control module (XM) conducted the experiment by cycling

through a set of task states that defined individual trials, as indicated in Figure

5.4. Task states represented conceptual phases in the procedure of a trial or motion

primitives in the case of the reach and grasp movement itself. State transitions were

governed by signals from other modules that indicated the occurrence of events in

the experiment.

Task State Forward Transition Failure
Intertrial Timeout None
ButtonPress ButtonPressed Timeout
Presentation PresentationFinished None
HandOpening HandOpen Timeout
Reaching NearCenter Timeout
Orienting Oriented Timeout / LeftRegion
PreGrasp At Target Timeout / LeftRegion
Grasping TargetGrasped Timeout / LeftRegion
Reward Timeout None

Table 8.1: Events governing Experimental Control Module forward and
failure state transitions. Grasp events are italicized.

The grasp planning subsystem, which had the domain knowledge of how to com-

plete reaching and grasping tasks, informed the XM that in-trial subtasks were com-

pleted by sending “grasp events”, indicated in italics in Table 8.1. At the beginning

of each task state, the XM sent out a configuration message encapsulating the shared
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control parameters, flags instructing extraction modules to collect data for calibra-

tion, target locations, and other session-dependent configuration parameters. It then

executed any state-dependent actions needed such as issuance of sound cues, com-

mands for movement of the presentation robot, or commands to the analog module

(Section 8.4.2 to issue a reward to the monkey. Next, it waited for the events from

Table 8.1 to trigger state transitions.

Session Execution Sequence

The experimental control began at Repetition 1, Trial 1. Repetitions represented

the successful completion of the task with a complete set of presentation targets

and robot start positions. These governed the progression of the session from the

model calibration to subject practice phases of the experiment. By forcing decoder

calibrations and experiment phase (observation, coadaptation, control) transitions to

repetition boundaries, spike and movement data entering model calibration is based

on evenly sampled distributions of target directions in successful trials; failed trials

were rejected from counting towards repetition completion.

A set of configuration files are loaded at the beginning of each trial that contain

a set of data comprising the configuration of the system. This configuration data

included which task states were conducted, the shared-mode control parameters to be

applied during each task state, set of targets and start positions, reward settings, and

other parameters. As these are loaded each trial, the system was highly reconfigurable

during the running experiment.

Next, a pair of target and robot start-point configurations were selected from

those remaining in the current repetition and sent to the automatic controller. The

XM then entered the ButtonPress state and emitted an audible start cue to the mon-

key. It then waited for receipt of a ButtonPress message from the analog module.

When a ButtonPress signal was received, the experimental control system transmitted

a movement command to the presentation robot control module and moved into the

Presentation state. The reaction of the Automatic Controller was to move the robot

to the start position. Shared-mode control parameters issued during this period were

always set to full automatic control to eliminate collisions between the two moving

robots. When the presentation and WAM robots were in their target and starting

positions, the Presentation robot controller notified the experimental controller and

the task state progressed to Reaching. During the actual reaching trial, progression
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through the task states was now governed by receipt of grasp events from the au-

tonomous controller. If and when the robot grasped the target cylinder, the XM

entered a Reward state in which it issued a reward command to the Analog module

and waited for the robot to retract from the target. The controller then proceeded to

the next trial, incrementing the rep/trial counter as needed.

During the task execution periods of experimental trials, a timeout was config-

ured for each task state. If the timer expired for a task state before completion, or in

certain cases if the robot was controlled far away from the subtask goal corresponding

to the task state, e.g. if the robot moves far away from the target when in the Grasp

task state, the system enters a failure mode. During task failure, the experimen-

tal controller emitted a “buzzer” sound, put the starting and target positions of the

current trial back on the remaining targets for the repetition, and started the next

trial. The controller informed any decoder modules of the failure, at which time they

discarded any data buffered from the trial for calibration.

Alternative success and failure modes were indicated by the experimenter using

a joypad interface. If the monkey stopped paying attention to robot movement dur-

ing the observation and calibration phase, or the monkey appeared to stop paying

attention and control became off-track during the training phase, the experimenter

could press a button to abort the trial. Alternatively, the experimenter could also

advance the system through control subtasks manually; the primitive autonomous

control system used in this experiment could only incompletely recognize when the

subject had correctly controlled the robot to grasp an object or complete any of the

grasp subtasks. The ability to manually trigger progression through the task allowed

it to be completed based on commonsense notions of the performance of motion prim-

itives. Some of the earlier training process with the monkeys often involved manual

reward and punishment issued through this system. As monkeys became acclimated

to the task, the manual system was relied upon to a lesser degree.

The experimental control module was written by Meel Velliste and Sam Clanton.

8.4.2 Analog Module

Summary The analog module performed analog I/O supporting external devices

such as the button and the reward delivery system.

Inputs Reward Commands
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Outputs Button Press Events

The analog module controlled interaction between the BCI experimental system

and a few hardware systems involved in running the experiment. This module worked

as an interface between a National Instruments data acquisition card and the RTMA

system. It waited for events on monitored analog channels to occur which triggered

signals culminating in RTMA messages, and also for certain RTMA messages that

are converted to voltage outputs.

In the final experiment, these functions were limited to detection of monkey but-

ton push events and issuance of reward. The monkey button was a simple pushbutton

mounted on a metal frame. Button pushes completed a simple circuit, and the ana-

log module triggered button pushed events when triggered. This module also sent an

output to a reward controller. The reward controller was a custom-made electronic

component that controlled a solenoid valve on a water tank connected to the reward

straw on the monkey chair.

It also could deliver a manual reward of preprogrammed length when a reward

button was pressed by the experimenter. The analog module itself was prepro-

grammed with a number of reward patterns designed to promote motivation without

delivering large amounts of water. These patterns gave out small rewards punctuated

by larger ones in random intervals, or split single large rewards into many smaller

ones (this was patterned after reward research in operant conditioning). Because of

the requirement for monkey patience over relatively long experimental trials, it was

difficult to get the monkey to work for anything but large rewards. Early in training,

these alternative reward systems facilitated the monkeys working over long periods

of time. After the monkeys were used to completing long trials for reward, these

schemes were no longer needed.

The analog module was written by Meel Velliste, Sam Clanton, and Andrew

Whitford.

8.4.3 Presentation Robot Controller

Summary The presentation robot controller moved the presentation robot into tar-

get poses.

Inputs Target sequence number for presentation
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Outputs Completion of movement notifications

The presentation robot controller received commands from the XM to move the

presentation robot to different positions and orientations in the WAM workspace.

The presentation robot was a DENSO VS-6556G industrial-style 6-axis admittance

robot that was designed for speed and accuracy, but was completely noncompliant.

Rather than sending actual pose commands to the presentation robot directly,

a set of canned poses were determined for the robot to achieve during brain-control

trials. First, a neutral no-target pose was determined for the robot to move to between

trials. Next, robot poses were created at 40 degree orientations from a forward-facing

WAM hand around a central point in the workspace. These specific locations of these

targets were such that the WAM could place the hand at that central point and

orient towards each target with the WAM fingers not interfering with the rotation by

contacting the object.

While there was limited concern over the potential of the WAM robot to cause

damage to the experimental setup or injury to the monkey, the DENSO robot would

be capable of breaking many of the electrical components of the experiment and

pinning the monkey in its chair. The canned poses added a layer of safety that

limited the possible range of positions and transitions between them that were known

to be safe. While the WAM arm was compliant, there was concern that the DENSO

robot could break the Barrett Hand fingers when closed (this occurred during testing)

or pin the robot against the frame and damage it. The XM relied on the WAM to

self-report that it was clear of the DENSO before any movement command was issued.

Then when the XM issued a presentation robot movement command, it interrupted

all other actions to wait for a message from the presentation robot controller that

it had completed the movement. This small amount of sequencing embedded in

the movement of both robots prevented collisions caused by the noncompliant robot

moving. The compliant arm robot, however, frequently collided with the stationary

DENSO robot during experimental reaching trials.

The presentation robot control module was written by Meel Velliste, with mod-

ifications and pose registrations by Sam Clanton.
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8.5 Manual Intervention System

Manual intervention in the BCI experiment would not ultimately be needed in a

fully functional BCI. In this experiment, human interaction in tuning the decoding

modules and influencing the behavior of the monkeys was critical to the success of

the project. These modules fulfill those functions.

8.5.1 Control Visualization Module

Summary The Control Visualization Module presented the control-space commands

that were being output from the various cortical decoders and automated control

system for comparison in real time.

Inputs Movement Commands, Robot configuration

Outputs None

The control visualization module allowed the direct output of different cortical extrac-

tion and control algorithms to be visualized in real time. The module, implemented

in Python using the Panda3D game engine, displayed a 3D scene with one or more

objects corresponding to independent controllers specified in a configuration file (Fig-

ure 8.17). Each object indicated a position, orientation (usually linked to the robot)

and linear and rotational velocities output by the corresponding decoder. Before the

6-DoF unified decoding model was developed, a number of different decoding meth-

ods were pursued. Different models for the control of rotation were being built and

many different sets of parameters were being tried during evaluation of these different

decoders. Until the development of the Visualization Module, decoding modules were

evaluated offline for how well each motor model was able to fit or predict the cortical

decoder training data, but this had only a loose correspondence to how well each

model would perform during closed-loop control.

The Visualization module was a way to approach this without potentially losing

a session’s worth of data because of monkeys losing motivation due to poor control.

The idea of the visualization system was that many decoders could be run at once,

and the output displayed on a screen. Humans running the experiment could then

evaluate the quality of the control given this visual output. Attempts to automate

this process were confounded by the monkeys not always attending to the task; it

was important to only evaluate control during periods in which the monkey was
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Figure 8.17: Screen capture from control visualization module.

attempting to control the device.

The Visualization Module was written by Charles Frantz, Sam Clanton, and

Zohny Zohny.

8.5.2 Manual Input Module

Summary The Manual Input module provided a system in which human experi-

menters could manually provide positive or negative reinforcement to the mon-

key during running BCI experiments. In addition, game controllers were used to

label data for the Attention Detector module and to directly control the robot

when stuck.

Inputs None

Outputs Cancel/Advance signals destined for the XM, Data labels for the Attention

Detector, Robot control override commands

The controller interface module provided an interface between one or more handheld

game controllers (Sony Sixaxis Playstation 3 controller) and the brain-computer inter-

face experiment. Controllers were used mainly during brain-control trials to manually

cancel or advance subject progress. If the monkey was not paying attention to control

or performing poorly for reasons not related to control skill, the experimenter would

often abort the trial. The monkey was determined to not be paying attention when it

looked away from the robot or started to rotate or move to a significant degree in its

chair. This would give the monkey immediate negative feedback for starting a trial
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that it did not intend to finish, or for giving up on a trial. Conversely, if the monkey

was very close to completing a subtask, or completed the grasping task with the robot

but it did not register through the Autonomous Controller module, the experimenter

could register successful completion of the subtask externally.

The Game Controller module was also used to label incoming data for use in

the Attention Detector module, and used in some cases to directly control the robot.

Manual robot control was used occasionally in earlier experimental sessions to slightly

adjust robot position if its pose approached a conformation that was difficult to

proceed from to get to a goal state. Usually this occurred if the prosthetic and

presentation robots became interlocked, or if the prosthetic robot became twisted into

a conformation that is difficult to proceed directly from to a goal state. Messages

from the Game Controller module were also used to take the place of cortical decoder

commands, allowing control to be performed by a human operator directly. In this

case, the robot control commands are sent to the system with the same 30 ms timing

as the cortical commands. This was used in the human subject experiments discussed

in Chapter 4.

The Game Controller Module was written by Sam Clanton.

8.5.3 Drift Tracking and Correction Modules

Summary The drift tracking and correction modules allowed the experimenter to

compensate for apparent drift or bias in the decoded neural control commands.

Inputs Control commands from decoding modules

Outputs Corrective commands to the decoder

The drift tracking and correction modules were written to correct for bias ob-

served in the output of the cortical decoding modules. Especially in the early BCI

trials with Monkey G, after calibration the robot would usually be observed to drift

in different directions in each session. During periods in which the monkey appeared

to be attempting to control the device, the control signals being sent to the arbitrator

seemed to oscillate around a baseline value shifted away from zero velocity, so that it

was much easier to control the robot in some directions rather than others. The drift

tracking module tracked the mean control commands emitted by particular cortical

decoding modules over 20-30 second periods and displayed it to the experimenter.
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The drift correction module allowed the addition of a reverse bias to the output of in-

dividual decoding modules. Manual drift correction was applied very gradually when

needed. Much of the drift was removed from the control signals when low-movement

samples started to be removed from data going into the Decoder calibration proce-

dure, and this pair of modules were used less over time.

The drift tracking mechanism was written by Sam Clanton. The drift correction

module was written by Meel Velliste.

8.5.4 Experimental Timebase

The dedicated DSPs on the RZ-2 systems provided a convenient mechanism to set

the timebase of the overall experiment. UDP packets sent by the RZ2 systems at the

end of each sampling cycle were sent at 10 ms intervals to an accuracy of less than 1

microsecond. The timebase of the experiment was controlled by the receipt of sets of

3 sequential packets by the spike processing module and subsequent issuance of spike

count messages over the RTMA network. Issuance of spike count messages initiated a

cascade of messages between control modules that culminated in a velocity command

being sent to the low-level robot control system. These intermediate control modules

were not self-timed, but form a part of a branched pipeline. The robot control module

itself operated in an RTAI (real-time linux) framework that calculated motor torques

at 500 Hz, but accepted velocity commands on an as-available basis. Thus, the system

architecture was laid out as a data processing pipeline bookended by two independent

real-time systems. The cortical decoding and other control modules then relied on

the timebase provided by the TDT system to dictate the sampling and interval times

of the data that each module operates on, rather than relying on the internal timing

of any intermediate module itself. Because of the independent timing of the robot

controller, the internal timing of intermediate steps is less important than would be

the case if the entire system operated synchronously.

System delay, the time elapsed between a spike being recorded recorded and

observing its effect on control of the robot, was monitored by synchronization pulse

signals periodically generated by the TDT and attached to UDP packets streaming

from the RZ-2 system. Flags indicating receipt of the sync pulse were transmitted

within spike count packets in the RTMA network, and were similarly set within any

packets derived from the spike packet through the brain control pathway. At the
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robot control computer, the low-level controller pulsed a line on the serial port when

a sample with the sync flag set was received. The serial line was connected back to

inputs in the RZ-2 systems, closing the loop. By knowing the round-trip time for

spike count packets that coincide with sync pulses, the overall system delay can be

estimated. The total round-trip time was 10 milliseconds before Arbitrator module

began to time the release of control commands on the receipt of spike count messages,

which could add an additional ≈ 30 ms to the round-trip time. Data within spike

count packets was at most 30 ms old at the time they were sent out, so that there

was a total delay of slightly less than 70 ms in the spike data reaching the robot

controller.

The timing system was developed by Meel Velliste.



Chapter 9

Conclusions

To conclude this dissertation, this final chapter contains a discussion of some of the im-

portant parts of what has and what has not been accomplished in the work presented

here. It starts with what has not been accomplished, which is a deep understanding

of the neuroscience behind how two monkeys learned to operate a 7-DoF arm with

a BCI. It is followed by a statement about seeking simplicity within complex sys-

tems. The chapter ends with a discussion of what the successful conclusion of our

experiment means for BCI experimentation in the future.

9.1 Real-World BCI and Neuroscience

Something that is missing from this dissertation is a detailed analysis of what exactly

occurred in the brain of the monkeys in the process of developing BCI control. Does

the process of watching the robot arm move during decoder calibration elicit activity

in the brain that echoes signals that control the monkeys’ own arm? What changes

in the cortex allowed control skill to develop during practice? While questions like

this have been investigated with a great deal of energy, they are very difficult to

answer with the data that has been collected in this experiment. The openness

and uncontrolled nature of the experiment, intended to make the BCI function in a

realistic setting, also make the resulting data very difficult to analyze. Some of these

challenges include:

1. The monkey was moving the robotic arm at the same time as its own arm, head,
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and eyes.

2. The BCI task was difficult to complete, and task completion took a relatively

long time; at any moment the monkey may or may not have been attempting

to directly complete the task.

3. The long trial duration led to a relatively small number of trials.

4. The 6-DoF task used 36 targets to sample the control space evenly; this made

averaging of trajectories for analysis difficult.

5. Robot movement did not always reflect intent exactly; actual movements were

either the result of a BCI command, or the result of interaction between the

robot and its environment.

6. The process of developing the system provided a moving target for data analysis.

At the same time, full control of the device would have never occurred without

this process.

In many ways, the data recorded in this experiment resemble a recording of a

monkey freely behaving more than it does many of the highly constrained 2-D and

3-D BCI cursor movement experiments of the past. Nonetheless, the development of

the ability to control the device was obvious and direct to the long-term observer; at

the end of the training process, one could watch the monkey perform full control of

the robot when sufficiently motivated. In the end, we can describe what occurred,

but still have a difficult time explaining why.

BCI experiments that involve real-life tasks will probably suffer from similar

problems. Affording natural control of a fully articulated robot can conflict with the

process of understanding how this is done. Moving forward, it will be important to

develop experimental paradigms that preserve the complexity and richness of nat-

ural movements, but provide more controlled experimental conditions that facilitate

analysis.

9.1.1 Einstein’s Razor

Everything should be made as simple as possible, but no simpler.

The working BCI system described here represents years of development work

built on the foundation provided by previous BCI control experiments. Its devel-

opment was the result of equal parts systematic design and trial and error. Many



9.1 Real-World BCI and Neuroscience 169

versions of each of the subsystems of the experiment had been built and used over

periods of time, with a great deal of work going into efforts that ultimately were not

used in the final product. What has emerged from this experience has been a system

that is in many ways simpler than that which was originally envisioned, but that also

is more capable than one we could have originally conceived.

Because of the overall complexity of the task that we were trying to accomplish,

when faced with one facet of the problem (e.g. “find a useful representation of ro-

tation”), there was a constant tendency to want to do one of two things: (1) design

very particular and complicated solutions to the immediate problem (“let’s use wrist

joint angles along with the Cartesian position”), or (2) reduce the specific complexity

of the task in a way that makes it easier, but is not helpful in the long run (“let’s

start with 1-D axial rotation and go from there”). For the example of rotation, the

simple solution of rotational velocity emerged after realizing that the monkey did not

need to consciously understand the relationship between a rotation and the direction

of that rotation’s axis. Processes such as this one that enabled many aspects of the

system to work seemed to be one of emerging simplicity, where solutions that were

complicated and particular to our robot or experiment were passed over for ones that

were simpler and more general but not initially apparent. These solutions were not

adopted because they were simpler, but because they tended to work better. In the

end, however, I think that we have arrived on a general model that neatly solves a

lot of difficult problems.

Something that can be of value moving forward is to keep this experience in

mind while designing future BCI systems. It is tempting to rely on the closed-loop

nature of BCI and expect the subject to compensate for problems introduced due to

overly complex or degenerate systems. In the end, however, these approaches almost

never work. On the other hand, clever solutions to problems that were developed

in isolation, without incrementally trying them with a subject, rarely seemed to

work either. Successful progression of control occurred through a balance between

systematic design and test iterations over the problem. If this entire process were

repeated, many of these efforts would now be more quickly understood to be blind

alleys; more rapid development may be possible if more principled approaches are

taken from the beginning, as long as they can be incrementally tested.
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9.2 Building Blocks for BCI

9.2.1 Brain Control of Robotic Dextrous Grasping

The brain-computer interface architecture presented in this dissertation was intended

from the beginning to apply to the control of even more complex robots, specifically

for dextrous robotic grasping. A large part of our development effort has been to

generalize elements from 3-D linear control into concepts that can be applied to the

control of a system that is potentially more complex than the one that we actually

used. During the design and creation of the system described in this dissertation,

it was not known what robotic hardware would be available for control. While only

the 4-DoF gripper (mapped by 1-DoF of brain control) described in this work was

available when the project was initiated, the intent was for later incorporation of

a more highly configurable hand robot that could exhibit meaningful differences in

hand shape. Therefore, each element of the system was designed to work seamlessly

to include the control of dextrous finger movement. Aspects of the system that were

intended for application to dextrous grasping include:

Expansion of cortical decoding While the neural cosine-tuning model was orig-

inally developed for the analysis of translational movements of the hand, the

simplicity of its underlying equations made its application to the control of ro-

tation straightforward. By thinking about high-dimensional decoding in terms

of estimating a command based on a population of projected movement esti-

mations in some vector space, the concise decoding system that evolved can be

applied to finger movements just as well as hand rotation.

Observation-based decoder calibration While observation-based decoder cali-

bration was useful for operation of the 7-DoF arm, it will be even more nec-

essary for the operation of a BCI dextrous hand. While many specific robotic

arm structures can obtain similar sets of Cartesian end-effector poses, the way

that a hand interacts with the world is a direct product of both its specific

morphologic structure and its set of joint poses. Therefore, a method that goes

beyond thinking of a BCI robotic hand as equivalent to the natural hand of the

subject is needed to provide the link to establish control. An observation-based

approach provides a convenient mechanism to do this.

Multiple target pose-based shared control The passive fixturing-based shared

control mechanism described in this dissertation was initially designed to assist
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with the control of dextrous grasping. The hand is capable of grasping virtually

any small object in a wide range of hand poses, corresponding to the “point

cloud” concept of motion targeting within the shared control algorithm. The

integration of an asynchronous grasp planning system in this experiment, while

trivial in this example, is designed to be replaced by robotic grasp planning

software that can represent a rich set of grasping and potentially manipulation

behaviors.

Joint-space velocity-impedance control The low-level robot control system pre-

sented here is designed to work as well for joint-space control as Cartesian end-

point control. It is also easily extensible to branched kinematic chains so that

it is easy to imagine the use of this method to provide controlled compliance

during BCI grasping, and extend into a robotic hand control system capable of

producing simultaneous control of contact forces and finger movement during

manipulation.

The extensibility of this system will be put to the test using a robotic arm and

hand system that we have recently acquired for use in a new set of BCI experiments.

The Johns Hopkins University Modular Prosthetic Limb (MPL) system (Figure 9.1)

will add 10+-DoF finger control to the range of brain-controlled movements described

in this dissertation. To be ultimately useful in a clinical context, the ability to move

a robotic prosthetic device must be initiated in a patient with no ability to move

and end with elaborate control of a fully articulated prosthetic that can allow full

interaction between the device and the real world. Extension of BCI to dextrous

finger movements using the MPL is an important step in this process.

9.2.2 Patterns for Future BCI Systems

Many aspects of this work that were developed on the path to 7-DoF BCI control

represent independent advances in clinically relevant brain-computer interface and

robotic systems. The use of completely automated cortical unit discrimination meth-

ods suggests that a time-intensive spike sorting process is not required for provision

of useful clinical BCIs. The use of recordings mainly from the side of the brain ipsi-

lateral to the robot supports extension of sophisticated BCI control to patients with

stroke and other neurologic conditions affecting areas normally used for limb control.

The observation-based model calibration procedure provides a model for controlling

movements that have not been studied equivalently in natural motion. Advances in
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Figure 9.1: The Johns Hopkins University Ap-
plied Physics Lab Modular Prosthetic Limb
(MPL).

robot control algorithms made effective control of these DoF possible in a task that

simulated realistic situations in allowing the robot to freely interact with solid ob-

jects. These methods and others prototype future systems that may allow patients

to realistically and practically use a BCI device during daily life.

Some themes have emerged in our research that have implications for both how

complex BCI problems can be approached and what BCI device control may have to

offer in the future. Our approach to cortical decoding of a large number of move-

ment parameters simultaneously was not to build a much more sophisticated model

for extraction of movement intent from cortical activity. The relationship between

cortical activity and natural rotational hand motion as well as the transition from

kinematic to dynamic control on physiologic motion is currently poorly understood.

Instead, our focus was on the use of biologically inspired yet simple control models

that were learnable by the subject. Instead of viewing the use of a BCI prosthetic

as a replacement for natural control of a monkey’s real arm, it is instead the intro-

duction of a foreign object into a new control loop in the brain. This foreign object

may possess certain features in common with movement of the body that may be

more easily incorporated into familiar neural control mechanisms, but at its root the
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brain must learn how to operate a new and complex tool. The process that allowed

successful control to take place in our experiment could not have been too closely

related to the usual control of each monkey’s own arm; the robot arm used in this

task was differently constructed and much larger than the monkeys’ own.

Similarly, it is possible to create very sophisticated models for specific arm kine-

matics or dynamics based on primate musculoskeletal structure or neurophysiology

that are intended for use in BCI. Even if these models are successfully built, they

cannot be used efficiently if the design of the prosthetic robot differs much from the

structure of the natural limb. As the envelope of what can be controlled by BCI

has moved from the upper arm to include the wrist, we have already encountered

a mismatch between robot and subject mechanics (WAM wrist) that would make

specific physiology-based models difficult to use. This problem will only be com-

pounded when moving from the control of the arm to the control of finger movements

of the hand, as grasping and manipulation behaviors depend even more closely on

the specific mechanical structure of the effector.

At the same time, progress toward full control of the device seemed to be encour-

aged by the continuous process of developing robot control algorithms that made the

robot move more like a living thing. Instant advances in brain-control skill and atten-

tion to the task seemed to occur when, for instance, the robot impedance control para-

meters were modified to increase the fluidity of robot motions. Similarly, performance

was improved when control of the redundant degree-of-freedom (elbow swing) of the

robot constrained it to poses that appeared to be more physiologic. While difficult

to prove conclusively, this experience suggests that it may be beneficial to carry over

certain salient features of natural motor movements to promote the process of embod-

iment that occurs as control skill is developed. Similarly, improvements in extraction

algorithms to better capture natural responses to observations of robot movement

seemed to enhance control. Performance appeared to be instantly enhanced by use

of the bias-reducing OLE algorithm instead of PVA to translate observation-based

calibrated decoding parameters to parameters governing active intentional control.

When errors were made in the cortical extraction, the resulting decoders were often

similar to but not the same as ones accurately based on observation-based activity.

Brain-control sessions using these parameters were never successful and usually ended

with monkeys giving up on the process early in the session. This suggests as well that

the process occurring during BCI skill acquisition in this case is more than one of

pure operant conditioning, and instead one that can be connected at some level to
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integration of the robot into a physiologic body control model.

Viewing BCI prosthetic control as a process somewhere between learning how

to use a tool and learning how to use an arm frees system designers to devise BCI

control schemes for things like hands without following anatomy too closely. While

we rely on observation-based activity as a mechanism to calibrate our neural decoder,

we already take advantage of activity that is elicited when a monkey views a robot

arm that is very different from its own. The control that develops from this process

is at first approach just the control of a machine that happens to look like an arm.

However, features that have been observed in monkey behavior that are unnecessary

for control of the robot, such as the bell-shaped velocity profile of movements, suggest

a deeper connection to how brain control of physical devices occurs. The boundaries

of complexity and type of devices that could potentially be controlled with a BCI

have yet to be discovered.
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[100] G Schalk, J Kubánek, K J Miller, N R Anderson, E C Leuthardt, J G

Ojemann, D Limbrick, D Moran, L A Gerhardt, and J R Wolpaw. De-

coding two-dimensional movement trajectories using electrocorticographic sig-

nals in humans. Journal of neural engineering, 4(3):264–275, sep 2007. doi:

10.1088/1741-2560/4/3/012. 2.1

[101] G Schalk, K J Miller, N R Anderson, J A Wilson, M D Smyth, J G Ojemann,

D W Moran, J R Wolpaw, and E C Leuthardt. Two-dimensional movement

control using electrocorticographic signals in humans. J Neural Engineering, 5

(1):75–84, feb 2008. doi: 10.1088/1741-2560/5/1/008. 2.1

[102] Andrew B Schwartz and Daniel W Moran. Motor Cortical Activity During

Drawing Movements: Population Representation During Lemniscate Tracing.

Journal of neurophysiology, 82(5):2705–2718, jan 1999. 2.3.2

[103] Andrew B Schwartz, Dawn M Taylor, and Stephen I Helms Tillery. Extraction

algorithms for cortical control of arm prosthetics. Current opinion in neuro-

biology, 11(6):701–708, 2001. doi: doi:10.1016/S0959-4388(01)00272-0. 2.3.2,

3.1.1

[104] Eric W Sellers and Emanuel Donchin. A P300-based brain-computer interface:

Initial tests by ALS patients. Clinical neurophysiology : official journal of the

International Federation of Clinical Neurophysiology, 117(3):538–548, mar 2006.

doi: doi:10.1016/j.clinph.2005.06.027. 2.1

[105] EW Sellers and JR Wolpaw. The Wadsworth BCI research and development

program: at home with BCI. Neural Systems and . . . , 2006. 2.2

[106] Mijail D Serruya, Nicholas G Hatsopoulos, Liam Paninski, Matthew R Fellows,

and John P Donoghue. Instant neural control of a movement signal. Nature,

416(6877):141–142, mar 2002. doi: 10.1038/416141a. 2.1, 2.3.1, 5.1, 5.2, 7.1

[107] Ken Shoemake. Animating rotation with quaternion curves. In Proceedings of



186

the 12th annual conference on Computer graphics and interactive techniques,

pages 245–254, New York, NY, USA, 1985. ACM. ISBN 0-89791-166-0. doi:

http://doi.acm.org/10.1145/325334.325242. 4.3.3

[108] B Siciliano. Springer handbook of robotics, 2008. 6.1

[109] MW Spong and S Hutchinson. Robot modeling and control, 2006. 6.1, 6.2

[110] MW Spong and M Vidyasagar. Robot dynamics and control, 2008. 6.2

[111] B E Swartz and E S Goldensohn. Timeline of the history of EEG and associated

fields. Electroencephalography and clinical neurophysiology, 106(2):173–176, feb

1998. 2.1

[112] D M Taylor, S.I.H. Tillery, and A B Schwartz. Information conveyed through

brain-control: cursor versus robot. IEEE transactions on neural systems and

rehabilitation engineering : a publication of the IEEE Engineering in Medicine

and Biology Society, 11(2):195–199, 2003. doi: 10.1109/TNSRE.2003.814451.

2.1, 7.1

[113] Dawn M Taylor, Stephen I Helms Tillery, and Andrew B Schwartz. Direct

cortical control of 3D neuroprosthetic devices. Science, 296(5574):1829–1832,

jun 2002. doi: 10.1126/science.1070291. 2.1, 3.1.1, 5.1, 5.2, 5.4, 7.1, 8

[114] Russell Taylor, Pat Jensen, Louis Whitcomb, Aaron Barnes, Rajesh Kumar,

Dan Stoianovici, Puneet Gupta, Zhengxian Wang, Eugene Dejuan, and Louis

Kavoussi. A Steady-Hand Robotic System for Microsurgical Augmentation.

The international journal of robotics research, 18(12):1201–1210, jan 1999. doi:

10.1177/02783649922067807. 4.2

[115] Dennis Tkach, Jacob Reimer, and Nicholas G Hatsopoulos. Congruent activity

during action and action observation in motor cortex. The Journal of neu-

roscience : the official journal of the Society for Neuroscience, 27(48):13241–

13250, nov 2007. doi: 10.1523/JNEUROSCI.2895-07.2007. 3.4, 5.2

[116] Dennis Tkach, Jake Reimer, and Nicholas G Hatsopoulos. Observation-based

learning for brain-machine interfaces. Current opinion in neurobiology, 18(6):

589–594, dec 2008. doi: 10.1016/j.conb.2008.09.016. 3.4, 5.2

[117] E Todorov. Direct cortical control of muscle activation in voluntary arm

movements: a model. nature neuroscience, 3(4):391–398, apr 2000. doi:

10.1038/73964. 7.4.1

[118] E Todorov. On the role of primary motor cortex in arm movement control.

Progress in Motor Control: Effects of age, 2004. 2.3.2



187
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