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ABSTRACT 

This thesis analyzes two potential means of mitigating the cost increase of ancillary services that 

is expected with the decarbonization of the U.S. electricity network. The first method, balancing area 

consolidation, addresses this cost rise by reducing the demand for ancillary services. This research 

quantifies the economic benefit of consolidation in the frequency regulation market by estimating 

the resulting reductions in frequency regulation requirements and cost. The results show that this 

policy leads to a reduction in frequency regulation cost of approximately $0.1 per MWh of total load. 

These results do not significantly change with the inclusion of 20% wind, suggesting that in the near 

term, wind’s interaction in the frequency regulation market is not a prime motivation for 

consolidation. This analysis does not consider all the benefits or costs of BA consolidation, and is 

not meant as an assessment of net-benefits. Though the results show consolidation could lead to an 

increase in emissions of some air pollutants, which suggest that there may be significant trade-offs 

associated with the decision to consolidate balancing areas. 

The second means of addressing the expected increase in ancillary services costs is to increase 

the supply of ancillary services by leveraging residential demand response. We developed methods 

that optimally schedule ancillary service capacity on demand response resources while accounting for 

the risk of customer response fatigue. The model is used to test the efficacy of hourly caps on 

demand response penetration in ancillary service markets. The results show that residential demand 

response could provide a significant portion of the total ancillary service requirements attributable to 

residential loads: between 50% and 75%. Hourly caps on demand response participation are shown 

to be economically inefficient. With a 25% market cap, residential demand response is scheduled to 
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provide 25% of the hourly total market value, while the risked-based optimization schedules 

residential demand response to provide 82% of the total value. Methods like the ones presented in 

this paper, that can appropriately weight the benefits and risks of committing residential demand 

response will be critical to efficiently and effectively use this resource for ancillary services. 
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Chapter 1: INTRODUCTION 

America is at a major crossroads: does it believe in anthropogenic climate change and does it 

want to reduce green-house gas emissions to climate stabilizing levels. If the answer to both of these 

questions is yes, then a critical step will be decarbonizing the electricity network. Today there are 

many state and federal policies that encourage the procurement of renewable energy such as 

renewable portfolio standards [1], regional greenhouse gas markets [2], and the Environmental 

Protection Agency’s proposed clean power plan [3]. These policies, in conjunction with other 

environmental regulations, e.g., the Mercury and Air Toxin Standards [4], will likely result in large 

amounts of coal-fueled generator to be retired as well as a significant increase in energy efficiency, 

demand-side management and large amounts of renewable generation. Most of this additional 

renewable energy is likely to come from wind [5].  

This dramatic shift in both fossil-fueled and renewable generation will undoubtedly affect the 

cost of energy as well as the cost of ancillary services, a set of additional services that allow the 

commodity of energy to be reliably delivered. With this additional wind in the electricity network 

comes additional variability that is inherent to wind power [6]. The added variability will increase the 

need for balancing using flexible resources providing ancillary services. At the same time, thermal 

generation resources, traditionally supply these ancillary services are being retired due to 

environmental regulations. This decreases the supply of ancillary services. The net economic impact 

of these is still highly uncertain but will most likely result in higher prices and costs for the balancing 

of wind (Figure 1.1).  
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Figure 1.1.  Illustration of the economic effects of increase demand and decreased supply. Both changes to the market 
result in higher prices, and therefore higher cost.   

 

This thesis research will contribute to this field by evaluating two potential opportunities for 

mitigating the cost increase of ancillary services that is expected given high wind penetrations.   

The first technology aims to reduce the demand for ancillary services by expanding the 

geographic footprint over which utilities coordinate ancillary services. This is known as balancing 

area consolidation and chapter two investigates its economic effects. Specifically, this chapter 

quantifies the effect of geographic diversity on aggregate wind power and on the requirements for 

frequency regulation, a key input to the co-optimized economic dispatch model. This model 

simulates prices for energy and frequency regulation, and calculates the cost of frequency regulation 

before and after consolidation. This chapter uses data from the Midcontinent Independent System 

Operator (MISO) but is not meant to be an assessment of the total or net benefits of the MISO 

consolidation. Rather we use MISO as the basis to create a hypothetical consolidation scenario using 

a coherent and realistic set of data that includes load profiles, generation fleets, and wind data. The 

results show that this policy leads to a reduction in frequency regulation cost of approximately $0.1 

per MWh of total load. These results do not significantly change with the inclusion of 20% wind, 

suggesting that in the near term, wind’s interaction in the frequency regulation market is not a prime 
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motivation for consolidation. Furthermore, the results show consolidation could lead to an increase 

in emissions of some air pollutants, which suggest that there may be significant trade-offs associated 

with the decision to consolidate balancing areas. This analysis does not consider all the benefits or 

costs of BA consolidation, and is not meant as an assessment of net-benefits. 

Chapter three analyzes the potential for residential demand response as a new source of ancillary 

services. The analysis assumes that all residential houses have the ability to receive ancillary service 

dispatch instructions (e.g., broadband or cable) and the necessary intra-household communication 

(e.g., Wi-Fi) to transmit these instructions to individual flexible loads. We developed methods that 

optimally schedule ancillary service capacity on demand response resources while accounting for the 

risk of customer response fatigue. The model is used to test the efficacy of hourly caps on demand 

response penetration in ancillary service markets. The results show that residential demand response 

could provide a significant portion of the total ancillary service requirements attributable to 

residential loads: between 50% and 75%. Hourly caps on demand response participation are shown 

to be economically inefficient. With a 25% market cap, residential demand response is scheduled to 

provide 25% of the hourly total market value, while the risked-based optimization schedules 

residential demand response to provide 82% of the total value. Methods like the ones presented in 

this paper, that can appropriately weight the benefits and risks of committing residential demand 

response will be critical to efficiently and effectively use this resource for ancillary services. 

This work aims to inform the policy discussion regarding the expected rise in ancillary service 

cost with high renewable generations. It is not meant to be an exhaustive text on the subject, but 

rather case-studies that demonstrate the subtlety and detail required to analyze the policy effects on 

the electric transmission system. 
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2.1  Introduction 

Wind generation in the U.S. has grown rapidly in recent years [1] and this increase in wind power 

will need to continue in order for the U.S. to meet its renewable energy goals. Wind power’s 

inherent variability occurs on all time scales [2] and can significantly affect the electricity grid’s 

stability and reliability, as discussed in many integration studies, e.g., the Eastern Wind Integration 

and Transmission Study [3]. When analyzing the effect of variability on the grid, it is important to 

consider that the system is geographically divided into balancing areas (BAs) where a system 

operator has to maintain the balance between demand and supply of electricity. There are over 100 

BAs in the U.S. varying in size between 70 MW and 153 GW [4,5]. Balancing area consolidation has 

many potential benefits; for example BA consolidation can lead to improved coordination in the 

unit commitment process and transmission utilization [6]. Additionally, a set of BAs can lower their 

cost of energy by optimizing over their newly shared set of resources [7,8]. BA consolidation can 

also make it easier to follow load by smoothing the relative variability of net-load, lowering the 

needed amount of ramping capacity, ramping rate, and cycle frequency [9-12]. Previous work that 

has focused on this effect has either demonstrated that the integration of geographically diverse 

wind resources leads to reductions in net-load’s relative variability [2,13,14], or has addressed the 

economic effects of sharing resources in the energy market [e.g., 8]. There is a gap, however, in 

understanding the combined effects of reducing variability and sharing resources. This work 

addresses this gap by simultaneously modeling and quantifying the reduction in net-load’s relative 

variability; the reduction in frequency regulation requirements due to reduced relative variability; and 

the economic benefits of the sharing of frequency regulation resources and reduced frequency 

regulation requirements.  
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Although there are multiple ways in which BA consolidation leads to social benefits, this 

research focuses on the benefits in the frequency regulation1 market and compares them to the 

benefits obtained in the energy market. The model also estimates how consolidation affects the 

emissions of air pollutants from power plants. The analysis focuses on a case-study using the 

balancing areas eventually consolidated into MISO Energy as a means of creating a consistent and 

realistic consolidation scenario. This research is not an attempt to replicate or estimate all the 

benefits and costs of the MISO consolidation; rather this research uses the MISO consolidation as a 

source for consistent data that can be used to examine the ceteris parabis economic effects of 

consolidation on frequency regulation markets.  

2.2 Data and Methods 

BA consolidation can reduce the cost of frequency regulation in two ways:  i) it creates a more 

geographically diverse set of renewable resources, reducing the variability of the aggregate renewable 

output, and therefore reduces the quantity of frequency regulation needed; ii) it results in a new 

larger portfolio of generating assets, ensuring that the cheapest set of resources is used to provide 

frequency regulation.  

This chapter quantifies the effect of geographic diversity on aggregate wind power and on the 

requirements for frequency regulation, a key input to the co-optimized economic dispatch model. 

This model simulates prices for energy and frequency regulation, and calculates the cost of 

frequency regulation before and after consolidation.  

                                                 
1
 Frequency regulation is an ancillary service that balances the electricity grid over short-times 

scales by modifying the output of flexible resources. 
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2.2.1 Midcontinent ISO Case-Study.  

This chapter uses data from the Midcontinent Independent System Operator (MISO) but is not 

meant to be an assessment of the total or net benefits of the MISO consolidation. Rather we use 

MISO as the basis to create a hypothetical consolidation scenario using a coherent and realistic set 

of data that includes load profiles, generation fleets, and wind data.  

MISO was founded in 1998 [15]; became a regional transmission operator in 2001; launched its 

energy market and started centralized dispatch of resources in 2005 [16]; and opened its ancillary 

services market and became a balancing authority in 2009 [17], when it consolidated 26 balancing 

areas at one time [15]. MISO has grown and shrunk and it currently encompasses what used to be 31 

different balancing areas before 2006. Based on data availability, this chapter uses a subset of these 

historic balancing areas, grouped into sixteen pre-consolidation BAs. A list of these balancing areas 

is available in the Supporting Information.  

In order to maintain the high correlation between wind and load data, it is critical that these data 

match temporally and geographically. In addition, the characteristics of the conventional generation 

fleet are needed. For most BAs in what is now MISO, load data are only available from 2006-2008 

while simulated wind data are only available for 2004-2006. For this reason, the model uses load data 

from 2006 [18]. Power plant data are from the eGRID database, which provides information on 

every generating unit in the U.S. including unit size, heat rate, fuel type, emissions data, and to which 

power control area each unit belongs. We matched power plants in eGrid to the modeled balancing 

areas using the NERC CPS Bounds reports [4].  

Time-series data of wind power are necessary in order to model a power system at any wind 

penetration. In order to model a system with higher wind penetration than exists today, time-series 

data from nonexistent, hypothetical wind farms are needed. The Eastern Wind Dataset (EWD) 

provides three years’ worth of simulated ten-minute average wind power output for 1,300 
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hypothetical wind sites in the Eastern Interconnect [3].  We assigned EWD sites to historic 

balancing areas in MISO based on capacity factor and geographic location. Using Ventyx Velocity 

Suites [19], we mapped the footprints of the balancing areas and the location of the EWD sites. We 

further selected sites that fall within the footprint of a BA in order of descending capacity factor 

until the BA passes 20% wind by energy, based on the expected production of each wind farm. 

Some BAs do not have enough wind farms within their geographic boundary to reach 20% 

penetration in this first step. For these BAs, we added unassigned wind farms (not assigned in the 

first step) until each BA reaches above 20% wind penetration. This method results in each BA in 

our scenario having approximately 20% wind by energy; Figure 2.1 displays all the BAs and wind 

farms used in this chapter. While we considered additional means of allocating wind farms to BAs, 

they all considered produce similar results as detailed in the Supporting Information. 

The EWD provides ten-minute average wind production data, which we averaged to hourly 

values for use in the economic dispatch model, such that the wind and load data have the same 

sample rate. This paper models two different wind penetration levels (0%, and 20% by energy). The 

model can choose to curtail wind when it is economic to do so, or if it is required in order to meet 

physical constraints. The 20% wind case is representative of near-term renewable portfolio standards 

that exist in the United States. 
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Figure 2.1. The sixteen pre-consolidation regions and their assigned wind farms (circles sized by MW capacity) in 
matching color.  

 

2.2.2 Quantifying the Effects of Consolidation on Variability.  

The grid needs to balance the variability of load and renewables and this variability plays a major 

role in setting reliability standards and the procurement requirements of ancillary services, such as 

frequency regulation. Adding more renewables, and therefore variability, to the grid may increase 

ancillary service requirements and the cost of providing reliable electricity to consumers [3,20]. 

Balancing area consolidation can reduce the need for frequency regulation, when comparing the sum 

of all the pre-consolidated requirements against the post-consolidated requirement. Previous 

research suggests that consolidation reduces frequency regulation requirement by reducing peak load 

and by reducing the variability of renewable resources through the smoothing effect of geographic 

diversity. The reduction in peak load is a result of non-coincidental peak loads across the different 

BA, i.e., the peak load in one BA may not occur at the same time as the peak of a different BA. Once 

consolidated, the resulting peak load of the CBA will be lower than the sum of all the individual 

BAs’ peak load. This reduction of peak load is easily quantifiable and is presented in the results 

section. 
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Geographic diversity has been shown to smooth the aggregate power of wind 

[21,22,13,3,20,11,14]. The variance of the distribution of aggregated wind power (𝑊𝑇) and the 

variance of the distribution of step-changes in aggregate wind power (∆𝑊𝑇) provide the basis for 

evaluating the effects of geographic diversity on aggregate wind power variability. Katzenstein et al. 

[13] found that consolidating a few close wind farms reduces the absolute variability of aggregate 

wind power output. However, consolidating wind resources over larger and more distant regions 

does not reduce the absolute variability [14]. Such large scale consolidations only reduce the relative 

variability of the wind power  as represented by the coefficient of variation (𝑐𝑣), defined as the 

sample standard deviation (𝜎) divided by the sample mean (𝜇) [23]. Therefore, the metrics of 

variability presented in this paper are in relative terms (coefficient of variation). 

2.2.3 Ancillary Service Requirements.  

Regardless of the size of the effect geographic diversity has on the aggregate wind power, the 

change in frequency regulation requirements is the key driver of cost reductions in the market for 

frequency regulation (assuming fixed supply). In this paper we use two different methods to estimate 

the frequency regulation requirement of a balancing area (𝐹𝑅 𝑅𝑒𝑞), both of which are based on the 

Western Wind and Solar Integration Study (WWSIS) [3].  

The first heuristic suggests that the hourly operating reserves requirement is 3% of a BA’s 

forecasted daily peak load (�̂�) plus 5% of the hourly forecasted aggregate BA wind output (𝑊𝑇) [24]. 

WWSIS also suggests that approximately one third of this operating reserve should be in the form of 

frequency regulation, resulting in a forecast-based heuristic described in Equation 2.1. This method 

is consistent with a long-standing industry estimate of the frequency regulation requirement for BA’s 

with little to no wind being approximately equal to 1% of daily peak load, e.g., [25]. This forecast-
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based heuristic captures the effect of peak load reduction but does not capture the reduction in 

variability due to geographic diversity of wind resources.   

 𝐹𝑅 𝑅𝑒𝑞 𝑡,𝑗 = (0.01 ∗ �̂�𝑗,𝑑∋𝑡) + (
0.05

3
∗𝑊𝑗,𝑡

𝑇 ) 2.1 

The second heuristic (also derived from the WWSIS study) can capture the change in the 

variance in wind that results from consolidating geographically diverse resources. This second 

heuristic sets the operating reserve requirement equal to three standard deviations (σ) of the 10-

minute step-changes (∆) in net-load (3𝜎∆). A step change (Δ) of any time series is the difference 

between two successive data points in a time-series. Net-load is the BA’s load minus the BA’s 

aggregate wind power. Given that approximately one third of this operating reserve should be in the 

form of frequency regulation, the heuristic becomes equal to one-sigma-delta (1𝜎∆).  

This heuristic requires ten-minute net-load data, which requires both ten-minute wind and load 

data. However, only hourly load data is available for MISO during the modeled time-period. Based 

on a NREL report [26], we approximate the variance of ten-minute load based on hourly load; we 

then directly calculate the variance ten-minute wind data and sum these two variances using the 

mathematical properties of variance. A detailed description of this mathematical process is available 

in the Supporting Information. Equation 2.2 gives the final formulation used in this paper for this 

frequency regulation heuristic, which is a function of the daily peak load (�̂�) and the distribution of 

step-changes in aggregate BA wind power (∆𝑊𝑇). For the remaining of this paper, we refer to this 

method as the variance-based heuristic.  

 𝐹𝑅 𝑅𝑒𝑞 𝑡,𝑗 = ((0.01 ∗ �̂�𝑗,𝑑∋𝑡)
2
+ 𝑉𝑎𝑟[∆𝑊𝑗,𝑡

𝑇 ])

1
2
  2.2 

This paper explores the effects of using these two separate frequency regulation demand 

heuristics on the benefits (or costs) of balancing area consolidation by including the demand for 
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these services in the economic dispatch model. Comparing the results from simulations using these 

different heuristics, we can isolate the effect of geographic diversity on FR requirements and costs.  

2.2.4 Economic Dispatch Model.  

This analysis uses an economic dispatch model that minimizes the total cost of providing energy 

and frequency regulation for a specific BA, subject to the system constraints. These constraints 

include meeting system demand for electricity and frequency regulation, and adhering to generator 

limits for energy, regulation, and hourly ramping. We first perform this optimization for each of the 

consolidating BAs individually and then again for all the regions as one consolidated balancing area 

(CBA). For each hour, the model produces dispatch instructions for energy and frequency regulation 

for each generator, and curtailment instructions for each wind farm. The complete mathematical 

formulation of this optimization problem is available in the Supporting Information. 

To solve for the least-cost dispatch schedule, the economic dispatch model includes the short 

run marginal costs of generation for individual power plants, as well as the cost for each plant to 

provide ancillary services. For fossil-based power plants, the short run marginal cost depends on the 

fuel cost and the power plant efficiency. As previously described, power plant efficiency is available 

from the eGRID database. Table 2.1 shows the fuel costs used in this model, as well as the short run 

marginal costs of non-fossil fueled power plants. Some power plants listed in the eGrid database use 

more than one fuel. For these plants, the model uses a weighted average of the short-run marginal 

cost for the primary and secondary fuels. The weighting is based on the unit’s historic fuel 

consumption. 
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Table 2.1. Assumed fuel prices and short-run marginal cost of energy by fuel type (USD 2009). Fuel prices are average 
values. Short-run marginal costs are taken from Newcomer et al (2008).

  Fuel Type Fuel Price 

($/mmBTU) 

Short-Run Marginal Cost 

($/MWh) 

Biomass  $50.00 

Bituminous Coal $2.72  

Distillate Fuel Oils $13.14  

Hydro  $10.00 

Lignite Coal $1.59  

Natural Gas $4.90  

Nuclear Considered must-run, i.e., $0 / MWh 

Petroleum Coke $1.50  

Subbituminous 

Coal 
$1.64 

 

Wind Considered must-run, i.e., $0 / MWh 

 

The eGrid database does not provide information that can be used to directly estimate the 

marginal cost of providing frequency regulation, and MISO data were unavailable for 2006. Given 

this lack of information, we used historic bids for frequency regulation from the New York 

Independent System Operator (NYISO) to develop a simple heuristic to predict a unit’s bid for 

frequency regulation. The NYISO provide the basis for this heuristic because this system is the most 

alike to MISO: both have bi-directional frequency regulation markets, with similar compensation 

mechanisms that have single clearing prices and include the marginal unit’s opportunity cost. Using a 

year’s worth of bids from the NYISO, we developed a deterministic model based on generator size 

to estimate the average bid quantity (MWFR) and the bid price ($/MWFR-Hr). More details about the 

regression model are available in the Supporting Information. As a result of the bid analysis, 

generators with a capacity between 200 and 300 MW bid 14% of their capacity in the frequency 

regulation market; all other units bid 6% of their capacity for frequency regulation (Equation 2.3). 

Table 2.2 shows the regulation bid prices used in our optimization.  

 𝑄𝐹𝑅−𝐵𝑖𝑑,𝑖 = {
0.06 ∗ MW̿̿ ̿̿ i̿   

0.14 ∗ MW̿̿ ̿̿ i̿  

for
for

MW̿̿ ̿̿ i̿ < 200,MW̿̿ ̿̿ i̿ > 300

200 < MW̿̿ ̿̿ i̿ < 300
 

2.3 
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Table 2.2. Frequency Regulation bid prices (USD 2009) by generator size based on regressions of historic frequency 
regulation bids. 

Generator Size 

(MW) 

Bid Price 

($/MW-Hr) 

< 100 $21 

100-200 $7.4 

200-300 $23 

300-400 $35 

400-500 $102 

500-600 $60 

600-700 $8.0 

700-800 $200 

800-900 - 

900-1,000 $200 

> 1,000 $200 

 

2.2.5 Emissions Modeling  

The economic dispatch produces data on how much electricity each generating unit produces at 

each time interval. These results determine the generator’s emissions of carbon dioxide (CO2), 

nitrogen oxides (NOX), sulfur dioxide (SO2), and particulate matter (≤ 2.5 µm, PM2.5). We used unit 

specific emission factors for each pollutant from AP 42 (for PM2.5) [27] and the eGrid database (for 

all other pollutants) [28].  

2.2.6 Sensitivity and Scenarios  

A model of this nature has a large number of details and parameters that will affect the results of 

this analysis: generation fleet and expected energy bids; wind penetration; frequency regulation bid 

quantity and price; frequency regulation requirements; and fuel prices (natural gas, coal) are just a 

few of the key variables that drive the results of this model. This paper tests for the sensitivity of the 

results to these parameters and present the scenarios that show the highest sensitivity. Specifically, 

this paper describes scenarios that include two different levels of wind penetration, two methods of 

estimating the frequency regulation requirement, three natural gas prices, and two different levels of 
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frequency regulation bid pricing. Table 2.3 summarized these scenarios. Note that the ‘High Gas & 

Frequency Regulation’ cases are meant to push the boundaries of the economic effect of the 

frequency regulation market by simultaneously raising gas prices to $10/mmBTU and multiplying all 

frequency regulation bid prices shown in Table 2.2 by a factor of 1.5. 

Table 2.3. Summary of modeled scenarios that vary wind penetration, frequency regulation requirement heuristic, and 
natural gas price. 

Scenario 

Name 
Wind FR Heuristic 

Gas Price &  

Frequency Regulation Pricing 

LG0 0% Forecast-Based
A
 Low Gas Price

C
  

B0 0% Forecast-Based
 A

 Base Gas Price
 D

 

HG0 0% Forecast-Based
 A

 High Gas Price
E
  

HGR0 0% Forecast-Based
 A

 High Gas Price & High FR Prices
F
  

LG1 20% Forecast-Based
 A

 Low
C
  

B1 20% Forecast-Based
 A

 Base
D
 

HG1 20% Forecast-Based
 A

 High Gas
E
  

HGR1 20% Forecast-Based
 A

 High Gas Price & High FR Prices
F
 

LG2 20% Variance-Based
 B

 Low
C
  

B2 20% Variance-Based
 B

 Base
D
 

HG2 20% Variance-Based
 B

 High Gas
E
  

HGR2 20% Variance-Based
 B

 High Gas Price & High FR Prices
F
 

A – Forecast-Based refers to the forecast-based frequency regulation heuristic 

and frequency regulation bids as described earlier 

B – Variance-Based refers to the variance-based frequency regulation heuristic 

(1𝜎∆) and frequency regulation bids as described earlier 
C – Low Gas refers to a gas price of $4/MMBTU (USD2009) and frequency 

regulation bids as described earlier 
D – Base Gas refers to a gas price of $4.90/MMBTU (USD2009) and frequency 

regulation bids as described earlier 
E – High Gas Price refers to a gas price of $10/MMBTU (USD2009) and 

frequency regulation bids as described earlier 
F – High Gas Price & High FR Prices refers to a gas price of $10/MMBTU 

and an assumed 1.5 multiplier on all frequency regulation bids.  

 

2.2.7 Model Limitations & Biases 

There are a few limitations to this model that could induce different biases. A first bias derives 

from the strict assumption built into the disaggregated counterfactual that prior to consolidation, 

balancing areas meet their energy needs only through resources that are located physically in their 
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area. This is not true for today’s system as BAs are easily capable of importing and exporting power 

to neighbors. Given the available data, it is impossible to accurately estimate the counter-factual 

import and export for any modeled BA. Therefore, we had to assume that there is no import or 

export in the counterfactual case. This assumption likely induces a positive bias on the benefits to 

the energy market. That is to say, any actual import/export of energy between a pair of BAs today is, 

by definition, economically advantageous by both parties and reduces the cost of operating the 

system and move the pre-consolidated cost closer to that of the fully consolidated. However, this 

bias would be smaller for the frequency regulation where it would likely over-estimate the reduction 

in frequency regulation cost through the opportunity cost component of price. This potential bias 

likely does not change the order-of-magnitude of the benefits to the frequency regulation market.  

In the chapter, transmission constraints or unit commitment have been excluded, which 

certainly affects the final numerical results. The lack of transmission constraints, however, does not 

affect the pre-consolidation costs because of the aforementioned strict counterfactual assumption. 

No inter-regional transmission is required if all the BAs are meeting their own needs with internal 

resources. The inclusion of transmission would therefore only limit the extent to which BAs could 

cooperate when consolidated. This would likely only reduce the potential benefits when 

consolidated. Therefore, the omission of transmission is a positive bias for benefits and likely small 

for the benefits of frequency regulation.  

The exclusion of unit commitment constraints does create a negative bias. As previous research 

has shown, there are benefits to the unit commitment process from consolidation [6]. The bias in 

the benefits in the frequency regulation market, the focus of this work, is likely to be small given the 

amount of wind generation. Hence, the inclusion of unit commitment is beyond the scope of this 

paper.   
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2.3 Results & Discussion 

This research quantifies the economic benefit of consolidation in the frequency regulation 

market by estimating the resulting reductions in frequency regulation requirements and cost. This 

analysis does not consider all the benefits or costs of BA consolidation, and is not meant as an 

assessment of net-benefits. Additionally, the many modeling assumptions, limitations, and trade-offs 

(see Appendix A.1.3 Economic Dispatch - Additional Details) mean that these results and 

conclusions may not be applicable to all power systems and scenarios.  

2.3.1 Quantifying the effects of Consolidation on Variability 

Figure 2.2 shows the coefficients of variation of aggregated wind power for each balancing area and 

the consolidated balancing area (CBA), using the methods outlined in Fertig et al. [23]. The results 

suggest that there is a reduction in the relative variance in wind power after consolidation and the 

results are consistent with those of Fertig et al. [14]. This figure shows diminishing marginal returns 

in the reduction of variance: the effect of geographic diversity is less significant in large-scale 

consolidation (over a gigawatt) than it is for the first gigawatt.  
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Figure 2.2. The coefficient of variation of wind power versus mean wind power. The relative variability, as represented by 
the coefficient of variation, decreases with increased wind power.  

 

2.3.2 Quantifying the Effects of Consolidation on Ancillary Service Requirements  

The frequency regulation requirements for each BA, for each hour, are based on the two 

heuristics described in section 3.3. The hourly average frequency regulation requirement for the 

CBA is compared to the sum of all the pre-consolidated BAs’ requirements in Table 2.4.  

 
Table 2.4. The average hourly frequency regulation requirement Summary of modeled scenarios that vary wind 
penetration, frequency regulation requirement heuristic, and natural gas price. for CBA (post-consolidation) compared to 
the sum of the requirements for the pre-consolidated BAs. The presented data are for scenarios based on the two wind 
penetrations (no wind and ~20% wind by energy) and the two frequency regulation heuristics (forecast-based and 
variance- based) assuming the base-case natural gas fuel price ($4.10/mmBTU).  

 No Wind  

Forecast-Based 

Wind 1 

Forecast-Based 

Wind 2 

Variance-Based 

 (MWFR)  (MWFR)  (MWFR) 

Sum of BAs  

(Pre-Consolidation) 
477 MWFR 643 MWFR 686 MWFR 

CBA  

(Post-Consolidation) 
472 MWFR 638 MWFR 517 MWFR 

Change (MW / %) -5 MWFR (-1%) -5 MWFR (-0.7%) -169 MWFR (-25%) 

 

The forecast-based heuristic predicts a small reduction in the frequency regulation requirements 

after consolidation: 1% without wind and 0.7% with wind (see the first two columns of Table 2.4). 
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This small change in frequency regulation requirements is due to the reduction of daily peak load. 

The variance-based heuristic predicts a 24% drop in frequency regulation requirement after 

consolidation. This suggests that the reduction of the relative variance of aggregate wind power, due 

to consolidation, does significantly reduce the amount of frequency regulation after consolidation.   

Figure 2.3 further highlights this reduction in frequency regulation requirements. The forecast-

based heuristic (1% peak + 1.67% wind) predicts a frequency regulation requirement that is fairly 

linear across the different balancing area sizes. This is because this heuristic is a linear function of 

forecasted wind and peak daily load, both of which scale with balancing area size. The variance-

based heuristic does account for the change in relative variance associated with geographic diversity, 

visually demonstrated by the reduction in mean and variance in the relative hourly frequency 

regulation requirement (hourly frequency regulation requirement normalized by the daily peak). It 

can be seen, however, that there are diminishing returns in the reduction of frequency regulation as 

the size of the consolidated area increases. On the far right of the figure, the sum of the pre-

consolidated BAs is compared to that of the CBA. The CBA on average has a frequency regulation 

requirement equal to 1.1% of its daily peak load; the sum of the pre-consolidated BAs FR 

requirements is equal to 1.46% of the CBA’s daily peak load. 
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Figure 2.3. Balancing area frequency regulation requirements relative to the BA’s size, for the previously described 
modeled BAs with 20% wind, based on two different heuristics: forecast-based and variance-based. The distribution shown 
for each BA represents the variation in hourly requirements throughout one year.  

 

2.3.3 Quantifying the Economic and Environmental Effects of Consolidation  

Figure 2.4 shows the distributions of economic gains in the frequency regulation market. The 

figure shows that the economic benefit of consolidation in the frequency regulation market, as 

approximated by the change in social surplus, is between $0 and $0.4 per MWh of total load. These 

results even hold in the extreme case of high natural gas prices and high frequency regulation bids 

(cases labeled HGR0, HGR1, and HGR2).  

The economic benefit in the frequency regulation market is due to two effects: sharing of 

resources and the smoothing effect of geographic diversity. We estimate the contribution of each of 

these factors by comparing the results of the two different frequency regulation heuristics. The 

forecast-based heuristic (top row middle panel) does not account for the smoothing effect of 

geographic diversity. The economic benefit of geographic diversity in the frequency regulation 

market can thus be calculated by subtracting the benefits in the forecast-based heuristic (between 

$0.04 and $0.08 per MWh of total load) from the benefits in the variance-based heuristic (1σ∆, $0.12 



 22 

and $0.18 per MWh of total load - top row right panel). Accordingly, the benefits of geographic 

diversity in the frequency regulation market are $0.04-$0.1 per MWh of load given an approximate 

wind penetration of 20%, by energy.  

 
Figure 2.4. The change in social surplus (USD 2009) for the frequency regulation market is represented by the box plots 
above for the modeled scenarios. The variation shown in each boxplot represents how the economic benefits change in 
time; each datum being a weekly average value of the change in social surplus. 

 

The economic benefits in the energy market (Figure 2.5) give further context to the size of the 

economic benefit of consolidation in the frequency regulation market. Without wind, the economic 

benefit of BA consolidation in the energy market is approximately $1.5 per MWh of total load; with 

20% wind, this average economic benefit is less than $1 per MWh of total load. This lower benefit is 

due to the additional supply of zero marginal cost energy from wind energy, which suppresses 

energy prices. Note that the total economic benefit in the frequency regulation market is an order of 

magnitude lower than the benefit in the energy market.  
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Figure 2.5. The change in social surplus (USD 2009) for the energy market is represented by the box plots above for the 

modeled scenarios. The variation shown in each boxplot represents how the economic benefits change in time; each 
datum being a weekly average value of the change in social surplus. 

 

As part of this work, we estimate the emissions from each generation unit before, and after, 

consolidation. Figure 2.6 presents the percentage change in emissions (post-consolidation minus 

pre-consolidation) for four pollutants: carbon dioxide (CO2), nitrogen oxides (NOX), sulfur dioxide 

(SO2), and particulate matter (≤ 2.5 µm, PM2.5). Carbon dioxide and particulate matter emissions 

increase; nitrogen oxides dramatically decrease; and sulfur dioxide moderately decreases. This change 

in emission rates is consistent with fuel switching from natural gas to coal. In our model, the low-

cost coal generation is limited in the pre-consolidation state by the constraint on energy imports and 

exports; higher-priced natural gas units provide the missing energy. After consolidation, the low-cost 

coal units can produce more through exporting energy to other consolidated balancing areas, at the 

same time reducing natural gas generation. While this result is specific to a coal-heavy power plant 

fleet, it none-the-less demonstrates that there may be unintended consequences to balancing area 

consolidation. 
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Figure 2.6. The percentage change in emissions for four pollutants: carbon dioxide (CO2), nitrogen oxides (NOX), sulfur 
dioxide (SO2), and particulate matter (≤ 2.5 µm, PM2.5) (post-consolidation minus pre-consolidation).  

 

 

2.4 Conclusions and Policy Implications 

This research focuses on quantifying the potential near-term economic benefit of wide-scale 

consolidation in the frequency regulation market; it is not intended to make a case for, or against, 

the policy of adding more wind energy to our electricity system. The results suggest that large wind 

penetration increases social surplus from the frequency regulation and energy markets (~$4 per 

MWh) and reduces air emissions, when compared to the non-wind cases. The rest of the discussion 

focuses on the comparisons between the consolidated and pre-consolidated cases – not between 

scenarios with and without wind. Additionally, this research does not include an exhaustive search 

for all of the benefits and costs of BA consolidation.  
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BA Consolidation reduces the relative variability of net load, which reduces the aggregate 

requirement for frequency regulation by approximately 25%. The data suggest that this effect 

exhibits diminishing marginal returns, meaning consolidating the first few BAs produces a larger 

reduction than the final few BAs. The reduced frequency regulation requirement, combined with the 

effect of shared resources, leads to a reduction in frequency regulation cost of approximately $0.1 

per MWh of total load, or $30 million per year. These results do not significantly change with the 

inclusion of 20% wind, suggesting that in the near term, wind’s interaction in the frequency 

regulation market is not a prime motivation for consolidation.  

The benefit of this wide-scale consolidation on the energy market is approximately $1/MWh of 

total load. It is not surprising that the benefit to the energy market is larger than in the regulation 

market as the energy market is far bigger and more valuable than all of the ancillary service markets 

combined. It should be noted again that this analysis does not consider all the benefits or costs of 

BA consolidation, and is not meant as an assessment of net-benefits.  

The data show that CO2 and PM2.5 emissions increase, while NOX emissions dramatically 

decrease, and SO2 slightly decreases. Given the relative health and climate risks each of these 

pollutants, it is likely that this change in emissions results in a net cost to society. This suggests that 

while there may be economic benefits to BA consolidation, BA consolidation may not be as 

beneficial today as previous literature suggest depending on the generation portfolio of the 

considered system and the level of penetration of renewable generation. Hence, a blanket policy to 

support balancing area consolidation in fossil-based systems may result in unexpected consequences 

such as increased emission. Those who may be considering consolidation should be careful that all 

benefit and all costs are considered and that the net-benefits are in line with their specific goals 

before proceeding.    
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Chapter 3: RESIDENTIAL LOAD PROVIDING 

ANCILLARY SERVICES:  ESTIMATES 

OF POTENTIAL GIVEN THE RISK OF 

RESPONSE FATIGUE 

 

 

 

 

 

 

 

 

 

This paper is based on a working paper. “Residential load providing ancillary services: estimates 

of potential given the risk of response fatigue.”  Department of Engineering and Public Policy, 

Carnegie Mellon University. 
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3.1 Introduction 

Most electricity consumers have very little conscious knowledge of the operations of the power 

system and their interactions with this complex system. Few people, for example, think about the 

quantity or price of the electricity they use before they turn on any household appliance. Nor do 

they think about the many reliability services that exist to make sure that the electricity they demand 

is always available. Demand response (DR) corresponds to a set of technologies and policies that 

allow customers to more actively participate in the electricity markets by 1) allowing them to be price 

sensitive, i.e., increasing or decreasing their demand based on the price of electricity; and 2) allowing 

consumers to receive payments to modify their consumption automatically in a way that provides 

different types of ancillary services to the grid. This increased customer participation directly affects 

many aspects of the power system including generation, emissions, economics, and reliability. 

Electric loads (or end-uses) come in many shapes and forms, and all of them have some inherent 

amount of flexibility. At a minimum, an end-use is flexible by switching between the ‘on’ and ‘off’ 

states. Other loads have greater flexibility and are capable of varying their power consumption with 

time. The idea of using load’s inherent flexibility through direct load control traces back as far as 

1969 [1] but only since 1999 [2] has the idea of using electric loads for ancillary services been 

considered in theory or practice.  

Many demand response studies focus on demonstrating that load can provide ancillary services. 

Ancillary services are a set of balancing services provided by flexible resources in order to help 

maintain the grid’s reliability. These services act in a hierarchical fashion to correct for grid 

imbalances over different time-scales and their technical requirements vary accordingly. There are up 

to twelve ancillary service types [3] but their specific names and requirements vary regionally [e.g., 

4,5]. Table 3.1 shows a summary of six general ancillary services, and their respective technical 
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requirements [6,7]. Other ancillary services such as black-start are excluded from Table 3.1 because 

DR cannot provide these services.  

Table 3.1. Ancillary service characteristics: Response speed, duration, cycle time, quantity and price. The average quantity 
and price are for ERCOT data from 5/1/2013 to 4/1/2014 

Generic Name 

(ERCOT Name) 

Response
A
 

Speed 

Duration
A
 Cycle

A
 

Time 

Average
B
  

Quantity 

(MW/Hr) 

Average
B
 

Price 

($/MW) 

Frequency Response
C
 

(Governor Response) 
Seconds Minutes Minutes 2,000

C
 

Not 

Applicable
D
 

Frequency Regulation 

(Up Regulation & 

Down Regulation)     

~1 min Minutes Minutes 
464 (Up)              

415 (Down) 

$12 (Up)       

$8 (Down) 

Spinning Reserves 

(Responsive Reserves) 

Seconds to 

~10 minutes 

10 to 120 

minutes 

Hours to 

days 
2,800 $13 

Non-Spinning 

Reserves  (Non-Spin) 
< 30 minutes 2 hours 

Hours to 

days 
1,440 $4 

Peak Reserves
E
  

(None) 
~1 hour 6-8 hours Daily Not Applicable

E
                     

A – Ancillary service characteristics are based off of Kirby et al [8] 

B – Quantity and price data are based on ERCOT data from 5/1/2013 to 4/1/2014 - http://www.ercot.com/mktinfo  

C – Frequency Response quantity is based on ERCOT’s current frequency response obligation 286 MW/0.1 Hz and 

an under-frequency load shed threshold of 59.3 Hz [9].  (60Hz-59.3Hz)*2860MW/Hz  =  2,002 MW.  

D – Frequency Response is an ancillary service that is not currently priced markets. This is likely to change given 

FERC’s approval of NERC’s BAL-003 standard [10], the corresponding changes ERCOT has proposed  to its 

ancillary services market [9], and FERC’s recent notice of proposed rulemaking [11]. 

E – Peak reserves are not typically considered an ancillary service.  In some markets however (e.g., PJM), peak 

reserves has its own unique forward auction market that is very different from the day ahead and real-time 

markets for energy and ancillary services. ERCOT does not have a peak reserves market, but ERCOT has and is 

developing programs that use direct load control to reduce load in peak hours [12,13]. 

http://www.ercot.com/mktinfo
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Early demand response studies that focus on ancillary services show how large commercial or 

industrial loads can provide ancillary services [14,2,15,16]. These resources are large enough to 

provide such grid support without needing to aggregate multiple loads. More recent studies tend to 

focus on the theoretical control of thermostatically controlled loads (TCLs) providing a specific type 

of ancillary service [17-20]. TCLs (e.g., air conditioning, heating, water heaters, etc.) operate with the 

goal of keeping a specific temperature within an acceptable range. These loads are particularly 

flexible and capable of providing ancillary services due to their inherent thermal mass that can be 

used, similar to a battery, to shift consumption in time. Much of the literature on TCLs covers the 

theoretical provision of all the main ancillary services [21-25], but few studies include demonstration 

projects that use actual hardware [17,24,26,27]. Additionally, the economic effect of DR providing 

ancillary services is often outside of the scope of these studies.  

Papers that do show the net economic benefits of DR [28-32] focus on price sensitivity, 

estimating how consumers weigh the trade-off between the benefits gained from consuming 

electricity and its cost. For the most part, these studies ignore the ability of consumers to provide 

ancillary services and support grid operations. An exception is a recent set of studies [33-38] that 

established precise methods for assessing the economic implications of providing ancillary services 

through DR. Therefore, some of the methods presented in this paper are based on Olsen et al [35], 

which give a means to estimate ancillary service availability from demand response resources. We 

build on the methods presented in Olsen et al [35] which give a means to estimate ancillary service 

availability from demand but ignore the fact that response fatigue reduces the effective availability. 

Here, response fatigue refers to the fact that calling on DR resources to modify their consumption 

leads to the customer being dissatisfied, uncomfortable, and unwilling to respond to future calls for 

response [39,40].  The most common method for addressing consumer comfort and fatigue is to 

place constraints on state variable in the controls of the load aggregation that is providing demand 
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response [21-25]. Most, if not all, of the studies used to define the flexibility parameters (section 3.5) 

addressed consumer comfort in this way [see supporting information section 8.1]. These additional 

constraints could lead to situations where the load aggregation won’t be able to meet the actual 

dispatch of ancillary services associated with the amount of ancillary service capacity scheduled on 

that load, a major concern for grid operators. Some markets address this risk by placing caps on the 

amount of ancillary service capacity that can be assigned to DR resources as a method of mitigating 

the risk of response fatigue. For example, PJM limits demand response resources’ contribution in 

the frequency regulation market to 25% of the overall requirement [41], while MISO limits 

interruptible loads to 10% of the spinning reserve requirement and 25% of the supplemental reserve 

requirement [42]. This type of policy is conservative in that it errs on the side of reliability; but it is 

also coarse in that it treats all hours of the year as equally risky and deserving of the same cap level. 

It is likely that there are hours in which this type of cap is justified, but it is unlikely that a fixed cap 

is appropriate in all hours. 

This paper presents a novel new way of addressing comfort and consumer fatigue by trying to 

eliminate situations where scheduling ancillary service capacity is not worth the risk of being short 

on ancillary services due to consumer comfort and fatigue. The methods statistically model the ex 

post dispatch of ancillary services and assess the risk of consumer fatigue as estimated by each load 

aggregation’s deferred energy: the difference between its counterfactual consumption and its 

modified consumption while providing ancillary services. Deferred energy is difficult to incorporate 

directly into a dispatch model because it is a function of the unpredictable reliability needs of the 

grid (ex post), while the reservation of ancillary service capacity is economically allocated ahead of 

time (ex ante). For this purpose, we develop two statistical models based on ERCOT data [43]to 

create potential realizations of deferred energy, due to ancillary service deployment, which we use to 

approximate the risk of DR’s response fatigue. Given this estimate of risk, we can optimally 
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schedule ancillary service capacity on aggregations of loads. This paper also compares the optimally 

scheduled DR resources against traditional means of scheduling with a fixed hourly cap on DR 

penetration in ancillary services markets.   

Unlike some studies that attempt to estimate how much ancillary services potential from demand 

response could exist today [35,44,45,32,46], this paper focuses on a near future where most houses 

have efficient and controllable appliances that can easily communicate with grid operators, possibly 

through broadband and Wi-Fi systems. In order to model this future, this research uses data from 

the Pecan Street project, a Smart Grid demonstration project consisting of over 150 homes near the 

city of Austin, Texas. These homes have efficient modern appliances and their residents have agreed 

to high frequency monitoring of energy consumption at the appliance level. The Pecan Street sample 

is not meant to be representative of the average American household, but provides a vision of a 

plausible future for DR.  

3.2 Methods 

This paper quantifies the future potential and availability of ancillary services from residential 

loads. The analysis assumes that all houses have the ability to receive ancillary service dispatch 

instructions (e.g., broadband or cable) and the necessary intra-household communication (e.g., Wi-Fi) 

to transmit these instructions to individual flexible loads. Under these assumptions there are two key 

criteria that determine the amount of ancillary services residential load can supply. First, the load 

must be plugged in and consuming (or able to consume) electricity so that it can modify its 

consumption and provide DR. Second, the load has to be able to modify its hourly consumption 

from its counterfactual hourly consumption: what it would have consumed if it were not providing 

ancillary services. To identify loads that meet these requirements, it is critical to have accurate load 

data for each individual residential load type, which is why this chapter uses empirical data from the 
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Pecan Street project instead of relying on modeled load data, such as that from the National Energy 

Modeling System (NEMS) [47]. Section 3.1 describes the Pecan Street data set further.  

Figure 3.1 is a schematic overview of this paper’s model and the method used to optimally 

schedule ancillary services on residential demand response resources. The first step is to determine 

how much of each ancillary service could be made available by the residential load over time. Each 

of the resulting time-series of ancillary services availability is mutually exclusive; i.e., if the entire air 

conditioning load is scheduled to provide frequency regulation, it cannot also be scheduled for 

spinning reserve. Therefore, the available ancillary service needs to be optimally allocated to ensure 

that the DR is being put to its best possible use. Finally and most importantly, this chapter presents 

a novel method of assessing the risk of scheduling DR resources beyond their ability to be flexible. 

This risk is based on the statistical likelihood that a load defers energy due to ancillary services 

deployment. The result is the scheduling of ancillary services capacity from residential DR resources 

that considers the inter-temporal risk of ancillary services deployment.  
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Figure 3.1.  Skematic for the optimal allocation of DR providing AS. The boxes shown in gray are based on the methods in 
Olsen et al. The portions in black represent the paper’s contribution to the methods.  

 

3.2.1 Residential Demand Data 

The model in this paper requires the use of data that represent the behavior of loads over the 

course of the day, week, month, and year. Unlike other studies that rely on top-down models for 

load profiles, this paper uses empirical data from the Pecan Street project, which includes over 150 

homes near the city of Austin, Texas [48]. This chapter limits the sample to a subset of Pecan Street 

homes that contain valid refrigerator and air-conditioning data for one continuous year. For 

example, some excluded homes had air conditioning data with large gaps, null data, or data 

inconsistent with the dynamics of refrigeration. Thirty seven of the homes do not have reliable 

refrigerator data; these homes were included in our sample but we replaced the invalid refrigerator 

data using an exponential model [21,22,49,50]. Table 3.2 summarizes the final data set from the 92 

homes (55 with empirical data; 37 with modeled data).  
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Table 3.2. Summary of the penetration of different loads for the 
considered 92 home sample from the Pecan Street Project 

End-Use Household Penetration 

 Count 

(#) 

Percentage 

(%)
A
 

Air Conditioning 90 99% 

Refrigerators 
92 

(55)
B
 

100% 

(60%)
B
 

Electric Space Heating 80 88% 

Electric Water Heating 8 9% 

Lighting 92 100% 

2
nd

 Fridge or Freezer 1 1% 

Clothes Washer 57 63% 

Electric Clothes 

Dryers 
81 89% 

Dishwasher 62 68% 

Pumps or Irrigation 6 7% 

Electric Vehicle 37 41% 

Solar PV 53 58% 

Jacuzzi 5 5% 

A – Count divided by 92, expressed as a percentage. 

B – Fifty five (55) houses have usable refrigerator data for the 

entire sample period. For the balance of the sample (37 homes) 
the refrigerator data is simulated.  

 

The ten end-use categories listed in Table 3.3 group all of the metered loads in each house. 

Aggregate values result from the sum of all loads in each category and over all houses. The result is a 

set of ten time-series of the sample’s total residential consumption, by category, with a one-minute 

resolution. Figure 3.2 shows the daily average of these data. Grid operators set the commitment of 

ancillary services on an hourly basis through their ex ante security-constrained unit commitment and 

economic dispatch models. This frequency difference (between the one minute data and the hourly 

schedules) means that we have a few options when choosing the maximum basis for setting the 

hourly schedule. For example, given a load aggregation that is expected to vary its aggregate load 

between 100 kW and 110 kW during an hour, one could schedule this load to provide 100, 105, or 
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110 kW using minimum, average, and maximum as the basis, respectively. We took a conservative 

approach and used the minimum value in each hour, of the one-minute load data for an aggregation 

of a single end-use, as the maximum basis for scheduling ancillary services capacity. 

 

Table 3.3. End-Use Categories and their respective loads 

Index End-Use Categories Loads in Category 

1 Space Heating Space heating 

2 Cooling Air conditioning 

3 Water Heating Water heaters, Jacuzzis 

4 Refrigeration 
Refrigerators, refrigerator-freezer combinations, beer and wine 

specific refrigerators 

5 Freezers Freezers, ice makers 

6 Delayable Appliances 

Clothes washers, clothes dryers, dish washers, pumps, pools 

(assumed to be pumps), aquariums (assumed to be pumps), 

sprinklers and irrigations 

7 Lighting Lighting 

8 Cooking Microwaves, electric stoves, anything labeled “kitchen” 

9 N/A All others – including electric vehicles. 
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Figure 3.2. Contribution to total load of the various end-uses as represented by the daily average consumption.  Note that 
the total value is dominated by air conditioning and the unknown other end-uses. The other category includes specific 
room loads (i.e., bathroom, living room, etc.). 

 

It should be noted that this chapter does not consider electric vehicles, as there is an entirely 

separate body of literature around the optimal charging of electric vehicles, e.g., [51] and is outside of 

the scope of this project. Demand from electric vehicles in the Pecan Street Data is included in the 

“other” category, which we assumed is unable to provide ancillary services.  

3.2.2 Ancillary Service Requirements 

Ancillary service requirements set the market demand for each service in each hour. To obtain 

such data for the simulations, this paper uses time-series data of wholesale ancillary service 

requirements from ERCOT that are temporally coherent with the Pecan Street data. The Pecan 

Street sample is only a small fraction of the size of ERCOT, hence, it is necessary to estimate a 

residential ancillary services requirement that is proportional to the Pecan Street sample. The hourly 

requirement for frequency response, spinning reserves, and non-spinning reserves are all linked to 

the yearly peak of system load (�̂̂�), while hourly frequency regulation (up and down) requirements 
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are more tied to daily peak load (�̂�) [6,9,52]. Therefore, ancillary services requirement attributable to 

the Pecan Street load is based on the appropriate ratio of sample peak load to the ERCOT peak 

load. We therefore determine the effective hourly reserve requirement for the sample (𝑄𝑡
𝑟) by 

multiplying the ERCOT hourly requirement (𝑄𝑡
𝑟,𝐸𝑅𝐶𝑂𝑇) by the appropriate ratio of peak loads (in 

Equation 3.1). 

 𝑄𝑡
𝑟  =

{
  
 

  
 �̂̂�

�̂̂�𝐸𝑅𝐶𝑂𝑇
∗ 𝑄𝑡

𝑟,𝐸𝑅𝐶𝑂𝑇  𝑟 = {𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒, 𝑆𝑝𝑖𝑛 & 𝑁𝑜𝑛𝑆𝑝𝑖𝑛}

�̂�

�̂�𝐸𝑅𝐶𝑂𝑇
∗ 𝑄𝑡

𝑟,𝐸𝑅𝐶𝑂𝑇 𝑟 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 
3.1 

 

Frequency response and peak reserves need specific consideration. Frequency response is an 

ancillary service that is not currently priced in the market; instead ERCOT requires that all 

generators over the size of 20 MW be able to provide this service. This is likely to change given 

FERC’s recent notice of proposed rulemaking [11], NERC’s BAL-003 standard [10], and the 

corresponding changes ERCOT has proposed to its ancillary services market [9]. Therefore, this 

paper includes frequency response in the set of ancillary services with an assumed price of $1/MW. 

The required quantity is based on ERCOT’s current frequency response obligation set at 2,860 

MW/Hz and an under-frequency load shed threshold of 59.3 Hz2 [9]. 

Peak reserves are typically not considered an ancillary service. In some markets however (e.g., 

PJM), peak reserves have their own unique forward auction market that is very different from the 

day ahead and real-time markets for energy and ancillary services. ERCOT does not have a peak 

reserves market, but ERCOT is developing programs that use direct load control to reduce load in 

                                                 
2
 (60 𝐻𝑧 −  59.3 𝐻𝑧) ∗ 2,860 𝑀𝑊/𝐻𝑧 =   2,002 𝑀𝑊. 
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peak hours [12,13]. This paper approximates DR’s role in providing peak reserves based on the 20 

highest load hours of the year in ERCOT and the sample’s load contribution to ERCOT’s peak 

load; this same method is used in DOE studies [35,36]. In those 20 hours, the peak load reduction 

requirement is proportional to the difference between that hour’s load (�̂̂�𝐸𝑅𝐶𝑂𝑇𝑗=1−20) and the 21st 

highest load hour’s load (�̂̂�𝐸𝑅𝐶𝑂𝑇𝑗=21) (Equation 3.2). The price of this peak reduction is equivalent 

to the electricity price in that hour. 

 

𝑄𝑟,𝑗=1…20  =
�̂̂�

�̂̂�𝐸𝑅𝐶𝑂𝑇
∗ (�̂̂�𝑗

𝐸𝑅𝐶𝑂𝑇 − �̂̂�21
𝐸𝑅𝐶𝑂𝑇) 

∀𝑗 ∈ {1,… , 20},𝑤ℎ𝑒𝑟𝑒 �̂̂�1
𝐸𝑅𝐶𝑂𝑇 < �̂̂�2

𝐸𝑅𝐶𝑂𝑇 < ⋯ < �̂̂�21
𝐸𝑅𝐶𝑂𝑇 , 𝑟 = 𝑝𝑒𝑎𝑘 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠 

3.2 

  

3.2.3 Ancillary Service Deployment & Deferred Energy 

The reservation of ancillary service capacity is economically allocated (ex ante) but the 

deployment of these resources is not. Instead the deployment is based on unpredictable reliability 

needs in real-time (ex post). Ahead of the hour, the operator sends each resource a base-point from 

which the resource will deviate in order to provide ancillary service. For ancillary services that 

require load to decrease its consumption when deployed, the base-point may be the same as its 

counterfactual consumption. For ancillary services that require load to increase its consumption 

when deployed the base-point will be a lower level of consumption than the counterfactual. In real-

time, the system operator will send a control signal to ancillary services resources to move up or 

down away from their base-point. Most papers model the scheduling of ancillary service resources 

but do not attempt to model the effects of the ex post dispatch of these services. This paper closes 

this gap by defining statistical models that approximate the effect of this ex post dispatch and 

incorporating this information into the ex ante decision making.  



 42 

Over the course of the hour, the net effect of the dispatch will be that the resources’ average 

consumption may be different than their scheduled base-points. We define two key metrics of this 

movement:  

Deferred energy (𝜑𝑡
𝑖,𝑟) – the number of kWh of deviation from the counterfactual 

consumption per kW of ancillary service during hour t. 

Deployment energy (𝛿𝑡
𝑖,𝑟) – the number of kWh deviation from the base-point of one kW of 

ancillary services capacity during hour t.  

The key difference between these two metrics is that the base-point for providing an ancillary 

service may not be the same as the counterfactual consumption. For all of the reserves that deploy 

“up” (i.e., increase generation, or decrease load:  frequency response, frequency regulation up, spin, non-spin, 

and peak reserves), the base-point for providing the ancillary service can be the counterfactual load 

(Equation 3.3). But for reserves that deploy “down” (i.e., decreasing generation or increasing load, 

frequency regulation down), the load has to be curtailed to a new base-point (less load than the 

counterfactual) in order to leave the ability to be deployed “down”, i.e., increasing load when called. 

A more detailed example of this is given in the appendix.   

 𝜑𝑡
𝑖,𝑟  =  {

1 𝑘𝑊 ∗ 1ℎ𝑜𝑢𝑟 –  𝛿𝑡
𝑖,𝑟

 𝛿𝑡
𝑖,𝑟

𝑓𝑜𝑟 𝑟 = 𝐷𝑜𝑤𝑛 𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛

∀𝑟 ≠ 𝐷𝑜𝑤𝑛 𝑅𝑒𝑔
 

3.3 

 

The deployment energy for each ancillary service is estimated using statistical models based on 

ERCOT data [7,43,53]. The appendix provides the full details and the derivation of the parameter 

values of these models. The statistical deployment models for frequency regulation up and down are 

exponential distributions (~𝐸𝑥𝑝(𝜆)) defined by Equation 3.4, with fit parameter (𝜆) equal to 0.16 
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and 0.12, respectively. The statistical models for contingency reserves are a set of cascading 

Bernoulli trials (~𝐵(𝜌)), where each subsequent reserve is dependent on the deployment of the 

reserve previous in the hierarchy; the response order is frequency response, spinning reserve, and 

then finally non-spinning reserves (defined by Equations 3.5 – 3.7). The conditional probabilities for 

these three are: 0.9, 0.25, 0.5, for 𝜌1, 𝜌2, and 𝜌3, respectively. When frequency response is deployed, 

the duration is defined by a Weibull distribution (~𝑊(𝜆, 𝑘)) with fitted parameter values of 

𝜆 = 31.665, and 𝑘 = 1.563. Spinning and non-spin are assumed to be either fully deployed for the 

entire hour (𝛿𝑡
𝑖,𝑟 = 1) or not deployed at all (𝛿𝑡

𝑖,𝑟 = 0). Peak reserves do not require a statistical 

model because the deployment of peak reserves is economically dispatched (ex ante) and therefore 

peak reserve resources are always fully dispatched.  

 𝛿𝑡
𝑖,𝑟~𝐸𝑥𝑝(𝜆)            ∀𝑖, ∀𝑡, 𝑟 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑒𝑔𝑢𝑎𝑡𝑖𝑜𝑛 𝑢𝑝 𝑎𝑛𝑑 𝑑𝑜𝑤𝑛 

3.4 

 
𝛿𝑡
𝑖,𝑟~𝐵(𝜌1) 𝑊(𝜆, 𝑘)       ∀𝑖, ∀𝑡, 𝑟 = 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 

3.5 

 
𝛿𝑡
𝑖,𝑟~𝐵(𝜌2|𝛿𝑡

𝑖,𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
> 0)       ∀𝑖, ∀𝑡, 𝑟 = 𝑠𝑝𝑖𝑛 

3.6 

 
𝛿𝑡
𝑖,𝑟~𝐵(𝜌3|𝛿𝑡

𝑖,𝑠𝑝𝑖𝑛 > 0)         ∀𝑖, ∀𝑡, 𝑟 = 𝑛𝑜𝑛 − 𝑠𝑝𝑖𝑛 
3.7 

 

The result of these models are realizations of potential ancillary services deployments that can be 

used to calculate the amount of energy a specific load aggregation will defer while providing ancillary 

services.  

3.2.4 Ancillary Service Availability 

A recent set of studies outlines methods and impacts of DR providing ancillary services [33-38].  

Their approach, which we also employ here, is to “filter” time-series data of load down to only the 
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portion that is flexible and able to provide ancillary services. This is represented in Equation 3.8, 

where load data (𝐿𝑡
𝑖 ) is multiplied by a filter (𝜙𝑡

𝑖,𝑟) to create a time-series of ancillary service 

capacity (𝐴𝑡
𝑖,𝑟). The filter is the product of two parameters: participation rate (𝛽), which represents 

the percentage of loads willing and able to respond; and flexibility parameter (𝑓), which is 

representative of how flexible the load can be when providing a specific ancillary service; this is 

represented in Equation 3.9. In the context of this paper, the term flexibility is inherent to a load type, 

not dependent on a consumer’s willingness to participate in ancillary service markets. The 

participation rate is the minimum of two parameters: controllability (𝜂) – the portion of the load that 

has the necessary communications requirements to be controlled, and acceptability (𝛼) – the 

“willingness of customers to shed their load in a particular hour”, represented in Equation 3.10.   

 𝐴𝑡
𝑖,𝑟 = 𝐿𝑡

𝑖   𝜙𝑡
𝑖,𝑟     0 ≤ 𝜙𝑡

𝑖,𝑟 ≤ 1 ∀𝑖, ∀𝑟, ∀𝑡    
3.8 

 
𝜙𝑡
𝑖,𝑟 = 𝛽𝑡

𝑖  𝑓𝑡
𝑖            0 ≤ 𝛽𝑡

𝑖 ≤ 1 ∀𝑖, ∀𝑡     0 ≤ 𝑓𝑡
𝑖 ≤ 1 ∀𝑖, ∀𝑟 

3.9 

 
𝛽𝑡
𝑖 = min{𝜂𝑡

𝑖 , 𝛼𝑡
𝑖} 0 ≤ 𝜂𝑡

𝑖 ≤ 1 ∀𝑖     0 ≤ 𝛼𝑡
𝑖 ≤ 1 ∀𝑖, ∀𝑡 

3.10 

 

In this chapter, we assume that all houses have the necessary broadband connection to receive 

ancillary service dispatch instructions and the necessary intra-household communication (e.g., Wi-Fi) 

to transmit these instructions to flexible loads. This is equivalent to assuming that the controllability 

parameter (𝜂𝑡
𝑖) is equal to one for all loads. This paper also assumes that the state-of-the-art 

technology will improve to a point where customers are willing to provide ancillary services, as long 

as the modified consumption is not noticeably different from their counterfactual consumption. 

This is equivalent to assuming that the acceptability parameter (𝛼𝑡
𝑖) is equal to one for all loads and 
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time. These assumptions may seem generous given the level of today’s demand response 

participation, the current state-of-the-art technologies used to control load aggregations, and our 

current understanding of the behavioral economics of the customers. However, we utilize these 

assumptions to assess the maximum potential for residential loads to contribute to the ancillary 

services market. Thus, the result of all these assumptions the absolute upper-bound for the potential 

for DR to provide ancillary services can be estimated using Equation 3.11.  

 
𝐴𝑡
𝑖,𝑟 = 𝐿𝑡

𝑖 𝑓𝑡
𝑖,𝑟    3.11 

 

3.2.5 Loads’ Flexibility & Flexibility Parameters 

Residential load can provide ancillary services based on the aggregated load’s ability to adjust 

consumption and each load type has a different innate ability to provide such flexibility based on its 

physical attributes, such as thermal mass.  Further, each aggregate load’s ability to provide an 

ancillary service depends on the type of ancillary service. For example, a load may be able to provide 

a different amount of frequency regulation than the amount it can provide for spinning reserve. 

Therefore, a unique estimate of a load’s ability to provide ancillary services, or flexibility, is needed for 

each possible combination of end-use and ancillary service. This paper defines the flexibility 

parameter as the quantity of ancillary service capacity (kW) that can be provided by one kilowatt of 

load.  

Table 3.4 shows the expected value and range for each flexibility parameter based on a literature 

review. The appendix provides a comprehensive list of sources for these data. In most cases, there 

are studies that demonstrate the ability of a specific end-use to provide a specific ancillary service. 

Where no such study exists, there is often a closely related study, from which a datum can be 

estimated. For example, no literature was found for freezers (meaning stand-alone freezer without a 
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refrigerator) providing frequency response. However, there are many studies showing refrigerators 

(referring to the standard combination refrigerator-freezer) providing this service. Given how similar 

the dynamics of these two loads are, it is likely that they can provide similar amounts of flexibility. 

Similarly, many studies focus on spinning reserves but almost none include contingency reserves. 

Given that these two services are very similar, data can be estimated for contingency reserves based 

off of studies relating to spinning reserves.  

Table 3.4. Summary of the literature review regarding flexibility parameters: DR’s ability to provide ancillary services. The expected 
value of the distribution is in bold [minimum / maximum]. 

 
Frequency 

Response 

Frequency 
Regulation  
(Up & Down) 

Spin &  
Non-Spinning  

Energy  
(Peak 

Reserves) 

 Expected [Minimum / Maximum]  

Space Heating 0.20 [0.05 / 0.35] 0.20 [0.05 / 0.35] 0.60 [0.10 / 0.90] 0.10 [0.01 / 0.20] 

Cooling 0.20 [0.05 / 0.35] 0.20 [0.05 / 0.35] 0.68 [0.10 / 1.00] 0.10 [0.01 / 0.20] 

Water Heating 0.10 [0.05 / 0.20] 0.10 [0.05 / 0.20] 0.50 [0.10 / 0.90] 0.25 [0.10 / 0.50] 

Refrigeration 0.40 [0.01 / 0.64] 0.40 [0.01 / 0.64] 0.50 [0.25 / 0.75] 0.25 [0.10 / 0.50] 

FreezersA 0.40 [0.01 / 0.64] 0.40 [0.01 / 0.64] 0.50 [0.25 / 0.75] 0.25 [0.10 / 0.50] 

Delayable LoadsB - - 0.50 [0.10 / 1.00] 0.50 [0.10 / 1.00] 

Lighting - - 0.10 [0.01 / 0.25] 0.10 [0.01 / 0.25] 

Cooking - - - - 

Other - - - - 

A – The category “freezers” includes ice-makers and stand-alone freezers.  The standard household freezer that is 

attached to the refrigerator is included in the refrigerator category.  

B – The category of “delayable loads” includes pumping and irrigation loads as well as delayable residential appliances 

such as dishwashers, clothes washing machines, and electric clothes dryers.  

 

Note that there is significant variation for each unique flexibility parameter estimate. For 

example, the flexibility parameter for space heating to provide frequency response ranges between 

0.05 and 0.35. Much of this uncertainty comes from variations in how the original study where the 
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data came from was conducted (e.g., empirical or theoretical; aggregated loads or single large loads, 

consideration of consumer comfort, etc.).  The model uses triangular distributions, specified by the 

values in Table 3.4, to help define scenarios and run Monte Carlo simulations to understand the 

uncertainty in our answer. Triangular distributions are used over uniform distributions to give more 

weight to the median estimate. Flexibility parameters are drawn with a positive correlation between 

those of the same load-type. The appendix provides more details about the draw method and 

alternatives that were considered. 

In addition to Monte Carlo analysis using the triangular distribution, three scenarios are 

considered: Olsen et al, where the flexibility parameter are defined by Olsen et al [35]; Expected, 

where only the expected value of the distributions in Table 3.4 are used; and Optimistic, where only 

the upper end of the distribution in Table 3.4 are used.  

3.2.6 Load Shifting and Charging 

Many DR studies analyze the benefits of shifting consumption from the daily peak to off-peak 

hours. This chapter, however, focuses on ancillary services and only allows this type of “peak 

shaving” through the peak reserves ancillary service for the twenty highest peak hours of the year. 

The only other energy that is shifted in time is that which is deferred due to ancillary service 

deployment. Like previous studies [35], this chapter limits the ability to increase counterfactual load, 

or “charge”, to specific hours of the day and to specific load types (Table 3.5). Additionally, an 

aggregation of a specific load that is allowed to charge (�̂�𝑡
𝑖) is only allowed to increase its load 

between the counterfactual load and that load’s daily peak power (Equation 3.12).  

 {
�̂�𝑡
𝑖 = �̂�𝑡

𝑖 − 𝐿𝑡
𝑖 ∀𝑖 ∈ {𝑐ℎ𝑎𝑟𝑔𝑎𝑏𝑙𝑒}  ∩  𝑡 ∈ 𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 ℎ𝑜𝑢𝑟𝑠

�̂�𝑡
𝑖 = 0 ∀𝑖 ∉ {𝑐ℎ𝑎𝑟𝑔𝑎𝑏𝑙𝑒}  ∪  𝑡 ∉ 𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 ℎ𝑜𝑢𝑟𝑠

      
3.12 
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Table 3.5. Charging constraints by End-Use Categories.  Based on Olsen et al [35]. 

End-Use Categories 
Charging 

Allowed 

Acceptable 

Charge Hours 

Space Heating No  

Cooling Yes 6am-6pm 

Water Heating Yes All hours 

Refrigeration Yes All hours 

Freezers Yes All hours 

Delayable Appliances Yes All hours 

Lighting No  

Cooking No  

Other No  

 

3.2.7 Risk-Based Optimal Allocation of DR resources 

The data resulting from Equation 3.11 are a set of time-series representing how much of each 

ancillary service each single end-use can provide. As previously mentioned, much of these data are 

mutually exclusive; i.e., using one megawatt of air conditioning load to provide frequency regulation 

excludes that same megawatt from providing spinning reserves. This is similar to the dispatch 

dilemma of generators, where providing one megawatt of one product (e.g., energy, spinning reserve, 

frequency regulation, etc.) excludes it from using that same megawatt of capacity for another 

product. This problem is easily solved when all of these mutually exclusive products are co-

optimized.   

This paper uses an analogous co-optimization to find the best allocation of the available ancillary 

services from residential DR. This is similar to previous studies, e.g., [36], except that it only co-

optimizes the ancillary services provided by the residential resources and does not consider 

generation resources. This is because, compared to ERCOT, the 92 homes in this sample is small - 

the total yearly load in ERCOT is 3 million times greater and the coincidental yearly peak load is 2.6 

million times greater. The relatively small sample of residential homes would add a negligible 
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amount of additional supply of ancillary services to ERCOT and would not affect generation 

dispatch or market prices. Therefore, it is unnecessary to model the full ERCOT market. Hence, the 

model treats all pricing as exogenous. As the number of customers participating in demand response 

grows, the effects on the market outcomes cannot be neglected any more. However, the methods 

outlined in this paper can be incorporated into a full production-cost-based, unit-commitment and 

economic dispatch model, but it is outside of the scope of this paper and none of the presented 

results are biased based on the simpler formulation presented herein.  

The model maximizes the value of the ancillary services that residential DR resources can 

provide given the risk of response fatigue. This is equivalent to the benefit of reserving ancillary 

services capacity on DR less the cost of pre- or re-charging thermal loads due to the ancillary 

services deployment and less the cost of potential response fatigue (Equation 3.13). The next two 

subsections provide details on how to value the risk of response fatigue. For now, it should be noted 

that a penalty price (𝑝𝑡
𝑖,𝑟) of assigning one kilowatt of AS capacity to a load is estimated. When that 

penalty price is greater than the benefit (𝑝𝑡
𝑟), the optimization will assign less of that ancillary service 

to that load. On the other hand, the potential cost of customer response fatigue is a function of how 

the resources are committed and dispatched. Therefore, we formulate it as an iterative optimization 

procedure. The tilde (𝑝𝑡
𝑖,𝑟) on the penalty price is there to signify the fact that this penalty price is 

based on the allocation of DR in the previous iteration. The algorithm converges easily and 

produces allocations of DR that account for the risk of loads deferring too much energy and not 

being flexible in future hours.  

 
𝑚𝑎𝑥
𝑞,𝑐

∑∑(∑𝑞𝑡
𝑖,𝑟(𝑝𝑡

𝑟 − 𝑝𝑡
𝑖,𝑟 + 𝐸[𝜑𝑡

𝑖,𝑟]𝑝𝑡
𝐸)

𝑅

− 𝑐𝑡
𝑖𝑝𝑡
𝐸)

𝑇𝐼

  3.13 

Subject to: 
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∑
𝑞𝑡
𝑖,𝑟

𝑓𝑡
𝑖

𝑟

≤ 𝐿𝑡
𝑖       ∀𝑖 ∀𝑡 3.14 

 

∑𝑞𝑡
𝑖,𝑟

𝑖

≤ 𝑄𝑡
𝑟     ∀𝑟 ∀𝑡 3.15 

 

0 ≤ 𝑞𝑡
𝑖,𝑟              ∀𝑖 ∀𝑟 ∀𝑡  3.16 

 

0 ≤ 𝑐𝑡
𝑖 ≤ �̂�𝑡

𝑖 𝑡 ∈ 𝐴𝑙𝑙𝑜𝑤𝑎𝑏𝑙𝑒 ℎ𝑜𝑢𝑟𝑠 3.17 

 

∑𝑐𝑡
𝑖

𝑡∈𝑑

−∑∑𝑞𝑡
𝑖,𝑟𝔼[𝜑𝑡

𝑖,𝑟]

𝑅𝑡∈𝑑

= 0  ∀𝑑 ∈ 𝐷, ∀𝑖𝜖{𝑐ℎ𝑎𝑟𝑔𝑎𝑏𝑙𝑒} 3.18 

 

The optimization is subject to a number of constraints (Equations 3.14 – 3.18). The first 

constraint ensures that the amount of load needed to support the scheduled ancillary services 

capacity is less than the counterfactual load value (Equation 3.14). The second constraint requires 

that scheduled quantity of ancillary services is never more than the requirement (Equation 3.15).  In 

standard production cost models, this would be an equality constraint; but given that we may not be 

able to satisfy the reserve requirement for all ancillary services, in all hours, and that generators are 

available to cover the remaining requirement, this criterion is relaxed to an inequality constraint. 

Equation 3.16 requires that scheduled ancillary service quantities (𝑞𝑡
𝑖,𝑟) are greater than zero.  

The final two constraints (Equations 3.17 – 3.18) deal with how specific loads can pre-charge or 

re-charge in order to compensate for energy they may forgo while providing ancillary services. Not 

all loads can pre-charge or re-charge in order to make up for deployments. For example, it is 

unrealistic to try to make up for lost lighting load by increasing the lumens later on. As previously 

shown, Table 3.5 and Equation 3.12 (same as Equation 3.17) show which loads can charge, how 

much they can charge, and the hours in which they are allowed to charge. The final charging 

constraint (Equation 3.18) makes sure that the daily total energy consumption of a specific load is as 
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close to the counterfactual consumption as possible. It requires that the total quantity of charging, in 

kilowatt-hours (∑ 𝑐𝑡
𝑖

𝑡∈𝑑 ), is greater or equal to the expected amount of deferred energy 

(∑ ∑ 𝑞𝑡
𝑖,𝑟𝔼[𝜑𝑡

𝑖,𝑟]𝑅𝑡∈𝑑 ). The reason this constraint is based on the expectation, and not the actual 

amount, of deferred energy is that we do not know at the time of assigning ancillary services capacity 

(a priori), what the amount of deferred energy will be for a given ancillary service. The commitment 

of ancillary services capacity takes place ahead of real-time (ex ante) but its dispatch takes place based 

on real-time reliability needs (ex post). Therefore, the charging constraint in Equation 3.18 has to be 

based on an expectation of the effect of ancillary services deployment (𝔼[𝜑𝑡
𝑖,𝑟]). 

3.2.8 Assessment of Risk & Penalty Pricing 

This section describes one possible way to value the risk of consumer fatigue for residential 

demand resources providing ancillary services. This method demonstrates the ability to incorporate 

an expectation of ex post risk for consumer fatigue into ex ante demand response scheduling.  

The model schedules DR resources for ancillary services based on the expectation of being 

deployed. It runs one hundred realizations of the statistical ancillary services deployment model and 

calculates the risk, and its value, for each realization. This model assumes that the risk of consumer 

fatigue is directly tied to the amount of deferred energy; more specifically, how much deferred 

energy is unaccounted for after scheduling charging based on the expectation of deferred energy 

(Equation 3.18). Net-Deferred Energy (𝛥𝑡∈𝑑
𝑖 ) is defined as the difference between the daily deferred 

energy and the daily charging energy of a load (Equation 3.19). It is reasonable to assume that one 

kilowatt-hour of net-deferred energy on a one kilowatt-hour aggregate load leads to much more 

consumer fatigue than one kilowatt-hour of deferred energy for a one megawatt-hour aggregate 

load. Therefore, percent charging error (𝛹𝑖,𝑑), is defined in Equation 3.20 as the ratio of the net-

deferred energy to the total daily load. Note how similar this is to the charging constraint in the 
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optimization; the key difference is that this equation uses statistical realizations of deferred energy 

rather than the expectation of deferred energy. 

 𝛥𝑡∈𝑑
𝑖  =  ∑∑𝜑𝑡

𝑖,𝑟

𝑅𝑡

− ∑𝑐𝑖,𝑡
𝑡

    ∀𝑖, ∀𝑡 ∈ 𝑑 3.19 

 

𝛹𝑑
𝑖  =

𝛥𝑡∈𝑑
𝑖

∑ 𝐿𝑡
𝑖

𝑡∈𝑑

   ∀𝑖, ∀𝑡 ∈ 𝑑 3.20 

 

It seems reasonable to assume that a little net-deferred energy would be acceptable; therefore, 

any realization with less than 10% percent charging error is not assessed a penalty. After 10% 

charging error, any additional net-deferred energy is charged with the highest energy price of the day 

(Equation 3.21). The result is a total dollar value representing the market risk (𝛱𝑑
𝑖 ) for each 

realization. From these data, the model produces a cumulative distribution function of the penalties 

costs that are likely to occur in that day, representing the risk profile of the given allocation of DR 

resources. From this distribution, a decision maker (i.e., ISO or RTO) can select a value according to 

their risk aversion (e.g., median or mean value for risk neutral, high values for the risk adverse, etc.). 

This chapter uses the maximum penalty cost for each load as the representative risk to model a risk-

adverse decision-maker. 

 

 𝛱𝑑
𝑖 = {

(𝛹𝑑
𝑖 − 0.10)∑𝐿𝑖,𝑡

𝑡𝜖𝑑

max[𝑝𝑡∈𝑑
𝐸 ] 𝑖𝑓 𝛹𝑑

𝑖 > 0.1

0 𝑖𝑓 𝛹𝑑
𝑖 ≤ 0

   
3.21 

 

It is important to remember that there are multiple ancillary services contributing to each load’s 

net-deferred energy and each ancillary service may not be contributing equally. The model allocates 

the total market risk ($) to each of the ancillary services based on their contribution to the net-
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deferred energy. First, it calculates the contribution (𝑤𝑡
𝑖,𝑟

, Equation 3.22) of each ancillary service to 

the daily quantity of net-deferred energy, for a given load. This is done by dividing the total daily 

deferred energy from each ancillary service on a single load by the total daily deferred energy for that 

load. For example, if air conditioning is providing frequency regulation and spinning reserve, 

Equation 3.22 calculates how much of the air conditioning’s daily deferred energy comes from each 

of the two ancillary services. 

 𝑤𝑡∈𝑑
𝑖,𝑟 = 

∑ (𝑞𝑡
𝑖,𝑟 ∗ 𝜑𝑡

𝑖,𝑟)𝑡∈𝑑

∑ ∑ 𝑞𝑡
𝑖,𝑟 ∗ 𝜑𝑡

𝑖,𝑟
𝑟𝑡∈𝑑

       ∀𝑖, ∀𝑟 
3.22 

 

A penalty price is calculated (Equation 3.23) by multiplying the respective penalty weight by the 

total penalty cost and dividing it by the respective scheduled quantity of each ancillary service type. 

The result creates a daily penalty price ($/kW-Hr of ancillary services capacity) specific to each load 

type and ancillary service, and represents the approximate daily risk of scheduling a unit of ancillary 

services capacity on a specific load aggregation.  

 𝑝𝑡∈𝑑
𝑖,𝑟 =

𝛱𝑑
𝑖 ∗ 𝑤𝑡

𝑖

∑ 𝑞𝑡
𝑖,𝑟

𝑡∈𝑑

  ∀𝑡 ∈ 𝑑 
3.23 

3.3 Results & Discussion 

The results presented herein use two different metrics to measure the impact of residential 

demand response: ancillary service quantity (𝑞𝑡
𝑖,𝑟) and percentage of hourly market value (𝜏𝑡). The 

quantification of ancillary services provided by residential DR, as compared to the reserve 

requirements, gives a good indication for the size of the impact that residential DR can provide. We 

could also report the market value of all DR resources ($ = ∑ ∑ 𝑝𝑡
𝑟𝑞𝑡

𝑖,𝑟
𝑖𝑟 ). However, this is a 

misleading as this paper uses exogenous pricing data, the DR resources add a non-marginal 

additional supply, and the paper specifically attempts to measure the impact of DR resources that 
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are ubiquitous. The market value of DR resources would overestimate the benefits of residential DR 

providing ancillary services because it does not incorporate the elasticity of supply and the resulting 

depression in market prices and costs that would accompany a non-marginal change in supply. 

Instead, this paper uses the percentage of hourly market value of the DR resources (Equation 3.24) 

as a means of creating one quantitative datum, by which the scenarios can be compared to each 

other. The hourly market value addresses the aforementioned issues by normalizing the market value 

of the DR resources by the total market value. This is essentially a price-weighted average of the 

total ancillary service quantity provided in each hour and provides a quantitative measure of how 

large the effect of DR resources in the market for that hour is.   

 𝜏𝑡 =
∑ ∑ 𝑝𝑡

𝑟𝑞𝑡
𝑖,𝑟

𝑖𝑟

∑ 𝑝𝑡
𝑟𝑄𝑡

𝑟
𝑟

 3.24 

 

3.3.1 Without Risk-based Feedback 

The model in this paper optimally allocates ancillary services on residential demand resources 

with, or without, an estimate of the ex ante risk of consumer response fatigue. This section provides 

results from the simulations without any incorporation of risk. Figure 3.3 shows the quantity of 

ancillary services capacity (kW-Hr) scheduled on each load type over a year, using the data from the 

92 houses extracted from the Pecan Street Project data. Approximately 90% (9.6x104 of 10.8x104 

kW-Hr) of all the scheduled ancillary services capacity is scheduled on cooling (5x104 kW-Hr, 47%), 

refrigeration (2.6x104 kW-Hr, 24%), and electric space heating (2x104 kW-Hr, 19%). Delayable 

appliances (5%), Lighting (4.5%), and water heating (0.5%) together contribute the remaining 

amount.  
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Figure 3.3  Amount of ancillary services capacity scheduled on each load type.   

 

In order to provide context to these numbers, these data are compared against the sample’s 

contribution to ERCOT ancillary service requirements. Figure 3.4 shows the residential DR 

resource’s contribution to the hourly ancillary service markets in terms of quantity (top) and value 

(bottom).  Each boxplot is a different realization from the Monte Carlo analysis and each datum in a 

boxplot represents an hour in a year. The median contribution of residential DR is between 50% to 

75% of the hourly total ancillary service requirements and 75% to 95% of hourly market value (τ).  

The uncertainty in these ranges represents the uncertainty in the flexibility parameters. Even in 

pessimistic draws (left side), residential DR resources are likely to provide over 50% of the total 

requirements and 75% of the hourly market value, on average. 
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Figure 3.4. Percentage of hourly total ancillary service requirements (top) and percentage of hourly market value (𝝉, 
bottom)for each of the thirty modeled Monte Carlo simulations, ordered in ascending median value.  Even in pessimistic 
draws (left side), residential DR resources are likely to provide over 50% of the total ancillary service requirements and 75% 
of the hourly market value, on average.   

  

The key difference between the two metrics in Figure 3.4 is that the quantity metric (top) values 

all ancillary services equally; where the value metric (bottom) values each ancillary service based on 

their respective price. The optimization is choosing the higher value ancillary services first, resulting 

in more scheduled capacity of higher valued ancillary services and a larger effect on hourly market 

value than the total ancillary service requirements. This trade-off can be seen in Figure 3.5, which 
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depicts what percentage of the ancillary services requirement (attributable to our residential load) is 

scheduled on DR in each hour of the year, for each type of ancillary service.  

The shaded region represents the range of results from the Monte Carlo analysis; the individual 

lines represent different scenarios: Olsen et al, where the flexibility parameter are defined by Olsen 

et al [35]; Expected, where only the expected value of the distributions in Table 3.4 are used; and 

Optimistic, where only the upper end of the distribution in Table 3.4 are used. For each ancillary 

service type, a non-trivial portion of the requirement is scheduled on DR resources. Note that 

residential DR resources are more likely to meet the full requirements for peak reserves, the highest 

valued ancillary service, than frequency response, the lowest valued product.  

 

 
Figure 3.5  Duration curves showing the percentage of ancillary services requirement attributable to the Pecan Street load 
that are met by residential DR. Three cases are presented: Olsen represents the parameters used in Olsen et al (2013) [35].  
The expected and optimistic cases are based on the expected value and maximum value (respectively) of each flexibility 
parameter distribution (see Table 3.4).  
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3.3.2 With Feedback 

In this section, we now employ the method of assessing the ex post risk and incorporating this 

information into the ex ante scheduling of residential DR resources for ancillary services as described 

earlier. The model is used to test the effects of limiting DR’s participation in ancillary service 

markets as compared to the risk-based feedback. DR’s participation is capped at an hourly maximum 

percentage of supply of each ancillary service. Table 3.6 shows how the different hourly market caps 

affect the scheduling of demand response resources, as compared with the risk-based feedback 

without an hourly cap. Not surprisingly, hourly caps significantly reduce the quantity of ancillary 

services capacity that is scheduled and the value of the ancillary service capacity that is provided by 

DR resources. For example, a cap of 25% of the hourly ancillary services requirement schedules 4.6 

kW-Hr of total ancillary service capacity from DR resources, only 37% of the 12.3 kW-Hr of total 

ancillary service capacity that is scheduled using risk-based feedback. Additionally, a 25% hourly cap 

limits the contribution from residential DR resources to ancillary services to approximately 25% of 

the hourly market value; the risk-based feedback method schedules 86% of the hourly market value 

on average. Using 10x, 100x, and 1,000x the maximum daily energy price as the basis for calculating 

the penalty price shows no significant change in the results. More details are provided in the 

appendix.  
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Table 3.6. Comparison of hourly market caps to a risk-based optimization. For each hourly market cap, the average 

amount of ancillary services scheduled on residential DR (𝒒) is compared to the ancillary services requirement (𝑸). Also 
shown is the percentage of hourly market value of the scheduled ancillary services 
(𝝉) scheduled on the residential DR resources.  

Market Cap Average AS capacity (kW-Hr) 
Average Percentage of 

Hourly Market Value 

 𝑞 𝑄 

𝑞

𝑄
 𝜏 

No Cap  

No Feedback 
12.3 

18.4 

67% 86% 

75% 10.4 56% 70% 

50% 8.0 43% 49% 

25% 4.6 25% 25% 

Risk-Based 

Feedback 
12.1 65% 85% 

 

3.3.3 Thermal Battery Models and Modeling Tradeoffs 

A majority of the loads modeled in this chapter are aggregations of homogeneous 

thermostatically controlled loads (TCLs). There are many different types of mathematical models that 

essentially treat TCLs loads as a thermal battery, shifting consumption of electricity in time. Future 

research could repeat this chapter’s methods using a thermal battery model for each end-use 

aggregation instead of using the flexibility parameters.  The section highlights the advantages of each 

of these methods.   

There are many different ways to model an aggregation of TCLs but they can most easily be 

understood as a thermal battery model. The thermostatically controlled loads (e.g., air conditioner) 

have constraints on the temperature range (e.g., 70-75°F) for a thermal mass (e.g., the house) and 

properties that explain how the system transitions from one state to another (e.g., heat transfer 

coefficients, thermal loadings, time constants, etc.).  The result is that the consumption of each 

individual load can be modified based on its particular parameters such that energy can be stored 

(e.g., pre-cooling) or withdrawn (e.g., delaying cooling) as if it were a battery. Each individual load 
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may only be able to “store” a small amount of energy for a short amount of time, but as an 

aggregation the quantity and duration of the “battery” grows.  

The ability to modify the total consumption of an aggregation of TCL’s is its flexibility. The 

flexibility model eliminates the much of the complexity of modeling aggregations of TCL’s by 

assuming a time-independent parameter that represents how well, on average, an aggregation of 

TCL’s can perform a particular ancillary service.  

Given that the flexibility model uses average values to represent an aggregation’s flexibility, the 

battery model would show more variation in the load’s ability to provide ancillary services. There 

will be some hours where the thermal battery model shows a load is more flexible and other ours 

when it is less flexible than the average flexibility parameter. Whether this greater variation creates a 

bias in our results, it is unclear. However, it is not likely that adding this additional complexity would 

change the conclusions drawn in this chapter.  

The advantage of using a thermal battery model for each individual load aggregation TCLs is 

that the model implicitly captures the aggregation’s flexibility based on its current state and allows 

for this flexibility to change with time as the aggregation’s state changes. This would be equivalent to 

creating a time-dependent flexibility parameter in this chapter’s methods. The downside to creating a 

battery model for each individual aggregation is that it adds significant complexity to an already large 

model. The benefit of the flexibility model is that it could be more easily adopted by utilities looking 

to estimate their demand response potential, without needing to hire an expert in modeling 

heterogeneous thermostatically controlled loads. 

The battery method might be categorized as a bottom up method, as most thermal battery 

models use a known, and fixed, quantity of homogeneous loads. The flexibility model on the other 

hand can be used in a top-down analysis where nothing is known about the individual loads. The 

empirical data in this chapter poses a problem when using a thermal battery model. The empirical 
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data has a known quantity of loads in each aggregation but the number that are ‘on’ varies with time 

and is not known for all load types. Additionally, the parameters of each load (e.g., thermal mass, 

heat transfer coefficients, time-constants, etc.) are not explicitly known. This makes it very difficult to 

know the precise characteristics of the aggregation. This hurdle could potentially be overcome using 

machine learning techniques [54,55], but we consider this to be beyond the scope of this thesis.  

In short, building a “correct” battery model would take a substantial research effort that is likely 

not needed in order to address the research goals of this chapter.  

3.3.4 Uncertainty 

There are a number of sources of uncertainty in the results that are worth noting. First, the 

Pecan Street sample is not geographically representative of the average U.S. home. There is 

significant variation in the types of loads, their contribution to a home’s total energy consumption  

[56], as well as variation in market designs and ancillary service requirements. Therefore, these 

results are only representative of homes in similar climates but we can still infer from these results 

how DR resources in other regions may impact their respective markets.  

There is a large amount of uncertainty in these results and around the assumptions made in this 

chapter. First, the analysis presumes an extreme future where communication technologies and 

controllable appliances are extremely prevalent and acceptable to customers, making direct load 

control possible in every home. Changing this assumption to a less optimistic future simply scales 

down our results. A second major contributor to uncertainty is the estimate of how flexible a certain 

load can be. Loads could be more or less flexible based on our ability to control aggregated loads 

while keeping consumers happy and willing to participate. The answer of how much of a market 

impact residential DR could have greatly depends on this assumption. We are encouraged by our 

results with regards to this uncertainty for two reasons: i) the highest value ancillary services are 

selected first, meaning that a 1% reduction in the participating demand response will not create less 
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than a 1% reduction in economic value; ii) large ancillary service deployments are rare and can be 

hedged through smart scheduling. Despite these uncertainties, the results show that residential DR 

can provide a significant portion of residential load’s contribution to wholesale ancillary services 

requirements.   

Finally, customer response fatigue is a phenomenon that is not well understood. This paper 

presents one potential mechanism: that significant deviation from daily counterfactual consumption 

leads to response fatigue. This mechanism is far from proven and more research is needed before 

this phenomenon can be accurately modeled and predicted. The methods presented here are a 

framework for optimally scheduling DR resources for ancillary services and can be adapted to 

incorporate any new understanding of consumer response fatigue.   

3.4 Conclusions and Policy Implications 

Residential demand response could be a significant contributor to ancillary services markets in 

the future. In our model, cooling, refrigeration, and electric space heating provide approximately 

90% of all the ancillary services capacity scheduled on the Pecan Street residential demand resources. 

Delayable appliances (5%), Lighting (4.5%), and water heating (0.5%) together contribute the 

balance. The results suggest that residential DR could provide between 35% and 60% of residential 

load’s contribution to wholesale ancillary services requirements and up to 80% of its respective 

market value. This could be a game-changer in ancillary service markets that could be facing higher 

demand with rising renewable penetration and lower supply given retirements of traditional thermal 

generation. The novel risk-based optimization framework presented here could have a number of 

real world applications including use in load aggregators’ and grid operators’ scheduling and resource 

optimization.  

Additionally, the results suggest that hourly caps are not an economically efficient means of 

addressing consumer response fatigue as compared to incorporating that ex ante risk into the 
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commitment of ancillary services capacity on DR resources. Future research to better quantify how 

much flexibility load can provide; the adoption of enabling technologies; and the behavioral 

economics that affect how much load will customers be willing to turn over to direct load control 

could further refine the model in this paper. The results presented here suggest that the impact of 

residential DR is great enough to justify further research into these policies. 

The results of our simulation of hourly market caps suggest that this type of policy is not an 

economically efficient means of addressing consumer response fatigue as compared to incorporating 

that ex ante risk into the commitment of ancillary services capacity on DR resources. We hope that 

grid operators’ who employ this or similar approaches seriously consider advancing their method 

and more precisely target the risk to their system. This could result in a more economically efficient 

market and significant savings to the rate-payers.   

Future research to better quantify how much flexibility load can provide, the adoption of 

enabling technologies, and the behavioral economics that affect how much load will customers be 

willing to turn over to direct load control could further refine the model in this paper. The results 

presented here suggest that the impact of residential DR is great enough to justify further research 

into these policies. 
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Chapter 4: CONCLUSIONS 

This dramatic shift in both fossil-fueled and renewable generation will undoubtedly affect the 

cost of energy as well as the cost of ancillary services. The additional variability inherent to wind and 

solar power will increase the need for balancing using flexible resources providing ancillary services. 

At the same time, thermal generation resources are retiring due to environmental regulations, 

decreasing supply these ancillary services. The net economic impact of these is still highly uncertain 

but could result in higher prices and costs for ancillary services if nothing is done to mitigate this 

rise.  

Balancing area consolidation provides economic benefit in the energy and frequency regulation 

market. Wide-scale consolidation reduces the relative variability of net load, which reduces the 

aggregate requirement for frequency regulation. The data suggest that this effect exhibits diminishing 

marginal returns, meaning consolidating the first few BAs produces a larger reduction than the final 

few BAs. This this analysis does not consider all the benefits or costs of BA consolidation, and is 

not meant as an assessment of net-benefits. That said, the reduced frequency regulation requirement, 

combined with the effect of shared resources, leads to a reduction in frequency regulation cost of 

approximately $0.1 per MWh of total load. These results do not significantly change with the 

inclusion of 20% wind, suggesting that in the near term, wind’s interaction in the frequency 

regulation market is not a prime motivation for consolidation. The data show that CO2 and PM2.5 

emissions increase, while NOX emissions dramatically decrease, and SO2 slightly decreases. Given 

the relative health and climate risks each of these pollutants, it is likely that this change in emissions 

results in a net cost to society. This suggests that while there may be economic benefits to BA 

consolidation, BA consolidation may not be as beneficial today as previous literature suggest 

depending on the generation portfolio of the considered system and the level of penetration of 
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renewable generation. Hence, a blanket policy to support balancing area consolidation in fossil-

based systems may result in unexpected consequences such as increased emission.  

Residential demand response could be a significant contributor to ancillary services markets in 

the future. In our model, cooling, refrigeration, and electric space heating provide approximately 

90% of all the ancillary services capacity scheduled on the Pecan Street residential demand resources. 

Delayable appliances (5%), Lighting (4.5%), and water heating (0.5%) together contribute the 

balance. The results suggest that residential DR could provide between 35% and 60% of residential 

load’s contribution to wholesale ancillary services requirements and up to 80% of its respective 

market value. This could be a much needed, currently untapped, supply of ancillary services to offset 

the decrease in supply due to thermal generation retirements and expected increases in demand due 

to renewable energy. Additionally, the results suggest that hourly caps are not an economically 

efficient means of addressing consumer response fatigue as compared to incorporating that ex ante 

risk into the commitment of ancillary services capacity on DR resources. Future research to better 

quantify how much flexibility load can provide; the adoption of enabling technologies; and the 

behavioral economics that affect how much load will customers be willing to turn over to direct load 

control could further refine the model in this paper. The results presented here suggest that the 

impact of residential DR is great enough to justify further research into these policies. 

Those who are concerned with mitigating the costs of renewables integration and ancillary 

services costs should consider policies that decrease the demand for and/or increase the supply of 

ancillary services. Balancing area consolidation and residential demand response both create the 

desired reduction in ancillary services cost. This thesis aims to inform the policy discussion as to the 

details of each of these technologies. In the case of balancing area consolidation, one should be 

careful to measure all feasibly measured benefits and costs, including emissions related health effects 

prior to judging the merits of a specific consolidation. Residential demand response appears to be a 
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great supply of ancillary services if one can advance the acceptance of direct load-control and 

correctly manage the risk of consumer fatigue.  

The challenge of renewable integration and the expected scarcity of ancillary services is a 

solvable challenge. We hope that this thesis has helped to inform the discussion forward on this 

topic and contributes to the U.S. meeting its energy policy goals. 
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Chapter 5: APPENDIX 

A.1 Near-term Effects of Wide-Scale Balancing Area Consolidation on 

Frequency Regulation Markets 

A.1.1 MISO Balancing Areas Modeled  

Table 5.1. MISO Balancing Areas 

Power control area name Missing Data Modeled 
Pre-consolidated 
with another BA 

Alliant - East 
 

X  

Alliant - West 
 

X  

Ameren -Illinois 
 

X  

Ameren - Missouri 
 

X Ameren - Illinois 

Big Rivers Electric Corp. EWD 
 

 

Cleco Corp. EWD & Load   

Columbia MO City of 
 

X Ameren – Illinois 

Consumers Energy Co. 
 

X  

Dairyland Power Coop. 
 

X  

Detroit Edison Co. EWD 
 

 

Entergy EWD & Load   

Great River Energy 
 

X  

Hoosier Energy REC 
 

X  

Indianapolis Power & Light  
 

X  

Lafayette, city of EWD & Load   

Madison Gas and Electric Co. 
 

X Alliant - East 

Michigan Electric Coordinated Systems Load 
 

 

MidAmerican Energy Co. 
 

X  

Minnesota Power 
 

X Great River Energy 

Muscatine Power and Water Load 
 

 

Northern Indiana Public Service  
 

X  

Northern States Power 
 

X Dairyland Power Coop. 

Otter Tail Power Company 
 

X  

South Mississippi Elect. Pow.  EWD & Load   

Southern Illinois Power Cooperative 
 

X  

Southern Indiana Gas & Electric Co. 
 

X S. Illinois Power Coop. 

Southern Minnesota Mun. Power Agcy. 
 

X Great River Energy 

Springfield IL - CWLP 
 

X Ameren – Ill. 

Upper Peninsula Power Co. 
 

X  

Wisconsin Energy Corp. 
 

X  

Wisconsin Public Service Corp. 
 

X  
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WAPA - Upper Great Plains East 
 

X  

American Trans. / First Energy 
  

 

Duke Energy Corp. 
  

 

 

A.1.2 Variance Based Frequency Regulation Requirement Heuristic (1σΔ)  

The model uses two heuristics to estimate the frequency regulation requirements of a balancing 

area (BA), both of which are derived from the WWSIS study [1]. Both heuristics are described in the 

main paper but this section includes a short derivation of the second heuristic. This second heuristic 

is a function of the variance of net-load and therefore will capture the smoothing effects of 

geographic diversity. 

First, the step-changes of ten-minute net-load (∆𝑛𝑙10) are divided into its components 

(Equations 5.1, 5.2, 5.3) and rearranged and regrouped (5.4 and 5.5). The result is that the variance 

of the step-changes in net-load, 𝑉𝑎𝑟(∆𝑛𝑙10), are equal to the variance of the sum of the step-

changes of load and wind, 𝑉𝑎𝑟(∆𝐿10 − ∆𝑊10
𝑇 ) (Equation 5.5). Equation 5.6 follows based on the 

mathematical properties of variance.  

 
𝑉𝑎𝑟(∆𝑛𝑙10) = 𝑉𝑎𝑟(∆𝑛𝑙10) 5.1 

 

𝑉𝑎𝑟(∆𝑛𝑙10) = 𝑉𝑎𝑟(𝑛𝑙10,𝑡+1 − 𝑛𝑙10,𝑡) 5.2 

 

𝑉𝑎𝑟(∆𝑛𝑙10) = 𝑉𝑎𝑟 ((𝐿10,𝑡+1 −𝑊10,𝑡+1
𝑇 ) − (𝐿10,𝑡 −𝑊10,𝑡

𝑇 )) 5.3 

 

𝑉𝑎𝑟(∆𝑛𝑙10) = 𝑉𝑎𝑟 ((𝐿10,𝑡+1 − 𝐿10,𝑡) − (𝑊10,𝑡+1
𝑇 −𝑊10,𝑡

𝑇 )) 5.4 

 

𝑉𝑎𝑟(∆𝑛𝑙10) = 𝑉𝑎𝑟(∆𝐿10 − ∆𝑊10
𝑇 ) 5.5 

 

𝑉𝑎𝑟(∆𝑛𝑙10) = 𝑉𝑎𝑟[∆𝐿10]  + 𝑉𝑎𝑟[∆𝑊10
𝑇 ] − 2 ∗ 𝐶𝑜𝑣[∆𝐿10, ∆𝑊10

𝑇 ] 5.6 
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Assume that the covariance of step-changes in load and wind is equal to zero 

(𝐶𝑜𝑣[∆𝑙10, ∆𝑤10] = 0). This assumption represents an upper bound estimate for the variance of 

ten-minute step-changes in net-load, as any covariance would reduce the variance of the ten-minute 

step-changes (5.7). The equality in 5.7 follows from this assumed upper bound. The model uses this 

upper bound as our estimate of the variance of step-changes in net-load. 

 𝑉𝑎𝑟(∆𝑛𝑙10) ≤ 𝑉𝑎𝑟[∆𝐿10]  + 𝑉𝑎𝑟[∆𝑊10
𝑇 ] 5.7 

 𝑉𝑎𝑟(∆𝑛𝑙10) = 𝑉𝑎𝑟[∆𝐿10]  + 𝑉𝑎𝑟[∆𝑊10
𝑇 ] 5.8 

The model estimates that the frequency regulation requirement heuristic should be equal to 1σΔ 

of 10-minute net-load (Equations 5.9) which can be transformed into Equation 5.10 and substituted 

with Equation 5.8 to create Equation 5.11.   

 

𝑅𝑒𝑔𝑅𝑒𝑞 = 1𝜎(∆𝑛𝑙10)  5.9 

 

𝑅𝑒𝑔𝑅𝑒𝑞 = 𝑉𝑎𝑟(∆𝑛𝑙10)
1
2   5.10 

 

𝑅𝑒𝑔𝑅𝑒𝑞 = (𝑉𝑎𝑟[∆𝐿10]  + 𝑉𝑎𝑟[∆𝑊10
𝑇 ])

1
2 5.11 

WWSIS says that one standard deviation of ten-minute changes in load is approximately 1% of 

daily peak load (Equations 5.12 and 5.13). This approximation is substituted into 5.11, to get the 

final result, Equation 2.2. 

 

𝜎[∆𝑙10] ≅ 0.01 ∗ �̂� 5.12 

 

𝑉𝑎𝑟[∆𝑙10] ≅ (0.01 ∗ �̂�)
2
 5.13 
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A.1.3 Economic Dispatch - Additional Details  

The objective of the economic dispatch model is to minimize the costs of producing energy and 

providing frequency regulation to instantaneously match load. The body of the paper shows the 

most important details of the model. Below are additional details that may help the reader further 

understand the optimization problem.  

The economic dispatch model used in this paper is an inter-temporal, co-optimized economic 

dispatch model with the following formulation: 

 

Co-Optimized Economic Dispatch Formulation 

min
𝑒,𝑓𝑟,𝑐

𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑠𝑡𝑠 + 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡𝑠 

Energy Constraints  

∑ 𝑒𝑖,𝑡
𝑛
𝑖=1 + ∑𝑤𝑖,𝑡 − 𝑐𝑡 = 𝐿𝑗,𝑡 Generation + wind - curtailment = load 

∑ 𝑟𝑖,𝑡
𝑛
𝑖=1  = 𝐹𝑅_𝑅𝑒𝑞  Sum of FR capacity = FR requirement 

𝑒𝑖,𝑡 ≤ 𝑒�̿�    Can’t over schedule a resource for energy 

-𝑒𝑖,𝑡 ≤  0    Only positive energy production 

𝑒𝑖,𝑡 ≤ 𝑒𝑖,𝑡−1 + 𝑟𝑎𝑚𝑝𝑖  Ramp-up limitation 

-𝑒𝑖,𝑡 ≤ −𝑒𝑖,𝑡−1 + 𝑟𝑎𝑚𝑝𝑖  Ramp-down limitation   

−𝑒𝑖,𝑡 ≤ −𝑒𝑖  ∀𝑖 ∈ {𝑛𝑢𝑐𝑙𝑒𝑎𝑟}   Must produce a minimum amount of energy* 

 *This constraint is only for nuclear generation 

 

Frequency Regulation Constraints 

𝑟𝑖,𝑡 ≤ 𝑟�̿� Can’t over schedule a resource for regulation 

−𝑟𝑖,𝑡 ≤  0 Only positive frequency regulation capacity 
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Coupling Constraints 

𝑒𝑖,𝑡  + 𝑟𝑖,𝑡  ≤ 𝑀𝑊̿̿ ̿̿ ̿̿ 𝑖 Can’t over schedule a resource 

−𝑒𝑖,𝑡  + 𝑟𝑖,𝑡  ≤ 0  Must produce energy to provide frequency regulation 

 

A.1.3.1 Ramp Constraints.  

The model imposes hourly ramp constraints only on coal and nuclear units. No hourly ramp 

constraint is placed on single cycle or combined cycle units as these generators can ramp over their 

entire capacity within one hour (Katzenstein and Apt 2009). For nuclear units, the hourly ramp limit 

is 1% of the unit’s capacity per hour. This limit allows for some minimal amount of movement but 

encourages constant production. For coal units, the hourly ramp limit is 20% of its capacity per 

hour, which is consistent with the ramp limits used in previous literature (WECC 2009).  

A.1.3.2 Minimum Generation Limits for Nuclear Plants.  

Nuclear units are considered “must-run” in MISO and have a minimum generation limit. 

However, there is little reliable data on what this limit should be. Figure 5.1 shows the cumulative 

distribution of the annual capacity factors for nuclear plants (EPA 2012). The data show that the 

majority of the nuclear plants (~80%) have annual capacity factors over 80%, which we choose as 

the minimum generation limit for the nuclear power plants in this model.  
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Figure 5.1. Approximate cumulative distribution function of nuclear capacity factors in the eGrid data set [2]. 

 

A.1.4 Frequency Regulation Details 

Frequency regulation is an ancillary service that is at the center of this analysis. So the following 

sections provide clarifications regarding the methods of generating frequency regulation bids and the 

scheduling of frequency regulation capacity.  

A.1.4.1 Frequency Regulation Bids.   

We regress a year’s worth of bids from the NYISO against the generator’s size to estimate the 

average bid quantity (MWFR) and the bid price ($/MWFR-Hr) of resources bidding into the frequency 

regulation market. 

A linear regression does a good job of predicting the quantity (MW), or size of the frequency 

regulation bid, as shown in Figure 5.2 and Figure 5.3, with the exception of units between 200 and 

300 MW. These units bid a higher percentage of their capacity into the frequency regulation market 

(14%). As a result of this analysis we use a heuristic in which units that are between 200-300 MW 

bid 14% of their capacity in the frequency regulation market. We further assume that all other units 

bid 6% of their capacity for frequency regulation. Figure 5.3 shows the results of this deterministic 

model, plotted with the actual bids. 
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Figure 5.2.  The average bid quantity (MW) into the frequency regulation market, by generator size. Based on 2009 NYISO 
bid data 

 

  
Figure 5.3. The bid quantity (MW) into the frequency regulation market plotted with our fitted model using the unit’s 
capacity as the explanatory variable  

 

Historic bid data from the NYISO are again used to estimate a bid price ($/MWFR-Hr) to units 

that are bidding into the frequency regulation market [3]. The average price for each bin is used to 

assign a bid price to each selected generator (Figure 5.4). 
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Figure 5.4. The average Bid Price ($/MW) into the frequency regulation Market, by generator size. Based on 2009 NYISO 
bid data [3]. 

 

It is often said that single cycle natural gas turbines ‘should’, or ‘are better equipped’, or ‘are 

likely to provide’ frequency regulation. However, no reliable source could be found to limit the set 

of generators providing frequency regulation to a specific type. Some limited evidence exists that 

coal units do provide frequency regulation, although Kirby [4] criticizes one plant for doing so 

poorly. Additionally Kirby et al [5] provide evidence that nuclear plants tend not to provide 

frequency regulation. As they put it, “Nuclear power plants choose not to participate in AGC 

because of the philosophy that reactor power is to be controlled only by the nuclear plant operator, 

and not by outside variables.” The model in this paper assumes that nuclear plants and wind farms 

do not bid into the frequency regulation market. All generators, other than nuclear and wind 

generators, bid into the frequency regulation market and are assigned a frequency regulation bid 

quantity and price based on its size.  
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A.1.4.2  Frequency Regulation Capacity.  

Frequency regulation capacity is an amount of capacity, measured in megawatts (MW), that is 

held back from providing energy in order to counteract imbalances. These imbalances are the result 

of unexpected changes in imports, exports, generation, and load. Therefore frequency regulation 

capacity requirements are set ahead of time (ex ante) in order to reserve capacity for this balancing 

service. The amount of capacity is based on the historic distribution of imbalances, historic 

performance on NERC balancing standards (CPS1 & CPS2), and common heuristics (i.e., 1% of 

peak load). The ex ante nature of reserves means that we do not need to model the sub-hourly 

dispatch of reserves in order to measure the economic effects of BA consolidation as long as the 

reserve requirements are sufficient. All economic effects are determined ex ante. 

A.1.5 Additional Results 

These sections highlight additional model results that may be of interest, including the 

alternative methods of wind farm allocation (A.1.5.1) and the model’s resulting fuel mix (A.1.5.2). 

A.1.5.1 Alternative Methods of Wind Farm Allocation   

In section 2.2, we present a method for allocating hypothetical wind farms to BA’s based on the 

capacity factor and location of each wind farm. The method presented in the main text ensures that 

each individual BA has approximately 20% wind, by energy. We show in section 2.4 of the 

manuscript, that consolidating all these BAs into one consolidated BA results in a reduction in the 

coefficient of variation of net-load – one method of quantifying the smoothing effect of 

consolidating geographically diverse wind farms. In this Supporting Information, we also consider 

another method of allocating wind farms to BA’s. Here, we only use the wind farms with the highest 

capacity factors. This is to represent the fact that these wind farms are likely to be the most 

economically attractive and therefore are the most likely to be built. Figure 5.5 shows a plot of the 

coefficient of variation of net-load for both methods: the evenly dispersed 20% (in circles) and the 
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highest capacity factor method (diamonds). Both methods result in the same downward trend that is 

characteristic of geographic diversity. However, the two methods are not substantially different. 

Both have similar effects on net-load, frequency regulation requirements, and therefore similar 

economic effects.  

  

Figure 5.5. The coefficient of variation of wind power versus mean wind power. The relative variability, as represented by 
the coefficient of variation, decreases with increased wind power. The circles represent the evenly distributed 20% wind 
allocation method presented in section 2.3 of the paper. The diamonds represent a method of wind allocation where only 
the wind farms with the highest capacity factors are included in the model. Therefore, there is significant variation in the 
wind penetration between regions.   

 

A.1.5.2 Fuel Mix   

The BAs that we modeled have a lot of coal-fired generation, so it is not a surprise that coal 

dominates the fuel mix with, or without wind (see Tables 5.2 and 5.3).  

Table 5.2. Fuel mix before and after consolidation for all scenarios without wind 

 
Scenario 

Without Wind 

Fuel Mix Pre- (Post-) Consolidation 

Coal Gas Nuclear Oil Biomass 

Low Gas 
80% 

(82%) 

3% 

(1%) 

17% 

(17%) 

0% 

(0%) 

0% 

(0%) 

Base Case 
81% 

(82%) 

2% 

(0%) 

17% 

(17%) 

0% 

(0%) 

0% 

(0%) 

High Gas 
82% 

(82%) 

1% 

(0%) 

17% 

(17%) 

0% 

(0%) 

0% 

(0%) 

High Gas &  

Frequency Regulation 

82% 

(82%) 

1% 

(0%) 

17% 

(17%) 

0% 

(0%) 

0% 

(0%) 
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Table 5.3. Fuel mix before and after consolidation for all scenarios with ~20% wind 

Scenario 

With Wind (~20%) 

Fuel Mix Pre- (Post-) Consolidation 

Coal Gas Nuclear Oil Biomass Wind 

Low Gas 
59% 

(58%) 

2% 

(1%) 

16% 

(17%) 

0% 

(0%) 

0% 

(0%) 

24% 

(24%) 

Base Case 
59% 

(59%) 

1% 

(0%) 

16% 

(17%) 

0% 

(0%) 

0% 

(0%) 

24% 

(24%) 

High Gas 
60% 

(59%) 

0% 

(0%) 

16% 

(17%) 

0% 

(0%) 

0% 

(0%) 

24% 

(24%) 

High Gas &  

Frequency Regulation 

60% 

(59%) 

0% 

(0%) 

16% 

(17%) 

0% 

(0%) 

0% 

(0%) 

24% 

(24%) 
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A.2 RESIDENTIAL LOAD PROVIDING ANCILLARY SERVICES  

A.2.1 SOURCES FOR FLEXIBILITY PARAMETER ESTIMATES 

Table 5.4 Sources for the flexibility parameter for DR providing AS 

Year/ Author End-Use(s) 
Ancillary 

Service 
Min 𝔼[] Max Notes 

2003 Kirby [1] Pumps 
Spinning 

Reserve 
0.00 0.50 1.00 This suggest that pumps might be similar to a delayable appliance 

2007 Eto [2] Cooling 
Spinning 

Reserve 
0.00 0.15 0.38 

Actual Demonstration.  Customers didn't notice a 20 minute curtailment.  

That means 3 households could be sequentially curtailed sequentially to 

make one full hour of curtailment.   

2007 

Hammerstrom [3] 
Water Heating Spin  0.00 - 1.00 Demonstrates the ability to respond to under-frequency load sheds 

2007 

Hammerstrom [3] 
Clothes Dryers Spin  0.00 - 1.00 Demonstrates the ability to respond to under-frequency loadsheds 

2007 Stadler [4] Refrigeration 
Load 

Following 
0.10 0.25 0.50 

Table 2shows how long a load reduction can be sustained as a function of 

two variables: 1) the spread parameter  and 2) the percentage load reduction 

achieved.  Looking at these data backwards (from the values up to the 

columns), one can infer what services could be provided at a given 

reduction.  E.g., 10% reduction can be held for nearly 2 hours; 25% for 

approximately 1.5 hrs; 50% for about an hour; ...For load following you 

need about an hour... 

2007 Stadler  [4] Refrigeration Spin  0.25 0.50 0.75 Based Table 2 from the 2007 Stadler Load Following 

2007 Stadler [4] Refrigeration 
Frequency 

Regulation 
0.38 0.41 0.45 Based on Table 2 from the 2007 Stadler Load Following. 
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Year/ Author End-Use(s) 
Ancillary 

Service 
Min 𝔼[] Max Notes 

2009 

Callaway [5] 
Cooling 

Frequency 

Regulation / 

Load 

Following 

0.00 0.05 - 

The paper is highly theoretical but uses 14kW average consumption TCLs 

and shows a response of "roughly 0.5 kWh and 0.75 kW of responsiveness 

per load".  Though this wasn't maximum capable, it was maximum needed 

to respond to a wind turbine error signal.  

2011 Kiliccote [6] HVAC Non-Spin 0.00 0.22 - 
 

2011 Hovgaard [7] Refrigeration 
Frequency 

Regulation 
0.00 0.20 - 

Really "Primary Response" – Does not include a marginal willingness to 

pay for electricity.  20% based on a statement in the conclusion.   

2011 Keep [8]  Heat 

Frequency 

Regulation 

& Response 

0.00 0.05 0.35 
 

2011 Keep [8] Heat 

Frequency 

Regulation 

& Response 

0.00 0.05 0.35 
 

2012 Angeli [9] Refrigeration 
Frequency 

Response 
0.00 0.64 0.98 

Droop characteristic for these are likely between 0.4-0.6%.  The flexibility 

parameter is miss-leading because each ‘fridge is providing very little 

response – not optimized. 

2012 Huesan [10] Lighting Spin  0.00 0.23 - This study does consider "noticable" changes and avoid them 

2012 Huesan [10] Lighting load shifting 0.00 0.23 - This does consider "noticable" changes and avoid them 

2012 Perfumo [11]  Cooling 
Spin &  

Non-Spin 
0.00 0.34 - Incorporates a "comfort" metric. Spin chosen based on signal and duration 

2013 Aunedi [12] Refrigeration 
Frequency 

Response 
0.00 0.01 - 

Not optimized, the loads are clearly not being taxed fully.  Very mininimal 

amount of response from each (<0.01% curtailment). 
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Year/ Author End-Use(s) 
Ancillary 

Service 
Min 𝔼[] Max Notes 

2013 Halamay [13] Water Heating 
Frequency 

Regulation 
0.00 0.05 0.08 Does the balancing of a single wind farm. 

2013 Halamay [13] Water Heating 
Load 

Shifting 
0.00 0.00 0.06 Does the balancing of a single wind farm. 

2013 Hao [14] Cooling 
Frequency 

Regulation 
0.00 0.36 - 

Used the PJM RegD (aka Fast) signal.  This is not representative of all 

frequency regulation signals. 

2013 Harsha [15] Cooling 
Peak 

Shaving 
0.02 0.02 0.03 

 

2013 Lu [16] HVAC 
Frequency 

Regulation 
0.00 0.17 - 

 

2013 Sullivan [17] Cooling 
Spinning 

Reserve 
0.00 0.68 0.80 

Customers who experiences > 60 curtailments reported noticing ~2.79 

events.  Customers who only experienced one curtailment reported noticing 

3.23 events. 

2013 Zhang [18] Cooling 

Frequency 

Regulation 

& Response 

0.00 0.13 - 
Used the PJM RegD (aka Fast) signal.  This is not representative of all 

frequency regulation signals. 

2013 Zhang  [18] Cooling 
Peak 

Shaving 
0.00 0.13 - 

Assumes the same "flexibility" as when used for frequency regualtion - 

2.5MW reduction from the same number of ACs 

2013 Zhang [18] Cooling 
Load 

Following 
0.00 0.17 - 

 

2013 Zhao [19] HVAC 
Frequency 

Regulation 
0.00 0.20 0.35 

Used the PJM RegD (aka Fast) signal.  This is not representative of all 

frequency regulation signals. 
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A.2.2 Statistical Ancillary Service Deployment Model 

These statistical models were based on ERCOT data [20]. 

A.2.3 Deployment of Frequency Regulation Reserves 

Frequency regulation resources are constantly on call to move up and down in response to real-

time imbalances of the grid, but the amount dispatched varies throughout time. We develop a 

statistical model that approximates the correlated distributions of dispatch energy (𝛿𝑟,𝑡) associated 

with frequency regulation up and down. Up regulation is dispatched when the frequency is low and 

down regulation is dispatched when frequency is high; given this, it makes sense that the dispatch of 

these two reserves are negatively correlated. We approximated the correlated regulation deployment 

energy values as bivariate exponentially distributed random variables with a correlation coefficient of 

-0.5. The up regulation deployment is exponentially distributed with expectation of 0.16 kWh/kW 

(𝛿𝑟,𝑡~𝐸𝑥𝑝(0.16)); and the down regulation deployment is exponentially distributed with an 

expectation of 0.12 kWh/kW (𝛿𝑟,𝑡~𝐸𝑥𝑝(0.12)). 

A.2.4 Deployment of Contingency Reserves 

This paper defines contingency reserves as frequency response, spinning, and non-spinning 

reserves. Although this is not the formal NERC definition [21], all of these reserves respond in the 

event of a contingency. For this paper, we model the three reserves (frequency response, spin, and 

non-spin) as a cascading Bernoulli trial. A probability (𝑝1) suggests that an under-frequency event 

occurs, which triggers frequency response providers to respond. There is also a conditional 

probability, 𝑝2, that the low frequency event cascades to the next reserve – spin. Alternatively, there 

is a probability (1 − 𝑝2) that the initial event is resolved without needing to call spinning reserves. If 

spinning reserves are called, however, there is a probability (𝑝3) that non-spin will be called and a 
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(1 − 𝑝3) chance that the event resolves without calling non-spin. This process can be repeated 

hundreds of time to develop a set of possible contingency calls that are used to calculate the risk of 

DR violating its charging requirement (section 3.2.7) 

Based on the ERCOT data [20], frequency response is deployed in approximately 90% of all 

hours. Therefore 𝑝1 in our model is 0.9. The amount of frequency response deployment, given a 

call, can be modeled as a Weibull distribution (with fit parameters A = 31.665 and B = 1.563 using 

ERCOT data). With regards to spinning reserves, it is likely that they are called between 20 and 200 

times a year [22,23]. We assume a worst case and use 200 spin calls a year. Lastly, data from an 

ERCOT presentation [23] suggest that non-spin is called approximately 80 times a year. However 

this value is for a single year and there is no indication that this is a typical year for ERCOT. 

Therefore, we assume an order of magnitude estimate of 100 non-spin calls a year. The resulting 

conditional probabilities for spin and non-spin are: 𝑝2 = 0.025; 𝑝3 = 0.50. The amount of 

deployment (𝛿) for both spin and non-spin are assumed to be equal to one. In other words, a DR 

resource providing one kW of spinning, or non-spinning, reserve will have one kWh of deployment 

energy when called upon.  

A.2.5 Deferred Energy Example 

The amount of energy a specific load defers in order to provide ancillary services is a function of 

three factors: 1) the type of ancillary service; 2) the amount of that ancillary service capacity 

scheduled on load; and 3) the amount of deployment for that ancillary service. Figure 5.6 provides 

an example of how the amount of deferred energy differs depending on the type of ancillary service.  

For example, let’s assume that a load with maximum power of Lmax will naturally consume an 

hourly average of L1 kWh when it isn’t providing any form of demand response. When providing DR, 

any reduction in consumption from L1 will count as deferred energy. If the load is scheduled to provide 
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regulation up (see left panel in Figure 5.6), it first needs to reserve the ability to reduce its 

consumption from L1 to L3, but it will only need to lower its consumption from L1 when it is 

deployed. Let’s now assume that it is deployed for regulation up to an hourly average of L2 kWh. 

Therefore, the amount of deferred energy is equal to the deployment energy multiplied by one hour: 

L1 – L2. 

  
Figure 5.6. Depiction of how AS deployment and the amount of deferred energy varies with different AS types. (from grid 
perspective) 

 

The important part here is that in order to reserve the regulation up capacity, the load does not 

need to change consumption (from its counterfactual consumption – L1) unless it is deployed up. 

The same is true for providing contingency reserves. However, in order to reserve regulation down 

capacity (center panel in Figure 5.6), a load needs to defer from consuming energy, from L1 to L3, in 

order to reserve the ability to provide regulation down. This is a key difference for only regulation 

down. Given no deployments, the deferred energy is equal to the regulation down capacity times 

one hour, (L1 – L3)*1 kWh. The deferred energy for a deployed load providing regulation down is 

the amount of capacity of regulation down (times one hour) minus the hourly average amount of 

deployment down:  (L1 – L3)*1 kWh minus (L2 – L3) kWh. This is equivalent to L1 – L2.   
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A.2.6 Independent and Correlated Draws for Monte Carlo Simulations 

One question that arose during this analysis regards how different flexibility parameters (𝑓𝑡
𝑖,𝑟) 

are correlated. The possibilities are bound between totally independent parameters to perfectly 

correlated parameters. This analysis tests three cases to see if the level of correlation has any 

significant effect on the results. The three cases are i) totally independent, ii) correlated by load, and 

iii) correlated by load and ancillary service.  

Completely independent draws mean that a realization of one flexibility parameter does not 

affect the realization of a draw from any of the other distributions of flexibility parameters. Another 

possibility is that the parameters could be correlated. For example, if someone finds an approach to 

make the energy consumption of refrigerators very flexible and able to provide a large amount of 

frequency regulation, then the same technology will likely make refrigerators more able to provide 

spinning reserve. The correlated-by-load case represents this scenario and does correlated draws for 

each set of flexibility parameters in each load type.  

Similar logic applies to the correlated by load and ancillary service case. If a researcher finds the 

means to extract lots of flexibility from refrigerators to provide frequency regulation, then the same 

method may apply to other thermostatically controlled loads as well. Therefore, there should be a 

correlation between the flexibility parameters across load types and ancillary services. Another way 

of thinking about this case is that there is a single draw that represents the ‘state of technology’ for 

aggregated loads providing ancillary services. If this draw is low, then the ‘state of technology’ is less 

advanced and all the flexibility parameters will reflect this.  

Figure 5.7 shows how much of each ancillary service requirement is optimally scheduled on 

residential DR resources, in the form of duration curves, for each of the methods of drawing 

flexibility parameters. The correlated by load and ancillary service (in red) shows the greatest 
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variation in the scheduling of ancillary services. The independent and correlated-by-load cases have 

less variation.  

 
Figure 5.7. Duration curves of the percent of ancillary service requirements optimally scheduled on residential DR 
resources, each representing a method of drawing flexibility parameters. The correlated by load and ancillary service case 
(red) has the most variation.  The shaded area represents the total span of all cases of drawing flexibility parameters. The 
results shown in Figure 3.5 use the correlated by load assumption.  

 

The variation in scheduling, shown in Figure 5.7, also exists in the results for the percentage of 

hourly market value. Figure 5.8 shows the percentage of hourly market value of the Monte Carlo 

simulations for each draw method. Again, the correlated by load and ancillary service case has the 

most variation and a few pessimistic draws (bottom left of Figure 5.8) for which the results fall 

significantly far from those presented in the main paper. Despite this variation, the overall methods 

and conclusions presented in the paper are not changed by the different draw methods.  
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Figure 5.8. Percentage of hourly market value for three different methods of drawing flexibility parameters: independently 
drawn (black, top), correlated by load (middle, blue), and correlated by load and ancillary service (bottom, red).   

 

A.2.7 Penalty Function 

The penalty function in this analysis assumes consumers care more when energy they want does 

not get delivered. Therefore the penalty function places a cost when loads under-charge, meaning 

that the energy deferred for ancillary service deployment is greater than the energy it pre-charged or 

could make up post-deployment. There is a ten percent tolerance to allow for some under-charging 
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to occur (Figure 5.9). After this tolerance, a cost equal to the maximum energy price for that day is 

incurred for every deficient kWh.  

 
Figure 5.9. Depiction of the penalty function with respect to the percent charging error 

 

If the percent charging error is less than zero we do not assign a penalty. This would occur if a 

thermal load pre-charged (ex anti) more than necessary given its actual deferred energy (ex post). As 

an example, imagine an aggregation of air conditioning units is scheduled to charge for an 

expectation of one kilowatt-hour of deferred energy but in real-time it is not deployed for ancillary 

services and therefore has no deferred energy. In this case, it is likely that the risk for customer 

response fatigue is low or non-existent. Primarily this is because the dynamic controls of the 

aggregation may sense the over-charging and direct the aggregation to reduce consumption, thereby 

eliminating the negative charging error. If over-charging still exists, it is possible that the customer 

will be happy at the slightly cooler temperature. Extremely negative values of charging error are 

unlikely because the optimization already discourages this in the objective function. The outcome of 

introducing such penalty function is a cost (in dollars) for each load type, for each of the one 

hundred realizations of ancillary services deployment, for that particular day of the year.  
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However, the methods are not predicated on this particular penalty function. Given better 

understanding of consumer preferences a more accurate penalty function could be incorporated. 

Given that disclaimer, below is a depiction of the penalty function used in 

A.2.8 Penalty Price Sensitivity 

Error! Reference source not found. 5.10 shows how different hourly caps affect DR’s ability 

to provide market value and compares this to the value DR would provide when the risk of 

response fatigue is included in the ancillary services capacity assignment. Note that adding the 

penalty price that represents the risk of response fatigue only slightly reduces the quantity of 

ancillary services capacity assigned to DR resources. However, a fixed hourly cap significantly 

reduces the value that DR can provide through ancillary services.  

 
Figure 5.10. This plot shows how much (%) of the market value of all the ancillary services capacity being scheduled on 
residential DR using different coarse market caps on DR penetration. The solid lines do not include the risk-based 
feedback in optimization; the circles are results using the feedback.  
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A.2.9 Refrigerator Model 

Missing or invalid refrigerator data from our sample is simulated using an exponential 

refrigerator model [5,24-26]. The model calculates the next average refrigerator temperature (𝜃𝑡+1) 

as the sum of the increase in temperature due to heat transfer, the decrease in temperature due to 

the refrigerator’s heat rejection, and a random noise parameter (𝑤𝑡), the three terms in in Equation 

5.14, respectively. The increase temperature due to heat transfer from the surrounding room is 

modeled as an exponential function of the time step (ℎ), the thermal capacity (𝐶), and thermal 

resistance (𝑅) (Equation 5.15). The heat rejection (second term in Equation 5.14) is dominated by 

the state of the compressor motor (𝑚), either on or off, which is determined by a dead-band control 

described by Equation 5.16.  

 
𝜃𝑡+1 =  𝛼𝜃𝑡 + (1 − 𝛼)(𝜃𝑡

𝑎𝑚𝑏𝑖𝑒𝑛𝑡 −𝑚 ∗ 𝑅 ∗ 𝑃) + 𝑤𝑡 5.14 

 

𝛼 = exp (−
ℎ

𝐶𝑅
) 5.15 

 

𝑚𝑡+1 = {

0, 𝜃𝑡 < 𝛿𝑙𝑜𝑤 
1, 𝜃𝑡 > 𝛿ℎ𝑖𝑔ℎ  

𝑚𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 5.16 

 

Previous models draw random values from distributions of refrigerator properties – including 

compressor motor size (kW), thermal capacitance (kWh/°C), and thermal resistance (°C/kW). One 

issue that can arise from this method is that a random refrigerator could draw a very low motor size 

while also drawing a very low thermal resistance. This leads to a situation where the refrigerator is 

absorbing more heat from the ambient surroundings than is being rejected from the refrigerator’s 

cooling coil, even with the motor always on. We address this issue by correlating the refrigerators’ 

power and thermal resistance values. We also tuned all of the parameters to match the average 

refrigerator in our sample. Table 5.5 provides parameters used in this paper and other papers.  
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Table 5.5. Refrigerator model parameters 

Modeling Parameter Mathieu [26] Kara & Berges [25] Tuned Range 

Temperature Setpoint (*C) 1.7-3.3 2.5 2 

Deadband Width (*C) 1-2 1.5 1 

Power (kW) 
~𝑈(𝑥) 

0.1 ≤ 𝑥 ≤ 0.5 

~𝑈(𝑥) 
0.4 ≤ 𝑥 ≤ 0.8 

~𝐿𝑁(µ, 𝜎)∗ 
µ = 0.163, 𝜎 = 1.08 

Thermal Resistance (*C/kW) 
~𝑈(𝑥) 

80 ≤ 𝑥 ≤ 100 

~𝑈(𝑥) 
80 ≤ 𝑥 ≤ 100 

~𝑈(𝑥) 
200 ≤ 𝑥 ≤ 220 

Thermal Capacitance 

(kWh/*C) 

~𝑈(𝑥) 
0.4 ≤ 𝑥 ≤ 0.8 

~𝑈(𝑥) 
0.2 ≤ 𝑥 ≤ 1.0 

~𝑈(𝑥) 
0.4 ≤ 𝑥 ≤ 0.8 

* Power and thermal resistance are modeled as correlated variables with a correlation of -0.8 
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