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Abstract

Centroidal Voronoi tessellation (CVT) is a clustering technique by partitioning a set of

discrete data points into non-overlapping clusters, where the generators of the tessellations

are also the centroids of the corresponding Voronoi regions. It has been a powerful tool

in many applications ranging from data analysis, numerical partial differential equations,

and geometric modeling. In order to extend its applications in both image and mesh

processing, in this thesis we present: (a) a harmonic edge-weighted CVT (HEWCVT) based

algorithm for image segmentation and adaptive superpixel generation; (b) two algorithms for

surface segmentation and polycube construction via the harmonic boundary-enhanced CVT

(HBECVT); (c) a feature-aligned surface parameterization algorithm using Loop subdivision

and secondary Laplace operator (SLO); and (d) a CVT based 3D image segmentation

algorithm for tetrahedral/hexahedral meshing and quality improvement using anisotropic

diffusion flow.

First, we develop the HEWCVT model for image segmentation by introducing a har-

monic form of clustering energy which combines the image intensity with cluster boundary

information. Compared to other CVT-based methods, the HEWCVT algorithm can not

only overcome the sensitivity to the seed point initialization and noise, but also improve the

accuracy and stability of clustering results, as verified in several types of images. We then

present an adaptive superpixel generation algorithm based on HEWCVT. First, an innovative

initial seed sampling method based on quadtree decomposition is introduced, and the image

is divided into small adaptive segments according to a density function. Then, the local

HEWCVT algorithm is applied to generate adaptive superpixels.

We then develop CVT-based surface segmentation algorithms for polycube construction

and hexahedral mesh generation. Given a smooth surface triangle mesh, we segment

triangles into six clusters in the surface normal space while satisfying the constraints of

polycube construction. A bijective mapping between the input mesh and polycube surfaces

is then built via a planar domain parameterization. Inspired by the HEWCVT model for
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image segmentation, we develop the HBECVT method by including local neighbouring

information in the energy function. Improving upon the classic CVT method, the HBECVT

algorithm can not only overcome the sensitivity to the initialization and noise, but also

improve the segmentation results and the resulting polycubes by reducing non-monotone

boundaries. Based on the constructed polycube, we then generate quality all-hexahedral

(all-hex) meshes. Uniform all-hex meshes and volumetric T-meshes can be obtained through

the octree subdivision and mapping. We can also generate adaptive all-hex meshes by

extracting the dual mesh from a hybrid octree, which consists of polyhedral cells and each

grid point is always shared by eight cells.

As a follow-up, we develop a new two-step surface segmentation scheme for polycube

construction using generalized CVTs. In the first step, eigenfunctions of the SLO are

coupled with the HBECVT model to classify vertices of the surface into several components

based on concave creases and convex ridges of an object. Neighbouring vertex information

is incorporated into the clustering energy function to avoid over-segmentation, jaggy bound-

aries and noise effect. For each segmented component, in the second step we apply the

skeleton information to define local coordinates and include them into the HBECVT model

to further segment it into several patches, which are revised using predefined geometric

constraints for valid polycube construction. Our skeleton-based CVT algorithm is suitable

for slim cylindrical objects and can reduce unnecessary singularities with compact polycube

structures. Based on the constructed polycubes, we generate quality all-hex meshes and

volumetric T-meshes via parametric mapping.

However, the computation of the above SLO eigenfunctions utilizes quadrilateral control

meshes with Catmull-Clark basis functions, which limits its application on triangle meshes.

To address this issue, we calculate the eigenfunctions of SLO on triangle meshes by using

Loop subdivision basis functions. Multiple modes are used for CVT-based surface segmenta-

tion and boundaries of the segmented regions are extracted as the feature lines which contain

concave creases and convex ridges. For each boundary edge, its two adjacent triangles are
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used as the guidance for the cross field construction. A constrained surface parameterization

is then computed, where feature lines are preserved and aligned to the parametric lines. We

also apply our algorithm to generate T-meshes, truncated T-splines and weighted T-splines

for isogeometric analysis applications.

Finally, we extend the HEWCVT algorithm to 3D image segmentation for multi-material

tetrahedral/hexahedral mesh generation and quality improvement. Given an input 3D

image, we first segment voxels into several clusters by eliminating the noise effect. The

Dual Contouring method is then applied to construct multi-material tetrahedral meshes

by analyzing both material change edges and interior edges. Hexahedral meshes can also

be generated by analyzing each interior grid point. For boundary vertices, we develop

an anisotropic Giaquinta-Hildebrandt operator (GHO) based geometric flow method to

smooth the surface and improve the mesh quality with feature preservation. For interior

vertices, we improve the aspect ratio by using optimization-based smoothing and topological

optimizations.

In summary, we develop CVT-based methods for image and mesh segmentation. Based

on the surface segmentation results, we generate polycubes and all-hex meshes with good

quality. We also combine it with geometric operators for surface parameterization and mesh

quality improvement, with concave/convex features preserved.

Keywords: Centroidal Voronoi Tesselllation, Image Segmentation, Polycube, All-

Hexahedral Mesh, Surface Parameterization, Geometric Operators, Loop Subdivision,

Geometric Flow
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shown in (a, c) and Bézier elements are shown in (b, d). . . . . . . . . . . . 89

6.1 The first four or five eigenmodes of the LBO (a, c, e) and SLO (b, d, f) for

the Bunny (a, b), Hook (c, d) and L-shape (e, f) models. . . . . . . . . . . . 98

6.2 Hollow-cylinder model. (a) Modes 1-3 of the SLO; (b) CVT-based surface

segmentation; (c) feature lines (green lines), guidance triangles (blue tri-

angles) and their guidance directions (white arrows); (d) the built smooth

cross field (four arrows in each triangle); and (e) surface parmaterization

result with parametric lines aligned to feature lines. . . . . . . . . . . . . . 102

6.3 Bunny model. (a) Surface segmentation result from the first eigenfunction

of the SLO; (b) unconstrained surface parameterization; and (c) constrained

surface parameterization. In (b, c), green lines are the extracted feature lines.106

6.4 Teddy model. (a) Modes 1-4 of the SLO; (b) CVT-based surface segmenta-

tion using the L2 norm distance metric; (c) CVT-based surface segmentation

using the L∞ norm distance metric; and (d) surface parameterization result

with feature lines (green lines) aligned. . . . . . . . . . . . . . . . . . . . . 107

xx



6.5 Octopus model. (a) Modes 1-6 of the SLO; (b) CVT-based surface segmenta-

tion using the L2 norm distance metric; (c) CVT-based surface segmentation

using the L∞ norm distance metric; and (d) surface parameterization result

with feature lines (green lines) aligned. . . . . . . . . . . . . . . . . . . . . 107

6.6 Horse model. (a) Modes 1-4 of the SLO; (b) CVT-based surface segmenta-

tion using the L2 norm distance metric; (c) CVT-based surface segmentation

using the L∞ norm distance metric; and (d) surface parameterization result

with feature lines (green lines) aligned. . . . . . . . . . . . . . . . . . . . . 108

6.7 IGA simulation results. (a) Bunny model; (b) Teddy model; (c) Octopus

model; and (d) Horse model. . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.8 Hook model. (a) CVT-based surface segmentation using the L2 norm dis-

tance metric; (b) CVT-based surface segmentation using the L∞ norm dis-

tance metric; and (c) surface parameterization result with feature lines (green

lines) aligned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.9 L-shape model. (a) CVT-based surface segmentation using the L2 norm

distance metric; (b) CVT-based surface segmentation using the L∞ norm dis-

tance metric; (c) feature lines (green lines) and the corresponding guidance

triangles (blue triangles); and (d) surface parameterization result. . . . . . . 111

6.10 IGA simulation results. (a) Hollow-cylinder model; (b) Hook model; and

(c) L-shape model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.1 Segmentation result of the Brain-1 image with 3% noise and 20% INU.

(a) Input 3D image; (b) HEWCVT-3D segmentation result; (c) segmented

white matter; (d) segmented gray matter; (e-h) the original image, ground

truth, EWCVT-3D and HEWCVT-3D results of the slice 103, respectively;

(i) energy outputs; and (j) minimized energy outputs of 100 initializations. . 116

xxi



7.2 Tetrahedral meshes. (a, b) The original and smoothed meshes (using

anisotropic GHO) of the white matter, respectively; (c) enlargement of

the red window in (a); (d, e) zoom-in pictures showing smoothed results

of isotropic and anisotropic GHO flow, respectively; (f, g) the original and

smoothed meshes (using anisotropic GHO) of the gray matter, respectively;

(h) enlargement of the green window in (f); and (i, j) zoom-in pictures

showing smoothed results of isotropic and anisotropic GHO flow, respectively.120

7.3 Hexahedral meshes. (a, b) The original and smoothed meshes (using

anisotropic GHO) of the white matter, respectively; (c) enlargement of

the red window in (a); (d, e) zoom-in pictures showing smoothed results

of isotropic and anisotropic GHO flow, respectively; (f, g) the original and

smoothed meshes (using anisotropic GHO) of the gray matter, respectively;

(h) enlargement of the green window in (f); and (i, j) zoom-in pictures

showing smoothed results of isotropic and anisotropic GHO flow, respectively.121

7.4 Brain-6 model. (a) Input image; (b) slice 106; (c) HEWCVT-3D based

segmentation; (d-g) and (h-k) from left to right: one slice of the original

data, segmented slices after applying k-means, EWCVT-3D, and HEWCVT-

3D, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.5 Tetrahedral mesh of the Brain-6 model. (a, b) Cross section of the final

tetrahedral mesh, with zoom-in pictures of the initial and improved meshes

of the green box; (c) zoom-in pictures of the initial and improved meshes

with three neighboring materials; (d) improved tetrahedral mesh of the white

matter; (e) enlargement of the red window in (d); (f) improved tetrahedral

mesh of the gray matter; and (g) enlargement of the green window in (f). . . 130

xxii



7.6 Hexahedral mesh of the Brain-6 model. (a, b) Cross section of the final

hexahedral mesh, with zoom-in pictures of the initial and improved meshes

of the green box; (c) zoom-in pictures of the initial and improved meshes

with three neighboring materials; (d) improved hexahedral mesh of the white

matter; (e) enlargement of the red window in (d); (f) improved hexahedral

mesh of the gray matter; and (g) enlargement of the green window in (f). . . 131

xxiii



Chapter 1

Introduction

1.1 Motivation

Image segmentation has been one of the core topics in computer vision and image processing

for decades. Its central task is to partition an image into subsets of pixels that share similar

characteristics, such as color, brightness or texture. The success of most tasks requiring

image analysis is often a direct consequence of the success of segmentation. As an over-

segmentation of the image, superpixels have also become popular as they provide an efficient

preprocessing tool for various computer vision applications. A superpixel is defined as

a homogeneous image region that aligns well with object boundaries. It has been shown

that using superpixels is advantageous because they can preserve natural image boundaries

and reduce redundant information of the image data as well as enforce local consistency.

Although there have been many algorithms developed for image segmentation and superpixel

generation, there are still big obstacles in generating correct and stable segmentation results.

Also, it is still challenging to efficiently generate inhomogeneous, i.e. adaptive in size, and

compact superpixels. In this thesis, we develop the harmonic edge-weighted centroidal

Voronoi tessellation (HEWCVT) model by introducing a harmonic form of clustering energy

to generate stable results.
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Unstructured all-hexahedral (all-hex) mesh generation for complex 3D domains plays

an important role in many finite element simulations. All-hex meshes often outperform

tetrahedral meshes by increased simulation accuracy, smaller element counts and improved

reliability. However, generating adaptive all-hex meshes with high quality while preserving

a conformal boundary is still challenging. Volumetric polycube is an appealing approach

for all-hex meshing, which converts a volume to an all-hex mesh by first embedding axis-

aligned boxes into the 3D volume and then mapping the volume to several jointed boxes.

Given an input surface triangle mesh, the polycube construction can be viewed as a mesh

segmentation task which assigns each triangle to one of axis-aligned planes in the parametric

domain. With several connectivity constraints, the resulting segmentation leads to a correct

polycube structure. To address these issues, we develop the harmonic boundary-enhanced

centroidal Voronoi tessellation (HBECVT) method, which extends the CVT-based image

segmentation to mesh segmentation for automatic polycube construction.

However, the HBECVT based method segments the surface according to the normals

defined in the global coordinate system, it may result in large number of unnecessary

singularities (polycube corners) for slim cylindrical surfaces, such as blood vessels. It is

still challenging to generate compact polycubes with limited number of singularities and

low distortion for complex geometry. Improving upon Laplace-Beltrami operator (LBO),

the secondary Laplace operator (SLO) [67] was developed recently based on the second

fundamental form of the surface. Curvature related surface features, such as concave creases

and convex ridges, can be captured by its eigenfunctions. In this thesis, we develop a

new two-step surface segmentation scheme for polycube construction using generalized

centroidal Voronoi tessellation (CVT). In the first step, vertices of the surface are classified

into several components by extending the HBECVT algorithm to the SLO eigenfunction

space. In the second step, a novel skeleton-based CVT model is presented by using local

coordinates to define the generators flexibly in the normal space.
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Surface parameterization is of great importance for many applications, such as quadran-

gulation, texture mapping and surface fitting. An important issue for surface parameterization

is how to align parametric lines with the feature directions. In this thesis, we develop a

constrained surface parametrization, where feature lines are preserved and aligned to the

parametric lines. The computation of the SLO eigenfunctions in [67] utilizes quadrilateral

control meshes with Catmull-Clark basis functions, which limits its application on triangle

meshes. To solve this problem, we calculate the eigenfunctions of SLO on triangle meshes

by using Loop subdivision basis functions. Eigenfunction are used for CVT-based surface

segmentation and boundaries of the segmented regions are extracted as the feature lines

which contain concave/convex edges. For each edge of the feature lines, its two adjacent

triangles are used as the guidance for the cross field construction.

Although many image segmentation methods have been developed, it is still challenging

to generate finite element meshes directly from images bridging image segmentation and

mesh generation. To address this issue, we extend the HEWCVT algorithm to 3D image

segmentation for tetrahedral and hexahedral mesh generation. Mesh smoothing is a powerful

tool for denoising and quality improvement. Although there already exist a variety of

mesh denoising methods, research on feature preserving denoising remains active due to its

challenging nature. In this thesis, we develop an anisotropic Giaquinta-Hildebrandt operator

(GHO) flow for surface smoothing and quality improvement. Since GHO is defined based

on the second fundamental form of the surface, it is more sensitive to the curvature-related

features. The anisotropic scheme preserves surface features while removing the noise with

an anisotropic diffusion weighting function.

1.2 Problem Statement

In this thesis, several CVT-based algorithms are developed for image and mesh processing.

There are five main problems:
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• Image segmentation and adaptive superpixel generation based on harmonic

edge-weighted centroidal Voronoi tessellation. We extend the basic edge-weighted

centroidal Voronoi tessellation (EWCVT) for image segmentation to a new advanced

model, namely harmonic edge-weighted centroidal Voronoi tessellation (HEWCVT).

This extended model introduces a harmonic form of clustering energy by combining

the image intensity with cluster boundary information. Improving upon the classic

CVT and EWCVT methods, the HEWCVT algorithm can not only overcome the

sensitivity to the seed point initialization and noise, but also improve the accuracy and

stability of clustering results, as verified in several types of images. We then present

an adaptive superpixel generation algorithm based on HEWCVT. First, an innovative

initial seed sampling method based on quadtree decomposition is introduced, and

the image is divided into small adaptive segments according to a density function.

Then, the local HEWCVT algorithm is applied to generate adaptive superpixels. The

presented algorithm is capable of generating adaptive superpixels while preserving

local image features efficiently.

• Centroidal Voronoi tessellation based polycube construction for adaptive all-

hexahedral mesh generation. Given a smooth surface triangle mesh, we segment

triangles into six clusters in the surface normal space while satisfying the constraints

of polycube construction. A bijective mapping between the input mesh and poly-

cube surfaces is then built via a planar domain parameterization. We develop a new

harmonic boundary-enhanced centroidal Voronoi tessellation (HBECVT) method by

including local neighbouring information in the energy function. Improving upon the

classic CVT method, the HBECVT algorithm can not only overcome the sensitivity to

the initialization and noise, but also improve the segmentation results and the resulting

polycubes by reducing non-monotone boundaries. Based on the constructed polycube,

we then generate quality all-hexahedral (all-hex) meshes. The uniform all-hex mesh

and volumetric T-mesh can be obtained through the octree subdivision and mapping.
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We can also generate adaptive all-hex meshes by extracting the dual mesh from a

hybrid octree, which consists of polyhedral cells and each grid point is always shared

by eight cells.

• Surface segmentation for polycube construction based on generalized centroidal

Voronoi tessellation. Given an input triangle mesh, we first apply the two-step surface

segmentation scheme (eigenfunction-based CVT and skeleton-based CVT) to split

the surface domain, and then build valid polycube for all-hex mesh and volumetric

T-mesh generation. In the first step, eigenfunctions of the secondary Laplace operator

(SLO) are coupled with the harmonic boundary-enhanced CVT (HBECVT) model

to classify vertices of the surface into several components based on concave creases

and convex ridges of an object. Neighbouring vertex information is incorporated

into the clustering energy function to avoid over-segmentation, jaggy boundaries and

noise effect. For each segmented component, in the second step we apply the skeleton

information to define local coordinates and include them into the HBECVT model to

further segment it into several patches, which are revised using predefined geometric

constraints for valid polycube construction. Our skeleton-based CVT algorithm is

suitable for slim cylindrical objects and can reduce unnecessary singularities with

compact polycube structures. Based on the constructed polycube, we generate quality

all-hexahedral meshes and volumetric T-meshes via parametric mapping.

• Feature preservation in surface parameterization using secondary Laplace op-

erator and Loop subdivision. We introduce a CVT-based surface segmentation

method using LBO/SLO to extract surface features for input triangle mesh, and apply

the cross field based method to generate a feature-aligned surface parameterization.

The computation of the LBO/SLO eigenfunctions in [67] utilizes quadrilateral control

meshes with Catmull-Clark basis functions, which limits its application on triangle

meshes. To solve this problem, we introduce the Loop subdivision basis functions
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to calculate the eigenfunctions of LBO/SLO on triangle meshes. Eigenfunctions are

used for CVT-based surface segmentation and the boundaries of the segmentation are

extracted as the feature lines which contain concave/convex edges. A constrained

surface parameterization is then computed, where feature lines are preserved and

aligned to parametric lines. We also apply our algorithm to generate T-meshes and

T-spline surfaces for IGA application.

• CVT-based 3D image segmentation and quality improvement of tetrahe-

dral/hexahedral meshes using anisotropic Giaquinta-Hildebrandt operator.

Given an input 3D image with multi-material parts, we first segment it into several

clusters by using the harmonic Edge-Weighted CVT (HEWCVT) method. The Dual

Contouring method is then applied to construct segmented tetrahedral meshes by

analysing both material change edges and interior edges. Hexahedral meshes can

also be generated by analyzing each interior grid point. An anisotropic Giaquinta-

Hildebrandt operator (GHO) based geometric flow method is developed to smooth the

surface and improve the quality of triangle/tetrahedral meshes, which preserves the

volume and surface features. Optimization based smoothing and local connectivity

modifications such as face swapping, edge removal and pillowing are then applied to

improve the quality of the interior mesh.

1.3 Contributions

This thesis will have five main contributions:

• Develop a harmonic edge-weighted centroidal Voronoi tessellation for image segmen-

tation and superpixels generation;

• Develop a centroidal Voronoi tessellation based polycube construction algorithm for

adaptive all-hexahedral mesh generation;
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• Develop a surface segmentation algorithm for polycube construction based on gener-

alized centroidal Voronoi tessellation;

• Develop a feature-aligned surface parameterization algorithm using secondary Laplace

operator based on Loop subdivision;

• Develop a 3D image segmentation algorithm for tetrahedral/hexahedral mesh genera-

tion with quality improvement via geometric flow.
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1.5 Outline of Dissertation

Following the introduction, Chapter 2 reviews related previous work. Chapter 3 talks

about the image segmentation and superpixels generation algorithm using the HEWCVT

method. Chapter 4 discusses the HBECVT based polycube construction for adaptive all-

hex mesh generation. Chapter 5 presents the two-step surface segmentation algorithm
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for polycube construction based on generalized CVT. Chapter 6 shows our approach to

generate surface parameterization using the SLO based on Loop subdivision. Chapter 7

illustrates tetrahedral/hexahedral mesh generation from 3D images and quality improvement

via geometric flow.
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Chapter 2

Literature Review

2.1 Centroidal Voronoi Tessellation

CVT-based model is essentially a clustering technique by partitioning a set of discrete

data points into non-overlapping clusters, where points belonging to the same cluster have

maximum homogeneity by certain measure of proximity. After defining L generators, all

the data points can be partitioned into L clusters by assigning each point to its nearest

generator. Then the algorithm iteratively updates the generators to be the centroids of their

associated clusters and starts a new partition with new generators. Such an algorithm aims

at minimizing an energy function E which measures how tightly each cluster is packed

until certain criterion is met. CVTs have many applications [25, 28, 54], including image

and data compression, mesh generation and optimization, multi-dimensional integration,

and partial differential equations. The classic CVT algorithm for image segmentation and

compression applications was proposed in [27], which is sensitive to noise and may fail to

provide accurate segmentation results. To address this issue, an edge-weighted centroidal

Voronoi tessellation (EWCVT) model was proposed in [131], which greatly improves upon

the classic CVT by adding an edge energy term in the energy functional. However, the

classic CVT and EWCVT methods are still sensitive to seed point initialization, which may
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result in incorrect and unstable segmentation results. In this thesis, we extend the EWCVT

for image segmentation to a new advanced algorithm named harmonic edge-weighted CVT

(HEWCVT), which overcomes the sensitivity to the initialization and noise, and improves

the accuracy and stability of segmentation results.

Cohen-Steiner et al. [21] extended the concept of planar proxies to drive the distortion

error down, and used a flooding scheme to compute the constrained CVT as a good geometric

approximation of surfaces. A metric-driven Discrete Voronoi Diagram [126] construction

algorithm was proposed to directly compute the constrained CVT as clusters of triangles,

which can be used for 3D surface remeshing. The CVT for line segments and graphs [75]

was computed, which can be used to get meaningful segmentations of 3D models. The

concept of CVT was further extended from the Euclidean space to spherical and hyperbolic

spaces [106], called the universal covering spaces of surfaces, and graphics processing unit

(GPU) was used to accelerate the CVT construction. Inspired by the HEWCVT model

for image segmentation, in this thesis we develop the harmonic boundary-enhanced CVT

(HBECVT) for surface segmentation, which can be used for polycube construction, all-hex

mesh generation and surface parameterization.

2.2 Image Segmentation

Many methods have been proposed for image segmentation in the literature [16, 89]. Thresh-

olding [4, 123] is a very common approach in which an image is represented by groups of

pixels created by partitioning the image based on the intensity values and a given threshold.

The edge detection method [112, 76] partitions an image by finding the pixels on the region

boundary. However, these methods usually do not consider the spatial details and may cause

leakage of the boundary for images with low contrast and large variation of intensity. The

level set method [128, 62, 93, 18] is typically a partial differential equation based variational

method, which represents evolving contours using a signed function. Level-set models
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are topologically flexible, but quite expensive in both computational time and memory.

The graph-based methods [116, 31, 10] are highly efficient and effective approaches for

image segmentation in which images are partitioned into a small number of homogeneous

regions, but it is still difficult to accurately segment a complex image in some cases. The

clustering techniques [40, 63, 12, 85] are also used for region segmentation by partitioning

an image into sets or clusters of pixels with similarity in some feature space. K-means

[40, 57] and fuzzy c-means (FCM) [17, 2, 19, 95] are the most well-known methods among

existing clustering algorithms. The k-means algorithm partitions data points into K clusters,

so as to minimize the sum of the squared distances between the data points and cluster

centers. The FCM technique introduces fuzzy clustering, in which a pixel can belong to

more than one cluster simultaneously. The conventional FCM algorithm does not utilize

spatial information, making it very sensitive to noise and other imaging artifacts. CVT

based methods have been extensively studied for image segmentation. To improve the

segmentation result, a fuzzy EWCVT model [30] was proposed by assigning membership

to each pixel corresponding to each cluster. Improving upon the classic CVT and EWCVT

methods, our HEWCVT algorithm is less sensitive to the initialization and noise, and gen-

erates more accurate segmentation results by combining the image intensity with cluster

boundary information.

As an over-segmentation of the image, superpixels [116, 31, 22, 127, 23, 132] have

also become popular as they provide an efficient preprocessing tool for various computer

vision applications. Ren and Malik [103] defined the perceptually uniform regions as

superpixels using the normalized cuts (NCuts) algorithm, which is powerful in obtaining

regular superpixels. However, the computational cost is very expensive when the number of

superpixels increases greatly. The graph cut based method [83] was developed to construct

an optimal solution, which took into account both the edges and the coherence of resulting

superpixel lattices. Levinshtein et al. [59] presented an efficient TurboPixel superpixel

algorithm using the level set based geometric flow evolution from the uniformly placed seeds
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in the image. This method allows a direct control on the number of superpixels and integrates

a compactness constraint. However, it exhibited relatively poor boundary adherence because

of its numerical stability issues especially for complicated textures. Achanta et al. [1]

presented a simple linear iterative clustering (SLIC) superpixel algorithm, and adopted the

k-means clustering approach to generate the superpixels with relatively lower computational

cost. In order to generate superpixels, an EWCVT based algorithm (VCell) [132] was

proposed to generate uniform superpixels and preserves image boundaries. In this thesis,

we develop an adaptive superpixel generation algorithm by using quadtree decomposition,

density function and the local HEWCVT model.

2.3 Surface Segmentation ans Surface Parameterization

Surface segmentation, whose main task is to decompose a surface mesh into meaningful

components, is a critical step toward mesh processing and analysis. Traditional surface

segmentation algorithms, such as the watershed algorithm [78], randomized cuts [38] and

shape diameter function (SDF) [113], decompose an individual 3D surface mesh according

to classical geometric features, or using specific data-driven statistical techniques. The SDF

expresses a measure of the diameter of volume in the neighborhood of each point on the

surface. It first uses a soft clustering of the mesh elements (facets) to k clusters based on their

SDF values, and then finds the partitioning using k-way graph-cut to smooth the boundaries

between segments. Some segmentation algorithms make use of the shape skeleton to deduce

the different segments. First of all, an approximate skeleton of the input mesh is computed

[11], then each critical node of the skeleton will correspond to a segment.

The Laplace-Beltrami operator (LBO) is a geometric operator defined based on the first

fundamental form of the surface and its eigenfunctions are capable of capturing structural

features of an object [61]. Various discretization schemes of the LBO have been proposed on

discretized surface meshes [140, 141, 139], such as the cotangent scheme [82], Fujiwara’s
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discretization [37], and Mayer’s discretization [81]. A discretized LBO with convergent

property was recently constructed in [64]. The Shape-DNA [105, 104] employs level sets of

the LBO eigenfunctions for statistical shape analysis. Point clustering [73] and isocontours

[130] were used together with the LBO eigenfunctions to segment surface into several

components. Interactive approaches were presented in [147] to choose eigenfunctions and

the Mumford-Shah model was then applied to segment the surface into several components.

The concavity-aware Laplacian (CL) [130] was developed to detect concavities, and its

eigenfunctions can be used to generate a single segmentation field. Improving upon LBO,

the secondary Laplace operator (SLO) [67] was developed recently based on the second

fundamental form of the surface. Curvature related surface features, such as concave creases

and convex ridges, can be captured by its eigenfunctions. The SLO eigenmodes were used

for surface segmentation by mapping surface vertices onto a high dimensional space, and

then clustering vertices into a series of groups or surface components using the Prediction

Analysis for Microarrays (PAM) method [122].

Surface parameterization computes a one-to-one mapping between a 3D surface mesh

and an isomorphic planar patch. It has a variety of applications in different fields, including

surface quadrangulation [56, 102, 47], texture mapping [133, 60] and surface fitting [55].

For parameterization-based quadrilateral (quad) meshing, vector field guided methods [36,

51, 90, 154, 13] such as mixed-integer quadrangulation [9], periodic global parametrization

[102] and QuadCover [56] have been developed to generate quality quad meshes. A typical

vector field guided method usually consists of three main steps [8]: a cross field is firstly

constructed on the input surface which specifies the orientation and size of quad elements;

the surface is then partitioned by a set of curves to a topological disk and parametrized

into an integer grid map; and finally, a quad mesh can be extracted by tracing the integer

parametric lines on the surface. These methods generate curvature-oriented quad meshes by

optimizing the cross field which is derived from the principal curvatures. Eigenfunctions

of the LBO were used in [68] as the guidance to capture major structure features during
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the cross field based global parameterization. Harmonic field based methods [24, 124]

construct conformal parameterizations with singularities and offer a degree of control over

the size and structure of the domain mesh. In this thesis, we develop a feature-aligned

surface parameterization by using the SLO eigenfunctions, where the CVT-based surface

segmentation in SLO eigenfunction space is firstly introduced to extract surface features

and the cross field based method is then applied for surface parameterization.

2.4 Hexahedral Mesh Generation and Polycube Construc-

tion

Several distinct strategies have been proposed in the literature for unstructured all-hex mesh

generation. Medial surface methods [98, 97], plastering [7, 119] and whisker weaving

[33] have successfully generated all-hex meshes for some geometry, but these methods are

not robust and reliable to be applied for general arbitrary geometric domains. CubeCover

[84] generates uniform all-hex meshes with the guidance of a valid 3D frame field via a

global parametrization. This method was later extended to singularity-restricted field guided

volume parametrization [66]. Although these methods can generate all-hex meshes with

high quality, they concern about uniform hex meshes only. The grid-based mesh generation

method is another promising alternative to create all-hex meshes automatically by generating

a fitted 3D grid of hexes in the volume and then adding hex elements at the boundaries to fill

gaps. Schneiders et al. [110, 108, 109] proposed the first template-based method using four

templates for node, edge, face and volume refinement. This method was further developed

and improved in recent years [86, 146, 94, 52, 88, 100, 29, 87]. This method is robust

and reliable for an arbitrary geometry, but it generates poorly-shaped elements around the

boundary and mesh quality needs to be improved. The isosurface extraction methods extract

the boundary surface and construct uniform and adaptive hex meshes [149, 148]. Moreover,

this method has been extended to meshing domains with multiple materials [152, 101]. In
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2009, Maréchal [79] developed a novel octree-based adaptive hex meshing method, which

connects hanging nodes using polyhedra, and all-hex meshes can be extracted as the dual of

polyhedral cells.

Volumetric polycube [39, 65, 50] is also an appealing approach for all-hex meshing,

which converts a volume to an all-hex mesh by first embedding axis-aligned boxes into the

3D volume and then mapping the volume to several jointed boxes. Tarini et al. [121] firstly

proposed the term polycube and defined a mapping from input objects to the surface of

manually constructed polycubes. Several automatic or semi-automatic polycube construction

algorithms have been proposed in the literature. In [69], an automated approach for polycube

creation was presented using a protrusion based segmentation of the input and fitting of

box-primitives, but this method produces very coarse polycubes with significant distortion

and is unlikely to work on complex models. A divide-and-conquer strategy was used in [41]

to approximate the input for automatic polycube map construction. Although the bijectivity

of mapping is guaranteed, this method is sensitive to off-axis features and may generate over-

refined polycubes with complex connectivity. Gregson et al. [39] presented a volumetric

polycube method to convert a volume to a polycube by using Rotation-Driven deformation

and Position-Driven deformation. As a follow up, Livesu et al. [74] generated polycubes

with low distortion based on a valid and all-monotone segmentation using Graph-Cut based

labelling and iterative local search via a hill climbing algorithm. An effective volumetric

polycube parameterization algorithm [129, 145] was proposed by optimizing the polycube

domain based on homotopic morphological operations, which balance the domain simplicity

and adequate resemblance to the input model. In [134], a smooth harmonic scalar field with

proper boundary conditions was used to generate polycube for arbitrary genus geometry

and Boolean operations [70] were further introduced to deal with torus-like objects or holes.

The skeleton-based polycube generation method [71] first constructs interior cubes directly

from the skeleton branches, and then projects their corners onto the surface to generate

new boundary cubes. Interior and boundary cubes are then combined together to split the

16



whole model into different cubic regions. For these methods, hex quality is directly linked

to mapping distortion. Computing the polycube structure with a low-distortion mapping

still remains a challenging problem for general shapes. In this thesis, we develop two

HBECVT based methods for polycube construction. Based on the constructed polycube, we

generate uniform and adaptive all-hex meshes as well as volumetric T-meshes via parametric

mapping.

2.5 Tetrahedral Mesh Generation and Quality Improve-

ment

Tetrahedral meshing techniques can be classified into three main categories: octree, Delaunay

and advancing front. The octree-based methods [114, 115] recursively subdivide an octree

containing the geometric model until the desired resolution is reached. Tetrahedra are

then constructed from both the irregular cells on the boundary and the internal regular

cells. Zhang et al. [149] developed an octree-based Dual Contouring method to generate

uniform and adaptive tetrahedral meshes. Tetrahedral meshes for complicated domains with

topology ambiguity can be generated by splitting the ambiguous leaf cells into tetrahedra

and analyzing the edges of these tetrahedra [153]. A parallel Image-to-Mesh conversion

algorithm [34] was proposed to generate quality tetrahedral meshes via dynamic point

insertions and removals. Delaunay criterion was first utilized for developing algorithms

to triangulate a set of vertices via the empty sphere property, which requires that the

circumcircle of every triangle is empty or the circumsphere of every tetrahedron is empty.

The criterion was later used in developing tetrahedral meshing algorithms [117]. The

advancing front methods generate the tetrahedra progressively starting from the boundary,

usually layer by layer, until the whole domain is meshed [111]. This method tends to create

good quality elements close to the boundary where new vertices can be created at optimal
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positions. However, the closure algorithms for tetrahedra at the interior are still unstable,

especially if the two overlapping elements have a mismatch in element size.

It is crucial to improve the mesh quality in order to avoid the ill-conditioned linear

systems during the finite element analysis. Smoothing methods improve mesh quality by

relocating vertices without changing the connectivity [35]. However, traditional smoothing

techniques are heuristic and sometimes invert or degrade the local elements. To solve this

problem, optimization-based smoothing methods were proposed, where each node is relo-

cated to the optimum location based on the local gradient of the surrounding element quality

[14]. Surface feature preservation remains another challenging problem. Methods based

on local curvature and volume preserving geometric flows were developed to identify and

preserve the main surface features [150]. Topological optimization techniques, such as face

swapping and edge swapping [58], are utilized to improve the node valence and mesh quality.

In this thesis, we extend the HEWCVT algorithm to 3D image segmentation and develop

an anisotropic GHO flow method for quality improvement of the tetrahedral/hexahedral

meshes.

18



Chapter 3

Image Segmentation and Adaptive

Superpixel Generation Based on

Harmonic Edge-Weighted Centroidal

Voronoi Tessellation

To extend the EWCVT method for both image segmentation and superpixel generation, in

this chapter we first develop an innovative model named harmonic edge-weighted centroidal

Voronoi tessellation (HEWCVT) for image segmentation. This method extends and improves

upon the EWCVT method by using the harmonic formulation in the clustering energy

function. We then present an adaptive superpixel generation algorithm based on the local

HEWCVT. Compared to the classic CVT and EWCVT methods, our algorithms have three

main advantages:

1. Our HEWCVT-based segmentation scheme is much more stable and less sensitive to

the initializations due to an imposition of a soft membership onto the data points;
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2. The segmentation accuracy is also improved since the spatial information of local

image features is integrated into the harmonic form energy function to compensate

for the effect of noise; and

3. We develop an innovative adaptive superpixel generation algorithm using quadtree

decomposition and density function, yielding high quality adaptive superpixels with

image features preserved efficiently.

3.1 Review of CVT and EWCVT for Segmentation

Since our presented algorithms are based on CVT and EWCVT, let us first review them.

Given an image I (h,w) of size H ×W, where (h,w) are integer pairs that range over the

image domain, h = 1, . . . ,H and w = 1, . . . ,W. Let the dataset X =
{
xP(i)

}n

i=1
denote all the

pixel values xP(i) = I(h,w) of the image, where n = H×W is the total number of pixels and

i = 1, . . . ,n. P(i) represents the ith pixel in the physical space. Let C = {cl}
L
l=1 denote a set

of typical colors for a color image or intensity values for a grayscale image. The Voronoi

region Vk in X corresponding to the level ck (k = 1, . . . ,L) is defined as

Vk =
{
xP(i) ∈ X : dist

(
xP(i),ck

)
≤ dist

(
xP(i),cl

)
, f or l = 1, . . . ,L} , (3.1)

where dist
(
xP(i),ck

)
is a predefined measure of distance between xP(i) and ck. Note that

here the differences between color values are compared instead of the physical distances

between pixels. The set V = {Vl}
L
l=1 is called a Voronoi tessellation of the data set X. The set

of chosen values C = {cl}
L
l=1 are referred to as the Voronoi generators.

For the classic CVT [27], dist
(
xP(i),ck

)
=

∣∣∣xP(i)− ck
∣∣∣ is the Euclidean distance in the

color space. Given any set of values C = {cl}
L
l=1 and any partition U = {Ul}

L
l=1 of X, the
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classical clustering energy of (C;U) can be defined as follows:

E (C;U) =

L∑
l=1

∑
xP(i)∈Ul

∣∣∣xP(i)− cl
∣∣∣2. (3.2)

Note that U = {Ul}
L
l=1 are not necessarily the Voronoi regions corresponding to the set of

generators C = {cl}
L
l=1 in the definition. The construction of CVTs often can be viewed as an

energy minimization process. Given a partition of X, denoted by U = {Ul}
L
l=1, the centroid

of each cluster Ul is defined to be the color c∗ ∈Ul which minimizes the following objective

function:

min
c∈Ul

∑
xP(i)∈Ul

∣∣∣xP(i)− c
∣∣∣2. (3.3)

The classical clustering energy E(C;U) is minimized only if (C;U) form a CVT of X, i.e.,

U are Voronoi regions of X associated with the generators C and simultaneously C are the

corresponding centroids of Voronoi regions U.

As a follow-up, the EWCVT model [131] was developed by adding an edge-related

energy term to the CVT energy function. The domain of an image I (h,w) is an index set

D = {P(i) : i = 1, . . . ,n}, where P(i) represents the ith pixel in the physical space. Suppose

that we have determined the clusters {Ul}
L
l=1 for a given image represented in the color space

by xP(i) for each pixel P(i) ∈ D, there is a natural segmentation of the image which has L

segments D = {Dl}
L
l=1 in the physical space defined by

Dl =
{
P(i) : xP(i) ∈ Ul

}
. (3.4)

For each pixel P(i) ∈ D, denote a local neighborhood as Nω(P(i)), which can be a ω×ω

square centered at pixel P(i) or a disk centered at pixel P(i) with radius ω. For EWCVT,

dist
(
xP(i),ck

)
=

√∣∣∣xP(i)− ck
∣∣∣2 + 2λñk(P(i)), where ñk(P(i)) = |Nω(P(i))| −nk(P(i))−1 is the

edge energy term which represents the number of pixels within Nω(P(i))\ (Dk∪P(i)).

|Nω(P(i))| represents the number of pixels within the set Nω(P(i)). nk(P(i)) denotes the
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number of pixels within Dk∩Nω(P(i))\P(i). Note that this distance term combines the color

information together with the physical information of the pixel P(i). Here we can view

dist
(
xP(i),ck

)
as the edge-weighted distance in the color space between xP(i) and ck.

For any set of values C = {cl}
L
l=1 and any partition U = {Ul}

L
l=1 (corresponding to partition

D = {Dl}
L
l=1 in the physical space) of X, we define the edge-weighted CVT energy as

EEW (C;U) =

L∑
l=1

∑
xP(i)∈Ul

(∣∣∣xP(i)− cl
∣∣∣2 + 2λñl(P(i))

)
, (3.5)

where λ is a positive weighting factor to control the balance between the clustering energy

and the edge energy. For the EWCVT model, since the edge energy at each pixel is fixed,

the centroid of each cluster Ul is also defined as the color c∗ ∈ Ul which minimizes the

objective function (3.5). The edge-weighted clustering energy EEW (C;U) is minimized

only if (C;U) form an edge-weighted CVT of X, i.e., U are edge-weighted Voronoi regions

of X associated with the generators C and simultaneously C are the corresponding centroids

of the region U. In its simplest form, CVT and EWCVT algorithms reduce to the k-means

clustering technique. It is also clear that the EWCVT algorithm will reduce to the classic

CVT-based algorithm when the weight λ = 0.

Both classic CVT and EWCVT have a drawback: since they are sensitive to initializations

and noise, the segmentation results are inaccurate and unstable in certain cases. In the next

section, we will present an extended model by combining the harmonic algorithm with the

EWCVT that overcomes these limitations.

3.2 Harmonic Edge-Weighted CVT for Image Segmenta-

tion

Improving upon EWCVT, HEWCVT uses the harmonic average form of the energy function

to calculate the centroids. For HEWCVT, the definitions of Voronoi region and edge-
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weighted distance dist
(
xP(i),ck

)
are the same as EWCVT. The EWCVT energy function

defined in Section 3.1 is slightly different from the algorithm proposed in [131]. Here, we

define the edge-weighted distance first and then use the edge-weighted distance to define

the EWCVT energy function. For any set of color values C = {cl}
L
l=1 and any partition

U = {Ul}
L
l=1 of X, we define the HEWCVT energy by introducing the harmonic idea into the

EWCVT method:

EH (C;U) =

n∑
i=1

L
/ L∑

l=1

dist−2
(
xP(i),cl

), (3.6)

where dist
(
xP(i),ck

)
=

√∣∣∣xP(i)− ck
∣∣∣2 + 2λñk(P(i)). The HEWCVT energy uses edge-

weighted distance from all the centroids to calculate the harmonic average for each point.

To calculate the updated centroids
{
c∗k

}L

k=1
, we minimize the HEWCVT energy function with

respect to the centroid ck (k = 1, . . . ,L). Since the local edge energy term ñk(P(i)) at each

pixel P(i) is fixed, we have

∂EH (C;U)
∂ck

= −L
n∑

i=1

2
(
xP(i)− ck

)
dist4

(
xP(i),ck

) ( L∑
l=1

dist−2
(
xP(i),cl

))2 = 0, (3.7)

then we can obtain an iterative formula as follows:

c∗k =

n∑
i=1

uH
ik xP(i)

n∑
i=1

uH
ik

, (3.8)

where uH
ik =

(
L∑

l=1

dist2(xP(i),ck)
dist2(xP(i),cl)

)−2

. uH
ik = µikwP(i), where µik =

dist−4(xP(i),ck)
L∑

l=1
dist−4(xP(i),cl)

and wP(i) =

L∑
l=1

dist−4(xP(i),cl)(
L∑

l=1
dist−2(xP(i),cl)

)2 . µik is the membership function which represents the degree of possi-

bility of P(i) that is associated with the kth cluster, and wP(i) is the dynamic weighting

function which defines how much influence P(i) has in the next iteration of computing new
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centroids. Hence, HEWCVT is less affected by the presence of uncertainty or noise since

it has a soft membership function and a varying weight function. For an arbitrary Voronoi

tessellation
(
{cl}

L
l=1 ; {Vl}

L
l=1

)
of X where V = {Vl}

L
l=1 are the corresponding edge-weighted

Voronoi regions associated with C = {cl}
L
l=1, we often have cl , c∗l , for l = 1, . . . ,L, where{

c∗l
}L

l=1
are the corresponding centroids of {Vl}

L
l=1. The harmonic edge-weighted clustering

energy EH (C;V) is minimized only if (C;V) form a HEWCVT of X, i.e., V are Voronoi

regions of X associated with the generators C and simultaneously C are the corresponding

centroids of the region V .

The construction of HEWCVT is an energy minimization process, where the generators

are updated by minimizing the corresponding objective functions. The detailed implementa-

tion is explained as follows.

Algorithm of HEWCVT (Implementation)

Given a digital image X =
{
xP(i)

}n

i=1
, positive integer L and error tolerance ε (ε = 10−4 in

this thesis), choose L random pixels in the image and take their color values {cl}
L
l=1 as

the initialization. Ei denotes the HEWCVT energy in the ith iteration. Then perform the

following:

1. Determine the edge-weighted Voronoi clusters {Vl}
L
l=1 of X associated with {cl}

L
l=1 by

(3.1);

2. For each cluster Vl (l = 1, . . . ,L), determine the cluster means c∗l by (3.8); and

3. If a termination criterion such as Ei+1−Ei
Ei

< ε is reached, return ({cl}
L
l=1; {Vl}

L
l=1) and

exit; otherwise, set cl = c∗l for l = 1, . . . ,L and return to Step 1.

Remark. Due to the property of the harmonic mean, HEWCVT usually yields more

accurate results than EWCVT. EWCVT imposes hard membership on the data points: each

data point is assigned to exactly one center. This means that each data point only has

an influence over the center to which it is assigned. In contrast, the objective function
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in HEWCVT uses the distances to all centroids for each data point. This means that all

centroids partially influence the harmonic average for each point. It is less affected by the

presence of uncertainty or noise in the data since it has a soft membership function. Thus

HEWCVT is less sensitive to the initialization than EWCVT, especially when the number of

clusters is large.

3.3 Adaptive Superpixel Generation based on HEWCVT

In this section, we aim to generate adaptive superpixels using HEWCVT. Given an input

image, quadtree-based decomposition is used for the initial seed sampling and the density

function is calculated to measure the regularity degree of the variation in the image. The

classic CVT algorithm is then applied in the physical space to generate adaptive segments

based on the initial seed sampling and density function. Finally, local HEWCVT is applied

to these segments to generate adaptive superpixels. We describe in detail how to initialize

seed points and generate adaptive superpixels below.

3.3.1 Initializing Seed Points Via Quadtree Decomposition

To initialize a set of seeds (or generators) for our HEWCVT based algorithm, we sample

the image adaptively using quadtree decomposition. The seeds are the centers of the leaf

cells in the adaptive quadtree. To detect features in a quadtree cell, we adopt an error

function, ERROR =

√
1
N

N∑
i=1

(
xp(i)− x̄

)2
, where N is the number of pixels and x̄ is the average

color/intensity in the cell. This error function estimates the standard deviation of color

values in the CIELAB color space for all pixels in one cell. Given an error tolerance ε (e.g., ε

= 5 for the portrait model in Figure 3.1), we refine cells with a larger error (> ε). We can also

measure the average Euclidean distance in the color space between all pixels and the average

color in the cell. If the average distance is larger than ε, then the cell is subdivided into

four children cells. Figure 3.1(b) shows the quadtree decomposition result for the portrait
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(a) Original image (b) Quadtree decomposition (c) Sobel operator result

(d) Initial Voronoi diagram (e) CVT (f) Adaptive superpixels

Figure 3.1: Adaptive superpixel generation for the portrait image. (a) Original image; (b)
quadtree decomposition; (c) Sobel operator result; (d) initial Voronoi diagram; (e) CVT in
physical space; and (f) adaptive superpixels.

image. The seeds are simply set as the centers of the leaf cells in the adaptive quadtree. We

can observe that the quadtree based sampling method provides a nice initialization of seed

points for computing adaptive CVTs in the physical space.

The density function ρ is constructed to enable adaptive Voronoi regions in the image.

In this study, we use the Sobel operator [77] to calculate the density function. The Sobel

operator performs a 2D spatial gradient measurement on an image and thus emphasizes
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regions of high spatial frequency that correspond to edges. Typically it is used to approximate

the absolute gradient magnitude at each point in an input image. Figure 3.1(c) shows the

Sobel operator result of the portrait image. Brighter pixels represent higher density. The

density function helps produce adaptive CVTs.

3.3.2 Adaptive Superpixel Generation

Based on the initial seed sampling and density function, we compute adaptive CVTs in the

physical space by using the classic CVT algorithm [25, 53], which is capable of generating

large number of Voronoi cells (or segments) very efficiently. Figure 3.1(d) shows the

obtained initial Voronoi diagram based on the initial seeds, and Figure 3.1(e) shows the

adaptive CVTs of the portrait image. The generation of CVTs in the physical space is

independent of the image intensities and colors and the adaptation is controlled by the initial

seed sampling and density function. Since the classic CVT algorithm in the physical space

generates small segments with regular hexagonal shape, it provides a good initial partition

for the following adaptive superpixel generation.

The resulting adaptive CVT segments are then used as the initial partition for the adaptive

superpixel generation via a local HEWCVT. Here, the harmonic edge-weighted CVT energy

is defined locally among the segments of the superpixels, thus the centroid of each superpixel

can be updated locally. The pixel value xP(i) is measured in a 5D Labxy space with both color

and spatial information. A pixel color is represented in the CIELAB color space [L, a, b]T .

A pixel position is represented by the position vector
[
x, y

]T . Thus, xP(i) =
[
L, a, b, x, y

]T .

The edge-weighted 5D distance from a pixel xP(i) to a centroid ck is define as:

dist
(
xP(i),ck

)
=

√(
dc

Nc

)2

+ρi

(
ds

Ns

)2

+ 2λñk(P(i)), (3.9)

where

dc =

√
(Lk −Li)2 + (ak −ai)2 + (bk −bi)2,
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and

ds =

√
(xk − xi)2 + (yk − yi)2.

Nc and Ns are used to normalize the color and spatial proximities respectively. Ns =

√
H×W/L, and ρi is the density function of the ith pixel.

For any set of values C = {cl}
L
l=1, which are also in the 5D Labxy space, and any partition

U = {Ul}
L
l=1 of X, we define the local HEWCVT energy as follows:

EH (C;U) =

n∑
i=1

(
L
/ ∑

l∈NC(P(i))

dist−2
(
xP(i),cl

))
, (3.10)

where NC(P(i)) represents the neighboring clusters of the cluster containing P(i). To

calculate the centroids
{
c∗k

}L

k=1
, we also minimize the local HEWCVT energy function with

respect to the centroid ck (k = 1, . . . ,L). We have

c∗k =



∑
i∈NPC(Uk)

uH
ik xP(i)∑

i∈NPC(Uk)
uH

ik
, f or [L, a, b] ,

∑
i∈NPC(Uk)

uH
ikρixP(i)∑

i∈NPC(Uk)
uH

ikρi
, f or

[
x, y

]
,

(3.11)

where uH
ik =

( ∑
l∈NC(P(i))

dist2(xP(i),ck)
dist2(xP(i),cl)

)−2
and NPC(Uk) represents the neighboring clusters of

the kth cluster. When we update the centroid for one cluster, we only need to consider all

pixels belonging to itself and its neighboring clusters. For each pixel P(i) in one cluster, it

can only be transferred to its neighboring clusters. The detailed implementation steps are

listed as follows.

Algorithm of local HEWCVT (Implementation)

Given the adaptive CVT segments in the physical space and an error tolerance ε (ε= 10−4

in this thesis), we initialize {cl}
L
l=1 by using the corresponding average color values and
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position coordinates in each segment. Let Ei denote the local HEWCVT energy in the ith

iteration. Then perform the following:

1. For each boundary pixel P(i), evaluate the 5D harmonic edge-weighted distance

between the pixel and all centroids of NC(P(i)) and assign the pixel to the segment

whose color centroid is nearest to it;

2. For each cluster Vl (l = 1, . . . ,L), determine the cluster means c∗l by (3.11); and

3. If a termination criterion such as Ei+1−Ei
Ei

< ε is reached, return ({cl}
L
l=1; {Vl}

L
l=1) and

exit; otherwise, set cl = c∗l for l = 1, . . . ,L and return to Step 1.

In our algorithm, we only need to evaluate the distance in which P(i) is a boundary pixel.

Therefore, a pixel P(i) can only be assigned to a segment which is physically connected to

it and thus unconnected segments can be mostly avoided. While our adaptive superpixel

generation algorithm leads to very accurate clusters, it does not guarantee that the clusters

always remain connected. We apply the effective strategy introduced by SLIC [1] as a

post-processing step to reconnect ripped-apart or isolated superpixels.

Remark. Our adaptive superpixel generation algorithm can efficiently generate inho-

mogeneous superpixels that are adaptive in size and compact. The purpose is to use less

number of superpixels to preserve all important features in the image. It generates smaller

superpixels to achieve lower under-segmentation in structure-dense regions with high inten-

sity or color variation, and produces larger segments to increase computational efficiency

in structure-sparse regions with homogeneous appearance. Initial seed sampling using

quadtree decomposition provides the high-quality adaptation. The modified local HEWCVT

algorithm combines both color and spatial space information with an edge weighted penalty

term and increased computational efficiency.
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3.4 Results and Discussion

In this section, we apply our presented algorithms to various synthetic and real images that

are either noise free or corrupted by different types of noises. All the results are computed

on a PC equipped with a 2.93 GHz Intel X3470 CPU and 8GB of Memory.

3.4.1 Image Segmentation Results

Table 3.1 shows the statistics information of all the five testing examples. For image

segmentation, there are a total of three parameters that can be tuned in our HEWCVT-based

algorithm: L, the number of clusters; λ, the weighting parameter that balances the clustering

energy and the edge energy; ω, which defines the size of the local neighborhood. [131]

made a detailed discussion on the effect and setting of λ. The effect of ω is in fact very

similar to that of λ. The computational cost, however, increases in a quadratic manner w.r.t.

ω. Therefore, we choose a relatively small value of ω (ω = 4) for all the examples.

In order to evaluate the segmentation results quantitatively, we apply two different error

metrics: segmentation accuracy (SA) and boundary recall (BR). The SA is defined as [2]:

S A =
NCorrect

NTotal
×100%, (3.12)

where NCorrect represents the number of correctly classified pixels and NTotal is the total

number of pixels in the image. Boundary recall is used to evaluate the accuracy of feature

preservation. It calculates the fraction of ground truth edges that fall within a small distance

(two pixels in this thesis) from at least one boundary pixel. Given a ground truth image G

and a resulting image R, the BR can be defined as [103]:

BR =
T P

T P + FN
×100%, (3.13)
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Table 3.1: Image segmentation statistics of five testing models.

Image Number of
ω λ

Average Time
(Size) Clusters (Seconds)

Two-class
(256×256)

2 4 0.50
Classic CVT 0.5

EWCVT 2.0
HEWCVT 3.4

Brain
(181×217)

4 4 0.10
EWCVT 5.4

HEWCVT 11.0
Head

(511×484)
4 4 0.02

EWCVT 10.2
HEWCVT 17.8

Chapel
(481×321)

4 4 0.01
EWCVT 10.3

HEWCVT 19.7
Starfish

(481×321)
5 4 0.01

EWCVT 11.4
HEWCVT 20.3

where true positive (T P) is the number of boundary pixels in G with at least one boundary

pixel in R in range of two pixels, false negative (FN) is the number of boundary pixels in G

with no boundary pixel in R in range of two pixels. For both SA and BR, 0 (0%) represents

the worst case and 1 (100%) represents the perfect case. We also introduce a new metric

named the segmentation coefficient of variation (SCV) to evaluate the stability of different

methods. For each image, we test N (N = 100 in this thesis) times with different seed point

initializations. We can get one minimized energy value for each test. The SCV is defined as:

S CV =

√
1
N

N∑
i=1

(
MinEi−MinE

)2

MinE
×100%, (3.14)

where MinEi represents the minimized energy for the ith test, and MinE represents the mean

of the minimized energy. Small SCV values are usually considered low-variance, otherwise

high-variance.

Figure 3.2 shows the segmentation results of a noisy two-class synthetic image with

two clusters. Here we choose two different intensity values (120 and 20) for initialization

and apply three methods: the classic CVT, EWCVT and HEWCVT. It is obvious that
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HEWCVT yields the most accurate result. We then test 100 times with different seed point

initializations. The average SAs for CVT, EWCVT and HEWCVT are 84.39%, 95.48% and

99.29%, respectively. Since there are no complex boundary features in this image, we do

not compare the average BRs here. The SCV results for CVT, EWCVT and HEWCVT are

7.12%, 6.27% and 0.67%, respectively. Compared to the classic CVT and EWCVT, it is

evident that HEWCVT is more stable and accurate. From Table 3.1, we can also observe

that HEWCVT takes reasonably longer time than EWCVT because it needs to compute

distances between one pixel to all clusters when updating cluster means.

(a) Original image (b) Classic CVT (c) EWCVT (d) HEWCVT

Figure 3.2: Segmentation results of a two-class synthetic image. (a) Original image; (b)
classic CVT; (c) EWCVT; and (d) HEWCVT.

We also test our algorithm on one slice (slice 90) of a 3D MRI-T1 brain image from

BrainWeb [20], with four levels of noise (3%,5%,7%,9%) and three levels of intensity non-

uniformity (INU) (0%,20%,40%). We segment each of the twelve images 100 times with

different initializations using both EWCVT and HEWCVT, and each time it is segmented

into four clusters in order to distinguish the gray matter, the white matter, cerebrospinal

fluid and background. The ground truth segmentation results (annotations) can be obtained

from BrainWeb as well for comparison. Figure 3.3(a)-(d) shows the segmentation results

of one testing image, which has 7% noise and 20% INU. Since it is difficult to plot all the

convergence curves of all 100 tests, we only plot the average energy convergence curves in

Figure 3.3(e). From the convergence curves, we can observe that HEWCVT usually needs

fewer iterations to converge than EWCVT. Since EWCVT and HEWCVT are essentially an
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(a) Original image (b) Ground truth (c) EWCVT (d) HEWCVT

(e) Convergence curves (f) Energy outputs

Figure 3.3: Segmentation results of a brain MRI-T1 image with 7% noise and 20% INU.
(a) Original image; (b) ground truth result; (c) EWCVT; (d) HEWCVT; (e) average energy
convergence curves; and (f) energy outputs.

energy minimization process, we can calculate a minimized energy for each test. Figure

3.3(f) shows the minimized energy outputs for all the 100 tests. With different initializations,

the energy function converges to different values for EWCVT, while HEWCVT is much

more stable and less sensitive to initializations with all S CV s < 1% in Table 3.2. Table

3.2 also shows the average SA and the average BR of the 100 tests, we can observe that

HEWCVT improves the segmentation accuracy compared to EWCVT. In addition, our

HEWCVT-based method is also more robust to noise since the SA, BR and SCV results do

not change much for different levels of noise and INU.

We then apply the HEWCVT segmentation to a head CT image from BrainWeb [20] and

two color images from the Berkeley dataset [80], see the segmentation results in Figures. 3.4-

3.6. Again, we segment them with 100 different random initializations using both EWCVT

and HEWCVT. Since there are no ground truth results for these real images, Table 3.3 shows
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Table 3.2: SA, BR and SCV results of different methods on one brain image with different
noise level and intensity non-uniformity.

Error Method 3%noise 3%noise 3%noise 5%noise 5%noise 5%noise 7%noise 7%noise 7%noise 9%noise 9%noise 9%noise
Metric 0%INU 20%INU 40%INU 0%INU 20%INU 40%INU 0%INU 20%INU 40%INU 0%INU 20%INU 40%INU

SA EWCVT 88.94% 88.71% 88.70% 88.74% 88.11% 87.89% 87.46% 87.01% 86.67% 86.13% 85.69% 85.14%
HEWCVT 96.48% 96.23% 96.11% 96.12% 95.68% 95.13% 94.77% 94.49% 94.06% 93.46% 93.28% 92.76%

BR EWCVT 90.81% 90.54% 90.34% 90.26% 89.92% 89.79% 89.23% 88.78% 88.14% 87.56% 87.23% 86.78%
HEWCVT 97.89% 97.66% 97.49% 97.61% 97.09% 96.88% 96.34% 96.01% 95.67% 95.11% 94.73% 93.23%

SCV EWCVT 12.2% 14.1% 14.6% 15.1% 15.4% 15.9% 15.8% 16.1% 16.2% 16.0% 16.4% 16.8%
HEWCVT 0.74% 0.77% 0.78% 0.79% 0.79% 0.81% 0.78% 0.84% 0.85% 0.83% 0.85% 0.87%

only SCVs of the testing models. From the results, we can see that EWCVT generates

unstable results that sometimes mistakenly segment the structural details, shown in Figure

3.4(b), Figure 3.5(b) and Figure 3.6(b). In contrast, the HEWCVT method generates much

more stable results with all S CV s < 1% (see Table 3.3). In addition, HEWCVT improves

the segmentation accuracy by capturing more features, and it requires less iterations than

EWCVT to converge to the optimal results.

Table 3.3: Segmentation coefficient of variation (SCV) of the testing models.

Method Head Chapel Starfish
EWCVT 14.08% 47.55% 13.36%

HEWCVT 0.32% 0.73% 0.83%

3.4.2 Adaptive Superpixel Generation Results

We apply our adaptive superpixel generation method to various types of color and grayscale

images, see Figure 3.7. Table 3.4 shows the statistics information of all the testing examples.

For our adaptive superpixel generation algorithm, in addition to λ and ω, there are a total of

four more parameters that need to be defined: MinL and MaxL, the minimal and maximal

quadtree level; ε, the error tolerance for quadtree decomposition; and Nc, the color distance

regularization term.

To evaluate the efficiency of our adaptive superpixel generation method, we first compare

our adaptive superpixels with uniform results. Our method can generate uniform result easily
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(a) Original image (b) EWCVT results (c) HEWCVT results

(d) Energy outputs

Figure 3.4: Segmentation results of a head image. (a) Original image with two different
initializations (each initialization has 4 input seed points marked as red dots); (b) EWCVT;
(c) HEWCVT; and (d) energy outputs.

by subdividing the quadtree uniformly. Figure 3.8 shows comparisons between uniform and

adaptive superpixels for the chapel image with 800 clusters and the portrait image with 1000
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(a) Original image (b) EWCVT results (c) HEWCVT results

(d) Energy outputs

Figure 3.5: Segmentation results of a chapel image. (a) Original image with two different
initializations (each initialization has 4 input seed points marked as red dots); (b) EWCVT;
(c) HEWCVT; and (d) energy outputs.

clusters. It is obvious that with the same number of clusters, adaptive superpixels capture

more detailed features with much fewer superpixels.

To quantitatively evaluate our method, we use the undersegmentation error (UE) and

BR metrics. Given a ground truth segmentation with segments g1, . . . ,gM and a superpixel
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(a) Original image (b) EWCVT results (c) HEWCVT results

(d) Energy outputs

Figure 3.6: Segmentation results of a starfish image. (a) Original image with two different
initializations (each initialization has 5 input seed points marked as red dots); (b) EWCVT;
(c) HEWCVT; and (d) energy outputs.

segmentation with superpixels s1, . . . , sL, the UE is defined as [1]

UE =
1
n

 M∑
i=1

 ∑
s j|s j∩gi,∅

Area(s j)

−n

 , (3.15)

where M is the number of ground truth segments, n is the total number of pixels and

Area(s j) is the size of a superpixel segment (or the number of pixels in a superpixel segment).
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Figure 3.7: Four examples of adaptive superpixel generation. From left to right: original
image, quadtree decomposition, CVT in physical space, and adaptive superpixels. From top
to bottom: Bird, Chapel, Brain and Alloy.

Superpixels that tightly fit the ground truth result in a low value of UE. Figure 3.9 shows the

UE and BR results of SLIC [1], VCell [132], and our proposed method, all of which are

obtained by averaging 100 test images from the Berkeley dataset. The results show that the

overall performance of our method is better than SLIC and VCell. The reason is that our

method can generate smaller superpixels to achieve lower under-segmentation in structure-

dense regions with high intensity or color variation, and produce larger segments to increase

computational efficiency in structure-sparse regions with homogeneous appearance, thus it

can capture more detailed features with less number of superpixels. Since our superpixel
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generation algorithm is based on HEWCVT, it is also less sensitive to the initialization and

noise.

Table 3.4: Segmentation accuracy and boundary recall of different methods on one brain
image with different noise level and intensity non-uniformity.

Image
λ ω MinL MaxL ε Nc

Time
(Size) (s)

Portrait
0.01 4 3 6 5 10 14.8

(321×481)
Bird

0.01 4 3 6 10 15 15.2
(481×321)

Chapel
0.01 4 3 6 10 15 14.6

(481×321)
Brain

0.1 4 2 5 5 10 5.6
(181×217)

Alloy
0.02 4 3 6 10 15 22.7

(512×512)

After the adaptive superpixel generation, we can compute the mean color for all super-

pixels, which can be considered as a compact representation for the original image. This

allows us to represent an image with only a couple of hundred segments instead of tens of

thousands of pixels. The resulting superpixels can be used for multiple image processing

applications, such as image segmentation, registration and object tracking. We can also

apply image segmentation algorithms on superpixels instead of pixels, which can largely

reduce the computational cost while maintaining high accuracy.

3.5 Conclusions and Future Work

In this thesis, we extend the basic EWCVT model for image segmentation to a new advanced

model, namely HEWCVT. This extended model introduces a harmonic form of clustering

energy by combining the image intensity with cluster boundary information, and then updates

generators of the corresponding Voronoi tessellations by minimizing the objective function.

Experiments indicate that the HEWCVT algorithm is more robust to the initialization and
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Figure 3.8: Comparisons between uniform and adaptive superpixels for the chapel image
(a-d) and the portrait image (e-h). (a, e) Uniform superpixels; (b, f) adaptive superpixels;
and (c, d, g and h) zoom-in details of (a), (b), (e) and (f), respectively.

(a) Undersegmentation error (b) Boundary recall

Figure 3.9: Segmentation accuracy comparison. (a) Undersegmentation error; and (b)
boundary recall.
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noise and increases the accuracy of clustering results. We also develop an adaptive superpixel

generation algorithm based on the local HEWCVT model. This new algorithm is capable of

generating adaptive superpixels and preserving local image features efficiently. The accuracy

and efficiency of the adaptive superpixel algorithm is also demonstrated by various types

of images. Our future work will focus on applying adaptive superpixels to medical image

registration and motion tracking.
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Chapter 4

Centroidal Voronoi Tessellation Based

Polycube Construction for Adaptive

All-Hexahedral Mesh Generation

Given an input surface triangle mesh, the polycube construction can be viewed as a mesh

segmentation task which assigns each triangle to one of axis-aligned planes in parametric

domain. With several connectivity constraints, the resulting segments result in a correct

polycube structure. In recent years, a lot of efforts have been put into the research of

centroidal Voronoi tessellation (CVT) [25, 28, 54, 27] for various applications, where the

key idea is to partition a data-set with an optimization process of updating generators

with respect to a specific energy function. Inspired by these techniques, in this thesis we

develop a novel automatic polycube construction algorithm by using CVT based mesh

segmentation. Improving upon the classic CVT method, we develop a novel harmonic

boundary-enhanced centroidal Voronoi tessellation (HBECVT) method by introducing local

neighbouring information into the energy function. After the construction of polycube via

parametric mapping, we can generate uniform all-hex mesh, volumetric T-mesh through

octree subdivision in both parametric and physical domains. We also generate adaptive

42



all-hex meshes by first generating a primal hybrid octree with polyhedral cells using an

improved cutting procedure and then extracting the dual all-hex mesh. The key contributions

of our work include:

1. A new CVT-based algorithm is developed to automatically and robustly construct poly-

cubes for general arbitrary geometric domains. By introducing the local neighbouring

information into the energy function, our HBECVT-based algorithm improves the sur-

face segmentation and polycube construction by reducing non-monotone boundaries.

It is also less sensitive to the initializations and noise; and

2. An improved hybrid octree structure is introduced for adaptive all-hex mesh generation

with limited propagation. Our algorithm combines advantages of grid based method

and polycube based method, which yields adaptive all-hex meshes with good quality

around the boundary.

4.1 Centroidal Voronoi Tessellation and Polycube Con-

struction

In this section, we extend the CVT-based model to mesh segmentation for automatic

polycube construction. Given an input surface triangle mesh T , we partition it into a set of

clusters U = {Ul}
L
l=1 and then use surface parametric mapping to construct the polycubes.

For a certain partition U = {Ul}
L
l=1 of T , there exists a valid polycube structure if it satisfies

the following three conditions:

1. T is partitioned into six clusters L = 6 and each cluster corresponds to one principal

orientation;

2. Each segment of all clusters {Ul}
L
l=1 has more than three boundaries, where each

boundary is shared by two neighboring segments; and
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3. Each corner vertex is shared by three segments of three perpendicular clusters in

parametric domain.

We set these sufficient conditions as topological constraints in the following CVT-based

surface segmentation procedure.

4.1.1 Centroidal Voronoi Tessellation

Given an input surface triangle mesh T , let the dataset X =
{
xT (i)

}n

i=1
denote all the unit

normals xT (i) of the triangle mesh in the normal space, where n is the total number of

triangles and T (i) represents the ith triangle in the physical space. Let C = {cl}
L
l=1 denote a

set of typical unit normal vectors. We set L = 6 in this thesis since we want to segment the

mesh into six clusters, where each triangle is assigned to one of them. The Voronoi region

Vk (k = 1, . . . ,L) in X corresponding to the normal vector ck is defined as

Vk =
{
xT (i) ∈ X : dist

(
xT (i),ck

)
≤ dist

(
xT (i),cl

)
, f or l = 1, . . . ,L} , (4.1)

where dist
(
xT (i),ck

)
=

∣∣∣xT (i)− ck
∣∣∣ is the Euclidean distance between xT (i) and ck in the

normal space. Note that here the differences between normal vectors in the normal space

are compared instead of that in color space [27]. The set V = {Vl}
L
l=1 is called a Voronoi

tessellation of the data set X. The set of chosen unit normals C = {cl}
L
l=1 are referred to as

the Voronoi generators. Obviously, we have X = ∪L
l=1V and Vi∩V j = ∅ if i , j. Given any

set of values C = {cl}
L
l=1 and any partition U = {Ul}

L
l=1 of X, the classical clustering energy

of (C;U) can be defined as

E (C;U) =

L∑
l=1

∑
xT (i)∈Ul

∣∣∣xT (i)− cl
∣∣∣2. (4.2)

Note that U = {Ul}
L
l=1 are not necessarily the Voronoi regions corresponding to the set of

generators C = {cl}
L
l=1 in the definition. Once we have determined the clusters {Ul}

L
l=1 for a
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given input mesh represented in the normal space by xT (i) for each triangle T (i) ∈ D, where

D = {T (i) : i = 1, . . . ,n} is an index set, there is a natural segmentation of the surface which

has L segments D = {Dl}
L
l=1 in the physical space defined by Dl =

{
T (i) : xT (i) ∈ Ul

}
. Given a

partition of X, denoted by U = {Ul}
L
l=1, the centroid of each cluster Ul is defined to be the

normal vector c∗l which minimizes the classical clustering energy with respect to cl, thus we

have

c∗l =
1
|Dl|

∑
xT (i)∈Ul

xT (i) , (4.3)

where |Dl| is the number of triangles in Dl. For an arbitrary Voronoi tessellation(
{cl}

L
l=1 ; {Vl}

L
l=1

)
of X, we often have cl , c∗l for l = 1, . . . ,L, where

{
c∗l

}L

l=1
are the correspond-

ing centroids of {Vl}
L
l=1.

Definition. If the generators of the Voronoi regions {Vl}
L
l=1 of X equal to their corre-

sponding centroids, i.e., cl = c∗l for l = 1, . . . ,L, then we call the Voronoi tessellation {Vl}
L
l=1

a centroidal Voronoi tessellation (CVT) of X and refer to {cl}
L
l=1 as the corresponding CVT

generators.

The construction of CVT can be viewed as an energy minimization process, where the

classical clustering energy is minimized iteratively to update centroids of the clusters. The

classical clustering energy E(C;U) is minimized only if (C;U) form a CVT of X, i.e., U

are Voronoi regions of X associated with the generators C and simultaneously C are the

corresponding centroids of Voronoi regions U. The detailed implementation of CVT is

explained as follows

Algorithm of CVT (Implementation)

Given a surface triangle mesh X =
{
xT (i)

}n

i=1
, positive integer L = 6 and error tolerance

ε (ε = 10−4 in this thesis), we first apply the principal components analysis (PCA) to

surface normals and take three principal normal vectors and their opposite normals as the
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initialization of generators {cl}
L
l=1. Ei denotes the CVT energy in the ith iteration. Then

perform the following:

1. Determine the Voronoi clusters {Vl}
L
l=1 of X associated with {cl}

L
l=1 by assigning each

triangle to the nearest cluster by (4.1). If triangle T (i) has any neighbouring triangle

being assigned to the opposite direction cluster, transfer it to one of other neighbouring

clusters;

2. For each cluster Vl (l = 1, . . . ,L), determine the cluster centroids c∗l by (4.3); and

3. If a termination criterion such as Ei+1−Ei
Ei

< ε is reached, return ({cl}
L
l=1; {Vl}

L
l=1) and

exit; otherwise, set cl = c∗l for l = 1, . . . ,L and return to Step 1.

To improve the connectivity and satisfy the constraints of polycube construction, we

merge each segment in the resulting segmentation with less than four boundaries to one of

its neighbouring clusters. Fig. 4.1 shows the segmentation result of a Sphere model. We

randomly initialize the generators {cl}
L
l=1 by choosing L random triangles in the mesh and

take their normal vectors as the initialization. Fig. 4.1(a) shows the final segmentation result

after 20 iterations, where neighbouring patches are rendered with different colors. The curve

in Fig. 4.1(c) shows that the CVT energy keeps decreasing and converges after 20 iterations.

(a) (b) (c)

Figure 4.1: Results of the Sphere model. (a) Segmentation result after 20 iterations; (b)
parametric mapping result in parametric domain; and (c) the classic CVT energy curve.
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4.1.2 Polycube Parametric Mapping

After the CVT-based mesh segmentation, each cluster is now aligned with one of the six

principal axes (±X, ±Y , ±Z) which will result in a unique valid polycube structure. The next

step is to create a surface parametric mapping which aims at creating a one-to-one mapping

f from the given surface T to a parameter domain T ∗.

We correspond the resulting six clusters to three PCA principal normals and their oppo-

site normals in parametric domain. The polycube structure is then extracted by positioning

all the corner points of each segment with hard planarity constraints in the corresponding

principal axis. For boundary vertices and interior vertices in each segment, we use a planar

domain parameterization [32] to create a parametric mapping between the boundary triangle

mesh T and planar polygon in parametric space. Each surface boundary edge is mapped

onto its corresponding edge of the polycube via a chord length parameterization, in which

the parameter value increases proportionally to the chord length from the start of the edge. In

this way, for each cluster Ul we have the parameterization for its boundary nodes. We then

apply the Embed algorithm [142] to position the interior vertices of each segment, which

uses a nonlinear method to embed a triangle mesh in a planar boundary by minimizing the

unsigned area of the planar triangulation. This planar domain parameterization computes a

bijective map from the input mesh to the polycube surface and enforces vertices in each seg-

ment to have the same coordinate value along the corresponding axis. Note that polycubes

generated in [134] and [70] consist of either one unit cube or multiple equal-sized cubes

with two neighbouring cubes sharing one face. Differently, our generated polycubes are

general polyhedra composed of polygonal surfaces in parametric domain. Fig. 4.1(b) shows

the mapping result for the Sphere model, we can observe that each triangle of the Sphere is

mapped to its corresponding position in the parametric domain and the mapping is bijective.
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(a) (b) (c)

(d) (e)

Figure 4.2: Results of the Igea model. (a) Classic CVT segmentation result; (b-c) HBECVT
segmentation results after 4 and 10 iterations respectively; (d) parametric mapping result;
and (e) HBECVT energy curve. Black circle in (a) highlights the region with non-monotone
boundary, which is reduced gradually in (b-c).

4.2 Harmonic Boundary-Enhanced Centroidal Voronoi

Tessellation

The classic CVT method can generate segmentation with valid polycube structure for

simple models, such as sphere and torus. However, the classic CVT has some drawbacks

for complex geometry: since it only considers normal information but does not take any

physical information into account, the resulting segmentation may give us too many details

and sometimes these extra details may be noises. Moreover, the classic CVT method can
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not eliminate non-monotone boundaries [74], where the direction changes, as shown in Fig.

4.2(a). As mentioned in [74], the non-monotone boundaries can result in extreme distortion

when they are mapped to corresponding polycube edges. The classic CVT imposes hard

membership on the triangle elements, that is, each triangle is assigned to exactly one cluster.

Each triangle only has an influence over the centroid to which cluster it is assigned, making

it sensitive to initialization.

To overcome limitations of the classic CVT method, in this section we present an

extended model named harmonic boundary-enhanced centroidal Voronoi tessellation

(HBECVT). Inspired by the EWCVT model [131], we similarly define a new distance

metric by adding a boundary-enhanced term in order to include local neighbouring

information. For each triangle T (i) ∈ D, we denote a local neighborhood as Nω(T (i)), which

is a ω-rings neighboring region centered at triangle T (i). The boundary-enhanced distance

between xT (i) and ck can be defined as

dist
(
xT (i),ck

)
=

√∣∣∣xT (i)− ck
∣∣∣2 +λñk(T (i)), (4.4)

where ñk(T (i)) represents the number of triangles that do not belong to the kth cluster within

Nω(T (i)). λ is a positive weighting factor to control the balance between the Euclidean

distance in the normal space and the boundary-enhanced term in the physical space. Note

that the new distance term combines the normal information between the triangle T (i) and

clusters together with the local neighbouring information of the triangle T (i). Similarly, we

can define the boundary-enhanced Voronoi region Vk (k = 1, . . . ,L) in X corresponding to

the Voronoi generator ck as

Vk =
{
xT (i) ∈ X : dist

(
xT (i),ck

)
≤ dist

(
xT (i),cl

)
, f or l = 1, . . . ,L} . (4.5)

The boundary-enhanced term ñk(T (i)) extends the edge-weighted idea of EWCVT [131]

to the geometry space, and represents the probability that triangle T (i) belongs to the
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kth cluster in physical space by introducing local neighbouring information. ñk(T (i)) is

small if the majority of neighbourhoods within Nω(T (i)) belong to the kth cluster, and

vice versa. For a noisy triangle or a triangle near non-monotone boundaries, since the

majority of its neighbourhoods belong to the same cluster, the use of boundary-enhanced

term increases the possibility that it will be assigned to the same cluster with the majority

of its neighbourhoods. As a result, the robustness to the noise can be improved and the

smoothness of the resulting boundaries is controlled effectively. Fig. 4.3(a) shows a two-

ring neighbourhood region of the boundary triangle T (1) with clusters U1 and U2, where

T (1) is initially assigned to the cluster U2. Since dist
(
xT (1),c1

)
=

√∣∣∣xT (1)− c1
∣∣∣2 + 16λ and

dist
(
xT (1),c2

)
=

√∣∣∣xT (1)− c2
∣∣∣2 + 20λ, T (1) will more likely be closer to the generator of U1

when λ is large. Similarly, Fig. 4.3(b) shows a two-ring neighbourhood region of the bound-

ary triangle T (2) with clusters U1, U2 and U3, where T (2) is initially assigned to the cluster

U3. Since dist
(
xT (2),c1

)
=

√∣∣∣xT (2)− c1
∣∣∣2 + 20λ, dist

(
xT (2),c2

)
=

√∣∣∣xT (2)− c2
∣∣∣2 + 24λ and

dist
(
xT (2),c3

)
=

√∣∣∣xT (2)− c3
∣∣∣2 + 28λ, T (2) will more likely be closer to the generator of U1

when λ is large.

(a) (b)

Figure 4.3: Neighbourhood regions (ω = 2) of two triangle T (1) and T (2). (a) Bound-
ary triangle T (1) of two neighbouring clusters; and (b) boundary triangle T (2) of three
neighbouring clusters.
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We then use the boundary-enhanced distance to define a new energy function by using

the harmonic average form [46]. For any set of generators C = {cl}
L
l=1 and any partition

U = {Ul}
L
l=1 of X, we define the harmonic boundary-enhanced clustering energy as

EH (C;U) =

n∑
i=1

L
/ L∑

l=1

(∣∣∣xT (i)− cl
∣∣∣2 +λñl(T (i))

)−1
. (4.6)

The above energy function uses squared boundary-enhanced distance from all the generators

to calculate the harmonic average for each triangle. To calculate the updated centroids{
c∗k

}L

k=1
, we minimize the harmonic boundary-enhanced clustering energy function with

respect to the generator ck (k = 1, . . . ,L). Since the local boundary-enhanced energy term

ñk(T (i)) at each triangle T (i) is fixed, we have

∂
(∣∣∣xT (i)− ck

∣∣∣2 + 2λñk(T (i))
)

∂ck
=

∂
(∣∣∣xT (i)− ck

∣∣∣2)
∂ck

= 2
(
xT (i)− ck

)
. (4.7)

We then calculate the derivative of EH (C;U) with respect to the generator ck and set it to be

zero as follows

∂EH (C;U)
∂ck

= −L
n∑

i=1

2
(
xT (i)− ck

)
dist4

(
xT (i),ck

) ( L∑
l=1

dist−2
(
xT (i),cl

))2 = 0, (4.8)

where dist
(
xT (i),ck

)
=

√∣∣∣xT (i)− ck
∣∣∣2 +λñk(T (i)), then we can obtain an iterative formula as

follows:

c∗k =

n∑
i=1

uH
ik xT (i)

n∑
i=1

uH
ik

, (4.9)

where uH
ik =

(
L∑

l=1

dist2(xT (i),ck)
dist2(xT (i),cl)

)−2

. We can observe that the calculation of c∗k is influenced by

all triangles. uH
ik can be viewed as a soft membership function which reflects the degree of

possibility of T (i) that is associated with the kth cluster and how much influence T (i) has in
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the calculation of new centroids. For an arbitrary Voronoi tessellation
(
{cl}

L
l=1 ; {Vl}

L
l=1

)
of

X where V = {Vl}
L
l=1 are the corresponding boundary-enhanced Voronoi regions associated

with C = {cl}
L
l=1, we often have cl , c∗l , for l = 1, . . . ,L, where

{
c∗l

}L

l=1
are the corresponding

centroids of {Vl}
L
l=1.

Definition. If the generators of the harmonic boundary-enhanced Voronoi regions {Vl}
L
l=1

of X equal to their corresponding centroids, i.e., cl = c∗l for l = 1, . . . ,L, then we call the

Voronoi tessellation {Vl}
L
l=1 a harmonic boundary-enhanced centroidal Voronoi tessellation

(HBECVT) of X and refer to {cl}
L
l=1 as the corresponding HBECVT generators.

The construction of HBECVT is also an energy minimization process, where the cen-

troids are updated by minimizing the corresponding harmonic boundary-enhanced clustering

energy function. The harmonic boundary-enhanced clustering energy EH (C;V) is mini-

mized only if (C;V) form a HBECVT of X, i.e., V are Voronoi regions of X associated with

the generators C and simultaneously C are the corresponding centroids of the region V . The

detailed implementation of HBECVT is explained as follows.

Algorithm of HBECVT (Implementation)

Given a surface triangle mesh X =
{
xT (i)

}n

i=1
, positive integer L = 6, weighting factor λ,

neighbourhood size ω and error tolerance ε (e.g. ε = 10−4), we apply the CVT algorithm to

find a good initial configuration and set centroids of resulting clusters as the initialization of

generators {cl}
L
l=1. EH

i denotes the HBECVT energy in the ith iteration. Then perform the

following:

1. Assign each triangle T(i) to the cluster whose generator has the shortest distance

to it by (4.5), and determine the boundary-enhanced Voronoi clusters {Vl}
L
l=1 of X

associated with boundary-enhanced Voronoi generators {cl}
L
l=1. If triangle T (i) has

any neighbouring triangle being assigned to the opposite direction cluster, transfer it

to one of other neighbouring clusters;
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2. For each boundary-enhanced Voronoi cluster Vl (l = 1, . . . ,L), determine the cluster

centroids c∗l by (4.9); and

3. If a termination criterion such as
EH

i+1−EH
i

EH
i

< ε is reached, return ({cl}
L
l=1; {Vl}

L
l=1) and

exit; otherwise, set cl = c∗l for l = 1, . . . ,L and return to Step 1.

(a) (b) (c) (d)

Figure 4.4: Segmentation results of noisy Sphere and noisy igea models. (a, c) Classic CVT
segmentation results; and (b, d) HBECVT segmentation results.

In the resulting segmentation, we merge each segment with less than four boundaries to

one of its neighbouring clusters in order to satisfy the constraints of polycube structure. Fig.

4.2 shows segmentation results of the Igea model using both classic CVT and HBECVT.

The black circle in Fig. 4.2(a) highlights the region with non-monotone boundary, which

can not be avoided for classic CVT method. Fig. 4.2(b) and Fig. 4.2(c) show the HBECVT

segmentation results after 4 and 10 iterations respectively. Fig. 4.2(d) shows the parametric

mapping result and Fig. 4.2(e) shows that the HBECVT energy keeps decreasing and

converges after 10 iterations. From the results, we can observe that HBECVT eliminates

non-monotone boundaries gradually over the iterations, which will lead to low distortion

parametrization later. Fig. 4.4 shows segmentation results of noisy Sphere and noisy Igea

models. We can observe that the classic CVT method can not generate compact polycubes,

lots of unnecessary details caused by noise are segmented. Compared with the classic

CVT, HBECVT generates compact and smooth segmentations by reducing non-monotone

boundaries. For the HBECVT algorithm, the weighting parameter λ balances the clustering
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energy term in the normal space and the boundary-enhanced term in the physical space.

Different λ values will result in different polycube structures, which can be used to control

the compactness of the resulting polycube. Fig. 4.5 shows the segmentation and mapping

results of polycube construction for the Bunny model with different λ values. From the

result, we can observe that the increasing weighting parameter λ reduces the number of

polycube faces with fewer number of singularities but increases the distortion.

(a) (b) (c) (d)

Figure 4.5: The segmentation and mapping results for the Bunny model. (a, c) The seg-
mentation results, where λ = 0.1 for (a) and λ = 1.0 for (c); and (b, d) the corresponding
parametric mapping results of (a, c) respectively.

Remark. The objective energy function in HBECVT uses the squared distances to all

generators for each triangle, which means that all generators partially influence the harmonic

average for each triangle. Compared to the classic CVT method, HBECVT is less affected

by the presence of uncertainty or noise in the data since it has a soft membership function.

EWCVT, FEWCVT and HEWCVT have been successfully used in image segmentation,

our HBECVT extends the similar idea to mesh segmentation for the polycube construction.

Similar to the edge-weighted idea from EWCVT, the boundary-enhanced term in HBECVT

takes into account the local neighbouring information of each triangle, which tends to make

the boundary of the final segmentation shorter and smoother. The harmonic average form of

the energy function makes it less sensitive to initializations and noise. With some validity

constraints described in Section 4.1, our HBECVT can automatically and robustly construct

polycubes for general arbitrary geometric domains.
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4.3 Adaptive Hexahedral Mesh Generation

Figure 4.6: An overview of all-hex mesh generation based on polycube construction.

Based on the constructed polycubes, we can generate uniform hex meshes, T-spline

control meshes (T-meshes) and adaptive all-hex dual meshes. The main steps are shown

in Fig. 4.6. Uniform all-hex meshes C can be generated by first meshing the resulting

(a) (b) (c)

(d) (e) (f)

Figure 4.7: Results of the Torus model. (a, d) CVT based mesh segmentation and parametric
mapping results; (b, e) uniform hex mesh in the physical and parametric domain without
using the torus primitive; and (c, f) uniform hex mesh in the physical and parametric domain
using the torus primitive.
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(a) (b) (c) (d)

Figure 4.8: All-hex meshing results of the Igea model. (a) Octree subdivision result in
parametric domain; (b) octree subdivision result in physical domain (volumetric T-mesh);
(c) adaptive all-hex dual mesh; and (d) some elements are removed to show the interior of
(c).

polycube with an axis-aligned grid, and then mapping it back onto the input surface via

parametric mapping for boundary vertices and interpolation for interior vertices. Each node

Ci in C has its parameter coordinates and physical coordinates. For each boundary node, the

physical coordinates are its mapped location on the triangular mesh. Given the parameter

coordinates of one node Ci, we first find which triangle contains it, and then compute its

physical coordinates using the barycentric coordinates in this triangle. In this thesis, we

also combine our CVT based polycube construction method with Boolean operations [70]

to deal with the torus-like objects. We split the input surface into different components,

topologically equivalent to either a cube or a torus primitive. Since torus can be topologically

considered as four consecutive cubes with the first face and the last face connected, instead

of meshing the parametric domain in the traditional way (Fig. 4.7(b, e)), we mesh it by using

four end-to-end octree domains, shown as Fig. 4.7(c, f). From the result, we can observe

that the improved method generates zero irregular nodes on the surface, and the generated

elements have much better quality (the minimum Jacobian 0.44 vs. 0.23).

Starting from the coarse uniform mesh C, we subdivide each element into eight smaller

ones recursively to get the adaptive octree, which will be the volumetric T-mesh in the

physical space. We adopt a surface approximation error to control the local refinement. The

balancing and pairing rules are used here to build a strongly balanced octree [79, 42]. Fig.
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(a) (b) (c) (d) (e)

Figure 4.9: First row: five unique transition cases, where octants with the same color belong
to the same block; second row: the corresponding cutting processes in our method. (a)
Transition on face; and (b-e) transitions on edge.

4.8(a) shows the octree subdivision result of the Igea model in parametric domain and Fig.

4.8(b) shows the volumetric T-mesh result. Based on the strongly balanced octree, we can

also generate adaptive all-hex dual meshes. In the octree, eight children octants belonging

to the same parent octant form an octree block since they have the same behaviour, that is,

either all or none of them are subdivided. A transition case happens when the neighbouring

blocks are at different levels. A cutting procedure is used in this thesis to eliminate hanging

nodes and guarantee that each grid point in the resulting hybrid octree is always shared by

eight polyhedral cells. There are five transition cases (see Fig. 4.9), including one transition

case on face and four transition cases on edge. Compared to Maréchal’s cutting method

[79], our improved cutting method reduces the propagation by cutting in the finer blocks

to eliminate hanging nodes. Please refer to [79, 42] for detailed discussions on the hybrid

octree construction.

An adaptive all-hex dual mesh can be extracted from the constructed hybrid octree. Since

all grid points are shared by eight polyhedral cells, the obtained dual mesh is all-hex. If

sharp features are detected by CVT-based segmentation, they can be aligned and preserved

during the mapping and projection. The extracted hex meshes may have poorly-shaped
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elements around the boundary, therefore the mesh quality needs to be improved. Pillowing

[99] is a sheet-insertion technique that inserts one layer around the boundary. After the

pillowing, optimization is implemented to further improve the quality [150]. We use BFGS

method [70] to perform the optimization, where the objective function is equivalent to the

maximization of the minimum scaled Jacobian. Fig. 4.8(c) shows the adaptive all-hex mesh

of the Igea model and Fig. 4.8(d) shows interior cross section of the mesh.

4.4 Results and Discussion

We have applied the presented algorithms to several datasets, and generated both valid

polycubes and adaptive all-hex meshes with good quality. All results were computed on a

PC equipped with a 2.93 GHz Intel X3470 CPU and 8GB of Memory. Table 4.1 shows the

statistics of all testing models. For HBECVT-based mesh segmentation, there are a total

of two parameters that need to be defined: λ, the weighting parameter that balances the

clustering energy and the boundary-enhanced energy; and ω, which defines the size of the

local neighborhood. Since the effect of ω is essentially similar to that of λ. We choose a

relatively small value of ω (ω = 2) for all the examples in order to reduce the computational

cost.

(a) (b) (c) (d)

Figure 4.10: Segmentation results of the Squirrel model. (a) Classic CVT and HBECVT
segmentation results of the noise free model, black circles in (a) highlight regions with
non-monotone boundaries, which are removed in (b); and (c-d) classic CVT and HBECVT
segmentation results of the noisy model.
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Table 4.1: Statistics of all the tested models.
Model Input mesh λ Number of Octree Output mesh Jacobian Jacobian (T-mesh) Time

(vertices, elements) singularities levels (vertices, elements) (worst, best) (worst, best) (s)
Igea (4,500, 8,996) 0.08 16 3 (49,714, 44,586) (0.14, 1.00) (0.18, 1.00) 175.6

Squirrel (30,254, 58,416) 0.08 16 3 (22,818, 19,482) (0.14, 1.00) (0.20, 1.00) 124.3
Bunny (4,833, 9,662) 0.1 40 3 (36,832, 32,454) (0.11, 1.00) (0.13, 1.00) 143.5
Kitten (80,000, 160,000) 0.1 28 3 (33,466, 30,104) (0.10, 1.00) (0.12, 1.00) 242.7
Rod (4,406, 8,816) 0.001 20 2 (18,384, 16,066) (0.22, 1.00) (0.32, 1.00) 47.3
Base (5,292, 10,600) 0.001 44 2 (12,720, 10,048) (0.21, 1.00) (0.33, 1.00) 53.8

(a) (b) (c)

(d) (e)

Figure 4.11: Results of the Squirrel model. (a) parametric mapping result; (b) subdivision
result in physical domain (volumetric T-mesh); (c) adaptive all-hex dual mesh; (d) some
elements are removed to show the interior of (c); and (e) HBECVT energy curve.

Fig. 4.10(a-b) show segmentation results of the noise-free Squirrel model using the

classic CVT and HBECVT respectively. Black circles in Fig. 4.10(a) highlight regions

with non-monotone boundaries, which can not be avoided in the classic CVT method. Fig.
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4.10(b) shows the HBECVT segmentation results after 15 iterations. From the result, we can

observe that HBECVT can eliminate non-monotone boundaries gradually and also smooth

boundaries, which leads to low distortion parametrization later in polycube construction.

Fig. 4.10(c-d) show segmentation results of the noisy Squirrel model using the classic

CVT and HBECVT respectively. We can observe that the classic CVT method can not

generate compact polycubes for noisy inputs, lots of unnecessary details caused by noise

are segmented. Compared to the classic CVT, HBECVT generates compact and smooth

segmentations by eliminating the effect of noises and reducing non-monotone boundaries.

After the polycube construction, we also generate volumetric T-meshes and adaptive

all-hex dual meshes for several testing models: Igea (Fig. 4.8), Squirrel (Fig. 4.11), Bunny

(Fig. 4.12), Kitten (Fig. 4.13), Rod (Fig. 4.14), and Base (Fig. 4.15). We use the scaled

Jacobian to evaluate the quality of adaptive all-hex mesh and volumetric T-mesh. For

each model, we show the HBECVT based segmentation result, HBECVT energy curve,

corresponding polycube mapping result, subdivision results in both parametric domain and

physical domain, and adaptive all-hex dual mesh result. The HBECVT based segmentation

and polycube mapping results for the Bunny model are shown in Fig. 4.5(a-b). From Table

4.1, we can observe that the obtained adaptive all-hex meshes and volumetric T-meshes

all have good quality (minimal Jacobian > 0.1). Figs. 4.14 and 4.15 show results of two

CAD models with sharp features. Since the input surfaces of CAD models usually have

clear features along each direction, the surface can be segmented with very few iterations.

As shown in Figs 4.14(e) and 4.15(c), these two CAD models need much fewer iterations

to reach convergence. For the Rod and Base model, the torus primitive is introduced to

deal with torus-like objects and holes, which yields few number of extraordinary nodes and

high-quality elements [70]. From the results we can observe that torus-like holes of these

two models have no irregular nodes on the surface and the generated elements have very

good quality.
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(a) (b) (c)

(d) (e)

Figure 4.12: Results of the Bunny model. (a) Octree subdivision result in parametric domain;
(b) subdivision result in physical domain (volumetric T-mesh); (c) adaptive all-hex dual
mesh; (d) some elements are removed to show the interior of (c); and (e) HBECVT energy
curve.

To compare the stability of the classic CVT and HBECVT for mesh segmentation and

polycube construction, we can segment the test model N (N = 100 in this thesis) times with

different initializations using both CVT and HBECVT. We count the number of singularities

(cluster corners) of the resulting polycube for each test. Fig. 4.16 shows the testing results

of the Igea, Squirrel, Bunny and Kitten models respectively, where CAD models are not

tested using different initializations since their input surfaces have clear segmented features.

For each model, we show the number of singularities for each test using both CVT and

HBECVT. From the results we can observe that HBECVT is much more stable and less
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(a) (b) (c)

(d) (e) (f)

Figure 4.13: Results of the Kitten model. (a) HBECVT based mesh segmentation result; (b)
parametric mapping result; (c) subdivision result in physical domain (volumetric T-mesh);
(d) adaptive all-hex dual mesh; (e) some elements are removed to show the interior of (d);
and (f) HBECVT energy curve.

sensitive to initializations. The classic CVT method usually generates more singularities,

while HBECVT usually results in more compact polycube structure with fewer number

of singularities. We also introduce a new metric named the segmentation coefficient of

variation (SCV) to evaluate the stability of different methods. Based on the number of

singularities value we get from each test, the SCV is defined as:
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Figure 4.14: Results of the Rod model. (a) HBECVT based mesh segmentation result; (b)
parametric mapping result; (c) subdivision result in physical domain (volumetric T-mesh);
(d) adaptive all-hex dual mesh with some elements removed to show the interior; and (e)
HBECVT energy curve.

(a) (b) (c)

(d) (e)

Figure 4.15: Results of the Base model. (a) HBECVT based segmentation result; (b)
parametric mapping result; (c) HBECVT energy curve; (d) subdivision result in the physical
domain (volumetric T-mesh); and (e) adaptive all-hex dual mesh with some elements
removed to show the interior.
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(a) (b)

(c) (d)

Figure 4.16: The number of resulting singularities of test models with random initializations.
(a) Igea model; (b) Squirrel model; (c) Bunny model; and (d) Kitten model.

S CV =

√
1
N

N∑
i=1

(
NumS i−NumS

)2

NumS
×100%, (4.10)

where NumS i represents the number of singularities for the ith test, and NumS represents the

mean of the number of singularities. Small SCV values are usually considered low-variance,

otherwise high-variance. The SCV results of CVT and HBECVT for the Igea model are

32.19% and 7.17% respectively, while 30.25% and 9.58% for Squirrel model, 20.21% and

7.53% for Bunny model and 25.27% and 8.48% for Kitten model. Compared to the classic

CVT, it is obvious that HBECVT is more stable and accurate. Since different initializations

may result in different polycube structures, in this thesis we apply PCA analysis first to get

a better initialization which results in an unique solution. Users can also explore other ways

to set the initial generators.
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(a) (b) (c) (d)

Figure 4.17: Analysis results. (a, b) FEA and IGA results for the Rod model; and (c, d) FEA
and IGA results for the Igea model. All-hex meshes are shown in (a, c) and Bézier elements
are shown in (b, d).

We tested Rod and Igea models for isogeometric analysis (IGA) by using the weighted

T-splines [72]. Volumetric weighted T-splines can be generated from the T-meshes with

local knot vectors and weighted basis functions, and Bézier elements are extracted for the

IGA analysis. Here we solve the traditional linear elasticity problem. For both models,

we fix the movement on one end and apply a displacement load on the other end (Young’s

modulus: 200 GPa; density: 7900 kg/m3 and Poisson’s ratio: 0.3). We also apply the

finite element analysis (FEA) for each model with similar loading and boundary conditions.

The displacement results obtained for both FEA and IGA are shown in Fig. 4.17. From

the results we can observe that our algorithm can generate valid volumetric T-meshes and

weighted T-splines for IGA applications.

Limitations. Both the classic CVT and HBECVT based methods can not guarantee

a valid polycube construction with random initializations. With a bad initialization of

generators, the surface segmentation result may lead to incorrect polycube structures. The

topological constraints mentioned in Section 4.1 are sufficient but not necessary conditions

for polycube construction.
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4.5 Conclusion and Future Work

In this thesis, a novel automatic CVT-based polycube construction algorithm is developed.

Since we mainly use the normal information of the input surface, our method can naturally

generate polycubes with low distortion. As a follow up from the classic CVT method, our

extended HBECVT-based algorithm improves the segmentation by reducing non-monotone

boundaries and is less sensitive to the initializations and noise. HBECVT usually generates

polycube with fewer singularities and can also control the compactness of the resulting

polycube with the weighting parameter λ. After the construction of polycube, we can

generate uniform all-hex meshes and T-meshes via octree subdivision and parametric

mapping. In addition, an improved mesh generation algorithm is presented based on a

hybrid octree to construct adaptive all-hex dual meshes. Both uniform and adaptive all-hex

meshes can be directly used for the FEA analysis in engineering practice. With the valid

T-meshes, we can also construct analysis-suitable T-splines (weighted T-splines) for IGA

applications. The robustness and efficiency of our presented algorithms are demonstrated by

various types of input surfaces. In the future, we plan to apply our method to constructing

solid T-splines for complex geometry.
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Chapter 5

Surface Segmentation for Polycube

Construction Based on Generalized

Centroidal Voronoi Tessellation

In this thesis, we develop a new two-step surface segmentation scheme using generalized

CVT methods for polycube construction, which can be used for all-hex mesh generation

and is suitable for objects with slim cylindrical components. We first classify vertices

of the surface into several components by extending the HBECVT algorithm to the SLO

eigenfunction space. The key idea is that we update the generators in the p-dimensional

eigenfunction space and physical information is introduced in the CVT-based clustering

energy function, which tends to reduce jaggy boundary and over-segmentation. Based on

the pre-segmentation results, each component is further segmented into several patches

associated to the polycube faces. A novel skeleton-based CVT model is presented by using

local coordinates to define the generators flexibly in the normal space which naturally embed

the topological skeleton information into polycube construction. Predefined geometric

constraints are used to revise the segmented results to obtain a valid polycube structure.

After that, we generate quality all-hex meshes and volumetric T-meshes via parametric
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mapping. The key contributions of our two-step surface segmentation based polycube

construction include:

1. A new eigenfunction-based CVT method is developed for surface segmentation by

using the SLO eigenfunctions. Surface vertices are classified into several compo-

nents based on concave creases and convex ridges of an object while generators are

iteratively updated in the high dimensional eigenfunction space. Compared to other

methods, it is efficient and eliminates unsmoothed boundaries, over-segmentations

and noise effect; and

2. The skeleton-based CVT algorithm generalizes the HBECVT method by introducing

local coordinates to define and update the generators flexibly in the normal space.

Compared to other polycube construction methods, it reduces unnecessary singulari-

ties on the surface and is suitable for objects with slim cylindrical components. The

generated all-hex meshes align to the detected concave creases and convex ridges

from segmentation.

5.1 Two-Step Surface Segmentation

• Eigenfunction-based CVT (Step 1). Since the SLO is defined based on the second

fundamental form of the surface, here we choose a higher order finite element solver

to compute its eigenfunctions, that is, an isogeometric analysis solver using cubic

Catmull-Clark basis functions [136]. We first apply the cross field-based surface

parameterization [68] to convert the input triangular mesh T1 to a semi-structured

quadrilateral mesh Q1, and then build the Catmull-Clark surface and compute the

SLO eigenfunctions. After that, we convert Q1 back to a triangular mesh T2 by

splitting each quadrilateral into two triangles. We then map vertices of T2 onto

a p-dimensional space by selecting the first p modes of the SLO eigenfunctions.

To apply the eigenfunction-based CVT method, we first initialize L generators by
68



selecting L vertices and taking their p-dimensional eigenfunction values. Generators

are updated iteratively in the high dimensional eigenfunction space and vertices of T2

are then segmented into L clusters. To reduce jaggy boundary and over-segmentation,

neighbouring vertex information is also introduced into the clustering energy function.

The boundaries among clusters are constructed to extract the segmentation result.

• Skeleton-based CVT (Step 2). In this step, we further segment each component from

Step 1 into several patches, where each patch corresponds to one face of the polycube.

For objects with slim cylindrical components, we extract the skeleton information K

and calculate local coordinates. Surface normals are transformed to the corresponding

nearest local coordinate system along the skeleton. We then define and iteratively

update the generators in the HBECVT scheme using local coordinates in the normal

space. For other general objects, the HBECVT scheme can also be directly applied to

segment each component in the global normal space.

• Geometric Constraints. With a set of predefined connectivity and geometric con-

straints [45], we revise the segmentation results to obtain a valid polycube structure.

Based on the above two-step surface segmentation with geometric constraints, we construct

valid polycubes by creating a surface parametric mapping from T2 to a parameter domain T ∗.

We can then generate quality all-hex meshes and volumetric T-meshes in both parametric

and physical domains.

5.1.1 Eigenfunction-based CVT

Different from the widely employed LBO eigenfunctions, the SLO eigenfunctions can cap-

ture the curvature-related surface features such as concave creases and convex ridges [67],

which automatically distinguish different components of an object. Let S = {x(u,v), (u,v) ∈

R2} be a smooth parametric surface, where (u,v) can also be written as (u1,u2) for conve-

nience. The coefficients of the first fundamental form of S can be defined as gαβ =
〈
xuα ,xuβ

〉
69



(α,β = 1,2), where xuα = ∂x
∂uα and xuβ = ∂x

∂uβ . The coefficients of the second fundamental form

of S can be defined as bαβ =
〈
n,xαβ

〉
, where xuαuβ = ∂2x

∂uα∂uβ and n = (xu×xv)/‖xu×xv‖. Let

[bαβ] = [bαβ]−1, and ∀ f ∈C2(S ), the SLO N [67] can be defined implicitly satisfying

∫
S

(hN f + 〈� f ,�h〉)dA = 0, ∀h ∈C1(S ), (5.1)

where � is the generalized second tangential operator (GSTO) defined as

� f = [xu,xv]Φ
[
bαβ

] [
fu, fv

]T . (5.2)

Different choices of the parameter Φ can be used for detecting different types of surface

features such as concave creases/regions and convex ridges [67]. Let λs be the eigenvalues

of the SLO, we have N f = −λs f , which can be solved using the Catmull-Clark subdivision

based isogeometric analysis [136]. Note that a remeshing process is required for the input

triangle mesh in order to use the Catmull-Clark basis functions and quadrilateral control

meshes [67]. Since main components of 3D objects are usually connected with concave

creases and convex ridges, correct detection of these features yields reasonable surface

segmentation results. Several examples were presented in [67] to show the advantages of the

SLO eigenfunctions using PAM for surface segmentation. Compared with traditional surface

segmentation methods based on LBO eigenfunctions, the SLO-based method can segment

the surface at the convex creases and concave ridges, which better reflects main components

of an object. However, the PAM-based surface segmentation is time consuming in identifying

the optimal number of segmentation sets. It may also result in jaggy boundary and over-

segmented results since no physical information is included during the classification.

In this thesis, we apply the efficient CVT-based clustering idea to the SLO eigenfunctions

by incorporating physical information to avoid over-segmentation and jaggy boundaries, and

reduce the computational cost. The CVT-based model has been introduced to various fields

and applications, including both image and mesh processing [27, 131, 26]. It is essentially
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a clustering technique by partitioning a set of discrete data points into non-overlapping

clusters. Given an input dataset and L generators, all the data points can be partitioned into

L clusters by assigning each point to its nearest generator. Then an energy function E which

measures how tightly each cluster is packed can be defined and minimized with respect to

the generators. In this way, all the generators are iteratively updated to be the centroids of

their associated clusters, where a new partition can be computed with new generators. Such

an algorithm aims at minimizing the energy function E until a certain criterion is met.

We first compute eigenfunctions of the SLO and map surface vertices onto a p-

dimensional space by selecting the first p modes. Let Ψ = {ψi}
nv
i=1 denote the p-dimensional

eigenfunctions for all vertices of the surface mesh T2 with ψi =
(
ψi1, . . . ,ψip

)T
, where nv

is the total number of vertices and ψi represents the assigned p-dimensional vector of the

ith vertex v(i). The initial Voronoi generators C = {cl}
L
l=1 are defined as a set of typical

p-dimensional eigenfunction vectors. For the generator ck (k = 1, . . . ,L), its corresponding

Voronoi region Vk in Ψ can be defined as

Vk = {ψi ∈ Ψ : dist (ψi,ck) ≤ dist (ψi,cl) , f or l = 1, . . . ,L} , k = 1, . . . ,L, (5.3)

where dist (ψi,ck) is a certain metric to calculate the distance between the p-dimensional

vector ψi and the generator ck. Note that V = {Vl}
L
l=1 denote the Voronoi tessellation of the

data set Ψ according to generators C = {cl}
L
l=1. Since each vertex is assigned to one of L

clusters, we have Ψ = ∪L
l=1V and Vi∩V j = ∅ if i , j. Given any set of generators C = {cl}

L
l=1

and any partition U = {Ul}
L
l=1 of Ψ, we can define the classical clustering energy of (C;U) as

E (C;U) =

L∑
l=1

∑
ψi∈Ul

dist2 (ψi,cl), (5.4)

where dist (ψi,ck) = ‖ψi− ck‖ measures the Euclidean distance between vector ψi and gener-

ator ck in the p-dimensional eigenfunction space. Since the classic CVT clustering energy

does not take into account any physical information, the resulting segmentation may have
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jaggy boundaries and over-segmentation results, especially for noisy surfaces. To overcome

limitations of the classic CVT method, we extend the idea of HBECVT to the eigenfunction-

based CVT for surface segmentation. By including the local neighbouring information of

vertex v(i), we can similarly define a boundary-enhanced distance metric as

dist (ψi,ck) =

√
‖ψi− ck‖

2 +ηñk(v(i)). (5.5)

In this distance metric, the first term ‖ψi− ck‖
2 measures the Euclidean distance in the

p-dimensional eigenfunction space. The second term ñk(v(i)) introduces the neighbouring

physical information which measures the number of vertices that do not belong to the kth

cluster within Nω (v(i)), which is a ω-rings neighboring region centered at vertex v(i). η is a

positive weighting factor to balance these two terms. The boundary-enhanced term ñk(v(i))

extends the idea of HBECVT [45] from triangle element in the normal space to vertex in

the eigenfunction space, and represents the probability that vertex v(i) belongs to the kth

cluster in the physical space. Note that the boundary-enhanced term smooths the boundary

and reduces over-segmentation by balancing the size of clusters in the neighbouring region

of each vertex. ñk(v(i)) is small if the majority of neighbourhoods within Nω(v(i)) belong

to the kth cluster, and vice versa. Inspired by the HBECVT clustering energy [45] defined

in the normal space, we extend it to the p-dimensional eigenfunction space to define the

eigenfunction-based CVT clustering energy function as

EE (C;U) =

nv∑
i=1

L
L∑

l=1
dist−2 (ψi,cl)

. (5.6)

Note that U = {Ul}
L
l=1 are not necessarily the Voronoi regions corresponding to the set of

generators C = {cl}
L
l=1. The above clustering energy function measures the similarity of the

data by using squared boundary-enhanced distance from all the generators to calculate the

harmonic average for each vertex. The updated centroid of each cluster Uk is defined as the

72



(a) (b) (c) (d) (e)

Figure 5.1: Segmentation results of the Bust model with different numbers of clusters. (a)
Modes 1-3 of the SLO; (b) 2 clusters; (c) 3 clusters; (d) 4 clusters; and (e) 5 clusters.

p-dimensional vector c∗k which minimizes the above clustering energy with respect to ck.

An iterative formula can be obtained as

c∗k =

nv∑
i=1
µikwiψi

nv∑
i=1
µikwi

, where µik =
dist−4 (ψi,ck)

L∑
l=1

dist−4 (ψi,cl)
and wi =

L∑
l=1

dist−4 (ψi,cl)(
L∑

l=1
dist−2 (ψi,cl)

)2 . (5.7)

µik can be viewed as a soft membership function which reflects the degree of possibility

of v(i) that is associated with the kth cluster and wi is a weighting function which defines

the influence of vertex v(i) on computing new centroids of clusters. After initializing L

generators {cl}
L
l=1 by randomly selecting L vertices and taking their p-dimensional eigen-

function values, for each iteration we assign each vertex to the cluster whose generator has

the shortest distance to it by Eq. (5.5). The cluster centroids {c∗l }
L
l=1 are updated iteratively

by Eq. (5.7) until the energy variation is less than a predefined threshold.

For the eigenfunction-based CVT, there are a total of three parameters that need to be

specified: L as the number of clusters, η as the weighting factor used to balance the Euclidean

distance in the eigenfunction space and the boundary-enhanced distance in neighbouring

physical space, and ω as the size of neighbourhood used to control the neighbouring physical
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information. The resulting segmentation results are effected by all these three parameters,

i.e., L determines the number of resulting clusters, η andω control the segmentation accuracy

and robustness. Fig. 5.1 shows Modes 1-3 of the SLO eigenfunctions and the segmentation

results of the Bust model with two, three, four and five clusters, respectively. From the

results we can observe that more features can be detected with more clusters. The results

demonstrate that our proposed eigenfunction-based CVT algorithm is flexible and robust

with respect to different numbers of clusters. To illustrate the effect of η, we apply the

eigenfunction-based CVT to a noisy Bust model with different values of η (ω = 2). Fig.

5.2(a) shows Modes 1-3 of the SLO eigenfunctions, which are used to segment the noisy

Bust model into 5 clusters. Without the boundary-enhanced term (η = 0), there are jaggy

boundaries and over-segmentation caused by the noise, shown as Fig. 5.2(b). If η is small

(η = 0.05), more detailed features detected by SLO eigenfunctions can be kept. However, the

noise effect can not be completely eliminated, see the over-segmentation in the red window

of Fig. 5.2(c). When η becomes larger (η = 0.1), the eigenfunction-based CVT will tend to

shorten and smooth boundaries of the resulting segmentation, thus the noise effect, jaggy

boundaries and over-segmentation can be gradually removed, shown in Fig. 5.2(d). Note

that when η is very large (η = 0.2), boundaries are over-smoothed and features are gradually

erased, see the result in the yellow window of Fig. 5.2(e). Thus we need to select the proper

parameters L and η in order to generate reasonable segmentation results for given surfaces.

The effect of ω is essentially similar to that of η. A larger ω can eliminate more noises and

obtain more smoothed boundaries, while a smaller ω results in higher accuracy in capturing

detailed features of the surface. Note that a large ω requires more computation, therefore

we set ω = 2 in this thesis for all the examples in order to reduce the computational cost.

Fig. 5.3 shows a comparison of the PAM method and our eigenfunction-based CVT

scheme, with the SLO eigenfunctions used in both of them. We segment the Bust into

6 clusters, where neighbouring components are rendered with different colors. Since the

SLO eigenfunctions can detect all concave creases, both the PAM and eigenfunction-based
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(a) (b) (c) (d) (e)

Figure 5.2: Segmentation results of the noisy Bust model with different values of η (ω = 2).
(a) Modes 1-3 of the SLO; (b) η = 0; (c) η = 0.05; (d) η = 0.1; and (e) η = 0.2.

(a) (b) (c)

Figure 5.3: The Bust model. (a) Segmentation result using the PAM method; (b) segmen-
tation result using our eigenfunction-based CVT method; and (c) the eigenfunction-based
CVT energy curve.

CVT methods yield similar segmentation results, which outperform other methods (LBO,

concavity-aware Laplacian and shape diameter function method) through a statistical study in

[67]. The curve in Fig. 5.3(c) shows that the eigenfunction-based CVT energy keeps decreas-

ing and converges after 6 iterations. Compared with the PAM method, our eigenfunction-

based CVT clustering scheme eliminates jaggy boundaries and over-segmentation (see the

comparison in the red windows), and the computational time is reduced from 287.6 to 2.2

seconds.
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Remark. Since the SLO is defined based on the second fundamental form of the surface,

its eigenfunctions can capture surface features sensitive to curvature changes, such as

concave creases and convex ridges. Our proposed eigenfunction-based CVT segmentation

algorithm maintains properties of SLO eigenfunctions by using the efficient CVT-based

clustering idea in a p-dimensional eigenfunction space. By incorporating neighbouring

physical information into the eigenfunction-based CVT clustering energy function, we

eliminate jaggy boundaries and avoid over-segmentation with an efficient computation.

For a noisy input surface, the boundary-enhanced term increases the possibility that each

vertex will be assigned to the same cluster with the majority of its neighbourhoods, which

improves the robustness to the noise during the surface segmentation. Furthermore, the

harmonic average form of the energy function restricts that all vertices partially influence the

calculation of each centroid, which makes it less sensitive to initializations of the generators.

5.1.2 Skeleton-based CVT

The HBECVT-based algorithm [45] improves the segmentation and polycube construction

by introducing the local neighbouring information into the energy function, which tends

to reduce non-monotone boundaries and generate compact polycubes with low distortion.

Based on the pre-segmentation using the eigenfunction-based CVT as shown in Fig. 5.3(b),

we apply the HBECVT to further segment each component into several patches using the

global normal space, where each patch corresponds to one face of the polycube in certain

principal orientation. Singularities, corner vertices that do not have exactly 4 neighbouring

patches, are marked in red nodes as shown in Fig. 5.4(a). However, this method results

in large number of unnecessary singularities for slim cylindrical surfaces, such as the

Cylindrical-helix model shown in Fig. 5.5(a). There are 28 singularities generated with the

HBECVT-based segmentation in the global normal space, leading to a complex polycube

structure. To improve the polycube construction, in this section we apply the skeleton

information to compute local coordinates and use them for polycube construction.
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(a) (b) (c) (d)

Figure 5.4: Results of the Bust model. (a) Segmentation result of the Bust model using
HBECVT in the global normal space; (b) segmentation result using the skeleton-based CVT
method with the skeleton and polycube; (c) all-hex mesh with some elements removed to
show the interior; and (d) volumetric T-mesh.

Skeletons are simplified 1D description, which can capture the main geometric features

and topology of the input 3D surface. Several algorithms have been developed in the

literature for the skeleton extraction. The mean curvature flow [120] extracts the skeleton

by iteratively moving each surface point along the inverse of its normal direction with a

speed proportional to its curvature. The mesh contraction method computes the skeleton of

an input object by progressively shrinking it along a constrained mean curvature flow [5].

These algorithms produce skeletons that are enclosed by the surface as medial axis. Given

an input triangle mesh T , here we adopt the mean curvature flow algorithm [120] to generate

its skeleton K =
{
K j

}m

j=1
, where m is the total number of skeleton points. Let X =

{
xT (i)

}n

i=1

denote all the unit normals xT (i) of the triangle mesh according to the global coordinate

system, where n is the total number of triangles and T (i) represents the ith triangle in the

physical space.

We first compute the local coordinate system of each point s j and also the transformation

matrix Q from the global to the local coordinate system. The local coordinate system of

each curve-skeleton point can be defined using the tangent and its perpendicular plane. Fig.

5.5(b) shows the skeleton of the Cylindrical-helix model, the local coordinate system of each

77



(a) (b)

(c) (d) (e)

Figure 5.5: Results of the Cylindrical-helix model. (a) Segmentation result using HBECVT
in the global normal space; (b) skeleton-based CVT segmentation result using the local
normal space with the skeleton information; (c) skeleton-based CVT energy curve; (d)
parametric domain; and (e) all-hex mesh.

skeleton point can be defined using the tangent and the plane perpendicular to the tangent.

Any unit vector û in the global coordinate system {ê1, ê2, ê3} can be transferred to the local

coordinate system
{
ê′1, ê

′
2, ê
′
3

}
by û′ = Qû, where Q is a 3×3 rotation matrix and its entry

Qi j = cos
(
êi, ê′j

)
= êi · ê′j. Since each triangle can be assigned to its nearest skeleton point,

we can transform its normal vector in the global coordinate system to the local coordinate

system by x′T (i) = QT (i)xT (i), where QT (i) is the transformation matrix between the local

coordinate system T (i) assigned to and the global coordinate system. Thus, we can calculate

a new set of unit normals X′ =
{
x′T (i)

}n

i=1
from X =

{
xT (i)

}n

i=1
. Note that the normal vector for

each triangle T (i) is transformed via a rotation matrix with the help of the skeleton, which

makes it suitable for slim cylindrical objects.
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Let C = {cl}
L
l=1 (L = 6) denote a set of typical unit normal vectors ({(±1,0,0), (0,±1,0), (0,0,±1)})

and U = {Ul}
L
l=1 denote any partition of X′. Inspired by the HBECVT model [45], we can

define a new skeleton-based CVT clustering energy as

ES (C;U) =

n∑
i=1

L
/ L∑

l=1

(∥∥∥x′T (i)− cl
∥∥∥2

+λñl(T (i))
)−1

, (5.8)

where ñk(T (i)) is the boundary-enhanced term and λ is a positive weighting factor. Similar to

HBECVT, the construction of skeleton-based CVT is also an energy minimization process,

where the centroids are updated iteratively by minimizing ES with respect to the generator

ck (k = 1, . . . ,L). Fig. 5.5(b) shows the segmentation results of the Cylindrical-helix model

using the skeleton-based CVT. Compared to Fig. 5.5(a), we can observe that our skeleton-

based CVT algorithm aligns to the shape better by segmenting the surface in the transformed

normal space, and it yields only 8 singularities in total. The curve in Fig. 5.5(c) shows that

the skeleton-based CVT energy keeps decreasing and converges after 4 iterations.

Remark. Our skeleton-based CVT segmentation algorithm is suitable for slim cylindri-

cal objects and can reduce unnecessary singularities with compact polycube structure. Since

local coordinate systems follow the skeleton direction, the number of singularities (polycube

corners) can be reduced, resulting in a more compact polycube structure. Moreover, the

skeleton-based CVT algorithm inherits the properties of the HBECVT model. The objective

energy function uses the squared distances to all generators for each triangle in a transformed

normal space, where all generators partially influence the harmonic average for each triangle.

In addition, the skeleton-based CVT is also less sensitive to the initialization of generators

and noise.

5.2 Geometric Constraints

Polycubes are orthogonal polyhedra bounded by axis-aligned planes. A segmentation

produces an invalid polycube if any patch has less than four neighbours, or if patches
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associated with opposite orientations of the same axis share a boundary [74]. Thus we

need to set geometric constraints [45] to the segmentation results in order to generate a

valid polycube structure. Here are some definitions. Based on the eigenfunction-based

CVT segmentation, a component boundary is the boundary between two neighbouring

components. In a segmented patch of a specific component, the corner vertex lying along

the component boundary is called a boundary corner. The corner vertex lying inside a

component is called an interior corner. For a certain partition of a component, the sufficient

conditions of a valid polycube structure are as follows: 1) two patches with opposite

orientations of the same axis can not share a boundary; 2) each boundary corner vertex is

shared by two patches and each interior corner vertex is shared by three patches; and 3) each

patch must have more than three boundaries.

We first merge each patch with less than four boundaries to one of its neighbouring

patches that has the longest boundary, and also prevent two triangles sharing an edge or a

vertex from being assigned to two opposite patches. Since we segment each component

separately, we need to ensure that two neighbouring components have the same number

of corners placed along the component boundary. To achieve this, we place all corners

close to the boundary of different components onto the component boundary. In Fig. 5.6(a),

the interior red corner is near the boundary of the Bust’s yellow component shown in Fig.

5.3(b). We thus merge the green and pink patches to place the corner onto the component

boundary, shown in Fig. 5.6(b). For two neighbouring components, corner vertices along

the component boundary may not be consistent. We thus merge nearby corners along the

boundary in order to generate conformal polycube structure. In Fig. 5.6(c), we can observe

that there are two nearby red corners between Bust’s yellow and blue components shown in

Fig. 5.3(b). These two corners need to be merged so that the neighbouring components can

be well matched, see Fig. 5.6(d). Fig. 5.4(b) shows the skeleton-based CVT segmentation

result of the Bust model. Since the skeleton of the Bust model is close to a straight line, the

segmentation result is similar to the HBECVT-based segmentation shown in Fig. 5.4(a).
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There are eight corner points for each component corresponding to eight corners of the

cube in parametric space. All corner points between two neighbouring components are

constrained to be on the component boundaries, which ensures that the resulting polycube is

conformal.

(a) (b) (c) (d)

Figure 5.6: Geometric constraints. (a, b) The green patch and the pink patch are merged to
move the nearby interior corner (the red dot) to the boundary of the yellow component in
Fig. 5.3(b); and (c, d) two nearby boundary corners are merged.

5.3 Polycube Construction and Mesh Generation

After the two-step surface segmentation as discussed in Section 5.1, each patch is now

aligned with one of the six global principal axes, leading to a valid polycube structure. The

next step is to create a one-to-one mapping f from the surface T2 to a parameter domain T ∗

through surface parameterization. For each patch, we use a planar domain parameterization

[32] to create a parametric mapping between the triangle mesh T2 and a planar polygon

in the parametric space. Each boundary edge is mapped onto its corresponding polycube

edge via a chord length parameterization. The embedding algorithm [142] is then applied to

position the interior vertices of each patch. This planar domain parameterization computes

a bijective map from the input mesh to the polycube surface and enforces vertices in each

patch to have the same coordinate value along the corresponding axis. Fig. 5.5(d) shows

the parametric mapping result of the Cylindrical-helix model, and we can observe that
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(a) (b) (c) (d)

Figure 5.7: Results of the Bifurcation-tube model. (a) Skeleton-based CVT segmentation
results with the skeleton; (b) splitting results based on the segmentation with the polycube;
(c) all-hex mesh; and (d) some elements are removed to show the interior of (c).

each triangle of the input surface is mapped to its corresponding position in the parametric

domain and the mapping is bijective.

As mentioned in [151], there is a bifurcation when three branches of the skeleton join

together, which is very common in blood vessels. To handle the bifurcation case, we

apply the decomposition template idea [151] during the parametric mapping process, which

encloses singularities into the interior domain. Fig. 5.7 shows the segmentation result

and parametric mapping process for the Bifurcation-tube model. Fig. 5.7(a) shows the

skeleton-based CVT segmentation result with its skeleton information. Then two saddle

points (marked as green dots, another one is on the back) can be obtained by projecting

the skeleton intersection point to the surface. We then decompose the skeleton-based CVT

segmentation result into 15 patches by tracing from the saddle points to the neighbouring

boundaries, shown in Fig. 5.7(b), where each patch is rendered in a different color. Based

on the decomposition result, we can use the skeleton information to assign each component

to the corresponding planar parametric domain and calculate a bijective mapping result. In

this way, singularities are introduced to the polycube.

Based on the constructed polycube, we generate uniform all-hex meshes in both paramet-

ric and physical domains. Uniform all-hex meshesH can be generated by firstly meshing

the resulting polycube, and then mapping it back onto the input surface via parametric

mapping for boundary vertices and interpolation for interior vertices. The mesh quality
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needs to be improved since the extracted all-hex meshes may have poorly-shaped elements

around the boundary [150]. We first use the pillowing technique to generate one layer along

the boundary to ensure that each hex element has at most one face on the boundary. Here we

choose the scaled Jacobian to measure the mesh quality. The optimization-based smoothing,

where the objective function is equivalent to the maximization of the minimum scaled

Jacobian, is applied to further improve the mesh quality. Fig. 5.4(c) shows the all-hex mesh

of the Bust model with some elements removed to show the interior. We can observe that the

hex mesh aligns to concave/convex features detected through the surface segmentation. Fig.

5.5(e) shows the all-hex mesh of the Cylindrical-helix model after the quality improvement

(minimal Jacobian ≥ 0.30). As shown in Fig. 5.7(c, d), we can also generate hex mesh for

the bifurcation template in the parametric domain. Starting from an uniform mesh, we can

generate volumetric T-mesh by subdividing one element into eight children elements. We

check the projection distance from the hex mesh boundary to the input triangular mesh, and

subdivide the element if the distance is greater than a given threshold. Fig. 5.4(d) shows the

volumetric T-mesh of the Bust model.

5.4 Results and Discussion

We have applied the presented algorithms to several datasets, including the Bust (Fig. 5.4),

Aneurysm (Fig. 5.8), Human (Fig. 5.9) and Ant (Fig. 5.10). For each model we generated

both surface segmentation results and valid polycubes with all-hex meshes and volumetric

T-meshes. All results were computed on a PC equipped with a 2.93 GHz Intel X3470 CPU

and 8GB of Memory. Statistics of all tested models are given in Table 5.1. All the hex

meshes are in reasonably good quality after applying quality improvement techniques.

Most branching blood vessels in the human vascular system are bifurcations, where

we need to decompose the domain into mapped regions for polycube construction. Fig.

5.8 shows the result of the Aneurysm model. We first apply the eigenfunction-based CVT
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Table 5.1: Statistics of all the tested models.

Model Modes η λ
Number of Output mesh Jacobian Time

singularities (vertices, elements) (worst, best) (s)
Bust 1-3 0.1 0.01 8 (27,735, 25,344) (0.10, 1.00) 53.4

Aneurysm 1-3 0.001 0.001 14 (2,881, 2,272) (0.33, 1.00) 14.4
Human 1-5 0.01 0.01 30 (27,435, 23,424) (0.11, 1.00) 49.6

Ant 1-6 0.05 0.02 64 (15,999, 12,928) (0.12, 1.00) 42.4
Fertility ([145]) 146 (38,034, 31,333) (0.06, 1.00)
Fertility ([74]) 94 (61,147, 53,702) (0.25, 1.00)
Fertility (ours) 1-6 0.06 0.03 32 (27,498, 23,688) (0.26, 1.00) 72.3
3-Torus ([145]) 40 (31,339, 26,600) (0.07, 1.00)
3-Torus (ours) 1-3 0.001 0.001 8 (28,024, 24,600) (0.26, 1.00) 59.6

Rockerarm ([74]) 62 (63,363, 56,667) (0.37, 1.00)
Rockerarm (ours) 1-4 0.02 0.01 42 (48,022, 42,440) (0.35, 1.00) 103.3

Figure 5.8: Results of the Aneurysm model. (a) Modes 1-3 of the SLO; (b) eigenfunction-
based CVT segmentation result; (c) segmentation result using skeleton-based CVT method
with the skeleton and polycube; (d) all-hex mesh with some elements removed to show the
interior; and (e) volumetric T-mesh.

method to segment the surface into 3 components from Modes 1-3 of the SLO, see Fig.

5.8(b). Based on the pre-segmentation, we partition each component into multiple patches

using the skeleton-based CVT, shown in Fig. 5.8(c). Singularities on the surface are marked

in red dots. We can observe that each component is segmented into 5 patches, which

automatically satisfies the bifurcation template [151]. Each patch can be mapped onto one

polycube face. By enclosing some singularities into the interior domain using the bifurcation

template, we can reduce the number of singularities on the surface.

Figs. 5.9 and 5.10 show results of the Human model and the Ant model. Both PAM and

eigenfunction-based CVT methods are used to segment the Human model into 7 clusters

and the Ant model into 11 clusters from Modes 1-5 and Modes 1-6 of the SLO respectively.
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Figure 5.9: Results of the Human model. (a) Modes 1-5 of the SLO; (b) segmentation result
using the PAM-based method; (c) segmentation result using eigenfunction-based CVT; (d)
segmentation result using skeleton-based CVT with the skeleton; (e) polycube topology;
(f) HBECVT-based segmentation of two feet using the global normal space; (g) Zoom-in
of skeleton-based CVT segmentation of two feet using the local normal space; (h) all-hex
mesh with some elements removed to show the interior; and (i) volumetric T-mesh.

From the results we can observe that the SLO eigenfunctions can detect concave creases

and convex ridges, which well reflect main components of the 3D objects. Compared to

the PAM-based segmentation, our eigenfunction-based CVT clustering method eliminates
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Figure 5.10: Results of the Ant model. (a) Modes 1-6 of the SLO; (b) segmentation result
using the PAM-based method; (c) segmentation result using eigenfunction-based CVT; (d)
segmentation result using skeleton-based CVT with the skeleton and polycube; (e) all-hex
mesh with some elements removed to show the interior; and (f) volumetric T-mesh.

jaggy boundaries and over-segmentation by including neighbouring physical information

into the energy function, see the red windows in Figs. 5.9(b, c) and 5.10(b, c). In addition,

the computational time is reduced from 269.4 to 3.5 seconds for the Human model and

from 187.6 to 2.9 seconds for the Ant model. With the correct detection of concave/convex

features and smooth component boundaries, the mapping distortion of the resulting polycube

can be reduced. Each tubular component can be further segmented in the local normal space

using the skeleton-based CVT method, which generates compact polycubes with limited
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number of singularities, shown as Figs. 5.9(d) and 5.10(d). Compared to the HBECVT-based

segmentation using the global normal space in Fig. 5.9(e), our skeleton-based CVT method

segments the two feet with fewer number of singularities by using the local coordinates,

shown as Fig. 5.9(f). Although six legs of the Ant have various shapes, we can use one

cube with eight singularity points to represent each of them. Based on the constructed

polycubes, we first generate all-hex meshes in the polycubes and then map them back to the

physical domain through parametric mapping. All generated hex meshes have quality with

the minimum scaled Jacobian ≥ 0.10 and also align to the concave/convex features. We also

generate volumetric T-meshes by subdividing the uniform mesh in order to capture more

surface features.

We compared the all-hex meshes generated using our method and other existing algo-

rithms [145, 39, 74], see Fig. 5.11. For our results in (c, e, g), we show the eigenmodes used

for the eigenfunction-based CVT, skeleton information and all-hex meshes. We measure the

number of surface singularities and the scaled Jacobian in Table 5.1. Due to the usage of

local coordinates which follow the skeleton direction, our method reduces the number of

singularities significantly in models with slim cylindrical structures, such as the Fertility

and 3-Torus models. For the Fertility model, the number of surface singularities is reduced

from 146 [145], 96 [39] and 94 [74] to 32 by using our method, while the scaled Jacobian

is comparable. Compared to [145], we reduce the number of singularities from 40 to 8 for

the 3-Torus model (Fig. 5.11(e)), while improving the minimal Jacobian from 0.07 to 0.26.

Compared to [39] and [74], we also reduce the number of singularities of the Rockerarm

(from 70 and 62 to 42) around the cylindrical hole which follows the circular skeleton,

see the red windows in (f, g). Regions with concave creases and convex ridges are well

segmented using the SLO eigenfunctions and also preserved in our all-hex meshes, see the

green windows in (c, g). To compare our method with [125], we extract quad layouts by

editing the generated all-hex meshes. Fig. 5.12 shows quad layouts of the Fertility and
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Figure 5.11: All-hex meshes of the Fertility, 3-Torus and Rockerarm. (a, d) Results of [145];
(b, f) results of [74] (each color corresponds to one axis direction); and (c, e, g) results of
our method. Red windows highlight the reduction of surface singularities.

Guy models. Compared to [125], our quad layouts align to sharp creases better (see the

comparison in the red windows).

The all-hex meshes and volumetric T-meshes generated from our algorithm can be

directly used in finite element analysis (FEA) and isogeometric analysis (IGA). Fig. 5.13

shows the analysis results of the Fertility and Rockerarm models. We apply both FEA and

Figure 5.12: Comparison of the quad layouts. (a, c) Results of [125]; and (b, d) our results.
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IGA for each model with similar loading and boundary conditions to solve the traditional

linear elasticity problem. For both models, we fix the movement on one end and apply a

displacement load on the other end (Young’s modulus: 200 GPa; density: 7900 kg/m3 and

Poisson’s ratio: 0.3). The weighted T-splines [72] are generated for both models from the

T-meshes with local knot vectors and weighted basis functions. Bézier representations of

solid T-splines are then extracted for the isogeometric analysis. The displacement results

obtained for both FEA and IGA are shown in Fig. 5.13. From the results we can observe

that our algorithm generates all-hex meshes for the FEA analysis in engineering practice.

With the valid volumetric T-meshes, we also create analysis-suitable T-splines (weighted

T-splines) for IGA applications.

(a) (b) (c) (d)

Figure 5.13: Analysis results. (a, b) FEA and IGA results for the Fertility model; and (c,
d) FEA and IGA results for the Rockerarm model. All-hex meshes are shown in (a, c) and
Bézier elements are shown in (b, d).

Limitations. For the computation of SLO eigenfunctions, the Catmull-Clark basis

functions and quadrilateral control meshes are used in order to obtain a high-order represen-

tation of the surface, thus a remeshing process between triangle and quadrilateral meshes

is needed. For the eigenfunction-based CVT, the surface segmentation results vary with

different initializations of generators. The suitable shapes for the skeleton-based CVT are

those that can be described well with curve skeletons. For other shapes, we can still generate

polycubes by using the HBECVT scheme directly in the global normal space. To generate
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a valid polycube, geometric constraints are applied to edit the segmentation results. Such

editing is not fully automatic and sometimes user interactions are needed. In addition, we do

not have a strict theoretical proof that the imposed geometric constraints guarantee a valid

polycube generation for an arbitrary geometry.

5.5 Conclusion and Future Work

In conclusion, we have developed a new two-step surface segmentation process for polycube

construction, which can be used to generate all-hex meshes and volumetric T-meshes. A

novel eigenfunction-based CVT algorithm is presented and vertices are clustered into several

components in the p-dimensional SLO eigenfunction space, which avoids over-segmentation

and jaggy boundaries, eliminates effect of noise and reduces the computational cost. We

also present an automatic polycube construction algorithm based on the skeleton-based

CVT. Inherited from the HBECVT model, our proposed skeleton-based CVT algorithm can

automatically and robustly construct polycubes for general arbitrary geometric domains.

It is suitable for slim cylindrical objects and can remove unnecessary singularities with

compact polycube structure. By applying pre-defined geometric constraints, we obtain a

valid polycube and then generate quality all-hex meshes and volumetric T-meshes. In the

future, we plan to improve the robustness of the skeleton-based CVT by including more

advanced methods for singularity placement. We also plan to construct solid T-splines and

use them in isogeometric analysis.
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Chapter 6

Feature Preservation in Surface

Parameterization Using Secondary

Laplace Operator and Loop Subdivision

Surface parameterization is of great importance for many applications such as quadrangula-

tion, texture mapping and surface fitting. An important issue for surface parameterization is

how to align parametric lines with feature directions. To address this issue, in this chapter we

first utilize Loop subdivision basis functions and isogeometric analysis (IGA) to calculate

eigenfunctions of the secondary Laplace operator (SLO) on triangle meshes. Eigenfunctions

are then used for centroidal Voronoi tessellation (CVT) based surface segmentation, and

boundaries of the segmented regions are extracted as feature lines which contain concave

creases and convex ridges. Along each feature line, adjacent triangles are defined as guid-

ance triangles to parameterize the surface using a constrained cross field method, where

feature lines are preserved and aligned to parametric lines. We also apply our algorithm to

generate T-meshes, truncated T-splines and weighted T-splines to complex geometries for

IGA analysis. The key contributions of this chapter include:
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1. Loop subdivision basis functions are coupled with isogeometric analysis (IGA) to

solve the eigenproblem of the SLO over triangular meshes, which is defined based on

the second fundamental form of the surface;

2. A CVT-based surface segmentation approach is developed in the eigenfunction space,

where the L∞ norm is used as the distance measurement. Compared to the L2 norm

distance measurement, the L∞ norm distance metric is more robust to identify surface

features by taking the dominant feature of the difference vector between a vertex

and its associated generator. By considering both the eigenfunction similarity and

segmented boundary smoothness, regions surrounded by curvature related features

can be segmented while generators are iteratively updated in the eigenfunction space;

and

3. Boundaries of the segmented regions are used to define guidance triangles and their

guidance directions. The constrained cross field method parameterizes the surface

with all feature lines aligned to the parametric lines.

6.1 SLO Eigenfunction Computation Using Loop Subdivi-

sion Basis Functions

Given an input triangle mesh, we use Loop subdivision basis functions to define a smooth

representation of the surface. The SLO eigenfunctions are calculated using the subdivision-

based IGA method.

6.1.1 Secondary Laplace Operator

Let S = {x(u,v), (u,v) ∈ R2} be a smooth and closed parametric surface, where (u,v) can also

be written as (u1,u2) for convenience. The coefficients of the first fundamental form of S

are defined as gαβ =
〈
xuα ,xuβ

〉
(α,β = 1,2), where xuα = ∂x

∂uα and xuβ = ∂x
∂uβ . The coefficients
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of the second fundamental form of S are defined as bαβ =
〈
n,xuαuβ

〉
, where xuαuβ = ∂2x

∂uα∂uβ

and n = (xu×xv)/‖xu×xv‖. Let g = det[gαβ], [gαβ] = [gαβ]−1, and [bαβ] = [bαβ]−1. Given

f ∈C2(S ), the LBO [61, 130] acting on f is defined as

4 f = div(∇ f ) =
1
√

g

[
∂

∂u
,
∂

∂v

] [√
g
[
gαβ

] [
fu, fv

]T
]
, (6.1)

where ∇ is the tangential gradient operator given by

∇ f = [xu,xv]
[
gαβ

] [
fu, fv

]T , (6.2)

and div is the tangential divergence operator defined by

div(v) =
1
√

g

[
∂

∂u
,
∂

∂v

] [√
g
[
gαβ

]
[xu,xv]T v

]
. (6.3)

Improving up the LBO which is defined based on the first fundamental form of the

surface [138], the SLO N is defined based on the second fundamental form of the surface

[67]. It is given implicitly as

∫
S

(hN f + 〈� f ,�h〉)dA = 0, ∀h ∈C1(S ), (6.4)

where the generalized second tangential operator (GSTO) � can be defined as

� f = [xu,xv]Φ
[
bαβ

] [
fu, fv

]T
= g�u fu + g�v fv, (6.5)

with g�u = Φ
b (b22xu−b12xv) and g�v = Φ

b (b11xv−b12xu) . Different choices of the parameter

Φ can be used for various applications [67]. Let λL and λS be the eigenvalues of LBO and

SLO respectively, the corresponding eigenfunctions fL and fS should satisfy

4 fL = −λL fL and N fS = −λS fS . (6.6)
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Different from the widely employed LBO eigenfunctions, the SLO eigenfunctions can

capture the curvature-related surface features [67], which automatically distinguish different

components of an object.

6.1.2 Eigenfunction Computation of SLO

Letting {ϕi}
N
i=1 be a set of basis functions defined on the surface, where N is the number of

vertices and ϕi ∈C2(S ), f can be approximately represented as f =
N∑

i=1
wiϕi. Plugging h = ϕ j

( j = 1,2, · · · ,N) into Eq. (6.4), we obtain

N∑
i=1

wi

∫
S

〈
∇ϕi,∇ϕ j

〉
dA = λl

N∑
i=1

wi

∫
S

ϕiϕ jdA

and
N∑

i=1

wi

∫
S

〈
�ϕi,�ϕ j

〉
dA = λs

N∑
i=1

wi

∫
S

ϕiϕ jdA

for the LBO and SLO, respectively. Letting mL
i j =

∫
S

〈
∇ϕi,∇ϕ j

〉
dA, mS

i j =
∫
S

〈
�ϕi,�ϕ j

〉
dA,

and ci j =
∫
S
ϕiϕ jdA, the eigenfunctions of LBO and SLO can be obtained by solving the

eigenproblems

MLW = λLCW and MS W = λS CW, (6.7)

where ML =
[
mL

i j

]
, MS =

[
mS

i j

]
, C =

[
ci j

]
, and W = [w1,w2, ...,wN]T .

Since SLO is defined based on the second fundamental form of the surface, a high-order

representation of the surface is required to compute its eigenfunctions. Catmull-Clark basis

functions and quad control meshes were used in [67] to represent the surface, where surface

quadrangulation is required as the preprocessing for input triangle meshes. In this chapter, we

directly use triangle meshes with Loop subdivision basis functions to represent the surface,

and the eigenproblems of LBO and SLO can be solved using the Loop subdivision based

IGA method [67, 91]. Given a triangle mesh K, the Loop subdivision scheme subdivides

each triangle into four subtriangles in each subdivision step, where vertices of the refined
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mesh are calculated as the weighted average of vertices of the unrefined mesh. Let us

consider the subdivision process from the k-th level to the (k +1)-th level, where k = 0,1, · · · .

The initial mesh K is taken as the subdivision surface of the 0-th level. Let xk
0 be a vertex

at level k with one-ring neighbors xk
i (i = 1, . . . ,n), where n is the valence of xk

0. Then the

vertex position is updated by

xk+1
0 = (1−nα)xk

0 +α(xk
1 + xk

2 + · · ·+ xk
n), (6.8)

where α = 1
n

[
5
8 − (3

8 + 1
4 cos 2π

n )
2
]
. Letting xk

l and xk
r be the two wing neighbor vertices of the

edge
[
xk

0xk
i

]
, the new vertex created on this edge is defined as

xk+1
0i =

3
8

xk
0 +

3
8

xk
i +

1
8

xk
l +

1
8

xk
r . (6.9)

Note that all the newly generated vertices have a valence of 6, while vertices inherited

from the original mesh may have a valence other than 6. The vertex of valence 6 is referred

to as a regular vertex, and the vertex of valence other than 6 is referred to as an extraordinary

vertex. The limit surface of the Loop subdivision is C2-continuous at regular vertices and

C1-continuous at extraordinary vertices [118].

To obtain a local parameterization of the limit surface for each triangle in the initial

control mesh K, we choose (u,v) as two barycentric coordinates in (1−u−v,u,v) and define

T̄ as

T̄ =
{
(u,v) ∈ R2 : u ≥ 0,v ≥ 0,u + v ≤ 1

}
.

For a regular surface patch whose corresponding initial triangle has three regular vertices, it

can be exactly described by a quartic box-spline via twelve local control vertices and their

basis functions. We have

x(u,v) =

12∑
i=1

Ni(u,v)xi, (6.10)
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where the basis functions Ni are given in [118].

For an irregular surface patch whose corresponding initial triangle has one or more

extraordinary vertices, the mesh needs to be subdivided recursively until the parameter

values of interest are interior to a regular patch according to a fast evaluation strategy

[118] under the assumption that any irregular patch has only one extraordinary vertex.

Each subdivision of an irregular patch produces three regular subpatches and one irregular

subpatch. The piecewise parametric subdomains T̄ k
j at the subdivision level k are given as

follows:
T̄ k

1 =
{
(u,v) : u ∈

[
2−k,2−k+1

]
,v ∈

[
0,2−k+1−u

]}
,

T̄ k
2 =

{
(u,v) : u ∈

[
0,2−k

]
,v ∈

[
2−k −u,2−k

]}
,

T̄ k
3 =

{
(u,v) : u ∈

[
0,2−k

]
,v ∈

[
2−k,2−k+1−u

]}
.

These subdomains can be mapped onto T̄ via the following transformations:

tk,1(u,v) = (2ku−1,2kv), (u,v) ∈ T̄ k
1 ,

tk,2(u,v) = (1−2ku,1−2kv), (u,v) ∈ T̄ k
2 ,

tk,3(u,v) = (2ku,2kv−1), (u,v) ∈ T̄ k
3 .

The entire irregular patch is then defined by its restriction to each regular subpatch

x(u,v)
∣∣∣∣∣T̄ k

j
=

12∑
i=1

Ni(tk, j(u,v))xk, j
i , j = 1,2,3;k = 1,2, · · · , (6.11)

where xk, j
i are properly chosen from the control vertices around the irregular patch at the

subdivision level k, and they define a regular subpatch. Hence, the main task becomes how

to compute these control vertices. A Jordan canonical decomposition of the subdivision

matrix [118] is used here to speed up the computation in the subdivision process.

For each vertex xi of a control mesh K, we can associate it with a basis function ϕi,

where ϕi is defined by the limit of Loop subdivision for zero values everywhere except at

xi, where it is one. Note that the basis ϕi is different from the basis Ni in Eq. (6.10). ϕi
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is a piecewise function whose support covers 2-ring neighboring triangles, whereas Ni is

defined on one triangle only [6]. Using the basis functions {ϕi}
N
i=1, the limit surface of Loop

subdivision can be expressed as S =
N∑

i=1
ϕi(xi)xi. To solve the eigenproblems of Eq. (6.7),

we follow three main steps:

1. Precompute Loop subdivision basis functions and their first derivatives for each patch;

2. Evaluate matrice elements mi j and ci j over S using the 6-point Gauss-Legendre

integral formula; and

3. Assemble matrice elements mi j and ci j into the eigenproblem system MW = λCW.

As mentioned above, (1−u−v,u,v) are the barycentric coordinates of the generic triangle

in the mesh K. Using this parameterization, our discretized representation of K is K =
⋃
αTα,

T̊α∩ T̊β = ∅ for α , β, where T̊α is the interior of the triangular patch Tα. Each triangular

patch is assumed to be parameterized locally as

xα : T̄ → Tα; (u,v) 7→ xα(u,v), (6.12)

where xα(u,v) is defined by Eqs. (6.10) and (6.11). Note that our parameterization has no

overlap. Each point x ∈ K has its unique parameter coordinates except at the boundary of

each patch. With this parameterization, the matrix element ci j can be computed as

ci j =

∫
S

ϕiϕ jdA =
∑
α

∫
Tα
ϕiϕ jdA =

∑
α

"
T̄
ϕi(xα(u,v))ϕ j(xα(u,v))

√
gdudv,

and the matrix element mi j is replaced by

mL
i j =

∫
S

〈
∇ϕi,∇ϕ j

〉
dA =

∑
α

"
T̄

[
ϕiu,ϕiv

] [
gαβ

] [
ϕ ju,ϕ jv

]T √
gdudv
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: The first four or five eigenmodes of the LBO (a, c, e) and SLO (b, d, f) for the
Bunny (a, b), Hook (c, d) and L-shape (e, f) models.

and

mS
i j =

∫
S

〈
�ϕi,�ϕ j

〉
dA =

∑
α

"
T̄

Φ2 [
ϕiu,ϕiv

] [
bαβ

] [
gαβ

] [
bαβ

] [
ϕ ju,ϕ jv

]T √
gdudv,

where ϕiu =
∂ϕi(xα(u,v))

∂u and ϕiv =
∂ϕi(xα(u,v))

∂v . The integration on the triangle T̄ is computed

by subdividing the triangle adaptively and then using the Gauss-Legendre quadrature.

We can then assemble ci j and mi j into the global matrices C and M, and solve the

eigenproblems accordingly. Various eigenfunctions of LBO/SLO reflect surface features

at different scales. Fig. 6.1 shows the first four eigenfunctions of the Bunny and L-shape

models, as well as the first five eigenfunctions of the Hook model. To detect both concave

creases and convex ridges of an object, we calculate SLO eigenfunctions with Φ = 1 for all

the models in this chapter. We can observe that the LBO eigenfunctions follow the main

structure of the surface smoothly, but it is insensitive to the variation of surface curvatures.
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Compared to LBO, the SLO eigenfunctions can detect curvature related features (e.g., the

concave creases of the Bunny, and sharp features of the Hook and L-shape) because it is

defined based on the second fundamental form of the surface [67].

6.2 Surface Parameterization with Feature Preservation

After eigenfunction computation, in this section we first apply CVT based surface seg-

mentation to extract feature lines, and then utilize the cross field method to generate a

feature-aligned surface parameterization.

6.2.1 Feature Extraction via Surface Segmentation

We begin this section by reviewing CVT-based clustering techniques. The CVT scheme

has been introduced to various fields and applications, including both image and mesh

processing [27, 131, 26], which generates an optimal domain partition corresponding to

an optimal distribution of generators. Given an input point cloud and L generators, each

point is firstly assigned to its nearest generator with certain distance metric to construct L

non-overlapping Voronoi regions. The centroid of each Voronoi region can be computed by

minimizing an energy function E which measures the clustering similarity. Each generator

is iteratively updated to be the centroid of its associated Voronoi region, where a new

partition can be computed. Such an algorithm aims at minimizing the energy function

E until each centroid coincides with the corresponding generator. The edge-weighted

CVT (EWCVT) model [131, 15] can segment images with noise by combining the image

intensity information together with the length of cluster boundaries in the edge-weighted

clustering energy function. As a follow up, the harmonic EWCVT (HEWCVT) [43, 46, 49]

outperforms the classic CVT methods [27, 131] by introducing a harmonic form of clustering

energy functional to generate stable image segmentation results. Several methods have

been proposed to compute the CVT on curved surfaces [21, 3, 126, 135]. The CVT energy
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function from the Euclidean space was further extended to the spherical and hyperbolic

spaces in [106], called the universal covering spaces of surfaces. A GPU-based method was

proposed in [107] for computing the CVT on the planar domain, leading to a significant

speedup over CPU-based methods. CVT-based surface remeshing algorithms [143, 144]

compute restricted Voronoi diagrams defined as the intersection between the input mesh and

a Voronoi diagram. The CVT method [75] can also be used for line segments and graphs.

The harmonic boundary-enhanced CVT (HBECVT) [45, 44, 48] extends the HEWCVT-

based image segmentation to mesh segmentation in the normal space for automatic polycube

construction. In this section, we further extend the HBECVT-based clustering idea to the

SLO eigenfunction space for surface segmentation of triangle meshes.

We can map vertices onto a p-dimensional space by selecting p eigenmodes of the SLO.

Let Ψ = {ψi}
nν
i=1 denote p-dimensional eigenfunctions for all vertices of the surface mesh

with ψi =
(
φi1, . . . ,φip

)
, where nν is the total number of vertices, ψi represents the assigned p-

dimensional vector of the ith vertex xi, and φi j = f j(xi), j = 1,2, · · · , p, f j =
∑

k wkϕk is the jth

eigenfunction of the SLO. Let C = {cl}
L
l=1 denote a set of predefined p-dimensional vectors,

which can be initialized by choosing L random vertices, and we take their p-dimensional

eigenfunction vectors. The Voronoi regions V = {Vl}
L
l=1 in Ψ can be obtained by assigning

each vertex to the cluster with the closest generator according to the distance metric:

Vk = {ψi ∈ Ψ : dist (ψi,ck) ≤ dist (ψi,cl) , for l = 1, . . . ,L} , (6.13)

where dist (ψi,ck) measures the distance between ψi and ck. To measure the distance between

vector ψi and generator ck in the p-dimensional eigenspace, we define the L∞ norm based

distance metric as

dist (ψi,ck) =

√
‖ψi− ck‖

2
∞+λñk(xi), (6.14)
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where the term ‖ψi− ck‖∞ = max
{
|φi1− ck1|, |φi2− ck2|, . . . ,

∣∣∣φip− ckp
∣∣∣} measures the distance

in the p-dimensional eigenspace, the boundary-enhanced term ñk(xi) represents the number

of vertices that do not belong to the kth cluster within the ω-ring (ω = 3 in this chapter)

neighborhood of xi and λ is a positive weighting factor to balance these two terms. Note that

ñk(xi) includes the local neighbouring information of vertex xi. Given any set of generators

C = {cl}
L
l=1 and any partition U = {Ul}

L
l=1 of Ψ, the L∞ norm clustering energy function of

(C;U) can be defined as

E (C;U) =

n∑
i=1

L
/ L∑

l=1

dist−2 (ψi,cl)

. (6.15)

The CVT construction can be viewed as an energy minimization process, where the

centroid c∗k of each cluster Vk is calculated by minimizing the clustering energy in Eq. (6.15)

with respect to ck. Since there is no derivative available by using the L∞ norm, we use the

Powell method [96] to numerically calculate c∗k for each cluster. If the generators of the

Voronoi regions {Vl}
L
l=1 coincide to their corresponding centroids, i.e., cl = c∗l for l = 1, . . . ,L,

then we call such Voronoi tessellation {Vl}
L
l=1 a CVT. Otherwise, we set cl = c∗l for l = 1, . . . ,L

to start a new iteration by Eq. (6.13). In our implementation, {cl
∗}Ll=1 and {cl}

L
l=1 are updated

iteratively until the energy variation is less than a predefined threshold. Based on the L

non-overlapping clusters of surface vertices, we then construct the boundaries of each

cluster to obtain the final surface segmentation. Fig. 6.2(b) shows the CVT-based surface

segmentation result of the Hollow-cylinder model with four clusters by using the first three

SLO eigenmodes (shown in Fig. 6.2(a)), where neighbouring clusters are rendered with

different colors. From the segmentation result, we can observe that regions surrounded

by concave creases and convex ridges are well segmented since SLO eigenfunctions are

sensitive to the variation of surface curvatures. Based on the segmentation results, boundaries

of each cluster are extracted as the feature lines, which will be preserved during the following

surface parameterization process.
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(a) (b) (c)

(d) (e)

Figure 6.2: Hollow-cylinder model. (a) Modes 1-3 of the SLO; (b) CVT-based surface
segmentation; (c) feature lines (green lines), guidance triangles (blue triangles) and their
guidance directions (white arrows); (d) the built smooth cross field (four arrows in each
triangle); and (e) surface parmaterization result with parametric lines aligned to feature
lines.

6.2.2 Surface Parameterization

Using feature lines extracted from surface segmentation, we now build a constrained surface

parameterization via the cross field method, where we aim to align feature lines to parametric

directions. Along each feature line, we find its adjacent triangles and define them as the

guidance triangles. For each guidance triangle, we can calculate its four perpendicular
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guidance directions by using the edge direction and normal vector. Note that the guidance

triangles are used as the constraints to provide guidance for the cross field construction.

For the Hollow-cylinder model in Fig. 6.2, the feature lines are extracted via boundary

extraction and marked as green lines in Fig. 6.2(c). For each blue guidance triangle, we

calculate its guidance directions through the direction of the feature edge and the normal

vector, see the result in the red window of Fig. 6.2(c).

For the given triangle mesh K, the cross field of each triangle i is represented by an angle

θi. Using the guidance triangles with guidance directions defined by feature lines, a cross

field can be obtained by minimizing a smoothness energy function [9]

Γ0 =
∑
ei j∈ε

(θi + κi j +
π

2
pi j− θ j)

2
, (6.16)

where ε contains all edges, ei j is the edge shared by triangles i and j, κi j is the angle between

reference edges ei and e j, and pi j represents the integer period jump cross the edge ei j. The

mixed-integer solver [9] is used to solve the minimization problem. Fig. 6.2(d) shows the

calculated cross field of the Hollow-cylinder. Four arrows for each triangle represent the four

directions of the cross field that are perpendicular or parallel with each other. The surface is

then partitioned into a disk-like planar region, where all the singularities are positioned on

the boundary of the planar region. The surface parameterization is computed as a solution

to the constrained minimization problem [9]

∑
Ti∈M

Ai(‖∇u−βui‖
2 + ‖∇v−βvi‖

2)→min, (6.17)

where β is used to control the spacing of the parametric lines (in this paper we choose β= 0.2),

Ai is the area of triangle i, ui and vi are two directions chosen from the four directions of the

cross field in triangle i, and (u,v) are the parametric coordinates. The constraints imposed

on (u,v) values correspond to transitions across seams: we want the match across seams

to be the same as the guiding cross field. Apart from transition constraints, constraints
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are imposed on vertices of each feature line. For two vertices of each sharp edge, we

compare the edge direction with ui and vi and set constraints to ensure that these two

vertices have the same u or v coordinates. For vertices along the feature lines, we also set

integer constraints according to the (u,v) coordinates of the corresponding feature edges so

that the generated parametric lines will align with the feature edges exactly. In addition,

all singularities are constrained to be at integer locations in the parametric domain, which

ensures all singularities are at quad corners and all quad edges are matched across disk-like

planar regions. The quadrangulation can be generated by tracing the integer parametric lines

on the surface. Fig. 6.2(e) shows the surface parameterization result of the Hollow-cylinder

with parametric lines (marked as blue lines), which align to the feature lines detected by

surface segmentation.

Remark. Various eigenfunctions of the SLO can capture different curvature related

surface features. When we use multiple eigenmodes of the SLO for the surface segmentation,

the L∞ norm distance metric computes the distance from a vertex to a generator by taking

the dominant feature of the difference vector in the p-dimensional eigenfunction space. By

considering both the eigenfunction similarity and segmentation boundary smoothness in

the boundary-enhanced distance metric, our CVT-based surface segmentation can extract

curvature related surface features with smooth boundaries. Our surface parameterization

generates feature-aligned quadrangulation results by applying two constraints. Firstly,

the pre-defined directions in guidance triangles follow feature lines and they are used as

constraints for the cross field construction in Eq. (6.16). Secondly, integer constraints are

applied to vertices along the feature lines during the minimization process in Eq. (6.17),

yielding feature-aligned surface parameterization.
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6.3 Results and Discussion

We have applied the presented algorithms to several datasets, including Bunny (Fig. 6.3),

Teddy (Fig. 6.4), Octopus (Fig. 6.5), Horse (Fig. 6.6), Hook (Fig. 6.8) and L-shape (Fig.

6.9). For each model, we calculated SLO eigenfunctions, CVT-based surface segmentation

and surface parameterization with feature preservation. All results were computed on a PC

equipped with a 2.93 GHz Intel X3470 CPU and 8GB of Memory. Statistics of all tested

models are given in Table 6.1, where we show a summary of the number of singularities and

the computational time for each model. For CVT-based surface segmentation, we need to

select SLO eigenfunctions and define two parameters: L, the number of clusters; and λ, the

weighting parameter that balances the clustering energy and the boundary-enhanced energy.

Table 6.1: Statistics of all the tested models.
Model Modes λ

Number of Number of TE TS TP TT
(vertices, elements) clusters singularities (s) (s) (s) (s)

Hollow-cylinder
(927, 1,854) 1-3 0.02 4 0 6.7 1.4 5.6 13.7

Bunny
(14,076, 28,148) 1 0.01 5 42 93.6 18.8 76.7 189.1

Teddy
(6,104, 12,204) 1-4 0.01 6 34 41.1 8.3 33.6 83.0

Octopus
(14,870, 29,736) 1-6 0.01 9 64 101.7 22.4 89.5 213.6

Horse
(15,698, 31,392) 1-4 0.01 6 36 123.2 36.9 134.4 294.5

Hook
(2,256, 5,128) 1-5 0.02 6 16 15.5 3.2 12.9 31.6

L-shape
(538, 1,072) 1-4 0.02 6 12 4.5 0.9 3.7 9.1

Note: (vertices, elements) - the number of vertices and triangles in the input mesh; TE - time for
eigenfunction computation; TS - computational time for CVT-based surface segmentation; TP -
computational time for surface parameterization; and TT - the total computational time. (Time unit:
second).

Fig. 6.3 shows the surface segmentation and parameterization results of the Bunny

model. We segment the surface into 5 clusters by using the first eigenfunction of the SLO.

As shown in Fig. 6.3(a), it is obvious that our CVT-based method segments the concave and

convex regions well since the SLO eigenfunctions are sensitive to curvature-related surface
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features. Based on the segmentation result, we extract boundaries of each cluster as the

feature lines and define the corresponding guidance triangles with their guidance directions

for the cross field construction. Compared to the unconstrained surface parameterization,

our constrained parameterization aligns the resulting parametric lines to the feature lines,

see the comparison in the red windows of Fig. 6.3(b, c). Fig. 6.4 shows the results of the

Teddy model, where Modes 1-4 of the SLO are used to segment it into 6 clusters. Since

multiple eigenmodes are used, here we generate CVT-based segmentation results using

the L2 and L∞ norm distance metrics respectively under the same initialization; see Fig.

6.4(b, c). We can observe that the segmentation using the L∞ norm distance measurement

segments surface features better, where the head and legs are well separated from the body.

Fig. 6.4(d) shows the final feature-aligned surface parameterization result. Figs. 6.5 and

6.6 show results of the Octopus and Horse models, where Modes 1-4 and Modes 1-5 of the

SLO are used respectively.

(a) (b) (c)

Figure 6.3: Bunny model. (a) Surface segmentation result from the first eigenfunction of the
SLO; (b) unconstrained surface parameterization; and (c) constrained surface parameteriza-
tion. In (b, c), green lines are the extracted feature lines.

We also tested our built Bunny, Teddy, Octopus and Horse models in IGA simulations by

using the truncated T-splines [137]. For each model, we first generate the T-mesh by locally

refining the uniform quad mesh obtained from surface parameterization. Quads with more

than one extraordinary point are subdivided to ensure that no other extraordinary points
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Figure 6.4: Teddy model. (a) Modes 1-4 of the SLO; (b) CVT-based surface segmentation
using the L2 norm distance metric; (c) CVT-based surface segmentation using the L∞ norm
distance metric; and (d) surface parameterization result with feature lines (green lines)
aligned.

Figure 6.5: Octopus model. (a) Modes 1-6 of the SLO; (b) CVT-based surface segmentation
using the L2 norm distance metric; (c) CVT-based surface segmentation using the L∞ norm
distance metric; and (d) surface parameterization result with feature lines (green lines)
aligned.

exist in the 1st-ring neighborhood of any given extraordinary point. Table 6.2 shows the

mesh statistics of all testing models, where we use the scaled Jacobian [150] to evaluate

the quality of quad meshes and T-meshes. For each node x in a quad, two edge vectors are

defined as ei = xi−x (i = 1,2). We have Jacobian(x) = det(J), where the Jacobian matrix is

defined as J = [e1,e2]. If e1 and e2 are normalized, det(J) is also called the scaled Jacobian.
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Truncated T-spline surfaces can be generated from the T-meshes with local knot vectors and

truncated basis functions, and Bézier elements are then extracted for the IGA analysis. Here

we solve the Laplace equation on all models, where the Dirichlet boundary conditions are

predefined [137]. The obtained solution fields are visualized on Bézier elements in Fig. 6.7.

From the results we can observe that our algorithm generates valid surface T-meshes and

analysis-suitable truncated T-splines for IGA applications.

Table 6.2: Resulting mesh statistics of all the tested models.

Model Output mesh Output T-mesh Jacobian Jacobian (T-mesh)
(vertices, elements) (vertices, elements) (worst, best) (worst, best)

Hollow-cylinder (4,464, 4,464) (5,712, 5,616) (0.84, 1.00) (0.84, 1.00)
Bunny (10,551, 10,549) (11,504, 11,431) (0.34, 1.00) (0.33, 1.00)
Teddy (11,611, 11,609) (11,944, 11,909) (0.33, 1.00) (0.33, 1.00)

Octopus (12,937, 12,935) (15,980, 15,676) (0.29, 1.00) (0.28, 1.00)
Horse (14,018, 14,016) (14,208, 14,185) (0.30, 1.00) (0.30, 1.00)
Hook (13,116, 13,114) (13,396, 13,354) (0.48, 1.00) (0.47, 1.00)

L-shape (3,242, 3,240) (3,522, 3,480) (0.72, 1.00) (0.72, 1.00)

In addition to the Hollow-cylinder model as shown in Fig. 6.2, we also applied our

algorithm to two other CAD models with sharp features. Figs. 6.8 and 6.9 show results of the

Hook and L-shape models. For the Hook model, we segment the surface into 6 clusters by

Figure 6.6: Horse model. (a) Modes 1-4 of the SLO; (b) CVT-based surface segmentation
using the L2 norm distance metric; (c) CVT-based surface segmentation using the L∞ norm
distance metric; and (d) surface parameterization result with feature lines (green lines)
aligned.
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(a) (b) (c) (d)

Figure 6.7: IGA simulation results. (a) Bunny model; (b) Teddy model; (c) Octopus model;
and (d) Horse model.

using Modes 1-5 of the SLO. Fig. 6.8(a) and (b) show the CVT-based segmentation results

using the L2 and L∞ norm distance metrics respectively in the 5-dimensional eigenspace

under the same initialization. For the L-shape model, we segment the surface into 6 clusters

by using Modes 1-4 of the SLO. We also generate CVT-based segmentation results using

the L2 and L∞ norm distance metrics respectively; see Fig. 6.9(a, b). We can observe that

regions with sharp features are not well segmented when the L2 norm is used although each

SLO eigenfunction can detect the curvature related features at various scales, while the

L∞ norm distance metric performs better to detect regions surrounded by curvature-related

feature lines. Fig. 6.8(c) shows the surface parameterization result of the Hook with all

sharp features aligned to the parametric lines. As shown in Fig. 6.9(c), feature lines of the

L-shape are extracted as the cluster boundaries and blue triangles along the extracted feature

lines (green lines) are selected as the guidance triangles to build the cross field. The resulting

parametric lines align well to the feature lines after the constrained surface parameterization

process, see the result in Fig. 6.9(d). We also solve the Laplace equation on these three

CAD models by using the weighted T-splines [72], where the Dirichlet boundary conditions

are strongly imposed. The weighted T-splines are generated for all models from the valid

T-meshes with local knot vectors and weighted basis functions [72]. The mesh statistics of

these CAD models are also listed in Table 6.2. Fig. 6.7 shows the corresponding solution

fields over Bézier elements.
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(a) (b) (c)

Figure 6.8: Hook model. (a) CVT-based surface segmentation using the L2 norm distance
metric; (b) CVT-based surface segmentation using the L∞ norm distance metric; and (c)
surface parameterization result with feature lines (green lines) aligned.

Limitations. Although eigenfunctions of the SLO can well detect curvature related

surface features, selecting proper eigenmodes for our CVT-based surface segmentation is

heuristic and it needs some user interactions. Our constrained surface parameterization

algorithm requires aligning parametric lines with integer constraints along the feature lines,

therefore large distortion may be introduced sometimes. For this situation, we need to

improve the quality of the resulting quadrangulation or T-meshes using smoothing and/or

optimization techniques.

6.4 Conclusions and Future Work

In this chapter, we have developed a feature-aligned surface parameterization algorithm

with the help of the SLO eigenfunctions and Loop subdivision basis functions. To capture

curvature related surface features, we first utilize the Loop subdivision based IGA method to

calculate eigenfunctions of the SLO over triangle surfaces. We then employ the CVT-based

surface segmentation in the eigenfunction space to extract feature lines which contain con-
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Figure 6.9: L-shape model. (a) CVT-based surface segmentation using the L2 norm distance
metric; (b) CVT-based surface segmentation using the L∞ norm distance metric; (c) feature
lines (green lines) and the corresponding guidance triangles (blue triangles); and (d) surface
parameterization result.

(a) (b) (c)

Figure 6.10: IGA simulation results. (a) Hollow-cylinder model; (b) Hook model; and (c)
L-shape model.

cave creases and convex ridges. The L∞ norm is adopted here as the distance measurement.

A constrained cross field method is developed for surface parameterization, where feature

lines are preserved and aligned to the parametric lines. After the construction of surface

parameterization, we can generate uniform quad meshes and T-meshes. With the valid T-

meshes, we can also construct analysis-suitable T-splines (truncated and weighted T-splines)
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for IGA applications. In the future, we plan to study the discretization scheme of the SLO

over triangle meshes, and extend the presented algorithm to construct analysis-suitable

T-splines for more real IGA engineering applications.
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Chapter 7

CVT-Based 3D Image Segmentation and

Quality Improvement of

Tetrahedral/Hexahedral Meshes Using

Anisotropic Giaquinta-Hildebrandt

Operator

Given an input 3D image, in this chapter we first segment it into several clusters by extending

the 2D harmonic edge-weighted centroidal Voronoi tessellation (HEWCVT) method to the

3D image domain. The Dual Contouring method is then applied to construct tetrahedral

meshes by analyzing both material change edges and interior edges, and hexahedral meshes

by analyzing interior grid points. An anisotropic Giaquinta-Hildebrandt operator (GHO)

based geometric flow method is developed to smooth the surface with both volume and

surface features preserved. Optimization based smoothing and topological optimizations

are also applied to improve the quality of tetrahedral meshes. The key contributions of our

developed algorithms include:

113



1. The 2D HEWCVT [46] is extended to 3D image segmentation, where 3D spatial

information is included in order to eliminate the noise effect. By improving the

connectivity of each segment, it generates compact and connected segments without

leaving isolated voxels and keeping the connectivity of the structure; and

2. The anisotropic GHO diffusion flow is developed for surface smoothing which pre-

serves surface features while removing the noise with an anisotropic weighting func-

tion. Since GHO is defined based on the second fundamental form of the surface, our

proposed algorithm is more sensitive to curvature-related features.

7.1 CVT-Based 3D Image Segmentation

CVT-based clustering methods [25, 27] partition discrete data points into non-overlapping

clusters with an initialization of generators. It first constructs Voronoi regions by assigning

each point to its nearest generator with certain distance metric. For each Voronoi region, we

can iteratively calculate its centroid by minimizing a pre-defined energy function until it

coincides with the corresponding generator. Inspired by the HEWCVT method [46] for 2D

image segmentation, here we extend it to 3D image segmentation.

The input image I is given in the form of function values, I = {I(x,y,z)}, where x,y,z are

indices of X,Y,Z coordinates. Let the dataset F =
{
fP(i)

}n

i=1
denote all the intensity values

fP(i) of the grayscale image, where n is the total number of voxels and P(i) represents the

ith voxel in the physical space. Let C = {cl}
L
l=1 denote a set of Voronoi generators with

intensity values, where L is the number of clusters. The Voronoi regions V = {Vl}
L
l=1 in F

corresponding to the generators can be obtained by assigning each voxel to the cluster whose

generator is the nearest to it according to the distance metric:

Vk =
{
fP(i) ∈ F : dist

(
fP(i),ck

)
≤ dist

(
fP(i),cl

)
, for l = 1, . . . ,L} , (7.1)
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where dist
(

fP(i),ck
)

=

√∣∣∣ fP(i)− ck
∣∣∣2 + 2λn̂k(P(i)) measures the edge-weighted distance be-

tween fP(i) and ck in the grayscale space. The edge-weighted term n̂k(P(i)) represents the

number of voxels that do not belong to the kth cluster within ω-ring spherical neighbours

of P(i), which includes the local 3D spatial information in the physical space. Here we

choose a relatively small value of ω (ω = 3) for all the examples in order to reduce the

computational cost. Given any set of generators C = {cl}
L
l=1 and any partition U = {Ul}

L
l=1 of

F, we can define the corresponding HEWCVT energy function of (C;U) as

E (C;U) =

n∑
i=1

L
/ L∑

l=1

dist−2
(

fP(i),cl
). (7.2)

Note that the HEWCVT energy function uses the edge-weighted distance to all generators

for each voxel. It means that all the generators partially influence the harmonic average

for each voxel. By taking into account the physical information and using the harmonic

form of energy function, HEWCVT is robust to the initialization and can eliminate the noise

in the 3D image during the segmentation. To calculate the updated centroids
{
c∗k

}L

k=1
, we

minimize the HEWCVT energy function with respect to the generators ck (k = 1, . . . ,L). If

the generators of the Voronoi regions {Vl}
L
l=1 of F equal to their corresponding centroids,

i.e., cl = c∗l for l = 1, . . . ,L, then we call the Voronoi tessellation {Vl}
L
l=1 a centroidal Voronoi

tessellation of F. The detailed implementation of HEWCVT-3D is explained as follows:

Algorithm of HEWCVT-3D

Given a 3D image F =
{
fP(i)

}n

i=1
, positive integer L and error tolerance ε (ε = 10−4 in this

chapter). Ei denotes the HEWCVT energy in the ith iteration. Then perform the following:

1. For each voxel, find its ω-ring neighbouring voxels in advance. Choose L random

voxels in the image and take their intensity values as the initialization of the generators

{cl}
L
l=1;
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 7.1: Segmentation result of the Brain-1 image with 3% noise and 20% INU. (a) Input
3D image; (b) HEWCVT-3D segmentation result; (c) segmented white matter; (d) segmented
gray matter; (e-h) the original image, ground truth, EWCVT-3D and HEWCVT-3D results
of the slice 103, respectively; (i) energy outputs; and (j) minimized energy outputs of 100
initializations.

2. Determine the edge-weighted Voronoi clusters {Vl}
L
l=1 of F associated with {cl}

L
l=1 by

(7.1). For each cluster Vl (l = 1, . . . ,L), update the cluster centroid c∗l by minimizing

the HEWCVT clustering energy function;

3. If Ei+1−Ei
Ei

< ε is reached, return ({cl}
L
l=1; {Vl}

L
l=1); otherwise, set cl = c∗l for l = 1, . . . ,L

and return to Step 2.

4. Merge small isolated segments to its neighbouring cluster with the longest boundary.
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We have tested our HEWCVT-based 3D image segmentation algorithm on a 3D MRI

Brain-1 image (181× 217× 181) from BrainWeb dataset [20], with 3% noise and 20%

intensity non-uniformity (INU), shown in Fig. 7.1. We segmented the 3D image into

four clusters in order to extract the gray matter, white matter, cerebrospinal fluid and

background. Fig. 7.1(b) shows the HEWCVT-3D segmentation result after 20 iterations,

where neighbouring clusters are rendered with different colors. Fig. 7.1(c) and (d) show the

segmented white matter and gray matter, respectively. We also compared our result with

EWCVT-3D by extending EWCVT [131] to 3D image domain. From the slice 103 and

corresponding segmented images in Fig. 7.1(e-h), we can observe that HEWCVT-3D yields

more accurate results in many regions and both of them can eliminate the noise effect. Fig.

7.1(i) shows the energy convergence curves for both EWCVT-3D and HEWCVT-3D under

the same initialization. Compared to EWCVT-3D, the HEWCVT-3D energy converges faster

to the minimum. We also segmented the image with 100 different random initializations

using both EWCVT-3D and HEWCVT-3D, and the minimized energy outputs are shown in

Fig. 7.1(j). It is obvious that HEWCVT-3D is much more stable and less sensitive to the

initializations than EWCVT-3D.

Remark. Compared to EWCVT-3D, HEWCVT-3D yields more accurate results by

imposing a soft membership function with a harmonic average form of the energy function.

By taking into account the local 3D spatial information of each voxel, HEWCVT-3D is

robust to eliminate the noise effect during the segmentation process. By improving the

connectivity of each segment, our HEWCVT-3D automatically and robustly generates

compact segments without leaving isolated voxels. The segmented image can be used to

generate tetrahedral and hexahedral meshes directly via the Dual Contouring method [149];

see Section 7.2.
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7.2 Tetrahedral and Hexahedral Mesh Generation

After the segmentation, we set the image I as a scalar function, I(x,y,z) → J, where

J = {0,1, . . . ,L−1} is a set of labels where 0 represents the background and 1, . . . ,L−1

represent the other materials. Based on the labelled image, we analyze both material changes

edges and interior edges to generate tetrahedral meshes by using the Dual Contouring method

[149, 152, 153]. A material change edge is defined as an edge whose two end points have

different label indices. An interior edge is an edge whose two end points have the same label.

Each material change edge belongs to a boundary cell, while interior cells only contain

interior edges. For each octree cell, a dual vertex is generated and the tetrahedral mesh is

constructed by connecting the dual vertices with octree grids. For each boundary cell, we

calculate the mass center as the dual vertex. The mass center is defined as the average of all

the middle points of the material change edges in the cell. The cell center is simply selected

as the dual vertex for each interior cell. For each material change edge, we first find out

all its four surrounding leaf cells and corresponding dual vertices. These four dual vertices

and the interior grid point of this edge construct a pyramid. For each interior edge, we also

obtain four dual vertices. These four dual vertices and two endpoints of this edge form a

diamond. Finally, the pyramids and diamonds can be split into two or four tetrahedra. To

handle topology ambiguities, a trilinear function can be introduced to detect the ambiguous

cells [153]. The ambiguous cells are split into tetrahedral cells, and tetrahedral dual meshes

are then generated by analyzing the edges of these tetrahedral cells. Mesh adaptation can be

achieved via an adaptive octree data structure [153].

Instead of analyzing edges, we analyze interior grid points to construct hexahedral

meshes from segmented volumetric data. Since each grid point is shared by eight octree

cells in a uniform case, we can obtain eight mass centres to construct a hexahedron. To

generate haxahedral mesh for each material region with conforming boundaries, material

change edges are used to identify the interface between two or several materials [152]. We

can also generate adaptive hexahedral meshes by extracting the dual mesh from a hybrid
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octree [45], which consists of polyhedral cells and each grid point is always shared by eight

cells.

Since the function values I(x,y,z) of the segmented images are discontinuous, the

surfaces of the generated tetrahedral meshes and hexahedral meshes are bumpy. Fig. 7.2(a)

and (f) show the initial tetrahedral meshes of the white matter and gray matter of the Brain-1,

where red/green windows in Fig. 7.2(c) and (h) highlight the bumpy surfaces. Fig. 7.3(a)

and (f) show the initial hexahedral meshes of the white matter and gray matter of the Brain-1,

where red/green windows in Fig. 7.3(c) and (h) highlight the bumpy surfaces. A surface

smoothing technique is needed during the following mesh quality improvement.

7.3 GHO-Based Geometric Flow and Quality Improve-

ment

In the meshes generated from the above algorithm, some elements around the boundaries

may have poor aspect ratio, therefore the mesh quality needs to be improved. There are

two kinds of vertices in 3D meshes, boundary vertices and interior vertices. For each

boundary vertex, we use geometric flow to denoise the surface and improve the quality.

The quality of interior tetrahedra and hexahedra is simultaneously improved by using the

optimization-based smoothing and topological optimizations.

Laplacian smoothing is the most commonly used mesh smoothing method which it-

eratively relocates a vertex to the geometric center of its neighboring vertices. However,

it also produces a shrinking effect and an oversmoothing result. Here we develop a new

GHO based geometric flow to smooth the surface, which can preserve the concave/convex

features and avoid volume shrinkage. Let S = {x(u,v), (u,v) ∈ R2} be a smooth parametric

surface in R3. Note that (u,v) can also be written as (u1,u2) for convenience. The coeffi-

cients of the first fundamental form of S are defined as gαβ =
〈
xuα ,xuβ

〉
(α,β = 1,2), where

xuα = ∂x
∂uα and xuβ = ∂x

∂uβ . The coefficients of the second fundamental form of S are de-
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(a) (b)

(c) Original surface (d) Isotropic GHO (e) Anisotropic GHO

(f) (g)

(h) Original surface (i) Isotropic GHO (j) Anisotropic GHO

Figure 7.2: Tetrahedral meshes. (a, b) The original and smoothed meshes (using anisotropic
GHO) of the white matter, respectively; (c) enlargement of the red window in (a); (d,
e) zoom-in pictures showing smoothed results of isotropic and anisotropic GHO flow,
respectively; (f, g) the original and smoothed meshes (using anisotropic GHO) of the gray
matter, respectively; (h) enlargement of the green window in (f); and (i, j) zoom-in pictures
showing smoothed results of isotropic and anisotropic GHO flow, respectively.
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(a) (b)

(c) Original surface (d) Isotropic GHO (e) Anisotropic GHO

(f) (g)

(h) Original surface (i) Isotropic GHO (j) Anisotropic GHO

Figure 7.3: Hexahedral meshes. (a, b) The original and smoothed meshes (using anisotropic
GHO) of the white matter, respectively; (c) enlargement of the red window in (a); (d,
e) zoom-in pictures showing smoothed results of isotropic and anisotropic GHO flow,
respectively; (f, g) the original and smoothed meshes (using anisotropic GHO) of the gray
matter, respectively; (h) enlargement of the green window in (f); and (i, j) zoom-in pictures
showing smoothed results of isotropic and anisotropic GHO flow, respectively.
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fined as bαβ =
〈
n,xuαuβ

〉
, where xuαuβ = ∂2x

∂uα∂uβ and n = (xu×xv)/‖xu×xv‖. Let g = det[gαβ],

[gαβ] = [gαβ]−1, and [bαβ] = [bαβ]−1. The mean curvature H and Gaussian curvature K can

be given by H =
b11g22−2b12g12+b22g11

2g and K =
b11b22−b2

12
g . Let f ∈C2(S ), the GHO acting on

f is defined as

� f = div(♦ f ) =
1
√

g

[
∂

∂u
,
∂

∂v

] [√
gK

[
bαβ

] [
fu, fv

]T
]
, (7.3)

where div(v) = 1√
g

[
∂
∂u ,

∂
∂v

] [√
g
[
gαβ

]
[xu,xv]T v

]
is the tangential divergence operator acting

on a C1 smooth vector field v and ♦ is the second tangential operator (STO) given by

♦ f = [xu,xv] K
[
bαβ

] [
fu, fv

]T . (7.4)

To preserve the volume, here we define a surface diffusion flow using the GHO as

∂x
∂t

= sign(K(x))�H(x)n(x). (7.5)

Let S (t) denote the smoothed surface at t ≥ 0, A(t) denote the area of S (t), and V(t) denote

the volume of the region enclosed by S (t). Then we have

dA(t)
dt

=

∫
S (t)

�HHdσ,
dV(t)

dt
=

∫
S (t)

�Hdσ. (7.6)

Green’s formula. Let v = (v1,v2,v3)T be a vector field on S and f ∈C1(S ) with compact

support. Then

∫
S

< v,∇ f >dA = −

∫
S

f div(v)dA, (7.7)

where ∇ f = [xu,xv]
[
gαβ

] [
fu, fv

]T is the tangential gradient operator acting on f . According

to the Green’s formula [141], we have
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dA(t)
dt

=

∫
S (t)

�HHdσ = −

∫
S (t)

(∇H)T♦Hdσ, (7.8)

and

dV(t)
dt

=

∫
S (t)

�Hdσ = −

∫
S (t)

(♦H)T∇(1)dσ = 0. (7.9)

Hence, the proposed geometric flow is volume preserving. Since GHO is defined based

on the second fundamental form of the surface, it is more sensitive to the curvature-related

features. From the definition of ♦ and div, we can derive that

� f = g�u fu + g�v fv + g�uu fuu + g�uv fuv + g�v fv, (7.10)

where

g�u = −
[
b11(g22g122−g12g222) + 2b12(g12g212−g22g112) + b22(g22g111−g12g211)

]/
g2,

g�v = −
[
b11(g11g222−g12g122) + 2b12(g12g112−g11g212) + b22(g11g211−g12g111)

]/
g2,

g�uu = b22/g, g�uv = −2b12/g, g�vv = b11/g,

and gαβγ =
〈
xuα ,xuβuγ

〉
. Since bi j involves the second order derivatives of the surface, a

C2-continuous surface representation is required. In this section, the Loop subdivision basis

functions are adopted to evolve the triangle surface and the Catmull-Clark basis functions

are used to evolve the quadrilateral surface.

The above geometric flow smooths the surface by moving each vertex along its normal

direction. The isotropic smoothing in Eq. (7.5) can eliminate noise but also smooth out

important features. To preserve surface features while removing the noise, we introduce an

anisotropic weight χ(x) for each vertex by using a function of its two principal curvatures, k1

and k2 [82]. In order to improve the aspect ratio of the surface mesh, we also add a tangent

movement in Eq. (7.5),
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∂x
∂t

= χ(x)sign(K(x))�H(x)n(x) + v(x)T(x), (7.11)

where

χ(x) =



1 if |k1| ≤ T and |k2| ≤ T Case 1,

0 else if |k1| > T and |k2| > T and K > 0 Case 2,

k1/(H |K|) else if |k1| = min(|k1| , |k2| , |H|) Case 3,

k2/(H |K|) else if |k2| = min(|k1| , |k2| , |H|) Case 4,

1/ |K| else if |H| = min(|k1| , |k2| , |H|) Case 5,

and T is a user-defined constant (here we select T = 0.01). Case 1 is used to detect uniformly

noisy regions, which will be smoothed isotropically. Concave/convex features (case 2) will

not be smoothed. We also smooth features detected by cases 3-5 with a speed proportional

to the minimum curvature and |K| is used to scale the speed of the movement. v(x) is the

velocity in the tangent direction T(x), which controls the strength of the regularization. We

first calculate the mass center m(x) for each vertex on the surface, and then project the vector

m(x)− x onto the tangent plane to obtain T(x). If the surface has no noise, we can only

apply the tangent movement v(x)T(x) to improve the aspect ratio of the surface mesh while

ignoring the vertex normal movement. Eq. (7.11) is solved over triangular surfaces using

Loop subdivision based isogeometric analysis [91] and over quadrilateral surfaces using

Catmull-Clark based isogeometric analysis [136].

The surface smoothing via GHO-based geometric flow improves the quality of the

surface, but the quality of interior mesh also needs to be improved. To measure tetrahedral

mesh quality, we choose three metrics [58]: Q1 = θmin, the minimal dihedral angle of each

element; Q2 = θmax, the maximal dihedral angle of each element; and Q3 = 8 ·3
5
2 V

 6∑
j=1

e2
j

− 3
2

,

the Joe-Liu parameter, where
{
e j

}6

j=1
are six edge lengths, and V is the volume of each
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tetrahedron. Three techniques are applied to improve the mesh quality: optimization-

based mesh smoothing, face swapping and edge removal [58]. The optimization-based

smoothing improves all tetrahedra in the mesh by minimizing the objective function ε =∑
η∈τ

max( 1
Qη
− q,0)p, where τ is the set of tetrahedra in the mesh, Qη represents Joe-Liu

value of a tetrahedron η ∈ τ, and q and p are parameters. This approach can improve the

overall mesh quality efficiently, but some elements still have poor quality because of the bad

valence. Face swapping removes edges with valence 3 or 4 by reconnecting vertices of some

elements. Edge removal removes poor quality elements by replacing one ring neighboring

tetrahedra of the edge with new tetrahedra of higher quality. To measure the hexahedral

mesh quality, we choose two metrics [152]: the scaled Jacobian and the condition number.

For each node x in a hexahedron, three edge vectors are defined as ei = xi−x (i = 1,2,3).

Then the Jacobian matrix is defined as J = [e1,e2,e3], and we have Jacobian(x) = det(J).

If e1,e2 and e3 are normalized, det(J) is also called the scaled Jacobian. The condition

number of the Jacobian matrix is defined as κ (J) = |J|
∣∣∣J−1

∣∣∣. Pillowing is firstly applied to

improve the mesh quality by inserting one layer around the boundary. Optimization-based

smoothing is then implemented to further improve the quality, where the objective function

is to maximize the minimum scaled Jacobian.

Fig. 7.2(b, g) show the improved tetrahedral meshes of the white matter and gray matter

of the Brain-1 model. Both isotropic and anisotropic GHO diffusion flows are applied to

denoise the bumpy surface with the same temporal step size (t = 0.02) and iteration number

(100 iterations). As shown in Fig. 7.2(d, i), the isotropic GHO diffusion flow smooths

out the noise but also blurs the surface features. Compared to the isotropic GHO diffusion

flow, it is obvious that our anisotropic GHO diffusion flow preserves surface features better

while removing the noise, see Fig. 7.2(e, j). Similarly, Fig. 7.3(b, g) show the improved

hexahedral meshes of the white matter and gray matter of the Brain-1 model. Both isotropic

and anisotropic GHO diffusion flows are applied to denoise the bumpy surface with the

same temporal step size (t = 0.02) and iteration number (150 iterations). Compared to the
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isotropic GHO diffusion flow results in Fig. 7.3(d, i), it is obvious that our anisotropic GHO

diffusion flow preserves surface features better while removing the noise, see Fig. 7.3(e, j).

Remark. Since GHO is defined based on the second fundamental form of the surface, it

is more sensitive to curvature-related surface features, such as concave creases and convex

ridges. However, isotropic geometric flow smooths out important features when reducing

the noise. By introducing an anisotropic weighting function which penalizes surface vertices

with a large ratio between their two principal curvatures, the anisotropic GHO diffusion flow

preserves concave and convex features such as brain wrinkles when removing the noise.

7.4 Results and Discussion

In this section, we apply our presented algorithms to eight 3D medical images that are either

noise free or corrupted by different types of noises. All the results were computed on a

PC equipped with a 2.93 GHz Intel X3470 CPU and 8GB of Memory. Statistics of all

tested models are given in Table 7.1. For HEWCVT-3D based image segmentation, we need

to define two parameters: L, the number of clusters; and λ, the weighting parameter that

balances the clustering energy and the edge-weighted energy.

Table 7.1: Image segmentation statistics of all tested models.
Image Brain-1 Brain-2 Brain-3 Brain-4 Brain-5 Brain-6 Brain-7 Brain-8

Noise level 3% 3% 5% 5% 7% 7% 9% 9%
INU level 20% 40% 20% 40% 20% 40% 20% 40%

Number of clusters 4 4 4 4 4 4 4 4
λ 0.05 0.05 0.10 0.10 0.15 0.20 0.30 0.30

Average
k-means 74.38% 73.26% 69.78% 69.24% 68.84% 67.97% 67.46% 66.37%

EWCVT-3D 89.45% 88.68% 84.49% 86.65% 85.13% 83.28% 81.69% 78.43%
SA HEWCVT-3D 93.23% 93.12% 92.88% 92.26% 92.24% 91.56% 90.96% 89.26%

Average
k-means 79.88% 76.96% 74.18% 73.24% 72.89% 72.47% 71.86% 71.64%

EWCVT-3D 91.25% 90.98% 89.69% 89.25% 88.62% 86.29% 83.57% 81.45%
BR HEWCVT-3D 95.28% 95.11% 94.89% 94.66% 93.84% 92.99% 92.16% 91.83%

SCV
k-means 13.79% 13.94% 14.22% 14.79% 15.03% 15.87% 16.24% 16.63%

EWCVT-3D 11.96% 12.63% 12.99% 13.78% 13.98% 14.77% 15.21% 15.68%
HEWCVT-3D 0.78% 0.78% 0.79% 0.82% 0.85% 0.88% 0.90% 0.93%

Average k-means 35.2 35.4 35.6 34.8 35.2 35.3 34.2 35.4
time EWCVT-3D 45.2 46.4 45.7 44.9 45.6 45.4 44.9 45.5

(seconds) HEWCVT-3D 65.8 65.9 66.7 67.8 66.2 68.3 67.9 68.1
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(a) (b) (c)

(d) Original image (e) K-means (f) EWCVT-3D (g) HEWCVT-3D

(h) Original image (i) K-means (j) EWCVT-3D (k) HEWCVT-3D

Figure 7.4: Brain-6 model. (a) Input image; (b) slice 106; (c) HEWCVT-3D based segmen-
tation; (d-g) and (h-k) from left to right: one slice of the original data, segmented slices after
applying k-means, EWCVT-3D, and HEWCVT-3D, respectively.

These eight 3D MRI brain images (181×217×181) are from the BrainWeb [20], with

four levels of noise (3%,5%,7%,9%) and two levels of intensity non-uniformity (INU)

(20%,40%). We segmented each 3D image into four clusters in order to extract the gray

matter, white matter, cerebrospinal fluid and background. Fig. 7.4(a) shows the initial

Brain-6 3D image with 7% noise and 40% INU, where the slice 106 in both 3D and 2D

domains are highlighted in Fig. 7.4(b). Fig. 7.4(c) shows the HEWCVT-3D based image
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segmentation, where the green part represent the white matter. We can observe that the noise

effect can be well removed during segmentation. We also compared all results with two other

methods: k-means [92] and EWCVT-3D [131]; see Fig. 7.4(d-k). HEWCVT-3D generates

better segmentation results without leaving isolated voxels and keeping the connectivity of

the structure, while k-means is not robust to handle the noise effect and EWCVT-3D may

generate inaccurate results. We first use the segmentation accuracy (S A) [2] to quantitatively

evaluate the segmentation results. Given the segmented image R and the ground truth image

G obtained from BrainWeb dataset, the S A can be defined as:

S A =
NCorrect

NTotal
×100%, (7.12)

where NCorrect represents the number of correctly classified voxels and NTotal is the total

number of voxels in the image. In order to evaluate the accuracy of feature preservation, we

also use the boundary recall (BR) [103] to measure the portion of boundary voxels in the

ground truth that are also identified as boundary by the segmentation being evaluated. The

BR can be defined as:

BR =
T P

T P + FN
×100%, (7.13)

where T P is the number of boundary voxels in G with at least one boundary voxel in R in

range of two voxels, FN is the number of boundary voxels in G with no boundary voxel in

R in range of two voxels. Large S A and BR values are usually considered high accuracy.

We also introduce another metric named the segmentation coefficient of variation (S CV)

[46] to evaluate the stability of different methods. For each brain image, we test N (N = 100

in this chapter) random initializations of the generators by using k-means, EWCVT-3D and

HEWCVT-3D. We can get one minimized energy value for each test and the S CV can be

defined as:
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S CV =

√
1
N

N∑
i=1

(
MinEi−MinE

)2

MinE
×100%, (7.14)

where MinEi represents the minimized energy for the ith test, and MinE represents the mean

of the minimized energy. Large S CV values are usually considered high-variance, otherwise

low-variance. The average S A, the average BR and S CV values of the each image with 100

tests are listed in Table 7.1. We can observe that HEWCVT-3D improves the segmentation

accuracy compared to k-means and EWCVT-3D. From the comparison of BR values, it is

evident that HEWCVT-3D can also better preserve the connectivity of structure compared

to the other two methods. With different initializations, the energy function converges to

different values for k-means and EWCVT-3D, while HEWCVT-3D is much more stable

and less sensitive to initializations with all S CV s < 1%. In addition, our HEWCVT-3D

method is also robust to noise since the S A, BR and S CV values do not change much

for different levels of noise and INU. Since HEWCVT-3D updates cluster centroids by

calculating distances to all centroids for each voxel, the computational cost is higher than

the other two methods.

Tetrahedral and hexahedral meshes consisting of the white matter, gray matter and

cerebrospinal fluid are generated and the mesh quality is improved via geometric flow

based smoothing and optimization. Tables 7.2 and 7.3 shows tetrahedral and hexahedral

meshing results for each model. Fig. 7.5(b) shows the improved tetrahedral mesh of Brain-

6 with the white matter (yellow), gray matter (red) and cerebrospinal fluid (blue). The

improved mesh is in good quality with an dihedral angle range of (15.11◦,167.17◦). From

the zoom-in pictures we can observe that smoothness and regularity of boundary surfaces

between different materials are significantly improved. Fig. 7.5(d, e) and (f, g) show the

improved meshes of the white matter and gray matter, respectively, with mesh adaptation

highlighted in zoom-in pictures. We can observe that surface features are well preserved

during the surface denoising via the anisotropic GHO diffusion flow. Fig. 7.6(b) shows
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(a) (b) (c)

(d) (e) (f) (g)

Figure 7.5: Tetrahedral mesh of the Brain-6 model. (a, b) Cross section of the final
tetrahedral mesh, with zoom-in pictures of the initial and improved meshes of the green box;
(c) zoom-in pictures of the initial and improved meshes with three neighboring materials;
(d) improved tetrahedral mesh of the white matter; (e) enlargement of the red window in (d);
(f) improved tetrahedral mesh of the gray matter; and (g) enlargement of the green window
in (f).

the improved hexahedral mesh of Brain-6 with the white matter (yellow), gray matter (red)

and cerebrospinal fluid (blue). We can observe that the mesh quality is also improved with

surface features preserved after pillowing and anisotropic GHO based smoothing.

7.5 Conclusions and Future Work

In this chapter, we have developed an algorithm to segment 3D images and generate

tetrahedral and hexahedral meshes with good quality. Given the input 3D image, we

first segment the image by using the HEWCVT-3D algorithm. The Dual Contouring

method is then used to extract the initial tetrahedral and hexahedral meshes. To smooth out
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(a) (b) (c)

(d) (e) (f) (g)

Figure 7.6: Hexahedral mesh of the Brain-6 model. (a, b) Cross section of the final
hexahedral mesh, with zoom-in pictures of the initial and improved meshes of the green box;
(c) zoom-in pictures of the initial and improved meshes with three neighboring materials;
(d) improved hexahedral mesh of the white matter; (e) enlargement of the red window in (d);
(f) improved hexahedral mesh of the gray matter; and (g) enlargement of the green window
in (f).

Table 7.2: Tetrahedral mesh statistics of all tested models.

Image
Mesh size Joe-Liu Dihedral angle Time

(vertices, elements) (min, max) (min, max) (seconds)

Brain-1 (368,584, 1,796,748) (0.12, 1.0) (15.14◦,166.56◦) 189.7
Brain-2 (326,576, 1,616,551) (0.13, 1.0) (15.10◦,166.94◦) 187.8
Brain-3 (332,681, 1,630,137) (0.12, 1.0) (15.11◦,167.39◦) 184.7
Brain-4 (343,268, 1,682,014) (0.12, 1.0) (15.06◦,167.39◦) 186.9
Brain-5 (301,298, 1,491,425) (0.13, 1.0) (15.08◦,167.76◦) 179.9
Brain-6 (282,352, 1,395,796) (0.11, 1.0) (15.11◦,167.17◦) 179.6
Brain-7 (312,453, 1,534,144) (0.12, 1.0) (15.02◦,167.83◦) 188.8
Brain-8 (342,683, 1,686,006) (0.13, 1.0) (15.01◦,167.89◦) 187.7
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Table 7.3: Hexahedral mesh statistics of all tested models.

Image
Mesh size Scaled Jacobian Condition number Time

(vertices, elements) (min, max) (min, max) (seconds)

Brain-1 (317,986, 256,956) (0.10, 1.0) (1.0, 386.8) 263.9
Brain-2 (350,768, 283,446) (0.09, 1.0) (1.0, 422.3) 288.2
Brain-3 (317,988, 256,956) (0.08, 1.0) (1.0, 408.6) 266.4
Brain-4 (370,438, 299,342) (0.08, 1.0) (1.0, 446.5) 311.6
Brain-5 (357,324, 288,746) (0.09, 1.0) (1.0, 431.9) 296.8
Brain-6 (295,826, 239,049) (0.10, 1.0) (1.0, 358.8) 244.1
Brain-7 (363,882, 294,046) (0.09, 1.0) (1.0, 440.8) 302.6
Brain-8 (340,934, 275,499) (0.08, 1.0) (1.0, 412.6) 287.9

surface noise and improve the quality of the tetrahedral/hexahedral mesh, we developed

an anisotropic GHO diffusion flow. The quality of the interior tetrahedron/hexahedron is

also improved via various optimization techniques. We have successfully tested our method

using several volumetric imaging datasets. In the future, we will investigate more anisotropic

schemes for the geometric flow method. We will also parallelize our algorithms and apply

to more real applications.

132



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we develop several CVT-based algorithms for image and mesh segmentation.

Based on the image segmentation results, we can generate adaptive superpixels in 2D and

quality tetrahedral/hexahedral meshes in 3D using the geometric flow method. We also

generate polycubes and all-hex meshes with good quality. Furthermore, we combine the

CVT with geometric operators for surface parameterization and mesh quality improvement,

with concave/convex features preserved.

To overcome the sensitivity to the seed point initialization and noise, and improve

the accuracy and stability of clustering results, we develop the HEWCVT based model

for image segmentation which introduces a harmonic form of the clustering energy by

combining the image intensity with cluster boundary information. As an application, we

apply the HEWCVT algorithm locally to generate adaptive superpixels with the help of

quadtree decomposition and density function. We also extend the HEWCVT algorithm to

3D image segmentation, where 3D spatial information is included to eliminate the noise

effect. To smooth out surface noise and improve the quality of the tetrahedral/hexahedral

mesh extracted from the segmented image, we develop an anisotropic GHO diffusion flow

133



method which preserves surface features while removing surface noise with an anisotropic

weighting function.

We then develop two CVT based surface segmentation algorithms for polycube con-

struction and all-hex mesh generation. The HBECVT method is robust to the initialization

and reduces non-monotone boundaries by including local neighbouring information in the

energy function. As a follow up, our two-step surface segmentation scheme couples the

HBECVT model with SLO eigenfunctions and curve skeleton information, which is suitable

for slim cylindrical objects and can reduce unnecessary singularities with compact polycube

structures. Surface segmentation results are revised using predefined geometric constraints

for valid polycube construction. After that, we generate uniform and adaptive all-hex meshes

as well as volumetric T-meshes via parametric mapping, which can be used for both FEA

and IGA applications.

Furthermore, we develop a feature-aligned surface parameterization algorithm to gener-

ate quality surface quadrangulations and T-meshes. The SLO eigenfunctions over triangle

meshes are utilized for the CVT based surface segmentation, where the L∞ norm is used

as the distance measurement. Boundaries of the segmented regions are used to define

guidance triangles and their guidance directions. The constrained cross field method pa-

rameterizes the surface with all feature lines aligned to the parametric lines. Based on the

surface parameterization results, truncated and weighted T-splines are generated for IGA

applications.

8.2 Future Work

While this thesis has demonstrated the potential of using CVT-based methods for image and

mesh segmentation with various applications, many opportunities for extending the scope of

this thesis remain. This section presents some of these directions.
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Unsupervised Image Segmentation. One goal for image segmentation is to make this

process as easy as possible for the user by reducing the amount of supervision required.

However, the CVT-based image segmentation methods need to predefine the expected

number of clusters, which creates a problem for large data processing. One possible

solution is to develop robust unsupervised clustering algorithms which decide the clustering

criteria by themselves. Advanced machine learning techniques are also worthy of additional

exploration for unsupervised image segmentation tasks, which utilize large training datasets

and a much more contemporary machine learning approach.

Valid Polycube Construction. In this thesis, we investigate CVT-based surface seg-

mentation for polycube construction under specific geometric constraints. The segmentation

results can be affected by the initialization of generators, which may lead to incorrect

polycube structures. Similarly as k-means methods, CVT-based clustering methods may

settle at local minima. There is no guarantee that the global optimum is found using these

algorithms. It would be interesting to study other surface segmentation techniques, such as

graph-based methods and hierarchical clustering techniques, for valid polycube construction.

Moreover, the geometric and topological constraints used in this thesis are sufficient but not

necessary conditions for polycube construction, further study is still required.

T-splines Construction for Isogeometric Analysis. Isogeometric analysis using T-

splines has been studied in different research fields. However, it remains a challenging

problem to automatically construct T-spline models with good quality for complicated

geometry and topology. In this thesis, we develop several algorithms to generate hexahedral

and quadrilateral meshes, and use them to generate T-meshes and analysis-suitable T-splines

for IGA applications. One interesting direction in the future is to develop an integrated

modelling and analysis platform for the T-spline based isogeometric analysis.
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