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Abstract 

 

 

Geological carbon sequestration is considered a promising initial option to slow 

or reduce global atmospheric CO2 concentrations. To demonstrate that the 

implementation of carbon sequestration is safe and effective as a greenhouse gas control 

technology, characterization and monitoring of geochemical and geophysical effects of 

CO2 leakage from sequestration reservoirs is crucial. A multimodel predictive system 

(MMoPS) has been developed to predict CO2 solubility in brine more accurately, so that 

storage capacity and cost estimates could be improved. The CO2 leakage level is 

characterized through an assessment of the integrity and permeability of the caprock 

inferred from pressure measurements in the injection zone using a Bayesian approach. 

The detection power of pressure monitoring is evaluated using the expected distribution 

of pressure increases in the injection zone for permeable vs. impermeable caprock cases. 

The distributions of detection power using seismic travel time measurements at different 

CO2 leakage levels are obtained using a statistical analysis and test. The methodology and 

results in this work should improve our ability to understand the storage reservoir 

chemistry and the statistical performance of the sole pressure or seismic monitoring, 

which could be integrated into a monitoring network, combining multiple monitoring 

techniques for CO2 leakage detection. 
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Chapter 1: Introduction 

1.1 MOTIVATION 

1.1.1 Carbon Capture and Sequestration 

In response to concerns about possible climate change and its associated economic and 

environmental impacts, significant efforts are likely to be made during the coming decades to reduce CO2 

and other greenhouse gas emissions. A particular technology for achieving these reductions in the 

relatively near future is carbon capture and sequestration (CCS). This technology entails the capture and 

pressurization of carbon dioxide emissions from electric-generating plants and other large point sources, 

and their injection and storage in deep geologic formations.   

Geologic formations, such as saline aquifers, oil and gas deposits, unmineable coal seams, 

organic-rich shales and basalts have been proposed as long-term storage sites for CO2. Among the 

options being considered in the United States, deep saline formations are believed to have the highest 

CO2 storage potential, on the order of 2,000 – 20,000 Gt, equivalent to storage of 50 – 500 years of 

anticipated US emissions (USDOE, 2010; Goodman et al., 2011). For effective estimation of storage 

potential, formations must be characterized in terms of their available pore volume for liquid-phase 

(supercritical) CO2 storage, as well as the potential dissolution of CO2 into formation (e.g., brine) water. 

CO2 dissolution into brine and other ground waters is also an important determinant of the fate and 

transport of CO2 leakage (should it occur) as it migrates towards the ground surface and/or other 

subsurface locations.   

1.1.2 CO2 Leakage Pathway 

Injected CO2 could leak slowly and diffusively through a sealing caprock, or leak relatively 

quickly through high permeability conduits, such as faults and abandoned wells. Depending on the kind 

of storage formation, one leakage pathway might be more likely than the other. For example, as the 

sealing caprock in a depleted oil and gas reservoir is usually well defined and there might be abandoned 

wells present from former reservoir operations, the most likely pathway for leakage is through the 

boreholes of the wells. For saline aquifers, the sealing caprock is less well defined or lacks a structural 
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trap at some locations. The most likely pathway would then be through the caprock if its permeability is 

not low enough (Benson & Myer 2002). The high pressure buildups after CO2 injection into the storage 

formation could potentially hydraulically fracture the caprock (Chiaramonte et al., 2007). This 

mechanism might trigger higher effective permeability and a greater resulting chance for CO2 leakage 

through the caprock (Liu et al. 2012). 

1.1.3 CO2 Leakage Detection and Monitoring Techniques 

To demonstrate that the implementation of carbon sequestration is safe and effective as a 

greenhouse gas control technology, monitoring CO2 stored in deep saline aquifers is crucial (Benson & 

Myer 2002). Multiple monitoring techniques can be applied at different depths, including atmospheric 

monitoring, near-surface monitoring and deep subsurface monitoring. (Benson and Myer, 2002; USDOE, 

2009). Studies to characterize the performance of near-surface monitoring techniques, including near-

surface soil CO2 flux measurements and tracer measurements, have been undertaken (Yang et al., 2011a; 

Yang et al., 2011b). A Bayesian belief network methodology, integrating multiple monitoring techniques 

for CO2 leak detection, has also been demonstrated by Yang et al. using near-surface monitoring 

techniques (Yang et al. 2012). A review of alternative statistical methods and perspectives for leak 

detection monitoring and inference is provided by Jenkins (2013). The costs of deploying different 

monitoring techniques were evaluated by Benson et al. (2004). 

One broadly recommended and cost-effective monitoring technique is pressure monitoring in the 

injection and above zone reservoirs (Meckel et al., 2008). Measurements of injection pressures at the 

wellhead and in the formation are common in oil field practice (Benson & Myer 2002). An above-zone 

monitoring technique that also measures pressure changes in a permeable zone overlying the injection 

zone has been deployed in the Cranfield CO2 Storage Project (Meckel et al. 2008). The continuous 

pressure changes in the injection zone and those in the above zone during CO2 loading can be measured 

simultaneously once downhole pressure gauges are equipped in the monitoring wells. Unanticipated 

pressure changes in both zones can also be used as indicators of a fluid migration out of the injection 

zone (Meckel et al. 2008). 
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Another important monitoring technique is the seismic monitoring, which has also been 

implemented in several pilot CO2 sequestration sites, such as the Frio Formation near Houston and the 

Penn West CO2-EOR site (Daley et al. 2007; Alshuhail & Lawton 2007; Silver et al. 2007). Different 

seismic monitoring methods, including time-lapse 2D or 3D surface seismic surveys, borehole vertical 

seismic profiling and cross-well seismic monitoring, have been employed at sequestration sites 

(Alshuhail & Lawton 2007; Daley et al. 2007; Silver et al. 2007; Couëslan et al. 2009). The seismic 

attributes that can be measured include seismic velocity, travel time, amplitude and impedance (Alshuhail 

& Lawton 2007). 

1.2 THESIS STATEMENT 

Geological carbon sequestration is considered a promising strategy for mitigating potential 

climate change associated with increasing CO2 concentration in the atmosphere (Hepple and Benson, 

2005; IPCC, 2005). To have a significant effect on the atmospheric concentration of CO2, large amounts 

of CO2 need to be captured from electric power plants and industrial sources and injected into deep 

underground formations, such as saline aquifers, depleted oil and gas reservoirs and unmineable coal 

seams (Holloway 2005; Gale 2004). Deep saline aquifers are estimated to have the highest CO2 storage 

potential among all the geological storage options (USDOE 2010). Estimating the storage capacity and 

monitoring CO2 stored in sequestration reservoirs is crucial to demonstrate that the implementation of 

carbon sequestration is safe and effective as a greenhouse gas control technology. A few questions arise: 

• Several models exist to predict CO2 solubility in brine, which one is the best one for 

estimating CO2 solubility at conditions relevant to carbon sequestration? 

• How to characterize the CO2 leakage level using pressure measurements and how large is 

the power of pressure-based leakage detection? 

• Can we detect CO2 leakage with high confidence using seismic wave travel time 

measurements? 

My thesis is aimed at using statistical tools and analysis methodologies to address each of the 

issues above. 
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1.3 CHAPTER OVERVIEW 

The discussion in the remainder of this thesis proceeds as follows: 

Chapter 2: The prediction of carbon dioxide solubility in brine at conditions relevant to carbon 

sequestration, i.e. high temperature, pressure and salt concentration (T-P-X), is crucial when this 

technology is applied. Eleven mathematical models for predicting CO2 solubility in brine are compared 

and considered for inclusion in a multi-model predictive system. Model goodness of fit is evaluated over 

a temperature range of 304-433 K, pressure 74-500 bar and salt concentration 0-7 molal (NaCl 

equivalent), using 173 published CO2 solubility measurements, particularly selected for those conditions. 

The performance of each model is assessed using various statistical methods, including the Akaike 

Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Different models emerge as 

best fits for different sub-ranges of the input conditions. A classification tree is generated using machine 

learning methods to predict the best-performing model under different T-P-X sub-ranges, allowing 

development of a Multi-Model Predictive System (MMoPS) that selects and applies the model expected 

to yield the most accurate CO2 solubility prediction. Statistical analysis of the MMoPS predictions, 

including a stratified 5-fold cross validation, shows that MMoPS outperforms each individual model and 

increases the overall accuracy of CO2 solubility prediction across the range of T-P-X conditions likely to 

be encountered in carbon sequestration applications. 

Chapter 3: Diffusive leakage of CO2 through the sealing caprock is likely to occur at saline 

sequestration sites if the permeability of the caprock is too high. Pressure monitoring is a widely used 

technique for CO2 leakage detection. This chapter aims to characterize the CO2 leakage level in an 

idealized CO2 storage site through an assessment of the integrity and permeability of the caprock inferred 

from pressure measurements in the injection zone. Monte Carlo uncertainty analysis is conducted, 

allowing the detection power of pressure measurements to be estimated. Based on Bayesian classification 

theory, the probability of each caprock permeability class given pressure measurements with 

measurement error can be inferred. The influence of time and location of measurements, the relative 

magnitude of the measurement error, the CO2 injection rate, and the assumed uncertainty in reservoir 

properties on the inferred caprock permeability class and the detection power of the pressure monitoring 



14 
 

is also evaluated. Pressure monitoring alone is not sufficient to detect a permeable caprock for the system 

considered in this study, unless the caprock permeability is very high. A significant improvement in the 

statistical detection power is evident in the case where the uncertainty in reservoir properties is reduced 

through further site characterization. Complementary monitoring techniques will likely be needed to 

improve the power of pressure-based CO2 leakage detection to acceptable levels. 

Chapter 4: This chapter evaluates the detection power of seismic wave travel time measurements 

and statistical tests at different CO2 leakage rate levels. A simplified rock physics model is assumed for 

monitoring zones at sequestration sites and the effects of leakage-induced changes in pressure and CO2 

saturation on P-wave travel times are modeled. The empirical distributions of detection power using the 

P-wave travel time for four regions in the permeability-porosity input space at four leakage levels are 

obtained from the Monte Carlo uncertainty analysis with a stochastic response surface method. The 

detection power using the P-wave travel time measurements and test alone is generally not high enough, 

unless the porosity and the permeability of the monitoring zone are high, and/or a long period of time has 

elapsed since the leakage occurred. For monitoring layers with lower permeability and porosity, 

measurements from other monitoring techniques will likely be needed to increase the probability that 

leakage events are detected and addressed in a timely manner. 

Chapter 5: The main contributions of the thesis and lessons learnt relevant to predicting CO2 

solubility and conducting CO2 leakage detection for geological sequestration are discussed. Future 

research directions are given. 
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Chapter 2: Multimodel Predictive System for Carbon Dioxide Solubility in Saline 
Formation Waters 

2.1 INTRODUCTION 

In response to concerns about possible climate change and its associated economic and 

environmental impacts, significant efforts are likely to be made during the coming decades to reduce CO2 

and other greenhouse gas emissions.  A particular technology for achieving these reductions in the 

relatively near future is carbon capture and sequestration (CCS). This technology entails the capture and 

pressurization of carbon dioxide emissions from electric-generating plants and other large point sources, 

and their injection and storage in deep geologic formations.   

Geologic formations, such as saline aquifers, oil and gas deposits, unmineable coal seams, 

organic-rich shales and basalts have been proposed as long-term storage sites for CO2. Among the 

options being considered in the United States, deep saline formations are believed to have the highest 

CO2 storage potential, on the order of 2,000 – 20,000 Gt, equivalent to storage of 50 – 500 years of 

anticipated US emissions (USDOE 2010; Goodman et al. 2011). For effective estimation of storage 

potential, formations must be characterized in terms of their available pore volume for liquid-phase 

(supercritical) CO2 storage, as well as the potential dissolution of CO2 into formation (e.g., brine) water.  

CO2 dissolution into brine and other ground waters is also an important determinant of the fate and 

transport of CO2 leakage (should it occur) as it migrates towards the ground surface and/or other 

subsurface locations. 

CO2 dissolution into the aqueous phase is limited by its solubility, which in turn depends upon the 

water temperature, pressure, and solute concentrations.  These parameters can vary significantly from one 

formation to another, as well as from location to location within a given reservoir. In particular, 

temperature, pressure and salt concentration (T-P-X) are considered the main factors controlling the 

solubility of CO2 in saline formation waters. Salt composition in deep saline formation waters may thus 

vary substantially among different formations depending on their depth, thermal conditions, 

geomorphology, and reservoir minerals. The concentrations of multiple salt ions, such as Na+, Ca2+, K+, 

Mg2+, Cl-, SO4
2- are often present in high concentrations. The purpose of this paper is to develop an 
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integrated multi-model system able to predict CO2 solubility across the very wide range of subsurface 

conditions likely to be of interest in CO2 geologic storage and leak-detection applications. 

Many models for predicting CO2 aqueous solubility have been developed in studies over recent 

decades, using a combination of phase-equilibrium and empirical relationships, and a number of these 

model studies are reviewed in the following section.  Most of the developers of these models compared 

their predictions to a particular experimental data set under certain T-P-X conditions, but studies 

comparing available mathematical models with a comprehensive experimental data set specifically 

selected for carbon sequestration conditions are scarce.  

In this study, eleven candidate models are identified. Qualitative and quantitative comparisons are 

conducted of their formulations, assumptions, principal input variables, and prediction accuracy. 

Available experimental data from various sources are combined to compare the performance of each 

model in predicting CO2 solubility across the entire dataset.  While some models are shown to perform 

better than others, each of the models considered provides the best prediction for some subset of the 

dataset. This motivated our development of a Multi-Model Predictive System (MMoPS) able to identify 

and use the best-performing model under different T-P-X sub-ranges. The model selection is made using 

machine learning techniques to generate a classification tree that inputs the T-P-X value and outputs the 

best model for that sample and the corresponding CO2 solubility prediction. Using a rigorous set of cross-

validation and model complexity versus accuracy comparisons, the MMoPS is shown to provide superior 

predictive capability compared to any individual model. 

2.2 COMPARISON OF AVAILABLE MODELS FOR THE PREDICTION OF CO2 SOLUBILITY IN BRINE 

Many mathematical expressions have been proposed in recent decades for the calculation of CO2 

solubility in aqueous media (Table 2.1 and S-1 of Appendix 1). We reviewed these models to identify 

those applicable to brine conditions, that is, at T-P-X values representative of those likely to be 

encountered in brine reservoirs at carbon sequestration sites (U.S. Brine Wells Database, 2003):  

 
Reservoir brine Temperature range: 304-433 K 

Pressure range: 74-500 bar 
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Salt concentration (NaCl equivalent): 0-7 molal 

Table 2.1 indicates eleven models that have been applied at T-P-X points within these ranges.  

Most of the selected models span a broad range of the temperatures reported in geologic formations, 

though their ranges for pressure applicability are more variable. Most of these models are valid for 

pressures up to about 1000 bar, except for the Barta and Bradley model (Barta and Bradley, 1985), which 

was developed for pressures lower than 152 bar. Models applicable to very high pressure conditions 

include Duan and Sun (Duan & Sun 2003; Duan et al. 2006) and Darwish and Hilal (Darwish & Hilal 

2010), spanning a broad range of pressure conditions from 0-2000 bar (Table 2.1).  

The majority of the models in Table 2.1 consider salt concentrations up to 4.5 molal of electrolyte 

(mol/kg H2O), except for the Harvey and Prausnitz (Harvey & Prausnitz 1989) and Zuo and Guo (Zuo 

and Guo, 1991) models, which were developed for more dilute solutions up to 1 molal of electrolyte 

solution. The unit commonly used to express salt concentration is molality (mol electrolyte/kg H2O). 

However, the salinity (the total dissolved solids in mass percent), is used in the models of Enick and 

Klara (Enick and Klara, 1990) and Chang and Coats (Chang et al., 1998), thereby including all dissolved 

electrolytes on a mass percent basis. Coexisting multiple salt ions are considered in the Harvey and 

Prausnitz, Zuo and Guo, and Duan and Sun models, while the rest of the models are specifically 

developed for NaCl or NaCl/CaCl2 solutions.  

Table 2.1 also provides a brief summary of the modeling approach adopted in each of the eleven 

predictive models. As indicated, the models can be divided into two principal types, based on their use of 

mechanistic phase equilibrium equations vs. primarily empirical equations fit using regression analysis.  

Approximately half of the models are phase equilibrium models based on equations of state (EOS) in 

which phase equilibrium calculations are involved. The remaining models are empirical or semi-

empirical in which CO2 solubility can be explicitly expressed as a function of the temperature, pressure 

and salt concentration. However, the line separating these two types of models is often blurred, since all 

the models contain both theoretical and empirical fitting relationships and/or parameters. A more detailed 

summary of the individual equations and parameters used by each model can be found in section B of 

Appendix 1. 
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2.2.1 Empirical and Semi-empirical Fitting Models 

The Barta and Bradley model is a semi-empirical model which was developed by the 

modification of the Pitzer specific interaction model (Pitzer 1973). The authors indicated that below a 

temperature of 338 K and a pressure of 202 bar, the effect of pressure on CO2 equilibrium was negligible, 

and therefore, the interaction parameters of aqueous species in Pitzer’s model were only treated as a 

function of the temperature. The calculation of CO2 solubility in brine using the Barta and Bradley model 

involves the estimation of the CO2 fugacity. Barta and Bradley used reported values for fugacity 

coefficient of CO2. In order to expand the application range of Barta and Bradley model to conditions 

where no reported fugacity coefficient values can be found, the fugacity coefficient model of Spycher and 

Reed (Spycher & Reed 1988) is coupled with the Barta and Bradley model for the CO2 solubility 

calculation in our study. Using a fugacity coefficient model instead of the reported values also make 

Barta and Bradley model easier to be programmed in computer. The chosen fugacity model can 

accurately represent pressure-volume-temperature data of CO2 for pressure-temperature values up to 500 

bars and 625 K (Spycher & Reed 1988). 

Duan and Sun model also uses interaction parameters from the Pitzer model, however both 

temperature and pressure are considered in the CO2 solubility calculations.  The Duan and Sun (2003) 

model is based on a fifth-order virial equation of state derived by Duan et al. (Duan et al., 1992) for the 

vapor phase and the Pitzer specific particle interaction model (Pitzer 1973) for the liquid phase. 

Specifically, in Duan and Sun (2003), the interaction parameters (λ’s and δ’s) of ions with the same 

charge number have the same value. The values of interaction parameters λ’s for CO2-bivalent cations, 

(e.g. λCO2-Ca) are assumed to be twice those for CO2-monovalent cations (e.g. λCO2-Na). All ternary 

parameters (δ’s) are assumed to have the same value as δCO2-Na-Cl. With these assumptions the model 

originally developed for aqueous NaCl solutions can be applied to other electrolyte solutions or solutions 

with multiple coexisting electrolytes. Although the Duan and Sun (2003) model is based on an equation 

of state, it does not involve phase equilibrium calculations when calculating CO2 solubility in brine.  

In the revised version of their 2003 model, Duan and Sun (2006) (Duan et al. 2006) directly 

estimate the fugacity coefficient of CO2, φCO2, as a function of temperature and pressure. This is 



19 
 

accomplished using a continuous empirical fitting through six consecutive sections of the pressure and 

temperature (P-T) space. A set of parameters was fitted for each section of the partitioned P-T space. The 

model was optimized for prediction accuracy at temperatures below 288 K using experimental CO2 

solubility data available at that time. The Duan and Sun model (Duan & Sun 2003; Duan et al. 2006) may 

also be used to estimate CO2 solubility in pure water. 

Darwish and Hilal (Darwish & Hilal 2010) developed an empirical fitting model based on an 

extension of the Setschenow equation (Setschenow, 1889) by fitting the Setschenow constant (Kgs) as a 

function of temperature and pressure. For the calculation of CO2 solubility in brine, the Darwish and 

Hilal model requires the input of accurate values of CO2 solubility in pure water which, according to the 

authors, can be estimated by Duan and Sun (2006) model. 

Another model that is based on the Setschenow equation is Akinfiev and Diamond’s empirical 

fitting model (Akinfiev & Diamond 2010). Similar to the Darwish and Hilal model, a method for 

estimating the solubility of CO2 in pure water is required; this value is then adjusted for solution molality 

using the Setschenow equation. The Akinfiev and Diamond model also uses Pitzer’s equations to 

estimate additional thermodynamic properties of the CO2-H2O-NaCl system. 
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Table 2.1 Characteristics of CO2 Solubility Predictive Models 

 a EOS: Equation of state. 

Model (year) 
Temperature 

Range 
(K) 

Pressure 
Range 
(bar) 

Salt 
Concentration 

(Molal, 
mol/kg H2O) 

Salt 
Composition Model  Type 

Barta & Bradley 
(1985) 298-623 0-152 0-6.0 NaCl Semi-empirical fitting based on Pitzer’s specific interaction 

model and Setschenow equation  

Li & Nghiem 
(1986) ≤473 0-1000 0-4.3  NaCl 

Phase equilibrium model based on Peng-Robinson EOSa for the 
gas phase and Henry’s law for the aqueous phase; 

Scaled-particle theory (SPT) was used to modify the Henry’s law 
constant to account for the presence of salt 

Harvey & 
Prausnitz (1989) ≤423 0-1400 ≤1 Na, Li, K, Ca, 

Mg, Cl, Br 

Phase equilibrium model based on a molecular-based EOS for 
non-electrolytes, combined with a modification of Born’s 

equation accounting for ionic effects 
Enick & Klara 
(1990) 298-523 30-850 0-7.3 Ca, Na, Cl Empirical fitting 

Zuo & Guo 
(1991) 

≤392 for 
CaCl2; 

≤423 for NaCl 

≤700 for 
CaCl2; 
≤1400 for 

NaCl 

≤1 
Na, Ca, K, Mg, 

Cl,  NO3, SO4, Br, 
I. 

Phase equilibrium model based on Patel-Teja EOS, combined 
with a Debye-Huckel electrostatic term 

Soreide & 
Whitson (1992) 288-623 14-970 0-5.0 NaCl Phase equilibrium model based on Peng-Robinson EOS 

Chang & Coats 
(1998) 313-373 0-1000 0-6.0 NaCl Empirical fitting 

Duan & Sun 
(2003, 2006) 273-533 0-2000 0-4.5 Na, K, Ca, Mg, 

Cl, SO4 

Duan & Sun (2003) is based on a fifth-order EOS by Duan et al. 
for the vapor phase and Pitzer’s specific interaction model for the 

aqueous phase. 
Duan & Sun (2006) is an improved model of  Duan & Sun (2003) 

by developing a non-iterative equation to replace the previous 
fifth-order EOS in the calculation of CO2 fugacity coefficients 

Darwish & Hilal 
(2010) 300-500 50-2000 1-4.0 NaCl Empirical fitting based on 

Setschenow equation 
Akinfiev & 
Diamond (2010) 251-373 1-1000 Any salt 

concentration  NaCl Empirical fitting based on Setschenow constant; Diamond-
Akinfiev model (2003) is used for binary CO2-H2O subsystem 

Spycher & 
Pruess (2010) 285-573 1-600 0-6.0 NaCl Phase equilibrium model relying on fugacity coefficients for the 

CO2-rich phase and activity coefficients for the aqueous phase 
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The empirical model of Enick and Klara is developed as a two-step process. The first step 

includes the calculation of Henry’s law constant for estimating the solubility of CO2 in pure water. Both 

the reference Henry’s law constant, HCO2
*, and the partial molar volume of CO2 at infinite dilution were 

treated as adjustable parameters which were optimized to match the experimental CO2 solubility data. 

Thus, the values of the partial molar volume of CO2 in this model are not comparable to experimental 

measurements of molar volume of CO2 at infinite dilution. In the second step, another input, the total 

dissolved solids concentration (on a mass basis) is incorporated to relate the solubility of CO2 in brine 

with that in pure water, allowing for the consideration of a salting-out effect in the presence of multiple 

salts. 

The Chang and Coats model is based on a series of empirical equations and parameters. Care is 

needed in applying these equations to ensure that the units of the inputs are specified properly (the 

temperature is in oF, pressure is in psia, and the salt concentration is measured as salinity in weight 

percent). The CO2 solubility calculated from this model is in units of scf CO2/stb brine. In order to 

maintain the consistency of the model comparison, a density model developed by Batzle and Wang 

(Batzle & Wang 1992) is used, in our study, to convert the solubility in units of scf CO2/stb brine into 

molality.
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2.2.2 Phase Equilibrium Models 

The fugacity coefficient is a central variable in phase equilibrium models and is estimated 

using different equations of state in different models. Often, cubic equations of state, such as the 

Peng-Robinson EOS (Robinson et al., 1985) and the Patel-Teja EOS (Patel & Teja 1982), are chosen 

to estimate the fugacity coefficient of CO2 in the gas phase.  However, these EOS were found to be 

inadequate for describing the aqueous phase interactions needed to estimate CO2 fugacity  in the 

aqueous phase (Soreide and Whitson, 1992). Thus, several modifications to EOS equations have been 

made to allow the calculation of CO2 solubility in brine. 

In the Soreide and Whitson model (Soreide and Whitson, 1992), the Peng-Robinson EOS is 

used with two modifications. First, the energy parameter α in the Peng-Robinson EOS was modified 

for the water/brine component to include the effects of NaCl salinity (Csw) and the pure water reduced 

temperature (Tr). Second, two sets of binary interaction parameters (BIPs) were developed for the 

aqueous and non-aqueous phase. The aqueous phase BIP (kij
AQ) is a function of the temperature and 

salinity of the brine. The non-aqueous phase BIP (kij
NA) is a constant. 

In the model introduced by Zuo and Guo, the non-aqueous phase is modeled using the Patel-

Teja EOS. For the aqueous phase, a Debye-Huckel electrostatic term (Li and Pitzer, 1986) is 

combined with the Patel-Teja EOS (Patel & Teja 1982), allowing for extension of the EOS to 

electrolyte solutions. The energy parameter α is calculated using a mixing rule proposed by Kurihara 

et al. (Kurihara, et al., 1987).  

Li and Nghiem (Li and Ngheim, 1986) modify the Henry’s law constant derived for pure 

water to estimate CO2 solubility in brine by incorporating parameters of the scaled-particle theory 

(Reiss et al., 1960). The molar density of each species in the aqueous phase is a required input. These 

values are estimated from the aqueous solution density using the density model of Rowe and Chou 

(Rowe & Chou 1970). For the non-aqueous phase, the model uses the Peng-Robinson EOS in which 

the interaction coefficient kij between water and CO2 is temperature-dependent. 
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Harvey and Prausnitz (Harvey & Prausnitz 1989) use a molecular-based EOS (rather than the 

Peng-Robinson or Patel-Teja EOS) to describe intermolecular forces for non-electrolytes.  They also 

employ a modification of Born’s equation (Born, 1920) to account for interactions arising from 

permanent electric charges. Binary interaction parameters kij and kji, for gas-water pairs, ion-water 

pairs and ion-gas pairs were respectively fitted to binary vapor-liquid equilibrium data, osmotic-

coefficient data and Setschenow-constant data at room temperature. These binary interaction 

parameters are used in a cubic mixing rule for calculation of the attractive-energy parameter between 

molecules. 

In the model developed by Spycher and Pruess (Spycher & Pruess 2010), fugacity coefficient 

for the gas phase (CO2-rich phase) is calculated using a modified Redlich-Kong EOS (Spycher et al. 

2003). Activity coefficients are used to quantify fugacity in the aqueous phase. A Margules 

expression for CO2 in pure water (Carlson and Colburn, 1942) and a Pitzer expression for salting-out 

effects are combined to estimate activity coefficients for the aqueous phase.  

In the models of Enick and Klara, Chang and Coats, Darwish and Hilal, and Akinfiev and 

Diamond, and Spycher and Pruess, the solubility of CO2 in pure water is first calculated, with each 

model using a different equation for this purpose. Enick and Klara optimized the Krichevsky-

Ilinskaya equation (Krichevsky and Illinskaya, 1945) and the Krichevsky-Kasarnovsky equation 

(Krichevsky and Kasarnovsky, 1935). Chang and Coats derived an equation by fitting experimental 

measurements, while Darwish and Hilal recommend use of the Duan and Sun (2006) model to 

calculate the solubility of CO2 in pure water. Akinfiev and Diamond utilize a previous version of their 

model (2003) (Akinfiev & Diamond 2003) to estimate CO2 solubility in pure water. Three complex 

sub-models, including the Span and Wagner EOS, the Akinfiev and Diamond EOS and the Hill EOS 

(Akinfiev and Diamond, 2003; Hill, 1990; Span and Wagner, 1996), were incorporated in the 

Diamond-Akinfiev (2003) model (Diamond & Akinfiev 2003), making the model difficult to apply in 

practice. For simplicity in our study, the Duan and Sun (2006) model is employed for estimating CO2 

solubility in pure water and combined with the Akinfiev and Diamond (2010) model to estimate the 

solubility of CO2 in brine. Accordingly, the Spycher and Pruess model uses their original model 
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(Spycher et al. 2003) developed in 2003 for temperatures ≤ 100 oC, whereas for temperatures > 100 
oC, an activity coefficient model using Margules expressions (Spycher et al. 2003) is implemented to 

calculate CO2 solubility in pure water. 

The frequently required variables for the calculation of CO2 solubility in brine by the eleven 

models are summarized in Table 2.2. Most models use the fugacity coefficient of CO2 when deriving 

CO2 solubility in brine, especially for phase equilibrium models. The binary interaction parameters 

between gas-water pairs, ion-water pairs and ion-gas pairs, Henry’s law constant and Setschenow 

constant are also required in most models. Setschenow equation correlates the activity coefficient of a 

non-electrolyte solute and the concentration of the electrolyte. It is valid for low electrolyte 

concentrations, but has been extensively used for moderate concentrations with sufficient results 

(Yasunishi & Yoshida 1979).  
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Table 2.2 Frequently required variables for the calculation of CO2 solubility in brine by different modelsa. 

 

Calculated Variables 
Barta & 
Bradley 
(1985) 

Li & 
Nghiem 
(1986) 

Harvey 
& 

Prausnit
z 

(1989) 

Enick & 
Klara 
(1990) 

Zuo & 
Guo 

(1991) 

Soreide 
& 

Whitson 
(1992) 

Chang 
& Coats 
(1998) 

Duan & 
Sun 

(2003, 
2006) 

Darwish 
& Hilal 
(2010) 

Akinfie
v & 

Diamon
d 

(2010) 

Spycher 
& 

Pruess 
(2010) 

Solubility of CO2 in pure 
water    √   √  √b √b √ 

Fugacity coefficient of 
CO2 (ΦCO2) 

√c √ √  √ √  √   √ 

Henry’s law constant 
(HCO2) 

√ √  √        

Setschenow constant 
(Kgs) 

  √      √ √  

Binary 
interaction parametersd √ √ √  √ √  √   √ 

Activity coefficient          √ √ 
Partial molar volume of 

CO2 
   √  √     √ 

Parameters for speciese  √ √  √       
a For detail description of the calculated variables for each model, see Appendix 1. b Solubility of CO2 in pure water is estimated by 
Duan and Sun (2006) model. c Fugacity coefficient is estimated from the equations of Spycher and Reed. d Binary interaction 
parameters are for gas-water pairs, ion-water pairs and ion-gas pairs. e Parameters for species include intermolecular size parameter, σ; 
intermolecular potential-energy parameter, ε; and molecular polarizability, α. (Harvey & Prausnitz 1989). 
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2.3 SELECTION AND INTERPRETATION OF EXPERIMENTAL DATA  

Koschel et al. (Koschel et al. 2006) provide an intensive review of available experimental 

measurements on carbon dioxide solubility in aqueous NaCl solution. Their study indicates about 

1,000 CO2 solubility observations available over a wide range of pressure, however, most 

measurements were made at relatively low pressures (<50 bars).  Only 20% of the dataset are for 

measurements taken above 50 bar and measurements above 200 bar are extremely rare (only 2%). In 

this study, 173 experimental CO2 solubility measurements are selected from various sources, with 

most of them being the data sets used to develop the sub-models. These 173 experimental 

measurements are used as the dataset to evaluate alternative models for conditions representative of 

carbon sequestration reservoirs, viz. at temperatures of 304-433 K, pressures of 74-500 bar and salt 

concentration of 0-7 molal (NaCl equivalent).  

From the available experimental measurements of CO2 solubility in brine, only those reported 

for brine composition of NaCl and CaCl2 are used. This decision is based on the fact that most 

predictive models are developed for aqueous NaCl solutions and that the salting-out effects of Na+ 

and Ca2+ ions on CO2 solubility are similar in solutions containing the same weight percent of these 

two salts (Liu et al. 2011). Therefore, available experimental data of CO2 solubility in solutions of 

NaCl and CaCl2 are combined.  Data collected from electrolyte solutions containing K+ ions are 

excluded, because the solubility of CO2 in KCl solution is much higher than that in solutions 

containing the same weight percent of NaCl or CaCl2 (Liu et al. 2011). 

The distribution of the selected experimental measurements across the targeted pressure-

temperature and salt concentration-temperature domains are shown in Figures S-1A and S-1B of 

Appendix 1, respectively. While the distributions of the measurements across these dimensions are 

not uniform, most of the space of interest is covered by at least one observation, with the exception of 

low temperature (304-340 K) samples with high pressure (above 200 bar) and/or high salinity (above 

3 molal). 
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2.4 EVALUATION OF MODELS 

The goodness of fit of each individual model against the measurements in the dataset formed 

for carbon sequestration conditions is assessed using the root mean squared error (RMSE) and the 

average percent error (APE) of the predicted vs. observed CO2 solubility (Appendix 1). Considering 

the differing complexity of the alternative models, they are also evaluated in terms of the Akaike 

Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Both the AIC and BIC 

metrics consider a trade-off between the goodness of fit and complexity of the model, with the 

complexity represented by the number of fitted parameters in the model (Appendix 1). In general, 

adding more parameters to a model will improve accuracy in model predictions, but that sacrifices the 

simplicity of the model and also adds more risk of over-fitting. In the AIC and BIC, models with a 

large number of parameters are penalized for their higher complexity.  The preferred model is the one 

with the lowest AIC and/or BIC value (Table 2.3). 

As indicated in Table 2.3, the best performing model on all measures considered (lowest 

RMSE, lowest APE, lowest AIC, lowest AIC adjusted for small sample size, and lowest BIC) is the 

modified Akinfiev and Diamond (2010) model in which Duan and Sun (2006) model is employed to 

calculate CO2 solubility in pure water, instead of the original equations (Diamond-Akinfiev 2003 

model) proposed in Akinfiev and Diamond’s study (2010). The number of data points for which each 

model provided the most accurate prediction in the experimental dataset is shown as “n (in data set)”, 

in the next-to-the-last column of Table 2.3. As indicated, the modified Akinfiev and Diamond (2010) 

model and Duan and Sun (2006) model provide the best prediction for the highest number of 

observations (for 30 of the 173 measurements), though all of the remaining models predict best for a 

significant subset (at least 9) of the observations. 

To better identify where each model performs best, the model yielding the most accurate 

prediction is identified in Figure S-2 of Appendix 1 for each temperature, pressure and salt 

concentration (T-P-X) condition represented. Different models performed better at different 

conditions of T-P-X. In order to predict CO2 solubility with higher accuracy over the full range of 

conditions, utilization of all of the available models is necessary. For example, the Darwish and Hilal 
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model according to the evaluation criteria performed well in general (Table 2.3), however it was 

rarely a best-performing model at specific T-P-X space. In contrast, the Li and Nghiem model 

performed poorly compared to other models (Table 2.3), but was very accurate in predicting the 

solubility of CO2 at high salt concentrations. The Harvey and Prausnitz, and Zuo and Guo models 

were excluded from model evaluation as they were developed for salt concentrations lower than 1 

molal.
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Table 2.3 Evaluation of models based on different statistical analysis criteria 

Modela Number of 
parameters 

RMSEb 
(mol/kg) APEc  (%) AICd 

Adjusted AIC for 
small sample 

sizee 
BICf  ng  

(in data set) 
 mh  

(in MMoPS) 

Akinfiev and Diamond 
(modified)i 30 0.076 9.5 -831 -817 -736 30 32 

Duan and Sun 35 0.082 9.7 -796 -777 -686 30 31 

Spycher and Pruess 36 0.084 11.2 -787 -767 -673 18 15 

Enick and Klara 18 0.122 14.2 -692 -687 -635 22 19 

Darwish and Hilal 28 0.129 15.9 -654 -642 -565 9 8 

Soreide and Whitson 17 0.155 21.2 -611 -607 -557 21 20 

Chang and Coats 16 0.217 25.9 -497 -493 -446 25 27 

Barta and Bradley 17 0.296 34.4 -387 -383 -333 9 12 

Li and Nghiem 17 0.457 50.6 -237 -233 -184 9 9 

MMoPSj 36k 0.061 4.9 -897 -878 -784   
aModels are arranged in ascending order of AIC and BIC; bRMSE: Root mean squared error; cAPE: Average percent error; dAIC: Akaike 
Information Criteria;  eAdjusted AIC: A second-order AIC in which a bias-adjusted term is added into the original AIC formula to account for the 
influence of small sample size; fBIC: Bayesian Information Criteria; gn (in data set): Number of data points for which each model provides the 
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most accurate prediction in the experimental data set; hm (in MMoPS): Number of data points where Multi-model predictive system suggests using 
model i to predict CO2 solubility in the evaluation data set; iAkinfiev and Diamond (modified) model: A modification of the original Akinfiev and 
Diamond (2010) model by using the Duan and Sun (2006) model to calculate CO2 solubility in pure water, instead of the original equations 
(Diamond-Akinfiev 2003 model) proposed in Akinfiev and Diamond’s study (2010); jMMoPS: Multi-model predictive system; k36: The 36 
parameters in MMoPS refers to the 36 splitting points in the generated classification tree in order to select the best-performing model for each 
condition.
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2.5 DEVELOPMENT OF A MULTI-MODEL PREDICTIVE SYSTEM 

A multi-model predictive system (MMoPS) designed to predict CO2 solubility more 

accurately at specific T-P-X range representative of carbon storage reservoirs is developed by using a 

classification tree to combine the individual CO2 solubility models of Table 2.3. The MMoPS is an 

overlying model that consists of a classification tree to select the best-performing model for specific 

T-P-X conditions, subsequently applying that model to predict CO2 solubility for those conditions 

(Figure 2.1). Classification trees are developed using machine learning methods to find a set of 

sequential split-points in a multivariate input space (values of T-P-X) that best predict a discrete 

outcome (Hastle et al., 2001), in this case, the best-performing model. Classification and related 

regression trees (for continuous outputs) have been developed and applied for a number of 

environmental problems (Bennett et al., 2000; Eisenberg and McKone, 1998; Green et al., 2009; 

Hartman et al., 2009; Hughes et al., 2010; Ren, 2003; Worth and Cronin, 2003).  

The classification tree developed in this study uses the T-P-X value for each of the 173 

observations, along with the best-performing (lowest error) model determined for each. The tree is 

generated using the J48 algorithm in the Weka software system, a practical machine learning tool 

(Witten et al, 2011). The J48 algorithm selects optimal splitting points for the tree based on the 

information gain that is achieved (Witten et al., 2011). In deciding whether to add additional splits 

and branches, a tradeoff is made between the improved prediction obtained at each final node of the 

tree and the increased tree complexity that results (increased number of nodes, with fewer 

observations at each). The resulting classification tree chooses the model predicted to have the lowest 

error compared to the experimental data. Because of the variability across the dataset and the 

approximate nature of each of the models considered, the classification is not perfect – some 

classification errors do occur. This error is quantified, as is the prediction error across the 173 

observations that results from a) choosing the wrong model (in some cases); and b) the error that 

remains when even the best-performing model is chosen. Bubble charts are provided in Figure S-3 

(Appendix 1) to demonstrate the distribution of prediction error of MMoPS over T-P space at low, 
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moderate and high salt concentrations, respectively. The out-of-sample predictive capability of 

MMoPS is explored by a cross-validation method in which 20 percent of the data are randomly 

withheld when fitting the classification tree (i.e., a 5-fold cross validation) and predictions for the 

withheld data are compared to their observed values.  
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Figure 2.1 A multi-model predictive system for CO2 solubility over T-P-X ranges encountered in carbon sequestration sites. Diamonds 
represent the splitting points in the T-P-X space. The colored rectangle at each leaf node is the selected best-performing 
sub-model for the specified range of T-P-X conditions.  
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2.6 RESULTS AND DISCUSSION 

As indicated in Table 2.3, all of the individual models are chosen by the MMoPS 

to predict CO2 solubility for at least eight of the original observations (last column of 

Table 2.3), and the number of times that a model is chosen correlates strongly with the 

number of times it provides the best fit (next to the last column of Table 2.3). The 

performance of MMoPS is evaluated using the same statistical analysis criteria as those 

used for the individual sub-models (Table 2.3). The MMoPS outperformed each 

individual model, achieving the lowest value of the RMSE, APE, AIC, adjusted AIC and 

BIC. The prediction error of CO2 solubility can be greatly reduced by using MMoPS 

instead of any individual model for the whole T-P-X range of interest (see RMSE and 

APE of Table 2.3). The average prediction error of MMoPS (4.9%) is small, compared to 

the range of prediction error achieved by the individual models (9.5%-50.6%). This 

improved prediction is obtained by tapping results from each of the individual models, 

chosen over the range of conditions where each performs best. However, with 36 

parameters, the MMoPS is a very complex overall model and it is more difficult to 

implement, requiring prior evaluation of the classification tree, followed by application of 

the chosen model. Is this additional complexity worth it in terms of the anticipated ability 

of the model to predict CO2 solubility for observations not used to fit the model? Cross 

validation methods are designed to address this type of question. 

In order to estimate the performance of MMoPS outside of the dataset used for 

fitting, a stratified 5-fold cross-validation was conducted. The experimental data set was 

divided randomly into 5 parts in which the distribution of preferred sub-models was 

approximately the same as that in the full dataset. Each part was withheld in turn and the 

classification tree was generated using the remaining four-fifths resulting in an RMSE of 
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0.07 for the full dataset. Comparing these results to those obtained for in-sample 

prediction using the entire dataset (RMSE = 0.061, see Table 2.3), some expected loss in 

predictive capability is indicated. However, the cross-validation errors are still lower than 

the in-sample error rates achieved by any of the individual sub-models, further supporting 

the predictive capability and value of the MMoPS. 

In the classification tree, all the splits are binary splits. The classification tree 

sequentially splits T-P-X ranges into sub-ranges along each branch until the number of 

instances at a node reaches the minimum value set in the algorithm or further bifurcations 

no longer achieve sufficient differentiation to justify their inclusion in the tree. In general, 

salt concentration is the most informative attribute in distinguishing best-performing sub-

models, followed by temperature and pressure, according to the evaluation of their chi-

squared statistic with respect to the best-performing sub-model (Appendix 1).  As shown 

in Figure 1, the resulting tree first splits into a small, low-temperature branch (with seven 

end-nodes) and a large high-temperature branch (with 27 end-nodes) at T = 323 K. The 

low-temperature branch includes four split-nodes for pressure, two for temperature and 

three for pressure; while the high-temperature branch has nine split-nodes for 

temperature, eight based on pressure, and six for salinity. 

The generated classification tree model indicates that some models perform well 

for a specific region of T-P-X space, but cannot provide good estimation for other 

regions. All these sub-models, to some extent, involve fitting model parameters to 

experimental data, regardless of their type (empirical fitting or phase equilibrium 

models). The T-P-X conditions of the experimental data that each model chose to fit the 

parameters largely determine the suitable conditions for each model. For example, Duan 

and Sun, and Akinfiev and Diamond fitted their model parameters using many of the 



 
 

36 

experimental data included in this study over a wide range of T-P-X conditions. These 

models similarly exhibit good prediction over broad T-P-X ranges, providing the most 

accurate prediction for about 35% of the observations in the experimental dataset, and the 

most frequent use in MMoPS (Table 2.3). Extrapolation of models to conditions beyond 

fitted conditions may decrease the overall performance of these models. For example, the 

Li and Nghiem model was fitted using data primarily at high T-P-X conditions and 

appears only on the right portion of the tree (Figure 3).  This indicates that this model is 

only most suitable for predicting CO2 solubility at the high temperature, pressure and salt 

concentration conditions to which it was fit. 

MMoPS performs better than any individual models tested in this study and 

increases the overall accuracy of CO2 solubility prediction across carbon sequestration 

conditions, not by optimization of the individual model variables or constants, but 

because it chooses in the most effective manner the best-performing individual model for 

a specific region of the T-P-X space. That means that all individual models presented in 

Table 2.3 are utilized in MMoPS. For “less popular” sub-models, those with poor 

performance over the whole range of conditions having high RMSE, APE, AIC and BIC, 

such as Li & Nghiem model (Table 2.3), MMoPS identifies the suitable conditions for 

which this model should be used to predict CO2 solubility. As such, the overall 

uncertainties of CO2 solubility estimation for carbon sequestration conditions are 

substantially reduced. The predicted CO2 solubility values from sub-models and MMoPS 

for all the 173 experimental data points are compared in Table S-7 (Appendix 1). In 

particular, a series of experimental data in which only one of the T-P-X conditions is 

varied (i.e. varying P at constant T and X, varying T at constant P and X, and varying X 

at constant T and P) are selected and plotted in Figure S-4 to graphically demonstrate the 
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accuracy of different sub-models and MMoPS. Note that these figures only represent the 

accuracy of each model at the selected conditions and the model performance would vary 

for other conditions. A discussion about the effect of using sub-sets of the 173 

experimental data (i.e. the individual sub-set of NaCl data and CaCl2 data) on MMoPS 

and evaluation of models is provided in Appendix 1. 

Identifying further experimental studies, three CO2 solubility measurements with 

high prediction errors in the MMoPS model are identified and listed in Table S-8 

(Appendix 1). The prediction errors for the three measurements account for 66% of the 

total squared error for the whole evaluation set. For these observations the classification 

tree model indicated an alternative sub-model, instead of the model with the lowest error 

to predict CO2 solubility. The three measurements are from the same experimental study, 

Tekenouchi and Kennedy’s study (Tekenouchi and Kennedy, 1965). Another set of 

measurements from a different study, Gehrig’s study (Gehrig, 1980) but at conditions 

close to those of Tekenouchi and Kennedy’s study are also collected and listed in Table 

S-8. CO2 solubility measurements from these two studies are not consistent with each 

other. Using the models selected in MMoPS more accurately predicts the CO2 solubility 

measurements obtained from Gehrig. We conducted statistical analysis of the 

measurement error of CO2 solubility between laboratories and different experimental 

practices using all the measurements we found that have parallel measurements 

(measured at identical T-P-X conditions). The mean of absolute measurement errors is 

0.064 mol/kg which is of the same magnitude as the model root mean square errors 

(RMSE) shown in Table 2.3. Note that data from Tekenouchi and Kennedy’s study and 

Gehrig’s study are excluded from the statistical analysis because of the high discrepancy 

between these two studies. Uncertainties in CO2 experimental measurements also transfer 
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to the uncertainties in the estimated performance of CO2 solubility predictive models. 

More CO2 solubility experimental measurements are necessary to verify the reliability of 

different experimental studies. The lack of experimental data in specific regions of the T-

P-X space also increases the uncertainty of CO2 solubility predictions.  We plan to apply 

MMoPS to help identify further solubility experiments with the greatest potential to 

reduce the overall- and region-specific accuracy of the CO2 solubility prediction. 

Predicting CO2 solubility more accurately should improve our ability to understand and 

predict storage reservoir chemistry and improve storage capacity and cost estimates. 
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Chapter 3: A Bayesian Approach to CO2 Leakage Detection at Saline 
Sequestration Sites using Pressure Measurements 

3.1 INTRODUCTION 

Geological carbon sequestration is considered a promising strategy for mitigating 

potential climate change associated with increasing CO2 concentration in the atmosphere 

(Hepple and Benson, 2005; IPCC, 2005). To have a significant effect on the atmospheric 

concentration of CO2, large amounts of CO2 need to be captured from electric power 

plants and industrial sources and injected into deep underground formations, such as 

saline aquifers, depleted oil and gas reservoirs and unmineable coal seams (Holloway 

2005; Gale 2004). Deep saline aquifers are estimated to have the highest CO2 storage 

potential among all the geological storage options (USDOE 2010). 

To demonstrate that the implementation of carbon sequestration is safe and 

effective as a greenhouse gas control technology, monitoring CO2 stored in deep saline 

aquifers is crucial (Benson & Myer 2002). Multiple monitoring techniques can be applied 

at different depths, including atmospheric monitoring, near-surface monitoring and deep 

subsurface monitoring. (Benson and Myer, 2002; USDOE, 2009). Studies to characterize 

the performance of near-surface monitoring techniques, including near-surface soil CO2 

flux measurements and tracer measurements, have been undertaken (Yang et al., 2011a; 

Yang et al., 2011b). A Bayesian belief network methodology, integrating multiple 

monitoring techniques for CO2 leak detection, has also been demonstrated by Yang et al. 

using near-surface monitoring techniques (Yang et al. 2012). A review of alternative 

statistical methods and perspectives for leak detection monitoring and inference is 

provided by Jenkins (2013). The costs of deploying different monitoring techniques were 

evaluated by Benson et al. (2004). 
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One broadly recommended and cost-effective monitoring technique is pressure 

monitoring in the injection and above zone reservoirs (Meckel et al., 2008). 

Measurements of injection pressures at the wellhead and in the formation are common in 

oil field practice (Benson & Myer 2002). An above-zone monitoring technique that also 

measures pressure changes in a permeable zone overlying the injection zone has been 

deployed in the Cranfield CO2 Storage Project (Meckel et al. 2008). The continuous 

pressure changes in the injection zone and those in the above zone during CO2 injection 

can be measured simultaneously once downhole pressure gauges are equipped in the 

monitoring wells. Unanticipated pressure changes in both zones can also be used as 

indicators of a fluid migration out of the injection zone (Meckel et al. 2008).  The range 

of anticipated conditions under leak vs. no-leak scenarios can be characterized using 

reservoir flow and pressure models. 

Semi-analytical solutions have been derived to describe the space-time evolution 

of a CO2 plume during injection and CO2 leakage through an abandoned well (Nordbotten 

et al. 2005). This semi-analytical model was further applied to a specific field site in 

Alberta, Canada to perform a risk analysis of CO2 and brine leakage along old wells 

(Celia et al., 2011). The sensitivity and uncertainty analysis of pressure measurements 

has been studied by several authors (Birkholzer et al., 2009; Chabora and Benson, 2009; 

Sun et al., 2013a).  

In the paper by Sun et al., a particular uncertainty-quantification technique 

especially well-suited for computationally complex models, the probabilistic collocation 

method, is used to assess leakage detectability based on the signal to noise ratio of 

pressure perturbations predicted to occur from leakage.  In a related paper an 

optimization method is formulated for designing a pressure-based monitoring system at 
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carbon sequestration sites (Sun et al., 2013b).  Azzolina et al. (2013) also propose a 

probabilistic framework for leak detection based on pressure monitoring. They utilize a 

multilayer reservoir pressure model to predict system response to CO2 injection and 

evaluate its response using an approximate first-order uncertainty analysis method. Our 

analysis is similar in concept, but uses a more aggregate analytical model for the 

subsurface and more advanced methods for uncertainty analysis based on Monte Carlo 

simulation and Bayesian inference regarding caprock states and potential associated 

leakage rates.  

Injected CO2 could leak slowly and diffusively through a sealing caprock, or leak 

relatively quickly through high permeability conduits, such as faults and abandoned 

wells. Depending on the kind of storage formation, one leakage pathway might be more 

likely than the other. For example, as the sealing caprock in a depleted oil and gas 

reservoir is usually well defined and there might be abandoned wells present from former 

reservoir operations, the most likely pathway for leakage is through the boreholes of the 

wells. For saline aquifers, the sealing caprock is less well defined or lacks a structural 

trap at some locations. The most likely pathway would then be through the caprock if its 

permeability is not low enough (Benson & Myer 2002). The high pressure buildups after 

CO2 injection into the storage formation could potentially hydraulically fracture the 

caprock (Chiaramonte et al., 2007). This mechanism might trigger higher effective 

permeability and a greater resulting chance for CO2 leakage through the caprock (Liu et 

al. 2012). 

This study focuses on diffusive CO2 leakage through the sealing caprock and the 

resulting pressure changes in the injection zone. The objective of this study is to 

characterize the CO2 leakage level through an assessment of the integrity and 
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permeability of the caprock inferred from pressure measurements and to evaluate the 

detection power of the pressure monitoring technique. The uncertainty of the pressure in 

the injection zone is estimated from Monte Carlo simulation of pressure buildups using a 

simplified geological reservoir model. Pressure measurements are assumed to be made 

with error, considering low, medium and high coefficients of variation for each 

measurement, conditioned on the modeled value.  Based on Bayesian classification 

theory, the probability of each caprock permeability class given the observations of 

pressure in the injection zone can then be inferred. The power of pressure monitoring to 

detect a leaky, high-permeability caprock is also evaluated from the simulation results. 

Further, we evaluate the influence of time and location of measurements, the magnitude 

of the measurement error, the CO2 injection rate, and the uncertainty in reservoir 

properties on the inferred caprock permeability class and the detection power of the 

pressure monitoring. The uncertain reservoir properties considered here include the 

thickness, permeability and porosity of the injection zone and the above zone. 

3.2 MODEL SETUP AND UNCERTAINTY ANALYSIS 

3.2.1 A Simplified Geological Reservoir Model 

The CO2 storage site is modeled as a confined system with two aquifers separated 

by a sealing caprock of thickness 120 m (Figure 3.1). The lower aquifer is the injection 

zone and the upper aquifer is the above zone. The injection zone is at a depth of 2000 m 

below the ground surface and the temperature is assumed to be 65 °C. The initial 

pressures in the injection zone and the above zone are stable at 2*107 Pa and 1.97*107 Pa, 

respectively. Each layer (the injection zone, the sealing caprock and the above zone) is 

assumed to be homogeneous, isotropic and with infinite radial extent. An injection well 
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completely penetrates the above zone and the caprock, and is screened at the top of the 

injection zone. CO2 is continuously injected into the injection zone from the injection 

well at a fixed rate. A base-case observation well is located 500 m away from the 

injection well, with monitoring wells at 100 m also considered in a sensitivity analysis. 

Pressure buildups in the injection zone after continuous injection of CO2 over 1, 2, 5, 10 

and 20 years are calculated using the analytical solutions derived by Neuman and 

Witherspoon (Neuman & Witherspoon 1969). 

 

Figure 3.1 Schematic diagram of the simplified geological reservoir model, adapted from 
Neuman and Witherspoon (1969). 

The Neuman-Witherspoon analytical solution is a single-phase solution, 

originally developed for the problem of transient flow to a well in a confined two-aquifer 

system. The equations have been previously used to calculate pressure buildups after CO2 

injection at carbon sequestration sites by Chabora and Benson (Chabora & Benson 2009). 

In the Neuman-Witherspoon solution, the pressure change is expressed as an infinite 

integral of a highly oscillating function. This integral is solved numerically using the 

adaptive Simpson quadrature in MATLAB (Gander & Gautschi 2000; Chabora & Benson 
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2009). The equations of the Neuman-Witherspoon analytical solutions and the MATLAB 

codes are listed in Appendix 2A. Solutions are obtained with relatively short computation 

time, allowing Monte Carlo uncertainty analysis (with 20 scenarios and a sample size of 

n=1000 replications for each scenario) to be conducted for the predicted pressure 

buildups.  

3.2.2 Uncertainty in Pressure Evolution 

The uncertainty in pressure evolution following initiation of the CO2 injection is 

quantified using the Neuman-Witherspoon solution implemented with Monte Carlo 

sampling of uncertain model inputs and parameters. The presumptive conditions of a 

carbon sequestration site and CO2 injection rate used in the Monte Carlo uncertainty 

analysis are summarized in Table 3.1. These parameters are obtained from geological 

properties at the Cranfield CO2 storage site (Meckel et al. 2008) and the reservoir 

conditions used by Chabora and Benson (Chabora & Benson 2009), and are assumed to 

be fixed. The assumed uncertain inputs include the thickness, permeability and porosity 

of the injection zone and those in the above zone. The uncertain inputs are assumed to be 

independent variables with a specified distribution type. The geological properties in the 

above zone are assumed to follow the same distribution as those in the injection zone. 

Based on the permeability and porosity database developed by the National Petroleum 

Council (NPC, 1984), the distributions of uncertain inputs shown in Table 3.2 were 

selected to conduct the Monte Carlo uncertainty analysis. Scatter plots of permeability vs. 

porosity based on the NPC database can be found in Appendix 2A.3. 

One assumption made in the Neuman-Witherspoon analytical solution is that the 

flow is vertical in the caprock and horizontal in the aquifers. As pointed out by Neuman 

and Witherspoon (1969), the permeability of the aquifers needs to be two or more orders-
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of-magnitude greater than that of the caprock in order to reduce the errors introduced by 

this assumption. Therefore, the assumed lognormal distribution of permeability in 

reservoirs is truncated to guarantee that the reservoir permeabilities are at least four 

orders of magnitude greater than that of the caprock. As this study focuses on the 

diffusive leakage of CO2 through the sealing caprock, the caprock permeability class, 

defined by intervals of sealing caprock permeability values, is assumed to serve as a 

surrogate for the magnitude of CO2 leakage (Table 3.3). 

Table 3.1 Fixed reservoir and injection conditions assumed in Monte Carlo uncertainty 
analysis 

Parameter Symbol Value 
Depth (m) H 2000 

Temperature (oC) T 65 
Initial pressure in the injection 

zone (Pa) pI_initial 2*107 

Initial pressure in the above zone 
(Pa) pM_initial 1.97*107 

Porosity of the caprock φc 0.05 
Thickness of the caprock (m) hc 120 

Total formation compressibility 

(Pa-1) 
ct 1*10-9 

Injection rate (MT-CO2/yr) Q 1 
Radial distance from injection 

well (m) R 500 

 

Table 3.2 Distributions of uncertain input parameters assumed in Monte Carlo 
uncertainty analysis (based on values found in the National Petroleum 
Council database (NPC, 1984)) 

Parameter Distribution 
Type Mean (μ) Standard 

deviation (σ) Lower limit Upper 
limit 
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Formation thickness, hI/M 
(m) Normal 10 2   

Permeability, kI/M (mD) Truncated 
Log10 normal 2a 1a 104kc  

Porosity, ϕI/M 
Truncated 

Normal 0.2b 0.1b 0.0005 0.6 

a: The mean and standard deviation values are parameters of the lognormal distribution in base 
10, that is, the mean and standard deviation of the base 10 logarithm of the variable before 
truncation. 
b: The mean and standard deviation values are parameters of the normal distribution before 
truncation. 

Table 3.3 Intervals of caprock permeability values representing different leakage levels 

Caprock permeability, 
kc (µD) 

CPC = Caprock 
Permeability Class 

CO2 Leakage 
Magnitude 

Assumed Prior 
Probability, π(CPC)a 

0.1-1 1. Impermeable Negligible 0.25 

1-10 2. Moderate Moderate 0.25 

10-100 3. High High 0.25 

100-1000 4. Very High Very High 0.25 

 

Given the assumed distributions of uncertain inputs, Monte Carlo simulations 

were run for five caprock permeability values within each caprock permeability class, 

resulting in 20 caprock permeability scenarios in total. Each execution of the Monte 

Carlo model simulates (using the Neumann-Witherspoon analytical solution) 1000 

different temporal profiles of pressure buildup in the injection zone at a location 500 m 

away from the injection well. Pressure buildups in the above zone can also be calculated 

using the Neuman-Witherspoon solution, but are not as responsive as those in the 

injection zone when the caprock permeability increases. The value of adding a second 
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measurement (i.e., the above-zone pressure) is further diminished by the presence of 

measurement error. Therefore, this study focuses solely on pressure buildups in the 

injection zone. Pressure values are noted and evaluated at t=1, 2, 5, 10 and 20 years 

following the initial injection. As indicated in Table 3.1, a continuous injection rate of 1 

MT CO2/yr is maintained over the 20-year simulation period. The simulated uncertainty 

in pressure buildups in the injection zone (i.e. pressure changes, ΔpI) after CO2 injection 

at dividing points of caprock permeability classes is depicted in Figure 3.2, including the 

empirical 5th, 50th and 95th percentile values of the simulation results. As the caprock 

permeability increases, the uncertainty in the simulation results decreases markedly. 

Also, the pressure buildups in the injection zone (ΔpI) decrease as the caprock 

permeability increases. This is reasonable because, as the caprock permeability increases, 

more fluid from the injection zone is expected to migrate into the above zone through the 

caprock, resulting in a pressure decrease in the injection zone. 
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Figure 3.2 Simulated uncertainty in pressure buildups in the injection zone at 500 m from 
point of injection after injecting CO2 with a) Caprock permeability kc = 0.1 
md; b) Caprock permeability kc = 1 md; c) Caprock permeability kc = 10 
md; and d) Caprock permeability kc = 100 md. Results shown are the 
median (solid line), 5th and 95th percentile values (dashed lines) of 1000 
Monte Carlo simulations for the injection zone (ΔpI: pressure buildups in 
the injection zone, shown in red). 

3.3 BAYESIAN CLASSIFICATION METHODOLOGY FOR CO2 LEAKAGE DETECTION 

Bayesian theory provides a mathematical tool to combine an expert’s belief 

regarding the probability of each caprock permeability class (CPC) with evidence 

obtained from field measurements. An expert’s belief is represented by a prior 

distribution for the presence of each CPC at a site. In the Bayesian classification 

methodology, the prior distribution and the field measurements are combined using the 

likelihood function to derive the posterior distribution. If an uninformative prior 
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distribution is assumed, the results will be objective, that is, totally dependent upon the 

field measurements. In this case, the posterior probability of a caprock permeability class 

is proportional to the likelihood function for the field pressure measurements, given each 

CPC.  

The likelihood function for the field pressure measurements is composed of two 

components.  The first is the uncertainty in the true value of the pressure in the injection 

zone (at a given location and time) that results from the uncertain reservoir properties; 

this uncertainty is captured by the 1000 discrete Monte Carlo simulation results.  The 

second is the uncertainty associated with measurement error when observing the pressure 

in the injection zone.  This is captured by an assumed lognormal measurement error 

function that maps simulated true into simulated measured pressures.  Combining these, 

the likelihood for each simulation is computed as the value of the measurement error 

probability density function evaluated at the observed value, assuming that the simulated 

value is true.  The overall likelihood function for the full set of simulations (e.g., 

associated with a given caprock permeability class) is the total likelihood computed for 

each of the individual (e.g., 1000) simulations.  This method is similar to that employed 

in Bayes Monte Carlo simulation (e.g., Dilks et al., 1992; Sohn et al., 2000; Pinder et al., 

2004).  The number of simulations allocated to each caprock permeability class is 

proportional to the prior probability for that class; in this case an equal number of 

simulations is allocated to each of the four CPC’s. 

3.3.1 Inferring Caprock Permeability Class 

Equal prior probability (= 0.25) is assigned to each of the four caprock 

permeability classes, as shown in Table 3.3.  The pressure buildup in the injection zone 

(ΔpI) is chosen to be the measured variable for inference of caprock permeability class in 
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this study. Generally, ΔpI would decrease as the caprock permeability increases. ΔpI 

ranges theoretically between zero and infinity. For the cases considered and simulated in 

our analysis, the value of ΔpI ranges from 10-4 MPa to 45 MPa. When measurement 

errors are also considered, observed values of ΔpI beyond these limits are possible. 

To estimate the likelihood of observing ΔpI given each caprock permeability 

class, f(ΔpI|CPCj), first, 1000 ΔpI values are computed for each of the caprock 

permeability classes, incorporating the fixed values in Table 3.1, the uncertain properties 

in Table 3.2 and a random sample of kc from a uniform distribution within each caprock 

permeability class (for example kc ~ U(1, 10) for the moderate caprock permeability 

class). Second, to simulate the effects of measurement error, the injection zone pressure 

buildups (ΔpI_measured) are assumed to be lognormally distributed about the true 

(model simulation) values: 
ΔpI_measured ~ Lognormal(aI, bI)      (3.1) 

with   aI = log(ΔpI_simulated)       
           bI = [log(c.v.2 +1)]1/2 

As indicated, the ΔpI results from each Monte Carlo simulation run specify the 

median values for the respective lognormal distributions of ΔpI_measured (specifying 

the parameters aI, which represent the logarithm of the median of the respective 

measurements), while the second parameter, bI, corresponds to the standard deviation of 

the logarithm of ΔpI_measured.  For ease of interpretation, these second parameters are 

specified by the coefficients of variation of ΔpI_measured: c.v.. 

The lognormal distribution for ΔpI_measured is thus fully specified by the 

computed value of ΔpIi for each simulation i and the assumed error (coefficient of 

variation) for each pressure measurement (determined by bI, which is the same for all 
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simulations).  The pdf of the lognormal distribution serves as the likelihood function for 

the pressure observations given the simulation result: 

Likelihood(simulation i) = 

 
𝑓 ∆𝑝𝐼_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎!" , 𝑏!

=
1

∆𝑝𝐼_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ∗ 𝑎!" ∗ 2𝜋
exp  {

− ln ∆𝑝𝐼_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑎!" !

2𝑏!
! } 

(3.2) 

When a subset of the simulations is used to represent a particular case, (i.e., a 

particular CPCj), then the case is represented by an “or” operation across the individual 

simulations in the subset, and the overall likelihood is given by the sum of the individual 

likelihoods.  In the application that follows we utilize 1000 simulations for each case, so 

that: 

Likelihood(case j) = 𝑓(∆𝑝𝐼_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑|𝑎!" , 𝑏!)!"""
!!!  (3.3) 

 

The prior distribution of caprock permeability class and the likelihood function are 

combined using Bayes rule to calculate the posterior distribution of each caprock 

permeability class, 𝜋(𝐶𝑃𝐶!|∆𝑝𝐼_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑). 

𝜋 𝐶𝑃𝐶! ∆𝑝𝐼_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = ! ∆!"_!"#$%&"' !"!! ∗(!"!!)
! ∆!"_!"#$%&"' !"!! ∗(!"!!)!

!!!
  (3.4) 

3.3.2 Power Calculation 

Leakage detection is assumed to occur whenever a permeable or a highly 

permeable caprock is inferred to be present from the results of the pressure 

measurements.  This inference is made using a statistical test of hypothesis.  The test may 

be set up to determine whether there is sufficient evidence in the data to very strongly 

support the argument that the caprock is impermeable (the null hypothesis is that the 
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caprock is permeable).  Alternatively, a traditional approach used for regulatory 

compliance can be employed in which the caprock is assumed to be impermeable, unless 

the data provides very strong evidence that the caprock is permeable.  While either 

approach can be implemented with the proposed methodology, here we demonstrate the 

latter (regulatory compliance) perspective in which the null and alternative hypotheses 

are given by: 

Ho:  CPC  =  Class 1 (Impermeable) 

H1:  CPC  =  Class 2, 3, or 4 (Moderate, High, or Very High Permeability)          

(3.5) 

We employ a Bayesian test of hypothesis in which the P-value for the test is 

computed as the probability of Ho.  This probability is calculated directly in Equation 3.4 

as a function of ΔpI_measured.  If the P-value is low enough, this provides statistically 

significant evidence that the caprock is permeable, and Ho is rejected.  As such, we can 

identify a critical value of the measured pressure buildup in the injection zone, 

ΔpI_measuredcrit, beyond which the P-value falls below a, the significance level chosen 

for the test (e.g., a = 0.1, 0.05, or 0.01).  The chosen significance level also corresponds 

to the false positive (Type 1 error) rate for the test of hypothesis.  Power is calculated as 

the probability that Ho is rejected for simulations representing CPC Class 2, 3, or 4 (i.e. 

caprock permeability kc > 1 mD); for CPC Class 1 (i.e. kc ≤ 1 mD), rejecting Ho 

represents a false positive (Type 1 error), so the concept of power does not apply. 

The probability that Ho is rejected (with ΔpI_measured  < ΔpI_measuredcrit) for a 

given caprock permeability value, kci (kci >1 mD) is the expected fraction of 

measurements below ΔpI_measuredcrit, where this expectation is calculated across the 

1000 simulations for that caprock permeability value, kci: 
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𝑃𝑜𝑤𝑒𝑟 𝑘𝑐! = 𝑃𝑟𝑜𝑏[∆𝑝𝐼_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 < ∆𝑝𝐼_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑!"#|𝑘𝑐!] =
!

!"""
𝐹∆!"_!"#$%&"'(∆𝑝𝐼_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑!"#|𝑎!" , 𝑏!)!"""

!!!   (3.6) 

where FΔpI_measured (ΔpI_measuredcrit | aIi, bI) is the lognormal cdf of ΔpI_measured, 

evaluated at the value of ΔpI_measuredcrit, with lognormal parameters given by aIi and bI, 

as specified in Equation 3.1. 
 

3.3.3 Evaluating the Influence of Input Parameters 

The parameters listed in Table 3.1 and 2 serve as a baseline case, representing 

typical parameter values and a nominal level of uncertainty assumed to apply to a 

particular reservoir application. To illustrate the sensitivity of model predictions to 

variations in selected assumptions and parameters, we consider alternative monitoring 

time t, monitoring locations r, an increased CO2 injection rate Q, and reductions in the 

magnitude of the assumed uncertainty of the reservoir properties in Table 3.2 (as might 

occur as a result of additional site characterization studies), computing how these 

alternative assumptions affect simulation results and the probability of each caprock 

permeability class that is inferred from an observation of ΔpI. The baseline monitoring 

time is at t = 5 year after the injection begins; ΔpI values at t = 1 year and t = 10 year are 

also simulated to explore the sensitivity of results to monitoring time. The baseline 

monitoring location is r = 500 m from the injection well, and we also present simulation 

results for locations at r = 100 m from the injection well. The injection rate is doubled 

from the baseline case Q = 1 MT-CO2/yr to 2 MT-CO2/yr. The uncertainty of the 

reservoir properties (i.e. the thickness, permeability and porosity of the injection zone and 

the above zone) is characterized by the variance of each distribution described in Table 
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3.2. Here, we evaluate the influence of reduced reservoir uncertainty by reducing the 

variance of each reservoir property (listed in Table 3.2) by half. 

3.4 RESULTS 

3.4.1 Inferred Caprock Permeability Class 

The prior values of ΔpI across the four CPC simulations extend over the range ~ 

10-4 Mpa– 45 MPa.  Since the Bayesian update in Equation 3.4 assigns zero posterior 

probability wherever the prior probability is zero, this prior range for ΔpI determines the 

posterior domain as well. As the results below 0.01 MPa in the simulation runs are very 

inaccurate, the posterior domain of ΔpI is further chosen to be from 0.01 MPa to 45 MPa. 

Figure 3.3 shows the posterior probability of each CPC as a function of the observed 

ΔpI_measured, for monitoring conducted at a) low measurement error (c.v. = 0.2); b) 

medium measurement error (c.v. = 0.3); and c) high measurement error (c.v. = 0.5), all at 

a monitoring location r = 500 m away from the injection well and at t = 5 year.  

In Figure 3.3, the green line represents the posterior probability that an 

impermeable caprock is present. Other lines represent the probabilities that a permeable 

caprock (i.e. a leaky caprock) of varying degree are present. Generally, as the 

ΔpI_measured value decreases, the probability of an impermeable caprock decreases and 

it is more likely that an increasingly leaky caprock is present. For example, in the low 

measurement error case, with a ΔpI_measured value of 10, the probability of an 

impermeable caprock is 0.996; while with ΔpI_measured = 1, the probability that an 

impermeable caprock is present is only 0.386 and the probability of a caprock with 

moderate permeability has reached a value of about 0.6. At low measurement error, the 

posterior probability curves exhibit fluctuations at some ΔpI_measured values. This 
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occurs in part due to discrete (non-overlapping) ranges of permeability associated with 

each of the four CPC classes. Nonetheless, the local fluctuation in the predicted posterior 

probability is small enough that it does not affect the predicted dominant CPC class. As 

the measurement error increases, the local fluctuations are dampened and the posterior 

probability curves become both broader and smoother. 
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Figure 3.3 Posterior distribution of caprock permeability class monitored at r = 500 m; t = 
5 year and a) low measurement error (c.v. = 0.2); b) medium measurement 
error (c.v. = 0.3); c) high measurement error (c.v. = 0.5). ΔpI(measured) is 
the measured pressure buildup in the injection zone. Critical values of 
ΔpI(measured) at α = 0.05 are computed from the impermeable (green 
curve) cases as: a) 0.0224 MPa; b) 0.0225 MPa; and c) 0.0211 MPa.  

3.4.2 Results of Power Analysis 

The power analysis is implemented using the method described in Section 3.3.2.  

The value of ΔpI_measuredcritical in Equation 3.6 depends on the value of a chosen for the 

test of hypothesis in Equation 3.5; lower values of a require stronger evidence that Ho is 

false (i.e., a lower P-value) before it is rejected, dictating a lower value of ΔpI_measured.  

As such, there is a lower probability of rejection of Ho as a decreases, and as a result, less 

power.   

The results of the power calculation for the case with medium measurement error 

(c.v. = 0.3) and with a = 0.1, 0.05 and 0.01, at the location r = 500 m away from the 

injection well and at t = 5 year, are shown in Figure 3.4. For a moderately leaky caprock 

with permeability kc=10 mD and a moderate level of measurement error (c.v. = 0.3), the 

simulated statistical detection power of the pressure monitoring is still below 0.1 even at 

the significance level α = 0.1. The detection power increases to values of 0.6 as kc 

reaches approximately 400 mD at α = 0.05, with the power further increasing to 0.9 at kc 

~ 800 mD. As such, very high caprock permeability is required before pressure 

monitoring as prescribed in this simulation will yield a high probability of detecting 

deviations from the baseline, impermeable assumption. 
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Figure 3.4 Power relationship indicating probability of leakage detection for permeable 
caprock, (i.e. caprock permeability value, kc > 1 mD) with medium 
measurement error (c.v. = 0.3), a = 0.1, 0.05 and 0.01 respectively, 
monitoring at a location r = 500 m away from the injection well, and t = 5 
year. 

3.4.3 Sensitivity Analysis of Assumed Input Parameters 

The following sensitivity analyses were conducted to determine how model 

inferences are affected by changing the monitoring time (base case t = 5 year), the 

monitoring location (base case r = 500 m from injection well); the CO2 injection rate 

(base case = 1 MT-CO2/yr); and the initial uncertainty in reservoir properties (base case 

specified by distributions in Table 3.2): 

• Simulating the monitoring of pressures after injection for one year (t = 1 year) and 

after injection for ten years (t = 10 year); 

• Simulating the monitoring of pressures at locations closer to the injection well (r 

= 100 m); 
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• Doubling the injection rate to 2 MT-CO2/yr; and 

• Reparameterizing the distributions in Table 3.2 so that their variances are reduced 

by a factor of two. 

Figure 3.5 shows the posterior probability of each CPC as a function of the 

observed ΔpI_measured, for monitoring conducted with medium measurement error (c.v. 

= 0.3) a) at t = 1 year and b) at t = 10 year. Figures 3b, 5a and 5b are very similar, which 

indicates that beyond the first year of continuous CO2 injection, the additional system 

response has little effect on the inferred caprock permeability class. The calculation 

results at r = 100 m are shown in Figure S2 of Appendix 2B. As expected, for all the 

cases considered, the lower the value of ΔpI_measured, the higher the probability that the 

caprock is permeable. Furthermore, for a given value of ΔpI_measured the predicted 

most likely (dominant) caprock permeability class remains the same across monitoring 

locations. However, the location can affect the predicted probability of different caprock 

permeability classes.  

The effects of a doubled injection rate and reduced uncertainty are summarized in 

Figure 3.6a and b, respectively, for classification of CPC’s as a function of 

ΔpI_measured, and in Figure 3.7a and b, respectively, for the statistical power to infer a 

permeable caprock (kc > 1 mD) at different caprock permeability values. The base case 

monitoring location (r = 500 m) and medium measurement error are assumed, with 

pressure measured at t = 5 year. Comparing the curves in Figure 3.6a to those in Figure 

3.3b suggests that doubling the injection rate has an effect on the predicted probabilities 

of different CPC’s as a function of ΔpI_measured. The green curve for the impermeable 

CPC (Figure 3.6a) starts to decrease at a higher value of ΔpI_measured. Likewise, a 

doubling of the injection rate yields an increase in the statistical power for inferring a 
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permeable caprock. This is as would be expected – increasing the injection rate increases 

the likelihood of leakage and a lower ΔpI_measured, yielding a more likely detection of a 

permeable caprock. Halving the uncertainty in reservoir properties in Table 3.2 yields 

significant differences in results, with tighter CPC curves exhibited in Figure 3.6b 

(compared to Figure 3.3b), implying greater resolution of the CPC for a given value of 

ΔpI_measured. As a result, the statistical power to properly detect a permeable caprock 

increases significantly for kc > 100 mD (see Figure 3.7b).  
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Figure 3.5 Posterior distribution of caprock permeability class monitored with medium 
measurement error (c.v. =0.3) a) at t = 1 year; b) at t = 10 year. 
ΔpI(measured) is the measured pressure buildup in the injection zone. 
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b) 

   

Figure 3.6 Posterior distribution of caprock permeability class at r = 500 m, t = 5 year and 
medium measurement error (c.v. = 0.3) a) at doubled injection rate (Q = 2 
MT-CO2/yr); b) at reduced reservoir uncertainty. ΔpI(measured) is the 
measured pressure buildup in the injection zone. 
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b) 

    

Figure 3.7 Comparison of the detection power for a) doubled injection rate case with 
baseline injection rate case; b) reduced half reservoir uncertainty case with 
assumed reservoir uncertainty case at r = 500 m, t = 5 year, a = 0.05, and 
medium measurement error (c.v. = 0.3).  

101 102 1030

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Caprock Permeability (µD)

Pr
ob

ab
ilit

y 
of

 L
ea

ka
ge

 D
et

ec
tio

n

Double Injection Rate; c.v.=0.3 and alpha=0.05

 

 

Baseline Injection Rate (Q=1 MT/yr)
Double Injection Rate (Q=2 MT/yr)

Moderate High Very High

101 102 1030

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Caprock Permeability (µD)

Pr
ob

ab
ilit

y 
of

 L
ea

ka
ge

 D
et

ec
tio

n

Reduce Reservoir Unceratinty; c.v.=0.3 and alpha=0.05

 

 

Assumed Uncertainty Case
Half Uncertainty Case

Moderate High Very High



 
 

65 

3.5 DISCUSSION 

The principal purpose of this paper is to provide a proof of concept for 

statistically-based CO2 leak detection using pressure monitoring supported by reservoir 

modeling.  In addition, we have elucidated the factors that affect the inferences that can 

be made using the method. Reducing the uncertainty in reservoir properties is shown to 

allow caprock permeability classification to be made with greater resolution and power. 

At CO2 sequestration sites, reservoir properties are usually quantified by site 

characterization activities (Chadwick et al. 2004; Chiaramonte et al. 2007). In addition to 

traditional site characterization techniques, including geological mapping, geophysical 

imaging, core analyses and hydraulic well testing, data collected during the initial CO2 

injection from monitoring techniques, such as crosswell seismic imaging and sampling 

fluid at an observation well, can be employed to better characterize reservoir properties 

(Doughty et al. 2007). Combining analysis of the potential for these characterization 

efforts to reduce uncertainty in site properties with statistical evaluation of ongoing 

monitoring, such as those presented in this study, can help to better quantify the value of 

information achieved by better site characterization.  

Whether these results indicate that the sole use of pressure monitoring for leak 

detection at actual sites will be insufficient remains to be seen, though further application 

of this method with more sophisticated reservoir models and site assumptions should 

allow this question to be explored with greater insight.  Further analysis should also 

consider the joint application of multiple monitoring methods and tools, since a 

combination of methods will likely result in improved power.  Complementary 

monitoring techniques, such as seismic monitoring, surface deformation monitoring, 
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tracer monitoring, and groundwater chemistry monitoring are promising candidates to be 

employed for this purpose.  

3.6 CONCLUSIONS 

A Bayesian classification methodology is developed to infer the caprock 

permeability class, as a surrogate for potential CO2 leakage at a geologic sequestration 

site, using the expected distribution of pressure increases in the injection zone for 

permeable vs. impermeable caprock cases. The detection power of pressure monitoring is 

evaluated using a Bayesian formulation that considers uncertainty in site conditions, 

Monte Carlo simulation results for modeled injection zone pressure profiles, and 

measurement errors for the corresponding pressure measurements. The results indicate 

that pressure monitoring alone is not sufficient to detect a permeable caprock for the 

system considered in this study, except for very high caprock permeability values. Time 

has little impact on the inferred caprock permeability class and the detection power of 

pressure monitoring. The injection rate has an influence on the predicted caprock 

permeability class and the detection power of the simulated pressure monitoring. Higher 

confidence in the predicted caprock permeability class and a significant improvement in 

the statistical detection power for a leaky caprock can be achieved by reducing the 

uncertainty in reservoir properties through further site characterization. Other monitoring 

techniques, such as seismic monitoring, surface deformation monitoring and groundwater 

chemistry monitoring, may need to be combined with pressure monitoring to conduct 

CO2 leakage detection monitoring with high confidence. 
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Chapter 4: Statistical Performance of CO2 Leakage Detection using 
Seismic Travel Time Monitoring 

4.1 INTRODUCTION 

It is estimated that the atmospheric carbon has increased by 240±10 PgC between 

1750 and 2011 (Ciais et al. 2013). Most of the increase is due to emissions from fossil 

fuel combustion and cement production (Ciais et al. 2013). Geological carbon 

sequestration in which CO2 is injected and remains permanently stored in a subsurface 

formation is considered a promising initial option to slow or reduce global atmospheric 

CO2 concentrations (USDOE 2010). 

Monitoring for possible CO2 leakage is an important part of a safe and effective 

geological sequestration program (USDOE 2009). An overview of available monitoring 

techniques is provided in the report of U.S. Department of Energy on Monitoring, 

Verification, and Accounting of CO2 Stored in Deep Geologic Formations (USDOE 

2009). Monitoring techniques can be categorized into atmospheric monitoring methods, 

near-surface monitoring methods and deep-subsurface monitoring methods based on the 

depth where these techniques are deployed (Benson & Myer 2002; USDOE 2009). The 

performance of near-surface monitoring techniques, including soil CO2 flux 

measurements and tracer measurements, has been evaluated by Yang et al. using a 

Bayesian belief network approach (Yang, Mitchell J Small, et al. 2011; Yang, Mitchell J. 

Small, et al. 2011; Yang et al. 2012). Pressure monitoring, a widely used subsurface 

monitoring technique, has also been extensively studied (Wang & Small 2014; Azzolina 

et al. 2014; Birkholzer et al. 2009; Chabora & Benson 2009; Sun, Zeidouni, et al. 2013; 

Sun, Nicot, et al. 2013). A methodology for detecting CO2 leakage through abandoned 

wells was developed using pressure and surface-deformation measurements (Jung et al. 
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2013). Song et al. (Song et al. 2014) studied the monitoring feasibility of a surface wave 

seismic method and concluded it to be a challenge to detect abnormalities using this 

method alone. It is generally found that the individual monitoring techniques studied are 

unlikely to provide sufficient statistical power for the CO2 leakage detection task, so that 

multiple monitoring techniques may need to be utilized together at a site (Yang, Mitchell 

J Small, et al. 2011; Yang, Mitchell J. Small, et al. 2011; Wang & Small 2014; Azzolina 

et al. 2014). Our study focuses on the performance and detection power of a particular 

deep-subsurface method, seismic monitoring above the reservoir caprock.    

Seismic monitoring has been commonly applied in oil and gas reservoir 

characterization and for monitoring changes in reservoir rock properties remotely 

(Khatiwada et al. 2012). It has also been implemented in several pilot CO2 sequestration 

sites, such as the Frio Formation near Houston and the Penn West CO2-EOR site (Daley 

et al. 2007; Alshuhail & Lawton 2007; Silver et al. 2007). Different seismic monitoring 

methods, including time-lapse 2D or 3D surface seismic surveys, borehole vertical 

seismic profiling and cross-well seismic monitoring, have been employed at sequestration 

sites (Alshuhail & Lawton 2007; Daley et al. 2007; Silver et al. 2007; Couëslan et al. 

2009). The seismic attributes that can be measured include seismic velocity, travel time, 

amplitude and impedance (Alshuhail & Lawton 2007). In our study, predicted changes in 

seismic velocity and travel time after a CO2 leakage event occurs are considered.  

Extensive studies have been undertaken to model CO2 leakage from sequestration 

sites. The governing equations controlling these processes are the mass and energy 

balance equations, which can be solved analytically under simplified assumptions or 

numerically by space and time discretization. Nordbotten et al. (Nordbotten et al. 2009) 

developed analytical solutions for modeling CO2 leakage through multiple abandoned 
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wells. There have also been numerical simulators, such as TOUGH2 and STOMP, 

developed to model multi-phase flow in the subsurface (Pruess et al. 2012; White et al. 

2013). The application of the TOUGH2 simulator in modeling CO2 leakage has been 

demonstrated in several studies (Humez et al., 2011; Yang et al., 2011b; Zheng et al., 

2013).  

At geological sequestration sites, CO2 is injected into formations usually more 

than one thousand meters deep. Under the conditions encountered in sequestration 

reservoirs, CO2 is in the supercritical fluid phase. To model changes in seismic velocity 

and seismic travel time after fluid substitution, the Biot-Gassmann equation (Gassmann 

1951) is commonly used (Kumar 2006; Khatiwada et al. 2012). Gutierrez et al. (Gutierrez 

et al. 2013) studied the effects of CO2 injection on the seismic velocity of sandstone and 

confirmed that the Biot-Gassmann substitution theory can be used in modeling changes in 

the P-wave velocity of sandstone containing supercritical CO2 and saline water when the 

distribution of the two fluids in the pore space is accounted for in the calculation. 

Uncertainty quantification in modeling CO2 leakage is crucial in regulatory 

compliance assessment (Isukapalli et al. 1998). The uncertainty can be attributed to 

natural variability within the physical system; incomplete knowledge of model input 

parameters caused by insufficient or inaccurate site characterization; and simplifications 

of the physical model (Isukapalli et al. 1998). Oladyshkin et al. (Oladyshkin et al. 2011) 

developed a methodology for data-driven uncertainty quantification using the polynomial 

chaos expansion (PCE) and applied it to modeling CO2 storage in geological reservoirs. 

The PCE approach allows uncertainty analysis of complex and computationally intensive 

models to be conducted with relatively low computation time. In our study, the 

uncertainty of the calculated seismic travel time is analyzed using the arbitrary 
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polynomial chaos expansion method (Oladyshkin & Nowak 2012) combined with a 

traditional uncertainty analysis method, Monte Carlo simulation. The PCE model serves 

as a stochastic response surface for numerical simulation results from TOUGH2. 

The objective of this study is to evaluate the detection power of seismic travel 

time monitoring at different CO2 leakage rate levels. A simplified rock physics model is 

assumed for monitoring zones at sequestration sites. Changes in pore pressure and CO2 

saturation at different leakage levels are estimated using the TOUGH2 numerical 

simulator. The model results are then approximated by the polynomial chaos expansion 

(PCE). Monte Carlo uncertainty analysis is performed for seismic travel time using the 

Biot-Gassmann model and the estimated pressure and CO2 saturation from the fitted PCE 

models. A methodology for conducting the power analysis is developed and 

demonstrated based on the ability to statistically distinguish between P-wave travel time 

with and without pressure and CO2 saturation changes modeled to result from CO2 

leakage. The empirical distributions of detection power are obtained at four leakage 

levels from the Monte Carlo uncertainty analysis.  

4.2 MODELING CHANGES IN SEISMIC TRAVEL TIME 

4.2.1 Model Setup 

The monitoring zone where the seismic source and receiver are located is 

modeled as a homogenous layer at a depth of 1 km below the ground surface. The 

geometry of the simplified rock physics model for the monitoring zone is illustrated in 

Figure 4.1. The lithology type is sandstone with a density of 2600 kg/m3. The lateral 

extent of the model domain is 10 km and the thickness of the monitoring zone is 50 m. 

The model domain is discretized with a mesh of 80×5 (400) grids. The mesh is refined 
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around the leakage point with a grid width of 50 m. The grid width 1 km farther away 

from the leakage point is 200 m. The CO2 leakage point is at the center bottom of the 

monitoring zone. The temperature is constant at 45 °C and the gradient of initial 

hydrostatic pressure is 0.1 bar/m. The initial CO2 saturation in the pore space is assumed 

to be zero. The monitoring zone is initially filled with brine with a salinity of 0.15 in 

weight fraction. The point source of the seismic signal is located at the top of the 

monitoring zone and the receiver is directly below the source at the bottom of the 

monitoring zone. The source and the receiver thus form a vertical line perpendicular to 

the bottom. The signal recorded is the direct arrival from top to bottom of the monitoring 

zone. The horizontal distance between the receiver and the leakage point is x, which is 

assumed to be either 0 or 500 m, respectively in this study. The permeability, porosity 

and initial pressure at the top of the monitoring zone are uncertain input parameters with 

empirical distributions defined in section 4.3.1. The symbols and values for parameters of 

the modeled monitoring zone are summarized in Table 4.1. 

 

 

Figure 4.1 Geometry of the simplified rock physics model for the monitoring zone. 
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Table 4.1 Symbols and values for parameters of the modeled monitoring zone. 

Parameter Symbol Value 
Depth below the ground surface 

(m) H 1000 

Thickness (m) h 50 
Temperature (oC) T 45 

Initial pressure (MPa) P_initial Uncertain 

Permeability (mD) k Uncertain 
Porosity (%) φ Uncertain 

Initial CO2 saturation Sg_initial 0 

Density of rock (kg/m3) ρ 2600 

Salinity of brine (weight fraction) S 0.15 
CO2 leakage rate (tonnes/year) LR 10, 50, 100 and 150 

Distance of monitor from leakage 
point (m) x 0 or 500 

 

4.2.2 Calculation of Seismic Velocity and Travel Time 

Based on the laboratory study of rock samples conducted by Wang et al. (Wang et 

al. 1998), changes in seismic velocity are mainly due to changes in pressure and CO2 

saturation in the pore space. The pressure and CO2 saturation for the no leakage case and 

the four leakage rate levels (i.e. small, moderate, large and very large) are estimated using 

the TOUGH2/ECO2N module (Pruess 2005). The CO2 leakage rates that correspond to 

the four leakage levels are 10 tonnes/year, 50 tonnes/tear, 100 tonnes/year and 150 

tonnes/year. The small leakage level (i.e. 10 tonnes/year) represents a scenario where 1% 

of injected CO2 is leaking from a storage reservoir containing 105 tonnes of CO2 over 100 

years. 

Seismic velocity can be estimated using the moduli and density of the rock: 

𝑽𝒑 =
𝑲𝒔𝒂𝒕  !  

𝟒
𝟑𝝁

𝝆𝒔𝒂𝒕
  ( 4.1 ) 
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𝑽𝒔 =
𝝁
𝝆𝒔𝒂𝒕

   ( 4.2 ) 

where Vp and Vs are the P-wave and S-wave velocity; Ksat and 𝜇 are the bulk and 

shear moduli of the rock; and 𝝆𝒔𝒂𝒕 is the density of the rock. 

The bulk modulus of a saturated rock is computed using the Gassmann equation 

(Gassmann, 1951): 

𝐾!"#   =   𝐾!"#$%   +   
!    !    

!!"#$%
!!"#$%&

!

!
!!"

    !     !  !  !
!!"#$%&

    !    
!!"#$%
!!"#$%&
!

  ( 4.3 )   

where 𝐾!"# ,𝐾!"#$% ,𝐾!"#$%&   𝑎𝑛𝑑  𝐾!" are the bulk moduli of the saturated rock, 

porous rock frame, mineral matrix and pore fluid, respectively. 𝜑 is the porosity of the 

rock as a fraction. The shear modulus is held constant during the fluid substitution in the 

Gassmann theory. The bulk and shear moduli of the rock frame are estimated using the 

Hertz-Mindlin contact theory for consolidated rock and the Hashin-Shtrikman bounds 

(Mavko et al. 2009; Carcione et al. 2006). The equations are included in Appendix 2. The 

density of the rock is calculated with the volume averaging equation: 
𝜌!"#   =   𝜑𝜌!"   +    1− 𝜑 𝜌!"#$%&  ( 4.4 ) 

where 𝜌!"   𝑎𝑛𝑑  𝜌!"#$%& are the density of the fluid phase and the density of the 

mineral matrix, respectively. 

For a formulation and Matlab codes that implement the Gassmann fluid 

substitution theory, the readers are referred to Kumar (2006). 

Once the gridded fields of seismic velocities are determined, the direct travel time 

along the vertical wave path from top to bottom is computed as: 
𝑡 =   !

!
!
!   𝑑𝑧  ( 4.5 ) 

where 𝜈 is the seismic velocity and h is the thickness of the monitoring zone. 
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4.3 UNCERTAINTY QUANTIFICATION AND POWER ANALYSIS 

The uncertainty of the seismic travel time is estimated using the Monte Carlo 

(MC) method. As the computation time of the TOUGH2 simulation is too large to 

directly implement the MC method with a sufficient sample size, a stochastic response 

surface using the polynomial chaos expansion is fitted to the TOUGH2 outputs (i.e. 

pressure and CO2 saturation), allowing more rapid MC evaluation of this surrogate model.  

4.3.1 Stochastic Response Surface Method 

The stochastic inputs in the uncertainty analysis are permeability, porosity and 

initial pressure at the top of the monitoring zone. The empirical distributions of 

permeability and porosity are obtained from the U.S. National Petroleum Council (NPC) 

database, which contains the raw data for over one thousand reservoirs (NPC 1984). The 

initial pressure is assumed to be independent of the permeability and porosity pairs. 

Scatter plots of permeability vs. initial pressure data and porosity vs. initial pressure data 

in the NPC database are provided in Appendix 3. Although the NPC database also 

contains initial pressure data for reservoirs, they are at various depth and lithology types. 

In our model setting, the top of the monitoring zone is fixed at a depth of 1 km and the 

lithology type of the monitoring zone is sandstone. Therefore, a synthetic dataset for 

initial pressure at a depth of 1 km and sandstone reservoirs is generated based on the 

initial pressure data in the NPC database. The distribution of initial pressure is assumed 

to be a truncated normal with a mean of 9.68 MPa and a standard deviation of 3.94 MPa 

before the truncation. The lower and upper limits of the truncated normal distribution are 

1.93 MPa and 17.42 MPa, respectively. The procedure for generating the synthetic 

dataset for initial pressure from the truncated normal distribution is shown in Appendix 3. 

Figure 4.2 illustrates the empirical distributions of the three uncertain input parameters. 



 
 

75 

 

 

 

Figure 4.2 Histograms of stochastic inputs: a) Permeability; b) Porosity; and c) Initial 
pressure. 
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The pressure and CO2 saturation outputs from the TOUGH2 simulation at each 

leakage level are approximated by the polynomial chaos expansion (PCE) on the set of 

uncertain input parameters {𝜔!}!!!!  given by: 
𝑦 =

𝑎! + 𝑎!!!
!!!! Γ! 𝜔!! +

𝑎!!!!!!
!!!! Γ! 𝜔!!,𝜔!! + 𝑎!!!!!!!!

!!!! 𝛤! 𝜔!!,𝜔!!,𝜔!! +⋯!!
!!!!

!
!!!!

!
!!!!   ( 4.6 ) 

where y is an output (either pressure or CO2 saturation) of the TOUGH2 model; 

𝑎!!…are coefficients to be estimated; and the 𝛤! 𝜔!!,,… ,𝜔!"  are multidimensional 

polynomial basis functions that are orthogonal in the input space. 

The multidimensional polynomial basis functions 𝛤! 𝜔!!,,… ,𝜔!"  are constructed 

using the arbitrary polynomial chaos expansion (aPC) approach of Oladyshkin and 

Nowak (2012). The set of aPC basis functions is constructed from the moments of 

uncertain input variables. The equations used to construct the aPC basis are provided in 

Appendix 3. The aPC approach allows the use of empirical datasets to represent input 

uncertainties, which avoids errors introduced by fitting standard parametric statistical 

distributions to empirical datasets. The coefficients (𝑎!!,…) of the polynomial basis can be 

estimated by the probabilistic collocation method (Tatang et al. 1997; Li & Zhang 2007) 

or a statistical regression method (Isukapalli et al. 1998; Zhang & Sahinidis 2013). 

In this study, a third-order polynomial expansion function is chosen to 

approximate the TOUGH2 outputs. As there are three uncertain input parameters (n=3) 

and the order of the expansion is three (d=3), the total number of terms (M) in the 

polynomial expansion function is 20, according to the combinatory formula: 
𝑀 = !!! !

!!  !!
  ( 4.7 ) 
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The coefficients of the polynomial basis are estimated using the probabilistic 

collocation method (Tatang et al., 1997), which requires evaluating the TOUGH2 model 

with M different sets of uncertain input parameters {𝜔!}!!!!  that are called collocation 

points. The collocation points are selected from the high probability roots of the (d+1)th 

(i.e. fourth in this study) order orthogonal polynomial for each uncertain input parameter. 

At each leakage level, 20 runs of the TOUGH2 model are needed to solve the 20 

coefficients in the polynomial expansion function. The PCE models are constructed at 

each element in the model domain for each output variable (i.e. pressure and CO2 

saturation), resulting in a total of 80×5 ×2 = 800 polynomial functions at each specific 

time and leakage level. 

4.3.2 Monte Carlo Uncertainty Analysis 

Once the PCE models are constructed, the seismic velocity at each element in the 

model domain can be calculated at a relatively low computational cost, which facilitates 

Monte Carlo uncertainty analysis. For each set of uncertain input parameters introduced 

in section 4.3.1, combined with the fixed parameters in Table 4.1, the direct seismic 

travel time from the top to bottom of the formation at locations x=0 m and 500 m are 

calculated for the no leakage case and the four leakage levels, at t=5, 10 and 50 years, 

respectively. The empirical distributions of changes in seismic travel time (Dt) at four 

leakage levels are obtained by subtracting the travel time for the no leakage case (T0) 

from the travel time at each leakage level (Ti, i=1,4). 
𝐷𝑡 = 𝑇! − 𝑇!  ( 4.8 ) 

where i = 1 for small leak, 2 for moderate leak, 3 for large leak and 4 for very 

large leak 
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4.3.3 Power Analysis 

To assess the power of CO2 leakage detection using seismic travel time, a 

statistical hypothesis test is assumed to be performed on measured changes in travel time 

(Dtm) at each leakage level. The null and alternative hypotheses are given by: 
𝐻!:𝐷𝑡! ≤ 0   𝑛𝑜  𝑙𝑒𝑎𝑘  

𝐻!:𝐷𝑡! > 0   𝑎  𝑙𝑒𝑎𝑘𝑎𝑔𝑒  𝑒𝑣𝑒𝑛𝑡  𝑜𝑐𝑐𝑢𝑟𝑠   ( 4.9 ) 

As travel time changes of 0.2 to 1.0 ms can be observed using a continuous 

active-source seismic monitoring technique, (Daley et al. 2007), the standard deviations 

of measurement errors of the seismic travel times (T0 and Ti) are assumed to be 0.2 ms in 

the hypothesis test, corresponding to a coefficient of variation of 0.2 to 1 in the study by 

Daley et al.. The distribution of measured seismic travel time is thus assumed to be 

normal with a mean of the simulated value from the Monte Carlo uncertainty analysis and 

a standard deviation of 0.2 ms, which is the assumed standard deviation of measurement 

error (𝜎!). Therefore, the measured changes in seismic travel time (Dtm) at each leakage 

level also follow the normal distribution: 
𝑇!,!  ~  𝑁(𝑇!,!,𝜎!) 
𝑇!,!  ~  𝑁(𝑇!,!,𝜎!) 

𝐷𝑡! = 𝑇!,! − 𝑇!,!   ~  𝑁 𝜇,𝜎   ( 4.10 ) 
where: 𝜇 = 𝑇!,! − 𝑇!,! 
            𝜎 = 2×𝜎! 

The hypothesis test (Equation 4.9) tests whether the mean of the measured 

changes in travel time (Dtm) is statistically significantly different from zero. If it is, the 

null hypothesis (i.e. the no leak case) is rejected and we conclude that the measured travel 

times provide sufficient evidence of a leakage event. The critical value of Dtm for the 

hypothesis test is chosen to be Dtcri=2σ, corresponding to a significance level of about 

0.02 for the test of hypothesis. The power of the hypothesis test for CO2 leakage detection 

is computed as the probability that Dtm is larger than Dtcri when a leakage event occurs (at 
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each of the four leakage levels). Note that a group of measurements of changes in seismic 

travel time is assumed to be made, after which the mean of the observed values will be 

compared to Dtcri. However, since these measurements (and their errors with respect to 

leakage effects and inference) are expected to be highly correlated, the effective sample 

size is conservatively assumed to be one. 

4.4 RESULTS AND DISCUSSION 

4.4.1 Predicted Seismic Velocity in Model Domain 

Seismic velocities, including the P-wave velocity and the S-wave velocity, at each 

element in the model domain are calculated using the predicted pressure and CO2 

saturation values from the PCE models, combined with the Biot-Gassmann model for 

fluid substitution introduced in section 4.2.2. Figure 4.3 shows the model results for the 

no leak case and the moderate leakage level at t=10 year. In this figure, the values of the 

three uncertain input parameters are as follows: permeability = 100 mD, porosity = 15% 

and initial pressure = 9.5 MPa. The results at t=1, 5, and 50 year and at different leakage 

levels are shown in Appendix 3. 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 4.3 Sample model results of P-wave (a and c) and S-wave (b and d) seismic 
velocities for the no leak case (a and b) and the moderate leakage level (c 
and d) at t=10 year (𝑘=100 𝑚D, 𝜑=15%, 𝑃_𝑖𝑛𝑖𝑡𝑖𝑎𝑙=9.5 𝑀𝑃𝑎). 

The velocity of the P-wave decreases by about 7.5% around the leakage point at 

the moderate leakage level after 10 years of leakage. The effect of the decreased P-wave 
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velocity propagates upwards in the center towards the top of the monitoring zone. For the 

areas at the bottom of the monitoring zone but far away from the center, the P-wave 

velocity decreases by about 3.7%. Discontinuities in the P-wave velocity occur at 

distances beyond 1000 m from the point of leakage; however these do not influence the 

estimates that follow, as the estimates are made for monitors located at x=0 or x=500 m 

from the leakage point. In general, as the leakage level and time increases, the drop in the 

P-wave velocity gets larger and affects larger areas in the monitoring zone. The decrease 

in P-wave velocity is a combined effect of pore pressure and CO2 saturation increase after 

CO2 leakage occurs in the monitoring zone. 

The S-wave velocity changes little, increasing slightly around the leakage point 

by about 0.8% at the moderate leakage level after 10 years of leakage. The maximum 

increase in S-wave velocity at all the leakage levels considered in this study is about 1% 

(at the very large leakage level). The effect of CO2 saturation on the changes in S-wave 

velocity is caused mainly by the change in the density of the pore fluid. The shear 

modulus of the rock is not affected by CO2 saturation because the shear modulus of fluids 

is zero. As the changes in S-wave velocities are too small to serve as a basis for leakage 

detection, the S-wave travel time is excluded from further analysis. 

4.4.2 Detection Power using P-wave Travel Time 

Monte Carlo uncertainty analysis is performed for the P-wave travel time along a 

vertical wave path from the top to the bottom of the formation (Figure 4.1) at locations 

x=0 and 500 m respectively, from the point of leakage. The input parameter space is 

divided into four regions based on permeability and porosity ranges, as in practice, the 

permeability and porosity ranges of the monitoring zone could be known in advance by 

site characterization. Four primary groups are identified in the input permeability-
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porosity space from the NPC database, denoted by different colors in Figure 4.4. In 

addition, initial pore pressures are sampled independently for each case from the assumed 

truncated normal distribution shown in Figure 4.2c. The group of points in red represents 

inputs with low porosity. The groups of points in green, orange and purple represent 

inputs with relatively high porosity, and with low, moderate and high permeability, 

respectively. Figure5-7 show the resulting computed empirical cumulative distribution 

function (CDF) of detection power using the P-wave travel time at the location x=0 m 

(center of the monitoring zone) for the four regions in the input permeability-porosity 

space at t = 5, 10 and 50 year, respectively. The results for the location x=500 m are 

shown in Appendix 3. 

 

Figure 4.4 Scatter plot of permeability vs. porosity input parameters used in the Monte 
Carlo simulation. Each point represents an observation in the U.S. National 
Petroleum Council (NPC) database. The observations are classified into four 
regions of the parameter space as indicated by color. 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 4.5 Empirical CDF of detection power of P-wave travel time test of hypothesis 
(Equation 4.9, at significance level 𝛼=0.02) at four leakage levels, t=5 year, 
x=0 m and at a) low porosity region (red points in Figure 4.4); b) high 
porosity and low permeability region (green points in Figure 4.4); c) high 
porosity and moderate permeability region (orange points in Figure 4.4) and 
d) high porosity and high permeability region (purple points in Figure 4.4). 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 4.6 Empirical CDF of detection power of P-wave travel time test of hypothesis 
(Equation 4.9, at significance level 𝛼=0.02) at four leakage levels, t=10 
year, x=0 m and at a) low porosity region (red points in Figure 4.4); b) high 
porosity and low permeability region (green points in Figure 4.4); c) high 
porosity and moderate permeability region (orange points in Figure 4.4) and 
d) high porosity and high permeability region (purple points in Figure 4.4). 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 4.7 Empirical CDF of detection power of P-wave travel time test of hypothesis 
(Equation 4.9, at significance level 𝛼=0.02) at four leakage levels, t=50 
year, x=0 m and at a) low porosity region (red points in Figure 4.4); b) high 
porosity and low permeability region (green points in Figure 4.4); c) high 
porosity and moderate permeability region (orange points in Figure 4.4) and 
d) high porosity and high permeability region (purple points in Figure 4.4). 
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It is evident that the detection power of the test of hypothesis for decreases in the 

P-wave travel time differs for different regions of the permeability and porosity input 

space. The P-wave travel time test exhibits good power for CO2 leakage detection if the 

permeability and porosity of the monitoring zone are relatively high (purple curves in 

Figure 4.5-7d). The detection power using the P-wave travel time test is very low for 

monitoring zones with low porosity, no matter the value of the permeability value (red 

curves in Figure 4.5-7a). For monitoring zones with porosity larger than 1% (green, 

orange, and purple regions in Figure 4.4), the detection power using the P-wave travel 

time test is generally higher for a high permeability formation than for a low permeability 

layer. The detection power increases with increasing time since the leakage occurs. For 

example, comparing Figure 4.5c to Figure 4.7c, the probability of achieving a detection 

power larger than 0.8 at the small leakage level increases from 0.4 (at t=5 year) to about 

0.82 (at t=50 year) if the permeability and porosity ranges of the monitoring zone fall into 

the orange region in Figure 4.4. As shown in Figure 4.7d, high detection power using the 

P-wave travel time test can be achieved for monitoring zones with high permeability at 

t=50 year. Comparing the results at x=0 m to those at x=500 m, it is seen that the 

detection power is higher at the location closer to the leakage point (x=0 m) than at the 

location farther away (x=500 m). The detection power does not change much for different 

CO2 leakage levels at the location x=0 m. However, at the location x=500 m, the 

detection power more notably increases as the CO2 leakage level increases (see Appendix 

3). 

4.5 CONCLUSIONS 

In this work, the power of CO2 leakage detection using a statistical analysis and 

test of P-wave travel times is assessed with a simplified rock physics model for the 
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monitoring zone. The empirical distributions of detection power using the P-wave travel 

time for four regions in the permeability-porosity input space at four leakage levels are 

obtained from the Monte Carlo uncertainty analysis with a stochastic response surface 

method. The model results predict that the P-wave velocity decreases by about 7.5% 

around the leakage point at the moderate leakage level after 10 years of leakage. The 

detection power using the P-wave travel time measurements and test alone is generally 

not high enough for small leakage events, unless the porosity and the permeability of the 

monitoring zone are high, and/or a long period of time has elapsed since the leakage 

occurred. The results indicate that there is an advantage to choosing a monitoring zone 

with high porosity and high permeability for the purpose of monitoring CO2 leakage with 

seismic wave velocity detection. The detection power is higher when the leak occurs near 

the location of the monitoring system, suggesting the possible need for multiple 

monitoring locations when the reservoir and the monitoring zone are large. As the likely 

pathways for concentrated CO2 leakage at sequestration sites include abandoned wells 

and faults, the seismic monitoring equipment may be most effectively deployed along the 

abandoned wells or above the faults (if any are present). As the sole measurement of the 

P-wave travel time cannot provide sufficient power for CO2 leakage detection in many 

cases, measurements from other monitoring techniques, such as pressure monitoring and 

near-surface monitoring will likely need to be combined at sequestration sites to increase 

the probability that leakage events are detected and addressed in a timely manner. 
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Chapter 5: Conclusions 

5.1 PREDICTING CO2 SOLUBILITY IN BRINE 

The accuracy of CO2 solubility prediction at the conditions of carbon storage 

reservoirs can be improved by a multimodel predictive system (MMoPS), which utilizes 

nine individual models in an effective manner. 

The generated classification tree indicates that some sub-models perform well for 

a specific region of T-P-X space, but cannot provide good estimation for other regions. 

Three CO2 solubility measurements with high prediction errors in the MMoPS 

model are identified. Uncertainties in CO2 experimental measurements also transfer to the 

uncertainties in the estimated performance of CO2 solubility predictive models. More 

CO2 solubility experimental measurements are necessary to verify the reliability of 

different experimental studies. The lack of experimental data in specific regions of the T-

P-X space also increases the uncertainty of CO2 solubility predictions. Further solubility 

experiments with the greatest potential to reduce the overall- and region-specific 

accuracy of the CO2 solubility prediction could be identified from MMoPS. Predicting 

CO2 solubility more accurately should improve our ability to estimate CO2 storage 

potential and determine the fate and transport of CO2 leakage. 

5.2 CO2 LEAKAGE DETECTION USING PRESSURE MEASUREMENTS 

CO2 leakage level can be characterized through an assessment of the integrity and 

permeability of the caprock inferred from pressure measurements in the injection zone 

using a Bayesian approach. 

The detection power of pressure monitoring is evaluated using the expected 

distribution of pressure increases in the injection zone for permeable vs. impermeable 

caprock cases. The results indicate that pressure monitoring alone is not sufficient to 
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detect a permeable caprock for the system considered in this study, except for very high 

caprock permeability values. 

Time has little impact on the inferred caprock permeability class and the detection 

power of pressure monitoring. The injection rate has an influence on the predicted 

caprock permeability class and the detection power of the simulated pressure monitoring. 

Higher confidence in the predicted caprock permeability class and a significant 

improvement in the statistical detection power for a leaky caprock can be achieved by 

reducing the uncertainty in reservoir properties through further site characterization. 

5.3 CO2 LEAKAGE DETECTION USING SEISMIC TRAVEL TIME MEASUREMENTS 

The power of CO2 leakage detection is assessed using a statistical analysis and 

test of P-wave travel times in the monitoring zone. 

The detection power using the P-wave travel time measurements and test alone is 

generally not high enough for small leakage events, unless the porosity and the 

permeability of the monitoring zone are high, and/or a long period of time has elapsed 

since the leakage occurred. Therefore, there is an advantage to choosing a monitoring 

zone with high porosity and high permeability for the purpose of monitoring CO2 leakage 

with seismic wave velocity detection. 

The detection power is higher when the leak occurs near the location of the 

monitoring system, suggesting the possible need for multiple monitoring locations when 

the reservoir and the monitoring zone are large. As the likely pathways for concentrated 

CO2 leakage at sequestration sites include abandoned wells and faults, the seismic 

monitoring equipment may be most effectively deployed along the abandoned wells or 

above the faults (if any are present). 
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5.4 FUTURE DIRECTIONS 

As the sole measurement of the pressure or seismic travel time cannot provide 

sufficient power for CO2 leakage detection in many cases, further investigations are 

needed for the performance of CO2 leakage detection using a monitoring network which 

combines the pressure and seismic monitoring, and/or other monitoring techniques, such 

as soil CO2 flux monitoring, surface deformation monitoring and groundwater chemistry 

monitoring. The optimization of the monitoring network also needs to be investigated to 

conduct CO2 leakage detection with high confidence and in a timely and cost-effective 

manner. 

Spatial heterogeneity at sequestration sites is not considered in this study. Further 

investigations are needed to model spatial variations in the input parameters, such as 

permeability and porosity. Candidate statistical methods include spatially autoregressive 

models, multilevel models, geographically weighted regression, switching regressions 

and spatial stochastic modeling. 

For seismic monitoring, the change in P-wave travel time from the top to the 

bottom of the monitoring zone is chosen as the indicator for CO2 leakage detection in this 

study. The detection power using other seismic attributes, such as changes in seismic 

velocities measured from acoustic-velocity logs, could be further investigated.
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Appendices 

APPENDIX 1: SUPPORTING INFORMATION FOR CHAPTER 2 
A.  
Table S-1: Models capable of calculating CO2 solubility in water or low temperature, low 
pressure conditions 

Model Validity Type 
Li and Nghiem (1986) 

 
 
 

Pure water and brine 
 

Peng-Robinson EOS for the gas 
phase and Henry’s law for the 

aqueous phase 

Nighswander et al. (1989) 353-473K (80-200oC), up to 
100 bar, Pure Water and 1 wt% 

NaCl solution 

Peng-Robinson EOS for the gas 
phase and an empirical Henry’s 
law constant correlation for the 

aqueous phase 
Chang and Coats et al. (1998) Pure water and Brine Empirical fitting 

Teng & Yamasaki (1998) 278-293K, 64.4-294.9 bar, Sea 
water 

Modified Henry’s law and 
Setchenow equation 

Enick and Klara (1990) 298-523K, 30-850 bar, Pure 
water and brine 

Empirical fitting 

Soreide and Whitson (1992) 423-623K, 0-1000 bar, Pure 
water and brine 

Modified Peng-Robinson EOS 

Carroll and Mather (1992): 4 
models 

below 373K, up to 100 bar 
(solubility of 2 mol%) 

EOS: Krichevsky-Kasarnovsky 
equation (based on Henry’ law) 

King et al. (1992) 1-500 bar, Pure water Henry’s law based on Redlich-
Kwong equation 

Pruess and Garcia (PG-CSM) 
(2002) 

298-373K (25-100°C), 0-600 
bar, Pure water 

 

Empirical fitting 

Spycher and Pruess (2003) 
 

285-373K, 0-600 bar, Pure 
water 

EOSa 

Duan and Sun (2003) 273-533K, 0-2000 bar, Pure 
water and brine 

EOS 

a Equation of State. 
 
 
B. Equations and Parameters in CO2 Solubility Predictive Models 
1. Duan	  and	  Sun	  (2006)	  Model	  
	  
	  

	  

(1.1)	  
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In the above equation, ,  and the dimensionless standard chemical potential,   

are calculated using the following equation developed by Pitzer et al. (1984). 
 

	  	  	   	  
(1.2)	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  	  	  	  	  

The parameters c1-c11 for ,   and   are listed in Table 2 of Duan & Sun (2003) 

paper. 

 
(1.3) 

              
The parameters C1, C2, C3,…C14, C15 are given in Table 1 of Duan et al. (2006) paper. 

 (1.4) 

 (1.5) 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  

 
Table S-2. Parameters for PH2O calculation 

Parameters for PH2O 
calculation value 

c1 -38.640844 
c2 5.8948420 
c3 59.876516 
c4 26.654627 
c5 10.637097 

 
Nomenclature 
m molality of components dissolved in water 

 mole fraction of CO2 in vapor phase 

 fugacity coefficient ofCO2 
P total pressure of the system in bar 

2CO Naλ − 2CO Na Clξ − −
2COu

RT

2
1 2 3 4 5 6

2 2
7 8 9 10 11

( , ) / / (630 )

ln / / (630 ) / (630 ) ln
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c P T c P T c P T c P T c T P

= + + + + − + +

+ + + − + − +
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2COu
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( )ln

CO
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 standard chemical potential of CO2 in liquid phase 
R universal gas constant 
T absolute temperature in Kelvin 

 interaction parameter between CO2 and Na+ 

 interaction parameter between CO2 and Na+, Cl- 
 
2. Darwish	  and	  Hilal	  (2010)	  Model	  
	  
	  

	  

	  
(2.1)	  

	   	   	  

	  

	  
(2.2)	  

	   	   	  

	  
	   (2.3)	  

	   	   	  

	  
	  

(2.4)	  

	   	   	  
Nomenclature	  

	  
P	   pressure,	  bar	  
T	   temperature,	  K	  
Cg0	   Solubility	  of	  CO2	  in	  pure	  water	  
Cgs	   Solubility	  of	  CO2	  in	  brine	  
Kgs	   Setschenov	  constant	  in	  kg/mol	  
Kg0	   0.086	  mol	  CO2	  per	  kg	  H2O	  
P0	   50	  bar	  
m	   molality of NaCl in aqueous phase 

 
3. Enick	  &	  Klara	  (1990)	  Model	  
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(3.2)

	  

	   	  
	   (3.3)	  

	   	  
	   (3.4)	  

	   	  

	  
(3.5)

	  

Nomenclature	  

P	   pressure,	  MPa	  
T	   temperature,	  K	  

	   solubility,	  weight	  fraction	  in	  brine	  

	   solubility,	  weight	  fraction	  in	  pure	  water	  
TDS	   weight	  %	  

	   fugacity	  of	  CO2,	  MPa	  

	   mole	  fraction	  of	  CO2	  in	  the	  aqueous	  phase	  

	   molar	  volume	  of	  CO2	  at	  infinite	  dilution,	  cm3/mole	  

	   reference	  Henry’s	  constant	  

 
4. Barta and Bradley (1985) Model 
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	   (4.4)	  

	   	  

	   (4.5)	  

	   	  

	   (4.6)	  
   
 (Equation 4.6 for estimating  is adopted from Spycher and Reed, 1988) 
 
Nomenclature 
 P pressure, bar 
 T temperature, K 

 Henry’s law ratio (fugacity to molality) 
 gas fugacity in vapor phase relative to ideal gas standard state 

 molality of CO2 

 fugacity coefficient at temperature T and total pressure P 
 parameter for binary interaction between CO2 and ions 

 parameter for interactions of two neutral species with one ion 

 second virial coefficient for interaction of CO2 species with itself 
 
Table S-3.Regression Coefficients B0-B10 in Barta and Bradley (1985) Model (Barta and 
Bradley, 1985) 

Coefficient Estimate σa 
B0 13.85682 6.300 
B1 -1.172399 x10-2 0.0681 x10-2 
B2 -2.349329 x103 0.1316 x103 
B3 9.639938 25.41 
B4 -2.431955 x10-2 0.8018 x10-2 
B5 -1.194304 x103 0.5071 x103 
B6 2.056847 x10-5 0.5919 x10-5 
B7 -1.183187 0.5759 
B8 2.911457 x10-3 1.300 x10-3 
B9 1.544037 x102 0.8286 x102 
B10 -2.362693 x10-6 0.9536 x10-6 

a two times the standard error (95% confidence limit) 
 

2

( ) 2
, , 3 4 5 6/T

Na CO Cl B B T B T B TΔ = + + +

2

( ) 2
, , 7 8 9 10/T

Na CO Cl B B T B T B Tχ = + + +

2 2 2
,ln ( / / ) ( / / ) / 2T P a T b T c P d T e T f PΦ = + + + + +

,T PΦ

HK
f

2COm

,T PΦ

2

( )
, ,

T
Na CO ClΔ

2

( )
, ,

T
Na CO Clχ

2 2

( )
,

T
CO COλ
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5. Zuo & Guo (1991) Model 
 

 (5.1) 

  

 (5.2) 

  
 (5.3) 

  
 (5.4) 

  
 (5.5) 

 
is the smallest positive root of the following cubic equation: 

 (5.6) 

  
 (5.7) 

  
For molecular components (except water) 

 (5.8) 
  

 (5.9) 
  
For water:    F=0.689803     δ=0.269 

 (5.10) 

  
 (5.11) 

For ionic species: 
  (5.12)

 

   
  (5.13) 

   

                                          (5.14) 

   
  (5.15) 

   
  (5.16) 

   
  (5.17) 

   

ln ln lnEOS DHφ φ φ= +

[ ]
( ) ( )

RT a TP
v b v v b c v b

= −
− + + −

2[ ] ( ) / ( )a c c ra T RT P Tα=Ω

( / )b c cb RT P=Ω

( / )c c cc RT P=Ω

bΩ
3 2 2 3(2 3 ) 3 0b b bδ δ δΩ + − Ω + Ω − =

0.5 2( ) [1 (1 )]r rT F Tα = + −

20.452413 1.30982 0.295937F ω ω= + −

20.329032 0.076799 0.0211947δ ω ω= − +

2 23 3(1 2 ) 1 3a b bδ δ δΩ = + − Ω +Ω + −

1 3c δΩ = −

3(2 / 3) ab Nπ σ=

c b=

2 32.57012 aa N fπε σ= 6f =

8 0.5 1.5 6*(2.2789*10 )kε η α σ− −=

i ib x b= Σ

i ic x c= Σ
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(5.18) 

   
  (5.19) 

   
  (5.20) 

   
  (5.21) 

   
  (5.22) 

   
  (5.23) 

   
m1= 0.19235, m2= -93.953, Agw= 0.04532, Asg= -7.01 
NaCl-H2O interaction parameter ksw= -0.1556 
CO2-NaCl Asg= -7.01    (Li and Pitzer, 1986) 

 (5.24) 

  
 (5.25) 

  

 (5.26) 

  
 (5.27) 

  
 (5.28) 

 
Nomenclature 
P pressure, bar 
T temperature, K 
R universal gas constant 8.314 J/mole-K 
v molar volume 

 Avogadro’s number 6.02·1023 /mole 
 ionic diameter   Na+ 1.92 Å    Cl-‐  3.61  Å 
 number of electrons in an ion 
 polarizability of an ion    Na+ 0.18 Å3    Cl-‐  3.69  Å3 

 excess Gibbs energy at infinite pressure which is calculated from Margules model in this work 
x liquid phase mole fraction 

2 / ln( )VDW E Q da a dg
Q d∞

+
= −

−

0.5( ) (1 )VDW
i j i j ij

i j
a x x a a k= −∑∑

2 0.5[ ( ) / 4]d bc b c= + +

( ) / 2Q b b c= + +

E
i j ij

i j
g RT x x A∞ = ∑∑

1 2 /gwk m m T= +

2 0.5 2 1.50.5

0.5

2 21ln [ ln( ) ( )]
11 / 2

DH i iZ I Z IBIA
B BIB

φ
−+

= − +
++

20.5 i i
i

I x Z= ∑

2
0.5 1.5021 ( ) ( )

3
a

s

N d eA
M DkT
π

=

0.5
02150( / )B d DT=

3 5 2 8 378.54[1 4.579 10 ( 298.15) 1.19 10 ( 298.15) 2.8 10 ( 298.15) ]D T T T− − −= − ⋅ − + ⋅ − − ⋅ −

aN
σ
η
α
Eg ∞
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e unit electronic charge 
Z number of charges 
Ms molecular weight of solvent 
d0 solvent density 
k Boltzmann constant 
 
6. Soreide & Whitson (1992) Model 

 (6.1)
 

  

 (6.2) 

  

 (6.3) 

  
 (6.4) 

  
For CO2: 
Tc= 304.2 K; Pc= 73.8 bar; Tb= 194.7 K; Acentric factor, w: 0.2273 
For water: 
Tc= 647.3 K; Pc= 221.2 bar; Tb= 373.2 K; Acentric factor, w: 0.3434 
For pure compound (e.g. CO2 and water), 0.2<w<2.0: 

 (6.5)
 

  
 (6.6) 

 
For brine: 

 (6.7) 

  

 (6.8) 

  

 (6.9) 

  
 (6.10) 

  

 
(6.11) 

( )
( ) ( )

RT a TP
v b v v b b v b

= −
− + + −

0.0778 c

c

RTb
P

=

2 2

( ) 0.45724 c
c

c

R Ta T
P

=

( ) [ ( )]ca T a Tα=

1/2 1/21 (1 )rk Tα = + −

20.3746 1.5423 0.2699k w w= + −

1/2 1.1 31 0.4530[1 (1 0.0103 )] 0.0034( 1)r sw rT c Tα −= + − − + −

1

n

m i i
i

b x b
=

=∑

1 1

n n

m i j ij
i j

a x x a
= =

=∑∑

0.5( ) (1 )AQ AQ
ij i j i j ij

i j
a x x a a k= −∑∑

0.7505 0.9790.31092(1 0.15587 ) 0.2358(1 0.17837 )

21.2566exp( 6.7222 )

AQ
ij sw sw ri

ri sw

k c c T
T c

= − + + +

− − −
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  (6.12) 

  
 

Nomenclature 
P pressure, bar T temperature, K R gas constant, 83.14472 cm3 bar/(mole K) V molar volume, cm3/mole 

 brine salinity, mole/kg (molality) 
 reduced temperature ( ) 

Xi normalized mole fraction of aqueous phase Yi normalized mole fraction of non-aqueous phase  
7. Chang & Coats (1998) Model 

                                              
 for  (7.1) 

  

 (7.2) 

  

 (7.3) 

  

 (7.4) 

  

 (7.5) 

  

 (7.6) 

 
The values of coefficients ai, bi and ci are shown in the table below. 

Table S-4. Parameters ,  and in Chang and Coats Model (Chang et al., 1998) 
i    
0 1.163 0.965 1.28 
1 -16.63 -0.272 -10.757 
2 111.073 0.0923 52.696 

0.5( ) (1 )NA NA
ij i j i j ij

i j
a y y a a k= −∑∑ 0.1896NA

ijk =

swc

rT /r cT T T=

[1 sin( )]
2 1w
cPR aP b
cP

π
= −

+
0P P<

4
3

0

9( 10 )( 32)
5

i i
i

i
a a T−

=

= ⋅ ⋅ +∑

4
3

0

9( 10 )( 32)
5

i i
i

i
b b T−

=

= ⋅ ⋅ +∑

4
3 3

0

910 ( 10 )( 32)
5

i i
i

i
c c T− −

=

= ⋅ ⋅ +∑

1 2
0

1 2

2 sin ( )
2[1 sin ( )]

bp
c bπ

π

−

−
= ⋅

−

0.120.028 /[(9/5) 32]10 S T
b wR R− +=

ia ib ic

ia ib ic
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3 -376.859 -0.1008 -222.395 
4 524.889 0.0998 462.672 

 
 
Nomenclature 
P total pressure of CO2 and water, psia 
T temperature, oC 
S salinity of brine which is defined as the total dissolved salts in the solution in mass percent 
Rw solubility of CO2 in pure water, scf CO2/stb H2O 
Rb solubility of CO2 in brine, scf CO2/stb H2O 
 
Another density model is needed if the desired solubility of CO2 is in the unit of molality (mole/kg). 
A density model presented by Batzle and Wang is shown here. 

 
(7.7) 

  

 
(7.8) 

  
Where, T is temperature in oC, P is pressure in MPa. Sfrac is salinity in mass fraction (ppm/106) and 
ρw and ρb are pure water and brine density values, respectively, in g/cm3. 
 
8. Li & Nghiem (1986) Model 
Gas solubility in pure water 

 (8.1) 
  

 (8.2) 

  

 (8.3) 

  
 (8.4) 

  
and ( ) are calculated respectively from equations in Reid et al. (1977). 

for T’>90 oF: 
 (8.5) 

  
 (8.6) 

	  

2

6 2 3 2

5 3 2

1 10 ( 80 3.3 0.00175 489 2 0.016

1.3 10 0.333 0.002 )
w T T T P TP T P

T P P TP

ρ −

−

= + − − + + − +

− ⋅ − −

6{0.668 0.44 10 [300 2400
(80 3 3300 13 47 )]}

b w Sfrac Sfrac P PSfrac
T T Sfrac P PSfrac
ρ ρ −= + + + −

+ − − − +

*ln ln / ( )i i iH H v p RT∞= +

* 3 6

2

10 10ln 11.3021 10.6030( ) 1.20696( )i
s
w

H
f T T

= − + −

( ) 0.095 2.35( )ci i ci

ci ci

p v Tp
RT CT

∞

= +

0( ) /s s s s
w w w w wC h h p v RT v= − + −

s
wp

0 s
w wh h−

s s s
w w wf pφ= ⋅

5 ' 7 '2 10 '30.9958 9.6833 10 6.175 10 3.08333 10s
w T T Tφ − − −= + ⋅ − ⋅ − ⋅
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for	  T’≤	  90	  oF:	  

 (8.7) 

 (8.8) 
 
Where T is the temperature in K, and T’ is the temperature in oF. 
The gas phase is modeled with the Peng-Robinson EOS. The EOS interaction coefficient dij between 
water and CO2 was found to be temperature-dependent.  
dij=0.2  at T≤373K;   dij=0.49852-0.008(T),   at T>373K. 
Gas solubility in brines 

 (8.9)
 

 
Where is the Gibbs energy required to create a cavity in the solvent. is the molar Gibbs energy 
resulting from the interaction of the solute and the solvent molecules. vs is the molar volume of pure 
water. 
 

 (8.10) 

  

                                                      
 n=1,2,3

 
(8.11)

 

  

                                                      k=i, j (8.12) 
  

 (8.13) 

  

 (8.14) 

  
 (8.15) 

  
 (8.16) 

  
 (8.17) 

  
 (8.18)

 

  
 (8.19) 

   

1s
wφ =

' 1.8 459.67T T= −

ln ( ) ( )i s bi aiH v G G
RT RT RT

= +

biG aiG

2
* * 2 * 32 1 2

3 2
3 3 3

3 3 9ln(1 ) [ ]( ) ( )
1 1 2 (1 ) 6
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i i w i

G p
RT RT

θ θ θ π
θ σ σ η σ

θ θ θ
= − − + + + +

− − −
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n w j i

j

π
θ η ρ σ= ∑

* /k k wσ σ σ=

3
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2
* 3

* 3
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ijai w w i
w j ij

j iw w

G Nu N
RT T k kT

ε ρ απ π
η ρ σ

σ η
= − −∑

ij i jε ε ε=

* * *( ) / 2ij i iFσ σ σ= +

216280 / 141.75 / 1.2978F T T= − +

(1 ) /w s wMρ ω ρ= − %%

/Na Cl s NaClMρ ρ ωρ= = %%
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Where Mw and MNaCl are the molecular weight of water and NaCl, respectively; is the mass density 
of NaCl solution and is the weight fraction of NaCl in water. An accurate value  is required. In 
this paper, is estimated by Rowe and Chou model (1970). 
 

Table S-5. Parameters in Li and Nghiem Model (Li and Nghiem, 1986) 
 σ, nm ε/k,	  K 1024α, cm3/molecule 

Water 0.275 85.3 1.590 
Carbon Dioxide 0.332 300.0 2.590 
Methane 0.413 160.0 2.700 
Nitrogen 0.373 95.0 1.730 
Na+ 0.190 147.4 0.210 
Cl- 0.362 225.5 3.020 

Note: N = 6.02283 x 1023; µw = 1.84 x 10-18 (erg·cm)1/2; cm = 1 nm = 10-9m. 
 
Nomenclature 
Hi

* Reference Henry’s law constant 
 Molar volume at infinite dilution 

C cohesive energy density of water 
 Saturated vapor pressure of water at the temperature T 
 Molar volume of water at  and T 

 Enthalpy departure of liquid water at  and T 
 and
 

molecular diameter of solute I and of species j in the solvent 

 molecular diameter of pure water 
N Avogadro’s number 

 molar density of species j in the solvent 

 dipole moment of water 

 polarizability of solute i 
k Boltzmann’s constant 

 Parameter in equation 
T Temperature, K 
F unity 
 
9. Akinfiev and Diamond (2010) Model 

 (9.1) 

  

sρ%
ω% sρ%
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iv
∞

s
wp
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s
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0 s
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sbb
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 (9.2) 
 
Where, T is temperature in K. 

and are in the unit of mole/kg H2O. 
Duan & Sun (2006) model is employed to calculate solubility of CO2 in pure water ( ). 
 
 
C. Figures Referred to in Section 2.3 and 2.4 of the Main Text 

 
Figure S-1. Distribution of 173 experimental CO2 solubility observations in A) pressure-
temperature space and B) salt concentration – temperature space.
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Figure S-2. Distribution of best-performing models in pressure-temperature space at various salt concentrations: A) Low (≤1 
Molal), B) Moderate (1-3 Molal), and C) High (3-8 Molal). Models: A&D (modified): Akinfiev and Diamond coupled with 
Duan and Sun; B&B: Barta and Bradley; C&C: Chang and Coats; D&H: Darwish and Hilal; D&S: Duan and Sun; E&K: 
Enick and Klara; S&P: Spycher and Pruess; S&W: Soreide and Whitson; L&N: Li and Nghiem. The symbols for each model 
for all graphs are presented in the figure label of graph A. Y axis is pressure (bar) for all graphs. 
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D. RMSE, APE, AIC, BIC and Chi-squared Statistics 
 
Root	  Mean	  Square	  Error	  for	  each	  model	  was	  calculated	  using:	   	  

	   (D.1)
	  

	   	  
Where, RSS is Residual Sum of Squares.  is the error, defined as the difference between the 
predicted value by each model and the experimental value. The errors are assumed to be normally 
distributed. n is the number of data points in the evaluation data set which is 173 in our case. 
The average percent error (APE) was calculated by: 

	  
(D.2)

	  

	   	  
Akaike	  Information	  Criteria, AIC was calculated using the equation below (Burnham & Anderson, 
2002).  

 (D.3)
 

  
Where K is the number of parameters in the model 
We also evaluated these models using adjusted AIC, equation as follows: 

 (D.4)
 

  
The added term , is a small sample adjustment. As mentioned in Burnhan & 
Anderson (2002), if the ratio of n/K<40, which is the case for our evaluation data set with 173 data 
points, the small sample adjustment is recommended.  
	  

 
 
Bayesian	  Information	  Criteria:	  

	   (D.5)
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j
j
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=

=
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Table	  S-‐6.	  Chi-‐squared	  statistics	  of	  Temperature,	  Pressure	  and	  Salt	  concentration	  with	  respect	  to	  best-‐
performing	  model.	  

Condition Chi-squared statistica 

Temperature 75.11 
Pressure 52.95 

Salt Concentration  143.28 
aChi-squared statistic is calculated using the Weka software, the machine learning tool used to develop 
MMoPS. The value of the chi-squared statistic indicates the worth of an attribute (i.e. T, P or X) in 
predicting the class value (i.e. the best-performing model). The higher the value is, the more informative 
the attribute is in distinguishing best-performing models. 
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E. Table S-7. CO2 Solubility Experimental Data and Predicted Values from Different Models 

T,	  K	   P,	  
bar	  

mNaCl
,	  M	   mCO2(ob)a	  

mCO2(pr)b	  
B&B	  

mCO2(pr)	  
E&K	  

mCO2(pr)	  
D&H	  

mCO2(pr)	  
D&S	  

mCO2(pr)	  
S&W	  

mCO2(pr)	  
C&C	  

mCO2(pr)	  
A&D	  mod.	  

mCO2(pr)	  
L&N	  

mCO2(pr)	  
S&P	  

303	   100	   0.17	   1.28	   1.50	   1.52	   1.31	   1.31	   1.34	   1.36	   1.30	   0.41	   1.31	  
303	   150	   0.17	   1.33	   1.79	   1.71	   1.38	   1.38	   1.35	   1.46	   1.36	   0.43	   1.38	  
303	   200	   0.17	   1.39	   1.97	   1.76	   1.44	   1.45	   1.16	   1.51	   1.43	   0.41	   1.43	  
303	   100	   0.35	   1.20	   1.44	   1.45	   1.26	   1.27	   1.29	   1.30	   1.24	   0.41	   1.27	  
303	   150	   0.35	   1.25	   1.72	   1.62	   1.33	   1.34	   1.29	   1.40	   1.31	   0.42	   1.33	  
303	   200	   0.35	   1.30	   1.89	   1.67	   1.39	   1.40	   1.12	   1.44	   1.37	   0.41	   1.38	  
303	   100	   0.52	   1.16	   1.38	   1.37	   1.22	   1.23	   1.23	   1.24	   1.19	   0.40	   1.23	  
303	   150	   0.52	   1.22	   1.65	   1.54	   1.29	   1.30	   1.24	   1.34	   1.26	   0.42	   1.28	  
303	   200	   0.52	   1.26	   1.81	   1.59	   1.35	   1.36	   1.07	   1.38	   1.32	   0.40	   1.33	  
313	   100	   0.17	   1.14	   1.31	   1.22	   1.19	   1.20	   1.14	   1.22	   1.19	   0.40	   1.20	  
313	   150	   0.17	   1.22	   1.60	   1.41	   1.26	   1.27	   1.18	   1.35	   1.26	   0.42	   1.28	  
313	   200	   0.17	   1.28	   1.79	   1.48	   1.33	   1.34	   1.08	   1.41	   1.32	   0.41	   1.34	  
313	   100	   0.35	   1.12	   1.26	   1.16	   1.15	   1.16	   1.11	   1.17	   1.14	   0.39	   1.16	  
313	   150	   0.35	   1.19	   1.54	   1.34	   1.22	   1.23	   1.15	   1.29	   1.21	   0.41	   1.23	  
313	   200	   0.35	   1.23	   1.72	   1.41	   1.28	   1.30	   1.05	   1.35	   1.27	   0.40	   1.29	  
313	   100	   0.52	   1.07	   1.20	   1.10	   1.12	   1.13	   1.07	   1.12	   1.10	   0.39	   1.12	  
313	   150	   0.52	   1.13	   1.48	   1.27	   1.18	   1.20	   1.11	   1.24	   1.16	   0.41	   1.19	  
313	   200	   0.52	   1.19	   1.65	   1.34	   1.24	   1.26	   1.02	   1.29	   1.22	   0.40	   1.25	  
313	   150	   0.17	   1.13	   1.60	   1.41	   1.26	   1.27	   1.18	   1.35	   1.26	   0.42	   1.28	  
313	   200	   0.17	   1.23	   1.79	   1.48	   1.33	   1.34	   1.08	   1.41	   1.32	   0.41	   1.34	  
318	   101	   1.70	   0.74	   0.88	   0.76	   0.87	   0.89	   0.77	   0.83	   0.84	   0.36	   0.86	  
318	   121	   1.70	   0.77	   0.97	   0.82	   0.89	   0.92	   0.79	   0.87	   0.86	   0.37	   0.89	  
318	   141	   1.70	   0.78	   1.05	   0.86	   0.92	   0.94	   0.80	   0.91	   0.88	   0.37	   0.91	  
318	   158	   1.70	   0.80	   1.11	   0.89	   0.94	   0.96	   0.79	   0.93	   0.90	   0.38	   0.93	  
318	   81	   1.70	   0.69	   0.76	   0.68	   0.81	   0.83	   0.72	   0.76	   0.79	   0.33	   0.81	  
323	   100	   0.17	   1.06	   1.17	   1.05	   1.11	   1.12	   1.02	   1.12	   1.10	   0.39	   1.10	  



S24 
 

323	   100	   0.35	   1.02	   1.12	   1.00	   1.07	   1.09	   1.00	   1.07	   1.06	   0.38	   1.06	  
323	   150	   0.35	   1.10	   1.40	   1.18	   1.14	   1.16	   1.05	   1.21	   1.13	   0.41	   1.15	  
323	   200	   0.35	   1.19	   1.59	   1.26	   1.20	   1.22	   0.99	   1.28	   1.19	   0.40	   1.21	  
323	   100	   0.52	   0.98	   1.07	   0.95	   1.04	   1.05	   0.97	   1.03	   1.02	   0.38	   1.03	  
323	   150	   0.52	   1.06	   1.34	   1.12	   1.10	   1.12	   1.01	   1.16	   1.09	   0.40	   1.11	  
323	   200	   0.52	   1.13	   1.52	   1.20	   1.16	   1.19	   0.96	   1.23	   1.15	   0.40	   1.17	  

323.15	   101	   1.00	   0.91	   0.96	   0.84	   0.95	   0.97	   0.87	   0.92	   0.93	   0.37	   0.93	  
323.15	   144	   1.00	   0.98	   1.17	   0.97	   1.00	   1.03	   0.91	   1.03	   0.98	   0.39	   1.01	  
323.15	   203	   1.00	   1.00	   1.37	   1.06	   1.07	   1.10	   0.86	   1.10	   1.05	   0.38	   1.07	  
323.15	   100	   1.00	   0.96	   0.96	   0.84	   0.95	   0.97	   0.87	   0.92	   0.93	   0.37	   0.93	  
323.15	   101	   3.00	   0.63	   0.65	   0.54	   0.68	   0.70	   0.53	   0.61	   0.66	   0.35	   0.66	  
323.15	   144	   3.00	   0.69	   0.80	   0.62	   0.74	   0.75	   0.55	   0.69	   0.70	   0.36	   0.71	  
323.15	   203	   3.00	   0.76	   0.93	   0.68	   0.80	   0.80	   0.53	   0.74	   0.74	   0.36	   0.76	  
323.15	   101	   3.00	   0.68	   0.65	   0.54	   0.68	   0.70	   0.53	   0.61	   0.66	   0.35	   0.66	  
333	   100	   0.17	   1.00	   1.05	   0.95	   1.00	   1.00	   0.95	   1.03	   0.99	   0.39	   0.99	  
333	   150	   0.17	   1.11	   1.34	   1.14	   1.12	   1.13	   1.00	   1.20	   1.12	   0.41	   1.12	  
333	   200	   0.17	   1.19	   1.55	   1.24	   1.19	   1.20	   0.96	   1.29	   1.19	   0.41	   1.19	  
333	   100	   0.35	   0.92	   1.01	   0.90	   0.96	   0.98	   0.93	   0.99	   0.95	   0.38	   0.96	  
333	   150	   0.35	   1.07	   1.28	   1.08	   1.09	   1.10	   0.98	   1.15	   1.08	   0.40	   1.08	  
333	   200	   0.35	   1.14	   1.48	   1.18	   1.15	   1.17	   0.95	   1.24	   1.14	   0.41	   1.15	  
333	   100	   0.52	   0.91	   0.97	   0.86	   0.93	   0.95	   0.90	   0.95	   0.92	   0.38	   0.93	  
333	   150	   0.52	   1.01	   1.23	   1.03	   1.05	   1.07	   0.95	   1.10	   1.04	   0.40	   1.05	  
333	   200	   0.52	   1.06	   1.42	   1.12	   1.11	   1.14	   0.92	   1.19	   1.10	   0.40	   1.11	  

349.15	   165	   2.02	   0.77	   0.85	   0.68	   0.76	   0.81	   0.63	   0.78	   0.75	   0.38	   0.75	  
349.15	   314	   2.02	   0.89	   1.19	   0.80	   0.92	   0.98	   0.53	   0.94	   0.90	   0.35	   0.90	  
349.15	   333	   2.02	   0.91	   1.23	   0.81	   0.93	   0.99	   0.51	   0.95	   0.91	   0.34	   0.91	  
349.15	   432	   2.02	   0.98	   1.45	   0.85	   1.00	   1.07	   0.40	   1.00	   0.98	   0.28	   0.98	  
349.15	   453	   2.02	   0.97	   1.51	   0.86	   1.01	   1.08	   0.37	   1.01	   0.99	   0.27	   1.00	  
349.15	   169	   4.56	   0.51	   0.61	   0.41	   0.56	   0.56	   0.31	   0.51	   0.53	   0.39	   0.53	  
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349.15	   286	   4.56	   0.57	   0.81	   0.48	   0.70	   0.66	   0.28	   0.60	   0.62	   0.37	   0.61	  
349.15	   295	   4.56	   0.58	   0.83	   0.48	   0.71	   0.66	   0.28	   0.60	   0.62	   0.36	   0.62	  
349.15	   459	   4.56	   0.63	   1.09	   0.53	   0.84	   0.76	   0.19	   0.66	   0.70	   0.28	   0.70	  
349.15	   467	   4.56	   0.64	   1.10	   0.53	   0.84	   0.76	   0.19	   0.66	   0.70	   0.27	   0.70	  
349.15	   164	   7.80	   0.31	   0.61	   0.19	   0.45	   0.34	   0.12	   0.33	   0.38	   0.52	   0.40	  
349.15	   168	   7.80	   0.30	   0.62	   0.19	   0.45	   0.34	   0.12	   0.33	   0.39	   0.52	   0.41	  
349.15	   319	   7.80	   0.36	   0.87	   0.22	   0.68	   0.42	   0.10	   0.40	   0.46	   0.48	   0.48	  
349.15	   325	   7.80	   0.36	   0.88	   0.22	   0.68	   0.42	   0.10	   0.40	   0.46	   0.48	   0.49	  
349.15	   437	   7.80	   0.41	   1.06	   0.23	   0.80	   0.47	   0.08	   0.43	   0.50	   0.40	   0.53	  
349.15	   461	   7.80	   0.40	   1.11	   0.24	   0.83	   0.48	   0.07	   0.43	   0.51	   0.38	   0.54	  
349.15	   74	   4.56	   0.35	   0.35	   0.27	   0.33	   0.37	   0.24	   0.33	   0.36	   0.29	   0.36	  
349.15	   76	   7.80	   0.22	   0.36	   0.12	   0.21	   0.23	   0.09	   0.22	   0.26	   0.39	   0.28	  
353.1	   83	   4.00	   0.41	   0.39	   0.31	   0.38	   0.43	   0.30	   0.38	   0.40	   0.30	   0.40	  
353.1	   96	   4.00	   0.46	   0.44	   0.34	   0.42	   0.47	   0.33	   0.42	   0.44	   0.33	   0.44	  
353.1	   80	   0.17	   0.76	   0.76	   0.72	   0.74	   0.74	   0.70	   0.78	   0.73	   0.33	   0.73	  
353.1	   81	   0.17	   0.75	   0.76	   0.72	   0.74	   0.74	   0.70	   0.78	   0.73	   0.33	   0.74	  
353.1	   95	   0.17	   0.79	   0.86	   0.80	   0.82	   0.83	   0.78	   0.86	   0.81	   0.36	   0.82	  
353.1	   99	   0.17	   0.87	   0.89	   0.82	   0.84	   0.85	   0.81	   0.89	   0.84	   0.37	   0.84	  
373	   104	   1.00	   0.61	   0.68	   0.63	   0.65	   0.69	   0.66	   0.68	   0.65	   0.35	   0.67	  
373	   191	   1.00	   0.87	   1.04	   0.87	   0.88	   0.94	   0.94	   0.97	   0.89	   0.49	   0.91	  
373	   103	   3.00	   0.40	   0.47	   0.40	   0.45	   0.51	   0.40	   0.46	   0.47	   0.32	   0.48	  
373	   190	   3.00	   0.56	   0.72	   0.56	   0.64	   0.70	   0.56	   0.66	   0.65	   0.46	   0.65	  
373	   205	   3.00	   0.73	   0.76	   0.57	   0.66	   0.72	   0.58	   0.69	   0.67	   0.47	   0.67	  
373	   122	   2.02	   0.65	   0.63	   0.55	   0.60	   0.66	   0.58	   0.62	   0.61	   0.37	   0.61	  
373	   215	   2.02	   0.78	   0.92	   0.72	   0.77	   0.85	   0.77	   0.84	   0.79	   0.49	   0.80	  
373	   215	   2.02	   0.81	   0.92	   0.72	   0.77	   0.85	   0.77	   0.84	   0.79	   0.49	   0.80	  
373	   289	   2.02	   0.85	   1.10	   0.79	   0.86	   0.95	   0.87	   0.94	   0.88	   0.56	   0.88	  
373	   288	   2.02	   0.88	   1.10	   0.79	   0.86	   0.95	   0.86	   0.94	   0.87	   0.56	   0.88	  
373	   350	   2.02	   0.94	   1.24	   0.83	   0.92	   1.01	   0.93	   1.00	   0.93	   0.61	   0.94	  
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373	   357	   2.02	   0.92	   1.26	   0.84	   0.93	   1.02	   0.93	   1.01	   0.94	   0.61	   0.95	  
373	   383	   2.02	   0.95	   1.32	   0.85	   0.95	   1.04	   0.95	   1.03	   0.96	   0.63	   0.97	  
373	   398	   2.02	   0.97	   1.36	   0.86	   0.96	   1.06	   0.97	   1.04	   0.97	   0.65	   0.98	  
373	   507	   2.02	   1.00	   1.65	   0.92	   1.04	   1.14	   1.04	   1.10	   1.05	   0.30	   1.06	  
373	   93	   4.56	   0.34	   0.37	   0.28	   0.33	   0.38	   0.24	   0.34	   0.36	   0.31	   0.37	  
373	   144	   4.56	   0.43	   0.51	   0.36	   0.46	   0.49	   0.32	   0.45	   0.47	   0.41	   0.47	  
373	   171	   4.56	   0.49	   0.57	   0.40	   0.51	   0.53	   0.34	   0.49	   0.51	   0.45	   0.51	  
373	   293	   4.56	   0.57	   0.80	   0.48	   0.67	   0.66	   0.42	   0.62	   0.62	   0.57	   0.63	  
373	   296	   4.56	   0.58	   0.81	   0.48	   0.67	   0.66	   0.42	   0.62	   0.63	   0.57	   0.63	  
373	   152	   7.80	   0.28	   0.53	   0.17	   0.37	   0.31	   0.12	   0.31	   0.35	   0.56	   0.39	  
373	   156	   7.80	   0.30	   0.54	   0.17	   0.38	   0.32	   0.12	   0.31	   0.36	   0.56	   0.39	  
373	   236	   7.80	   0.32	   0.71	   0.20	   0.52	   0.38	   0.14	   0.38	   0.42	   0.69	   0.46	  
373	   241	   7.80	   0.31	   0.71	   0.21	   0.53	   0.38	   0.14	   0.38	   0.43	   0.69	   0.47	  
373	   265	   7.80	   0.35	   0.76	   0.21	   0.57	   0.40	   0.15	   0.40	   0.44	   0.72	   0.48	  
373	   393	   7.80	   0.39	   0.98	   0.23	   0.72	   0.46	   0.09	   0.45	   0.50	   0.87	   0.55	  
373	   406	   7.80	   0.38	   1.00	   0.24	   0.74	   0.46	   0.09	   0.45	   0.51	   0.88	   0.56	  
373	   88	   4.56	   0.35	   0.35	   0.27	   0.32	   0.36	   0.23	   0.33	   0.35	   0.30	   0.35	  
373	   77	   7.80	   0.19	   0.32	   0.11	   0.18	   0.20	   0.08	   0.20	   0.23	   0.35	   0.25	  

389.95	   74	   1.95	   0.42	   0.40	   0.39	   0.40	   0.44	   0.38	   0.46	   0.41	   0.25	   0.42	  
393	   82	   0.17	   0.67	   0.63	   0.64	   0.60	   0.61	   0.58	   0.74	   0.60	   0.31	   0.63	  
393	   82	   0.17	   0.66	   0.63	   0.64	   0.60	   0.61	   0.58	   0.74	   0.60	   0.31	   0.63	  
393	   100	   0.17	   0.78	   0.74	   0.74	   0.70	   0.71	   0.68	   0.84	   0.70	   0.36	   0.74	  
393	   100	   0.17	   0.78	   0.75	   0.75	   0.71	   0.71	   0.68	   0.85	   0.70	   0.36	   0.74	  

394.15	   151	   2.02	   0.65	   0.70	   0.61	   0.64	   0.71	   0.63	   0.74	   0.66	   0.42	   0.68	  
394.15	   156	   2.02	   0.64	   0.71	   0.62	   0.65	   0.72	   0.65	   0.75	   0.67	   0.42	   0.69	  
394.15	   303	   2.02	   0.85	   1.14	   0.83	   0.88	   0.99	   0.90	   0.99	   0.92	   0.61	   0.94	  
394.15	   444	   2.02	   0.97	   1.51	   0.94	   1.02	   1.14	   1.05	   1.10	   1.06	   0.73	   1.09	  
394.15	   467	   2.02	   0.96	   1.57	   0.96	   1.03	   1.16	   1.07	   1.11	   1.08	   0.75	   1.11	  
394.15	   152	   4.56	   0.43	   0.50	   0.37	   0.45	   0.49	   0.31	   0.49	   0.47	   0.41	   0.48	  
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394.15	   285	   4.56	   0.55	   0.78	   0.49	   0.64	   0.66	   0.42	   0.64	   0.63	   0.58	   0.65	  
394.15	   470	   4.56	   0.64	   1.14	   0.58	   0.82	   0.80	   0.51	   0.74	   0.77	   0.75	   0.78	  
394.15	   498	   4.56	   0.64	   1.20	   0.59	   0.84	   0.81	   0.52	   0.75	   0.78	   0.77	   0.80	  
394.15	   150	   7.80	   0.27	   0.48	   0.17	   0.34	   0.30	   0.11	   0.33	   0.34	   0.53	   0.39	  
394.15	   300	   7.80	   0.35	   0.79	   0.23	   0.60	   0.42	   0.16	   0.44	   0.47	   0.77	   0.53	  
394.15	   307	   7.80	   0.35	   0.80	   0.23	   0.61	   0.42	   0.16	   0.44	   0.48	   0.78	   0.54	  
394.15	   457	   7.80	   0.38	   1.07	   0.26	   0.79	   0.49	   0.18	   0.49	   0.56	   0.96	   0.63	  
394.15	   475	   7.80	   0.37	   1.11	   0.26	   0.81	   0.49	   0.18	   0.49	   0.57	   0.98	   0.64	  
394.15	   501	   7.80	   0.39	   1.17	   0.27	   0.84	   0.50	   0.19	   0.50	   0.58	   1.00	   0.65	  
394.15	   77	   2.02	   0.35	   0.41	   0.39	   0.40	   0.45	   0.39	   0.49	   0.41	   0.26	   0.43	  
394.15	   77	   2.02	   0.40	   0.41	   0.39	   0.40	   0.44	   0.39	   0.49	   0.41	   0.26	   0.42	  
394.15	   76	   4.00	   0.31	   0.31	   0.26	   0.28	   0.33	   0.23	   0.35	   0.31	   0.25	   0.32	  
394.15	   93	   4.00	   0.37	   0.36	   0.30	   0.33	   0.38	   0.26	   0.40	   0.36	   0.29	   0.37	  
394.15	   85	   7.80	   0.19	   0.31	   0.12	   0.18	   0.21	   0.08	   0.23	   0.23	   0.35	   0.26	  
396.15	   76	   1.95	   0.42	   0.41	   0.39	   0.40	   0.44	   0.39	   0.51	   0.41	   0.25	   0.42	  
397.75	   74	   3.00	   0.36	   0.34	   0.31	   0.32	   0.37	   0.29	   0.42	   0.34	   0.24	   0.35	  
398.15	   74	   3.00	   0.38	   0.33	   0.31	   0.32	   0.37	   0.29	   0.42	   0.34	   0.24	   0.35	  
401.95	   78	   1.95	   0.43	   0.41	   0.40	   0.40	   0.44	   0.39	   0.56	   0.41	   0.26	   0.43	  
403.15	   76	   3.00	   0.36	   0.34	   0.31	   0.32	   0.37	   0.29	   0.47	   0.34	   0.24	   0.35	  
408.15	   80	   1.95	   0.43	   0.42	   0.40	   0.40	   0.45	   0.39	   0.64	   0.41	   0.26	   0.43	  
408.15	   78	   3.00	   0.36	   0.34	   0.32	   0.32	   0.37	   0.29	   0.52	   0.35	   0.24	   0.36	  
408.65	   78	   3.00	   0.38	   0.34	   0.32	   0.32	   0.37	   0.29	   0.52	   0.34	   0.24	   0.35	  
413.25	   82	   1.95	   0.44	   0.42	   0.41	   0.40	   0.45	   0.39	   0.70	   0.42	   0.26	   0.43	  
418.15	   83	   1.96	   0.44	   0.42	   0.42	   0.41	   0.45	   0.39	   0.78	   0.42	   0.26	   0.43	  
418.15	   81	   3.00	   0.38	   0.35	   0.33	   0.33	   0.38	   0.29	   0.64	   0.35	   0.25	   0.36	  
418.15	   79	   3.00	   0.43	   0.34	   0.32	   0.32	   0.37	   0.29	   0.63	   0.34	   0.24	   0.35	  
423.15	   101	   1.09	   0.62	   0.59	   0.60	   0.56	   0.60	   0.56	   1.08	   0.57	   0.33	   0.60	  
423.15	   198	   1.09	   1.01	   1.02	   0.93	   0.89	   0.98	   0.94	   1.34	   0.93	   0.54	   0.97	  
423.15	   297	   1.09	   1.19	   1.39	   1.14	   1.10	   1.21	   1.20	   1.52	   1.16	   0.68	   1.22	  
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423.15	   396	   1.09	   1.32	   1.74	   1.29	   1.25	   1.39	   1.39	   1.71	   1.33	   0.80	   1.40	  
423.15	   495	   1.09	   1.43	   2.11	   1.41	   1.37	   1.53	   1.55	   1.91	   1.47	   0.90	   1.55	  
423.15	   102	   1.09	   0.63	   0.60	   0.60	   0.57	   0.61	   0.57	   1.09	   0.58	   0.33	   0.60	  
423.15	   202	   1.09	   1.12	   1.04	   0.94	   0.91	   0.99	   0.96	   1.35	   0.94	   0.54	   0.98	  
423.15	   302	   1.09	   1.43	   1.41	   1.15	   1.11	   1.22	   1.21	   1.53	   1.16	   0.69	   1.23	  
423.15	   401	   1.09	   1.65	   1.76	   1.30	   1.26	   1.40	   1.40	   1.72	   1.34	   0.80	   1.41	  
423.15	   501	   1.09	   1.87	   2.13	   1.42	   1.38	   1.53	   1.55	   1.92	   1.47	   0.91	   1.56	  
423.15	   103	   4.28	   0.26	   0.37	   0.31	   0.32	   0.38	   0.25	   0.64	   0.36	   0.29	   0.37	  
423.15	   203	   4.28	   0.47	   0.63	   0.48	   0.55	   0.61	   0.40	   0.79	   0.59	   0.48	   0.59	  
423.15	   303	   4.28	   0.64	   0.86	   0.59	   0.70	   0.74	   0.50	   0.90	   0.73	   0.62	   0.73	  
423.15	   403	   4.28	   0.73	   1.08	   0.66	   0.81	   0.84	   0.57	   1.01	   0.84	   0.72	   0.84	  
423.15	   503	   4.28	   0.82	   1.31	   0.72	   0.90	   0.92	   0.62	   1.13	   0.92	   0.82	   0.92	  
423.15	   85	   1.96	   0.44	   0.43	   0.43	   0.41	   0.46	   0.40	   0.86	   0.43	   0.27	   0.44	  
423.15	   81	   3.01	   0.44	   0.35	   0.33	   0.32	   0.37	   0.29	   0.70	   0.35	   0.24	   0.35	  
423.55	   85	   1.96	   0.45	   0.43	   0.43	   0.41	   0.46	   0.40	   0.86	   0.42	   0.27	   0.44	  
428.15	   87	   1.96	   0.45	   0.44	   0.44	   0.42	   0.46	   0.40	   0.94	   0.43	   0.27	   0.44	  
428.15	   84	   3.01	   0.40	   0.36	   0.34	   0.33	   0.38	   0.30	   0.78	   0.36	   0.25	   0.36	  
428.15	   84	   3.01	   0.38	   0.36	   0.34	   0.33	   0.39	   0.30	   0.78	   0.36	   0.25	   0.36	  
428.15	   74	   4.01	   0.32	   0.28	   0.26	   0.25	   0.30	   0.20	   0.64	   0.28	   0.22	   0.28	  
428.95	   74	   4.01	   0.33	   0.28	   0.26	   0.25	   0.30	   0.20	   0.64	   0.28	   0.22	   0.28	  
429.55	   87	   1.96	   0.46	   0.44	   0.44	   0.42	   0.46	   0.40	   0.96	   0.43	   0.27	   0.44	  
433	   90	   4.00	   0.33	   0.33	   0.30	   0.30	   0.35	   0.24	   0.74	   0.33	   0.26	   0.33	  
433	   80	   0.17	   0.60	   0.58	   0.64	   0.55	   0.56	   0.52	   1.41	   0.55	   0.29	   0.58	  
433	   80	   0.17	   0.58	   0.59	   0.65	   0.56	   0.57	   0.52	   1.41	   0.56	   0.29	   0.58	  
433	   99	   0.17	   0.74	   0.71	   0.77	   0.67	   0.68	   0.64	   1.52	   0.67	   0.35	   0.71	  
433	   100	   0.17	   0.77	   0.71	   0.77	   0.68	   0.69	   0.64	   1.52	   0.68	   0.36	   0.71	  

433.15	   88	   1.96	   0.46	   0.44	   0.44	   0.42	   0.47	   0.40	   1.02	   0.44	   0.27	   0.44	  
433.15	   88	   1.96	   0.45	   0.44	   0.45	   0.42	   0.47	   0.40	   1.03	   0.44	   0.27	   0.44	  
433.15	   86	   3.01	   0.38	   0.37	   0.35	   0.34	   0.39	   0.30	   0.85	   0.36	   0.25	   0.36	  
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433.15	   76	   4.01	   0.32	   0.29	   0.26	   0.25	   0.30	   0.21	   0.70	   0.28	   0.22	   0.28	  
434.95	   76	   4.01	   0.33	   0.29	   0.26	   0.25	   0.30	   0.21	   0.72	   0.28	   0.22	   0.28	  

a(ob): observed value, 
b(pr): predicted value
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Figure	  S-‐3.	  Distribution	  of	  MMoPS	  Prediction	  Error	  over	  T-‐P	  space	  at	  A)	  low	  
salt	  concentrations	  (<1	  molal);	  B)	  moderate	  salt	  concentrations	  (1-‐3	  molal);	  
and	  C)	  high	  salt	  concentrations	  (3-‐8	  molal).	  The	  size	  of	  the	  bubble	  
represents	  the	  magnitude	  of	  the	  prediction	  error. 
Models:	  A&D	  (modified):	  Akinfiev	  and	  Diamond	  coupled	  with	  Duan	  and	  Sun;	  
B&B:	  Barta	  and	  Bradley;	  C&C:	  Chang	  and	  Coats;	  D&H:	  Darwish	  and	  Hilal;	  
D&S:	  Duan	  and	  Sun;	  E&K:	  Enick	  and	  Klara;	  S&P:	  Spycher	  and	  Pruess;	  S&W:	  
Soreide	  and	  Whitson;	  L&N:	  Li	  and	  Nghiem. 

A B

C
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Figure S-4. Experimental and predicted CO2 solubility values (mol/kg H2O):  A) as a function of pressure 
at constant temperature of 373 K and salt concentration of 2.02 mol NaCl/ kg H2O; B) as a function of 
temperature at constant pressure of 100 bar and salt concentration of 0.17 mol NaCl/kg H2O; and C) as a 
function of salt concentration at constant temperature of 323.15 K and pressure of 100 bar. The error 
bars on experimental data represent the mean of absolute measurement errors between laboratories and 
different experimental studies, which is 0.064 mol/kg. 
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Table S-8. Outlier Analysis for MMoPS Predictions 

 T (K) P 
(bar) 

mNaCl 
(mol/kg) 

Experimental 
Study 

Observed 
Value 

(mol/kg) 

MMoPS 
Model 

MMoPS 
Predicted 

Value 
(mol/kg) 

MMoPS 
Error 

(mol/kg) 

Best-
performin
g Model 

Predicted 
Value using 

Best-
performing 

Model 
(mol/kg) 

Best-
performing 

Model Error 
(mol/kg) 

Outlier 1 423.1
5 495 1.09 Tekenouchi & 

Kennedy, 1964 1.43 C&C 1.91 0.48 E&K 1.41 -0.02 

Related 
Sample 1 

423.1
5 501 1.09 Gehrig, 1980 1.87 C&C 1.92 0.05 C&C 1.92 0.05 

Outlier 2 423.1
5 396 1.09 Tekenouchi & 

Kennedy, 1964 1.32 C&C 1.71 0.39 A&D 
mod. 1.33 0.01 

Related 
Sample 2 

423.1
5 401 1.09 Gehrig, 1980 1.65 C&C 1.72 0.07 C&C 1.72 0.07 

Outlier 3 423.1
5 297 1.09 Tekenouchi & 

Kennedy, 1964 1.19 B&B 1.39 0.20 S&W 1.20 0.01 

Related 
Sample 3 

423.1
5 302 1.09 Gehrig, 1980 1.43 B&B 1.41 -0.02 B&B 1.41 -0.02 
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F. Discussion of Experimental Data Set and Use of Both NaCl and CaCl2 Data 
 
As described in the main body of the paper, a combined NaCl and CaCl2 data set is used to evaluate 
different CO2 solubility models and to develop the MMoPS. In the combined data set, there are 113 
NaCl and 60 CaCl2 observations. Here, we also evaluate models using the NaCl and CaCl2 data sets 
separately, and compare how these selections affect model performance.  
Table S-9 summarizes differences in the RMSE, APE, the number of times a model provides the best 
estimate, and the number of times that MMoPS predicts the model will provide the best estimate, 
across the three subsets of observations:  i) combined NaCl and CaCl2 data set (n = 173, as evaluated 
in the main body of the paper); ii NaCl data only (n =113); and iii) CaCl2 data only (n = 60).   For 
each individual model, the performance does vary with the experimental data set. Some models 
perform better when only the NaCl data are used to evaluate them (e.g., the models of Spycher and 
Pruess; Darwish and Hilal; Soreide and Whitson; and Barta and Bradley), while for others adding the 
CaCl2 data leads to an improvement in the assessed performance (e.g., the models of Enick and Klara; 
Chang and Coats; and Li and Nghiem).  No matter which data set is used to evaluate the models, 
MMoPS outperforms the other models, achieving the lowest values in terms of RMSE and APE.  
Insight is also gained by comparing the number of misclassifications of NaCl observations in 
MMoPS using the model fitted to the combined data set (MMoPS in the paper) vs. one fit using only 
the NaCl data.  The original MMoPS failed to select the best model for 27 (24%) of the 113 NaCl 
observations, while refitting MMoPS using only the NaCl data resulted in misclassification (choosing 
the wrong model) for 28 (25%) of these 113 observations.  Therefore, the addition of the CaCl2 
observations when fitting MMoPS does not degrade its ability to select the best fitting model for 
predicting the NaCl observations. Indeed, a very small (though not statistically significant) 
improvement is achieved.   
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Table S-9. Evaluation of models using different experimental data sets 

Model	  
RMSEa	  

(combined	  NaCl	  
and	  CaCl2	  Data)	  

RMSEa	  
(NaCl	  
Data	  
Only)	  

RMSEa	  
(CaCl2	  
Data	  
Only)	  

APEb	  
(combined	  
NaCl	  and	  
CaCl2	  Data)	  

APEb	  
(NaCl	  
Data	  
Only)	  

APEb	  
(CaCl2	  
Data	  
Only)	  

nc	  (in	  
combined	  
data	  set)	  

md	  (in	  
MMoPS)	  

ne	  (in	  NaCl	  
data	  set)	  

mf	  (in	  
refitted	  
MMoPS)	  

Akinfiev and Diamond 
(modified) 0.076 0.075	   0.078	   9.5 6.7	   14.9	   30 32 29	   26	  

Duan and Sun 0.082 0.079	   0.087	   9.7 7.3	   14.2	   30 31 7	   8	  
Spycher and Pruess 0.084 0.070	   0.105	   11.2 6.4	   20.1	   18 15 7	   10	  

Enick and Klara 0.122 0.133	   0.099	   14.2 10.5	   21.2	   22 19 15	   14	  
Darwish and Hilal 0.129 0.092	   0.178	   15.9 8.8	   29.4	   9 8 7	   4	  

Soreide and Whitson 0.155 0.108	   0.218	   21.2 12.7	   37.3	   21 20 18	   16	  
Chang and Coats 0.217 0.263	   0.070	   25.9 33.5	   11.4	   25 27 22	   27	  
Barta and Bradley 0.296 0.236	   0.385	   34.4 16.8	   67.6	   9 12 4	   4	  

Li and Nghiem 0.457 0.511	   0.330	   50.6 48.3	   54.8	   9 9 4	   4	  
	   	   	   	   	   	   sum=	   173	   173	   113	   113	  

MMoPSg 0.061 0.069	   0.041	   4.9 4.3	   6.8	   	   	   	   	  
aRMSE: Root mean squared error; bAPE: Average percent error; cn (in combined data set): Number of data points for which each model provides the most 
accurate prediction in the combined NaCl and CaCl2 data set; dm (in MMoPS): Number of data points where Multi-model predictive system suggests using model 
i to predict CO2 solubility in the combined data set; en (in NaCl data set): Number of data points for which each model provides the most accurate prediction in 
NaCl data set; fm (in refitted MMoPS): The classification tree is regenerated using NaCl data only and m is the number of data points where refitted MMoPS 
(using NaCl data only) suggests using model i to predict CO2 solubility in the NaCl data set; gMMoPS: This is the multi-model predictive system developed using 
the combined NaCl and CaCl2 data set (same as the one in Table 3 of the body of the paper). 
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APPENDIX 2: SUPPORTING INFORMATION FOR CHAPTER 3 
A. 
 
A.1 Governing equations and boundary conditions describing the confined two-aquifer 
system depicted in Figure 3.1. 
  
For the injection zone: 
∂2si
∂r2

+
1
r
⋅
∂si
∂r

+
Kc

Kihi
⋅
∂sc
∂z z=0

=
Si
Ki

⋅
∂si
∂t

 (1a) 

si (r, 0) = 0  (1b) 
si (∞, t) = 0  (1c) 

lim
r→0

r ∂si
∂r

= −
Q

2πKihi
 (1d) 

 
For the monitoring zone: 
∂2sm
∂r2

+
1
r
⋅
∂sm
∂r

+
Kc

Kmhm
⋅
∂sc
∂z z=hc

=
Sm
Km

⋅
∂sm
∂t

 (2a) 

sm (r, 0) = 0  (2b) 
sm (∞, t) = 0  (2c) 

lim
r→0

∂sm
∂r

= 0  (2d) 

 
For the sealing caprock: 
∂2sc
∂z2

=
Sc
Kc

⋅
∂sc
∂t

 (3a) 

sc (r, z, 0) = 0  (3b) 
sc (r, 0, t) = si (r, t)  (3c) 
sc (r,hc, t) = sm (r, t)  (3d) 

where Sj = ρ fl ⋅ g ⋅ jϕ ⋅ct,  ( j = i,m,c)  and K j =
kj ⋅ρ fl ⋅ g
µ fl

,  ( j = i,m,c)  

Based on Neuman-Witherspoon solution (Neuman & Witherspoon 1969; Chabora & 
Benson 2009), pressure buildups in the injection zone and the monitoring zone can be 
calculated by the following equations. 
 

sDi = (1− e−y
2r2DitD )

0

∞

∫ {[1+G(y)]J0[ω1(y)]+[1−G(y)]J0[ω2 (y)]}
dy
y

 (4) 
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sDm = 2r
2
Tm (1− e−y

2r2DitD )
0

∞

∫ {J0[ω1(y)]− J0[ω2 (y)]}
dy

F(y)sin y
 (5) 

G(y) =M (y) / F(y)  
ω1
2 (y) = 0.5[N(y)+F(y)]  

ω2
2 (y) = 0.5[N(y)−F(y)]  

F(y) = M 2 (y)+ 4(rTi ⋅ rTm ⋅ y / sin y)
2

 
M (y) = (r2Di − r

2
Dm )y

2 − (r2Ti − r
2
Tm )y ⋅cot y  

N(y) = (r2Di + r
2
Dm )y

2 − (r2Ti + r
2
Tm )y ⋅cot y  

tD =
Kit
Sir

2  

sDj =
4πKihisj

Q
 

rDj =
r
hc

KcSj
ScK j

 

rTj =
r
hc

Kchc
K jhj  

j = i,m  
 
Symbols used in the equations above are defined in Table S1. 
 
Table S1 Symbols used in equations 

Property Symbol 
Formation thickness hj 

Formation permeability kj 

Formation porosity ϕ
j
 

Total formation compressibility ct  
Volumetric injection rate Q 

Injection duration t 
Radial distance from the injection well r 

Pressure sj 

Dimensionless pressure sDj 

Specific storage Sj 

Hydraulic conductivity Kj 

Fluid density ρ fl  

Fluid viscosity µ fl  
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Note: The subscript j represents either the injection zone (i), the above zone (m), or the caprock 
(c). 
 
A.2 MATLAB codes implementing the Neuman-Witherspoon analytical solution 
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Page 1 of 2

neumanrevised.m 2/19/14, 1:34 PM

function [sDs,sDm]=neumanrevised(h,por,k,t)

g=9.81; %m/s2

%Fluid properties

rhofl=691.7; %kg/m3; density of CO2

visfl=5.61*10^-5; %Pa-s; viscosity of CO2

%Geologic Settings

ct=[1*10^-9 1*10^-9 1*10^-9]; %total compressibility of injection zone, cap rock 

and monitoring zone

S=rhofl*g*(por.*ct); %specific storage of injection zone, cap rock and monitoring 

zone

K=k*rhofl*g/visfl; %hydraulic conductivity of injection zone, cap rock and 

monitoring zone

r=0.5*10^3; %m distance between injection well and monitoring well 

%Dimensionless parameters

tD=K(1)*t/(S(1)*r^2); % dimensionless time for injection zone

rD(1)=r/h(2)*(K(2)*S(1)/(K(1)*S(2)))^0.5;

rD(2)=r/h(2)*(K(2)*S(2)/(K(2)*S(2)))^0.5;

rD(3)=r/h(2)*(K(2)*S(3)/(K(3)*S(2)))^0.5;

rT(1)=r/h(2)*(K(2)*h(2)/(K(1)*h(1)))^0.5;

rT(2)=r/h(2)*(K(2)*h(2)/(K(2)*h(2)))^0.5;

rT(3)=r/h(2)*(K(2)*h(2)/(K(3)*h(3)))^0.5;

%Define functions

function f=integrand1(y)

M_y=(rD(1)^2-rD(3)^2)*y.^2-(rT(1)^2-rT(3)^2)*y.*cot(y);

N_y=(rD(1)^2+rD(3)^2)*y.^2-(rT(1)^2+rT(3)^2)*y.*cot(y);

F_y=(M_y.^2+4*(rT(1)*rT(3)*y./sin(y)).^2).^0.5;

G_y=M_y./F_y;

if 0.5*(N_y+F_y)<0

    if 0.5*(N_y-F_y)<0

        f=0;

    else

        w2_y=sqrt(0.5*(N_y-F_y));

        f=(1-exp(-y.^2*rD(1)^2*tD)).*((1-G_y).*besselj(0,w2_y))./y;

    end

else

    if 0.5*(N_y-F_y)<0

       w1_y=sqrt(0.5*(N_y+F_y));

       f=(1-exp(-y.^2*rD(1)^2*tD)).*((1+G_y).*besselj(0,w1_y))./y;

    else

        w1_y=sqrt(0.5*(N_y+F_y));

        w2_y=sqrt(0.5*(N_y-F_y));

        f=(1-exp(-y.^2*rD(1)^2*tD)).*((1+G_y).*besselj(0,w1_y)+(1-G_y).*besselj(0

,w2_y))./y;

    end

end

end

function f=integrand2(y)

M_y=(rD(1)^2-rD(3)^2)*y.^2-(rT(1)^2-rT(3)^2)*y.*cot(y);

N_y=(rD(1)^2+rD(3)^2)*y.^2-(rT(1)^2+rT(3)^2)*y.*cot(y);

F_y=(M_y.^2+4*(rT(1)*rT(3)*y./sin(y)).^2).^0.5;

if 0.5*(N_y+F_y)<0

    if 0.5*(N_y-F_y)<0

        f=0;

    else

        w2_y=sqrt(0.5*(N_y-F_y));

        f=(1-exp(-y.^2*rD(1)^2*tD)).*(0-besselj(0,w2_y))./(F_y.*sin(y));
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A.3 Scatter plots of permeability vs. porosity based on the NPC database 
 
The scatter plots of permeability vs. porosity and ln(Permeability) vs. ln(Porosity/(1-
Porosity) based on the NPC database are shown in Figure S1. The red line is a linear 
regression between the transformed permeability and the transformed porosity variables. 
The correlation coefficient between permeability and porosity is 0.33 (R2 = 0.11). The 
correlation coefficient between ln(Permeability) and ln(Porosity/(1-Porosity) is 0.43 (R2 
= 0.185) – in both cases less than 20% of the variance in permeability is explained by the 
relationship with porosity. From the scatter plots, we can see that for a certain range of 
porosity values, permeability is somewhat correlated with porosity. But as a whole, 
permeability is not strongly correlated with porosity. So rather than adding another 
parameter to the model (a weak correlation coefficient between permeability and 
porosity, or their transforms), we believe it is preferable to assume permeability and 
porosity are independent variables. 

Page 2 of 2
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    end
else
    if 0.5*(N_y-F_y)<0
       w1_y=sqrt(0.5*(N_y+F_y));
       f=(1-exp(-y.^2*rD(1)^2*tD)).*(besselj(0,w1_y)-0)./(F_y.*sin(y));
    else
        w1_y=sqrt(0.5*(N_y+F_y));
        w2_y=sqrt(0.5*(N_y-F_y));
        f=(1-exp(-y.^2*rD(1)^2*tD)).*(besselj(0,w1_y)-besselj(0,w2_y))./(F_y.*sin

(y));
    end
end
end
sDs_sub=zeros(1,1000);
sDm_sub=zeros(1,1000);
tol1=1e-5;
tol2=1e-4;
for i=1:1000
    sDs_sub(i)=quad(@integrand1,(i-1)*pi,i*pi,tol1);
    sDm_sub(i)=2*rT(3)^2*quad(@integrand2,(i-1)*pi,i*pi,tol2);
end
    sDs=sum(sDs_sub);
    sDm=sum(sDm_sub);
end
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Figure S1 Scatter plots of permeability vs. porosity based on the NPC database 
 
 
B. Calculation results for the location 100 m away from the injection well 
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b) 
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Figure S2 Posterior distribution of caprock permeability class monitored at r = 100 m; t = 
5 year and a) low measurement error (c.v.=0.2); b) medium measurement error 
(c.v.=0.3); and c) high measurement error (c.v.=0.5). deltapI_measured is the measured 
pressure buildup in the injection zone. 
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APPENDIX 3: SUPPORTING INFORMATION FOR CHAPTER 4 
	  
A. Equations for estimating the bulk and shear moduli of rock frame 
 
1) Estimate the shear modulus of the mineral matrix using the Hashin-Shtrikman 
bounds (Mavko et al., 2009): 
The Hashin-Shtrikman upper (+) and lower (-) bounds for the shear modulus of the 
mineral matrix is:  

u!"± = Γ[ξ K±, µμ± ] 
where 

Γ ξ =
1

µμ+ ξ
!! − ξ 

ξ K±, µμ± =
µμ±
6 (

9K± + 8µμ±
K± + 2µμ±

) 

 
The subscripts + and – denote the maximum and the minimum moduli of the individual 
mineral. The bracket  denotes an average over the minerals weighted by their volume 
fractions. The shear modulus of the mineral matrix is calculated as: 

u!"#$%& =
u!"! + u!"!

2  
 
2) Estimate the bulk and shear moduli of the frame using the Hertz-Mindlin contact 
theory for consolidated rock (Mavko et al., 2009): 
The bulk and shear moduli at the critical porosity are given by: 

K!" =
C! 1− φ! !µμ!"#$%&! p!

18π! 1− v! !

!/!

 

µμ!" =
5− 4v!
5(2− v!)

3C! 1− φ! !µμ!"#$%&! p!
2π! 1− v! !

!/!

 

 
where p! is the differential pressure; v! is the Poisson ratio of the minerals; φ! is the 
critical porosity and C is the average number of contacts per spherical mineral. Based on 
data by Murphy (Carcione et al., 2006; Murphy, 1982), C = 2.8/φ!. 
The bulk and shear moduli of the frame are calculated as an arithmetic average of the 
Voigt and Wood moduli: 

K!"#$% =
K! + K!

2  

µμ!"#$% =
µμ! + µμ!

2  
where 
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K! = 1−
φ
φ!

K!"#$%& +
φ
φ!

K!" 

µμ! = 1−
φ
φ!

µμ!"#$%& +
φ
φ!

µμ!" 

1
K!

=
1− !

!!
K!"#$%&

+

!
!!
K!"

 

 

1
µμ!

=
1− !

!!
µμ!"#$%&

+

!
!!
µμ!"

 

 
B. Scatter Plots of Porosity vs. Initial Pressure Data and Permeability vs. Initial 
Pressure Data in the NPC Database 

 
The correlation coefficient between porosity and initial pressure data in the NPC database 
is -0.13; while the correlation coefficient between permeability and initial pressure data is 
-0.04. As the porosity and permeability are only weakly correlated with the initial 
pressure based on the NPC database, the initial pressures are sampled independently for 
each case in this study. 
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C. Synthetic Dataset for Initial Pressure 
 
The U.S. National Petroleum Council (NPC) database contains the initial pressure data 
for 1381 oil and gas reservoirs at various depth and lithology types. In our model, the top 
of the monitoring zone is fixed at a depth of 1000 m and the lithology type of the 
monitoring zone is sandstone. Therefore, a synthetic dataset for initial pressure at a depth 
of 1000 m and sandstone reservoirs has been generated based on the NPC database. The 
procedures of generating the synthetic dataset are as follows: 
 
Step 1: Select a subset from the NPC database only for sandstone reservoirs. After 
removing “-1” values, this results in a dataset of 542 observations. 
Step 2: Linear regression of initial pressure versus depth. 
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Step 3: Calculate the fitted value for initial pressure at a depth of 1000 m, the standard 
error of the prediction and the 95% prediction interval. The fitted initial pressure at 1000 
m is 9.68 MPa. The standard error of the prediction is 3.94 MPa. The 95% prediction 
interval is (1.93, 17.42). 
Step 4: Assume the initial pressure at 1000 m is normally distributed with mean of 9.68 
MPa and standard deviation of 3.94 MPa. Generate 2000 normal random variables ~ 
N(9.68, 3.94). Remove numbers out of the 95% prediction interval (1.93, 17.42) MPa. 
The remaining random variables generated from the normal distribution form the 
synthetic dataset for initial pressure. 
 
D. Equations for constructing the arbitrary polynomial chaos (aPC) basis 
 
The polynomial of degree k (k=0,…,d) in the random variable ω ∈ Ω is defined as 
(Oladyshkin and Nowak, 2012): 
P(!) ω = p!

(!)ω!!
!!!          k = 0,… , d 

where p!
(!) are the coefficients of ω!  in  P(!) ω ;d  is  the  degree  of  expansion. 

 
The coefficients p!

(!) in the aPC basis can be estimated by solving the system of linear 
equations: 
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where µk is the kth raw moment of the random variable ω. 
For detailed description of the aPC approach, the readers are referred to the paper by 
Oladyshkin and Nowak (Oladyshkin and Nowak, 2012). 
 
E. Simulated seismic velocity in model domain 
 
a) 

 

b) 

 
c) d) 
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e) 

 

f) 

 
g) h) 
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Figure E1 Sample modeling results of seismic velocity at the small leakage level at t=1, 
5, 10 and 50 year 
 
a) 

 

b) 

 
c) d) 
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e) 

 

f) 

 
Figure E2 Sample modeling results of seismic velocity at the moderate leakage level at 
t=1, 5, and 50 year (results at t=10 year are shown in the main text of the paper) 
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a) 

 

b) 

 
c) 

 

d) 

 
e) f) 
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g) 

 

h) 

 
Figure E3 Sample modeling results of seismic velocity at the large leakage level at t=1, 5, 
10 and 50 year 
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a) 

 

b) 

 
c) 

 

d) 

 
e) f) 
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g) 

 

h) 

 
Figure E4 Sample modeling results of seismic velocity at the very large leakage level at 
t=1, 5, 10 and 50 year 
 
F. Empirical CDF of detection power at x=500m 
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a) 

 

b) 

 
c) 

 

d) 

 
Figure F1 Empirical CDF of detection power of P-wave travel time at four leakage levels, 
t=5 year, x=500 m and at a) low porosity region (red points in Figure 4.4); b) high 
porosity and low permeability region (green points in Figure 3); c) high porosity and 
moderate permeability region (orange points in Figure 3) and d) high porosity and high 
permeability region (purple points in Figure 3). 
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a) 

 

b) 

 
c) 

 

d) 

 
Figure F2 Empirical CDF of detection power of P-wave travel time at four leakage levels, 
t=10 year, x=500 m and at a) low porosity region (red points in Figure 4.4); b) high 
porosity and low permeability region (green points in Figure 4.4); c) high porosity and 
moderate permeability region (orange points in Figure 4.4) and d) high porosity and high 
permeability region (purple points in Figure 4.4). 
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a) 

 

b) 

 
c) 

 

d) 

 
Figure F3 Empirical CDF of detection power of P-wave travel time at four leakage levels, 
t=50 year, x=500 m and at a) low porosity region (red points in Figure 4.4); b) high 
porosity and low permeability region (green points in Figure 4.4); c) high porosity and 
moderate permeability region (orange points in Figure 4.4) and d) high porosity and high 
permeability region (purple points in Figure 4.4). 
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