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ABSTRACT 

 
As concerns and understanding of climate change have continued to grow, cities and local 

governments have taken a leadership role in developing climate action plans to quantify and 

reduce greenhouse gas (GHG) emissions. A primary component of most climate action plans is 

the development of regular or semi-regular GHG inventories. These inventories are typically 

confined to the city-limits of a given area and report emissions from on-road transportation, 

electricity generation, residential and commercial buildings, and waste generation and disposal. 

Although there have been many advances in the data and methods used for forming these 

inventories, some challenges still remain. For example, the inventories can often be expensive 

and time consuming, data availability and scope/boundary choices often lead to inconsistencies 

between inventories across time periods or locations, and over-looked factors like climate and 

population change may have drastic impacts on emissions in the future. Given these challenges, 

this thesis seeks to develop a consistent method for evaluating metropolitan-level GHG 

emissions and some of the key factors that may drive emissions and cities’ ability to meet 

reduction targets moving forward. 

First, we use publically available national datasets (e.g. the EPA’s National Emissions Inventory, 

the EPA’s Mandatory GHG Reporting Program, etc.) to develop an integrated approach for 

estimating GHG emissions at the metropolitan level. Overall, this approach allowed us to form 

consistent production-based GHG estimates for the 100 most populated metropolitan areas in the 

United States for the years 2002 and 2011. During this time period, the overall GHG emissions 

for these metropolitan areas decreased by roughly 18%. The largest decreases in emissions were 

typically driven by decreases in industrial activity, and the largest increases in emissions were 

typically driven by increases in electricity production and population. We also compared the 
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emissions estimates from the integrated approach to those reported by the cities in their climate 

action plans. Overall, the integrated approach generally provides comparable estimates to those 

reported by the cities. However, this comparison also highlighted some of the uncertainty that 

can emerge due to scope and boundary choices made while developing an emissions inventory. 

Given the uncertainty associated with scope and boundary choices described above, and an 

increasing push by practitioners to expand their analysis to the regional/mega-regional level 

(rather than the city-limits), we next sought to gain a better understanding of how scope and 

boundary decisions impact emission estimates and GHG reduction targets in metropolitan areas. 

We first identified two categories of under-reported emissions from GHG inventories: 1) “under-

reported activities” (industrial processes and transportation between urban and suburban areas), 

and 2) “under-reported geographies” (emissions within a metropolitan statistical area but outside 

of the central city/urban core). Using the integrated data from the previous analysis, we found 

that, on average, under-reported activities account for an additional 24% of emissions and under-

reported geographies represent 55% of total metropolitan GHG emissions. 

Up to this point, our analysis focused entirely on recent (2011) and past (2002) emissions. 

However, given the forward looking nature of GHG reduction targets, it is also important to look 

at how different factors might impact metropolitan GHG emissions and policies in the future. For 

this component of the analysis, we investigated the implications that projected climatic 

temperature change, population changes, and the EPA’s Clean Power Plan would have on 

electricity-sector emissions at the metropolitan level. Using regional temperature and electricity 

demand data, we were able to model strong quadratic relationships between average daily 

temperature and total daily electricity load. We then applied future temperature projections from 

climate models to these quadratic relationships to see how electricity demand may change in the 
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future as a result of climate change. Overall, we found that climate change will likely lead to 

small-to-modest increases in metropolitan electricity sector GHG emissions. Depending on 

location and climate model, the change in emissions was found to be between -4 and 22% by the 

year 2030.We also found that changes in population and policy (the EPA’s Clean Power Plan) 

are at least as impactful (if not more impactful) on changes to metropolitan electricity sector 

GHG emissions by the year 2030. 

Overall, the analysis and results from this thesis provide insights into the importance of current 

and future drivers of metropolitan GHG emissions and help inform decision-making related to 

GHG mitigation. The integrated approach developed in the first component of our analysis 
could serve as a less “resource intensive” way for communities to regularly form an initial 

assessment of their emission profile, compare themselves to their peers, and prioritize their 

resource and planning efforts. The second component of our analysis reveals that as GHG 

inventory methods and policies continue to expand in scope and scale, the addition of previously 

“under-reported” emission sources will require policy makers to re-think how they develop and 

implement their GHG reduction plans. For example, decision-makers may need to modify the 

annual reduction rates they target or adjust the time horizon under which they implement their 

plans. Our analysis also provides a framework for expanding emissions inventories beyond the 

scale of the city limits. The third component of our analysis shows that the consideration of 

factors such as climatic temperature change, population change, and policy change should help 

decision-makers form a more complete understanding of their emission profile in the future and 

help them decide how best to prioritize their mitigation strategies. 
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1. BACKGROUND AND MOTIVATION 
 

 

Since the establishment of the Intergovernmental Panel on Climate Change (IPCC) in 1988 and 

the five Assessment Reports subsequently produced by the organization, knowledge and 

concerns about climate change have been steadily increasing (IPCC, 1992; IPCC, 1995; IPCC, 

2007; IPCC, 2011; IPCC, 2014). In response to these concerns, several international, regional, 

and national greenhouse gas (GHG) management and reduction policies have been adopted. The 

most notable of these policies is probably the Kyoto Protocol, which was signed in 1997 and 

involved 192 nations and was ratified by 83 (United Nations Framework Convention on Climate 

Change, 2014).  

 

More recently, numerous cities across the world have adopted Climate Action Plans (CAPs) in 

an attempt to estimate and reduce their greenhouse gas (GHG) emissions. In the United States, 

over 1000 mayors have committed to the U.S Conference of Mayors Climate Protection 

Agreement, over 450 local governments have joined the International Council for Local 

Government Initiatives (ICLEI – Local Governments for Sustainability), and 14 cities in North 

America have joined the C40 network of global cities striving to reduce GHG emissions (U.S. 

Conference of Mayors, 2008; ICLEI, 2015
A
; C40 Cities, 2011). Given that over 80% of the 

United States’ population live in metropolitan areas and roughly 75% of the earth’s natural 

resources are consumed in urban areas (U.S. Census Bureau, 2013
A
; Swilling et al., 2013), CAPs 

provide an important contribution to addressing the challenges posed by climate change – 

especially when considering that metropolitan mitigation strategies can better address local 

conditions and be more flexible than a national GHG policy.  
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The implementation of climate action plans typically involves completing regular GHG 

inventories. In the United States, GHG inventories are commonly completed with the help of 

ICLEI’s Clean Air Climate Protection (CACP) software, or, more recently, ICLEI’s ClearPath 

software (OpenEI, 2015; ICLEI USA, 2015
B
). Use of this software often results in bottom-up 

emission estimates for five sectors within a given city:1) Use of electricity by the community, 2) 

Fuel use in residential and commercial buildings (e.g. natural gas or fuel oil), 3) Fuel use for on-

road passenger and freight motor vehicle travel, 4) Energy use in the treatment and distribution 

of potable water and waste water, and 5) Emissions from the collection and degradation of solid 

waste generated by the community (ICLEI USA, 2013). 

 

The protocols and resources described above have greatly enhanced the ability of cities to form 

and assess GHG inventories. However, there are still some challenges with estimating local-level 

GHG emissions. First, the bottom-up approach commonly employed can be resource intensive. 

Lack of funds and institutional wherewithal has been described as a primary barrier to the 

successful implementation of sustainability-oriented actions in metropolitan areas (NRC, 2010; 

NRC, 2011; NRC, 2013; NRC, 2014). Thus, the time, money, and skills needed to collect and 

analyze the data necessary for completing a GHG inventory can inhibit the progress of 

developing and implementing a Climate Action Plan. It is not uncommon for communities to 

enter into a repetitive cycle of emissions accounting rather than shifting their focus to the 

implementation of mitigation strategies.  

 

Another issue with current GHG inventories is that they do not necessarily cover the full 

geographic or sectoral extent of a city’s emissions. Inventories are often limited to the city limits 



 

3 

 

and to the five emission-producing activities described above. Thus, emissions from activities 

like industrial processes, non-road transportation (e.g. rail and airline travel), and on-road 

commuting between urban and suburban areas are often under reported or omitted. In fact, a 

study of the GHG footprints of 8 U.S. cities revealed that, on average, “trans-boundary” 

emissions (emissions from transportation between the city and surrounding areas, airline travel, 

embodied emissions for goods and services used or purchased in the city, etc.) contributed nearly 

50% more to a city’s emissions compared to the emissions from activities that are typically 

reported (Hillman and Ramaswami, 2010). City practitioners have also stressed the importance 

of expanding their analysis to the regional or mega-regional level rather than focusing solely on 

the political boundaries of the city limits (NRC, 2010; NRC, 2013; NRC, 2011; NRC, 2014). 

 

Additionally, forming meaningful comparisons between locations can often be difficult, because 

there are frequently large discrepancies and inconsistencies between the methods and scopes 

applied to the inventories of different places (Blackhurst et al., 2011; Ramaswami et al., 2008). 

Some comparative analyses have been completed, but this work has typically been confined to a 

limited geographic scope (Blackhurst et al., 2011; Glaeser and Kahn, 2010; Kennedy et al., 2009; 

Sovacool and Brown, 2010) or a limited set of emission producing activities (Brown, 

Southworth, and Sarzynski, 2009). 

 

Finally, inventories help practitioners track recent and historical progress. However, climate 

action plans can often lack elements of forecasting. There are several near-to-long term 

“extrinsic” factors that may have a considerable impact on the emission profiles of various cities: 

population change, climate change, technology change, and policy change. Population growth is 
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a particularly important factor in determining the future emissions of a city and the success of 

any GHG mitigation strategies. Previous work has illustrated the important role that population 

plays on energy consumption and emissions (York, Rosa, and Dietz, 2003; Wei, 2011; Dietz and 

Rosa, 1997; Chertow, 2000). Thus, under scenarios of high population growth, it is possible that 

even highly aggressive GHG mitigation policies and technologies would not be sufficient to 

achieve desired reductions in a city’s emissions.  

 

Another factor that could lead to increased emissions is the increased energy consumption 

resulting from projected rises in future temperatures due to climate change. The National Climate 

Assessment projects that average temperatures are likely to rise between 3 and 10
o
F in the 

United States over the remainder of the century (USGCRP, 2014). These changes in temperature 

will affect the demand for space heating and cooling and could potentially lead to increased 

energy use and emissions as a result. Some areas may undergo a net increase in energy demand 

and emissions from rising temperatures (i.e. increased cooling demand outpaces decreased 

heating demand); while the opposite might be true in other locations (i.e. decreased heating 

demand outpaces increased cooling demand). Regional differences in the balance between 

changes in cooling and heating demand can lead to interesting decisions related to prioritizing 

GHG reduction strategies. For example, an area expected to undergo a net increase in energy 

demand due to space cooling may really want to focus their mitigation efforts on building 

weatherization and efficient air conditioning units. On the other hand, areas where a net decrease 

in energy demand is expected may want to focus their mitigation efforts on other areas like 

transportation.  

 



 

5 

 

In addition to changes from rising temperatures, changes in policy, behavior, and technology are 

likely to lead to decreases in emissions. We focus our attention on the EPA’s newly proposed 

Clean Power Plan aimed at reducing GHG emissions from existing power plants (U.S. EPA, 

2014
A
; U.S. EPA, 2014

B
). The Clean Power Plan proposes 30% reduction in electricity-sector 

GHG emissions by the year 2030 – equivalent to roughly a 10% reduction in total overall U.S. 

GHG emissions (U.S. EPA, 2015
A
). Although this is a national-level policy, it will still have 

important implications on GHG emissions at the metropolitan level. For example, the Clean 

Power Plan will likely have considerable implications on emissions in areas where coal power is 

predominate (i.e. Pittsburgh, Chicago, Atlanta, etc.), but less of an impact in areas where natural 

gas or hydro are more prevalent (i.e. Los Angeles, San Francisco, Portland, Seattle, etc.). 

 

Given the issues described above, this thesis seeks to evaluate metropolitan-level GHG 

emissions and some of the key factors that may drive emissions and cities’ abilities to meet 

reduction targets moving forward. In Chapter 2, we use publically available national data to 

develop an integrated approach for estimating GHG emissions at the metropolitan level. In 

Chapter 3, we use census data and the results from our integrated approach to quantify the 

magnitude of under-reported emissions from GHG inventories and assess the importance that 

scope and boundary choices can have on the emissions profile of a given metropolitan area. In 

Chapter 4, we investigate the implications that projected temperature increases, population 

change, and the EPA’s Clean Power Plan have on electricity-sector emissions at the metropolitan 

level. Finally, Chapter 5 summarizes the key findings and policy implications of this work. 
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2.  AN INTEGRATED APPROACH FOR MEASURING     

 GREENHOUSE GAS EMISSIONS IN METROPOLITAN 

 AREAS WITHIN THE UNITED STATES 
 

2.1 Introduction 

In response to growing concerns about climate change, numerous cities across the United States 

have adopted climate action plans (CAPs) in an attempt to quantify and reduce their greenhouse 

gas (GHG) emissions. A key component of these CAPs is the implementation of regular GHG 

inventories, which are typically formed through a bottom-up approach in which data are 

compiled from local utilities, transportation fuel consumption, and waste disposal. Emission 

factors associated with each of these activities are then used to form estimates of the GHG 

emissions for a particular city. Generally speaking, carbon dioxide (CO2) is the primary 

component of the GHGs measured in climate action plans. A common exception to this is 

emissions from waste disposal (i.e. landfills). Unless captured and flared, methane is the primary 

GHG emitted from landfills. Thus, GHG inventories will typically apply a Global Warming 

Potential (GWP) value to convert methane emissions to units of CO2 equivalents (CO2e). 

Ultimately, overall city-wide emissions are usually reported in terms of CO2e. 

 

Previous work has shown that there are large inconsistencies with the methods used to develop 

inventories
 
and the scopes adopted in the inventories (Blackhurst et al., 2011; Ramaswami et al., 

2008). These inconsistencies make it challenging to form meaningful comparisons between the 

inventories and mitigation strategies adopted by different locations. Some comparative analyses 

have been completed, but these studies have typically been limited to specific cities or regions 

(Blackhurst et al., 2011; Glaeser and Kahn, 2010; Kennedy et al., 2009).
 
The few studies that 



 

7 

 

have had a larger geographic extent, have been limited in the number of emission producing 

activities analyzed (Brown, Southworth, and Sarzynski, 2009). Although some meaningful 

conclusions can be gathered from the existing work, the results, analysis, and comparisons are 

not broadly applicable to all metropolitan areas in all scenarios. Having the ability to make such 

comparisons is important because it allows for better overall assessment of the progress being 

made across the country, and allows cities to more easily adopt best practices.   

 

In addition to the concerns above, there are also many practical challenges associated with 

implementing CAPs. Formation of GHG inventories tends to be time consuming and expensive, 

and cities often require consultants or non- governmental organizations (NGOs) to assist with the 

process. In a series of National Research Council (NRC) workshops related to urban 

sustainability, city practitioners stated that the lack of available funding was the primary barrier 

to implementing sustainability-oriented actions (NRC, 2010; NRC, 2011; NRC, 2013; NRC, 

2014). Similarly, they stated that it would be beneficial if the research community could help 

them lower the costs of compiling and analyzing all the inventory data and help them concentrate 

on measuring and analyzing the “right things (NRC, 2010).” Turnover in city and consulting 

personnel can also affect the consistency and quality of the data. For example, discusses with 

Lindsay Baxter, the former  the Sustainability Coordinator for the City of Pittsburgh, revealed 

that Pittsburgh has completed two GHG inventories since 2006, and each inventory was 

completed by different people with different levels of transparency in their methodology. Finally, 

city practitioners expressed the importance of expanding analysis and planning beyond the 

political boundaries of city limits and focusing more broadly on the “regional or mega-regional 

level (NRC, 2010; NRC, 2011; NRC, 2013; NRC, 2014).” 
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Given the above issues, we developed an integrated approach to for using publically available 

national datasets to estimate production-based GHG emissions by sector at the metropolitan 

level. We then applied this approach to the 100 most populated metropolitan areas in the United 

States in order to form GHG emissions estimates for the years 2002 and 2011. The methods and 

results detailed below allow for consistent comparison of GHG emissions over time, between 

multiple areas, and across sectors, and can serve as a framework for practitioners to get an initial 

understanding of their emissions profile without having to fully devote all of the time and 

resources needed to complete a bottom-up inventory. 

 

The rest of the chapter is organized as follows. Sections 2.2 and 2.3 discuss the data and methods 

used in our analysis. Section 2.4 describes the results of our emissions estimates and includes 

comparisons to estimates formed from other methods. Section 2.5 includes policy implications 

and conclusions. 

2.2 Data 

The data that served as the basis for our analysis were obtained from a variety of publically 

available national datasets: the Vulcan database constructed by researchers at Arizona State 

University,
 
the EPA’s National Mobile Inventory Model (NMIM), the EPA’s mandatory GHG 

reporting program, and the EPA’s National Emissions Inventory (NEI) – which includes 

components of the Continuous Emission Monitoring System (CEMS) and Acid Rain Programs 

(Gurney et al., n.d; The Vulcan Project, n.d.; U.S. EPA, 2010; U.S. EPA, 2013; U.S. EPA, 

2014
C
; U.S. EPA, 2014

D
 ). Estimates for the year 2002 are primarily based on data from the 

Vulcan database and the 2002 NEI. Table 2-1 provides a summary of the different data sources, 
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the spatial resolution of each source, and the sector-based emissions estimates that each data 

source provides. 

Table 2-1 Summary of data sources used and sector-based emissions provided by each data 

source for 2002 estimates. Adapted from (Gurney et al.) 

Data Source Data Type 
Spatial 

Resolution 
Sector 

National 
Emissions 
Inventory 

(NEI), 2002 

Point Source 
Latitude & 
Longitude 

Industrial Activity 

Non-Point 
Source 

County 

Commercial 
Buildings               

(non-electricity 
emissions) 

Non-Point 
Source 

County 

Residential 
Buildings                     

(non-electricity 
emissions) 

Non-Point 
Source 

County 
Non-Road 

Transportation 
(boats, rail, etc.) 

Non-Point 
Source 

Latitude & 
Longitude 

Airport Activity 
(airport 

operations, 
airplane takeoff/ 

landing) 

CEMS/Acid 
Rain Program, 

2002 
Point Source 

Latitude & 
Longitude 

Electricity 
Production 

EPA 
NMIM/EPA 

MOVES, 2002 

Non-Point 
Source 

County 

On-Road 
Transportation 
(light and heavy 
duty vehicles) 

 

Estimates for the year 2011 are primarily based on the EPA’s mandatory GHG reporting 

program and the 2011 NEI. Table 2-2 provides a summary of the different sources, sectors, and 

spatial resolution of the 2011 data. 
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Table 2-2 Summary of data sources used and sector-based emissions provided by each data 

source for 2011 estimates (EPA, 2014
C
; EPA, 2014

D; 
EIA, 2014; California Energy 

Commissions, 2015). 

Data Source Data Type 
Spatial 

Resolution 
Sector 

EPA GHG 
Reporting 
Program, 

2011 

Point Source 
Latitude & 
Longitude 

Industrial 
Activity 

Electricity 
Production 

Waste 

EIA, EPA, 
California 

Energy 
Commission, 

2011 

Non-Point 
Source 

County/State 

Residential 
Buildings 

Commercial 
Buildings 

National 
Emissions 
Inventory, 

2011 

Non-Point 
Source 

County 
On-Road 

Transportation 

 

All data use a production-based emissions accounting method, in which emissions are attributed 

to where they geographically occur. Emissions estimates produced by cities in their CAPs are 

often accounted as consumption-based emissions: emissions attributed to where the end-use 

occurs, independent of where it was actually emitted. Normally, the distinction between 

production-based estimates and consumption-based estimates would make consistent comparison 

between our approach and other estimates difficult. However, with the exception of electricity-

production, the emissions estimates in the city CAPs appear to be comparable to production-

based emissions we employ. For example, emissions estimates from transportation are based on 

where the cars are driven and where the emissions leave the tailpipe. Similarly, for natural gas 
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consumption, emissions are attributed to where the buildings are located (i.e., where the fuel is 

actually combusted).  

 

As mentioned above, emissions from electricity generation are the only activity where 

production-based estimates and consumption-based estimates could potentially lead to different 

results. For example, under a consumption-based approach, a majority of the electricity 

production emissions would be attributed to the city of Chicago and/or Cook County. However, 

under a production-based approach, a majority of the electricity production emissions would be 

attributed to outlying/rural counties in Illinois, Indiana, and Michigan (where the electricity 

generation facilities are more likely to be) and not necessarily to Cook County and/or the City of 

Chicago. The difficulties of relating the electricity produced in a county to the electricity 

consumed in a county were addressed more explicitly by Weber et al (Weber et al., 2010). A 

regression-based approach to relate the amount of electricity consumed in a county to the amount 

of electricity produced in a county has also exhibited a fairly large range of uncertainty 

(Tamayao, Blackhurst, and Matthews, 2014). Our analysis allows for additional comparison 

between consumption-based and production-based estimates and places any disparities in the 

context of the overall emissions profile of a metropolitan area.  

 

Years 2002 and 2011 were chosen for the analysis because they were the earliest and most recent 

years with reliable GHG estimates across all sectors and at the appropriate scale. For example, 

although the EPA’s Mandatory GHG Reporting Program has data from as recent as 2014, it only 

has data for stationary sources (electricity generators and large industrial facilities) - not 

transportation or residential/commercial buildings (U.S. EPA, 2014
D
). However, updated NEI 
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data is released every three years, so it is conceivable for the estimates we produce to be 

systematically updated every three years – beginning with the upcoming release of the 2014 NEI 

data.  

 

In addition to the datasets described above, we also incorporate population data and compare our 

estimates to emission values reported directly by cities and states. The population data is at the 

city, county, and state levels for years 2002 and 2011 (Census citations). The emissions estimates 

reported directly by the cities were available from the Carbonn Climate Registry, the Carbon 

Disclosure Project, and the cities themselves (Carbonn Climate Registry, 2014; Carbon 

Disclosure Project, 2015). The state-level emissions estimates were available from the EPA’s 

2011 State Energy CO2 Emissions data set (U.S. EPA, 2015
B
). 

2.3 Methods 

The Vulcan project, which used similar data sources, converted carbon monoxide (CO) 

emissions to carbon emissions to form gridded 10km by 10km production-based emissions 

estimates for the entire United States. The Vulcan results provided insight into how the above 

data sources could be used, and served as an important starting point for our analysis – especially 

in forming the 2002 estimates (Gurney et al, n.d.; Gurney et al, 2009). The conversion of CO 

emissions estimates to carbon (and ultimately CO2) estimates is based on past work in 

atmospheric chemistry that has shown that almost all atmospheric CO reacts with OH radicals to 

form CO2 over a relatively short time frame (Jaffe, 1968; Weinstock and Niki, 1972; Logan et 

al., 1981; Khalil and Rasmussen, 1990). Thus, the approach used in Vulcan provides a 

framework for estimating GHG emissions in the absence of explicit CO2 

estimates/measurements. It is worth noting that this approach is only applied to the 2002 data. 
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All of our estimates for 2011 are based on explicit CO2 measurements/estimates (i.e. it was not 

necessary to start with CO and then convert to CO2). 

 

The emissions estimates for the seven sectors listed in Table 2-1 – electricity production, 

industrial activity, residential buildings, commercial buildings, on-road transportation, non-road 

transportation, and airport activity - were available at a variety of different scales in the data sets 

we used. For example, emissions associated with industrial activity and electricity generation 

were provided at the facility level, while emissions associated with residential/commercial 

buildings, airport activity (i.e. airport operations, airplane takeoff/taxi/landing), and on-road/non-

road transportation were provided at the county level. For this study, all of the facility-level data 

were aggregated to the county level to match the scale of the non-point sources. Then, the 

county-level emissions estimates were further aggregated to form GHG estimates for 

Metropolitan Statistical Areas (MSAs).  As defined by the United States Census Bureau, MSAs 

consist of a “substantial population nucleus (of at least 50,000 people), together with adjacent 

communities having a high degree of economic and social integration with that core (U.S. 

Census Bureau, 2013
B
).” For example, the Pittsburgh MSA consists of the City of Pittsburgh as 

well as Allegheny, Armstrong, Beaver, Butler, Fayette, Washington, and Westmoreland Counties 

[see Figure A1 in Appendix A]. Altogether, this aggregation resulted in GHG emissions 

estimates for the 100 most populated MSAs for the seven emission producing activities 

described above. For the duration of the report, this data will be referred to as the “integrated 

data.”   
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The 2011 estimates were formed in a similar manner: facility data was aggregated to the county 

level, and then county data was aggregated to the MSA level. However, there were a few 

differences: 1) electricity and industrial activity emissions were collected from the EPA’s 

mandatory greenhouse gas (GHG) Reporting Program, 2) Emissions for waste 

generation/collection were estimated using the EPA’s mandatory reporting program, and 3) the 

2011 NEI directly reported on-road transportation emissions in GHGs (as opposed to CO in the 

2002 data).  

 

For the 2011 data, the use of the EPA’s mandatory GHG reporting program (as opposed to the 

NEI data) for estimating emissions from industrial processes and electricity production can 

potentially add some uncertainty to the analysis. Since the NEI and mandatory reporting program 

are two different data sets, there is the potential for certain facilities to be present in only one of 

them. For example, in the case where a facility were included in the NEI but not in the 

mandatory reporting program, the 2002 emission estimates may be larger than the 2011 estimates 

for a given sector in a given location. Thus, rather than being attributable to a shift in the 

electricity or industrial processes, the difference between the two estimates (2002 vs. 2011) may 

be entirely due to the fact that a certain facility is present in one data source but not the other. 

The same would be true if a facility was included in the mandatory reporting program but not the 

NEI. In that case, the 2011 estimates would likely be larger than the 2002 estimates due to the 

inclusion of more facilities in the data set. 

We explore the potential for this type of situation by investing the specific power generating 

facilities present in Texas as included by both the NEI and the mandatory GHG reporting 

program. The 2011 NEI data contains 127 electricity generating facilities across 70 Texas 
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counties, and the 2011 mandatory GHG reporting program data contains 130 electricity 

generating facilities across 74 Texas counties (EPA, 2014
C
; EPA, 2014

D
). Of the 74 total 

counties between the two data sets, 65 counties have the exact same number of facilities in both 

the NEI and the mandatory reporting. More specifically, between the two data sets, 114 facilities 

can be directly matched based on facility name and/or address. Therefore, although there is not 

100% consistency between the facilities in the NEI and mandatory reporting program, there 

appears to be enough consistency (close to 90% match rate) to allow for the use of either data set 

without the introduction of an unacceptable amount of uncertainty. Moving forward, it will be 

important to perform additional consistency verifications similar to the one described above – 

especially for multiple locations and different emission producing activities.  

 

Finally, the largest difference between the 2002 and 2011 estimates occurs in the residential and 

commercial building sector. In contrast to the 2002 data, direct emissions estimates for these two 

sectors were not available from the 2011 NEI or the EPA’s mandatory reporting program. Thus, 

alternative estimation approaches were applied. For California, county-level natural gas 

consumption data (for residential and non-residential buildings) was available from the Energy 

Consumption Data Management System, and was based on values reported by utilities 

(California Energy Commission, 2015).  For the metropolitan areas outside of California, two 

methods were used to estimate emissions from commercial and residential buildings: 1) we 

assume that the per capita emissions from the 2002 data remain constant and multiply these 

values by the 2011 county/MSA populations to get updated estimates; and 2) multiply 2011 

county and MSA populations by the state-level per capita residential and commercial building 

emission values provided by the EIA Form 176 (U.S. EIA, 2014).  
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2.4 Results 

2.4.1 Emission Estimates for 2002 and 2011 

 

 

Figures 2-1 and 2-2 illustrate changes in overall MSA-level emissions between the years 2002 

and 2011. A Full summary of the 2002 and 2011 emission estimates is included in Section A2 of 

Appendix A. Figure 2-1 depicts the 15 metropolitan areas that underwent the largest decreases in 

overall net emissions, net emissions per capita, percent change in overall emissions, and percent 

change in per capita emissions between 2002 and 2011. Figure 2-2 depicts the 15 metropolitan 

areas that underwent the largest increase (or smallest decrease in some cases) in overall net 

emissions, net emissions per capita, percent change in overall emissions, and percent change in 

per capita emissions between 2002 and 2011. The error bars in the figures indicate upper and 

lower bounds for the estimates. As described in the methods section, these bounds are the result 

of the two different approaches for estimating emissions from residential and commercial 

buildings for the year 2011. Figure A2 in Appendix A depicts percent change in emissions 

between 2002 and 2011 for all analyzed MSAs. 
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Figure 2-1. Summary of the 15 metropolitan areas that underwent the largest percent 

decrease (upper left), largest net decrease (upper right), largest per capita percent decrease 

(lower left), and largest per capita net decrease (lower right) in total GHG emissions 

between the years 2002 and 2011. 
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Figure 2-2. Summary of the 15 metropolitan areas that underwent the largest percent 

increase (upper left), largest net increase (upper right), largest per capita percent increase 

(or smallest decrease in some cases) (lower left), and largest per capita net increase (or 

smallest decrease in some cases) (lower right) in total GHG emissions between the years 

2002 and 2011. 

 

Although GHG reduction targets are typically framed in terms of a percent reduction in 

emissions, it is also important to look at how per capita and overall emissions change over time. 

Generally speaking, large percent reductions in emissions will correspond with large decreases in 

overall and per capita emissions. However, this interaction appears to be stronger in the case of 

emission increases rather than emission decreases. Of the 15 MSAs that experienced the largest 

overall decrease in emissions between 2002 and 2011 (upper right of Figure 2-1), only 5 were in 

the top 15 for the other emission change categories (percent change in overall emissions, percent 
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change in per capita emissions, and net change in per capita emissions). Similarly, 5 of the top 15 

(in terms of overall decrease in emissions) did not appear in the top 15 for any of the other 

categories. Conversely, of the 15 MSAs that underwent the largest overall increase in emissions 

between 2002 and 2011 (upper right of Figure 2-2), seven were in the top 15 for the other 

emission change categories. Additionally, only 2 of the top 15 (in terms of overall decrease in 

emissions) did not appear in the top 15 for any of the other categories.  

 

 Focusing only on percent change in emissions can sometimes give a misleading sense of overall 

progress – a large percent reduction to a small baseline may be the same as a small percent 

reduction to a large baseline. From a global perspective, an ideal scenario would be for a 

majority of the top-emitting areas to experience significant decreases in total and/or per capita 

emissions. A large percent decrease in emissions would certainly coincide with such an outcome, 

but it is not necessary for it to occur. For example, the Atlanta MSA had the 5
th

 highest overall 

emissions in 2011. Its percent decrease in emissions between 2002 and 2011 did not place in the 

top 15. However, Atlanta experienced the 5
th

 largest overall decrease in total emissions and the 

6
th

 largest decrease in per capita emissions. Overall, those changes point to a degree of success in 

terms of overall GHG reductions. However, if only looking at percent change, this success would 

not be as apparent.  

 

Including per capita emissions in the analysis is also important in the context of population 

growth. Areas like Bakersfield, Los Angeles, McAllen, and El Paso experienced fairly large 

increases in their population but minimal decreases in their per capita emissions between 2002 

and 2011. Therefore, decision makers in these areas would do well to seek policies that continue 
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to move per capita emissions downward. Otherwise, the continued growth in population will 

likely severely undermine any GHG mitigation efforts in the future. Overall, as decision-makers 

move forward with establishing, implementing, and tracking GHG reduction targets, it will be 

important for them to frame their progress in the context of both percent and overall net 

reductions to total and per capita emissions.  

 

For all MSAs analyzed, the average percent change in emissions from 2002 to 2011 was roughly 

-10% and the average net change was -4.2 million tons CO2e. Similarly, the average percent 

change in per capita emissions between 2002 and 2011 was -22% and the average net change in 

per capita emissions was -4.3 tons CO2e per person. On average, the alternate approaches to 

estimating emissions from residential and commercial buildings resulted in an uncertainty range 

of + 4%.  

 

Examining the above emission changes more closely reveals that population change appears to 

be a major factor for the MSAs that experienced the largest increase in overall emissions. In 

Figure 2-2, there are multiple cases where increases in net emissions occur in spite of minimal 

(or even negative) changes in per capita emissions. For example, McAllen, San Antonio, and 

Knoxville all experienced decreases in per capita emissions but increases in overall emissions 

between 2002 and 2011. For all MSAs examined, the average population change between 2002 

and 2011 was +14%. However, for the 15 MSAs with the largest percent decrease in total 

emissions (upper-left of Figure 2-1), the average percent change in population was +7%. 

Similarly, for the 15 MSAs with the largest percent increase in total emissions (upper-left of 

Figure 2-2), the average percent change in population was +24%.  
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In addition to population changes, insights about changes in MSA emissions can be gathered 

from looking more closely at the sector-based emissions for a given MSA over time. Figure 2-3 

highlights the sector-based emissions from 2002 and 2011 for the four MSAs that underwent the 

largest percent decrease in emissions: Allentown, PA; Springfield, MA; Cleveland, OH; and 

Palm Bay, FL. 

 

 
Figure 2-3 Sector based emissions for years 2002 and 2011 for the four metropolitan areas 

that underwent the largest percent decrease in total emissions between 2002 and 2011. 

 

Figure 2-3 illustrates the large influence that decreased industrial activity and electricity 

production had on the overall emissions decreases observed in these locations. The four MSAs 

depicted in Figure 2-3 all appear to have lost a majority of their industrial activity between 2002 
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and 2011, and Palm Bay also lost a large portion of its emissions from  electricity production. 

Table 2-3 summarizes the average percent change in emissions between 2002 and 2011 for each 

sector for the 15 MSAs depicted in the upper-left of Figure 2-1.  

Table 2-3. Average percent change in emissions between 2002 and 2011 for each sector for 

the 15 MSAs that underwent the largest percent decrease in total emissions during that 

time frame. 

Sector Average % Change 

Industrial -62% 

Electricity Production -54% 

On-road Transportation -21% 

Commercial Buildings 7% 

Residential Buildings 2% 

 

Table 2-3 further illustrates the influence that decreases in industrial and electricity emissions 

had on overall emission decreases. The average decrease in emissions observed in these two 

sectors are considerably larger than the average decreases observed in other sectors. While we 

assume that the decreases in industrial emissions seen above are primarily due to the loss of 

industrial activities/facilities in a given area, it is possible that these decreases could be partially 

or fully due to gaps in data between the NEI values used to estimate 2002 emissions and the 

mandatory GHG reporting values used to estimate 2011 emissions. In Section 2.3, we discussed 

the strong overlap between NEI and mandatory reporting for electricity facilities in Texas. 

However, future work on this topic would benefit from also verifying a high degree of overlap 

between NEI and mandatory reporting for industrial facilities. 

 

Figure 2-4 illustrates the sector-based emissions from 2002 and 2011 for the four MSAs that 

underwent the largest percent increase in emissions: Grand Rapids, MI; McAllen, TX; Orlando, 

FL; and Bakersfield, CA. 
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Figure 2-4 Sector based emissions for years 2002 and 2011 for the four metropolitan areas 

that underwent the largest percent increase in total emissions between 2002 and 2011. 

 

In contrast to Figure 2-3, Figure 2-4 depicts more varied causes of the observed increase in 

overall emissions. In the cases of Grand Rapids and Bakersfield, the increase in emissions is 

primarily driven by one or two specific facilities. According to EIA data, the emissions increase 

in Bakersfield is primarily attributable to the addition of the Pastoria Energy facility and 

increased usage of the Elk Hills electricity facility (U.S. EIA, 2015). Similarly, the emissions 

increase in Grand Rapids is primarily due to increased usage of the Zeeland electricity generating 

facility (U.S. EIA, 2015). On the other hand, population increase in Orlando and McAllen is 

likely to be a major cause of the observed increases in emissions from the electricity and on-road 

transportation sectors (and overall emissions). Between 2002 and 2011, the population of the 
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Orlando MSA increased by 32% and the population of the McAllen MSA increased by roughly 

40% (U.S. Census Bureau, 2012
A
). 

 

When examining all 15 MSAs (that underwent the largest percent increase in emissions), 

increased electricity production appears to have a much larger influence on increased total 

emissions when compared to other sectors. Table 2-4 summarizes the average percent change in 

emissions for each sector for the 15 MSAs depicted in the upper-left of Figure 2-2. 

 

Table 2-4 Average percent change in emissions between 2002 and 2011 for each sector for 

the 15 MSAs that underwent the largest percent increase in total emissions during that 

time frame. 

Sector Average % Change 

Electricity Production 126% 

Industrial 15% 

Commercial Buildings 14% 

Residential Buildings 14% 

On-Road Transportation 2% 

 

 

Overall, the results above highlight the influence that factors like population change and changes 

to industrial activity and electricity production can have on the overall emissions of a 

metropolitan area. Large decreases in overall emissions were achieved in locations like 

Cleveland, Allentown, Springfield, and Palm Bay. From a GHG reduction standpoint, these 

reductions appear to indicate significant progress. However, given the large decrease in industrial 

activity required to achieve these reductions, the outcomes would likely not be very desirable or 

possible in many locations – especially when considering the economic, social, and policy 

implications likely connected to large scale loss of industrial activity.  
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From a national and international perspective, it is also important to understand whether the 

decreases in industrial and electricity emissions are primarily due to the relocation of the 

facilities or to changes in the efficiency or emission intensity of the processes. Our data does not 

really have the appropriate level of detail to fully explore this issue, but given the general trend 

of the U.S. economy shifting toward a more service-based economy; it can be assumed that a 

majority of changes in industrial emissions are likely due to the relocation of the facilities to 

other parts of the world. Thus, although the city or MSA may appear to have a large decrease in 

emissions, there may actually be no net change to global emissions – which is ultimately the goal 

of any GHG reduction policy. Therefore, as methods and data for estimating metropolitan GHG 

emissions continue to improve, it will be important for practitioners to take better stock of 

whether their emission reductions are coming from efficiency and conservation efforts or from a 

relocation/exportation of activities and processes to other locations. 

 

2.4.2 Comparison of Results to Other Methods 

 

 

In addition to comparing emission changes over time, we also wanted to examine how our 

emission estimates compare to estimates from other sources. As mentioned earlier, with the 

exception of MSAs in California, direct emission estimates from residential and commercial 

buildings were not available, and thus were estimated using two different approaches: 1) using 

2002 per capita emissions (for residential and commercial buildings) and 2011 MSA populations 

to estimate 2011 MSA emissions, and 2) using 2011 state-level per capita emissions (for 

residential and commercial buildings) and 2011 MSA populations to estimate 2011 MSA 

emissions. Given estimates for residential natural gas consumption from the California Energy 

Commission, Figure 2-5 provides a comparison of our estimates to those reported by the state. 
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Figure 2-5 Estimates of 2011 GHG emissions from residential buildings in California 

metropolitan areas based on three different approaches: 1) estimates from 2002 per capita 

values (scaled up to 2011 population numbers), 2) estimates based on 2011 EIA state-level 

per capita estimates (scaled to metropolitan population numbers, and 3) Reported values 

from the California Energy Commission 

 

Figure 2-5 indicates that the estimates based on 2002 per capita values are systematically smaller 

than the values reported by the California Energy Commission. On the other hand, the estimates 

based on 2011 state-level per capita values appear to generally coincide well with the values 

reported by the California Energy Commission. Given that they are based on reported values 

from utilities, if we assume that the California Energy Commission values are the most accurate, 

then using state-level per capita values appears to be a reasonable alternative approach. If we 

expand these observations to other areas outside of California, then we can assume that our 

estimates based on 2002 per capita values might under estimate actual emissions from residential 
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and commercial buildings, while our estimates based on state-level per capita values may be 

fairly accurate.  

 

The uncertainty described above is primarily due to modeling constraints within the integrated 

approach and does not include underlying uncertainty associated with measuring the emissions 

from different activities. Although not included in this analysis, there is likely to be uncertainty 

associated with emission estimates from all sectors – not just residential and commercial 

buildings. Uncertainty in emissions estimates from the electricity and industrial sectors is likely 

to be rather small given the fact that these estimates are directly measured and/or reported at the 

facility level. However, given the fact that emission values from the transportation sector are 

primarily based on county-level vehicle miles traveled (VMT) estimates, the associated 

uncertainty is likely as large or larger than the uncertainty associated with estimates for 

residential and commercial buildings. Therefore, decision makers in areas where electricity 

production and industrial processes account for larger portions of total emissions can likely 

operate with a fairly high degree of confidence. Practitioners in areas where transportation and/or 

the building sector account for larger portions of overall emissions will likely want to be more 

cognizant of some of the potential underlying uncertainty associated with their emission 

estimates. 

 

Besides comparing our different approaches to each other, comparisons are also made to 

estimates reported by the cities themselves and to estimates gathered entirely from state-level 

data. Figure 2-6 shows the per capita emissions estimates for 27 MSAs from 5 different sources: 

1) strictly state-level data from the EPA (U.S. EPA, 2015
B
), 2) self reported estimates from the 
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city climate action plans, 3) our integrated approach using 2011 data and 2002 per capita data for 

residential and commercial buildings (labeled 2011a), 4) our integrated approach using 2011 data 

and state-level estimates for per capita emissions from residential and commercial buildings 

(labeled 2011b), and 5) our integrated approach using 2002 data. Note that the dates next to each 

location in Figure 2-6 correspond to the year in which that particular city conducted their 

emission inventory. 

 

The MSAs/cities included in Figure 2-6 include all of the urban core areas that have active 

memberships and GHG reduction targets registered with ICLEI (ICLEI USA, 2015
A
). The 

emission estimates reported by the cities in the climate action plans were typically compiled 

using ICLEI’s Clean Air Climate Protection (CACP) software (OpenEI, 2015). However, in 

some cases, cities form and report their estimates without the assistance of CACP. The state-

level estimates are based on the EPA’s 2011 State Energy CO2 Emissions data set and 2011 

population data from the Census Bureau (U.S. Census Bureau, 2012
B
; U.S. EPA, 2015B).  
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Figure 2-6 Comparison of total per capita GHG emissions for various metropolitan areas 

as estimated by different methods/datasets:  estimates based entirely on state-level per 

capita emission values (State), self reported estimates from the cities (Reported), and 

estimates using our integrated  approach for various years (2011a, 2011b, and 2002) 
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Figure 2-6 indicates that for 17 of the 27 MSAs analyzed, the different estimation methods yield 

comparable results. However, for 5 of the MSAs (Nashville, Cleveland, Chattanooga, Denver, 

and Washington, DC), the estimates reported by the cities were drastically higher than the 

estimates from the other methods. On the other hand, for 4 of the MSAs (San Diego, Riverside, 

Madison, and New York City), the estimates from our integrated approach using the 2002 data 

were drastically larger than the estimates from the other methods. Finally, for the Dallas MSA, 

the estimates using state-level per capita data were much larger than the estimates from the other 

methods.  

 

One of the main factors contributing to the discrepancies observed above could be the different 

geographic boundaries associated with the different data sets. The emission estimates reported by 

the cities are confined to the city-limits of a given area, while the emission estimates from the 

integrated approach are at the MSA level (as described in Section 2.3). As discussed by Tamayao 

et al., per capita emissions for certain sectors (transportation, residential, commercial) can be 

significantly different between central and outlying counties (Tamayao et al. 2014). Some of the 

implications of these geographic differences are discussed further in Chapter 3. 

 

In addition to comparing per capita emissions, we also assessed how different methods estimated 

the proportion of total emissions attributable to different sectors. Figure 2-7 depicts the 

percentage of total emissions attributable to waste, transportation, buildings, and “other” for 6 

different MSAs as estimated by 4 different methods: 1) our integrated approach using 2002 data, 

2) our integrated approach using 2011 data and 2002 per capita data for residential and 

commercial buildings (labeled 2011a), 3) our integrated approach using 2011 data and state-level 
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per capita estimates for residential and commercial buildings (labeled 2011b), and 4) reported 

estimates from the city climate action plans. In order to allow for more consistent comparison, 

the data were aggregated into the broader sectors mentioned above. The transportation sector 

includes on-road and non-road transportation. The buildings sector includes direct emissions 

from residential, commercial, and industrial buildings, as well as emissions from electricity 

generation. The “other” sector primarily includes emissions from industrial processes, but in 

some cases may include activities such as agriculture. 

 

 

Figure 2-7 Comparison of how different methods estimate the proportion of total emissions 

attributable to different sectors: waste, transportation, buildings, and “other.” 
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Generally speaking, the proportions estimated by the integrated approach appear to be fairly 

comparable to those reported by the cities in their climate action plans. However, there appears 

to be a tendency for the integrated approach estimates for transportation to be higher than the 

reported values. This observation could likely be attributed to a couple of things. First, the 

integrated approach accounts for a larger geographic area than the city-reported data, so more 

transportation activity (i.e. commuting that occurs between the central city and suburban areas) is 

captured by the integrated approach. Secondly, the integrated approach includes emissions from 

industrial processes (as classified in the “other” category), while cities typically do not include 

emissions from industrial processes in their inventories. The impact of the transportation 

discrepancies appears to be particularly pronounced in Baltimore, New York, and Atlanta. In 

these cases, the discrepancy between transportation estimates from the integrated approach and 

the reported data appear to correlate directly with the discrepancies observed for the building 

sector – if transportation accounts for a higher proportion of emissions under the integrated 

approach, then the proportion of emissions attributable to other sectors must be lower. Similarly, 

emissions from industrial processes appear to contribute to the discrepancy between the 

integrated approach and the reported values in Pittsburgh and Cleveland.  

2.5 Conclusions and Implications 

In this chapter we have outlined an integrated approach for estimating metropolitan greenhouse 

gas emissions using publically available national and state datasets. We also compare the 

estimates from our integrated approach to estimates from state-level per capita data and estimates 

reported by cities in their climate action plans.  
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Generally, the integrated approach appears to produce comparable results to the values reported 

by cities – especially in terms of the proportion of total emissions attributable to specific sectors. 

In specific instances, there were differences between estimates from the integrated approach and 

values reported by the cities – especially in terms of total per capita emissions of specific areas. 

These discrepancies likely arise from differences in the geographic boundaries and emission-

producing activities included in the different datasets, and help highlight some of the difficulty 

and uncertainty associated with comparing the emissions of different locations if they are 

estimated under different circumstances. The discrepancies also help emphasize one of the 

primary benefits of our approach: using a uniform method and set of data to form consistent 

emission estimates across multiple metropolitan areas. The implications of discrepancies from 

scope and boundary choices are explored further in Chapter 3. 

 

Additionally, our work can contribute to the process of forming GHG inventories and climate 

action plans at the local level. In complement to the CACP and ClearPath software typically 

employed by cities, our approach can help decision makers get an initial understanding of the 

primary contributors to their overall emissions without having to invest heavily in collecting and 

analyzing “bottom-up” data. In some cases, this initial assessment may be enough for the 

decision makers to move forward with prioritizing and implementing GHG mitigation strategies. 

In other cases, the initial assessment can still be valuable in helping the decision makers decide 

where it may be worthwhile for them to invest time and resources in getting more specific and 

detailed data. Finally, by having a database of consistently estimated emissions for multiple 

locations, decision makers could more confidently compare themselves to their peers in whatever 

manner they see fit. 
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Carrying this work forward, it would be beneficial to expand the number of locations to which 

our approach is applied. Here, we only analyze the 100 largest metropolitan areas in the United 

States, but this analysis could be expanded to the remainder the country. It would also be 

beneficial to continue to improve the emissions estimates for residential and commercial 

buildings by getting utility-specific natural gas consumption values for areas of interest. 

Additionally, with the expected upcoming release of 2014 NEI data, the values presented here 

could be further updated. Finally, an ultimate goal of this work would be to develop a searchable 

online database so that researchers and decision makers can more easily access, interpret, and 

update the data as needed. 
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3.  THE IMPLICATIONS OF SCOPE AND BOUNDARY 

 CHOICE  ON THE ESTABLISHMENT AND SUCCESS OF 

 METROPOLITAN GREENHOUSE GAS REDUCTION 

 TARGETS IN THE UNITED STATES 

3.1 Introduction 

Over the past few decades, cities across the United States have been taking a proactive approach 

toward addressing climate change by developing climate action plans (CAPs). The basic 

framework for these CAPs is to conduct a greenhouse gas (GHG) emission inventory, establish 

GHG emission reduction targets, develop strategies for achieving the reduction target, implement 

those strategies, monitor results and progress, and make modifications as necessary (ICLEI USA, 

2015
A
). 

 

Currently, over 130 communities have partnered with ICLEI, a non-profit organization focused 

on climate and environmental sustainability issues at the local level, to develop CAPs and GHG 

reduction targets – see Table B1 in Appendix B for full list. Of these communities, 130 have at 

least one reduction target, 51 communities have at least two reduction targets, and 27 

communities have at least three reduction targets (ICLEI USA, 2015
A
). Table 3-1 provides a 

summary of the typical reduction values and time frames associated with these targets. For these 

130 communities, 2002 typically served as the baseline year. 
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Table 53-1. Summary of GHG reduction targets for communities across the United States 

adapted from (ICLEI USA, 2015
A
) 

 

Number of 

Cities  

Typical 

Planning 

Horizon  

Typical Overall 

Reduction  

Average 

Annual 

Reduction Rate  

1st 

Reduction 

Target  

130  ~ 2020  ~ 20%  1.1%  

2
nd

 

 Reduction 

Target  

51  ~ 2025  ~ 30%  1.3%  

3
rd

 

 Reduction 

Target  

27  ~ 2050  ~ 80%  1.6%  

 

Generally speaking, communities have typically compiled their GHG inventories with the help 

of the Clean Air Climate Protection (CACP) software produced by ICLEI (OpenEI, 2015). By 

default, the software uses utility information, vehicle miles travelled (VMT) estimates, and waste 

disposal estimates provided by city officials as inputs. Inventories that use the software typically 

include five categories: energy consumption (electricity and natural gas) in residential buildings, 

energy consumption in commercial buildings, energy consumption in industrial buildings, 

transportation energy consumption (typically related to light-duty vehicle gasoline consumption), 

and emissions related to the production/disposal of waste generated within the city. 

 

In recent years, considerable work has been done to continually improve the quality, accuracy, 

and consistency of community GHG inventories. ICLEI’s 2013 Protocol for counting and 

reporting community GHG emissions builds upon the CACP framework discussed above (ICLEI 
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USA, 2013). The 2013 Protocol states that all emissions inventories should, at a minimum, 

include estimates on five “Basic Emissions Generating Activities”: 1) Use of electricity by the 

community, 2) Use of fuel in residential and commercial buildings, 3) Use of fuel for on-road 

passenger and freight motor vehicle travel, 4) Energy use in the treatment and distribution of 

potable water and waste water, and 5) Emissions from the collection and degradation of solid 

waste generated by the community (ICLEI USA, 2013). For on-road transportation emissions, 

the Protocol recommends (and provides guidance for) using an origin-destination demand-based 

allocation of trips (ICLEI USA, 2013). This approach does a better job of capturing the full scale 

of transportation emissions related to a city, as opposed to the “in-boundary” (i.e. only within the 

city limits) emissions that were used in previous frameworks. Although not considered 

“required” emissions, the 2013 Protocol also provides guidance on estimating emissions from 

industrial processes and “freight rail, transit, aviation, marine vessels, and off-road equipment 

(ICLEI USA, 2013).”
 

  

 Building on this Protocol, ICLEI also launched the ClearPath online emissions management 

system in 2014 (ICLEI USA, 2015
B
). ClearPath essentially replaces the CACP software 

previously used and makes it easier for practitioners to measure and report emissions, as well as 

develop projections of future emissions under different scenarios. As of August 2015, more than 

350 local governments have used the ClearPath software (ICLEI USA, 2015
A
). However, the 

inventories and forecasts produced by these communities are often not readily available to the 

public. Thus, the most recent sets of inventories that are widely available are still commonly 

based on the CACP approach. As ClearPath becomes more widely implemented, it is assumed 

that access to results will become more widely available. Should this occur, it will be very 
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interesting to compare inventories and CAPs conducted with ClearPath to those conducted by 

CACP. More specifically, it will be beneficial to see if practitioners take advantage of the 

additional functionality and forecasting tools available in ClearPath. 

 

Internationally, the PAS 2070 protocol produced by the British Standards Institute (BSI) 

provides guidance on developing city-level emissions estimates that include trans-boundary on-

road and non-road transportation and industrial activity (BSI, 2013). Two methods are described 

for establishing these estimates: the Direct Plus Supply Chain (DPSC) method and the 

Consumption-Based (CB) method. The DPSC method accounts for direct emissions from within 

the city boundary and indirect emissions from consumption of goods and services outside the 

city limits (e.g., grid-supplied electricity, trans-boundary travel, etc.). The CB method accounts 

for direct and indirect life cycle emissions for “all goods and services consumed by residents of a 

city (BSI, 2013).”
 

 

The protocols discussed above form a strong foundation for developing reliable community-level 

GHG inventories. Nonetheless, there still appear to be some issues worthy of consideration. For 

example, nearly all of the inventories examined were confined to the city limits of a given area. 

However, for activities like on-road commuting between urban and suburban areas, emissions 

associated with the city but outside the city limit often go under-reported. Similarly, the under-

reporting of emissions from non-electricity fuel consumption and industrial processes also 

appear to be a common occurrence (Ramswami and Chavez, 2013).
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With some of these issues in mind, additional approaches for estimating emissions have been 

demonstrated by various research groups. Ramaswami and Chavez evaluated the GHG emissions 

and urban energy/carbon intensity indices for 20 different U.S. cities and determined that, for 

production-based frameworks, normalizing by GDP is more effective approach. On the other 

hand, for consumption-based approaches, they found that normalizing by population was the 

more effective approach (Ramaswami and Chavez, 2013). Additionally, researchers at The 

University of Colorado-Denver and the City and County of Denver, developed a methodology 

for measuring city-scale emissions on a life-cycle basis. This approach allows for a more 

comprehensive assessment of a city’s emissions by accounting for “trans-boundary” surface 

transportation (trips that originate or end in a given city but do not necessarily remain with the 

city-limits for the entire duration of the trip), airline emissions, and embodied emissions for 

goods consumed within the city (e.g. fuel, food, and water) (Ramaswami et al., 2008; Hillman, 

Janson, and Ramaswami, 2011). The use of demand-based allocation for transportation fuel use 

and LCA databases for Scope 3 emissions (indirect emissions associated with an activity or the 

use/purchase of a good or service - see Section B2 of Appendix B) allowed for the estimation of 

GHG footprints in 8 U.S. cities. Overall, this study found that “trans-boundary” activities (e.g. 

on-road and airline travel, scope 3 emissions, etc.), contributed nearly 50% more, on average, to 

a city’s emissions compared to the in-boundary emissions typically reported (Hillman and 

Ramaswami, 2010).
  

 

A majority of the approaches described above rely on bottom-up data collection, which can 

frequently be resource and time intensive. For example, the approaches proposed in ICLEI’s 

2013 protocol and implemented by Hillman et al. for estimating “trans-boundary” transportation 
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emissions rely on relatively detailed travel demand data and modeling software (Hillman, 

Janson, and Ramaswami, 2011). However, local practitioners may not always have the access or 

the ability to use these datasets and software. Additionally, although captured somewhat by the 

Scope 3 emission estimates in Ramaswami et al., emissions from industrial processes are 

commonly omitted from CAPs and local GHG inventories (Ramaswami et al., 2008; Hillman 

and Ramaswami, 2010).  

 

Finally, although there has been an increased call for analysis and planning at the regional or 

mega-regional level (NRC, 2010; NRC, 2013; NRC, 2011; NRC, 2014), implementation to this 

point has been relatively sparse. However, examples of regional GHG inventories and policies 

have emerged from the San Francisco Bay Area Air Quality Management District (BAAQMD) 

and the Sacramento Area Council of Governments (SACOG)  (BAAQMD, 2015; SACOG, 

2015), and may serve as an indication of a more wide-spread shift toward a regional focus 

moving forward.  The expansion to regional emission planning and management is further 

supported by that fact that, on average, the communities within metropolitan areas that have 

established GHG reduction targets only account for 13% of the total population of the 

metropolitan area (U.S. Census Bureau, 2012
A
; U.S. Census Bureau, 2012

B
; ICLEI USA, 

2015
A
). In other words, on average, 87% of the total metropolitan population lives in 

communities that do not have an established GHG reduction target. 

 

 
This chapter explores these issues more closely and determines the importance of limiting 

analysis to the city limits and to certain emission producing activities. More specifically, we use 

metropolitan-level GHG estimates gathered from publically available data sources to determine 
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how the inclusion of under-reported emissions (i.e. emissions from outside the central city limits, 

emissions from activities like industrial processes and urban-suburban transportation, etc.) 

effects the ability of different locations to meet their GHG reduction targets.  

 

The remainder of this chapter is organized as follows. Sections 3.2 and 3.3 discuss the data and 

methods used in our analysis. Section 3.4 quantifies and analyzes the significance of under-

reporting emissions from industrial processes, on-road transportation, and confining analysis to 

the city-limits of a given area. Finally, section 3.5 discusses some policy implications and 

conclusions of our analysis. 

3.2 Data 

The emissions estimates used in this analysis are based on the same data and methods used in 

Chapter 2. Production-based GHG estimates were formed from a combination of data from the 

EPA’s mandatory GHG reporting program, the EPA’s National Emissions Inventory, and natural 

gas consumption data from the California Energy Commission and the U.S. Energy Information 

Administration (EIA) (U.S. EPA, 2010; U.S. EPA, 2013; U.S. EPA, 2014
C
; U.S. EPA, 2015

B
; 

California Energy Commission, 2015; U.S. EIA, 2014). Overall, we end up with production-

based GHG estimates for the year 2011 for the 100 largest metropolitan areas in the United 

States. The estimates include emissions from industrial activity, electricity production, waste 

generation and disposal, on-road transportation, natural gas consumption in residential buildings, 

and natural gas consumption in commercial buildings. For the duration of this report, these data 

will be referred to as the “integrated data.” 
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Information about the magnitude and timing of various community-level GHG reduction targets 

was available from ICLEI’s 2015 progress report (ICLEI USA, 2015
A
). Information and data 

regarding GHG inventories of individual cities was available from the Carbonn Climate 

Registry, the Carbon Disclosure Project, and the cities themselves (Carbonn Climate Registry, 

2014; Carbon Disclosure Project, 2015). It is important to note that the actual emission data from 

these sources are not the primary focus of this analysis. We mainly used these sources to gain a 

better understanding of the sector scopes and geographic boundaries commonly used in GHG 

inventories reported by cities. In order to ensure consistent comparisons and allow for the 

analysis of numerous locations, the integrated data serves as the primary source of quantitative 

data for this chapter. However, comparisons between the integrated data and the estimates 

reported by cities are included in Chapter 2. 

 

Finally, population data from the U.S. Census Bureau were used to compare the populations of 

various locations and develop per capita emissions estimates. These population values are for the 

year 2011 and were available at the city, county, and metropolitan level (U.S. Census Bureau, 

2012
A
; U.S. Census Bureau, 2012

B
; U.S. Census Bureau, 2012

C
). 

3.3 Methods 

We started with the 130 communities that have partnered with ICLEI to form and report their 

GHG reduction targets. However, we were primarily interested in metropolitan areas, so we 

limited our analysis to communities that are within one of the 100 largest metropolitan areas as 

defined by the U.S. Census Bureau. Under this constraint, 87 communities qualified and were 

contained within 41 Metropolitan Statistical Areas (MSAs) – see Section B3 in Appendix B. 
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Thus, all of the results and emissions estimates discussed below are developed from the 

integrated data for the 41 MSAs of interest.  

 

The first part of our analysis focused on quantifying the emissions from activities that are 

frequently under-reported by cities in their GHG inventories: industrial activity and on-road 

transportation within the metropolitan area but occurring outside the urban core.  Thus, we 

classified the total MSA GHG emissions into 3 categories: 1) “Reported” emissions, 2) “Under-

reported” industrial emissions, and 3) “Under-reported” on-road emissions. Although on 

different geographical scales, the “reported” emissions are meant to serve as a proxy for the 

activities frequently included by cities in their inventories: electricity production at the MSA 

level, waste at the MSA level, residential and commercial natural gas consumption at the MSA 

level, and on-road transportation within the urban core. The under-reported industrial emissions 

include industrial activity within the urban core. This component was limited to the urban core, 

because we could not envision a scenario in which a government entity might be able to 

influence industrial facilities outside of its jurisdiction. Finally, the “under-reported” on-road 

emissions include light and heavy duty vehicle activity within the metropolitan area but outside 

of the urban core. These boundaries were chosen to approximate emissions that result from 

commuting and the transfer of goods between urban and suburban parts of a metropolitan area. 

In contrast to industrial activity, we thought the entire MSA was an appropriate scale for 

transportation emissions, because planning and policy efforts within the central city or urban 

core can reasonably be expected to impact transportation activity and emissions throughout a 

metropolitan area (e.g. increased densification, implementation of public transit, etc.). Once 

estimates were formed for each of these 3 categories, we evaluated how total MSA emissions 
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change when the “under-reported” estimates are added to the “reported” estimates. We then 

evaluate how the emission reduction plan would need to be altered to accommodate the addition 

of these added emission sources. 

 

The second part of our analysis focuses on the implications of cities confining their inventories 

and planning to the city limits. Thus, when evaluating emissions from a given metropolitan area, 

we form three different categories: 1) the urban core county/counties, 2) the central counties 

outside the urban core, and 3) the outlying counties of the MSA. For our analysis, we classified 

the “urban core” as the county (or counties) that house(s) the primary city of an MSA. We 

maintain the central and outlying classifications specified by the Census Bureau. Using the San 

Francisco-Oakland-Fremont, CA MSA as an example, San Francisco County serves as the urban 

core; Alameda, Marin, and San Mateo counties serve as the central counties outside the urban 

core, and Contra Costa County serves as the outlying county. Once estimates were formed for 

each of these 3 categories, we evaluated how total MSA emissions change when the “central” 

and “outlying” estimates are added to the “urban core” estimates. We then evaluate how the 

emission reduction plan would need to be altered to accommodate the emissions from the 

additional geographic areas. 

3.4 Results 

3.4.1 Quantification of Under-reported Emissions Based on Integrated Data.  

As mentioned above, there are two emission producing activities that we quantify as commonly 

under-reported in city reported inventories: 1) on-road transportation that occurs within the MSA 

but outside the urban-core, and 2) emissions from industrial processes (i.e., non-utility energy 
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consumption) that occur within the urban core. We denote these emissions as “under-reported 

activities,” and quantify them using the integrated data.  

 

Based on emissions estimates from the integrated data, the under-reported activities were found 

to account for between 0.1 (in the Bridgeport, CT MSA) and 51 million metric tons of CO2e (in 

the New York City MSA), with an average of roughly 9 million metric tons of CO2e per MSA 

across all MSAs. These omitted categories account for between 1% (in Bridgeport-Stamford-

Norwalk, CT MSA) and 44% (in the Portland, OR MSA) of total production-based emissions 

within an MSA, and average roughly 24% of the total production-based emissions across all 

MSAs. Similar percentages hold on a per capita basis, and emissions range from roughly 0.1 

metric tons CO2e per person (in the Bridgeport, CT MSA) to roughly 8.1 metric tons CO2e 

person (in the Cleveland, OH MSA). Given these results, it appears that by not fully accounting 

for these activities, certain metropolitan areas may be missing key opportunities to reduce their 

overall GHG emissions.  

 

Figure 3-1 uses the integrated data to depict the “under-reported” and “reported” production-

based emissions for 41 metropolitan areas in the United States. The “reported” emissions 

represent a proxy for the emissions that are most frequently reported in city GHG inventories, 

while the “under-reported” emissions represent the activities that cities do not commonly report - 

as discussed earlier. The figure also includes per capita emissions for each MSA.  
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Figure 3-18 Profile of total and per capita CO2e emissions for 41 metropolitan areas as 

estimated with the integrated data. Emissions estimates for “reported” activities (i.e., the 

activities commonly reported by cities in their GHG inventories) are shown in blue and the 

“under-reported” emissions are shown in red (on-road transportation outside the urban 

core), gold (industrial activity within the urban core). The left side of the figure reports 

total annual emissions in million metric tons of CO2e and the right side of the figure 

reports per capita emissions in metric tons CO2e per person. 

 

Figure 3-1 shows that “under-reported” emissions can vary widely between metropolitan areas 

and can be rather large in certain cases. For a majority of the MSAs, on-road transportation 

outside the central county/urban core comprises the largest portion of total under-reported 

emissions. However, for places like Los Angeles, Cleveland, Pittsburgh, and Baltimore, 

Total Emissions 

(million metric tons CO2e) 

Per Capita Emissions 

(metric tons CO2e per person) 
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emissions from industrial activity within the central county/urban core are as large as (or larger) 

than on-road transportation emissions. The large contribution from industrial activity in these 

locations is somewhat surprising given that industrial activity is typically expected to be located 

outside of the urban core for an MSA – particularly in the United States.  

 

Care should be taken when interpreting our results for industrial activity. Our data is only 

granular to the level of the county in which the central urban core is located. Less concern is 

warranted in instances where the city comprises all (or a majority) of the county for which 

emissions are reported (e.g. Denver County, Miami-Dade County, etc.). Similarly, if county-

level industrial emissions are low or negligible, city-level industrial emissions can also be 

considered to be low or negligible. However, there is the potential for over estimating if our 

approach is used to estimate industrial emissions that only occur within a given city limits that 

comprise only a small portion of the central county. One way to address this issue would be to 

allocate the county-level industrial emissions to a given city based on GDP data. Alternatively, 

since industrial emissions are based on point source estimates, more refined emissions values for 

a given city could be derived from facility-reported data in the EPA’s National Emissions 

Inventory or the EPA’s Mandatory GHG reporting program (U.S EPA, 2014
C
 ; U.S. EPA, 

2014
D
).

 

 

Scope 3 emissions are frequently described as outside the bounds of analysis in GHG 

inventories. Thus, even if one does not fully agree with the boundary of analysis employed here, 

the emissions estimates for otherwise omitted activities can at least serve as an initial lower-
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bound estimate of the Scope 3 emissions for various cities and help allow for their inclusion in 

the inventory and CAP process.  

 

3.4.2 Quantification of Urban Core Versus Metropolitan Emissions Using Integrated Data.  

In addition to quantifying emissions from under-reported activities, we also quantified 

metropolitan emissions that are under-reported due to cities limiting their analysis and planning 

to the city limits. The population of the communities that have developed GHG reduction targets 

is only roughly 15% of the U.S. population. Thus, in order to get a better understanding of the 

implications that geographic boundary choices have on the emissions profile of a given area, we 

use the integrated data to estimate and compare three different categories of emissions: 1) the 

“urban core”, 2) the “central” counties outside the urban core, and 3) the “outlying” counties 

within the MSA. For this analysis, the estimates for the “urban core” are assumed to be 

comparable to those reported by a given city, while the “central” and “outlying” estimates are 

assumed to be under-reported by cities due to their boundary choices. 

 

Based on the estimates from the integrated data, the “non urban core” MSA emissions (i.e. 

emissions from central and outlying MSA counties) were found to account for between 0 metric 

tons CO2e (in the New Haven, CT, Bridgeport, CT, San Diego, CA, and Tucson, AZ MSAs) and 

116 million metric tons CO2e (in the Chicago, IL MSA), with an average of roughly 23 million 

metric tons of CO2e per MSA across all MSAs. These non-urban core categories account for 

between 0% (in the New Haven, CT, Bridgeport, CT, San Diego, CA, and Tucson, AZ MSAs) 

and 98% (in the St. Louis, MO MSA) of total production-based emissions within an MSA, and 

average roughly 55% of the total production-based emissions across all MSAs.  
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On a per capita basis, the “non urban core” emissions range from 0 metric tons CO2e per person 

(in the New Haven, CT, Bridgeport, CT, San Diego, CA, and Tucson, AZ MSAs) to roughly 30 

metric tons CO2e person (in the Charleston, SC MSA). In terms of proportion of total MSA per 

capita emissions, the “non urban core” emissions account for between 0% (in the New Haven, 

CT, Bridgeport, CT, San Diego, CA, and Tucson, AZ MSAs) and 98% (in of the St. Louis, MO 

MSA) total MSA per capita emissions.  

 

Figure 3-2 uses the integrated data to depict the production-based emissions for the “urban core”, 

“central” counties (outside the urban core), and “outlying” counties for 41 metropolitan areas in 

the United States. The “urban core” emissions represent a proxy for the emissions that are 

reported in city GHG inventories, while the “central” and “outlying” emissions represent 

potentially “under-reported” emissions. The figure also includes per capita emissions estimates.  
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Figure 3-29 Profile of total and per capita CO2e emissions for 41 metropolitan areas as 

estimated with the integrated data. Emissions estimates for the “urban core” (i.e., central 

city and area of density) are shown in blue, “central” counties outside of the urban core are 

shown in orange, and “outlying” counties of the metropolitan area are shown in green. The 

left side of the figure reports total annual emissions in million metric tons of CO2e and the 

right side of the figure reports per capita emissions in metric tons CO2e per person. 

 

Figure 3-2 shows that, in most cases, the vast majority of emissions within a metropolitan area 

come from outside the urban core. Thus, although it is important for the central cities to develop 

CAPs and GHG reduction plans, failure to expand and develop analysis and policies at the 

metropolitan level could lead to sub-optimal results in terms of achieving desired emission 

reduction targets. The figure also indicates that the central counties appear to have a much larger 

Total Emissions 

(million metric tons CO2e) 

Per Capita Emissions 

(metric tons CO2e per person) 
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contribution to total emissions than the outlying counties – on average, 84% of emissions come 

from central counties (including the urban core). Thus, if steps were taken to expand CAPs 

beyond city limits, it might be more effective in the short-term to focus on communities within 

the central counties and the central counties themselves before expanding to outlying counties.    

3.5 Discussion and Implications 

The analysis above helps illustrate how commonly under-reported emissions can be estimated 

and incorporated into GHG inventories and climate action plans. It also helps to highlight 

implications that may arise from adding these “under-reported” emissions into the analysis and 

planning process. As organizations like ICLEI continue to provide updated protocols and 

inventory software and more communities adopt a regional planning approach similar to those of 

Sacramento Area Council of Governments and the San Francisco Bay Area Air Quality 

Management District, decision-makers will likely need to revaluate how they develop and 

implement their GHG reduction targets. To further demonstrate this point, Figure 3-3 provides 

an illustrative example of potential GHG reduction pathways for Baltimore that could occur with 

and without the inclusion of the “under-reported” emissions.  
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Figure103-3. Illustrative example of GHG reduction policies for Baltimore under different 

scope scenarios 

The City of Baltimore has pledged to reduce its emission to 15% below 2010 values by the year 

2020 (ICLEI USA, 2015
A
). Based on the integrated data, this equates to moving from roughly 

17.6 million metric tons CO2e in 2010 to roughly 14.9 million metric tons in 2020. This level of 

reduction equates to roughly a 1.6% annual reduction rate over the ten year period (this baseline 

scenario is depicted by the dashed black line in Figure 3-3). If Baltimore decision makers 

decided they wanted to follow the ICLEI 2013 Protocol more thoroughly and expand their scope 

to include emissions from industrial processes within the city limits and on-road transportation 

within the metropolitan area but outside the city limits, its baseline emissions undergo a 1.6 fold 

increase (depicted as the solid black line in Figure 3-3). Under this new emission regime, the 

decision makers would then have to decide what emission rate they want to pursue. One option 

would be to maintain the original overall reduction of 15%. Another option would be to maintain 
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the original emission target (14.9 million metric tons in 2020). Under the first option, the 2020 

emissions would be roughly 24 million metric tons, but would be more representative of the full 

scale of emissions within the Baltimore metropolitan area. Under the second option, the 

community would need to adopt highly aggressive and comprehensive emission reduction 

measures in order to achieve an annual reduction rate of 6.2% (red dashed line in Figure 3-3), as 

opposed to the original annual reduction rate of 1.6%. It is important to note that these scenarios 

were evaluated in the absence of changes to population and technology/policy. As will be 

discussed in Chapter 4, these factors can have a major influence on emissions moving forward. 

Thus, with the inclusion of population change, annual reduction rates would likely need to be 

even larger than 6.2% if the goal were to reach the originally proposed emission levels by the 

year 2020. 

 

Assuming all of the analyzed communities have a 30% reduction target (comparable to the 

average mid-term reduction targets currently being pursued in several areas). Inclusion of the 

“under-reported” activities of industrial processes and on-road transportation outside the urban 

core would require, on average, an additional reduction of roughly 17% to achieve the same 

emission levels as the original target. Similarly, inclusion of “non urban core” metropolitan 

emissions would require, on average, an additional reduction of roughly 40% to achieve the same 

emission levels as the original target. In other words, to reach the equivalent emission value 

achieved from a 30% reduction at the reported/urban-core level, the average MSA would have to 

achieve a 70% reduction in emissions if non-urban core counties were included in the planning 

and analysis, and a roughly 50% reduction in emissions if the “under-reported” activities were 

included in the planning and analysis. 
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Achieving a roughly 2% annual reduction rate may prove to be quite challenging for local 

governments. Historically, the City of Pittsburgh was able to achieve a 30% reduction in 

emissions over a 30 year period. But, in order to achieve such reductions, the city lost 25% of its 

population and 40% of its value-added industrial activity (Hoesly et al., 2012). More recently, 

The City of Portland and Multnomah County have been able to achieve an annual emission 

reduction rate of roughly 2.2% between the years 2000 and 2013, while also experiencing 

increases in population and number of jobs (City of Portland and Multnomah County, 2015). 

However, it is unclear whether such a reduction rate can be sustained over the course of multiple 

decades. Additionally, moving from an annual reduction rate of roughly 2% to one that is 7-8% 

would likely require an unprecedented effort. Between 1990 and 2013, the largest single year 

decrease in national GHG emissions in the U.S. was roughly 7%, between 2008 and 2009 (U.S. 

EPA, 2015
B
). The largest average annual decrease in national emissions over a 10 year period 

was roughly 4%, between 2003 and 2012 (U.S. EPA, 2015
B
). Thus, if cities were to expand their 

analysis to cover “under-reported” emissions, they would likely require extraordinary levels of 

commitment, policies, and economic transformation in order to achieve the originally desired 

levels of GHG reduction.  

 

Given the emerging cases and continued calls for GHG analysis and policies at the regional or 

mega-regional level, this analysis provides an initial framework for inclusions that could be 

made to develop more comprehensive metropolitan level GHG emission estimates. Additionally, 

the analysis presented above highlights some key issues that may arise as local-level GHG 

policies continue to evolve and technology and data management advancements allow for more 
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complete and accurate assessment of GHG emissions in metropolitan areas. As policies expand 

in geographic scope and include more emission-producing activities, GHG reduction targets will 

also likely need to change. For example, GHG reduction plans may need to become more 

aggressive in terms of annual reduction rates, adjust the overall emission value targeted, or 

increase the number of years in which to achieve the desired emission reduction.  

 

The continued expansion of the scope and boundaries of local GHG reduction plans can play a 

major factor in national-level GHG emissions reduction efforts. For example, the sum of the 

emissions from under-reported activities in the 41 metropolitan areas analyzed was roughly 5% 

of total U.S. GHG emissions in 2011. Similarly, the sum of the “non-urban core” emissions from 

the 41 metropolitan areas analyzed was roughly 14% of total U.S. GHG emissions in 2011. 

Therefore, there appears to be much to gain from continuing to expand the scope and boundaries 

of local-level GHG reduction policies and the manner in which these policies evolve will help 

determine their overall influence on efforts to mitigate global climate change. 
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4.  THE IMPLICATIONS OF CLIMATIC TEMPERATURE 

 CHANGE, POPULATION CHANGE, AND POLICY 

 CHANGE ON METROPOLITAN ELECTRICITY DEMAND 

 AND GREENHOUSE GAS EMISSIONS 
 

4.1 Introduction 

The most recent IPCC Assessment Report estimates that average temperatures across the United 

States are projected to rise between 0.5 and 5
o 
C by the end of the century (IPCC, 2013). These 

projections are based on extensive work undertaken to understand and quantify the relationship 

between greenhouse gas (GHG) concentrations and rising temperatures (IPCC, 1992; IPCC, 

1995; IPCC, 2007; IPCC, 2011; IPCC, 2014). As opposed to analyzing the impact that GHG 

emissions might have on increasing temperatures, the work presented here takes the approach of 

analyzing a less studied effect - how increasing temperatures will affect the level of electricity 

demand and subsequent emissions. More specifically, we first establish the relationship between 

observed temperatures and observed electricity demand in six metropolitan areas in the United 

States (San Antonio, Austin, Houston, Dallas/Fort Worth, Chicago, and Pittsburgh). We then 

apply data from statistically downscaled climate models to estimate how electricity demand 

might change as a result of increases in future temperatures. Other key factors that may 

substantively affect the level of total emissions in metropolitan areas are changes in population 

and changes in emission intensity in the electricity grid (York, Rosa, and Dietz, 2003; Wei, 

2011; Dietz and Rosa, 1997; Chertow, 2000; Blackhurst et al., 2011; Tamayao et al.2014). Thus, 

we develop first order estimates of how changes in population and emission intensity impact 

future metropolitan electricity emission levels and compare these results to the impacts that 

climate change may have. Compared to Chapters 2 and 3, which focus more on current aspects 
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of GHG inventories and reduction policies, this chapter investigates some of the forward-looking 

components of forecasting and planning for emissions in the future. 

 

The relationship between temperature and energy demand has been studied for at least the past 

three decades (Quayle and Diaz, 1979; Le Comte and Warren, 1981; Warren and LeDuc, 1981; 

Downton, Stewart, and Miller, 1988; Badri, 1992; Lehman, 1994; Lam, 1998; Yan, 1998; 

Morris, 1999; Pardo et al., 2002). These studies used regression-based analyses to evaluate the 

influence of heating and/or cooling degree days on energy consumption. The studies covered a 

variety of different time-scales (multiple decades to monthly), geographic scales (national to 

city-level), end-uses (electricity versus natural gas), and sectors (residential, industrial, and 

commercial). Some of the studies only look at the impacts of temperature, while others look at 

the impacts of temperature in conjunction with other variables like population or price. 

Regardless of the scope of these analyses, the studies all show the strong influence that 

temperature has on energy demand. 

 

All of the studies described above were retrospective and did not use their results to forecast 

future conditions. With a few exceptions, the incorporation of long-term projections across U.S. 

regions to understand how energy demand is likely to be affected by climatic temperature change 

has been few and recent. For example, Baxter and Calandri performed one of the first forward-

looking analyses by estimating California’s annual electricity use and peak demand by the year 

2010 under two climate change scenarios (Baxter & Calandri, 1992), and Amato et al. employed 

a degree-day methodology and econometric analysis to estimate how projected changes in 

temperature might impact energy demand in the state of Massachusetts (Amato et al., 2005). In a 
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similar vein, Hadley et al. modeled the potential implications that projected monthly average 

temperatures would have on population-weighted heating/cooling degree days and subsequent 

energy use and corresponding fossil fuel CO2 emissions for the nine Census Divisions in the 

United States between the years 2003 and 2025 (Hadley et al., 2006). Franco and Sanstad used 

temperature data from four California cities and electricity generation data for the state of 

California to estimate the impacts of two climate change scenarios on annual and peak electricity 

consumption between 2005 and 2099 (Franco and Sanstad, 2008). Sathaye et al. employed a 

similar approach, but used temperature data from across the state of California, as opposed to 

only four cities. They ultimately ended up assessing how projected changes in temperature might 

impact peak demand in the month of August by the year 2099 (Sathaye et al., 2013).  

 

Our work builds on these previous studies in a few different ways. First, our analysis is at a finer 

geographic and temporal scale than the studies mentioned above. All of the works described 

above are at the national, state, or census division level. In contrast, our work is at the intra-

state/metropolitan scale. Similarly, most previous works employ monthly or annual data, while 

our work is based on daily temperature and electricity demand data. Also, with the exception of 

Hadley et al., the previous works only focus on one state or region. Our work is novel in that it 

analyzes multiple areas across the United States using the same method. Additionally, with the 

exception of Hadley et al., our analysis estimates projected changes in GHG emissions in 

addition to electricity demand. Along these lines, our study is the first, to our knowledge, that 

estimates the GHG implications of changing temperatures using facility specific and regional 

emission intensity values (as opposed to national averages). Finally, to our knowledge, this is the 
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first study to place the GHG implications of changing temperatures in the context of changing 

populations and emission intensity policies.  

 

Ultimately, the work presented here strives to determine how projected changes in temperature 

due to climate change will impact metropolitan electricity use and subsequent GHG emissions. 

As a secondary objective, we also aim to form a link between temperature-induced changes in 

GHG emissions and changes that occur under different population and policy scenarios. Gaining 

a better understanding of the linkage between these factors can help the implementation of local 

and state emission reduction strategies and energy source/capacity planning. Finally, our 

exploration of multiple locations is important because it allows for a better understanding of how 

underlying climate, fuel mix, grid mix, economic profile, and population changes can impact the 

influence that temperature changes have on GHG emissions and reduction targets. 

 

The remainder of the chapter is organized as follows. Section 4.2 explains the importance of 

focusing on metropolitan areas. Sections 4.3 and 4.4 describe the primary data sources and 

methods used in our analysis. Section 4.5 discusses the relationship between temperature and 

electricity demand. Section 4.6 summarizes the projected changes in temperature between now 

and the year 2035 for the geographic areas of interest. Section 4.7 discusses how the projected 

changes in temperature might affect electricity demand. Section 4.8 compares the effect of 

temperature change to the effect of population and policy changes. Finally, section 4.9 discusses 

some key conclusions and implications. 
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4.2 The Importance of Focusing on Metropolitan Areas  

In contrast to previous studies that have focused on state, national, or regional levels, our 

analysis focuses on metropolitan areas. Climate varies greatly across a state, so performing the 

analysis at a more refined geographic scale can better capture the impacts that location can have 

on energy demand and projected changes in climate. Additionally, over 80% of people in the 

United States live in metropolitan areas (U.S. Census Bureau, 2013
A
). On a global scale, the 

proportion of people living in urban areas was estimated to be roughly 54% in the year 2014 and 

is projected to increase to 66% by the year 2050 (UN Department of Economic and Social 

Affairs, 2014). This level of urbanization results in high levels of resource consumption via 

complex and interdependent systems - roughly 75% of the earth’s natural resources are 

consumed in urban areas (Swilling et al., 2013). 

 

The concentration of people, infrastructure, and resource consumption make metropolitan areas 

prime locations to implement both climate change mitigation and adaptation strategies. For 

example, the large building stocks and transportation networks contained in metropolitan areas 

present many opportunities for reducing GHG emissions. Similarly, the large concentration of 

people and critical infrastructure enhance the vulnerability that metropolitan areas have to 

extreme events caused by climate change.  

 

In response to these rising concerns over climate change, numerous cities across the world have 

developed Climate Action Plans (CAPs) in an attempt to quantify and reduce their GHG 

emissions and adapt to the impacts of climate change. This analysis will inform decision makers 

on the effects of several factors on future electricity demand and emissions in their region. 
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Additionally, although outside the scope of this work, our analysis could potentially aid in 

adaptation efforts by helping decision-makers anticipate time periods when their citizens and 

electricity infrastructure might be especially vulnerable to the effects of rising temperatures. 

4.3 Data  

The baseline temperature data for each location was available from the National Climatic Data 

Center produced by the National Oceanic and Atmospheric Administration (NOAA) (NOAA, 

2015). For each area of interest, temperature data is available from Weather Bureau Army Navy 

(WBAN) weather stations located at the appropriate airport (i.e., temperature data for the Dallas 

metropolitan area is from DFW International Airport). For each location, daily high and low 

temperature observations for the year 2012 were used develop daily average temperature values.  

 

The baseline electricity load data for each location comes from their respective Independent 

System Operators (ISO) and Regional Transmission Organizations (RTO). For the metropolitan 

areas in Texas, historical daily electricity generation data is available from the Electric 

Reliability Council of Texas (ERCOT) (ERCOT, 2015), while for the Chicago and Pittsburgh 

regions, historical daily electricity generation is available from the PJM RTO (PJM, 2015). For 

ERCOT, historical daily electricity load values are available at regional levels. San Antonio and 

Austin are within the South Central region, Dallas is within the North Central Region, and 

Houston is within the Coastal Region (see Figure C1 in Appendix C). For PJM, historical 

electricity load values are available for each electric distribution company (EDC) within the PJM 

operational area. More specifically, ComEd is the EDC that serves the Chicago metropolitan 

area, and Duquesne Light is the EDC that serves the Pittsburgh metropolitan area (See Figure C2 
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in Appendix C). For each of the regions specified above, we use daily historical electricity load 

data for the year 2012. 

 

Although the geographic extent of these regions do not coincide exactly with the geographic 

extent of the metropolitan areas, they serve as a reasonable proxy for electricity demand within 

the metropolitan area (we could not find any daily electricity demand data that was limited only 

to the geographic extent of a given metropolitan area). Table 4-1 summarizes the ERCOT 

Region or PJM EDC that corresponds to each metropolitan area and the % of the total 

region/EDC load that is generated from plants within the metropolitan area. For this analysis, the 

load values are taken from data presented by PJM and ERCOT and the generation data is taken 

from eGRID (PJM, 2015; ERCOT, 2015; U.S. EPA, 2014
E
). 

 

Table 4-16 Summary of the % of electricity load for a given ERCOT region or PJM EDC 

that is generated from power plants within a specific metropolitan area. 

ERCOT Region/ 

PJM EDC 

Metropolitan Area % of Load Generated in Metro 

South Central (ERCOT) San Antonio/Austin 70% 

North Central (ERCOT) Dallas/Ft Worth 40% 

Coast (ERCOT) Houston 85% 

ComEd (PJM) Chicago 50% 

Duquesne Light Pittsburgh 380%* 

*The Duquesne Light service area is smaller than the Pittsburgh MSA as a whole. Thus, the 

generation produced within the MSA is much larger than the demand within Duquesne Light. 

 

 

Projected temperature values are gathered from NOAA’s Geophysical Fluid Dynamics 

Laboratory (GFDL). More specifically, we use projected daily surface temperature values from 

the GFDL-CM3and GFDL-ESM2G climate models under the RCP 8.5 scenario (NOAA GFDL, 

2014). From these models, we ultimately end up with daily projections for high and low 
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temperatures for the years 2025-2035. The data are statistically downscaled using the BCCA 

technique and are available at a resolution of 1/8 degree (U.S. Bureau of Reclamation, 2014). 

Where necessary, the downscaled temperature data were spatially averaged to provide 

projections for geographic regions that are consistent with the six electricity load regions 

described in the previous paragraph (see Figures C3 through C7 in Appendix C). 

 

These two models, GFDL-CM3 and GFDL-ESM2G, were chosen as a starting point for our 

analysis because they performed well in the IPCC’s evaluation of CMIP5 climate models. For 

measuring surface air temperatures, GFDL-CM3 was found to have a relative space-time root-

mean-square error (RMSE) between 0 and -10%, meaning that the RMSE for GFDL-CM3 is up 

to 10% smaller compared to the median RMSE of all CMIP5 models. Similarly, GFDL-ESM2G 

has a relative RMSE between 0 and +10% (Flato et al., 2013). We choose models that were 

based in the United States with the assumption that these would be better suited for regional 

downscaling due to a better knowledge of localized conditions. The time frame for analysis is 

2025 to 2035, and was chosen to align with the planning horizon that many cities employ for 

their climate action plans and GHG reduction targets. This time horizon also corresponds well 

with population projection data and the proposed implementation of the EPA’s Clean Power 

Plan.  

 

Population projection data were gathered from the state governments of the metropolitan areas 

analyzed. For the Texas metropolitan areas, county-level population projections were produced 

by the Texas State Data Center (Texas State Data Center, 2015). For the Pennsylvania 

metropolitan areas, county-level population projections were produced by the Pennsylvania State 
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Data Center (Pennsylvania State Data Center, 2010). For the Chicago metropolitan area, Illinois 

county-level population projections were produced by the Illinois State Government (Illinois 

Department of Public Health, 2014). All county-level data were then aggregated to the 

appropriate Metropolitan Statistical Area (MSA), as defined by the United States Census Bureau. 

All population projections are for the year 2030. 

 

Future emission intensity values (lbs CO2e/MWh) under the Clean Power Plan are provided by 

technical support documentation for the EPA’s proposed Rule 111d (i.e. Clean Power Plan)  

(U.S. EPA, 2014
A
; U.S. EPA, 2014

B
; U.S. EPA, 2015

A
). Table 4-2 summarizes the current and 

proposed emission intensity rates for the states of interest in this study. 

 

Table 4-27 Summary of current electricity sector GHG emission rate and proposed 

emission rate under the Clean Power Plan (U.S. EPA, 2014
A
; U.S. EPA, 2014

B
; U.S. EPA, 

2015
A
). 

State 

2012 Emission Rate 

(Fossil, RE, and Nuclear) 

(lbs CO2/MWh) 

Final 2030 Goal 

(lbs CO2/MWh) 

Texas 1284 791 

Pennsylvania 1531 1052 

Illinois 1894 1271 

 

 

Plant-specific GHG emission data (total emissions and emission intensity) within each 

metropolitan area were available from eGRID for the year 2010 (U.S. EPA, 2014
E
). 

4.4 Model Specifications 

The first step in our analysis was to gain a better understanding of the relationship between 

temperature and electricity demand for the areas of interest. To do so, we pair location specific 
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daily average temperature values for the year 2012 with location specific total daily electricity 

demand for the year 2012, and estimate the relationship between these variables by performing a 

second-order polynomial regression.  

 

We then use the temperature projection data from the climate models and the regression results 

to estimate future electricity demand under climate change. For each of the climate models, we 

forecast daily electricity consumption for the years 2025 to 2035.  

 

Although the regression values we use are based on 2012 data, we wanted to evaluate future 

conditions against a larger and more established set of baseline data. Thus, we incorporate 

historical temperature values for each day of the year between 1990 and 1999 (~3650 total data 

points). Although the climate record goes much further back, this time period was chosen as the 

baseline period of analysis due to lack of available electricity demand and temperature data at the 

appropriate scale and frequency. For our baseline analysis, we compare the average daily 

electricity demand from the historical temperature data (1990-1999) to the average daily 

electricity demand estimates from the projected temperature data (2025-2035). We then assess 

the frequencies of various historical and projected electricity demands (See Figure 4-3). Next, we 

sum the daily values and form an estimate of average annual historical and projected electricity 

demand and determine the percent change in annual electricity demand likely to be caused by 

increasing temperatures.  

 

Finally, we employ current and possible future emission intensity and population values to get a 

range of estimates for metropolitan electricity sector GHG emissions in the year 2030 under 
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varying conditions of climate change, population change, and technology/policy change. Overall, 

we evaluate the impacts of these different conditions in 6 different scenarios: four scenarios look 

at the GHG impacts of changing one of the factors independent of all other factors (e.g. 

determining the impact that climate change may have on emissions while assuming population 

and emission rates remain constant) and two scenarios look at the GHG impacts that occur when 

all factors are changing at the same time. When analyzing the potential impacts of the Clean 

Power Plan, two separate options were analyzed: 1) A “modified” case in which the regulation is 

only half as stringent as originally proposed (i.e. Texas would only need to get its average 

emission rate from 1284 lbs CO2e/MWh to 1037 lbs CO2e/MWh), and 2) A “full” case in which 

the regulation is implemented as proposed (i.e. the states are required to reduce their emission 

rates to the values presented in Table 4-2). Similar analysis could potentially be completed by 

performing a regression that includes temperature, population, and emission rate. However, the 

data for these parameters are not available on consistent time scales – the electricity load and 

temperature data are at a daily time scale, while population and emission intensity values are 

only available at annual/semi-annual time scales. As a result, we believe scenario analysis to be 

better suited to our purposes. 

4.5 The Relationship between Temperature and Electricity Demand in Various Areas 

Using temperature data from NOAA and electricity load data from various Independent System 

Operators (ISO) and Regional Transmission Organizations (RTO), we established the 

relationship between total daily electricity demand and daily average temperatures for the year 

2012 for six metropolitan areas in the United States – San Antonio, Austin, Dallas/Ft Worth, 

Houston, Chicago, and Pittsburgh – as illustrated in Figure 4-1. It is worth noting that due to 

geographic constraints of the data, the San Antonio and Austin metropolitan areas were analyzed 
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within the same region of ERCOT (see Figure C1 in Appendix C). Thus, the results presented 

below for these two metropolitan areas are identical. 

 

 

Figure 4-111 Total daily electricity demand versus average daily temperature for the year 

2012 for the San Antonio (red – upper left), Austin (red- upper right), Dallas/Ft Worth 

(blue), Houston (orange), Chicago (green), and Pittsburgh (purple) metropolitan areas.  

Figure created by the authors using data from NOAA, The Electricity Reliability 

Corporation of Texas (ERCOT), and Pennsylvania, New Jersey, Maryland Interconnect 

(PJM).  

 

Figure 4-1 illustrates that a quadratic relationship holds for all locations. The U-shaped curves 

seen in Figure 4-1 are similar to those produced by Sathaye et al. and Pardo et al. (Sathaye et al., 

2013; Pardo, Meneu, and Valor, 2002). A second-order polynomial regression was performed for 

each location (see Table 4-3). Generally speaking, electricity demand increases as temperatures 

move toward the extremes (either hotter or colder), and decreases toward a minimum as 
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temperatures become more moderate (approximately 55 - 65
o 
F depending on the location). The 

minimum points are slightly different in each of the curves. For the locations in Texas, the 

minimums appear to occur around 65-70
o 
F, while the minimums in Pittsburgh and Chicago 

appear to be closer to 55 or 60
o 
F. These differences in minimums may illustrate different levels 

of personal comfort preferences in various locations. Although outside the scope of this analysis, 

it would be interesting to study these preferences further and see how flexible they may be under 

different conditions. For example, if someone moved from Houston to Pittsburgh, would they 

maintain their original “comfort profile” (a minimum in the U-curve occurring around 60
o
 F) or 

would they shift to a “comfort profile” similar to what is observed in Pittsburgh (a minimum in 

the U-curve occurring closer to 50
o
 F)? Similarly, as temperatures continue to rise due to climate 

change, and people in colder areas become more adapted to higher temperatures, will the U-

curves in Chicago and Pittsburgh start to more closely resemble the U-curves currently seen in 

Texas? 

 

 Compared to the four Texas metropolitan areas, the slopes on the left-hand side of the curves 

appear to be a little flatter for Pittsburgh and Chicago. This is likely due to the fact that natural 

gas is more heavily used as a fuel for space heating in these two metropolitan areas compared to 

the four in Texas. More specifically, electricity is used as the primary source for space heating in 

roughly 50% of households in Texas. In Illinois and Pennsylvania, electricity is the primary 

source for space heating in only 13% and 27% of households, respectively (U.S. EIA, 2009). 

Thus, if analyzing total energy consumption rather than electricity consumption, the relationships 

seen in Figure 4-1 would likely look very different. Additionally, if space heating and cooling 

become increasingly decoupled from the electricity and/or natural gas sector – as might be the 
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case if the use of heat pumps increased drastically – the U-shaped curves presented in Figure 4-1 

would become increasingly uncertain. Due to the lack of consistent natural gas consumption data 

at the appropriate geographic and temporal scale, we were unable to incorporate this component 

into our analysis. However, the primary policy change we analyze (i.e. the Clean Power Plan) is 

aimed at reducing electricity sector emissions, so the omission of natural gas in our study does 

not appear of critical importance.  

Table 4-38 Second-order polynomial regression between total daily electricity demand and 

average daily temperature (independent variable) for the San Antonio, Austin, Dallas/Ft 

Worth, Houston, Chicago, and Pittsburgh metropolitan areas. The units for electricity 

demand are MWh and the units for temperature are degrees Celsius. 

MSA Regression R-squared Standard Error 
SE % of Average 

Daily Generation 

San Antonio/Austin Y = 339.0x
2 
– 10,472x + 197,140 0.94 7,088 5% 

Dallas/Ft. Worth Y = 599.9x
2
 – 18,371x + 380,029 0.93 16,194 5% 

Houston Y = 498.4x
2 
– 14,642x + 308,521 0.93 12,006 5% 

Pittsburgh Y = 49.4x
2
 – 782x + 39,754 0.73 2,917 7% 

Chicago Y = 324.4x
2
 – 5,535x + 263,015 0.76 24,433 9% 

 

 

Based on the R-square and standard error values from the regressions, the equations in Table 4-3 

generally fit the data very well. For the four Texas metropolitan areas, the R
2
 values are all about 

0.9. For Chicago and Pittsburgh, the fit is not quite as strong with R
2
 values of approximately 

0.75 for both metropolitan areas.  

 

In order to further verify the goodness of fit provided by the regression equations, we compared 

projected generation values to actual generation values for four additional years of data (2010, 

2011, 2013, and 2014) - see Appendix C. The relationship between electricity consumption and 
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temperature was robust across years, and thus we only present the results for 2012 in the main 

manuscript. 

 

Table 4-4 summarizes the average daily percent difference between predicted and actual 

electricity load values for various locations and years. The predicted values are found by 

plugging historical average daily temperature values for a given year into the regression 

equations presented in Table 4-3. The actual electricity load values for the Texas metropolitan 

areas are available from ERCOT and the actual electricity load values for Pittsburgh and Chicago 

are available from PJM – see Section C4 of Appendix C. 

 

Table 4-49 Summary of average daily percent difference between predicted and actual 

electricity load value for two years before and after 2012 (the baseline year for which the 

regression analysis was performed) 

MSA 2010 Data 2011 Data 2013 Data 2014 Data 

San Antonio/Austin +3% +3% +1% -2% 

Dallas/Ft. Worth +3% 0% -3% -5% 

Houston +2% -4% -1% -4% 

Pittsburgh +4% +2% +3% +5% 

Chicago +1% 0% +2% +5% 

 

 

The average daily percent difference between the regression-predicted and actual electricity load 

values range between 0% and +5%. The average percent difference values appear to be slightly 

lower for the two years immediately before and after 2012. Overall, the results in Table 4-4 

appear to provide further evidence supporting the quality of the regression models in determining 

the relationship between temperature and electricity load. 

 

4.6 Projected Changes in Temperature in Various Metro Areas  
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We used statistically downscaled climate models from NOAA’s Geophysical Fluid Dynamics 

Laboratory (GFDL) to estimate how temperatures are likely to change over the next 20 years as a 

result of climate change. Figure 4-2 presents frequency distributions of average daily historical 

(1990-1999) and projected (2025-2035) temperatures for the six metropolitan areas of interest. 

The darker bars represent the historical data and the lighter bars outlined in black represent the 

projected data. Additional descriptions of the temperature projections and the range of possible 

temperatures are included in Section C3 of Appendix C. As shown in Figure 4-2, with the 

exception of Chicago, the distribution of daily temperatures is generally projected to shift to the 

right (hotter). The implications of these projected temperature shifts on electricity demand are 

further discussed in the next sections. 
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Figure 4-212Historical (darker bars) and projected (light bars with black outline) annual 

frequencies of average daily temperature values for the San Antonio (red – upper left), 

Austin (red- upper right), Dallas/Ft Worth (blue), Houston (orange), Chicago (green), and 

Pittsburgh (purple) metropolitan areas. The historical values are the average daily 

temperatures for the years 1990 to 1999 and the projected values are the average daily 

temperatures for the years 2025 to 2035. 

 

4.7 Impact of Temperature Change on Electricity Demand and Emissions  

Using the regression results and the projected daily temperatures from the climate models, we 

estimate projected metropolitan electricity demand, as shown in Figure 4-3. Figure 4-3 also 

includes historical levels of electricity demand for the metropolitan areas of interest.  
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Figure 4-313 Historical (darker bars) and projected (light bars with black outline) annual 

frequencies of total daily electricity generation for the San Antonio (red – upper left), 

Austin (red- upper right), Dallas/Ft Worth (blue), Houston (orange), Chicago (green), and 

Pittsburgh (purple) metropolitan areas. The historical values are the average total daily 

load for the years 1990 to 1999 and the projected values are the average total daily load for 

the years 2025 to 2035. 

 

The figure generally illustrates electricity generation shifting to the right (more demand). With 

the exception of Chicago, all metropolitan areas are expected to undergo an increase in 

electricity demand as a result of climate change. San Antonio and Austin face an average 

increase of 12% in total annual electricity demand during the years 2025- 2035 when compared 

to 1990-1999. Dallas/Fort Worth and Houston are expected to see an estimated increase of 5% 

and 4% in total annual electricity demand, respectively. In Pittsburgh, the increase in electricity 

consumption is expected to be more moderate - a 3% increase in 2025-2035 when compared to 
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1990-1999. The relatively small estimated changes in electricity demand for Dallas, Chicago, 

and Pittsburgh are likely due to the fact that a majority of the increase in demand for space 

cooling (in the summer) is offset by the decrease in demand for space heating (in the winter). 

Relatively speaking, San Antonio and Austin have fewer cold days, so this offset is minimized in 

these two locations – explaining the larger increase in electricity demand for these two areas 

compared to the others. In comparing San Antonio and Austin to Houston, the relatively small 

change in Houston is possibly due to the fact that it experiences less fluctuation in temperatures 

compared to other others – likely a result of its proximity to the Gulf of Mexico. For example, 

although Houston has a higher annual average temperature than San Antonio (69.1
o
F compared 

to 68.7
o
F), San Antonio actually has a higher average annual maximum temperature (79.8

o
F 

compared to 78.3
o
F) (U.S. Climate Data, 2015

A
; U.S. Climate Data, 2015

B
).  

4.8 Sensitivity to Population and Policy Change Scenarios  

Figure 4-4 presents the percent change in metropolitan electricity GHG emissions under varying 

scenarios: 1) only climate change; 2) only population change; 3) a “modified” version of the 

EPA’s Clean Power Plan (CPP) in which states are only required to achieve 50% of the 

originally proposed reduction in average emission rates; 4) a full version of the EPA’s Clean 

Power Plan in which the states are required to achieve the reductions in average emission rates 

currently proposed by the regulation; 5) the combined effect of climate change, population 

change, and the “modified” Clean Power Plan; and 6) the combined effect of climate change, 

population change, and the “full” Clean Power Plan. Where possible, we also added upper and 

lower bounds to certain values (indicated by the red uncertainty bars in the figure). The upper 

and lower bound values primarily come from the climate and population projections. The 

minimum values under the climate change scenario are based on the lower average daily 
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temperature between the two climate models and the upper bound values under the climate 

scenario are based on the higher average daily temperature between the two climate models. For 

the population change scenario, the upper and lower bound values come from population 

projections under high and low emigration scenarios (these values were only available for the 

State of Texas). 

 
 

Figure14-4. Percent change in electricity sector GHG emissions between 2010 and 2030 as a 

result of various factors – climate change, population change, modified Clean Power Plan 

(50% of proposed reductions in emission rates), full Clean Power Plan (100% of proposed 

reductions in emission rates). The first 4 bars (starting at the bottom) for each location 

show the impact of the specified variable and assume all other variables are held constant 

(e.g. the “population change” bars  show the estimated change in electricity GHG emissions 

if population were the only thing to change between 2010 and 2030). The “combined 

effects” bars show the combined results of all of the factors. 

 

Based on the “Full CPP” and “Combined Effects (Full CPP Scenario)” bars, electricity GHG 

emissions in San Antonio, Houston, and Pittsburgh are expected to be heavily impacted by the 
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Clean Power Plan. Even with climate change and population growth, electricity GHG emissions 

in these three areas are likely to decrease between now and 2030. Thus, these areas may be better 

suited focusing their mitigation efforts on other sectors of need (e.g. transportation). On the other 

hand, the other three metropolitan areas are expected to be heavily impacted by population 

change. In these cases, even when considering climate change and EPA regulations, changes to 

population are likely to lead to an overall increase in electricity GHG emissions. Thus, in the 

absence of more aggressive policies that limit population influx/growth, mitigation strategies in 

these locations will likely want to focus on conservation and efficiency efforts that drive down 

per capita electricity use and/or emissions as much as possible. 

4.9 Discussion and Implications 

The analysis and results presented above help to highlight how climate change may impact the 

effectiveness of local, state, and national mitigation efforts moving forward. This paper 

illustrates the potential for “climate rebound” that may undermine the absolute effectiveness of 

mitigation efforts and planning. For example, without considering the impacts of climate change, 

the Clean Power Plan is estimated to reduce total annual GHG emissions from Austin power 

plants by 17% by the year 2030. However, when adding in the impacts of climate change, the 

Clean Power Plan is estimated to reduce total annual GHG emissions from Austin MSA power 

plants by only 7%. Thus, the “climate rebound” for this scenario is roughly 10%. 

 

Additionally, the analysis not only helps place the impacts of climate change in the context of 

other factors that might impact emissions, but also helps illustrate the importance of 

incorporating forecasting into any type of climate related policy. The results in Figure 4-4 show 

the true difficulty that certain areas may face in reaching their GHG reduction targets. Even with 
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the help of the Clean Power Plan, electricity sector emissions are projected to increase in the 

Austin, Dallas, and Chicago metropolitan areas. When adding in emissions from other sectors 

like transportation, the increases will likely become even larger. Thus, it will become 

increasingly important for decision-makers to fully understand and plan for the impacts of 

factors like population growth and climate change if they are going to have any reasonable 

chance of meeting their GHG reduction goals moving forward. 

 

Table 4-5 further illustrates this point by showing the “break even” values for either the emission 

rate or the per capita electricity consumption that each metropolitan area would have to achieve 

in order for their net electricity sector GHG emissions to change by 0% between now and the 

year 2030. The break-even values presented in Table 4-5 assume that climate change and 

population change both occur. For example, assuming climate change results in a 12% increase 

in electricity demand and Austin’s population increases 42% between 2010 and 2030, the 

emission rate of Austin power plants would need to decrease by roughly 40% (roughly 20 

percentage points more than the estimated reduction from the Clean Power Plan) in order for 

electricity sector GHG emissions to have 0% growth during that period. Similarly, per capita 

electricity usage would need to decrease by roughly 25% in order for electricity sector GHG 

emissions to have 0% growth during that period.  
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Table 4-510“Break Even” values for emission rate and per capita electricity consumption 

required for each metropolitan area to have 0% growth in their electricity sector GHG 

emissions between now and the year 2030. Areas marked with “N/A” indicate no additional 

change in emission rate or per capita electricity use is required to achieve 0% growth in 

electricity sector GHG emissions between 2010 and 2030. 

 
 

Overall, it appears that climate change will result in increased electricity demand and subsequent 

emissions in most metropolitan areas. However, the magnitude of this increase varies greatly by 

location. The largest increases are likely to occur in warmer and drier metropolitan areas like San 

Antonio and Austin. Smaller increases are seen in cooler and/or wetter areas like Chicago and 

Pittsburgh. Extrapolating these results to other locations would likely mean that places in the 

southwestern and western parts of the United States should be more concerned with the impacts 

of temperature change on electricity demand – especially considering the fact that increased 

demand in northern and eastern locations will likely be offset by decreases in demand for 

heating. Similarly, areas with high population growth and/or a relatively low baseline emission 

rate are likely to experience net emission increases, while areas with low population growth 

and/or a relatively high baseline emission rate are likely to experience net emission decreases.  
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In addition to expanding this analysis to more metropolitan areas, we would also like to 

incorporate natural gas usage in addition to the analysis of electricity demand described above. 

Due to the high usage of natural gas for heating in the northern parts of the country, the 

incorporation of natural gas into the analysis would likely result in a net decrease in GHG 

emissions for metropolitan areas in colder parts of the country. However, as mentioned above, 

we were unable to find sufficient data to support this task. Finally, climate induced changes in 

energy demand will impact more than GHG emissions. Thus, it would also be interesting to 

study the impacts on criteria pollutants and the implementation of any regulations aimed at 

improving air quality.  
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5. SUMMARY, CONCLUSIONS, AND POLICY IMPLICATIONS 

 

5.1 Summary 

This thesis explored the estimation of GHG emissions at the metropolitan level and the impacts 

that various scope, boundary, and forecasting choices can have on the emission profile and 

successful reduction of GHGs in a given location. We began by developing an integrated 

approach for estimating emissions at the metropolitan level and comparing the results to other 

estimation approaches. We then compared the results from the integrated approach to estimates 

reported by cities in order to assess the magnitude and implications of emissions that may be 

under-reported by current methods. Finally, we evaluated the impact the climatic temperature 

change might have electricity demand and GHG emissions in the future, and compared the 

results to the projected impact of population change and policy change in certain metropolitan 

areas. 

 

Chapter 2 used publically available national datasets to form production-based GHG estimates 

for the 100 largest metropolitan areas in the United States. These estimates allowed for the 

consistent comparison of emissions over time and across locations. Between the years 2002 and 

2011, the overall GHG emissions for these metropolitan areas decreased by an average of 

roughly 10%. The largest decreases in emissions during this time period were typically driven by 

a large decrease in industrial activity. The largest increases in emissions during this time period 

were typically driven by increases in electricity production and population. 
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Chapter 3 expanded upon the results of Chapter 2 by evaluating the magnitude and potential 

implications of “under-reported” GHG emission estimates from certain activities and from 

geographic boundary choices. On average, it was found that emissions estimates from “under-

reported” activities, like industrial processes and on-road transportation within the MSA but 

outside the urban core, accounted for roughly 24% of total emissions. Similarly, it was found that 

MSA emissions from outside the urban core account for an average of 55% of total MSA 

emissions. These results highlight the importance of continuing to improve and expand the 

manner in which local-level climate action plans are developed and implemented. It also 

highlights the large potential that still exists for developing climate action plans at the 

metropolitan or regional level. 

 

Chapter 4 used regional data to assess the relationship between average daily temperature and 

total daily electricity demand. Projected future temperatures from climate models were combined 

with the electricity demand versus temperature relationships to predict the impacts of climatic 

temperature change on future electricity demand. Generally speaking, we found that climatic 

temperature change will have a relatively large impact on electricity demand in warm/dry areas 

like San Antonio and Austin, and a much smaller impact in colder/wetter areas like Pittsburgh 

and Chicago. When adding the projected impacts of population change and the EPA’s Clean 

Power Plan, electricity sector GHG emissions are expected to go up by roughly 12-40% in 

Chicago, Dallas, and Austin and decrease by roughly 2-40% in Pittsburgh, Houston, and San 

Antonio.  
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5.2 Future Work 

5.2.1 Expanded scale and scope of analysis 

 

 

The primary results of this thesis include GHG emission estimates for the 100 most populated 

metropolitan areas in the United States for the years 2002, 2011, and 2030. However, there is 

opportunity to expand on these estimates by adding data from the 2005 and 2008 National 

Emissions Inventory (U.S. EPA, 2014
C
). Additionally, the analysis could be expanded beyond 

the 100 most populated metropolitan areas in order to form a more comprehensive analysis of 

GHG emissions in U.S. metropolitan areas over the past decade and a half. It is possible to create 

GHG emission estimates for all counties and metropolitan areas in the United States for the years 

2002, 2005, 2008, 2011, and 2014 (as soon as the newest NEI data is released from the EPA). 

The analysis could also be expanded to include location-specific sources of frequently under-

reported emissions. For example, the Pittsburgh region has a large number of legacy mines and 

natural gas wells. If methane were leaking undetected from some of these locations, the emission 

profile of the city/metropolitan area would be considerably higher – especially considering the 

higher global warming potential of methane compared to carbon dioxide. 

 

The impact of our results could be improved by adding additional socio-economic and 

demographic data to our emission data. For example, information about each metropolitan area’s 

population trends, geographic area (in terms of square miles or square kilometers), climate zone, 

economic activity, and region of the country could be coupled with the emission data to allow for 

a more complete analysis of underlying trends that may be impacting a metropolitan area’s 

emissions. Ultimately, it would be ideal if the inclusion of this additional data could be placed on 

a searchable web-based platform to allow for more informative comparisons between locations, 
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the establishment of situation/location specific best practices, and the creation of innovative 

policy solutions for reducing emissions. It might also be beneficial to collaborate with ICLEI and 

see if any of the approaches and findings developed in this thesis might complement their efforts 

in the continued development of the ClearPath software and GHG reporting protocols. 

 

Finally, there is wide regional variation in fuel use for residential and commercial buildings. 

Thus, in addition to the impacts on electricity consumption described in Chapter 4, it would be 

beneficial to also model the impacts that climate change, policy change, and population change 

have on natural gas and fuel oil consumption. The inclusion of the impacts on natural gas and 

fuel oil consumption and emissions would provide additional insights into the true impact that 

climate change may have on regional energy demand and emissions. In several locations, it is 

likely that climatic temperature change will result in decreased natural gas/fuel oil demand for 

space heating. If these decreases are larger than the increased demand for space cooling, then 

climate change will likely provide a “net benefit” in terms of reducing overall energy demand 

and emissions from the building sector. By gaining a more complete understanding of this 

phenomenon, decision makers may decide that it is more beneficial for them to concentrate their 

mitigation efforts on other sectors (e.g. transportation).  

 

5.2.2 Analysis of energy use, fuel consumption, and criteria air pollutants 

 

 

Our analysis focuses almost entirely on GHG emissions. However, other impacts such as energy 

use and criteria air pollutants (ammonia, carbon monoxide, nitrogen oxides, particulate matter, 

sulfur dioxide and volatile organic compounds) could be estimated using similar methods. In 

contrast to GHGs, criteria pollutants remain much more confined to the region in which they are 

produced and can have a much more localized impact. Thus, the inclusion of criteria pollutants 
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could be especially beneficial given our focus on metropolitan areas. NEI provides emissions 

estimates for the years 2002, 2005, 2008, and 2011 (U.S. EPA, 2014
C
). Thus, data aggregation 

and analysis similar to the ones demonstrated in this thesis could be used to develop estimates of 

criteria air pollutants in metropolitan areas across the United States. The estimates of GHGs and 

criteria air pollutants could then be paired with economic impact models like the Air Pollution 

Emission Experiments and Policy analysis (APEEP) model developed by Muller et al. or the 

health and environmental assessment conducted by Siler-Evans et al. (Muller, Mendelsohn, and 

Nordhaus, 2011; Siler-Evans, Azevedo, and Morgan, 2012; Siler-Evans et al., 2013). 

Incorporating this economic component could be very beneficial to the overall decision-making 

process. By gaining a better understanding of the financial benefits of certain mitigation efforts 

allows for an easier comparison to the costs of said mitigation actions. Thus, the coupled climate, 

environment, economic, and human health analysis could be rather influential on the manner in 

which climate and environmental policies are implemented in various locations. Given the 

regional differences in end-uses, fuel uses, and overall energy consumption, this proposed 

analysis may help certain locations decide that it is better for them to focus their efforts on 

reducing criteria pollutants, while other areas may prefer to focus their efforts on reducing 

GHGs. This proposed analysis could also provide valuable insights into quantifying the co-

benefits (environmental and climate) of various mitigation strategies. 

 

5.2.3 Improved forecasting efforts 

 

 

Although this thesis primarily focuses on historical emissions estimates (i.e. estimates for the 

years 2002 and 2011), there is some forward-looking analysis to the year 2030 – especially in 

Chapter 4. The emissions estimates presented in Chapters 3 and 4 are a “snap-shot” of results we 
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form from certain scenarios and assumptions. In other words, we evaluate emissions in the year 

2030 under a given set of scenarios, but don’t necessarily estimate emissions in the years leading 

up to 2030 or under all possible scenarios.  

 

Using our analysis as a starting point, future work could make significant contributions by 

forming more dynamic and comprehensive forecasts of metropolitan GHG emissions. The work 

in Chapter 3 could be enhanced by incorporating different population and policy scenarios into 

the analysis of emission reduction targets in the future.  

 

Similarly, Chapter 4 could be enhanced if, in addition to the population and policy components 

we evaluated, factors such as economic activity and technological changes/disruptions could also 

be included in the forecasts. Similar to the previous sub-section, the forecasting efforts could also 

be expanded to include criteria pollutants in addition to GHGs. Rather than only developing 

“snap-shot” estimates for the years 2011 and 2030, it would also be beneficial to develop 

estimates for the interim (years 2015-2030) in order to get a better sense of what changes and 

disruptions might have the largest influence on the emission levels that ultimately occur in the 

year 2030 and beyond. This type of forecasting and forward-looking analysis might be well 

suited for applying principles of Robust Decision Making (RDM) (Bryant and Lempert, 2010; 

Lempert and Collins, 2007). Under such an application, local decision makers could get a better 

idea of the full range of potential emission outcomes under different scenarios, and then base 

their policy efforts and decisions on avoiding the underlying circumstances that lead to the most 

undesirable outcomes. Overall, developing more descriptive and informative forecasts of 
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emissions under different scenarios could be very beneficial to local practitioners as they 

continue to develop and revise their climate action plans and GHG reduction targets.  

 

5.3 Policy Implications and Final Conclusions 

The integrated approach employed in Chapters 2 and 3 allows for a consistent comparison of 

GHG emissions from the 100 most populated metropolitan areas in the United States for the 

years 2002 and 2011. In many cases, this approach appears to provide comparable results to the 

emission estimates reported by cities – especially when assessing the proportion of total 

emissions attributable to different emission-producing sectors. Therefore, the integrated 

approach could serve as a less “resource intensive” way for communities to regularly get an 

initial assessment of their emission profile and more effectively prioritize their resource and 

planning efforts (i.e. decide where to expend more resources for collecting better data and/or 

where to expend resources for mitigation efforts).  

 

The methods and results outlined in Chapters 2 and 3 also help illustrate some of the implications 

that may result from expanding analysis to the metropolitan level and including emissions from 

activities that were previously under-reported. In comparing 2011 MSA emissions estimates to 

2002 estimates, many of the large decreases in emissions were attributable to the loss of large 

amounts of industrial activity. Although effective in terms of reducing overall emissions, loss of 

industrial activity may not be a feasible or sustainable mitigation strategy for many metropolitan 

areas moving forward. In some cases, the economic implications of lost industry would be 

undesirable, while in other cases, potential reductions may be limited due to the low presence of 

industrial activity in the first place. These observations stress how important it will be for 
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decision makers to develop strategies that strike a balance between achieving emission 

reductions and maintaining certain economic and social standards.    

 

Emissions at the urban core accounted for only roughly 45% of total metropolitan emissions, on 

average. Thus, the clamoring expressed by some local practitioners for expanding analysis and 

planning to the regional or mega-regional level appear to be well founded. Instead of acting in 

isolation, collaboration between cities and counties within a metropolitan area could allow for 

more effective sharing of resources and best practices and result in a much larger overall 

reduction in emissions. However, if analysis and planning were expanded to the metropolitan 

level or to “under-reported” activities, it is likely that alterations would need to be made to GHG 

reduction plans as they currently exist. More specifically, in order to achieve the same overall 

reduction in emissions, annual GHG reduction rates will need to be much more aggressive. 

Otherwise, communities may find it beneficial to modify the overall percent reduction they hope 

to achieve or extend the time frame in which they plan to meet a certain reduction target. Even 

with all of these considerations, a widespread expansion of analysis and planning to the 

metropolitan level would be a large step in the right direction toward meeting national and 

international GHG reduction goals, and the approaches outlined in this thesis can serve as a 

starting point for quantifying and evaluating the implications of metropolitan-level climate action 

plans. 

 

Finally, it appears that the impacts of climate change are worth including in emission forecasts 

and climate action plans - especially in hotter/drier areas like Texas, where increases in cooling 

demand seem like they will outweigh decreases in heating demand. Consideration of the impacts 
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of climate change is especially important in the context of energy efficiency and the Clean Power 

Plan, because there appears to be the strong possibility for a “climate rebound effect” – actual 

emissions reductions from various policies will be lower than projected reductions due to 

increased cooling demand caused by temperature increases. Even in places like Chicago, where 

climate change is expected to decrease overall electricity demand, considering climate change in 

emission and energy demand forecasts can be beneficial. If it appears that there will be a 

“natural” decrease in energy demand and emissions from the building stock due to climate 

change, then it may be more beneficial to focus mitigation efforts on other sectors like 

transportation. 

 

 

The analysis and results from this thesis provide insights into the importance of current and 

future drivers of metropolitan GHG emissions and help inform decision-making related to GHG 

mitigation.  In areas where population change is expected to have the largest impact, mitigation 

efforts could be focused on the highest per-capita emission activities or land use policies that 

encourage dense development. In areas where temperature increase is expected to have a large 

impact, efforts could be focused on building stock insulation and/or installation of high 

efficiency air conditioning units. In areas where on-road transportation is a large contributor to 

overall emissions, partnerships between the central city and the surrounding 

communities/counties could be formed to encourage high density growth and the use of 

public/mass transit. Ultimately, by gaining a better understanding of the impact that various 

scope, boundary, and forecasting decisions can have on the emission profile of a given 

metropolitan area, decision-makers can start moving beyond a repetitious cycle of emissions 

accounting and begin to better prioritize and implement their GHG mitigation efforts. 
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Appendix A: Supporting Information for Chapter 2 

A1: Elaboration on Metropolitan Statistical Areas (MSAs) 

Metropolitan Statistical Areas (MSAs) include the Central County (urban core) and surrounding 

suburban counties. For example, the Pittsburgh MSA (as illustrated below) includes Allegheny 

as the Central County (urban core) and Beaver, Butler, Armstrong, Westmoreland, and 

Washington Counties the suburban counties. 

 

Figure A1.15 Map of the Pittsburgh MSA included the central county/urban core 

(Allegheny County) and the suburban counties. 
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A2: Summary of underlying emission estimates from integrated assessment approach 

Table A111Summary of population and sector-based GHG emissions for the 100 most 

populated metropolitan areas in the United States for the year 2002. Emission values are 

reported in million metric tons of CO2eTable A1. Summary of population and sector-based 

GHG emissions for the 100 most populated metropolitan areas in the United States for the 

year 2002. Emission values are reported in million metric tons of CO2e 

 
 

 

MSA Code MSA Title Population  Total Commercial Industrial Residential Electricity Prod Onroad Aircraft Nonroad

10420 Akron, OH 694,960 7.22 0.58 1.19 1.47 0.00 3.54 0.12 0.33

10580 Albany-Schenectady-Troy, NY 825,875 9.06 0.80 0.63 1.60 0.96 4.56 0.16 0.33

10740 Albuquerque, NM 729,649 7.57 0.62 0.44 1.04 0.77 4.13 0.24 0.33

10900 Allentown-Bethlehem-Easton, PA-NJ 740,395 39.64 2.20 27.62 1.44 4.27 3.68 0.11 0.32

12060 Atlanta-Sandy Springs-Marietta, GA 4,247,981 87.08 2.93 7.08 4.75 39.67 28.95 1.15 2.55

12260 Augusta-Richmond County, GA-SC 499,684 7.91 0.22 2.82 0.41 1.39 2.73 0.08 0.25

12420 Austin-Round Rock, TX 1,249,763 14.82 0.78 1.16 0.60 4.75 6.50 0.23 0.79

12540 Bakersfield, CA 661,645 15.92 1.44 9.12 0.55 0.45 3.86 0.18 0.33

12580 Baltimore-Towson, MD 2,552,994 35.47 3.06 2.45 3.90 12.27 12.28 0.43 1.07

12940 Baton Rouge, LA 705,973 67.79 0.27 46.57 0.42 16.67 3.43 0.09 0.33

13820 Birmingham-Hoover, AL 1,052,238 50.15 0.71 3.70 0.90 37.39 6.66 0.19 0.60

14260 Boise City-Nampa, ID 464,840 5.07 0.45 1.35 0.64 0.00 2.10 0.18 0.35

14460 Boston-Cambridge-Quincy, MA-NH 4,391,344 50.34 4.70 8.14 10.99 6.84 17.26 0.68 1.74

14860 Bridgeport-Stamford-Norwalk, CT 882,567 10.59 1.02 0.16 2.02 3.22 3.63 0.09 0.46

15380 Buffalo-Niagara Falls, NY2/ 1,170,111 21.91 0.89 4.27 2.45 8.37 5.29 0.20 0.44

16700 Charleston-North Charleston, SC 549,033 20.54 0.28 2.35 0.30 14.04 3.04 0.15 0.38

16740 Charlotte-Gastonia-Concord, NC-SC 1,330,448 18.19 0.95 1.62 1.29 6.19 6.66 0.45 1.04

16860 Chattanooga, TN-GA 476,531 6.74 0.49 2.20 0.36 0.00 3.38 0.08 0.24

16980 Chicago-Naperville-Joliet, IL-IN-WI 9,098,316 165.05 9.94 42.21 19.57 48.81 36.00 4.25 4.28

17140 Cincinnati-Middletown, OH-KY-IN 2,009,632 51.13 1.61 3.21 3.28 31.31 10.06 0.63 1.01

17460 Cleveland-Elyria-Mentor, OH 2,148,143 61.30 1.85 32.93 4.43 11.68 9.01 0.35 1.06

17820 Colorado Springs, CO 537,484 8.40 0.53 0.26 0.87 4.09 2.23 0.15 0.27

17900 Columbia, SC 647,158 12.23 0.34 1.69 0.37 5.04 4.25 0.14 0.40

18140 Columbus, OH 1,612,694 16.49 1.54 1.88 3.17 0.61 7.89 0.39 1.00

19100 Dallas-Fort Worth-Arlington, TX 5,161,544 53.52 4.32 7.11 3.21 8.78 25.63 1.41 3.07

MSA Code MSA Title Population  Total Commercial Industrial Residential Electricity Prod Onroad Aircraft Nonroad

19380 Dayton, OH 848,153 9.33 0.75 1.60 1.51 0.94 3.96 0.15 0.40

19740 Denver-Aurora, CO1/ 2,179,240 27.21 1.91 2.70 3.54 6.54 10.54 0.73 1.27

19780 Des Moines, IA 481,394 5.34 0.72 0.50 0.85 0.01 2.77 0.10 0.41

19820 Detroit-Warren-Livonia, MI 4,452,557 73.14 3.91 9.14 10.35 24.52 22.57 0.87 1.78

21340 El Paso, TX 679,622 5.73 0.28 1.46 0.52 0.98 2.19 0.08 0.21

23420 Fresno, CA 799,407 6.20 0.43 0.74 0.70 0.02 3.75 0.14 0.42

24340 Grand Rapids-Wyoming, MI 740,482 7.87 0.79 1.23 1.49 0.06 3.69 0.12 0.48

24660 Greensboro-High Point, NC 643,430 7.08 0.34 0.86 0.66 0.84 3.87 0.10 0.40

24860 Greenville, SC 559,940 5.28 0.31 1.44 0.21 0.00 2.88 0.10 0.33

25420 Harrisburg-Carlisle, PA 509,074 5.81 0.57 0.56 0.94 0.04 3.41 0.06 0.24

25540 Hartford-West Hartford-East Hartford, CT 1,148,618 11.47 1.48 0.53 2.78 0.62 5.38 0.19 0.48

26180 Honolulu, HI 876,156 8.96 0.12 0.99 0.06 4.46 2.75 0.29 0.29

26420 Houston-Baytown-Sugar Land, TX 4,715,407 119.33 3.54 49.19 2.52 37.44 22.79 1.01 2.82

26900 Indianapolis, IN 1,525,104 22.00 1.78 2.40 2.25 5.54 8.62 0.28 1.13

27140 Jackson, MS 497,197 5.49 0.18 0.53 0.33 0.90 3.17 0.13 0.25

27260 Jacksonville, FL 1,122,750 25.27 0.43 2.78 0.15 13.46 7.35 0.32 0.77

28140 Kansas City, MO-KS 1,836,038 45.42 2.00 3.16 3.06 25.83 9.86 0.36 1.16

28940 Knoxville, TN 616,079 12.44 0.33 0.86 0.50 5.90 4.35 0.13 0.37

29460 Lakeland-Winter Haven, FL 483,924 12.98 0.10 0.66 0.06 9.03 2.72 0.12 0.30

29540 Lancaster, PA 470,658 5.54 0.48 1.90 0.81 0.00 2.03 0.05 0.27

29820 Las Vegas-Paradise, NV 1,375,765 23.71 0.59 0.56 1.11 16.21 3.54 0.53 1.17

30780 Little Rock-North Little Rock, AR 610,518 6.66 0.68 1.02 0.66 0.18 3.56 0.18 0.38

31100 Los Angeles-Long Beach-Santa Ana, CA 12,365,627 92.35 1.99 19.73 9.19 8.73 45.98 2.13 4.60

31140 Louisville, KY-IN 1,161,975 32.36 0.96 3.00 1.63 18.33 7.52 0.23 0.70

31540 Madison, WI 501,774 13.47 1.01 0.48 0.88 7.75 2.80 0.11 0.43
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Table A1 Continued. Summary of population and sector-based GHG emissions for the 100 

most populated metropolitan areas in the United States for the year 2002. Emission values 

are reported in million metric tons of CO2e 

 

 
 

 
 

 

 

 

 

 

 

 

 

MSA Code MSA Title Population  Total Commercial Industrial Residential Electricity Prod Onroad Aircraft Nonroad

32580 McAllen-Edinburg-Pharr, TX 569,463 5.15 0.17 0.21 0.07 2.45 2.00 0.05 0.21

32820 Memphis, TN-MS-AR 1,205,204 16.03 0.63 1.17 1.28 4.94 6.93 0.41 0.67

33100 Miami-Fort Lauderdale-Miami Beach, FL 5,007,564 42.64 1.01 4.68 0.65 10.52 22.11 1.10 2.58

33340 Milwaukee-Waukesha-West Allis, WI 1,500,741 24.13 2.31 2.33 2.77 8.63 6.99 0.31 0.79

33460 Minneapolis-St. Paul-Bloomington, MN-WI 2,968,806 85.26 6.53 27.73 5.68 26.48 15.68 1.40 1.76

33700 Modesto, CA 446,997 3.49 0.22 0.35 0.35 0.16 2.12 0.05 0.23

34980 Nashville-Davidson--Murfreesboro, TN 1,311,789 22.41 0.73 2.70 1.11 7.02 9.65 0.33 0.87

35300 New Haven-Milford, CT 824,008 8.55 0.93 0.23 1.96 1.71 3.29 0.07 0.35

35380 New Orleans-Metairie-Kenner, LA 1,316,510 35.13 0.66 19.53 1.00 8.62 4.41 0.22 0.70

35620 New York-Northern New Jersey-Long Island, NY-NJ-PA 18,323,002 152.74 18.18 3.96 35.44 30.74 56.18 1.81 6.44

36420 Oklahoma City, OK 1,095,421 15.03 1.12 2.41 1.35 1.93 7.34 0.25 0.63

36540 Omaha-Council Bluffs, NE-IA 767,041 17.79 0.86 1.56 1.30 9.43 3.76 0.15 0.72

36740 Orlando, FL 1,644,561 20.66 0.33 1.50 0.21 7.79 8.96 0.59 1.28

37100 Oxnard-Thousand Oaks-Ventura, CA 753,197 7.80 0.41 1.09 0.67 2.37 2.75 0.16 0.36

37340 Palm Bay-Melbourne-Titusville, FL 476,230 7.75 0.10 0.48 0.06 3.52 2.99 0.22 0.37

37980 Philadelphia-Camden-Wilmington, PA-NJ-DE 5,687,147 62.45 6.35 10.81 10.67 9.70 22.09 0.73 2.10

38060 Phoenix-Mesa-Scottsdale, AZ 3,251,876 28.01 2.55 1.04 1.03 3.68 16.22 1.17 2.32

38300 Pittsburgh, PA 2,431,087 58.31 2.50 4.98 4.95 34.24 10.14 0.57 0.93

38860 Portland-South Portland, ME 487,568 7.95 0.59 0.40 1.48 1.99 3.11 0.10 0.28

38900 Portland-Vancouver-Beaverton, OR-WA 1,927,881 17.13 1.29 4.01 1.43 0.61 8.24 0.45 1.10

39100 Poughkeepsie-Newburgh-Middletown, NY 621,517 9.43 0.40 0.39 1.10 3.55 3.56 0.21 0.22

39300 Providence-New Bedford-Fall River, RI-MA 1,582,997 24.15 2.02 2.72 3.82 9.79 4.95 0.24 0.60

39580 Raleigh-Cary, NC 797,071 7.17 0.51 0.29 0.70 0.00 4.89 0.21 0.57

40060 Richmond, VA 1,096,957 23.70 0.89 5.37 1.17 8.45 7.05 0.18 0.59

40140 Riverside-San Bernardino-Ontario, CA 3,254,821 29.35 1.59 5.31 2.62 1.78 15.31 0.80 1.94

MSA Code MSA Title Population  Total Commercial Industrial Residential Electricity Prod Onroad Aircraft Nonroad

40380 Rochester, NY 1,037,831 11.22 0.84 1.02 1.89 1.61 5.19 0.14 0.52

40900 Sacramento--Arden-Arcade--Roseville, CA 1,796,857 18.42 5.34 0.44 1.57 1.20 8.33 0.42 1.12

41620 Salt Lake City, UT 968,858 10.33 0.28 1.40 2.33 0.73 4.77 0.36 0.46

41700 San Antonio, TX 1,711,703 29.79 1.05 1.45 0.46 17.23 8.39 0.39 0.83

41740 San Diego-Carlsbad-San Marcos, CA 2,813,833 25.90 5.22 0.73 0.98 3.65 13.32 0.56 1.45

41860 San Francisco-Oakland-Fremont, CA 4,123,740 43.08 2.00 7.36 5.28 8.10 17.65 0.84 1.85

41940 San Jose-Sunnyvale-Santa Clara, CA 1,735,819 13.78 1.14 1.46 1.96 0.05 7.94 0.37 0.87

42540 Scranton--Wilkes-Barre, PA 560,625 5.76 0.60 0.51 1.24 0.46 2.69 0.07 0.19

42660 Seattle-Tacoma-Bellevue, WA 3,043,878 26.59 2.30 3.50 2.95 0.24 15.15 0.85 1.61

44140 Springfield, MA 680,014 9.43 0.85 1.41 1.78 1.58 3.44 0.11 0.26

41180 St. Louis, MO-IL 2,698,687 71.31 3.40 10.77 4.46 32.90 17.53 0.71 1.54

44700 Stockton, CA 563,598 5.41 0.28 1.26 0.46 0.03 2.91 0.07 0.40

45060 Syracuse, NY 650,154 6.78 0.49 0.70 1.18 0.66 3.36 0.11 0.29

45300 Tampa-St. Petersburg-Clearwater, FL 2,395,997 40.95 2.67 2.31 0.31 21.64 12.26 0.46 1.31

45780 Toledo, OH 659,188 15.39 0.58 5.51 1.41 3.74 3.57 0.14 0.45

46060 Tucson, AZ 843,746 6.99 0.27 0.57 0.57 1.16 3.77 0.24 0.40

46140 Tulsa, OK 859,532 24.91 0.81 5.36 1.14 11.03 5.73 0.30 0.53

47260 Virginia Beach-Norfolk-Newport News, VA-NC 1,576,370 23.65 1.05 5.36 1.56 7.91 6.73 0.29 0.74

47900 Washington-Arlington-Alexandria, DC-VA-MD 4,796,183 61.54 3.95 3.42 6.22 21.39 23.40 0.87 2.29

48620 Wichita, KS 571,166 8.48 0.49 3.21 0.88 0.52 2.75 0.17 0.46

49340 Worcester, MA 750,963 11.27 1.00 2.20 1.95 1.68 3.98 0.12 0.34

49660 Youngstown-Warren-Boardman, OH-PA 602,964 7.77 0.52 1.22 1.26 1.25 3.18 0.08 0.26
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Table A212Summary of sector-based GHG emissions for the 100 most populated 

metropolitan areas in the United States for the year 2011. This data corresponds to the 

2011a data discussed in Chapter 2. The estimates for the residential and commercial 

sectors were found by multiplying 2002 per capita values by 2011 population values. The 

emission estimates are reported million short tons of CO2e  

 

 
 

 

MSA Code MSA Title Industry Electr. Gen. Waste On-Road Transpo. Residential Commercial Total 

17140 Akron, OH 0.20 0.10 0.01 3.94 1.63 0.65 6.53

16700 Albany-Schenectady-Troy, NY 1.46 4.43 0.10 4.02 1.87 0.93 12.81

16180 Albuquerque, NM 0.61 0.14 0.12 4.19 1.41 0.84 7.30

17900 Allentown-Bethlehem-Easton, PA-NJ 2.36 6.88 0.24 3.05 1.76 2.70 17.00

13020 Atlanta-Sandy Springs-Marietta, GA 0.84 33.13 1.38 25.95 6.60 4.08 71.98

13140 Augusta-Richmond County, GA-SC 2.97 1.15 0.19 2.70 0.51 0.28 7.80

19500 Austin-Round Rock-San Marcos, TX 2.01 5.59 0.61 7.93 0.95 1.23 18.32

11300 Bakersfield-Delano, CA 12.04 6.07 0.19 3.94 0.78 2.05 25.06

14540 Baltimore-Towson, MD 3.98 8.99 0.80 11.92 4.60 3.61 33.90

14060 Baton Rouge, LA 31.93 19.14 0.31 4.34 0.53 0.34 56.58

10180 Birmingham-Hoover, AL 11.65 38.03 0.84 7.40 1.07 0.84 59.84

13740 Boise City-Nampa, ID 0.43 0.00 0.11 2.09 0.96 0.67 4.25

14260 Boston-Cambridge-Quincy, MA-NH 1.05 10.97 1.26 16.42 12.67 5.42 47.78

12060 Bridgeport-Stamford-Norwalk, CT 0.08 1.64 0.27 3.31 2.33 1.18 8.82

16580 Buffalo-Niagara Falls, NY 0.44 5.36 0.39 3.82 2.62 0.95 13.59

18880 Charleston-North Charleston-Summerville, SC 5.52 14.65 0.22 2.88 0.41 0.38 24.05

15540 Charlotte-Gastonia-Rock Hill, NC-SC 0.96 6.73 0.60 13.25 1.92 1.41 24.87

19260 Chattanooga, TN-GA 0.63 0.00 0.27 3.04 0.44 0.60 4.98

13780 Chicago-Joliet-Naperville, IL-IN-WI 48.76 44.32 1.86 31.40 22.53 11.44 160.32

16860 Cincinnati-Middletown, OH-KY-IN 8.47 26.58 1.30 10.88 3.85 1.89 52.98

16940 Cleveland-Elyria-Mentor, OH 4.84 9.49 0.30 7.93 4.70 1.96 29.23

11700 Colorado Springs, CO 0.49 4.02 0.37 2.66 1.18 0.72 9.44

18700 Columbia, SC 0.99 5.13 0.17 3.87 0.49 0.45 11.10

16980 Columbus, OH 0.77 0.11 0.43 9.67 4.03 1.96 16.97

MSA Code MSA Title Industry Electr. Gen. Waste On-Road Transpo. Residential Commercial Total 

19340 Dallas-Fort Worth-Arlington, TX 7.76 10.35 2.73 30.22 4.47 6.03 61.55

17020 Dayton, OH 0.98 0.15 0.10 4.68 1.66 0.82 8.40

11540 Denver-Aurora-Broomfield, CO 1.21 6.27 0.18 11.53 4.65 2.51 26.36

13460 Des Moines-West Des Moines, IA 0.55 0.15 0.11 1.80 1.13 0.95 4.69

14740 Detroit-Warren-Livonia, MI 9.00 8.90 2.46 17.24 10.99 4.15 52.73

19660 El Paso, TX 1.39 1.51 0.19 3.08 0.69 0.37 7.24

11260 Fresno, CA 0.90 0.34 0.13 3.74 0.91 0.56 6.56

14860 Grand Rapids-Wyoming, MI 0.12 10.37 0.35 4.27 1.73 0.92 17.76

15980 Greensboro-High Point, NC 0.40 0.53 0.42 3.49 0.83 0.43 6.10

19060 Greenville-Mauldin-Easley, SC 0.15 2.31 0.35 3.52 0.27 0.39 7.00

18020 Harrisburg-Carlisle, PA 0.63 0.04 0.19 2.33 1.13 0.68 5.00

12020 Hartford-West Hartford-East Hartford, CT 0.21 1.07 0.45 4.90 3.24 1.72 11.59

13380 Honolulu, HI 1.16 5.86 0.38 3.22 0.07 0.15 10.84

19380 Houston-Sugar Land-Baytown, TX 53.03 46.52 2.07 26.24 3.59 5.03 136.48

13820 Indianapolis-Carmel, IN 2.14 5.39 0.94 11.78 2.89 2.29 25.43

15500 Jackson, MS 2.61 0.55 0.15 4.16 0.40 0.21 8.08

12580 Jacksonville, FL 0.98 13.36 0.27 8.12 0.20 0.57 23.51

15380 Kansas City, MO-KS 1.22 26.89 0.90 8.64 3.77 2.46 43.87

19180 Knoxville, TN 1.56 7.46 0.19 4.84 0.62 0.42 15.08

12940 Lakeland-Winter Haven, FL 0.58 10.87 0.43 3.37 0.09 0.13 15.47

18140 Lancaster, PA 0.24 0.00 0.27 1.73 0.99 0.59 3.82

16220 Las Vegas-Paradise, NV 1.69 9.80 0.07 7.78 1.75 0.92 22.02

10420 Little Rock-North Little Rock-Conway, AR 0.36 0.43 0.39 3.92 0.85 0.87 6.82

10740 Los Angeles-Long Beach-Santa Ana, CA 19.46 5.46 2.68 51.97 10.61 2.30 92.48
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Table A2 Continued. Summary of sector-based GHG emissions for the 100 most populated 

metropolitan areas in the United States for the year 2011. This data corresponds to the 

2011a data discussed in Chapter 2. The estimates for the residential and commercial 

sectors were found by multiplying 2002 per capita values by 2011 population values. The 

emission estimates are reported million short tons of CO2e  

 

 

 
 

 

 

 

MSA Code MSA Title Industry Electr. Gen. Waste On-Road Transpo. Residential Commercial Total 

13980 Louisville, KY-IN 8.09 20.17 0.27 5.58 2.00 1.17 37.28

20740 Madison, WI 0.37 7.80 0.05 2.94 1.12 1.28 13.58

19740 McAllen-Edinburg-Mission, TX 0.15 3.59 0.23 2.95 0.11 0.26 7.28

19140 Memphis, TN-MS-AR 2.14 6.85 0.38 6.73 1.55 0.77 18.42

12260 Miami-Fort Lauderdale-Pompano Beach, FL 1.07 13.12 1.84 25.02 0.81 1.26 43.12

20500 Milwaukee-Waukesha-West Allis, WI 0.47 12.63 0.24 5.77 3.18 2.65 24.95

15180 Minneapolis-St. Paul-Bloomington, MN-WI 5.60 19.22 0.51 15.93 7.00 8.04 56.30

11500 Modesto, CA 0.29 0.76 0.21 1.87 0.45 0.29 3.87

19100 Nashville-Davidson--Murfreesboro--Franklin, TN 0.72 7.33 0.32 9.48 1.51 1.00 20.36

12100 New Haven-Milford, CT 0.27 1.70 0.04 3.24 2.26 1.08 8.59

14020 New Orleans-Metairie-Kenner, LA 27.13 8.35 0.48 4.81 0.99 0.65 42.42

16300 New York-Northern New Jersey-Long Island, NY-NJ-PA 5.70 30.69 2.71 62.19 40.54 20.79 162.62

17460 Oklahoma City, OK 0.37 4.62 0.70 8.31 1.73 1.44 17.18

16020 Omaha-Council Bluffs, NE-IA 1.57 15.31 0.21 4.22 1.63 1.08 24.03

12540 Orlando-Kissimmee-Sanford, FL 0.31 15.51 1.00 11.62 0.31 0.48 29.22

11340 Oxnard-Thousand Oaks-Ventura, CA 0.59 0.17 0.28 3.46 0.82 0.50 5.81

12980 Palm Bay-Melbourne-Titusville, FL 0.00 0.23 0.24 3.34 0.08 0.13 4.01

17820 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 12.07 11.81 2.10 19.06 12.39 7.38 64.82

10500 Phoenix-Mesa-Glendale, AZ 0.58 8.60 0.83 16.13 1.49 3.69 31.32

17860 Pittsburgh, PA 10.23 38.35 0.40 7.65 5.30 2.67 64.60

20940 Portland-South Portland-Biddeford, ME 0.25 1.10 0.16 2.24 1.72 0.69 6.15

17780 Portland-Vancouver-Hillsboro, OR-WA 1.68 0.95 0.13 7.73 1.85 1.67 14.02

18580 Providence-New Bedford-Fall River, RI-MA 0.19 7.25 0.21 5.99 4.26 2.25 20.14

15940 Raleigh-Cary, NC 0.12 0.00 0.23 5.80 1.12 0.82 8.09

MSA Code MSA Title Industry Electr. Gen. Waste On-Road Transpo. Residential Commercial Total 

20220 Richmond, VA 2.40 11.01 0.74 5.90 1.49 1.14 22.68

10900 Riverside-San Bernardino-Ontario, CA 5.41 5.30 0.63 19.30 3.83 2.31 36.78

16620 Rochester, NY 1.31 0.13 0.57 4.44 2.12 0.95 9.52

11100 Sacramento--Arden-Arcade--Roseville, CA 0.28 2.01 0.41 8.93 2.09 7.12 20.85

19780 Salt Lake City, UT 2.95 0.25 0.36 5.02 3.04 0.36 11.98

19460 San Antonio-New Braunfels, TX 4.31 22.34 0.75 10.18 0.65 1.49 39.72

11020 San Diego-Carlsbad-San Marcos, CA 0.77 2.30 0.52 13.67 1.21 6.42 24.89

10780 San Francisco-Oakland-Fremont, CA 14.00 6.23 0.89 16.67 6.19 2.35 46.33

11180 San Jose-Sunnyvale-Santa Clara, CA 1.09 1.28 0.50 7.68 2.32 1.35 14.22

17980 Scranton--Wilkes-Barre, PA 0.64 0.03 0.21 2.01 1.37 0.66 4.93

20260 Seattle-Tacoma-Bellevue, WA 1.32 0.19 0.58 10.89 3.73 2.91 19.64

14500 Springfield, MA 0.26 1.07 0.15 2.57 2.00 0.95 7.00

15260 St. Louis, MO-IL 10.29 40.41 0.56 10.90 5.13 3.91 71.21

11460 Stockton, CA 0.30 0.49 0.40 3.01 0.63 0.38 5.20

16820 Syracuse, NY 0.37 1.74 0.23 2.81 1.33 0.55 7.02

12420 Tampa-St. Petersburg-Clearwater, FL 0.80 17.80 1.10 13.95 0.40 3.47 37.52

17300 Toledo, OH 4.97 3.75 0.12 3.33 1.53 0.63 14.34

10580 Tucson, AZ 0.63 0.82 0.05 4.55 0.73 0.35 7.13

17660 Tulsa, OK 5.51 11.84 0.50 5.98 1.38 0.98 26.20

20100 Virginia Beach-Norfolk-Newport News, VA-NC 0.42 4.35 0.44 6.44 1.84 1.24 14.72

12220 Washington-Arlington-Alexandria, DC-VA-MD-WV 1.14 14.24 1.40 21.89 8.15 5.18 52.01

13900 Wichita, KS 1.91 0.69 0.25 3.14 1.07 0.59 7.65

14460 Worcester, MA 0.34 4.05 0.28 4.03 2.30 1.17 12.17

17420 Youngstown-Warren-Boardman, OH-PA 3.16 0.21 0.19 3.07 0.00 0.00 6.64
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Table A313 Summary of sector-based GHG emissions for the 100 most populated 

metropolitan areas in the United States for the year 2011. This data corresponds to the 

2011b data discussed in Chapter 2. The estimates for the residential and commercial 

sectors were found by multiplying 2011 state-level per capita values by 2011 MSA 

population values. The emission estimates are reported million short tons of CO2e  

 

 
 

 
 

 

 

MSA Code MSA Title Industrial Electr. Gen. Waste On-Road Transpo. Residential Commercial Total

17140 Akron, OH 0.20 0.10 0.01 3.94 1.04 0.59 5.88

16700 Albany-Schenectady-Troy, NY 1.46 4.43 0.10 4.02 1.06 0.78 11.85

16180 Albuquerque, NM 0.61 0.14 0.12 4.19 0.89 0.65 6.59

17900 Allentown-Bethlehem-Easton, PA-NJ 2.36 6.88 0.24 3.05 0.85 0.55 13.94

13020 Atlanta-Sandy Springs-Marietta, GA 0.84 33.13 1.38 25.95 3.71 1.85 66.87

13140 Augusta-Richmond County, GA-SC 2.97 1.15 0.19 2.70 0.39 0.19 7.59

19500 Austin-Round Rock-San Marcos, TX 2.01 5.59 0.61 7.93 0.83 0.77 17.75

11300 Bakersfield-Delano, CA 12.04 6.07 0.19 3.94 0.69 0.33 23.27

14540 Baltimore-Towson, MD 3.98 8.99 0.80 11.92 2.19 1.90 29.77

14060 Baton Rouge, LA 31.93 19.14 0.31 4.34 0.42 0.27 56.40

10180 Birmingham-Hoover, AL 11.65 38.03 0.84 7.40 0.52 0.36 58.80

13740 Boise City-Nampa, ID 0.43 0.00 0.11 2.09 0.63 0.40 3.66

14260 Boston-Cambridge-Quincy, MA-NH 1.05 10.97 1.26 16.42 5.40 3.39 38.48

12060 Bridgeport-Stamford-Norwalk, CT 0.08 1.64 0.27 3.31 0.69 0.70 6.69

16580 Buffalo-Niagara Falls, NY 0.44 5.36 0.39 3.82 1.38 1.02 12.41

18880 Charleston-North Charleston-Summerville, SC 5.52 14.65 0.22 2.88 0.23 0.19 23.70

15540 Charlotte-Gastonia-Rock Hill, NC-SC 0.96 6.73 0.60 13.25 0.69 0.56 22.79

19260 Chattanooga, TN-GA 0.63 0.00 0.27 3.04 0.34 0.26 4.54

13780 Chicago-Joliet-Naperville, IL-IN-WI 48.76 44.32 1.86 31.40 18.53 9.55 154.43

16860 Cincinnati-Middletown, OH-KY-IN 8.47 26.58 1.30 10.88 3.18 1.79 52.21

16940 Cleveland-Elyria-Mentor, OH 4.84 9.49 0.30 7.93 3.08 1.73 27.37

11700 Colorado Springs, CO 0.49 4.02 0.37 2.66 1.01 0.43 8.98

18700 Columbia, SC 0.99 5.13 0.17 3.87 0.27 0.22 10.65

16980 Columbus, OH 0.77 0.11 0.43 9.67 2.76 1.56 15.31

MSA Code MSA Title Industrial Electr. Gen. Waste On-Road Transpo. Residential Commercial Total

19340 Dallas-Fort Worth-Arlington, TX 7.76 10.35 2.73 30.22 3.05 2.81 56.92

17020 Dayton, OH 0.98 0.15 0.10 4.68 1.26 0.71 7.89

11540 Denver-Aurora-Broomfield, CO 1.21 6.27 0.18 11.53 3.97 1.70 24.86

13460 Des Moines-West Des Moines, IA 0.55 0.15 0.11 1.80 0.76 0.59 3.96

14740 Detroit-Warren-Livonia, MI 9.00 8.90 2.46 17.24 8.28 4.26 50.14

19660 El Paso, TX 1.39 1.51 0.19 3.08 0.38 0.35 6.91

11260 Fresno, CA 0.90 0.34 0.13 3.74 0.77 0.37 6.24

14860 Grand Rapids-Wyoming, MI 0.12 10.37 0.35 4.27 1.51 0.77 17.39

15980 Greensboro-High Point, NC 0.40 0.53 0.42 3.49 0.28 0.23 5.35

19060 Greenville-Mauldin-Easley, SC 0.15 2.31 0.35 3.52 0.22 0.18 6.74

18020 Harrisburg-Carlisle, PA 0.63 0.04 0.19 2.33 0.57 0.37 4.13

12020 Hartford-West Hartford-East Hartford, CT 0.21 1.07 0.45 4.90 0.91 0.91 8.45

13380 Honolulu, HI 1.16 5.86 0.38 3.22 0.02 0.07 10.72

19380 Houston-Sugar Land-Baytown, TX 53.03 46.52 2.07 26.24 2.84 2.62 133.32

13820 Indianapolis-Carmel, IN 2.14 5.39 0.94 11.78 2.16 1.24 23.66

15500 Jackson, MS 2.61 0.55 0.15 4.16 0.27 0.22 7.96

12580 Jacksonville, FL 0.98 13.36 0.27 8.12 0.07 0.23 23.04

15380 Kansas City, MO-KS 1.22 26.89 0.90 8.64 2.10 1.28 41.02

19180 Knoxville, TN 1.56 7.46 0.19 4.84 0.44 0.34 14.83

12940 Lakeland-Winter Haven, FL 0.58 10.87 0.43 3.37 0.03 0.10 15.38

18140 Lancaster, PA 0.24 0.00 0.27 1.73 0.54 0.35 3.13

16220 Las Vegas-Paradise, NV 1.69 9.80 0.07 7.78 1.76 1.34 22.44

10420 Little Rock-North Little Rock-Conway, AR 0.36 0.43 0.39 3.92 0.49 0.58 6.17

10740 Los Angeles-Long Beach-Santa Ana, CA 19.46 5.46 2.68 51.97 10.56 5.07 95.21
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Table A3 Continued. Summary of sector-based GHG emissions for the 100 most populated 

metropolitan areas in the United States for the year 2011. This data corresponds to the 

2011b data discussed in Chapter 2. The estimates for the residential and commercial 

sectors were found by multiplying 2011 state-level per capita values by 2011 MSA 

population values. The emission estimates are reported million short tons of CO2e  

 

 
 

  

MSA Code MSA Title Industrial Electr. Gen. Waste On-Road Transpo. Residential Commercial Total

13980 Louisville, KY-IN 8.09 20.17 0.27 5.58 0.90 0.62 35.62

20740 Madison, WI 0.37 7.80 0.05 2.94 0.78 0.53 12.49

19740 McAllen-Edinburg-Mission, TX 0.15 3.59 0.23 2.95 0.37 0.34 7.63

19140 Memphis, TN-MS-AR 2.14 6.85 0.38 6.73 0.83 0.65 17.58

12260 Miami-Fort Lauderdale-Pompano Beach, FL 1.07 13.12 1.84 25.02 0.29 0.96 42.30

20500 Milwaukee-Waukesha-West Allis, WI 0.47 12.63 0.24 5.77 2.12 1.43 22.67

15180 Minneapolis-St. Paul-Bloomington, MN-WI 5.60 19.22 0.51 15.93 4.66 3.52 49.43

11500 Modesto, CA 0.29 0.76 0.21 1.87 0.42 0.20 3.76

19100 Nashville-Davidson--Murfreesboro--Franklin, TN 0.72 7.33 0.32 9.48 1.02 0.79 19.66

12100 New Haven-Milford, CT 0.27 1.70 0.04 3.24 0.65 0.65 6.55

14020 New Orleans-Metairie-Kenner, LA 27.13 8.35 0.48 4.81 0.62 0.40 41.80

16300 New York-Northern New Jersey-Long Island, NY-NJ-PA 5.70 30.69 2.71 62.19 23.08 17.06 141.43

17460 Oklahoma City, OK 0.37 4.62 0.70 8.31 1.24 0.82 16.06

16020 Omaha-Council Bluffs, NE-IA 1.57 15.31 0.21 4.22 1.13 0.92 23.36

12540 Orlando-Kissimmee-Sanford, FL 0.31 15.51 1.00 11.62 0.11 0.37 28.92

11340 Oxnard-Thousand Oaks-Ventura, CA 0.59 0.17 0.28 3.46 0.68 0.33 5.50

12980 Palm Bay-Melbourne-Titusville, FL 0.00 0.23 0.24 3.34 0.03 0.09 3.92

17820 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 12.07 11.81 2.10 19.06 6.19 3.98 55.22

10500 Phoenix-Mesa-Glendale, AZ 0.58 8.60 0.83 16.13 1.52 1.29 28.96

17860 Pittsburgh, PA 10.23 38.35 0.40 7.65 2.44 1.57 60.64

20940 Portland-South Portland-Biddeford, ME 0.25 1.10 0.16 2.24 0.03 0.15 3.93

17780 Portland-Vancouver-Hillsboro, OR-WA 1.68 0.95 0.13 7.73 1.63 1.06 13.20

18580 Providence-New Bedford-Fall River, RI-MA 0.19 7.25 0.21 5.99 1.54 0.99 16.16

15940 Raleigh-Cary, NC 0.12 0.00 0.23 5.80 0.45 0.36 6.95

MSA Code MSA Title Industrial Electr. Gen. Waste On-Road Transpo. Residential Commercial Total

20220 Richmond, VA 2.40 11.01 0.74 5.90 0.75 0.60 21.40

10900 Riverside-San Bernardino-Ontario, CA 5.41 5.30 0.63 19.30 3.51 1.69 35.84

16620 Rochester, NY 1.31 0.13 0.57 4.44 1.28 0.95 8.68

11100 Sacramento--Arden-Arcade--Roseville, CA 0.28 2.01 0.41 8.93 1.78 0.85 14.25

19780 Salt Lake City, UT 2.95 0.25 0.36 5.02 1.71 0.99 11.27

19460 San Antonio-New Braunfels, TX 4.31 22.34 0.75 10.18 1.03 0.95 39.55

11020 San Diego-Carlsbad-San Marcos, CA 0.77 2.30 0.52 13.67 2.56 1.23 21.05

10780 San Francisco-Oakland-Fremont, CA 14.00 6.23 0.89 16.67 3.58 1.72 43.09

11180 San Jose-Sunnyvale-Santa Clara, CA 1.09 1.28 0.50 7.68 1.52 0.73 12.80

17980 Scranton--Wilkes-Barre, PA 0.64 0.03 0.21 2.01 0.58 0.37 3.85

20260 Seattle-Tacoma-Bellevue, WA 1.32 0.19 0.58 10.89 2.63 1.74 17.35

14500 Springfield, MA 0.26 1.07 0.15 2.57 0.82 0.51 5.37

15260 St. Louis, MO-IL 10.29 40.41 0.56 10.90 2.88 1.75 66.80

11460 Stockton, CA 0.30 0.49 0.40 3.01 0.57 0.27 5.03

16820 Syracuse, NY 0.37 1.74 0.23 2.81 0.80 0.59 6.55

12420 Tampa-St. Petersburg-Clearwater, FL 0.80 17.80 1.10 13.95 0.15 0.48 34.27

17300 Toledo, OH 4.97 3.75 0.12 3.33 0.97 0.55 13.69

10580 Tucson, AZ 0.63 0.82 0.05 4.55 0.35 0.30 6.70

17660 Tulsa, OK 5.51 11.84 0.50 5.98 0.92 0.61 25.36

20100 Virginia Beach-Norfolk-Newport News, VA-NC 0.42 4.35 0.44 6.44 0.99 0.80 13.43

12220 Washington-Arlington-Alexandria, DC-VA-MD-WV 1.14 14.24 1.40 21.89 6.86 9.35 54.89

13900 Wichita, KS 1.91 0.69 0.25 3.14 0.86 0.42 7.27

14460 Worcester, MA 0.34 4.05 0.28 4.03 0.94 0.59 10.23

17420 Youngstown-Warren-Boardman, OH-PA 3.16 0.21 0.19 3.07 0.84 0.47 7.95
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A2: Percent Change in Emissions between 2002 and 2011  

Figure A2. illustrates that percent change in total GHG emissions for all MSAs analyzed. The 

uncertainty bars indicated upper and lower bound estimates based on the two different methods 

used to estimate emissions from residential and commercial buildings for the year 2011. 

 
Figure A216 Percent change in total GHG emissions from 2002 to 2011 for the 100 largest 

metropolitan areas in the United States. 
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APPENDIX B: SUPPORTING INFORMATION FOR CHAPTER 3 
 

B1: Summary of Communities with GHG Reduction Targets 

 

Table B1 provides a summary of the various GHG reduction targets currently in place in 

communities across the United States. The table includes the base year and target emission 

reductions and years for the short-term, medium-term, and long-term. For example, Annapolis, 

MD has a medium term target of reducing emissions to 50% below 2006 values by the year 

2025. 

 

Table B114Summary of the GHG reduction targets currently in place in various U.S. 

communities. Replicated from (ICLEI USA, 2015
A
) 
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Table B1 Continued. Summary of the GHG reduction targets currently in place in various 

U.S. communities. Replicated from (ICLEI USA, 2015
A
) 
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Table B1 Continued. Summary of the GHG reduction targets currently in place in various 

U.S. communities. Replicated from (ICLEI USA, 2015
A
) 
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Table B1 Continued. Summary of the GHG reduction targets currently in place in various 

U.S. communities. Replicated from (ICLEI USA, 2015
A
) 
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B2: Elaboration on Scope 3 Emissions 

Scope 3 emissions refer to indirect emissions (excluding the electricity, steam, or heat 

consumption – which are classified as Scope 2 emissions) associated with an activity or the 

use/purchase of a good or service. Examples include transportation of a good/product throughout 

the supply chain, extraction and processing of raw materials, etc (Greenhouse Gas Protocol, 

2012). 

B3: Summary of the Metropolitan Areas Included in the Analysis in Chapter 3 

Table B2.15Summary of Communities and MSAs included in analysis 

MSA Community 

Atlanta-Sandy Springs-Marietta, GA Atlanta, GA 

Austin-Round Rock-San Marcos, TX Austin, TX 

Baltimore-Towson, MD 
Annapolis, MD 

Baltimore, MD 

Boston-Cambridge-Quincy, MA-NH 

Boston, MA 

Brookline, MA 

Cambridge, MA 

Lexington, MA 

Medford. MA 

Newton, MA 

Bridgeport-Stamford-Norwalk, CT Stamford, CT 

Charleston-North Charleston-Summerville, SC Charleston, SC 

Chattanooga, TN-GA Chattanooga, TN 

Chicago-Joliet-Naperville, IL-IN-WI 

Chicago, IL 

Evanston, IL 

Oak Park, IL 
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Table B2 Continued. Summary of Communities and MSAs included in analysis 

 

MSA Community 

Cincinnati-Middletown, OH-KY-IN Cincinnati, OH 

Cleveland-Elyria-Mentor, OH Cleveland, OH 

Columbus, OH Columbus, OH 

Dallas-Fort Worth-Arlington, TX Dallas, TX 

Denver-Aurora-Broomfield, CO Denver, CO 

Des Moines-West Des Moines, IA Des Moines, IA 

Grand Rapids-Wyoming, MI Grand Rapids, MI 

Hartford-West Hartford-East Hartford, CT Hartford, CT 

Kansas City, MO-KS Kansas City, MO 

Knoxville, TN Knoxville, TN 

Little Rock-North Little Rock-Conway, AR North Little Rock, AR 

Los Angeles-Long Beach-Santa Ana, CA 

Hawthorne, CA 

Los Angeles, CA 

Manhattan Beach, CA 

Santa Monica, CA 
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Table B2 Continued. Summary of Communities and MSAs included in analysis 

 

MSA Community 

Madison, WI 
Fitchburg, WI 

Madison, WI 

Miami-Fort Lauderdale-Pompano Beach, FL 

Broward County, FL 

Miami, FL 

Miami-Dade County, FL 

Pinecrest, FL 

Minneapolis-St. Paul-Bloomington, MN-WI 
Edina, MN 

Minneapolis, MN 

Nashville-Davidson--Murfreesboro--Franklin, TN Nashville, TN 

New Haven-Milford, CT 
Hamden, CT 

New Haven, CT 

New York-Northern New Jersey-Long Island, NY-NJ-PA 

Bedford, NY 

New York City, NY 

Westchester County, NY 

Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 

Haverford, PA 

Montgomery County, PA 

Philadelphia, PA 

Upper Dublin, PA 

Pittsburgh, PA Pittsburgh, PA 

Portland-Vancouver-Hillsboro, OR-WA Portland, OR 

Richmond, VA Richmond, VA 

Riverside-San Bernardino-Ontario, CA Riverside, CA 
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Table B2 Continued. Summary of Communities and MSAs included in analysis 

 

MSA Community 

Sacramento--Arden-Arcade--Roseville, CA 
Sacramento, CA 

Sacramento County, CA 

San Diego-Carlsbad-San Marcos, CA 
Chula Vista, CA 

San Diego, CA 

San Francisco-Oakland-Fremont, CA 

Albany, CA 

Antioch, CA 

Berkeley, CA 

East Palo Alto, CA 

El Cerrito, CA 

Emeryville, CA 

Foster City, CA 

Fremont, CA 

Hayward, CA 

Marin County, CA 

Martinez, CA 

Novato, CA 

Oakland, CA 

Piedmont, CA 

Pittsburg, CA 

San Francisco, CA 

San Rafael, CA 

San Ramon, CA 

San Jose-Sunnyvale-Santa Clara, CA 
Palo Alto, CA 

Sunnyvale, CA 

Seattle-Tacoma-Bellevue, WA 

Kirkland, WA 

Seattle, WA 

Snohomish County, WA 

Tacoma, WA 

Springfield, MA 
Amherst, MA 

Northampton, MA 

St. Louis, MO-IL St. Louis, MO 

Tucson, AZ Tucson, AZ 

Washington-Arlington-Alexandria, DC-VA-MD-WV Washington, DC 

Worcester, MA Worcester, MA  
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APPENDIX C: SUPPORTING INFORMATION FOR CHAPTER 4 

C1. Maps of Electricity Service Areas 

Figures C.1 and C.2 illustrate the boundaries for which the baseline electricity demand vs. 

temperature values were analyzed. The regions analyzed here are circled in red. 

 

 
Figure C17Map of regions in ERCOT (Texas) for which baseline electricity usage data 

were used 

 
Figure C218Map of regions in PJM for which baseline electricity usage data were used 
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C2. Maps of Climate Projection Regions 

 

Figures C.3 through C.7 illustrate the regions for which projected temperature data were 

generated from the climate models. These regions are meant to correspond closely with the 

electricity service areas illustrated in Figures C.1 and C.2. 

 

 
Figure C319Map of region used to generate temperature projections for the San Antonio 

and Austin metropolitan areas 

 

 

Figure C420Map of region used to generate temperature projections for the Dallas/Fort 

Worth metropolitan area 
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Figure C521Map of region used to generate temperature projections for the Houston 

metropolitan area 

 

 

Figure C622Map of region used to generate temperature projections for the Chicago 

metropolitan area 

 
Figure C723Map of region used to generate temperature projections for the Pittsburgh 

metropolitan area 
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C3. Additional Description of Temperature Projections and Range of Possible Values 

Figure C.8 compares the average annual historical and projected temperatures for the areas of 

interest over a ten year period. The historical values are presented in green and represent the 

years 1990 to 1999. The projected values are presented in blue (climate model 1) and red 

(climate model 2) and represent the years 2025-2035. 

 

 
Figure C824Average annual historical and projected temperatures for  

 

Figure C.8 illustrates a few things: 1) the projected annual temperatures are generally expected to 

be higher than historical temperatures, 2) neither of the climate models predict monotonically 

increasing temperatures, and 3) compared to climate model 2, climate model 1 appears to have a 

more pronounced increasing trend over the decade. 

 

Figure C.9 helps illustrate the potential range of uncertainty associated with the temperature 

projections produced by the climate models. In addition to showing the average (purple) 
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historical (solid line) and projected (dotted line) temperature values, this figure also shows the 

maximum (red) and minimum (blue) temperatures predicted by the climate model. For each day 

of the year, we selected the highest and lowest temperature projections across models and years. 

More specifically, we had 20 temperature estimates for each day of the year (2 climate models x 

10 years of projections). From these 20 data points, we used the absolute maximum for each day 

to form upper bound estimates and the absolute minimum for each day to form the lower bound 

estimates. 

 

 
Figure C925Average daily historical and projected temperature values included upper 

bound and lower bound estimates for the projected temperature values 

 

Figure C9 helps illustrate a couple key points: 1) The average projected temperatures are 

generally expected to be higher than the historical average temperatures – especially in the 

summer months, and 2) The upper bound projections are substantially higher than the average 
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historical values, while the lower bound projections are actually lower than the average historical 

values.  

C4. Analysis of Accuracy of Regression Results 

 

Figure C.10 compares projected daily electricity generation values to actual daily generation 

values for the Houston metropolitan area for the years 2010, 2011, 2013, and 2014. The 

projected values were estimated using the regression results presented in Table 1 of the main 

text. The actual electricity generation values were gathered from ERCOT (ERCOT, 2015) and 

the average daily temperature values for the time periods of interested were gathered from 

NOAA (NOAA, 2015). 

 
Figure C1026Comparison of projected daily electricity generation (using regression results from 

year 2012) to actual daily generation values for the Houston metropolitan area for the years 

2010, 2011, 2013, and 2014). 


