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Abstract 

Coalescence of liquid drops is important in many natural and industrial processes, such as 

raining, inkjet printing and coating applications. The coalescence for sessile drops is more 

complicated due to the additional interplay between the drops and solid surface. This work examines 

the impact of gravity, interfacial tensions and wetting properties on both the static and dynamic 

aspects of the coalescence of sessile drops. In the presence of gravity, seven dimensionless 

parameters are identified to describe the axisymmetric configuration of a compound sessile drop 

after coalescence. A stability criterion is established based on the perturbation of Laplacian shape 

and the stability criterion is numerically evaluated in the zero Bond number limit. Surface 

Evolver simulations and experiments are performed for compound sessile drops at small and 

intermediate Bond numbers. Both simulations and experiments agree closely with the zero Bond 

number analysis, exhibiting a small discrepancy at intermediate Bond number. For the dynamics 

of sessile drop coalescence, experiments are performed for miscible fluids with similar surface 

tensions but different densities and viscosities. The coalescence behavior shows three distinctive 

stages with well separated timescales: an initial stage of fast bridge healing process, an 

intermediate stage of advective motion for fluids with different densities, and a final stage of 

diffusion. A dimensional analysis shows that the flow behavior for the advective motion 

resembles gravity current. A more detailed analytical model based on the lubrication 

approximation is conducted and demonstrates good qualitative agreement with the advective 

motion during the sessile drop coalescence. 
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Chapter 1 Introduction 

The field of capillarity, created in the first half of 19th century by Laplace and Young, 

studies the interfaces between two immiscible liquids or between a gas and a liquid.1 Among the 

research subjects in capillarity, droplets are of significant interest to scientists and engineers 

because of their ubiquitous appearance in natural processes (raining, misting, skin dewetting, etc.) 

and industrial applications (pesticide spraying, combustion, etc.).1–3 The static behaviors of 

liquid droplets were well modeled by theories of capillarity based on thermodynamics and 

statistical mechanics starting from the early 20th century.4 The dynamic aspects of droplets have 

been examined more extensively since the advent of microfluidics research in the 1980s,5, 6 when 

high-speed imaging techniques began to impact the study of experimental fluid mechanics.7 The 

development of microfluidics was driven by the promise of large-scale automated chemistry and 

biology experiments to investigate processes such as the reaction kinetics and protein folding,6, 8 

in which reagents are consumed with high efficiency.6, 9 Realization of large-scale automated 

experiments relies on a good understanding of both the formation10–13 and coalescence14–18 of 

drops.  

The physics of two drops adds a new feature to the drop coalescence: the two drops can be 

either of the same liquid or different liquids (different liquids can be either miscible or 

immscible). When two drops composed of the same liquid contact, a fused drop is formed to 

reduce the total surface energy. However, when two immiscible drops contact, three different 

configurations can be formed depending on the three interfacial tensions; the three possible 

configurations are complete engulfing, partial engulfing and non-engulfing.19–21 More 

interestingly, when two miscible sessile drops contact, even though the final static configuration 
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is a fused drop of uniform composition, the dynamics process to achieve the final configuration 

can be either fast or delayed, depending on the difference in surface tensions.28–32 These different 

phenomena associated with two drops motivate us to study both the static and dynamic aspects 

of drop coalescence. 

In this thesis, we focus on the coalescence of sessile drops, where drops are in contact with 

solid surfaces. Sessile drops allow well-controled drop sizes and positions while contact line 

dynamics add complexity to the coalescence.22, 23 Both the statics and dynamics of a single drop 

in contact with a solid surface have been well studied and are summarized in review articles by 

de Gennes24 and Bonn et al.25 Since miscible drop coalescence yields a well-modeled final static 

configuration of a single drop, we first study the static stability of the configuration formed after 

the coalescence of two immiscible drops. Next we study the fluid flow during the coalescence of 

sessile drops of miscible liquids and eaxmine whether the dynamics lead to an advective motion 

within the merging drop beyond simple diffusion.  

 The first comprehensive analysis of the static configuration of a compound drop formed by 

coalescing two immiscible drops within another ambient immiscible phase was performed by 

Torza and Mason in the 1970s under the assumption of negligible gravity effects.19 Other 

experiments and analyses studying compound drop configurations are summarized in the review 

article by Johnson et al.20 and in the book by Sahdal et al.21  

Since 2002, Mahadevan et al. and Neeson et al. proposed and analyzed different 

configurations of compound sessile drops, where another solid phase was added to the problem 

of compound drops.26, 27 However, in these two papers, the configurations of compound sessile 

drops are also modeled in the absence of gravity, such that the calculations of geometric relations 
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are significantly simplified as all fluid/fluid interfaces have spherical cap shapes.  

Neglecting gravity limits stability analysis of static configurations of compound sessile 

drops: all configurations are possible without preference to any orientation. But this is 

contradicted by a survey of the literature: in air, no static observation was ever made of a fluid 

drop resting on top of another drop, where the lower drop is in direct contact with a solid surface. 

A stability analysis of compound sessile drops therefore needs to be performed in the presence of 

gravity. In a different geometric configuration where the lower drop is extended to a bulk fluid, 

the phenomenon of a less dense drop floating on top of a more dense bulk liquid is ubiquitous in 

nature; and even observations of more dense drops floating on top of a less dense bulk liquid are 

made.33, 34 A natural question arises, how is the concept of “floatability” revised when the lower 

bulk liquid is reduced to a sessile drop. This leads us to study the stability of an axisymmetric 

compound sessile drop, where gravity breaks the rotational symmetry, and the finite size of the 

lower drop breaks the translational symmetry.  

Chapter 2 examines the stability of axisymmetric compound sessile drops in the presence of 

gravity. We first study the controlling parameters for the equilibrium configuration. Based on a 

perturbation approach, a stability criterion is determined in the limit of small drop sizes. This 

analysis suggests a possible realization of a stable axisymmetric compound sessile drop in air. 

The stability analysis of axisymmetric compound sessile drops contrasts with the concept of 

floatability on bulk fluid at a large scale. Through both simulations and experiments, we verify 

the stability criterion and show the transition from a stable configuration to an unstable 

configuration by tuning the density ratio of the two drops.   
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Though the extensive study on the static configuration of coalesced drops started in the 

1970s,19–21 research on the dynamic aspects of drop coalescence has lagged behind by almost 30 

years, which is partly attributed to the lack of digital imaging technology.7, 18 In spite of the 

considerable research in sessile drop coalescence during the past two decades, there are still 

many unanswered questions, e.g. the effects of the fluid properties and geometric parameters are 

not well understood.18  

In Chapter 3, we examine how the flow during the sessile drop coalescence is affected by the 

fluid densities and viscosities. The density difference between two drops introduces an advective 

motion, dominating the effect of diffusion. By carefully varying the densities and viscosities of 

the fluid drops, we establish a scaling relation for the advective motion which agrees with the 

experimental observations. This scaling relation agrees with the physics of gravity currents35–38, 

examples of gravity current including snow avalanches, sandstorms and the spreading of oil on 

the sea surface, which is typically observed at a much larger length scale. We compare 

simulations based on the gravity current model with observed fluid flow during drop coalescence. 

This gravity current model agrees qualitatively with the internal flow during the drop 

coalescence for different density fluids.  
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Chapter 2 Axisymmetric Compound Sessile Drop1 

2.1 Introduction 

The sessile drop problem, which determines the configuration of a fluid drop deposited on a 

horizontal solid surface, is governed by the Laplace equation. The numerical and asymptotic 

solutions to sessile drop configurations are well studied and further used to measure surface 

tensions of various fluids39, 40. If the lower solid surface is replaced by another fluid phase, the 

resulting configuration is a sessile lens. Pujado and Scriven examined both translationally 

symmetric and rotationally symmetric sessile lenses using numerical methods and approximate 

analytical solutions41. Contrary to sessile drops with Young’s contact angle, the three interfacial 

tensions of a sessile lens at a liquid/liquid interface form a closed Neumann’s triangle41–43. 

Furthermore, in sessile lens cases, typical observations are made for systems with subphases 

denser than the deposited drops to maintain the floatability condition. Recently, Phan et al. 

showed experimentally that more dense drops can float on less dense liquids for two different 

systems (water/oil, water/oil with surfactant) due to the distortion of fluid interfaces33, 34. 

Reduction of the lower fluid phase to a finite size drop breaks the translational symmetry of a 

sessile lens configuration, resulting in a different geometry called a compound drop19.  

A compound drop is typically produced when two immiscible drops are submerged in 

another ambient external fluid medium (air or another liquid). If one of the immiscible drops is 

in contact with a solid surface, the resulting configuration is then denoted as a compound sessile 

drop26, 27, 44. Neeson et al. experimentally realized a compound sessile drop with a tetradecane 

                                                 
1 The contents of this chapter are based on a manuscript submitted to Journal of Colloid and Interface Science by 

Ying Zhang, Dominique Chatain, Stephen Garoff and Shelley L. Anna (2015) 
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drop on top of a perfluorooctane drop, with the lower drop in contact with a hydrophobic glass 

surface under water. This experimental realization utilized the flotation property; tetradecane is 

less dense than the ambient medium of water, preventing the tetradecane drop from sliding off 

the axisymmetric position27. However, a stable configuration was never reported in literature if 

both the immiscible drops are more dense than the ambient medium.  

A question naturally arises: is it possible for other systems with two drops, both more dense 

than the ambient phase (e.g. air), to form a stable axisymmetric compound sessile drop? In this 

chapter, we first derive equations for the equilibrium configuration, and then present a stability 

criterion for forming an axisymmetric compound sessile drop. The analysis is further 

supplemented by Surface Evovler simulations and experimental verifications based on both high 

and low interfacial tension fluids. 

2.2 Preliminaries and Related Work 

2.2.1 Geometric configurations of compound drops in the absence of gravity 

Earlier results on compound drops provide a fundamental understanding about compound 

sessile drop configurations, which has at least one drop in contact with the solid surface. 

Compound drops are typically observed in multiple drop processes in flow-focusing devices45, 46, 

where the configuration was solved with the spherical cap shape assumption19, 20.  

Torza and Mason derived compound drop shapes in the absence of gravity in the 1970s, 

which were rederived by Mahadevan et al. and Neeson et al. independently about 30 years later19, 

26, 27. As the derivation for the compound drop in Torza and Mason’s paper is much more 

comprehensive, we here reproduce some of the geometric relations relevant for the calculation of 

stability of compound sessile drop in the next few sections. The notations may be slightly 
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different from Torza and Mason’s original paper19. 

As illustrated in Figure 2.1, Drop 1 and Drop 2 are in contact and are submerged in another 

ambient phase, with solid lines indicating the interfaces between different phases. Without 

gravity effects, all the three interfaces for compound drops are spherical caps such that the static 

configuration has minimum surface energy. The surface tensions of Drop 1 and Drop 2 are 

denoted by 1γ  and 2γ  respectively, while the interfacial tension between the two drops is 

denoted by 12γ . The radii of curvature for the Drop 2 surface, the Drop 1 surface and the 

  

Figure 2.1 The configuration of a compound drop in the absence of gravity. The two drops 
denoted by Drop 1 and Drop 2 are in contact with each other and surrounded by another 
immiscible ambient phase. All the three interfaces are spherical caps. Interfacial tensions at 
the three phase contact line follows Neumann’s triangle rule. 
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interface between Drop 2 and Drop 1 are 12 23,r r  and 13r  respectively, while the radii from the 

three phase contact line form three angles with the center line, 12 23,ϕ ϕ  and 13ϕ . The chord 

length of the intersecting spheres is denoted by 2d R= . The simple geometric relation by 

projecting the radii of curvature to the chord line yields,  

 13 13 12 12 23 23sin sin sinr r r Rϕ ϕ ϕ= = = . (2.1)  

The Laplace equation for pressure jumps across different interfaces gives, 

 2 12 1 23 12 13/ / /r r rγ γ γ+= . (2.2) 

And the projection of surface and interfacial tensions onto the chord line yields,  

 2 12 1 23 12 13cos cos cosγ ϕ γ ϕ γ ϕ+ = . (2.3) 

Based on law of cosines, the Neumann’s triangles shown in Figure 2.1 can be expressed as, 

 

2 2
1 1

112
1

2 2
1

12
1 2

1

2

2

1cos
2

1cos
2

θ π

θ π

−

−

 Γ − Γ +
= −  Γ 

 Γ + Γ −
= −  Γ Γ 

. (2.4) 

Introducing dimensionless variables for interfacial tensions, 2 2 12/γ γΓ = , 1 1 12/γ γΓ = , and 

the dimensionless ratio of radii of curvature ratio 12 23/R r r= , it follows that the three angles 

12 23,ϕ ϕ and 13ϕ  can be simplified to be, 

 

( )
( ) ( )

22 2 2 2
1 2 1

2 2 2
1 2 1 2 ratio ratio 1 2

13 2 1 ratio 12

23 ratio 1

12

2

24 1
sin

4 R 1 R 1

sin ( R )sin
sin R sin

ϕ

ϕ ϕ
ϕ ϕ

Γ Γ − − Γ − Γ
=

Γ Γ Γ Γ + − Γ + Γ  −

= Γ − Γ
=

 (2.5) 

The volumes for Drop 1 and Drop 2 can be expressed as a sum of spherical caps, 
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( )( ) ( )( )( )
( )( ) ( )( )( )

3 2 3 2
1 23 23 23 13 13 13

3 2 3 2
2 12 12 12 13 13 13

1V r 2 cos 3 cos r 2 cos 3 cos
3
1V r 2 cos 3 cos r 2 cos 3 cos
3

π ϕ ϕ ϕ ϕ

π ϕ ϕ ϕ ϕ

= + − − − −

= − − + − −
, (2.6) 

Given the volumes of the two drops and the three interfacial tensions, different parameters of the 

compound drops can only be solved numerically because of the transcendental nature of 

Equation (2.6). The configuration of a compound drop in the absence of gravity is fully specified 

by Equations (2.1)-(2.6) as described in Torza and Mason’s paper19. 

 Since the Neumann triangle rule dictates that a compound drop can only exist if 

1 2 12 1 2γ γ γ γ γ− < < + , the normalized interfacial tension ratio 12 1 2) /(γ γ γ−  achieves values in 

the range of -1 to 1. Figure 2.2 shows the dependence of Neumann angles on different ratios of 

surface and interfacial tensions. The normalized interfacial tension ratio 12 1 2) /(γ γ γ−  being 

close to -1 represents almost the perfect wetting of the two drops while 12 1 2) /(γ γ γ−  being 

close to 1 represents the dewetting of the two drops. In Figure 2.2, each subplot is obtained for a 

fixed surface tension ratio 2 1/γ γ , while the horizontal axis represents the value of 12 1 2) /(γ γ γ−  

and the vertical axis represents the value of Neumann angles as defined in Figure 2.1. In Figure 

2.2a, when the surface tensions of Drop 1 and Drop 2 are equal, the angles 112θ  and 212θ  are the 

same because of the symmetry condition in Equation (2.4). The Neumann angle 12θ  

monotonically decreases from 180º to 0º with the increasing value of 12 1 2) /(γ γ γ−  because of 

the balance of the three interfacial tension vectors. Due to the broken symmetry 1 2γ γ≠ , other 

subplots in Figure 2.2 have a different feature from Figure 2.2a, i.e. the angle 212θ  can be of any 

value in the range of 0º to 180º, instead of the range of 90º to 180º. The angle 212θ  is a 

monotonic increasing function with respect to 12 1 2) /(γ γ γ− . In contrast, the angle 112θ is not a 
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monotonic function of 12 1 2) /(γ γ γ−  and attains the limiting value of 180º for both the largest 

and smallest interfacial tension values, i.e. 12 1 2) ~ 1( /γ γ γ− ± . This geometry is supported by the 

fact that when 2 1γ γ< , in either limit of 12 1 2γ γ γ= −  or 12 1 2γ γ γ= + , the interfacial tension 12γ  

is always anti-parallel to the surface tension 1γ . These relations of Neumann’s angles are 

important in determining the stability of a compound sessile drop in the presence of gravity. 
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Figure 2.2. Dependence of Neumann angles on the ratio of surface and interfacial tensions. 
Each subplot (a)-(e) is obtained for fixed surface tension ratio γ2/γ1 with values 1, 0.8, 0.6, 
0.4 and 0.2 respectively. The angles θ12, θ112 and θ212 are represented with three different 
curves. Note, in subplot (a) the values of , θ112 and θ212 overlap with each other due to 
symmetry.  
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2.2.2 Governing equations for a single axisymmetric sessile drop 

 The shape of an axisymmetric sessile drop (Figure 2.3) deposited on a nondeformable solid 

substrate is dependent on both capillary and gravitational forces1, 3, 40, 47. The capillary forces 

include three interfacial tensions: solid-liquid interfacial tension SLγ , solid-vapor interfacial 

tension SVγ and liquid-vapor interfacial tension (or surface tension) γ . The gravitational forces 

on the sessile drop are dependent on the air density Aρ , the fluid density of the drop Lρ  and the 

gravitational acceleration g. The drop configuration is subjected to a volume constraint V. 

Independent parameters can be determined for the static configuration, by writing down the 

governing equations for a single sessile drop. 

The coordinate system is defined in Figure 2.3 with the direction of the vertical coordinate 

defined as positive in the direction of the gravitational acceleration. The height of drop is 

denoted by ( )h r , where /rh h r= ∂ ∂  and 2 2/rrh h r= ∂ ∂  are the first and second order partial 

derivatives. The hydrostatic equilibrium condition for an axisymmetric sessile drop is given by, 

 0 0
0 02 1/2 2 3/2( )

)
1

(1 (1 )
r rr

r r

h h P
r h h

P gh ghγ ρ γκ ρ+ + + ∆ ++ ∆=
+ +

, (2.7) 

where 0P  is the atmospheric pressure, 0κ  is the curvature at the apex, ALρ ρ ρ∆ = − is the 

density difference between the fluid drop Lρ  and the air Aρ , and 0h  is the height at the axis 

of symmetry. Also the contact angle α at the three phase line has to obey Young’s law: 

cosSV SLγ γ γ α= + . Equation (2.7) simplifies to the Laplace equation, 

 0 0
2 1/2 2 3/2

1 )
(1

( ) (
) (1 )

r rr

r r

h h
r h h

g h hρκ
γ

∆
+

+
+ − = −

+
, (2.8) 

subject to the boundary conditions, 
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=
=

=
 

0
a 0
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t
t

at

a r
r
r r

=
=
=

,  (2.9) 

where *r  is the contact radius of the sessile drop.  

Integration of Equation (2.8) gives the drop height 0 1 2( , , , / )h h C C gκ ρ γ= ∆  as a function 

of the curvature 0κ  and the capillary length 1/2( / )gγ ρ∆  with two integration constants 

1C and 2C . The three boundary conditions (Equation (2.9)) specify the three unknown variables 

0
1,Cκ and 2C  by solving Equation (2.8), with the input parameters of the contact angle α , the 

contact radius of the drop *r , the apex height 0h  and the capillary length 1/2( / )gγ ρ∆ . The 

volume of the drop is an output quantity by integrating the drop shape profile 

*

0
( )2 ,

r
rh r drV π= ∫ which is dependent on the input parameters. Table 2.1 lists the four input 

dimensional parameters to specify the shape of an axisymmetric sessile drop.  

Equation (2.8) can be written in dimensionless form by expressing the radial and axial 

coordinates in terms of dimensionless variables, 

  

Figure 2.3 Shape of an axisymmetric sessile drop on a solid surface. The vertical downward 
direction is the gravitational acceleration. The radius of contact with the solid surface is *r . 
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 1/2( )/ / /rx gr a γ ρ= ∆≡ , 

 0 0 0 1/2 0 1/2) / ) / ( /( ) ( / )(h a a h g gz h hκ γ ρ κ γ ρ− ∆= +−+ ∆≡ ,  

where 1/2/ )(a gγ ρ∆≡  is the capillary length. Substituting these dimensionless variables in 

Equation (2.8) gives, 

 2 1/2 2 3/2( )
)

1
(1 (1 )

x xx

x x

z z z
x z z+

+
+

=  (2.10) 

The boundary conditions in dimensionless form now reduce to, 

 

0

0
tan

x

x

a

z

z
z

κ

α
=
=

=

1/2

0
at 0
at /( / )

at

*

x
x
x r gγ ρ

=
=

= ∆

 (2.11) 

The second order differential equation yields 2 unknown integration constants. The boundary 

conditions (Equation (2.11)) has 3 dimensionless variables 0 ,aκ α and 1/2* /( / )r gγ ρ∆ . 

Therefore, 2 input parameters are required: α  and 1/2* /( / )r gγ ρ∆ to fully specify the 

dimensionless drop shape. The dimensionless volume 
1/2( / )*/

0

3/2/ 2( / ) ( )
gr

g xz x dxV
γ ρ

γ ρ π
∆

=∆ ∫ is 

Table 2.1 Input parameters for a sessile drop on a solid substrate 

 Dimensional parameter Dimensionless parameter 

Input parameter 

to fully specify 

the drop shape 

Contact angle α  

Contact radius *r  

Reference height 0h  

Capillary length 1/2( / )gγ ρ∆  

Contact angle α  

Contact radius 1/2)* /( /r gγ ρ∆  

 

Output Volume V  Volume 3/2/ ( / )V gγ ρ∆  
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an output by integration. Table 2.1 also lists the required parameters to specify the shape of an 

axisymmetric sessile drop in dimensionless form. Alternatively, if the input parameters are the 

dimensionless volume 3/2/ ( / )V gγ ρ∆  and the contact angle α , then the output would be the 

dimensionless contact radius 1/2)* /( /r gγ ρ∆ . 

The shape of a single axisymmetric sessile drop can be solved through asymptotic expansion 

using perturbation approach at either small or large surface tension limit39. The general shape of 

a sessile drop with arbitrary surface tension can only be solved numerically47.   

2.2.3 Compound sessile drop results in the zero Bond number limit 

For a single drop, the Bond number Bo measures the relative importance of the surface 

tension force to the gravitational force on the shape of a drop. The Bond number is defined 

as 2 / ( / )LBo gγ ρ= ∆ , where ρ∆ is the density difference between the drop and the ambient 

liquid,   L = V 1 3  is the characteristic length of the drop estimated from the drop volume V, and 

γ is the interfacial tension between drop and ambient phase. Compared to compound drops 

within another liquid phase, compound sessile drops in air can have much larger Bond numbers 

because of the increased density difference ρ∆ . Therefore, even though the spherical cap 

approximation works well in solving the shapes of the compound drops, to apply this 

approximation for compound sessile drops in air, the drop sizes should be very small to maintain 

small Bond numbers. 

Compound sessile drops have more potential geometrical configurations than compound 

drops because at least one drop is in contact with a solid surface. For example, Janus 

configurations (two partially engulfing drops both in contact with the solid surface) and 

axisymmetric configurations were observed and analyzed previously26, 27, 44, 48. The equilibrium 
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shapes for the Janus configurations were solved using phase field model by integrating the 

wetting properties, which demonstrated good agreements with the experimental results48. The 

equilibrium shapes for the axisymmetric configurations were examined analytically in the 

absence of gravity26, 27 which were similar to the compound drop calculations by Torza and 

Mason19.  

Berthier and Brakke showed that rotationally symmetric configurations of drops or fluid 

surfaces tend to have lower energy than arbitrary shapes using the Steiner symmetrization 

process, even though the Steiner symmetrization itself does not produce the minimum energy 

configuration.9, 49 However, the Steiner symmetrization does not indicate whether the rotationally 

symmetric state is an energy minimum or energy maximum, i.e. the question of the stability of an 

axisymmetric compound sessile drop is yet to be determined. 

 In the rest of the current chapter, we will first determine the parameters which govern the 

axisymmetric compound sessile drop shapes. These parameters provide a criterion for the 

stability of the axisymmetric configuration which is solved in the limit of zero Bond number 

where gravity force is still present (this is the zero size drop limit). Lastly, the zero Bond number 

limit calculation is compared with Surface Evolver simulations and experiments to verify the 

general conditions for the stability of the axisymmetric compound sessile drops. 

2.3 Theory for Equilibrium Configuration and Stability Analysis 

2.3.1 Governing equations and input parameters for compound sessile drops 

Figure 2.4 shows the schematic diagram of a compound sessile drop. The lower drop which 

is in direct contact with solid surface is denoted as Drop 1, while the upper drop is denoted as 

Drop 2. The ambient phase can be any phase (vacuum, air or another fluid) which is immiscible 
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with both Drop 1 and Drop 2. The center of the basal plane of Drop 1 is the origin of the 

coordinate system and the downward vertical direction is defined to be positive. The densities of 

the three fluid phases are denoted as 1ρ , 2ρ  and Aρ , respectively. The symbol h1 denotes the 

distance from the basal plane to the phase boundary between the ambient phase and Drop 1; h2 

denotes the distance to the boundary between Drop 2 and the ambient phase; and h12 denotes the 

distance to the boundary between Drop 1 and Drop 2. The contact angle of Drop 1 with the solid 

surface is denoted by angle α, which can be any value ranging between the advancing contact 

angle and the receding contact angle for the system of Drop 1 and the solid surface. The first and 

second order derivatives of the Drop 1 interface with respect to the radius are expressed using 

simplified notation as 
  
h1,r = ∂h1 / ∂r  and 

  
h1,rr = ∂2 h1 / ∂r 2 , respectively. The derivatives of other 

variables are defined in the same fashion. 

  

Figure 2.4 Schematic diagram of an axisymmetric compound sessile drop. The lower drop 
denoted as Drop 1 is in direct contact with the solid surface. The upper drop is denoted as 
Drop 2. The ambient fluid with density ρA can be either air or another fluid.  
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The derivation for the compound sessile drop configuration is similar to the calculation of 

the sessile lens between two infinite fluid phases outlined by Pujado and Scriven41, with different 

boundary conditions. At equilibrium, the three phase boundaries for the compound sessile drop 

each satisfy the Laplace equation, 

 

 

1, 1, 0 01
1 1 12 1/2 2 3/2

1, 1, 1

2, 2, 0 02
2 22 1/2 2 3/2

2, 2, 2

12, 12, 0 012
12 122 1/2 2 3/2

12, 12, 2

2

1
12

1 )
(1 (1 )

1 )
(1 (1 )

( ) (
)

( ) (
)

( )1 )
(1 (1

(
))

r rr A

r r A

r rr A

r r A

r rr

r r

h h
r

h
r

g h h
h h
h h g h
h h
h h

h
hr

g h
h

ρκ
γ

ρκ
γ

ρκ
γ

−
+ +

−
+ +

−
+ +

∆
+ − =

∆
+ − =

∆
+ − =

, (2.12) 

where 0
1h , 0

2h  and 0
12h  represent the heights of different interfaces (or extended interface for 

12h ) at the symmetry axis; 0
1κ , 0

2κ  and 0
12κ  represent the curvature of the interfaces (or 

extended interface for 12h ) on the symmetry axis; 1 1A Aρ ρ ρ∆ −= , 2 2A Aρ ρ ρ∆ −= and 

12 1 2ρ ρ ρ∆ = − represent the density differences of the phases; and 1Aγ , 2 Aγ and 12γ  are the 

three interfacial tensions between different phases. In the remainder of Chapter 2, we refer to any 

interface shape that satisfies the Laplace equation, i.e., that is subject to a balance of gravity and 

surface tension forces, as a Laplacian shape. 

The three fluid phase contact line has to satisfy the Neumann’s triangle condition at x = r*, 
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where 12θ  is the angle formed by the interfaces of 1h  and 2h , and 112θ  is the angle formed 
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by the interfaces of 1h  and 12h . The other Neumann angle 212θ  formed by the interface of 2h  

and 12h  can be expressed as 212 12 1122θ π θ θ= − −  as the sum of three angles is 360º.  

 In addition to the typical boundary conditions for geometric relations, there is a pressure 

jump condition for the equilibrium compound sessile drop,  

0 0 0 0 0 0
1 1 1 1 2 2 12 12 12 22 2 1 0A A A Agh gh ghγ κ ρ γ κ ρ γ κ ρ− + − + − = , 

which can be interpreted as the pressure change across interface 1h  is equal to the pressure 

change across interface 2h  and 12h  through a different path of calculation. 

Similar to the calculation for a single sessile drop in Section 2.2.2, the Laplace equations 

(Equation (2.12)) can be written in dimensionless form by defining dimensionless variable in the 

cylindrical coordinate, 

1/2
1 1 1/ ( / )/ A A Ax r a r gγ ρ= ∆≡ , 

where 1/2
1 1 1( / )A A Aa gγ ρ∆≡ is the capillary length for the interface of 1h . The heights of three 

interfaces can be written in dimensionless form with the same reference height 

0 0
1 1 1 1/ A Ah aa κ+− ,

0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 12 12 1 1 1 12 2 1/ / and // , / /A A A A A A A A Ah a h az h a a z h a a z h a h a aκ κ κ≡ + ≡ +− − −+ ≡ . 

Substituting the dimensionless variables in Equation (2.12) yields,  
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The corresponding boundary conditions in dimensionless form are: 
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(2.15.d)
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Equation (2.15.a) and (2.15.b) state that the slopes of the interfaces 2h  and 12h  are zero at the 

symmetry axis. Equation (2.15.c) specifies the contact angle at the solid-liquid contact line. 

Equation (2.15.d) and (2.15.e) specify the slopes of interfaces 1h  and 2h  at the three phase 

contact line. Equation (2.15.f) and (2.15.g) specify that the height of interface 1h , 2h  and 12h  

are the same at the three phase contact line *r . Also, the pressure jump condition in the 

dimensionless form gives, 
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Because of the method of nondimensionalization, the heights of interfaces at the axis of 

symmetry x=0 are, 
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There are 6 unknown integration constants to be determined in Equation (2.14). The 

boundary conditions specified in Equation (2.15) have 13 unknown dimensionless quantities: 

2 0 0
1 1 1 1) ,( /A Aa h aκ − 2 0 0

2 2 2 1) ,( /A Aa h aκ − 2 0 0
12 12 12 1( ) ,/ Aa h aκ − 1 2/ ,A Aa a 1 12/ ,Aa a 21,θ 212 ,θ ,α

/2
1

1
1/ ,( / )A

c
A gr γ ρ∆ 1/2

1 1* / ,( / )A Ar gγ ρ∆ 0
1 1/ ,Ah a 12

0 / Ah a  and 0
12 1/ Ah a . There are 11 equations in 

boundary conditions Equation (2.15) and 19 dimensionless variables to be determined for the 
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axisymmetric compound sessile drop. Thus once we specify the 8 dimensionless variables: 

21θ , 212θ ,α , 1
1/2

1/ ( / )c
A Ar gγ ρ∆ , 1/2

1 1( / )* / A Ar gγ ρ∆ , 12 1/ ,Aa a  2 1/ ,A Aa a 0
1 1/ ,Ah a the shape of the 

axisymmetric compound sessile drop can be determined in dimensionless form. Once the shape 

is determined, the volumes of the two drops can be calculated by integrating the interfaces.  

All the dimensionless parameters are summarized in Table 2.2. The set of input parameters 

can be changed in different ways. For example, the two dimensionless radii can be the output 

parameters if both the dimensionless volumes are selected as input parameters; two of the 

Neumann angles can be replaced by the specified ratios of interfacial tensions 1 2/A Aγ γ  and 

1 12/Aγ γ . Note that the Laplace equations (Equation (2.14)) and boundary conditions (Equation 

(2.15)) only depends on the density differences and pressure jumps due to curvature. This 

Table 2.2 Input parameters to fully specify an axisymmetric compound sessile drop 

 Dimensionless equations 

Input parameters Neumann angles       212θ , 21θ  

Contact angle           α  

Dimensionless radii      1
1/2

1/ ( / )c
A Ar gγ ρ∆ , 1/2

1 1( / )* / A Ar gγ ρ∆  

Ratios of capillary length  12 1/ Aa a , 2 1/A Aa a  

Reference height         0
1 1/ 0Aah =  

Output Dimensionless volume    3/2
1 1 1( / )/ A AV gγ ρ∆ , 3/2

22 2( / )/ A AV gγ ρ∆  
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suggests that the ambient density Aρ  and the ambient pressure P0, can be treated as reference 

quantities, and the system can be taken to have zero ambient pressure, zero ambient density, and 

the reduced densities 1 Aρ ρ−  and 2 Aρ ρ−  for Drop 1 and Drop 2 respectively. 

The differential equations (Equation (2.14)) subject to the boundary conditions (Equation 

(2.15)) do not have a closed-form solution. Furthermore, since the shape of the compound sessile 

drop is governed by 7 parameters (8 parameters including reference height), it is difficult to 

obtain physical intuition from the numerical solutions. Thus, we consider the zero Bond number 

limit to reduce the number of governing parameters and gain insight into the stability of the 

axisymmetric configuration. In the zero Bond number limit, drop shapes do not depend on 

capillary lengths (the Laplace equation yields spherical cap solutions), thus the parameters 

governing the drop shape reduce to four dimensionless parameters 

12 1/ ,Aγ γ 2 1 ,/A Aγ γ 2 1/V V andα . In contrast, compound drop shapes in the zero Bond number 

limit only depend on 12 1/γ γ , 2 1/γ γ  and 12 /V V . 19 

2.3.2 Stability of compound sessile drops of Laplacian shapes 

The equilibrium profile of the compound sessile drop in the absence of gravity was solved 

by Mahadevan et al26 and by Neeson et al27 independently, with similar approximations applied 

in the earlier work of Torza and Mason19. However, in determining the stability criteria for the 

compound sessile drop, neither the forces arising from gravity (the weight of the drop itself) nor 

buoyancy (displacement of the bottom fluid by the top drop) can be omitted; otherwise, the 

compound sessile drop is stable at any orientation. The assumption of spherical cap drop shapes 

is incompatible with the presence of a gravity field.50 Hydrostatic pressure as a function of height 

within a drop results in a curvature difference at different heights; therefore, neither the gravity 
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force nor the buoyancy force are defined in spherical cap drops.  

In the cases of one sessile51, 52 or pendant drop53, 54 in contact with a solid surface, difficulty 

arises in stability analysis because the perturbed shape can be any generic function, not 

necessarily restricted to the family of Laplacian shapes; i.e., perturbation analysis for liquid 

drops lies in the mathematical formulation of functional analysis, beyond the traditionally better 

understood realm of energy minimization based on convex analysis55. Because of this difficulty, 

we limit the stability analysis presented here to the subset of Laplacian drop shapes. In contrast 

to the typical stability analysis for mechanical equilibrium based on the second derivative of the 

potential energy at the extremum (or the first derivative of a conservative force)56, 57, we directly 

calculate the force on the top drop when it is perturbed away from the axisymmetric position 

while interfaces are constrained to be of Laplacian shape.  

Figure 2.5a shows a perturbed compound sessile drop where the top drop (Drop 2 of 

 

Figure 2.5 Stability of a compound sessile drop. (a) Top drop (Drop 2) offset from the 
axisymmetric position and bottom drop is still of Laplacian shape. The net force exerted on 
the top drop can be calculated to determine the stability of the axisymmetric equilibrium. 
Shaded region S has volume VS. (b) One sessile drop on top of a solid surface with the same 
shape of Drop 1. The dashed line h12B  is be drawn to be identical to the interface h12, and the 
shaded region SB also has volume VS. 
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Laplacian shape) is perturbed by an angle β  away from the axisymmetric position. The bottom 

drop (Drop 1) is assumed to be of a continuous Laplacian shape, such that the extension of Drop 

1 surface (dashed line) follows the same Laplace equation as the Drop 1 surface (solid line). The 

extension of Drop 1 surface and the interface between Drop 1 and Drop 2 ( 12h ) encloses a shaded 

region S, with volume SV  as shown in Figure 2.5a. The forces exerted on Drop 2 (enclosed by 

h12 and h2) include the gravitational force and the forces exerted by Drop 1 through contact, i.e., 

the pressure force and the surface tension force. The total force exerted through contact will be 

calculated by constructing an identical Laplacian shape of a single sessile drop.  

Figure 2.5b shows a single sessile drop denoted as Drop B, which has the identical shape to 

Drop 1 including the continuation of the surface of Drop 1; thus, the volume of Drop B is equal 

to the sum of volumes of Drop 1 and the shaded volume, 1B SV V V= + . In Drop B, the dashed line 

h12B  shown in Figure 2.5b is identical to the interface h12 (in Figure 2.5a) to create the identical 

shaded volume region S in this single sessile drop case. Since both Drop 1 and Drop B have the 

same Laplacian shape, pressure fields along the interfaces h12 and h12B are identical, and the 

surface tension forces along the three phase contact line (the intersection line of h1 and h12 and 

the intersection line of h1B and h12B) are also identical in the two different configurations. 

Therefore the force exerted on Drop 2 through contact in the compound drop case is identical to 

the force exerted on the shaded region SB (Figure 2.5b) through contact in the single drop case: 

2, ,Bcontact S contactF F=
v v

.  

The force exerted on the shaded region through contact in the single drop case can be 

derived based on the properties of Laplacian shapes. Within a drop of Laplacian shape, fluid is in 

hydrostatic equilibrium40, 50, i.e., any material body drawn experiences zero net force. The net 
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force on the material body of the shaded region in Figure 2.5b is the sum of the gravitational 

force and the force through contact: , , 0
B B BSS net S contactG FF = + =

v vv
. Thus, the force through contact 

is of the same magnitude as the weight of shaded region SB, but with opposite 

sign , 1 ˆ
B BS contact S SgG zF Vρ= − = −

vv
. 

The net force exerted on Drop 2 can be obtained by summing the gravity force and force 

through contact, 

 2, 2 2

2

, 2 ,

2 1 ˆ( )
Bnet con

S

tact S contactF G F G

g

F

V gV zρ ρ

= + = +

= −

vv vv v
, (2.16) 

where V2 is the volume of Drop 2. This equation shows that the net force exerted on Drop 2 

contains only a vertical component. There is no closed form expression for an arbitrary 

Laplacian shape enclosing the volumes of Drop 2 and the shaded region S (V2 and VS).  

An interesting result from Equation (2.16) is that a more dense drop resting on top of a less 

dense is never stable.  This can be stated even though there is no closed form expression for the 

volumes. A net upward force on Drop 2 restores it to the axisymmetric position, producing a 

stable axisymmetric equilibrium configuration; but Equation (2.16) predicts that for a more 

dense drop resting on top, the net force on Drop 2 once perturbed is always downward for the 

following reason. In Figure 2.5a, because of Neumann’s triangle rule, the angle 12θ  is always 

smaller than π ; therefore the volume of Drop 2 is always larger than the volume of the shaded 

region S , i.e. 2 SV V> . The net force on a more dense Drop 2 22, 2 1 ˆ( )net SF gV gV zρ ρ= −
v

 is 

always in the positive z direction (downward) due to the conditions 2 1ρ ρ>  and 2 SV V> . 

This result that a more dense drop cannot rest stably on top of a less dense drop seems to be 

in contrast with the experimental findings of Phan et al.33, 34, where more dense drops can float 
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on top of less dense flat fluid interface. In the case of a flat interface, the configuration of a more 

dense drop floating on top of a flat lower fluid has translational symmetry in the sense that the 

denser drop can be stable at any position if it is translated horizontally to any position without 

changing the total gravitational energy. In contrast, for compound sessile drops, the translational 

symmetry is broken and instead replaced with axisymmetry in the equilibrium configuration. 

Thus, the apex is intrinsically a unique position at the maximum height, even if a very large 

bottom drop can appear to have a nearly flat surface near the apex. Therefore, in the case of a 

compound sessile drop, a more dense drop cannot float stably on top of a less dense drop even 

though more dense drops are observed to float on top of a less dense flat fluid interface. 

2.3.3 Stability criterion of Laplacian shape drops in the zero Bond number limit 

To obtain an analytical expression, calculations are performed in the zero Bond number limit 

for both Drop 1 and Drop 2. In the zero Bond number limit, where the drop is much smaller than 

the capillary length, but gravity is still present, the shape is well approximated by a spherical cap 

to first order accuracy in the Bond number.39 

In Figure 2.5a, δ is the angle between the base of the spherical cap and the interface between 

Drop 1 and Drop 2. In the zero Bond limit, the volume of Drop 2 is the sum of two spherical 

caps with basal angles δ  and 112 122π θ θ δ−− − , where the angles 12θ  and 112θ  are the 

Neumann angles first introduced in Figure 2.1. Therefore the volume of Drop 2 is the sum of the 

two spherical caps, 

1
3

1 2
3

2 1 2( ) (2 )V q R q Rδ π θ θ δ+ −= − − , 

where 3 3( ) (2 3cos( ) cos ( ))csc( ) / 3q θ θ θ θ π= − +  is a function representing the volume of a 

spherical cap with basal angle θ and unit basal radius; R is the basal radius of the spherical cap. 
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In the zero Bond number limit, the angle δ is determined based on geometric relationships to be a 

function of the volume ratio and the ratios of interfacial tensions as in Section 2.1.1. The volume 

VS of the shaded region S is calculated similarly as the combination of two spherical caps with 

basal angles δ and 12π θ δ− − : 

3 3
12( ) ( )sV q R q Rπ θ δ δ+−= − . 

Thus the net force exerted on the top drop (Equation (2.16)) is given by: 

 3
2, 112 12 12 12[ ( ) (2 )] [ ( ) ( )] ˆ{ }net q q g q qF R g zρ δ π θ θ δ ρ π θ δ δ+ − −− += − − −

v
. (2.17) 

Setting the net force equal to zero gives a critical condition for the density ratio: 

 
12

2 12

1 112

( ) ( )|
( ) (2 )critical

q q
q q

ρ π θ δ δ
ρ δ π θ θ δ

− +−
=

− −+ −
. (2.18) 

Since angles 12θ  and angle 112θ  are the Neumann’s angles determined by ratios of interfacial 

tensions and angle δ depends on the volume ratio and contact angle through geometric 

relationships19, the critical density ratio is then dependent on the volume ratio, the two interfacial 

tension ratios, and the contact angle at the solid surface. 

A net upward force on Drop 2 restores it to the axisymmetric position, producing an energy 

minimum or a stable axisymmetric equilibrium configuration. When the density ratio is less than 

the critical value given in Equation (2.18), the axisymmetric configuration is stable. A net 

downward force on Drop 2 causes it to slide further away from the axisymmetric position, 

producing an energy maximum or an unstable axisymmetric configuration. Thus when the 

density ratio is greater than the critical density ratio, the axisymmetric configuration is unstable. 

In the following sections, we will use simulations and experiments to verify the stability 

conditions.  

The derivation of the net force on Drop 2 does not depend on the value of β, the angle by 
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which Drop 2 is perturbed from the axisymmetric position. Therefore for compound sessile drops 

of Laplacian shapes in the zero Bond number limit, if the density ratio is not equal to the critical 

value, then there will be no equilibrium configuration other than the axisymmetric configuration 

without any topological changes such that only one drop is in contact with the solid surface. In 

this case the axisymmetric configuration is a unique extremum which is either a global minimum 

or a global maximum. At the energy maximum, any finite perturbations will cause Drop 2 to fall 

away from the apex. At the energy minimum, any finite perturbations that do not cause Drop 2 to 

touch the solid surface will restore it to the axisymmetric configuration.  

The stability criterion (Eq. (2.18)) in the zero Bond number limit depends on the volume 

ratio of the two drops 12 /V V , two interfacial tension ratios 2 1/A Aγ γ  and 12 1/ Aγ γ , and the 

contact angle α implicitly as described earlier. Figure 2.6 shows the dependence of the critical 

density ratio on the interfacial tension ratios with fixed volume ratio 12 / 0.2V V = , and fixed 

contact angle 90α = °  as an example. The numerical code for obtaining the critical density ratio 

can be found in the Appendix 2.1 of this chapter. Each curve represents the critical density ratio 

as a function of the ratio 12 1 2) /( A Aγ γ γ−  for fixed ratio 2 1/A Aγ γ . Since the three phase contact 

line between Drop 1, Drop 2 and the ambient phase must obey the Neumann condition, the 

allowed range of 12 1/ Aγ γ  values is different for each 2 1/A Aγ γ  value, but the allowed values of 

12 1 2) /( A Aγ γ γ−  lie between (-1, 1) for any given surface tension ratio 2 1/A Aγ γ . For a fixed 

surface tension ratio 2 1/A Aγ γ , the critical density ratio is a monotonically decreasing function of 

the ratio of interfacial tensions 12 1 2) /( A Aγ γ γ− . For fixed surface tensions, this parameter 

effectively represents the interfacial tension between Drop 1 and Drop 2. The critical density 

ratio is close to unity for a surface tension ratio of unity and the interfacial tension ratio near 
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12 1 2) / 1( A Aγ γ γ ≈ −− . For a fixed value of 12 1 2) /( A Aγ γ γ− , the critical density ratio decreases 

with increasing surface tension ratio 2 1/A Aγ γ . The inset of Figure 2.6 shows the rescaled critical 

density ratio based on the linear function, min max minrescaled ratio (ratio ratio ratio rati/ ( )o) −= − , 

where minratio  and maxratio represent the minimum and maximum critical density ratios within 

the allowed range of 12 1 2) /( A Aγ γ γ−  values. The rescaled critical density ratio lies between 0 

and 1. The systematic deviation of the rescaled ratio (not collapsing to a single curve) suggests 

that the critical density ratio is not a simple function of the two ratios, 12 1 2) /( A Aγ γ γ−  and 

2 1/A Aγ γ , but rather that both are important in determining the critical conditions for the stability 

of a compound sessile drop. 

In Figure 2.6, (a), (b), (c) and (d) denote the configurations of compound sessile drops with 

spherical cap shapes and Neumann’s angle conditions resulting from the specified interfacial 
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tension ratios. In Section 2.1, we have described the Neumann’s angle dependence on the surface 

and interfacial tensions. The surface tension ratios for configurations (a), (b) and (c) are 

2 1/A Aγ γ =1, 0.6, and 0.2 respectively while the interfacial tension ratio is fixed at 

 

Figure 2.6 Critical density ratio as a function of surface and interfacial tensions with fixed 
volume ratio 12 / 0.2V V = , and fixed contact angle 90α = ° . Legend denotes the ratio of the 
top surface tension divided by the bottom surface tension. (a),(b), and (c) indicate the 
configurations of spherical cap shapes with Neumann’s angles calculated for the 
corresponding interfacial tensions. ( (a)γ2A/γ1A=1, (b) γ2A/γ1A=0.6, (c) γ2A/γ1A=0.2. For (a), (b) 
and (c), the value (γ12 -γ1A )/γ2A =-0.98 is kept constant. The configuration for (d) is obtained 
for dewetting drops with γ2A/γ1A=1 and (γ12 -γ1A )/γ2A =0.98. 

 

 



31 

 

12 1 2) / 0. 8( 9A Aγ γ γ = −− , indicating nearly the smallest interfacial tension achievable while still 

obeying the Neumann’s triangle condition. Configuration (d) represents dewetting drops with 

very large interfacial tension 12 1 2) / 0. 8( 9A Aγ γ γ =− , and surface tension ratio 2 1 1/A Aγ γ = . 

However even for other values of 2 1/A Aγ γ , the shapes obtained remain quite similar to that 

shown in (d) because the angle between the two surfaces is close to zero, while the angles 

between the surfaces and the interface are both close to 180º. These configurations agree with the 

physical intuition that dewetting drops are nominally less stable. This intuition is supported by 

the calculation that the critical density ratio is close to zero in this limit. For drops with small 

interfacial tensions, near 12 1 2) / . 8( 0 9γ γ γ = −− , the drop shapes favor more contact of the two 

phases, therefore promoting greater stability.  

Figure 2.6 suggests that the critical density ratio is larger for low interfacial tension systems 

and smaller for high interfacial tension systems. From the point of view of real systems, 

combinations of organic liquids (oil) and inorganic liquids (water) typically exhibit large 

interfacial tensions, while separated phases obtained by mixing partially miscible fluids exhibit 

relatively small interfacial tension values58. In the following sections we will consider both small 

and large interfacial tension systems separately in both simulation and experiments. While the 

derivation of the stability criterion is based on drops of Laplacian shape in the zero Bond number 

limit, we will see in the simulation and experimental results that the stability criterion for the 

limiting case provides a reasonable estimate even when the drop shapes are not constrained to 

Laplacian shapes, and even when the Bond number increases. 

2.4 Simulations using Surface Evolver 

The zero Bond number analysis shows that the critical density ratio separating the energy 
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maxima from the energy minima depends on the interfacial tension: larger interfacial tension 

yields a smaller critical density ratio. To verify the stability criterion, we conduct numerical 

simulations for both high and low interfacial tension systems. Because real experimental systems 

typically have fluid and interfacial properties that cannot be varied independently, simulations 

allow the independent roles of these properties to be isolated. Further, simulations can be used to 

examine finite Bond number situations. 

The Laplace equation can be derived using a variational method based on the minimization 

of Gibbs free energy50, 59–61. Thus the configuration of a compound sessile drop satisfying the 

three Laplace differential equations can be solved numerically in this framework by minimizing 

the free energy. We utilize the open access software package Surface Evolver developed by 

Brakke62, 63, which models the liquid surface shapes subject to various forces or constraints. We 

developed the code within the software adapted to the compound sessile drop geometry. The 

detailed code can be found in the appendix of this chapter. Appendix 2.2 lists the initial setup of 

the compound sessile drop geometry and procedures to represent the perturbations applied to the 

compound sessile drop. 

As shown in Figure 2.7, we present some cases to verify that the shapes of the axisymmetric 

configurations at equilibrium are the same if the seven governing dimensionless parameters are 

kept fixed while varying the dimensional values of the physical properties. Figure 2.7a and 

Figure 2.7b shows two cases of compound sessile drops with the same volume but different 

values of densities, surface tensions and interfacial tensions, while the dimensionless variables as 

listed in Table 2.2 are kept the same. These two cases yield the same dimensionless configuration. 

Figure 2.7c and Figure 2.7d shows two cases of compound sessile drops with the same density 

but different values of volumes, surface tensions and interfacial tensions, while the 
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dimensionless variables as listed in Table 2.2 are the same. These two cases also yield the same 

dimensionless configuration. In contrast, for cases with different input dimensionless parameters 

(Figure 2.7a vs. Figure 2.7c), the dimensionless configurations are different. 

2.4.1 Simulation methods using Surface Evolver 

Unlike the zero Bond number stability analysis in which we assumed the drops have 

Laplacian shape, in Surface Evolver we examine drop shapes that are perturbed with spherical 

cap shapes. This slightly different type of perturbation can provide a complementary perspective 

as to the influence of different perturbations on the stability. 

 

Figure 2.7 Equilibrium configurations for axisymmetric compound sessile drops. Same 
configurations are observed if the seven dimensionless paramters are kept fixed. All the bottom 
drops have 90º contact angle with the solid surface. (a) A compound sessile drop with the 
physical paprameters γ1A = 41 mN/m, γ2A = 40 mN/m, γ12 = 3 mN/m, ρ1 = 1.4 g/ml, ρ2 = 1.3 g/ml, 
V1 = 5 μL and V2 = 1 μL. (b) A compound sessile drop with physical paprameters γ1A = 82 mN/m, 
γ2A = 80 mN/m, γ12 = 6 mN/m, ρ1 = 2.8 g/ml, ρ2 = 2.6 g/ml, V1 = 5 μL and V2 = 1 μL. (c) A 
compound sessile drop with physical paprameters γ1A = 70 mN/m, γ2A = 30 mN/m, γ12 = 48 

mN/m, ρ1 = 1.4 g/ml, ρ2 = 1.07 g/ml, V1 = 5 μL, V2 = 1 μL. (d) A compound sessile drop with 
physical paprameters γ1A = 140 mN/m, γ2A = 60 mN/m, γ12 = 96 mN/m, ρ1 = 1.4 g/ml, ρ2 = 1.07 

g/ml, V1 = 14.4 μL, V2 = 2.88 μL. 
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The procedure for examining the stability of the axisymmetric configuration of the 

compound sessile drop is outlined in Figure 2.8. The equilibrium axisymmetric configuration is 

first obtained in a zero gravity environment, and then the top drop is displaced away from the 

axisymmetric position. Lastly, gravity is applied, and the evolution of the top drop is monitored. 

If the top drop slides off it is recorded as an unstable configuration, and if it restores to the apex 

it is considered stable. This perturbation bears some similarity to experiments in which the top 

drop is perturbed using a pipette tip, where gravity is always present. However, in simulation, the 

starting configuration of the perturbed drop shapes are constrained to spherical caps, while in 

experiments the perturbed drop shape is affected by the wetting properties of the pipette. The 

convergence of simulations is supported by the nearly constant energy output and scale after 

multiple runs as well as mesh refinement. As Surface Evolver uses a gradient descent method62 

to search for the energy minimum, it may occur that the final configuration is a local minimum 

 

Figure 2.8. Protocol for determining whether the axisymmetric state is an energy maximum or 
minimum using Surface Evolver. (a) Initial axisymmetric equilibrium shape without gravity. 
(b) Top drop displaced from the vertical axis by about 3 degrees without gravity. (c) Upon 
application of gravity at small density ratios, the top drop returns to the apex position, indicating 
a minimum energy system. (d) Upon application of gravity at large density ratios, the top drop 
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instead of the global minimum. However, the identification of a local minimum is sufficient to 

specify the stability at the axisymmetric configuration. Based on the gradient search direction, 

evolution away from the apex position indicates that the axisymmetric configuration is unstable 

while evolution toward the apex indicates that the axisymmetric configuration is stable. 

 In Figure 2.8, the surface tension of the smaller drop is 2 25Aγ = mN/m, the surface tension 

of the larger drop is 1 72Aγ = mN/m, and the interfacial tension is 12 52γ = mN/m. These surface 

and interfacial tension values correspond to a dodecane drop resting on a water drop in air; 

however, in simulations the fluid densities are varied. The dimensionless surface tension ratios 

for this case are 2 1 0./ 35A Aγ γ =  and 12 1 2) / 0.8( A Aγ γ γ = −− .  The contact angle for the larger 

drop against the solid substrate is fixed at 90α = ° . The volumes of the two drops are 1 μL and 5 

μL, respectively. Figure 2.8a shows the equilibrium shape of the axisymmetric compound sessile 

drop obtained in zero gravity. In the absence of gravity, the shapes obtained from Surface 

Evolver are similar to the compound drop cases with no solid substrate examined by Guzowski 

et al64, which are found to be independent of the fluid densities.  

To examine the stability of the equilibrium axisymmetric position, the top drop is displaced 

about 3º from the vertical axis and allowed to equilibrate without gravity as shown in Figure 2.8b. 

Gravity is then applied to this perturbed state to examine the stability. By varying the densities of 

the two drops, we expect that the application of gravity will cause the interface to evolve in one 

of two ways: either it will restore to the axisymmetric configuration (Figure 2.8c), or it will slide 

off to the side, away from the apex (Figure 2.8d). Note that the configuration shown in Figure 

2.8d does not represent the equilibrium state. In the current setup, Surface Evolver does not 

allow for a change of topology to accommodate the contact of the smaller drop with the solid 

surface. In real systems, when the deposited top drop contacts the solid surface, a “Janus” 
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configuration is formed, e.g., for the combination of perfluooctane and mercury27. The 

equilibrium configuration of a Janus type compound sessile drop has been modeled using a phase 

field modeling approach, which is capable of depicting the different wetting properties of the 

fluids on the solid surface.48 As we are presently interested in the stability of the axisymmetric 

configuration, the movement of the second drop away from the axisymmetric position is 

sufficient to demonstrate the lack of stability of the configuration.  

As shown in Figure 2.8c and d, depending on the densities at fixed surface tensions, 

interfacial tension, contact angle and volumes, the axisymmetric equilibrium can be categorized 

as either an energy minimum or an energy maximum. Note that the drop shapes shown in Figure 

2.8c are flattened compared with those of Figure 2.8a owing to the presence of gravity. Note that 

when the density ratio used in simulation is close to the critical density ratio, the convergence 

rate for evolution of the interface is very slow. Thus to further narrow in on the dividing line, for 

density ratios close to the critical value, unstable cases have been repeated with a smaller 

perturbation of 1º from the apex. Only those configurations that remain unstable at a 1º 

displacement are marked as energy maxima. 

2.4.2 Simulation results using Surface Evolver 

 Figure 2.9a summarizes the simulation results for the high interfacial tension system. The 

densities of the two drops are varied to achieve different ratios as well as different Bond numbers. 

In Figure 2.9a, the stability of each configuration is noted as a function of the density ratio and 

the Bond number of Drop 1, for a fixed volume ratio of 0.2. Stable configurations are marked by 

open symbols, while unstable configurations are marked by filled symbols. The simulations 

result in stable configurations at lower density ratios and unstable configurations at higher 
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density ratios, with a clear transition between the two regions. The vertical line indicates the 

predicted critical density ratio for this system at fixed volume ratio of 0.2 using the zero Bond 

number calculation. The figure shows that the zero Bond number approximation predicts the 

transition from an energy minimum to an energy maximum reasonably well at small Bond 

number, while a small deviation is observed at increasing Bond number. At a Bond number of 

1 5Bo ≈  for Drop 1, the deviation from the zero Bond number predictions is about 4%. This 

small deviation results from the gravity-driven flattening of the bottom drop, which tends to 

stabilize the axisymmetric configuration up to a slightly larger critical density ratio.  

Based on the earlier dimensional analysis, the critical density ratio also depends on the 

 

Figure 2.9. The energy maximum and minimum states obtained from Surface Evolver for a 
high interfacial tension system (γ1A = 72 mN/m, γ2A = 25 mN/m and γ12 = 52 mN/m). (a) The 
volume of the top drop is 1 μL and the bottom drop is 5 μL. The densities of the two drops are 
varied to achieve different density ratios and Bond numbers. The critical density ratio deviates 
from the zero Bond number asymptotic prediction as the Bond number increases. (b) The 
Bond number of the bottom drop is fixed at an intermediate value of 5.8 and the transition 
from an energy minimum to an energy maximum deviates slightly from the zero-Bond 
number model at various volume ratios. 
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volume ratio. Figure 2.9b examines the stability of the axisymmetric configuration for a fixed 

Bond number of Drop 1 Bo1 = 3.2, plotting the stability of individual configurations on a plot of 

volume ratio versus density ratio. As in Figure 2.9a, the stable configurations are found at lower 

density ratios, while unstable configurations are found at higher density ratios, with a clear 

transition between the two regions. In this case, the stability transition depends on volume ratio, 

shifting to lower critical density ratio values for larger volume ratios. The solid line represents 

the critical density ratio predicted in the zero Bond number limit. While the same trend is 

observed, the simulations exhibit a small deviation from this limit. The deviation arises from the 

slight gravity-induced flattening of both the top and bottom drops at non-zero Bond numbers. 

The deviation observed in Figure 2.9b at zero Bond number is about 2% of the critical density 

ratio. 

Figure 2.10 summarizes the simulation results for a low interfacial tension system to 

compare whether the predicted critical density ratio obtained from the zero Bond number 

approximation.. In this case, the surface tension is 2 40Aγ = mN/m for the smaller drop and 

1 41Aγ = mN/m for the larger drop. The interfacial tension is 12 3γ = mN/m. The dimensionless 

surface tension ratios for this case are 2 1 0./ 98A Aγ γ =  and 12 1 2) / 0. 5( 9A Aγ γ γ = −− . The contact 

angle for the larger drop against the solid substrate is fixed at 90α = ° .  

In Figure 2.10a, the volume ratio is held fixed at a value of 0.2, and the stable and unstable 

configurations are marked with open and filled symbols, respectively, as a function of the Bond 

number of Drop 1 and the density ratio. The simulation results demonstrate the same features as 

for the high interfacial tension case: i.e., the stable configurations are organized at lower density 

ratios, while the unstable configurations are organized at higher density ratios, with a clear 

transition between the two regions. The zero Bond number approximation, denoted by the 
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vertical line, agrees well with the critical density ratio observed in simulations. The critical value 

found in simulations deviates about 2% from the zero Bond number value at 1 5Bo ≈  for Drop 1. 

In Figure 2.10b, the Bond number of Drop 1 is held fixed at Bo1 =3.2, while the volume ratio 

varies. In this case, the critical density ratio resulting from the simulations is always larger than 

the critical density ratio predicted at zero Bond number. This is in contrast to the results shown in 

Figure 2.9b, where the critical density ratio from simulation is larger than the zero Bond number 

value at smaller volume ratios, and smaller than the zero Bond number value at large volume 

ratios.  

The deviation of the critical density ratio in simulations compared with the zero Bond 

 

Figure 2.10. The energy maximum and minimum states obtained from Surface Evolver for a 
low interfacial tension system (γ1A = 41 mN/m, γ2A = 40 mN/m and γ12 = 3 mN/m). (a) The 
volume ratio of the top drop to the bottom drop is fixed at 0.2, and the densities of the two 
drops are varied to achieve different Bond numbers, yielding different maximum and 
minimum energy states. The critical density ratio deviates from the zero Bond number 
asymptotic prediction as the Bond number increases. (b) The Bond number of the bottom drop 
is fixed at an intermediate value of 5.8 and the transition from an energy minimum to an 
energy maximum deviates from the zero-Bond number limit at all volume ratios. 
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number limit can be attributed to the finite Bond number of Drop 2, 3/2
2 2 2 2/ ( / )gBo V γ ρ∆= . In 

Figure 2.9b, the ratio of the Bond numbers near the transition line is 2/3
2 1 2 10.72( )/ /Bo V VBo = , 

while the ratio of Bond numbers in Figure 2.10b is 2/3
2 1 2 10.95( )/ /Bo V VBo = . Thus, even though 

the volume ratios for the high and low interfacial tension cases are set to the same value, the 

Bond number ratios are different as a result of the surface and interfacial tension differences. 

Nevertheless, the predicted critical density ratio at zero Bond number and the critical density 

ratio resulting from simulation are only 2 – 4% different, suggesting that the zero Bond number 

approximation captures the major factors controlling the transition from an energy maximum to 

an energy minimum. 

The simulations show that the critical density ratio is close to the zero Bond number limit for 

both high and low interfacial tension systems, with merely 2 – 4% deviation for Bond number 

1 5Bo ≈ . For the high interfacial tension system to reach a stable axisymmetric configuration, the 

density ratio of the two drops must be smaller than 0.25. For the low interfacial tension system to 

reach a stable axisymmetric configuration, the density ratio must be smaller than 0.93. In the 

following section we conduct experiments for real systems in which we tune the density ratios 

and realize both stable and unstable axisymmetric configurations. 

2.5 Experimental Methods and Fluid Properties 

The previous analysis and simulations demonstrate that the stability of a compound sessile 

drop depends strongly on the magnitudes of the surface and interfacial tensions. Validating the 

predicted critical density ratio in real systems is challenging since fluid and interfacial properties 

typically cannot be varied independently. In the case of compound metal drops, the density ratio 

has been adjusted by varying temperature44. In aqueous systems, cesium chloride salt can be 
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added to vary the density with minimal viscosity and surface tension changes65, 66. To 

experimentally verify the stability criterion, we examine two liquid pairs, one with high 

interfacial tension and one with low interfacial tension. In each case the density is varied using 

different concentrations of cesium chloride salt added to the aqueous phase, allowing the critical 

density ratio to be determined for a (almost) fixed set of surface and interfacial tension values. 

The high interfacial tension system consists of dodecane paired with aqueous cesium chloride 

(CsCl, purchased from Sigma-Aldrich with purity ≥ 99%, used as received) solutions. Dodecane 

and water systems have previously been used to verify the Neumann’s angle calculation67 and 

exhibit relatively large interfacial tension values of about 52 mN/m. The fluid and interfacial 

properties of each liquid considered are listed in Table 2.3. Dodecane (Sigma-Aldrich, purity ≥ 

Table 2.3. Densities, surface tensions and interfacial tensions of dodecane and aqueous CsCl 
solutions. 

Fluid Density (g/ml) Surface tension 

(mN/m) 

Interfacial tension 
with dodecane 

(mN/m) 

Water 0.9946 ± 0.0032 72.4 ± 0.5 52.2 ± 0.3 

20%w/w CsCl 1.1677 ± 0.0035 73.5 ± 0.4 50.1 ± 0.5 

40%w/w CsCl 1.4136 ± 0.0027 74.1 ± 0.5 53.9 ± 0.3 

60%w/w CsCl 1.7780 ± 0.0023 75.1 ± 0.6 58.3 ± 0.4 

Dodecane 0.7431 ± 0.0035 25.3 ± 0.4 – 

 



42 

 

99%) is further purified using column chromatography over aluminum oxide and silica. The 

chromatography materials are obtained from Sigma-Aldrich and used as received. The CsCl 

solutions are prepared by mixing deionized water (Milli-Q, 18MΩ-cm, organic content < 10 ppb) 

with an appropriate mass of CsCl. Densities are determined by measuring the mass (Denver 

Instrumental Company Balance, Model XE-100A, accuracy 10-4 g) of a known volume contained 

in a volumetric flask (Pyrex No. 5640, 25 ± 0.03 ml). Experimental uncertainty is estimated 

based on propagation of error from different experimental sources, including instrumental error 

from the volumetric flask of about 0.1% with statistical error is about 0.05%, and instrumental 

error from the mass balance of about 0.02% with statistical error about 0.03%. Estimated 

uncertainties are in the fourth decimal place of the reported density values. Surface and 

interfacial tension values are measured using a Du Noüy ring tensiometer68. The measured values 

for dodecane and water agree well with reported literature values67. 

The low interfacial tension system is obtained by inducing phase separation of partially 

miscible fluids58, 69. Low interfacial tension values are common in colloid-polymer70–74 and 

polymer-polymer75–78 mixtures that undergo phase separation, leading to two immiscible liquid 

components with interfacial tension values as low as 1 μN/m. Mixing water with alcohols such 

as benzyl alcohol or 1-butanol leads to phase separation into water-rich and alcohol-rich liquid 

phases with interfacial tension values of 1 – 4 mN/m.58, 69, 79 Although the phase diagram of the 

1-butanol–water mixture is well characterized79 and the interfacial tension value is only 1.8 

mN/m58, 1-butanol has a relative high vapor pressure of 665 Pa at 20 ºC 80. To avoid evaporation 

in the compound sessile drops, we select benzyl alcohol, which exhibits a low vapor pressure of 

12 Pa at 25 ºC81. The benzyl alcohol is obtained from Sigma-Aldrich (purity ≥ 99%) and used as 

received. To form the immiscible liquid pairs, aqueous CsCl solutions are mixed with benzyl 
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alcohol at similar volumes. Upon equilibration, the mixture separates into two phases, one that is 

water and salt rich, and one that is water and salt rare. Agreeing with the results by Phan et al. 33, 

34, multiple drops of the more dense phase are observed to float on the less dense phase in bulk. 

The floatability of more dense drops on top of the less dense phase in bulk is achieved by the 

distortion of the lower fluid phase. The two phases are collected using a separation funnel. The 

water rich and water rare phases are identified by miscibility: the water rich phase is miscible 

with addition of water, but separates into two phases if extra benzyl alcohol is added. 

Table 2.4 lists the densities measured for each of the two liquid phases obtained by mixing 

different concentrations of CsCl solution with benzyl alcohol. The density is measured using the 

method described earlier. Note that the water rich phase obtained from the benzyl alcohol-water 

Table 2.4. Density of each liquid component collected from the phase-separated mixture of 
benzyl alcohol and aqueous CsCl solution with similar volumes. 

Liquid pair  Water rare phase (g/ml) Water rich phase (g/ml) 

Benzyl-OH & water 1.0344 ± 0.0025 0.9968 ± 0.0034 

Benzyl-OH & 6%w/w CsCl 1.0386 ± 0.0021 1.0470 ± 0.0022 

Benzyl-OH & 10%w/w CsCl 1.0389 ± 0.0021 1.0869 ± 0.0023 

Benzyl-OH & 14%w/w CsCl 1.0402 ± 0.0020 1.1253 ± 0.0023 

Benzyl-OH & 18%w/w CsCl 1.0404 ± 0.0021 1.1658 ± 0.0027 

Benzyl-OH & 22%w/w CsCl 1.0402 ± 0.0021 1.2102 ± 0.0036 

Benzyl-OH & 26%w/w CsCl 1.0422 ± 0.0020 1.2613 ± 0.0067 
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mixture is of lower density than the water rare phase, because benzyl alcohol is denser than water. 

However, since CsCl salt is more soluble in the water rich phase, the water rich phase obtained 

from the benzyl alcohol-CsCl solution is denser than the water rare phase without CsCl, as seen 

in the second and third row of Table 2.4. The density ratio of the less dense fluid to that of the 

more dense fluid first increases from 0.964 to approximately 1, and then decreases to about 0.826 

as the concentration of CsCl increases. The highest concentration of CsCl obtained in solution is 

26%. For concentrations greater than 30%, we observe crystallization of CsCl upon mixing with 

benzyl alcohol, even though in principle saturation is not achieved until 60% CsCl in the 

two-element CsCl-water system65.  

The measurements of surface and interfacial tensions are listed in Table 2.5, where the water 

rich phase always exhibits a higher surface tension than the water rare phase. The interfacial 

tension between the water rare phase and water rich phase increases slightly as the concentration 

of CsCl increases. 

Compound sessile drops are examined for the fluid pairs discussed, and are placed on solid 

hydrophobic surfaces exhibiting a contact angle of 102 ± 5 º with deionized water. The surfaces 

are prepared by applying AquapelTM (PPG Industries) to microscope glass slides (Fisherbrand 

12-567) following the manufacturer instructions. The surface is robust against rinsing with 

ethanol or acetone.  

The formation and stability of compound sessile drops are recorded using a CCD camera 

(Q-See, Anaheim CA, model no. QPSCDNV, 30 fps mounted with a 55mm telecentric lens from 

Edmund Optics) oriented at a 45º angle to the horizontal surface. A first drop of specified volume 

(10 – 100 μL) is deposited on the hydrophobic surface using a pipette (Eppendorf 100 μL pipette 

with maximum systematic and random error of 0.8 ± 0.3 μL) and allowed to reach its 
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equilibrium configuration. A second drop of smaller volume (2 – 80 μL) is deposited using two 

different pipettes depending on the desired volume (Eppendorf 20 μL pipette with error 0.2 ± 0.1 

μL, or Eppendorf 100 μL pipette with error 0.8 ± 0.3 μL). Upon deposition, if the second drop 

slides off the apex of the lower drop, then this combination is documented as an unstable 

configuration. If the second drop remains at the axisymmetric configuration, then the pipette tip 

is used to further perturb the top drop from the apex without permitting it to touch the solid 

substrate. If the second drop restores to the apex at least three times, then this combination is 

documented as a stable axisymmetric configuration. If the restoration cannot be repeated, the 

Table 2.5. Surface and interfacial tension measurements for the two liquid phases obtained 
from phase separated mixtures of benzyl alcohol and aqueous CsCl solutions with similar 
volumes. 

Liquid pair Surface tension of 

water rare phase 

(mN/m) 

Surface tension of 

water rich phase 

(mN/m) 

Interfacial 

tension of two 

phases (mN/m) 

Benzyl-OH & water 39.5 ± 0.5 41.5 ± 0.6 3.0 ± 0.3 

Benzyl-OH & 6%w/w CsCl 38.6 ± 0.4 40.2 ± 0.5 5.0 ± 0.3 

Benzyl-OH & 10%w/w CsCl 38.9 ± 0.5 40.5 ± 0.5 5.1 ± 0.2 

Benzyl-OH & 14%w/w CsCl 38.6 ± 0.5 41.0 ± 0.3 5.3 ± 0.3 

Benzyl-OH & 18%w/w CsCl 39.0 ± 0.4 41.6 ± 0.4 5.8 ± 0.3 

Benzyl-OH & 22%w/w CsCl 39.5 ± 0.3 41.9 ± 0.3 6.2 ± 0.2 

Benzyl-OH & 26%w/w CsCl 39.3 ± 0.3 42.3 ± 0.5 6.6 ± 0.4 
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combination is documented as an uncertain condition. The Bond number of the bottom drop is in 

the range of 1 < Bo1 < 6.  

2.6 Experimental Results for the Stability of Compound Sessile Drops 

 Both the zero Bond number analysis and Surface Evolver simulations demonstrate that the 

stability of an equilibrium axisymmetric configuration can be predicted by comparing the density 

ratio of two drops with the critical density ratio calculated for the specified fluid system. The 

critical density ratio of a high interfacial tension system is significantly different from that of a 

low interfacial tension system. In this section, we first describe the experimental realization of 

stable and unstable compound sessile drops for both the low and high interfacial tension systems 

described in the previous section. The transition from stable to unstable configurations is then 

compared quantitatively with the asymptotic approximation and the simulations.  

For the high interfacial tension system consisting of dodecane and aqueous CsCl solutions, 

all the experiments exhibit unstable axisymmetric configurations: once the smaller drop is 

deposited on top of the larger drop, it slides off to the side and forms a Janus configuration.  

A typical experiment is shown in Figure 2.11. A dodecane drop of 2 μL is deposited on top 

of a 60% CsCl drop of 50 μL at t =12.5 s; and at time t = 12.93 s, the dodecane drop is slightly 

away from the apex position; by the time t = 13.03 s, the dodecane drop toches the solid glass 

surface with Aquapel coating; finally at t = 14.00 s, the Janus configuration is the equilibrium 

configuration of the compound sessile drop. From the zero Bond number analysis, the critical 

density ratio is approximately 0.24 – 0.30 for all of the volume ratios considered. However, 

experimentally, the accessible density ratio range is 0.41 – 0.75, well above the theoretical 

transition value. Thus, the observation that no stable axisymmetric configurations are 
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experimentally realized for the high interfacial tension system is in agreement with both analysis 

and simulations. 

For the low interfacial tension system of the phase separated mixtures of benzyl alcohol and 

 

Figure 2.12. (a) Stable axisymmetric configuration using two liquid phases obtained from a 
phase separated mixure of aqueous 22% CsCl solution with benzyl alcohol, density ratio 
0.859. (b) Janus shape of compound sessile drop using two liquid phases obtained from a 
phase separated mixture of aqueous 10% CsCl solution with benzyl alcohol, density ratio 
0.955.  

 

Figure 2.11. Janus shape of a compound sessile drop formed using dodecane and a 60% CsCl 
solution in water, with density ratio 0.42. Upon deposition using a pipette, the smaller drop 
slides off to the side.  
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aqueous CsCl solutions, both unstable and stable axisymmetric configurations are observed. 

Figure 2.12 compares the final configurations for the two experiments of low interfacial tension 

fluid systems with difference in density ratio while surface and interfacial tensions are almost the 

same. Figure 2.12a shows a stable axisymmetric configuration while Figure 2.12b shows that the 

axisymmetric configuration is not stable and a Janus configuration forms after depositing one 

drop on top of another drop. Different frames of both the experiments are shown in Figure 2.13 

and Figure 2.14. 

 

Figure 2.13 A stable axisymmetric compound drop configuration. With perturbations induced 
by pipette, the top drop still restores to the apex position. The fluids are two immiscible 
phases resulting from a mixure of 22% CsCl solution with benzyl alcohol, with density ratio 
of 0.859. 
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Figure 2.13 shows a typical example of a stable configuration for the liquid pairs obtained 

by mixing benzyl alcohol and 22% aqueous CsCl solution. At time t = 2.90 s, a 2 μL drop of the 

water rare phase is deposited onto a 50 μL drop of the water rich phase; at time t = 3.37 s, the 

water rare phase drop is fully detached from the pipette tip; the water rare phase drop then slowly 

climbs to the apex position as seen at frames of t = 3.53 s and t = 3.70 s; the compound sessile 

drop assumes this stable axisymmetric position as depicted at t = 10.37 s. Even though a 

perturbation is applied to the top drop using the pipette tip at t = 16.17 s, the later frame at t = 

17.17 s shows the water rare phase drop restores to the axisymmetric position and the compound 

drop maintains the axisymmetric equilibrium configuration until the end of the experiment t = 

25.30 s. The experimental density ratio for the two drops is 0.859, less than the predicted critical 

 

Figure 2.14. Janus shape of a compound sessile drop obtained using two immiscible phases 
obtained from a mixture of 10% CsCl in water with benzyl alcohol, with density ratio of 
0.955. Upon deposition using a pipette, the smaller drop immediately slides off to the side. 
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density ratio of 2 1crit(ana)/ 0.878ρ ρ = . This experimental phenomenon agrees with the theoretical 

analysis that deposition of a drop of the water rare phase onto a drop of the water rich phase 

results in an axisymmetric configuration that is stable against perturbations from the apex.  

 In contrast, as shown in Figure 2.14, the axisymmetric configuration is not stable for the 

liquid pairs obtained by mixing benzyl alcohol and 10% aqueous CsCl solution. A 2 μL drop of 

the water rare phase drop is deposited on the top of a 50 μL drop of the water rich phase at t 

=6.80 s; and at time t = 6.83 s, the water rare phase drop is slightly away from the apex position; 

the water rare phase drop quickly slides off to the side as shown in the time frames t = 7.17 s 

through t = 7.50 s; at time t = 7.60 s, the water rare phase drop touches the solid glass surface 

which is almost identical to the final equilibrium configuration at t = 11.00 s. The experimental 

density ratio is 0.955, greater than the predicted critical density ratio of 2 1crit(ana)/ 0.896ρ ρ = , 

which agrees with the analysis that deposition of a drop of the water rare phase onto a drop of the 

water rich phase yields an unstable axisymmetric configuration. 

 

The observed transition from an energy minimum to an energy maximum encourages 

quantitative experimental comparisons with both the analysis and the simulations. Figure 2.15 

summarizes the experiments including both stable and unstable axisymmetric configurations for 

the phase separated mixture of benzyl alcohol and varying concentrations of aqueous CsCl 

solution. Each symbol denotes a liquid pair obtained from the phase separated mixture with the 

specified concentration of CsCl. The open symbols represent stable axisymmetric configurations 

(energy minimum) and the filled symbols represent unstable axisymmetric configurations 

(energy maximum). The volumes of both drops are varied to achieve different Bond numbers of 

the bottom drop 1Bo  and different volume ratios. The Bond number of Drop 1 has a practical 
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lower limit 1 1Bo ≈ , because smaller drops are difficult to deposit using the pipettes described 

earlier. All of the experiments in Figure 2.15 consider the deposition of a less dense fluid drop 

onto a more dense fluid drop. In the opposite case, deposition of a more dense drop onto a less 

dense drop always resulted in experimentally unstable configurations, which agrees with 

Equation (2.16). 

Figure 2.15a compares the experimental results with the zero Bond number analysis. The 

critical density ratios in the zero Bond number limit ((Equation (2.18)) are calculated using the 

relevant experimental values of surface and interfacial tensions, volume ratios and contact angle 

 

Figure 2.15. a) Summary plot of benzyl alcohol experiments compared with the zero Bond 
number analytical model. The vertical axis is the Bond number of Drop 1 and the horizontal 
axis represents the difference between the experimental density ratio and the critical density 
ratio predicted in the zero Bond number limit. The open symbols denote energy minima while 
the filled symbols denote energy maxima. b) Comparison of experimental results with Surface 
Evolver simulations for the systems using 18% and 22% CsCl solutions. The horizontal axis 
indicates the difference between the experimental density ratio and the critical density ratio 
obtained in simulations. 
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for each fluid pair. In the experiments, the experimental density ratio is determined once the fluid 

pair is selected; in contrast, the analysis formulates the critical density ratio as a function of the 

volume ratio. The horizontal axis of Figure 2.15a represents the difference between the 

experimental density ratio and the predicted critical density ratio from the zero Bond number 

analysis 2 1exp 2 1crit(ana )/ /ρ ρ ρ ρ− . The vertical axis represents the Bond number of Drop 

1 /3
1 1 11

2 ( // )A ABo V gγ ρ∆= . For all of the drop volumes tested, the axisymmetric configurations 

for the liquid pairs obtained by mixing benzyl alcohol with 0% and 26% aqueous CsCl solutions 

are always stable. The axisymmetric configurations for the liquid pairs obtained by mixing 

benzyl alcohol with 6%, 10% and 14% aqueous CsCl solutions are always unstable. Transitions 

from an energy minimum to an energy maximum are observed for the liquid pairs obtained using 

18% and 22% aqueous CsCl solutions. From the zero Bond number analysis, a positive value of 

the density ratio difference 2 1exp 2 1crit(ana )/ /ρ ρ ρ ρ−  is expected to result in an energy maximum, 

while a negative value is expected to result in an energy minimum. The uncertainty in the 

experimental density ratio is about ± 0.003 due to the uncertainty in the density measurements. 

The vertical shaded area shown in Figure 2.15a near zero on the horizontal axis indicates the 

expected stable-to-unstable transition, reflecting the estimated uncertainty (≈ ±0.012) in 

calculating 2 1crit(ana )/ρ ρ  based on the uncertainty in the surface and interfacial tensions and in 

the volume ratios used in Equation (2.18). For the cases in which the Bond number is near unity, 

1 1Bo ≈ , the transition from an energy minimum to an energy maximum occurs at 

2 1exp 2 1crit(ana )/ / 0ρ ρ ρ ρ− ≈ , suggesting that the experimental results agree well with the zero 

Bond number analysis. For the larger Bond number cases, 1 6Bo ≈ , the experimental transition 

occurs at 2 1exp 2 1crit(ana ) .03/ 0/ρ ρ ρ ρ− ≈  , so the experiments deviate slightly from the zero 
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Bond number prediction.  

The experimental results are also compared with finite Bond number Surface Evolver 

simulations in Figure 2.15b for the fluid systems obtained by mixing 18% and 22% aqueous 

CsCl solutions with benzyl alcohol. In this case, the horizontal axis represents the difference 

between the experimental density ratio and the critical density ratio obtained from simulations 

2 1exp 2 1crit(sim)/ /ρ ρ ρ ρ− . Appendix 2.3 lists all the simulation results for energy maximum and 

energy minimum in comparison with the experimental results. As before, the uncertainty in the 

experimental density ratio is ± 0.003. The uncertainty in the predicted critical density ratio from 

simulations, shown as the shaded region in Figure 2.15b, is ± 0.015. The uncertainty for the 

simulations is slightly larger than that of the zero Bond number prediction owing to the limited 

ability of Surface Evolver to resolve the critical value. The numerical gap in the density ratios of 

the nearest observed energy maximum and minimum configurations is approximately 0.003 – 

0.004 in our Surface Evolver simulations. In Figure 2.15b, the experimentally realized transition 

from an energy maximum to an energy minimum overlaps well with the shaded region, 

demonstrating that the experimental results agree well with the simulations independent of the 

Bond number of the bottom drop. Although within uncertainty, it is noted that the critical density 

ratio difference tends to cluster at the positive edge of the shaded region, hinting that the 

spherical cap shape perturbations used in the simulations may yield a small systematic offset as 

compared with the experiments using pipettes to realize the perturbations. Further investigation 

of this possible systematic offset is beyond the scope of this paper and would require a more 

general stability analysis. 

Similar experiments to examine the transition from energy minimum to energy maximum 

could also be performed using the phase-separated mixture of butanol and aqueous CsCl 
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solutions. Besides the advantage of the low vapor pressure of benzyl alcohol, which minimizes 

evaporation, benzyl alcohol also has a density greater than water. For mixtures of butanol and 

aqueous CsCl solutions, increasing the concentration of CsCl causes the experimental density 

ratio to monotonically decrease; therefore the axisymmetric configuration will be more stable as 

the CsCl concentration increases. In contrast, the density ratio obtained from the mixtures of 

benzyl alcohol and aqueous CsCl solutions first increases to approximately 1 and then decreases 

to about 0.826, indicating that the axisymmetric configuration first becomes less stable and then 

more stable as the concentration of CsCl increases.  Thus the benzyl alcohol mixtures permit 

the stable-to-unstable transition to be realized more easily. 

Figure 2.15 shows that the zero Bond number analysis, the Surface Evolver simulations, and 

the experiments all agree well in the observed and predicted transition from energy minimum to 

energy maximum compound drop configurations. At high Bond numbers, both the experiments 

and the Surface Evolver simulations indicate that the critical density ratio deviates from that 

obtained in the zero Bond number limit by approximately 3 – 4%. Perturbing the compound 

sessile drop using a pipette tip is more likely to represent a generic perturbation in which 

axisymmetry is broken, and interface shapes are not restricted to either spherical caps or 

Laplacian shapes. Nevertheless, good agreement is found when comparing the stability criterion 

obtained for each of the three types of perturbations. 

2.7 Summary 

In this chapter, we have determined the seven dimensionless parameters that govern the 

shape of an axisymmetric compound sessile drop using the Laplace equations. Following a 

Laplacian shape perturbation, a stability criterion for the axisymmetric configuration is 
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determined in the zero Bond number limit. This stability criterion is verified using both Surface 

Evolver simulations and experiments for both high and low interfacial tension systems.  

For an axisymmetric compound drop to be stable, the density ratio must be smaller than a 

critical density ratio that depends on the surface and interfacial tensions, and the drop volumes. 

The critical density ratio is small for a high interfacial tension system, therefore stable 

axisymmetric configurations are rarely observed for organic/inorganic compound sessile drops in 

air. The critical density ratio is much larger for low interfacial tension systems, allowing the 

possibility for experimental realization of stable configurations. We successfully observed stable 

axisymmetric compound sessile drops using a low interfacial tension system obtained from 

phase-separated mixtures of benzyl alcohol and aqueous CsCl solutions. The low interfacial 

tension systems show a transition from energy minimum to energy maximum by varying the 

CsCl concentration, which varies the density ratio without significantly changing the surface and 

interfacial tensions. The critical condition for transition between the stable and unstable 

axisymmetric configurations agrees closely in the small Bond number cases for all three 

approaches: the zero Bond number analysis, the Surface Evolver simulations, and the 

experiments. The simulations and experiments exhibit a small deviation from the zero Bond 

number predictions at larger Bond numbers. 

 The ability to form a stable axisymmetric compound sessile drop may be useful in designing 

liquid lens systems for soft optics. Interestingly, the stability analysis predicts that a more dense 

drop resting on top of a less dense drop is never stable, even though a more dense drop is 

observed to float on top of a less dense bulk fluid using the low interfacial tension system 

obtained from phase separated mixtures of benzyl alcohol and aqueous CsCl solutions. Further 

investigation of this low interfacial tension system may provide a better understanding of the 
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flotation mechanism of dense objects through the distortion of surfaces. 

Even though stable axisymmetric compound sessile drops were experimentally observed for 

the low interfacial tension system, these stable compound sessile drops are always achieved by 

depositing one drop on top of another drop. No stable axisymmetric configurations were 

obtained through side-to-side coalescences of the same fluid systems; only Janus configurations 

are observed. It is probable that side-to-side coalescence resulted in a lower energy minimum 

state of Janus configuration than the axisymmetric configuration. In the next chapter, we 

investigate the dynamics of drop coalescence, especially the side-to-side coalescence, to analyze 

the impact of gravitational force in the final drop configuration. 
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Appendix 2.1 Mathematica code for calculating critical density ratio 

 (* This command deletes the previous storage of variables and values*) 

 ClearAll[gamma1,gamma2,gamma12,phi13,phi12,phi23,Rratio,radiusRatio,   

  Rratiosol,gar2,gar1,volume2,volume1,radius,r12,r23,r13,theta12,theta112, 

  delta,volumeRatio,densityratio,DensityRatio,angle,f,phi12angle,phi13angle,   

  phi23angle] 

(*Function returns the value of the critical density ratio for the case of 90 degree contact angle*) 

(*Follow the derivation of compound sessile drop Chapter 2*) 

(*gamma1 defines the surface tension of Drop 1*) 

(*gamma2 denotes the surface tension of Drop 2*) 

(*gamma12 denotes the interfacial tension between Drop 1 and Drop 2*) 

(*volumeRatio denotes the ratio of the volume of Drop 2 to the volume of Drop 1*) 

(*Rratio is the ratio of the radius of curvature of the top drop to that of the bottom drop*) 

(*Note the Mason and Torza paper has defined r13 can be positive or negative, but in this 

calculation, we assume r13 to be positive while phi13 can change sign, this results in the 

difference from equation [16] in Torza and Mason’s paper *) 

(*we use the convention that the radius of curvature can only be positive*) 

(*note as Drop 1 is in contact with solid surface, phi23 will always be positive*) 

 DensityRatio[gamma1_,gamma2_,gamma12_,volumeRatio_]:= ( 

  gar2=gamma2/gamma12;  

  gar1=gamma1/gamma12; 

   theta12=Pi-ArcCos[(gar1^2+gar2^2-1)/(2gar1*gar2)]; 

  theta112=Pi-ArcCos[(1+gar1^2-gar2^2)/(2gar1)]; 

  phi23=ArcSin[Sqrt[4*gar2^2*gar1^2-(1-gar2^2-gar1^2)^2]/2/ 

   (gar1*gar2*(gar1*gar2(Rratio^2+1)-Rratio(gar1^2+gar2^2-1)))^0.5 

   *Rratio]; 

  phi12=theta12-phi23; 

  phi13=Pi-theta112-phi23; 

  r12=radius/Sin[phi12]; 

  r13=radius/Abs[Sin[phi13]]; 
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  r23=radius/Sin[phi23]; 

(*Note for the volume2 calculation, the angle for phi12 can be smaller or larger than 90 degree. 

For benzyl-oh system because the angle theta212 is very small, thus, the angle of phi12 is more 

than 90 degree*) 

  volume2=Pi/3*(r12^3(2+Cos[phi12]*(3-Cos[phi12]^2)) 

   +r13^3(2-Cos[phi13]*(3-Cos[phi13]^2))) 

   *phi13/Abs[phi13]; 

  volume1=Pi/3*(r23^3*Cos[phi23]*(3-Cos[phi23]^2) 

   -r13^3(2-Cos[phi13]*(3-Cos[phi13]^2))) 

   *phi13/Abs[phi13]; 

  Rratiosol=FindRoot[volume2/volume1-volumeRatio,{Rratio,0.3,0.943}]; 

(*Replace the Rratio with the solution from this numerical solution of Rratiosol*) 

  radiusRatio=Rratio/.Rratiosol[[1]];  

(*the Neumann angles between gamma1, gamma2,gamm12 and are denoted as theta12, 

theta112,theta12*) 

(*delta is the angle as defined in Figure 2.1 and Figure 2.5*) 

  delta=ArcSin[Sqrt[4*gar2^2*gar1^2-(1-gar2^2-gar1^2)^2]/ 

   2/(gar1*gar2*(gar1*gar2(radiusRatio^2+1) 

   -radiusRatio(gar1^2+gar2^2-1)))^0.5*(gar2-radiusRatio*gar1)]; 

(*f[angle] is a function to calculate the dimensionless volume based on the basal angle*) 

  f[angle_]:=(2-3*Cos[angle]+Cos[angle]^3)*Csc[angle]^3; 

(*critical density ratio from Equation (2.18)*) 

  densityratio=N[(f[Pi-theta112-delta]+f[delta]) 

   /(f[2*Pi-theta112-delta-theta12]+f[delta])]; 

(*output the predicted critical density ratio in this function*) 

  Densityratio) 

(*the function ends with a right parenthesis*) 

(*test case for gamma1=1, gamma2=0.6, volume ratio=0.2 with different interfacial tensions*) 

  table=Table[{x,DensityRatio[1,0.6,x,0.2]},{x,0.405,1.595,0.005}]; 

  Export["critical density ratio on interfacial tension 0.6.xls",table] 

(*plot for the shape of critical density ratio for a different set of interfacial tensions*) 



59 

 

  DiscretePlot[DensityRatio[1,0.4,x,0.2],{x,0.605,1.395,0.001}] 

Appendix 2.2 Surface Evovler code for compound sessile drop stability 

// Should refine and then remove small edges to make the grids more smooth and then run the 

fall events to check. The command for refining is r, and the command for removing edges is t, 

while the command for merging small triangles is w. A prompt command window may pop up 

for the specified threshold of length or area. The command h gives the histograms 

// Evolver data for drop of prescribed volume sitting on a deformable surface with gravity. 

// the interface is defined on constraint 1, where z equals 0 at all time 

// Contact angle with plane can be varied. 

 PARAMETER angle1 = 90    // interior angle between plane and surface, degrees 

 PARAMETER angle2 = 90    // interior angle between plane and surface, degrees 

 parameter AA = 2        // initial drop size, mm 

 parameter HH = 2        // external frame size, m 

 parameter TT = 4        // external frame size 

 gravity_constant 0       // start with gravity off 

 

 #define WALLT1  (-cos(angle1*pi/180))  // virtual tension of facet on plane 

 #define WALLT2  (-cos(angle2*pi/180))  // virtual tension of facet on plane 

 #define alfa1  angle1*pi/180 

 #define alfa2  angle2*pi/180 

 #define gSL = (sin(pi-alfa1))/sin(pi-alfa2))      // solid liquid energy 

 #define gSV = (sin(alfa1+alfa2))/sin(pi-alfa2))   // solid vapor energy 

 constraint 1 /* the table top for Drop 1 */ 

 formula: x3 = 0      //this defines the contact angle 

 energy: 

 e1: -(WALLT1*y) 

 e2: 0 

 e3: 0 

 vertices 

 1   0.0  0.0 HH     /* 4 vertices on plane */ 
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 2   AA  0.0 HH       

 3   AA  AA  HH     

 4   0.0 AA  HH    

 5   0.0  0.0 TT 

 6   AA  0.0 TT 

 7   AA  AA TT  

 8   0.0  AA TT  

 15  0.0  0.0 0.0   constraint 1 

 16  AA  0.0 0.0   constraint 1 

 17  AA  AA 0.0   constraint 1 

 18  0.0  AA 0.0   constraint 1 

 

edges  /* given by endpoints and attribute */ 

1   1 2        /* 4 edges on plane */ 

2   2 3     

3   3 4      

4   4 1     

5   5 6       

6   6 7  

7   7 8 

8   8 5 

9   1 5         

10  2 6        

11  3 7  

12  4 8 

25 15 16   constraint 1 

26 16 17   constraint 1 

27 17 18   constraint 1 

28 18 15   constraint 1 

29  1 15       

30  2 16     
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31  3 17  

32  4 18 

faces  /* given by oriented edge loop */ 

1   1 10 -5  -9 color red density 3.95 

2   2 11 -6 -10 color red density 3.95 

3   3 12 -7 -11 color red density 3.95 

4   4  9 -8 -12 color red density 3.95 

5   5  6  7   8 color red density 3.95 

6   -1  29  25 -30 color blue density 4.19 

7   -2  30  26 -31 color blue density 4.19 

8   -3  31  27 -32 color blue  density 4.19 

9   -4  32  28 -29 color blue  density 4.19 

11  1 2 3 4 color green density 0.62 

 //17  33 34 35  36  no_refine density 7    color clear fixed /* table top for display */ 

 

bodies  /* one body, defined by its oriented faces */ 

1  6 11  9  7 8   volume 50    density 1.210 

2  1 5  2 3 4 -11   volume 10  density 1.04 

 

read            // defining new commands for fast processing 

re := {refine edges where on_constraint 1 } 

 

gogo := {g 10; u; V 2;u; r;g 10; u; V; g 50; u; V 2; u; g 50; u; V 2;u; g 30; g 100; u; V 2; u ; 

g 100; u; V; g 100; u;V 2; u; r; g 100;} 

gogo2:=  {g 5; u; V; g 10; u; V; g 50; u; V; u; V; g 50; u; V; u; V; g 30; g 100; u; V; u; V; 

g 100; u; V; g 100; u;V; u; V; g 100; u; V; g 50} 

 

disp:={set vertex y y+0.1 where z>0.9;gogo2}  //Peturb the top drop to the side 

fall:={G 0.98; gogo2 30}  //examine whether top drop slides off or recovers 
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Appendix 2.3 Summary table of Surface Evolver simulations  

Table A.2.3.1 Simulation and experimental data for the fluid pair of 18% CsCl and benzyl 
alcohol mixture. V_1 and V_2 represent the volumes of Drop 1 and Drop 2 respectively. 
“Evolver density ratio min” indicates the largest simulation density ratio achieved for a minimum 
energy configuration while “Evolver density ratio max” indicates the smallest simulation density 
ratio achieved for a maximum energy configuration. The Evolver critical density ratio is the 
average of “Evovler density ratio min” and “Evolver density ratio max”. The analytical critical 
density ratio is the value obtained through the zero Bond number approximation. The 
experimental density ratio is the density ratio of the two separated phases. 
 

V_1 

(μL) 

V_2 

(μL) 

Drop 1 
Bond 

number 

Evolver 
density 

ratio  

min 

Evolver 
density 

ratio 

max 

Evolver 
critical 
density 

ratio 

Analytic. 
critical 
density 

ratio 

Experi. 
density 

ratio 

100 15.0 5.9 0.877 0.886 0.882 0.865 0.892 

100 17.5 5.9 0.876 0.885 0.880 0.862 0.892 

60 7.5 4.2 0.873 0.883 0.878 0.868 0.892 

60 10.0 4.2 0.870 0.880 0.875 0.863 0.892 

20 1.5 2.0 0.867 0.879 0.873 0.875 0.892 

20 2.5 2.0 0.863 0.876 0.870 0.868 0.892 
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Table A.2.3.2 Simulation and experimental data for the fluid pair of 22% CsCl and benzyl 
alcohol mixture. Notations are the same as described in Table A.2.3.1 
 

V_1 

(μL) 

V_2 

(μL) 

Drop 1 
Bond 

number 

Evolver 
density 

ratio 

min 

Evolver 
density 

ratio 

max 

Evolver 
critical 
density 

ratio 

Analytic. 
critical 
density 

ratio 

Experi. 
density 

ratio 

80 65 5.2 0.833 0.847 0.840 0.823 0.860 

80 70 5.2 0.833 0.841 0.837 0.822 0.860 

40 25 3.3 0.831 0.841 0.836 0.829 0.860 

40 30 3.3 0.827 0.839 0.833 0.824 0.860 
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Chapter 3 Gravity Driven Flow during Drop Coalescence2 

3.1 Introduction 

When two drops composed of the same material touch, surface tension drives a motion to 

form a fused drop with smaller surface area. This dynamic behavior of drop coalescence is 

important to numerous natural and technological processes.2, 3 Analysis based on photographic 

and visual observations of water drop collisions illustrates the dynamics of raindrop growth, 

which are mainly attributed to drop coalescence.82 Another classic process caused by drop 

coalescence is sintering, i.e. the merging of particles into homogeneous materials is induced by 

heating.83 Other technological applications involving drop coalescence include spray coating84, 85, 

ink-jet printing86, etc. A comprehensive list of drop coalescence applications can be found in the 

book Dynamics of Droplets by Frohn and Roth2. 

Because of the gravitational and frictional forces, the coalescence behaviors of drops in air 

are typically observed for rain drops with different velocities and accelerations, as the control of 

physical parameters is difficult.82, 87–89 To gain a better understanding of the dynamic coalescence 

behavior, the coalescence of drops suspended in a fluid medium has been examined extensively83, 

90–93. However, it was found that the coalescence for two drops does not start spontaneously if 

the drops are surrounded in another fluid phase. This retardation behavior is attributed to the 

presence of a thin film of the surrounding fluid between the two drops.92, 93 To avoid the 

complexity of singular motion in the film drainage during drop coalescence94, 95, an alternate way 

                                                 
2 Adapted with permission from Ying Zhang, Samuel D. Oberdick, Ellen R. Swanson, Shelley L. Anna and Stephen 

Garoff. Gravity driven current during the coalescence of two sessile drops. Phys. Fluids 27, 022101 (2015). 

Copyright © 2015 AIP Publishing LLC 
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is to study the coalescence of sessile drops where at least one drop is resting on a solid surface. 

The coalescence of two sessile drops on a solid surface adds the feature that the contact lines of 

the drops must move during the merging process.17 Thus, contact line dynamics add richness and 

complexity to the coalescence of sessile drops discussed in this chapter. 

The stability analysis of axisymmetric compound sessile drops in Chapter 2 demonstrated 

that the critical density ratio is larger for smaller interfacial tension systems. In the limit of zero 

interfacial tension and equal surface tension for both drops, the critical density ratio reaches the 

limiting value of 1. This suggests that axisymmetric configurations can be stable as long as the 

top drop is just slightly less dense for ultralow interfacial tension system. The relative low 

interfacial tension system is achieved by mixing two partially miscible liquids in Chapter 2. If 

the fluids obtained are fully miscible, hypothetically, the interfacial tension if defined would be 

even lower. A natural question arises whether the axisymmetric configuration of one drop resting 

on top of another drop can be realized by the side-to-side coalescence which was not observed in 

Chapter 2. In this chapter, we examine the dynamic behavior of coalescence of miscible fluid 

drops on a solid surface, and analyze the final configurations formed after drop coalescence. 

3.2 Background 

 Coalescence of sessile drops of identical fluids shows a rapid bridge healing process (Figure 

3.1) and a slow contact line relaxation. In the rapid process, which is controlled by the interplay 

of inertia, viscosity and capillarity96, 97, the drops touch and a bridge rapidly forms and heals 

while the contact line away from the bridge doesn’t move appreciably17, 22, 23, 98. In the slow 

process, contact lines move and the drop relaxes to a circular shape over longer time scales, 

slowed by the dissipation at the moving contact lines and the fluid flow.22, 23, 99 



66 

 

 Experimentally, the initial bridge healing of sessile drops has been probed using high speed 

video microscopy of fluids including mercury,15 silicone oils,96 water100–103 and other organic 

fluids98, 104–106. Different mechanisms have been applied to cause the drops to touch and coalesce. 

Drops are allowed to spread spontaneously into one another,96, 105 one drop is deposited using a 

syringe pump onto another,15, 104, 106 or one drop is blown using pressurized air into another 103 on 

a surface until they contact and merge. In other cases, drops are forced to grow into one another 

due to an external supply of liquid100, 101 or condensing vapor22, 23, 98, 102. In still other cases, drops 

are forced to collide due to wettability gradients on the surface,107–109 where wettability gradients 

cause the merging drops to exhibit different contact angles just prior to coalescence even when 

the drops contain identical liquids.   

 

Figure 3.1.Schmatics of two thin drops of identical fluids coalescing on a solid substrate at 
the bridge healing process. (a) Side view. (b) Top view. dm and hm are the width and height of 
the bridge respectively, h0 is the characteristic height of the drop while R0 is the footprint 
radius of one drop. 
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 Analyses of the initial bridge healing have included scaling arguments as well as numerical 

simulation based on a lubrication approximation.101, 110 More detailed numerical simulations have 

used the volume-of-fluid method111 and lattice Boltzmann method104. These studies demonstrate 

two main features of the initial stage of coalescence. First, the flow during bridge healing can be 

divided into two regimes: visco-capillary regime and inertio-capillary regime14–16, 83, 98, 105, 112–116 

depending on the relative importance of viscosity, inertia and capillarity. Second, the height and 

width of the bridge grow with power law behavior in time, where the power law exponents 

depend on whether viscous stresses or inertia are comparable to capillarity. Coalescence begins 

in a viscous regime where the surface tension force is balanced by the viscous force, the bridge 

width (see Figure 3.1) following a scaling relation ( )  ~ /m viscousd γτ µ , where γ  is the surface 

tension and µ  is the viscosity, τ  is time after initial contact.83, 115–117 In the other limit, where 

inertial forces balance surface tension, the bridge width follows a different power law 

1/4 1/2
( ) 0 ~ ( )/m inertiad Rγ ρ τ , where ρ  is the density of the fluid, 0R  is the radius of footprint of 

one drop as shown in Figure 3.1.83, 115 The crossover time between these two regimes was 

estimated to be in the range of 1 ns to 2 μs for water drop coalescence with 

radius 0 2mmR = based on different characteristic lengths of coalescence.115, 116 Even though high 

speed imaging experiments are able to capture the motion at a frame rate of 610 Hz90, 118–120, 

limited spatial and temporal resolutions prevent the study of the initial viscous regime in 

detail.115 Thus improved measurements of the bridge healing process for low viscosity fluids 

were performed using a method based on the conductivity of fluids with salt added, where 

viscosity can be independently varied over two decades by adding glycerol115, 116. The sets of 

drop coalescence experiments based on conductivity established the scaling rule of the crossover 
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time from viscous regime to inertial regime as 2 3 1/2
0 ~ ( / )c Rτ µ ργ .115 

During the slow process following bridge healing, contact line relaxation plays a larger role 

and so the details of the surface chemistry and physical roughness significantly affect the 

process.24, 121 Beysens and coworkers found that the relaxation of the composite drop to a 

spherical shape after bridge healing is usually five or six orders of magnitude slower than 

coalescence of drops in a bulk fluid because of the contact line motion.17, 22, 23 This slow 

relaxation process is attributed to a very small Arrhenius factor resulting from a liquid-vapor 

phase change in the vicinity of the contact line. 22, 23   

 Studies of coalescence of sessile drops have always examined drops of the same fluid until 

the recent work by Riegler and collaborators, who studied the coalescence of drops of miscible 

fluids of different surface tensions with very low vapor pressures.28, 29, 31, 32 In this case, the 

coalescence is strongly delayed by Marangoni stresses.30, 122 In contrast to the quick bridge 

healing process for the coalescence of identical fluid drops, for miscible drops with large surface 

tension differences (>3mN/m), the two drops after the initial contact remain well separated for a 

much longer period, connected by a neck region of very shallow bridge height. Through the 

shallow neck region, fluid flows from the low surface tension region to the high surface tension 

region due to Marangoni stresses. The Marangoni stresses counteract the capillary forces in 

healing the bridge between the two drops, thus inducing the delayed behavior of coalescence28, 31. 

The bridge finally heals and droplets merge to form a single drop after the fluid flow sufficiently 

reduces the surface tension gradient as the composition difference becomes negligible. The 

delayed coalescence behavior is also observed in the merging process of ethanol and water drops, 

where ethanol evaporation leads to self-propelling drops123. Delayed coalescence behaviors are 

unique to situations involving significant Marangoni stresses and do not occur when the shape 
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asymmetry (e.g., different contact angles upon initial contact) is due to different deposition times 

for the same fluid.124  

In applications for drop coalescence in microfluidic devices, advective mixing during 

coalescence is used to control chemical reactions and physical dispersions.8, 125–128 As suggested 

by Ottino and coworkers,129, 130 the design of chaotic micromixers can enable effective mixing 

even at low Reynolds number. In the confined geometries of microfluidic devices, advective 

mixing after coalescence has been achieved using herringbone structures in the channels131 as 

well as using electro-wetting132 or electro-kinetic based mixing133. In contrast, the efficiency of 

mixing in open geometries such as sessile drops is not as well investigated. Experiments 

examining coalescence of sessile drops, supplemented by simulations, show little mixing without 

applying special wetting conditions or external forces.134 A wettability gradient on the surface 

drives one drop toward another, inducing advective mixing.107–109 Electro-wetting induced sessile 

drop oscillation using an external AC field can also enhance mixing.135  

The dynamic mechanism of drop coalescence is of interest in both deepening the 

fundamental understanding for the roles of the gravitational force and the capillary forces for 

drops as well as the technological applications for better mixing devices in microfluidic devices. 

In this chapter, we investigate the side-to-side coalescence of two sessile drops containing fluids 

with different densities and viscosities, but nearly the same surface tension, contact angle and 

volume, which results in the drops having the same shape just before they coalesce. Adapting a 

laser induced fluorescence method first used to visualize a drop coalescing with a bulk fluid,136 

we track the mobile interface between the two merging drops as well as the composite drop/air 

interface during the coalescence process. With simultaneous side and top views, the contact line 

shape is also tracked. Similar to previous studies, a rapid bridge healing process is observed, 
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which we term Stage 1. This stage of the coalescence process is governed by minimization of the 

capillary energy for drops with either the same or different densities. During the slower contact 

line relaxation process, we see that there is internal fluid motion that occurs despite 

imperceptible changes in the shape of the external interface. The internal interface formed 

between the two initial liquid volumes demonstrates an advective motion for initial drops with 

density difference as small as 1%. This advective motion occurs over significantly longer 

timescales compared with the initial bridge healing, and we term this part of the process Stage 2. 

The advective motion observed in Stage 2 of the coalescence process is driven by a gravity 

current, similar to that observed in other two phases flows involving liquids of different densities 

35–37, 137–141. While the rapid bridge healing process has been studied in detail before, internal 

advective motion over longer timescales has not. The advective motion observed in Stage 2 of 

the coalescence process is the primary focus of this chapter. Using dimensional analysis as well 

as lubrication approximation, we identify the characteristic time scale and the dimensionless 

groups controlling the intermediate, gravity-driven fluid motion of Stage 2. We also note that 

there is a final stage of coalescence, Stage 3, in which diffusive motion leads to complete mixing 

of the fluid within the merged drop. For the systems we examine, the timescales for the three 

stages of coalescence are well separated. During Stages 1 and 3, there is little advective motion 

for the systems we examine, while the bulk of the advective fluid motion occurs during Stage 2.   

3.3 Materials Preparation and Characterization 

The solid substrates are fabricated from polydimethylsiloxane (PDMS) using a standard 

mixture ratio of 10:1 for the silicone elastomer base and the elastomer curing agent (Dow 

Sylgard 184). The PDMS is first mixed and defoamed using a centrifugal mixer (Thinky AR100) 
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before pouring the mixture into Petri dishes to cure and form a flat surface. Once poured, the 

mixture is degassed in the Petri dish for about 10 min and cured in a 60ºC oven overnight. The 

PDMS sample is removed from the Petri dish and the flat surface is used as the solid substrate 

surface for the coalescence experiment. Before experiments are performed, the solid PDMS 

substrate is rinsed with ethanol, acetone and distilled water. The measured advancing and 

receding water contact angles on the PDMS surfaces are θa = 105 ± 9 ° and θr = 62 ± 10 °, 

respectively. These contact angle values are in agreement with previously reported measurements 

on similar surfaces, and where a ridge (~1 μm) forms in the soft PDMS at the contact line.142, 143 

Even though Teflon surface has the flexibility of achieving various contact angles (up to 150º) 

with water simply by a sanding procedure using different grit sized sandpapers144, the PDMS 

surface provides a waterproof connection with syringe needles to accurately control the size of 

drops needed in the experiments. 

 The fluids tested are composed of mixtures of purified water (Milli-Q, 18MΩcm, organic 

content < 10ppb) with varying concentrations of glycerol (Sigma-Aldrich ≥ 99.5%), allowing the 

adjustment of the mixture viscosity with minimal change in surface tension. Salt sodium chloride 

NaCl (Sigma-Aldrich ≥ 99.5%) and cesium chloride CsCl (Sigma-Aldrich ≥ 99%) are used to 

adjust the density of the glycerol/water mixtures with minimal viscosity and surface tension 

changes. In preparing the fluid samples, the salt is always added to the purified water and 

dissolved before the addition of glycerol to speed up the mixing. Fluorescein dye (0.05mM, 

Acros Organics) is used as a fluorescent marker in one of the fluid drops to be merged in the 

coalescence experiments. The solutions carrying the fluorescein are buffered to pH = 9.00 ± 0.02 

(pHydrion Buffers, Micro Essentials) to maintain a high quantum yield of the dye145, 146. To 

ensure that the buffer salt does not alter the fluid properties with and without dye, all the aqueous 
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fluids are prepared using the same pH 9 buffer solution. Even though pure glycerol is 

hygroscopic, the further absorption of water in the prepared solutions is observed to be slow. We 

store the solutions in capped beakers and periodically measure the densities, which do not 

change for weeks.   

Table 3.1 Fluid properties of glycerol solutions 

 

Sample 

Mass Fraction 

(pH 9 Buffer % 

/ Glycerol % 

/ Salt % ) 

Density 

(g/ml) 

Dynamic 
Viscosity 

(mPa s) 

Surface 

Tension 

Without Dye 

(mN/m) 

Surface 

Tension 

With Dye 

(mN/m) 

A 21.4 / 78.6 / 0 1.200 ± 0.004 41.0 ± 0.2 66.2 ± 0.3 64.7 ± 0.8 

B 45.5 / 54.5 / 0 1.145 ± 0.004 6.64 ± 0.06 66.3 ± 0.6 67.3 ± 0.3 

C 70.9 / 29.1 / 0 1.071 ± 0.004 3.15 ± 0.11 66.9 ± 1.0 66.9 ± 0.8 

D 50.0 / 50.0 / 0 1.124 ± 0.002 5.84 ± 0.07 66.4 ± 0.3 66.2 ± 0.4 

G* 45.0 / 45.0 / 10.0 1.191 ± 0.002 7.61 ± 0.13 65.6 ± 0.3  

H 30.6 / 23.2 / 46.2 1.629 ± 0.004 4.87 ± 0.12 65.1 ± 1.0  

I 42.2 / 23.3 / 34.5 1.432 ± 0.005 3.95 ± 0.06 63.1 ± 1.0  

J 44.9 / 52.0 / 3.1 1.157 ± 0.004 7.13 ± 0.05 66.0 ± 0.8  

K 43.1 / 52.0 / 4.9 1.175 ± 0.003 7.52 ± 0.14 66.5 ± 0.5  

*Only G solution is formulated with NaCl. The four solutions H, I, J and K are formulated 
with CsCl. The A, B, C and D solutions do not contain salt. 
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The density, viscosity and surface tension of each solution used is listed in Table 3.1.  

Densities are determined by measuring the mass using a scale (Denver Instrumental Company 

Balance, Model XE-100A, accuracy 10-4 g) of a known volume contained in a volumetric flask 

(Pyrex No. 5640, 25 ± 0.03 ml).  The viscosities of the solutions are determined using a 

Cannon-Fenske viscometer (Model K655-450) following the standard procedure.147 

Surface tension is measured using a Wilhelmy pin connected to a balance on a 

MicroTroughX Langmuir trough.148 The Pt pin is washed following a standard cleaning protocol 

and burned with a Bunsen burner to remove residual organics, after which the Pt pin is placed 

back on the Langmuir trough balance and the balance is zeroed in the air environment.  The 

Table 3.2. Asymmetric properties of fluid drop pairs in coalescence experiments. 

Fluid Pair Δρ (g/ml) λ=μt/μb Bond Number 

BJ 0.012 0.93 2.6 — 3.5 

BK 0.030 0.88 2.3 — 2.6 

BA 0.055 0.16 1.0 — 5.1 

DG 0.067 0.76 0.9 — 5.9 

CB 0.074 0.47 1.2 — 7.3 

CG 0.12 0.42 1.7 — 4.5 

AI 0.23 10 1.8 — 6.7 

AH 0.43 8.4 1.2 — 6.5 
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apparatus is calibrated using the known PDMS surface tension (19.8mN/m) to obtain the 

calibration constant, and again checked for consistency by measuring the surface tension of 

distilled water. The uncertainties in the surface tension values reported in Table 3.1 arise from 

statistical fluctuation in the measurement of both the fluid surface tension and the calibration 

factor.  

To probe the influence of asymmetric properties on the coalescence behavior, we select fluid 

pairs with various density differences as well as different viscosities. The fluid pairs used in the  

experiments are listed in Table 3.2. The characteristic parameters are: density difference 

| |b tρ ρ ρ∆ = −  and viscosity ratio /t bλ µ µ=  where the subscript t denotes the fluid property 

of the smaller density fluid and the subscript b denotes the fluid property of the larger density 

fluid. The Bond number, 2 /t gBo Lρ γ= , describing the relative importance of gravity versus 

surface tension, is also listed in Table 3.2, the range of values corresponding to those observed 

for the composite drop after coalescence. Here the characteristic length L is the length of the 

composite drop. (This is slightly different from Chapter 2, where we used 1/3L V= for the ease 

of calculation.) The surface tensions of the two fluids are similar. To be consistent, we use the 

surface tension of the lighter fluid to calculate the Bond number.  As seen in Table 3.2, density 

differences range from 1% to almost 40%, and the viscosity ratio varies from 0.2 to 10 such that 

the larger density fluid can be either more or less viscous than the smaller density fluid. Bond 

numbers range from 1 to 10, suggesting that gravity will flatten the external interface of the 

composite drop. 

3.3 Experimental Methods 

The fluid feed system is shown schematically in Figure 3.2a. Flat-tipped syringe needles 
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(B-D PrecisionGlide needle, gauge 20G1½) are pushed through the PDMS substrate, with the 

spacing between two feed points controlling the sizes of the initial drops just prior to coalescence. 

Fluid drops are pumped from underneath the substrate into the syringe needles which are 

connected with two syringes (BD 1ml syringe, Luer-Lok Tip) by Polyvinyl chloride tubes 

 

Figure 3.3. Definition of coordinates. (a) Schematic view of two sessile drops prior to 
coalescence. (b) Schematic view of composite merged drop after coalescence. The height H 
and length L of the composite drop is used to scale the system variables relevant to fluid flow. 

 

 

Figure 3.2.Experimental setup. (a) Schematic diagram of droplet feed system. (b) Schematic 
diagram of optical train. 
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(Fisherbrand, manifold pump tubing, inner diameter 0.89mm). The syringes are attached to the 

same micrometer stage, ensuring that the two initial drops are of nearly equal volume as they 

touch and merge. The rate of drop formation is controlled manually by the micrometer at 

approximately 5 – 20 µL/min, producing contact line speeds of approximately 0.02 – 0.05 mm/s. 

These contact line speeds are maintained until just before the drops touch, and then the final 

contact of drops is achieved by natural relaxation of the contact lines after pumping has ceased. 

The optical train is shown in Figure 3.2b. All images are captured using a CCD camera 

(Q-See, Anaheim CA, model no. QPSCDNV, 30 fps mounted with a 55mm telecentric lens from 

Edmund Optics). The resolution of the camera is calibrated to be 0.045mm per pixel. The 

coalescing drops are illuminated by two lighting systems. Using two incandescent lamps, the 

drops are illuminated from the front and the back. A blue laser (405 ± 10 nm, 5mW) focused 

through convex cylindrical and spherical lenses forms a laser light sheet inside the drops. Images 

of the light sheet locate the fluid containing the fluorescent dye. This light sheet can be translated 

in the y direction to illuminate different cross sections of the drop. Using a beam splitter placed 

above the drop, the drop is simultaneously imaged from the side and from above.  

As shown in Figure 3.3, the side view allows measurement of the shape of the drop as well 

as the location of the dyed fluid within the cross section illuminated by the laser light sheet.  

The top view allows monitoring of the lateral location of the light sheet as well as measurement 

of the contact line location and the location of the point where the dyed and undyed fluids meet 

along the top external interface of the drop.   

3.4 Experimental Results 

Observations of coalescence of the fluid drop pairs listed in Table 3.2 are captured using the 
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optical setup and video capture system described in the previous section. The resulting image 

sequences (Figure 3.4) demonstrate that there are three primary stages of coalescence, with each 

stage governed by different forces and phenomena. In Figure 3.4, frames a.1 through a.5 show 

coalescence of two drops with the same density. One of the initial drops contains fluorescent dye. 

In Figure 3.4, frames b.1 through b.5 show coalescence of two drops with a density difference of 

0.074g/ml. The lighter fluid contains fluorescent dye. In both sequences, the first frame shown is 

just prior to contact between the drops. The second frame shown corresponds to t = 0.03s after 

the drops touch. By this time, the rapid bridge healing process is nearly complete in all 

experiments. In some experiments, we observe capillary waves resulting from the rapid bridge 

healing process. Frames a.3 and b.3 capture the end of the Stage 1 bridge healing process, after 

which any capillary waves observed have decayed and the exterior shape of the merged drop no 

longer changes. The internal interface between the two merged fluids at the end of Stage 1 is 

sharp and nearly vertical. The density differences do not change the bridge healing process 

during Stage 1. Based on the fluorescence imaging, we see no evidence of twisting of streamlines 

and therefore conclude that no advective mixing of the two initial fluids has occurred. Following 

the end of Stage 1, frames a.3 through a.5 show that there is no internal flow within the merged 

drops of fluid pair BB within the first 3 s after the drops contact one another.  Frames b.3 

through b.5 show that the internal interface between fluid pair CB evolves over the first 3 s after 

contact until the interface is nearly horizontal, with the lighter, fluorescently dyed fluid stratified 

in the top layer. These two experiments taken together suggest that two fluids of different 

densities stratify due to a gravity current during stage 2 of the coalescence process. In Stage 2, 

the gravity driven flow proceeds in timescales of the order of seconds until full stratification 

occurs, as shown in frame b.5. At this late time in Stage 1, the interface between the two initial 
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fluid volumes is still sharp. As we will discuss later, at longer times, of the order of several 

minutes, Stage 3 of the coalescence process occurs, in which diffusion blurs the interface and the 

two fluids mix. Throughout both Stages 2 and 3 of coalescence, the relatively minor motion of 

the contact lines, due to residual contact angle hysteresis, inhibits the composite drop from 

attaining the circular contact line footprint that surface tension alone would produce.  

3.4.1 Stage 1 – Bridge healing 

 For drop coalescence, the flow during bridge healing can be divided into two regimes: a 

 

Figure 3.4. Time sequence of images of the coalescence process for two experiments with 
different fluid pairs. (a) Fluid pair BB for initial drop volumes of 20.2 µL. Both the 
fluorescent dyed fluid and the undyed fluid have a density of 1.145 g/ml (b) Fluid pair CB for 
initial drop volumes of 22.7 µL. The fluorescent dyed fluid has a density of 1.071 g/ml while 
the undyed fluid has a greater density of 1.145 g/ml. 
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visco-capillary and an inertio-capillary regime14, 15, 98, 105. A simple estimate for visco-capillary 

timescale can be obtained combining the dimensional parameters, where 3 2/~ντ µ ργ  is 70 ns 

for a typical composite drop (μ ~ 7 mPa s,  ρ ~ 1.2 g/ml, γ ~ 70 mN/m) and ranges from 10 ns to 

12 μs for all the experiments we performed. The inertio-capillary timescale is estimated 

balancing capillarity and inertia, where 3
0 /i Rτ ρ γ= is approximately 50 ms for a typical 

composite drop (ρ ~ 1.2 g/ml, R0 ~ 5 mm, γ ~ 70 mN/m) and ranges from 10 ms to 250 ms for the 

fluid pairs we considered. In contrast to previous experiments on coalescence of drops with 

identical densities,98 the fluids we examine are 20 times less viscous, resulting in a 

visco-capillary time 8000 times shorter than the previous experiments. Thus the initial 

bridge-healing regime is dominated by capillarity and viscosity up to about 70 ns, which is 

significantly shorter than the camera frame rate and thus is not captured in our experiments. 

Beyond about 70 ns, the flow enters the inertio-capillary regime for timescales up to about 50 ms 

for drops a few millimeters in radius. Consistent with this estimate of the characteristic timescale, 

for most of our experimental conditions, the bridge between the coalescing drops heals and any 

capillary waves that appear on the drop surface decay within the first two video frames (≈ 60 

ms). As pointed out in a recent experiment by Eddi112, capillary waves are observed for low 

viscosity drops which implies that the observations take place in the inertio-capillary regime. For 

very large drops and for the case with the largest density difference, observation of the side view 

of the merged droplet shows that drop shape oscillation can persist as long as 0.5 s. 

During Stage 1, the contact line at the bridge moves outward from the contact point while 

the contact lines along the long axis of the drop move slightly inward. At this time, the interface 
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between the fluids is sharp and tilts at most about 2º away from vertical (frame 3b.3).  The 

conditions at the end of Stage 1 set the initial condition for the gravity driven flow that occurs 

during Stage 2 of the coalescence process. 

3.4.2 Stage 2 – Gravity current  

In Stage 2 of the coalescence process, the lighter fluid layer flows over the top of the denser 

fluid layer, even for fluid pairs AI and AH where the surface tension differences between these 

two fluids would have led to an initial Marangoni force opposing the gravity-driven flow, and for 

fluid pair BJ where the density difference is only 1%. Experimentally, for all but the fluid pairs 

with the largest density differences, the shape of the external interface of the composite drop 

does not change appreciably after the end of Stage 1 (see frame 3b.3 and later frames).  

Figure 3.5a overlays edge profiles extracted from top view images near the beginning and 

 

Figure 3.5. a) Overlay of edge profiles from top view images showing the position of the 
contact lines at two different times: just after the end of Stage 1 (t = 0.13 s) and toward the 
end of Stage 2 (t = 3 s) for fluid pair CB at a volume of 22.7 µL. The difference in contact 
line locations for these selected times is small and obscured by image resolution. b) Overlay 
of two side view images at 0.13 s and 3 s.   
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end of Stage 2. The nearly complete overlap of these edge profiles shows that the contact lines 

are pinned throughout Stage 2, exhibiting only very minor local adjustments of the order of 0.05 

mm to 0.15 mm for the duration of this stage of the process. Figure 3.5b overlays side view 

images for the same experiment and the same times, showing that the internal interface has 

moved as stratification progresses, and demonstrating that any changes in the external drop shape 

are visually undetectable throughout Stage 2. Changes in the composite drop shape are visually 

discernable in the extreme cases of the fluid pairs with the largest density difference (20 – 40%) 

and for the largest drops.  

 

Figure 3.6 (a) Schematic diagram of the internal interface within the composite drop. The 
position x = 0 is where the vertical internal interface located at the end of Stage 1, xb is the 
internal interface point in contact with the solid surface at time t, xf is the external interface 
point where the two fluids meet at the top of the drop at time t.  (b) Measured xf as a function 
of time. The vertical line indicated on the plot at right corresponds to t = 0.1 s and represents 
the beginning of the gravity-driven flow of Stage 2 of the coalescence process. (Fluid pair 
CB; volume 22.7 µL) For clarity, the error bars are not shown in figures since the 
uncertainties for values of xf  at different times are identically 0.045mm due to the camera 
resolution, which falls within the symbols if drawn. 
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The motion of the gravity current can be quantified by tracking the interface point where the  

dyed and undyed fluids meet at the top external interface, denoted xf in Figure 3.6a.  The 

position of this interface point is not distorted by refraction through the air/liquid interface of the 

drop when viewed from the top or the side. Figure 3.6b shows the horizontal coordinate of the 

interface point as it moves during the gravity driven flow. The velocity of the horizontal gravity 

current at the beginning of Stage 2 interpolated from Figure 3.6b is 0.002 m/s. Thus the Reynolds 

number Re = 1 for the gravity current at early times in Stage 2.  At later times in Stage 2, the 

horizontal coordinate approaches a constant value, indicating that the velocity of the interface 

gradually decreases with time and vanishes when full stratification has occurred. During this 

later part of Stage 2, the Reynolds number becomes very small; therefore, gravity and viscous 

 

Figure 3.7 Image sequence depicting the internal fluid flow leading to stratification within the 
composite drop. Images show fluid pair BJ with volume 24.2 µL and 25.8 µL respectively. (a) 
The entire composite drop illuminated by a large laser spot located above the drop. (b) The 
composite drop illuminated from above by the laser light sheet, translated in the y direction. 
The image sequence depicts the location of the internal dyed (lighter) fluid at different 
cross-sections in the third dimension of the drop, captured at timesteps significantly smaller 
than the flow timescales. 
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forces balance. 

  Although refraction of the internally emitted fluorescent light as it leaves the drop may 

distort the perceived internal interface shape, we obtain a qualitative impression of the full three 

dimensional fluid movement during Stage 2 by varying the lighting conditions. In Figure 3.7a, 

frames a.1 through a.5 show the coalescence of drops when the spherical convex lens in Figure 

3.2b is replaced with a concave lens, leading to a large laser light spot exciting fluorescein 

throughout the entire drop. In frame a.6, the drop contact line is shown by illuminating the back 

light Lamp 1. The stratification is complete after 11 s, and a comparison of the upper images in 

frame a.5, showing the extent of dyed, lighter fluid, and frame a.6, showing the extent of the 

undyed, heavier fluid, demonstrates that the lighter fluid forms a layer occupying the top portion 

of the composite drop after stratification. It is evident that the dyed fluid flows in the y direction 

during the stratification process and that coalescence requires three-dimensional flow. Under the 

modified lighting conditions, in frames a.1 to a.5, the observed intensity represents an integration 

of the light passing through the entire drop from the side and top. The bright line in the top view 

image, indicated by the arrows shown in frames a.3 and a.4, aligns with the position of the 

bottom contact line of the internal interface. This suggests that the heavier fluid has flowed under 

the lighter fluid but has not proceeded further to the left than the contact line in any cross section 

of the composite drop. 

Figure 3.7b shows an image sequence of the coalescence process illuminated by the laser 

light sheet. In these images, the laser light sheet is scanned rapidly in the y direction, illuminating 

different three-dimensional cross sections of the drop during the internal flow of Stage 2. The 

scanning occurs at ≈ 8 mm/s, a speed that is much faster than the speed of the fluid motion.  

Thus, the frames shown represent cross-sectional views of the fluid motion at essentially the 
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same time point in the evolution of the stratification. The image sequences shown in Figure 3.7a 

(frames a.3 and a.4) and Figure 3.7b taken together show that fluid in the central cross section 

moves at a faster velocity than the fluid occupying the cross sections closer to the drop edge.   

3.4.3 Stage 3 – Diffusive mixing 

 After the internal contents of the composite drop have become fully stratified at the end of 

Stage 2, diffusion drives the final mixing of the initial fluid volumes. Figure 3.8 demonstrates the 

diffusive mixing of the fluids. The interface between the two fluids becomes visually blurred 

some time after stratification is complete. Line scans of intensity taken along a line perpendicular 

to the interface show that the composition gradient broadens diffusively. In a typical case, the 

width of the interface broadens about 450 µm over 50 s, where the width is defined as the 

 

Figure 3.8. a) Schematic diagram depicting the location of the line scan used to estimate the 
broadening of the interface. b) Line scans of intensity across the internal interface for fluid 
pair CB with volume 8 µL, taken at t = 7 s and 57 s after the onset of coalescence. 
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distance between the locations along the line scan where the intensity is 10% and 90% of the 

maximum intensity. Using this broadening width and timescale, we estimate a diffusion 

coefficient of D ≈ 6 2c0 /4 m s1 −× using the relationship 2 / 2broaden DD l t= , where broadeningl is the 

broadened width and Dt  is the time over which broadening occurs. Using this value of diffusion 

coefficient along with the measured velocity u during the initial stages of motion of the gravity 

current, and the drop size L as the characteristic length scale, results in an estimated Peclet 

number (Peclet number compares advective motion with diffusion) during Stage 2 of Pe=Lu/D ≈ 

2500. The large value of Peclet number suggests that diffusion has negligible impact on the flow 

during Stage 2 before stratification is complete, consistent with our observations. 

3.5 Scaling analysis and comparison with experimental results 

The experimental observations described above strongly suggest that fluid motion within the 

composite drop during Stage 2 proceeds via a gravity current, promoting stratification of the 

initial fluid volumes into two layers. To verify the hypothesis that the fluid motion is a gravity 

current, we first conduct dimensional analysis to determine the scaling of the internal interface 

velocity with fluid properties and flow conditions. We assume that the hydrostatic pressure 

variation driving flow within the composite drop scales as gHρ∆ , and that the viscous stress 

resisting motion scales as /bL THµ  where T is the characteristic time (use of the viscosity of 

the heavier fluid is suggested by Huppert35). Equating the driving pressure gradient and the 

viscous stress, we obtain a characteristic time 2  /bT L gHµ ρ≈ ∆ . Noting that inertia has decayed 

by the end of Stage 1 and therefore the Reynolds number is small during Stage 2, and also noting 

that the composite drops always exhibit aspect ratios H/L less than unity, we anticipate a time 

scaling typical of those used in lubrication analyses of thin film geometries. Thus, we modify the 
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characteristic timescale by a factor of the aspect ratio, such that 

 2 3  /c bT L gHµ ρ≈ ∆ . (3.1) 

To verify the timescale indicated by dimensional analysis, we examine experimental data 

from various fluid pairs, isolating changes in density difference, drop geometry, and viscosities. 

Figure 3.9 compares the displacement of the top point on the internal interface, fx , for two fluid 

pairs with similar viscosities and sizes, but different density differences ρ∆ . Figure 3.9 inset 

shows the unscaled displacement as a function of time. The larger density difference drives faster 

displacement of the interface, leading to a more rapid approach to the final stratified interface 

position. Figure 3.9 shows the displacement of the internal interface, scaled by the length of the 

composite drop, as a function of the time scaled by the characteristic time Tc given in Equation 

 

Figure 3.9. Displacement of the internal fluid interface as a function of time for varying 
density differences and similar composite drop size and viscosity. The inset shows unscaled 
displacement versus time for fluid pairs BJ and BK.  The main figure shows the 
displacement versus time scaled with the characteristic timescale given in Equation (3.1). 
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(3.1). On normalized axes, the experimental curves collapse, suggesting that the data scales with 

density difference in a manner consistent with that expected for a gravity current.   

 Figure 3.10 compares several displacement curves for a single fluid pair, varying the initial 

drop volumes and therefore varying the composite drop dimensions H and L. Figure 3.10a shows 

the displacement of the top point fx on the internal interface as a function of time for different 

drop volumes. While the approach to the final displacement occurs at approximately the same 

initial rate for all of the cases shown, the final displacement is larger and the time at which final 

displacement is reached is later for larger volumes. The final displacement of the internal 

interface depends on drop volume because the less dense fluid occupies a different layer 

thickness within the composite drop at the end of stratification. The final position of the interface 

depends on the three-dimensional composite drop shape, and thus the Bond number, as well as 

  

Figure 3.10. a) Displacement versus time for varying drop volumes of fluid pair BC, with 
density difference and viscosity held fixed.  b) Displacement normalized by the length of the 
composite drop versus time normalized by the characteristic time given in Equation (3.1). 
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the drop volume. These factors render it difficult to determine a well-defined analytical 

expression for the final interface displacement. Figure 3.10b shows the normalized interface 

displacement scaled by the composite drop length L, as a function of time normalized by the 

characteristic timescale given in Equation (3.1). The dimensionless curves of Figure 3.10b 

collapse to nearly a single curve with some spread in the shoulder region, indicating that the 

geometric dependence of the timescale given above works well, including the extra factor of the 

aspect ratio H/L. However the value in the plateau region varies monotonically with drop volume 

or Bond number. The normalization with L accounts for the major effect of drop volume but does 

not account for the flattening of the drop with increasing Bond number. This residual effect of 

Bond number causes the observed spread in plateau values. 

 Figure 3.11 considers a wide variety of fluid pairs with varying density difference and fluid 

viscosities, keeping volume and thus the Bond number nearly fixed. Figure 3.11a shows that the 

displacement of the top point on the internal interface, fx , approaches a similar final value, as a 

result of the similar composite drop volumes. However, the rates of approach to the final 

displacement values vary considerably for the eight fluid pairs considered. While the data sets 

are not clearly ranked in terms of any individual fluid property, it is notable that the data set 

corresponding to the slowest approach to equilibrium corresponds to fluid pair BJ, which has the 

smallest density difference of the group. The data set with the fastest approach to equilibrium 

corresponds to fluid pair AH, which has the largest density difference. These observations are 

consistent with expectations for the gravity current scaling given by Equation (3.1). For the data 

sets exhibiting intermediate timescales, it is clear that both fluid viscosities also play a role in the 

rate of approach to equilibrium. 

Figure 3.11b shows the result of normalizing the displacement with the maximum 
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displacement of the stratified interface, plotted as a function of time normalized by the 

characteristic timescale given by Equation (3.1). The data sets collapse considerably to occupy 

nearly a single curve, indicating that the motion of the internal interface is well described by the 

expected scaling for a simple gravity current.  However, the collapse of the data is not as good 

as in Figure 3.9 and Figure 3.10, which considered only density difference and composite drop 

geometry. Specifically, examining the transition region from a rapidly advancing gravity current 

to complete stratification of the two layers, we see that the data sets deviate monotonically with 

viscosity ratio. The leftmost data set showing the fastest approach to equilibrium corresponds to 

fluid pair AB with viscosity ratio / 0.16t bλ µ µ= = , while the rightmost data set showing the 

slowest approach to equilibrium corresponds to fluid pair AH with viscosity ratio λ = 10.  The 

 

Figure 3.11. a) Displacement versus time for several fluid pairs with different viscosities and 
density differences, keeping drop volume nearly constant. b) Displacement normalized by the 
maximum extent of the internal interface versus time normalized by the characteristic time 
given in Equation (3.1).  Inset shows an expanded view of the transition region from a rapid 
gravity current to fully stratified layers. 
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monotonic variation with viscosity ratio is notable, since the viscosity of the heavier fluid in 

most of the fluid pairs considered is similar, falling between 4 8bµ ≈ :  mPa s for all cases 

except fluid pair BA, in which 41bµ =  mPa s. Unlike in previous analyses of gravity currents, 

in which the characteristic timescale depends only on the heavier fluid viscosity35; it appears that 

the stratification of two fluid layers in a merging sessile drop is also influenced by the viscosity 

of the lighter fluid layer, which can also play a role in retarding the flow.   

For the experiments of density difference being as low as 1%, the drops after coalescence all 

form a stratified configuration after the gravity driven period, which resembles the behavior of 

stable axisymmetric configuration as described in Chapter 2. In Chapter 2, we never observe the 

formation of axisymmetric compound sessile drop after side-to-side coalescence for the low 

interfacial tension system, probably due to the fact that Janus configuration is of lower energy 

than the axisymmetric configuration. Now in this smallest density difference case where 

(exp) 9/ 0. 9t bρ ρ = , the stable axisymmetric configuration requires the experimental density ratio 

to be smaller than the critical density ratio (exp) bcritical/ /tt bρ ρ ρ ρ≤ . Based on Equation (2.18) and 

b critical 0 9/ .9tρ ρ ≥ , the upper bound of the interfacial tension is obtained, transient / 0.012bγ γ ≤ ; 

therefore the transient surface tension is transient 0.8γ ≤  mN/m. This side-to-side coalescence 

technique allows the estimation for the upper bound value of transient interfacial tensions, which 

cannot be measured using typical interfacial tensiometers149, 150, due to the transient interface 

between miscible fluids. 

3.6 Lubrication Approximation Based Modeling 

 Motivated in part by the lack of complete collapse of the displacement curves with the 
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scaling corresponding to a simple gravity current shown in Figure 3.11b, we seek a more detailed 

description of the internal fluid flow within the composite sessile drop during Stage 2 using the 

lubrication approximation to simplify the governing equations. The lubrication approximation 

has been previously applied to model similar phenomena including the internal interface motion 

for two layer systems151, 152 and gravity driven flow models. For gravity currents, the lubrication 

has been applied to flows on a solid surface37, at the bottom in a tank35, 153, on top of another 

fluid phase36 or in a closed long tube geometry137–141. The two main assumptions of the 

lubrication approximation are: 1) the reduced Reynolds number is small, ( / ) 1Re H L = , and 2) 

the square of geometric aspect ratio is small, (H/L)2 << 1.154 In our experiments, the aspect ratio 

of the composite drop H/L ranges from 0.2 to 0.4. The Reynolds number is maximum at the 

beginning of Stage 2 and ranges from 0.1 to 1.5 for different experimental fluids considered here. 

Thus the two conditions are satisfied: 1) the reduced Reynolds number varies from 

0.03 ( / ) 0.6Re H L< <  and 2) the square of the aspect ratio in the range 20.04 ( / ) 0.16H L< < . 

Experimentally, we observe that the external and internal interfaces meet the solid substrate at a 

high angle, potentially violating the lubrication approximation. To mitigate the complication of 

wedge flow when the internal interface approaches the corner region of the solid contact line, we 

examine the interface evolution only at early times, when the internal interface is far away from 

the corner and the impact of the wedge flow is negligible. Even though the internal interface 

itself meets the solid substrate at a high angle, the lubrication approximation is still expected to 

yield good qualitative results for gravity driven flows. In cases similar to ours37, 155–157, it has 

been shown that a violation of the lubrication approximation near the contact line does not 

contaminate the interface shape and propagation speed of the overall gravity current. In Section 

3.7, we will use the numerical results to explicitly assess the validity of the lubrication 
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approximation at the internal interface in our case.  

Based on experimental observations, we fix the contact line position and assume that the 

shape of the external interface of the composite drop does not vary with time. Because the fluids 

are miscible aqueous solutions and the measured air/liquid surface tensions are very similar, we 

assume the interfacial tension of the internal interface is zero. If the concept of interfacial tension 

is extended to fully miscible fluids, based on the observation of persistent shape of interface for 

some time, transient surface or interfacial tension can be defined.158–160 Fully miscible fluids are 

determined to have very low transient interfacial tension, for example, the upper bound value of 

interfacial tension between glycerol and water is estimated to be 0.5 mN/m160, 161 and our 

estimation at the end of section 3.5 shows the interfacial tension has an upper bound of 0.8 

mN/m. This assumption of almost zero interfacial tension is reasonable compared with surface 

tension about 70mN/m. We seek a differential equation describing the time evolution of the internal 

interface profile. 

Since inertial effects are negligible after Stage 1 compared with the gravity current, we 

formulate the lubrication analysis of the internal flow during Stage 2 by first writing the Stokes 

and continuity equations for both the upper and lower fluids,  
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where the subscript t denotes the upper, lighter fluid, and the subscript b denotes the bottom, 

heavier fluid. The pressure is denoted by p; u, v and w are the velocity components in the x, y and 

z directions respectively; μ is the viscosity; g is the gravitational acceleration constant and ρ is 

the fluid density. Equations (3.2) and (3.3) show that in the lubrication formulation, in both the 

upper and lower fluid layers, the pressure variation in the vertical direction is given solely by the 

hydrostatic pressure. Further, if Equations (3.2) and (3.3) are integrated assuming 

/ ,tp x∂ ∂ / ,tp y∂ ∂ /bp x∂ ∂ and /bp y∂ ∂ do not vary across the thin film, the flow in the 

horizontal x and y directions exhibits a characteristic parabolic velocity profile154.   

As shown in Figure 3.6a, the internal interface profile is denoted by b(x, y, t), and the 

external interface of the drop is described by h(x, y, t). The boundary conditions for the two fluid 

layers are given by a shear free condition at the external air/liquid interface (Equation (3.4a)), 

velocity continuity (Equation (3.4b)) and tangential stress balance (Equation (3.4c)) at the 

internal interface, and no slip at the solid surface (Equation (3.4d)). Applying the no slip 

condition up to and including the contact line will result in a non-integrable stress singularity at 

the contact line162, 163. The Bond number for the internal interface is large in our system due to 

zero interfacial tension assumption, and therefore the details of contact line dynamics will not 



94 

 

impact the gravity driven spreading of an interface25. Thus we, like Tanner164 and Huppert 37, do 

not need to specify the mechanism that alleviates the stress singularity. 
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  The normal stress boundary condition is given by 
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for the external interface, where R1 and R2 are the principal radii of curvature of the external drop 

shape, n̂  is the normal direction and τ̂  is the stress tensor. The tangential stress balance for 

the internal interface is given by ˆ ˆ t= 2 w
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approximation. In the lubrication approximation, the term of capillary pressure jump can be 
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. Using Equation (3.2c) to obtain the pressure at the 

top layer pt and employing an assumption commonly used in thin film spreading problems that 

the product of the aspect ratio and the capillary number must be small, 1L
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⋅ << ,154 the 

Laplace pressure jump dominates the viscous stress term. Therefore the normal stress boundary 

condition becomes 
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The ratio ·U L
H

µ
γ

 is 4 3~5 10 5 10− −× ×  in our experiments, fulfilling the assumed condition. 

Combining Equation (3.5a) with Equation (3.2c) and Equation (3.3c), the pressure in the bottom 

layer is given by  
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The integration of Equations (3.2a), (3.2b), (3.3a) and (3.3b), and the application of boundary 

conditions gives the parabolic velocity profiles, 
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y yµ µ

∂ ∂
= − + −

∂ ∂
.  (3.7b) 

The internal interface is given by ( , , )z b x y t= . The kinematic condition requires that the 

difference between z and b(x,y,t) be equal to zero at all times, 

int ( , , ) 0F z b x y t≡ − = . 

Applying the material derivative to the kinematic condition yields 

int int int int int
int int int 0DF F F F Fu v w

Dt t x y z
∂ ∂ ∂ ∂

= + + + =
∂ ∂ ∂ ∂

, 

which gives the equation of motion for the interface b(x, y, t) 
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 ( ) ( ) 0int int int
b b bu v w
t x y

∂ ∂ ∂
− + − + − + =

∂ ∂ ∂
.  (3.8)   

Integrating the continuity equation from 0 to b(x, y, t) and applying the Leibniz rule for the 

z-direction velocity yields 

 
( , , ) ( , , , )

int int
0 0

( , , , ) ( , , , ) ( , , , ) 0
b x y t b x y z t

int b b
b bw x y b t u dz u x y b t v dz v x y b t

x x y y
∂ ∂ ∂ ∂

+ − + − =
∂ ∂ ∂ ∂∫ ∫ . (3.9) 

Combining Equation (3.8) and Equation (3.9) gives 

 
( , , ) ( , , , )

0 0

b x y t b x y z t

b b
b u dz v dz
t x y

∂ ∂ ∂
= − −

∂ ∂ ∂∫ ∫ . (3.10) 

The temporal evolution of the internal interface can be obtained by combining Equation (3.6b) 

and Equation (3.7b), to give 

 

3
2 3

3
2 3

1 1[ ( ) ( )]
2 3 3

1 1[ ( ) ( )]
2 3 3

t

b b

t

b b

b p b bhb gb
t x x x

p b bhb gb
y y y

ρ
µ µ

ρ
µ µ

∂ ∂ ∂ − ∂
= − − + ∆

∂ ∂ ∂ ∂

∂ ∂ − ∂
− − + ∆

∂ ∂ ∂

.  (3.11a) 

Similarly, the temporal evolution of the external interface obtained from application of the 

material derivative is given by  

( , , ) ( , , ) ( , , , ) ( , , )

0 ( , , ) 0 ( , , )

( ) ( )
b x y t h x y t b x y z t h x

t b

y t

b
b x y t x t

t
b y

h dz dz dz v dzu u v
t x y

∂ ∂ ∂
= − + − +

∂ ∂ ∂∫ ∫ ∫ ∫ . 

Using the velocity profiles obtained from Equations (3.6a) – (3.7b), we obtain the differential 

equation for external interface 

 

3 3 2

3 3 2

1 1 1)(2 ) ]

1 1 1)(2

1[ ( ) ( ( )
3 2 2 3

1[ ( ) ( ( )
3 2 2

]
3

)

t t

b b

b

t

b

t

t t

b b

h p p ph b b b h b b h
t x x x x

p p ph b b b h b b h
y y y y

h b

h b

µ µ µ

µ µ µ

∂ ∂ ∂ ∂ ∂
= − − + − −

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

− − + − −
∂ ∂ ∂ ∂

−
− +

−
− +

.   (3.11b) 
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Nondimensionalizing Equation (3.11a) using 2, , , ,b Hb h Hh x Lx y L y z Hz= = = = =% % % % %, where L  

is the composite drop length, L2 is the drop width, and H is the height of the composite drop as 

shown in Figure 3.3, yields the following equation after dropping the tilde for the dimensionless 

variables:  

 

4 3 3
3 3 2

2 2 3 2 2

4 3 3
3 3 2

2 2 3 2 2
2

{ ( ) [( ( 3 )]}
3 2

{ ( ) [( ( 3 )]}

)

3 2
)

t

c b t t

t

b t t

H b g H b h h hb b b h
T t L x x x x gL x gL x y

g H b h h hb b b h
L y y y y gL x gL y x

ρ ρ γ γ
µ ρ ρ ρ

ρ ρ γ γ
µ ρ ρ ρ

∂ ∆ ∂ ∂ ∂ ∂ ∂ ∂
= − − − −

∂ ∂ ∂ ∆ ∂ ∂ ∂ ∂ ∂

∆ ∂ ∂ ∂ ∂ ∂ ∂
+ − − − −

∂ ∂ ∆ ∂ ∂ ∂ ∂ ∂

. 

The necessity of a second length scale L2 is discussed by Szeri154 in deriving three dimensional 

lubrication theory. This equation suggests a time scaling of 2 3/3c bT L gHµ ρ= ∆  for the internal 

interface motion, which is identical to Equation (3.1) except for the factor of three. The resulting 

dimensionless governing equation for the interface motion is given by Equation (3.l2). 

 

3 3
3 3 2

2 3 2 2

3 3
3 3 2

2 2 3 2 2

2

2

{ ( ) [( ( 3 )]}
2

{ ( ) [( ( 3 )]
2

)

})

t

t t

t

t t

b b h h hb b b h
t x x x x gL x gL x y

L b h h hb b b h
L y y y y gL x gL y x

ρ γ γ
ρ ρ ρ

ρ γ γ
ρ ρ ρ

+

∂ ∂ ∂ ∂ ∂ ∂ ∂
= − − − −

∂ ∂ ∂ ∆ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
− − − −

∂ ∂ ∆ ∂ ∂ ∂ ∂ ∂

 (3.12) 

The internal interface profile b(x, y, t) depends on the external interface profile h(x, y, t) (see 

Figure 3.6), the density of the lighter fluid tρ , the density difference between the two fluids 

ρ∆ , the surface tension of the lighter fluid γ  and the viscosity of the heavier fluid bµ . In 

addition to the evolution equation given by Equation (3.12), mass conservation of the fluids in 

the top and bottom components of the composite drop must be invoked (see Figure 3.6a for the 

definition of the relevant domain), 

 
1 2

( ( , , ) ( ( , , ) ( , , ))t t
S S

h x y t dxdy h x y t b x y t dxdy mρ + − =∫∫ ∫∫ , and  (3.13a) 
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2 3

( ( , , ) ( , , ) ) b
S

b
S

b x y t dxdy h x y t dxdy mρ + =∫∫ ∫∫ , (3.13b) 

where mt and mb are the masses of the lighter and heavier fluids respectively, and 

2
1 ( , , )

S
V b x y t dxdy= ∫∫ and 

3
2 ( , , )

S
V h x y t dxdy= ∫∫ indicate the volumes occupied by the heavier 

fluid under the internal interface in the central portion of the composite drop and under the 

external interface in the end portion of the drop where the fluids do not overlap.  

Equation (3.12) shows that the flow behavior in the x and y direction is similar if we permute 

the role of x and y in the right hand side of the equation. For the flow in the x direction, the first 

term on the right hand side 3( )bb
x x

∂ ∂
∂ ∂

 corresponds to the gravity current and the second term 

3 3
3 2

2 3 2 2[( ( 3 )
2

)t

t t

h h h b b h
x x gL x gL x y

ρ γ γ
ρ ρ ρ

∂ ∂ ∂ ∂
− − − −

∆ ∂ ∂ ∂ ∂ ∂
 represents the coupling of the evolution 

of the external interface, h, to the internal interface, b. If the external interface is in static 

equilibrium, then the second term is identically zero, as shown by taking the first order derivative 

of the Young-Laplace equation for the equilibrium drop shape: 2 2

2 2

22 0
t t

h hh
gL x gL y
γ γ

ρ ρ
∂ ∂

− − =
∂ ∂

. In 

cases where the composite drop shape deviates from equilibrium, then depending on the extent 

of the deviation from the equilibrium shape and the value of /tρ ρ∆ , the coupling term can 

have a significant impact on the evolution of the internal interface. Our observation that the 

external interface does not change during Stage 2 beyond our detection limits for almost all the 

fluid pairs suggests that the second term is negligible in these experiments. However, as the 

density difference becomes as large as 20%, we observe more significant changes in the external 

interface, which may influence the internal fluid motion. In later comparisons between 

experimental data and analysis, we neglect this small change. 
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 Equation (3.12) shows that there are several relevant dimensionless groups, including a 

fractional density difference /tρ ρ∆ , a Bond number 2/ t gLγ ρ , and an aspect ratio 2/L L (the 

ratio of length by width as shown in Figure 3.3). The time scale for the evolution of the internal 

interface, b, does not explicitly depend on the viscosity of the upper, lighter fluid as suggested by 

the experiments shown in Figure 10b. However, the evolution of the external interface shape h(x, 

y, t) depends on both the heavier fluid viscosity and the lighter fluid viscosity, thus causing the 

evolution of the internal interface to implicitly depend on both viscosities through the coupling 

given in Equation (3.12). Thus, the simplification that the external interface is in static 

equilibrium effectively removes any dependence on the lighter fluid viscosity. This suggests that 

the lack of full collapse shown in Figure 3.11b is a direct result of motion of the external 

interface, even though this motion may be smaller than our ability to detect it. We note in 

particular that the fluid pairs AH and AI shown in Figure 3.11 have the largest density differences. 

These cases exhibited measurable changes in the external interface shape, leading to a more 

prominent coupling between the internal interface b(x,y,t) and the external interface h(x,y,t), and 

the most prominent deviation from a simple gravity current. 

3.7 Simulation Results and Comparison with Experiments 

3.7.1 Simulation method 

Since the drops we examine are neither axisymmetric nor planar symmetric, modeling the 

complete situation would require solving Equation (3.12) for a fully three dimensional flow. 

Simulations of free-surface flows with fully three-dimensional flow are computationally 

intensive110, and so we chose to solve the two-dimensional version of Equation (3.12) for ease of 

simulation. A two dimensional simulation still provides qualitative information that can be 
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compared with the experimental observations of the evolution of the displacement of the internal 

interface, The two-dimensional assumption simplifies the problem by reducing the aspect ratio 

for the characteristic lengths in the x and y directions to zero, as well as removing the 

complication of coupled flow in the x, y and z directions due to mass conservation. The resulting 

governing equation is  

 
3

3 3 2
2 3( ) [( ( 3 )])

2
t

t

b b h hb b b h
t x x x x gL x

ρ γ
ρ ρ

∂ ∂ ∂ ∂ ∂ ∂
= − − −

∂ ∂ ∂ ∆ ∂ ∂ ∂
.  (3.12') 

We assume a constant external composite drop shape ( ) (, )eqmh h xx t = % , consistent with the 

experimental observations of Figure 3.5. This simplification decouples the mutual dependence of 

the internal interface b(x,t) and external interface h(x,t). We assume an equilibrium shape for the 

external interface given by the two-dimensional Young-Laplace equation subject to the 

lubrication approximation, eqm eqmh ghγ ρ′′ =% % . After scaling with the height and length of the 

composite drop such that ,  ~~eqm eqm xh Lxh H %% , the dimensionless equilibrium drop shape is  

 
1/2 1/2

1/2

coshcosh( )
cosh( ) 1

( 2 )
eqm

xBoh
Bo

Bo− ⋅
=

−
,  (3.14) 

where 2 /to gB Lρ γ=  defines the Bond number for the composite drop. In the simulation, 

choosing the equilibrium shape for the external interface means the second term on right hand 

side of Equation (3.12') is zero and the internal interface equation then reduces to  

 4
2

3
2( ) ( )1

4
b bb b
t x x x

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂
. (3.12*) 

We require an initial condition for the internal interface at the beginning of Stage 2. As suggested 

by the nearly vertical internal interface configuration at the end of Stage 1 in our experiments 
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(Figure 3.4), we choose a steeply sloped linear profile given by b = 19.964x + 0.499, which is the 

line connecting the two points (-0.025, 0) and (0.025, heqm(0.025)). We use a slightly tilted line 

since a vertical line presents difficulties in taking derivatives of the interface profile. The initial 

interface for the simulation is shown by the dashed line in Figure 3.12.        

Since Equation (3.12*) is a second order nonlinear diffusion equation, in addition to the 

initial condition b(x,0) as specified above, we set the boundary condition as ( , ) ( )f eqm fb x t h x=  

and ( , ) 0bb x t =  for all time. The coordinates ( )fx t  and ( )bx t  are defined as the contact 

positions of the internal and external interfaces, respectively, as shown in Figure 3.6a. The 

specification of initial and boundary conditions along with the mass conservation condition, 

Equation (3.13), guarantees the existence and uniqueness of the solution of Equation (3.12*)37,166. 

The positions ( )fx t  and ( )bx t are determined by this unique solution to the evolution equation. 

The position ( )bx t is taken to be the mesh point at which the interface intersects the solid 

substrate. The position ( )fx t  is taken to be the mesh point at which the interface intersects the 

 

Figure 3.12. Evolution of the dimensionless internal interface profile for a 
two-dimensional composite drop assuming an equilibrium composite drop shape. Internal 
interface profiles are shown for dimensionless timesteps from 0 to 8 time units with 1 
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external interface, adjusted to conserve the volume of the heavier drop 
( )

( )
( , , )f

b

x

b

t

x t
b x y t dxdy V=∫ . 

For the simulation, the conservation of mass conditions that depend on heqm (see Equation. 

(3.14)), become requirements for area conservation for each fluid component in two dimensions. 

As the differential equation will be discretized by a co-volume method as discussed later, this 

area conservation method is satisfied automatically. The interface height at the left boundary 

point ( , )bb x t  is set to zero as the interface propagates, whereas the right boundary point 

( , )fb x t  is forced to be on the external boundary heqm at discretized mesh points. This results in 

an error in area conservation of 2 / 2x∆ , where x∆ is the mesh size for the discretization. 

The differential equation Equation (3.12*) is a type of degenerate parabolic problem which 

can be solved numerically using a co-volume method suggested by Baughman et al167.  We use 

the explicit finite difference scheme to discretize the interface profile b(x, t) as n
jb , where j 

denotes the spatial index and n denotes the temporal index. The temporal derivative of b is given 

by 
1n n

j jb bb
t t

+ −∂
=

∂ ∆
 in the explicit scheme, where t∆  is the time step. The second order 

derivative for 4b  can be written symmetrically using the scheme analyzed by Baughman et al167 

for this type of problem, 
4 4 42

1 14
2 2

) 2( )(
(

( )
)

n n n
j j jb b b

b
x x

+ −∂
=

+
∆

−
∂

. The final discretized expression for 

Equation (3.12*) is then given by 

 
1 4 4 4

1 1
2

) 2( ) )(1
4

(n n n n n
j j j j jbb b b b

t x

+
+ −− − +

=
∆ ∆

, (3.15) 

For this type of second order nonlinear diffusion equation, the stability criterion for the 

numerical scheme is given by an expression of the form 2~ ( )t x∆ ∆ 167, 168 . In addition to this 

stability criterion, n
jb  must be nonnegative to be in the physical subspace. Since the value of n

jb  
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is nonnegative from the initial condition in our simulation, this requirement is satisfied. Thus 

Equation (3.15) is solved by iteration of time steps to obtain the time evolution of the interface 

profile b using the above explicit scheme. In our simulation, we calculate the evolution of 

interface from time t = 0 to t = 8. The time steps are determined using the stability criterion, once 

the spatial interval x∆ is selected using the relationship 1 / xnx∆ = , where xn  is the number of 

grid points. Figure 3.12 shows the evolution from 0t =  to 8t = using a uniform 

grid 41 /1280 7.81 10x −∆ = ×=  and time step  71.22 10t −∆ = ×  with equilibrium external 

interface shape of heqm. For times beyond t = 8.8, the left hand side of the internal interface 

begins to collide with the external interface, where the recirculation in the wedge must be 

considered and Equation (3.15) is rendered invalid, thus we terminate the simulation after 8t = .  

3.7.2 Evaluation of the simulation and convergence 

As shown in Figure 3.12, the internal interface has a high slope at the contact point xb  

which brings the lubrication approximation into question. For the lubrication approximation to 

be valid, the dimensional terms Re( )
x

u u∂
∂

, Re( )uw
z

∂
∂

 and 
2

2x
u∂

∂
 must be small compared with 

2

2z
u∂

∂
, where u and w are the horizontal and vertical components of the velocity, respectively.  

From the numerical solution of the evolution equation, Equation (3.12*), we calculate the 

velocities and relevant derivatives at an early time in the evolution of the gravity current. These 

comparisons show that the ratio of Re( )
x

u u∂
∂

 to 
2

2z
u∂

∂
 is smaller than 0.001 over the entire 

domain. The ratio of Re( )
z

w u∂
∂

 to 
2

2z
u∂

∂
 is smaller than 0.6 over the entire domain, and 
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declines quickly to smaller than 0.1 within 0.0006 spatial units (5 spatial grid points out of 6400). 

Unlike the other two ratios, the ratio of 
2

2x
u∂

∂
 to 

2

2z
u∂

∂
is large at the contact point xb due to the 

large slope; however, the ratio of these two terms declines quickly to smaller than 0.1 within 

0.002 spatial units (15 spatial grid points out of 6400). Therefore, the lubrication assumption fails 

very near the corner and is satisfied away from the contact point xb.  

The governing equation of motion Equation (3.12*) is of the same form as that derived in 

the gravity current of Huppert37, with different boundary conditions. The solution obtained by 

Huppert also has a high slope at the front of the current, and the lubrication approximation is also 

violated near the moving contact line. Nevertheless, the lubrication solution describes the 

experimentally observed shape of the gravity current well and it describes the propagation speed 

of the gravity front very well. Gratton et al169 and Betelú et al170 address in more detail the 

agreement of the gravity current profiles with experiments even though the lubrication 

approximation fails at the corner. These prior results and our examination of our numerical 

results justify the use of the lubrication approximation to qualitatively describe the experimental 

observations of the evolution of the shape and propagation speed of the internal interface. 

To examine convergence, we first maintain a spatial mesh size of 41 /128 7 10 .81 0x −= ×∆ =  

and vary the temporal step from 79.77 10t −∆ = × to 86.10 10t −∆ = × to check the error 

dependence on time steps171. As this nonlinear diffusion equation does not have an analytical 

solution, we define the global error comparing the interface profile at t = 1 with the finest case 

where 47.81 10x −∆ = × and 83.05 10t −∆ = ×  using the square norm 

 8
1 1

3.05 10
2 1/2

1

1 [ ( | | ) ]
xn

j

t t
t j t j t

x

E b b
n −

= =
∆ ∆ ∆ = ×

=

= −∑ , (3.16) 



105 

 

where 1 |t
j tb =

∆  is the calculated interface height with the time step t∆ , and 83.0
1

5 10
|t

j t
b −

=
= ×∆

 

represents the interface height with the finest time step. Due to the finite propagation speed of 

the nonlinear diffusion equation, functions at corners are not as smooth compared to the linear 

diffusion equation, thus the errors at the corners are the leading error in the numerical 

simulation167. Baughman et al167 proved that for equations of this form, the estimated error 

approaches zero at least as rapidly as 1/2 1/2( )C x t∆ + ∆ , where C is a constant depending on the 

structure of the equation and boundary conditions.  

Figure 3.13a shows that the global error for our simulation decreases with first order 

behavior in the time step, which agrees with the convergence criteria. Similarly, to examine the 

convergence with grid size, we calculate the global error for cases in which 86.10 10t −∆ = ×  is 

held fixed, but the grid varies from 36.25 10x −∆ = ×  to 43.91 10x −∆ = ×  while the stability 

  

Figure 3.13. a)  Global error as a function of time step (solid triangles represents the error 
defined by Equation (3.16) at different time steps).  b) Global error as a function of spatial 
discretization (solid triangles represents the error defined by Equation (3.17) at various grid 
sizes). 
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criterion 2 ~t x∆ ∆  is satisfied. In this case, the global error is computed by comparing each 

result with the finest discretization of 41 / 5120 1.95 10x −∆ = = ×  

 

 1 1
1 1

1 5120

2 1/21 [ ( | | ) ]
x

x

t t
x j jkx x

x

n

j n

E b b
n

=
∆

=

=

∆ = ∆ =
= −∑ , (3.17) 

where 5120 / xk n=  allows us to restrict the difference calculation at coarser grids to occur at 

the same x coordinate for different grid sizes. Figure 3.13b shows that the error of the simulation 

also decreases with nearly first order dependence on grid size. Convergence with spatial 

discretization is indicated for the numerical scheme with the same reasoning as for temporal 

discretization. 

 

Figure 3.14. a) Measured Evolution of the two interface points in the composite drop.  b) 
Simulation tracking the intersections of the internal interface with the rigid substrate and the 
external interface. Experiments and simulations both correspond to fluid pair DG with λ = 1, 
Bo = 8. The time scale for these two graphs differs by a factor of 10. 
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3.7.3 Comparison of simulation results with experiment results 

Figure 3.14a shows a typical result of a converged simulation for values of fluid properties 

taken from the experiments. The displacement of the interface is qualitatively similar to that 

observed in experiments as shown in Figure 3.4 and Figure 3.5b. The simulation only tracks the 

gravity current until the bottom point on the interface reaches the intersection of the external 

interface and the solid surface (the contact line). 

 As shown in Figure 3.14, the simulation qualitatively captures the displacement of the 

internal interface both at the top intersection with the external interface and at the bottom 

intersection with the solid surface. In both the experiment and simulation, the displacement of 

the point intersecting the external interface advances faster than that of the point intersecting the 

rigid substrate as would be expected from the contact line motion at a liquid or solid surface. In 

both the simulation and experiment, the intersection with the substrate moves farther than the 

intersection with the top interface before the gravity current reaches the external interface.   

 

Figure 3.15 Displacement of the internal interface given by simulation of fluid pair DG with 
viscosity ratio λ = 1, for several values of Bond number.    
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Since the external interface shape sets the initial and also boundary condition for the internal 

interface evolution, the gravity flattening of the external interface shape due to the Bond number 

variation (see Equation (3.14)) will also affect the internal interface motion. 

Figure 3.15 shows the simulation examining the Bond number dependence of the top point 

of internal interface. As seen in experiments of Figure 3.10b, the simulation shows that the 

interface point evolves with almost the same initial rate while the displacement within the 

plateau region increases monotonically with respect to the Bond number. 

 Although the simulation results qualitatively agree with the experiments, the dimensional 

timescale in simulation is faster by about an order of magnitude. This discrepancy may arise 

from the quantitative comparison of the lubrication solution with experiments for a highly sloped 

interface155, 156 but more likely arises because the simulation is two dimensional, while the 

experiments show three dimensional flow as seen in Figure 3.6. Similar to our results, in other 

studies of gravity driven currents, the observed characteristic velocity in three dimensional 

experiments is always smaller than that predicted by a two dimensional analysis because of the 

outer geometry and boundary conditions138, 172, 173. Despite the discrepancy in the magnitudes of 

the timescales, the scaling of the characteristic timescales for the gravity current with fluid 

properties and drop geometry agree well with the observed behavior, suggesting that the 

lubrication model captures most of the essential physics in the problem. 

3.8 Summary 

 We have examined the coalescence of two sessile drops of miscible fluids with similar 

surface tensions and equal volumes. The fluid pairs can have different viscosities and densities, 

and the overall drop volumes vary.  The fluid systems examined exhibit surface tensions of the 
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order of 60 to 70 mN/m, viscosities from about 4 to 41 mPa s, density differences from 0.01 to 0.43 

g/cm3, Bond numbers from 1 to 8, and contact angles of about 90º.  The substrates consist of 

crosslinked PDMS, which is known to form a ridge beneath the contact line.  The ridges do not 

completely pin contact lines but do inhibit their motion. 

 The coalescence of the two initial sessile drops occurs in three stages of motion: (1) bridge 

healing, (2) a gravity current, and (3) long-term diffusive mixing.  Stage 1 is governed by 

minimization of capillary energy with coincident movement of the contact lines.  The bridge 

healing of Stage 1 ends with a smooth external interface of the composite drop and no apparent 

twisting of streamlines that would cause advective mixing. The external interface achieves a 

nearly static shape within the resolution of our measurement for the remainder of the coalescence 

process, for density differences smaller than 0.2 g/cm3.   The timescale for Stage 1 is well 

separated from that of Stage 2 and thus the end of this stage forms an initial condition for the 

subsequent stages. Stage 2 is controlled by gravity and viscosity even for density differences as 

small as 1%.  The fluids move toward a simple stratified configuration with no advective mixing 

and little to no diffusive mixing, consistent with the estimated Peclet number Pe ≈ 2500.  A 

three-dimensional lubrication analysis indicates that the predominant timescale for Stage 2 is 

2 3/3c bT L gHµ ρ∆=   as long as the external interface is very near equilibrium.  Our analysis 

suggests that even small deviations of the external interface from equilibrium may cause the flow 

to have significant contributions from capillarity as well.  The flow in Stage 2 is also governed by 

the additional dimensionless groups /ρ ρ∆ and 2/ t gLγ ρ . The experiments are in good agreement 

with the time scaling predicted by the analysis.  The presence of small motions of the external 

interface leads to additional coupling with the flow of the upper, lighter fluid layer, and resistance 

due to the viscosity of this layer contributes to the motion of the internal interface. Thus, a 
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systematic deviation of the scaled displacement curves is observed to monotonically vary with the 

viscosity ratio.  These conclusions are also supported by numerical solutions of a 

two-dimensional version of the equations developed in the analysis.  However, the 

two-dimensional numerical solutions overestimate the characteristic speeds of the flow.  This is 

likely due to the fact that the flow is in reality three-dimensional as shown by experiments.  It is 

also possible that the high contact angle results in an aspect ratio of the composite drop that is 

too large to be accurately treated by the lubrication approximation.  

 Stage 2 concludes with the complete stratification of the two fluids after timescales of the 

order of tens of seconds.  Finally in Stage 3, diffusive mixing occurs in the composite drop over 

timescales of the order of several minutes. 

  Experiments and simulations both show that once the initial bridge healing is complete, 

internal motion proceeds at low Reynolds number over very long timescales, even when the 

external interface appears to have long reached a static equilibrium.  The fluid motion follows a 

well-defined gravity current even for very small density differences.  These results show that 

external imaging of merging sessile drops is not sufficient to ensure that mixing of two fluid 

volumes is complete, and that such mixing often occurs only over much longer timescales than 

expected. 

 

 

 

 

 

 



111 

 

Appendix 3.1 Matlab code for the two dimensional gravity driven current 

%%Difine grid structures, time steps, spatial discretization 

I=640; xMax=1;%(length in unit of Length) 

N=1024000; % time discretization units 

q1=4000;   % save the profile every q1 units of  time 

N1=N/q1;  

tMax=1; % the total simulation time, dimensionlessly 

Dt=tMax/N;% the temporal unit, dimensionless 

Dx=2*xMax/I; % the spatial unit of x axis 

b=zeros(I+1,1); % start with matrix with all elements being zero 

bbuffer=zeros(I+1,1); 

h=zeros(I+1,1); 

rhot=1124.00; % the density of the top drop 

rhob=1191.00; % the density of the bottom drop 

g=9.78; % gravitational accelearation 

gamma=0.066; 

x0=0.05*xMax; 

Length=0.5; % dimensional length in unit of cm 

Height=0.30; % dimenaional heigh in unit of cm 

capillary=sqrt(rhot*g/gamma)/100;% capillary in unit of cm^-1 

bondnumber=capillary*Length; 

rhotdeltarho=rhot/(rhob-rhot); 

gammadeltarho=gamma/(rhob-rhot)/g*10000/Length^2; % the term gamma delta rho 
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x=(-xMax:Dx:xMax)'; 

%initial boundary condition xl0=-0.1, xr0=+0.1 

xl0= -x0; xr0= x0; x0= 0.05; 

h0=cosh(bondnumber)/(cosh(bondnumber)-1); % equilibrium shape of drop in 2 dimensions 

C1=1/(cosh(bondnumber)-1); 

Il0=I/2+xl0/(2*xMax)*I+1; 

Ir0=I/2+xr0/(2*xMax)*I+1; 

h=h0-C1*cosh(x.*bondnumber); 

hprime=-C1*bondnumber*sinh(x.*bondnumber); % first order derivative of height 

h2prime=-C1*(bondnumber^2)*cosh(x.*bondnumber); 

h3prime=-C1*(bondnumber^3)*sinh(x.*bondnumber);  

h4prime=-C1*(bondnumber^4)*cosh(x.*bondnumber); % fourth order derivative of height 

%% initialization of the internal interface 

for j=1:Il0 

    b(j)=0; 

end 

for j=Il0+1:Ir0 

    b(j)=h(Ir0)/(Ir0-Il0)*(j-Il0); 

end 

for j=Ir0+1:I+1 

    b(j)=h(j); 

end 

%% initialization for the volume (area in 2D) of the bottom drop 
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Sarea=0; Newarea=0; 

for j=1:I 

    Sarea=Sarea+b(j);%Sarea is the real area multiplied by I/xMax 

end 

breakpoint=Ir0; leftbreakpoint=2;  bshow=zeros(I+1,q1+1); 

breakpointhistory=zeros(q1+1,1); 

leftbreakpointhistory=zeros(q1+1,1); 

bprime=zeros(I+1,1); 

b2prime=zeros(I+1,1); 

term2=zeros(I+1,1); 

 

bshow(:,1)=b; bbuffer=b; sumareajudge=0;  

 sumareajudge1=0; % This sumareajudge will be used to judge volume conservation 

leftindex=1; 

 for n=1:N 

   for i=leftbreakpoint:breakpoint %check to see how b changes with large slope? 

        term2(i)=(b(i-1)^4-2*b(i)^4+b(i+1)^4)/4/Dx^2; 

        bbuffer(i)=(term2(i))*Dt+b(i);   

   end 

 b=bbuffer; 

    for index1=1:I 

        Newarea=Newarea+b(index1); %Newarea is multiplied by I/xMax 

    End 
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       index2=breakpoint; 

     while (h(breakpoint)-b(breakpoint))/2*(index2-breakpoint)<(Newarea-Sarea) 

      index2=index2+1; 

     end 

   if index2~= breakpoint 

      for index3=breakpoint:index2 

b(index3)=b(breakpoint)+(b(index2)-b(breakpoint))/(index2-breakpoint)*(index3-breakpoint); 

      end 

   end 

     breakpoint=index2;    

     Newarea=0;       

%% identify the intersection of the internal interface with the external interface 

     if h(leftbreakpoint)<b(leftbreakpoint) 

              leftindex=leftbreakpoint; 

        while (h(leftindex)<b(leftindex)) 

            b(leftindex)=h(leftindex); 

            leftindex=leftindex+1; 

        end 

       leftbreakpoint=leftindex; 

     end 

%% only record the position of internal interface at N1 unit of time to save memory 

    if mod(n,N1)==0; 
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        k=n/N1;% changed k 

        bshow(:,k+1)=b; 

        breakpointhistory(k+1)=breakpoint; 

        leftbreakpointhistory(k+1)=leftbreakpoint; 

    end 

 end 

%% plot of the intersection of internal interface with the solid surface 

front=zeros(q1+1,1); 

 for r=1:q1 

for p=1:I 

if bshow(p,r)>=0.000005 

front(r)=p; 

break 

end 

end 

 end 

t=0:tMax/q1:tMax; 

plot(t,front) 
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Appendix 3.2 Matlab code for the velocity at different positions 

% set all the velocities and gradients as zero to start with 

dbdx=zeros(I,1); d2bdx2=zeros(I,1); uvel=zeros(I,1); uvel2=zeros(I,1); vvel=zeros(I,1); 

ududx=zeros(I,1); vdudy=zeros(I,1); dudx=zeros(I,1); dudy=zeros(I,1); dudx2=zeros(I,1); 

db3xx=zeros(I,1); db4xx=zeros(I,1); d2udx2=zeros(I,1); d2udy22=zeros(I,1); 

diff2=zeros(I,1); diff=zeros(I,1); vvel2=zeros(I,1); b2average=zeros(I,1); 

%vectors have to be defined as 9600*1, so that vector(I) can be parametrized. 

%% verib to store all the internal interface profile obtained from the gravity current case. 

verib=bshow(:,4001); 

newnumber=5250; 

dbdx(2:I-1)=(-verib(1:I-2)+verib(2:I-1))*I/2; 

dbdx(newnumber-1:I)=0; 

d2bdx2(2:I-1)=(-dbdx(1:I-2)+dbdx(2:I-1))*I/2; 

db2dx2(newnumber-1:I)=0; 

uvel(2:I-1)=-1/3*(verib(2:I-1).^3-verib(1:I-2).^3)*I/2; 

uvel(newnumber-1:I)=0; 

db3xx(3:I)=(verib(3:I).^3+verib(1:I-2).^3-2*verib(2:I-1).^3)*I^2/4; % the second order 

derivative of b^3 

db4xx(3:I)=(verib(1:I-2).^4+verib(3:I).^4-2*verib(2:I-1).^4)*I^2/4; 

vvel(2:I-1)=-db4xx(2:I-1)/12+1/3*verib(2:I-1).*db3xx(2:I-1); 

% is much better in the sense of smoothness than  

% vvel(2:I-1)=2/3*verib(2:I-1).^3.*d2bdx2(2:I-1)+verib(2:I-1).^2.*dbdx(2:I-1).^2; 

vvel(newnumber-1:I)=0; 
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figure 

hold on 

plot(1700:2100,uvel(1700:2100),'k-','LineWidth',1.5) 

plot(1700:2100,vvel(1700:2100),'b-.','LineWidth',1.5) 

legend('u','v') 

dudx(2:I-1)=(uvel(2:I-1)-uvel(1:I-2))*I/2; 

dudx(newnumber-1:I)=0; 

ududx(2:I-1)=uvel(2:I-1).*dudx(2:I-1); 

for index=2:newnumber-1 

    if abs(verib(index)-verib(index-1))>=1e-5 

        dudy(index)=(uvel(index)-uvel(index-1))/(verib(index)-verib(index-1)); 

    end 

end 

dudy(newnumber-1:I)=0; 

vdudy(2:I-1)=vvel(2:I-1).*dudy(2:I-1); 

vdudy(newnumber:I)=0; 

figure 

hold on 

plot(1700:2100,dudx(1700:2100),'k-','LineWidth',1.5); 

plot(1700:2100,dudy(1700:2100),'b-','LineWidth',1.5); 

legend('dudx','dudy'); 

d2udy2=dbdx; 

d2udy2(newnumber-1:I)=0; 
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d2udx2(2:I-1)=(dudx(2:I-1)-dudx(1:I-2))*I/2; 

d2udy22(2:I-1)=(dudy(2:I-1)-dudy(1:I-2))*I/2; 

d2udx2(newnumber-1:I)=0; 

d2udy22(newnumber-1:I)=0; 

figure  

 hold on 

 plot(1700:2100,d2udy2(1700:2100),'k-','LineWidth',1); 

 plot(1700:2100,d2udx2(1700:2100),'r:','LineWidth',1); 

 legend('d2udy2','d2udx2'); 

 figure  

  hold on 

  plot(1:I-1,abs(ududx(1:I-1)./d2udy2(1:I-1)),'k-','LineWidth',1); 

  plot(1:I-1,abs(vdudy(1:I-1)./d2udy2(1:I-1)),'b-.','LineWidth',1); 

  plot(1:I-1,abs(d2udx2(1:I-1)./d2udy2(1:I-1)),'r:','LineWidth',1); 

  legend('ratio ududx','ratio vdudy','ratio d2udx2'); 
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Chapter 4 Conclusion 

In this thesis, we study both the static and dynamic aspects of sessile drop coalescence. The 

first part of the thesis examines the stability of compound sessile drops at the axisymmetric 

configurations, where theoretical analysis, Surface Evolver simulations and experimental results 

are presented. The second part examines the dynamics of sessile drop coalescence with different 

densities and viscosities, where scaling analysis, gravity current modeling and experimental 

results are discussed. This thesis adds several new findings to the study of drop coalescence. 

 The equilibrium shape of an axisymmetric compound sessile drop is governed by seven 

dimensionless numbers using the Laplace equations in the presence of gravity. In the limit of 

zero gravity effects, the seven governing parameters reduce to only four parameters: the two 

ratios of interfacial tensions, the volume ratio of the two drops and the contact angle with the 

solid surface. These four parameters agree with other results in literature based on the 

assumption of negligible gravity effects. 

 A stability criterion for the axisymmetric compound sessile drop is determined through a 

perturbation approach where interfaces are assumed to be of Laplacian shapes. A direct result of 

this criterion states that a more dense drop resting on top of a less dense drop is not stable at the 

axisymmetric configuration. This contrasts with the experimental observation of a more dense 

drop floating on top of a flat less dense fluid surface, where the configuration possesses 

translational symmetry.  

The stability criterion can be numerically evaluated in the limit of zero Bond number: to 

form a stable axisymmetric compound sessile drop, the density ratio must be smaller than a 

critical density ratio. The critical density ratio depends on the two ratios of interfacial tensions, 

the ratio of drop volumes and the contact angle at the solid surface. Qualitatively, the critical 
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density ratio is small for a high interfacial tension system, and large for a low interfacial tension 

system. Thus, stable axisymmetric drop configurations are rarely observed for organic/inorganic 

compound sessile drops in air because of the low critical density ratio. This stability criterion is 

verified using both Surface Evolver simulations and experiments for both high and low 

interfacial tension systems.  

We experimentally realized stable axisymmetric compound sessile drops using a low 

interfacial tension system. The phase-separated system, obtained after mixing partially miscible 

fluids of benzyl alcohol and aqueous cesium chloride solutions, demonstrates a low interfacial 

tension of 3 to 6 mN/m. By varying the cesium chloride concentration, the resulted two phase 

systems have different density ratios but similar interfacial tensions. This low interfacial tension 

system allows experimental transitions from a stable axisymmetric configuration to an unstable 

axisymmetric configuration by varying the density ratio. The three approaches, the zero Bond 

number model, the Surface Evolver simulations and the experiments, in determining the stability 

criterion agree well at small Bond number. In larger Bond number cases, the modeling results 

made at the zero Bond number limit shows a small deviation from both the simulation and the 

experimental results.  

 The coalescence of two sessile drops is examined for miscible fluids with similar surface 

tensions and equal volumes. The fluids are prepared by mixing salt, water and glycerol, which 

have different viscosities and densities. The coalescence of the two drops can be divided by three 

stages of motion with well separated time scales: (1) bridge healing, (2) a gravity current, and (3) 

long-term diffusion. Stage 1 is governed by capillarity, after which the external interface achieves 

a nearly static shape for fluid pairs with density differences smaller than 0.2 g/cm3 and the internal 

interface is almost vertical within the composite drop. The fluid motion after Stage 1 resembles a 
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gravity current for density difference as small as 1%. The motion during Stage 2 evolves toward a 

final stratified configuration and is controlled by gravity and viscosity. During Stage 2, the 

advective motion dominates the diffusion, consistent with the estimate of large value of Peclet 

number. Stage 2 lasts over timescales of seconds, and concludes with the complete stratification 

of the two fluids. During the final stage, Stage 3, diffusion occurs in the composite drop over 

timescales of minutes. 

A lubrication analysis suggests that the fluid motion is characterized by a timescale 

2 3/3c bT L gHµ ρ∆=  during Stage 2 of the sessile drop coalescence, when the external interface is 

close to the equilibrium shape. The flow in Stage 2 is also governed by the additional 

dimensionless parameters /ρ ρ∆ and 2/ t gLγ ρ . The experimental results of drop coalescence for 

the internal motion agree with the time scaling predicted by the lubrication analysis. If the external 

interface is deviated from the equilibrium shape, both the upper and lower fluid layer cause 

resistance to the motion of the internal interface. Thus, a systematic deviation of the scaled 

displacement is observed to vary with the viscosity ratio monotonically.  A two-dimensional 

lubrication analysis was evaluated numerically to compare with the flow during Stage 2. The 

numerical solutions agree qualitatively with the fluid flow, but overestimate the characteristic 

speeds of the flow. This is likely due to the discrepancy between simplified two dimensional 

solutions and the three-dimensional flow in experiments. It is also possible that the aspect ratio 

of the composite drop at high contact angle is too large to be accurately treated by the lubrication 

approximation.  

 The stability analysis of axisymmetric compound sessile drop provides a preliminary 

investigation in understanding the floatability at microdroplet scales, even though the results are 

limited by the assumption of Laplacian shape perturbations. The low interfacial tension system 
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proposed may also help to probe the floatability at large scales with varying density ratio with 

almost constant surface and interfacial tensions. The dynamic aspect of drop coalescence shows 

that merging sessile drops alone is not sufficient to ensure the mixing of two fluids. The 

side-to-side drop coalescence results in a stratified configuration for miscible fluids but not for 

the low interfacial tension system of separated phases. The difference suggests a more detailed 

analysis integrating the adhesion energy with the surface can determine the global energy 

minimum between Janus configurations and axisymmetric configurations. 
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