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Abstract
When looking at a single 2D image of a scene, humans could effortlessly un-

derstand the 3D world behind the scene even though stereo and motion cues are not

available. Due to this remarkable human capability, one of the ultimate goals of

computer vision is to enable machines to automatically infer the 3D structure of a

scene given a single 2D image. This dissertation proposes methods that produce a

geometrically and semantically coherent 3D interpretation of urban scenes from a

single image, and shows the benefits of reasoning in 3D when analyzing 2D images.

In this dissertation, we model an urban scene using three types of elements. The

first type is global geometries such as ground plane and gravity direction. The second

type is objects such as cars and pedestrians that have definitive shapes and extents.

The third type is vertical surfaces such as building facades that do not have definitive

shapes and extents. Such a modeling allows for a richer characterization of an urban

scene than existing works.

To tackle the inherent ambiguity involved in recovering the 3D structure from a

single 2D image, we systematically identify geometric constraints among the three

types of elements in our model, and encode such constraints in a Conditional Ran-

dom Field (CRF). For objects, we consider both their global geometric compatibil-

ity with ground plane and gravity direction, and their local geometric compatibility

between adjacent objects. For building facades, we decompose them into a set of

continuously-oriented planes mutually related by 3D geometric relationships, and

constrained by nearby objects in 3D. We also propose a generalized RANSAC al-

gorithm to make the inference of the model tractable. We show that performing 3D

geometric reasoning using our model benefits individual tasks such as object detec-

tion, viewpoint estimation, and facade layout recovery. In addition, it yields a more

informative interpretation of the 3D scene behind the image.
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Chapter 1

Introduction

One of the key features of human visual intelligence is being able to recover the underlying

3D structure of a scene from a single image. For example, given a monocular visual input of

an urban scene, we are able to acquire a comprehensive situational awareness, in which not

only do we know if there are cars, pedestrians or building facades present in the scene, but we

also understand how they are supported by the ground plane, how their locations and poses are

influenced by the gravity direction, how they are located relative to one another in 3D space, and

how we as observers are positioned with respect to the entire scene. The ability to achieve such

a coherent 3D understanding of a scene is crucial to many robotics applications such as vision-

based navigation, planning, and manipulation [61, 62], as well as higher-level visual intelligence

tasks such as activity recognition and behavior understanding [17, 26, 69].

Not only does reasoning about the 3D scene behind the image provide important information

that traditional 2D algorithms such as object detection cannot provide, it also greatly improves the

performance of those traditional tasks as a result of resolving visual ambiguities. For example,

when we look at the two image patches shown in the lower-left corner of Figure 1.1, it is hard

to tell what is contained in the green box, yet it is likely that the red box encloses a pedestrian

dressed in black. However, when we look at the entire image and obtain a sense of the 3D scene

layout behind the image, we can tell for sure that the green box actually contains a car, since
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Figure 1.1: 3D Geometric reasoning explains away visual ambiguities.

it rests on the road with the right pose, size, and location. Also, the red box cannot contain a

pedestrian, since our sense of 3D geometry tells us that the content in the red box would have

been too short for a pedestrian. In fact, our subconscious thought process of inducing global

geometric context from local entities and utilizing it to regulate what we perceive to be present

in the scene is crucial to the understanding of a complex scene where visual ambiguities abound.

1.1 Problem

The problem we address in this dissertation is that, given a single 2D image of an urban scene,

design an automated system to recover the 3D structure behind the scene and the camera view-

point with respect to the scene. More specifically, as is illustrated by the output of our work in

Figure 1.2, the system estimates the gravity direction (indicated by the magenta horizon line),

infers the ground plane orientation and distance from the camera (indicated by the yellow grid),

detects objects such as cars and pedestrians (indicated by the green/red bounding boxes), esti-

mates the 3D layout of those objects (indicated by the rectangles and dots in the top-down views),
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Figure 1.2: Two examples of the output of our scene understanding system. Given a single
2D image of an urban scene, our system recovers an object/planar-level 3D structure of the
scene as well as the camera viewpoint. Here, the left column displays the viewpoint estimation
result, object detection result, and facade detection/decomposition result, where the magenta
horizon line indicates gravity direction, the yellow grid (whose spacing is 1 meter) indicates
the ground plane, the green/red bounding boxes indicate detected objects, and the color-shaded
regions indicate distinctive building facades. The right column displays the system-generated
top-down view of the scene. The thick black lines indicate the viewing boundaries, the green/red
rectangles indicate detected cars, the green/red dots indicate detected pedestrians, and the colored
lines indicate distinctive building facades. The spacing is 1 meter for the fine (thin) black grid,
and 10 meters for the coarse (thick) black grid.
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segments out building regions and decomposes them into distinctive facade planes (indicated by

the color-shaded regions), and infers the 3D layout of those building facades (indicated by the

colored lines in the top-down views).

Note that we are not trying to generate a detailed 3D point cloud of the scene [58, 59, 60],

but an object/planar-level approximation of the 3D scene. In fact, psychological experiments

on human subjects show that humans are poor at estimating the relative depth of disconnected

points or surfaces, but good at indicating surface orientations and making slant judgments [41,

42, 78]. In other words, humans reason about and make sense of visual input not in terms of

3D point cloud, but in terms of higher-level entities such as surfaces and objects. Also, for most

applications such as vision-based autonomous navigation, such a level of approximation provides

the most critical information (e.g. will I bump into a car or run into a wall if I continue to walk

this way?) while discarding less relevant details such as the exact 3D shape of an object or the

fine structures of a building facade.

Recovering an object/planar-level approximation of the 3D scene has been investigated in

the works of Hoiem et al. [31, 34], Gupta et al. [25], Bao et al. [3, 66], and Gould et al. [23],

etc., where many individual 3D reasoning components (such as estimating 3D object/surface

orientation, inferring spatial layout, and estimating camera viewpoint) have been studied, and

some 3D reasoning systems under strong assumptions have been proposed. However, it remains

a challenging problem to systematically integrate various sources of 3D geometric information

by quantitatively modeling different types of geometric constraints in a more general setting,

and to perform tractable reasoning and inference over all those inter-related geometric variables.

This dissertation aims at addressing this problem.
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1.2 Challenges

1.2.1 Resolving Ambiguity

The task of recovering 3D structure from a single image itself is an especially challenging one

regardless of the level of approximation. The root cause stems from the loss of depth information

during the image forming process. An infinite number of different 3D structures could be pro-

jected to form exactly the same 2D image. Without resorting to the prior knowledge of the world

(e.g. 3D geometric constraints among objects and facades), it is mathematically impossible to

recover the 3D structure of a scene from a single 2D image.

1.2.2 Estimating Global 3D Geometries

Global 3D geometries such as gravity direction and ground plane location play a critical role

in imposing 3D geometric constraints, because they set up a stage for the reasoning over local

entities such as objects and facades. However, with just a single image, how do we obtain the

global 3D geometries? If we use local entities to estimate the global 3D geometries, we must

make sure invalid entities (e.g. false detections returned by an object detector) do not corrupt the

estimation. On the other hand, validating local entities requires the geometric setup provided by

the global 3D geometries. How do we solve this chicken-and-egg problem?

1.2.3 Dealing with Building Facades

Unlike objects, building facades usually do not have a definitive shape, and could have an arbi-

trary extent. While segmenting out facade regions in a 2D image has enjoyed a relatively high

level of success [51], locating those building regions in 3D remains under-studied. A possible

reason is that the lack of a definitive shape and size, together with their huge variety of 3D struc-

tures, makes building facades particularly hard to model geometrically, and therefore even harder

to estimate their 3D locations. For example, from the size of an object in a 2D image and the
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prior knowledge of its real-world size, we could get a clue of how far it is from the camera.

Building facades, however, could have a large variety of heights, making its depth estimation

highly ambiguous. In addition, unlike objects that are usually in the foreground with visible

ground contact, building facades are typically in the background and hence their ground contact

lines are often occluded, undermining a strong cue of depth estimation. How do we perform

geometric reasoning over building facades when facing these difficulties?

1.2.4 Handling Uncertainty in 3D Geometric Reasoning

In order to perform 3D geometric reasoning, we need to formally represent the 3D geometric

relationships among gravity/ground, objects, and facades, as well as the relationships between

2D shapes in the image and their corresponding 3D geometries. Theoretically speaking, such

relationships are deterministic. However, as we can only observe 2D patterns in the image and

cannot directly measure 3D geometric properties, most of the 3D geometric properties have to

be inferred with some degree of uncertainty. In addition, many entities in the image that produce

3D geometric relationships are invalid (e.g. due to false detections), leading to distractive invalid

relationships that add to even more uncertainties. How do we reason over a complex set of 3D

geometric constraints with a high level of uncertainty?

1.2.5 Maintaining Tractability

In our modeling of 3D urban scenes, we allow for a higher degree of flexibility. For example,

gravity direction and ground plane orientation could independently take any direction as long as

they are within 45 degrees from the camera’s vertical axis; orientations of facade planes could

take a continuous range of directions instead of being classified into several coarse categories.

When performing probabilistic reasoning, those continuous variables need to be quantized. How-

ever, due to the combination of multiple continuous variables, even a reasonably fine quantization

would result in an exponentially large search space. Even with state-of-the-art inference algo-
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Figure 1.3: Objects and surfaces give cues about the 3D environment it resides in. A car would
suggest ground orientation and height, a building facade would suggest gravity direction, a pedes-
trian would suggest a range of possible gravity directions, and a road surface would suggest
ground orientation.

rithms, the space and computational complexity would still become intractable. How do we

maintain tractability while still retaining accuracy?

1.3 Our Approach

The core idea of our 3D geometric reasoning approach draws inspiration from how humans

perform scene understanding. When we look at an image patch that contains an object, such

as the one shown in Figure 1.3, not only do we recognize what it is, but we also form a global

3D geometry hypothesis in our mind from the local appearance of the object. Each object we

observe in an image either strengthens or weakens the global geometry hypothesis with its own

cues about the 3D environment. The global geometry hypothesis induced by the objects, on the

other hand, in turn serves as a 3D geometric context for all the objects we detect. The belief

of the existence of an object consistent with the 3D geometric context is reinforced, while the

confidence about those inconsistent detections is suppressed. The same applies to surface regions

as well.

While the core idea is conceptually simple, we could see the inherent chicken-and-egg prob-

lem mentioned in the previous section – invalid and inaccurate local detections should be re-
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moved to obtain a good estimate of the global 3D geometries, while removing those bad detec-

tions requires a good estimate of the global 3D geometries. Generally, a RANSAC algorithm [16]

could serve to solve this problem by 1) randomly selecting a minimal set of local entities that

could determine a global 3D geometry hypothesis, and 2) evaluating each hypothesis using the

support from local entities to select the best hypothesis. Note that in our case, the minimal set

of local entities is just a single object/surface. As the estimate from a single object/surface is

usually inaccurate or even invalid, and the number of objects/surfaces is limited, it is likely none

of the hypotheses generated by a conventional RANSAC process would be good. To overcome

this difficulty, we propose a generalized RANSAC algorithm, in which a global 3D geometry hy-

pothesis is obtained by pooling together the estimates from all individual local entities with a set

of random weights assigned to them. When there is a sufficient number of such random combi-

nations, at least one of the hypotheses would be generated mostly by multiple valid local entities.

Such a hypothesis would be of a better quality, because it simultaneously suppresses corruption

from invalid local estimates while reducing noise from valid yet inaccurate local estimates.

In addition to generating good hypotheses, another key to the effectiveness of our approach is

how to design a hypothesis evaluation system that identifies, encodes and imposes 3D geometric

constraints both between global 3D geometries and individual local entities, and among local

entities themselves. We systematically examine the geometric relationships among global and

local variables in a general setting. For an individual object, its geometric relationship with global

3D geometries is constrained by its 2D locations, 2D landmarks, 3D pose, and real-world height.

For a pair of adjacent objects, they are mutually constrained by occlusion ordering and space

occupancy. To deal with building facades, we decompose them into a set of distinctive facade

planes with different orientations. As we will show in this dissertation, such an approximation

of building facades by a set of planes offers a good balance between flexibility and regularity.

For an individual facade plane, it is constrained by global 3D geometries via its apparent ground

contact line, semantic segmentation, real-world height, and 3D orientation. For a pair of adjacent
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facade planes, they are mutually constrained by convex corner, occlusion ordering, and parallel

alignment. For an object and a facade plane that are potentially interacting, they are mutually

constrained by occlusion ordering. We construct a Conditional Random Field (CRF) [44] to

represent all the interacting relationships in the graph structure, and encode the corresponding

geometric constraint strengths in the unary and pairwise potentials.

Note that since we adopt a generalized RANSAC approach, the CRF inference is performed

under a given hypothesis of global 3D geometries. As a result, all the interactions involving

global 3D geometric variables are absorbed into the unary potentials of individual local entities.

Since the global 3D geometric variables are all continuous vectors that would have generated

pairwise potentials containing a huge number of elements, removing them from the nodes of the

CRF makes the inference tractable.

1.4 Datasets

In this dissertation, we use three datasets that contain urban scenes to evaluate our approach and

compare with competing algorithms.

1.4.1 LabelMe

We use the dataset compiled by Hoiem et al. [34] when the evaluation of object detection and

viewpoint estimation are involved. This dataset contains 422 outdoor images from the LabelMe

dataset [57]. Containing 923 cars and 720 pedestrians in total, the dataset covers a multitude of

outdoor urban scenes and include a wide variety of object pose and size, making the dataset very

challenging. The annotation of the dataset includes bounding boxes for cars and pedestrians.

Heavily occluded objects are not annotated. In addition, 100 of the 422 test images are annotated

with the horizon position. Hoiem et al. also collects a training/validation dataset containing 51

images.
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To allow for a finer geometric representation of an object than just a bounding box, we pro-

vide additional annotations of object landmarks. For cars, we manually mark in the image the

2D locations of the three visible ground-contacting points of wheels and the top point of the

wheel closest to the camera. Wheel height is the distance between the top and bottom land-

marks of the wheel closest to the camera. For pedestrians, we mark the 2D locations of head

and foot in the image (i.e. top and bottom landmarks). Pedestrian height is the distance between

the two landmarks. Please see Figure 1.4 for examples. We train a landmark regressor on the

training/validation set to predict the top and bottom landmarks of an object given its 2D image

features.

From those landmarks, we automatically compute the pose of cars and pedestrians with re-

spect to the camera. Given the bottom landmark and the horizon, we compute the pitch and roll

angles of objects. For cars, we also compute their yaw angles from the three ground-contacting

landmarks. Please see Figure 3.1 for the definition of pitch, roll, and yaw angles. We use these

angles to train a pose regressor on the training/validation set that estimates object pose given its

2D image features.

In addition to evaluating object detection and viewpoint estimation, we also use this dataset

for a qualitative evaluation of facade decomposition and localization, as well as a quantitative

evaluation of joint reasoning with both objects and facades. Among the 422 test images, 225

of them contain building facades, and this subset is used for the evaluation involving building

facades.

1.4.2 Geometric Context

We use the Geometric Context dataset [33] to evaluate facade decomposition. The dataset con-

tains 300 outdoor images, 250 for testing and 50 for training/validation. The images in the dataset

are segmented and annotated with seven surface layout labels – “support”, “sky”, “planar left”,

“planar center”, “planar right”, “non-planar porous”, “non-planar solid”. Here, “support”class is
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Figure 1.4: Examples of the LableMe dataset with annotations of object bounding boxes, object
landmarks, and horizon. Here, green rectangles are object bounding boxes; dots with different
colors are object landmarks, with yellow lines highlighting the frame of a car defined by its
landmarks; and the magenta line is the horizon.

Figure 1.5: Examples of the Geometric Context dataset with annotations of surface layout labels.
The color code is as follows. Magenta – planar right; cyan – planar left; red – planar center; green
– non-planar porous; yellow – non-planar solid; blue – sky; grey – support.
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Figure 1.6: Examples of the Make3D dataset with annotations of depth maps acquired using a
laser scanner. Here, depth value increases from blue to red. Maximum depth is capped at 80m.
Note that, as some windows cannot reflect laser back to the scanner, their depth measurement is
incorrect.

mostly located on the ground region; “planar left”, “planar center”, and “planar right”classes are

mostly located on building facade regions; “non-planar porous”class is mostly located on tree or

plantation regions; “non-planar solid”class is mostly located on foreground objects such as cars,

pedestrians, or trunks.

Since the dataset comes with the ground-truth annotation of a coarse categorization of pla-

nar surface orientation, we could quantize our continuous estimation of facade orientation into

“left”, “center”, and “right”classes and compare against the ground-truth and other competing

algorithms that estimate surface layout. As our approach focuses on building facades, we collect

among the 250 test images all the 55 images that contain building facades, and use these images

for evaluation. Please see Figure 1.5 for examples.
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1.4.3 Make3D

To perform a quantitative evaluation of facade localization, we perform experiments on the

Make3D dataset of Saxena et al. [48, 60]. The dataset contains 534 images of urban and nat-

ural scenes, among which 400 images are for training and the remaining 134 images are for

testing. In addition to the ground truth of semantic segmentation, the Make3D dataset also pro-

vides the ground truth of depth-maps acquired using a laser scanner. Those depth-maps make

it possible for us to evaluate the performance of our facade reasoning algorithm in estimating

the absolute depths of facades, complementing the evaluation of orientation-based decomposi-

tion performance using the Geometric Context dataset [33]. Among the 134 testing images, 51

images contain building facades. As none of them contains any objects, those images are only

used to evaluate facade reasoning. Please see Figure 1.6 for examples.

1.5 Contributions

The main contribution of this dissertation is a 3D geometric reasoning system that is able to

coherently recover the camera viewpoint and an optimal 3D layout of objects and building fa-

cades given a single 2D image of an urban scene. We achieve this by integrating multiple global

and local 3D geometries from gravity, ground plane, objects and building facades with a set of

geometric constraints, and perform probabilistic reasoning over a multitude of geometric and

validity variables using those constraints. More specifically, our contributions include:

1) We systematically identify 3D geometric relationships among global and local entities

with richer representations and less assumptions. For example, we use both pitch and

roll angles as well as landmark locations to estimate the orientation and distance of an

object, as opposed to using bounding box heights and locations in [31, 34], or pitch angles

and bounding box areas in [3, 66]. Such a characterization allows for an unrestricted

orientation of objects and a finer estimate of object dimension. We also use a continuous
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3D vector instead of a coarse category (as in [31, 34]) to represent facade orientation.

Besides, building facades are composed of a set of mutually constrained planes instead of

just blocks as in [25]. Camera could have both pitch and roll movements with respect to

gravity and ground, and gravity direction does not have to be perpendicular to the ground.

2) We develop a generalized-RANSAC-CRF approach to make inference tractable for both

the optimal values of global 3D geometries (i.e. gravity and ground) and the optimal layout

of local objects and building facades. In doing so, we circumvent exhaustive search [3]

and avoid inference over a probabilistic graphical model (PGM) [31, 34] involving huge

potential tables. In addition, unlike the Hough voting method in [66], out approach is

able to simultaneously suppress outliers from invalid local entities and reduce noise from

inaccurate local entities.

3) We develop a facade decomposition and localization algorithm based on 3D geometric

reasoning over mutually constrained planes. Unlike the superpixel-based methods in [35]

or [48], our approach reasons over combinations of planes, and thus yields a greater co-

herence and a higher-level understanding of the scene. On the other hand, unlike the

block-based method in [25], our plane-based approach is more flexible in representing

building facades of higher complexity, and is able to return a numeric parameterization

of facade planes instead of just a qualitative modeling of the facades. We also propose a

quadrilateral-based sampling algorithm to effectively detect candidate facade planes and

make plane-based facade reasoning tractable. To our knowledge, we are among the first

to propose an algorithm that is able to generate a plane-based quantitative 3D layout of

building facades with continuous orientations.

4) Different from the works in [34] or [3] that assume local entities are conditional inde-

pendent given global 3D geometries, we consider the interactions among local entities

in addition to the constraints between global 3D geometries and individual local entities.

Capturing the interactions among objects and facades by our approach improves object
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detection, 3D layout recovery, and viewpoint estimation. In addition, to our knowledge,

there are few works in the literature that perform 3D geometric reasoning involving all

three elements – gravity/ground, objects, and building facades.
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Chapter 2

Related Work

In this chapter, we review some existing works in the literature that are related to our approach

presented in this dissertation. While there are few existing works that address exactly the same

problem as defined in Section 1.1, our work is inspired by researchers working on related prob-

lems, and takes advantage of existing powerful algorithms that produce input features to our

system.

2.1 Coherence from 2D Context

Researchers have long been aware of the importance of contextual cues in improving the per-

formance of various computer vision tasks by imposing common-sense coherence in the output.

The type of contextual cues relatively easier to handle are 2D ones. For example, a cow is usu-

ally surrounded by the grass region in an image, a pedestrian is expected to be found above the

ground region in an image, and sky is expected to be located in the upper part of an image,

etc. As such 2D contextual cues in the image domain could resolve visual ambiguities that are

hard to deal with by stand-alone object detectors or image segmentors, many researchers have

explored different types of 2D context, including scene-object relationship [5, 47, 52], region-

object relationship [28], object-object relationship [5, 53], neighborhood-object relationship [2],
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region-region relationship [65], object spatial prior in the image [11], etc. The relative useful-

ness of some of the 2D contextual relationships are investigated by Zheng et al. in [77]. While

2D context is helpful in many cases, it is still highly limited, because the essential relationships

among objects and regions exist in the 3D world instead of the 2D projection of the world. For

instance, in Figure 2.1, humans could immediate tell two vehicles in the image are incoherent

with the scene due to their implausibility in the 3D world. Nevertheless, those two vehicles do

not violate any 2D contextual relationships and are thus unable to be spotted by algorithms utiliz-

ing 2D context alone. Therefore, directly leveraging 3D contextual information is indispensable

for a better coherent scene understanding.

2.2 Depth Map Estimation

There have been a significant amount of research focusing on directly measuring the 3D structure

of the scene using multi-view stereo [40, 50, 67, 70] and/or active depth sensing techniques

like LIDAR [12, 21, 37, 39, 63]. While these approaches are quite robust and widely used in

robotics applications, they have important limitations. For example, they are effective only when

the range is relatively small (typically within dozens of meters), and they are not applicable to

understanding a single image posted on a wall or displayed on a screen where 3D information

has to be inferred instead of being measured.

Saxena et al. did pioneering research on inferring a dense depth map from a single still im-

age [59, 60]. They use low-level image features within and between superpixels to reconstruct

the depth and 3D orientation of each superpixel. As their features and MRF models are com-

pletely based upon superpixels, they do not involve object detection and therefore do not utilize

object-level information which provides strong cues for the layout of a scene. The authors made a

simple extension of their model to incorporate object information in [58] and reported improved

results on depth estimation. However, in their approach, 3D scene layout does not affect object

detection. Consequently, harmful effects from false detections cannot be avoided. Also, only
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Figure 2.1: An illustration of how 2D context alone is insufficient in detecting incoherence within
a scene. The two vehicles that are evidently incompatible with the scene do not violate any 2D
contextual relationships.

object location is utilized in their method, although object pose is equally important.

A more sophisticated system that produces a dense depth map is developed by Gould et

al. [22, 48] in which semantic information is used to train a separate depth prediction model

for each semantic class, and object location is utilized as geometric constraints for depth esti-

mation. The authors show that incorporating object semantics reduces depth estimation error.

Nevertheless, depth estimation and scene layout recovery is done as an independent stage after

object detection is finalized [22]. As a result, object detection receives little benefit from scene

layout estimation. Although horizon location in the image is involved when forming regions and

objects [22, 23, 24], it only produces a feature for the classifier, and the authors do not seek to

explicitly model and utilize global 3D geometries.
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2.3 3D Scene Layout Recovery

To understand the 3D structure behind an urban scene in an image, estimating an absolute depth

for each pixel is not critical. What really matters is the ability to reason over higher-level elements

such as gravity/ground, local objects and facade planes, or, in other words, to recover the 3D

layout of a scene. To achieve this purpose, we need to explicitly model global 3D geometries (i.e.

gravity and ground), and make them interact with the detection and localization of local entities,

so that they could mutually benefit each other. To solve the chick-and-egg problem inherent in

this process (as is mentioned in Section 1.2), several approaches have been proposed. The first

approach is to employ a Probabilistic Graphical Model (PGM) that takes both global and local

geometries as its nodes whose values are to be inferred from the graph, as is done in the ground-

breaking work by Hoiem et al. [31, 34]. In [31, 34], the authors build a tree-structured Bayes

net in which local detections are attached to the common global geometric parameters. Inference

over the Bayes net produces the optimal configuration for both the (quantized) global geometric

parameters and the validity of each local detection. The authors show that 3D reasoning greatly

improves object detection, while the object evidence also improves horizon estimation [31, 34].

As a first attempt to construct such a reasoning system, Hoiem’s work nevertheless has several

limitations. For example, global 3D geometries are simplified as the row index of the horizon

line and a camera height. Such a simplification prohibits the camera to have any roll angle

with respect to the ground plane. Also, gravity direction is assumed to be always identical to

the ground plane orientation. When these assumptions are relaxed, the search space would be

significantly enlarged, and the number of entries in the resulting pairwise potential tables would

be intractably huge even with a moderately fine quantization of gravity direction and ground

plane parameters. In addition to the tractability issue in a more general setting, the simplified

geometric relationships mentioned in [31, 34] are effective only when camera pitch is small.

Another limitation is that the height of a bounding box is assumed to be the height of an object

in the image, which is often not true especially for objects like cars. Also, object pose is not
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considered in the algorithm.

Instead of optimizing the ground plane parameters in a PGM, Bao et al. propose to enumerate

all possible (quantized) parameterizations of the ground plane within a predefined range [3]. This

approach removes some of the limitations of [31, 34]. For example, the camera could have a

non-zero roll angle with respect to the ground plane, and relative pitch angle is introduced to

characterize the local geometry of object candidates. However, as the algorithm conducts an

exhaustive search for the optimal ground plane in a combinatorial space, the search has to be

confined in a narrow range, and/or the quantization has to be relatively coarse.

An improved method is presented in [66], where all object candidates cast votes for the

ground plane parameters in a discretized Hough voting space, and the peak in the voting space

is regarded as the optimal ground plane. Although this method circumvents both the PGM in-

ference and exhaustive search of the ground plane, it is not able to prevent false detections from

corrupting the votes. While the authors employ an EM-like iterative loop to alleviate this prob-

lem, yet it is susceptible to local minimum – if the estimate of the ground plane in the first loop

is qualitatively wrong, it has little chance to recover in subsequent loops.

While performing 3D geometric reasoning, all of the methods mentioned in this section as-

sume that local entities are conditionally independent of each other given the global 3D ge-

ometries, and thus only check the compatibility of local entities with respect to the global 3D

geometries. Such a compatibility check could identify object candidates 1 and 2 in Figure 2.2 as

false detections. However, even if two adjacent local entities are both compatible with the global

3D geometries, they may still not be able to co-exist due to the violation of local 3D geometric

constraints such as depth ordering (candidates 3 and 4 in Figure 2.2) and/or space occupancy

(candidates 5 and 6 in Figure 2.2). Considering these local 3D geometric constraints is important

in removing many of the false detections produced by an off-the-shelf object detector. Also note

that none of the methods mentioned in this section attempts to recover the 3D layout of building

facades.
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Figure 2.2: Given the ground plane represented by the yellow grid, car candidates 1 and 2 are
incompatible with the global 3D geometries due to their implausible size and pose (illustrated
by the blue frames). Candidates 3 and 4 cannot co-exist due to their conflict in depth ordering.
Candidates 5 and 6 cannot co-exist due to their conflict in space occupancy.

Figure 2.3: An urban scene in which building facades cannot be modeled by blocks (since the
Manhattan world assumption does not hold). In addition, while the red and blue regions are
adjacent in the image, their corresponding facade planes do not form a connected structure in
3D.
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2.4 3D Facade Reasoning

While there are few existing works in the literature that perform 3D geometric reasoning over

both objects and facades, many researchers have been working on recovering facade geometries.

Pioneering works on modeling facade geometries, such as Geometric Context proposed by

Hoiem et al., focus on classifying super-pixels into different orientation labels (e.g. planar left,

planar center, or planar right) [23, 33, 35, 36]. While this approach does not produce higher-level

concepts such as planes and blocks, it generates useful cues of coarse surface orientations. Using

such cues, Gupta et al. assemble blocks from two segments with different vertical orientations,

and locate those blocks by fitting their ground and sky contact lines [25]. This method generates

a rich high-level interpretation of the scene, yet the interpretation is qualitative both in facade

orientation and depth. Besides, approximating building facades by blocks cannot model more

complex cases such as the one shown in Figure 2.3. In addition, this method makes no attempt

to recover camera viewpoint with respect to facades, since the reasoning is mostly qualitative.

Quantitative modeling of surface orientation can be found in many works of indoor scene

understanding, where surface orientation is determined by the span of two orthogonal vanish-

ing lines [6, 27, 46, 76]. While we also use vanishing lines to compute plane orientations, the

methods developed for indoor scene understanding cannot be applied to outdoor facade analysis.

This is because those methods typically simplify the room as a box, and all the other vertical

surfaces are confined within the box and parallel to the walls. By contrast, building facades in

outdoor scenes are located in an open space and usually have more complex structures. While

the algorithm in [45] does not simplify the room as a box, it heavily relies on a common ceiling

to define vertical walls. This is not applicable to outdoor scenes either.

Instead of modeling surfaces, Ramalingam et al. constructs a wire frame model of building

facades by lifting vanishing lines into 3D space using orthogonality constraints derived from a

strong Manhattan-world assumption [54]. A limitation of this approach is that, even when the

Manhattan-world assumption holds true, all the building facades have to be connected in a single
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wire frame model. In many cases, however, building facades occlude each other and do not form

a connected structure. This is exemplified by the facades in red and blue in Figure 2.3.
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Chapter 3

Geometric Variables and Visual Cues

In this chapter, we first discuss the geometric variables considered in our reasoning system.

Those geometric variables include both 2D and 3D, local and global ones, and most of them are

not directly observable. A major goal of our reasoning system is to infer the values of those

geometric variables. Secondly, we describe different types of visual cues that are extracted from

an image and fed into our 3D geometric reasoning system. Many of such visual cues themselves

are obtained from sophisticated state-of-the-art algorithms focusing on specific visual tasks, and

are therefore reasonably informative. Yet we will show in later chapters that our 3D geometric

reasoning system further improves the performance of those visual tasks while providing a richer

and more coherent interpretation of the 3D scene behind the image.

3.1 Geometric Variables

The coordinate systems we use in our work are shown in Figure 3.1. Variables in red letters

are defined with respect to the camera coordinate system {o, x, y, z} whose origin is at the cam-

era center. Variables in blue letters are defined with respect to the ground coordinate system

{O,X,Z}, whose origin is on the ground plane. In addition, variables in green letters are de-

fined in the image plane.
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Figure 3.1: Geometric variables in two coordinate systems. Please see text for more details. For
the sake of clarity, we do not draw the projection of the facade onto the image plane.
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Among all the geometric variables, three of them are global – (inverse) gravity direction ng,

ground plane orientation np, and ground plane height hp. These variables have interactions with

every individual object and facade plane. Note that in our general setting, gravity direction and

ground plane orientation do not have to align with the y-axis or fall within the y− z plane of the

camera coordinate system, nor do they have to agree with each other. In other words, the camera

is allowed to have both pitch and roll motions relative to gravity and ground, and ground plane is

allowed to be tilted with respect to gravity. Both gravity direction and ground plane orientation

could induce a horizon line in the image, which is the intersecting line between the image plane

and the origin-passing plane perpendicular to the gravity direction/ground plane orientation. The

two horizon lines are illustrated by the magenta and yellow lines in the image plane in Figure 3.1.

Each individual object involves the following local geometric variables: object vertical ori-

entation nv, object pitch angle θ, object roll angle γ, object yaw angle τ , object depths dt and db

for top and bottom landmarks, locations xt and xb of the top and bottom landmarks in the image,

real world height Ht of the top landmark, object vertical viewing angle α, camera and ground

coordinate Xb and X′b of the bottom landmark, respectively.

For each facade plane, the following local geometric variables are involved: surface orienta-

tion ns, distance from camera ds, ground contact line orientation n′s, ground contact line distance

d′s, camera coordinates of the facade plane corners X
(1)
s ∼ X

(4)
s and their projections on the im-

age plane x
(1)
s ∼ x

(4)
s (not shown in Figure 3.1), ground coordinates X

′(1)
s ,X

′(2)
s of the two

endpoints of the ground contact line, and real world height Hf .

The camera coordinate system {o, x, y, z} and the ground coordinate system {O,X,Z} are

related as follows:

O = −hp · np, (3.1)

eZ = m{np × (ez × np)}, (3.2)
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eX = eZ × np. (3.3)

Here, O is the location of the ground originO in the camera coordinate system. eX and eZ are the

unit vectors of the X and Z axes with respect to the camera coordinate system. ez = (0, 0, 1)T

is the unit vector of the z axis with respect to the camera coordinate system. Function m{v}

normalizes a vector v to unit length. Intuitively, the Z axis of the ground coordinate system lies

at the intersection between the ground plane and the plane spanned by np and the z axis of the

camera coordinate system.

We will discuss the relationships among those geometric variables in later chapters.

3.2 Detected Objects

Objects such as cars and pedestrians in an urban scene are one of the key focuses of our scene un-

derstanding system. Not only do we want to determine if they exist in the scene, but we also want

to locate existing objects in 3D space. As we will show in the next chapter, reasoning over the 3D

locations of objects would significantly help the task of determining their existence. In addition,

each individual object itself is able to provide information regarding global 3D geometries such

as gravity direction and ground plane parameters.

In order to utilize objects in our scene understanding task, we must first acquire a set of candi-

date detections of objects, and then use them to help infer global 3D geometries, which would in

turn, together with other 3D geometric constraints, prune out invalid candidates. We obtain object

candidates using the state-of-the-art Deformable Part Model (DPM) detector [13, 14, 15, 18, 20]

with publicly available code at [19]. The DPM detector returns candidates whose overall appear-

ance and part appearances are similar to the learned template and the 2D locations of the parts

are consistent with the learned prior. The feature used by the DPM detector is histogram of ori-

ented gradients (HOG) [9] which has been popular within the computer vision community. The

classifier used by the DPM detector is latent support vector machine (LSVM) [15] that handles
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Figure 3.2: Examples of the output of the DPM detector [18, 19]. Green bounding boxes indi-
cate the most confident detections with score 1, red bounding boxes indicate the least confident
detections with score 0, and all the other colors from green to red indicate the detections with
scores between 1 and 0.

latent variables of 2D part locations within the bounding box. The DPM detector also considers

contextual cues such as the presence of other objects and 2D locations of bounding boxes to

re-score each detection [15]. Further improvements include introducing grammar models [20]

and adopting a cascade approach [14].

Examples of the detection results by the DPM detector on several images from the LabelMe

dataset [34] are shown in Figure 3.2. Here, the bounding box color reflects the detection score

– red meaning the least confident detection with score 0, green meaning the most confident

detection with score 1, and every other color from red to green indicates a detection score in
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between, with yellow meaning a borderline detection with score 0.5. We can see that while

the results are quite reasonable, some valid detections have a score below 0.5, mostly due to

occlusions. Also, some invalid detections have a score above 0.5, mostly due to confusing local

appearance.

While the DPM detector achieves the state-of-the-art performance, all the reasoning and com-

putations are done in the 2D image domain. As is mentioned in Chapter 1, geometric reasoning in

3D would further resolve visual ambiguities and boost object detection performance. To enable

3D geometric reasoning, for each object candidate, we estimate its 3D pose (i.e. pitch, roll, and

yaw angles with respect to the camera) and 2D locations of top and bottom landmarks defined in

Section 1.4. This is essentially a regression task, mapping from image features extracted from

the patch enclosing the object candidate to a continuous variable. To achieve this purpose, we

use the HOG feature and train a hierarchical discriminant regressor (HDR) [38] on the LabelMe

training/validation set [34] with the ground truth of landmark locations and 3D pose we provide.

The accuracies of the learned regressors are shown in Figure 3.3. Here, the errors of the pitch,

roll, and yaw angles are measured in degree, and the landmark error is measured in the ratio

of landmark deviation to bounding box size. We do not predict the yaw angle of pedestrians

because of their near-circular footprints. We can see that prediction of roll is more accurate than

pitch, which is similar to human experience. In addition, prediction of pedestrian pitch is harder

than car pitch, which is also expected due to the pole-like shape of pedestrians. We can also see

that prediction of the yaw angles of cars is less accurate than pitch and roll angles. This is due to

the much larger variations in yaw angles in the training set. Yet 18 degrees of error still provides

informative cues of car heading. For landmark prediction, the error is around 10% of bounding

box size. Acknowledging the nature of uncertainty in the prediction of geometric properties, we

adopt a probabilistic approach in 3D geometric reasoning, as we will discuss in later chapters.
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Figure 3.3: Prediction errors of object geometric properties on the LabelMe dataset [34]. For
pitch, roll, and yaw angles with respect to the camera, the error is measured in degree. For
landmark location, the error is measured in the ratio of the landmark deviation to the bounding
box size. We do not predict the yaw angle of pedestrians, because their footprints are small and
circular, unlike the footprints of cars which are larger and rectangular.

Figure 3.4: Examples of semantic segmentation results using the SHL algorithm [51]. The three
rows from top to bottom show the results on the LabelMe [34], Geometric Context [33], and
Make3D [48] datasets, respectively. The color code of semantic labels is as follows: red –
building; purple – road; green – grass; grey – sky; light green – tree; yellow – foreground.
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Figure 3.5: Examples of surface layout segmentation results using Hoiem’s surface layout algo-
rithm [33]. The examples in this figure are exactly the same as those in Figure 3.4. The color
code of surface layout labels is as follows: grey – support; blue – sky; cyan – planar left; red –
planar center; magenta – planar right; green – non-planar porous; yellow – non-planar solid.

32



3.3 Semantic Segmentation

Semantic cues play an important part in our 3D scene understanding system. For example,

reasoning over the 3D orientations and locations of building facades requires the system to get

a sense of where the building region is in the 2D image. Besides, the road/grass region in the

image provides useful cues of where the ground contact lines of facade planes could and could

not be in the image, and therefore imposing constrains on the depth of the facade planes. In

addition, when using vanishing lines to estimate horizon, we discard line segments from image

regions other than building and road to suppress noise. Also, the sky and road/grass regions limit

what the ground orientation could be, and therefore assist in estimating global 3D geometries.

We obtain semantic segmentations using the Stacked Hierarchical Labeling (SHL) algorithm

proposed by Munoz et al. [51]. This algorithm adopts a hierarchical labeling process that pre-

dicts semantic label distributions of image regions in a coarse to fine manner – a region with

a smaller scale predicts its label distribution by utilizing both its own features and the label

distributions of larger regions covering it, thereby effectively exploiting its higher-order spatial

context. The authors show that this approach achieves impressive semantic segmentation results

while consuming much less computation than other structured models.

As the LabelMe dataset [34] and Geometric Context dataset [33] do not provide ground truth

for semantic segmentation, we train the SHL model on the Stanford Background dataset [23] and

apply the learned model on the LabelMe and Geometric Context datasets. Since the Make3D

dataset [48, 60] comes with ground-truth semantic segmentations, we train the SHL model on

the 400 training images of the dataset. Some typical examples of the segmentation results on

the three datasets are shown in Figure 3.4. Note that while the output of the SHL algorithm is

a semantic label distribution for each pixel, we are showing the most likely label for the sake of

clarity. We can see that the SHL algorithm achieves good performance, even for cross-dataset

cases. While there still exist some mistakes, our aggregate use of the semantic segmentation fea-

ture as well as 3D geometric constraints makes our system insensitive to those isolated mistakes.
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3.4 Surface Layout Segmentation

Another informative feature we utilize in our 3D geometric reasoning system is the surface layout

segmentation produced by Hoiem’s surface layout algorithm in [33]. While semantic segmen-

tation decomposes an image into regions with different semantics, surface layout segmentation

decomposes an image into regions with different surface geometries – “support”, “sky”, “pla-

nar left”, “planar center”, “planar right”, “non-planar porous”, and “non-planar solid”. While

the two types of segmentations provide some redundant information (e.g., “support”and “non-

planar porous”usually cover similar regions as “road”and “tree”, respectively), surface layout

segmentation also provides important information that semantic segmentation lacks – categor-

ical orientations of vertical surfaces. Along with vanishing lines and orientation maps (which

will be discussed in the next two sections), surface layout features are used in decomposing the

building region into distinctive facade planes.

We use the pre-trained model provided by Hoiem et al. [32] to obtain surface layout segmen-

tations on all the three datasets. For the sake of comparison, the results on the same set of images

in Figure 3.4 are shown in Figure 3.5. Note that here we are showing the most likely surface

layout label instead of the label distribution produced by the algorithm. We can see that although

the surface layout labeling is somewhat noisy, it is still informative in general.

3.5 Horizon from Vanishing Lines

Horizon lines in an image reflects the values of global 3D geometries. More specifically, both

gravity direction and ground plane orientation with respect to the camera would yield a horizon

line in the image. When the ground is tilted with respect to gravity, the two horizon lines would

differ, as is shown in Figure 3.6.

In images of man-made environments such as urban scenes, many edges are parallel in 3D.

The lines defined by those edges intersect at the same point or at infinity in the image domain.
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Figure 3.6: Vanishing lines corresponding to vertical and horizontal vanishing points, and hori-
zon lines corresponding to gravity and ground. The thiner lines are vanishing lines, where the
red ones correspond to the vertical vanishing point, and the green, blue, and magenta ones cor-
respond to three different horizontal vanishing points. The thicker lines are horizon lines, where
the yellow one corresponds to ground plane orientation, and the magenta one corresponds to
gravity direction. Note that as the visible ground is tilted with respect to gravity direction, the
ground horizon deviates from the gravity horizon.

Those intersecting lines are called vanishing lines, and the intersection point of those lines is

called vanishing point. In Figure 3.6, for example, the thiner lines with the same color are the

vanishing lines parallel in 3D and therefore intersecting at the same vanishing point in 2D.1

Among all the vanishing points, there are two special types. The first type is vertical van-

ishing point, which corresponds to a group of parallel lines whose direction is the same as the

gravity direction. In typical urban scenes, vertical vanishing lines mostly fall on the vertical edges

of building facades, and form the largest group of vanishing lines. The second type is horizontal

vanishing point, which corresponds to a group of parallel lines whose direction is perpendicular

to the vertical vanishing direction. In typical urban scenes, horizontal vanishing lines mostly fall

1Since the vanishing lines are automatically extracted by our algorithm, there exist a few mistakes.
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on the horizontal edges of building facades. The orthogonality between the vertical vanishing

direction and each horizontal vanishing direction could be used to estimate focal length, with

which the 3D vector of gravity direction can be computed. Therefore, vertical and horizontal

vanishing lines provide strong cues for the gravity direction. In Figure 3.6, the red vanishing

lines belong to the vertical vanishing point, and the green, blue and magenta vanishing lines be-

long to three different horizontal vanishing points. Note that horizontal vanishing directions do

not have to be orthogonal to each other.

To identify vertical and horizontal vanishing lines and estimate vertical and horizontal vanish-

ing point positions, we follow an approach inspired by the one in [43], with two major differences

– RANSAC-based initialization and removal of the Manhattan world assumption.

We first extract line segments from the building and road regions using the line detection

algorithm presented in [72, 73].2 With the Expectation-Maximization (EM) algorithm [10], we

cluster those line segments into groups where each group contains lines passing or close to a

common vanishing point. To handle vanishing points at infinity, we use Gaussian sphere to do

the clustering [1, 4, 7]. Unlike the method in [43] that initializes vanishing points by grouping

line segments with similar orientations in the image, we adopt a RANSAC approach [16] to

initialize vanishing points. More specifically, we randomly select two line segments and obtain

their intersection point. Then we count how many line segments are nearly aligned with the

intersection point. For each intersection point with sufficient aligned line segments, we evaluate

its score by computing the average degree of alignment. After drawing a large number of random

intersection points, we select the one with the highest score as the first vanishing point. All

the line segments associated with this vanishing point are removed, and the RANSAC process

repeats to extract other vanishing points, until no line segment remains.

While there could be many vanishing points, what we need are vertical and horizontal van-

ishing points. Unlike the method in [43] that assumes there are only three orthogonal vanishing

points (one vertical, two horizontal) corresponding to the three axes of the world reference frame

2The code is publicly available at [71].
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(i.e. the Manhattan world assumption), we do not assume there are only two horizontal vanish-

ing points, nor do we assume horizontal vanishing points are orthogonal to each other. The only

constraint we impose is that the vertical vanishing point must be orthogonal to each horizontal

vanishing point. Assuming a reasonable initial focal length, we start by identifying vertical van-

ishing lines as the most dominant group of vanishing lines whose direction is within π/4 from

the camera’s vertical axis. After obtaining the vertical vanishing point, we identify horizontal

vanishing points as the ones that are nearly orthogonal to the vertical vanishing point. Note that

there could be more than two horizontal vanishing points. Then we search for the optimal focal

length that maximizes the average orthogonality between the vertical vanishing direction and

every horizontal vanishing directions. The optimal vertical vanishing direction serves as a good

hypothesis of the gravity direction.

We compare the horizon estimation accuracy between the method in [43] and our algorithm in

which the Manhattan world assumption is relaxed (i.e., there could be more than two horizontal

vanishing directions, and they are not required to be orthogonal to each other). The experiment

is conducted on the 100 images of the dataset compiled by Hoiem et al. [34] with ground-truth

horizons. Estimation error is defined as the angle between the estimated vertical vanishing direc-

tion and the ground-truth vertical vanishing direction derived from the ground-truth horizon. The

estimation error of the method in [43] is 2.77 degrees, while the estimation error of our algorithm

is 2.53 degrees.

Our method achieves a higher accuracy mostly because of the RANSAC-based initialization,

since a majority of the urban images in the dataset satisfy the Manhattan world assumption. Two

examples are shown in Figure 3.7. In each row, the thick magenta line in the left image is our

result, and the level black line in the right image is the result of the method in [43]. In the left

image, red lines are vertical vanishing lines, and horizontal vanishing lines belonging to different

horizontal vanishing points are indicated in different colors. In the right image, red, green,

and blue lines indicate the lines belonging to the vertical vanishing point and two horizontal
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Figure 3.7: Qualitative comparison of horizon estimation between our algorithm and the method
in [43] when the Manhattan world assumption is satisfied. The left column is the result of our
algorithm, where the estimated horizon is indicated by the thick magenta line. The red lines are
vertical vanishing lines, and the other lines with different colors indicate horizontal vanishing
lines belonging to different horizontal vanishing points. The right column is the result of the
method in [43], where the estimated horizon is indicated by the level black line. The red, green,
and blue lines belong to the vertical and two horizontal vanishing points, respectively, while the
yellow lines are outlier lines.
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Figure 3.8: Qualitative comparison of horizon estimation between our algorithm and the method
in [43] when the Manhattan world assumption is violated. The left column is the result of our
algorithm, where the estimated horizon is indicated by the thick magenta line. The red lines are
vertical vanishing lines, and the other lines with different colors indicate horizontal vanishing
lines belonging to different horizontal vanishing points. The right column is the result of the
method in [43], where the estimated horizon is indicated by the level black line. The red, green,
and blue lines belong to the vertical and two horizontal vanishing points, respectively, while the
yellow lines are outlier lines.
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vanishing points, respectively, while yellow lines are outlier lines. We can see that even when

the Manhattan world assumption holds true in these examples, the method in [43] mistakenly

groups many line segments due to bad initialization from which EM is unable to recover.

When images violating the Manhattan world assumption are encountered, the method in [43]

is not effective at all. Two examples are shown in Figure 3.8. Note that our algorithm manages to

identify all the non-orthogonal horizontal vanishing points. This is very important for 3D facade

reasoning.

After obtaining the gravity direction from vanishing lines, we estimate the ground plane ori-

entation as follows. If the horizon line derived from the gravity direction trespasses neither the

road/grass nor the sky semantic regions (which are obtained from semantic segmentation in [51]),

the ground orientation is identical to the gravity direction; otherwise, we search around the grav-

ity direction and find the closest direction whose horizon line does not trespass the road/grass or

the sky region. Please see Figure 3.6 for example.

3.6 Orientation Map from Line Sweeping

In our 3D geometric reasoning system, we need to decompose each building region into a set of

distinctive facade planes, each of which has a different orientation. The most important cue of

the orientation of a facade region is the directions of vanishing lines located within the region –

if the region is truly a facade plane, its orientation can be determined by the vertical vanishing

lines and the (single set of) horizontal vanishing lines located within the region. However, as

vanishing lines could often be sparse, a facade region may not contain at least one vanishing

line for both the vertical and horizontal vanishing directions. Therefore, it would be desirable to

generate a dense orientation map from those vanishing lines.

We use an approach similar to the line sweeping algorithm proposed by Lee et al. [45]. The

original algorithm in [45] is as follows. (Please also see Figure 3.9 for illustration.) Suppose

vanishing line lv belongs to the vertical vanishing point vv, and vanishing line lh1 belongs to a
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Figure 3.9: Illustration of the line sweeping algorithm proposed in [45]. Please see text for more
details.
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Figure 3.10: Comparison between the original line sweeping algorithm [45] (left column) and
our improved version (right column). Facade regions with different orientations are shaded with
different colors. Undetermined regions are not shaded.
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certain horizontal vanishing point vh1. We first sweep lv around vv within the triangular region

defined by vh1 and the two endpoints of lv. For each direction, the sweeping is stopped when the

line hits another line that neither belongs to vv nor vh1. We record the swept region as Rv,h1. Then

we sweep lh1 around vh1 confined by vv in the same manner, resulting in another swept region

Rh1,v. The intersection region Rv,h1∩Rh1,v has an orientation vv×vh1, where v is the Gaussian

sphere vector corresponding to vanishing point v. However, if, say, Rv,h2 ∩ Rh2,v happens to

claim the same region, then the orientation of this region is regarded as undetermined. This

phenomenon is more likely to occur when line segments are near the horizon line and therefore

mistakenly grouped to the wrong vanishing point, as is illustrated by the horizontal green line

segment and the orange regions in Figure 3.9. The orientations of the regions that do not belong

to any intersection regions {Rv,hi ∩Rhi,v}|ki are also undetermined, where k is the total number

of horizontal vanishing points.

As blocked sweepings and conflicting claims would result in undetermined regions in the

original algorithm, the resulting orientation maps could only cover part of the building region

in most cases, as is shown in the left column of Figure 3.10. To increase the coverage, we

make several improvements upon the original algorithm. Firstly, we break a line segment into

shorter sub-segments and do line sweeping independently for each sub-segment. This way, many

regions that are otherwise unaccessible to the original line segment could be swept by some of

its sub-segments.

Secondly, we assign weights to each line segment by computing the probability of the line

segment belonging to each horizontal vanishing point as follows. We first obtain the angle be-

tween the line segment and the direction pointing from the midpoint of the line segment to each

horizontal vanishing point. Such an angle is then converted to a likelihood score by a Gaussian

function.3 The probability of the line segment belonging to different horizontal vanishing points

is computed by normalizing the likelihood scores over all horizontal vanishing points. For exam-

ple, in Figure 3.9, lh1 has a much higher probability of belonging to vh1 than lh2 belonging to vh2
3The larger the angle, the lower the likelihood.
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due to the normalization process. As a result, the originally undetermined orange regions would

be regarded as belonging to the blue regions.

Thirdly, we fill in the vertical and horizontal gaps between adjacent determined quadrilateral

regions. Our improved line sweeping algorithm produces a much denser orientation map, as is

shown in the right column of Figure 3.10. We also quantitatively compare the coverage ratio

on the LabelMe dataset [34]. The coverage ratio is defined as the ratio between the area of the

determined building region to the area of the entire building region. Our improvements on the

line sweeping algorithm increase the coverage ratio from 67.6% to 95.9%.
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Chapter 4

Coherent Object Detection with 3D

Geometric Context

In this chapter, we model and utilize the 3D geometric interactions between global 3D geometries

(i.e. gravity and ground plane) and individual objects as well as the interactions among adjacent

objects to ensure 3D geometric coherence of detected objects.

In achieving this purpose, we make the following contributions. Firstly, we formally establish

constraints among geometric variables of gravity, ground, and objects shown in Figure 3.1 in a

general setting, providing a more accurate and flexible representation of geometric relationships

and properties than the works in [3, 34, 66].

Secondly, we propose a novel generalized RANSAC method to address the chicken-and-egg

problem of jointly estimating global 3D geometries and detecting objects mentioned in Sec-

tion 1.2. Unlike previous approaches in [3, 34, 66], our proposed method does not require an

exhaustive search of global 3D geometries in a limited range, nor does it involve those global

geometric variables into an intractable inference over a probabilistic graphical model (PGM).

In addition, our generalized RANSAC method could simultaneously suppress the corruption of

global geometry estimation caused by false detections, and improve the accuracy of global ge-

ometry estimation by reducing the noise of inaccurate estimates produced by true detections.
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Figure 4.1: The overall scheme of our algorithm. Here, gravity direction w.r.t. camera is repre-
sented by the orange horizon line, and the ground plane is represented by the blue mesh.

Thirdly, different from the works in [3, 34, 66] that only consider the constraints of global

3D geometries imposed on each individual object candidate, we also introduce local 3D geo-

metric constraints between object candidates, and integrate the global and local 3D geometric

constraints in a Conditional Random Field (CRF) [44].

Attributed to these contributions, our algorithm outperforms the state of the art in terms of

object detection and global 3D geometry estimation on the challenging outdoor images from the

LabelMe dataset [34].
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4.1 Overview

The overall scheme of our algorithm is illustrated in Figure 4.1. We start by generating ob-

ject/surface candidates (including cars, pedestrians, vertical and horizontal surface regions) using

state-of-the-art object detectors (e.g. Deformable Part Model (DPM) mentioned in Section 3.2)

and surface segmentation algorithms (e.g. Surface Layout Model (SLM) mentioned in Sec-

tion 3.4). Each object/surface candidate gives an estimate of the global 3D geometries (i.e.

gravity direction and ground plane parameters) based on their 2D appearance. Those noisy es-

timates are then pooled together using a generalized RANSAC algorithm to generate a set of

global 3D geometry hypotheses. Given each hypothesis, we compute the compatibility of each

object/surface candidate and infer their validity according to global and local 3D geometric con-

text. The quality of each hypothesis is obtained as a result of the inference procedure. Finally

the hypothesis with the highest quality is selected as the optimal estimate of the global 3D ge-

ometries, and the inference result of object candidate validity associated with the best hypothesis

gives the final object detection result.

4.2 Geometric Relationships Among Variables

The coordinate systems we use in our geometric reasoning are illustrated in Figure 3.1. For a

detailed description of the coordinate systems as well as the geometric variables in Figure 3.1,

please refer to Section 3.1. Now we list the relationships that exist among global geometric

variables and object geometric variables:

dt = Ht sin θ/ sinα; (4.1)

db = Ht(sin θ/ tanα + cos θ); (4.2)
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nv = m{dtr{xt, f} − dbr{xb, f}}; (4.3)

nv = g{−r{xb, f}, θ, γ}; (4.4)

α = arccos{< r{xt, f}, r{xb, f} >}; (4.5)

hp = −db < np, r{xb, f} >; (4.6)

nv =


np for cars

ng for pedestrians
(4.7)

Here, the function r{x, f} computes the unit vector pointing from the camera center towards

pixel location x in the image plane under focal length f . The function m{v} normalizes a vector

v to unit length. The function g{v, θ, γ} rotates a unit vector v by pitch angle θ and roll angle

γ. The function < v1,v2 > computes the inner product of two vectors.

In addition, we could also estimate the distributions of object pitch, roll and yaw angles as

well as top and bottom landmark locations given object appearance I and category c: 1

θ ∼ pa1(I, c); (4.8)

γ ∼ pa2(I, c); (4.9)

τ ∼ pa3(I, c); (4.10)

xt ∼ pmt(I, c). (4.11)

1We do not estimate the yaw angle of pedestrians.
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xb ∼ pmb(I, c). (4.12)

Another cue we could use is the prior knowledge that predicts the distribution of object height

given its category c:

Ht ∼ ph(c). (4.13)

Among all the geometric variables, only xt and xb are directly observable. When multiple

object candidates are present, we are faced with a large set of equations containing non-linear

and even non-deterministic constraints. Moreover, many false detections would produce invalid

equations. Therefore, instead of attempting to directly solve them, we use those equations to

propose hypotheses of the global 3D geometries (ng,np, hp), and to evaluate those hypotheses.

4.3 Generating Global 3D Geometry Hypotheses

Once we have identified the relationships between global and local geometric variables, we could

use local entities to generate hypotheses of global 3D geometries. More specifically, each ob-

ject/surface candidate gives its own (potentially noisy or even invalid) estimate of gravity di-

rection or ground plane parameters, and a generalized RANSAC algorithm is used to generate

hypotheses of gravity and ground from a pool of local estimates.

4.3.1 Estimates of Global 3D Geometries from Local Entities

For each object candidate: Using the constraints from the equations listed above, we estimate

a non-parametric distribution of the vertical orientation nv of each object candidate from the

appearance of the image patch enclosing it. Instead of resorting to a multi-view object detector

that returns only a handful of discrete object poses, we directly estimate the mean/variance of
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the pitch and roll angles of a detected object by applying a regressor trained using the Hierarchi-

cal Discriminant Regression model (HDR) [38] with HoG features [9] on the LabelMe training

dataset [34, 57]. We also estimate the mean/variance of the 2D positions of the landmarks using

the HDR regressor. Here, the top and bottom landmarks for a car are the top and bottom locations

of the wheel closest to the camera (which are stabler and better-defined), and for a pedestrian,

they are the head and foot locations.2 The pitch and roll angles, together with landmark loca-

tions, produce a non-parametric distribution of object vertical orientation nv, according to the

algorithm summarized in Figure 4.2. Following constraint 4.7, the vertical orientation distribu-

tions obtained from cars are regarded as the estimations of the ground plane orientation np, and

those from pedestrians are for the gravity direction ng.

In addition to estimating ng and np, given the vertical orientation, each object candidate also

provides cues for the ground plane height hp according to its size and location. The algorithm

for using an object candidate to generate a non-parametric distribution of hp is summarized in

Figure 4.3.

For each surface candidate: We use Hoiem’s surface layout algorithm [33] to identify im-

age regions corresponding to vertical and horizontal (i.e. support) surfaces.3 Within the vertical

surface region, we extract line segments and compute vertical and horizontal vanishing points

(VP) using the algorithm described in Section 3.5. To account for uncertainty, each vanishing

point is represented by a set of line-intersection points, as is illustrated in Figure 4.4a. The ver-

tical direction nv of the surface can be estimated directly from the vertical VP direction4, or

from the cross-product of a pair of horizontal VP directions. Therefore, for the vertical VP, it

directly yields a set of nv samples from the directions of its constituent line-intersection points.

For each pair of horizontal VPs, we compute the cross product of the directions of their respec-

2For a quantitative evaluation of pose and landmark estimation, please see Section 3.2.
3Alternatively, we could also use the line sweeping algorithm [45] to identify vertical and horizontal surfaces.

However, when considering both vertical and horizontal surfaces, the orientation map obtained from the line sweep-
ing algorithm becomes much noisier. As a result, we do not use it to obtain vertical and horizontal surfaces.

4Here, the direction of a point means a 3-dimensional unit vector pointing from the camera center to the point
on the image plane.
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Figure 4.2: Algorithm for generating a non-parametric distribution of the vertical orientation
nv of an object candidate. The space under consideration covers the entire upper dome of unit
sphere, and the resolution is 1.5 degrees.
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Figure 4.3: Algorithm for using an object candidate to generate a non-parametric distribution of
the ground plane height hp. The range under consideration is 0-50m, and the resolution is 0.05m.

tive constituent line-intersection points and generate a set of nv samples. The nv samples from

the vertical VP and all pairs of horizontal VPs are pooled together to generate a non-parametric

distribution of nv over the dense grid Gn using Kernel Density Estimation (KDE) [74].

Estimating the vertical direction of a horizontal surface region (e.g. a road) is similar, ex-

cept that its vertical VP is highly unreliable and therefore not used. Please see Figure 4.4b for

illustration.

In urban scenes, vertical surfaces usually correspond to building facades which typically

agree with the gravity direction, while horizontal surfaces usually fall on roads which relate to

the ground plane orientation. Therefore, we have nv = ng for vertical surfaces and nv = np for

horizontal surfaces.

We also estimate horizon from all building and road regions (please see Section 3.5), compute

the distribution of gravity direction/ground plane orientation using a Gaussian model, and add

the distribution to the pool of distributions from local entities.
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Figure 4.4: Estimating the vertical direction of a surface region. Here, nkv is the k-th sample
of the vertical direction nv of a surface. {vv} and {vhi} are the set of line-intersection points
belonging to the vertical and i-th horizontal vanishing points, respectively. v

(ki)
hi is the ki-th line-

intersection point within {vhi}. The meaning is similar for v
(k)
v . (a) Vertical surface. Its vertical

direction is derived from the vertical vanishing point and pairs of horizontal vanishing points. (b)
Horizontal surface. Its vertical direction is derived from pairs of horizontal vanishing points.
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An example of each object/surface candidate producing a non-parametric distribution of its

vertical direction is shown in Figure 4.5. We can see that the distribution of vertical direction of

a pedestrian is elongated along the pitch direction, which is expected. Also, the estimate from

the horizontal surface is more likely to be inaccurate due to the lack of the vertical vanishing

direction and the lack of more than one dominant horizontal vanishing directions.

Overall, as is shown in Figure 4.6b, local estimates look messy, partly due to the existence

of several false detections, and partly due to the estimation noise in true detections. In the next

section, we discuss how to generate at least one good hypothesis from those messy estimates.

4.3.2 Pooling Local Estimates to Generate Hypotheses using

Generalized RANSAC

One of the keys for RANSAC to succeed is that at least one hypothesis should be close to the

ground truth. In our case, a single object/surface candidate (i.e. observation) alone can generate

a hypothesis of the global 3D geometries. Ideally, we could simply use a single observation (i.e.

the minimal set) to generate a hypothesis. However, as single observations (even if they are true

detections) tend to be noisy, it is likely that none of the hypotheses generated by the minimal set

is close to the ground truth. On the other hand, if we use all the observations with equal weights,

false detections would corrupt the hypothesis. Therefore, we propose a generalized RANSAC

algorithm to both inhibit outliers and reduce noise.

After each object/surface candidate has estimated a distribution of the global 3D geometries,

we generate a set of mixed distributions by mixing individual distributions together with ran-

domly generated weights. For each mixed distribution, we find its modes using the mean-shift

algorithm [8] and take those modes as hypotheses. When the set of mixed distributions is large

enough, at least one of them would mostly come from multiple valid object/surface candidates.

Furthermore, by finding modes of their mixed distribution (which is equivalent to averaging) we

also reduce the noise level.
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Figure 4.5: Examples of object/surface candidates estimating distributions of ground plane ori-
entation and gravity direction. Counter-clockwise, the four images show the cases of a car, a
pedestrian, the horizontal surface, and the vertical surface, respectively. The distributions are
represented by the dense blue points on the unit sphere shown in the upper right corner of each
image. The peak of each distribution is illustrated by a red dot, and its corresponding horizon is
displayed by a yellow (for ground) or magenta (for gravity) line in the image. Top and bottom
landmarks of the car and pedestrian are indicated by the magenta and green dots, respectively.
Best viewed on screen.
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Figure 4.6: Generate hypotheses of global 3D geometries from object/surface candidates. a)
Object/surface candidates. Here, red and green shades indicate vertical and horizontal surface
candidates, respectively. b) Estimates of global 3D geometries given by individual object/surface
candidates. Here, magenta lines represent gravity horizons, and yellow grids indicate ground
planes, where the grid size is 1m. For display purposes, only the mode of each non-parametric
distribution is shown. c) A bad hypothesis. d) A good hypothesis.
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Figure 4.7: Comparing different methods of generating the hypotheses of gravity direction and
ground plane orientation. The y-axis is the smallest error among all the hypotheses generated
by a given method, and its unit is degree. The red circle shows the result of directly using the
modes from each individual distribution. The magenta square indicates the result of computing
the modes of the average of all the individual distributions. The blue curve plots the result of
our generalized RANSAC approach which extracts modes from a set of random mixtures of
individual distributions.

To verify this claim, we compare the error of hypothesis generation in three cases: 1) obtain-

ing hypotheses by directly using the modes from each individual distribution estimated by each

object/surface candidate; 2) obtaining hypotheses by computing the modes of the average distri-

bution over all the distributions estimated by object/surface candidates; 3) obtaining hypotheses

using our generalized RANSAC approach. The error of hypothesis generation is defined as the

difference between the ground truth and the best hypothesis among all the hypotheses generated.

We perform experiments on the 100 images that are provided with the ground-truth horizon in

the LabelMe dataset [34]. The row index of the ground-truth horizon is converted to the ground-

truth orientation vector which is compared against the hypotheses of gravity direction/ground

orientation by measuring the angle between them. For each image, we vary the size of the set of

random mixtures from 1 to 50.

The results of our experiment are plotted in Figure 4.7. We can see that the generalized

RANSAC approach (blue curve) has the smallest error. Using the average of all the observations
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(the magenta square) produces the worst performance due to the corruption by many invalid

candidates. Directly using each individual observation (the red circle) performs better, yet it

still yields less accurate hypotheses than our generalized RANSAC method due to the noise in

individual estimation. Also, in our method, as the size of the set of random mixtures grows, the

error decreases. This is expected, because the ground truth is more likely to be covered when we

try more combinations. In our experiment, generating 50 random mixtures is sufficient.

We observe that when we generate 50 random mixtures, the number of hypotheses for gravity

direction or ground plane orientation is usually less than 50 after near-duplicate hypotheses are

combined. This number is very small compared to the search space we consider – the entire

upper dome of the Gaussian sphere. Even with such a small number of hypotheses, our method

is able to keep the error less than 1.8 degrees.

In implementation, we first generate hypotheses of ng and np. Then for each 2-tuple hy-

pothesis (ñg, ñp), we compute the distribution of hp from each object candidate according to the

algorithm in Figure 4.3, and generate hypotheses of hp by randomly mixing those distributions

and finding modes. The resulting hypotheses of hp supplement the original 2-tuple hypothesis to

form a set of 3-tuple hypotheses (ñg, ñp, h̃p). Note that the proposed hypotheses are continuous

despite the discrete grids Gn and Gh.

Two qualitative examples of bad and good hypotheses from the hypothesis set are shown in

Figure 4.6c and d.

4.4 Evaluating Global 3D Geometry Hypotheses

Given a global 3D geometry hypothesis (ñg, ñp, h̃p), we evaluate its quality by measuring how

well it is supported by object/surface candidates after excluding the influence of outliers. For this

purpose, we evaluate geometric compatibilities of each object/surface candidate, and employ a

CRF to infer the validity of each candidate. The optimal score of the objective function used in

the CRF inference is regarded as the quality of the current global 3D geometry hypothesis.
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4.4.1 Types of 3D Geometric Context

Before evaluating the geometric compatibilities of local entities, we first describe different types

of 3D geometric context under which invalid local entities are identified.

We consider four types of 3D geometric context (please see Figure 4.8 for illustrations):

1) Common ground. Objects supported by the common ground cannot have arbitrary pose

and/or location. For an object like a pedestrian that has a point contact with the ground,

its bottom location is constrained to be on the ground plane; for an object like a car that

has a planar contact with the ground, not only is its bottom location constrained to be on

the ground plane, but its pose is constrained to be the same as the ground plane orientation

as well. Also, for horizontal surfaces corresponding to the ground plane, their orientation

should be consistent with the ground plane orientation.

2) Gravity direction. The orientation of some upright objects such as pedestrians usually

follows the gravity direction. Also, for vertical surfaces corresponding to building facades,

their orientation should be consistent with the gravity direction.

3) Depth ordering. Assume all objects are opaque. Objects with a greater depth must be at

least partially visible for them to be detected. If an object farther away from the camera is

mostly or even totally occluded by a closer object, then the two objects are incompatible

with each other.

4) Space occupancy. The same space volume can be occupied by only one object. If the

footprints of two objects on the ground plane overlap with each other, then they are incom-

patible with each other.

The first two types of geometric context (i.e. common ground and gravity direction) affect

local entities everywhere in the scene, and are therefore global geometric context. The last two

types of geometric context (i.e. depth ordering and space occupancy) only affect neighboring

(either in 2D or 3D) local entities, and are therefore local geometric context.
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Figure 4.8: Different types of geometric context. Objects consistent with all types of geometric
context are displayed in green. Invalid and incompatible objects that violate at least one type
of geometric constraints are shown in red and orange. Here, cubes represent cars and ellipsoids
represent pedestrians. Blue dots indicate ground contact points. The specific type of geometric
constraint violated is indicated by the number after “#”.

4.4.2 Computing Geometric Compatibilities

Having identified different types of geometric context, we use the geometric relationship equa-

tions in Section 4.2 to quantitatively compute the geometric compatibilities of local entities.

Global Geometric Compatibility

For an individual object candidate, we use two sources of geometric constraints to compute

its global geometric compatibility. The first source involves non-deterministic regressor outputs.

We compute the pitch θ̃ and roll γ̃ of the object candidate according to constraint 4.4, where

nv = ñg for pedestrians and nv = ñp for cars. θ̃ and γ̃ are then checked against the regressor

outputs from constraints 4.8 and 4.9. The resulting compatibility score is

sg1 = exp{−(θ̃ − θ0)2

2σ2
θ

} · exp{−(γ̃ − γ0)2

2σ2
γ

} − 0.5, (4.14)

where θ0, γ0 and σ2
θ , σ2

γ are the mean and variance of the pitch and roll regressor outputs, respec-

tively.
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The second source of geometric constraints involves deterministic geometric relationships.

Given the ground plane hypothesis ñp and h̃p, we compute the bottom landmark depth db using

constraint 4.6. This gives us the 3D coordinate Xb of the bottom landmark. According to

constraint 4.3, we search for the optimal 3D coordinate Xt of the top landmark along its line

of sight using gradient descent, such that the direction of Xt −Xb has the best match with ñv

(which equals ñg for pedestrians or ñp for cars). The length of Xt −Xb is checked against the

prior knowledge of the real world height Ht of the top landmark. Denote the angle between ñv

and the direction of Xt −Xb as δ, then the resulting compatibility score is

sg2 = exp{− δ2

2σ2
} · exp{−(‖Xt −Xb‖ −Ht)

2

2σ2
H

} − 0.5, (4.15)

where σ2
H is the variance of Ht according to prior knowledge, and σ is a parameter set as 20

degrees.

Estimate of the bottom landmark image coordinate xb could be noisy (please see Figure 3.3),

and a small error in xb could translate into a huge displacement in 3D coordinate when xb is

near the ground horizon, significantly decreasing the compatibility score sg2 of an otherwise

valid object. To solve this problem, we compute sg2 at the nodes of a 5-by-5 grid centered at xb,

and the highest sg2 score is used. Here the grid spacing is 5% of bounding box size.

The final compatibility score sg for an individual object candidate is the average of sg1 and

sg2.

For an individual surface candidate, its global geometric compatibility also comes from

two sources. Firstly, we check how well the vertical orientation distribution produced by the sur-

face candidate agrees with ñg (for vertical surface) or ñp (for horizontal surface). This produces

a compatibility score sg1 with range between -0.5 and 0.5. Secondly, we check the plausibility

of the location of the surface candidate with respect to the ground horizon in the image. For

the horizontal surface candidate, denote the proportion of the surface region above the ground

horizon as rh, then the compatibility score sg2 is −rh with range between -1 and 0. For the verti-
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cal surface candidate, this type of compatibility does not apply, as it usually straddles across the

horizon. The final compatibility score sg is the average of sg1 and sg2 for the horizontal surface

candidate, and is sg1 for the vertical surface candidate.

Local Geometric Compatibility

To compute the level of depth ordering conflict, for each pair of object candidates i and j

whose bounding boxes overlap, we check if the bounding box of the farther candidate j is located

mostly or completely within the bounding box of the closer candidate i. If yes, then they are

unlikely to co-exist due to the occlusion conflict resulting from the depth ordering, as is the case

of candidates 3 and 4 in Figure 2.2. Therefore, we define the pairwise compatibility score s(ocl)ij

related to depth ordering as

s
(dep)
ij = −(|Rij|/|Rj|)λ, (4.16)

where |Rij| is the overlapping area of candidates i and j, |Rj| is the area of candidate j, and λ is

a parameter set as 5.

To compute the level of space occupancy conflict, for each pair of object candidates, we

compute the overlap of their footprints on the ground plane. They are unlikely to co-exist due to

space occupancy conflict if their footprint overlap is significant, as is the case of candidates 5 and

6 in Figure 2.2. The pairwise compatibility score s(ocp)ij related to space occupancy is therefore

defined as

s
(ocp)
ij = −|R′i ∩R′j|/|R′i ∪R′j|, (4.17)

where |R′i ∩R′j| and |R′i ∪R′j| are the intersection and union areas of the footprints of candidates

i and j, respectively. The footprint of a car candidate is obtained by estimating its yaw angle τ

using Equation 4.10 and rotating the rectangle around the ground coordinate of the car candidate

62



by τ . The size of the rectangle is the typical real-world length and width of a car.5 The footprint

of a pedestrian candidate is simply a circle around its ground coordinate. The diameter of the

circle is the typical real-world width of a pedestrian.

4.4.3 Inferring Candidate Validity with a CRF

We construct a CRF over the object/surface candidates to infer their validity. Each candidate

forms a node, and two object candidates have an edge between them if their bounding boxes

and/or footprints overlap. The objective function the CRF attempts to maximize is

V (o) =
2∑

k=1

ω
(s)
k (o

(s)
k ) +

∑
i

ωi(oi) +
∑

(i,j)∈E

ϕij(oi, oj). (4.18)

Here, o is the binary validity indicator. ω(s)
1 (o

(s)
1 ), ω(s)

2 (o
(s)
2 ), and ωi(oi) are the unary potentials

for the vertical surface candidate, horizontal surface candidate, and object candidate i, respec-

tively. Their values are defined as ω(o = 1) = sg + (sd − 0.5) and ω(o = 0) = 0, where sg is

the compatibility score defined in the previous section, and sd is the segmentation confidence or

detection confidence returned from the surface segmentation algorithm or object detection algo-

rithm. ϕij(oi, oj) is the pairwise potential between object candidates i and j. Its value is sij when

both oi and oj are 1; otherwise its value is 0. Here, sij could either be s(dep)ij or s(ocp)ij depending

on the type of the edge. If both of them exist, then sij is the smaller of the two.

After the inference is completed, the quality of the current global 3D geometry hypothesis

is the maximum value V ∗ of the objective function. After all the hypotheses are evaluated, the

one with the highest quality is selected. This optimal hypothesis is further refined by the valid

object/surface candidates associated with it.

5We have also tried to obtain the footprint of a car candidate by mapping wheel locations in the image to the
ground plane. It offers no improvement and is numerically less stable.
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4.5 Experiments

We evaluate our approach on the test dataset compiled by Hoiem et al. [34] which contains

422 random outdoor images from the LableMe dataset [57]. Those images cover a multitude of

outdoor urban scenes and include a wide variety of object pose and size, making the dataset very

challenging. The dataset contains 923 cars and 720 pedestrians in total.

Hoiem et al. also collects a training/validation dataset containing 51 images. We use this set

to train our pose and landmark regressors. The prior distribution of pedestrian height in our ex-

periment followsN(Hp; 1.7, 0.09), and the prior distribution of wheel height isN(Hw; 0.6, 0.25).

The typical length and width of a car are 3m and 2m, respectively, and the typical width of a

pedestrian is 0.5m. When proposing hypotheses from distributions, 50 random mixtures are usu-

ally enough, and the total number of hypotheses to evaluate is in the hundreds. For each global

geometry hypothesis, we use max-product belief-propagation [30] to do inference over the CRF.

We run our algorithm under multiple focal lengths centered at the value estimated by the algo-

rithm described in Section 3.5, and the one that yields the highest value of V ∗ is adopted. It takes

less than 10 minutes to process a 640-by-480 image with Matlab code.

Comparison with The State of The Art: Using the top-performing Deformable Part Model

(DPM) [15] as the baseline detector, we compare the object detection performance of our ap-

proach with Hoiem’s algorithm in [34]. The result of Hoiem’s algorithm is generated by running

their published code with the DPM detector outputs. The ROC curves are plotted in the left panel

of Figure 4.9. The average precision (AP) of our approach is 50.5%, achieving a boost of more

than 10% over the AP of the baseline detector at 40.1%. Surprisingly, Hoiem’s algorithm per-

forms worse than the baseline in the realm of lower false positive rates, yielding an AP of 30.8%.

We observe that Hoiem’s model is not effective for car candidates returned by the DPM detector.

This is probably because Hoiem’s algorithm takes the bounding box height as the object height

in the image. This approximation is poor when a non-planar object, such as a car, is viewed

from a non-zero pitch angle. As our algorithm explicitly estimates the landmark locations in the
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Figure 4.9: Comparison of object detection performance. The baseline detector in the left panel
is DPM [15], and in the right panel is Dalas-Triggs [9]. Our algorithm significantly boosts the
performance over the baseline detector. It also outperforms Hoiem’s algorithm [34] while making
less assumptions.

image, it does not have this problem. Interestingly, Hoiem’s algorithm performs very well when

the Dalal-Triggs detector [9] is employed, as is shown in the right panel of Figure 4.9. This

is probably because the height of the bounding boxes returned by the Dalal-Triggs detector are

more regulated due to their fixed aspect ratio.

In addition to comparing object detection, we also evaluate global geometry estimation. The

dataset provides the ground truth of horizon in the form of the row index where the horizon is

located. It does not distinguish between gravity and ground horizons, since the two are almost

the same for most of the images in the dataset. After converting the row index of a horizon to

the corresponding orientation vector, we compute the error of an estimated gravity direction (or

ground plane orientation) by measuring the angle between it and the ground truth orientation

vector. The results are shown in Figure 4.10. Despite not using any prior, our method has a

smaller error in horizon estimation than Hoiem’s algorithm. The estimated ground plane height

by our method is centered around 1.5 meters, close to the typical eye level.

It is worth noting that, unlike Hoiem’s algorithm, we do not assume the ground plane is
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Figure 4.10: Comparison of global geometry estimation performance. The first row shows the
distributions of gravity direction error, ground orientation error, and ground height from our
algorithm. The second row shows the results of Hoiem’s algorithm [34]. Our algorithm has a
smaller error in horizon estimation. We are not able to compute the error of the ground plane
height estimation due to the lack of ground truth. However, both the algorithms peak at around
1.5 - 1.6 meters, roughly corresponding to the eye level. Best viewed on screen to zoom in.
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Figure 4.11: Contribution of individual components. Here, “Det”shows the result of the DPM
baseline detector; “Det+GlbGeo”shows the result of including global geometric context alone;
“Det+LocGeo”shows the result of including local geometric context alone; “Det+FullGeo”shows
the result of our full system using both types of context.

perpendicular to the gravity direction, or has a zero roll and a small pitch. Even with a greater

flexibility, our approach still outperforms Hoiem’s algorithm both in object detection and global

geometry estimation, on the test dataset that largely satisfies those assumptions.

As we do not have access to the code of the algorithms proposed in [3] or [66], we are not

able to directly compare with their performance. Yet according to what the authors report in [3],

their method does not perform as well as Hoiem’s algorithm on a subset of the 422-image test

dataset. In [66], the authors use their own baseline detector and a different subset of images. As

a result, we could only compare the performance gain over the baseline. The algorithm in [66]

achieves a gain of 5.1% in average precision, while our approach achieves a gain of 10.4%.

Global and Local 3D Geometric Context: Different from existing works, we use both

global and local 3D geometric context when inferring the validity of object candidates. Global

geometric context checks the geometric consistency of an individual object candidate with the
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global geometry hypothesis, while local geometric context checks the geometric consistency of

nearby object candidates. To evaluate the contributions of the two types of geometric context,

we run our algorithm with only one of them enabled. The results are plotted in Figure 4.11. We

can see that both the global and local 3D geometric contexts enhance detection performance, and

the highest gain is achieved when they are applied simultaneously.

Benefit is mutual: Not only does 3D geometric context enhance object detection perfor-

mance, but coherent object detection in turn improves the estimation of gravity and ground hori-

zons. To verify this argument, we estimate the gravity direction and ground plane orientation

from vertical and horizontal surfaces alone. The median estimation error is 2.62 degrees for

gravity direction and 4.85 degrees for ground plane orientation. Also, when we estimate the

gravity direction and ground plane orientation using the vanishing lines from the entire building

and road regions (please see Section 3.5), the errors are 2.53 degrees for gravity direction and

2.94 degrees for ground plane orientation. By contrast, the errors of our full system are 2.05 and

2.21 degrees, respectively.

Qualitative evaluation: Several examples of the object detection results of our algorithm

are shown in Figure 4.12. Please refer to the figure caption for the meanings of different types

of boxes. We can see that some false detections from DPM are rejected due to inconsistency

with global 3D geometries (e.g. the huge “pedestrian”in (a)); some false detections from DPM

are rejected due to inconsistency with local 3D geometries (e.g. the rejected “cars”in (c)). Also,

some true objects missed by DPM are recovered due to their geometric consistency (e.g. the

pedestrians in (b)). The case when gravity direction and ground orientation do not agree is

shown in (f), where the ground horizon is illustrated by the thick yellow line. It deviates from

the gravity horizon. A failure case is shown in (k), where a “car”is mistakenly recovered due

to its high geometric compatibility. In another failure case shown in (l), two truncated cars are

wrongly rejected because our regressors are not trained on truncated cars.
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Figure 4.12: Examples of our coherent object detection results. Solid green box: the object is
detected by both the DPM detector and our algorithm. Solid red box: the object is missed by
the DPM detector but recovered by our algorithm. Dotted red box: the object is detected by
the DPM detector but rejected by our algorithm. Magenta line: gravity horizon. Yellow grid:
ground plane where the grid spacing is 1m. The detection threshold of both the DPM detector
and our algorithm is set as 0.5.
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4.6 Conclusion

We have presented an object detection algorithm that ensures geometric coherence in the 3D

world. Compared with existing approaches, the major contributions of our work include 1) a

more flexible modeling of the scene that treats gravity direction and ground orientation sepa-

rately, 2) a more systematic representation of the geometric relationships between scene and

objects, 3) a generalized RANSAC algorithm that enables both outlier suppression and noise

reduction in hypothesis generation, 4) incorporating both global and local 3D geometric context

with a CRF, 5) including surface regions in estimating and evaluating global 3D geometry. Due

to these factors, our algorithm achieves a superior performance on a challenging dataset.
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Chapter 5

Inferring 3D Layout of Building Facades

with 3D Geometric Context

In the previous chapter, we treat the entire building region as a single vertical surface region. To

achieve a better understanding of the scene, it is desirable to recover the 3D layout of the building

facades as well.

In this chapter, we present a novel algorithm that infers the 3D layout of building facades

from a single image of urban scenes. Different from existing methods that only yield coarse

orientation labels[23, 33, 35, 36] or qualitative block approximations [25], our algorithm quan-

titatively reconstructs building facades in 3D space using a set of planes mutually related by 3D

geometric constraints. Each plane is characterized by a continuous orientation vector and a dis-

tance distribution. An optimal solution is reached through inter-planar interactions. Due to the

quantitative and plane-based nature of our geometric reasoning, our model is more expressive

and informative than existing approaches. Experiments show that our method compares compet-

itively with the state of the art on both 2D and 3D measures, while yielding a more informative

interpretation of the 3D scene behind the image.

Note that in this chapter, we do not consider any information from objects present in the

scene. Joint reasoning of both facades and objects will be discussed in the next chapter.
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Figure 5.1: Our algorithm detects building facades in 2D image, decomposes them into distinc-
tive planes of different 3D orientations, and infers their optimal depth in 3D space based on cues
from individual planes and 3D geometric constraints among them. Left: Detected facade regions
are covered by shades of different colors, each color representing a distinctive facade plane. Mid-
dle/Right: Ground contact lines of building facades on the ground plane before/after considering
inter-planar geometric constraints. The coarser grid spacing is 10m.

5.1 Overview

Given a single image of an urban scene, automatically inferring the underlying 3D layout of

building facades in the scene would significantly benefit many tasks in fields such as autonomous

navigation and augmented reality. It goes beyond depth map estimation [48, 58, 60], because it

provides a richer understanding of the scene, such as camera pose, locations of planes and blocks,

and how they are related with each other in 3D [25].

Nevertheless, recovering building facades in 3D space is a particularly challenging task. The

difficulty comes from the fact that building facades could have highly flexible combinations in

3D space, and therefore do not have a definitive shape either in 2D image or 3D space. In fact,

they are “stuffs”rather than “objects”, and are thus unable to be located by a single 3D coordinate.

An example is shown in Figure 5.1, where the facades do not even follow the Manhattan world

assumption.

Although we cannot locate building facades the same way we locate objects, we observe

that unlike other regions such as trees or sky, building facades are more structured, and can be

decomposed into a set of planes that can be represented quantitatively. The orientations and
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locations of those planes are mutually constrained by their 3D geometric relationships derived

from physical feasibility. In fact, modeling building facades as a set of planes with continuous

orientations and quantitatively reasoning over their 3D locations using inter-planar geometric

constraints would produce a richer interpretation of the facade scene than existing pixel/segment

based approaches [33, 35, 48] and block-based approaches [25]. Our approach provides critical

scene understanding information (e.g. quantitative orientation, depth, and relationships of facade

planes) that existing algorithms do not provide.

The main contributions of this work are as follows.

1) We propose a plane-based fully quantitative model to infer the 3D layout of building fa-

cades, where each plane is represented by a continuous orientation vector and a distribution

of depth values.

2) In such a model, multiple cues, such as semantic segmentation, surface layout, and vanish-

ing lines, are utilized to detect and decompose the building region into distinctive planes.

3) The quality of an individual candidate plane is determined by its compatibility with both

2D evidence from image features and 3D evidence such as camera and building height;

4) We model different types of 3D geometric relationships among candidate planes, and apply

a CRF to both determine their validity and infer their optimal depths.

5) We do not assume ground is horizontal or buildings are vertical with respect to the camera,

nor do we assume buildings are perpendicular to the ground. We also do not make the

Manhattan world assumption.
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5.2 Plane-based 3D Modeling of Building Facades

5.2.1 Problem Formulation

The problem our model addresses is to detect a set of distinctive facade planes and estimate

their 3D orientations and locations given a single image of urban scene. Here, a distinctive

facade plane is defined as a facade plane whose orientation is different from the orientations of

its adjacent facade planes; otherwise, two adjacent facade planes with the same orientation will

be merged.

More formally, our model infers the optimal 3D layout of building facades by maximizing

the following objective function:

V (o,ns,ds,xs|I, hp,np, f,Hf ) =
∑
i∈P

ω(oi,nsi, dsi,xsi|I, hp,np, f,Hf )

+
∑

(i,j)∈Pv

ϕv(oi, oj, dsi, dsj,nsi,nsj,xsi,xsj|hp,np, f)+
∑

(i,j)∈Po

ϕo(oi, oj, dsi, dsj,nsi,nsj,xsi,xsj|hp,np, f)

+
∑

(i,j)∈Pa

ϕa(oi, oj, dsi, dsj,nsi,nsj,xsi,xsj|hp,np, f), (5.1)

where o,ns,ds,xs are variables that characterize facade planes. More specifically, for each

plane i, oi,nsi, dsi and xsi represent its validity (binary indicator), orientation (continuous vec-

tor), distance from camera center (continuous scalar), and spatial extent (continuous coordinates

specifying the corners of the plane in the image). Please see Figure 3.1 for an illustration of these

variables.1 Note that as our model does not know in advance the total number of distinctive fa-

cade planes in the scene, it has to detect candidate planes with high recall and infer their validity

after obtaining contextual information from other planes. For valid planes, it also needs to infer

their optimal 3D geometries. Our algorithm that detects candidate facade planes will be detailed

1For clarity we do not show xs in the figure. They are the projection of Xs onto the image plane.
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Figure 5.2: Image features utilized by our method. Top row from left to right: 1) vanishing lines
and ground horizon, where the thick yellow line is the ground horizon, and the thiner lines in
different colors represent vanishing lines belonging to different vanishing points, 2) orientation
map from the line sweeping algorithm where each color represents an orientation corresponding
to a specific horizontal vanishing point, 3) semantic segmentation score for the “building”region.
Bottom row from left to right: surface orientation scores for “planar left”, “planar center”, and
“planar right”.

in the next section. The optimization problem is conditioned upon image features I , ground dis-

tance hp from the camera center, ground orientation np with respect to the camera, focal length

f , and facade height Hf . In this work, np and f are automatically computed in a preprocess-

ing stage that will be discussed in the next section, and we assume a typical ground distance

hp = 1.6m. Hf is obtained from the prior knowledge of a typical range of facade heights.

The first term in the objective function is a unary potential for each individual plane, and it

is summed over all candidate planes P. The remaining three terms are pairwise potentials for

planes with mutual constraints, and they are summed over a subset (Pv,Po,Pa) of candidate

planes involved in those constraints. In the following sections, we describe these potentials in

more detail.
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5.2.2 Individual Compatibility

The unary potential ω is based on the product of two scores. The first score is the image feature

compatibility score, measuring how well the 2D location of a facade plane in the image agrees

with image features:

Sr(nsi,xsi|I) =
1

N(Q)

∑
n∈Q

(s(bldg)n + gn(nsi)+ < nsi,vn >), (5.2)

where Q is the image region of the facade plane defined by its corners xsi, and N is the number

of pixels within Q. We consider three sources of information. 1) s(bldg)n is the semantic label

score of pixel n belonging to “building”region. We use Stacked Hierarchical Labeling proposed

by Munoz et al. [51] to perform semantic segmentation (please see Section 3.3). 2) gn(nsi) is

the orientation label score of pixel n having an orientation label consistent with the orientation

nsi of the plane. Orientation labels are obtained from the surface layout algorithm proposed by

Hoiem et al. [33] (please see Section 3.4). The orientation labels of interest here include “planar

left”, “planar center”, and “planar right”. Plane orientation nsi is quantized into one of these

labels before computing the score gn using the orientation label distribution of pixel n produced

by the surface layout algorithm. 3) < nsi,vn > computes the inner product between the plane

orientation nsi and the orientation vector vn at pixel n derived from vanishing lines using our

line-sweeping algorithm described in Section 3.6. An example of the image features we use

are shown in Figure 5.2 2. Note that the three terms in the right-hand side of Equation 5.2 is

comparable because they all range from 0 (totally implausible) to 1 (totally plausible).

The intuition behind Equation 5.2 is that if an image region indeed belongs to a building fa-

cade, then it should 1) be supported by the semantic cue that it belongs to the “building”region, 2)

be supported by the surface layout cue that its orientation agrees with the dominant surface lay-

out label within it, and 3) be supported by the vanishing line cue that its orientation is consistent

with the dominant horizontal vanishing line direction within it.

2Here we do not limit the line sweeping region to be contained within the “building”semantic region.
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The second score is the geometric compatibility score. Although the facade detection al-

gorithm to be described in the next section returns the corners of the facade plane in the image,

yet the ground contact line is often occluded (e.g. by cars parked along the road). As a result,

the bottom boundary of the facade plane in the image is usually invisible and is therefore flexi-

ble, as is shown in the right image of Figure 5.3. When we place the facade plane (with a fixed

orientation nsi returned by the facade detection algorithm) at different depths, it would result in

a series of ground contact lines sweeping the blue and green regions illustrated in the left image

of Figure 5.3. Not all depths are equally plausible. For example, if the facade plane is placed

very close to the camera, the ground contact line would be the blue line in the right image of

Figure 5.3. Such a depth is geometrically implausible because there is ground region above the

ground contact line. On the other hand, if the ground plane is placed very far away from the

camera, the ground contact line would be the green line in the right image of Figure 5.3. Such a

depth is also geometrically implausible because the resulting facade height would be too large.

Based on these intuitions, we compute the geometric compatibility score of a facade plane with

orientation nsi placed at a certain depth dsi by checking if the ground contact line of the facade

plane in the image is both above the ground region and below the building region. In addition, it

checks if the distance between the ground contact line and the ground horizon line in the image

yields a reasonable building height in 3D space:

Sd(nsi, dsi,xsi|I, hp,np, f,Hf ) =

min{1− 1

N(A)

∑
n∈A

s(gnd)n , 1− 1

N(B)

∑
n∈B

s(bldg)n , Hf (
‖xst − xsb‖
‖xsm − xsb‖

· hp))}, (5.3)

where A is the region between the ground contact line and the ground horizon as is illustrated

by the green region in Figure 5.3. This regions is not supposed to contain ground pixels. B is

the region between the ground contact line and the bottom of the image as is illustrated by the

blue region in Figure 5.3. This region is not supposed to contain building pixels. hp, np, and f
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Figure 5.3: Illustration of the situation when computing the geometric compatibility score Sd.
The yellow line is the ground horizon. In the left figure, the facade plane in the image is en-
closed by the red lines; the visible part of the facade plane returned by our detection algorithm
is indicated by the red shades, over which the image feature compatibility score Sr is computed.
If there are ground pixels in the green region or building pixels in the blue region, Sd would be
lower. xst,xsb and xsm are used to estimate the 3D height of the plane. The right figure shows
the ground contact lines when the plane is placed at different depths. The blue ground contact
line has a lower Sd score because part of the ground region is above it. The green ground contact
line also has a lower Sd score, because the resulting facade height is not within a reasonable
range.

are used to project the 3D ground contact line of the facade plane with orientation nsi at depth

dsi to the 2D ground contact line in the image. xsi defines the top, left, and right boundaries

of the facade plane in the image. As Figure 5.3 illustrates, xst,xsb and xsm are where the left

boundary intersects with the top boundary, the (projected) ground contact line, and the ground

horizon, respectively. ‖xst − xsb‖/‖xsm − xsb‖ · hp is an estimate of the facade height in 3D. It

should be within a reasonable rangeHf of typical facade heights. Note that the three terms in the

right-hand side of Equation 5.3 is comparable because they all range from 0 (totally implausible)

to 1 (totally plausible).

After the two scores Sr and Sd are obtained, the unary potential ω is defined as
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ω(oi,nsi, dsi,xsi|I, hp,np, f,Hf ) =
Sr(nsi,xsi|I) · Sd(nsi, dsi,xsi|I, hp,np, f,Hf )− 0.25 if oi = 1

0 if oi = 0

(5.4)

Here, the product of Sr and Sd is subtracted by 0.25 because the neutral values of both Sr and

Sd are 0.5. When Sr · Sd < 0.25, the unary potential penalizes the objective function if oi = 1,

indicating the candidate plane is unlikely to be valid based on the cues from itself.

5.2.3 Mutual Compatibility

As building facades are structured, geometric constraints exist among facade planes. The first

type of constraints we consider is convex-corner constraint: if two facade planes are adjacent

in the image and their orientations could form a convex corner in 3D, then their depths should

be such that they connect in 3D along the convex fold [25], as is illustrated in Figure 5.4. As

a result, all the facade planes connected by convex corners (such as the red, magenta, and cyan

planes in Figure 5.1) could only move in space as a whole. To enforce such a constraint, the

pairwise potential ϕv is defined as

ϕv(oi, oj, dsi, dsj,nsi,nsj,xsi,xsj|hp,np, f) =
−∞ if oi 6= 0 and oj 6= 0 and xsi|xsj and nsi ∨ nsj and dsi Y dsj

0 otherwise
(5.5)

where xsi|xsj means facade planes i and j are adjacent in the image, nsi ∨ nsj means the ori-

entations of facade planes i and j form a convex corner, and dsi Y dsj denotes the situation in
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Figure 5.4: Facade planes that are adjacent in the image and form a convex corner in 3D must
connect with each other along the convex fold.

which the depths of the two planes are such that they fail to connect along the convex fold in 3D

(i.e., their 3D ground contact lines do not meet and connect with each other). Negative infinity

penalty is applied if this situation happens. In other words, the convex-corner constraint is a hard

constraint, so that physical plausibility is always maintained.

The second type of constraints is occlusion constraint. If two facade planes are adjacent

in the image and their orientations form a concave corner, we check if one of them is occluded

by the other. Figure 5.5 illustrates three cases when two facade planes form a concave corner

(other cases are symmetrical to one of these three cases). In the left case, it can be immediately

determined that the blue plane is occluded by the red one. In the center case, we cannot say for

sure which plane is occluded. In the right case where the blue plane does not extend beyond the

red one, we check the vanishing lines and orientation map within a small region right next to the

blue plane. If the region has the same orientation as the blue plane, then it becomes the left case;

otherwise it becomes the center case. Although we cannot unambiguously determine the occlu-

sion ordering for the center case, we could still reasonably assume that the plane facing more

towards the camera is usually occluded, such as the red and green facade planes in Figure 5.1.

While such an assumption could be violated, it holds true for most of the outdoor urban scenar-

ios we have encountered. Also, as we will see in the equation below, the occlusion constraint

is a soft constraint, meaning it could be overridden by other stronger evidence. Without loss of
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Figure 5.5: Three cases for determining the occlusion ordering between two facade planes that
are adjacent in the image and form a concave corner in 3D. Please see text for details.

Figure 5.6: Given the occlusion ordering between two facade planes, this figure illustrates three
possible cases when computing the occlusion constraint. The solid red and blue lines are the
ground contact lines of the two facade planes in the ground coordinate system. d′j1 and d′j2 are
signed distances from the two endpoints of the red line to the blue line. d′i and d′j are the distances
from the ground origin to the ground contact lines of facade planes i and j, respectively. They
can be easily obtained from dsi and dsj .
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generality, suppose facade plane i is occluded by facade plane j. Then the pairwise potential ϕo

related to occlusion ordering is defined as

ϕo(oi, oj, dsi, dsj,nsi,nsj,xsi,xsj|hp,np, f) =
−max{0, d′j1, d′j2}2/(2σ2

1) if oi 6= 0 and oj 6= 0 and xsi|xsj and nsi ∧ nsj

0 otherwise
(5.6)

Here, nsi ∧ nsj means the orientations of facade planes i and j form a concave corner. d′j1 and

d′j2 are defined in Figure 5.6, where the solid blue and red lines are the ground contact lines of

facade planes i and j, respectively, in the ground coordinate system. According to equation 5.6,

the pairwise potential ϕo is 0 (i.e., no penalty) when facade plane i is totally behind facade plane

j; otherwise, a soft penalty is applied depending on the degree of violation. The soft constraint

here serves to handle noise in the estimation of occlusion ordering.

The third type of constraints is alignment constraint: facade planes are encouraged to be

aligned by having the same distance from the origin if they meet the following two criteria: 1)

they have the same orientation, and (2) neither of them is occluding the other through facade

planes connected to them by convex corners. Please see Figure 5.7 for illustration. Such a

constraint is based on the observation that street-facing facades of different buildings are usually

aligned. If facade planes i and j satisfy both the same-orientation and non-occlusion criteria, the

pairwise potential ϕa encoding the alignment constraint between them is defined as

ϕa(oi, oj, dsi, dsj,nsi,nsj,xsi,xsj|hp,np, f) =
−(d′i − d′j)2/(2σ2

2) if oi 6= 0 and oj 6= 0 and nsi = nsj and Qs(i, j) = 0

0 otherwise
(5.7)
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Figure 5.7: Illustration of the alignment constraint. Facade planes that satisfy both the same-
orientation and non-occlusion criteria are encouraged to be aligned. Therefore, the configuration
on the right is preferred over the one on the left. Although facade planes 2 and 4 have the
same orientation, they do not meet the non-occlusion criterion. This is because facade plane 3
explicitly occludes facade plane 2, while facade plane 4 is connected to facade plane 3 through
a convex corner. As a result, facade plane 4 indirectly occludes facade plane 2. The transitivity
via convex corners does not apply to the occluded group. For example, although facade plane
3 occludes facade plane 2 and facade plane 2 is connected to facade plane 1 through a convex
corner, facade plane 3 is not considered to be occluding facade plane 1.
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where Qs(i, j) = 0 means the two facade planes do not occlude each other through other planes

connected to them via convex corners. d′i and d′j are the distances from the ground origin to the

ground contact lines of facade planes i and j, respectively. The alignment constraint is also a

soft constraint since we are just encouraging eligible planes to be aligned; other strong evidence

could override such an encouragement.

The benefit of incorporating geometric constraints among facade planes is evident in Fig-

ure 5.1. After inter-planar geometric constraints are imposed, planes that form convex corners

are correctly connected together, and planes in the background are correctly pushed backward.

5.3 Implementation Details

Optimizing the objective function in Equation 5.1 is challenging, because it is generally non-

convex and involves binary, discrete and continuous variables, resulting in a huge search space.

In addition, how do we acquire the candidate facade planes in the first place? In this section, we

describe a quadrilateral-based sampling algorithm that detects a set of candidate facade planes,

each of which comes with a 3D orientation nsi and corner coordinates xsi. Using the output of the

quadrilateral-based sampling algorithm, we are able to optimize Equation 5.1 in a tractable way.

The detailed procedures of the preprocessing stage, the quadrilateral-based sampling algorithm,

and the construction/inference of the CRF model are shown in Figure 5.8.

5.3.1 Quadrilateral-based Sampling Algorithm

We detect candidate facade planes via a sequential sampling of “quadrilaterals”. A sample of

a quadrilateral is formed by a random pair of vertical vanishing lines and a random pair of

horizontal vanishing lines in the image (please see Figure 5.9 for examples). The 3D orientation

of a quad (short for quadrilateral) is equal to the cross-product of the vertical and horizontal

vanishing directions. A quad itself could be a facade plane, or multiple adjacent quads with the
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Figure 5.8: Procedure of our 3D facade detection and inference algorithm that implements the
model described in Section 5.2.1.
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Figure 5.9: When detecting candidate facade planes, our algorithm selects and adds the best
quad into the candidate pool in each iteration. Row by row, this figure shows the first seven quads
selected by our algorithm, as well as all the selected quads when the search process is completed.
Quads belonging to the same candidate distinctive facade plane share the same color. The plot
right next to each image shows the unnormalized distribution of geometric compatibility score
over a set of hypothetical depths for each candidate facade plane (please see Procedure 2.2.3).
Colored lines are the ground contact lines of corresponding planes at different depths plotted in
the ground coordinate system. The spacing of the coarser grid is 10m. We can see that as new
quads (e.g. the seventh quad) are added and connected to existing quads through convex corners
or mergers, the depth distributions of existing candidate facade planes might change. Contextual
information is used even during the candidate search stage before constructing the CRF.
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same 3D orientation could merge and form a larger facade plane. When quads are selected and

added to the image one by one, such mergers often occur. For example, in the left image of the

third row of Figure 5.9, the newly added quad is merged into the existing green quad to form a

single plane. Also, in the left image of the fourth row, the newly added quad joins together the

originally separate red and orange quads in the right image of the third row, and the three quads

form a single plane.

In the quadrilateral-based sampling algorithm, we first sample a large number of quads and

evaluate each sample using the image feature compatibility score Sr. The top k quads, which

come with known orientation nsi and spatial extent xsi, are selected and further evaluated by

computing the optimal geometric compatibility score over a set of quantized hypothetical depth

dsi. Note that the optimal geometric compatibility score is evaluated not just based on the current

quad under evaluation, but a set of quads connected to the current quad via same-orientation or

convex-corner relationships. For example, when evaluating the newly added red quad in the left

image of the last row in Figure 5.9, all the quads within the red and magenta regions are involved.

In this way, the convex-corner constraint is also utilized in the candidate plane detection process.

5.3.2 Tractability

In our approach, the key to make the inference tractable is to decouple ns,xs from o,ds in

Equation 5.1. When the quadrilateral-based sampling process is completed (i.e., Procedure 2.5

is completed), we already have a set of candidate facade planes with known orientation nsi and

spatial extent xsi. The only variables that remain to be inferred are the validity indicator oi and

depth dsi. The objective function in Equation 5.1 is therefore reduced to
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V (o,ds) =
∑
i∈P

ω(oi, dsi) +
∑

(i,j)∈Pv

ϕv(oi, oj, dsi, dsj) +
∑

(i,j)∈Po

ϕo(oi, oj, dsi, dsj)

+
∑

(i,j)∈Pa

ϕa(oi, oj, dsi, dsj), (5.8)

where we have omitted the conditioning variables for the sake of clarity. Suppose we have quan-

tized depth dsi intoM bins, then the number of possible states over oi and dsi is onlyM+1. This

is significantly more tractable than the original optimization problem. We construct a CRF to en-

code all the inter-planar mutual constraints, and perform max-product belief propagation [30] to

obtain the validity of each candidate facade plane and the optimal depth of each valid plane, as

well as a MAP distribution over its possible depths.

5.3.3 Avoiding Local Extrema

Since we use a greedy approach when detecting candidate facade planes, it is important to reduce

the risk of being trapped in local extrema. To achieve this purpose, we sample a large number

of quads, and those quads go through two rounds of evaluation. The first round selects the top

k quads with the highest Sr score. The second round further considers how well a quad (which

has a fixed orientation and spatial extent) can be placed at different depths in 3D space, requiring

the evaluation of the Sd score. Moreover, existing quads serve as a geometric context when

evaluating a new quad in the second round. We found that when the search width k is greater

than or equal to 4, performing multiple starts does not bring additional improvement over a single

start.
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5.4 Experiments

We evaluate the performance of our facade reasoning algorithm on three challenging datasets.

All the parameters of our algorithm are fixed throughout our experiments, where the camera

height hp is assumed to be 1.6m, σ1 = 0.5 in Equation 5.6, σ2 = 50 in Equation 5.7, the number

of random samples in Procedure 2.1 is 2000, the number k of top quads in Procedure 2.2 is set as

4, and the reasonable range of building height Hf is assumed to be between 5m and 30m, with

a standard deviation of 1m on the lower end, and 10m on the higher end. On average, it takes

about 20 minutes to process a 800-by-600 image with Matlab code.

5.4.1 3D Facade Layout

The key strength of our approach is that it is able to produce a richer interpretation of a facade

scene – a 3D layout of facade planes with continuous orientations. Note that Gupta’s block-

based approach [25] also generates a 3D layout of building facades, yet their approach is mainly

qualitative while ours is quantitative and probabilistic in nature. As a result, our approach is able

to yield a quantitative top-down view of the 3D facade layout given a single image.

We apply our facade reasoning algorithm on the LabelMe dataset [34]. As the dataset does

not provide the ground truth for a plane-wise decomposition of building facades or their 3D

layout, we evaluate our approach qualitatively. Typical examples of both success and failure

cases are shown in Figures 5.10 through 5.13. Here, in the first column, the image regions

detected by our method as building facades are covered in color-shaded tiles (i.e. quads). Quads

belonging to the same distinctive plane share the same color. The second column plots the top-

down view of the unnormalized depth distribution of each candidate distinctive facade plane

before considering inter-planar interactions. Such a distribution is part of the unary potentials.

The third column plots the top-down view of the best locations of candidate distinctive facade

planes given their (unary) depth distribution. The fourth column plots the top-down view of

the final optimal locations of all valid distinctive facade planes after considering inter-planar
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Figure 5.10: 3D facade layout estimation by our method on images from the LabelMe
dataset [34]. Left to right: 1) Original image overlaid with color shades representing quads
from distinctive facade planes. Quads from the same distinctive facade plane share the same
color. 2) Depth distribution of candidate distinctive facade planes before running the CRF infer-
ence. 3) Best locations of candidate distinctive facade planes before running the CRF inference.
4) Optimal locations of valid distinctive facade planes after running the CRF inference. The
viewing boundary is marked with black lines, and the coarser grid spacing is 10m.

interactions. As we can see, imposing inter-planar geometric constraints significantly regulates

the depths of distinctive facade planes and results in a meaningful interpretation. In all top-down

views, the coarser grid spacing is 10m.

In the LabelMe dataset [34], many complex facade structures can be found – many building

facades are occluded by other objects or mutually occluded, and in some cases they are not

Manhattan (e.g. row 1 in Figure 5.10 and row 1 in Figure 5.12). As our method makes no

assumption on those conditions, they do not pose a problem. We also do not assume all building
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Figure 5.11: More examples of 3D facade layout estimation by our method on images from the
LabelMe dataset [34]. Left to right: 1) Original image overlaid with color shades representing
quads from distinctive facade planes. Quads from the same distinctive facade plane share the
same color. 2) Depth distribution of candidate distinctive facade planes before running the CRF
inference. 3) Best locations of candidate distinctive facade planes before running the CRF in-
ference. 4) Optimal locations of valid distinctive facade planes after running the CRF inference.
The viewing boundary is marked with black lines, and the coarser grid spacing is 10m.
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Figure 5.12: Small mistakes made by our method during 3D facade layout estimation on the
LabelMe dataset [34]. Left to right: 1) Original image overlaid with color shades representing
quads from distinctive facade planes. Quads from the same distinctive facade plane share the
same color. 2) Depth distribution of candidate distinctive facade planes before running the CRF
inference. 3) Best locations of candidate distinctive facade planes before running the CRF in-
ference. 4) Optimal locations of valid distinctive facade planes after running the CRF inference.
The viewing boundary is marked with black lines, and the coarser grid spacing is 10m.
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Figure 5.13: Major failure cases by our method during 3D facade layout estimation on the La-
belMe dataset [34]. Left to right: 1) Original image overlaid with color shades representing
quads from distinctive facade planes. Quads from the same distinctive facade plane share the
same color. 2) Row 1: detected vertical and horizontal vanishing lines; Row 2: semantic seg-
mentation by the SHL model. 3) Best locations of candidate distinctive facade planes before
running the CRF inference. 4) Optimal locations of valid distinctive facade planes after run-
ning the CRF inference. The viewing boundary is marked with black lines, and the coarser grid
spacing is 10m.
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facades are inter-connected as [54] does. Therefore, many street scenes where adjacent buildings

are separated by streets can be modeled by our approach (e.g. rows 1 and 3 in Figure 5.10, row

1 in Figure 5.11, row 3 in Figure 5.12).

In row 3 of Figure 5.11, we could also see that distinct facade planes having the same ori-

entation (the red and magenta planes) are aligned after CRF inference. However, when other

stronger evidence is present as is the case in row 2 of Figure 5.11, they are not blindly aligned.

Figure 5.12 includes examples in which our method makes not-so-annoying mistakes. In

row 1, the optimal depth of the farther building is too small; in row 2, a distinctive facade plane

is merged with its adjacent facade plane; in row 3, several minor “noise”facade planes caused by

extruding balconies are present.

Figure 5.13 shows examples when major failures occur. In the first row, the farther left-

facing facade is not detected due to lack of vanishing lines. In the second row, severe mistakes

in semantic segmentation result in false facade planes being detected. These failures can be

mitigated when vanishing line detection and semantic segmentation are improved.

5.4.2 Surface Layout Estimation

To our knowledge, our algorithm is among the first to be able to generate a 3D layout of building

facades consisting of mutually-constrained planes with continuous orientations. While our algo-

rithm allows for a greater flexibility and produces a richer interpretation than existing methods,

does it negatively affect existing quantitative measures in the literature?

To answer this question, we first evaluate our algorithm in estimating surface layout on the

Geometric Context dataset [33]. Among the 250 test images, 55 of them contain building facades.

Therefore, we perform evaluation only on those 55 images. As the dataset does not provide

ground truth for semantic segmentation, we train the Stacked Hierarchical Labeling model [51]

on the Stanford Background Dataset [23] and use the resulting model to compute soft semantic

labels. We also use the publicly available pre-trained Geometric Context classifier [32] to obtain
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Figure 5.14: Comparison of surface layout accuracy. The methods from left to right are the
algorithm from Hoiem et al. [35], Gupta et al. [25], our algorithm, our algorithm without CRF
inference, and the line-sweeping algorithm mentioned in Section 3.6.

the soft geometric context labels.

The dataset comes with the ground truth of seven surface layout labels (“support”, “sky”,

“planar left”, “planar center”, “planar right”, “non-planar porous”, “non-planar solid”). We com-

pare our method with the block-based approach proposed by Gupta et al. [25] and the segment-

based approach proposed by Hoiem et al. [35] on surface layout accuracy. To generate surface

layout labels from the output of our algorithm, we quantize our continuous 3D orientation of

facade planes into soft labels of “planar left”, “planar center”, or “planar right”, and fuse them

with the labels returned by the original Geometric Context classifier.

The comparison results are listed in Figure 5.14. We can see that our method achieves better

accuracy than the state-of-the-art block-based and segment-based approaches. We also observe

that if we remove the inter-planar geometric constraints from our algorithm, the accuracy drops

as is shown in the ’Ours w/o CRF’ column. Accuracy from the raw orientation map generated

by the line-sweeping algorithm (Section 3.6) is the lowest, as it is highly susceptible to noise in

vanishing lines.

We also show qualitative comparisons in Figure 5.15. The ground-truth surface layout is

shown in column 1. We can see that in the first row, the segment-based approach (column 2)

decomposes the facade into many unstructured orientation segments, while the block-based ap-

proach (column 3) represents the entire facade as a block. Our plane-based approach (column

4) approximates the true facade using a set of mutually-constrained planes and therefore gen-

erates a much better approximation. 3 A similar case can be observed in row 5. In rows 2-4,

3The ground-truth annotation is not totally correct. The red “planar center”regions should actually be magenta
“planar right”ones.
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Figure 5.15: Qualitative comparisons of surface layout estimation. From left to right: Ground
truth; Hoiem et al. [35]; Gupta et al. [25]; Ours; Ours w/o CRF; Raw orientation map (Sec-
tion 3.6). Surface layout color code: Magenta – planar right; Cyan – planar left; red – planar
center; green – non-planar porous; yellow – non-planar solid; blue – sky; grey – support.
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Figure 5.16: Failure cases of surface layout estimation. From left to right: Ground truth; Hoiem
et al. [35]; Gupta et al. [25]; Ours; Ours w/o CRF; Raw orientation map (Section 3.6). Surface
layout color code: Magenta – planar right; Cyan – planar left; red – planar center; green –
non-planar porous; yellow – non-planar solid; blue – sky; grey – support.

our approach identifies distinctive facades missed out by the other approaches. In row 6 where a

non-Manhattan facade exists, our approach identifies it unambiguously.

While inter-planar geometric constraints usually regularize plane depths (as we have seen in

Figures 5.10 through 5.12), it could also improve surface layout estimation by removing invalid

planes. In an example shown in row 7 of Figure 5.15, an invalid plane labeled with “planar

center”(red) in column 5 was removed after the CRF inference, and the true orientation (“planar

left”, cyan) of that region is revealed in column 4.

Column 6 of Figure 5.15 shows that the surface layout estimation directly obtained from

orientation maps is usually quite noisy. Our plane detection process helps inhibit such noise and

results in a better result in Column 5, and inter-planar interactions further lead to an even better

result in Column 4.

Several of our major failure cases are shown in Figure 5.16. The case in the first row fails be-

cause our approach discovers small non-Manhattan facade structures not included in the ground

truth. It also failed to identify the garage in the distance. In the second row, our method again de-

tects a fine structure not included in the ground truth, while mis-labeling a left-facing region due

97



to the deceiving vanishing lines from the rooftop. In the third row, our method also mis-labeled

the left-facing part of a foreground structure due to strong noise in vanishing lines.

To get a better insight into the comparison between our approach and the state-of-the-art

algorithms, we compute, for each image, the accuracy gain of our approach over the segment-

based approach [35] and the block-based approach [25], respectively, and plot the histogram of

accuracy gain over the test images.

The histograms for comparisons with the two approaches are shown in Figures 5.17 and 5.18,

respectively. In each figure, typical examples are shown for positive, neutral, and negative ac-

curacy gains, respectively. In both figures, we can see that our algorithm achieves good surface

classification accuracy where vanishing lines are correctly detected and grouped. However, in

image regions where missing or distracting vanishing lines dominate, the accuracy of our algo-

rithm deteriorates, because vanishing lines play an important role in proposing and evaluating

quadrilateral samples. A poor semantic segmentation result would also significantly undermine

the surface classification accuracy of our algorithm, as is shown in the leftmost example in Fig-

ure 5.18. Please refer to the Appendix for a complete list of results on all test images.

Although our approach does not perform significantly better than the state-of-the-art algo-

rithms in terms of surface layout classification, our approach is able to generate a quantitative,

continuous 3D layout of the facade scene, which is beyond the capability of competing methods.

Several examples are shown in Figure 5.19.

5.4.3 Depth Map Estimation

To see how our method performs in recovering absolute depth values, we also perform evaluation

on the Make3D dataset of Saxena et al. [48, 60] which provides ground truth in pixel-wise depth

value. As the dataset also provides ground-truth semantic segmentation, we train the Stacked

Hierarchical Labeling model [51] on the 400 training images of the dataset. As for the Geometric

Context classifier, we still use the publicly available pre-trained one [32]. Among the 134 test

98



Figure 5.17: Histogram of accuracy gain of our algorithm over the segment-based approach
in [35]. Typical examples corresponding to three different ranges of accuracy gain are also
displayed, where the first row is the ground truth, the second row is the result of [35], the third
row is our result, and the fourth row shows the vanishing lines. The color code is the same as in
Figure 5.15.
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Figure 5.18: Histogram of accuracy gain of our algorithm over the block-based approach in [25].
Typical examples corresponding to three different ranges of accuracy gain are also displayed,
where the first row is the ground truth, the second row is the result of [25], the third row is our
result, and the fourth row shows the vanishing lines. Note that the leftmost image in the fourth
row shows semantic segmentation, where the “building”region is indicated by the red shade. The
color code of surface layout is the same as in Figure 5.15.
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Figure 5.19: 3D facade layout estimation by our method on images from the Geometric Context
dataset [33]. Left to right: 1) Original image overlaid with color shades representing quads from
distinctive facade planes. Quads from the same distinctive facade plane share the same color.
2) Depth distribution of candidate distinctive facade planes before running the CRF inference.
3) Best locations of candidate distinctive facade planes before running the CRF inference. 4)
Optimal locations of valid distinctive facade planes after running the CRF inference. The viewing
boundary is marked with black lines, and the coarser grid spacing is 10m.
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Figure 5.20: Comparison of log depth error. The methods from left to right are the algorithm
from Liu et al. [48], our algorithm, and our algorithm without CRF inference.

images, 51 images contain building facades and are used in evaluation.

We compare our method with the super-pixel based approach proposed by Liu et al. [48] on

average log error of pixel-wise depth values. As our method returns the optimal orientation and

depth of facade planes, it is straightforward to generate the depth values for pixels located in the

facade region. As our method also returns camera pose, the depth values of pixels located on the

ground can be easily computed as well. For pixels located on trees and foreground objects, our

method is not intended to infer their depths. However, for the sake of comparison, we roughly

estimate the depths of those pixels from the ground contact point of the semantic region they

reside in. Note that this is a very rough estimation compared with the sophisticated model in [48]

specifically trained on 400 training images to predict the depths of such pixels.

To make a fair comparison, we report results on the average log depth error of pixels over

the entire image as well as over the image regions excluding trees and foreground objects. The

results are shown in Figure 5.20. We can see that when evaluating on the entire image, Liu et

al. achieves the best performance. However, if we exclude the tree and foreground regions, our

method outperforms Liu’s super-pixel based approach. Note that our method does not require

any training in terms of depth prediction. We can also see that, again, removing the inter-planar

geometric constraints from our approach degrades performance.

Some qualitative results of depth map estimation are shown in Figure 5.21. We could see

that our method makes better depth estimation in facade regions than Liu’s super-pixel based

approach [48]. Also, as our method does not require training using ground-truth depth maps, it

does not try to fit blindly to the defects of the ground truth such as the “infinity holes”at windows

in row 2 (although it might negatively affect the final quantitative number). Depth estimation of
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Figure 5.21: Qualitative comparisons of depth map estimation. Left to right: Original image;
Ground truth; Liu [48]; Ours; Ours w/o CRF. Depth value increases from blue to red. The color
code is scaled according to the ground-truth depth map.
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ground region by our method is also better due to the 3D stage we have established using the

facades. The benefit of imposing inter-planar geometric constraints could be seen in rows 5 and

6. In row 5, the depth of the second-floor camera-facing facade is correctly estimated after CRF

inference, while in row 6, two misaligned left-facing facades in column 5 are correctly aligned

after CRF inference in column 4.

In row 6, however, our method fails to identify the structure closest to the camera as it did

not regard it as a facade region. Also, our method is not designed to estimate the depth of

trees or foreground objects, and the make-shift algorithm described before only provides a very

rough estimation. Liu’s algorithm [48], nevertheless, is effective at estimating the depth of those

regions. Please see row 4 for an example.

While our approach achieves a comparable performance with Liu’s algorithm [48] in terms

of depth map estimation, the output of our approach is beyond a depth map – it is a higher-level

interpretation of building facades with mutually constrained planes, as is shown in Figure 5.22.

The reason why inter-planar interactions do not play a significant role here is that facade planes

in this dataset are relatively simple and have clearly visible ground contact lines in the image.

As a result, cues from an individual facade plane are already sufficiently informative in locating

it in 3D (please see the peaky distributions in the second column of Figure 5.22). However,

when ambiguity is high (e.g., the green facade plane in the first row of Figure 5.22), inter-planar

interactions are critical in forcing facade planes into more geometrically plausible locations.

5.5 Conclusion

In this chapter, we propose a plane-based 3D facade reasoning system that recovers the 3D layout

of building facades from a single 2D image of an urban scene. Multiple image cues and geomet-

ric constraints are incorporated into a probabilistic reasoning framework to achieve a coherent

reconstruction of building facades in 3D space. Our method yields a more informative interpreta-

tion of the building facades in the scene while maintaining a competitive performance on several
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Figure 5.22: 3D facade layout estimation by our method on images from the Make3D
dataset [48, 60]. Left to right: 1) Original image overlaid with color shades representing quads
from distinctive facade planes. Quads from the same distinctive facade plane share the same
color. 2) Depth distribution of candidate distinctive facade planes before running the CRF infer-
ence. 3) Best locations of candidate distinctive facade planes before running the CRF inference.
4) Optimal locations of valid distinctive facade planes after running the CRF inference. The
viewing boundary is marked with black lines, and the coarser grid spacing is 10m.
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quantitative measures. Compared with the block-based approach [25] that yields a coarse and

qualitative modeling of the building facades, our method returns a numeric parameterization of

a set of planes that compose the building facades. Compared with super-pixel based approaches

that return a depth map [48], our method enables reasoning over planes and blocks and provides

a higher-level understanding of the scene.
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Chapter 6

Joint 3D Geometric Reasoning Over

Objects and Building Facades

In the previous two chapters, we have discussed separately about recovering the 3D layout of

objects and the 3D layout of building facades from a single image of an urban scene. We have

shown that going beyond 2D reasoning and enforcing 3D geometric consistency not only pro-

duces a coherent 3D interpretation of the scene, but also improves the performance of traditional

2D visual tasks. In this chapter, we will discuss how to incorporate the algorithms of the previous

two chapters into a single 3D geometric reasoning system, and what impacts the joint reasoning

over both objects and facades would have on recovering the 3D structure behind an urban image.

6.1 Overview

Given a single image of an urban scene, jointly performing 3D geometric reasoning over both

objects and building facades requires the modeling of five types of geometric relationships –

between global 3D geometries (i.e., gravity/ground) and individual objects, between global 3D

geometries and individual facade planes, between individual objects, between individual facade

planes, and between an object and a facade plane.
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To our knowledge, very few works in the literature have attempted to build such a model.

Hoiem et al. develops a system [35] that reasons about the relationships between global 3D ge-

ometries and objects, as well as relationships between objects and surfaces. The authors show

that considering such relationships benefits scene understanding. However, in their model, ob-

jects do not take any volume, and surfaces are not in the sense of a set of mutually constrained

planes with continuous 3D orientations. Rather, the interactions between objects and surfaces

remain in the 2D domain – refining the surface labels of pixels belonging to objects, and using

the “non-planar solid”surface label to improve object detection. An explicit 3D geometric rela-

tionship between a volumed object and a parameterized planar surface is not present in Hoiem’s

model. Gould et al. incorporate object semantics in the depth estimation task [22, 48], where the

2D locations of the pixels along a vertical line in the same object semantic region provide bounds

of the depth of those pixels. While this idea proves effective, the authors treat objects as vertical

cardboards, and therefore also do not model the interactions between a volumed object and a pa-

rameterized planar surface, or the intersections between two volumed objects. In addition, they

do not explicitly seek to model and utilize global 3D geometries. In the “Blocks World”work

by Gupta et al. [25], interactions between volumed facade blocks are modeled. However, their

model is mostly qualitative. Moreover, objects are not involved in their model, nor are the global

3D geometries.

Built upon our works of the previous two chapters, we formally model all the five types of

3D geometric relationships and integrate them into our generalized-RANSAC-CRF framework

in our joint reasoning system. The system produces a geometrically coherent 3D interpretation of

the image in terms of all entities including gravity/ground, volumed objects, and building facades.

Besides, joint reasoning over both objects and facades benefits facade layout recovery through the

push-away effect from volumed objects and a better estimation of ground distance. Meanwhile,

joint reasoning also benefits object layout recovery through the regulating of object headings

by facade plane orientations. Also, joint reasoning yields the lowest error in the estimation of
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global 3D geometries. Despite the involvement of all the entities, our reasoning system still

remains tractable.

6.2 Joint Modeling of Objects and Building Facades

The task here is that, given a single image of an urban scene, we want to recover gravity direc-

tion, ground plane orientation, ground plane distance, object presence, object pose, object depth,

object 2D location, facade plane presence, facade plane orientation, facade plane distance, and

facade plane spatial extent. This task can be formalized as maximizing the following objective

function:

V (ng,np, hp,ob,Θb,db,ub,os,ns,ds,xs|I, f,Ht, Hf ) =
∑
i∈B

ωb(obi,Θbi, dbi,ubi,ng,np, hp|I, f,Ht)

+
∑
i∈P

ωs(osi,nsi, dsi,xsi,np, hp|I, f,Hf )+
∑

(i,j)∈Bn

ϕb(obi, obj,Θbi,Θbj, dbi, dbj,ubi,ubj,np, hp|f)

+
∑

(i,j)∈Pn

ϕs(osi, osj, dsi, dsj,nsi,nsj,xsi,xsj,np, hp|f)+
∑

i∈Bm,j∈Pm

ϕsb(obi,Θbi, dbi, osj, dsj,xsj,np, hp|f).

(6.1)

Here, ng is gravity direction; np and hp are ground plane orientation and distance; obi, Θbi,

dbi, and ubi are the validity indicator, pose (pitch, roll, and yaw angles), depth, and 2D location

(bounding box and landmark image coordinates) of object i, respectively; osi, nsi, dsi, and xsi

are the validity indicator, orientation, distance, and spatial extent (image coordinates of facade

corners) of facade plane i; I , f , Ht, and Hf are image features, focal length, real-world object

height, and real-world facade height, respectively. Please refer to Figure 3.1 for an illustration of

the geometric variables in the equation above.

ωb and ωs are the unary potentials of candidate objects and facade planes, respectively. En-

coding global geometric constraints, the unary potentials measure the compatibility of each in-
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dividual object and facade plane against the global 3D geometries as well as image features. B

and P are the set of all candidate objects and facade planes, respectively. ϕb and ϕs are pairwise

potentials between a pair of candidate objects and a pair of candidate facade planes, respectively,

and ϕsb is the pairwise potential between a candidate object and a candidate facade plane. En-

coding local geometric constraints, the pairwise potentials measure the compatibility between

interacting local entities. Bn, Pn, Bm, and Pm are the subsets of candidate objects and facade

planes involved in pairwise geometric relationships.

While most potentials have been discussed in the previous two chapters, we summarize them

here from a unified perspective and for the sake of completeness. The new potential introduced

in this chapter is the pairwise potential between an object and a facade plane. We will describe it

in more detail.

6.2.1 Object Unary Potential

As is mentioned in Section 4.4.3, the unary potential of an object is composed of the geometric

compatibility score sg, and the detector score sd (which is essentially the image-feature compat-

ibility score). Formally,

ωb(obi,Θbi, dbi,ubi,ng,np, hp|I, f,Ht) =
sg(Θbi, dbi,ubi,ng,np, hp|f,Ht) + (sd(ubi|I)− 0.5) if obi = 1

0 if obi = 0

(6.2)

where the geometric compatibility score sg is computed according to two sources of geometric

constraints, as is described in Section 4.4.2. The first source measures the agreement between

the global 3D geometries and the local estimate from object appearance by the regressor:
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sg1(Θbi,ng,np) = exp{−(θ̃ − θ0)2

2σ2
θ

} · exp{−(γ̃ − γ0)2

2σ2
γ

} − 0.5, (6.3)

where θ̃ and γ̃ are the pitch and roll angles of the object computed from gravity direction ng (for

pedestrians) or ground plane orientation np (for cars), while θ0 and γ0 are the estimates of pitch

and roll angles from the regressor, with variance σ2
θ and σ2

γ , respectively.

The second source measures if the object height derived from the current values of geometric

variables falls within a reasonable range according to prior knowledge Ht:

sg2(dbi,ubi,ng,np, hp|f,Ht) = exp{− δ2

2σ2
} · exp{−(‖Xt −Xb‖ −Ht)

2

2σ2
H

} − 0.5, (6.4)

where Xt and Xb are the camera coordinates of the top and bottom landmarks computed from

dbi and ubi with the algorithm detailed in Section 4.4.2 which also produces the variable δ. Ht

and σ2
H define the reasonable range of object height. Also note that to handle noise in landmark

estimation, we perturb the 2D location of the bottom landmark around the regressor output, and

the highest sg2 score is taken.

After sg1 and sg2 are computed, sg = (sg1 + sg2)/2.

6.2.2 Facade Plane Unary Potential

As is discussed in Section 5.2.2, two contributors to the unary potential of a facade plane consist

of a image-feature compatibility score and a geometric compatibility score. The image-feature

compatibility score

Sr(nsi,xsi|I) =
1

N(Q)

∑
n∈Q

(s(bldg)n + gn(nsi)+ < nsi,vn >) (6.5)

measures how likely the candidate facade plane belongs to the building semantic region (s(bldg)n ),
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and how consistent the orientation nsi of the candidate facade plane is with respect to the surface

geometry gn and orientation map vn.

The geometric compatibility score

Sd(nsi, dsi,xsi,np, hp|I, f,Hf ) =

min{1− 1

N(A)

∑
n∈A

s(gnd)n , 1− 1

N(B)

∑
n∈B

s(bldg)n , Hf (
‖xst − xsb‖
‖xsm − xsb‖

· hp))} (6.6)

measures the plausibility of the ground contact line (the first and second terms on the right-

hand side) and 3D height (the third term on the right-hand side) of the candidate facade plane.

Please refer to Section 5.2.2 for more details about the image-feature and geometric compatibility

scores.

Note that in Chapter 5, we estimate global 3D geometries such as ng and np in a preprocess-

ing stage, and they are fixed throughout subsequent reasoning. In this chapter, we will integrate

3D facade reasoning into the generalized-RANSAC-CRF framework in which there could be

multiple hypotheses of global 3D geometries. Therefore, we introduce an additional term to the

unary potential of a facade plane. This term checks if the 3D orientation of the facade plane is

perpendicular to the gravity direction:

Sg(nsi,ng) = exp(−arcsin(< nsi,ng >)
2

2σ2
), (6.7)

where σ is a parameter that controls sensitivity.

Given Sr, Sd, and Sg, the unary potential of a facade plane is defined as

112



ωs(osi,nsi, dsi,xsi,np, hp|I, f,Hf ) =
[(Sr(nsi,xsi|f) · Sd(nsi, dsi,xsi,np, hp|I, f,Hf )− 0.25) + (Sg(nsi,ng)− 0.5)]/2 if osi = 1

0 if osi = 0

(6.8)

where the unary potential is the average of the neutrality-offset Sr · Sd and Sg.

6.2.3 Object Pairwise Potential

The pairwise potential between two candidate objects is determined by two local geometric con-

straints, as is described in Section 4.4.2. The first geometric constraint is the depth ordering

constraint, with penalty

s
(dep)
ij (dbi, dbj,ubi,ubj) = −(|Rij|/|Rj|)λ, (6.9)

where |Rij| is the overlapping area of the bounding boxes of objects i and j, and |Rj| is the

bounding box area of the farther object. This constraint penalizes the case in which the farther

object is mostly or totally occluded by the closer one.

The second geometric constraint is the space occupancy constraint, with penalty

s
(ocp)
ij (Θbi,Θbj, dbi, dbj,ubi,ubj,np, hp|f) = −|R′i ∩R′j|/|R′i ∪R′j|, (6.10)

where R′i is the footprint of object i on the ground plane. The ratio of the intersection and union

footprint areas of two adjacent objects reflects the degree of violation of the space occupancy

constraint. Please see Section 4.4.2 for more details.

The pairwise potential between two candidate objects can now be defined as
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ϕb(obi, obj,Θbi,Θbj, dbi, dbj,ubi,ubj,np, hp|f) =
min{s(dep)ij (dbi, dbj,ubi,ubj), s

(ocp)
ij (Θbi,Θbj, dbi, dbj,ubi,ubj,np, hp|f)} if obi 6= 0 and obj 6= 0

0 otherwise

(6.11)

6.2.4 Facade Plane Pairwise Potential

Interactions between a pair of facade planes consist of three types of local geometric constraints

– convex-corner constraint, occlusion constraint, and alignment constraint – depending on the

relative orientation of the planes (please refer to Section 5.2.3). Incorporating the three types of

constraints, the pairwise potential of facade planes can be written as

ϕs(osi, osj, dsi, dsj,nsi,nsj,xsi,xsj,np, hp|f) =

−∞ if osi 6= 0 and osj 6= 0 and xsi|xsj and nsi ∨ nsj and dsi Y dsj

−max{0, d′j1, d′j2}2/(2σ2
1) if osi 6= 0 and osj 6= 0 and xsi|xsj and nsi ∧ nsj

−(d′i − d′j)2/(2σ2
2) if osi 6= 0 and osj 6= 0 and nsi = nsj and Qs(i, j) = 0

0 otherwise

(6.12)

Here, the first row on the right-hand side encodes the convex-corner constraint, in which xsi|xsj

means facade planes i and j are adjacent in the image, nsi ∨nsj means the orientations of facade

planes i and j form a convex corner, and dsiYdsj means their distances make them fail to connect

along a common fold. The second row encodes the occlusion constraint, in which we assume
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Figure 6.1: Illustration of the object-facade plane interaction. The candidate object and facade
plane in the left image could coexist, while neither the candidate objects in the right image could
coexist with the candidate facade plane.

without loss of generality that facade plane i is occluded by facade plane j, and nsi ∧ nsj means

their orientations form a concave corner. Please refer to Figure 5.6 for the definition of d′j1 and

d′j2. The third row encodes the alignment constraint, in which Qs(i, j) = 0 means the two facade

planes do not occlude each other through other planes connected to them via convex corners (see

Figure 5.7), and d′i and d′j are the facade plane distance in the ground coordinate system (see

Figure 3.1).

6.2.5 Object-Facade Plane Pairwise Potential

If an object and a facade plane coexist in a scene, the facade plane must not occlude the object

either partially or entirely, as is illustrated in Figure 6.1. A geometric constraint exists between

an object and a facade plane if the viewing angle range of the footprint of the object overlaps

with that of the ground contact line of the facade plane. Here, viewing angle is defined by the

line connecting the origin of the ground coordinate system with a point on the footprint or the

ground contact line, as is illustrated by the dashed lines in Figure 6.2. The pairwise potential

between a candidate object and a candidate facade plane is computed based on the farthest point

of the object footprint located behind the facade plane:
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Figure 6.2: A top-down view of the interactions between an object and a facade plane. The thick
blue line is the ground contact line of the candidate facade plane, and the rectangles and circles
represent the footprints of candidate cars and pedestrians, respectively. Dashed lines delimit the
viewing angle range of an object or the facade plane. d′m is the smallest (i.e., most negative)
signed distance from the object footprint to the ground contact line of the facade plane. As the
viewing angle range of object 1 does not overlap with that of the facade plane, object 1 has no
interaction with the facade plane and therefore their coexistence incurs no penalty. The rest of
the objects interact with the facade plane, among which only object 5 does not incur a penalty
due to its positive value of d′m, meaning it is completely in front of the facade plane.
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ϕsb(obi,Θbi, dbi, osj, dsj,xsj,np, hp|f) =


min{0, d′m}2/(2σ2

3) if Abi ∩Asj 6= ∅

0 otherwise
(6.13)

where Abi and Asj are the viewing angle ranges of object i and facade plane j, respectively. d′m

is the smallest (i.e., most negative) signed distance between a point on the object footprint and

the ground contact line of the facade plane. When d′m ≥ 0, the object and facade plane do not

violate the geometric constraint and therefore no penalty is imposed on the pairwise potential.

Please see Figure 6.2 for illustration.

In most urban scenes, building facades usually align with the street, and cars usually travel or

park along the street. Based on this observation, we use the facade plane interacting with a car to

refine the yaw angle of the car produced by the appearance-based regressor. More specifically,

if the heading of the car is within 30 degrees from the horizontal vanishing direction (or the

orthogonal one) of the facade plane, its heading is set as the latter, and the refined heading is

used to compute the footprint of the car.

6.3 Implementation Details

The objective function in Equation 6.1 involves multiple three-dimensional continuous vectors

that, under a reasonably fine quantization, have an intractably large state space even after being

factorized into smaller cliques. To make the inference tractable, we adopt and integrate the

generalized-RANSAC-CRF scheme proposed in Chapter 4 and the quadrilateral-based sampling

algorithm proposed in Chapter 5.

The overall scheme of our joint reasoning algorithm is illustrated in Figure 6.3, and the high-

level procedures are listed in Figure 6.4.

There are three major factors that contribute to inference tractability. Firstly, the general-
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Figure 6.3: The overall scheme of our joint 3D geometric reasoning over objects and building
facades. Here, gravity direction is represented by the orange horizon line, and the ground plane
is represented by the blue mesh.
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Figure 6.4: Procedures of our joint 3D geometric reasoning over objects and building facades.
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ized RANSAC algorithm serves to isolate the global 3D geometries from the CRF inference as

given hypotheses. This way, all the global geometric variables (ng, np, hp) can be placed in the

potential terms as given variables. The generalized RANSAC approach consists of generating

and evaluating global 3D geometry hypotheses. The hypothesis generation process (Proc. 2 in

Figure 6.4) is exactly the same as the one described in Section 4.3 because all candidate facade

planes share the same vertical vanishing direction which is already used in Section 4.3. The

hypothesis evaluation process (Proc. 4 in Figure 6.4) is different due to the introduction of can-

didate facade planes. However, the resulting CRF is still tractable due to the sparse graph and

small state space. The isolation of the global geometric variables from the CRF inference does

not negatively impact inference quality due to the nature of RANSAC as a robust optimization

algorithm.

Secondly, the quadrilateral-based sampling algorithm described in Chapter 5 isolates facade

orientation nsi and spatial extent xsi from the CRF inference as known variables. This way, nsi

and xsi can also be placed in the potential terms as given variables. As individual and mutual

geometric compatibilities of facade planes are extensively utilized during the quadrilateral-based

sampling process, removing nsi and xsi from the CRF inference has little impact on inference

quality.

Thirdly, object pose Θbi and landmarks ubi are also isolated from the CRF inference. Object

pose is estimated by an appearance-based regressor and refined by adjacent facade plane (see

Section 6.2.5) before its value is used to compute potentials. Object landmark locations are

also estimated by an appearance-based regressor, and perturbed to obtain the optimal geometric

compatibility (see Section 6.2.1) before its value is used to compute potentials. Therefore, Θbi

and ubi can also be placed in the potential terms as given variables. Since dbi has a deterministic

relationship with Θbi and ubi given the global 3D geometries, it also becomes a given variable.

Due to the local optimization preformed before fixing their values, the impact of isolating Θbi

and ubi from the CRF inference is also minimal.
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After we have labeled all the aforementioned variables as given variables in the potential

terms, the five potentials now become ωb(obi), ωs(osi, dsi), ϕb(obi, obj), ϕs(osi, osj, dsi, dsj), and

ϕsb(obi, osj, dsj).1 As a result, the state space Sbi for a candidate object is simply binary, and the

state space Ssi for a candidate facade plane has a dimensionality of only M + 1, where M is the

number of quantization bins of facade plane depth. Such small state spaces make the inference

very fast.

To further speed up the inference, we do not perform facade decomposition for each hypoth-

esis. Rather, as is described by Proc. 3 in Figure 6.4, we run facade decomposition only once

under the ground plane parameters corresponding to the strongest mode found in the hypothesis

generation process. When evaluating each hypothesis, the geometric properties and potentials of

each candidate facade plane are re-calculated under the current ground plane hypothesis. As fa-

cade decomposition (not layout) is not very sensitive to ground plane parameters, such a strategy

has little impact on the final result.

6.4 Experiments

We evaluate our joint 3D reasoning system on the LabelMe dataset [34] and the Geometric

Context dataset [33]. The LabelMe dataset provides ground-truth bounding boxes of cars and

pedestrians, as well as ground-truth horizon. Therefore, we use this dataset to evaluate object

detection and viewpoint estimation. Among the 422 test images, 225 of them contain urban

scenes with building facades, and the total number of objects in those images is 1154. We

conduct our experiments on those images. The Geometric Context dataset provides ground-

truth surface orientation labels. Therefore, we use this dataset to evaluate facade decomposition.

Among the 250 test images, 55 of them contain building facades, and those images are used in

our evaluation.

All the parameters in our system are set the same as in Chapters 4 and 5. The parameter σ3 in

1We have omitted the given variables for clarity.
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the object-facade plane pairwise term ϕsb is set as 0.5. For a typical 800-by-600 image, it takes

around 3 minutes to generate hypotheses and 10 minutes to evaluate those hypotheses and obtain

the optimal results.

Object Detection: In this experiment, we want to compare the object detection performance

of our system with other competitive object detection algorithms, and to evaluate to what ex-

tent 3D geometric reasoning involving objects and building facades might help improve object

detection performance.

The detection ROC curve is shown in Figure 6.5, and the average precision and detection

rate at 0.5 false positive per image are listed in Figure 6.6. Here, we compare our approach with

the latest release of the Deformable Part Model (DPM) detector [19] and Hoiem’s geometric

reasoning algorithm [34]. Both our algorithm and Hoiem’s algorithm use the output of the DPM

detector running in high-recall mode as input candidate objects. We can see that our algorithm

(“Jnt (full)”) outperforms the DPM detector under all false positive rates, and especially in the

domain of lower false positive rates, where the ability to resolve visual ambiguity plays a critical

part. The average precision (AP) of our algorithm is almost 7% higher than the AP of the DPM

detector. At 0.5 false positive per image, our algorithm correctly detects 116 more true positives

than the DPM detector. The performance of Hoiem’s algorithm is better than the DPM detector

in the domain of higher false positive rates (above 3 false positive per image), but deteriorates

fast when false positive rate gets lower. This is because of its use of bounding box height as

object height, which is often inaccurate for cars especially when cars are closer to the camera.

We also compare our full system performance with the performance when we do not con-

sider interactions among local entities. The curve of the latter case is indicated by “Jnt (w/o

CRF)”in Figure 6.5. We can see that omitting pairwise geometric compatibilities between ad-

jacent local entities results in a big drop in detection performance. Nevertheless, since the “Jnt

(w/o CRF)”curve still considers the geometric constraints between global 3D geometries and

individual local entities, its overall performance is still better than the DPM detector.
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Figure 6.5: Comparison of object detection performance in terms of ROC curve. Here,
“DPM”and “Hoiem”show the results of the Deformable Part Model [19] and the algorithm
in [34], respectively. The result of our full system is shown by “Jnt (Full)”. Our joint rea-
soning system without considering interactions among local entities is represented by “Jnt (w/o
CRF)”. The results of our reasoning system when leaving out building facades are indicated by
“Obj (Full)”and “Obj (w/o CRF)”.

Figure 6.6: Comparison of object detection performance in terms of average precision and de-
tection rate at 0.5 false positive per image. Here, columns “DPM”and “Hoiem”list the results of
the Deformable Part Model [19] and the algorithm in [34], respectively. The result of our full
system is listed in column “Jnt (Full)”. The result of our joint reasoning system without consid-
ering interactions among local entities is listed in column “Jnt (w/o CRF)”. The results of our
reasoning system when leaving out building facades are listed in columns “Obj (Full)”and “Obj
(w/o CRF)”.
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To see if the introduction of building facades help in object detection, we obtain the detection

results when we leave out building facades in the scene. The curves plotting those results are

indicated by “Obj (Full)”and “Obj (w/o) CRF”. It turns out building facades help little, if any,

in improving object detection rate. We observe in our experiment that whenever an object and

facade plane collide in 3D, it is always the object pushing away the facade plane, rather than

the facade plane invalidating the object. This is due to the much higher flexibility in the depth

of facade planes – pushing a facade plane one meter further away from the camera has a much

lower cost than invalidating an otherwise plausible object.

Some qualitative examples are shown in Figures 6.7– 6.11. Each figure contains two ex-

amples, one in the first two rows and the other in the bottom two rows. For each example,

object detection results using our full system is shown in image (d), while the results without

utilizing 3D geometric constraints among local entities are shown in image (c). Here, a green

bounding box means 3D geometric reasoning agrees with the DPM detector that the candidate

object is valid; a red bounding box means 3D geometric reasoning recovers a candidate object

originally rejected by the DPM detector; a blue bounding box means 3D geometric reasoning

rejects a candidate object originally accepted by the DPM detector. Also, each color-shaded re-

gion indicates a distinctive facade plane. Comparing images (d) with (c), we can see that while

the geometric constraints between global 3D geometries and individual local entities often help

improve the detection performance over the DPM detector (e.g., Figure 6.7(c2), Figure 6.8(c1),

Figure 6.9(c2), Figure 6.11(c1)(c2)), they also make mistakes when a false detection is also highly

compatible with global 3D geometries (e.g., Figure 6.7(c1), Figure 6.8(c2), Figure 6.9(c1), Fig-

ure 6.10(c2)). Incorporating geometric relationships among local entities further improve de-

tection performance by resolving such ambiguities. For example, in Figure 6.7(d1), pairwise

geometric constraints rejected a false detection (blue box) not discovered in Figure 6.7(c1), and

corrected a mistakenly recovered false detection (red box) in Figure 6.7(c1).

Car Heading: Although building facades do not help in improving object detection rate,
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Figure 6.7: Joint 3D geometric reasoning of objects and building facades using our proposed
approach. This figure shows two examples, located in the top two rows and bottom two rows,
respectively. (a): Original image. (b): Reasoning only using facades. (c): Reasoning using both
objects and facades, yet omitting interactions among local entities. (d): Reasoning using both
objects and facades with our full system. (e): top-down view for the result in (c). (f): top-down
view for the result in (d). Please see text for more details.
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Figure 6.8: Joint 3D geometric reasoning of objects and building facades using our proposed
approach. This figure shows two examples, located in the top two rows and bottom two rows,
respectively. (a): Original image. (b): Reasoning only using facades. (c): Reasoning using both
objects and facades, yet omitting interactions among local entities. (d): Reasoning using both
objects and facades with our full system. (e): top-down view for the result in (c). (f): top-down
view for the result in (d). Please see text for more details.
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Figure 6.9: Joint 3D geometric reasoning of objects and building facades using our proposed
approach. This figure shows two examples, located in the top two rows and bottom two rows,
respectively. (a): Original image. (b): Reasoning only using facades. (c): Reasoning using both
objects and facades, yet omitting interactions among local entities. (d): Reasoning using both
objects and facades with our full system. (e): top-down view for the result in (c). (f): top-down
view for the result in (d). Please see text for more details.

127



Figure 6.10: Joint 3D geometric reasoning of objects and building facades using our proposed
approach. This figure shows two examples, located in the top two rows and bottom two rows,
respectively. (a): Original image. (b): Reasoning only using facades. (c): Reasoning using both
objects and facades, yet omitting interactions among local entities. (d): Reasoning using both
objects and facades with our full system. (e): top-down view for the result in (c). (f): top-down
view for the result in (d). Please see text for more details.
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Figure 6.11: Joint 3D geometric reasoning of objects and building facades using our proposed
approach. This figure shows two examples, located in the top two rows and bottom two rows,
respectively. (a): Original image. (b): Reasoning only using facades. (c): Reasoning using both
objects and facades, yet omitting interactions among local entities. (d): Reasoning using both
objects and facades with our full system. (e): top-down view for the result in (c). (f): top-down
view for the result in (d). Please see text for more details.
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they do help improve the estimation of the yaw angles of cars. As is mentioned in Section 6.2.5,

we use facade plane orientation to refine the heading of geometrically related cars under the

assumption that the two should be consistent in urban street scenes.

For example, in 6.9(e2) and (f2), we show the top-down views of the scene layout corre-

sponding to the results in 6.9(c2) and (d2), respectively. In the top-down view, colored thick

lines, rectangles, and dots represent facade planes, cars and pedestrians, respectively. The color

code in the top-down view is the same as in the image view. Black lines mark the viewing

boundary, and the coarser grid spacing is 10m.

We can see that the inaccurate heading (estimated by the pose regressor) of the car in 6.9(e2)

is corrected by the orientation of the building facade color-shaded in red. When the regressor-

estimated heading of a car deviates too much (over 30 degrees) from the direction of its geomet-

rically related facade plane, it is left as is. An example is shown in 6.8(f2), where the heading of

the closest car is left unchanged after the pairwise geometric constraints are imposed. An error

case is shown in 6.10(f2), where the heading of the farthest car remains erroneous.

Quantitatively, the interactions between facade planes and cars have reduced the yaw estima-

tion error averaged over all correctly detected cars from 17.2 degrees to 6.9 degrees.

Facade Decomposition: To check whether introducing object-facade interaction would im-

prove facade decomposition, we repeat the experiment in Section 5.4.2, except that this time

the CRF inference involves both objects and facade planes. For the sake of fair comparison, we

compute the global geometric variables the same way as we did in Chapter 5 (i.e., obtaining ng

and np from vanishing lines and setting hp = 1.6m), and use the same set of candidate facade

planes obtained in the experiment in Section 5.4.2. We had hoped that the presence of objects

would invalidate more false candidate facade planes and therefore improve surface label predic-

tion. However, the result in this experiment turned out to be exactly the same as the result in

Section 5.4.2 – an accuracy of 74.82%.

The reason behind this is the same as why the object-facade interaction fails to improve object
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Figure 6.12: Comparison of the estimation of global 3D geometries. The numbers in the table
are estimation errors, where gravity direction and ground plane orientation errors are measured
in degrees, and ground plane distance error is measured in meters. “Vanish Lines”: vanishing-
line based algorithm described in Section 3.5. “Facade only”: our 3D reasoning system except
that we only use facades. “Object only”: our 3D reasoning system except that we only use ob-
jects. “Joint”: our 3D reasoning system using both objects and facades. “Hoiem”: the algorithm
in [34].

detection: due to the high flexibility of facade depth, interacting objects and facade planes typ-

ically do not invalidate each other in the images we encounter; rather, facade planes are pushed

away by confident objects. Since this pushing away does not change facade decomposition in

2D image, it does not lead to a better surface layout classification.

Camera Viewpoint Estimation: We also evaluate and compare the accuracy of camera

viewpoint estimation using different approaches and variants on the LabelMe dataset [34]. Here,

camera viewpoint is equivalent to global 3D geometries – gravity direction, ground plane orien-

tation, and ground plane distance. Among the 100 test images that have ground-truth horizons,

65 of them contain building facades and are thus used in this experiment.

We list the results in Figure 6.12, where the numbers are estimation errors. Gravity direction

and ground plane orientation errors are measured in degree, while ground plane distance error is

measured in meter. We can see that our full system (fourth row) achieves the smallest error in

estimating all the three global geometric variables. Yet reasoning over objects only (third row)

is virtually as good. Reasoning over facades only (second row) achieves a good estimation of

horizons (i.e. gravity direction and ground plane orientation), yet results in a significantly larger

error in ground plane distance. This phenomenon implies objects are more informative in terms
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of estimating length-related quantities such as depth and ground plane distance, while facades

alone are much more ambiguous in length-related quantities, yet are sufficient to give a good

estimate of orientation-related quantities such as gravity and ground horizons.

Examples in Figures 6.7– 6.11 also confirm this argument. In each example, the magenta line

is the gravity horizon, and the yellow grid indicates the ground plane, where the grid spacing is

1m. When ground plane orientation differs from gravity direction, a yellow ground horizon is

displayed as well. The image (b) in each example shows the result of reasoning using facades

only. Note that this is different than the experiments in Chapter 5 where global 3D geometries

are pre-computed or assumed. In this experiment, global 3D geometries are optimized using the

generalized RANSAC algorithm. Comparing (b) and (d), we can see that while the estimated

horizons are usually the same, estimated ground plane distance could be very different, such as

the first example in Figure 6.10.

From Figure 6.12, we can also see that whether or not we leave out objects or facades, our

3D reasoning system always achieves a lower error than estimating global 3D geometries from

vanishing lines without resorting to individual objects or facade planes. Our approach also out-

performs Hoiem’s algorithm in [34].

Facade Depth Estimation: While object-facade interaction does not improve facade decom-

position, introducing objects into facade reasoning could help improve facade depth estimation

by pushing facade planes to a non-conflicting depth and/or obtaining a better estimate of the

ground plane distance. As the LabelMe dataset [34] does not provide ground truth in depth while

the Make3D dataset [48] contains few, if any pedestrians or cars, we are not able to obtain a

quantitative evaluation of the improvement in facade depth estimation due to the introduction of

objects. However, plenty of qualitative examples substantiate this argument. Figure 6.13 shows

three typical examples. The first column displays the distinctive facade planes in the image. The

second and third columns show the 3D facade layout after reasoning over facades only and rea-

soning over both objects and facades, respectively. In the first example, the presence of objects
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Figure 6.13: Objects help improve facade depth estimation. In each row, the left image shows
distinctive facade planes in the image, the center image shows the 3D facade layout after reason-
ing over facades only, and the right image shows the 3D facade layout after reasoning over both
objects and facades.
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improves the estimate of ground plane distance (note the difference in the viewing boundary due

to the change in ground plane distance), through which facade planes are placed to a more rea-

sonable depth. In the second example, facade planes are pushed by objects to a more reasonable

depth. In the third example, both factors contribute to the orange facade being placed behind the

farther car.

6.5 Conclusion

In this chapter, we describe our full 3D geometric reasoning system involving global 3D geome-

tries, objects, and building facades. We model two types of global 3D geometric constraints and

three types of local 3D geometric constraints. Those constraints are encoded into unary and pair-

wise potentials in a unified objective function. Optimization of the objective function is made

tractable through the generalized RANSAC algorithm, the quadrilateral-based sampling algo-

rithm, and simplified local optimization. Utilizing the geometric interactions among all entities

benefits individual tasks such as object detection, viewpoint recovery, object pose estimation, and

facade depth estimation. Moreover, it enables our method to generate a richer 3D interpretation

of the scene that is geometrically coherent.

As with most computer vision algorithms, our method still makes many mistakes (e.g., erro-

neous facade decomposition in the second examples of Figure 6.10 and 6.11). However, whatever

mistake our method makes, the output is always geometrically coherent in 3D. We believe mak-

ing geometrically coherent mistakes is the first step towards human-level scene understanding.
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Chapter 7

Future Directions

We have proposed in this dissertation a 3D geometric reasoning system that generates a coher-

ent interpretation of the 3D structure behind a single 2D image of urban scenes. While this

system has produced promising results, our work is still one of the early attempts in the grand

endeavor of striving towards the extremely challenging goal of achieving human-level holistic

scene understanding capabilities. Some potential ideas for future work are discussed below.

7.1 Semantic Parsing of Building Facades

As we have mentioned in Section 6.4, building facades in our reasoning system have high flex-

ibility in depth. Such a high flexibility results from two factors. Firstly, the reasonable facade

height has a large range – from 5m to 30m with a standard deviation of 10m on the higher end.

Therefore, the facade plane could move as close to the camera as when the facade height starts to

become too small, and move as far away from the camera as when the facade height starts to be-

come too large. Secondly, the ground contact line of a facade plane is often occluded. Therefore,

the facade plane could 1) move as close to the camera as when the ground contact line would start

to cut across the ground semantic region or the facade plane would start to occlude a foreground

object, and 2) move as far away from the camera as when the ground contact line would start to
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Figure 7.1: Parsing a facade plane into multiple floors reduces the uncertainty about its height
and the location of its ground contact line.

cut across the building semantic region. This high flexibility in depth results in a significantly

reduced capability of facade planes to identify invalid objects and effectively estimate ground

plane distance.

One way to address this difficulty is to perform semantic parsing on building facades. More

specifically, by analyzing the patterns within a facade plane, we could parse it into multiple floors

with the help of windows and/or doors, and obtain the total number of floors. This way, we could

obtain a much narrower estimate of the facade height by counting the total number of floors, and

thus remove the first factor contributing to the high flexibility in depth. In addition, parsing a

facade plane into floors would significantly reduce the uncertainty in the location of the ground
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contact line of the facade plane. For example, once we are able to parse the red facade plane in

Figure 7.1 into two floors, we could immediate tell that the ground contact line of the red facade

plane is highly likely to be located at the bottom blue line. Together with the prior knowledge

about the typical floor height and the location of the ground horizon, we could directly obtain

an estimate of the ground plane distance using the ground contact line. For example, given the

ground horizon (magenta line) and ground contact line (bottom blue line) in Figure 7.1, we could

immediate tell that the ground plane distance is about one third of the floor height. Therefore,

semantic parsing on building facades would both enhance the discriminative capability of facade

planes on nearby objects, and enable facade planes to contribute more to the estimation of ground

plane distance.

While several algorithms exist for parsing building facades [29, 55, 56, 64, 68, 75], doing so

in a robust way is still challenging. Irregularities, occlusions, and perspective distortions could

all significantly undermine the parsing accuracy. Yet once the robustness of facade parsing is

improved, it could greatly benefit 3D geometric reasoning.

7.2 Handling Houses

While large buildings have highly regular facade planes from which vanishing directions are

easier to obtain, smaller houses, especially those with slanted roofs, are much harder to reliably

extract valid vanishing directions. An example is shown in Figure 7.2(c), where the house in

the center-right of the image is mistakenly interpreted by our system as a single facade plane

(in green). The root cause of this mistake is that the ranted roof of the house makes the left-

facing facade lack line segments that clearly belong to the group of green vanishing lines in

Figure 7.2(b). Consequently, the left-facing facade is dominated by line segments mistakenly

classified into the blue vanishing group.

To address this problem, a potential method is to treat houses as a sort of objects with greater

intra-category variations. A set of house detectors could be learned, each corresponding to a
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Figure 7.2: A failure case of our geometric reasoning system. (a) Original image. (b) Vanishing
lines and horizon. (c) Output of our system. (d) Top-down view of the output of our system. The
house in the center-right is mistakenly regarded as a single facade plane.
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Figure 7.3: A natural scene that lacks vanishing lines and well-defined objects.

certain view of house. The training examples of each detector also come with ground-truth

3D structures of houses. When a house is detected in a test image, the average 3D structure

corresponding to the detector could help disambiguate the vanishing directions of line segments

located in the house region. In the example of Figure 7.2, if the average 3D structure indicates

the left half of the house region should be facing left, then many horizontal blue line segments in

that region – which are equally likely to belong to the green vanishing group – could be relabeled

as green.

7.3 From Urban Scenes to Natural Scenes

Compared to images of urban scenes, recovering the 3D scene structure from images of natural

scenes is even more challenging. For example, our reasoning system will not work at all on

the image shown in Figure 7.3. This is mostly due to the lack of regularities of man-made

structures such as buildings and roads. As a result, vanishing lines are no longer informative

in predicting global 3D geometries and surface orientations. Also, most natural scenes seldom
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contain well-defined objects like cars or pedestrians, making object-based viewpoint recovery

extremely difficult. In addition, the visual cues in natural scenes are even subtler and harder to

model. For example, how do we as humans know that the lake in Figure 7.3 has a lower elevation

than the meadow? How do we get an idea of how steep the mountain slopes are?

To handle natural scenes, a reasoning system may need to integrate information provided

by multiple cues such as shape from shade, texture gradient, and common geometric properties

of different semantic regions. With such cues, “piecewise”3D structures of local image regions

could be roughly estimated, and the “pieces”of 3D structures could be stitched together following

local and global geometric constraints. To obtain a good initial estimate of the overall 3D struc-

ture, we could use an approach similar to the label transfer algorithm proposed in [49], except

that 3D structures instead of semantic labels are transferred.
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Appendix A

Complete Results on Surface Layout

Classification

In this appendix, we display the surface layout classification results of our approach described

in Chapter 5 and the state-of-the-art algorithms on all 55 test images. Figures A.1 through A.11

show the comparisons between our approach and the algorithm in [35], and Figures A.12 through A.20

show the comparisons between our approach and the algorithm in [25].1 In those figures, each

row is a test example, and all the test examples are sorted in descending order according to the

accuracy gain of our approach over the competing algorithm. In each row, the three images from

the left show the ground-truth surface orientation labels, the result of the competing algorithm,

and our result.

1We were not able to acquire the results of [25] on 10 test images. Therefore, only 45 images are shown.
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Figure A.1: Comparison of surface layout classification between our approach in Chapter 5 and
the algorithm in [35]. Images 1-5.
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Figure A.2: Comparison of surface layout classification between our approach in Chapter 5 and
the algorithm in [35]. Images 6-10.
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Figure A.3: Comparison of surface layout classification between our approach in Chapter 5 and
the algorithm in [35]. Images 11-15.
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Figure A.4: Comparison of surface layout classification between our approach in Chapter 5 and
the algorithm in [35]. Images 16-20.
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Figure A.5: Comparison of surface layout classification between our approach in Chapter 5 and
the algorithm in [35]. Images 21-25.
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Figure A.6: Comparison of surface layout classification between our approach in Chapter 5 and
the algorithm in [35]. Images 26-30.
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Figure A.7: Comparison of surface layout classification between our approach in Chapter 5 and
the algorithm in [35]. Images 31-35.
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Figure A.8: Comparison of surface layout classification between our approach in Chapter 5 and
the algorithm in [35]. Images 36-40.
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Figure A.9: Comparison of surface layout classification between our approach in Chapter 5 and
the algorithm in [35]. Images 41-45.
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Figure A.10: Comparison of surface layout classification between our approach in Chapter 5 and
the algorithm in [35]. Images 46-50.
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Figure A.11: Comparison of surface layout classification between our approach in Chapter 5 and
the algorithm in [35]. Images 51-55.
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Figure A.12: Comparison of surface layout classification between our approach in Chapter 5 and
the algorithm in [25]. Images 1-5.
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Figure A.13: Comparison of surface layout classification between our approach in Chapter 5 and
the algorithm in [25]. Images 6-10.
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Figure A.14: Comparison of surface layout classification between our approach in Chapter 5 and
the algorithm in [25]. Images 11-15.
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Figure A.15: Comparison of surface layout classification between our approach in Chapter 5 and
the algorithm in [25]. Images 16-20.
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Figure A.16: Comparison of surface layout classification between our approach in Chapter 5 and
the algorithm in [25]. Images 21-25.
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Figure A.17: Comparison of surface layout classification between our approach in Chapter 5 and
the algorithm in [25]. Images 26-30.

158



Figure A.18: Comparison of surface layout classification between our approach in Chapter 5 and
the algorithm in [25]. Images 31-35.
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Figure A.19: Comparison of surface layout classification between our approach in Chapter 5 and
the algorithm in [25]. Images 36-40.
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Figure A.20: Comparison of surface layout classification between our approach in Chapter 5 and
the algorithm in [25]. Images 41-45.
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