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Abstract

The super Catalan numbers T (m,n) = (2m)!(2n)!/2m!n!(m + n)! are integers which
generalize the Catalan numbers. Since 1874, when Eugene Catalan discovered these numbers,
many mathematicians have tried to find their combinatorial interpretation. This dissertation
is dedicated to this open problem.

In Chapter 1 we review known results on T (m,n) and their q-analog polynomials. In
Chapter 2 we give a weighted interpretation for T (m,n) in terms of 2-Motzkin paths of length
m+n−2 and a reformulation of this interpretation in terms of Dyck paths. We then convert
our weighted interpretation into a conventional combinatorial interpretation for m = 1, 2. At
the beginning of Chapter 2, we prove our weighted interpretation for T (m,n) by induction.
In the final section of Chapter 2 we present a constructive combinatorial proof of this result
based on rooted plane trees.

In Chapter 3 we introduce two q-analog super Catalan numbers. We also define the
q-Ballot number and provide its combinatorial interpretation. Using our q-Ballot number,
we give an identity for one of the q-analog super Catalan numbers and use it to interpret a
q-analog super Catalan number in the case m = 2.

In Chapter 4 we review problems left open and discuss their difficulties. This includes
the unimodality of some of the q-analog polynomials and the conventional combinatorial
interpretation of the super Catalan numbers and their q-analogs for higher values of m.
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Chapter 1

Introduction

1.1 Super Catalan Numbers

The Catalan numbers

Cn =
1

n+ 1

(
2n

n

)
have over 66 combinatorial interpretations [29]. For example, they count the number of
lattice paths from (0, 0) to (n, n) with unit up steps and unit right steps which never go
below the line y = x (see Fig. 1.1), the number of binary parenthesizations of a string of
n+1 letters, the number of full binary trees with n+1 leaves, and the number of 123-avoiding
permutations of [n].

Figure 1.1: The five lattice paths from (0, 0) to (3, 3) with unit up and right steps.

As early as 1874 E. Catalan [8] observed that the numbers

S(m,n) =

(
2m
m

)(
2n
n

)(
m+n
n

) =
(2m)!(2n)!

m!n!(m+ n)!
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are integers with S(1, n) = 2Cn. In 1875, P. Bachmann [5] gave an algebraic proof showing
S(m,n) is an integer. The same year J. Bourguet proved that for k ≥ 2 the numbers

S(m1,m2, . . . ,mk) =
(km1)!(km2)!...(kmk)!

m1!m2!...mk!(m1 +m2 + ...+mk)!

are integers [15]. The sequence S(m,n) had seemingly been forgotten until 1910, when
H.C. Feemster asked for a proof that S(m,n) is an integer in The American Mathematical
Monthly. The next year, G.E. Wahlin rediscovered Bachmann’s proof and provided his own
proof [16].

Here is a simple proof that was given in [1]. By the Landau criterion [26], the exact
power of a prime p diving n! is

∞∑
i=1

⌊
n

pi

⌋
.

To prove that S(m,n) is an integer, we will show that, for every prime p, the power of p
which divides m!n!(m+n)! is at most the power of p which divides (2m)!(2n)!. Equivalently,

∞∑
i=1

⌊
m

pi

⌋
+

⌊
n

pi

⌋
+

⌊
m+ n

pi

⌋
≤

∞∑
i=1

⌊
2m

pi

⌋
+

⌊
2n

pi

⌋
. (1.1)

Since for x, y ∈ R, bxc+ byc+ bx+ yc ≤ b2xc+ b2yc, Eq. 1.1 follows.
Interest in the sequence S(m,n) in the modern era was reignited by Gessel [22]. He noted

that, except for S(0, 0), the numbers S(m,n) are even. In [23] Gessel and Xin refer to

T (m,n) =
S(m,n)

2
=

(2m)!(2n)!

2[m!n!(m+ n)!]

as the super Catalan numbers. Interpretations of T (m,n) have been given for several values
of m.

Pippenger and Schleich [28] interpreted T (2, n) as the number of cubic plane trees in
which every edge is drawn at an angle that is a multiple of π/3 from a reference line. In
[30], Schaeffer defined a blossom tree to be a planted binary plane tree with n inner vertices
of degree 3, n+ 2 leaves including the root vertex, and an associated orientation at the root
(clockwise or counter-clockwise). He gave a combinatorial interpretation of T (2, n) in terms
of balanced blossom trees. Schaeffer’s proof is related to combinatorial proofs of enumerating
various families of planar trees.

Define a Dyck path of length 2n to be a path from (0, 0) to (2n, 0) in which the allowable
steps are diagonally up and diagonally down and which never goes below the x-axis. Denote
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the set of Dyck paths of length 2n by Cn. There is a natural bijection between the set of
Dyck paths of length 2n and the set of lattice paths from (0, 0) to (n, n) with unit up steps
and unit right steps which never go below the line y = x. Given a lattice path, rotate it
45 degrees clockwise to obtain a Dyck path. Define the height of a Dyck path π, denoted
by h(π), to be the maximum y-coordinate π obtains. Gessel and Xin gave the following
combinatorial interpretation of T (2, n) in [23].

Theorem 1 (Gessel, Xin). For n ≥ 1, the number T (2, n) counts the ordered pairs of Dyck
paths (π, ρ) of total length 2n with |h(π) − h(ρ)| ≤ 1. Here π and ρ are allowed to be the
empty path. The height of the empty path is zero.

The proof of Theorem 1 uses an inclusion-exclusion argument and an identity attributed
to Dan Rubenstein

S(m+ 1, n) = 4S(m,n)− S(m,n+ 1). (1.2)

In [23] Gessel and Xin also pointed out some properties that the Dyck paths counted by
T (3, n) have to satisfy.

Several identities on super Catalan numbers were provided by Gessel in [22]. Among
them

S(m,n) =
∑
k

2n−m−2k

(
n−m

2k

)
S(m, k) (n ≥ m). (1.3)

A combinatorial interpretation of this identity is known for 0 ≤ m ≤ 2. When m = 1, this
identity becomes Cn+1 =

∑
k 2n−2k

(
n
2k

)
Ck, known as Touchard’s Identity [31]. Callan [7]

interpreted Eq. 1.3 for m = 2 by using Pippenger’s and Schleich’s interpretation of T (2, n)
in terms of cubic plane trees [28].

The following identity, due to von Szily [34], has been helpful to many authors working
on super Catalan numbers

S(m,n) =
∑
k

(−1)k
(

2m

m+ k

)(
2n

n− k

)
. (1.4)

Chen and Wang [10] used it to derive

S(m,m+ p) =
∑
k

(−1)k
(

2m

m− k

)(
2p

p+ 2k

)
(p ≥ 0). (1.5)

For p ≤ 3, this leads to

S(m,m+ p) =

(
2m

m

)(
2p

p

)
−
(

2m

m− 1

)(
2p

p+ 2

)
−
(

2m

m+ 1

)(
2p

p− 2

)
, (1.6)
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which implies that

S(m,m) =

(
2m

m

)
, S(m,m+ 1) = 2

(
2m

m

)
, (1.7)

S(m,m+ 2) = 2(2m+ 3)Cm, S(m,m+ 3) = 4(2m+ 5)Cm. (1.8)

Chen and Wang used Eq. 1.6 to provide an interpretation of S(m,m + p) for p ≤ 3. They
gave an interpretation of S(m,m+ 4) using Eq. 1.5 and an inclusion-exclusion argument.

We point out that the generalization of Eqs. 1.7 and 1.8 is

S(m,m+ p) =
22r−p∏p−1

i=dp/2e(2m+ 2i+ 1)∏r
i=1(2i− 1)

S(m, r), where r = bp/2c,

which is not helpful in providing a combinatorial interpretation since the coefficients of
S(m, r) are not integers.

Georgiadis, Munemasa and Tanaka [21] noted that

S(m,n) = (−1)mK2m+2n
m+n (2m) (1.9)

where Kd
j (x) is the Krawtchouk polynomial [11] defined by

Kd
j (x) =

j∑
h=0

(−1)h
(
x

h

)(
d− x
j − h

)
.

They substituted h = m+ k into von Szily’s identity (Eq. 1.4) to obtain

S(m,n) = (−1)m
m+n∑
h=0

(−1)h
(

2m

h

)(
2n

m+ n− h

)
,

which has the following combinatorial interpretation.

Theorem 2 (Georgiadis, Munemasa and Tanaka). Let Lm+n be the set of lattice paths from
(0, 0) to (m+ n,m+ n) with unit right steps and unit up steps. Given π ∈ Lm+n, let h2m(π)
denote the y-coordinate of the end of the 2mth step of π. Then

S(m,n) = (−1)m
∑

π∈Lm+n

(−1)h2m(π).
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Georgiadis, Munemasa, and Tanaka point out that transforming their weighted interpre-
tation into a conventional interpretation is difficult. In fact, they were able to do it only for
m = 1.

In Chapter 2, we give several weighted interpretations of T (m,n) including an interpre-
tation in terms of Dyck paths of length 2m+2n−2. Since the lattice paths in Theorem 2 are
not Dyck paths, our interpretation is different from the one by Georgiadis, Munemasa and
Tanaka. The advantage of our interpretation is that it will be used to obtain conventional
interpretations of both T (1, n) and T (2, n). After giving an initial proof of the weighted
interpretation of T (m,n) found in Theorem 3, we will return to this theorem at the end of
Chapter 2 to give a combinatorial construction involving rooted plane trees. The combina-
torial construction is based on Proposition 1, which is a new identity for the super Catalan
number.

1.2 Super Catalan Polynomials

An interpretation of T (m,n) may rest on their q-analog generalization, as it can provide
additional information about the objects counted by these integers. In this section we will
review some important q-analog polynomials. We will use the standard q-notation

[r]q = 1 + q + · · ·+ qr−1

[n]!q =
n∏
r=1

[r]q

[
n

k

]
q

=
[n]!q

[k]!q[n− k]!q
.

Let S(m,n) denote the set of lattice paths π from (0, 0) to (m+ n,m− n) with m steps
diagonally up (e.g. from (0, 0) to (1, 1)) and n steps diagonally down (e.g. from (0, 0) to
(1,−1)). We naturally associate π with a sequence π = π1 . . . πm+n with m zeros and n ones
where zeros denote up steps and ones denote down steps. For a lattice path π ∈ S(m,n) we
define the inversion number inv(π), descent set D(π), the major index maj(π), and
the descent index des(π) to be

inv(π) = |{(i, j) : i < j, πi > πj}|

D(π) = {i : πi > πi+1, 1 ≤ i ≤ m+ n− 1}
maj(π) =

∑
i∈D(π)

i

6



des(π) = |D(π)|.

Figure 1.2: π = 01011101 ∈ S(3, 5) with inv(π) = 5, D(π) = {2, 6},maj(π) = 8, des(π) = 2.

Let Sn be the set of permutations of [n]. The following two well known combinatorial

interpretations of [n]!q and
[
n+m

n

]
q

are due to MacMahon, see [6] and [4]:

[n]!q =
∑
π∈Sn

qinv(π)

[
n+m

n

]
q

=
∑

π∈S(n,m)

qmaj(π).

Let (x)n = (1−x)(1− qx) . . . (1− qn−1x). Furlinger and Hofbauer [19] defined q-Catalan
numbers cn(λ) = cn(λ; q) by

z =
∞∑
n=1

cn(λ; q)zn

q(
n
2)(−q−nz)n(−qλz)n

. (1.10)

They showed that

cn(1) =
[2n]!q

[n]!q[n+ 1]!q
, cn(0) =

[2]q[n]q[2n− 1]q!

[n]!q[n+ 1]!q
,

and
cn(λ) =

∑
π∈Cn

qmaj(π)+(λ−1) des(π).
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In [1], the q-analog of S(m,n) was defined by

Sq(m,n) =
[2m]!q[2n]!q

[m]!q[n]!q[m+ n]!q

and it was proved that Sq(m,n) is a polynomial with symmetric coefficients. It was conjec-
tured that Sq(m,n) is unimodal and has non-negative integer coefficients. Below are some
values of Sq(m,n):

Sq(0, 0) = 1

Sq(0, 1) = q + 1

Sq(0, 2) = q4 + q3 + 2q2 + q + 1

Sq(1, 1) = q + 1

Sq(1, 2) = q3 + q2 + q + 1

Sq(1, 3) = q7 + q6 + q5 + 2q4 + 2q3 + q2 + q + 1

Sq(2, 2) = q4 + q3 + 2q2 + q + 1

Sq(2, 3) = q7 + q6 + 2q5 + 2q4 + 2q3 + 2q2 + q + 1

Sq(2, 4) = q12 + q11 + 2q10 + 2q9 + 3q8 + 3q7 + 4q6 + 3q5 + 3q4 + 2q3 + 2q2 + q + 1.

These polynomials are related to the q-binomial coefficient as well as to Furlinger’s and
Hofbauer’s q-Catalan numbers:

Sq(0, n) =
[

2n

n

]
q
,

Sq(1, n)

1 + q
= cn(1),

Sq(1, n)

1 + qn
= cn(0).

Warnaar and Zudilin [35] discovered the identity

Sq(m,m+ p) =
∑
k≥0

Sq(m, k)

p−k∑
j=k

qk(m+k)+j(m+k)
[
p

2k

]
q

[
p−2k

j−k

]
q

(p ≥ 0). (1.11)

They used Eq. 1.11, the fact that the coefficients of Sq(0, n) are non-negative, and Sq(m,n) =
Sq(n,m) to conclude that Sq(m,n) has non-negative integer coefficients.

Warnaar and Zudilin [35] also proved a q-analog of von Szily’s identity

qmnSq(m,n) =
∑
k

(−1)kq(
k
2)
[

2m

m+k

]
q

[
2n

n+k

]
q
. (1.12)
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In Chapter 3 we will define two q-analog super Catalan polynomials and provide a q-
analog of Rubenstein’s Identity (Eq. 1.2). We will define a q-Ballot number and use it
to develop a new identity for the super Catalan polynomial, which will then lead to a
conventional combinatorial interpretation for the super Catalan polynomial when m = 2.
Finally we will give combinatorial proofs of various identities involving both the q- binomial
coefficient and Furlinger’s and Hofbauer’s q-Catalan number cn(1).
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Chapter 2

Super Catalan Numbers

2.1 A Super Catalan Identity

In this section we introduce a new identity for the super Catalan number. The identity
in Proposition 1 generalizes an instance of Rubenstein’s Identity (see Eq. 1.2), T (2, n) =
4Cn−Cn+1. This identity plays a crucial role in the weighted combinatorial interpretation of
the super Catalan number given in Theorem 3, whose original combinatorial proof is given
in Section 2.4.

Although a strictly algebraic proof of Proposition 1 is relatively easy, we present a com-
binatorial proof. By giving a combinatorial proof, we gain a better understanding of the
objects which may be counted by T (m,n) and the techniques used to manipulate them. In
the combinatorial proof of Theorem 3 we see methods similar to the proof of Proposition 1
reappearing.

Proposition 1. Let m,n ≥ 0, then

T (m+ 1, n) =
m∑
k=0

(−1)k
(
m

k

)
22m−2kCn+k. (2.1)

Proof. Among the identities that Gessel provides in [22] is

S(m,n) =
m∑
k=0

(−1)k
(

2n+ 2k

n+ k

)(
m

k

)
22m−2k. (2.2)

The binomial coefficient
(

2n+2k
n+k

)
counts the number of paths of length 2n + 2k which

begin at the origin, have unit steps diagonally up and diagonally down, and never go below
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the x-axis [17]. Let Pk = Pk(m,n) denote the set of paths of length 2m + 2n which begin
at the origin, have unit steps diagonally up and diagonally down, and remain above or on
the x-axis for at least the first 2n + 2k steps. Then

(
2n+2k
n+k

)
22m−2k = |Pk(m,n)|. Define the

weight of a path π ∈ Pk to be wk(π) = (−1)k
(
m
k

)
. We can write Eq. 2.2 as

S(m,n) =
m∑
k=0

∑
π∈Pk

wk(π).

Let Qj = Qj(m,n) denote the set of paths of length 2m+ 2n which begin at the origin,
have unit steps diagonally up and diagonally down, and go below the x-axis for the first time
at exactly the (2n+ 2j+ 1)st step. Given a path π ∈ Qj, we have π ∈ Pk for 0 ≤ k ≤ j with∑j

k=0wk(π) = (−1)j
(
m−1
j

)
. Hence,

S(m,n) =
m∑
j=0

∑
π∈Qj

(−1)j
(
m− 1

j

)
A path in Qj can be decomposed into a Dyck path of length 2n+ 2j, followed by a down

step, followed by a path of length 2m+ 2j − 1. Thus |Qj| = Cn+j2
2m−2j−1. Hence,

S(m,n) =
m∑
j=0

(−1)j
(
m− 1

j

)
22m−2j−1Cn+j.

And thus,

T (m+ 1, n) =
m∑
k=0

(−1)k
(
m

k

)
22m−2kCn+k.

2.2 A Weighted Interpretation

A 2-Motzkin path of length n is a sequence of n steps, starting at the origin and ending at
the point (n, 0), which never goes below the x-axis, where the allowable steps are diagonally
up, diagonally down, and level. The level steps are either straight or wavy. DefineMn to be
the set of all 2-Motzkin paths of length n. Note that a Dyck path of length 2n is a 2-Motzkin
path of length 2n with no level steps. There is a well-known bijection between 2-Motzkin
paths of length n − 1 and Dyck paths of length 2n [12]. Given a 2-Motzkin path, read the
steps from left to right and do the following replacements: replace an up step with two up
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steps, a down step with two down steps, a straight step with an up step followed by a down
step, and a wavy step with a down step followed by an up step. The resulting path may
touch level −1, thus, in addition, add an up step to the beginning of the resulting path and
a down step to the end to obtain a Dyck path. See Fig. 2.1.

Figure 2.1: The bijection between 2-Motzkin paths of length 2 and Dyck paths of length 6.

Define the level of a point on a path to be its y-coordinate. For a fixed m ≥ 0, we call
a 2-Motzkin path π positive if the mth step begins on an even level, otherwise π is negative.
Let P (m,n) be the number of positive 2-Motzkin paths of length m + n − 2, and N(m,n)
be the number of negative 2-Motzkin paths of length m+ n− 2.

Theorem 3. For m,n ≥ 1, the super Catalan number T (m,n) counts the number of positive
2-Motzkin paths minus the number of negative 2-Motzkin paths. That is,

T (m,n) = P (m,n)−N(m,n).

Proof. Given a 2-Motzkin path π of length m+ n− 2, define the weight of π to be 1 if π is
positive and −1 if π is negative.

Let F (m,n) be the sum of the weights of all 2-Motzkin paths of length m+ n− 2, that
is, F (m,n) = P (m,n) − N(m,n). To prove F (m,n) = T (m,n), we will check the initial
condition

F (1, n) = Cn,

and the recurrence given by Rubenstein’s Identity (Eq. 1.2),

4F (m,n) = F (m+ 1, n) + F (m,n+ 1).

For m = 1, the weight of any 2-Motzkin path of length n is 1 because the first step
always starts at the level y = 0. Hence F (1, n) = Cn, giving the number of 2-Motzkin paths
of length n− 1.

Next we consider the sum of the weights counted by F (m,n + 1) + F (m + 1, n). If a
2-Motzkin path of length m + n − 1 has an up or down step at step m, it will be counted
once as a positive path and once as a negative path, and will not contribute to this sum.

12



Paths of length m + n − 1 with a level step at step m will be counted twice. Let π be
such a 2-Motzkin path. By contracting the mth step in π, we obtain a 2-Motzkin path of
length m + n − 2; furthermore, every 2-Motzkin path of length m + n − 2 can be obtained
by contracting exactly two 2-Motzkin paths of length m + n − 1, one with a wavy step at
step m and one with a straight step at step m.

Thus the sum of the weights counted by F (m,n + 1) + F (m + 1, n) is twice the sum of
the weights of 2-Motzkin paths of length m+ n− 1 with level steps at step m; which is four
times the sum of the weights of 2-Motzkin paths of length m+ n− 2, that is, 4F (m,n).
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Figure 2.2: When m = 2, there are ten positive 2-Motzkin paths and four negative 2-Motzkin
paths of length 3. T (2, 3) = P (2, 3)−N(2, 3) = 6.

In the Section 2.2 we will use Theorem 3 to derive a conventional interpretation of T (2, n).
Theorem 3 can be used to prove combinatorially that T (m,n) = T (n,m). Let π be a path
of length m + n − 2 counted by T (m,n). Consider the reverse of a path, denoted rev(π),
to be that path read from right to left. Since the mth step of π and the nth step of the
reverse of π start at the same point, mapping a path to its reverse is a weight preserving
involution between the 2-Motzkin paths counted by T (m,n) and the 2-Motzkin paths counted
by T (n,m).

We can eliminate certain paths π and rev(π) from the set of objects counted by T (m,n).
If π is a path counted by P (m,n) and the mth step of rev(π) begins on an odd level, then
rev(π) is counted by N(m,n). Similarly, if π is a path counted by N(m,n) and the mth step
of rev(π) begins on an even level, then rev(π) is counted by P (m,n). Hence T (m,n) counts
the 2-Motzkin paths in which both the mth and nth steps begin on even levels minus the
2-Motzkin paths in which both the mth and nth steps begin on odd levels. We will refer to
the 2-Motzkin paths in which both the mth and nth steps begin on even (resp. odd) levels
as doubly positive (resp. negative).
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Theorem 4. Let P ′(m,n) (resp. N ′(m,n)) be the number of doubly positive (resp. negative)
2-Motzkin paths of length m+ n− 2. For m,n ≥ 1,

T (m,n) = P ′(m,n)−N ′(m,n).
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Figure 2.3: When m = 2 and n = 3, there are eight doubly positive 2-Motzkin paths and
two doubly negative 2-Motzkin paths of length 3. T (2, 3) = P ′(2, 3)−N ′(2, 3) = 6.

This theorem truly captures the symmetry T (m,n) = T (n,m). Although Theorem 4
counts the super Catalan number using fewer objects than Theorem 3, we use Theorem 3 to
obtain a conventional interpretation for T (2, n) because the objects in Theorem 3 are more
easily described and understood.

We can reformulate the result in Theorem 3 in terms of Dyck paths. Let S+(m,n) be the
subset of paths that have m up steps, n down steps, and never go below the x-axis. These
paths are called ballot paths. Here S+(n, n) = Cn is the set of Dyck paths of length 2n.

By Theorem 3 and the canonical bijection between 2-Motzkin paths and Dyck paths,
P (m,n) counts the number of Dyck paths of length 2m + 2n− 2 whose 2m− 1st step ends
on level 1 (mod 4), and N(m,n) counts the number of Dyck paths of length 2m + 2n − 2
whose 2m−1st step ends on level 3 (mod 4). Let B(n, r) be the number of ballot paths that
start at the origin, end at the point (2n − 1, 2r − 1), and do not go below the x-axis. It is
well known that B(n, r) = r

n

(
2n
n+r

)
.

Corollary 1. Reformulating Theorem 3, we obtain the equivalent equations:

T (m,n) =
∑
r≥1

(−1)r−1B(m, r)B(n, r) (2.3)

and

T (m,n) =
∑
r≥1

(−1)r−1 r
2

nm

(
2m

m+ r

)(
2n

n+ r

)
. (2.4)

Eq. 2.4 is a new identity for the super Catalan number T (m,n). An algebraic proof of
this identity can be obtained by substituting q = 1 in Theorem 7. We provide a q-analog of
Eqs. 2.3 and 2.4 with proofs in Section 3.2.
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2.3 Combinatorial Techniques

Our goal in this section is to derive a similar result to Gessel’s and Xin’s Theorem 1 using
our Theorem 3 and some direct Dyck paths subtraction techniques that will be easier to
generalize for larger values of m. We already were able to generalize Theorem 5 to super
Catalan polynomials in Chapter 3.

For a path π ∈ Cn, let X be the last, from left to right, level one point up to and
including the right-most maximum R on π. Let h−(π) denote the maximum height of π
until and including point X, and h+(π) denote the maximum height of π after and including
point X. Obviously h−(π) ≤ h+(π) = h(π). Let Ωn denote the set of π ∈ Cn such that
h+(π) ≤ h−(π) + 2.

Theorem 5. Let n ≥ 1. The super Catalan number T (2, n) counts Dyck paths π of length
2n such that h+(π) ≤ h−(π) + 2, the path of height one counted twice. That is,

T (2, n) = |Ωn|+ 1.

Proof. Let An denote the set of Dyck paths of length 2n that start with up, down, up, Bn
denote the set of Dyck paths of length 2n that start with up, up, down, and Nn denote the
set of Dyck paths of length 2n that start with up, up, up.

By Theorem 3, T (2, n) = P (2, n) − N(2, n), where P (2, n) is the number of 2-Motzkin
paths of length n that start with a level step, and N(2, n) is the number of 2-Motzkin paths
of length n that start with an up step. The canonical bijection between 2-Motzkin paths
and Dyck paths leads to the following interpretation:

T (2, n) = |An+1|+ |Bn+1| − |Nn+1|.

By contracting the second and third steps in the paths in An+1 and Bn+1 we get twice
Cn, so |An+1| = |Bn+1| = Cn.

We consider all paths π in Nn+1 that do not attain level one between the third step of
π and the right-most maximum point R on π. The set of all such paths will be denoted by
N ∗n+1. Let N ∗∗n+1 = Nn+1 −N ∗n+1. Then

T (2, n) = 2|Cn| − |N ∗n+1| − |N ∗∗n+1|.

First we establish an injection f from N ∗n+1 to Cn. For π ∈ N ∗n+1, let RQ be the down
step that follows the right-most maximum point R of π. We define f(π) to be the path
obtained by removing the second and third steps in π, both of which are up steps, and then
substituting the down step RQ by an up step. See Figure 2.4. Since π does not attain level
one between its third step and R, f(π) is a Dyck path of length 2n. Note that Q is the
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left-most maximum on f(π). Also, since at least two up steps precede Q on f(π), the height
of f(π) is at least two. Thus the Dyck path of height one and length 2n is not in the image
of f .

R

Q

R

Q

f

Figure 2.4: f removes the 2nd and 3rd steps, substitutes the down step RQ by an up step.

We will show that f is a bijection between N ∗n+1 and Cn − {π ∈ Cn : h(π) = 1}. Let ρ be
in Cn of height h(ρ) > 1. Let Q be the left-most maximum on ρ and RQ be the up step that
precedes Q. Insert two up steps after the first step of ρ, then substitute the up step RQ by
a down step, which makes R the right-most maximum of the resulting path π. The path π
is in N ∗n+1 and f(π) = ρ.

It follows that |Cn|− |N ∗n+1| counts only one path, the Dyck path of length 2n and height
one.

Next we establish an injection g from N ∗∗n+1 to Cn. A path π in N ∗∗n+1 attains level one
between its third step and the right-most maximum point R on π. Let Y be the first point
between the third step of π and R at which π attains level one. The segment XY that
consists of two down steps precedes Y . We remove the second and third steps of π and
substitute the two down steps XY by two up steps. See Figure 2.5. The resulting path is a
ballot path of length 2n that ends at level two. From left to right, X is the last level one
point on this ballot path. The maximum level that this path reaches up to and including
point X is less than the maximum level it reaches after and including point X by at least 4.

R

R

X

Y

Y

X

Figure 2.5: First part of g action is removing the 2nd and 3rd steps, substituting the two
down steps XY by two up steps.
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Let L be the left-most maximum point of this ballot path and ML be the up step that
precedes L. Substitute the up step ML by a down step. See Figure 2.6. The resulting path
g(π) is in Cn and M is its right-most maximum. Note that X is the last level one point on
g(π) before its right-most maximum M and h+(g(π)) ≥ h−(g(π)) + 3.

X

Y

L R

M

X

Y

M

L R

Figure 2.6: Second part of g action is substituting the up step ML with a down steps.

We will show that g is a bijection between N ∗∗n+1 and Cn − Ωn. Let ρ be in Cn and
h+(ρ) ≥ h−(ρ) + 3. Let M be the right-most maximum on ρ and ML be the down step
that follows M . Substitute the down step ML by an up step. The result is a ballot path
of length 2n that ends at level two. Note that L is the left-most maximum on this ballot
path. Let R denote the right-most maximum on this ballot path. From left to right, X is
the last level one point on this ballot path. The maximum level that this path reaches up to
and including point X is less than the maximum level it reaches after and including point
X by at least 4. Since X is the last level one point, it is followed by the segment XY that
consists of two up steps. Next we insert two up steps after the first step of this ballot path
and then substitute the two up steps XY by two down steps. The resulting path is a Dyck
path of length 2n+ 2, we denote it by π. Point Y is the first level one point after the third
step of π. Note that the maximum level that this Dyck path reaches after Y is at least the
maximum level that this Dyck path reaches up to and including Y , which means that the
right-most maximum R is to the right of Y . If follows that π ∈ N ∗∗n+1 and g(π) = ρ.

Thus |Cn| − |N ∗∗n+1| counts Dyck paths π that satisfy h+(π) ≤ h−(π) + 2.

We will now show a simple bijection between the objects described in Theorem 5 and
Theorem 1.

Let π be a Dyck path of length 2n and height h(π) > 1, such that h+(π) ≤ h−(π) + 2.
Let R be the right-most maximum of π. Note that X is followed by an up step XY and R
is followed by a down step RL. Substitute the up step XY with a down step, substitute the
down step RL with an up step. See Figure 2.7. As a result, the portion of π between Y and
R will be lowered by two levels. Since π does not attain level one between Y and R, the
resulting path is a Dyck path with point Y on level zero.
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X
X

Y

Y

R

R

L
L

Figure 2.7: From Dyck paths described in Theorem 5 to pairs of Dyck path described in
Theorem 1.

Note that Y separates this Dyck path into a pair of Dyck paths (ρ, σ). The height of
ρ is h−(π), the height of σ is h+(π) − 1. Thus |h(ρ) − h(σ)| ≤ 1. Since L is the left-most
maximum on σ, this mapping is reversible. Theorem 5 counts the Dyck path τ of height
one twice. This corresponds to the pairs (τ, ε) and (ε, τ) in Theorem 1, where ε is the empty
path.

2.4 A Combinatorial Proof of Theorem 3

In this section we derive Theorem 3 from Eq. 2.1 combinatorially. In doing this, we introduce
a family of weighted rooted plane trees which are counted by the super Catalan numbers.
This new family of objects is an alternative to Dyck paths and could be useful for interpreting
super Catalan numbers in future works.

A rooted plane tree, T , is a finite set of vertices such that one specifically designated
vertex is called the root of T and the remaining vertices (excluding the root) are put into
an ordered partition (T1, . . . , Tm) of m ≥ 0 pairwise disjoint, non-empty sets T1, . . . , Tm
each of which is a plane tree [29]. The ordering of the sub-trees (T1, . . . , Tm) is depicted by
drawing them from left to right. These are unlabeled rooted plane trees in the sense that
the vertices are regarded as indistinguishable, but the sub-trees at any vertex are linearly
ordered. However we will often give them the canonical pre-order labeling for the purpose of
referring to them. There is a standard bijection, called the glove bijection, between rooted
plane trees on n + 1 vertices and Dyck paths of length 2n [13]. Traverse the rooted plane
tree in pre-order. Every time an edge is traversed for the first time, draw a up step, when it
is traversed the second time, draw a down step. See Fig. 2.8.

Deutsch and Shapiro [14] provide a bijection between rooted plane trees on n+2 vertices
and 2-Motzkin paths of length n. Given a rooted plane tree, for non-root vertices with degree
≥ 3, call the left-most out-edge a left edge and the right-most out-edge a right edge. For
non-root vertices with degree 2 call the unique out-edge lonely. Call all remaining edges
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Figure 2.8: The glove bijection between rooted plane trees on 4 vertices and Dyck paths of
length 6.

redundant. To construct a 2-Motzkin path, traverse the tree in pre-order, and the first
time an edge is encountered, draw the following for each type of edge: nothing for the first
edge, an up (resp. down) step for every left (resp. right) edge, and a straight (resp. wavy)
level step for every lonely (resp. redundant) edge.

Note that the bijection of Deutsch and Shapiro is NOT the composition of the glove
bijection with the bijection previously mentioned between Dyck paths and 2-Motzkin paths.
See Fig. 2.9.

Figure 2.9: The standard glove bijection followed by Deutsch’s and Shapiro’s bijection fol-
lowed by the standard bijection between Motzkin paths and Dyck paths.

Let T (m,n) be the set of rooted plane trees on m+n+ 1 vertices with the vertices given
the canonical pre-order labeling, the first n vertices colored red, the last vertex colored red,
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and the remaining m vertices colored blue. Let b(T ) be the number of blue vertices of T
which have degree 2. Since the Catalan number Cn counts the number of rooted plane trees
on n+ 1 vertices, |T (m,n)| = Cm+n.

Given T ∈ T (m,n), let Ωk = Ωk(T ) be the set of weight functions on the vertices of T
which assign the weight 1 to each red vertex, the weight 4 to exactly k of the blue vertices
of degree 2, and the weight −1 to each of the remaining blue vertices. See Fig. 2.10. Clearly
there are |Ωk| =

(
b(T )
k

)
possible weight functions. Given a weight function σ, define wσ(T )

to be the product of the weights of the vertices of T assigned by σ. For σ ∈ Ωk, obviously
wσ(T ) = (−1)m−k4k. We wish to calculate∑

k

∑
T∈T (m,n)

∑
σ∈Ωk(T )

wσ(T ).

T ∈ T (5, 2) with b(T ) = 2 σ ∈ Ω2(T ) σ1 ∈ Ω1(T ) σ2 ∈ Ω1(T )

1

1

−1

4

−1

4

1

wσ(T ) = −16

−1

1

1 4

−1

−1 −1

−1

1

1 −1

11 −1

4 −1

−1

wσ1
(T ) = 4 wσ2

(T ) = 4

Figure 2.10: An example of T , Ω1(T ), and Ω2(T ).

For fixed m,n, k, let R ∈ T (m− k, n) and ρ ∈ Ω0(R). Label the edges of R in canonical
pre-order e1, . . . , em+n−k. Define Θk(R) to be the set of pairs (T, σ) which can be obtained by
inserting k vertices of degree 2 and weight 4 into any of the edges en, . . . , em+n−k. Obviously
|Θk(R)| =

(
m

m−k

)
since there are

(
m

m−k

)
ways to distribute k indistinguishable vertices among

m − k + 1 distinguishable edges. See Fig. 2.11. Furthermore, given T ∈ T (m,n) and
σ ∈ Ωk(T ), let R be the tree obtained by contracting the vertices of T which are assigned
a weight of 4 in σ. Then R ∈ T (m − k, n) with T ∈ Θk(R). Finally, we recall that
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|T (m− k, n)| = Cm+n−k. Hence,∑
k

∑
T∈T (m,n)

∑
σ∈Ωk(T )

wσ(T ) =
∑
k

∑
R∈T (m−k,n)

∑
(T,σ)∈Θk(R)

wσ(T )

=
∑
k

∑
R∈T (m−k,n)

∑
(T,σ)∈Θ(R)

(−1)m−k4k

=
∑
k

∑
R∈T (m−k,n)

(
m

m− k

)
(−1)m−k4k

=
∑
k

(
m

m− k

)
(−1)m−k4kCm+n−k = T (m+ 1, n).

The last step of the equality above follows from Proposition 1.

1

1 1

−1
−1

1

1 1

4

4

−1
−1

1

1

−1
4

4

−1

1

1

1 1

4

−1
4

−1

1

1

−1
−1

4

4

1

1

1

4

−1
−1

4

1

1

1

−1
4

−1

4

1

R ∈ T (2, 2), ρ

T1, σ1 T2, σ2 T3, σ3 T4, σ4 T5, σ5 T6, σ6

Figure 2.11: An example of R and Θ2(R).

On the other hand, fixing T ∈ T (m,n), the total sum of the weights of T is∑
k

∑
σ∈Ωk(T )

wσ(T ) =
∑
k

(
b(T )

k

)
(−1)m−k4k = (−1)m−b(T )3b(T ).

Given T ∈ T (m,n), let µ(T ) be the weight function on the vertices of T which assigns
the weight 1 to each red vertex, the weight 3 to each blue vertex of degree 2, and the weight
−1 to each of the remaining blue vertices. Clearly wµ(T ) = (−1)m−b(T )3b(T ). It follows that∑

T∈T (m,n)

wµ(T ) = T (m+ 1, n).
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Given a 2-Motzkin path of length m+ n− 1, we will refer to the last m steps as the end of
the path.

Let Q = Q(m,n) be the set of colored 2-Motzkin paths of length m+ n− 1 in which the
straight level edges that appear within the end of the path are three colored: green, yellow,
and purple. Given π ∈ Q, define w(π) = (−1)m−k where k is the number of straight level
edges at the end of π. Define w(Q) =

∑
π∈Qw(π). From the canonical bijection between

rooted plane tress and 2-Motzkin paths, it follows that

w(Q) =
∑

T∈T (m,n)

wµ(T ) = T (m+ 1, n).

Let A be the subset of paths π ∈ Q such that the end of π has a purple straight level
edge or a wavy level. Define a sign reversing involution on A: given a path π, within the end
of π, locate the first edge which is either a purple straight level edge or a wavy level edge
and if it is a purple straight level edge (resp. wavy level edge) replace it with a wavy level
edge (resp. purple straight level edge). It follows that w(Q) = w(Q−A).

However Q−A is the set of colored 2-Motzkin paths in which all level edges appearing
in the end of the path are either green straight level or yellow straight level edges. We can
biject Q−A to Mm+n−1. Given a path π replace all of the green straight level edges with
straight level edges and replace all of the yellow straight level edges with wavy level edges.

Recall w(π) = (−1)m−k where m−k is the number steps in the end of π which are either
up or down edges. If within the end of π there are an even number of steps which are either
up or down, then the end of the path begins on an even level. This means that the nth step
of π begins on an even level and w(π) = 1. If within the end of π there are an odd number
of steps which are either up or down, then the end of the path begins on an odd step. This
means that the nth step of π begins on an odd level and w(π) = 1. Thus,

T (m+ 1, n) = P (n,m+ 1)−N(n,m+ 1).

Together with T (m,n) = T (n,m), this implies the result of Theorem 3.
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Chapter 3

Super Catalan Polynomials

We define two q-analogs of the super Catalan number

Tq(m,n) =
Sq(m,n)

1 + qn

and

Uq(m,n) =
Sq(m,n)

1 + qm
.

Note that Tq(m,n) = Uq(n,m). Observe that

Tq(1, n) = cn(0) =
∑

π∈S+(n,n)

qmaj(π)−des(π)

and
Uq(1, n) = cn(1) =

∑
π∈S+(n,n)

qmaj(π),

where cn(λ) are the q-Catalan numbers defined by Furlinger and Hofbauer [19], see Section
1.2. In [1], Tq(m,n) and Uq(m,n) were proved to be polynomials. A more elegant proof
of the fact that Tq(m,n) and Uq(m,n) are polynomials with integer coefficients is given in
Section 3.2.

Here are some values of Tq(m,n):
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Tq(1, 1) =1

Tq(2, 1) =q2 + 1

Tq(3, 1) =q6 + q4 + q3 + q2 + 1

Tq(1, 2) =q + 1

Tq(2, 2) =q2 + q + 1

Tq(3, 2) =q5 + q4 + q3 + q2 + q + 1

Tq(1, 3) =q4 + q3 + q2 + q + 1

Tq(2, 3) =q4 + q3 + 2q2 + q + 1

Tq(3, 3) =q6 + q5 + 2q4 + 2q3 + 2q2 + q + 1

3.1 The q-Ballot Number

Let B(n, r) denote the set of paths of length 2n which begin at the origin with an up step,
end at (2n,−2r + 2), and never go below the line y = −2r + 2. In particular B(n, 1) = Cn.
There is a bijection between B(n, r) and the set of ballot paths S+(n+r−1, n−r) mentioned
in Section 2.2. Given a path π ∈ B(n, r), let ρ be the path obtained from π by deleting the
first step of π and reading the resulting path from right to left. Then ρ ∈ S+(n+r−1, n−r).
Hence,

|B(n, r)| = r

n

(
2n

n+ r

)
.

Define the q-Ballot Number

Bq(n, r) =
[2n− 1]!q[2r]q

[n+ r]q![n− r]q!
=

1

qn−r

([
2n−1

n+r−1

]
q
−
[

2n−1

n+r

]
q

)
.

A different q-analog of the Ballot Number has been defined by Chapoton and Zeng in
[9].

Here are some values of Bq(n, r):
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Bq(1, 1) = 1
Bq(2, 1) = q + 1
Bq(2, 2) = 1
Bq(3, 1) = q4 + q3 + q2 + q + 1
Bq(3, 2) = q3 + q2 + q + 1
Bq(3, 3) = 1
Bq(4, 1) = q9 + q8 + q7 + 2q6 + 2q5 + 2q4 + 2q3 + q2 + q + 1

Bq(4, 2) = q8 + q7 + 2q6 + 2q5 + 2q4 + 2q3 + 2q2 + q + 1
Bq(4, 3) = q5 + q4 + q3 + q2 + q + 1
Bq(4, 4) = 1.

Lemma 1. Let π ∈ S(m,n) ending with an up step. Reflecting π over the x-axis gives a
path ρ ∈ S(n,m) ending with a down step which satisfies maj(π) = maj(ρ) + n.

Proof. Given a path π ∈ S(m,n) ending with an up step, let D(π) = {X1, . . . , X`}. We
let X0 = 0. Define ui and di to be the number of up and down steps, respectively, between
indices Xi and Xi+1. Let ρ be the reflection of π across the x-axis. Then the descents of ρ
occur exactly at indices Xi + ui for i < `. Hence,

maj(ρ) =
∑`−1

i=0(Xi+ui) = maj(π)+m−(X`+u`) = maj(π)+m−(n+m) = maj(π)−n.

Theorem 6.
Bq(n, r) =

∑
π∈B(n,r)

qmaj(π)−des(π). (3.1)

Proof. Let S> denote the set of paths in S(n+r−1, n−r) which have height strictly greater
than 2r− 1, and let S≤ denote the set of paths in S(n+ r− 1, n− r) which never go above
y = 2r − 1.

We will define a bijection ψ : S> → S(n+ r, n− r− 1) which preserves the major index.
Given a path π ∈ S>, let R be the right-most highest point on π. Since π has height strictly
greater than 2r− 1 and ends at level 2r− 1, the point R is not the last point on π. Let RL
be the down step following R. Define ψ(π) to be the path obtained from π by changing the
down step RL into an up step. Note that ψ(π) ∈ S(n+ r, n− r − 1) and L is the left-most
highest point on ψ(π). To see that ψ is a bijection from S> to S(n+ r, n− r − 1), given a
path ρ in S(n + r, n − r − 1), locate the left-most highest point L on ρ and change the up
step preceding it into a down step to obtain π. Since ρ has height at least 2r + 1, the path
π will have height at least 2r. Therefore π ∈ S> and ψ(π) = ρ. The bijection ψ preserves
the major index because the descent sets of π and ψ(π) are the same. It follows that

[
2n−1

n+r−1

]
q
−
[

2n−1

n+r

]
q

=
∑

π∈S(n+r−1,n−r)

qmaj(π) −
∑

π∈S(n+r,n−r−1)

qmaj(π) =
∑
π∈S≤

qmaj(π).

25



We will define a bijection ϕ : S≤ → B(n, r). Let π ∈ S≤. Define ϕ(π) to be the path
obtained from π by reflecting π across the x-axis and then adding an up step to the beginning
of the path. This is clearly a bijection from S≤ to B(n, r). By Lemma 1, reflecting π across
the x-axis causes the major index to decrease by n− r. Adding an up step to the beginning
of the path increases all descents by 1, hence the major index of the reflection of π equals
the major minus descent index of ϕ(π). It follows that

1

qn−r

([
2n−1

n+r−1

]
q
−
[

2n−1

n+r

]
q

)
=
∑
π∈S≤

qmaj(π)−(n−r) =
∑

π∈B(n,r)

qmaj(π)−des(π).

Consider a different q-analog Ballot number

B(2)
q (n, r) =

1 + qn

1 + qr
Bq(n, r) =

[2n]q![r]q
[n]q[n+ r]!q[n− r]!q

.

The generating function B2
q (n, r) will appear in the next section in Theorem 7. Here are

some values of B
(2)
q (n, r):

B(2)
q (1, 1) = 1

B(2)
q (2, 1) = q2 + 1

B(2)
q (2, 2) = 1

B(2)
q (3, 1) = q6 + q4 + q3 + q2 + 1

B(2)
q (3, 2) = q4 + q3 + q + 1

B(2)
q (3, 3) = 1

B(2)
q (4, 1) = q12 + q10 + q9 + 2q8 + q7 + 2q6 + q5 + 2q4 + q3 + q2 + 1

B(2)
q (4, 2) = q10 + q9 + q8 + q7 + 2q6 + 2q5 + 2q4 + q3 + q2 + q + 1

B(2)
q (4, 3) = q6 + q5 + q4 + q2 + q + 1

B(2)
q (4, 4) = 1.

The following identity holds:

B(2)
q (n, r) =

[
2n−1

n+r−1

]
q
− qr

[
2n−1

n+r

]
q
. (3.2)

This demonstrates that B
(2)
q (n, r) is a polynomial with integer coefficients. We do not know

a combinatorial interpretation of B
(2)
q (n, r).
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It is interesting to notice that

Bq(n, 1) =
Sq(1, n)

1 + qn
= Tq(1, n) and B(2)

q (n, 1) =
Sq(1, n)

1 + q
= Uq(1, n).

Because of this relation it might be tempting to think that B2
q (n, r) is the generating function

for the major index of B(n, r). This is not the case. For example,

B(2)
q (3, 2) 6=

∑
π∈B(3,2)

qmaj(π).

Here are some values of the function B
(3)
q (n, r) =

∑
π∈B(n,r) q

maj(π):

B(3)
q (1, 1) = 1

B(3)
q (2, 1) = q2 + 1

B(3)
q (2, 2) = 1

B(3)
q (3, 1) = q6 + q4 + q3 + q2 + 1

B(3)
q (3, 2) = q4 + q3 + q2 + 1

B(3)
q (3, 3) = 1

B(3)
q (4, 1) = q12 + q10 + q9 + 2q8 + q7 + 2q6 + q5 + 2q4 + q3 + q2 + 1

B(3)
q (4, 2) = q10 + q9 + 2q8 + q7 + 2q6 + 2q5 + 2q4 + q3 + q2 + 1

B(3)
q (4, 3) = q6 + q5 + q4 + q3 + q2 + 1

B(3)
q (4, 4) = 1.

We do not know an explicit formula for B3
q (n, r).

3.2 q-analogs of Two Important Super Catalan Identi-

ties

In this section we provide two identities for Tq(m,n). The following is a q-analog of Ruben-
stein’s Identity (Eq. 1.2).

Proposition 2.

(1 + qn)(1 + qn−m)Tq(m,n) = qn−mTq(n,m+ 1) + Tq(m,n+ 1). (3.3)
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Proof.

(1 + qn)(1 + qn−m)Tq(m,n)− Tq(m,n+ 1)

= (1 + qn)(1 + qn−m)
Sq(m,n)

1 + qn
− Sq(m,n+ 1)

1 + qn+1

=
(1 + qn−m)[2n]q![2m]q!

[n]q![m]q![n+m]q!
− [2n+ 2]q![2m]q!

(1 + qn+1)[n+ 1]q![m]q![n+m+ 1]q!

=

(
[2n]q![2m]q!

[n]q![m]q![n+m+ 1]q!

)(
(1 + qn−m)[n+m+ 1]q −

[2n+ 2]q[2n+ 1]q
(1 + qn+1)[n+ 1]q

)
=

(
[2n]q![2m]q!

[n]q![m]q![n+m+ 1]q!

)(
(1 + qn−m)[n+m+ 1]q − [2n+ 1]q

)
=

(
[2n]q![2m]q!

[n]q![m]q![n+m+ 1]q!

)(
qn−m + . . .+ qn+m

)
= qn−m

[2n]q![2m]q![2m+ 1]q
[n]q![m]q![n+m+ 1]q!

= qn−m
[2n]q![2m+ 2]q!

(1 + qm+1)[n]q![m+ 1]q![n+m+ 1]q!

= qn−m
Sq(m+ 1, n)

1 + qm+1
= qn−mTq(n,m+ 1).

We will use the next identity later in this section to generalize Eq. 2.3.

Proposition 3. For 1 ≤ k ≤ m,

q(n−1)(k−1)Tq(m,n) =
k∑
r=1

(−1)r−1q(
r−1
2 )
[
k−1

r−1

]
q

[2n− 1]!q[2m]!q[m− k + r]q![m+ 2r − k]q
[n− r]!q[n+m+ r − k]!q[m]!q[m+ r]!q

.

(3.4)

Proof. We will proceed by induction on k. When k = 1, Eq. 3.4 is

Tq(m,n) =
[2n− 1]!q[2m]!q[m]!q[m+ 1]q

[n− 1]!q[n+m]!q[m]!q[m+ 1]!q
,

which is the super Catalan polynomial.
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Assume Eq. 3.4 holds for some k ≥ 1, then

q(n−1)kTq(m,n) =

= qn−1

k∑
r=1

(−1)r−1q(
r−1
2 )
[
k−1

r−1

]
q

[2n− 1]!q[2m]!q[m− k + r]q![m+ 2r − k]q
[n− r]!q[n+m+ r − k]!q[m]!q[m+ r]!q

= qn−1

k∑
r=1

(−1)r−1q(
r−1
2 )
[
k−1

r−1

]
q

[2n− 1]!q[2m]!q[m− k + r]q!([n+m+ r − k]q − [n− r]q)
qn−r[n− r]!q[n+m+ r − k]!q[m]!q[m+ r]!q

=
k∑
r=1

(−1)r−1q(
r−1
2 )
[
k−1

r−1

]
q

qr−1[2n− 1]!q[2m]!q[m− k + r]q!

[n− r]!q[n+m+ r − k − 1]!q[m]!q[m+ r]!q

−
k∑
r=1

(−1)r−1q(
r−1
2 )
[
k−1

r−1

]
q

qr−1[2n− 1]!q[2m]!q[m− k + r]q!

[n− r − 1]!q[n+m+ r − k]!q[m]!q[m+ r]!q

=
[2n− 1]!q[2m]!q[m− k + 1]!q

[n− 1]!q[n+m− k]!q[m]!q[m+ 1]!q

+
k∑
j=2

(−1)j−1q(
j−1
2 )qj−1

[
k−1

j−1

]
q

[2n− 1]!q[2m]!q[m− k + j − 1]q![m− k + j]q
[n− j]!q[n+m+ j − k − 1]!q[m]!q[m+ j]!q

+
k∑
j=2

(−1)j−1q(
j−1
2 )
[
k−1

j−2

]
q

[2n− 1]!q[2m]!q[m− k + j − 1]q![m+ j]q
[n− j]!q[n+m+ j − k − 1]!q[m]!q[m+ j]!q

+ (−1)kq(
k
2) [2n− 1]!q[2m]!q[m]!q

[n− k − 1]!q[n+m]!q[m]!q[m+ k]!q

=
[2n− 1]!q[2m]!q[m− k]!q[m+ 2− (k + 1)]q

[n− 1]!q[n+m+ 1− (k + 1)]!q[m]!q[m+ 1]!q

+
k∑
j=2

(−1)j−1q(
j−1
2 )
[
k

j−1

]
q

[2n− 1]!q[2m]!q[m− k + j − 1]q![m+ j − k]q
[n− j]!q[n+m+ j − k − 1]!q[m]!q[m+ j]!q

+
k∑
j=2

(−1)j−1q(
j−1
2 )qm+j−k

[
k−1

j−2

]
q

[2n− 1]!q[2m]!q[m− k + j − 1]q![k]q
[n− j]!q[n+m+ j − k − 1]!q[m]!q[m+ j]!q

+ (−1)kq(
k
2) [2n− 1]!q[2m]!q[m]!q[m+ 2(k + 1)− (k + 1)]q

[n− (k + 1)]!q[n+m+ k + 1− (k + 1)]!q[m]!q[m+ k + 1]!q
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=
[2n− 1]!q[2m]!q[m− k]!q[m+ 2− (k + 1)]q

[n− 1]!q[n+m+ 1− (k + 1)]!q[m]!q[m+ 1]!q

+
k∑
j=2

(−1)j−1q(
j−1
2 )
[
k

j−1

]
q

[2n− 1]!q[2m]!q[m− k + j − 1]q![m+ j − k]q
[n− j]!q[n+m+ j − k − 1]!q[m]!q[m+ j]!q

+
k∑
j=2

(−1)j−1q(
j−1
2 )qm+j−k

[
k

j−1

]
q

[2n− 1]!q[2m]!q[m− k + j − 1]q![j − 1]q
[n− j]!q[n+m+ j − k − 1]!q[m]!q[m+ j]!q

+ (−1)kq(
k
2) [2n− 1]!q[2m]!q[m]!q[m+ 2(k + 1)− (k + 1)]q

[n− (k + 1)]!q[n+m+ k + 1− (k + 1)]!q[m]!q[m+ k + 1]!q

=
[2n− 1]!q[2m]!q[m− k]!q[m+ 2− (k + 1)]q

[n− 1]!q[n+m+ 1− (k + 1)]!q[m]!q[m+ 1]!q

+
k∑
j=2

(−1)j−1q(
j−1
2 )
[
k

j−1

]
q

[2n− 1]!q[2m]!q[m− k + j − 1]q![m+ 2j − k − 1]q
[n− j]!q[n+m+ j − k − 1]!q[m]!q[m+ j]!q

+ (−1)kq(
k
2) [2n− 1]!q[2m]!q[m]!q[m+ 2(k + 1)− (k + 1)]q

[n− (k + 1)]!q[n+m+ k + 1− (k + 1)]!q[m]!q[m+ k + 1]!q

=
k+1∑
j=1

(−1)j−1q(
j−1
2 )
[
k

j−1

]
q

[2n− 1]!q[2m]!q[m− (k + 1) + j]q![m+ 2j − (k + 1)]q
[n− j]!q[n+m+ j − (k + 1)]!q[m]!q[m+ j]!q

.

We remark that depending on k, Eq. 3.4 is not necessarily the sum of polynomials. We
are interested in Eq. 3.4 when k = m and will show that it provides an expression for
q(n−1)(m−1)Tq(m,n) which is the sum of polynomials. The following is a generalization of Eq.
2.3.

Theorem 7.

q(n−1)(m−1)Tq(m,n) =
m∑
r=1

(−1)r−1q(
r−1
2 ) 1 + qm

1 + qr
Bq(n, r)Bq(m, r). (3.5)
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Proof. Substituting k = m in Eq. 3.4 yields

q(n−1)(m−1)Tq(m,n) =
m∑
r=1

(−1)r−1q(
r−1
2 )
[
m−1

r−1

]
q

[2n− 1]!q[2m]!q[r]q![2r]q
[n− r]!q[n+ r]!q[m]!q[m+ r]!q

=
m∑
r=1

(−1)r−1q(
r−1
2 ) [2n− 1]!q[2m]!q[r]q[2r]q

[n− r]!q[n+ r]!q[m]q[m+ r]!q[m− r]!q

=
m∑
r=1

(−1)r−1q(
r−1
2 ) 1 + qm

1 + qr
Bq(n, r)Bq(m, r).

We will use Theorem 7 in Section 3.3 to derive an interpretation of Tq(2, n).
We remind the reader, in [1], proofs that Tq(m,n) and Uq(m,n) are polynomials were

given. Here we give a more elegant proof, that they are polynomials with integer coefficients.
We remark that this result could also be derived by using Warnaar’s and Zudilin’s Eq. 1.11.

Theorem 8. Tq(m,n), and Uq(m,n) are polynomials with integer coefficients.

Proof. Recall that Warnaar and Zudilin [35] provided a proof that Sq(m,n) has integer
coefficients. From Theorem 7,

Sq(m,n) =
1

q(n−1)(m−1)
(1 + qn)

m∑
r=1

(−1)r−1q(
r−1
2 ) 1 + qm

1 + qr
Bq(n, r)Bq(m, r).

Because Sq(m,n) has integer coefficients and q does not divide (1 + qn), we must have that
q(n−1)(m−1) divides

m∑
r=1

(−1)r−1q(
r−1
2 ) 1 + qm

1 + qr
Bq(n, r)Bq(m, r).

Thus,

Tq(m,n) =
1

q(n−1)(m−1)

m∑
r=1

(−1)r−1q(
r−1
2 ) 1 + qm

1 + qr
Bq(n, r)Bq(m, r)

has integer coefficients.

We can rewrite Eq. 3.5 as

q(n−1)(m−1)Tq(m,n) =
m∑
r=1

(−1)r−1q(
r−1
2 )Bq(n, r)B

(2)
q (m, r).
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Because Bq(n, r) and B
(2)
q (m, r) have been show to be polynomials,

m∑
r=1

(−1)r−1q(
r−1
2 )Bq(n, r)B

(2)
q (m, r)

is the sum of polynomials. A combinatorial interpretation of B
(2)
q (m, r) would provide us

with a weighted interpretation of q(n−1)(m−1)Tq(m,n).

3.3 A Combinatorial Interpretation of Tq(2, n)

In this section we provide an interpretation of Tq(2, n). The following identity is from
Theorem 7 when m = 2:

qn−1Tq(2, n) = (1 + q2)Bq(n, 1)−Bq(n, 2). (3.6)

We recall, Ωn denotes the set of π ∈ Cn such that h+(π) ≤ h−(π) + 2.

Theorem 9.
Tq(2, n) = qn−1 + q3−n

∑
π∈Ωn

qmaj(π)−des(π). (3.7)

Proof. By B∗(n, 2) we denote the set of paths in B(n, 2) which do not attain level y = −1
before their right-most maximum. Let B∗∗(n, 2) = B(n, 2)− B∗(n, 2) and

B∗q (n, 2) =
∑

π∈B∗(n,2)

qmaj(π)−des(π); B∗∗q (n, 2) =
∑

π∈B∗∗(n,2)

qmaj(π)−des(π).

By Theorem 6 and Eq. 3.6

qn−1Tq(2, n) = (Bq(n, 1)−B∗q (n, 2)) + (q2Bq(n, 1)−B∗∗q (n, 2)).

First we compute Bq(n, 1) − B∗q (n, 2). For π ∈ B∗(n, 2), let RQ be the down step that
follows the right-most maximum point R of π. We define f(π) to be the path obtained by
substituting the down step RQ by an up step. See Figure 3.1. Note that f(π) ∈ Cn and,
since at least two up steps precede Q on f(π), the height of f(π) is at least two. Also π and
f(π) have the same set of descents, thus des(π) = des(f(π)) and maj(π) = maj(f(π)). It is
important to mention that Q is the left-most maximum on f(π).

We will show that f is a bijection between B∗(n, 2) and the set of paths ρ in Cn of height
h(ρ) > 1. Let Q be the left-most maximum on ρ and RQ be the up step that precedes Q.
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R

Q

f

Q

R

Figure 3.1: f substitutes the down step RQ by an up step

Substitute the up step RQ by a down step, which makes R the right-most maximum of the
resulting path, call it π. Note that π ∈ B∗(n, 2) and f(π) = ρ.

It follows that

Bq(n, 1)−B∗q (n, 2) =
∑
π∈Cn
h(π)=1

qmaj(π)−des(π) = q(n−1)2 .

We define a descent point to be a point on a path which is preceded by a down step,
and followed by a up step. We define a down wedge sequence to be a portion of a path
that starts with a down step, alternates between down steps and up steps, and ends with an
up step. See Figure 3.2.

Figure 3.2: A down wedge sequence

We find a combinatorial interpretation for q2Bq(n, 1) − B∗∗q (n, 2) by establishing an in-
jection g from B∗∗(n, 2) to Cn. A path π in B∗∗(n, 2) attains y = −1 before its right-most
maximum point R. Let N be the first point before R at which π attains y = −1. We con-
sider two cases: when N is immediately followed by a down step, and when N is immediately
followed by an up step.

Case one: N is immediately followed by a down step. Since N is the left-most
point on π on level y = −1, N is preceded by two down steps and is followed by one down
step, then one up step. See Figure 3.3. Let MN be the down step that precedes N and NY
be the down step that follows N . Substitute MY by two up steps. The resulting path is a
ballot path of length 2n that ends at level two. Rename N to be X. From left to right, X is
the last level one point on this ballot path. The maximum level that this ballot path reaches
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up to and including point X is less than the maximum level it reaches after and including
point X by at least 4.

Let L be the left-most maximum point of this ballot path and QL be the up step that
precedes L. Substitute the up step QL by a down step. See Figure 3.3. The resulting path
g(π) is in Cn and Q is its right-most maximum. Point X is the last level one point on g(π)
before its right-most maximum Q and the point on g(π) before X is a descent. Note that
h+(g(π)) ≥ h−(g(π)) + 3. Also des(π) = des(g(π)) and maj(π) = maj(g(π)) + 2. Thus
maj(π)− des(π) = maj(g(π))− des(g(π)) + 2.

R

M

M

R

Y

Y

X

L R

Q Q

RL

X

N

N

Figure 3.3: The action of g when N is followed by a down step

Case two: N is immediately followed by an up step. Since N is the left-most point
on π on level y = −1, N is preceded by two down steps which form a segment we denote
by XN . See Figure 3.4. Let σ be the longest, possibly empty, down wedge sequence that
precedes X. Let Y be the first point of the sequence σ. Note that either Y is the second
point on π or Y is preceded by a down step. Remove σ from its original position and insert
it immediately after N . Then substitute XN by two up steps. The resulting path is a ballot
path of length 2n that ends at level two. From left to right, X is the last level one point on
this ballot path. The maximum level that this ballot path reaches up to and including point
X is less than the maximum level it reaches after and including point X by at least 4.

Let L be the left-most maximum point of this ballot path and QL be the up step that
precedes L. Substitute the up step QL by a down step. See Figure 3.4. The resulting
path g(π) is in Cn and Q is its right-most maximum. Note that X is the last level one
point on g(π) before its right-most maximum Q and the point on g(π) before X is NOT a

34



descent. Also h+(g(π)) ≥ h−(g(π)) + 3. If Y is the second point on the original path π,
then g removes the original descent of π that occurs immediately after Y and moves the
descent that originally corresponds to N one unit to the left. Thus des(π) = des(g(π)) + 1
and maj(π) = maj(g(π)) + 3. If Y is NOT the second point on the original path π and
σ is not empty, then g moves the descent that originally occurs immediately after Y and
the one that corresponds to N one unit to the left. If Y is NOT the second point on
the original path π and σ is empty, then g moves the descent that corresponds to N two
units to the left. Thus des(π) = des(g(π)) and maj(π) = maj(g(π)) + 2. In all the cases
maj(π)− des(π) = maj(g(π))− des(g(π)) + 2.

N

X

R

Y

X

L R

Q
L

Q
R

X

σ

N=Y

R

Y

X

N

σ

Figure 3.4: The action of g when N is followed by an up step

If a path ρ is in the image of g, then h+(ρ) ≥ h−(ρ) + 3, thus ρ ∈ Cn − Ωn. We will
show that the image of g is Cn − Ωn. Let ρ be in Cn and h+(ρ) ≥ h−(ρ) + 3. Let Q be the
right-most maximum on ρ and QL be the down step that follows Q. Substitute the down
step QL by an up step. The result is a ballot path of length 2n that ends at level two. Note
that L is the left-most maximum on this ballot path. Let R denote the right-most maximum
on this ballot path. From left to right, let X be the last level one point on this ballot path.
The maximum level that this ballot path reaches up to and including point X is less than
the maximum level it reaches after and including point X by at least 4. We consider two
cases: when the point before X is a descent, and when the point before X is not a descent.

If the point before X is a descent, let M be that descent. Let Y be the point that follows
X. Since X is the last point on level one before R, XY is an up step. Substitute MY with
two down steps. We will call the resulting path π. Note that π attains level y = −1 before
its right-most maximum R and, immediately after attaining level y = −1 for the first time,
it attains level y = −2. Thus π is in B∗∗(n, 2), falls into Case 1, and g(π) = ρ.

35



Next we consider the case when the point before X is NOT a descent. Note that, since
X is the last level one point before R, X is followed by two up steps. Let XY be the
segment that consists of these two up steps. Let σ be the longest, possibly empty, down
wedge sequence that starts at Y . Note that σ is followed by an up step. Remove σ from
its original position and insert it immediately before X, then substitute XY with two down
steps. We will call the resulting path π. Note that π attains level y = −1 for the first time
at Y , before its right-most maximum R, and Y is followed by an up step. Thus π is in
B∗∗(n, 2), falls into Case 2, and g(π) = ρ.

It follows that
q2Bq(n, 1)−B∗∗q (n, 2) = q2

∑
π∈Ωn

qmaj(π)−des(π).

3.4 Several Related Combinatorial Proofs

There are several identities regarding the q- binomial coefficient, Sq(0, n) and Uq(1, n) which
we would like to prove combinatorially; they can easily be verified algebraically. Our main
goal is to explain the relation

Sq(0, n) = (1 + . . .+ qn)Uq(1, n).

Proposition 4. [
2n−1

n

]
q

=
[

2n−1

n−1

]
q
. (3.8)

Proof. Let π ∈ S(n, n − 1). Let L be the leftmost highest point on π. Because π ends at
level one, L is not the first point on π. Let K be the point preceding L on π. Change the up
step KL to a down step to obtain a path ρ ∈ S(n−1, n) with maj(π) = maj(ρ). We see this
is a bijection; given ρ ∈ S(n − 1, n), let R be the rightmost highest point on ρ. Because ρ
ends at level −1, R is not the last point on ρ. Obtain π by changing the down step following
R into an up step.

Proposition 5.

(1 + qn)
[

2n−1

n

]
q

=
[

2n

n

]
q
. (3.9)

Proof. We will construct a bijection

ϕ : {π ∈ S(n, n) : maj(π) = k} → {π ∈ S(n, n− 1) : maj(π) = k or k − n}.
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Let π ∈ S(n, n) with maj(π) = k. If the last step of π is down, then let ρ = ϕ(π) be
the path obtained from π by deleting the last step of π. Then ϕ(π) ∈ S(n, n − 1) with
maj(π) = maj(ϕ(π)). Otherwise, let ρ = ϕ(π) be path obtained by reflecting π over the
x-axis then deleting the last step. Then ϕ(π) ∈ S(n, n− 1). We have maj(ϕ(π)) = k−n by
Lemma 1.

We see this is a bijection. For ρ ∈ S(n, n− 1) with maj(ρ) = k, define π to be the path
obtained from ρ by appending a down step to the end of ρ. Then π satisfies ϕ(π) = ρ. For
ρ ∈ S(n, n− 1) with maj(ρ) = k− n, let ρ be the path obtained from π by reflecting π over
the x-axis and then appending a up step. Then ρ satisfies ϕ(π) = ρ.

From Equations 3.8 and 3.9, we see

Corollary 2.

(1 + qn)
[

2n−1

n−1

]
q

=
[

2n

n

]
q
. (3.10)

We remind the reader that S+(m,n) is defined to be the set of paths that have m up
steps, n down steps, and never go below the x-axis. Define S−(m,n) to be the set of paths
that have m up steps, n down steps, and go below the x-axis. Define S−(m,n) to be the
set of paths that have m up steps, n down steps, and never go above the x-axis. Define
S+(m,n) to be the set of paths that have m up steps, n down steps, and go above the
x-axis.

The following is a generalized version of a bijection presented in [19].

Lemma 2. For n ≥ m, there exists a bijection

φ : {π ∈ S−(n,m) : maj(π) = k} → {π ∈ S(n+ 1,m− 1) : maj(π) = k − 1}.

Proof. Let π ∈ S−(n,m). Let L be the leftmost lowest point on π. Because π goes below
the x-axis, L is not the first point on π and is preceded by a down step. Let φ(π) = ρ be
the path obtained from π by changing the down step preceding L into an up step. Then
ρ ∈ S(n + 1,m − 1) and maj(ρ) = maj(π) − 1. We will show that φ is a bijection from
S−(n,m) to S(n+ 1,m− 1). Let ρ ∈ S(n+ 1,m− 1). Let R be the rightmost lowest point
on ρ. Since n+1 > m−1, R is not the last point on ρ and is followed by a up step. Obtain π
from ρ by changing the up step following R into a down step. Then π satisfies φ(π) = ρ.

Lemma 3. There exists a bijection

ϕ : {π ∈ S(n+ 1, n− 1) : maj(π) = k} → {π ∈ S+(n, n) : maj(π) = k}.
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Proof. Let π ∈ S(n + 1, n − 1) with maj(w) = k. Let L be the leftmost highest point on
π. Since π ends at (2n, 2), L is not the first point on π and is preceded by an up step. Let
ϕ(π) = ρ be the path obtained from π by changing the up step preceding L into a down
step. We see that ρ ∈ S+(n, n) because the height of ρ will be at least 1. Because the
descent sets of π and ρ are equal, maj(π) = maj(ρ). We will show that ϕ is a bijection from
S(n+ 1, n− 1) to S+(n, n). Given ρ ∈ S+(n, n), let R be the rightmost highest point on ρ.
Since R cannot be the last point on ρ, R must be followed by a down step. Define π to be
the path obtained from ρ by changing the down step following R into a up step. The path
π will satisfy ϕ(π) = ρ.

Corollary 3. If we compose the bijections in Lemma 2 and Lemma 3, we have a bijection
between paths which go below the x-axis and paths which go above the x-axis:

ψ : {π ∈ S−(n, n) : maj(π) = k} → {π ∈ S+(n, n) : maj(π) = k − 1}.

Proposition 6.
Sq(0, n) + qn+1Uq(1, n) = qSq(0, n) + Uq(1, n). (3.11)

Equivalently,
(1− q)Sq(0, n) = (1− qn+1)Uq(1, n).

Proof. We will construct a bijection

ϕ : {π ∈ S(n, n) : maj(π) = k} ∪ {π ∈ S+(n, n) : maj(π) = k − n− 1} →
{π ∈ S(n, n) : maj(π) = k − 1} ∪ {π ∈ S+(n, n) : maj(π) = k}.

For π ∈ S(n, n) with maj(π) = k, if π ∈ S+(n, n) then define ϕ(π) = π ∈ S+(n, n) with
maj(ϕ(π)) = k. Otherwise define ϕ(π) = ψ(π) from Corollary 3 with maj(ϕ(π)) = k − 1.

For π ∈ S+(n, n) with maj(π) = k − n − 1, define ϕ(π) to be the path obtained by
reflecting π over the x-axis. Observe that the last step of π must be a down step and
ϕ(π) ∈ S−(n, n). By Lemma 1, maj(ϕ(π)) = k − 1.

We will show that ϕ is a bijection from {π ∈ S(n, n) : maj(π) = k} ∪ {π ∈ S+(n, n) :
maj(π) = k − n − 1} to {π ∈ S(n, n) : maj(π) = k − 1} ∪ {π ∈ S+(n, n) : maj(π) = k}.
Given ρ ∈ S(n, n), if maj(ρ) = k − 1 and ρ lies strictly below the x-axis, then define π
to be the path obtained from ρ by reflecting π over the x-axis. Then π ∈ S+(n, n) with
maj(π) = k−1−n and ϕ(π) = ρ. If maj(ρ) = k−1 and ρ goes above the x-axis, then define
π = ψ−1(ρ) from Corollary 3. Then π ∈ S(n, n) with maj(π) = k and ϕ(π) = ρ. Finally, if
ρ ∈ S+(n, n) with maj(ρ) = k, then define π = ρ, so maj(π) = k and ϕ(π) = ρ.
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Our goal for the remainder of this section is to explain the relation

Sq(0, n) = (1 + . . .+ qn)Uq(1, n).

We will fix the following functions.
Let ϕ be the bijection in Corollary 3. That is,

ϕ : S−(n, n)→ S+(n, n),

where ϕ(π) is obtained from π by lowering the left-most highest point, and then raising the
left-most lowest point. Let α be the bijection in Lemma 1 restricted to S+(n, n). That is,

α : S+(n, n)→ S−(n, n)

reflects a Dyck path over the x-axis.
Consider the algorithm below which takes as an input P ∈ S(n, n) and returns as an

output A(P ) ∈ S+(n, n).

k ← maj(P )
i← k
Q← P
while Q is not a Dyck path or i < k − n do

if Q is not a Dyck path then
Q← ϕ(Q)
i← i− 1

else
Q← α(Q)
i← i+ n

end if
end while
A(P )← Q

return A(P )

Lemma 4. The algorithm above terminates.

Proof. Let P ∈ S(n, n) be the input of the algorithm and let {Pj}j≥0 be the list of paths
which pass through the “while loop” of the above algorithm with P0 = P . We will show that
no path Pj can appear on this list more than once.

Throughout the algorithm k = maj(P ) and i = maj(Q). We remark that maj(Pj+1) =
maj(Pj) − 1, except when Pj is a Dyck path. If Pj is a Dyck path, then maj(Pj+1) =
maj(Pj) + n. Assume, for the sake of contradiction, that a path appears twice on the list
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{Pj}j≥0. Without loss of generality, let P = P0 be the path that occurs twice. Between the
appearances of P there must be at least one Dyck path, otherwise we would have maj(P ) =
maj(P )− t, where t is number of iterations of the algorithm between the two occurrences of
P . Call the last such Dyck path C. Then ϕt(α(C)) = P for some t ≥ 0. Hence,

maj(P ) = maj(C) + n− t ≤ maj(C) + n.

Then the Dyck path C satisfies maj(C) ≥ maj(P )− n = k − n and so the algorithm would
have terminated at C, a contradiction.

But because maj(C) satisfies maj(C) ≥ maj(P )−n, the algorithm would have terminated
at C, a contradiction. Because the list of paths passing through the “while loop” of the above
algorithm is finite, the algorithm must terminate.

Let ≡ be the relation on S(n, n) defined by P ≡ Q if and only if A(P ) = A(Q). We will
show that ≡ is an equivalence relation with Cn classes, all of size n+ 1.

Proposition 7. If A(P ) = A(Q) for distinct paths P,Q, then maj(P ) 6= maj(Q).

Proof. Let {Pj}rj=0 and {Qj}sj=0 be the lists of paths which pass through the algorithm, with
P0 = P , Q0 = Q, and Pr = A(P ) = A(Q) = Qs. Without loss of generality, assume r ≥ s.
Since ϕ and α are bijections, it must be that Pr−s = Q with r > s since P and Q are distinct.
If there is no Dyck path on the list {Pj}r−s−1

j=0 then Q = ϕr−s(P ) and

maj(Q) = maj(Pr−s) = maj(P )− (r − s) < maj(P ).

If there is a Dyck path on the list {Pj}r−s−1
j=0 , then let C be the last such path. Then

maj(C) < maj(P ) − n, otherwise the algorithm would have terminated at C. We have
Q = ϕt(α(C)) for some t ≥ 0. However,

maj(Q) = maj(C) + n− t < maj(P )− t ≤ maj(P ).

In both cases maj(Q) < maj(P ).

Theorem 10. [
2n

n

]
q

= (1 + · · ·+ qn)Uq(1, n).

Proof. The relation ≡ is reflexive, symmetric, and transitive. No two Dyck paths may be in
the same equivalence class because A(P ) = P when P is a Dyck path. Each equivalence class
must contain a Dyck path C because C ≡ A(C). It follows that S+(n, n) is a representative
class for ≡.
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Next observe that, given an input of P , for any Q within the algorithm, maj(Q) ≤
maj(P ). This is because, if maj(Q) ≤ maj(P ), then either Q is reassigned to ϕ(Q) so

maj(ϕ(Q)) = maj(Q)− 1 < maj(P )

or Q is a Dyck path with maj(Q) < maj(P )− n and Q is reassigned to α(Q) so

maj(α(Q)) = maj(Q) + n < maj(P ).

Thus, for the algorithm to terminate at a Dyck path C, the initial path P must have major
at least maj(C). Based on the algorithm termination condition, the initial path has major
at most maj(C) +n. By Proposition 7, no two paths with the same major may terminate at
C, hence the size of each equivalence class is at most n+ 1. Since there are Cn equivalence
classes, and exactly

(
2n
n

)
= (n+ 1)Cn paths, each equivalence class must have exactly n+ 1

paths. Hence, for every Dyck path C, each major maj(C),maj(C) + 1, . . . ,maj(C) +n must
appear exactly once as the major of a path in the equivalence class of C. Let [C] denote the
equivalence class of the path C. Then[

2n

n

]
q

=
∑
C∈Cn

∑
P∈[C]

qmaj(P )

=
∑
C∈Cn

n∑
i=0

qmaj(C)+i

= (1 + · · ·+ qn)Uq(1, n).

The proof of Theorem 10 relies on partitioning a set of objects into equivalences classes
and having a basic understanding of the objects in each class. This is a different method than

what we had seen throughout the rest of the dissertation. It may be that S(m,n) =
(2m

m )(2n
n )

(m+n
m )

has an interpretation as an equivalence class of a set of objects of total size
(

2m
m

)(
2n
n

)
.
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Chapter 4

Conclusion and Open Problems

4.1 Statistics of Various Lattice Paths

In this section we review results for the major statistic and the major minus descent statistic
over various sets of paths. Here is a final result on the major minus descent statistic.

Theorem 11. The generating function for the statistic maj(w)− des(w) over w ∈ S(n,m)
is ∑

w∈S(n,m)

qmaj(w)−des(w) =
[
n+m−1
n−1

]
q

+
[
n+m−1
n

]
q

(4.1)

Proof. We will demonstrate a bijection
ϕ : {π ∈ S(n,m) : maj(π)− des(π) = k} →

{π ∈ S(n− 1,m) : maj(π) = k} ∪ {π ∈ S(n,m− 1) : maj(π) = k}
Let π ∈ S(n,m). Define ϕ(π) = ρ to be the path obtained from π by deleting the first

step of π. If the first step of π is an up step, then ρ ∈ S(n− 1,m). In this case,

maj(ρ) =
∑
i∈D(ρ)

i =
∑

i+1∈D(w)

i =
∑

j∈D(w)

j − 1 = maj(π)− des(π)

Otherwise, the first step of π is a down step and ρ ∈ S(n,m − 1). Again, maj(ρ) =
maj(π)− des(π).

To see this is a bijection, for ρ ∈ S(n − 1,m), obtain π by adding an up step to the
beginning of ρ and for ρ ∈ S(n,m− 1), obtain π by adding a down step to the beginning of
ρ.
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Here are the previously known generating functions.∑
w∈S(n,m)

qmaj(w) =
[
n+m

n

]
q

∑
w∈S+(n,n)

qmaj(w) =
[2n]!q

[n]!q[n+ 1]!q∑
w∈S+(n,n)

qmaj(w)−des(w) =
[2n− 1]!q[2]q

[n− 1]!q[n+ 1]!q

Here are the generating functions which we have provided in this dissertation. The second
formula comes from reformulating Theorem 6.∑

w∈S(n,m)

qmaj(w)−des(w) =
[
n+m−1

n−1

]
q

+
[
n+m−1

n

]
q

∑
w∈S+(n,m)

qmaj(rev(w)) =
[n+m]q![n−m+ 1]q!

[n+ 1]q![m]q!

4.2 Open Problems

We have listed these problems in anticipated order of difficulty.

Question 1. Find a combinatorial interpretation for

B(2)
q (n, r) =

[2n]!q[r]!q
[n]q[n+ r]!q[n− r]!q

.

We remind the reader that a combinatorial interpretation for B
(2)
q (n, r) would allow us

to use Theorem 7 to give a weighted interpretation of Tq(m,n). To obtain an interpretation

of B
(2)
q (n, r), it may be useful to understand the relation

(1 + qr)B(2)
q (n, r) = (1 + qn)Bq(n, r).

To understand this relation, we could start by understanding the relation

(1 + q)Uq(1, n) = (1 + qn)Tq(1, n).
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Question 2. Find a combinatorial interpretation and a generalization of

Uq(2, n) = (1 + q)Bq(n, 1)− qBq(n, 2). (4.2)

This equation is similar to Eq. 3.6, which we recall is:

qn−1Tq(2, n) = (1 + q2)Bq(n, 1)−Bq(n, 2).

Since Eq. 3.6 has been used to give a conventional combinatorial interpretation of Tq(2, n), we
hope that an interpretation of Uq(2, n) can be derived using similar techniques. It is possible
that a combinatorial interpretation of Uq(2, n) would be more easily generalizable then the
interpretation provided in Theorem 9. This would help in the larger goal of interpreting
T (m,n) for higher values of m. We provide a proof of Eq. 4.2, we have not yet attempted
to generalize the proof for Uq(m,n).

Uq(2, n) =

=
Sq(2, n)

1 + q2

=
[2n− 1]q!

[n+ 2]q![n− 1]q!
([3]q(1 + q)(1 + qn))

=
[2n− 1]q!

[n+ 2]q![n− 1]q!

(
(1 + qn + qn+1)(1 + q + q2) + q(1 + q + q2)

)
=

[2n− 1]q!

[n+ 2]q![n− 1]q!

(
(1 + 2q + q2)[n+ 2]q − q(1 + q + q2 + q3)[n− 1]q

)
=

[2n− 1]q![2]q(1 + q)

[n+ 1]q![n− 1]q!
− q [2n− 1]q![4]q

[n+ 2]q![n− 2]!q

= (1 + q)Bq(n, 1)− qBq(n, 2).

Question 3. Find an explicit formula for

B(3)
q (n, r) =

∑
w∈B(n,r)

qmaj(w).

An explicit formula for B
(3)
q (n, r) could help us better understand the q-ballot polynomials

Bq(n, r) and B
(2)
q (n, r). There is a good chance that the techniques required to interpret the

formula for B
(3)
q (n, r) have already been developed in Chapter 3. It may be important to

keep in mind the fact that B
(3)
q (n, r) is not necessarily symmetric.
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Question 4. Find combinatorial interpretations of

T (3, n) = 5B(n, 1)− 4B(n, 2) +B(n, 3)

and

q2(n−1)Tq(3, n) = (1+q4)((1+q2)Bq(n, 1)−Bq(n, 2))−q((1+q2)Bq(n, 2)−Bq(n, 3)−Bq(n, 1)).

Ideally, having interpretations of both T (2, n) and T (3, n) would allow us to make a
conjecture for the general case T (m,n). Similarly, having interpretations of both Tq(2, n)
and Tq(3, n) could help us make a conjecture for Tq(m,n).

Note that we can use the techniques of Section 3.3 to interpret both

(1 + q2)Bq(n, 1)−Bq(n, 2)

and
(1 + q2)Bq(n, 2)−Bq(n, 3)−Bq(n, 1).

Additional techniques are needed to interpret their difference. Perhaps understanding Eq.
4.2 would help us to understand the term q in the expression q((1 + q2)Bq(n, 2)−Bq(n, 3)−
Bq(n, 1)).

Question 5. Find a combinatorial interpretation of the identity for T (m,n) found in Eq.
2.3 or the identity for Tq(m,n) found in Eq. 3.5 for m > 3.

Many mathematicians have attempted to interpret T (m,n). This was the inspiration for
this dissertation. Based on the interpretation of T (2, n), and Gessel’s and Xin’s work on
T (3, n), it is reasonable to believe that the set of objects counted by T (m,n) is related to
lattice paths with certain height restrictions. There is not much literature on lattice paths
with certain height restrictions and this would be a significant contribution to that area.
It is our belief that the best way to interpret T (m,n) is through the polynomials Tq(m,n)
because the polynomials provide additional information about the objects counted by these
integers.

Question 6. Investigate the unimodality of the polynomials Bq(n, r), Sq(m,n), Tq(m,n),
and Uq(m,n).

The unimodality of these polynomials would provide an additional reason to believe
that they have a natural combinatorial interpretation. The possible approaches to prove
unimodality are discussed in the next section.
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4.3 Unimodality

Conjecture 1. Sq(m,n) is unimodal for m,n ≥ 0.

Conjecture 2. For m ≤ n, Tq(m,n) is unimodal. Equivalently, for n ≥ m, Uq(m,n) is
unimodal. For m > n, Tq(m,n) is unimodal with the exception of its central coefficient.
Equivalently, for n > m, Uq(m,n) is unimodal with the exception of its central coefficient.

Conjecture 3. Bq(n, r) is unimodal for n, r ≥ 1.

We have verified these conjectures using Maple for m,n ≤ 10. In general, proofs of
unimodality are difficult, see [36]. The proofs of the above conjectures might be related
to the proofs of unimodality of Sq(0, n) and Tq(1, n). A result implying the unimodality
of the q-binomial coefficient was conjectured by Cayley and proved by Sylvester, cited in
[25]. However, we would like to review the method Stanley uses in [33] to reprove that both
Sq(0, n) and Tq(1, n) are unimodal.

Consider a root system to be a finite set R of vectors in a real vector space V satisfying
certain axioms, cited in [24]. Given a base for the root system, {α1, ..., αn}, we can represent
every positive vector β ∈ R uniquely as a linear combination of the roots with non-negative
integer coefficients. Thus we have

β =
n∑
i=1

ciαi (4.3)

where ci is a non-negative integer. We describe a root system, R, by listing the vectors
β ∈ R+ in the form given in Eq. (4.3). We denote the vector αi + αi+1 + ... + αj by [i, j].
We write xβ = xc11 x

c2
2 ...x

cn
n and define

P (R;x1, ..., xn) =
∏
β∈R+

(1− xβ).

Theorem 12 (Dynkin). Let R be a root system of rank n, and let m1, ...,mn be any positive
integers. Define

Q(R;m1, ...,mn) =
P (R; qm1 , qm2 , ..., qmn)

P (R; q, q, ..., q)
(4.4)

Then Q(R;m1, ...,mn) is a symmetric unimodal polynomial in the variable q with non-
negative integer coefficients.

Stanley uses Theorem 12 to derive the two following results.

Corollary 4. Sq(0, n) is a symmetric unimodal polynomial in the variable q with non-
negative integer coefficients.
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Proof. Let An be the root system defined by the vectors [i, j] for 1 ≤ i ≤ j ≤ n [32]. Let
R = An, m1 = n+ 1, and mi = 1 for 2 ≤ i ≤ n. Then Q(R;m1, . . . ,mn) = Sq(0, n).

Corollary 5. Tq(1, n) is a symmetric unimodal polynomial in the variable q with non-
negative integer coefficients.

Proof. Let Bn be the root system defined by the vectors [i, j] for 1 ≤ i ≤ j ≤ n and
[i, j − 1] + 2[j, n] for 1 ≤ i < j ≤ n [32]. Let R = Bn, mi = 1 for 1 ≤ i ≤ n− 1, and mn = 2.
Then Q(R;m1, . . . ,mn) = Tq(1, n+ 1)

Theorem 12 allows us to describe classes of unimodal polynomials arising from Lie Alge-
bras by means of root systems. There are four infinite families of irreducible root systems and
five finite irreducible root systems [32]. Our polynomials Sq(m,n), Tq(m,n), and Uq(m,n)
did not match these root systems for larger values of m. It is the opinion of Bogdan Ion,
with whom we discussed this problem, that the proofs of the above conjectures are probably
related to Lie Algebras or Super Lie Algebras.
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Nouvelles annales de mathématiques, 19:344–362, 1900.

[27] I. Macdonald. Symmetric Functions and Hall Polynomials. Oxford University Press,
1995.

[28] N. Pippeger and K. Schleich. Topological characteristics of random triangulated sur-
faces. Random Structures & Algorithms, 28:247–288, 2006.

[29] Richard Stanley. Enumerative Combinatorics, volume 2. Cambridge University Press,
1998.

49



[30] G. Schaeffer. A combinatorial interpretation of super-Catalan numbers of order two,
2003. Unpublished manuscript.

[31] L. W. Shapiro. A short proof of an identity of Touchard’s concerning Catalan numbers.
J. of Comb. Theory (A), 20:375–376, 1976.

[32] R. Stanley. Unimodality and Lie superalgebras. Stud. Appl. Math., 72:263–281, 1985.

[33] R. Stanley. Log-concave and unimodal sequences in algebra, combinatorics, and geom-
etry. Annals of the new york academy of sciences, 576:500–535, 1989.
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