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Abstract

This thesis is concerned with the design of distributed algorithms for solving optimization problems.
The particular scenario we consider is a network with P compute nodes, where each node p has
exclusive access to a cost function f,. We design algorithms in which all the nodes cooperate to
find the minimum of the sum of all the cost functions, f; 4+ --- 4+ fp. Several problems in signal
processing, control, and machine learning can be posed as such optimization problems. Given
that communication is often the most energy-consuming operation in networks and, many times,
also the slowest one, it is important to design distributed algorithms with low communication
requirements, that is, communication-efficient algorithms. The two main contributions of this
thesis are a classification scheme for distributed optimization problems of the kind explained above
and a set of corresponding communication-efficient algorithms.

The class of optimization problems we consider is quite general, since we allow that each function
may depend on arbitrary components of the optimization variable, and not necessarily on all of
them. In doing so, we go beyond the commonly used assumption in distributed optimization and
create additional structure that can be explored to reduce the total number of communications.
This structure is captured by our classification scheme, which identifies particular instances of the
problem that are easier to solve. One example is the standard distributed optimization problem,
in which all the functions depend on all the components of the variable.

All our algorithms are distributed in the sense that no central node coordinates the network,
all the communications occur exclusively between neighboring nodes, and the data associated with
each node is always processed locally. We show several applications of our algorithms, including
average consensus, support vector machines, network flows, and several distributed scenarios for
compressed sensing. We also propose a new framework for distributed model predictive control,
which can be solved with our algorithms. Through extensive numerical experiments, we show that
our algorithms outperform prior distributed algorithms in terms of communication-efficiency, even

some that were specifically designed for a particular application.
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Chapter 1

Introduction

Optimization theory has contributed to many fields in engineering by providing efficient algorithms
that solve nontrivial real world problems. Notable examples can be found in signal processing,
control engineering, and machine learning [1, 2, 3]. On the other hand, over the last years, some
computation platforms on which these algorithms may be executed have become distributed. For
example, computers are now equipped with several processing devices, allowing for parallel com-
putation. Also, complex systems such as power grids or water distribution systems are composed
of several interconnected components, each with some processing power, and thus are distributed
by nature. In addition, the data to be processed is often generated at different locations as, for
example, in sensor networks, or in the internet. All these factors ask for algorithms that process
data or control systems in a distributed way. However, it is challenging to design optimization al-
gorithms that are matched to distributed resources. Part of the reason is that efficient centralized
algorithms, such as for example interior-point methods, cannot be easily adapted to distributed
scenarios. The high-level goal of this thesis is to advance the design of distributed algorithms for

solving optimization problems.

1.1 Overview

Figure 1.1 will help us describe the main problem addressed by this thesis. The figure shows a
network with 10 nodes, where each node p holds a function f,. Our goal is to make all nodes

cooperate in order to find a minimizer of the sum of all the functions:

minimize f1(vs,) + falwsy) + -+ + fr(s,). (P)

1
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FiGURE 1.1: Illustration of the main problem of the thesis: each node in the network holds a private function
and the goal is to minimize the sum of all the functions.

f3

where x € R" is the optimization variable. Each function f, in (P) depends on the components
of the variable x that are indexed by the set S, C {1,...,n}, and we use xg, to denote those
components. For example, if the function at node 3 depends on components x1, x5, Tg, and x1g,
then S35 = {1,5,8,10} and f3(zs,) = f3(z1, x5, 28, x10). We require each function f, to be private
to node p, i.e., no other node in the network has access to it. The edges of the network represent
communication links; this means, for example, that node 3 in Figure 1.1 can communicate only
with its neighbors: nodes 2, 4, and 8. Given such a network, an algorithm that solves (P) is
considered distributed if it uses no central node, no all-to-all communications, and if the privacy
requirement for each function f, is satisfied. In this thesis, we aim to solve (P), and related
problems, with distributed algorithms that are communication-efficient, i.e., that use a minimal
amount of communication. Communication-efficiency is an essential requirement, for example,
when the nodes are battery-operated devices, such as in sensor-networks, since communication is

usually very energy-demanding.

Simple example. Consider an inference problem on a sensor network [4, 5], and suppose
that each function f, depends on all the components of the optimization variable z € R"”, i.e.,
S, ={1,...,n}, for all p or, more compactly, N2, S, = {1,...,n}. While each node in the network
represents a sensor with computing abilities, each edge indicates direct sensor communication, for
instance, through a wireless connection. We want to estimate a parameter 6 ¢ R" (e.g., a set
of environmental parameters [6]), by using noisy measurements from all nodes. Let 6, be the
measurement of § taken at node p. Assuming the noise is independent across nodes, finding the
maximum log-likelihood estimate of  can be written as (P) with ﬁP _15p ={1,...,n}. For example,
if the noise is Gaussian with zero mean and its covariance is the identity matrix, each f,(x) is given
by (1/2)||x — 6,]/%, and the resulting problem is known as the average consensus problem [7]. In

this case, the solution to (P) is simply z* = (1/P) 5:1 6y, that is, the maximum log-likelihood
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(a) Computation (b) Communication

FIGURE 1.2: The two steps of a distributed algorithm. The nodes iteratively perform (a) computations and
(b) broadcast the results of those computation to their neighbors.

estimation of 6 is the average of all the measurements. However, in our distributed scenario, node p
is the only node who knows 6,, and this makes computing the above average challenging. This
simple example shows that to compute a solution of (P) the nodes have to communicate, either
by exchanging their private data or by exchanging their estimates of the problem’s solution. What

they exchange and how they do it is determined by the distributed algorithm they use.

Distributed algorithms. A distributed algorithm computes a solution z* of (P) while sat-
isfying the requirement that each function f, remains private to node p. Typically, each iteration
of a distributed algorithm consists of the two steps shown in Figure 1.2: (a) a computation step,
and (b) a communication step. In the computation step, all nodes update their estimates of the
components of z*. Usually, each node p updates its estimates by combining information given by
its private function f, with information given by the estimates of its neighbors from the prior com-
munication step. All these estimates are then exchanged in the subsequent communication step.
Although all nodes in Figure 1.2 are performing each of the two steps in parallel, this is not required
for a distributed algorithm. Actually, as we will see, in environments such as wireless networks it
might be impossible to perform the communication step (b) in parallel, because of packet collisions.
In the average consensus example given above, a popular choice for the computation step (a) is
to linearly combine the estimate of node p with the estimates of its neighbors N,. That is, the

estimate of node p, x,, is updated as

k41 k k
oy = apy ) + Z Apj T (1.1)
JEND

where each ap; is a positive number, apy+>_jcpr, apj = 1, and k denotes the iteration number. The

computation scheme (1.1) implies that the nodes exchange their estimates x]; at each communication
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(a) Global variable (b) Non-connected variable

FIGURE 1.3: Two instances of (P) for a variable with 3 components, x = (21,22, z3). In (a), the variable
is global (and thus connected) because all the functions depend on all the components. In (b),
the variable is non-connected because x; induces a subgraph that is not connected.

step (Figure 1.2(b)). This family of algorithms for the average consensus problem has been widely
studied in the literature [7, 8, 9, 10, 11, 12].

In this thesis, we propose algorithms that solve not only the average consensus problem, but
the entire class (P). We will see that this class contains several other problems that are relevant in
signal processing, control theory, machine learning, and other areas. Solving (P) in full generality,
however, is challenging because the sets S, are arbitrary. Our approach consists of identifying
particular cases of (P) that are easier to solve, designing algorithms for those cases, and then
generalizing them to the most difficult cases. To do that, we introduce a scheme to classify instances
of (P), as overviewed next. The outcome of our approach will be an algorithm solving (P) in full
generality. Despite its generality, our algorithm achieves performances better than prior distributed

algorithms, even including some that were designed for a particular application.

Classification scheme. The most popular instance of (P) is illustrated in Figure 1.3(a): each
function depends on all the components of the variable, ﬁll;lSp = {1,...,n}. Rewriting (P) for
this case, we have

minimize f1(z) + f2(z) +--- + fr(z), (G)

which is the instance of (P) for which most distributed algorithms have been designed. In our
classification scheme, formally introduced later in Section 1.3 and visualized in Figure 1.7, we say
that problem (G) has a global variable. Although many applications can be written as (G), many
others are instances of (P) with a non-global variable. In fact, our main motivation for considering
the generic problem (P) stems from its ability to model problems where each node is interested
only in a subset of the problem’s parameters or variables, rather than in all of them. This is

typical in large-scale systems, for example, in large plants, in the power grid, and in the internet.
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A fundamental assumption we make is that if node p depends on components xg,, then that node
is interested in computing the optimal value for those components only, and not for any of the
other components. For example, node 4 in Figure 1.3(b) depends on components x; and x3, which
means that it will compute the optimal value for these components, but not for zs. The flexibility
introduced in (P) by the sets \S),, however, produces instances that are difficult to solve, given the
previous assumption. Figure 1.3(b) shows an example: the component x; appears in the functions
of nodes 1, 3, 4, and 5, but not in the functions of nodes 2 and 6. This means that node 1 is
“isolated” from all the other nodes that also depend on z1; indeed, nodes 2 and 6 are not interested
in computing an optimal value for x1, let alone exchanging estimates of it. In other words, the
subgraph of the nodes that depend on x; is not connected and, for this reason, we say that the
variable in this case is non-connected. Of course, computing an optimal solution of (P) in this
case will invariably require selecting one of the nodes 2 or 6 to retransmit estimates of x1, so that
all the nodes depending on this component can agree on an optimal value for it. In the small
example of Figure 1.3(b), it is indifferent to select either node 2 or node 6 for this task, but in
larger networks, and for arbitrary sets S, we should select the nodes in such a way that the total
number of communications is minimized. Our solution for this problem involves computing Steiner

trees and is explained in Chapter 4.

The concepts of global variable and non-connected variable are concepts of the classification
scheme we introduce in this thesis. These concepts and the ones of connected, mixed, and star-
shaped variable will be formally defined in Section 1.3, but their relation can be visualized in
Figure 1.7. Roughly, the variable of (P) is divided into two classes: connected and non-connected.
These are, in fact, the most relevant classes in our classification scheme for two reasons: they form
a partition of the all the instances of the variable of (P), and addressing them requires completely
different techniques. These two classes thus comprise the first level of our classification scheme. The
second level consists of the following subclasses: global, star-shaped, and mixed. These subclasses
neither are mutually disjoint nor do they cover all instances of the variable of (P). However, they
are relevant both because they are much simpler instances of (P), and because they have been
solved with several distributed algorithms. Most of the algorithms that solve these subclasses,
however, cannot be easily generalized to solve the entire connected and non-connected classes. In

this thesis, we propose an algorithm that solves (P) for all classes and subclasses of variables.

Overview of some applications. In this thesis we will consider several applications that arise
in distributed contexts and that can be written as instances of (P). The recent field of compressed
sensing [13, 14] provides a rich collection of such problems: basis pursuit (BP) [15], basis pursuit
denoising (BPDN) [15], and the least absolute shrinkage and selection operator (lasso) [16], among

others. These compressed sensing problems are convex and provide heuristics for finding sparse
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solutions of linear systems. Although finding the sparsest solution of a linear system is NP-hard,
compressed sensing theory establishes conditions under which the previous problems find an optimal
(i.e., sparsest) solution. There is an increasing interest in solving compressed sensing in distributed
scenarios, where either the columns or the rows of the matrix defining the linear system are spread
over several nodes. We reformulate the above compressed sensing problems as (P), some with
a global variable and others with a mixed one; some of these reformulations are novel and are

presented in this thesis for the first time.

We will see that training a support vector machine (SVM)[17, Ch.7] requires solving an opti-
mization problem that can be easily recast as (G). Roughly, given a database with two classes of
datapoints, the goal in training an SVM is to find the hyperplane that best separates the two classes
of datapoints. When the datapoints are distributed among several sites, training an SVM arises
naturally as a distributed optimization problem. Therefore, solving this problem with a distributed
algorithm has the advantages of not requiring the transmission of the private databases to a remote
location, and of providing more robustness (if one node fails, the remaining nodes can still train
the SVM, yet, with less data).

Many systems can be modeled as networked dynamical systems [18]. Specifically, each system
is seen as the node of a network and has associated a state, a control input, or both. The state of
a given node is influenced not only by its own state and control input (or simply, input), but also
by the states and inputs of its neighbors. An effective control strategy for this type of systems is
distributed model predictive control (D-MPC) [19], which consists of the following. First, at each
time instant, each node senses its own state; then, the nodes collectively solve an optimization
problem that finds the best set of control inputs for a future time-horizon. These inputs are
computed in such a way that their application to the systems will lead the nodes’ states to a given
goal and, at the same time, they will minimize some “energy function.” Although the nodes know
an optimal set of inputs for all the time instants in the time-horizon, they will only use the input
for the next time instant. The reason is to mitigate the impact of modeling and sensing errors. So,
in the next time instant, after applying the previously computed input, each node senses its state
and cooperates with the other nodes to solve the D-MPC optimization problem, now with new
data. This procedure is repeated at each time instant. In this thesis, we provide a new framework

for formulating D-MPC problems, and also communication-efficient algorithms to solve them.

We also mention that several network flow problems can be recast as (P) with a star-shaped
variable. These are optimization problems formulated on directed networks where physical items
can flow through the edges of the network. As a consequence, certain conservation laws have
to be satisfied and are typically written as problem constraints. Network flow problems arise in

several contexts [20], for example, in determining best energy policies in the power grid. After
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(a) Step 1 (b) Step 2 (c) Step 3

FIGURE 1.4: Illustration of how the algorithms operate according to the coloring of the network. The
coloring scheme has three colors: nodes 1, 3, and 5 have color 1, nodes 4 and 6 have color 2,
and node 2 has color 3.

some reformulations, network flow problems can be recast as (P) and, hence, can be solved with
the algorithms we propose here.

Overview of the proposed algorithms. Problem reformulation plays a key role in the design
of distributed optimization algorithms. In fact, we will see throughout this thesis that it impacts
significantly the final algorithm. Our strategy for solving instances of (P), and ultimately (P) in full
generality, consists of reformulating those instances into a format such that well-known centralized
optimization algorithms become naturally distributed.

Our reformulations make use of a concept that has rarely appeared in high-level distributed
algorithms, such as the ones considered in this thesis. That concept is network coloring, an assign-
ment of colors to the nodes of a network such that no two neighboring nodes have the same color
(for convenience, instead of colors, we just use natural numbers). Assuming that a coloring scheme
is available beforehand is realistic in many distributed scenarios, especially in wireless networks.
For example, wireless networks require protocols known as media access control (MAC) to avoid
packet collisions, i.e., that one node receives two messages at the same time and in the same fre-
quency (assuming there is only one receive antenna). Some MAC protocols, such as time division
multiple access (TDMA), rely on network coloring.

Figure 1.4 shows how the algorithms we propose work as a function of the coloring scheme.
The network in this figure has three colors: nodes 1, 3, and 5 have color 1, nodes 4 and 6 have
color 2, and node 2 has color 3. The algorithms we propose are iterative, and each iteration is
divided into a number of steps equal to the number of colors. Figure 1.4 thus has 3 subfigures,
each one corresponding to a step. In each step, all the nodes with the same color perform the
same tasks in parallel, as illustrated in subfigures 1.4(a), 1.4(b), and 1.4(c). These subfigures show

the communication pattern occurring in each step. From an high-level point of view, the tasks
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performed by node p consist of:

1. finding new estimates for the components that f,, depends on, by solving
minimize f,(-) + “quadratic term,”

that is, node p minimizes the sum of f,, and a quadratic term. That quadratic term depends
on the network structure as well as on previous estimates of the neighbors of node p. Solving
the above optimization problem corresponds to evaluating the proximity operator of the

function f, and, many times, this can be done in a simple way.

2. sending the new estimates to the neighboring nodes.

Finally, we note that the concept of network coloring required by our algorithms coincides with the
concept of network coloring commonly used in low-level communication protocols, namely, MAC
protocols [21, Ch.6]. The goal of MAC protocols is to avoid packet collisions due to the hidden
node and the exposed node problems [21, §6.2.2]. For example, in Figure 1.4(a), node 6 is receiving
simultaneous messages from nodes 1 and 5. If the messages are in the same frequency and node 6
has one antenna only, this results in a packet collision and the nodes have to retransmit their
messages. Time division multiple access (TDMA), for example, is a MAC protocol that avoids
packet collisions by using a second-order coloring scheme: each node cannot have the same color
as its neighbors and as its neighbors’ neighbors. Such a coloring scheme works for our algorithms
as well and, for this reason, the high-level structure of our algorithms is not altered by low-level
protocols when they are implemented in networks that use TDMA as a MAC protocol.

The strategy we use to derive our distributed algorithms consists of reformulating the problems
we want to solve in such a way that we can apply well known centralized optimization algorithms.
Regarding our choice for these algorithms, we will focus on the Alternating Direction Method of
Multipliers (ADMM), more specifically on an extended version of it: the multi-block, or extended,
ADMM [22]. ADMM was proposed in the seventies by [23, 24] to solve linearly constrained opti-
mization problems, using a “divide-and-conquer” approach. In the eighties and nineties, ADMM
was shadowed by the popular interior point methods, which solve small- and medium-sized prob-
lems very efficiently, but in a centralized way. Lately, ADMM has regained attention from the
optimization community, because of its wide applicability and its ability to deal with large-scale
and distributed scenarios. Notably, ADMM has been applied to solve some of the problems ad-
dressed in this thesis, in particular, instances of (P) with a global variable and with a star-shaped
variable. In spite of that, little is still known about its behavior. For instance, partial results on
the convergence rate of ADMM, or a proof of the convergence of the multi-block ADMM, were

established only very recently.
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Fi1GURE 1.5: Comparison of the performance of a proposed algorithm with prior algorithms for the average
consensus problem. The network is a randomly generated geometric network with 2000 nodes.

Example of performance results. Figure 1.5 shows as example the performance of the
algorithm we propose for (G) when applied to the average consensus problem (scalar case, i.e., n =
1). The plot shows the relative error of the solution estimates versus the number of communication
steps. We say that a communication step has occurred whenever all the nodes have updated their
estimates and transmitted them to their neighbors. This is equivalent to saying that the number
of communication steps is the total number of communications divided by 2F, twice the number
of edges. A communication, in this case, is defined as an “edge usage.” For example, in Figure 1.4,
there are 6 communications in (a), 5 communications in (b), and 3 communications in (c). And one
communication step in that figure is comprised of steps 1, 2, and 3. The number of communication
steps, therefore, provides a direct measure of communication-efficiency. The network we used in the
experiments of Figure 1.5 has P = 2000 nodes and was randomly generated as a geometric network
with parameter /log(P)/P ~ 0.06. The figure shows that, among all algorithms, the proposed
one required the least amount of communications (i.e., communication steps) to achieve any error
between 10° and 10~%. The other algorithms in the figure are [25, 26], which solve the entire global
problem class (G), and [11], which is considered the most efficient consensus algorithm [9], but it
can only solve the average consensus problem and not any other problem in the class (G). Actually,
if we consider the convergence rate, i.e., the slopes of the error lines, the proposed algorithm and [11]
have roughly the same performance. In fact, they have the same slope, but [11] exhibits an offset,

since it requires a special initialization. All the other algorithms were initialized with zeros.

This experimental result reveals the surprising fact that, although the algorithms we propose
solve an entire problem class, they can sometimes achieve the same performance as the best al-
gorithms for a particular application. This is particularly surprising for the average consensus

problem, since it is the simplest and the most thoroughly studied distributed problem.
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1.2 Goals of the thesis

We next summarize the goals of the thesis and then we explain each requirement in detail.

We aim to design, analyze, and implement algorithms that solve optimization problems of
the form (P) on networks. The algorithms should be

Distributed: no node has complete knowledge about the problem data and no central
node is allowed; also, each node communicates only with its neighbors;

Communication-efficient: the number of communications they use is minimized;

Network-independent: the algorithms run on networks with arbitrary topology and
their output is independent of the network.

Distributed. A distributed algorithm only makes sense in an environment where both the
data and the computing power are distributed. In such an environment, an algorithm is considered
distributed if it fulfills three requirements. First, local data to a given node should remain private
to that node. This enforces local computations, since any computation involving a piece of data
has to be performed at the node where that data belongs to. In our problem (P), data of node p
is encoded in the function f;, and, thus, we require f,, to be private to node p; this means that no
other node has full knowledge of f,, at any time during and before the execution of the algorithm.

The second requirement is that there should not exist any central or special node. Such a
node would coordinate all the other nodes and would make the data at a given node reachable
to any other node in a very small number of hops. Actually, an algorithm that satisfies the first
requirement but not the second one is usually called a parallel algorithm [27]. Indeed, according
to [27], parallel algorithms run on systems where computing devices are at a small distance of each
other and may be controlled by a central entity. Distributed algorithms, in contrast, run on systems
where computing devices are located far apart, making centralized coordination inconvenient; in
the latter, there is also little control on the network topology.

Finally, the third requirement is that each node communicates only with neighboring nodes.
Although this is equivalent to forbidding a central node, we explicitly state this requirement in
order to exclude platforms that allow all-to-all communications. For example, an algorithm run-
ning on a computer cluster and using function calls from a message passing interface (MPI) [28]
implementation, such as MPI_Bcast or MPI_Reduce, cannot be considered distributed; at most, it
is parallel. We mention that sometimes distributed algorithms are also referred to as decentralized

algorithms.
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Communication-efficient. In a centralized algorithm, the execution time and the closely
related floating-point operation (FLOP) count are the most common performance metrics: the
lower these metrics are, the more efficient an algorithm is. In distributed scenarios, however, other
metrics arise. For example, computing accurate solutions is challenging in scenarios where there
is communication noise. In that case, slower algorithms that are noise-resilient may be preferable
to faster algorithms that are noise-sensitive. Another example is energy consumption. In many
distributed scenarios, e.g., sensor networks, nodes rely on batteries and therefore have a limited
source of energy. In these situations, increasing the lifespan of the network becomes the main
priority. As communication in battery-operated devices is currently the most energy-consuming
operation [6, 29|, this priority translates into having algorithms with low communication require-
ments. The performance metric adopted in this thesis will then be the number of communications:
the lower the number of communications an algorithm uses, the more efficient that algorithm will
be. Hence, our goal will be to design distributed optimization algorithms that use the fewest

communications possible.

Network-independent. The last requirement we impose on distributed algorithms is network
independence. This simply means that the output of the algorithm, i.e., the estimate of the solution
returned by the algorithm, should be independent of the network topology. For instance, the
algorithms should output the same solution estimate whether they are run on a densely or on
a sparsely connected network. Naturally, the performance of the algorithms, i.e., the number of
iterations or communications they use to compute that estimate, will in general vary with the

network topology.

1.3 A classification scheme for distributed optimization

Our strategy for achieving the goals of this thesis is a divide-and-conquer one: first, we identify
instances of (P) that are easier to solve; then, we combine the solutions we designed for the simpler

instances to solve (P) in full generality. For convenience, we reproduce (P) here:

minimize fi(zg,) + fo(zs,) + - + fr(xsy) - (P)

z€R™

In this section, we formally introduce our classification scheme for the variable of problem (P).

Before doing that, however, we need the concept of communication network.
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1.3.1 Communication network

The communication network is the physical network through which the computing devices, seen
as network nodes, communicate. We represent the communication network with an undirected
graph G = (V, &), where V and £ are the set of nodes and the set of edges, respectively. The
cardinality of these sets, i.e., the number of nodes and the number of edges, will be denoted with P =
|V| and E = |&], respectively. Figure 1.1 shows an example of a graph representing a communication
network with P = 10 nodes and £ = 21 edges. An edge belongs to the communication network,
say (i,7) € &, if and only if nodes i and j communicate directly. For example, nodes 1 and 10 in
Figure 1.1 are neighbors: this means they can exchange messages with each other, because there is
a communication link connecting them. We use the following convention: if (i,7) € £, then i < j.
Throughout this thesis, we will assume that the communication network G is connected and that

its topology does not vary with time.

Functions associated to nodes. Associated with each node, there is a function depending on
the components of a variable z € R™. The function at node p is denoted with f, : R" — RU{+o0},
where n,, is the cardinality of the set S,. As explained before, we use S, C {1,...,n} to denote
the components of x € R™ that function f, depends on. Of course, 1 < n, = |S,| < n. We assume
that each node p is interested in computing the optimal value only of the components of x that are
indexed by S,. We will see that in some situations, however, it is difficult, or even impossible, to
solve instances of (P) without forcing some nodes to receive and transmit components of x that are
not indexed by their sets S,. To make our problem well-defined, we assume that each component

of the variable appears in at least one of the nodes, that is, Ullf:lS ={1,...,n}.

Unless otherwise stated, we that assume f, is closed and convex [1, 3, 2, 30, 31], and not iden-
tically 4+-00. Note that our definition for each f, allows it to take the value +o0; as a consequence,
node p can impose constraints on the variable z implicitly, via indicator functions. An indicator

function of a given set S C R™ is defined as ig : R — R U {+o0},

0 ,x €S

Is(z) = +oo ,x&S.

Including an indicator function ig(z) in the objective of a minimization problem forces x € S, since
otherwise the optimal (minimal) value is +o00. Each function f, is private, i.e., at all times during
and before the execution of the algorithm, only node p knows f,,. As explained before, this privacy
rule formalizes our wish to derive a distributed algorithm by enforcing local computations; namely,
all computations involving f, have to be done at node p. This makes sense in scenarios where

each f, encodes a database that should be known only at node p, or simply to make use of all the
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(a) Generic connected variable (b) Subgraph induced by z2 (c) Mixed connected variable

FIGURE 1.6: Example of (a) a generic connected variable and (c¢) a mixed connected variable. (b) highlights
the subgraph induced by the component zo in (a). The communication network is the same
in all cases. In (c), the component z; is global, and x2 and x5 induce connected subgraphs.

distributed computing resources as, for example, in a sensor network, where each sensor has some

processing power available for computation.

1.3.2 Variable classification

Although each function is uniquely associated to a single node, the same does not happen for each
component of x € R, the optimization variable. This creates an additional structure and motivates
our classification scheme. Essential to our classification scheme is the concept of induced subgraph.

Induced subgraph. Let x; € R denote the [th component of the optimization variable x € R".
We define the subgraph induced by z; similarly to how [32, Ch.1] defines the subgraph induced
by a set of nodes. In our case, these nodes are the ones whose functions depend on z;. To be
more concrete, given a communication network G, the subgraph induced by x; is the subgraph
G = (V,&) € G, where V) is the set of nodes whose functions depend on z;, and an edge (i, j)
belongs to & only if (i,7) € £ and both nodes i and j belong to V;. As an example, Figure 1.6(b)
highlights the subgraph induced by the component zo in the setting of Figure 1.6(a): the set of
nodes and the set of edges of this induced subgraph G, are, respectively, Vo = {1,2,3,6} and
& =1{(1,2),(1,6),(2,3),(2,6)}. Note that neither f4 nor f5 depend on xs.

Component-wise classification of . We classify each component x; according to its induced

subgraph G; the following way: x; is
e connected if G; is a connected subgraph, and is non-connected otherwise;
e global if its induced subgraph coincides with the communication network, i.e., G; = G;

e star-shaped if G; is a star graph.
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connected non-connected

star-shaped

mixed

global

FIGURE 1.7: Our classification scheme for the variable © € R™ of problem (P). The variable is either
connected or non-connected. Global and star-shaped variables are particular instances of a
connected variable, and a mixed variable can be connected or non-connected.

By star graph we mean a graph in which there exists a node who is a neighbor of all the other nodes;
the remaining nodes can also be neighbors between themselves. For example, the subgraph induced
by variable x5 in Figure 1.6(b) is a star, because every node is a neighbor of node 2; therefore, x5 is
star-shaped. If a component is star-shaped, it can be handled in a centralized way, since the node in
the center of the star can act as a central node. It can be checked that component x; in Figure 1.6(a)
is also star-shaped, with node 6 in the center, but component x3 is not. All the components of
the variable in that figure, however, are connected, since the respective subgraphs are connected.
Naturally, a star-shaped variable is always connected. An example of a global component is given
in Figure 1.6(c): the subgraph induced by x; coincides with communication graph and, thus, x; is
global. In other words, all the functions in Figure 1.6(c) depend on z1. Again, a global component
is always connected, since its induced subgraph coincides with the communication network, which
we assume connected. Unless the communication network is a star, a global variable is never star-
shaped. We had already illustrated a non-connected component in Figure 1.3(b): the subgraph
induced by x; in that network is not connected, and thus x; non-connected.

Classification of x. With the component-wise classification of components, we are now in
conditions to classify the full optimization variable z € R™ in (P). The proposed classification

scheme is shown in Figure 1.7. There, the variable x is either
e connected if all the components x; of x € R™ are connected, for [ =1,...,n; or
e non-connected if x has at least one non-connected component.

For example, while the variable in Figure 1.6(a) is connected, because 1, z2, and 3 are connected,
the variable in Figure 1.3(b) is non-connected, because x; is non-connected (in spite of xo and x3
being connected). Note that the connected and non-connected classes partition the entire class of
the variable = (see Figure 1.7). This distinction between a connected and a non-connected variable
is the most important one in our classification scheme. In fact, we will see in Chapter 4 that they

have to be addressed with different techniques.
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To the best of our knowledge, no algorithm has ever been designed (purposefully) to solve (P)
with a generic connected or non-connected variable. However, there are algorithms solving it with

global, mixed (connected), and star-shaped variables, defined as follows. The variable x € R™ is
e global if all its components are global: 05215 ={1,...,n};

e mixed if it has at least one global component and at least one non-global component: 05:1 Sy #

{(Z), {1,... ,n}};
e star-shaped if all its components are star-shaped.

We have already seen an example of a global variable in Figure 1.3(a). When (P) has a global

variable, it can be written simply as
minimize fi(z) + fo(z) +--- + fp(x). (G)

Because of the assumption that the communication network is always connected, a global variable
is also always connected. A mixed variable, in turn, can be either connected or non-connected. It
is connected if all the non-global components are connected, and non-connected if at least one of
the non-global components is non-connected. Figure 1.6(c) shows an example of a mixed variable
that is connected, since the non-global components 25 and x3 are connected. Problem (P) with a

mixed variable can be written as

gvnil(ryniglélﬁ% fl(y, Zsl) + f2(y7 255‘2) ++ fP(y7 ZSP) ) (M)

where the variable x was decomposed into its global components y and into its non-global compo-
nents z. Finally, all the components of a star-shaped variable are like x5 in Figure 1.6(b). Note
that in Figure 1.7 the star-shaped class intersects with the global class; this happens when the
variable is global and the communication network is a star.

Summarizing, our classification scheme partitions the variable of problem (P) into two classes,
shown as rectangles of Figure 1.7: connected and non-connected. These classes are the most
fundamental ones, since they require different solution methods. The subclasses shown as ellipsoids
in Figure 1.7 identify easier instances of (P). Also, each one of these subclasses has been addressed
with prior distributed optimization algorithms. In reality, while several algorithms have been
proposed for the global and the star-shaped subclasses, we only found one distributed algorithm,
in [33], solving an instance of (P) with a mixed variable. That instance is actually a very particular
one: the variable is connected and all the non-global components are star-shaped. The classification

scheme of Figure 1.7 will also guide us throughout the thesis: we first address the global subclass,
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which is not only the subclass for which most of the distributed optimization algorithms have been
proposed, but also the simplest one; in particular, the notation required to handle problems in this
subclass is simpler, since we do not need the indexing sets S,. Then, we address the connected
class, by generalizing the algorithm for the global class. And, finally, we generalize the connected
class algorithm to handle both a connected and a non-connected variable, that is, to handle any

instance of (P).

1.4 Contributions

We list the main contributions of this thesis:

e We provide a classification scheme for the class (P) of distributed optimization problems.
Although it borrows some aspects from factor graphs [34] (actually the same aspects that
are used in [35]), it establishes a relation between the (abstract) optimization problem to be
solved and the (concrete) computational platform, in our case, the communication network.
This classification scheme plays a fundamental role in the thesis, not only by providing a
framework to develop our algorithms, but also by allowing us to organize prior work and

applications.

e We develop a set of distributed algorithms to solve (P) that are communication-efficient. The
order in which we present our algorithms in the next chapters goes from the most specific to
the most general, a pattern that corresponds to the order in which they were developed. More
specifically, we first present an algorithm for the global class (G), then we present an algorithm
for the connected class and, lastly, we present an algorithm that solves any instance of (P).
All these algorithms are distributed, network-independent, and communication-efficient. In
particular, we will see that they usually require less communications to converge than prior

distributed algorithms.

e We apply our algorithms to several application problems from engineering and computer sci-
ence. Some of these applications are novel, i.e., to the best of our knowledge, they have never
been solved with distributed algorithms. This includes several compressed sensing problems
and distributed model predictive control (D-MPC). Actually, we propose a new framework

for D-MPC that considerably extends the modeling capability of the prior framework.

e To assess the performance of our algorithms, we provide extensive benchmarks with prior
algorithms. This required an implementation of all the algorithms, including prior distributed

optimization algorithms, and also algorithms that are specific to a given application.
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1.5 Organization
The remainder of the thesis is organized as follows.

e In Chapter 2, we provide background on distributed and parallel algorithms for optimiza-
tion including, for example, decomposition methods and the alternating direction method of
multipliers. Although these methods are not distributed, they work as building blocks for
distributed algorithms, which are presented subsequently. We also discuss prior distributed

algorithms, organized according to the subclasses defined by our classification scheme.

e In Chapter 3, we present our algorithm for the global class, which is not only the most
common class, but also the simplest one conceptually and notationally. This will allow us to
introduce our main ideas without complicated notation. The chapter starts by stating the
problem formally and discussing the general assumptions we make. Then, several applications
are given, some of which are novel. Finally, the algorithm is derived and experimental results

are shown.

e Chapter 4 has a similar structure, but now addresses our main problem (P) in full generality.
It starts with restating the problem and discussing the assumptions. Next, several potential
applications are shown, including a new framework for D-MPC. Also, we present in that
chapter the only algorithm we found in the literature that, after some adaptations, can also
solve our problem in full generality. After that, we derive our algorithm, first assuming a
general connected variable, and then moving to a non-connected one. The chapter ends with

the presentation of several experimental results.

e Our conclusions and possible directions for future work are presented in Chapter 5. There,

we also restate our major contributions and discuss current limitations of our algorithms.
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Chapter 2

Background and Related Work

Distributed and parallel algorithms not only are relevant in the real world, but also are challenging
to design. They provide several advantages over their centralized counterparts, for example, the
ability to process distributed data and, notably, significant computational speed-ups. In the con-
text of optimization, parallel algorithms, including decomposition methods, date back to the sixties
with the works of Dantzig and Wolfe [36], Benders [37], and Everett [38]. Research on distributed
optimization algorithms started later, in the mid-eighties, with the work of Tsitsiklis, Bertsekas,
and Athans [39] and has boomed in the past ten years, motivated by the widespread of sensor
networks [4]. Nowadays, distributed optimization finds application in sensor networks (localiza-
tion [40], clustering [41], etc), in cognitive radio [42], in machine learning [43, 44, 45, 35], and in
the control of complex systems such as irrigation canals [46] and the power grid [47, 48, 49, 50, 51].

In this chapter, we use the classification scheme developed in the previous chapter to organize
existing work on distributed optimization. Since most of this work builds upon parallel methods, we
first overview relevant work on parallel methods, with special emphasis on the Alternating Direction
Method of Multipliers (ADMM), since it will play a key role in this thesis.

2.1 Building blocks: non-distributed, parallel algorithms

We start by reviewing some methods that, although not distributed, work as building blocks of
distributed algorithms. There are three subsections: one dedicated to decomposition methods,
another dedicated to block-coordinate minimization methods, and the last one dedicated to aug-

mented Lagrangian methods, which includes ADMM.

19
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2.1.1 Decomposition methods

Decomposition methods are the precursors of distributed optimization methods. Their goal, as
the name indicates, is to decompose a complex problem into smaller, simpler ones. Yet, they are
not considered distributed, because they generally require a master node coordinating several slave

nodes. The prototypical problem they solve is

“}iﬁi%i,?e fi(z1) + fa(w2) +--- + fp(zp) (2.1)

subject to Ajxi + Asxo+---+ Apxrp=>b,

where the variable is z = (z1,...,2p) € R”, with z, € R", and n; + --- + np = n. Each
function f, : R™ — R is assumed convex. Problem (2.1) is coupled through its constraint Az =
[Al Ay - A p} x = b e R™, which is always assumed feasible.

Similarly to distributed methods, decomposition methods solve (2.1) by assigning a pair (fp, A,)
to one device (or node) but, in contrast to distributed methods, all devices (or nodes) are controlled
by a master node. Occasionally, the structure of the matrix A allows discarding the master node and
the decomposition method becomes distributed. Decomposition methods are divided into primal
and dual methods, and comprehensive references on the topic are [2, §6.4], [27, Ch.3], and [52].

Primal decomposition. To solve (2.1) through primal decomposition, we rewrite it as

myilrvl_i_%i}ge o1(y1) + d2(y2) + - + dpr(yp) (2.2)

subject to y1 +y2+---+yp =0,

where each y, € R™ is a new variable, and each function ¢, : R — RU {400} is defined as

bp(yp) = i:g)f fo(zp) (2.3)

st yp = Apz,.

For simplicity, we assume that each A, has full row rank, which implies that ¢, is defined over
all R™. Given a master node and P slave nodes, the master node solves the master problem (2.2)
and delegates to slave node p the task of handling computations involving ¢,,. Typically, the master
problem (2.2) is solved with a first-order minimization method, such as the projected subgradient
method. It can be shown that the subgradient of ¢, at a point y, is given by —\,, where A, is the
(optimal) dual variable associated to the constraint of (2.3); see sections 5.4.4 and 6.4.2 of [2] for
more details. Therefore, in primal decomposition, the master node updates y = (y1,...,yp) as

Y= [+ ] (2.4)

)
{1} y=b}
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where [] denotes the projection onto the set {y € R™ : 1Zy = b}, ay is a positive stepsize,

1Ty=b
1, e R" i{s ;yve(};tor of ones, and \* = (A, ..., \%) is the vector of dual variables at iteration k. At
each iteration, the master node sends y]; to slave node p, who then solves the problem in (2.3) and
returns )\'If to the master node. The master node, in turn, updates y as in (2.4) and moves on to
the next iteration. According to our previous definitions, primal decomposition is not distributed

since it requires a master node playing the role of a central node.

Dual decomposition. Dual decomposition methods, rather than solving (2.1) directly, solve

its dual problem instead:
minimize FEATN) 4 f3(AgN) + -4 fR(ARN) — b X, (2.5)
where A € R™ is the dual variable and f; : R™ — R is the convex conjugate of f,, defined as

fr(A) = S}Elpp /\T$p — fp(ap) - (2.6)
While (2.1) is coupled through its constraint, (2.5) is coupled through its objective (since all con-
jugate functions depend on A). As in the primal decomposition, given a master node and P slave
nodes, the master node solves the master problem (2.5) and delegates to slave node p the task of
handling f;. Whenever each function f;, is strictly convex, there is only one minimizer z;,(\) of the
problem in (2.6) for a given A. Hence, in this case, after the master node finds a dual solution A\*
to (2.5), the pth block of the optimal primal solution of (2.1) can be found in the pth slave node as
Zp(A*). In other words, when each function f), is strictly convex, a primal solution is immediately
available after solving the dual problem (2.5). Again, the master problem (2.5) can be solved with
first-order minimization methods, such as the subgradient method. The subgradient of f; o A;,r ,
where o denotes composition, at a point A is Apz,(\), where x,()) solves the problem in (2.6) [2,

Prop.B.25(b)]. Hence, in dual decomposition, the master node updates A as
)\k+1 = )\k — ozk(Alxl()\k) + Agxg()\k) + -+ prp()\k) — b) s (27)

where ay, > 0 is the stepsize at iteration k. At each iteration, the master node sends A\* to all slave
nodes and each slave node p, in turn, returns prp()\k) to the master node. Similarly to primal
decomposition, dual decomposition also requires a central node (the master node) and, therefore, it
is not distributed. Other dual decomposition methods are the Dantzig-Wolfe decomposition [36],[2,
§6.4.1] and the Benders decomposition [37].

Whenever each f, is strongly convex with parameter p, f; is differentiable and its gradient V f

is Lipschitz continuous with constant 1/4 [30, Th. 4.2.2], [53]. In that case, a faster algorithm can
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be applied, for example, the gradient method or even Nesterov’s fast gradient method. These are

explained next.

First-order minimization methods. Decomposition methods generally use first-order meth-
ods to solve the master problem, i.e., methods that use only first-order (sub)derivatives. Consider,

for example,

minimize T
i f(x) (2.8)
subject to =z € X,

where X C R” is a closed convex set and f : R™ — R is a convex function. If f is not differentiable,

an appropriate method to find a minimizer of (2.8) is the projected subgradient method:

ahtt = [xk — akdk} , (2.9)
X

where z* is the estimate at iteration k, d* is the subgradient of f at the point z¥, i.e., d* €
of (xF),! []X is the projection operator onto the set X, and oy > 0 is the stepsize at iteration k.
The projected subgradient method is non-descent, that is, it does not guarantee that the cost
function f(x*) decreases at every iteration. However, under the assumption that f is Lipschitz
continuous, i.e., that there exists L > 0 such that ||f(y) — f(z)|| < L|ly — z|| holds for all z,y,
and under an appropriate choice for the stepsize sequence {ay}72 ), the best cost function estimate
f]ffost = ming<i<y f (z!) converges to the optimal value f* of (2.8). This is guaranteed, for example,
by a square summable but not summable stepsize sequence, for instance, ap = 1/(1 + k). A
constant stepsize sequence «p = «, for all k, in contrast, only guarantees that féfest converges to
a neighborhood of f*. Even when convergence is guaranteed, the method is rather slow, since
f]fest — f* converges to zero at rate O(1/vk). Extensive information about subgradient methods
can be found in [54, §8.2],[31, Ch.3] [55, 56].

When the function f is continuously differentiable and its gradient V f is Lipschitz-continuous
with constant L, ie., [[Vf(y) — Vf(2)| < Llly — z| for all 2,y € R", more efficient methods
can be applied. In fact, for a differentiable function, df(z) = {V f(z)}, and the iterations (2.9)
become the projected gradient method. In contrast with subgradient methods, gradient methods
are descent and converge even with a fixed stepsize a, = a € (0,1/L], for all k. Moreover,
f(z%) — f* converges to zero at rate O(1/k). Gradient methods are studied extensively in [2,
Ch.1,2][31, Ch.1,2][57, 58, 59].

Surprisingly, a small modification of the projected gradient yields a method whose error f(z*)—

f* decreases at rate O(1/k?), as discovered by Nesterov. The problem assumptions are the same

!The subdifferential df of a convex function f at a point x is defined as 8f(x) = {d : f(y) > f(z)+d' (y—=x), Vy}.
Any point d belonging to the subdifferential df(x) is called subgradient of the function f at the point x.
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as in the projected gradient method. An instance of Nesterov’s method is

2R = [k _ g V£ k)
[y e }X (2.10)

k+1 _ k+1 k—=1(,.k+1 k
R e CAREE )

which requires no significant additional computation with respect to (2.9). Yet, it not only has
better bounds on the rate of convergence, but it also converges much faster in practice. For more

information about accelerated first-order methods, see [31, 58, 59, 60, 61, 62, 63, 64].

2.1.2 Block-coordinate minimization methods

Block-coordinate methods are appropriate when fixing some of the variables in an optimization

problem makes the problem easier to solve. Consider, for example,

minimize  f(x1,z2,...,2p)
z=(x1,....,xpP) (211)
subject to x € X1 Xx Xg X -+ X Xp,

where the variable is © = (z1,...,2p) € R” with 2, € R™ and nj + --- + np = n. The function
f :R"™ = R is assumed convex, and each set X, C R"? is assumed closed and convex. Block-
coordinate minimization methods solve (2.11) via a sequence of minimization problems with respect

to one block variable while the other blocks are fixed, i.e.,

miniﬁmize flx1, .. 2p-1,& Tptt1, ..., TP)

subject to £ € X,,.

Two important types of block-coordinate methods are nonlinear Jacobi and nonlinear Gauss-Seidel.
Nonlinear Jacobi. The nonlinear Jacobi method is defined as
l,k-i—l _

» = argmin f(a:’f,...,x];_l,ajp,ajlgﬂ,...,a:]}), p=1,...,P, (2.12)
Tp

s.t. zp € Xp

where the pth minimization is taken with respect to x,. Since updating x]; to x];“ requires all the
other block components to be fixed at 3:;?, for j # p, which were found in the previous iteration, the
updates can be carried out in parallel. Convergence of the nonlinear Jacobi method to a minimizer
of (2.11) is guaranteed whenever f is differentiable and the mapping = — vV f(z) is a contraction
for any v > 0 [27, Prop.3.10]. Another Jacobi-type method requiring milder assumptions is the

diagonal quadratic approximation [65, 66].
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Nonlinear Gauss-Seidel. The nonlinear Gauss-Seidel method is defined as

k+1 _ : k+1 k+1 k k _
T, = argxmln F@y oy T Ty X)), p=1,...,P. (2.13)
P

s.t. zp € Xp

In contrast with Jacobi methods, updating ), at iteration k requires knowing the current estimates
of the first p — 1 blocks, i.e., x?“ for j < p. Hence, all updates have to be carried out sequentially.
The order of the sequence, however, can change from iteration to iteration, and the convergence
to a minimizer of (2.11) is guaranteed whenever each problem in (2.13) has a unique solution
and a regularity condition is satisfied [67]. For example, differentiability and strict convexity of f
implies that regularity condition is satisfied (see the errata of proposition 2.7.1 of [2], available

at http://www.athenasc.com/nlperrata.pdf).

2.1.3 Augmented Lagrangian methods

Augmented Lagrangian methods are important tools for distributed optimization, even though
they were not designed for that purpose. They date back to penalty methods, where a constrained
problem is solved via a sequence of unconstrained problems. Although relying on duality, augmented
Lagrangian methods are guaranteed to find a primal solution even when the cost function is not
strictly convex. This gives them a clear advantage over “simple” duality-based methods, such as
dual decomposition. On the other hand, they do not distribute as easily as “simple” duality-based

methods, because of the augmented term in the augmented Lagrangian.

Method of multipliers. Discovered independently by Hestenes [68] and by Powell [69], the
method of multipliers solves the constrained problem
minimize fx)

(2.14)
subject to Ax =0,

where the function f : R”™ — RU{+oc} is closed and convex, b € R™, and the linear system Az = b

is feasible. Using A € R™ to denote the dual variable, the augmented Lagrangian of (2.14) is
Ly(x; ) = f(x) + AT (Az = b) + £l Az — |,

where p > 0 is the augmented Lagrangian parameter. Note that the augmented Lagrangian differs
from the ordinary Lagrangian in the augmented term (p/2)||Az — b||?>. The method of multipliers

solves (2.14) by minimizing the augmented Lagrangian with respect to x, keeping the dual variable A
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fixed at A\¥, and then by updating X in a gradient-based way. That is, it iterates

2" = argmin L, (z; AF) (2.15)
€T

ML — 2B p(Azk T — ). (2.16)

Note that (2.16) is indeed a gradient iteration: the dual function L,(X) := inf, L,(z;\) is dif-
ferentiable and its gradient is given by Az(\) — b, where z()\) minimizes L,(-;A).? Furthermore,
it can be shown that the gradient Az(\) — b is Lipschitz continuous with constant 1/p [30, Th.
4.2.2], [53]. Rockafellar [70] showed that the iterations (2.15)-(2.16) are actually an application of
the proximal minimization algorithm to the dual problem of (2.14) (see also [27, §3.4.4] and [71,
Ch.3]). Therefore, the conditions under which the method of multipliers converges are very mild;
see [72, 73, 74] [27, §3.4.4][2, §4.2] for a detailed analysis and for related methods. Neverthe-
less, the optimization problem in (2.15) is usually nonseparable, because of the augmented term
(p/2)||Az — b||>. This makes the method of multipliers difficult to apply in distributed optimiza-
tion. We next present an alternative that, while preserving the good convergence properties of the
method of multipliers, it suits distributed optimization better.

Alternating Direction Method of Multipliers. The Alternating Direction Method of Mul-
tipliers (ADMM) is an augmented Lagrangian method introduced in the mid-seventies by Glowinski
and Marrocco [23] and by Gabay and Mercier [24]. It solves

minimize  fi(x1) + fo(xo
1,72 (1) (w2) (2.17)
subject to Ajzi 4+ Asxe =10,

where f : R™ — RU{+o00} and g : R"> — RU{+o0} are closed convex functions, and 4; € R™*™

and As € R™*™2 are full column rank matrices. The augmented Lagrangian of (2.17) is
Lp(acl,xg; A) = fi(zr) + fg(xg) + )\T(Alxl + Agxo — b) + g”Alxl + Aoxg — b”2 ,

where the parameter p > 0 is assumed fixed. ADMM minimizes L, first with respect to x1, then

with respect to zs, and it finally updates the dual variable A as in the method of multipliers:

i = argmin L, (z1, 25; \F) (2.18)
Z1

2This is true even when A does not have full column rank. To see that, write L,(\) as L,(A) = inf, ¥(z)+ ATz +
2||z||?, where W(z) := inf,{f(z) : 2 = Az — b} is a convex function [1, §3.2.5]. The quadratic term | z||*> makes the
objective strictly convex and, therefore, the problem defining L,(\) in terms of z has a unique minimizer z(\) for
each \. It follows that the subdifferential of L, is the singleton {z(\)}. For each A, there can be several z(\)’s solving
the problem defining ¥ (z(\)).
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25T = argmin Lp(:nlf+l,3:2; AF) (2.19)
>

ML 2P p(Ag T 4 Agab ™ —b). (2.20)

ADMM can be seen as the application of the method of multipliers to problem (2.17), where the
minimization with respect to the primal variable (x1,x2) consists of just one Gauss-Seidel pass.
Surprisingly, it solves (2.17) with the same accuracy level as the method of multipliers does, by
using a few more iterations; see [75] for a detailed comparison between ADMM and the method
of multipliers. Curiously, both methods are instances of the proximal point algorithm [76, 77, 78]:
while the method of multipliers results from applying iteratively the resolvent operator to the
subdifferential of the dual function of (2.14) [70], ADMM results from applying iteratively the
Douglas-Rachford operator [79, 80] to the subdifferential of the dual function of (2.17), as discovered
by Gabay [81]. An excellent account on this topic, including an introduction to monotone operator
theory, is given by Eckstein [71, Ch.3] (see also [82]). Alternative proofs for the convergence of
ADMM that do not use any monotone operator theory include [27, §3.4.4] and [35, 83]. Roughly,
ADMM converges whenever f and g are closed and convex, (2.17) is solvable, and strong duality
holds. When A; and As do not have full column rank, the sequence (:E’f,ﬂ:’j) might not converge,
even though fi(z¥) + fo(25) and A* converge [27, p.260]. Regarding the augmented Lagrangian
parameter p, the proofs of the convergence hold for any positive, fixed p. Since, in practice, the
value of p significantly affects the performance of the algorithm, it is common to use heuristics to
adapt p along the iterations [48, 35]. These heuristics, however, cannot be easily implemented in
distributed environments, because they require information from all the nodes at each iteration.
Until recently, the known proofs for the convergence of ADMM did not allow to derive a con-
vergence rate. It was known, however, that ADMM converged linearly for linear programs [84].
More recently, a series of works has derived bounds for the convergence rate of ADMM, many
times, under assumptions stronger than the ones required to prove plain convergence. For example,
[85] proved that the primal and the dual variables converge in an ergodic sense at rate of O(1/k).
The same rate was established in [86] in a non-ergodic sense. The work [87] proved that the cost
function of the dual problem converges to the optimal value at rate O(1/k) and, as a consequence,
the square of the primal and dual residuals [35] converge to zero at the same rate. It is assumed,
however, that at least one of the functions f; or fs is strongly convex. Inspired by Nesterov’s
gradient method, [87] also proposes a modification to ADMM whose dual cost function converges
at rate O(1/k?). Note that both O(1/k) and O(1/k?) are sublinear rates.®> When ADMM is applied

to the average consensus problem (after a suitable reformulation to make it distributed, as we will

5We say that a sequence {z*} converges linearly (more appropriately, R-linearly) to x* if there exists M > 0
and ¢ > 1 such that ||z* — z*| < CM,“ for a sufficiently large k.
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see later), linear convergence can be proved [9]. For general quadratic problems, [88] conjectured
that linear convergence also holds, which was later proved in [89]. More recently, Deng and Yin [90]
showed that a generalized version of ADMM converges linearly in terms of the primal and the dual
estimates when at least one of the functions f; or fy is strongly convex, differentiable, and has
a Lipschitz continuous gradient. Work that establishes convergence rates for modified versions of
ADMM includes [91, 92, 93, 94].

The recent stream of theoretical work on ADMM in recent years has been motivated by its
application in many areas. For example, ADMM has been applied to image processing [95], to
localization [40], and to several statistical and machine learning problems [96, 35]. Reference [35],
in particular, provides a survey on ADMM from an optimization perspective and describes many

applications in statistics and machine learning.

Multi-block ADMM. The multi-block ADMM is a natural generalization of ADMM when,
instead of the variable being partitioned into two blocks, x1 and z9, as in (2.17), it is partitioned
into a finite number C. Sometimes this method is also known as generalized ADMM or extended
ADMM. Since there are other methods named generalized ADMM, we will refer to it as multi-block
ADMM or as extended ADMM. More specifically, the multi-block ADMM solves

minimize fi(z1) + fo(z2) + -+ + fo(ze) (2.21)
subject to  Ayx1 + Asxo + - + Acwe = b,
by iterating
2! = argmin Lp(acl,wg, AP (2.22)
1
25T = arg min L,,(:E'f“,m,mlg, P! (2.23)
X2
(2.24)
af = argmin L,(VT 2b ™ 2b L aos M) (2.25)
zC
C
AL — 2k g ZAcxISH- (2.26)
c=1

Note that (2.21) is the same problem as (2.1), the problem solved by decomposition methods. In

this case, the augmented Lagrangian is

c c c )
Ly(x1,22,...,20;\) = Z felze) + AT (Z Az, — b) + gHZ Az — bH .
c=1 c=1

c=1
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It is assumed that each function f. : R™ — R U {400} is closed and convex, and that each
matrix A, € R™*" has full column rank. When C' = 2, the multi-block ADMM (2.22)-(2.26)
becomes the 2-block ADMM (2.18)-(2.20). The only known proof of convergence of the multi-block
ADMM is due to Han and Yuan [22] and it assumes that all functions fi, ..., fco are strongly
convex. The following theorem summarizes the known convergence results for the multi-block
ADMM, including its particular version, the 2-block ADMM.

Theorem 2.1 ([83, 22]).

Let fo: R™ — RU {400} be a closed conver function over R™, not identically +o00, and let A. be

an m x n. matriz, for c=1,...,C. Assume that (2.21) is solvable and that either
(a) C =2 and each A. has full column-rank, or

(b) C > 2, each f. is strongly convex with modulus p. and

2
0<p< min He

e=1,.,¢ 3(C —1)02, (A.)’ (2.27)

where omax(-) denotes the largest singular value of a matriz.

Then, the sequence {(x%, ..., 2%, \F)} generated by (2.22)-(2.26) converges to (%, ..., x5, \*), where
(2%,...,25) solves (2.21) and N\* solves the dual problem of (2.21): minyb' X+ X fr(—AlN),

where f} is the convex conjugate of f., c=1,...,C.

A proof for case (a) can be found in [83], which generalizes the proofs of [27, 35]. A proof
for case (b) can be found in [22]. It is believed that the multi-block ADMM (2.22)-(2.26) still
converges for any finite C' > 2 whenever each function f,. is closed and convex and each matrix A,
has full column rank, i.e., that the generalization of Theorem 2.1 under case (a) still holds. This
belief is based on empirical evidence [97], but its proof remains still an open problem. So far, there
are only proofs of convergence for similar algorithms that are either slower [98] or that cannot be
implemented (at least, straightforwardly) in distributed scenarios [97]. In fact, [98] proves that a
modification of the iterates (2.22)-(2.26) converges linearly when each function f, is strictly convex,
differentiable, and has a Lipschitz continuous gradient. That modification consists of changing the
stepsize p in (2.26) to a smaller number. When that number is sufficiently small, linear convergence
can be proved. However, in practice, reducing the stepsize makes the algorithm slower. We note
that the distributed algorithms proposed in this thesis are based on the multi-block ADMM, and

that we started using them [99] even before there was a proof of convergence [22].
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2.2 Distributed algorithms

To the best of our knowledge, the problem we aim to solve, (P), has been considered before only with
the following types of variable: global, star-shaped, and mixed (where all non-global components
are star-shaped); see Figure 1.7 from Chapter 1 for a visualization of the relation between these
types of variables. We next review distributed algorithms that were designed for these types of

variables, or for applications that can be written as (P) with such variables.

We mention that [35, §7.2] proposes an algorithm based on the 2-block ADMM for solving (P)
with a generic variable. However, it either requires a platform supporting all-to-all communications
(equivalently, a central node), or running, at each iteration, a consensus algorithm on each induced
subgraph [35, §10.1]. This makes that algorithm not distributed in our sense. Actually, that
algorithm becomes distributed only when the variable is star-shaped. We also mention that we
found only one distributed algorithm in the literature that can solve (P) when the variable is non-
global and non-star-shaped, but still connected. That algorithm, also based on the 2-block ADMM,
was proposed in [47] for state estimation of power systems, a problem formulated as (P) with a
star-shaped variable. In Chapter 4, we generalize that algorithm for a generic connected variable,
and then for a non-connected variable. This means that the algorithm in [47] can also solve (P) in
full generality, after proper modifications. Our experimental results, however, show that it always

requires more communications to converge to a solution of (P) than the algorithm we propose.

2.2.1 Global class

Among all the classes, the global problem class (G) is the most well studied. For convenience, we

recall that (G) is written as
mi;lei%@ize fi(x) + folx) + -+ fr(z), (G)

where all functions depend on all the components of the variable x. Although several applications
can be posed naturally as (G), the application that triggered the interest on the design of distributed
algorithms for (G) was the average consensus [7]. Indeed, this was the motivating application in [4],
which designed probably the first distributed algorithm for the class (G), an incremental subgradient
algorithm. Other important pioneer work includes gradient- and subgradient-based algorithms by
Nedié¢, Ozdaglar, and collaborators [100, 101, 102, 103, 104], whose work was inspired by [39, 105].
At the same time, the first distributed, ADMM-based algorithm was proposed by Schizas, Ribeiro,
and Giannakis [25].
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We next review four categories of algorithms for (G): incremental, (sub)gradient-based, double-
looped, and ADMM-based. Special emphasis will be given to the latter, since the algorithms we
propose are also based on ADMM.

Incremental methods. An incremental (sub)gradient method solves problems with the for-
mat (G) with the same scheme as the (sub)gradient method (2.9). However, instead of using the
(sub)gradient of the entire objective fi +-- -+ fp, it only uses the (sub)gradient of one function f,

at a time. More concretely, it consists of

gt = [:Ek — akVﬁk(azk)}X , (2.28)

»
where we decomposed each f, = fp +1ix, into its real-valued part fp and into its infinity-valued (or
constraint-enforcing) part ix,. To simplify notation, we assumed in (2.28) that each function fp
is differentiable; if not, just replace V fp(xk) by any subgradient of fp at the point z*. The se-
quence {ix} takes values in {1,2,..., P} and determines the order of the updates, which can be
deterministic or randomized. Surveys about incremental methods, including convergence analysis,
can be found in [2, §1.5.2,86.3.2] and [5]. Roughly, incremental (sub)gradient methods progress
faster than their non-incremental counterparts far from the solution, but are slower near the so-
lution [5]. Since they use the (sub)gradient of only one function at each iteration, they can be
implemented naturally in a distributed scenario, with a single node performing the update (2.28)
at each time instant, in a round-robin fashion. This was done in [4, 106] for a deterministic se-
quence {i} and in [107] for a randomized one. The work [5] surveys these methods and, in addition,
presents an unified view of incremental (sub)gradient methods, incremental proximal methods, and
their combination. In general, incremental methods have slow convergence rates; and, in distributed
optimization, they have the disadvantage of making just a single node active at each time instant.
The algorithms we propose here, besides exhibiting faster convergence rates, have a higher degree

of parallelism, even though not all nodes are active at the same time, i.e., they are not fully parallel.

(Sub)gradient-based. If we apply the (sub)gradient algorithm (2.9) directly to problem (G),
the resulting algorithm is non-distributed, since updating z at iteration k requires the (sub)gradients
of all the functions at the point z*. Therefore, using (sub)gradient algorithms to solve (G) in a
distributed way requires either reformulating (G) into another equivalent problem, or changing the

(sub)gradient algorithm.

The first option was taken in [108], where (G) was rewritten as

minimize  fi(z1) + fa(z2) + - + fr(zp) (2.29)

subject to xp, —x; >0, jeN,, p=1,...,P,
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where each variable z,, € R™, held at node p, is a clone of the original variable € R™. Recall that N,
denotes the set of neighbors of node p. This reformulation increases the size of the optimization
variable in (G) from n to Pn and adds 2F constraints (two constraints per each edge (i,7) € &:
xij—x; > 0and z;—z; > 0, which implies x; = z; and, thus, the equivalence between (G) and (2.29)).
Note that problem (2.29) has the same format as (2.1), the problem that decomposition methods
solve. Indeed, [108] then applies the dual decomposition method described in Subsection 2.1.1
(the generalization of the dual decomposition from equality-constrained problems to inequality-
constrained ones is straightforward). If we rewrite the constraints of (2.29) in matrix form, the
matrices corresponding to each A, in (2.1) have a special format: the nonzero entries correspond
either to the variable of node p or to the variables of its neighbors. This is makes dual decomposition
yield a distributed algorithm. Since in [108] each function is assumed strictly convex, the dual

function is differentiable and the gradient algorithm can be applied to solve the dual problem.
The second option (of changing the (sub)gradient algorithm) was taken in a series of works,

including [100, 101, 102, 103]. These works study the convergence of a (sub)gradient algorithm

coupled with a consensus scheme:

3:’5“ = Z a];jaz;? — V| (2.30)

JENRU{p} Xp
where we used the same simplifications as in (2.28). In (2.30), a’;j > 0 models the influence
node j exerts on node p at iteration k. So, at each iteration k, node p receives the estimates x¥

J

k and then performs a projected

p7
(sub)gradient step, where the (sub)gradient that is used is the one given by its private function f,.

from its neighbors N, averages them with its own estimate x

It is generally assumed that }; afj = 1. When all functions f, are zero and all the sets X, are the
full space R", (2.30) becomes the familiar consensus scheme (1.1); and when the network is reduced
to a single node, (2.30) becomes the familiar (sub)gradient algorithm (2.9). The linearity of the
algorithm (2.30) and the nonexpansiveness property of the projection operator allow an extensive
study of the algorithm. In particular, there are proofs of convergence even when the network
edges appear and disappear randomly over time. The resulting algorithm, however, inherits the
slow convergence properties of the (sub)gradient algorithm, making it communication-inefficient.
Variations of (2.30) have also been explored [109, 110, 111, 112]. For example, [109] considers
the update 5™ = [3;cn oy ani (2h — akaj(ack))}Xp and, thus, the (sub)gradient update occurs
before transmission; the work [110, 111] applies (2.30) to the dual of a constrained optimization

problem.

After noticing that (2.30) is the application of the (sub)gradient algorithm (2.9) to a problem

related (but not equivalent) to (G), [113] proposed an improvement based on Nesterov’s fast gradient



32 2. Background and Related Work

algorithm (2.10). The problem algorithm (2.30) actually solves is

k
minimize fi(z1) +---+ fp(zp) + et > la — x|, (2.31)
= (@1, p) 2 (e

where z,, € R" is the copy of x held by node p, o > 0 is a constant, and k is the iteration number.
The first term of the objective of (2.31) is the original objective (G), where the variable = was
replaced by its copy x,, at the pth function f,; the second term is a consensus-inducing term, in the
sense that different values of the copies between neighbors are penalized. As the iterations go on,
the second term becomes more important, forcing the nodes to achieve a consensus on their copies.
Note that problems (G) and (2.31) are not equivalent and that this provides an additional reason
why algorithms based on (2.30) usually converge slowly. The algorithms we propose in this thesis
reformulate (G) into problems that are equivalent to the original one and, thus, do not have this

drawback.

Other distributed algorithms that solve (G) with algorithms based on (sub)gradient methods
include [114], which hinges on a dual averaging algorithm by Nesterov [115], and [104], which studies
a gossip-based version of (2.30), i.e., only two neighboring nodes communicate at each time instant.
The work [116] solves (2.5), i.e., the dual of (2.1), using Polyak’s heavy-ball method [117].

Double-looped algorithms. A reformulation of (G) similar to (2.29), but that uses half the

constraints, is

minimize fi(21) + fa(z2) + - + fp(ap) (2.32)

subject to x; =z, (i,5) €&,
where the copies associated to each node are enforced to be the same through the edges of the
network. Similarly to what we saw for (2.29), if we apply dual decomposition to (2.32), the result
is a distributed algorithm. Unless it is assumed that each function f, is strictly convex, it is not
possible, however, to recover a primal solution after having solved the dual problem. An alterna-
tive is to use augmented Lagrangian methods, for example, the method of multipliers (2.15)-(2.16).
The augmented term, however, precludes the minimization (2.15) from being carried out in a dis-
tributed way. A known workaround is to use an additional loop: an iterative algorithm such as the
nonlinear Jacobi (2.12) or the nonlinear Gauss-Seidel (2.13). In fact, this has been done for solving
problem (2.1) in [118] (method of multipliers concatenated with the diagonal quadratic approxi-
mation) and in [65] (method of multipliers concatenated with the nonlinear Jacobi method). In
our work [119], which is not included in this thesis, we applied Nesterov’s gradient algorithm (2.10)
to both loops, for solving basis pursuit, a problem that can be written as (G), as we will see in

the next chapter. Another relevant work is [120], which solves (G) with the method of multipliers
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concatenated with a randomized nonlinear Gauss-Seidel method, and uses a reformulation identi-
cal to (2.32); see [121] for related work. A difficulty that arises when implementing double-looped
algorithms is determining a distributed, robust stopping criterion for the inner loop. Implementing

double-looped algorithms in a communication-efficient manner is therefore very challenging.

ADMDM-based. If we apply ADMM to the reformulations (2.29), (2.32), and similar ones,
we get, in general, distributed algorithms that do not suffer the lack of parallelism of incremental
methods, the slow rates of convergence of (sub)gradient-based methods, and the cumbersome two

loops of double-looped algorithms.

Algorithm 1 [25]

Initialization: Choose p € R; for all p € V, set ) = pu) =79 = 0, € R” and 7, = 1/(p(Dp + 1)); set k =0
1: repeat
2: for all p € V [in parallel] do

3: Compute 2™ = 7, uk + ﬁ D jent % and exchange z; ! with neighbors A,
4: Compute x];“ = prox, s (ﬁ Zje/\/; zf“ -7 77’;) and exchange x’;‘H with neighbors N,
5: Update the dual variables:
k+1 ko, L 1 K+l _k+1
Py = =My T — Z Ti T %
T \Dp+1 —~
JEN,
k41 P G 1 k41
e sz
Tp Dp+1 —~
JEN,
6: k+—k+1
T end for

8: until some stopping criterion is met

As said before, the first distributed algorithm based on ADMM was proposed in [25], for solving
a particular instance of (G) in the context of estimation. That algorithm, however, can be easily
generalized to solve the entire class (G) and is shown as Algorithm 1, explained later. Appendix A
shows the derivation of Algorithm 1: we show this derivation for completeness and because, to our
best knowledge, there is no reference in the literature where the algorithm is derived to solve the

entire class (G). The derivation applies the 2-block ADMM to the following reformulation of (G):

minimize  fi(21) + fo(w2) + -+ + fo(op) (2.33)

subject to x, =z;, jENS, p=1,...,P,
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where each node p has two copies of z: z, € R" and 2z, € R"* The optimization variable
is (z,2) = (z1,...,2p,21,...,2p) € (R")?P] which makes problem (2.33) have 2P times more
variables than the original problem (G). In (2.33), we used - = N, U{p} to denote the extended
neighborhood of node p, i.e., its set of neighbors N, and itself. Problem (2.33) then has 2FE + P
constraints, since there are 2 constraints per edge (i, ) € £, x; = z; and z; = z;, and each node p
constrains z, = z,. Regarding Algorithm 1, it is fully parallel, as all nodes perform the same
tasks at the same time. In the initialization, p is the augmented Lagrangian parameter and is
assumed fixed and known by all the nodes. At each node p, there is an auxiliary variable 7, that
depends on p and on D, = |N,|, the number of neighbors of node p. The algorithm consists of
three operations, in two of each there is a communication step. Specifically, in step 3 (resp. 4) each
node updates z, (resp. x,) and exchanges it with its neighbors. Note that updating x, in step 4
requires the variables z; from the neighbors j € N,. Note also that while the update of z, is linear
and independent of the function f,, the update of x, involves the prox operator of a scaled version

of fp. The prox operator of a closed convex function f: R? — R U {400} is defined as
. 1 2
pros (x) = argmin f(y) + gy > (2.34)
y

This operator, introduced in [122], arises in ADMM-based algorithms, since each ADMM subprob-
lem (cf. (2.18)-(2.19)) is a quadratic problem that can always be written in terms of the prox
operator. The prox operator has many properties; see [123] for an extensive list. After performing
step 4 in Algorithm 1, node p updates two dual variables, j,, and 7,, using the new values of x;
and z;, for j € Np+. The convergence of the algorithm is guaranteed by the convergence results for
the 2-block ADMM (2.18)-(2.20).

Algorithm 2 [26]

Initialization: Choose p € R; for all p € V, set xg = ug =0, € R"and 7, = 1/(2pD,); set k=0
1: repeat
2: for all p € V [in parallel] do

3: Compute zj ™ = prox, (ﬁ Djen, (zf +ah) — Tp,u’;) and exchange z8*! with neighbors A,
4: Update the dual variable pit? = pk 4+ 5L (2h+ — - Y ien, x?“)

P P
5: k+—k+1

6: end for
7: until some stopping criterion is met

4As pointed out in [25], if there are cliques in the network and, in each clique, only one node is chosen to have the
second copy of z, say zp, problems (G) and (2.33) are still equivalent. In that case, we can even go further and reduce
each clique to one node. Since this is a very specific case, we will ignore it and assume that there are no cliques or,
if there are, that each node has two copies of = anyway.
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The second distributed algorithm based on ADMM was proposed in [26] to solve the average
consensus problem, in the context of channel decoding. As [25], it can also be easily generalized
to solve the entire class (G). Indeed, that algorithm was used in [9, 42, 43, 124] to solve several
other problems in signal processing and machine learning that can be recast as (G). Algorithm 2
shows an adaptation of the algorithm proposed in [26] to solve the entire class (G); its derivation
is shown in Appendix A.3. As in Algorithm 1, the derivation applies the 2-block ADMM, but to
a different reformulation of (G). Namely, starting with the equivalent problem (2.32), [26] adds E

new variables, each one associated to an edge (7, 7) € £ of the network, and rewrites (2.32) as

minimize  fi(z1) + fo(x2) + -+ fr(zp)

T,z
subject to x; =z, (i,j) €& (2.35)
Tj = Zij s (ivj)€g7
where (Z,2) = (21,...,2p, .., zij, - ..) € (R")P+E is the optimization variable. Problem (2.35) then

has P+ E more variables (each of size n) than (G) and introduces 2F constraints. In Appendix A.3,
we show how the application of the 2-block ADMM (2.18)-(2.20) to (2.35) yields Algorithm 2. Note
that the application of the same algorithm to a different problem reformulation yields a different,
yet more efficient, algorithm. In particular, Algorithm 2 has only one communication step per
iteration, whereas Algorithm 1 has two. The communication step occurs in step 3, where each
node p updates its estimate x, by computing the prox operator of 7,f,, and then broadcasts the
new estimate to its neighbors A,. Note that z, the variable that was introduced in (2.35), is absent
of Algorithm 2 since, as shown in Appendix A.3, it can be eliminated. The notable work [9] provides
a thorough analysis of Algorithms 1 and 2 applied to the average consensus problem. Namely, it
establishes linear convergence, proposes a scheme to select the augmented Lagrangian parameter p,
and studies the factors that influence their convergence. More recently, the work [125, 126], based
on the results of [90], establishes the linear convergence of Algorithm 2 whenever each function f, is
strongly convex, differentiable, and its gradient is Lipschitz continuous. It also studies the factors
that influence the convergence rate of the algorithm and, based on that study, proposes a scheme to
select the augmented Lagrangian parameter p. Although that scheme gives a reasonable value for p,
it does not give the optimal one, i.e., it is usually possible to select a better one by trial-and-error.
This partly explains why in the experimental results presented in this thesis we always try several

values for p, through grid search, and select the one that yields the best result.

The algorithm we propose for (G), rather than using the 2-block ADMM, applies the multi-block
ADMM (2.22)-(2.26) directly to reformulation (2.32). Although we cannot establish a convergence

rate (since that is still an open problem for the multi-block ADMM), we show through extensive
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experimental results that the resulting algorithm outperforms both Algorithms 1 and 2 in terms of

the number of communications.

Other splitting methods. We already mentioned that ADMM is an application of the
Douglas-Rachford splitting operator to finding the zeros of a given monotone operator. Besides
ADMM, other splitting algorithms can be applied and yield distributed optimization algorithms.
One example is in [127], which applies a parallel splitting scheme directly to reformulation (2.32), as
the algorithm we propose. Our experimental results show, however, that our algorithm outperforms
the algorithm proposed in [127] in terms of the number of communications.

We also mention that [128] proposed an asynchronous distributed algorithm for (G) using a ran-
domized version of the Douglas-Rachford operator. Their experimental results show, however, that
the resulting algorithm requires more communications to converge than by using the synchronous
version. A gossip-based distributed ADMM-based algorithm has been recently proposed in [94] and

has been shown to converge with rate O(1/k).

2.2.2 Star-shaped class

Somehow differently from the global class (G), distributed algorithms for the star-shaped class
have been motivated mainly by specific applications, and not by the goal of solving an entire class
of optimization problems. Such a motivating applications include network utility maximization
(NUM), network flow problems, state estimation in power systems, and distributed model predic-
tive control (D-MPC). For this reason, we will organize this section application-wise rather than
algorithm-wise. Some applications, most notably D-MPC, arise naturally in scenarios where the
variable is non-global and non-star-shaped. In fact, one of the contributions of this thesis is a new
framework for D-MPC that uses a generic connected, or even non-connected, variable; this will be

addressed in Chapter 4.

Network utility maximization. Consider a network whose edges have a finite transmission
capacity and whose nodes are either packet sources, packet sinks, or packet re-transmitters. Each
source sends packets to one sink through a specific, pre-chosen route along the network. Associated
to each source s there is an utility function U, (increasing and concave) that depends on zg, the
rate at which source s sends packets. The goal of network utility maximization (NUM), proposed
in [129, 130], is to maximize the sum of the utilities of all the sources, while satisfying the link

capacity constraints:

maximize 2;9:1 Us(zs)
z=(x1,...,25)

subject to Rz =c (2.36)
x>0,
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where the /th row of the routing matrix R has ones in entries corresponding to sources that use link [
and zeros elsewhere. The Ith entry of vector ¢ has the capacity of link /. Note that problem (2.36) is
a particular instance of (2.1). It has been used to model congestion control on the Internet [129, 131,
132] and scheduling problems [133]; see also the surveys [52, 134]. If we build an auxiliary network
indicating which links are used by each source then, as we will see in Chapter 4, a dual problem
of (2.36) can be written as (P) with a star-shaped variable. Actually, if we apply a gradient or a
subgradient method directly to that dual problem, we obtain a distributed algorithm because all
the induced subgraphs are stars. This is done in [131], which proposes and analyzes synchronous
and asynchronous versions of the gradient method for a dual problem of (2.36); curiously, the
TCP/IP Vegas protocol, which was designed as an ad hoc congestion control protocol, is interpreted
in [132] as a gradient method solving that dual problem. With the goal of improving the speed
to convergence, Newton-like methods have also been proposed, for example, a diagonally scaled
version of the gradient method with Hessian information in the diagonal [135], and a Newton
method where the descent direction is computed approximately [136, 137, 138]. More recently,
[139] took advantage of the strong concavity of typical utility functions, which implies that their
conjugate is differentiable with Lipschitz continuous gradients, and proposed applying Nesterov’s
gradient method (2.10) with a choice for a Lipschitz constant that does not require knowing all the
utilities at a central location. Then, it proved that the primal estimates converge at rate O(1/k)

to their optimal values.

In all these methods, the communication between the source nodes and the used links can
be done implicitly, i.e., without sending additional numbers over the network: only by increasing
or decreasing the sending rate at which each source sends its packets, and by discarding or not
packets that arrive to a given link, an implicit communication can be established. The algorithm
we propose for (P), in contrast, requires explicit communication between the source nodes and the

links; however, it exhibits faster convergence to the equilibrium.

Distributed model predictive control. Model predictive control (MPC), also known as re-
ceding horizon control, is an efficient control scheme for discrete-time systems. Dating back to the
early sixties [140, 141], MPC became very popular in the petro-chemical industry in the early eight-
ies, as surveyed in [142]. The interest in applying MPC to distributed systems, however, arose later,
in the nineties [143, 144]. The setting is a network of systems, each of which has associated a state,
a control input, or both. Each system interacts with neighboring systems in two ways: through
system dynamics and through communication. Interaction through system dynamics means that
the state of each system is influenced by the states and control inputs of neighboring systems; some-
times, neighboring systems also have coupled goals (or efficiency measures). Interaction through

communication refers to the ability that each system has to exchange messages with neighboring
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systems and, thus, it corresponds to what we call communication network. MPC in this scenario is
usually referred to as distributed MPC (D-MPC). The goal in each instance of D-MPC is to make
the systems cooperate to find an optimal set of inputs, i.e., control inputs that drive the state of
each system from an initial (measured) state to a predefined goal, while minimizing the energy
to do so. This can be cast as an optimization problem with the format of (P), as we will see in
Chapter 4. To the best of our knowledge, all prior work on D-MPC has assumed that interaction
through dynamics coincides with interaction through communication. That is, if two systems have
coupled dynamics, i.e., the state of one of them is influenced by the state or input of the other, then
they necessarily communicate directly. According the classification scheme introduced in Chapter 1,
the variable in this case is star-shaped. In this thesis, we introduce a new framework for D-MPC,
where coupled systems do not necessarily need to communicate directly. We also present potential

applications for this new framework.

Early work on D-MPC has focused on studying stability and performance of heuristics whose
solutions are not guaranteed to be optimal. For example, [145] proposes a one-step scheme where
each system solves a local optimization problem that incorporates state predictions from its neigh-
bors; this is preceded by a communication step, where state predictions are exchanged between

neighboring nodes. For related methods, see [19, 146, 147].

D-MPC has also been tackled with optimization-based algorithms, not always completely dis-
tributed, that find exact solutions. For example, [144] proposes an augmented Lagrangian method
where the augmented term is linearized, a method now known as split inexact Uzawa method in the
image processing community [148, 149]. The resulting algorithm is not distributed, since it requires
a central node. Distributed algorithms for D-MPC include dual decomposition with the subgradient
method [150] (as described in Subsection 2.1.1), distributed interior-point methods [151], and more
recently, fast gradient methods [46] and ADMM [46, 152]. In particular, [46, 152] apply the ADMM
method proposed in [35], which becomes distributed whenever the variable is star-shaped. This
is, in fact, the case since, as mentioned before, all prior work on D-MPC assumes that interaction

through dynamics coincides with interaction through communication.

The algorithms we propose for D-MPC require less communications to achieve convergence than
all these algorithms. In addition, they solve D-MPC in scenarios that have never been considered
before: problems with a connected variable that is neither global nor star-shaped, and problems
with a non-connected variable. Both cases model systems that are coupled through their dynamics,
but cannot communicate directly.

Network flows. Beyond NUM and D-MPC, there is an extensive literature on network flow
problems, some of which can be formulated as (P) as well. In a typical network flow problem, each

component of the optimization variable is associated to an edge of the network, and the function
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at each node depends on the variables associated to its incident edges. Hence, the variable is
star-shaped; actually, each induced subgraph is very simple: it consists of two nodes and an edge
connecting them. The first optimization algorithm solving a network flow problem was Dantzig’s
simplex method [153, Ch.19-20]. Extensive information about network flows, including specialized
algorithms (most of them centralized), can be found in the surveys [154, 155] and in the books [20,
156].

Regarding distributed algorithms for network flows, dual decomposition methods generally yield
distributed algorithms. For example, by assuming strict convexity on the cost functions, [157]
computes the dual of a network flow problem and proposes to solve it with an asynchronous Gauss-
Seidel method. The application of a subgradient method to a similar problem is analyzed in [158].
More recently, [159] proposed a double-looped algorithm, where the outer loop uses the proximal
minimization algorithm (to overcome the lack of strict convexity of the primal objective) and
the inner loop uses the gradient method. The work [160, 161, 162, 136] proposes a distributed
algorithm for network flows based on Newton’s method, where the Newton direction is computed
approximately. Although the resulting method requires the cost functions to be strongly convex
and twice differentiable, it is proven to converge superlinearly to a neighborhood of the problem’s
solution. This contrasts with the algorithm we propose for (G), which only requires the cost
functions to be convex, possibly non-differentiable. Our algorithm thus requires assumptions much
less restrictive that the assumptions of methods based on dual decomposition or on Newton’s
algorithm. Additionally, as will be shown in Chapter 4, the algorithm we propose requires less

communications to converge than the algorithm in [160, 161, 162].

2.2.3 Mixed class

The mixed problem class (M), reproduced here for convenience,

gvnil(ryniglélﬁ% fl(y, Zsl) + f2(y7 255‘2) ++ fP(y7 ZSP) ) (M)

has rarely appeared in literature, despite its generality and possible applications. One instance
of (M) has appeared in [33] (see also [52, §IV-B]) as a dual of a NUM problem with coupled
objectives. We will look at this problem with more detail in Chapter 4. Such a problem can
model cooperative systems, e.g., systems where the rate allocated to one source depends on the
rate allocated to the cluster that source belongs to, or competitive systems, e.g., wireless power
control or digital subscribed line (DSL) spectrum management where signal-to-interference ratios
(SIR) are dependent on transmit powers of other users. The method proposed in [33] is distributed
and consists of solving that dual problem (which has the format of (M)) with a gradient method.
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Actually, the application of the gradient method to (M) in [33] yields a distributed algorithm,
because the non-global components, z in (M), are star-shaped.

We will also use the framework of (M) to solve in a distributed way a compressed sensing
problem with a data partitioning that has never been considered before. More concretely, basis
pursuit denoising (BPDN), and a related problem that we call reversed lasso have been solved in a
distributed way with a row partition [163, 42, 124] and with a column partition [163], respectively.
The reverse cases, i.e., BPDN with a column partition and reversed lasso with a row partition, have
never been solved before. We will show in Chapter 4 that reversed lasso with a row partition can

be formulated as (M), and therefore can be solved with the algorithms we propose here.



Chapter 3

Global Class

This chapter addresses the global class (G) and is based on the publications [164, 165, 166, 83, 163].
The chapter is organized into four sections. In Section 3.1, the problem is formally stated and the
assumptions are clearly identified. In Section 3.2, we describe some applications that can be written
as (G). Special emphasis is given to Subsection 3.2.2, since it contains novel contributions, such as
writing some distributed compressed sensing problems as (G). Then, in Section 3.3, we propose our
algorithm for the global class (G) and analyze it. Finally, in Section 3.4, we show the performance of
the proposed algorithm against prior algorithms by running extensive simulations. These show that,
while solving the entire class (G), our algorithm is as efficient as algorithms that were specifically

designed for particular applications and, often, it is even better.

3.1 Problem statement

The global problem class (G) consists of minimizing the sum of P functions where each function

depends on all the components of z. For convenience, let us rewrite (G) here:
minimize  fi(z) + fa(2) + - + fp(2). (G)
x n

We make the following assumptions:

Assumption 3.1. Each function f, : R* — R U {400} is closed and convex over R™ and not

identically +o0.
Assumption 3.2. Problem (G) is solvable, i.e., it has at least one solution x*.

In Assumption 3.1 we use the concept of an extended real-valued function f, which can take

infinite values and is defined over all R™. Such a function is closed and convex if its epigraph

41
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epif := {(x,r) € R" xR : f(z) < r} is closed and convex, respectively [54, §1.2], [30, §B.1].
Alternatively, a function is closed if it is lower semicontinuous or if all its sublevel sets are closed [54,
Prop.1.2.2], [30, Prop.1.2.2]. Considering extended real-valued functions simplifies the notation
without losing generality: as explained before, each node p can constrain variable x to belong to
a given set S, i.e,, x € S, through an indicator function ig, defined as ig(z) = 0 if x € S, and
ig(r) =40 ifx & S.

We associate problem (G) to a communication network G = (V,€) with P = |V| nodes and
E = |€| edges: the pth node of the network is the only node who knows function f, or, in other

words, function f, is private to node p. Regarding the network, we assume:
Assumption 3.3. The network is connected and its topology does mot vary with time.

Assumption 3.4. A coloring scheme C of the network is available; each node knows its own color

and the color of its neighbors.

The concept of network coloring was explained in Section 1.1: it is an assignment of numbers,
called colors, to the nodes such that no neighboring nodes have the same color. Formally, each
node is assigned a color in C = {1,...,C}, where C := |C| is the total number of colors, and C(p)
denotes the color of node p. The coloring scheme C is called proper (or valid) if C(z) # C(j), for all
(1,7) € €. Our goal is to design a distributed algorithm that solves (G) while keeping the function f,
private to node p. Recall that a distributed algorithm is one that uses no central or special node
and no all-to-all communications.

Discussion of the assumptions. Compared to prior algorithms for the global class (G), the
problem Assumptions 3.1 and 3.2 are very general, while the network Assumptions 3.3 and 3.4 are
more restrictive, yet realistic in some scenarios. In fact, what Assumption 3.1 asks is the problem
to be convex, a minimal requirement to guarantee that we can find a global minimizer of (G). In
Assumption 3.2, we require that the problem is well-posed by having at least one solution.

Regarding the network assumptions, assuming a fixed network topology as in Assumption 3.3 is
a common first step in distributed optimization. Some algorithms, however, are proven to converge
under intermittent link failures, e.g., [108, 102, 120]. These algorithms, in turn, require more as-
sumptions on the functions in (G). In fact, there seems to be a curious tradeoff between the problem
assumptions and the network assumptions: the algorithms that relax the network assumptions usu-
ally require more restrictive problem assumptions, and vice-versa. Regarding Assumption 3.4, this
assumption is new in the context of distributed optimization and will underlie the construction of
our algorithm. Recall that finding the minimum number of colors a network can be colored with is
NP-hard [167], except for bipartite networks. The minimum number of colors required to color a net-

work G is called the chromatic number and is represented with x(G). Assuming that x(G) is known
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and that x(G) > 2 (i.e., the network is not bipartite), coloring G with x(G) colors is NP-hard as well.
Given its importance in wireless networks, there are several approximation algorithms to compute
coloring schemes of networks, some of which are distributed [168, 169, 170, 171]. For example, [168]
proposes a coloring scheme that uses O(Dpax ) colors while requiring O(Dyyax / 10g%(Dmax) +log* (P))
iterations to compute them, where D,y := max{D, : p € V} is the maximum degree of a node
in the network. Another coloring scheme using less iterations, but more colors, more specifically,

O(log*(P)) iterations and O(D?2

S ax) colors, is proposed in [171]. In this thesis, we assume that a

coloring scheme with C' colors is given and we will ignore how it was obtained. Consequently, the
additional number of communications to obtain the scheme will also be ignored in the comparison
with other algorithms. Although all the other algorithms use no coloring scheme (all nodes work
in parallel), the comparison is fair for two reasons: first, if an algorithm is run several times on
the same network, for example, for different data, coloring the network just needs to be done once,
before the first instantiation; after running the algorithm several times, the coloring cost becomes
diluted. The second, and perhaps more important, reason is that in networks where the trans-
mission medium is shared, for example, in wireless networks or even in Ethernet cables, the nodes
cannot communicate in parallel without using a medium access control (MAC) protocol [172, Ch.5-
6],[21]. For example, in wireless networks, one node cannot receive two different messages from
its neighbors at the same time and at the same frequency (unless it uses more than one receive
antenna [173]). This creates the hidden and the exposed node problems [21, §6.2.2], which are
prevented by the use of MAC protocols. For data-intensive algorithms, such as the ones consid-
ered in this thesis, schedule-based MAC protocols are the most energy-efficient [21, §6.7]. Time
division multiple access (TDMA) is such a protocol which, in addition, is also based on network
coloring. The particular coloring scheme used by TDMA can also be used for the algorithms we
propose; thus, our algorithms integrate naturally with TDMA. Prior algorithms for distributed
optimization, in contrast, assume no particular MAC protocol. The second part of Assumption 3.4
will be discussed when we introduce our algorithm; briefly, it allows discarding a centralized entity
controlling all the nodes that have the same color (recall that they are not neighbors) and, because

of that, it is essential in making our algorithm distributed.

3.2 Applications

There are many engineering problems that can be written as (G). Here, we will focus on problems
that arise in networks and, consequently, that can be solved via distributed algorithms. We address

two types of problems: inference problems, which include average consensus and support vector
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machines (SVMs), and sparse solutions of linear systems, which include several compressed sensing

problems.

3.2.1 Inference problems

Average consensus. Consider the scalar version of the inference problem described in Chapter 1:
a sensor network composed of P nodes is deployed to estimate a parameter § € R. The estimation
uses measurements from all the sensors, which are assumed noisy. Let ¢, denote the measurement
at node p. When the noise is independent across nodes, Gaussian, with zero mean, and identity

covariance matrix, the maximum log-likelihood estimation of 6 is given by average consensus [7]:
minimize Fx—01)%+ 3(x—02)* + -+ Lz —0p)>. (3.1)

Average consensus has been widely studied in the literature, and many distributed algorithms have
been proposed to solve it [174, 8, 175, 176, 12, 11, 177, 10]. Curiously, most of these algorithms
are not optimization-based, in the sense that they do not view the consensus problem as the
distributed optimization problem (3.1); rather, they simply solve it with a linear update scheme,
such as (1.1). Work that has addressed average consensus by devising a distributed optimization
algorithm for (3.1) includes [4, 106, 25, 26, 9]. In particular, [9] analyzes Algorithms 1 and 2,
described in Chapter 2, applied to consensus. Despite the vast quantity of algorithms for the average
consensus, we will see that the algorithm we propose for the global class (G) has a performance

similar to the most efficient algorithms, if not better.

Support vector machine (SVM). Another important inference problem is a support vector
machine (SVM) [17, Ch.7]. Training an SVM consists of finding the parameters (s,7) € R"™! x R
of an hyperplane {x € R"~! : sle = r} that best separates two classes of points. These points are
given as (z,yx) € R"™! x R, where y, € {—1,1} indicates the class of the point xj. Finding these
parameters usually involves solving an optimization problem, for example,

minimize  }ls|® + B 1k¢
subject to yp(s'ap —1r)>1—-&, k=1,....K (3.2)
€20,

where K is the total number of points, 3 > 0 is a tradeoff parameter, and ¢ € RX is a vector of

slack variables. In a network scenario, we assume each node knows m, points, but all the nodes
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cooperate to solve the global problem (3.2). This problem can be written as (G) by setting

fols,r) = i?f aplsl® + 817,86 (3-3)
P
st Yp(Xps —rly,) > 1, — &
& >0,

where V), is a diagonal matrix with the labels y; of the points of node p in the diagonal, and X, is
an m,, X n matrix with each row containing x,I, ordered the same way as Y,. The variable z in (G)
corresponds to (s,7), since the slack variables é_’p are internal to each node. This distributed SVM

problem has been solved in [43] with Algorithm 2. See [178] for a related message-passing method.

3.2.2 Sparse solutions of linear systems

Another application we consider is finding sparse solutions of distributed linear systems. This
is mainly motivated by the recent field of compressed sensing [13, 14|, which establishes a new
paradigm for signal acquisition and sampling. Surveys on the topic include [179, 180, 181, 182].
While acquisition of signals in compressed sensing is usually simple, reconstructing them afterwards
is more complicated and it involves solving an optimization problem. In noiseless scenarios, the
most common problem is basis pursuit (BP) [15]:
mi;leiﬁ}lize l|lz]|1

(3.4)
subject to Ax =0,

where x € R" is the variable and ||z||; denotes the ¢1-norm of z, defined as ||z|; := Y./~ |x;]. The
matrix A € R™*™ and the vector b € R™ are associated to the acquisition process, and we assume
they are given. The linear system Ax = b is underdetermined, i.e., m < n, and the matrix A
is usually assumed full rank, so that the linear system is feasible for any b. This is common in
compressed sensing, since the entries of A are usually drawn randomly and in an independent way.
In noisy scenarios other problems are used. An example is basis pursuit denoising (BPDN) [15]:
mig]caei%lize 1Az —b||2 + Bzl (3.5)

where 3 > 0 is a tradeoff parameter and | z|| denotes the f3-norm of z € RY, i.e., |z]| = /2L, 22.
There is also a problem that we will call reversed lasso [183, 184, 185]:

minimize ||z
TER™

subject to ||[Az —b|| <o,
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Row Partition Column Partition
Ay
: A Ay - Ap
Ap

FIGURE 3.1: Row partition and column partition of A into P blocks. A block in the row (resp. column)
partition is a set of rows (resp. columns).

where ¢ > 0 is a known bound on the noise magnitude, and a problem called the least absolute

shrinkage and selection operator (lasso) [16]:

minimize %HAQZ —b||?
IEGR" (37)
subject to ||z||1 < v,

where v > 0 is a known parameter. Problems (3.4)-(3.7) provide heuristics to find sparse solutions
of the linear system Az = b. In fact, it was established in [186] that finding a sparsest solution of
that linear system is NP-hard. Such a problem would be written as (3.4) with the cost function
replaced by the cardinality of the vector x, card(z). We thus see that (3.4) approximates the
non-continuous, non-convex function card(x) by the convex function ||z||;, resulting in a convex
(and hence easier) problem. The same approximation motivates problems (3.5)-(3.7), but in the
scenario where b may not be expressed exactly as a linear combination of the columns of A. The
theory of compressed sensing establishes conditions on the matrix A under which approximating
card(z) by ||z|1 in, for example, BP (3.4) yields an exact approximation: this means that the
NP-hard problem obtained from (3.4) by replacing ||z||; with card(z) has the same solution as the
convex problem BP (3.4). Surprisingly, some types of random matrices satisfy those conditions

with overwhelming probability. For more details see, for example, [187, 188, 189, 190].

Problems (3.5), (3.6), and (3.7) are all related through duality and, therefore, are equivalent in
some sense, provided their parameters 3, o, and - are chosen appropriately. Among these problems,
(3.6) is the one to which compressed sensing results apply directly [189, 185], in spite of never have
been coined a specific name. Apparently, sometimes it is also called lasso [180], but we avoid that
name to prevent confusion with the original lasso (3.7). Instead, we will call it reversed lasso since,
compared to lasso, its objective and constraints are reversed. Note that when o = 0, the reversed
lasso becomes BP (3.4). We are interested in solving the compressed sensing problems (3.4)-(3.7)

in the distributed scenarios described next.

Distributed scenarios: row and column partition. We consider two different scenarios

for splitting the data in matrix A and vector b among the nodes of a network with P nodes.
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These are called row partition and column partition, and are visualized in Figure 3.1. In the row
(resp. column) partition, each node stores a block of rows (resp. columns) of A. While in the row
partition vector b is partitioned similarly to A, with each node storing the corresponding subblock,
in the column partition we assume all nodes know the full vector b. More specifically, node p
knows (A, b,) € R™*™ x R™ in the row partition and knows (A,,b) € R™*" x R™ in the column
partition. Naturally, we have m = 25:1 my, and n = 25:1 Np.

The row partition scenario arises naturally when applying compressed sensing in a sensor net-
work. For instance, suppose the nodes of the network are interested in estimating a high-dimensional
but sparse vector x € R”, for example, an ultra-wide band but spectrally sparse radio signal. Each
node in the network is equipped with a low bandwidth antenna and, hence, any signal acquisition
has to be done at a rate far below the Nyquist rate. By using a random demodulator [180, 191],
compressed sensing can be applied, and each row of the linear system Ax = b represents one mea-
surement (performed at a low acquisition rate). Therefore, if node p takes m,, linear measurements
of z, we have exactly the row partition scenario. This setting appeared in [192, 193], where several
applications are described. It is assumed there, however, that the signal reconstruction, i.e., solv-
ing one of the problems (3.5)-(3.7) is done in a centralized way, in a fusion center. The algorithms
we propose in this thesis allow reconstructing the signal on the network, without using any fusion
center. Furthermore, all nodes will know the signal when the algorithm finishes. Other applications

include distributed target localization [194] and distributed field reconstruction [195].

One application of the column partition is described in [196], in the context of forward modeling
in geological applications. The goal is to find the Green’s function, represented by a vector z, of a
model of the earth’s surface. The authors of [196] propose deploying a set of sources and a set of
receivers over some geographical area and have all the sources emit a signal simultaneously. The
receivers capture a linear superposition of all the emitted signals. The proposed way to find x is by
solving BP (3.4), where a set of columns of A is associated to a source. This is clearly our column
partition scenario. The distance between all the devices in this application makes a distributed
solution convenient, such as the ones provided by our algorithms.

We will see next how BP, BPDN, and lasso with a row partition are naturally recast as (G).
Then, we will consider the less trivial case of a column partition, for all the problems (3.4)-(3.7).
The only problem that will be missing is reversed lasso with a row partition. However, in Chapter 4,
we will be able to recast it as (P), not with a global variable, but with a mixed one.

Row partition: BP, BPDN, and lasso. Consider a row partition as shown in Figure 3.1.

Then, BP (3.4) can be written as (G) by setting as the function of node p

o) = Sl + o (2), 35
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where i,,—,(2) is the indicator function of the set {z : Apz = by}. Similarly, BPDN (3.5) can be
written as (G) by setting as the function of node p

g

1
Fol@) = 5145 = byl + Sl (39)

Note that the parameter S and the number of nodes P is assumed to be known by all nodes.

Lasso (3.7) can also be written easily as (G) by setting

o) = 3145z = Byl + i o (2) (3.10)

as the function of node p. Here, the parameter  is also assumed to be known at all nodes. Each
function f, in (3.8)-(3.10) contains data that is known only by node p: namely, the pair (A, b,).
All these functions are closed and convex. Furthermore, the extended real-valued function (3.8)
(resp. (3.10)) is not identically +o00 whenever A, has full rank (resp. 7 is positive). BPDN with a
row partition was solved in [42, 124] with Algorithm 2, viewing it as an instance of (G) with (3.9).

Column partition: duality and regularization. We now turn into a column partition and
recast all the problems (3.4)-(3.7) as (G). We will need duality to do this. However, plain duality
will not be enough to recover primal solutions from dual solutions, since the problems we dualize
have cost functions that are not strictly convex. We will thus use regularization and, in the case
of BP, the concept of exact reqularization. We introduce this concept together with a result by

Friedlander and Tseng [197]. Consider the following conic program

T

minimize c¢'z
xX
subject to x € K (3.11)
Ar =b,

where ¢ € R", A € R™" and b € R™ are given, and X C R" is a nonempty, closed, convex
cone. Problem (3.11) is assumed to have a nonempty solution set S. Consider now a regularization
function ¢ : R™ — R such that all sublevel sets of S, i.e.,, {x € S : ¢(z) < a}, are bounded for
all a. A result in [197], more specifically in corollary 2.3 of [197], states that when K is polyhedral,
ie, K ={z : viTx <0,i=1,...,q} for some set of ¢q vectors v; € R", then the regularization
of (3.11) with ¢ is exact. This means that there exists a § > 0 such that the set of solutions of the
regularized problem

minimize clao+ g(b(a:)

subject to z € K (3.12)

Ax =1
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is contained in the set of solutions S of (3.11), for all 0 < § < § [197, Cor.2.3]. As mentioned in [197],
this is a generalization of exact regularization results for linear programs [198, 199]. Experimental
results in [197] suggest that the above result is true even when K is not polyhedral, namely, when K is
the Lorenz cone {(z,t) : ||z|| <t} (also known as the ice-cream cone and as the second-order cone).
That cone will actually arise in some of our problems for which, inspired by the results in [197],
we will perform the above regularization. For BP, we will use the exact regularization result, since
BP is equivalent to a linear program, which is the simplest instance of a conic program. Regarding
the choice of §, we are unaware of any method that finds § without first solving the unregularized
problem (3.11). Therefore, we will choose § based on trial-and-error. According to our experiments,
§ € [1073,107!] allows computing an optimal solution with reasonable accuracy most of the times.

In [197, §7], it is reported that 6 = 10~ yielded an optimal solution in 85% of their experiments.

Column partition: BP. We start with BP (3.4). Consider the regularization function ¢(z) =
(1/4)]|z||? and the regularized problem
e 5 2
minimize llz|l1 + 5|l

(3.13)
subject to Az =0b.

Then, by the previous discussion, the following theorem follows.

Theorem 3.5.

Problem (3.13) is an exact reqularization of BP (3.4), i.c., there exists a § > 0 such that the solution
of (3.13), with 0 < § <6, is always a solution of BP.

Proof.

We use the exact regularization results of [197, 198, 199], as explained before. First, we recast BP
as a problem with the same format as (3.11):
mingglize 1)t
subject to Az =10 (3.14)
—t<zx<t,

where ¢t € R™ is an epigraph variable and 1,, € R" is the vector of ones. Problem (3.14) has the
same format as (3.11) by making the correspondence ¢ = (0,,1,) and K = {(z,t) : —t <z < t},

which is a polyhedral cone that is nonempty, closed, and convex. The corresponding regularized
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problem (3.12) with ¢(z) = (1/4)]z||? is

C e 5 5 C e .
minimize Lt + ZH517||2 + Z||t||2 = minimize %H;EHQ + 1gf 1Lt + %HtH2
subject to Az =1b subject to Az =10 st. —t<z<t

—t<z<¢t
= minimize [l + &l

subject to Ax =b,

which is (3.13). In the last equivalence, we used the fact that, for a fixed z,

. )
inf 1yt+glltl* = lzlls + Il (3.15)

st. —t<zx<t.

O

Now, let A € R™ be a dual variable associated to the constraint of (3.13). The dual problem is

J
maxi)\mize b+ inf [Hle + §H:17||2 - /\TA:E} (3.16)
& )
< maximize DIA+D i%lpf [H%Hl + §prH2 — )\TApxp} (3.17)
p=1
” 5
= mini}\mize —b" A+ Z sup (A;A)Ta:p — (”%Hl + §pr|]2)] (3.18)
p=1 "7
" 1
A w( ATy _ 23T
= minimize Z (hp(Ap A) Pb )\) , (3.19)

p=1

which has the format of (G) with the function at node p given by f,(\) = hl*,(A;)\) — (1/P)bT A
From (3.16) to (3.17), we used the column partition and the fact that all terms inside the infimum
decouple. From (3.17) to (3.18), we switched from a maximization problem to a minimization one.
And, in (3.19), we defined hj as being the convex conjugate of the function hy(z,) = [|zpll1 +
(6/2)|wp|?, for each p. Note that the global variable is the dual variable \; also, after an optimal
value A* has been found (or better, agreed by all the nodes), the pth component of the corresponding

primal solution z* is available at the pth node. Each component is given by soft-thresholding;:

%((A;)\)z' - 1), , (AN > 1
v =0 H(ATNi+1) (47N < -1 (3.20)

0 —1<(AJN); <1,
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for ¢ belonging to the indices of the columns of A,; see Appendix B for the derivation of (3.20).

Column partition: BPDN. We now move to BPDN with a column partition. We will also
use regularization but, this time, we will not have an exact regularization result. To regularize

BPDN (3.5) the same way as BP, we first rewrite it with the format of (3.11):

e . 1 T
minimize v+ §1,1

z,tu,v

subject to ||ul? < v (3.21)
—t<x<t
u= Az —-b,

where t € R"” and v € R are epigraph variables, and v € R™ is an auxiliary variable. Problem (3.21)
has the same structure as (3.11), since its objective is linear, the last two constraints are also linear,
and the cone K is the Cartesian product K = Kyt x Ky, where Ky = {(z,t) : —t < oz < t}
is polyhedral, but Ky, = {(u,v) : |[ul|> < v} is not. Using the function ¢(z) = (1/4)z|? to

regularize (3.21), we obtain

minimize v+ BNt + %(H:cll2 + (1t 4 ] + vz)

z,t,u,v
subject to |Jul|? < v (3.22)
—t<z<t
uw=Ax —b,
... 5 5 . 8 : 0
= minimize lzl* + 1Az — bl]* + 1?f Bl t+ SIt1* + 1%f Fv+ 902 (3.23)
st. —t<z<t st. ||Az —b|? <w
— minimize (5 + §)[[Az = b[* + Bllz |1 + §llz|* + § Az — b||*. (3.24)

From (3.22) to (3.23), we replaced u by Az — b. From (3.23) to (3.24), we used (3.15) with the
weight $ and eliminated the epigraph variable v.

Although our next steps are also valid for (3.24), we will discard the last term of its objective,

for simplicity. That is, we will solve instead:
minixmize (% + %)HAJE — b))%+ B|lz|1 + %Hasz . (3.25)
We now introduce an auxiliary variable y € R™ and write (3.25) equivalently as

. 1,6 2 91112
minimize 5+ 3 + pllrl + 3llx

i (5 + DIYl* + Bllzllx + 5zl (3.26)
subject to Az =b+y.
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Associate a dual variable A € R™ to the constraint of (3.26) and compute the dual problem:

1 6 1)
o . T . 2 T . 2 T
maximize b’ A+ Hz}f ((5 + Z)HyH + A y) + inf (,3Hw|!1 + §HxH —A Ax) (3.27)

b

= minimize b’ \ +
A 2490

P
AP+ hs(A)A) (3.28)
p=1

P
= 1
e T T
= minimize Z {h;(Ap A)+=b A+ (3.29)

1
3 5P+ s
p—
which has the format of (G) with f,(\) = B;(A;—)\) + (1/P)" A + (1/((2 + 8)P))|A||? as the
function of each node p. From (3.27) to (3.28), we switched from a maximization problem to a
minimization one, and used the fact that the infimum problem in y has a closed-form expression.
Also, the infimum in z was decomposed into blocks, and }_‘L; denotes the convex conjugate of the
function hy(z,) = Bllzplli + (5/2)||zp]/?. From (3.28) to (3.29), we just grouped terms. Note that
solving (3.29) is not equivalent to solving BPDN for two reasons: first because we used regularization
for which there are no exactness results and, second, because we ignored the quartic term in (3.24).
Column partition: reversed lasso. Regarding reversed lasso (3.6), we will also regularize it
and, again, we will not have any exact regularization guarantee. To do the regularization the same
way as before, we first rewrite it with the format of (3.11):

minimize 1)t
x,t,au,v

subject to |lu|| <wv

—t<z<t (3.30)
u=Axr —b
V=0,

where t € R" is, again, an epigraph variable, and v € R™ and v € R are auxiliary variables,
introduced to make a cone appear. Problem (3.30) has indeed the same structure as (3.11), since
the objective is linear, the last two constraints are linear equalities, and the cone K is the Cartesian
product of two cones: K = K;; x Ky, where Ky = {(z,t) : —t < x < t} is polyhedral,
and Cy, = {(u,v) : ||u|| < v} is the Lorenz cone and, thus, not polyhedral. By regularizing (3.30)
with the function ¢(z) = (1/4)||z||?, we obtain
minimize 174§ (|| 4 12 4 [juf* + 0?)
subject to |ul| <v, v=o0o
—t<z<t
u=Axr —b

(3.31)
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= minimize olz)? + iIgf e+ 2)t12 + inf & ul? (3.32)
st —t<x<t st. u=Ax—0b
lul <o
— minimize ||z]1 + §lz|* + §[| Az — b||? (3.33)

subject to ||Az —b|| <o.

From (3.31) to (3.32), we used the constraint v = 0. From (3.32) to (3.33), we used (3.15) and the
fact that

inf é 2 _ 0 A b 2

inf g |ull = ljas-pj<o () + o llAz = b]".

st. u=Az—-b

In contrast with BP and similarly to BPDN, there is no proof that (3.33) is an exact regularization
of reversed lasso, although experimental results in [197] suggest that exact regularization might
occur for the Lorenz cone. In our experimental results, discussed later, we solved (3.33) using

§ = 1072 and the corresponding solutions never differed more than 0.5% from the “true” solution.

We next introduce an auxiliary variable y € R™ in (3.33), yielding
minimize |z + 5|zl + ¢y
subject to |y|| <o (3.34)

y=Ax —b.

Now, associate a dual variable A € R™ to the last constraint of (3.34) and compute the dual

problem (without dualizing the first constraint). This gives

maxi)\mize bI A+ igf Ay +2yl? + inf [H:L"||1 + g||3:\|2 - )\TAQL’} (3.35)
st. |yl <o
—  maximize b'A—o|A|+ inf [zl + gan? — AT Az (3.36)
&  minimize ij(h;(A; A+ ZIA —leA). (3.37)
A = P P

From (3.35) to (3.36), we noticed that the problem in y has a closed-form solution that can be com-
puted by solving its dual problem. Namely, its optimal objective is (§/2)c0? — o||A||. From (3.36)
to (3.37), we made the column partition explicit and took exactly the same steps as in the ma-
nipulations (3.16)-(3.19), since the problem in z is exactly the same as in (3.16). In fact, notice

that by setting o = 0 in (3.37) we obtain (3.19), exactly the same way we obtain BP from reversed
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lasso in the primal domain. Problem (3.37) has the format of (G) and, similarly to BP, the pth
block-component of the primal solution of (3.33) can be obtained at node p after solving the dual
problem (3.37): the expression for each component is (3.20), the same as for BP. However, for the
reversed lasso, we do not have the theoretical guarantee that, for a small enough J, the solution of

the regularized problem (3.33) is also a solution of the original (3.6).

Column partition: lasso. Finally we address lasso. As with BPDN and the reversed lasso,

the regularization we use here is not proven to be exact. Again, we start by rewriting (3.7) as (3.11):

minimize |4z — b||? = minimize ||Az — b|
x €T
subject to ||z||1 <~ subject to  ||z|1 <«
= minimize v (3.38)
z,t,u,v

subject to |lu|l <w
[z <t
u=Axr—b
t=1,

where, for simplicity, we did not represent the constraint ||z|l; < t as a set of linear inequalities.
This can indeed be done by writing 2" inequalities of the form rl-T x < t, where each r; € R" has
+1 in its entries; there are 2" such vectors. Therefore, (3.38) has the same format as (3.11), where
the objective is linear, the last two constraints are linear equations, and the first two constraints
represent the cone K, which is the Cartesian product of a polyhedral closed convex cone K, ; =
{(x,t) : vz <t i=1,...,2"} and the Lorenz cone K, , = {(u,v) : |lu|| < v}. We now regularize

problem (3.38) the same way we regularized the previous problems:

minimize v+ § ||z + £ + [u]]? +v?) (3.39)
x,tau,v
subject to |lu|| <wv
el <t
u=Axr—b
t=v
— minimize  §||® + §Az — 0> + inf g0’ +o (3.40)
subject to ||lz]|1 <« st. Az —b|| <w
= minimize ||Az — b|| + §||Az — b||% + &z (3.41)

T

subject to |lz|;1 < 7.

From (3.39) to (3.40), we eliminated the linear constraints. From (3.40) to (3.41), we used the
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fact that the optimal value of the problem in v, for a fixed z, is (6/4)|| Az — b||?> + ||Az — b||. Now,

introduce an auxiliary variable y € R™ in (3.41):

.. F) [
minimize  ly[| + sliyll® + gll=/?
subject to ||lz]j; <«

y=Axr —0b,

and compute the dual problem by dualizing both constraints (u and A will be the dual variables

associated to the first and second constraints, respectively). We get

. . : 5
maximize b'\— Y+ inf [HyH + —Hy||2 + /\Tl/
W) Y 2

subject to u >0

0
+inf [ploll + 3ol ~ AT Az

)
> min}\imize Y —bT A+ g*(=A) +sup {(AT)\)TUC —pllzflr — ZHxHQ] (3.42)
Y x

subject to u >0

P
o

> min}\imize Y —=bT A+ g* (=) + Z sup (A;)\)Txp — pllzpll — ZH%”ﬂ (3.43)

Y T

p=1 "7

subject to u >0
el
< minimize > <F (e = b" A+ g* (=) + (A A, 1) +igus0 (u)) . (3.44)
M
p=1

In (3.42), g* is the convex conjugate of g(y) = |ly|| + (6/2)||y||?>. We show in Appendix B that

0 , <1
g =sw (172~ el - 2l ={ ! 3.)

5 (M2 =21A1+1) [l > 1.

From (3.42) to (3.43), we just made the column partition explicit and, in (3.44), we defined

0
o) = sup ", = sy 1 = Gl (3.40
P
Note that (3.44) has the same format as (G). Because of regularization, the objective in the
supremum problem in (3.46) is strictly concave, which means that, after the nodes agree on an
optimal dual solution (A*, u*), the pth component of the primal solution of (3.41) will be available

at the pth node; see Appendix B for the particular expression.
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3.3 Algorithm derivation

We now present our algorithm for the global class (G). As mentioned before, our strategy consists
of reformulating (G) as (2.32) and then we applying the multi-block ADMM. For convenience, we

recall reformulation (2.32)

minimize  f1(21) + fa(w2) + - + fp(ap) (3.47)

subject to x; =x;, (i,5) €&,

where x,, € R" is the copy of the original variable x € R" and is held by node p. The optimization
variable is now the collection of all the copies: # = (z1,...,2p) € (R")F. All these copies are forced
to be equal through the constraints of (3.47), which state that, for each edge (7, ) in the network,
the copies of nodes i and j are equal. Since by Assumption 3.3 the network is assumed connected,
there are no isolated nodes and, hence, all the copies are equal. Consequently, problems (G)

and (3.47) are equivalent.

Matrix representation. Recall that, according to Assumption 3.4, we assume the network
has a coloring scheme C with C' = |C| colors. We use C. C V to denote the set of nodes that
have color ¢ € C, and C(p) to denote the color of node p. Also, the number of nodes with color ¢
is represented with C, = |C.|. Without loss of generality and to simplify our derivation, we will
assume that the nodes are numbered according to this coloring scheme as: C; = {1,2,...,C4},
Co={C1+1,C1+42,...,C1+Cs}, ..., ie., the first C; nodes have color 1, the next C5 nodes have
color Ca, and so on. Now, notice that the constraints in problem (3.47) can be written in matrix
format as (B' ® I,)z = 0, where B € RP*F is the node-arc incidence matrix, ® is the Kronecker
product, and I, is the identity matrix in R™. In the node-arc incidence matrix, each column is
associated to an edge of the network (7,5) € &£, with 1 in the ith entry, —1 in the jth entry, and
zeros in the remaining entries. Given our assumption on the ordering of the nodes and the coloring
scheme, we can write (B’ ® I,,)7 = (B] ® )71 + (B ® I,)T2 + --- + (B}, ® I,,)Zc, where Z

collects the copies of the nodes in C,, i.e.,

x = (3317---ax017$01+17"'>x01+027'"axP—Cp—I-l)"'a:L‘P))

1 X2 xc

and the matrix B is partitioned by rows accordingly. Therefore, (3.47) can be written as

minimize Tp)+ -0+ T
o Zpecl fp( p) ZpECC fp( p) (3.48)

subject to (B ® I,)Z1 + (By ® I,)T2 + - + (B ® I,)Tc = 0,
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where we also grouped the terms in the objective according to the colors of the nodes. We next
apply the multi-block ADMM to (3.48).

Applying the multi-block ADMM. We introduced the multi-block ADMM in Subsec-
tion 2.1.3. Our reformulations of (G) resulted in problem (3.48), which has the format of (2.21), the
problem the multi-block ADMM solves. If we apply the multi-block ADMM (2.22)-(2.26) directly

0 (3.48), we will see that the update of z. yields C. independent problems which can consequently

be solved in parallel. For example, the first block variable z; is updated as

2
Bt = argmin Y fo(xp) )+ AT (B ®1, ):131—1—2H(Bl ® I,) x1+z (B] @ I,)z*|| , (3.49)

T1=(z1,-2cy) peCy c=2

where the terms not depending 1 were dropped. Developing the quadratic term in (3.49),

C
H(BF ®I,)T1+ Y (B! ® I,)z}
c=2

C

=z (B1B] ® I,)T1 + 2% (Z(BlBCT ® mz’g) +
c=2

C

> (Bl @ I,)zk

c=1

2
(3.50)

In the first term of (3.50), ByBy is the first diagonal block (of size C; x Ci) of the network
Laplacian. Because the first C; nodes have the same color and, hence, cannot be neighbors, the
matrix BlBlT is diagonal. The pth entry in the diagonal is the degree D, of node p. Therefore,
the first term of (3.50) can be written as z{ (B1B{ ® I,,)7; = > opecs D, ||z, |?. In the second term,
BlBCT is an off-diagonal block of the Laplacian and depicts the links between the nodes with color 1
and the nodes with color ¢. Namely, if node ¢ has color 1 and node j has color ¢ and they are
neighbors, i.e., (i,j) € &, then the ijth entry of B;B/) will be —1. Therefore, the second term
is written equivalently as 27 (Z§:2(BlBCT ® In)a_c'j) = =23 e, Z]GNP » ? Finally, the last
term of (3.50) does not depend on z; and hence can be dropped. These simplifications render

problem (3.49) equivalent to

pD.
A= agmin Y ) + (-0 X a) a2, (3.51)

g_vl:(xl,...,mcl peCy JENp

where 75 =2 eN, /\l;j was obtained from the second term of (3.49) as

T _ T
M B @ 1)z, = (B1 @ I,) =3 N Ak ab (3.52)
p€EC1 JEN,
———
YET
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In the last equality in (3.52), we used the fact that the pth entry of the vector (B; ® I,)AF is given
by Zje N, )\';j. Note that we decomposed the dual variable as (..., A;j,...), where \;; is associated
to the constraint z; = x;, i.e., the edge between node i and node j. Given our convention that
(2,7) € € implies that ¢ < j (see Subsection 1.3.1), \;; is only defined for i < j. It is clear that
problem (3.51) decomposes into C; problems that can be solved in parallel. Namely, node p updates

its copy xp as

‘ pD,
$1;+1 = arg min fo(zp) + (7{; -P Z :E?) Tp + —H zll”
p JEND

= Prox, r < Z T — Tp’7p> (3.53)

P jeN,

where the prox operator was defined in (2.34) and 7, = 1/(pD,,). The problems with respect to the
other block variables can be decomposed into parallel problems the same way. The only difference

is the definition of 71]; , which is different due to the nodes’ ordering. Its general definition is

=D A= D M. (3.54)
JEND JEND
p<j p>j

Note that, from (3.53), each node p needs to know the aggregate sum 75, but not the individual A;;’s.
According to the multi-block ADMM iterations, namely (2.26), each \;;, for (i,7) € £, is updated

as /\Z-Jrl = )\fj +p (:Ei-ﬁ_l - 3:;”1). Replacing this update in the definition of 71]; in (3.54), we get

k+1 Z )\k-i-l Z )\k-i-l

JEND JEND
p<j p>j
:Z)‘ +pz(k+1 k+1) Z)‘ pz(kﬂ k+1)
JEND JEND JEN JEND
p<j p<j p>j p>j
SPIL D IRVEVD I Gl g RV I CauiEay
JEN JEND JEND JEND
p<j p>j p<j p>J
=k
E+1 k 1
= 719 +p Z ( i " )
JEND

D-ADMM: algorithm for the global class. The resulting algorithm is shown as Algo-
rithm 3, which we named D-ADMM in [163], after Distributed-ADMM. Algorithm 3 solves (3.48),

and hence (G), by creating C groups of nodes according to the coloring scheme. The nodes within
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Algorithm 3 Algorithm for the global class (D-ADMM)
Initialization: Choose p € R; for all p € V), set xg = ”yg =0, € R and 7, = 1/(pDp); set k=0

1: repeat
2: foralle=1,...,C do
3: for all p € C, [in parallel] do
4: Compute the average
1
k_ k41 k
R I A )
JEN, JEND
C()<C(p) C(4)>C(p)

5: Update z3 ! = prox, (zz - Tpﬂy;;) and send 25! to neighbors A,
6: end for
T end for
8: for all p € V [in parallel] do
9: Update the dual variable yf+! =% 4 p > e, (:c’;H - ZC‘I;+1)

10: end for

11: k+—k+1
12: until some stopping criterion is met

each group perform the same tasks in parallel, as illustrated before in Figure 1.4. These tasks
consist of computing the average of the solution estimates by the neighbors (step 4), computing the
prox of the scaled function 7, f, at the point indicated in step 5, and then sending the new solution
estimate to the neighbors. Note that in the computation of the average 25 of a given node p, in
step 4, there are two kinds of estimates: ones that were computed in the current iteration k, i.e.,
w?“ and ones that were computed in the previous iteration k — 1, i.e., xf The first kind are
estimates of the neighbors with a color smaller than the color of node p, that is, C(j) < C(p).
Node p has access to these estimates because the nodes with smaller colors have performed steps 4
and 5 before. The second kind are estimates of the neighbors with a color larger than the color of
node p, C(j) > C(p), and were transmitted in the previous iteration. Note that, in contrast with
its derivation, Algorithm 3 does not assume that the nodes are ordered according to their colors,

thanks to the use of inequalities C(j) < C(p) instead of j < p. After all nodes perform step 5, the

dual variables v, are updated simultaneously at all nodes, as described in step 9.

Apparently, Algorithm 3 needs some kind of central coordination to perform steps 4 and 5,
because nodes with the same color, not being neighbors, should perform the same tasks in parallel.
But, provided Assumption 3.4 holds, i.e., that each node knows its own color and the colors of its
neighbors, no central coordination is required. In that case, steps 4 and 5 need not be performed

k+1

exactly in parallel: as soon as node p has received the copies z; from the neighbors with smaller
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FIGURE 3.2: Construction of a directed graph (in (b)) from the coloring scheme of an undirected graph (in
(a)). The coloring scheme is C; = {1, 3,5}, C2 = {4,6}, and C3 = {2}. From (a) to (b), each
edge gets assigned a direction, from the node with the smallest color to the node with the
largest color.

colors, it can perform steps 4 and 5 immediately. Figure 3.2 illustrates an alternative way to see
this. Figure 3.2(a) shows a communication network and its coloring scheme: nodes 1, 3, and 5
have color 1, nodes 4 and 6 have color 2, and node 2 has color 3. From these colors, we can assign
directions to the edges of the network, as shown in Figure 3.2(b): the edge (i,7) € £ is assigned
the direction i — j if the color of node i is smaller than the color of node j, i.e., C(i) < C(j),
and the direction ¢ < j otherwise. For example, node 6, with color 2 has incoming edges from
nodes 1 and 5, both with color 1, and an outgoing edge to node 2, with color 3. Whenever node 6
receives, at each iteration, estimates from neighbors 1 and 5, it can immediately perform steps 4
and 5 without “talking” at all with the nodes that have the same color; in this case, that is just
node 4. This makes the algorithm distributed, since there is no central or coordinating node, the
function f, is only known at node p, and there are no all-to-all communications. Furthermore, the

algorithm is independent of the network. Regarding its convergence, we use Theorem 2.1 to prove:

Theorem 3.6.
Let Assumptions 3.1-3.4 hold. Then, Algorithm 38 produces a sequence (xlf,...,x‘}%) convergent
to (x*,...,x*), where x* solves (G), when at least one of the following conditions is satisfied:

(a) the coloring scheme uses two colors only (which implies that the network is bipartite);

(b) each function f, is strongly convex with modulus i, and

2> pec,
0<p< mi pee :
P c:nﬁ?.r.l,c 3(C —1) maxyec, Dy

(3.55)
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Proof. We just need to show that (3.48), the problem to which we apply multi-block ADMM, satis-
fies the assumptions of Theorem 2.1. First, note that Assumptions 3.1 and 3.2 and the equivalence
between (G) and (3.48) imply that problem (3.48) is solvable and that each function 3° ¢ fp(7p)
is closed and convex over (R™)¢. Next, we show that condition (a) (resp. (b)) implies condition (a)
(resp. (b)) of Theorem 2.1.

(a) We first see that Assumption 3.3 implies that each B! ® I,, has full column rank. Since
the identity matrix I, has always full rank, we just need to show that BcT has full column-
rank. If, on the other hand, we prove that B.B/ has full rank, then the result follows,
because rank(B.B/J) = rank(B,). As mentioned before, B.B/ is a diagonal matrix, where
the diagonal contains the degrees of the nodes belonging to the subnetwork composed by the
nodes in C.. Since no node has degree 0 (cf. Assumption 3.3), B.B/! has full rank. We thus
have shown that, independently of the coloring scheme, each matrix BcT ® I, has full column
rank. Therefore, when the coloring scheme uses two colors, both requirements of point (a) in

Theorem 2.1 are satisfied.

(b) When each function f, is strongly convex with modulus p, and p satisfies (3.55), then
each 37 cc. fp is strongly convex with modulus > ,cc. pp [31, Lem. 2.1.4] and conditions (2.27)

and (3.55) are equivalent. To see this last point, just note that

Umax(Ac)2 = )\max(AIAc) = )\max(BcB;r ® In) = )\max(BcB;r) = Héaéx DP?
peCe
since, as we had seen before, each B.B, is a diagonal matrix with the degrees of the nodes

with color ¢ in the diagonal.

O

As stated before, it is believed that multi-block ADMM converges under condition (a) of The-
orem 2.1 when C' > 2. This requires that each B! ® I, has full column rank, which we just
proved in part (a) of the proof above. Translated to Algorithm 3, this belief means that algorithm
converges for generic (non-bipartite) networks when f;, is not necessarily strongly convex, i.e., that
Theorem 3.6 holds even when neither condition (a) nor condition (b) are satisfied. Our simulations
of Algorithm 3 provide some experimental evidence strengthening that belief, as we will soon see.

Note that the structure of Algorithms 1 and 2, which are based on the 2-block ADMM, is similar
to the structure of Algorithm 3: in all of them, a parameter p has to be chosen, and each node
performs the same kind of computations, i.e., compute an average of the estimates of the neighbors

and compute the prox of its private function. While in Algorithms 1 and 2 all the nodes perform
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TABLE 3.1: Network models.

Name Parameters Description
Erdés-Rényi [200] p Every pair of nodes (i, ) € £ is connected or not with probability p
Watts-Strogatz [201] (n,p) First, it creates a lattice where every node is connected to n nodes; then, it rewires

every link with probability p. Rewiring link (%, j) means removing the link, and
connecting node 4 or node j (chosen with equal probability) to another node in
the network, chosen uniformly.

Barabasi-Albert [202] —_— It starts with one node. At each step, one node is added to the network by
connecting it to 2 existing nodes: the probability to connect it to node p is
proportional to Dy.

Geometric [203] d It drops P points, corresponding to the nodes of the network, randomly in a
[0, 1]2 square; then, it connects nodes whose (Euclidean) distance is less than d.

Lattice —_— Creates a lattice of dimensions m X n; m and n are chosen to make the lattice as
square as possible.

all the tasks in parallel, the nodes in Algorithm 3 operate in a color-based way. Therefore, in envi-
ronments where parallel communication is allowed, one iteration of Algorithm 3 takes longer than
one iteration of Algorithms 1 and 2. In environments where parallel communication is impossible,
e.g., in wireless networks, Algorithms 1 and 2 have to implement a MAC protocol and, for example,
operate in the same color-based way as Algorithm 3. In either case, simulation shows that Algo-
rithm 3 takes systematically less iterations to converge than Algorithms 1 and 2, for several different
problems and several different networks. This means that it is more communication-efficient than

the other algorithms, and hence more attractive in scenarios where the nodes are battery-operated.

3.4 Experimental results

In this section, we provide some experimental results that compare the performance of the proposed
algorithm with prior distributed optimization algorithms. The performance of all the algorithms

will be measured in terms of communication steps, defined next.

Communication steps. We say that a communication step (CS) has occurred whenever all the
nodes have transmitted to their neighbors a new solution estimate, usually computed by evaluating
a prox operator, as in step 5 of Algorithm 3. The number of CSs an algorithm uses to solve an
optimization problem is intrinsic to the algorithm and does not take into account factors like MAC
protocols, algorithm implementation, or computing platforms. Other performance measures, for
example execution time, may give different results if we change any of these factors. Besides, the
total number of communications can be easily obtained from the CSs by multiplying it by 2F, i.e.,
by twice the number of edges in the network. Note that Algorithm 1 takes two CSs per iteration,
while Algorithms 2 and 3 take only one.
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TABLE 3.2: Network parameters, average degree, and number of colors.

Number  Model Parameters Average degree (top), Number of colors (bottom)

Number of nodes P

10 50 100 200 500 700 1000 2000

1 Erdds-Rényi l.1llog(P)/P 3 6 5 6 12 14 18 8
3 5 5 5 7 8 9 6

2 Watts-Strogatz (4,0.4) 4 4 4 4 4 4 4 4
3 4 4 4 5 4 4 4

3 Barabasi-Albert — 3 4 4 4 4 4 4 4
3 3 3 4 4 4 4 4

4 Geometric (PP A 10 12 14 18 19 20 23
5 10 11 12 18 19 17 21

5 Lattice - 3 3 4 4 4 4 4 4
2 2 2 2 2 2 2 2

Networks. We generated several networks in our experiments, ranging from networks with 10
nodes to networks with 2000 nodes. The models we used to generate them are described in Table 3.1.
All models, except the lattice, are random, and yield networks with arbitrary topologies. Using
these models, we created 40 different networks, as shown in Table 3.2. For each one of the models
of Table 3.1, we generated 8 networks with different numbers of nodes, from P = 10 nodes, to
P = 2000 nodes. All the networks were generated in Python [204] with the NetworkX library [205].
The parameters we used to generate the Erdos-Rényi and the geometric networks are known to
generate connected networks with high probability. To color the networks, we used a built-in
function in Sage [206]. The number of colors of each network and the average node degree are
shown in Table 3.2. For example, the network with the largest average degree was the geometric
network with 2000 nodes; the same network had the largest number of colors, 21. Note that all
the lattice networks were colored with two colors, indicating that they are, in fact, bipartite. Note
also that these are the only networks for which Algorithm 3 is proven to converge when the cost

functions at each node are not strongly convex (cf. Theorem 3.6).

Choosing p. Almost all the algorithms we compare are based on augmented Lagrangian
duality and, thus, are parametrized by a parameter p. We are unaware of any method that selects
a good p before executing the algorithm; as discussed in Chapter 2, the existing heuristics for
adapting p during the execution of the algorithm cannot be implemented in a distributed setting.
Therefore, for each algorithm that depends on p, we execute the algorithm several times, one for a
different value of p, and select the one that leads to the best performance. In our experiments, we
used two strategies for selecting p. The simplest one just selects p out of a set of values, typically
{1074,1073,1072,1071,1,10,10?}. In the second strategy, for a given algorithm, we present the

chosen value of p and give the precision value. We say that p was chosen with precision £ > 0 for
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a given algorithm whenever both p = p — & and p = p + £ lead to more CSs than p = p. This
definition is motivated by the fact that the number of CSs in augmented Lagrangian algorithms
seems to vary with p in a convex way.

Next, we present the results of our experiments for each of the applications of Section 3.2. The
simplest of these applications is average consensus and, for this reason, we study average consensus

in more detail.

3.4.1 Average consensus

We designed two sets of experiments for the average consensus problem. In one of them, we fix
the network and run several distributed algorithms, comparing how the error evolves along the
iterations (or better, along the CSs). In the other set of experiments, we observe only the total
number of CSs that each algorithm takes to achieve a predefined relative error. While the first set
of experiments is run on a single network and for many algorithms, the second set of experiments
is run for all the networks of Table 3.2 and only for the most competitive algorithms. Next, we
describe the how the experiments were designed, then we state which algorithms we compare, and
finally we describe the results for both sets of experiments.

Experimental setup. In consensus, each node p holds a scalar 6, and the goal is to compute
the average of all the 6,’s. We generated each 6, independently from each other as a realization of
a Gaussian distribution with mean 10 and standard deviation 100. Such a large standard deviation
was chosen to ensure all the 6,’s differed significantly. We generated 8 sets of these numbers, each
set for a network with a fixed number of nodes. This means that one set of 6,’s is used across
networks with the same number of nodes, that is, the same set is used, for example, for a geometric
network with 200 nodes and for a Barabasi-Albert network with 200 nodes.

In all the algorithms we compare, each node requires an initialization of its solution estimate.
In all our experiments, the estimate of node p is initialized with 6,. We only do this special
initialization for the average consensus problem; the reason is to make a fair comparison between
algorithms that were designed specifically for consensus and that require this exact initialization,
and between general-purpose algorithms, which do not require any special initialization. This
contrasts with the results in Figure 1.5, in Chapter 1, where some algorithms were initialized this
way and others, including the algorithm we propose, were initialized with zeros. While those results
are merely illustrative, they are not as fair as the ones we present next.

Algorithms for comparison. In our experiments, we compare the performance of Algo-
rithm 3 not only with other algorithms solving the problem class (G), but also with algorithms
that were designed only for average consensus and that cannot solve any other problem in that

class. Namely, the algorithms in [10] and [11] are consensus algorithms and cannot be generalized
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Fi1GURE 3.3: Comparison of several algorithms for the average consensus problem in a geometric network
with P = 2000 nodes. The plot shows the relative error versus the number of CSs.

(at least, straightforwardly) to solve other problems written as (G). The algorithm in [11] is ac-
tually considered the fastest consensus algorithm, among the synchronous and the asynchronous
ones [9]. Since each iteration takes one CS, it is also the most communication-efficient algorithm for
consensus. We will see next that the algorithm we propose, when applied to consensus, performs
as well as [11], and sometimes better. Note that our algorithm is general-purpose, in contrast

with [11], which is specific to consensus.

Regarding general-purpose algorithms, we consider distributed algorithms based on the 2-block
ADMM, namely, [25] (written as Algorithm 1), [26] (written as Algorithm 2), and [127]. All these
algorithms (and also ours) require computing the prox operator of the function f, = (1/2)(x—6,)>.
This can be done in closed-form: prox,g (n) = (76, +n)/(1 + 7); see (2.34) for the definition
of the prox operator. The algorithm in [127] is slightly different from the other ADMM-based
algorithms since, instead of just one tuning parameter, it has two: the augmented Lagrangian p
and a stepsize 8. In our experiments, we set always § = 0.9y, just like the authors of [127] did in
their experiments. We also consider the (sub)gradient-based method [101], which also solves the
class (G). (Actually, the algorithm in [101] solves only unconstrained problems; to solve problems
with constraints one has to consider the generalization in [207].) We implemented the algorithm
in [101] with uniform weights, i.e., each node averages equally the estimates of its neighbors, and

with stepsize 1/(k + 1).

Results. The performance of all the above algorithms is compared on the geometric network
with P = 2000 nodes, from Table 3.2. This is shown in Figure 3.3 and constitutes our first set
of experiments. The plot in the figure shows the evolution of the relative error as a function of

the CSs. The relative error is measured as ||z% — 6*1p|/(V/P|6*|), where 2F = (2F,... 2k), ah s
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(c) Network 3: Barabasi-Albert
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FIGURE 3.4: Results for the average consensus problem for all the networks of Table 3.1. The plots, or-
ganized by network type, compare Algorithm 3 with algorithms [26] (see Algorithm 2), [127],
[10, 11]. The algorithm [127] does not appear in (e), because it always achieved the maximum
number of iterations, except for the first network. Note that [10, 11] were designed specifically
for consensus and cannot solve any other problem in the class (G).
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the solution estimate of node p at iteration k, and 6* = (1/P) 25:1 6, is the problem’s solution.
The augmented Lagrangian parameter p was 1.1 for Algorithm 3, 0.5 for [26], 0.6 for [25], and 0.4
for [127], and was computed with precision 0.1 for all the algorithms. In Figure 3.3, Algorithm 3
was the algorithm whose error decreased the fastest; in fact, it required uniformly less CSs than
all the other algorithms to achieve any relative error between 10~ and 10~%. The algorithms with
the second and third best performances were, respectively, the consensus algorithm [11] and the
ADMM-based algorithm [127]. Next, the ADMM-based algorithms [25] and [26] had a very similar
performance, requiring about 200 communication steps to achieve a relative error of 10~%. Both
the consensus algorithm [10] and the general-purpose algorithm [101] did not converge, i.e., achieve
a 10~* relative error in less than 250 CSs.

In our second set of experiments, shown in Figure 3.4, we discarded algorithms [101] and [25],
since they exhibited performances inferior to the other algorithms. There are 5 plots in Figure 3.4,
one per network type, i.e., row of Table 3.2. In contrast with the plot of Figure 3.3, the plots of
Figure 3.4 show the number of CSs to achieve a relative error of 10™* as a function of the network
size. For example, in the Watts-Strogatz network with 200 nodes (Figure 3.4(b)), algorithm [127]
took 302 CSs to converge, while [10] took 116, [26] took 73, Algorithm 3 took 52, and [11] took 37.
The type of networks for which Algorithm 3 performed worst was, in fact, Watts-Strogatz type
(Figure 3.4(b)) and Erdés-Rényi type (Figure 3.4(a)). For the remaining networks, Algorithm 3 was
always among the best. For example, in Barabasi-Albert network types (Figure 3.4(c)), Algorithm 3
was always the algorithm requiring the least amount of CSs to converge. From theses experiments,
we can conclude that Algorithm 3, a general-purpose distributed algorithm, ranks among the most

communication-efficient algorithms for solving the average consensus problem.

3.4.2 Row partition: BP and BPDN

We now discuss our experiments on other application problems. In this subsection, we consider
compressed sensing problems with a row partition (see Figure 3.1), namely, basis pursuit (BP)
and basis pursuit denoising (BPDN). These problems, as well as their reformulation as (G), are
discussed in Subsection 3.2.2. Next, we mention the experimental setup and how we implemented
the computation of the prox operators. Then, we discuss the experimental results.
Experimental setup. In our experiments, we used all the networks with 50 nodes, i.e., all the
networks in the second column of Table 3.2. The exact solution of BP (resp. BPDN) was computed
in a centralized way with the Matlab toolbox spgll [208] (resp. GPSR [209]). Knowing the solutions
of these problems, we were able to assess the relative error of each algorithm along its iterations.

Let z* denote the solution of either BP or BPDN. The relative error is measured as ||z* —z*|| /||* ||,

k

where " is the estimate of an arbitrary node in the network. The algorithms stopped whenever
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they reached a relative error of 107%, or a maximum number of CSs. The maximum number of
CSs was 1000 for BP and 2000 for BPDN. All the algorithms we compare are based on ADMM
and, thus, have a tuning parameter p. In these experiments, p was always chosen as the best value
from the set {1074,1073,1072,1071,1,10,10?}. Regarding the data, i.e., the matrix A € R™*"
and the vector b € R™, we used two different types of data, one for BP and other for BPDN. For
BP, A had dimensions 500 x 2000 and each entry was generated randomly and independently from
a Gaussian distribution with 0 mean and standard deviation 1/1/500 ~ 0.045; since there were 50
nodes, each node stored a matrix of size 10 x 2000. The vector b was generated from a sparse linear
combination of the columns of A. For BPDN, we used a matrix from problem 902 of the Sparco
toolbox [210]. That matrix has dimensions 200 x 1000 and, thus, each node stored a matrix of size
4 x 1000. The vector b was generated from a sparse linear combination of the columns of A, to

which we added Gaussian noise. The noise parameter 5 in BPDN (see (3.5)) was set to 0.3.

Computation of the prox operator. In ADMM-based algorithms, at each iteration, each
node has to compute the prox operator of its function. In the case of BP, the function at node p
is given by fy(x) = (1/P)[|z[]1 + i e=p, (), as shown in (3.8). Computing the prox of f,, in this
case, is equivalent to finding the minimizer of:

minimize 2|1 +v 'z +c|z|]?

(3.56)
subject to Az =10,

for some vector v € R™ and some scalar ¢ > 0. To simplify, we dropped the subscripts from the
matrix A and the vector b. Since the objective of (3.56) is strictly convex, we can find a primal

solution by solving its dual problem:
maxi)\mize bTA+ 0, infy, (|x2| +ui(N)z; + cazf) , (3.57)

where u(\) = v — AT X\. We solve (3.57) with the algorithm in [211], which is based on the Barzilai-
Borwein method. In our implementation, we used warm-starts, that is, at each iteration and for
a given node, the algorithm is initialized with the solution that the node found in the previous
iteration.

Regarding BPDN, the function at node p is given by f,(x) = (1/2)||4px — by||* + (8/P)||z]1,
as shown in (3.9). Computing the prox of function f,, in this case, is actually equivalent to finding

a minimizer of a function with the same format as f,. An efficient method for doing that is
GPSR [209], namely GPSR-BB, which uses the Barzilai-Borwein stepsize.

Results. The results for BP and BPDN are shown in Figures 3.5(a) and 3.5(b), respectively. In
Figure 3.5(a), we compare Algorithm 3 against the ADMM-based methods [25] and [26] (written,
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FIGURE 3.5: Results of the simulations for (a) BP, (b) reversed lasso, (¢) BPDN, and (d) SVM. The simu-
lations were run on all the networks with 50 nodes.

as Algorithms 1 and 2, respectively). The behavior of the algorithms in this figure is very uniform:
in all the networks, Algorithm 3 was the one requiring the least amount of CSs to converge, i.e.,
to achieve a relative error of 107, the algorithm in [25] was always the one requiring the largest
amount of CSs, and the algorithm in [26] was always in between.

The exact same behavior can be observed in Figure 3.5(b) for the BPDN, although the lines,
and thus their performance, are closer together. The figure also shows the performance of [124,
Alg.3], which is an ADMM-based method specifically designed to solve BPDN. That algorithm has
the advantage of requiring simpler computations at each node but, as seen in the figure, at the cost
of spending more CSs to converge. In fact, that algorithm achieved the maximum number of CSs,

i.e., it failed to converge, in all but the last two networks.

3.4.3 Column partition: reversed lasso

In this subsection we give an example of a compressed sensing problem with a column partition.
In particular, we consider the reversed lasso (3.6), which we showed how to recast as (G) in
Subsection 3.2.2. As in the previous subsections, we first describe the experimental setup, then
how we computed the prox operator at each node and, finally, we present the experimental results.

Experimental setup. The set of networks is the same as in the experiments for BP and
BPDN, i.e., all the networks with 50 nodes. To compute the problem’s solution x* beforehand, we
used the Matlab toolbox spgll [208]. We ran the algorithms either until they reached a maximum
number of 1000 CSs or until they reached a relative error of 5 x 1073. The relative error has the
same expression as before, ||z* — z*|/||z*||, but now 2* is the concatenation of all the nodes’s

estimates, i.e., zF = (x’f, w'zf, .. ,a;']%); recall that in the column partition, the variable is partitioned
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into blocks and each block is estimated by a single node. Recall also that, in order to recast the
reversed lasso as (G), we compute the dual of a regularized version of the problem; see (3.33). The
regularization parameter § was set to 10~2 and the noise tolerance o to 0.1. Again, the parameter p
was selected from the set {107*,1073,1072,107%,1,10,10%}. The problem data is the same as in
BPDN, i.e., the matrix A was taken from problem 902 of the Sparco toolbox [210]. This means
that A had dimensions 200 x 1000 and, given the column partition, each node stored a matrix of
size 200 x 20.

Computation of the prox operator. In Subsection 3.2.2 we manipulated the reversed lasso
in order to recast it as (G). More specifically, the dual problem of a regularized version of reversed

lasso can be written as (3.37), where the function at node p is
*( AT g LT

and h is the convex conjugate of hy(x,) = [[p[l1 + (6/2)]|2[|>. Tt can be shown that computing

the prox of f}, is equivalent to finding the minimizer of the optimization problem:
mini}\mize RE(ASN) + S = 0T A+ 0T A+l A7, (3.58)

for some vector v € R™ and some scalar ¢ € R. Introducing an epigraph variable ¢, (3.58) becomes

equivalent to
minimize  hX5(AJN) 4+ St — S5bT A+ 0T A+ ]| A2
At PP pooF (3.59)
subject to  ||A\|| < ¢t.

Since hy, is strongly convex, its conjugate hy; is differentiable and its gradient is Lipschitz-continuous.

In fact, the entire objective function of (3.59) is differentiable and its gradient is Lipschitz-continuous

with constant o2

tax (Ap) /0 +2¢, where omax(A,) is the largest singular value of A,. Moreover, given

an arbitrary point (A, t), its projection onto the Lorenz cone {(\,t) : ||A|| < t} is given in closed-
form by [57, A.2.7]

(A1) Lif £ > || A
(0,0) Jif £ < =M

\ .
Hy%ﬁg),ﬂ—WN<t<WW

Therefore, (3.58) can be solved with projected gradient methods. We solve it with Nesterov’s
projected gradient method (2.10), also known as FISTA [58], whose convergence rate is O(1/k?).

Results. The results of the reversed lasso experiments are shown in Figure 3.5(c). There,
Algorithm 3 is compared against the algorithms in [25] and in [26]. They exhibit the same behavior
we had observed in Figures 3.5(a) and 3.5(b): Algorithm 3 required uniformly less CSs to converge.



3.4. Experimental results 71

Also, [26] required uniformly less CSs than [25] to converge.

3.4.4 SVM

Finally, we present our experimental results for training an SVM (3.2). Among all experiments
that we performed, the ones for SVM required the largest number of CSs to converge, as can be
seen by comparing all the plots in Figure 3.5. The results for the SVM experiments are shown
in Figure 3.5(d). But before we analyze them, we describe the experimental setup and how we
computed the respective prox operator.

Experimental setup. As in the other plots in the same figure, the experiments for the SVM
problem (3.2) were executed on the networks with 50 nodes. Since problem (3.2) can be recast as a
quadratic program, we obtained the problem’s solution beforehand using the quadprog function of
the Matlab optimization toolbox [212]. The algorithms ran until they achieved a maximum number
of 10* CSs, or a relative error of 1073, The relative error in this case was measured exactly as in
the compressed sensing problems with a row partition: ||2* — z*||/||z*||, where z* is the estimate
at an arbitrary node. And the augmented Lagrangian parameter p was selected exactly as in the
previous experiments. Regarding the problem data, i.e., the sets of datapoints (z, yx) in (3.2), we
used data from [213], namely two overlapping sets of datapoints from the Iris dataset. In total,
there were m = 100 points of size n = 4, which means that each node stored 2 datapoints. The
parameter [ in (3.2) was set to 1 in all the experiments.

Computation of the prox operator. We showed in Subsection 3.2.2 that in the SVM
problem the function at each node is given by (3.3). It can be easily seen that computing the
prox operator of (3.3) is equivalent to finding a minimizer of a quadratic program with inequality
constraints. This problem has no closed-form solution, but it can be solved with standard quadratic
program solvers, such as Matlab’s quadprog function. We used this function in our implementation.

Results. As mentioned, the results of the experiments for SVM are shown in Figure 3.5(d).
In this case, the algorithm in [25] achieved always the maximum number of CSs and, thus, is not
represented in the plot. Both Algorithm 3 and the algorithm in [26] required always more than
1000 CSs to converge for all the networks. Again, Algorithm 3 required the least number of CSs
to converge, never achieving the maximum number of 10* CSs. In contrast, the algorithm in [26]

achieved the maximum number of CSs in all but the first two networks.
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Chapter 4

Connected and Non-Connected

Classes

In this chapter, we solve problem (P) with a generic variable, following ideas similar to the ones
presented in the previous chapter for the global class. We first address the case of a connected
variable, which is simpler, and then we see how to handle a non-connected variable. This chapter
is based on the publications [214, 215, 216] and is organized as follows: in Section 4.1, we formally
state the problem and outline our assumptions; then, in Section 4.2, we describe some application
problems that can be written as (P) with a non-global variable. These include distributed model
predictive control (D-MPC), network flow problems, and the reversed lasso with a row partition.
In particular, we propose a new framework for D-MPC that considerably extends the modeling
capability of the standard D-MPC; this, for example, will allow us to model scenarios where systems
coupled through their dynamics do not necessarily communicate directly. Next, in Section 4.3, we
derive our algorithm, first for a connected variable, and then for a non-connected variable. This
will give us the most general algorithm in this thesis. Finally, in Section 4.4, we show how the
performance of the proposed algorithm compares with prior algorithms for some of the problems

introduced in Section 4.2.

4.1 Problem statement

As in the global class, here we also minimize the sum of P functions, where each function is known
at one node only. However, each function here, rather than depending on all the components of the

variable x € R", depends only on the ones indexed by the set S, C {1,...,n}. That is, we solve

minimize f1(vs,) + falwsy) + -+ + fr(zs,). (P)

73
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We make the following assumptions:

Assumption 4.1. Each function f, : R™ — R U {+o0} is closed and convex over R™ and not

identically +o0.
Assumption 4.2. Problem (G) is solvable, i.e., it has at least one solution z* € R™.

Assumptions 4.1 and (4.2) are essentially the same we made for the global class. The only
difference is that now each function f, is defined over R"», where n, = |S,|, and not over the entire
domain of the variable x, R™. Note that the sum of the dimensions of the domains of each function,
i.e., n1 + .-+ np, is always less than or equal to the corresponding sum in the case of a global
variable, which is nP. In other words, ny + --- +np < nP. The following assumption makes the
problem well-formulated by guaranteeing that, for each component x;, there is always one node p

that depends on zy, i.e., [ € Sp:
Assumption 4.3. There holds Ullf:lS ={1,2,...,n}.

This assumption was not required for the global class, because all functions there depended on
all the components of the variable. Regarding the network, we make exactly the same assumptions

we made for the global class:
Assumption 4.4. The network is connected and does not vary with time.

Assumption 4.5. A coloring scheme C of the network is available; each node knows its own color

and the color of its neighbors.

The comments we made in Section 3.1 about these assumptions also apply here. Next, we
describe some application problems that can be written as (P) with a non-global variable and

under Assumptions 4.1-4.5.

4.2 Applications

There are many problems in signal processing, control engineering, and machine learning that can
be written as (P). In the previous chapter, we described some that require a global variable.
In this section, we focus on problems that require a variable that is non-global, for example, a
star-shaped or a mixed variable. We start with distributed model predictive control (D-MPC),
which appears in the literature as an instance of (P) with a star-shaped variable. One of the
contributions of this thesis is a new framework for D-MPC that uses generic connected, and even
non-connected, variables. This new framework allows modeling D-MPC scenarios where systems

that are coupled through their dynamics need not to communicate directly. The second application
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we will see is the distributed compressed sensing problem reversed lasso with a row partition, which
we formulate as (P) with a mixed variable. Then, we describe three applications that have been
solved with distributed algorithms: network flow problems (star-shaped variable), network utility
maximization (NUM) (star-shaped and mixed variable), and state estimation in power networks
(star-shaped variable). The last application, state estimation in power networks, is described in [47],
which also proposes an ADMM-based algorithm to solve it. This is the only algorithm we found
in the literature that can be easily generalized to solve (P) for all types of variables. At the end of

this section, we will describe the algorithm in [47] for a generic connected variable.

4.2.1 Distributed model predictive control

This subsection describes model predictive control (MPC), first from a centralized perspective, and
then from a distributed one.

Centralized MPC. As mentioned in Chapter 2, model predictive control (MPC) is a popular
strategy for controlling discrete-time systems. In MPC, a system is described at each time instant ¢
by its state-space vector z[t] € R™, whose value at time ¢+ 1 is determined by the state and control
input at time ¢t. Mathematically, z[t + 1] = ©(z[t], u[t]), where u[t] € R™ denotes the control input
applied to the system at time ¢ and ©! : R” x R™ — R" is an arbitrary, time-variant map modeling
the system. Being a control strategy, the goal of MPC is to take the state vector of the system
from an initial point z[0] to some predefined “goal state” To be more concrete, let ® : R" — R
be a function that penalizes deviations from the goal state or, in other words, ®(z) increases with
the distance of = to the goal state. Almost always, there are several possible paths from z[0] to
the goal state and, typically, these paths have different energy consumptions, for example, the
energy spent on the input signals u[0], u[1],.... We model energy consumption at time ¢ with the
function U'(z[t],u[t]). Therefore, we want to choose the path from z[0] to the goal state that
uses the minimum amount of energy; this is actually the problem solved by MPC. However, in
MPC, we make the key assumption that the system can measure its state at each time instant.
This capability is used to mitigate model inaccuracies and disturbances to the system. It works
as follows: instead of solving the problem at once, time is divided into slots of 7" units, where T’
is called the time-horizon. At each time-instant, the time variable ¢ is set to zero and the state is
measured, say, z[0] = 2%, where 2° is the known measurement. Then, the following optimization
problem is solved for a time-horizon T

minimize O(2[T]) + 355" Ul (x[t], ult])
subject to z[t + 1] = O%(x[t],u[t]), t=0,...,T —1 (4.1)

z[0] = 20,
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(a) Connected star-shaped variable (b) Non-connected variable

FI1GURE 4.1: Two D-MPC scenarios. Solid lines represent links in the communication network and dot-
ted arrows represent system interactions. The optimization variable is star-shaped (and thus
connected) in (a) and is non-connected in (b), because node 2 influences node 5 but not any
neighbor of that node.

where (z,1%) = ({z[t]}}o, {u[t]}]=") is the optimization variable and represents the set of states
(resp. inputs) from time ¢ = 0 to time T" (resp. T'— 1). In the objective of (4.1), there is a tradeoff
between achieving the goal state at time 7', expressed by the term ®(z[T]), and minimizing the
path energy, expressed by the term 7' Wt (x[t], u[t]). While the first constraint in (4.1) enforces
the state to satisfy the system dynamics, the second constraint encodes the measurement z°. After
solving problem (4.1), the first input u[0] is applied to the system, the time ¢ is again set to zero,
and the process is repeated. This means that, at each time instant, only the first input is used, even
though a set of inputs and states are computed for the entire horizon from t =0 to t = T. MPC
thus provides a conservative strategy to deal with model inaccuracies and system disturbances,
which perhaps explains its effectiveness and, consequently, its popularity.

D-MPC. We now turn to distributed scenarios and focus on solving one instance of (4.1), i.e.,
for a fixed MPC iteration. Suppose that, instead of a single system, we now have a network of
systems, where each system is described by its own state vector and has a local control input. Let
zp[t] € R™ denote the state of system p at time ¢, and u,[t] € R™» denote its local input also at
time ¢; we have n1 4+ --- +np =n and my + --- + mp = m. Each system is viewed as a node of a
communication network G = (V, ), whose edges determine which systems communicate directly.

We assume that the state of system p evolves as

wplt +1] = O, ({z; 1], u; [t]}jeq,) (4.2)

where €2, C V is the set of nodes whose state and/or input influences x, (we assume each node p

influences itself, i.e., {p} C Q). In (4.2), we used the following notation: given a finite set =
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{wy,wa,...,wr} and a vector z,, indexed by a parameter w € 2, the symbol {z,},cq denotes the
L-tuple (zu,, 2wy, - - - » 2w, ). Many times, when € is represented as Q = {w : A(w) holds}, we will
represent {z, fweq SiMply as {2, } 4(w) holds- In contrast with what is usually assumed, €, in (4.2)
is not necessarily a subset of the neighbors of node p. This means that two systems that influence
each other through their dynamics may be unable to communicate directly. This is illustrated
in Figure 4.1(b) where, for example, the state/input of node 3 influences the state of node 1
(dotted arrow), but there is no communication link (solid line) between them. Finally, we assume
functions ® and ¥! in (4.1) can be decomposed, respectively, as ®(z[T]) = 5:1 @, ({z;[T}jeq,)
and Wt(z[t],ult]) = 1];1 ! ({x;t], uj[t]}jeq,), where ®, and Wl are both associated to node p.
This means that non-communicating systems can have coupled goals or energy measures. Hence,

in our distributed setting, the MPC problem (4.1) becomes

minimize 32,71 | @p({2;[T]}jeq,) + Xisg Up({z;t], us(t]}jen,)

subject to z,[t + 1] = O ({z;[t], u;[t]}je,), t=0,...,7—1, p=1,...,P

xp[O]::ES, p=1,...,P,

(4.3)

0
p

({@p}iy, {up}l_y), where &, := {x, [t} and 4y, == {u,|t] T} represent, respectively, the collec-

where z) is the initial measurement at node p. The optimization variable in this case is (z,u) =
tion of all the states and inputs of node p for the time-horizon 7. Problem (4.3) can be written

as (P) by making

fo(12), 85} s, ) = @p ({2571} se0, ) + e, o=s) (E)

-1
+> (\I/;({xj[t],uj[t]}jeﬂp) + irg({fﬁ@j}jeﬂp)) ,
i=0

where ir¢ is the indicator function of the set It .= {{ij, Uj}jeq, : Tp[t+1] = OL ({z;[t], u;[t]}jecq,) }

Figure 4.1(a) illustrates the standard D-MPC scenario, where each system p is influenced only
by itself and by its neighbors, i.e., Q, € N, U {p}. According to the terminology introduced in
Chapter 1, each component (Z,,u,) of the variable is star-shaped and thus the entire variable
(z,u) is also star-shaped. Several instances of this particular case of (4.3) have been addressed, for
example, by [145, 19, 146, 147], who propose heuristics that are not guaranteed to solve exactly (4.3),
and by [144, 150, 151, 46, 152], who propose algorithms based on distributed optimization methods

and thus, in principle, are guaranteed to solve (4.3).

The model we propose here is significantly more general, since it can handle scenarios where

interacting nodes do not necessarily need to communicate, or even scenarios with a non-connected



78 4. Connected and Non-Connected Classes

FIGURE 4.2: Example of a geometrical pattern used in formation for minimizing the effect of drag forces or
for escorting a moving object. Solid lines indicate direct communication, while dashed lines
indicate dynamic coupling, but not necessarily direct communication.

variable. Both cases are shown in Figure 4.1(b). For example, the subgraph induced by (Z3,u3)
consists of the nodes {1,2,3,4} and is connected. (The reference for connectivity is always the
communication network which, in the plots, is represented by solid lines.) Nodes 1 and 3, however,
cannot communicate directly. This is an example of an induced subgraph that is not a star. On the
other hand, the subgraph induced by (Z2, u2) consists of the nodes {1,2,3,5}. This subgraph is not
connected, which implies that the optimization variable is non-connected. A connected variable
with induced subgraphs that are not stars, or even a non-connected variable, can be useful to model
scenarios where communications links are expensive, hard to establish, or simply do not exist. We

describe two such applications below.

Applications of our D-MPC model. Although D-MPC has been applied to solve many
applications, we present here two applications where the scenario of Figure 4.1(b) might arise
naturally, i.e., the variable is either non-connected, or is connected but not star-shaped. The first

application is flight formation and the other is temperature regulation of buildings.

Figure 4.2 shows the setup of flight formation: there is a group of autonomous agents, such
as unmanned airplanes, submarines, or robots, whose goal is to form a geometrical pattern while
performing some task. This task could be simply flying and, at the same time, trying to minimize
the effect of drag forces to reduce fuel consumption; or, for example, to escort a moving object,
which might block some communications between the agents. We assume there is a communication
network through which the agents communicate. In Figure 4.2, the links of this communication
network are represented by the solid lines. Also, some agents influence the behavior of other agents
with which they do not communicate directly; this is represented by the dashed lines in Figure 4.2.
Flight formation is a widely studied topic and we refer to [217] for references and related work.

In this problem, we extend the optimization model used in [217] to the MPC framework (4.1).
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Namely, we write the dynamics of the pth agent as (4.2), where the relative position between two
agents affects their dynamics due, for example, to drag forces. Regarding the objective, while \I/Z
models fuel consumption at time ¢, ®, models the geometrical pattern to be formed. Note that,
in principle, @1’; and \I/é depend only on the state/input of agent p and of its closest agents (i.e.,
its neighbors in the communication network); in ®, we can, in addition, include dependencies on
agents that are not within communication reach. For example, suppose we specify agent 6 in
Figure 4.2 to have a relative distance of d46 and dgr from its closest neighbors, agents 4 and 7,
and also a relative distance of dgg from agent 8, for symmetry reasons. Note that agents 6 and 8
do not communicate directly. In this case, Q¢ = {4,6,7,8}, and ®g would have a format similar
to ®g(xy, x6, v7,28) = %Hm —x6—046]|% + % |26 — 27 — 67> + %Hwﬁ — x5 — d6s||?, where z;, represents
the position of agent p; note that we dropped the time index 1" for notational simplicity. A similar
reasoning can be applied to the remaining agents of Figure 4.2, where relative distances are specified

for each edge (represented either with continuous or dashed lines).

We now describe another application of D-MPC where the variable can be connected, not nec-
essarily star-shaped, or even non-connected. The application is temperature regulation of buildings
and is described in the context of D-MPC in [218]. The algorithm proposed in [218], however, is
heuristic and, thus, not guaranteed to solve the original problem. The motivation for using MPC
in the control of room temperature stems from its ability to integrate in its model the prediction of
future events, in this case, room occupation profiles. This feature is necessary in the regulation of
room temperature, because temperature varies very slowly. If it did not, a simple PID controller
would be enough. The work in [218] models room temperature, viewing it as a state =, which varies
linearly with the heating power applied to the room, u. According to our notation in (4.1), the
function @ is identically zero, and W!(z[t],u[t]) = Bult] +§ [t”az[t] - r[t”, where r[t] is the reference
temperature for the room at time ¢, and 0[t] = 1 if the room is predicted to be occupied at time ¢
and d[t] = 0 otherwise. The parameter 8 > 0 sets the tradeoff between energy consumption and
comfort. The power u[t] is constrained to an interval: 0 < u[t] < upmax. This is the model for one
room. However, [218] also models buildings, where the rooms are thermally coupled. The model it
proposes can be written as (4.3), where the sets {2,’s model coupling between adjacent rooms. Yet,
it is assumed that adjacent rooms can communicate or, in other words, that interactions through
coupling coincide with interactions through communication. If the communication technology is
wired, it might be expensive to connect all the adjacent rooms with cables; if it is wireless, large
concrete walls might prevent adjacent rooms from communicating directly. This is clearly an ex-
ample where our proposed D-MPC model (4.3) could be useful, as the problem variable might have

induced subgraphs that are not stars and might even be non-connected.
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4.2.2 Reversed lasso with a row partition

We saw in Chapter 3 how to recast several compressed sensing problems as (G), that is, as (P)
with a global variable. The only problem for which we were not able to do so was the reversed
lasso (3.6) with a row partition. The goal of this subsection is to complete this missing part of the

puzzle, by recasting that problem as (P) with a mixed variable.

Recall that the reversed lasso (3.6) is the problem

minimize ||z
@ (4.4)
subject to ||[Az —b|| < o.

Since we will use duality, we want to make sure that the primal objective is strictly convex, so
that we can recover a primal solution after having solved the dual problem. We will make the
primal objective strictly convex by using the regularization (3.33) (page 53), which we used for the
same problem with a column partition. There, we showed that, for a small § > 0, (4.4) can be

approximated by

. . . 5 5
minimize ||z[1 + 5lz[* + g/l Az — b||? s
subject to ||Ax — b))% < o2,

where we squared both sides of the constraint. Consider now a row partition, as visualized in

Figure 3.1, and rewrite (4.5) as

.. P ) )
minimize 0 (llal + g ol + 14,0 - )

(4.6)
subject to 25:1 |Apz — byl|* < o2
This problem has the following format
minimize fi(z) + fa(x) + -+ fp(z) (47)
subject to  hi(z) + ho(z) + -+ hp(x) <7, '
with f,(z) = %zl + %H:EHQ + %HApx — bpl1?, hp(x) = ||Apz — by|%, and r = 02, We will now

see how to solve (4.7) in a network where each node p knows f,, hy, and r. We assume that each
function f, is strictly convex, as in (4.6). We start by cloning the variable x, rewriting (4.7) as
minimize  fi(21) + fa(z2) + - + fp(zp)
subject to  hy(xz1) + ho(ze) + -+ hp(zp) <7 (4.8)
Ty = Ty, (i7j)€€7
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Ao A1 | A3 As

0 =0 50 50
(a) Original network (b) Bipartite graph obtained from (a)

FIGURE 4.3: (a) Example network with 3 source nodes s1, s2, and s3, that use predetermined routes to send
packets to three recipient nodes 71, 73, and r3; (b) Bipartite graph obtained from (a): each
link from (a) with a capacity associated is represented as a circular node in (b).

where z,, is the copy of x held at node p. Let 1 be a dual variable associated to the first constraint
of (4.8) and \;; the dual variable associated to the constraint x; = x;, for (i,j) € £. The dual
problem of (4.8) is

minimize g1 (i, {\1j}jens) + 92(1 {25 }jenn) + - + gp (1, {Apj }jens)
1{Xij Y gee (4.9)

subject to u >0,

where, for each p,

(s Doidiens) = swp (3 sy ~ ) (Folap) + i () — 1)) (410)
JENp

We slightly abused notation in (4.9), since each \;; is only defined for i < j. We extended that
definition: \;; = —\;; when ¢ > j. We thus can see that (4.9) has the same format as (M) or, in
other words, it has a mixed variable. The dual variable pu is a global component, since it appears
in the function of all the nodes, and all the components of A = (..., A;j,...) are non-global. Since
we assume that each f, is strictly convex, the pth block of the primal variable of (4.7), i.e., x will
be available at the pth node as the solution of the optimization problem in (4.10), for 4 = p* and
{A\pjtien, = {Ay;}ien;, where the starred vectors solve the dual problem (4.9).

4.2.3 Network utility maximization

Network utility maximization (NUM) is usually used for modeling congestion control in networks.
The setup of congestion control is a network with some source nodes sending information, encoded
in packets, to other nodes of the network, called recipient nodes. Independently of the network,
its links have always finite capacity and, therefore, there is a limit on the rate of packets that

can be injected into the network without congesting it. The goal of congestion control is to avoid
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congesting the network; this is done by implementing a protocol between the source nodes and
the nodes through which they send their packets, called intermediate nodes. The communication
between these nodes can occur implicitly or explicitly. The algorithm we propose for solving (P)
will require an explicit communication between the source and the intermediate nodes.
Star-shaped variable model. Given a network, let S, R, and N represent the source nodes,
the recipient nodes, and the intermediate nodes, respectively. Figure 4.3(a) shows an example of
such network with 3 nodes of each kind, i.e., |S| = |R| = |N| = 3. The source nodes are the squares
on the left side, the recipient nodes are the squares on the right side, and the intermediate nodes
are the circles. We assume each source sends packets only to one recipient node. Also, the routes
through which each source sends its packets are predetermined (see the arrows in Figure 4.3(a)).
Fach link [ in the network has a finite capacity ¢; > 0, and the total number of links will be denoted
with L. In Figure 4.3(a), to simplify, we represent the capacity of only some links. Congestion

control can be modeled with a problem called network utility mazimization (NUM):

maximize Y. .. ¢ Ug(x
{(#e}ocs seS S( S) (4'11)
subject to Zses(l)xs <¢g, l=1,...,L,

where z; represents the sending rate of source s and Ug(z,) its utility, or “satisfaction.” The
constraints in (4.11) are simply the link capacity constraints: S(I) represents the set of sources
that use link [ and thus > ,cs) @5 represents the rate of packets flowing in link /, which has to
be smaller than the link capacity ¢;. The goal in (4.11) is to maximize the aggregate utilities of
the sources, while satisfying the link capacity constraints. It is generally assumed that each utility
is increasing and strictly concave. For example, TCP Vegas, FAST, and Scalable TCP have been
modeled as (4.11) with Us(xs) = wslog zs, for some ws > 0 [132, 134]. This makes the objective
of (4.11) strictly concave, and hence its dual problem can be solved instead:

pinimige Siep e+ s Us (Tiecio V)

subject to X\ >0, I=1,...,L,

(4.12)

where £(s) is the set of links source s uses to route its packets and Uy (t) := sup,,_(Us(zs) —tz,) has
always a unique solution x4(t), due to the strict concavity of Us. In the case of TCP Vegas, FAST,
and Scalable TCP, U,(t) = ws logw, — w,logt —ws, and x4(t) = ws/t. After a solution \* to (4.12)
has been found, the optimal value for the rate of source s can be found as z§ = 5(3cr(s) AT,
which is ws/ 3215 Al In the case of TCP Vegas, FAST, and Scalable TCP.

The “physical communications” occur in a network that has a format similar to the one repre-

sented in Figure 4.3(a). However, a congestion control protocol establishes direct communications
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between the source nodes and the intermediate nodes that manage the respective links. Therefore,
the communication network it considers is actually the one represented in Figure 4.3(b). This
network is constructed as follows: each link [, which we assume is unidirectional for the sake of
simplicity, has a node associated (in Figure 4.3(b), a circle node), and each source s has also a
node associated (in Figure 4.3(b), a square node); the recipient nodes are not considered in this
new network. If link [ is used in the route assigned to source s, the nodes representing link [ and
source s are connected to each other. Figure 4.3(b) shows the network obtained from Figure 4.3(a)
by considering only the links marked with capacities. The way this network is constructed makes
it automatically bipartite. In the model considered here, the intermediate node having link [ as
output manages )\;. For example, node ng in Figure 4.3 manages both Ao and A3. Note that
each communication occurring in the network of Figure 4.3(b) corresponds to an arbitrary number
of communications in the original network of Figure 4.3(a). Regarding problem (4.12), it can be

written as (P) with the function at node p given by

cpAp + g+ (Ap) if p is an intermediate node

fp()\b' .. a)\L) =

U, Crecm M) » if p is a source node ’

where ig+(-) is the indicator of the set of the nonnegative real numbers, and the variable is A\ =
(M,...,Ar). The variable in this case is star-shaped. The algorithm we propose for (P) can then be
used to inspire a new congestion control protocol. However, it has one disadvantage with respect to
gradient-based algorithms: while gradient-based algorithms can work with implicit communication,
due to their linearity, the algorithm we propose requires explicit communication between each each

source and all the intermediate nodes along its route.

Mixed variable model. The NUM problem was introduced as (4.11) to model congestion
control in networks. In (4.11), the utility function U, of source/node p depends only on its sending
rate zp, i.e., Up(z,). However, in cooperative or competitive scenarios it might be useful to consider
coupled objectives, e.g., Uy,({Z; }1es,), where S}, is the set of nodes whose rates influence the utility
of source p. Such model was considered in [33] (see also [52]). For example, in digital subscriber
line (DSL) spectrum management, or in wireless power control, the signal-to-interference ratio
at one user depends on the transmit powers of other users, making the scenario competitive. A
cooperative scenario would be rate allocation in clusters: the higher the rate allocated to one
cluster, the higher the rate allocated to each node inside that cluster. In particular, [33] considered

the following variation of (4.11):

mg%xm%;ze 25:1 Up({zi}ies,) (4.13)

subject to 25:1 ap(xp) < c,
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where each g, is a convex function and c is a globally known vector. We slightly changed the
notation with respect to (4.11): we now denote each source by p and the total number of sources
is P. In [33] it is also assumed that source p can communicate with all the sources that interfere
with its utility, and vice-versa. The work in [33] proposes a gradient-based algorithm that solves
a dual problem of (4.13). To arrive at that dual problem, we first perform a splitting (or cloning)

of x, among all the nodes whose utilities depend on x,:

m?gci}lg}ize >t Up({ﬂfz(p)}lesp)
Tisj=1

subject to Z§=1 gp(xz(,p)) <c (4.14)

o) =2 1esins;, (i,j) €€,
where xl(p ) is the copy of the variable x; held by node p, and £ is the set of edges in the communication
network. The variable in (4.14) is {z;} |, where 7; := {azl(p) tpev,, and Vj is the set of nodes whose
utilities depend on z;. Associating a dual variable p to the first constraint in (4.14) and /\ij to each

constraint of the second set of constraints, the dual problem of (4.14) is

minimize (s (07 )5e00) + halos D02 hjers) oo+ bl (3 hier), (419
Bl

where the function h,, is associated to source p and is given by

_ 1
hp (s AN }jen,) = Sl(l})) Up({a:l(p)}lesp) + MTQP(:E;EJP)) _ EMTC
P

+ 33 sign(G—p) (W) 2P +ige ().
JEN 1ESNS;

We used the notation \¥ = {/\fj hes;ns;- Note that to arrive at (4.15) we used the identity

X 0D @ =)= X sien(i—p) () 2
(i,j)Eg leSmSj p=1 jENp leSpﬂSj
and, with it, we extended the notation )\;j for i > j as /\fj = —/\{ ', The variable in (4.15) has the

global components j, appearing in all the functions h,, and non-global components {A;j }. Thus,

(4.15) is a particular instance of (P) with a mixed variable.
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FIGURE 4.4: Example of a network flow problem. Each edge has associated both a variable z;; and function
of that variable, ¢;;(x;;). The goal is to minimize the sum of all the functions, while satisfying
conservation of flow constraints.

4.2.4 Network flow problems

A network flow problem is formulated on a network with arcs A (or directed edges), where an
arc from node i to node j, i.e., (i,j) € A, indicates a flow in that direction. Figure 4.4 shows an
example which allows, for example, a flow from node 1 to node 6, but not from node 6 to node 1. To
quantify the flow in an arc (4, j) € A, we use a non-negative variable x;;. Also, each arc (i,j) € A
has associated a cost function ¢;;(z;;), depending only on z;;, that typically increases with x;;. The
goal in network flow problems is to minimize the sum of all these cost functions, while constraining
the flows to satisfy conservation laws; namely, the inflows at a given node have to equal the outflows.
These inflows/outflows are either caused by neighboring nodes, or are injected /extracted externally
at the node itself. A node to which flow is injected (resp. extracted) is called source (resp. sink).
For example, in Figure 4.4, if either x19 or x4 is positive, node 1 can only be a source, since all
of its edges point outwards. Nodes 3 and 7, in contrast, can only be sinks, if the flow in their
incident arcs is nonzero. Other nodes in that network, for example node 4, can be sources, sinks,
or neither. A way to represent a network with flows is via the node-arc incidence matrix B, where
the column associated to an arc from node i to node j has a —1 in the i¢th entry, a 1 in the jth
entry, and zeros elsewhere. We assume the components of the variable x and the columns of B
are in lexicographic order. For example, x = (z12, 16, T23, T24, T43, T45, T46, T57, Le7) Would be the
variable in Figure 4.4. The laws of conservation of flow are expressed as Bz = d, where d € RY is
the vector of external inputs/outputs. The entries of d sum up to zero and d, < 0 (resp. d, > 0) if
node p is a source (resp. sink). When node p is neither a source nor a sink, d, = 0. The problem
we solve is

minimize 37, j)e 4 Gij(i5)

subject to Bz =d (4.16)

x>0,
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FIGURE 4.5: Illustration of five connected areas in a power network. Nodes represent buses, i.e, generators
or loads, and they are connected through transmission lines. Circled nodes indicate voltage
measurements and squares in the transmission lines indicate current measurements.

which can be written as (P) by setting

1 1
fp<{xpj}(p,j)eAv {‘ij}(j,p)EA) = ) Z bpj(Tp5) + ) Z ¢jp(xjp)
(pg)eA

(4:p)EA

Tigpre=a,) <{$pj}(p,j)eAv {wjp}(j,p)eA) ,

where b; is the pth row of B. In words, f, consists of the sum of the functions associated to all
arcs involving node p, plus the indicator function of the set {z : b; x = dp}, which enforces the

conservation of flow at node p and only involves the variables {y;}, j)ea and {zp}(; pyea-

Regarding the communication network G = (V,€), we assume it consists of the underlying
undirected network. This means that nodes 7 and j can exchange messages directly, i.e., (i,5) € £
for i < j, if there is an arc between these nodes, i.e., (i,7) € A or (j,7) € A. Therefore, in contrast
with the flows, messages do not necessarily need to be exchanged satisfying the direction of the
arcs. In fact, messages and flows might represent different physical quantities: think, for example,
in a network of water pipes controlled by actuators at each pipe junction; while the pipes might
enforce a direction in the flow of water (by using valves, for example), there is no reason to impose
the same constraint on the electrical signals exchanged by the actuators. In problem (4.16), the
subgraph induced by w;j;, (i,j) € A, consists only of nodes i and j and an edge connecting them.

This makes the variable in (4.16) connected and star-shaped.
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4.2.5 State estimation in the power grid

The power grid is the network that connects energy producers to energy consumers. Both its
large-scale dimensions and its large number of parameters make it an appropriate application of
distributed optimization. For example, state estimation in the power grid [219] can be posed as
a particular instance of (P) with a star-shaped variable, as was done by Kekatos and Giannakis
in [47]. In this subsection, we briefly describe this problem from their point of view and derive
the algorithm they propose, but adapted to solve (P) for a generic connected variable. As we had
mentioned in Chapter 2, the algorithm proposed in [47] is actually the only algorithm we found that
can solve (P) for connected variables that are neither global nor stars. Later, in subsection 4.3.2, we
will generalize it to solve (P) with a non-connected variable. For other problems and applications
of distributed optimization in the power grid, see, for example, [220, 48, 221, 222].

State estimation. To explain state estimation in the power grid, consider the network of
Figure 4.5, whose nodes are divided into 5 disjoint areas. The nodes represent either generators or
loads or, in the terminology of power systems, buses. Buses are connected through transmission
lines, represented as the edges of the network, and through which current flows. Each area in the
network, although controlled by its own operator, is also connected to other areas for robustness
and reliability. It is essential for the proper functioning of the power network to know or, at least, to
estimate the state of the system; this includes knowing power flows, voltage and current magnitudes
at the buses, and generator outputs. Figure 4.5 illustrates a typical scenario where circled nodes
indicate buses at which voltage measurements are taken, and edges with squares indicate lines where
current measurements are taken. Based on these measurements and on a model for the system, the
goal of state estimation is to determine what are the voltages and currents at the other buses and
lines of the network. Let us denote the state of the entire network, i.e., the set of all the voltages
and all the currents, with € R™. The state of a given area p is a set S, € {1,...,n} of n, = |S,|
components of z, i.e., xg, denotes the state of area p. Let us represent the set of measurements taken
at this area with y, € R”». These measurements are related with zg, through y, = hy(zs,) + wp,
where h, : R" — R models area p and is typically a nonlinear function, and w, € R™» models
measurement noise and model inaccuracies. The areas that are connected with transmission lines
will share some state variables, i.e., S;N.S;. The problem of state estimation in power systems can

then be formulated as

1

P
L 2
minimize 7 E:1Hyp—hp(x5p)H : (4.17)

Since each function h, is nonlinear, problem (4.17) is nonconvex. Yet, as mentioned in [47], ei-
ther using Gauss-Newton methods to solve (4.17) directly or using a DC-approximation model for

the system, one usually ends up with a linearized version of the system, i.e., y, = Hpxsg, + wp,
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where H,, € R"»*" is the Jacobian of h, at some nominal operating point. So, instead of solving

the nonconvex problem (4.17), we can solve

P

mlwnelgnze = ;Hyp Hyxrg, || (4.18)

which is convex. If we view each area in Figure 4.5 as a node of a network, then (4.18) (and
also (4.17)) have the format of (P), where each f, is given by fy(zg,) = (1/2)|ly, — Hpzs,|?. In
this case, the variable is star-shaped because each set S}, indexes components of the state of area p
and, possibly, of areas adjacent (i.e., neighbors) of area p.

The algorithm in [47]. The algorithm proposed in [47] solves (4.18) in a distributed way and
assumes that neighboring areas communicate, i.e., that they are able to exchange estimates of their
common state variables. However, that algorithm can be easily generalized to solve (P) under a
generic connected variable, i.e., all induced subgraphs are connected. The algorithm is presented

as Algorithm 4 and is derived in Appendix C.

Algorithm 4 [47]

Initialization: Choose p € R; for all p € V and | € S, set ”y(p) 0 l(p),o =0;set k=0
1: repeat
2: for all p € V [in parallel] do

3: Compute vP* = 5P)* g(Dp_, Pk | >N, xl(n’k), foralll e S,
4: Compute :C(p) M= argmin folz (p))"’Zles v, ).k Ly ZleS it (2 (p))
o) ={2;" }ies,
5: For each component [ € S, exchange :vl(p PR With neighbors A, NV
6 Update the dual variables /""" =[P 4257\ (@5 — 2 forall 1 € 8,
7 k+—k+1
8 end for
9: until some stopping criterion is met

Algorithm 4 solves (P) by first reformulating it as

minimize fl(ﬂi(sll)) + fl(ﬂffqzz ) fl(':USP))
i, (4.19)

subject to :El(p)_:El(]), leS,nS;, jeN,, p=1,....P,

where we created a copy of the component z; in all the nodes whose functions depend on xy, i.e.,
on all p € V;, where G; = (V, &) is the Subgraph induced by z;. The copy at node p is :El(p ). All the

copies held by node p are denoted with a: = {a: }lesp. The constraints in (4.19) enforce copies
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of the component x; to be equal for neighboring nodes that depend on it. That is, if nodes ¢ and j
are neighbors, (i,7) € £, and both depend on z;, [ € S; and [ € Sj, then a:l(i) = a:l(j) will be on the
constraints of (4.19). Since we assume a connected variable, problems (P) and (4.19) are equivalent.
We also denote by Z; the set of all copies of the component z;, i.e., Z; = {xl(p ) }pey,. Similarly to
what was done for Algorithm 2, [47] introduces a variable per network edge and writes (4.19)

equivalently as

minimize fl(ﬂi(sll)) + fl(ﬂffqzz)) +-+ fl(xgja))

@, a0, , (4.20)
subject to a:l(p) :zl{p’]}, leS,nNsS;, jeN,, p=1,...,P,

where z, wit — zl{j “} is associated to the common component z; between nodes i and j, for (i,7) €

&. We used Zz to denote the set of variables zl{i’j } associated to the component z;, i.e., z; =
{zl{i’j}}(m)egl. Problem (4.20) has two sets of variables, {z;};~; and {Z;}]",, and linear constraints.
Therefore, the 2-block ADMM (2.18)-(2.20) can be applied and yields Algorithm 4, as shown in
Appendix C. Algorithm 4 has a structure very similar to Algorithm 2; indeed, it is derived using
the same principles, but adapted to the problem (P). In particular, all nodes perform the same
tasks in parallel. These tasks consist of solving an optimization problem in step 4 and sending
components of the respective solution to the neighbors that have common components, in step 5.
We used D,,; to denote the degree of node p in the subgraph induced by component x;, ;. Steps 3,
4, and 5 in Algorithm 4 correspond to step 3 of Algorithm 2: now, however, the prox notation
is not as convenient as it was for the global class algorithms. Also, if in Algorithm 2 each node
broadcasts all the components of its new update, in Algorithm 4 each node p needs only to transmit
to its neighbor j € N, their common components rg,ns;- After these exchanges occur, node p can
update its set of dual variables v;, [ € S, as in step 6.

The algorithm we propose for (P) relates to the algorithm we proposed for the global class (G)
in the same way that Algorithm 4 relates to Algorithm 2. We will derive it in the next section,
first for a connected variable, and then for a general variable, connected or not. Similarly to the
algorithms for the global class, our algorithm outperforms Algorithm 4 in terms of the number of

communications, as will be observed in Section 4.4.

4.3 Algorithm derivation

In this section, we derive our algorithm for (P). First, we consider a connected variable, i.e., every
induced subgraph is connected, and then we propose a way to address a non-connected variable,

i.e., when there is at least one induced subgraph that is non-connected.
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4.3.1 Connected variable

The idea we use to derive an algorithm for (P) when the variable is connected is the same we
used before to derive Algorithm 3 for the global class: we manipulate (P) to make the multi-block
ADMM (2.22)-(2.26) applicable. The difference is in the way we manipulate the problem, more
specifically, in how we create copies of the variables. Recall our notation on the coloring scheme:
C. C V denotes the nodes that have color ¢ and C(p) denotes the color of node p; also, C. = |C.| is
the number of nodes with color ¢. As in the derivation of the global class algorithm, we will assume,
without loss of generality, that the nodes are numbered according to their colors: the first C'y nodes
have color 1, C; = {1,...,C1}, the next Co nodes have color 2, Co = {C; + 1,...,C; + C3}, and so

on.

Problem manipulation. Recall that G; = (V;, &) denotes the subgraph induced by compo-
nent x;. In this subsection, we assume each G; is connected. Similarly to [47], we create a copy of
the component z; only in the nodes that are interested in it, which are precisely the nodes in Gi;
let xl(p ) be the copy at node p. Since a given node p depends on the components g, of the vari-
able z, it will have |S,| different (scalar) copies; let :Eg;) = {:El(p )}lesp be the set of all these copies,

at node p. We now rewrite (P) in a way slightly different than (4.19):

minimize fl(xgll)) + f2(x5<:22)) + -+ fp(x(si))
{xl}lzl ) ) (421)
subject to wll):wl(]), (i,))e&, l=1,....,n,

where the optimization variable is {a?l}lel and it represents the set of all copies. We used I; to
denote all copies of the component x;, which are located only in the nodes of G;: ; := {wl(p ) Fpev,-
Although problems (4.19) and (4.21) are both equivalent to (P), (4.19) has twice the constraints
of (4.21). While in (4.19) each constraint appears twice (to make the introduction of the z’s in (4.20)
possible), our reformulation (4.21) uses less constraints. Recall that our notation (i,5) € & (or &)
implies that ¢ < j, and therefore there are no repeated equations in (4.21). Finally, note that
our assumption that the variable is connected is what makes problems (P) and (4.21) equivalent,
since each induced subgraph is connected. When the variable is non-connected, this equivalence no

longer holds.

Let A; denote the transpose of the node-arc incidence matrix of the subgraph G;. Then, the
constraint xl(i) = acl(j), (1,7) € & can be written as A;7; = 0. We now use the coloring scheme (cf.

Assumption 4.5) to partition each variable 7; as 7, = (z},... ,a?lc), where

o (M evine.,  HEVINC £
: ®7 if Vl N Cc = @ '
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Recall that C. is the set of nodes that have color c. In words, Z{ represents the set of copies of z;
held by the nodes that have color c¢. If no node with color ¢ depends on x;, then zj is empty. Using
a similar notation for the columns of the matrix A;, we write A;Z; as /_1113?} 4+ 4 fllca?lc, for all [.

Therefore, (4.21) is equivalent to

minimize > opecy fp(wfg’;)) + o+ Ypeco fp(wg;)) (4.22)

subject to A'Z' 4+ ... 4+ A%z¢ =0,

where z¢ = {z{}]",, and A° is the diagonal concatenation of the matrices Af, 75, e flf“ ie.,
A¢ = diag(AS, AS, ..., AS). For better visualization, we wrote the constraint in (4.22) as
Aj zi| | Af 7 AY z{
Aj 2 A3 3 AY gy
+ 4+ =0
ALl | A7) |7 A7 28
SN—~— N SN——

Al zl A2 z2 AC zC

(4.23)

Note that the cth term in the objective of (4.22) depends only on z¢, the set of copies associated with
nodes with color ¢. Thus, (4.22) has the format of (2.21), the problem solved by the multi-block
ADMM, and thus the iterations (2.22)-(2.26) can be applied.

Applying multi-block ADMM. To apply the multi-block ADMM iterations (2.22)-(2.26)
to (4.22), we first need to write the augmented Lagrangian. Let )\;j be the dual variable associated
to the constraint ajl(i) = :El(j), for some [ € {1,...,n} and (i,5) € & (cf. (4.21)). The augmented
Lagrangian of (4.22) is then

2

C C C
Ly(@,.... 7% 0 =33 fa?)) + 3 AT A + gHZ Aeze|”, (4.24)
c=1 c=1

c=1peC.

where A = (\1,...,A,) is the dual variable, whose lth block is \; := {)\;j}(i’j)egl. The multi-block
ADMM consists of a sequence of subproblems, obtained by minimizing L, with respect to each
block z€¢, and then updating each dual variable with

/\fj’kJrl = )\fj’k + p(a:l(i)’kJrl - :El(j)’kﬂ) , (4.25)

for every (i,j) € & and every [ = 1,...,n. In (4.25), k denotes the iteration number and xl(p)’kH

is the estimate of the component x;, by node p, after iteration k. We now analyze the subproblem

each node solves to find those estimates. In particular, we will see that minimizing (4.24) with
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respect to ¢ yields |C.| problems that can be solved in parallel, i.e., all nodes with color ¢ “work”

in parallel. For example, the copies of the nodes with color 1 are updated according to (2.22):

c 2
! = argmin Y fp(xgj) FART Al 4 gH/_llznl + > Acgeh (4.26)
i‘l pecl c=2
. . ),k T 2
= arg min Z (fp(xg;)) + Z Z ()\JIDJJC _ pg;l(i) ) g;l(P) _|_g Z D 7l(xl(p)) ) ., (4.27)
' peay €S, JEN,NV, €S,

whose equivalence is established in Lemma 4.6 below. As in Algorithm 4, D,,; is the degree of node p
in the subgraph G, i.e., the number of neighbors of node p that also depend on z;. Of course, D, ;
is only defined when [ € S,. Note that all the dual variables A 7 are well-defined because of our
assumption that the nodes are numbered according to their colors; namely, any neighbor j of a
node p € C; will have a color larger than 1, and hence p < j, making /\fj well-defined. Recall
our convention that (,7) € &€ implies i < j. Before we establish the equivalence between (4.26)
and (4.27), note that (4.27) actually consists of |C1| problems that can be solved in parallel. This
is because nodes with the same color are not neighbors and, thus, none of the components of the
optimization variable z!', which corresponds to all the copies of the nodes with color 1, appears

as :El(j ¥ i1 the second term of (4.27). This means that all nodes p € C; solve, in parallel,

. . 2
xg;),kﬂ ~  argmin f,,(xféi}) FYY (R )T +g S D J(xl(p)) . (4.28)
x(S‘z;;)Z{xz(p)}leSp leSp jENNV, 1€Sp

Node p can only solve (4.28) if it knows a:l(j)’k and N7* for j € NNV, and | € S,. This is

possible if, in the previous iteration, it received the respective copies of x; from its neighbors. This

is also enough for knowing A’ J ’k, although we will see later that no node needs to know each A Jik
individually. We finally show how to obtain (4.27) from (4.26).
Lemma 4.6. (4.26) and (4.27) are equivalent.
Proof.
To go from (4.26) to (4.27), we first develop the last two terms of (4.26), respectively,
AT AL (4.29)

and

Pl 1141 N gen k||

§HA:L~ —I—Cz:;A:n’ . (4.30)
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We first address (4 29). Given the structure of A, as seen in (4.23), we can write (4.29) as
ST ((ADTAR) T 2L Recall that (A})T if it exists (i.e., if there is a node with color 1 that depends
on component xl), consists of the block of rows of the node-arc incidence matrix of G; corresponding
to the nodes with color 1. Therefore, if there exists p € C1 NV}, the vector (A})T)\f will have an
entry > ¢ NV, sign(j — p)A) 3k The sign function appears here because the column of the node-
arc incidence matrix corresponding to :El(i) — :El(j ) — 0, for a pair (i,7) € &, contains 1 in the ith
entry and —1 in the jth entry, where ¢ < j. In the previous expression, we used an extension
of the definition of /\fj, which was only defined for i < j (due to our convention that for any
edge (i,7) € £ we have always i < j). Assume )\;j is initialized with zero; switching ¢ and j
n (4.25), we obtain )\ﬂk = —)\fj’k, which holds for all iterations k. To be consistent with the

previous equation, we define )\;j as /\fj = —)\{ " whenever i > j. Therefore, (4.29) develops as

T L _
AN ATE =3 ((AD TN TE
=1

= z”: Z Z sign(j — p) ()\fj’k) T:El(p)

=1 peCy JeENNV;

=3 Z S sign(j )(Afj’k)Ta:l(p). (4.31)

p€eCy =1 jEN,NV;

Regarding (4.30), it can be written as

2
|- (4.32)

_ ¢ o 2 2 _ ¢ o c
gHAlil _i_ZAci,c,k’ _ gHAIEIH +p(A121)TZA%c,k 4 gHZA%C’k
c=2 2 c=2

Since the last term does not depend on z', it can be dropped from the optimization problem. We

now use the structure of A' to rewrite the first term of (4.32):

oo :g )" (A" Ao} (4.33)

M:

Z Dy )2 (4.34)
€Cy
Z e )2. (4.35)
€Sp

QM [ M: [

l\’)lb l\DIb

From (4.33) to (4.34) we used the structure of Al. Namely, if it exists, (A})T Al is a diagonal
matrix, where each diagonal entry is extracted from the diagonal of AlTAl, the Laplacian matrix

for G;. Since each entry in the diagonal of a Laplacian matrix contains the degrees of the respective
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nodes, the diagonal of (/_lll)T/_lll contains D, for all p € C;. The reason why ([lll)T/_lll is diagonal
is because nodes with the same color are never neighbors. As in (4.32), we exchanged the order of

the summations from (4.34) to (4.35).

Finally, we develop the second term of (4.32):

C C n
p(A'z)T Y A = py S (@) (AN T (A #t (4.36)
c=2 c=21]=1
C n

SO0 I I L (1.37)

c=2 =1 peCy jeENLNCNV,

TE ,
D D I L DI S (4.38)

peC1 leSy c=2jeN,NCNV,

T .
:—pz Z Z xl(p) xl(])’k. (4.39)

p€eC1 LES) JENNV,

In (4.36) we just used the structure of A' and A°, as visualized in (4.23). From (4.36) to (4.37)
we used the fact that (A})TAIC is a submatrix of AlTAl, the Laplacian of G, containing some of its
off-diagonal elements. More concretely, (AII)TAIC contains the entries of AlTAl corresponding to all
the nodes i € Cy NV, and j € C.NV,. And, for such nodes, the corresponding entry in AlTAl is —1
if ¢ and j are neighbors, and 0 otherwise. From (4.38) to (4.39) we just used the fact that the set
{C.}&_, is nothing but a partition of the set of neighbors of any node with color 1. Using (4.31),
(4.32), (4.35), and (4.39) in (4.26), we get (4.27). O

The optimization problem (4.27) decomposes into |C1| decoupled optimization problems, each
one solved by a node with color 1. For node p, the problem is (4.28). For the other colors, the

same reasoning and equations apply, just with one small difference: in the second term of (4.28) we

l(j),k l(j ¥ from the nodes with a larger color.

have 2% from the neighbors with a smaller color and x

Algorithm 5 shows the resulting algorithm. As in the global class algorithm (Algorithm 3),

the coloring scheme functions as a schedule: the nodes with color 1 work first, the nodes with

color 2 work next, and so on. Each “work” consists of computing vl(p PR for all 1 € Sy, as in step 4,

solving the optimization problem in step 5, and then sending the new component estimates to the

neighbors that also depend on those components, as in step 6. After a given node p has received the

new estimates from all its neighbors, it can update each dual variable ’yl(p ) as in step 9. Note that

the edge-wise dual variables )\fj were replaced by the node-wise dual variables 71(7’ ). The reason is

(p),k

because the optimization solved by node p (see (4.28)) depends on 7" := 3=, vy, sign(j—p) )"
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Algorithm 5 Algorithm for a connected variable

Initialization: Choose p € R; for allp €V and ! € S, set %(p),o = a:l(p)’o =0;set k=1

1: repeat
2: forc=1,...,C do
3: for all p € C, [in parallel] do
4: Compute vl(p)’k = yl(p)’k — PZjeNpﬂvz :cl(j)’kJrl — PZjeNpﬂvz xl(j)’k, foralll € 5,
C(j)<c C(j)_?c
1 . k 2
5: Compute Ig;) = argmin fp(fl?g;)) + 2es, Uz(p) xl(p) +5 2 ies, Dy (xz(p))
o) ={2;" }ies,
6: For each component [ € S, exchange :vl(p PR+ With neighbors A, NV
7 end for
8: end for
9: for all p € V and [ € S, [in parallel] do

k41 N k41 i), k+1
,yl(p) _ ,Yl(p) + ijeNpmvl (xl(p) _ Il(J) )

10: end for
11: k+—k+1
12: until some stopping criterion is met

and not on the individual )\fj ’s. The update of step 9 is obtained by replacing

)\;j,k-i-l _ )\?Lk (@)k+1 (j)7k+l) (440)

+ p sign(j — 1) (z; xl
in the definition of ’yl(p )*Note that (4.40) differs from (4.25) in the extra “sign.” This is because
we extended the definition of the dual variable )\fj for i > j (see the proof of Lemma 4.6).

Note that if we make the variable global, i.e., if S, = {1,...,n} for all p, Algorithm 5 becomes
the global class algorithm, that is, Algorithm 3. This means that Algorithm 5 is a generalization
of Algorithm 3 since, in fact, it cannot be obtained from it. The comments about the coordination
of the nodes we made for Algorithm 3 also apply to its generalization, Algorithm 5. Namely, if
each node knows its own color and the color of its neighbors, as specified in Assumption 4.5, then
the algorithm becomes automatically distributed, because each node can work immediately after
it has received estimates from its neighbors with smaller colors. See Figure 3.2 from Chapter 3 for

an illustration. Regarding the convergence of Algorithm 5, we have:

Theorem 4.7.

Let Assumptions 4.1-4.5 hold and let the variable of

mz’ggzeiﬂ@ize filzs,) + fa(zs,) + -+ fr(zsy), (P)
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be connected. Then, Algorithm 5 produces a sequence (3:’51, .. ,a:’ép) convergent to (rs,,..., s, ),

where x* solves (P), when at least one of the following conditions is satisfied:
(a) the coloring scheme uses two colors only (which implies that the network is bipartite);

(b) each function f, is strongly convex with modulus 1, and

2
0<p< min 2pece 'y

. 4.41
c=1,...C 3 (C — 1) maXpechesp DpJ ( )

Proof.

As in the proof of Theorem 3.6, we have to show that (4.22), which is the problem to which we
apply the multi-block ADMM, satisfies the conditions of Theorem 2.1. In fact, Assumptions 4.1,
4.2, and 4.3, together with the equivalence between (P) and (4.22) (for a connected variable), imply
that each function >, ¢ fp(:n(é;)) in (4.22) is closed and convex over the full space. Next we see

that condition (a) (resp. (b)) implies condition (a) (resp. (b)) of Theorem 2.1.

(a) We first see that Assumption 4.4 together with the fact that the variable is connected
implies that each A¢ has full column rank. Let ¢ be any color in {1,2,...,C}. By definition,
A¢ = diag( },Ag, ..., A%); therefore, we have to prove that each /_llc has full column rank,
for [ =1,2,...,n. Let then ¢ and [ be fixed. We are going to prove that (Af)TAC, a square

n

(/_llC)T/_llc corresponds to the [th block in the diagonal of the matrix AlT Ay, the Laplacian matrix

matrix, has full rank, and therefore flf has full column rank. Since A; = {flf /_15 - AC,

of the induced subgraph G;. Recall that each induced subgraph §G; is connected, because the
variable is connected. Consequently, each node in G; has at least one neighbor also in G; and

I The same happens to the

hence each entry in the diagonal of AlTAl is greater than zero.
entries in the diagonal of (A§)" A¢. In fact, these are the only nonzero entries of (A$)T Af,
since this matrix is diagonal. The reason is because ([llc)T/_llc corresponds to the Laplacian
entries of nodes that have the same color, which are never neighbors. Therefore, (A§)" A¢
has full rank. This shows that, independently of the coloring scheme, each matrix A, has full
column rank. As a consequence, when the network is bipartite and the coloring scheme has

two colors, point (a) of Theorem 2.1 holds.

(b) When each function f, is strongly convex with modulus j1, and p satisfies (4.41), then >° ¢ fp
is strongly convex with modulus > ¢ pp [31, Lem. 2.1.4] and conditions (2.27) and (4.41)

Hmplicitly, we are assuming that there is no component x; that appears in only one node, say node p; this would
lead to a Laplacian matrix A; A; equal to 0. This can be easily addressed by redefining f,, the function at node p,

to fp() = infe, fo(o.. @)
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are equivalent. To see this, note that

Omax (A9)? = X AT A = max A ANTAS)=  max D,;= max D
ma (A7) ma((A7) 7 A7) I=1,n max((47) A7) =1, peCe Pt peceries, P
since each (A¢)T A¢ is a diagonal matrix whose entries are the degrees of the nodes with color ¢

that depend on component x;.

4.3.2 Non-connected variable

In this subsection we drop the assumption that the variable is connected. This means that there
exists at least one component x; for which the induced subgraph G; is non-connected. In this case,
problem (4.21) is no longer equivalent to problem (P), because its constraints fail to enforce equality
between all the copies of x;. We propose a trick to make these problems equivalent, based on the

following assumption:

Assumption 4.8. When the variable is non-connected, the communication network and all the

sets Sy, are known before the execution of the algorithm.

The reason we require both the communication network and the sets S, to be known beforehand
is to allow some preprocessing: first, we identify the non-connected components of the variable,
and then, we select which nodes should retransmit them. Note that this assumption only requires
knowing beforehand the components each node depends on, but not the functions f,. In other
words, this preprocessing can be done before any data arrives.

Let x; be a non-connected component, i.e., the induced subgraph G; = (V;, &) is non-connected.
As we have seen, the constraint ajl(i) — 2V ), (i,7) € &, in (4.21) is not enough to enforce equality of
all the copies of z;. We propose enlarging the subgraph G; by selecting other nodes in the network
that will retransmit estimates of x;. In other words, we will add to G; some nodes (and edges)
so that that the induced subgraph becomes connected. Since our goal is to minimize the overall
number of communications, we should add the least number of edges to this subgraph. It turns out
that this is exactly the problem of finding an optimal Steiner tree in the communication network.

Steiner tree problem. To describe the Steiner tree problem, consider an undirected graph G =
(V,€), in our case the communication network, and let R C V be a set of required nodes, in our
case, the nodes V; of a non-connected induced subgraph G;. Figure 4.6 shows an example where G
is the entire network, and R are the black nodes. A Steiner tree in G is any tree in that contains
the required nodes R; in other words, it is an acyclic connected subgraph (7, F) C G such that
R C T and F C &. The Steiner nodes, which will be represented with S, are the nodes in that
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FIGURE 4.6: Example of an optimal Steiner tree. The required nodes R are black, and the Steiner nodes &
are striped. The Steiner tree edges are represented with thicker lines.

tree that are not required, i.e., § := T\R. For example, in Figure 4.6, the Steiner nodes S are
striped and the Steiner tree edges J are thicker. Note that the set of black and striped nodes and
the thicker edges form a subgraph that is a tree.

Now we can state the Steiner tree problem: given an undirected graph G = (V, &), a set of
required nodes R C V, and a set of costs c;j for each edge of the network (i,j) € &, find a Steiner
tree whose edges have a minimal cost. In our case, since we want to minimize the total number
of communications, all edges are viewed equal, that is, they all have the same cost, for example,
cij = 1. The set of required nodes in our case are the nodes in the subgraph induced by a non-
connected component x;, i.e., R = V;. Of course, we have to solve a Steiner tree problem for each
non-connected component. Unfortunately, solving Steiner tree problems is NP-hard [223]. However,
many approximation algorithms are available, some of which have approximation guarantees. For

example, the Steiner tree problem can be formulated as the following optimization problem [224]:

minimize > CijZij

{zijtanee  (i,5)€e€

subject to > zj; > 1, Vy : 0<|UNR|<|R] (4.42)
€U
Jjeu

zij €{0,1},  (i,4) € €.

In the first constraint of (4.42), U represents any subset of nodes that separates at least two required
nodes, i.e., U contains at least one node in R, but not all of them. The optimization variable of
problem (4.42) is z € RE and each z; is associated to edge (i,j) € €. If the optimal value is
zi; = 1, then edge (i,7) is in the selected Steiner tree. Note that the last constraint of (4.42)

imposes each component of z to be either 0 or 1. Let us denote the objective of problem (4.42)



4.3. Algorithm derivation 99

by h(z) := > (i,j)ee Cij%ij- We say that an algorithm for (4.42) has an approximation ratio of « if
it produces a feasible point z such that h(z) < ah(z*), for any problem instance. The primal-dual
algorithm for combinatorial problems [224, 225], for example, has an approximation ratio of 2. To
the best of our knowledge, [226] proposed the algorithm for computing Steiner trees that has the

smallest approximation ratio, namely 1+ In3/2 ~ 1.55.

Application to our problem. Based on Assumption 4.8 and on the concept of Steiner tree
problem, we now propose a modification to Algorithm 5 to make it applicable to a non-connected
variable. This modification applies to Algorithm 4 exactly the same way. According to Assump-
tion 4.8, both the communication network and the sets S, are known before the execution of the
algorithm. This allows solving a Steiner tree problem for each non-connected component, as a
preprocessing step, which can be done in a distributed or in a centralized way (for distributed algo-
rithms computing Steiner trees see for example [227, 228]). More concretely, for every non-connected
component z; with induced subgraph G; = (V;, &), we can compute a Steiner tree (7;,F;) C G us-
ing V, as the set of required nodes. Let S := T;\V; denote the Steiner nodes in that tree. The
functions associated to these Steiner nodes do not depend on z;, i.e., I & S, for all p € §;. But
we artificially force them to depend on it by defining a new induced graph as G, = (V],&]), with
V) = T, and & := & U F;. Then, we can create copies of z; in all nodes in V), and write (P)

equivalently as

minimize fl(xgll)) + fg(x(si)) + -+ fp(acg;))
{xl}lzl ) ) (443)
subject to wl(l):x(j), (i,5) €&, l=1,...,n,

where {7;}£, is the optimization variable, and 7; := {xl(p ) }pev; denotes the set of all copies of ;.
If node p is a Steiner node for any component of the variable, it will hold “extra” copies, but

its function f, remains unchanged. In particular, it has the copies az(Si))Us,, where SI’, is the set of
P

components of which node p is a Steiner node, but its function f, depends only on wg;) = {wl(p )}le Sp-
Of course, if a component z; is connected, we set G/ = G;, and if node p is not Steiner for any
component, we set SI’, = (). If we replace problem (4.21) by the modified problem (4.43) and repeat
the derivation that followed problem (4.21), we get Algorithm 6.

Algorithm 6 is essentially an adapted version of Algorithm 5, with a preprocessing step, which
can be computed in a centralized or in a distributed way. The preprocessing step relies on As-
sumption 4.8 by assuming that both the communication network and the dependency sets S, are
known. Note that the specific functions f, are not required for this preprocessing step. Regarding
the main algorithm, it is similar to Algorithm 5 except that each node, in addition to estimating

the components its function originally depends on, it also estimates the components for which it is
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Algorithm 6 Algorithm for a generic variable, connected or non-connected

Preprocessing:
1: Set S, =0 forallpeV,and V) =V, foralll = {1,...,n}
2: for all non-connected components z;, [ € {1,...,n} do
3 Compute a Steiner tree (7, F;), setting V; as the set of required nodes
4: Set V] = T; and &; := T;\V; (Steiner nodes)
5 For all p € S}, S, = S, U{xi}
6: end for

Main algorithm:

Initialization: Choose p € R; forallp € Vandl € S, U S, set 'yl(p)’oz a:l(p)’o =0;set k=0
7: repeat
8: forc=1,...,C do

9: for all p € C, [in parallel] do
2k Wk j),k+1 7).k
10: Compute v PF = 5P)F _ PN,V g PO jeN, AV, 2% foralll € S, U S,
C(j)<c C(j)>c
k1 . KT 2
11: Compute Ig;)us—z = ar(g)nnn fp(x(si)) + ZlespuS; (vl(p) xl(p) + %D;DJ (a:l(p)) )
xsppus;
12: For each component [ € S, U S}, exchange :zrl(p)’kJrl to neighbors NV, NV/

13: end for
14: end for
15: for allp €V and [ € S, U S, [in parallel] do

k41 k k41 ), k41
%(p) _ ,Yl(p) + ijeNprw; (xl(p) _ xl(a) )

16: end for

17: k+—k+1
18: until some stopping criterion is met

a Steiner node. The computation for these additional components can, however, be found in closed-
form: if node p is a Steiner node for component z;, it updates it as xl(p)’kH =—(1/(p Dnl))vl(p)’k
in step 11. In Algorithm 6, D;’l is defined as the degree of node p in the subgraph G;. The steps
we took to generalize Algorithm 5 to a non-connected variable can be easily applied the same way

to Algorithm 4, the algorithm proposed by [47].

4.4 Experimental results

In this section, we assess experimentally the performance of the proposed algorithms, namely
Algorithm 5 and Algorithm 6, with respect to prior distributed algorithms. We focus on two appli-
cations: networks flow problems and D-MPC. While network flow problems are formulated as (P)
with a star-shaped variable, D-MPC has more flexibility, since it can be formulated with any type

of variable (see Subsection 4.2.1). As mentioned before, most of the prior distributed optimization
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algorithms solve (P) only when the variable is global or star-shaped. The only exception is the al-
gorithm proposed by [47], which we presented as Algorithm 4. Indeed, that algorithm can solve (P)
with any connected variable and, if using the adaptation we proposed in the previous section, it
can also solve it with a non-connected variable.

Communication steps. The performance metric we use in our experiments is the number of
communication steps (CSs). The concept is the same we introduced in Chapter 3 for the global
class: after all nodes have updated their estimates of the components they depend on and broadcast
them to their neighbors, we say that a CS has occurred. The only difference with respect to
the CS concept in Chapter 3 is in the size of the messages exchanged between nodes: here, two
neighbors (7, j) € £ only exchange the common components their functions depend on, i.e., TSnS;,
rather than the entire vector x. This applies to all the algorithms we compare in this chapter.
The only exception is Algorithm 3, the algorithm we proposed for the global class, which we show
here for comparison purposes. In fact, we will see that, even ignoring the difference in the size
of the exchanged messages, Algorithm 3 takes more CSs to converge than any of the algorithms
solving (P) with a non-global variable. This effectively illustrates how important it is to explore

the structure of the problem in order to design communication-efficient algorithms.

4.4.1 Network flow problems

We start with the experiments on network flow problems. First, we describe the model we used
in our experiments, then the experimental setup and the algorithms we compare, and finally we
present our results.

Model. Recall that a network flow problem has the format of (4.16). Its objective consists of the
sum of the costs ¢;;(xi;) associated to all the arcs of the directed network. The constraint Bx = d
enforces the laws of conservation of flow, whereas the constraint x > 0 forbids negative flows on

each arc. We consider two scenarios for problem (4.16):

1
Scenario 1: Gij(xij) = §($w - aij)2 , and the constraint z > 0 is dropped,

Scenario 2: Gij(xij) = “ -+ gy <y (T45) -

Cij — L4y
In scenario 1, the cost function associated to each arc (i, j) € A is quadratic, ¢;j(x;;) = %(a:,] —ai;)?,
where a;; is positive. Also, we drop the nonnegativity constraint = > 0 in order to make the
algorithm in [162] applicable. Scenario 1 is thus very simple: it solves
minimize Z(i,j)eA %(a:w — a,-j)2
v={ij}(i,j)eA (4.44)
subject to Bz =d.
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Regarding scenario 2, besides the cost function being more complicated, ¢;;(zi;) = xi;/(cij — xi5),
where ¢;; > 0, is the maximum capacity of arc (7,7), it also has the constraints 0 < z;; < ¢;;, for

each arc. That is, scenario 2 solves

« e N Xiq
minimize > e T
r={zi;}i,j)eA (09)€A cij—wi;
subject to Bxr=d (4.45)
0 <wiy < ey,

which can be used to model aggregate system delays in multicommodity flow problems [20, Ch.4].
The problem each node has to solve at each iteration, for example, at step 5 of Algorithm 5,
has a closed-form solution in scenario 1, but not in scenario 2. In scenario 2, node p has to solve a

problem with the following format:

minimize Zf):pl( Cffyi + viyi + aiy)
y=(Y1,--,YDp)
subject to b}y = d,, (4.46)

0<y<e,

where each y; corresponds to xp; if (p,j) € A, or to z;, if (j,p) € A. Since projecting a point onto
the set of constraints of (4.46) can be done in closed-form [229], any projected gradient method
is easy to apply. In our implementation, we chose [230], a gradient projection method with a
Barzilai-Borwein step.

Experimental setup. In both instances of the network flow problem we solve, we use a network
with P = 2000 nodes and FE = 3996 edges, generated randomly in Network X [205] according to the
Barabasi-Albert model [202]; see Table 3.1 of Chapter 3 for a brief description. As in the network
flow problem illustrated in Figure 4.4, we consider that there is at most one arc between any pair
of nodes. As a consequence, the size of the problem variable, x, is equal to the number of edges F,
in this case 3996. The diameter of the generated network was 8, it had an average node degree
of 3.996, and it was colored with 3 colors in Sage [206]. We then assigned a direction to each
edge of this network: for each edge (i,7), we assigned the directions i — j and i < j with equal
probability, thus creating a set of arcs A from the set of edges £. To each edge, we also assigned
a number drawn randomly from the set {10, 20, 30,40, 50,100}. The probabilities were 0.2 for the
first four elements, and 0.1 for 50 and 100. These numbers played the role of the a;;’s in scenario 1
and the role of the capacities ¢;; in scenario 2. To generate the vector d or, in other words, to
determine which nodes are sources or sinks, we proceeded as follows. For each k = 1,...,100, we
picked a source si randomly (uniformly) out of the set of 2000 nodes and then picked a sink ry

randomly (uniformly) out of the set of reachable nodes of si. For example, if we were considering
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the network of Figure 4.4 and picked s; = 4 as a source node, the set of its reachable nodes
would be {3,5,6,7}. Then, we added to the entries s; and 7y of d the values — f;/100 and f;/100,
respectively, where fj is a number drawn randomly exactly as ¢;; (or a;;). This corresponds to
injecting a flow of quantity f/100 at node sj and extracting the same quantity at node ry. After

repeating this process 100 times, for £k = 1,..., K, we obtained vector d.

Before executing the distributed algorithms and to assess their error, we computed the solutions
of (4.44), from scenario 1, and (4.45), from scenario 2, in a centralized way. In scenario 1, the
solution can be computed in closed-form, because the problem is quadratic with linear constraints.
In scenario 2, we used CVXOPT [231] to obtain a solution of (4.45).

Algorithms for comparison. The network flow problems (4.44) and (4.45) are formulated
as (P) with a star-shaped variable (see also (4.16)). As discussed before, in this case, the ADMM-
based algorithm [35, §7.2] becomes distributed. In fact, for network flow problems it becomes
exactly algorithm [47] (Algorithm 4); this is not surprising, since both are based on the same
underlying algorithm, the 2-block ADMM. Also, a star-shaped variable makes gradient methods
directly applicable. We then also consider Nesterov’s fast gradient method [31], more precisely, the
algorithm (2.10). Finally, we consider the distributed Newton method [162], which was designed
specifically for network flow problems. All these methods, including ours, have tuning parameters:
p for the ADMM-based algorithms, a Lipschitz constant L for Nesterov’s algorithm, and a step-
size « for the distributed Newton algorithm. Note that Nesterov’s algorithm requires the objective
function to be differentiable and have a Lipschitz-continuous gradient. While this is true for (4.44),
in scenario 1, it is not true for (4.45), in scenario 2. Namely, the gradient of the objective of (4.45)
is not Lipschitz-continuous in all the domain, although it is near the solution. Therefore, in sce-
nario 2, we have to estimate a Lipschitz constant the same way we estimate the parameters of the
other algorithms. To do that, we use the concept of precision, defined in Chapter 3: for example,
p has precision v for an ADMM-based algorithm if both p —+ and p+ v lead to worse results, i.e.,
to more CSs. Regarding the number of CSs each of these algorithms takes per iteration, all the
ADMM-based ones (Algorithms 4 [47], 5, and [35, §7.2]) and Nesterov’s algorithm [31] take one CS
per iteration. Our implementation of the distributed Newton method [161], in turn, takes 3 CSs
per iteration, since we used a fixed stepsize o and set the parameter N, the order of the approxima-
tion of Newton’s direction, to 2. We will also show the performance of Algorithm 3, our proposed
algorithm for the global class, in scenario 1. That algorithm makes all the nodes compute the full
solution z*, which has dimensions 3996 in this case. Hence, each message exchanged in one CS of

Algorithm 3 is 3996 times larger than the messages exchanged by the other algorithms.

Results. The results of our experiments for scenarios 1 and 2 are shown, respectively, in Fig-

ures 4.7(a) and 4.7(b). These show the relative error on the primal variable [|z% — 2* |00 /||7* || o,
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FIGURE 4.7: Results of our experiments for the network flow problems. The problem solved in (a) is (4.44),
a simple quadratic program. The problem solved in (b) is (4.45), which models aggregate
delays in multicommodity flow problems. In both cases, the network has P = 2000 nodes
and F = 3996 edges, and was generated randomly according to the Barabasi-Albert model.

where z* is the concatenation of the estimates of all nodes, versus the number of CSs. It can be
seen in Figure 4.7(a) that Algorithm 5 in scenario 1 was the one requiring the least amount of CSs
to achieve any relative error between 1 and 1074, It was closely followed by the ADMM-based
algorithms [47] and [35, §7.2], whose lines coincide because they become the same algorithm when
applied to network flows. Nesterov’s method [31] and the Newton-based method [162] had a perfor-
mance very similar to each other, but worse than the ADMM-based algorithms. In the same plot
we can also see that Algorithm 3, which solves the global class, had the worst performance; fur-
thermore, each message exchange by that algorithm is 3996 times larger than a message exchanged
by the other algorithms. This clearly shows that if we want to derive communication-efficient al-
gorithms, we have to explore the structure of (P). Regarding the parameters for each algorithm
in these experiments, we used p = 2 for all the ADMM-based algorithms (precision 1), a Lipschitz
constant L = 70 for [31] (precision 5), and a stepsize o = 0.4 for [162] (precision 0.1).

The results for scenario 2, i.e., for problem (4.45), are shown in Figure 4.7(b). We were not
able to make the algorithm in [162] converge for this scenario (actually, that algorithm is not
guaranteed to converge for problem (4.45)). Overall, scenario 2 looks more challenging to solve,
since all algorithms took more CSs to achieve the same relative error. Again, Algorithm 5 was
the algorithm with the best performance. This time we could not find any choice for L that made
Nesterov’s algorithm [31] achieve the relative error of 107 in less than 1000 CSs. The best result,
obtained for L = 15000, is shown in Figure 4.7(b). The augmented Lagrangian parameter p was 0.08
for Algorithm 5 and 0.12 for algorithms [47, 35], both computed with precision 0.02.
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4.4.2 D-MPC

We now describe our experiments for distributed model predictive control (D-MPC). Recall that
D-MPC can have a variable of any type, either connected or non-connected. We start by describing

the particular MPC model we used, and then the experimental setup.

Model. For convenience, we reproduce here our D-MPC model (4.3), which was proposed
earlier in Subsection 4.2.1:

minimize 32,71 | p({2;[T]}jen,) + Xig Uh({a;(t] uilt]}jen,)

T,u

subject to  z,[t + 1] = O ({z;[t], u;[t]}je,), t=0,...,7—1, p=1,...,P (4.47)

:Ep[O]::Eg, p=1,...,P.

Problem (4.47) is associated to a network with P dynamic systems where each dynamic system is
viewed as a node of that network. The pth system is described at each time instant ¢ by the state
vector z,[t] € R™ and has a control input u,[t] € R™». The D-MPC model (4.47) generalizes prior
D-MPC models in the sense that it allows the state of any system be influenced by the state or
input of any other system in the network, and not only by its neighbors; see also Figure 4.1 for
a visual comparison between these two scenarios. Therefore, the optimization variable in (4.47)
is arbitrary and not necessarily star-shaped. In our experiments, we consider a simple instance
of (4.47) that preserves this feature. Namely, we assume linear coupling through the inputs, i.e.,
zplt + 1] = Apzpt] + 3 jcq, Bpjuslt], where A, € R"*"™ and each Bj; € R"™*™i are arbitrary
matrices (in fact, randomly generated), known only at node p. The set £, C V is the set of nodes
whose control input influences the state of node p, x,. We assume that the control input at node p
influences always its own state, i.e., {p} C Q,, for all p € V. We also assume there is no coupling
through the objective functions. In particular, we consider ®,({z;[T]}jcq,) = xp[T ]TQ;;:EP[T ]
and ! ({z;[t]}jeq,) = @p[t] T Qpap[t]+uplt] " Ry, where Q, and QJ are positive semidefinite matrices,
and R, is positive definite. With this choice, problem (4.47) becomes
minimize 25:1 u;Rpup + :E;prp

ZT1,ee0Xp

) g (4.48)
subject to  x, = Cp{u;}jes, + DIO,7 p=1,...,P,

where, z, = (2,[0],...,2p[T]), up = (up[0],...,u, [T —1]), for each p, and

Qp:

[T®Qp 0 _
0 Q-
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[0 0 0] [ 1]
B, 0 -0 App
Cp= | ApB, B, - 0], DY) = A2, | ).
T—1 T—2 T
_App By A:np By - BP_ _A:np_

We defined the matrix B, (in the entries of Cj,) as the horizontal concatenation of the matrices Bp;
for all j € ©,. Note that the variables z, and w, in (4.48) now contain the states and inputs for
the entire horizon. For this reason, we changed from the notation j € €2, to the notation j € Sp;
while €2, is a subset of the set of nodes V, S}, is a subset of components of the optimization variable,
ie, Spe{l,....,(T+1) 25:1 ny + Tzll;l myp}. One reason we chose this simple linear model is
that all the state variables x, in (4.48) can be eliminated; indeed, (4.48) can be written equivalently

as

UL, UP

P
minimize Z{uj}jTEspEp{u]-}jesp + w;,r{uj}jesp ) (4.49)
p=1

where w), = 2CpT QpDS and each F), is obtained by summing R, with CpT @pCp in the correct entries.
Note that (4.49) is an unconstrained quadratic program. Therefore, in a centralized scenario, where
all matrices E, and all vectors w, are known at the same location, the solution of (4.49) is simply
the solution of a linear system. For the same reason, the solution of the problem each node has
to solve at each iteration, for example in step 5 of Algorithm 5, can be found by solving a linear

system.

TABLE 4.1: Networks used in the D-MPC experiments.

Name Source # Nodes # Edges Diam. # Colors Av. Deg. Description
A [202] 100 196 6 3 3.92 Barabasi-Albert (parameter 2)
B [201] 4941 6594 46 6 2.67 US Western states power grid

Experimental setup. We solved problem (4.49) in the two networks of Table 4.1. Net-
work A has 100 nodes, 196 edges, and was generated randomly according to the Barabasi-Albert
model [202], as briefly described in Table 3.1 of Chapter 3. A parameter of 2 means that every
time a node is added to the network it connects to other 2 nodes. Network B is considerably larger,
having 4941 nodes and 6594 edges, and it represents the topology of the power grid of the US
Western states [201]. Table 4.1 also shows the diameter of each network, the average degree of each
node, and the number of colors they are colored with. To color these networks, we used a built-in

function in Sage [206].
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In all our experiments we considered a time horizon T' of dimension 5, the state x, of each
node p always had dimensions n, = 3, and the control input w, was always scalar, m, = 1, for
all p. Since the size of the variable in (4.49) is m,T P, network A implied a variable of size 500
and network B implied a variable of size 24705. While each dynamical system in network A could
be unstable, each dynamical system in network B was always guaranteed stable. More specifically,
for both networks, we generated the entries of the dynamics matrix A, of each system p from the
normal distribution (independently); however, for network B, after generating each A,, we always
“shrunk” its eigenvalues to the interval [—1, 1], making the corresponding system stable. Regarding

the input-state matrices B);, each of its entries were also drawn from the normal distribution.

We now describe how we generated the system couplings, i.e., the sets €2, € V; see also the
dotted arrows in Figure 4.1. We generated three types of couplings, and thus of variables. We
generated star-shaped variables, where the state of system p is influenced by the inputs of all its
neighbors, that is, Q, = N, for all p. This case is illustrated in Figure 4.1(a) and was considered so
that we could compare Algorithms 4 and 5 with other prior D-MPC algorithms. We also generated
instances of the system couplings to make the variable connected (not necessarily star-shaped),
and non-connected. To generate a connected variable we proceeded as follows: given a node p, we
make it depend on u, (recall our assumption that {p} C €,). Then, we initialize a set F,, which

)

we will call the “fringe,” with the neighbors of node p, i.e., F, = N,. Next, we select randomly
(uniformly) a node ¢ from the fringe, ¢ € F,, and make its state depend on wu,, ie., p € €.
Then, we add its set of neighbors to the fringe and remove node ¢ from it, since it already depends
on up: Fp = (fp\{q}) UAN;. This process is repeated 3 times for each node p, and is done for all
the nodes in the network. To generate a non-connected variable, the process is exactly the same,
including the concept of fringe. The difference is that, at each iteration, any node in the entire
network can be selected, not just the nodes in the fringe; however, the nodes in the fringe have
twice the probability of being selected with respect to the remaining nodes in the network. We
generated a non-connected variable only for network A, running the described algorithm for each
one of its 500 components (the size of the variable for this network is m,TP =1 x 5 x 100 = 500).
As a result, we obtained 400 components for which the respective induced subgraphs were non-
connected. According to the preprocessing step of Algorithm 6, we have to compute a Steiner tree

for each of these 400 components. To do that, we used a built-in function in Sage [206]. We ended

up with 44 nodes in the network (out of 100) that were Steiner nodes for at least one component.

Results. The results of our experiments are shown in Figure 4.8 for connected variables,
and in Figure 4.9 for a non-connected variable. FEach plot shows how the relative error as a
function of the number of CSs. The relative error is measured the same way as in the network

flow experiments: ||2¥ — 2*||o0/||2*||00, Where 2* is the concatenation of all the nodes’ control
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FIGURE 4.8: Results for D-MPC with a connected variable. On the left, (a) and (c¢) show the results for
network A, and, on the right, (b) and (d) show the results for network B. The optimization
variable is star-shaped on the top plots, (a) and (b), and is non-star-shaped (and non-global)
on the bottom plots, (¢) and (d).

input estimates. The results for networks A and B, both with a star-shaped variable, are shown
in Figures 4.8(a) and 4.8(b), respectively. The relative behavior of all the compared algorithms
is the same: the proposed Algorithm 5 required uniformly less CSs to achive any relative error
between 1 and 10~%; it was followed by the ADMM-based algorithms [35, §7.2] and [47] (shown as
Algorithm 4), with [35, §7.2] being more efficient than [47]. Finally, Nesterov’s algorithm [31] failed
to converge in both cases. A curious fact is that all algorithms required more CSs to converge in
the network of Figure 4.8(a), which has 100 nodes, than in the network of Figure 4.8(b), which is
considerably larger, with nearly 5000 nodes. In fact, what influenced the performance of all the
algorithms was the stability of the systems: while each system in Figure 4.8(b) was guaranteed to
be stable, no system in Figure 4.8(a) was guaranteed to be stable. The difficulty of each problem

instance can be measured by the magnitude of the Lipschitz constant of the gradient of the objective
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FIGURE 4.9: Results for D-MPC with a non-connected variable. All the dynamic systems were designed
stable in this case, and the network was A.

function of (4.49): 1.63 x 10° for Figure 4.8(a) and 3395 for Figure 4.8(b). Note that this Lipschitz
constant can be computed in closed-form. Regarding the augmented Lagrangian parameter p, its
was computed, with precision 5, for Figure 4.8(a) as 120 for [35, §7.2] and as 135 for the other
algorithms. For Figure 4.8(b), it was computed as 25 for Algorithm 5 and [35, §7.2] and as 30
for [47], also with precision 5.

Figures 4.8(c) and 4.8(d) show the results for generic, non-star-shaped variables for networks A
and B, respectively. Since the ADMM-based algorithm [35, §7.2] and Nesterov’s algorithm [31] are
distributed only for star-shaped variables, they do not appear in these plots. Only the proposed
Algorithm 5 and the algorithm in [47] (see Algorithm 4) can handle generic connected variables. In
both plots, Algorithm 5 required uniformly less CSs than [47] to achieve any relative error between 1
and 104, Again, both algorithms required more CSs to converge in the smaller network A than in
the larger network B. The reason, as we saw for the other plots, is because each system in network A
can be unstable, while all systems in network B are stable. The value of p was the same for both
algorithms: 40 for network A in Figure 4.8(c) (precision 5), and 23 for network B (precision 1).

Finally, we present the results for a non-connected variable in Figure 4.9. Neither Algorithm 5
nor the algorithm in [47] are applicable in this case. However, they can be adapted to non-connected
variables, as described in Subsection 4.3.2. The generalization of Algorithm 5 yields Algorithm 6,
and the exact same generalization can be applied to the algorithm in [47]. Figure 4.9 shows
that the behavior we had seen for the non-generalized versions of the algorithms in the previous
experiments translates into the generalized versions: Algorithm 6 requires uniformly less CSs than
the generalized version of [47] to achieve any relative error between 1 and 10~%. Note that, although

we used network A in these experiments, we guaranteed that all the systems were stable.
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Chapter 5

Conclusions and Future Work

We restate our main problem

minimize fi(zg,) + fao(zs,) + - + fr(zsy) - (P)

z€R™

and recall the main goals of this thesis, as presented before in Chapter 1:

We aim to design, analyze, and implement algorithms that solve optimization problems of
the form (P) on networks. The algorithms should be

Distributed: no node has complete knowledge about the problem data and no central
node is allowed; also, each node communicates only with its neighbors;

Communication-efficient: the number of communications they use is minimized;

Network-independent: the algorithms run on networks with arbitrary topology and
their output is independent of the network.

First, we summarize our contributions to achieve this goal and discuss current limitations; then,

we describe potential future work.

5.1 Major contributions

We group the contributions of the thesis into the following categories:

e Classification scheme. The optimization problem (P) is quite generic because each function
may depend on an arbitrary subset of components of the optimization variable. This makes

the design of a distributed algorithm a challenging task. We solve this problem with a

111
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classification scheme that allowed us to first identify particular instances of (P) that are
easier to solve in a distributed way. After that, we generalized the algorithms to solve larger
classes and eventually all problems of the form (P). Besides helping us develop our algorithms,
our classification scheme is also useful to categorize applications and to organize prior work

on distributed optimization.

Algorithms. Based on the proposed classification scheme, we developed a set of algorithms
that solve subclasses of distributed optimization problems of the form (P). Each algorithm
was built from a previous one, by modifying it to increase generality. Our most general algo-
rithm solves (P) in full generality. Our algorithms satisfy all the requirements we had set forth:
they are distributed, network-independent and, most significantly, they are communication-
efficient. Under certain conditions, they are proven to converge to the same solution as a
centralized algorithm and, as shown through several experiments, they usually outperform
prior distributed optimization algorithms; namely, they use systematically less communi-
cations to achieve a prescribed solution accuracy. A surprising fact is that, despite their
generality, they sometimes even outperform distributed algorithms that were designed for

specific applications.

Applications. We applied our algorithms to several known distributed problems, and also
proposed new applications for them, such as several instances of compressed sensing (or sparse
approximation) problems. Namely, we solve the three most important optimization problems
in compressed sensing in both the cases where the sensing matrix is partitioned vertically (by
rows) and horizontally (by columns). We also propose a new, more general framework for
distributed model predictive control (D-MPC). This framework models scenarios where, for
example, two dynamical systems that are coupled through their dynamics do not communicate
directly. Thus, it is useful in scenarios where establishing communications between systems

is expensive.

Implementation and benchmarking. Since there are no tight lower bounds on how many
communications are needed to solve (P) in a distributed setting, the performance assessment of
our algorithms had to be done by comparing them to other prior distributed algorithms. This
involved implementing both our algorithms and the algorithms for which no implementation
was publicly available. We performed several experiments on different types of networks and
for different applications where all the algorithms were compared. The size of both the data
and the networks varied considerably. For example, the smallest network had only 10 nodes,
while the largest one had around 5000 nodes. As mentioned before, these experiments enabled

us to confirm the communication-efficiency of our algorithms.
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5.2 Current limitations

Despite the excellent communication-efficiency of our algorithms, they still have several limitations:

e Selection of p. The algorithms we proposed are based on an augmented Lagrangian method
called multi-block alternating direction method of multipliers (ADMM). Augmented La-
grangian methods are generally parametrized by a scalar parameter, which we denote with p,
and their performance is strongly dependent on that parameter. Currently, there is no known
method for selecting p before the execution of the algorithm. And, although there are some
heuristics to adapt p while the algorithm is running, implementing those heuristics in dis-
tributed algorithms destroys their distributivity, since it requires aggregating information that
is spread over the entire network. Therefore, the performance of the algorithms we proposed
are conditionally dependent on a good choice for the parameter p. While in some situations it

is possible to select beforehand a good p using training data, this is still a current limitation.

e Convergence results. As mentioned, our algorithms are based on the centralized multi-
block ADMM algorithm. There is a proof of the convergence of this algorithm only in the case
where all the cost functions are strongly convex. Yet, it has been observed experimentally,
including in this thesis, that the multi-block ADMM converges for generic closed convex
functions. Proving its convergence for this case is, however, still a well-known open problem.
The lack of theoretical results for the multi-block ADMM transfers directly to our algorithms.
In particular, we could only prove their convergence for generic closed convex functions when
the network is bipartite. When it is not, our algorithms are only (theoretically) guaranteed

to converge when the functions associated to each node are strongly convex.

e Coloring scheme. All our algorithms use the concept of network coloring and require a
coloring scheme to be available before their execution. This coloring scheme is used by our
algorithms to synchronize the order of operation of the nodes. In many platforms, most
notably, in wireless networks, the nodes already have to operate with such a synchronization
scheme in order to avoid packet collisions. In those cases, our algorithms integrate naturally
with these low-level protocols. There are, however, some platforms that use other types of
protocols or that even all fully parallel communication. In those cases, the coloring scheme

required by our algorithms is clearly a limitation.

5.3 Future work

We see three main future research directions, as described next:
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e Algorithm analysis. We mentioned as a limitation of our algorithms the lack of convergence

results. This is closely related to the lack of convergence of the multi-block ADMM, a currently
well-known open problem. Therefore, results on this direction would have a significant impact
on the distributed algorithms we proposed. Also in this category is the task of developing
an heuristic to adapt the augmented Lagrangian parameter p during the execution of the

algorithm, and in a distributed way.

New distributed algorithms. Another possible research direction is the development of
new distributed optimization algorithms. The current most efficient algorithms are based on
ADMM, which can be viewed as an application of a monotone operator splitting method to
an optimization problem. Therefore, exploring monotone operator theory and devising new
splitting methods may yield new and more efficient distributed optimization algorithms. A
topic that became more relevant with the advent of the “big data” is privacy. In our view,
it would be interesting to study privacy guarantees offered by distributed algorithms in the

processing of distributed data.

New applications. Although there are many applications for distributed optimization,
including the ones presented in this thesis, the majority of them involve convex problems. Yet,
many optimization problems formulated on networks are inherently nonconvex, for example,
network coloring or the computation of Steiner trees. An interesting area to explore is the

design of distributed approximation schemes for these types of nonconvex problems.



Appendix A

ADMM-based Algorithms For The
Global Class: Derivation

In this appendix, we derive Algorithms 1 and 2, from Chapter 2. Although these algorithms were
proposed in [25] and [26], respectively, they were derived there for particular instances of the global
class (G). Here, we generalize them to solve the entire class. Before their derivation, we need some

identities for quantities defined on the edges of a network.

A.1 Network identities

Recall that we adopted the convention in Section 1.3.1 that if (i,7) € £, then i < j. The following

i

lemma will be useful for exchanging between “edge notation” and “node notation.

Lemma A.1l.

(a) Let ai; be any quantity associated with the edge (i,j) € €. Then,

P
S a =3 (X Y ) (A1)
(i,5)€& p=1 “jeN, JEND
p<J JI<p

Furthermore, if a;; = aj; for all (i,5) € €, (A.1) becomes

P

dooag=) ) ap. (A.2)

(i,5)€€ p=1jEN,

115



116 A. ADMM-based Algorithms For The Global Class: Derivation
(b) Let a;j and aj; be associated with edge (i,j) € £. Then,
P P
Z Z apj = Z Z Ajp - (A3)

p=1jEN, p=1jEND

Proof.

(a) We have

Dooag= Y apyt Y apt Y ag

(i,5)€€ (pj)e€ (i,p)e€ (,)€€
1,J#Pp
=D apt+ Y apt Y ay,
JEND JEND (4,4)€€
p<j Jj<p 1,J#p

and repeating iteratively for all P nodes,

When a,; = a;p, then

(b) There holds

P P

Do ap =D antd D ay

p=1jEN, €N p=1j€EN

P
= Z a1 + Z ai2+z Z Qpj
ieN1 i€N2 p=1 Ji/l\/’g
-7 b

and repeating for all nodes,

P
= Z Z @jp -
eENp

p=1j
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A.2 Derivation of Algorithm 1
We reproduce here problem (2.33), which was obtained as a reformulation of (G):

minimize  fi(x1) + fo(x2) + -+ fp(xp)

T,z

subject to x, =z;, jeENS, p=1,...,P.

Recall that each node p has two copies of the original problem variable x € R™: z;,, € R" and z, € R".
The collection of the z,’s and of the z,’s are z = (x1,...,2p) and z = (21,...,2p), respectively.
We can apply the 2-block ADMM (2.18)-(2.20) to this problem, seeing Z and z as the two block

variables. The augmented Lagrangian is

P P . P
(z,2;\) Z_: xp)+z Z )\;j(xp EZ_: Z Ha:p—zj|]2, (A.4)

p=1jeN;t Ljent
where \p; is the dual variable associated to the constraint x, — z; =0, and A = (..., Aj;,...) is the
collection of dual variables. We consider z as the first block variable, and z as the second block
variable.

Minimization in Z. Fixing Z and ) at ¥ and \*, respectively, Z is updated as

—argmm Z Z /\ 3: —zp) + pz Z H:E —sz (A.5)

p= 1]6N+ p= 1J€N+

where we used the identity (A.3). Note that we also dropped the first term in (A.4), since it does
not depend on z. Now, (A.5) decouples into P problems that can be solved in parallel. The problem

associated to node p is

. T
z£+1 = arg min Z /\?p ( ; Z Hzp—:EkH
*» ]'6./\/}:r ]6N+
D 1
—agmin — (X Ny +p 3 2 ) p 2By e,
Zp + +
JEN, JEN,

which has the closed-form solution

z;fH (Z/\ —I—pz )

p ]€N+

_sz/\ +1Z$§’ (A.6)

+ P +
JEN, JEN,
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where 7, = 1/(p(Dp + 1)).

Minimization in Z. Fixing Z and X at zZFT! and ¥, respectively, Z is updated as
g 3 40)+ X 5 o) 52 -4
p= 1]6N+ p= 1]6./\/'+

which decouples into P optimization problems that can be solved in parallel. The problem associ-

ated to node p is

k+1 = argmln Ip(xp) + Z )\ Ty — k“ Z l|lzp — zkHH
JEN ]€N+
p(Dp+1
= argmm Ip(zp) ( Z )\ —-p Z Z;?‘H) Tp + %”xpw’
jE/\f+ jEN}:r

and after completing the square,

. 1 2
= argmin fp(z,) + 5 | + Tp< Z )\];j —p Z Z;?Jrl) H
Tp P GEN FEN
P P
1 k41 k
= Prox, r (D 1 zj+ —Tp Z )‘Pj> , (A7)
JENT JENS

where the operator prox is defined in (2.34).

Update of the dual variables. According to ADMM (cf. (2.20)), each dual variable \p;,
for j € Np+ and p = 1,..., P, is updated as /\k+1 = /\k + ,0( ktl _ l?H'l). Node p, however,
does not need to know each individual A;;. In fact, (A.6) and (A.7) only depend on the sums
,u’; = JeN; /\;?p and 77]; =3 JeN )\’;j, respectively. And these sums (or better, these new dual

variables ji,, and 7,) can be updated as

1 1
k+1 k+1 kl kl k k+1 k+1
gt = 3D N = 3T M 2 @ =) =+ —( >ttt
. Tp\Dp+1
JENF JENT JENF JEN,S
———
I
1 1
k+1 k+1 kl kl k k+1 k+1
77P+ - Z)‘Jr Z)‘ +PZ " +)_np+_(xp+ D sz+)'
Tp p+1
JENT JENF JENF JEN,
——
U

These updates constitute step 5 of Algorithm 1. If we replace Y JeNT /\;?p in (A.6) and Zj Nt )\I;j
p
in (A.7) by ,u'; and 7]5, respectively, we get steps 3 and 4.
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A.3 Derivation of Algorithm 2

The reformulation [26] makes of (G) is (2.35), which we reproduce here:

ming_cirznize fi(xy) + fa(ze) + -+ + fp(xzp)
subject to x; = 25, (i,j) €€
Lj = Zij s (27.7)65

Associating the dual variables A;; to the first set of constraints and 7;; to the second one, the

augmented Lagrangian is

P

_ p p

L@ zam =3 foleg)+ X (Nt = i)+ n oy = 25) + Bl = 2P+ By - 2P
p=1 (i,4)€€

(A.B)

where A (resp. n) is the collection of the dual variables \;; (resp. 7;;). The 2-block ADMM (2.18)-

(2.20) applied to this problem translates into

M = argmin L,(z, 2% A%, n*) (A.9)
T

21 = argmin L,(z", 7 A%, ") (A.10)
z

M= A et =2, (i) €€ (A.11)

it =l 4 p(al T = 25T (i) € €. (A.12)

We first analyze the minimization with respect to z, (A.10); then, we analyze the minimization with
respect to z, (A.9); and, finally, we will see how to simplify the updates of the dual variables (A.11)
and (A.12).

Minimization in Z. Since the augmented Lagrangian is quadratic in z, problem (A.10) has a

closed form solution. To compute it component-wise, just select (i,7) € £, and

O o kil o\k Lk Kok K+l ket K+l ket
921, Ly(x", 2, A, ") ot =0 <= —(\;+tm;)—pla™ - Zi ) — P(xj — 2 ) =0
1] 11‘]
)\k + k. g;’.f"_l + g;’?"_l
= M= ”2p77” + - 5 / (A.13)

Replacing (A.13) in (A.11) and (A.12), we get, respectively,

AE 4+ T]k gkl + gkl e nk ghtl _ ph+l
k+1 _ \k k+1 _ 2ig Tl i J _ g i J
Aij = At (513@ T T2, 5 ) =T T 9 (A.14)
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T Y S S S oo
k+1 _ K k+1 i g i J _ Mg T g J i
Mg~ = iy +p (%’ - 2 - 9 > = 9 +p 9 (A.15)
Note that if we sum up (A.14) and (A.15), we get
)\Zfl + nfj“ =0, (A.16)

which holds for all k¥ > 1. Let us assume that it also holds for £ = 0, i.e., )\% and 7]% are initialized

with symmetric values. Then, the first term in (A.13) is zero, and updating z;; simplifies to

k+1 k+1
x; T+ x
PR S B (A.17)

Similarly, the updates of the dual variables, (A.14) and (A.15) simplify, respectively, to

R kel

k+1 _ \k i
Aij  =Aijtp 3 (A.18)
k+1 ket
" — "
=g (A.19)

Since we assume that writing (4, j) € £ means that i < j, the sets of dual variables \;; and 7;; are
only defined for i < j. Let us extend their definition in a meaningful way, i.e., such that (A.18)

and (A.19) make sense. Then, for ¢ > j, we define )\fj and nfj, respectively, as

A=, 0> (A.20)
=N i>7. (A.21)

Next, we use the identity (A.16), which holds for all &k, and the simplified updates (A.17), (A.18),

and (A.19) to find a simple expression for the minimization in z, (A.9).

Minimization in Z. If we set z; = 2k

i Nig = )\fj, and n;; = nfj in the augmented La-

grangian (A.8), the second term becomes

ET k ET k P k P k
Z (Aij (zi — 2zi5) +mi; (w5 — 25) + 5”952 - Zz'jH2 + 5”% - Zin2> (A.22)
(i,)€€
T T p p
- > (Ai@ wi gy wy— (N ) 2+ gl — 2507+ Sl - zfj\|2> : (A.23)
(n)e€ —
T T p
= > (M m M )+ 5 > (ll2s = 25517 + Il — 2512) (A.24)
(i,5)€€ _ (i,9)€€

=ayg :Zbij



A.3. Derivation of Algorithm 2 121

From (A.22) to (A.23), we just rearranged the first two terms in the sum and used identity (A.16).
From (A.23) to (A.24), we used definition (A.20). Now note that a;; = a;; and also that b;; = bj;
(since, by (A.17), zfj = zﬁ) By identity (A.2) in Lemma A.1, we can write (A.24) as

P P
>3 (M et X ) ¢ g; ;v(uxp— Bl + Nl = 2351

p=1jeN,
P P
B SD I RS Sh 3p) gz > llap = 27 + pz > Nl =zl (A25)
p=1jEN, p=1j€EN, =1jEN, p=1jEN,
P P
=23 3 0 T > Y a2 (A.26)
p=1jeN, p=1jeN,

From (A.25) to (A.26), we used identity (A.3) from Lemma A.1 in the second and fourth terms,
and also that zfj = zfz We can now write (A.26) as

P P T
DS <2A§fmp+pl|:cp—z§ju?) => > <(2A’;j = 2025) @+ ol + ol )

p=1j€EN, p=1jEN,
P
=2 (23 N2 3 o) oDy (Il 51P)
p=1 JEND JEND
—_———
=pk
(A.27)
N kYT 5
=> (=203 2t) wp+ oDy (llzpl + l125511) )
p=1 JEN,
(A.28)
Therefore, updating z as in (A.9) amounts to
P T
z"*! = arg min Z(fp(xp) + (MII3 ~2p > Zzlgj) Tp + prprHQ) ) (A.29)
v p=1 JEN,

where we dropped ||z1’§j |? in the last term in (A.28), since it is independent of the problem variable Z.
Problem (A.29) yields P independent optimization problems, each depending only on an z;, which

can be executed in parallel. The problem associated to node p is

-
x’;“‘l =argmin fy(zp) + (ulg —2p Z Zﬁj) @p + pDy|ap

Tp JEND
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2

argximn fp(zp) + pDp|lz ( Z Zpj — 2pD ) (A.30)
= proprfp( Z zp] Tp,u';) (A.31)
P jeN,
1
= prox, s, <ﬁ Z (:EI; + $§) - Tp,uI;> . (A.32)
P jeN,

From (A.30) to (A.31), we used the definition of the prox operator (2.34) and 7, = 1/(2pD,).
From (A.31) to (A.32), we replaced z cas in (A.17).

Update of the dual varlables. Each node p does not need to know each individual A;;
associated to its incident edges. In fact, as shown in (A.27), it only need to know ,u’; =2 jeN, /\k .
According to (A.18), this variable is updated as

1 1
k+1 _ k+1 k-‘rl k-i—l k k+1 k+1
=2Y M2 SNk S (@ )=y g (o = 5 D ab). (A3
JEND JEND JEND p P jeN,
———
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We thus see that (A.33) corresponds to step 4 in Algorithm 2, while (A.32) corresponds to step 3.



Appendix B

Some Conjugate Functions

In this appendix, we compute some conjugate functions that appear throughout the thesis, espe-

cially in compressed sensing problems.

£1-norm plus quadratic regularization. In Subsection 3.2.2, we reformulate BP (3.4) as
a problem in the global class (G). That reformulation uses duality and, in (3.19), we use the
convex conjugate of the function h(z) = ||z|j1 + (c¢/2)|z||*> where the term ||z||? plays the role of a
regularization function. We now show that the convex conjugate of h has a closed-form expression.

Suppose x € R™. We have
c
W*(A) = sup Az — ||zfh — §||96H2
xr
o Chon2 AT
= —inf [lall + S llal? ~ AT
n
. C o
i=1""
Applying the optimality condition for convex problems to the problem in the ith component,
0 € 0|x;| +cay — N (B.2)

When z; > 0, d|x;| = {1}, and (B.2) becomes x; = (\; —1)/c. This happens when \; > 1, otherwise
the expression would give a negative x;. Similarly, when z; < 0, d|z;| = {—1}, and (B.2) becomes
x; = (A +1)/c. This expression is negative when \; < —1. Finally, when z; = 0, 0Jz;| = [-1,1],
and (B.2) becomes the condition under which z; = 0: |\;] < 1. This explains expression (3.20).

£o-norm plus quadratic regularization. Here, we derive (3.45), which is a closed-form

expression for the conjugate of the function h(z) = ||z|| + (¢/2)|/x||?, where || - || is the fy-norm.
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The convex conjugate of h is

* C
W7 (A) = sup A —|lz]| — Sll=l® (B.3)

= —inf ||| + ngH2 Az, (B.4)

The subgradient of the norm function is

B(0,1) ,z=0
8llx\|={ . 0
W 7$7é )

where B(0,1) = {z : ||z|| < 1} is the ball with radius 1, centered at the origin. The optimality
conditions for (B.4) then tell us that = 0 if ||| < 1 and that, for « # 0,

X
O0=—4+cz—\. B.5
2l (B-5)

From (B.5), we first find the norm of z and then compute an expression for z. To find the norm
of z, first rewrite (B.5) as A = (1/|z|| + ¢)z, and compute the squared norm of both sides of the
equation. This yields

1 2
(o) I =1 = 12elel + el = NP,

which is a quadratic expression on ||z||?. Solving the quadratic equation, gives us ||z|| = (||| —1)/c,

which is positive because ||A]] > 1. Replacing in (B.5) gives

1 1
:E:E(l—m)/\.

To compute the value (B.4), just take the inner product of (B.5) with = and subtract (¢/2)||z||? to
both sides of the equation. This gives

—sllel = flal + Slle]* = ATa
Using the expression for the norm of x, we get
) = o= (M2 = 27 + 1),
2c

for ||[A|| > 1. This explains (3.45).



Appendix C

ADMM-based Algorithm For The

Connected Class: Derivation

In this appendix, we derive Algorithm 4, an ADMM-based algorithm presented in Chapter 4 that
was proposed in [47] to solve (P) with a star-shaped variable. That algorithm can be easily gener-
alized to a generic connected variable, as we do next. To do that, we apply the 2-block ADMM to

the reformulation (4.20), reproduced here for convenience:

inimi (1) (2) (P)
minimize 2 )+ @)+ + filx
{20, fl( 51 ) fl( 52 ) fl( Sp ) (C,l)

subject to wl(p):zl{p’j}, leS,nNS;, jeN,, p=1,...,P,

whose variable consists of Z := {Z;}]";, and z := {%}]",. The augmented Lagrangian of (C.1) is

)\m p Zl{pJ}) + ngl(p) _ Zl{p,j}Hz} 7 (©2)

LR WICIED 33>

p=1jeN, 1€S,NS;

Note that AP 7 and /\{p are associated to different constraints. The 2-block ADMM (2.18)-(2.20)

applied to this problem translates into

zhtl = arg%nin Lp(a?,ik;;\k) (C.3)
ZFHl = argmln L,(ZFF1, 2 \F) (C.4)
)\gyj,k:—i—l )\pjk+p( (p),k+1 _ {p,j},k+1) (C.5)
)\{p,kﬂ )\Jp, —l—p( (G)k+1 {ij}7k+1)' (C.6)
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As in the derivation of Algorithm 2 in Appendix A, we first analyze the minimization with respect
to z, (C.4); then, we analyze the minimization with respect to z, (C.3); and, finally, we will see

how to simplify the updates of the dual variables (C.5) and (C.6).

Minimization in Z. No function f, depends on any component of z, which means that (C.4)

is an unconstrained quadratic program and, thus, it has a closed-form solution. Furthermore, it

decomposes across each component. In particular the minimization with respect to zl{p a zl{j P}
is
. T . . 2
Zl{p,]},k—l—l — argmin )\;lnj,k (xl(;n),k—l—l B Zl{;n,y}) + B":El(p),k+1 B Zl{p,J}H
Zl{p,j} 2
p kT (k1 Apdty 4 P G)k+1 __{pg}||?
+ X7 (2 =)+ 5”331 —Z H
. . . ) T ;. . T .
— argmin — ()\?J,k + )\gp,k)Tzl{pJ} _i_pHZl{pJ}H —pa:l(p)’kH Zl{m} - pwl(])’kH zl{p’j}
{r.s}
21

. . , T . 2
. k & K+l Kl ; 7
=argmin — (/\fﬂ + /\{p + p( l(p) + xl(J) )) zl{pj} pHZl{p J}H

Zl{p,j}
j K ip,k (p),k+1 (49),k+1
_ /\f] + )\fp N ajlp + azlj ' .7
2p 2

Replacing (C.7) in (C.5) and (C.6), we get, respectively,

k| \ipk 1 ), k1
PR 3Py (:E(p),k+1 NN g;l(p) + a:l(J)
! ! l 2 B

NPIR  \JP R P k-+1 ),k+1
= 7l 5 L4 §(ajl(p)’ — xlm’ ) (C.8)
ik in,k Jet1 ), k1
APRFL _ yipk p($(j),k+1 B APBE 1 \JP B g;l(P) + a:l(J)
1 1 l 2 5

Jp.k pJ,k
_NT N

o+ (M g (C.9)

l l

Summing (C.8) with (C.9), we get

j,k+1 ip,k+1
)\?]7 + +)\.l]p7 + :O

)

which holds for all k£ > 1. Let us assume that it also holds for k = 0, i.e., A 7 and )\{p are initialized

with symmetric values. Then, the first term in (C.7) is zero, and updating zl{p ) simplifies to

) (p),k+1 (4),k+1
N S iy 10
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{p.j}

Minimization in Z. We now turn to the minimization in z (C.3). If we fix each z, (Pihk

at z;
and each )\f J at )\f J ’k, the augmented Lagrangian (C.2) is the sum of p terms, where the pth term
depends only on zg,. Thus, problem (C.3) decomposes into P optimization problems that can be

solved in parallel. The problem associated with node p is

k1 . ik T Yk P &
:Eg;) = argmin f, :ng;) + Z Z )\f] (xl(p) - zl{m} )+ —H:El( zl{m} H }
m(s’;) JEN, 1€S,NS; - 2
1 [ '7k p ) j 7kT
= argmin f, a:g;) + Z Z A p H H pzl{m} xl(p)] (C.11)
m(s’;) JEN, 1€S,NS; -

)
)
o 5 o] e
)
)
)

(

(

= argmin f, (azsp

= argmin f, (:17 s,
(
(

(p)
Sp

I S T DD o E |

x leSy jJENNY, lesp JENNV,

= argmin f,(zg
) P
Sp

T R T L ¥ L CIE

leSy JENNV, lesp

= argmin f, Tg,

PYT (L 1 o) o 4 2 Y el

xgg 1€S, JENNV, zes,,
(C. 14)
= arg min fp( ) + Z( pJa:l(p) + Z xl(j)’k ) Pyl Z Dy, Hxl ‘ )
xgg 1€S, FEN,NV, lesp
(C.15)

where D, ; is the degree of node p in the subgraph induced by z;, G;. From (C.11) to (C.12),
we used the fact that, for a fixed node p, > jcn;, Zies,ns, (1) = Zies, ZjeNpmjl(-). From (C.13)
o (C.14), we used (C.10). Finally, from (C.14) to (C.15), we defined ’y(p) = > ieN,n, pLES

Update of the dual variables. Note from (C.15) that node p depends only on 71(7’ -
D ieN,V N 7% and not on the individual AP Js. Using (C.5), the update of 7(1) I comes as

(p),k+1 _ pj,k+1
M = Z Al
JENNV,

JENLNV,
= (p)»k

K41 Gyl
_,Yl(p) T Z (xl(p) + _Zl{pa} +)
JENLNV,
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(p),k+1 (4),k+1
ke k+l1 X +z
_ ’Yl(p) T Z (xl(p) _ M . !
JENLNV,
_ ok P (p),k+1 (4),k+1
JENNV,

(C.16)

where we have used (C.10). We thus see that (C.16) corresponds to step 6 of Algorithm 4,

while (C.15) corresponds to step 4.
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