Completing Manipulation Tasks Efficiently
in Complex Environments

Christopher M. Dellin
September 30, 2016

CMU-RI-TR-16-53
The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Siddhartha Srinivasa, CMU RI (Chair)
Anthony Stentz, CMU RI
Maxim Likhachev, CMU RI
Lydia Kavraki, Rice University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © Christopher M. Dellin

2 CHRISTOPHER M. DELLIN

Abstract

An effective autonomous robot performing dangerous or menial tasks
will need to act under significant time and energy constraints. At task
time, the amount of effort a robot spends planning its motion directly de-
tracts from its total performance. Manipulation tasks, however, present
challenges to efficient motion planning. Tightly coupled steps (e.g. choices
of object grasps or placements) allow poor early decisions to render sub-
sequent steps difficult, which this encourages longer planning horizons.
However, an articulated robot situated within a geometrically complex and
dynamic environment induces a high-dimensional configuration space in
which it is expensive to test for valid paths. And since multi-step plans re-
quire paths in changing valid subsets of configuration space, it is difficult
to reuse computation across steps.

This thesis proposes an approach to motion planning well-suited to
articulated robots performing recurring multi-step manipulation tasks in
complex, semi-structured environments. The high cost of edge validation
in roadmap methods motivates us to study a lazy approach to pathfind-
ing on graphs which decouples constructing and searching the graph
from validating its edges. This decoupling raises two immediate questions
which we address: (a) how to allocate precious validation computation
among the unevaluated edges on the graph, and (b) how to efficiently
solve the resulting dynamic pathfinding problem which arises as edges
are validated. We next consider the inherent tradeoff between planning
and execution cost, and show that an objective based on utility functions is
able to effectively balance these competing goals during lazy pathfinding.
Lastly, we define the family motion planning problem which captures the
structure of multi-step manipulation tasks, and propose a related utility
function which allows our motion planner to quickly find efficient solu-
tions for such tasks.

We assemble our algorithms into an integrated manipulation plan-
ning system, and demonstrate its effectiveness on motion and manipu-
lation tasks on several robotic platforms. We also provide open-source
implementations of our algorithms for contemporary motion planning
frameworks. While the motivation for this thesis originally derived from
manipulation, our pathfinding algorithms are broadly applicable to prob-
lem domains in which edge validation is expensive. Furthermore, the
underlying similarity between lazy and dynamic settings also renders our
incremental algorithms applicable to conventional dynamic problems such
as traffic routing.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

Acknowledgements

Thanks first and foremost to Sidd, whose advice and guidance were
indispensable for this thesis — countless whiteboards replete with ver-
tices and edges, C’s and queues, each captured by a smartphone photo
at the end of a meeting. I was also exceedingly lucky to have such a dis-
tinguished committee — Tony, Max, and Lydia provided not only an ex-
traordinary body of work on which to build, but also an array of helpful
comments and suggestions which greatly improved this dissertation.

Robotics research thrives on real hardware and real applications, and
my experiences on the CHIMP and ARM-S projects at the NREC were
pivotal to motivating and grounding my work. Thanks especially to
Tony, Drew Bagnell, Clark Haynes, Mike Van de Weghe, Kyle Strabala,
Jordan Brindza, David Stager, Eric Meyhofer, Brian Zajac, Sean Hyde, Jean-
Sébastien Valois, Tom Galluzzo, Moslem Kazemi, and everyone else who
made those projects such a fun and rewarding time for me.

I could not have asked for a better working environment (or a bigger
desk) than what I found at the Personal Robotics Lab — but more impor-
tantly, the people are motivated, amazingly smart, and always available for
a brainstorming session, technical discussion, code review, practice talk, or
free lunch. Thanks especially to Mike Koval, Jen King, Aaron Johnson, and
Shushman Choudhury for your help and critical comments, and to Clint,
Gilwoo, Laura, Rachel, Pras, Pyry, Shervin, and Stefanos, for being such
great colleagues and friends.

I am eternally grateful to my parents, who provided boundless love and
support — and also very persistent encouragement while this dissertation
on lazy coloring was in the pipeline. And to my fiancée Anca, I cannot
imagine a more compassionate critic, a better friend, or a more dedicated
partner. Thank you for giving me your enthusiastic support and your
insightful advice. I certainly could not have finished without you!

This dissertation would not have been possible without funding from
National Science Foundation IIS (#1409003), Toyota Motor Engineering &
Manufacturing (TEMA), and the Office of Naval Research.

3

Contents

Introduction 9

1.1 Problem Characterization 9
1.2 Qutline of Approach 10

1.3 Summary of Contributions 12

1.4 Review of Experimental Platforms and Problem Instances

Roadmap Methods for Motion Planning 15
2.1 The Motion Planning Problem 15

2.2 Motion Planning by Discretizing C-Space 17
2.3 Obstacle Sensitivity 19

2.4 Roadmap Classes 22

Fast Pathfinding on Graphs via Lazy Evaluation
3.1 The Shortest Path Problem 25

3.2 Lazy Shortest Path Algorithm 27

3.3 Edge Equivalence to A* Variants 30

3.4 Novel Edge Selectors 35

3.5 Experiments 38

3.6 Discussion 39

Incremental Bidirectional Search 43

4.1 Problem Definition 44

25

13

6 CHRISTOPHER M. DELLIN

4.2 Review of Pathfinding with Distance Functions
4.3 Incremental Bidirectional Search 53

4.4 Heuristic Search 56

4.5 Experimental Results 62

4.6 Available Implementations 66

Maximizing Utility in Motion Planning 67

5.1 Motivation and Related Work 67
5.2 Utility in Motion Planning 70
5.3 Marginal Utility on Roadmaps 75
5.4 Experiments 80

5.5 Discussion 83

Planning over Configuration Space Families
6.1 Related Work 85

6.2 Motivation: Families in Manipulation Tasks 87

6.3 The Family Motion Planning Problem 92
6.4 Approach: A Utility Model over Family Beliefs

6.5 Application: Multi-Step Manipulation Tasks 97

6.6 Implementation Details 100

Conclusion 101

7.1 Summary and Contributions 101
7.2 Future Directions 105

7.3 Lessons Learned 115

7.4 Concluding Remarks 116

Appendix: LazySP Proofs and Timing Results

A.1 LazySP Proofs 119
A.2 LazySP Timing Results 122

85

119

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 7

Appendix: Incrementally Calculating Partition Functions on Graphs 125
Appendix: IBiD Proofs 129

Appendix: LEMUR Results 133

Appendix: Family Motion Planning 135

List of Figures 137

List of Iables 147

Bibliography 149

1
Introduction

Technology has automated an increasing variety of difficult, danger-
ous, or menial tasks previously performed by humans. Computer
algorithms now trade our stocks, route our telephone calls and pack-
ages, and fly our planes, while simple machines clean our clothes
and wash our dishes. Recent advances may soon enable real-world
navigation applications such as autonomous automobiles and drones.

More complex tasks require robots with many degrees of freedom.
Manipulation tasks, in particular, present challenges in many areas
including perception, symbolic reasoning, and motion planning. Suc-
cessful applications have so far been largely confined to large-scale
manufacturing domains whose prescribed and structured environ-
ments allow these challenges to be overcome.

But what of applications such as home assistance, disaster re-
sponse, and small-batch manufacturing? The robots of tomorrow
will be required to plan high-dimensional motions in the face of ge-
ometrically complex and changing environments, and do so under
significant resource constraints.

This thesis proposes an efficient motion planning approach well-
suited to articulated robots performing recurring multi-step
manipulation tasks in complex, semi-structured environments.

We begin by characterizing the challenges inherent in motion
planning for manipulation tasks. We then detail a concerted set of
insights which inform our approach. The result is a collection of
complementary algorithms which together outperform the current
state-of-the-art.

1.1 Problem Characterization

Planning motions for articulated robots performing manipulation
tasks presents a number of challenges, which we survey here.
A performant motion planner is only one component in a larger

10 CHRISTOPHER M. DELLIN

robotic system, which for many tasks must consider uncertainty,
constraints, motion control, and error recovery.

High Dimensionality. The continuous configuration spaces induced
by robotic arms often have higher dimensionality than typical vehicle
navigation problems. Depending on the class of approach used, this
manifests itself as high branching factors or costly nearest-neighbor
queries, and calls for intelligent discretization schemes.

Expensive Validity Checking. The robot and its environment are ge-
ometrically complex. Homes and disaster areas are cluttered, and
arms with revolute joints render corresponding configuration space
obstacles intractable to consider explicitly. Further, since manipu-
lation tasks require motions that begin and end close to collisions
with objects, geometric models must have sufficiently high fidelity

to disambiguate feasible paths from colliding ones. Testing candi-
date motions for collision therefore entails a large computational cost
during planning.

Planning vs. Execution Effort. The robot must allocate its limited
resources (e.g. time and energy) between planning motions and
executing them. To maximize task efficiency, it is essential that mo-
tions be neither under-optimized (leading to costly execution) nor
over-optimized (resulting in long planning pauses). This balance

is especially important for tasks with or around humans, who are
particularly intolerant of both unpredictable motion and planning
pauses.

Semi-Structured Environments. The robot must continually generate
planned motions in partially changing environments. This is espe-
cially evident when planning for manipulation tasks, where each
object grasp and placement changes the collision-free subset of the
robot’s configuration space.

1.2 Outline of Approach

This dissertation develops an approach to motion planning for artic-
ulated robots which addresses these four challenges. We provide an
outline of the thesis in Figure 1.1.

Roadmap Methods for Motion Planning (Chapter 2). We begin by re-
viewing the definition of the motion planning problem in terms of
the robot’s configuration space. We examine several existing ap-

proaches from the literature, including commonly-used sampling-

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 11

Motivation: Motion Planning for Manipulation Tasks

\
Chapter 2:

Review of Roadmap Methods
for Motion Planning

l— How to Optimize? —l 17 What to Optimize? _l

Chapter 3: Chapter 4: Chapter 5: Chapter 6:
Fast Pathfinding Bidirectional Maximizing Utility Planning over
via Lazy Evaluation Incremental Search in Motion Planning C-Space Families

Figure 1.1: Outline of the dissertation
document. Motivated by recurring
manipulation tasks, we consider two
timality properties. We motivate our focus on the broad class of questions: (a) how to optimize a motion
planning objective over a C-space

. . L. . roadmap, and (b) which objective best
lows it to be solved via pathfinding on a sequence of progressively captures the task’s planning/execution

based algorithms, and discuss their various completeness and op-
roadmap methods for solving the motion planning problem, which al-

densified graphs with a particular choice of edge weight function. tradeoff?
We also discuss the amenability of roadmap methods to caching and
parallelization.

Fast Pathfinding on Graphs via Lazy Evaluation (Chapter 3). While
roadmap methods effectively reduce the motion planning problem
to one of graph search, the properties of the graph representation
(in particular, that evaluating an edge’s weight entails costly colli-
sion checks) motivates a lazy approach to pathfinding. Inspired by
foundational algorithms such as D* [115] and the Lazy PRM [10], we
introduce the Lazy Shortest Path (LazySP) class of algorithms, which
relies on an inner incremental search algorithm and can leverage

an edge weight estimator. Importantly, LazySP enables the a choice
of edge selector, which strongly influences pathfinding performance.
We introduce and compare various simple and novel selectors, and
show equivalences with existing algorithms such as A* [47] and Lazy
Weighted A* [20].

Incremental Bidirectional Search (Chapter 4). LazySP relies on an inner
incremental search algorithm, such as DynamicSWSF-FP [98] or Life-
long Planning A* [67], to nominate candidate paths on each iteration.
However, the choices of selector and estimator strongly influence the
location of updated edges and the vertex heuristic that can be used.
This motivates the development of a new search algorithm, IBiD,
which combines bidirectional, heuristic, and incremental search into a
single generalized algorithm.

12 CHRISTOPHER M. DELLIN

Ch. Problem Algorithm Description
Lazy search with edge selectors
3 Shortest Path (SP) LazySP (induces an inner Dynamic SP problem)
4 Dynamic Shortest Path ~ IBiD Incremental Bidirectional Dijkstra’s algorithm
5 Motion Planning LEMUR Lazily Evaluated Marginal Utility Roadmaps

(accepts a domain-specific cost model)

6 Family Motion Planning Family LEMUR Express a C-space family as a LEMUR cost model

Table 1.1: Table of four computational

Maximizing Utility in Motion Planning (Chapter 5). Motion tasks ex- problems and the respective algorithms
. . developed in this dissertation.

pose a fundamental tradeoff between planning and execution cost.
We show how conventional motion objective models can be aug-
mented to include a planning cost term, and how such terms can be
combined into a single measure of utility, which we can then opti-
mize explicitly via particular weight and estimator functions using
LazySP. The resulting algorithm, Lazily Evaluated Marginal Ultility
Roadmaps (LEMUR), demonstrates improved performance across a
range of motion planning queries when compared to state-of-the-art
planners.

Planning over Configuration Space Families (Chapter 6). While utility
maximization shows benefits in single-query settings, many motion
tasks (such as manipulation problems) comprise multiple queries in
a family of related configuration space subsets. We show how such
problems can be formulated naturally via augmented cost models
with custom planning cost components. We demonstrate improved
performance in multi-step problem applications.

1.3 Summary of Contributions

We summarize the contributions of this dissertation here. A table of
the developed algorithms is presented in Table 1.1.

¢ The LazySP pathfinding algorithm for graphs with expensive edge
evaluations, along with accompanying novel edge selectors.

e The IBiD bidirectional, heuristic, incremental search algorithm.

® The LEMUR algorithm for maximizing utility in motion planning
problems.

¢ A formulation of the C-space family motion planning problem,
and an application of LEMUR to this formulation.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 13

(a) The HERB home robot experimental platform. (b) An ABB IRB 440 robot in an (c) The CHIMP disaster
industrial workcell. response robot.

. . . . Figure 1.2: The three robotic platforms
® An experimental evaluation of the above algorithms against a considered in this dissertation.

selection of motion planning problems drawn from manipulation
tasks.

* Open-source implementations” of the above algorithms for the
Boost Graph Library (BGL) [108], Open Motion Planning Library
(OMPL), [119] and OpenRAVE [28] software packages. "https://github.com/personalrobotics/lemur

1.4 Review of Experimental Platforms and Problem Instances

We consider a number of motion and manipulation planning in-
stances across three robotic platforms. The tasks performed by each
robot are described in more detail along with the experimental re-
sults in Chapters 5 and 6.

e Figure 1.2(a): HERB, the Home Exploring Robot Butler [112].
HERB is composed of 7-DOF Barrett WAM arms mounted on a
mobile base, and performs home tasks such as table clearing and
retrieving objects.

¢ Figure 1.2(b): IRB 4400, a compact industrial robot from ABB. We
consider a sheet metal bending application example in an indus-
trial workcell, which is reproduced from the Lazy PRM paper [10].

e Figure 1.2(c): CHIMP, the CMU Highly Intelligent Mobile Platform
[117]. We include results on planning data from the DRC Robotics
Challenge Trials in December, 2013.

2
Roadmap Methods for Motion Planning

Robots are fundamentally agents that move through the world, and
so the question of how to best deliberate about motion is a central
problem in robotics. Different tasks and problem domains expose a
vast array of qualities and properties of motion that are important —
for example, motion that is expressive, efficient, or expected — and
algorithms can rely on a rich and growing set of models and method-
ologies in order to generate such motion.

Underlying this rich tapestry of robotic motion is the most funda-
mental abstraction of motion planning — finding a path for a system
which accomplishes a motion task without colliding with obstacles.
While this might at first seem straightforward, finding such paths for
articulated robotics in complex semi-structured environments is no
easy feat, and finding such paths quickly and efficiently is of utmost
importance.

This chapter includes a brief introduction to the motion planning
problem. Due to its paramount importance to robotics, variations
on this problem have deservedly enjoyed a considerable amount of
attention over the past 40 years. We tailor our investigation towards
aspects of the problem that are relevant to this thesis — for a compre-
hensive treatment, we refer to LaValle [71] and Choset et. al. [18]. In
particular, we provide an overview of a class of approaches called

roadmap methods that are well-suited to motion planning for articu-
lated robots.

2.1 The Motion Planning Problem

The earliest studies of motion planning considered a single rigid

body moving within a Euclidean environment consisting of fixed ge-
ometric obstacles (Figure 2.1). Termed the FindPath or piano mover’s Figure 2.1: The original mover’s prob-
lem [106] entails finding a collision-free
path for a geometric body amongst
studied [84, 106], for small dimensionalities (e.g. two or three) and obstacles, or finding that no path exists.

problem, this representation and variations thereof were extensively

obstacle representations (e.g. polygonal regions). Importantly, these

16 CHRISTOPHER M. DELLIN

earliest problems exhibited two fundamental properties inherent in
all motion planning problems: (a) that solutions, called motions or
paths, are continuous, and (b) that the fundamental feasibility objec-
tive is binary, with any prospective path either infeasible (in collision)
or feasible (collision-free). The problem entails finding a feasible
solution path if one exists, or returning with failure otherwise.

The Configuration Space. A generalization of the piano mover’s prob-
lem commonly called the motion planning problem entails an abstrac-
tion of the single rigid body to an arbitrary configuration space (C-
space) [83]. Any point g in this abstract space C (see Figure 2.2) corre-
sponds to a full configuration of the system, such as the position and
orientation of a rigid body. Importantly, C can also capture the full
configuration (or joint) space of an articulated robotic manipulator.

Any point g € C corresponds to a particular geometric configura-
tion of the robot within its fixed environment. If this configuration
results in a geometric collision in the workspace (either between the
robot and the environment, or the robot with itself), this point lies
within a configuration-space obstacle, e.g. CO; in Figure 2.2. The union
of these configurations comprises the set of obstacle configurations
Cobs, and a configuration g is collision free if it is contained within the
complement of this set Cgree = C \ Cobs.

Paths in C. A continuous function ¢ : [0,1] — C of bounded varia-
tion is called a path, and let the set Z denote the set of such paths. We
can then establish path validity:

path ¢ is valid <= (t) € Ceee Vt € [0,1] (2.1)

We can capture this definition for use in an optimization framework
via the functional xy.54 : & — R shown in Figure 2.3.

The Motion Planning Problem. Consider a single-pair motion plan-
ning query u consisting of start and destination vertices gstart, Jdest €
C as well as a collision-free subset Cee. The motion planning prob-
lem consists of finding a valid path ¢* with {*(0) = gstart and
&*(1) = qGgest if one exists.

2.1.1 Optimal Motion Planning

The optimal motion planning problem is a generalization of the motion
planning problem which includes an additional objective over solu-
tion paths xin: : & — R intended to measure properties intrinsic to
the path. Common choices for xi,: include the path’s arc length, the
total time or energy necessary to execute the path, or the squared

|
CO |

(Jgoal
(start - j

CO2

Figure 2.2: The motion planning prob-
lem entails finding a continuous path
among obstacles in an abstract configu-
ration space.

N 0 if é(t) € Cfree vt
Xyalid [¢] = { oo otherwise

Figure 2.3: Path cost model for the
(feasible) motion planning problem.

Xint[¢] = La[¢]

Figure 2.4: Example dynamical path
cost function for the optimal motion
planning problem. Here, the arc length
of ¢ using the L, norm cost is used.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 17

time derivatives averaged over the path. See [61] for a comprehen-
sive treatment of sampling-based methods for the optimal motion

planning problem. An optimal motion planner typically
considers both feasibility dynamical
properties of candidate paths — this

2.1.2 Further Generalizations objective is simply Xopt = Xyalid + Xint-
We treat them separately because
There are a great number of further generalizations of the motion they exhibit fundamentally different

. tational profiles.
planning problem that we will not explicitly consider. For example, compuiationa’ profres

the kinodynamic planning problem includes the derivatives of the
configuration variables, and a solution to the kinodynamic problem
is called a trajectory. The objective used in optimal variants of the
kinodynamic problem often include terms which depend on the
control inputs (e.g. torques) required to execute the trajectory.

Constrained motion planning constitutes a different generalization.
A holonomic constraint on the configuration space, for example,
induces a subset (often a manifold) of the configuration space on
which planning is restricted. Various motion planners [7] have been
proposed to accommodate such constraints.

2.2 Motion Planning by Discretizing C-Space

While the generalized mover’s problem is computationally hard
[99], a large array of algorithms have been proposed that perform
well on a large range of typical instances. We give a brief review of
approaches to the motion planning problem that rely principally on
discretizations of the configuration space.

2.2.1 Building Graphs in C-Space

Testing Validity of Configurations. How can we establish the validity
of a configuration q? This question is especially delicate when the
geometry is complex and the configuration-space obstacles cannot be
represented explicitly. In this case, it is necessary to test prospective
paths for membership in Cgee using a predicate that we express as a
binary-valued indicator function,

lcgee : C — {True, False} st 1¢gee(q) = True iff g € Chee. (2.2)

Note that implementing 1¢g.. for an articulated robot entails comput-
ing the forward kinematics of the robot at the query configuration,
and conducting a collision check in the workspace.

Testing Validity of Paths. How can we establish the validity of a path
¢ according to (2.1)? There are many approaches that can be applied,
including C-space bubbles [97] and computing a path discretization

18 CHRISTOPHER M. DELLIN

resolution and corresponding workspace obstacle padding [4]. We
will generally assume that a functional variant of the indicator func-

tion is available: The experiments in this document com-
mit to a particular collision checking
Tafree : & — {True, False}. (2.3) resolution for motion validity.

Motion Planning as Pathfinding. Importantly, two paths ¢, and &y,
with &,,(1) = ¢.(0) can be concatenated to a path 4, with

1Efree (gub) A lEfree (gbc) — 1Efree (Cac) . (2'4)

This motivates approaches which maintain a graph structure of
smaller valid motions in the configuration space. Consider a graph

G = (V,E), with each vertex v € V a configuration g, € C, and each
edge e, € Eapath ¢, € Es.t. {(0) =gy and (1) = g0, and consider
vertices Usart, UVdest € V corresponding to query vertices Gstart, Jdest-
Then a path p through G from vyt t0 0gest, 0n which each edge e
has 1z (§e) = True, corresponds to a valid solution to the motion
planning problem.

Optimal Motion Planning as Pathfinding. Furthermore, if the intrinsic
optimization objective xin from Figure 2.4 is additive, then the optimal
motion planning problem can be solved on G via a shortest path
algorithm (at least up to the discretization afforded by the graph).
This is accomplished by defining an edge weight function w : E — R
by w(e) = xopt(Ce)-

A wide variety of approaches exist in the literature for construct-
ing, searching, and validating this graph for motion planning prob-
lems. We will broadly review a selection of different algorithms later
in this chapter (Section 2.3).

Other Approaches to Motion Planning. The motion planning problem
affords a number of different classes of algorithms, many of which
do not construct graphs of local motions in the problem’s configu-
ration space. Potential field methods [64] and navigation functions
[100] construct fields whose gradients can guide a path around local
obstacles. Trajectory optimization approaches are especially well-
suited to planning instances in which the basins of attraction are
large. Approaches such as CHOMP [122] and TrajOpt [105]) com-
mit to a trajectory representation for ¢ (1) and use require stronger
world descriptions (SDFs, convex obstacle decompositions) to make
local modifications to produce a new path ¢(2). Also, optimizers are
commonly used in lower levels to react to local changes (e.g. [97]).

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

2.3 Obstacle Sensitivity

Generally, graph-based motion approaches as described in Sec-

tion 2.2.1 require the following three processes: (a) constructing the
graph, (b) searching the graph, and (c) validating the graph. One of
the key differentiators between the many graph-building techniques
for motion planning is how they interleave these three processes.
This section considers one important factor: the degree of depen-
dence of the graph structure on the distribution of obstacles in the
scene. We broadly categorize algorithms into two groups: those that
are obstacle-sensitive, and those that are obstacle-insensitive.

2.3.1 Obstacle-Sensitive Approaches

In an obstacle sensitive approach, the graph is built incrementally,
and construction of new elements (e.g. vertices and edges) is directly
interleaved with validating those elements in response to the dis-
tribution of valid or costly states. These approaches might be best
understood as constructing an approximation to Cgee as directly as
possible.

Exact Algorithms. The earliest work on the motion planning prob-
lem studied exact or semi-algebraic algorithms which worked directly
on an explicit representation of the obstacles (e.g. polygons) in the
configuration space [83]. This formulation of motion planning was
shown to be PSPACE-hard [99, 16]. These approaches can guarantee
optimal solutions, and may be even be able to guarantee the validity
of certain edges by construction. However, they are difficult to ap-
ply to problems on articulated robots for two reasons. First, many
approaches are only applicable to problems in two or three dimen-
sions, or to robots with only translational degrees of freedom [62].
Second, an explicit representation of obstacles in the configuration
space is exceedingly difficult to achieve due to the nonlinearity in the
forward kinematics function. While some approaches are able to con-
struct explicit analytical or approximate configuration space obstacles
from workspace geometry (e.g. [88]), they are often only applicable to
simple kinematics.

Treebuilding Algorithms. Many approaches do treat the configuration
space implicitly (i.e. using indicator functions for validity checking as
described in Section 2.2.1). The most common algorithms simultane-
ously grow and validate trees, either unidirectionally from the vsgar
or bidirectionally from both start and goal configurations. At each
iteration, these algorithms use a sampling strategy to propose a new

19

20 CHRISTOPHER M. DELLIN

extension, and then augment their tree(s) if the new motion is found
to be valid. Key examples of this approach include Expansive Space
Trees (EST) [51] and Rapidly-exploring Random Trees (RRT) [70, 69].
The SBL planner [104] is a bidirectional variant of EST with lazy edge
validity checking.

Planning vs. Execution Cost. The foundational algorithms in this
category are primarily concerned with path feasibility — that is, the
objective xy,1iq from Figure 2.3; there is often no mechanism explicitly
biasing them to select low-cost paths. Therefore, solutions found
tend to be of low quality, and they are customarily optimized using

a path shortcutting algorithm in a post-processing phase before they
can be executed. More recent work has also focused on asymptot-
ically optimal variants of these planners [60, 61, 41, 48] which do
address more general cost objectives.

Advantages of Obstacle Sensitivity. One key advantage to obstacle-
sensitive approaches is that they only construct the graph structure
in the parts of the configuration space that are relevant to the plan-
ning query. The Voronoi sampling bias of the RRT or the importance
sampling of the EST attempt to focus graph construction in areas of
the configuration space which tend to find feasible paths quickly.
These techniques can also take account of the current distribution
and connectivity of the discretization in order to focus new samples
to their advantage (e.g. to address the narrow passage problem), such
as visibility tests [110] or the expansion phase of the original PRM
[63]. These heuristics can also be incorporated into sampling-based
planners as obstacle-based [11] or hybrid [52] sampling strategies.

An additional advantage of these approaches is that they handle
densification naturally. The graph structure is augmented automat-
ically, so the resolution of the discretization need not be explicitly
increased as the instance reveals itself to be more difficult.

2.3.2 Obstacle-Insensitive Approaches

In contrast to obstacle-sensitive approaches, the approaches we de-
scribe here commit to a particular discretization of the configuration
space a priori, independent of the distribution of obstacles. While
this simpler method forgoes some of the advantages of obstacle sen-
sitivity discussed previously, this independence does confer some
advantages of its own.

Roadmap Methods. The foundational obstacle-insensitive methods
particular to the motion planning problem are called roadmap methods.

We talk about this tradeoff between
planning and execution cost in detail in
Chapter 5.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

The term roadmap usually connotes a graph embedded in a continu-
ous ambient space in the presence of obstacles. Vertices in the graph,
which correspond to configurations in the configuration space, are
also called milestones. The first roadmap methods such as the Prob-
abilistic RoadMap (PRM) [63] initialized the milestones arrangement
from a uniform distribution over the free space.

Key to roadmap methods to motion planning is the concept of the
local planner which governs the validity of roadmap edges. Given two
configurations g4, 9 € C, the local planner considers a candidate
path ¢, between them. (A common implementation simply uses the
straight-line path in configuration space.) Edges are only attempted
when they meet certain restrictions, such as distance with respect to
some metric.

There are some variants of roadmap planners that are not indepen-
dent of the obstacle distribution. First, many roadmap planners make
use of a heuristic “expansion” step wherein additional samples are
added to the roadmap in order to increase its connectivity. Second,
edge connection rules that can forgo connections within the same
connected component.

Search-based Methods. Graph pathfinding algorithms such as A* [47]
are applicable to the motion planning problem if a suitable discretiza-
tion of the continuous space is considered. While roadmaps can serve
as this discretization, application of search-based methods often rep-
resents the space implicitly via a set of operators or motion primitives
which reproduce a regular lattice over the configuration space [92].
When the vertices comprising the lattice are rectangular (also called a
Sukharev point set [120]), search-based planning is also called “grid
search.” Such search methods can exploit a vertex heurstic, and many
heuristics have been proposed for articulated motion planning — the
most common of which compute a decomposition over the lower-
dimensional workspace to guide the search. Some methods [93]
exploit synergies between these different levels of planning to achieve
improved efficiency.

Lazy Validity Checking. Because obstacle-insensitive approaches
decouple graph construction from validity checking, it is often ad-
vantageous to defer the latter until it is necessary for solving the
query at hand. Lazy validity checking has been exploited in roadmap
methods such as the Lazy PRM [10, 48], search methods such as Lazy
Weighted A* [20], and methods which bridge the two such as Fast
Marching Trees (FMT*) [57] and Bidirectional FMT* (BEMT*) [114].
We discuss laziness in the context of graph search more comprehen-
sively in Chapter 3

21

22 CHRISTOPHER M. DELLIN

Adaptive Densification. One difficulty with these obstacle-insensitive
approaches is that they commit to a particular discretization, and
once their search is exhausted, they must return the best path found,
or report failure if no path was found. This property is known as
resolution completeness [17].

Many instances of prior work endeavor to progressively densify
their discretization until a suitable solution is found. Early examples
of this approach include hierarchical cell decompositions [34] and
workspace and C-space bitmap pyramids for search over potential
fields [4]. More recent asymptotically optimal motion planners such
as Lazy PRM* [48]. and BIT* [41] take a similar approach to progres-
sive densification, which we also adopt as described in Chapter 5 (see

Figure 2.5).
Figure 2.5: A stack of progressively
. ,/:7. o densified roadmaps over a given
’\ . N .« ® o ® configuration space C. Each deeper
) . \' < 0. }/ﬁ’\° . roadmap constitutes a more accurate
e ° —e . g . . o 40 A approximation to the true continuous
! /?o.' K\ > > —7 0'° ¢ '\ y o " }:’j\. problem space.
P 'j. - s o ® 7. . . ® e '\.\ o ® 2 o ©
* /e K\ ® /e o ~— o/ o ~—
L] L] L]

Advantages of Obstacle Insensitivity. The obstacle sensitivity question
represents an underlying efficiency tradeoff. Sensitive approaches
may be able to adapt their discretization more directly to local obsta-
cle distributions. On the other hand, insensitivity to obstacles admits
a number of efficiency advantages. Much of the nearest-neighbor
computation often required during graph construction can be cached
and amortized over all planning queries. Other properties of the dis-
cretization that are constant between similar planning instances can
also be shared as described in Chapter 6. This also allows these ap-
proaches to be more easily parallelized. For these reasons, this thesis
focusses on obstacle-insensitive roadmap methods.

2.4 Roadmap Classes

Roadmap methods operate over a graph constructed in the robot’s
configuration space. Roadmap milestones are commonly gener-

ated by a number of different types of point sequences, and edges
are considered between vertices pairs that meet certain constraints.
While most algorithms methods are generally agnostic to the class
of roadmap that they operate on, choosing a suitable class and its
parameters has a large effect on both theoretical and practical perfor-

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 23

mance.

Random Sequences. The original roadmap algorithms [63] operated
primarily over sets of vertices drawn uniformly at random from the
configuration space. Many more recent algorithms such as RRT* [60],
PRM* [61], FMT* [57], RRT* [3], and BIT* [41] make use of the same
uniform obstacle distribution. Such a distribution is attractive both
because it is simple to implement it because it allows for theoretical
properties such as completeness and optimality to be demonstrated
in probability.

Deterministic Sequences. Many researchers have examined whether
randomness is a necessary (or even beneficial) aspect of treebuilding
and roadmap planners [13]. This is especially relevant in the context
of comparing roadmap planners with search-based methods that
conventionally operate over lattices [72].

One of the most straightforward disadvantages of using a non-
deterministic sequence for each motion planning query is that the
constructed graph is different for each query. This makes it imprac-
tical to pre-compute and amortize nearest neighbor queries across
problem instances, as well as to pre-compute and cache edge states as
described in Chapter 6.

Further, theoretical properties of roadmap methods such as reso-
lution completeness and asymptotic optimality depend on properties
of the underlying point set such as its dispersion. Not only can the
dispersion of a set of randomly sampled points only be established in
expectation, but it is demonstrably larger than the dispersion of other
well-known point sequences, such as the Halton or Hammersley sets,
or the Sukharev grid. For an in-depth analysis of different point sets
for roadmap planning, see Janson et. al. [56].

Figure 2.6: Examples of three roadmap
types over the unit square: an axis-
aligned lattice (left), random geometric
graph (middle), and Halton graph
with primes (2, 3) (right). All three
roadmaps have a connection radius of
0.3. The latter two roadmaps have 30
vertices.

Connection Radii. Previous work [61] has established that a roadmap
planner which uses a uniformly randomly generated point set is
asymptotically optimal almost surely if the edge connection radius

r is sufficiently large w.r.t. the number the number of samples 7. In

24 CHRISTOPHER M. DELLIN

particular, it defines the critical value }:

1/d
eaphe)”

where d is the dimensionality of the configuration space, A;(-) rep-

resents the Lebesgue measure (e.g. volume), and ; is the Lebesgue
measure of the d-dimensional unit ball. Note that while other publi-
cations consider 7 to be the number of milestones in the collision-free
subset of the space (and therefore also rely on the measure of that
subset), we measure the volume of the entire C-space, and let n cor-
respond to the total number of vertices. We do this because we will
be determining the validity of roadmap edges in a separate step, as
described in Chapter 3.

Asymptotic optimality under uniform sampling requires an edge
connection radius 71eg:

1/d
Tog (1) = Y51 <log(n)> (2.6)

n

for some tuning parameter 7 > 1. Point sets with tighter dispersion
bounds, such as the Halton sequence, can exploit a smaller connec-
tion radius 710gl0g, @s described in detail in [56]:

logaog(n)))”?

p” (2.7)

7loglog(n) =7cH (

Roadmaps for Articulated Robots. We apply roadmap methods to
the three robot platforms from Chapter 1 in this thesis. We build
roadmaps directly in the configuration space of the robot. See Ta-
ble 2.1 for the roadmap parameters that we use.

HERB CHIMP IRB 4400

d 7 7 6

e 767 7-97 7-74
"og 2.83 2.93 2.41
Toglog ~ 231 2.40 1.90

Table 2.1: Table of roadmap connection
radii parameters for various scaling
rates across the different robot plat-
forms considered in this thesis. Radii
presented are for n = 10000 and = 1,
and are given in radians.

3
Fast Pathfinding on Graphs via Lazy Evaluation

The roadmap methods described in Chapter 2 create a discretization
of the configuration space using a graph G = (V, E). This allows
the motion planning problem to be solved by way of a pathfinding
algorithm on G — and there are a large variety of such algorithms
available in the literature to choose from. However, the computa-
tional efficiency of suitable algorithms depends intimately on the
underlying problem domain.

In this chapter, we consider the general shortest path problem with
a particular focus on domains (such as robot motion planning) where
evaluating the edge weight function dominates algorithm running
time. Inspired by lazy approaches in robotics, we define and investi-
gate the Lazy Shortest Path class of algorithms which is differentiated
by the choice of an edge selector function. We show that several al-
gorithms in the literature are equivalent to this lazy algorithm for
appropriate choice of this selector. Further, we propose various novel
selectors inspired by sampling and statistical mechanics, and find
that these selectors outperform existing algorithms on a set of exam-
ple problems.

Graph Weight Function Figure 3.1: While solving a shortest

o . path query, a shortest path algorithm
G= (V’ E) w:E— [O’ +oo] incurs computation cost from three
l l sources: examining the structure of the
graph G, evaluating the edge weight

h
Query u S Ortes.t Path | Path p* N function w, and maintaining internal
Algorlthm data structures.

3.1 The Shortest Path Problem

Graphs provide a powerful abstraction capable of representing prob-
lems in a wide variety of domains from computer networking to puz-
zle solving to robotic motion planning. In particular, many impor-
tant problems can be captured as shortest path problems (Figure 3.1),

26 CHRISTOPHER M. DELLIN

wherein a path p* of minimal length is sought between two query
vertices through a graph G with respect to an edge weight function
w.

Despite the expansive applicability of this single abstraction, there
exist a wide variety of algorithms in the literature for solving the
shortest path problem efficiently. This is because the measure of com-
putational efficiency, and therefore the correct choice of algorithm, is
inextricably tied to the underlying problem domain.

The computational costs incurred by an algorithm can be broadly
categorized into three sources corresponding to the blocks in Fig-
ure 3.1. One such source consists of queries on the structure of the
graph G itself. The most commonly discussed such operation, expand-
ing a vertex (determining its successors), is especially fundamental
when the graph is represented implicitly, e.g. for domains with large
graphs such as the 15-puzzle or Rubik’s cube. It is with respect to
vertex expansions that A* [47] is optimally efficient.

A second source of computational cost consists of maintaining or-
dered data structures inside the algorithm itself, which is especially
important for problems with large branching factors. For such do-
mains, approaches such as partial expansion [121] or iterative deep-
ening [68] significantly reduce the number of vertices generated and
stored by either selectively filtering surplus vertices from the frontier,
or by not storing the frontier at all.

The third source of computational cost arises not from reasoning
over the structure of G, but instead from evaluating the edge weight
function w (i.e. we treat discovering an out-edge and determining its
weight separately). Consider for example the problem of articulated
robotic motion planning using roadmap methods [63]. While these
graphs are often quite small (fewer than 10° vertices), determining
the weight of each edge requires performing many collision and
distance computations for the complex geometry of the robot and
environment, resulting in planning times of multiple seconds to find
a path.

As described in Chapter 2, we consider problem domains in which
evaluating the edge weight function w dominates algorithm running
time. In this chapter, we investigate the following research question:

How can we minimize the number of edges we need to evaluate
to answer shortest-path queries?

We make three primary contributions. First, inspired by lazy col-
lision checking techniques from robotic motion planning [10], we
formulate a class of shortest-path algorithms that is well-suited to
problem domains with expensive edge evaluations. Second, we show
that several existing algorithms in the literature can be expressed as
special cases of this algorithm. Third, we show that the extensibility

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

afforded by the algorithm allows for novel edge evaluation strate-
gies, which can outperform existing algorithms over a set of example
problems.

3.2 Lazy Shortest Path Algorithm

We describe a lazy approach to finding short paths which is well-
suited to domains with expensive edge evaluations.

3.2.1 Problem Definition

A path p in a graph G = (V, E) is composed of a sequence of adja-
cent edges connecting two endpoint vertices. Given an edge weight
function w : E — [0, +o0], the length of the path with respect to w is
then:

len(p,w) =Y w(e). (3.1)
ecp
Given a single-pair planning query u : (Ustart, vgoal) inducing a set of
satisfying paths P, the shortest-path problem is:

p* = argminlen(p, w). (3.2)
pePD,

A shortest-path algorithm computes a satisfying solution p* given
(G, u,w). Many such algorithms have been proposed to efficiently ac-
commodate a wide array of underlying problem domains. The well-
known principle of best-first search (BFS) is commonly employed to
select vertices for expansion so as to minimize such expansions while
guaranteeing optimality. Since we seek to minimize edge evaluations,
we apply BFS to the question of selecting candidate paths in G for
evaluation. The resulting algorithm, Lazy Shortest Path (LazySP),
is presented in Algorithm 1, and can be applied to graphs defined
implicitly or explicitly.

3.2.2 The Algorithm

We track evaluated edges with the set E.y,. We are given an estima-
tor function wes of the true edge weight w. This estimator is inexpen-
sive to compute (e.g. edge length or even 0). We then define a lazy
weight function wj,,, which returns the true weight of an evaluated
edge and otherwise uses the inexpensive estimator wes.

At each iteration of the search, the algorithm uses Wiazy to compute
a candidate path pcandidate by calling an existing solver SHORTEST-
PATH (note that this invocation requires no evaluations of w). Once a
candidate path has been found, it is returned if it is fully evaluated.
Otherwise, an edge selector is employed which selects graph edge(s)

27

28 CHRISTOPHER M. DELLIN

Algorithm 1 Lazy Shortest Path (LazySP)

1: function LAZYSHORTESTPATH(G, U, W, West)
2: Eeval < @

3 Wiazy(€) < West(e) Ve € E

4 loop

5 Peandidate <~ SHORTESTPATH (G, 1, Wiazy)
6: if Pcandidate - Eeval then

7

8

9

return pcandidate
Eselected — SELECTOR<G1 Pcandidate)
fore ¢ Eselected \ Eeval do
10: Wiazy (€) < w(e) > Evaluate (expensive)
11 Eeval ¢ EevarUe

for evaluation. The true weights of these edges are then evaluated
(incurring the requisite computational cost), and the algorithm re-
peats.

LazySP is complete and optimal:

Theorem 1 (Completeness of LazySP) If the graph G is finite, SHORT-
ESTPATH is complete, and the set Egjectoq Teturned by SELECTOR returns
at least one unevaluated edge on Peandidate, then LAZYSHORTESTPATH is
complete.

Theorem 2 (Optimality of LazySP) If w,y is chosen such that wes(e) <
e w(e) for some parameter € > 1 and LAZYSHORTESTPATH terminates
with some path pret, then len(pre, w) < €* with £* the length of an
optimal path.

The optimality of LazySP depends on the admissibility of weg in
the same way that the optimality of A* depends on the admissibility
of its goal heuristic h. Theorem 2 establishes the general bounded
suboptimality of LazySP w.r.t. the inflation parameter e. While our
theoretical results (e.g. equivalences) hold for any choice of €, for
clarity our examples and experimental results focus on cases with
e=1

3.2.3 The Edge Selector: Key to Efficiency

The LazySP algorithm exhibits a rough similarity to optimal replan-
ning algorithms such as D* [115, 116] which plan a sequence of short-
est paths for a mobile robot as new edge weights are discovered
during its traverse. D* treats edge changes passively as an aspect of
the problem setting (e.g. a sensor with limited range).

The key difference is that our problem setting treats edge eval-
uations as an active choice that can be exploited. While any choice

Proof of all theorems are available in
Appendix A.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

Algorithm 2 Various Simple LazySP Edge Selectors

1: function SELECTEXPAND(G, Pcandidate)

N

efirst <— first unevaluated e € peandidate

3: Vfrontier <— G.source(efist)

4 Eselected < G.out_edges(Vtrontier)

5: return Egelected

6: function SELECTFORWARD(G, Pcandidate)

7: return {first unevaluated e € Peandidate |

8: function SELECTREVERSE(G, Pcandidate)

9: return {last unevaluated e € pPeandidate }

10: function SELECTALTERNATE(G, Pcandidate)

11 if LazySP iteration number is odd then
12: return {first unevaluated e € pPeandidate }
13: else

14: return {last unevaluated e € peandidate }

15: function SELECTBISECTION(G, Pcandidate)

unevaluated e € peandidate
16: return
furthest from nearest evaluated edge

of edge selector that meets the conditions above will lead to an al-
gorithm that is complete and optimal, its efficiency is dictated by the
choice of this selector. This motivates the theoretical and empirical
investigation of different edge selectors in this chapter.

Simple selectors. We codify five common strategies in Algo-
rithm 2. The Expand selector captures the edge weights that are eval-
uated during a conventional vertex expansion. The selector identifies
the first unevaluated edge egyst On the candidate path, and considers
the source vertex of this edge a frontier vertex. It then selects all out-
edges of this frontier vertex for evaluation. The Forward and Reverse
selectors select the first and last unevaluated edge on the candidate
path, respectively (note that Forward returns a subset of Expand).

The Alternate selector simply alternates between Forward and
Reverse on each iteration. This can be motivated by both bidirectional
search algorithms as well as motion planning algorithms such as
RRT-Connect [69] which tend to perform well w.r.t. state evaluations.

The Bisection selector chooses among those unevaluated edges
the one furthest from an evaluated edge on the candidate path. This
selector is roughly analogous to the collision checking strategy em-
ployed by the Lazy PRM [10] as applied to our problem on abstract
graphs.

In the following section, we demonstrate that instances of LazySP
using simple selectors yield equivalent results to existing vertex algo-

29

30 CHRISTOPHER M. DELLIN

& J ’

AR RRipniE
of Bl o ol e

(a) Expand(77) (b) Forward(34) (c) Reverse(24) (d) Alternate(23) (e) Bisect(25) (f) WeightSamp(22) (g) Partition(22)

rithms. We then discuss two more sophisticated selectors motivated
by weight function sampling and statistical mechanics.

3.3 Edge Equivalence to A* Variants

In the previous section, we introduced LazySP as the path-selection
analogue to BFS vertex-selection algorithms. In this section, we make
this analogy more precise. In particular, we show that LazySP-
Expand is edge-equivalent to a variant of A* (and Weighted A*),

and that LazySP-Forward is edge-equivalent to a variant of Lazy
Weighted A* (see Table 3.1). It is important to be specific about the
conditions under which these equivalences arise, which we detail

here.

LazySP Existing

Selector Algorithm Result

Expand (Weighted) A* Edge-equivalent
(Theorems 3, 4)

Forward Lazy Weighted A* Edge-equivalent
(Theorems 5, 6)

Alternate Bidirectional Heuristic Conjectured

Front-to-Front Algorithm

Edge equivalence. We say that two algorithms are edge-equivalent
if they evaluate the same edges in the same order. We consider an
algorithm to have evaluated an edge the first time the edge’s true
weight is requested.

Figure 3.2: Snapshots of the LazySP
algorithm using each edge selector
discussed in this chapter on the same
obstacle roadmap graph problem,

with start (¢) and goal (e). At top, the
algorithms after evaluating five edges
(evaluated edges labeled as / valid

or 7 invalid). At middle, the final set
of evaluated edges. At bottom, for
each unique path considered from

left to right, the number of edges on
the path that are [J already evaluated,
M evaluated and valid, B evaluated and
invalid, and [0 unevaluated. The total
number of edges evaluated is noted

in brackets. Note that the scale on the
Expand plot has been adjusted because
the selector evaluates many edges not
on the candidate path at each iteration.

Table 3.1: LazySP equivalence results.
The A*, LWA*, and BHFFA algorithms
use reopening and the dynamic hy,y
heuristic (3.4).

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 31

Arbitrary tiebreaking. For some graphs, an algorithm may have
multiple allowable choices at each iteration (e.g. LazySP with multi-
ple shortest candidate paths, or A* with multiple vertices in OPEN
with lowest f-value). We will say that algorithm A is equivalent to
algorithm B if for any choice available to A, there exists an allow-
able choice available to B such that the same edge(s) are evaluated by
each.

A* with reopening. We show equivalence to variants of A* and
Lazy Weighted A* that do not use a CLOSED list to prevent vertices
from being visited more than once.

unevaled - »
——evaled—
West, W

Hest = 2
@ hest _a
/ lazy —
1,1 1,?

& 1130

A* with a dynamic heuristic. In order to apply A* and Lazy
Weighted A* to our problem, we need a goal heuristic over vertices.
The most simple may be

hest(v) = pgl—l>r‘})g len(P, west)- (33)
Note that the value of this heuristic could be computed as a pre-
processing step using Dijkstra’s algorithm [29] before iterations be-
gin. However, in order for the equivalences to hold, we require the
use of the lazy heuristic

hlazy(v) - pIzl;l—l)r'}lg len(P/ wlazy)- (34)
This heuristic is dynamic in that it depends on wj,,, which changes
as edges are evaluated. Therefore, heuristic values must be recom-
puted for all affected vertices on OPEN after each iteration.

3.3.1 Equivalence to A*

We show that the LazySP-Expand algorithm is edge-equivalent to
a variant of the A* shortest-path algorithm. We make use of two
invariants that are maintained during the progression of A*.

Invariant 1 If v is discovered by A* and v is undiscovered, with v’ a
successor of v, then v is on OPEN.

Invariant 2 If v and v’ are discovered by A*, with v’ a successor of v, and
glv] +w(v,v") < g[v'], then v is on OPEN.

Figure 3.3: A* comparison between
the static goal heuristic hegt (3.3) and
the dynamic goal heuristic 1o,y (3.4)
on a simple graph from start S to

goal G. The values of both the edge
weight estimate wegt and the true edge
weight w (for evaluated edges) are
shown. Using either goal heuristic, the
A* algorithm first expands vertices S
and Y, evaluating three edges in total
and leaving X and G on OPEN. After
finding that edge YG has w = 3, the
dynamic heuristic value hlazy (X) is
updated from 2 to 4. While the A*
using the static hest would next expand
X, the A* using the dynamic hlazy
would next expand G and terminate,
having never evaluated edge XY.

Proof of all invariants are available in
Appendix A.

32 CHRISTOPHER M. DELLIN

Peandidate Virontier Scandidate figuri3‘4: Illustratio(;’l of the equiva—d

% ence between A* and LazySP-Expand.
(LazySP) (A%) After evaluating the same set of edges,
the next edges to be evaluated by each
algorithm can both be expressed as a
surjective mapping onto a common set
of unexpanded frontier vertices.
When we say a vertex is discovered, we mean that it is either on OPEN

or CLOSED. Note that Invariant 2 holds because we allow vertices
to be reopened; without reopening (and with an inconsistent heuris-
tic), later finding a cheaper path to v (and not reopening v’) would
invalidate the invariant.

We will use the goal heuristic /.,y from (3.4). Note that if an ad-
missible edge weight estimator @ exists (that is, @ < w), then our A*
can approximate the Weighted A* algorithm [95] with parameter €
by using west = €W, and the suboptimality bound from Theorem 2
holds.

Equivalence. In order to show edge-equivalence, we consider the
case where both algorithms are beginning a new iteration having so
far evaluated the same set of edges.

LazySP-Expand has some set Peandidate Of allowable candidate paths
minimizing len(p, Wi,y); the Expand selector will then identify a
vertex on the chosen path for expansion.

A* will iteratively select a set of vertices from OPEN to expand.
Because it is possible that a vertex is expanded multiple times (and
only the first expansion results in edge evaluations), we group itera-
tions of A* into sequences, where each sequence s consists of (a) zero
or more vertices from OPEN that have already been expanded, fol-
lowed by (b) one vertex from OPEN that is to be expanded for the
first time.

We show that both the set of allowable candidate paths Peandidate
available to LazySP-Expand and the set of allowable candidate vertex
sequences Scandidate available to A* map surjectively to the same set of
unexpanded frontier vertices Vontier as illustrated in Figure 3.4. This

is described by way of Theorems 3 and 4 below. Proof of all theorems are available in
Appendix A.

Theorem 3 If LazySP-Expand and A* have evaluated the same set of edges,
then for any candidate path pegidate chosen by LazySP yielding frontier
vertex Ugontier, there exists an allowable A* sequence Scungigare Which also

yields Ugontier-

Theorem 4 If LazySP-Expand and A* have evaluated the same set of edges,
then for any candidate sequence S.ngigate Chosen by A* yielding frontier
vertex Ugoutier, there exists an allowable LazySP path peandidare which also

yields Ugontier-

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

Algorithm 3 Lazy Weighted A* (without CLOSED list)
1: function LAZYWEIGHTEDA*(G, w, W, h)

2: Q[Vstart] < 0

3 Qu ¢ {Vstart} > Key: g[v] + h(v)
4 Q<O > Key: g[v] + @(v,0") + h(v)
5. while min(Q,.TopKey, Q.. TopKey) < g[vg0al] do

6: if Q. TopKey < Q.. TopKey then

7 v + Qu.Pop()

8: for v’ € G.GetSuccessors(v) do

9: QcInsert((v,v"))

10 else

1 (v,9") + Q..Pop()

12: if g[v'] < g[v] + @(v,v") then

13: continue

14: Snew < g[v] + w(v, V') > evaluate
15: if gnew < g[v'] then

16: glv'] = gnew

17: Qy.Insert(v’)

3.3.2 Equivalence to Lazy Weighted A*

In a conventional vertex expansion algorithm, determining a succes-
sor’s cost is a function of both the cost of the edge and the value of
the heuristic. If either of these components is expensive to evaluate,
an algorithm can defer its computation by maintaining the successor
on the frontier with an approximate cost until it is expanded. The
Fast Downward algorithm [50] is motivated by expensive heuris-

tic evaluations in planning, whereas the Lazy Weighted A* (LWA¥)
algorithm [20] is motivated by expensive edge evaluations in robotics.

We show that the LazySP-Forward algorithm is edge-equivalent
to a variant of the Lazy Weighted A* shortest-path algorithm. For a
given candidate path, the Forward selector returns the first unevalu-
ated edge.

Variant of Lazy Weighted A*. We reproduce a variant of LWA*
without a CLOSED list in Algorithm 3. For the purposes of our anal-
ysis, the reproduction differs from the original presentation, and
we detail those differences here. With the exception of the lack of
CLOSED, the differences do not affect the behavior of the algorithm.

The most obvious difference is that we present the original OPEN
list as separate vertex (Qy) and edge (Q,) priority queues, with sort-
ing keys shown on lines 3 and 4. A vertex v in the original OPEN
with trueCost(v) = true corresponds to a vertex v in Q,, whereas a
vertex ¢ in the original OPEN with trueCost(v') = false (and parent

33

34 CHRISTOPHER M. DELLIN

v) corresponds to an edge (v,v’) in Q.. Use of the edge queue obvi-
ates the need for duplicate vertices on OPEN with different parents
and the conf(v) test for identifying such duplicates. This presenta-
tion also highlights the similarity between LWA* and the inner loop
of the Batch Informed Trees (BIT*) algorithm [41].

The second difference is that the edge usefulness test (line 12 of
the original algorithm) has been moved from before inserting into
OPEN to after being popped from OPEN, but before being evaluated
(line 12 of Algorithm 3). This change is partially in compensation for
removing the CLOSED list. This adjustment does not affect the edges
evaluated.

We make use of an invariant that is maintained during the pro-
gression of Lazy Weighted A*.

Invariant 3 For all vertex pairs v and v', with v’ a successor of v, if g[v] +
max(w(v,v"),w(v,v")) < g[v'], then either vertex v is on Q, or edge
(v,7") is on Q..

We will use 1(v) = hiazy(v) from (3.4) and @ = w,,y. Note that
the use of these dynamic heuristics requires that the Q, and Q, be
resorted after every edge is evaluated.

Equivalence. The equivalence follows similarly to that for A*
above. Given the same set of edges evaluated, the set of allowable
next evaluations is identical for each algorithm.

Theorem 5 If LazySP-Forward and LWA* have evaluated the same set

of edges, then for any allowable candidate path peaugidete chosen by LazySP
yielding first unevaluated edge ey, there exists an allowable LWA* sequence
Scandidate Which also yields egy,.

Theorem 6 If LazySP-Forward and LWA* have evaluated the same set
of edges, then for any allowable sequence of vertices and edges scandidate
considered by LWA* yielding evaluated edge ey, there exists an allowable
LazySP candidate path peaugidere Which also yields egy,.

3.3.3 Relation to Bidirectional Heuristic Search

LazySP-Alternate chooses unevaluated edges from either the begin-
ning or the end of the candidate path at each iteration. We conjecture
that an alternating version of the Expand selector is edge-equivalent
to the Bidirectional Heuristic Front-to-Front Algorithm [23] for ap-
propriate lazy vertex pair heuristic, and that LazySP-Alternate is
edge-equivalent to a bidirectional LWA*.

Proof of all invariants are available in
Appendix A.

Proof of all theorems are available in
Appendix A.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 35

Algorithm 4 Maximum Edge Probability Selector (for WeightSamp and
Partition path distributions)

1: function SELECTMAXEDGEPROB(G, Pcandidates Pp)
p(e) <~ Pr(e € P) for P~ D,
3: emax — unevaluated e € Peandidate Maximizing p(e)

N

4 return {emax}
known path edge indicator
edges distribution distributions

ALpH £ A4 'Q
LR

3.4 Novel Edge Selectors

Because we are conducting a search over paths, we are free to imple-
ment selectors which are not constrained to evaluate edges in any
particular order (i.e. to maintain evaluated trees rooted at the start
and goal vertices). In this section, we describe a novel class of edge
selectors which is designed to reduce the total number of edges eval-
uated during the course of the LazySP algorithm. These selectors
operate by maintaining a distribution over potential paths at each
iteration of the algorithm (see Figure 3.5). This path distribution in-
duces a Bernoulli distribution for each edge ¢ which indicates its
probability p(e) to lie on the potential path; at each iteration, the se-
lectors then choose the unevaluated edge that maximizes this edge
indicator probability (Algorithm 4). The two selectors described in
this section differ with respect to how they maintain this distribution
over potential paths.

3.4.1 Weight Function Sampling Selector

The first selector, WeightSamp, is motivated by the intuition that it
is preferable to evaluate edges that are most likely to lie on the true
shortest path. Therefore, it computes its path distribution D, by per-
forming shortest path queries on sampled edge weight functions
drawn from a distribution D;,. This edge weight distribution is con-
ditioned on the the known weights of all previously evaluated edges
EevaI:

D, : SP(w) for w ~ Dy (Eeval)- (3-5)

For example, the distribution D;, might consist of the edge weights

induced by a model of the distribution of environment obstacles (Fig-

Figure 3.5: Illustration of maximum
edge probability selectors. A distribu-
tion over paths (usually conditioned on
the known edge evaluations) induces
on each edge e a Bernoulli distribu-
tion with parameter p(e) giving the
probability that it belongs to the path.
The selector chooses the edge with the
largest such probability.

36 CHRISTOPHER M. DELLIN

obstacle weight fn path
distribution distribution distribution

known
edges

SR

ure 3.6). Since this obstacle distribution is conditioned on the results
of known edge evaluations, we consider the subset of worlds which
are consistent with the edges we have evaluated so far. However,
depending on the fidelity of this model, solving the corresponding
shortest path problem for a given sampled obstacle arrangement
might require as much computation as solving the original problem,
since it requires computing the resulting edge weights. In practice,
we can approximate D, by assuming that each edge is independently
distributed.

3.4.2 Partition Function Selector

While the WeightSamp selector captures the intuition that it is prefer-
able to focus edge evaluations in areas that are useful for many po-
tential paths, the computational cost required to calculate it at each
iteration may render it intractable. One candidate path distribution
that is more efficient to compute follows an exponential form:

Dy : fr(p) < exp(—plen(p, wiazy)). (3.6)

In other words, we consider all potential paths P between the start
and goal vertices, with shorter paths assigned more exponentially
probability than longer ones (with positive parameter). We call
this the Partition selector because this distribution is closely related
to calculating partition functions from statistical mechanics. The
corresponding partition function is:

Z(P) =} exp(—plen(p, wizy)). (37)

peP

Note that the edge indicator probability required in Algorithm 4 can

then be written: 7(P
ple) =1- (Z(;)") (38)

Figure 3.6: The WeightSamp selector
uses the path distribution induced by
solving the shortest path problem on a
distribution over possible edge weight
functions Dy,. In this example, samples
from Dy, are computed by drawing
samples from Dy, the distribution of
obstacles that are consistent with the
known edge evaluations.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 37

Here, P \ e denotes paths in P that do not contain edge e.

(a) Initial p(e) scores on a constant-weight grid with B: 50, 33, 28

(b) Initial p(e) scores with co-weight obstacles with B: 50, 33, 28

\ \
(c) Initial p(e) scores (d) Scores after five evaluations

It may appear advantageous to restrict P to only simple paths, since
all optimal paths are simple. Unfortunately, an algorithm for com-
puting (3.8) efficiently is not currently known in this case. However,
in the case that P consists of all paths, there does exist an efficient
incremental calculation of (3.7) via a recursive formulation.

We use the notation Zy, = Z(Py,), with Py, the set of paths from x
to y. Suppose the values Zy, are known between all pairs of vertices
x,y for a graph G. (For a graph with no edges, Z, is 1 if x = y and
o otherwise.) Consider a modified graph G’ with one additional edge
eqay with weight w,;,. All additional paths use the new edge ¢,;, a non-
zero number of times; the value Z;y can be shown to be

ZsaZny
exp(Bwap) — Zpq

Zyy=Zay + if exp(Bwap) > Zpq. (3.9)
This form is derived from simplifying the induced geometric se-

ries; note that if exp(Bw,) < Zp,, the value Z;y is infinite. One can
also derive the inverse: given values Z’, calculate the values Z if an
edge were removed. A derivation of this formulation is given in Ap-
pendix B.

Figure 3.7: Examples of the Partition
selector’s p(e) edge score function.
With no known obstacles, a high
assigns near-unity score to only edges
on the shortest path; as B decreases
and more paths are considered, edges
immediately adjacent to the roots score
highest. Since all paths must pass
through the narrow passage, edges
within score highly. For a problem
with two a-priori known obstacles
(dark gray), the score first prioritizes
evaluations between the two. Upon
finding these edges are blocked, the
next edges that are prioritized lie along
the top of the world.

38 CHRISTOPHER M. DELLIN

This incremental formulation of (3.7) allows for the corresponding
score p(e) for edges to be updated efficiently during each iteration
of LazySP as the wj,,y, value for edges chosen for evaluation are
updated. In fact, if the values Z are stored in a square matrix, the
update for all pairs after an edge weight change consists of a single
vector outer product.

3.5 Experiments

We compared the seven edge selectors on three classes of shortest
path problems. The average number of edges evaluated by each,

as well as timing results from our implementations, are shown in
Figure 3.9. In each case, the estimate was chosen so that west < w, so
that all runs produced optimal paths. The experimental results serve
primarily to illustrate that the A* and LWA* algorithms (i.e. Expand
and Forward) are not optimally edge-efficient, but they also expose
differences in behavior and prompt future research directions. All
experiments were conducted using an open-source implementation.
Motion planning results were implemented using OMPL [119].

Random partially-connected graphs. We tested on a set of 1000
randomly-generated undirected graphs with |V| = 100, with each
pair of vertices sharing an edge with probability 0.05. Edges have an
independent o.5 probability of having infinite weight, else the weight
is uniformly distributed on [1, 2]; the estimated weight was unity for
all edges. For the WeightSamp selector, we drew 1000 w samples. For
the Partition selector, we used f = 2.

Roadmap graphs on the unit square. We considered roadmap
graphs formed via the first 100 points of the (2,3)-Halton sequence
on the unit square with a connection radius of 0.15, with 30 pairs
of start and goal vertices chosen randomly. The edge weight func-
tion was derived from 30 sampled obstacle fields consisting of 10
randomly placed boxes with dimensions uniform on [0.1,0.3], with
each edge having infinite weight on collision, and weight equal to its
Euclidean length otherwise. One of the resulting goo example prob-
lems is shown in Figure 3.2. For the WeightSamp selector, we drew
1000 w samples with a naive edge weight distribution in which each
edge had an independent 0.1 collision probability. For the Partition
selector, we used § = 21.

Roadmap graphs for robot arm motion planning. We considered
roadmap graphs in the configuration space corresponding to 7-DOF
right arm of the HERB home robot across three motion planning
problems inspired by a table clearing scenario (see Figure 3.8). The
problems consisted of first moving from the robot’s home configu-
ration to one of 7 feasible grasp configurations for a mug (pictured),

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 39

second transferring the mug to one of 72 feasible configurations with
the mug above the blue bin, and third returning to the home con-
figuration. Each problem was solved independently. This common
scenario spans various numbers of starts/goals and allows a compar-
ison w.r.t. difficulty at different problem stages as discussed later.
For each problem, 50 random graphs were constructed by apply-
ing a random offset to the 7D Halton sequence with N = 1000, with
additional vertices for each problem start and goal configuration.
We used an edge connection radius of 3 rad, resulting |E| ranging
from 23404 to 28109. Each edge took infinite weight on collision, and
weight equal to its Euclidean length otherwise. For the WeightSamp
selector, we drew 1000 w samples with a naive edge weight distri-
bution in which each edge had an independent 0.1 probability of
collision. For the Partition selector, we used = 3.

Figure 3.8: Visualization of the first
of three articulated motion planning
problems in which the HERB robot

5,6 Discussion must move its right arm from the
start configuration (pictured) to any
of seven grasp configurations for

The first observation that is evident from the experimental results a mug. Shown is the progression
is that lazy evaluation — whether using Forward (LWA¥) or one of of the Alternate selector on one of

" . the randomly generated roadmaps;
the other selectors — grossly outperforms Expand (A*). The relative approximately 2% of the 7D roadmap
penalty that Expand incurs by evaluating all edges from each ex- is shown in gray by projecting onto the

panded vertex is a function of the graph’s branching factor. space of end-effector positions.

Since the Forward and Reverse selectors are simply mirrors of each
other, they exhibit similar performance averaged across the PartConn
and UnitSquare problem classes, which are symmetric. However,
this need not the case for a particular instance. For example, the
start of ArmPlani1 and the goal of ArmPlan3 consist of the arm’s sin-
gle home configuration in a relatively confined space. As shown in
the table in Figure 3.9(a), it appears that the better selector on these
problems attempts to solve the more constrained side of the problem
first. While it may be difficult to determine a priori which part of
the problem will be the most constrained, the simple Alternate selec-
tor’s respectable performance suggests that it may be a reasonable
compromise.

The per-path plots at the bottom of Figure 3.2 allow us to charac-

40 CHRISTOPHER M. DELLIN

E F R A B \W Pt

PartConn 87.10 35.86 34.84 22.23 44.81 20.66 20.39
onlinet(ms) 122 1.96 1.86 1.20 2.41 4807.19 3.32
sel (ms) 0.02 0.01 0.01 0.01 0.03 4805.64 2.07
UnitSquare 69.21 27.29 27.69 17.82 32.62 15.58 14.08
onlinet(ms) 091 1.47 1.49 0.94 1.71 3864.95 1.72
sel (ms) 0.01 0.01 0.01 0.01 0.02 3863.49 0.87

ArmPlan(avg) 949.05 63.62 74.94 55.48 68.01 56.93 48.07
online (s) 269.82 5.90 8.22 5.96 7.34 3402.21 5.80

sel (s) 0.00 0.00 0.00 0.00 0.00 3392.76 1.54
eval (s) 269.78 5.87 8.20 5.94 7.31 9.39 4.21
ArmPlan1 344-74 49.72 95.58 59.44 58.90 73.72 50.66
online (s) 109.09 4.81 14.81 7.03 7.91 3375.35 7.25
sel (s) 0.00 0.00 0.00 0.00 0.00 3358.82 1.61
eval (s) 109.07 4.78 14.77 7.01 7.88 16.47 5.59

ArmPlan2 657.02 62.24 98.54 69.96 75.88 66.24 62.16
online (s) 166.19 3.27 7.36 5.95 5.63 4758.04 5.99

sel (s) 0.00 0.00 0.00 0.00 0.00 4750.16 2.03
eval (s) 166.17 3.26 7.34 5.93 5.61 7.82 3.91
ArmPlanj 1845.38 78.90 30.70 37.04 69.26 30.82 31.38
online (s) 534.16 9.61 2.50 4.91 8.47 2073.23 4.17
sel (s) 0.00 0.00 0.00 0.00 0.00 2069.29 0.98
eval (s) 534.10 9.58 2.48 4.89 8.44 3.90 3.15

(a) Average number of edges evaluated for each problem class and
selector. The minimum selector, along with any selector within one
unit of its standard error, is shown in bold. The ArmPlan class is
split into its three constituent problems. Online timing results are
also shown, including the components from the invoking the selec-
tor and evaluating edges. tPartConn and UnitSquare involve trivial
edge evaluation time. $Timing for the Partition selector does not
include pre-computation time. See Figure A.1 for details.

Nl amafloa AR

I B
EFRABWP EFRABWP EFRABWP

(b) PartConn (c) UnitSquare (d) ArmPlan

terize the selectors’ behavior. For example, Alternate often evaluates
several edges on each path before finding an obstacle. Its early evalu-
ations also tend to be useful later, and it terminates after considering
10 paths on the illustrated problem. In contrast, Bisection exhibits a
fail-fast strategy, quickly invalidating most paths after a single eval-
uation, but needing 16 such paths (with very little reuse) before it
terminates. In general, the Bisection selector did not outperform any

Figure 3.9: Experimental results for the
three problem classes across each of the
seven selectors, E:Expand, F:Forward,
R:Reverse, A:Alternate, B:Bisection,
W:WeightSamp, and P:Partition. In
addition to the summary table (a), the
plots (b-d) show summary statistics

for each problem class. The means

and standard errors in (b-c) are across
the 1000 and 9oo problem instances,
respectively. The means and standard
errors in (d) are for the average across
the three constituent problems for each
of the 50 sampled roadmaps. A more
detailed table of results is available in
Appendix A.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

of the lazy selectors in terms of number of edges evaluated. However,
it may be well suited to problem domains in which evaluations that
fail tend be less costly.

The novel selectors based on path distributions tend to minimize
edge evaluations on the problems we considered. While the Weight-
Samp selector performs similarly to Partition on the simpler prob-
lems, it performs less well in the ArmPlan domain. This may be
because many more samples are needed to approximate the requisite
path distribution.

The path distribution selectors are motivated by focusing eval-
uation effort in areas that are useful for many distinct candidate
paths, as illustrated in Figure 3.7. Note that in the absence of a priori
knowledge, the edges nearest to the start and goal tend to have the
highest p(e) score, since they are members of many potential paths.
Because it tends to focus evaluations in a similar way, the Alternate
selector may serve as a simple proxy for the more complex selectors.

We note that an optimal edge selector could be theoretically
achieved by posing the edge selection problem as a POMDP, given
a probabilistic model of the true costs. While likely intractable in
complex domains, exploring this solution may yield useful approxi-
mations or insights.

41

4
Incremental Bidirectional Search

In Chapter 3, we introduced the Lazy Shortest Path (LazySP) algo-
rithm, which addresses domains with expensive edge weight func-
tions by interleaving the evaluation phase with a sequence of search
queries using an existing pathfinding algorithm. Because this inner
search is conducted many times, its efficiency is paramount.

Most approaches for reducing the computational cost of pathfind-
ing attempt to focus the search on a smaller subset of the graph. We
consider three classes of such techniques (Figure 4.1):

1. Bidirectional Search — A bidirectional algorithm conducts two con-
current searches, one from the start vertex s, and the other from
the destination vertex t. The depth to which each search must
descend is typically a factor of two shallower than that of a unidi-
rectional search. Such searches are therefore well-suited to graphs
with larger branching factors. For example, for a roadmap graph,
the number of vertices is polynomial in the depth and exponential
in the dimensionality of the space.

2. Heuristic Search — A heuristic-informed algorithm exploits a
destination-directed heuristic function over vertices to bias ex-
ploration in the direction of the destination vertex. A strong and
admissible such heuristic can drastically speed the search by re-
ducing the number of vertices that must be expanded.

3. Incremental Search — An incremental algorithm is applicable to
the dynamic pathfinding problem in which a sequence of search
episodes are conducted with edge weight function changes (par-
tially) between episodes. An algorithm is termed incremental be-
cause it incrementally updates only the portion of its data struc-
tures that are affected by the updated edge weight changes.

The principal contribution of this chapter is IBiD, an algorithm
which combines these three techniques into a single algorithm (Ta-

(a) Bidirectional search. A path is
found near the intersection of the two
searches.

(b) Heuristic search. The search is bi-
ased towards the destination vertex.

(c) Incremental search. After a straight-
line path is found for the first planning
episode, a new obstacle appears; only
the shaded region must be recomputed
to find the new shortest path.

Figure 4.1: Illustrations of the three
focusing techniques considered on a
spatial pathfinding problem.

Note that vertex/edge insertions and
deletions can be modeled as edge
weight changes via infinite weights.

44 CHRISTOPHER M. DELLIN

ble 4.1). While originally motivated for use with LazySP, IBiD is
broadly applicable to incremental search problems.

Chapter outline. Finding shortest paths on graphs is a very exten-
sively studied problem. This chapter begins with a comprehensive
review of methods which solve shortest path problems by comput-
ing distance functions. After defining the problem in Section 4.1,
we review distance functions and unidirectional methods in Sec-
tion 4.2. Section 4.2.3 reviews bidirectional search methods, and
Section 4.2.4 reviews incremental search. Section 4.3, introduces IBiD,
an algorithm which combines bidirectional and incremental search.
In Section 4.4, we review heuristic search methods, and discuss a
heuristic-informed generalization of IBiD. The chapter concludes
with experimental results and implementation notes.

Unidirectionl Bidirctona] Tl g2c D gl both e
Complete Dijkstra [29] Bidirectional Dijkstra [85] stra’s search [45] and DynamicSWSE-FP
(ot w147 Bidctional A°[53] LA T sty o
Incremental DynamicSWSF-FP [98] IBiD provide only a representative choice in
(Heuristic) Lifelong Planning A* [67] Heuristic IBiD each.
4.1 Problem Definition
The shortest path problem on graphs has been extensively studied over
the past six decades. Consider a directed graph G = (V,E) and
accompanying edge weight function w : E — R. Note that we allow
graphs with multiple edges connecting any pair of vertices, as well as
graphs with edges to and from the same vertex.
The length of a path is equal to the sum of the weights of its con-
stituent edges. We consider the single-pair shortest path (SPSP) prob- The single-pair problem is also called
lem, in which a path of minimal length is sought between distinct I:;two’termi””] or point-to-point prob-

start and destination vertices s,t € V. (We can also handle planning
problems with multiple start/destination configurations as an SPSP
problem by introducing virtual vertices and edges connecting to each
candidate start/goal.)

Our review is applicable to problems where w is everywhere finite.
The algorithms that we consider do not distinguish between non-
existent and infinite-weight edges, and so will return that no path
exists in the case where shortest paths contain infinite-weight edges.

An example problem. We will carry forward an illustrative example
problem from the public dataset of the gth DIMACS Implementation

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 45

Challenge [27] (Northeast USA) comprising an approximate road
network, using transit time as the edge weight function (Figure 4.2).
In this way, a shortest path between a pair of start and destination
locations minimizes the total transit time between them. More details
about the graph are given in the experimental section in Section 4.5.
The graph is sufficiently large that minimizing search computation is
important, and the available transit time heuristic is broadly useful
but not perfectly strong. The road routing domain is of great interest,
and it is commonly used for benchmarking and easy to visualize.

Problem Settings. The single-pair problem has been extensively stud-
ied. There are techniques that are particular to memory-constrained
settings [58] or to settings where pre-computation is available [44].
While we do not focus on such settings, the algorithms we propose
may be complementary to these techniques.

4.2 Review of Pathfinding with Distance Functions

This section contains a unified presentation of unidirectional, bidirec-
tional, and incremental search strategies by examining the properties
of the distance functions that they maintain. These properties and in-
variants can be established for arbitrary distance function approxima-
tions. Examination of these properties then informs the development
of algorithms which calculate them, which we defer to Section 4.3.

While much of this section summaries prior work, the presenta-
tion of the bidirectional termination condition (Theorem 10 in Sec-
tion 4.2.3) in particular is formulated to enable the novel theorems
presented in Section 4.3.

4.2.1 Shortest Paths via the Start Distance Function

The pioneering pathfinding algorithms of the late 1950s address a
generalization of the SPSP problem called the single-source prob-
lem, where shortest paths are calculated from the start vertex s to all
vertices on the graph. They proceed by calculating the start distance
function d* : V — R, which gives the length of the shortest path from
s to each vertex v. In other words:

d*(v) = min len(p, w), (4.1)

p&€Ps

where Pg;, is the set of all paths from s to v, and len is given by (3.1)
as the sum of the path’s constituent weights with respect to the edge
weight function w. Where no paths to v exist, we take d*(v) = oo.
Note that 4* is only well-defined on graphs with no negative-length
cycles reachable from s.

Figure 4.2: A graph of the Northeast
USA from the gth DIMACS Implemen-
tation Challenge comprises 1,524,453
vertices and 3,868,020 directed edges.
A shortest path problem from a start s
in New Jersey to a destination ¢ outside
Boston will be used as an example.

e

Figure 4.3: The distance function from
the start vertex.

Once the distance function d* is com-
puted, a shortest path to any desti-

nation t can be generated trivially by
walking backwards to s guided by d*.

46 CHRISTOPHER M. DELLIN

Importantly, d* can also be characterized locally by

0 ifv=s
d*(v) = min d*(u) + w(ey,) otherwise, 4-2)
u€Pred(v)

where Pred(v) yields the predecessor vertices of v, and a vertex v # s
with no predecessors takes d*(v) = co. The distance function is akin
to the value function in more general decision problems addressed by
dynamic programming. The equations (4.2) are the Bellman equations
[6], which rely on the principle of optimality. This characterization
also follows implicitly from early results for the all-pairs problem
[107, 5]. Note that while (4.2) is a necessary condition of d*, it is not
sufficient in general. In particular, if w has cycles of length zero, then
even though d* is well-defined, (4.2) admits an infinite number of
incorrect solutions for d.

Reconstructing a Shortest Path from the Distance Function. Calculating
the start distance function is only useful for solving the SPSP prob-
lem if it can be used to efficiently determine a shortest path. We can
show that such a path can be reconstructed by starting at the desti-
nation t and progressively prepending the predecessor edge e, (and
vertex 1) which locally minimizes d*(u) + w(eu). Any path con-
structed in this way is guaranteed to be a shortest path, and this pro-
cess is guaranteed to terminate if the graph contains no zero-length
cycles.

4.2.2 Approximating d* via Tensioned Estimates

How can we compute d* efficiently over the graph? Consider an ap-
proximation function d which satisfies the following four properties:

d*(v) <d(v) Vo (4-32)

d(v) =0 v=s5s (4.3b)

min d(u) +w(ey) <d(v) v#s (4-30)
1€Pred(v)

d(u) +w(ew) > d(v) Veyy (4.3d)

Conditions (4.3b — 4.3d) follow directly from the local characteriza-
tion (4.2); in particular, the case where v # s has been split into the
two equivalent inequalities (4.3c) and (4.3d). In contrast, for now
we take the global inequality (4.3a) on faith; we will later revisit the
implications of relying on this assumption.

We can show that any estimate 4 satisfying these properties is the
unique distance function d* via Theorem 7.

Theorem 7 Ifd : V — R satisfies (4.3), then d = d*.

Note that while the distance function
d* necessarily satisfies the equations
(4.2), they are not generally a sufficient
condition; if a reachable cycle of zero
length exists, (4.2) will not have a
unique solution.

Proofs for all theorems in this chapter
are located in Appendix C.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 47

The principal method for arriving at an approximation which
satisfies (4.3) is via tensioned estimates. Consider an arbitrary approxi-
mation d which satisfies only (4.3a — 4.3¢), and consider the following
edge labeling:

edge ey is tensioned iff d(u) + w(ey) < d(v). (4-4)

Tensioned edges are therefore those that violate (4.3d). A restatement
of Theorem 7 is that an approximation d satisfying (4.3a — 4.3¢) with
no tensioned edges is everywhere correct.

Edge Relaxation. How can we arrive at an approximation satisfying
Theorem 7? The principal technique treats the properties (4.3a -
4.3¢) as invariants. An initial approximation 4 is chosen for which
the invariants trivially hold, such as d(v) = co Vv # s, which will
generally have many edges in tension. The tensioned approximation
d is then iteratively improved via edge relaxation as described by Ford
[37], wherein a tensioned edge e, is selected and relaxed by setting
d(v) < d(u) + w(eu). It can be shown that applying this process
arbitrarily maintains invariants (4.3a — 4.3¢).

It can be further shown that for a finite graph, the number of
edge relaxations needed is also finite. The well-known Bellman-
Ford method [107, 6, 86] cycles through all edges repeatedly, relaxing
all tensioned edges found (at most |V| — 1 repetitions are sufficient
for convergence). Note that this does not place any requirements on
w (other than that d* must exist, so there must not be any negative-
length cycles reachable from s).

Approximation Soundness. The need for multiple cycles of Bellman-
Ford stems from the fact that each edge may need to be relaxed sev-
eral times. This occurs because relaxing an edge changes the d-value
of the destination vertex, which may newly tension downstream
edges (see Figure 4.4).

We can exploit our intuition to order relaxations from start to des-
tination in the special case where w > 0 (note that this requirement is
stronger than requiring no reachable negative-length cycles). We can
then show that our approximation d is sound for a subset of vertices
as described by Theorem 8.

Theorem 8 Consider d : V — R satisfying (4.3a — 4.3b), and let D be
the smallest value d(u) among all tensioned edges e, (or oo if no such edges
exist). If w > 0, any vertex x with d(x) < D has d(x) = d*(x).

As a result, a given value D creates a region of vertices with values
d(x) < D that are known to be accurate. This confers two distinct

a b c
o——-——1 -——r@-——1 -——»@

d=0 d=2 d=4

o -—-1--re——1—>e

——1—>e-—-—1--»0

——1—>0——1—>e

Figure 4.4: Ordering problems. Con-
sider the verticesa — b — ¢, with
edges e, and e both in tension; if ep,
is relaxed before ¢, then e, will need
to be relaxed a second time.

" N
/ \
p . X
/ o K
/ N @uunnnnan >
2 o
N
! N
1 N
N
! N
\
°)
\ ~u,
\ P A
N ° \
v
\
L
N
N L4 1
LA S 4
. . ® y o
| . _ - o
S -- (4

Figure 4.5: Tensioned edge trust region
for w > 0. Contours are of the current
estimate d. Currently tensioned edges
are bold and dotted.

48 CHRISTOPHER M. DELLIN

advantages when designing an algorithm: an efficient relaxation or-
dering, and an early termination condition for single-pair problems.

Efficient Relaxation Ordering. Therefore, all tensioned edges ¢,, with
d(u) = D (of which there must be at least one if any edges are ten-
sioned) can be relaxed immediately, and will never be retensioned.
This is exactly the order imposed by the OPEN list in Dijkstra’s algo-
rithm [29].

Early Termination. The soundness result shows that once the des-
tination vertex t satisfies d(t) < D, it has the correct start distance.
Since we are only interested in reconstructing a shortest path to t, we
are interested in terminating computation of the distance function as
early as possible.

However, while Theorem 8 demonstrates that d(t) = d*(t), it is not
by itself insufficient to demonstrate that such a shortest path to t can
be reconstructed. An illustration of such a problem case is given in
Figure 4.7. This requires the addition of Theorem g below. Notably,
the proof for Theorem g relies on (4.3¢).

Theorem 9 Consider d : V — R satisfying (4.3a — 4.3¢), and let D be
the smallest value d(u) among all tensioned edges ey, (or oo if no such edges
exist). If w > 0, for any vertex x with d(x) < D, a path reconstructed
backwards from x by iteratively selecting a predecessor minimizing d(u) +
w(eyp) until s is reached is a shortest path from s to x of length d*(x).

Armed with Theorems 8 and 9, we can terminate edge relaxation
early and reconstruct a shortest path from s to f. This algorithm is
listed as “Dijk” (Dijkstra’s algorithm) in the results of Figure 4.16.

4.2.3 Bidirectional Search

A prominent technique for minimizing pathfinding computation for
single-pair problems is bidirectional search (also called “doubletree”
search [30]). In a bidirectional algorithm, the distance d; to the desti-
nation is calculated in a growing region around the destination vertex
t concurrently with the conventional start distance ds around s (Fig-
ure 4.8). The destination distance function d;, yielding the distance
of a shortest path from each vertex u to f, obeys a complementary
definition and local characterization as ds, with vertex predecessors
replaced with successors. Approaches such as edge relaxation (Sec-
tion 4.2.2) can therefore be used to calculate d; using a region around
t within which shortest paths can be reconstructed.

Loosely speaking, the search can terminate with a shortest path
once the two regions intersect. Each search need only descend

Figure 4.6: Dijkstra’s algorithm com-
putes the start distance function d*

to solve the example shortest path
problem. Darker vertices have smaller
d-values. The algorithm stops upon
reaching the destination vertex t after
expanding 1,290,820 vertices.

d=1
=1

I/Nl
O

d=0 d=3 d=0

=0 =0 d*=0
Figure 4.7: Problem case for pathfind-
ing with distance functions in cases
where invariant (4.3¢) does not hold.
Here, d satisfied a and ¢, with edge
es; tensioned, and d’ = 0. While the
approximation d is sound at x via The-
orem 8 (i.e. d(x) is correct), the path
reconstructed from ¢t is not a shortest
path.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 49

to a depth a factor of two shallower than a unidirectional search.
Therefore, problems where the graph density grows quickly with
the search depth are particularly well-suited to bidirectional algo-
rithms. For example, for a roadmap graph embedded in an ambient
Euclidean space, the number of expanded vertices in a ball is polyno-
mial in the depth and exponential in the dimensionality of the space.
It has also been empirically established that bidirectional approaches
are beneficial for instances in which many vertices around both the
start and destination vertices are costly (e.g. due to obstacles). This
may be because the number of vertices that need to be expanded in
these regions do not grow quickly with the search depth.

The first bidirectional algorithm was proposed by Dantzig [21],
and the first precisely described algorithm was presented by Nichol-
son [89], and the similar Bi-Directional Shortest Path Algorithm
(BSPA) was analyzed by Pohl [96]. Implementation of a sound and
efficient algorithm turns on when and how to terminate with a short-
est path.

A Correct Termination Condition. What happens upon an encounter
between the forward and reverse searches? Consider running each
search until the first vertex is found that satisfies Theorem 8 in both
directions (that is, the first vertex x for which ds(x) < Ds and d;(x) <
D;). While Theorem 8 correctly demonstrates that the values ds(x)
and d¢(x) are correct (and Theorem g similarly demonstrates that a
shortest path can be reconstructed from s to x and also from x to ¢),
this is not sufficient to demonstrate that the shortest path actually
passes through x. See Figure 4.9 for a counter-example that illustrates
this point.

Importantly, is necessary to consider the edges connecting the two
distance function approximations. A correct termination condition
is surprisingly subtle, with several correct variations proposed [89,
32, 94, 45]. What is necessary is a bidirectional equivalent to the
completeness-based termination condition from Theorem 9.

Suppose ds and d; are approximations to d; and dj, respectively,
with each satisfying (4.3). Let Ds be the minimum u-value among all
tensioned edges in ds (and likewise for d;). Then we can establish the
following proof of a correct termination condition:

Theorem 10 Define Eoy as the set of all edges ey, such that ds(u) < Ds
and d¢(v) < Dy, and define l, s.t. Le(eyy) = ds(u) + w(eww) + de(v). If
w > 0,5 # t, Econn is non-empty, and e}, minimizes £, among Econn with
le(el,) < Ds + Dy, then {e(e};,) is the length of the shortest path, and e,
lies on one such path.

Figure 4.8: The bidirectional Dijkatra’s
algorithm computes ds around the start
vertex and d; around the destination
vertex. Darker vertices have smaller
d-values in their respective regions. The
algorithm terminates after expanding a
total of 1,178,200 vertices using distance
to balance expansions.

[
A\
2 2
.—3—»@3—\&73H.
s a b t

Figure 4.9: Simple illustration of a prob-
lem case for terminating a bidirectional
search. With a balanced distance crite-
rion, ¢ will be the first vertex expanded
in both directions, but it does not lie on
the shortest path.

There were early incorrect attempts at a
sound termination condition [8].

This treatment of the bidirectional
termination condition is presented
differently than in most related work
because it will help us formulate an
incremental version in Section 4.3.

50 CHRISTOPHER M. DELLIN

Designing an Efficient Bidirectional Algorithm. In the case where the
approximations ds and d; are improved via edge relaxation, since
w > 0, by Theorem 8 once an edge e, becomes included in Econn,
its length value /,(e,») will not change. Therefore, it is sufficient for
a relaxation algorithm to consider only edges newly added to Econn
at each iteration, and keep track of the best edge e, with its value
le(e},) found so far. Note also that Theorem 9 allows a shortest path
to be constructed from e, buy walking backwards from u to s, and
forwards from v to ¢.

This algorithm is listed as “BiDijk” (bidirectional Dijkstra’s algo-
rithm) in the results of Figure 4.16.

4.2.4 Incremental Search for Dynamic Problems

The shortest path on a graph is of course intimately tied to the edge
weight function w. If the weight function changes from w() to w(?),
a shortest path p(1) w.r.t. w() will generally no longer be a shortest
path w.r.t. w(?), even if changes are small and localized. For exam-
ple, if the weight of edge on p(!) increases, or if the weight of some
edge not on p decreases, then some other path p(®) may become
shorter than p(1). The dynamic shortest-path problem considers finding

a shortest path for each of a sequence of input edge weight functions. (a) Tnitial episode
Figure 4.10 shows an incremental algorithm finding a shortest path
quickly for a subsequent planning episode.

We concern ourselves with the fully dynamic case, in which arbi-
trary edge weight changes are allowed. As mentioned in Section 4.1,
for our pathfinding problems, we treat edges with infinite weight

equivalently with non-existent edges. Therefore, deleting or insert-

ing an edge can be represented by setting its edge weight to or from
infinity, respectively. We include here a brief review of the approach : oz
underlying common algorithms for the dynamic pathfinding prob- o

lem. (b) Subsequent episode
Figure 4.10: Initial episode: 1,287,897
expansions. Subsequent episode:
results demonstrated properties of optimal spanning trees under cer- 391,122 expansions.

The dynamic problem has been studied in the literature. Early

tain types of update operations [111]. Early algorithms considered re-
stricted problem such as the insert-only problem with constant edge
weights [82], or restricted settings such as planar graphs [65]. More
general algorithms followed [98, 38, 39]; we describe and generalize

the DynamicSWSF-FP algorithm of Ramalingam and Reps below. A We defer for now discussing the prob-
lem of integrating heuristic functions

) .] with incremental search; see Sec-
[33], including for the more general all-pairs problem [26]. tion 4.4.2 for that discussion.

review of more general dynamic problems on graphs is available in

Problem Definition. Consider a directed graph G = (V,E) as de-
scribed in Section 4.1. Consider a sequence of pathfinding episodes

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

with different edge weight functions w®),w?, ... with w() : E - R.
The dynamic single-pair shortest-path (SPSP) problem entails find-

2)

ing shortest paths p, p@),. .. between fixed start and destination

vertices s,t € V for each episode.

Approaches to the Dynamic Problem. The simplest class of solutions to
the dynamic SPSP problem entails running a conventional SPSP al-
gorithm to compute a solution path for episode in turn. Consider, for
example, applying the edge relaxation approach from Section 4.2.2

to compute the start distance function dgi) from scratch for each
episode’s edge weight function w(.

Investigating this approach more closely reveals an opportunity
for a more efficient algorithm. If the changes in the weight function
between each episode affect only a subset of the edges, then it is
often the case that the value of the distance function computed does
not change for a large fraction of the vertices in the graph. In the face
of a change in weight function w® — wl*1), it is the objective of an
incremental approach to adapt a previously computed estimate dgi) to

a new one dgiﬂ) with a minimal amount of additional computation.

Inapplicability of the Tensioned Estimates Approach. The tensioned
estimates approach of Section 4.2.2 made use of two clever devices

to allow its approximation d to be iteratively improved to the true
distance function d*. First, it relied on a global invariant (4.3a) to
ensure that the approximation was never under-consistent. Second, it
relied on a decomposition of the local characterization (4.2) into two
inequalities (4.3c) and (4.3d), the former treated as a second invariant,
and the latter represented not as a constraint but as a labeling of
tensioned edges to be iteratively relaxed.

Unfortunately, the incremental setting precludes this approach.
Consider a new episode in which the estimate d (+1) is initialized
with the preceding estimate d!). Since the weight function w(*1) has
changed, there is no guarantee that either of the invariants (4.3a) or
(4.3¢) still hold. In particular, if edge weights increase, it is common
for one or both invariants to be violated, and we can no longer rely

on Theorems 8 or g to generate sound shortest paths.

A New Approach. The key idea underlying the incremental approach,
and the DynamicSWSF-FP [98] algorithm, is to restate the local char-
acterization (4.2) in a different way. In particular:

0 ifv=s
r(v) = min d(u)+ w(ew) otherwise (4.52)
u€Pred(v)

d(v) =r(v) (4.5b)

51

52 CHRISTOPHER M. DELLIN

(Here, r(v) represents the “right-hand side” of the local characteriza-
tion). It is easy to see how (4.5) taken together directly implies (4.2).
The motivation behind this decomposition is that the former (4.5a)
can be held as an invariant, while the latter (4.5b) can be established
iteratively. Prior work adopts the following labeling for each ver-

tex v: if d(v) = r(v), the vertex is consistent, whereas inconsistent
vertices are either under-consistent if d(v) < r(v) or over-consistent if
d(v) > r(v).

Importantly, the inapplicability of the global invariant (4.3a) be-
tween episodes has implications on the class of weight functions that
can be solved by the incremental approach. In particular, when ap-
plied to weight functions with cycles of zero length (for which d4* is
well-defined), there is no guarantee that a distance function d which
satisfies (4.5b) matches d*. We therefore restrict the class of weight
functions considered to those with only positive length cycles.

Approximation Soundness. In Section 4.2.2, we showed that in cases
with w > 0, the minimal value k defines a trust region that can be
used both to order edge relaxations as well as inform a termination
condition after which a correct path can be reconstructed. We can

develop a similar argument about the soundness of an approximation

in the dynamic case. In particular, given an arbitrary estimate d (and
the corresponding function r as defined by (4.5a), this argument
makes use of a third function k defined as:

k(v) = min[d(v),r(v)]. (4.6)

We can then establish the following central soundness result for
incremental search:

Theorem 11 Consider d : V. — R, with r satisfying (4.5a), and let K
be the smallest value k(v) among all inconsistent vertices (or oo if no such
vertices exist). If w > 0, any consistent vertex x with d(x) < K has
d(x) = d*(x). Further, walking backwards from x choosing predecessors
that minimize d(u) + w(eyy) terminates at s with a shortest path of length

a*(x).

This theorem enables the same two efficiency advantages as in
the relaxation approach, in the case where w > 0. It provides that
a vertex rendered consistent during an iteration (by setting d(x) <«
r(x)) with d(x) < K has the correct value and will never be revisited.
It also enables an algorithm to terminate early once the destination

vertex ¢t becomes consistent, as exploited by the Lifelong Planning A*

algorithm [67].

This meaning of consistency for vertices
in incremental search is distinct from
consistency of heuristic or potential
functions.

Indeed, later in Theorem 11 we will re-
strict w further so that w > 0 to garner
the benefits of approximation sound-
ness and early termination. However,
we conjecture that the incremental algo-
rithm is correct even without w > 0 (as
long as no non-positive cycles exist) as
long as the algorithm is not terminated
early.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 53

4.2.5 Algorithm Design

In the same way that the edge relaxation decomposition (4.3) al-
lowed way to progressively update an estimate d via a priority
queue, the decomposition (4.5) affords the same opportunity. The
DynamicSWSE-FP algorithm [98] maintains a queue Q of inconsistent
vertices, and processes them in the order given by the priority key
(4.6) used in the soundness result in Theorem 11.

One key aspect of the algorithm is the way underconsistent ver-
tices are handled. Upon encountering an underconsistent vertex
(d(v) < r(v)), the algorithm applies d(v) < oo (if the vertex remains
inconsistent, it would be rendered consistent in a future iteration if
necessary). This ensures that each vertex is processed at most twice
during each planning episode. This algorithm is listed as “Dyn-
SWSE” (Dynamic SWSE-FP) in the results of Figure 4.16.

4.3 Incremental Bidirectional Search

The principal motivation behind the Incremental Bidirectional (IBiD)
search algorithm is to leverage the early termination efficiency of a
bidirectional search with the efficiency of an incremental search for
dynamic single-pair shortest path problems. An example of IBiD is
shown in Figure 4.11.

Because it is derived from DynamicSWSF-FP, the IBiD algorithm
is applicable to graphs with w > 0. (If zero weights are present, the

algorithm can be adapted by transforming w to use lexicographically S ol
o o

sorted tuples as developed by LPA* [67], described in Section 4.4.2.) e, g“/

Note also that as an extension of Bidirectional Dijkstra’s algorithm L

[45], the algorithm presented requires s # t. If the start and destina-

tion vertices coincide, an empty path can be returned in a preprocess-

ing step. (b) Replan search

Figure 4.11: Initial search: 1,181,616 ex-

pansions. Replan: 262,422 expansions.

4.3.1 Bidirectional Termination with Incremental Distance Functions
Consider a graph endowed with two distance functions, a start dis-
tance approximation d;, and a destination distance approximation d;.
Since this is an incremental setting, we can make use of the formula-
tion of Theorem 11 from Section 4.2.4 to establish the correctness of
these approximations for certain vertices.

It is essential that the bidirectional termination condition from
Theorem 10 be adapted to handle these incrementally maintained
distance functions. The central theorem that enables the IBiD algo-
rithm is:

Theorem 12 Consider a graph with w > 0 and with s # t. Consider a

54 CHRISTOPHER M. DELLIN

Algorithm 5 As a bidirectional algorithm, IBiD conducts two independent DynamicSWSF-FP searches, one
computing distance from the start vertex s, and the other computing distance to the destination vertex ¢.

1: procedure INITIALIZESTART() 21: procedure INITIALIZEDEST()

2 forallv € V do 22 forallv € V do

3 ds(v) <= o0; 15(v) 4= o0 23: di(v) <= 00; (V) ¢ 00

4 rs(s) < 0 24: re(t) <0

5 Qs+ {s} > key for v : min (r5(v),ds(v)) 25 Qp + {t} > key for v : min (r(v), d;(v))
6: PROCESSSTARTQUEUE() 26: PROCESSDESTQUEUE()

7: procedure UPDATESTARTDISTANCE(v) 27: procedure UPDATEDESTDISTANCE(1)

8: if v # s then 28: if u # t then

9: rs(v) « min (ds(u) +w(u,v)) 20: re(u) <= min (w(u,v) +di(v))

u€Pred(v) vESucc(u)

10: Ensure v € Qs iff ds(v) # r5(v) 30: Ensure u € Qg iff d(u) # re(u)

11: procedure PROCESSSTARTQUEUE() 31: procedure PROCESSDESTQUEUE()

122 U Qs.Pop() 322 v+ Qr.Pop()

132 if rs(u) < ds(u) then > over-consistent 33 if r4(v) < d¢(v) then > over-consistent
14: ds(u) < rs(u) 34: di(v) < 1¢(v)

15: for all v € Succ(u) do 35: for all u € Pred(v) do

16: UPDATESTARTDISTANCE(?) 36: UrDATEDESTDISTANCE(14)

17: else > under-consistent 37 else > under-consistent
18: ds(u) < 0 38: dt(v) < 0

19: for all v € Succ(u) U u do 39: for all u € Pred(v) Uv do
20: UPDATESTARTDISTANCE(?) 40: UPDATEDESTDISTANCE(14)

start distance approximation ds : V. — R, with rs satisfying (4.5a), and
let K be the smallest value ks(v) among all inconsistent vertices, or co if
no such vertices exist; likewise, consider the same for a destination distance
approximation d; and its accompanying ry and K.

Define Econy as the set of all edges ey, such that u is s-consistent with
ds(u) < Ksand v is t-consistent with di(v) < Ki, and define {, s.t.
le(eyp) = ds(u) + w(ewn) + de(v). If Econn is non-empty, and e}, mini-
mizes L, among Econy with Le(e),) < Ks + Ky, then L, (e, is the length of

the shortest path, and e;;,, lies on one such path.

Note that the first half of the conditions from Theorem 12 is drawn
from the soundness conditions for incremental search from Theo-
rem 11, while the second half resembles the bidirectional termination
conditions from Theorem 10.

4.3.2 Algorithm Design

Simultaneous Incremental Searches. The IBiD algorithm runs two
independent conventional DynamicSWSF-FP [98] searches simultane-
ously, one from the start vertex s and one from the destination vertex

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

Algorithm 6 IBiD Outline
1: procedure MAIN()

2. INTTIALIZESTART(); INITIALIZEDEST()

3 Q.+ > key for (u,v) : ds(u) +w(u,v) + de(v)
4 loop

5 while not TERMINATIONCONDITION() do

6: if Q;.TopKey < Q;.TopKey then > prioritize arbitrarily
7 PROCESSSTARTQUEUE (1)

8: else

9: PROCESSDESTQUEUE(u)

10: Ensure (u,v) € Q. iff u # Qs, v # Q4, key # oo

11: (ue,vc) < Qc.Top

12: 7 < (walk ds from u, to s) U (walk d; from v, to t)

13 wait for edges (u,v) € Egera With changed weights w(u, v)
14: NoTrrYWEIGHTCHANGES (Egelta)

15: procedure NOTIFYWEIGHTCHANGES(Egelta)
16: for all (u,v) € Egera do

17: UrDATESTARTDISTANCE(?)

18: UrDATEDESTDISTANCE (14)

19: Ensure (u,v) € Qc iff u # Qs, v # Q4, key # oo

t, with each maintaining a separate priority queue of inconsistent
vertices Qs and Q; respectively (Algorithm 5).

As with a conventional bidirectional search, the two sides can be
alternated arbitrarily, except that the each queue must be processed
once upon initialization so that ds(s) = 0 and d;(t) = 0.

Remembering Connections. Theorem 12 has ramifications when de-
signing an algorithm. In the case of bidirectional search described

in Section 4.2.3, the algorithm could take a shortcut since D-values
always decreased, so it was not necessary to remember older edges
when better ones were found. In the incremental case, where the start
and destination distance functions ds and d; may both increase and
decrease between episodes, it is no longer sufficient to remember
only the best connection found so far.

Instead, we track all potential connection edges in a connection
queue Q.. Members of this queue are edges on the graph e, for
which vertex u is s-consistent, and vertex v is t-consistent. This queue
is sorted by the key ds(u) + w(u,v) + d¢(v). As an optimization, the
queue does not include edges for which the key is infinite, since that
corresponds to a non-existent path. The resulting algorithm outline is
shown in Algorithm 6.

55

56 CHRISTOPHER M. DELLIN

Termination Condition. The termination condition from Theorem 12
is captured in Algorithm 7. The first conditional handles cases where
no finite path exists. This algorithm is listed as “IBiD” in the results
of Figure 4.16.

Algorithm 7 IBiD Termination Condition

1: function TERMINATIONCONDITION()
2 if [Qs.Empty and d,(t) =o0| or [Q;.Empty and d;(s) =oco| then

3: return True > no solution path
4 (ue,vc) Qc.TopKey > return False if Q. empty
5: if Qs.TopKey + Q;.TopKey < ds(uc) + w(ue, ve) + di(ve) then
6: return False

7: if Qs.TopKey < ds(u.) or Q;.TopKey < d¢(v.) then

8: return False

o: return True

4.4 Heuristic Search

When examining how to assemble a heuristic-informed algorithm
that integrates bidirectional with incremental methods, it is instruc-
tive to examine how these efforts have been addressed in the past.

Review of Heuristic Methods. Heuristic methods such as the Graph
Traverser [31] were originally applied to pathfinding problems in
order to find non-optimal solutions more economically. These uni-
directional methods proceed similarly to Dijkstra’s algorithm, but
instead of prioritizing OPEN vertices based on their start distance d;,
they use a destination-directed heuristic function k;. Hart, Nilsson,
and Raphael [47] established that these approaches can be combined
(ds + h¢) to yield an admissible algorithm (A*) for the shortest-path
problem, as long as h; meets certain conditions. See Figure 4.12. We
show the results of unidirectional heuristic search as “A*” in the
results of Figure 4.16.

4.4.1 Heuristic Methods in Bidirectional Search

Attempts to provide a bidirectional algorithm which incorporates
heuristic estimates generally take one of three approaches, which we
survey here.

First, “front-to-back” methods such as Pohl’s Bidirectional Heuris-
tic Path Algorithm (BHPA) [96] conduct two conventional heuristic-
informed searches (i.e. the start search directed to the destination
vertex, and vice versa). This approach suffers from the problem that

Figure 4.12: A* search. 532,880 expan-
sions.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 57

the two sets of CLOSED vertices must overlap substantially before
the search can be terminated, and therefore the benefit of the bidirec-
tional search is not fully realized.

Second, “front-to-front” methods exploit a pairwise heuristic func-
tion h(u,v) evaluated over every pair of vertices on each search’s
OPEN list, and the vertices representing the shortest potential path
are expanded. Early approaches with inflated heuristics [30] did not
yield promising results. The later Bidirectional Heuristic Front-to-
Front Algorithm (BHFFA) [22] does show an improved number of
vertex expansions. While this approach does not suffer from the re-
gion overlap problem inherent in front-to-back methods, it instead
incurs the very high cost of computing full pairwise heuristics, and
updating all vertices on OPEN after each vertex expansion.

The third approach derives from an alternative interpretation of
heuristic search algorithms first proposed by lkeda et. al. [54]. Under
this interpretation, a heuristic-informed A* search is equivalent to
an uninformed Dijkstra’s search under a particular transformation
of the edge weights using the heuristic function as a vertex potential
function. Therefore, because front-to-back methods use different
heuristics for the forward and reverse searches, they are effectively
searching graphs with different weight functions. The proposed
solution is to arrive at a single consistent potential function, which
allows the transformed pathfinding problem to be solved using the
uninformed bidirectional algorithm described in Section 4.2.3.

Potential-Adjusted Weight Functions. Consider an arbitrary vertex po-
tential function b : V — IR, and consider the following transformation
of a weight function w into transformed weight function wy:

wy (euv) = w(ewn) — [b(u) —b(v)]. (4-7)

The effect of this transformation on the lengths of paths over G bears
investigation. Consider a path py, from x to y which has length ¢
w.r.t. w. What is its weight £, w.r.t. w,? A simple summation reveals
that

Oy (pxy) = (pxy) — [b(x) = b(y)]- (4-8)

That is, the difference between the initial and transformed lengths of
the path from x to y is independent of the path itself (its constituent
vertices and edges), and only a function of the endpoint vertices.

In particular, this implies that a shortest path from x to y w.r.t. wy
remains a shortest path w.r.t. w. Therefore, any admissible shortest
path algorithm can be used to solve w.r.t. w,. Note that the transfor-
mation does not change the length of any cycles in G. Note also that
as a consequence of (4.8), the original and transformed start distance

An earlier version of BHFFA [23] was
shown to be incorrect due in large part
to the difficulty establishing a correct
bidirectional termination condition.

58 CHRISTOPHER M. DELLIN

functions are related by
dy(v) = d"(v) = [b(s) —b(v)]. (4-9)

Benefit of Potential Adjustment. If the ordering of solution paths does
not change under the potential function transformation, what benefit
would be obtained by conducting the search on the transformed
weight function? Indeed, computing the full distance function ds over
wy, e.g. by edge relaxation, appears just as expensive.

The key insight is that under an appropriately chosen potential
function, many shortest path algorithms are able to terminate more
quickly. To see why, consider the potential function b coinciding
with the destination heuristic function /; used in A*. By (4.7), the
weight wy, of a directed edge e,, which makes progress towards the
destination (so that b(v) < b(u)) will have its transformed weight
be reduced, whereas an edge in the incorrect direction will have its
transformed weight increase. The transformed quantity w;, from (4.7)
can be considered the excess weight of each edge, relative to the ex-
pected weight given the progress measured by the heuristic function
(this quantity has also been called the “waste” of the edge [94]). A
pathfinding algorithm therefore searches only in the excess weight
space, and is therefore biased to explore paths which make progress
towards the destination vertex. In effect, while the transformation
does not affect the relative ordering of paths, it does shift the weight
between edges on paths to accentuate poor choices to allow for early
termination.

Requirements on the Potential Function. The argument that ordering
of paths (and therefore shortest path(s)) is invariant to the transfor-
mation is true for any arbitrary potential function. However, in order
to be useful, we must be able to solve the transformed problem effi-
ciently (i.e. with early termination). As we saw for edge relaxation in
Section 4.2.2, our soundness result from Theorem g requires that the
edge weight function be nonnegative. This induces the requirement
that the vertex potential b to be consistent (also known as monotone or
dual feasible), i.e.

b(u) + w(eyw) > b(v) Veyu € E. (4-10)

If (4.10) holds, then the efficient ordering and early termination for
edge relaxation (i.e. Dijkstra’s algorithm) can be applied to the trans-
formed problem wj, and the returned path is also a shortest path
w.r.t. w.

Potential Functions for Bidirectional Search. Treating heuristic search
as such a potential function transformation allows Ikeda et. al. [54] to

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 59

apply the same idea to bidirectional search. In particular, if one com-
mits to a single potential function b, then the conventional bidirec-
tional algorithm (Section 4.2.3) can be applied directly. The question
is, what potential function should we use?

A bidirectional search customarily has available two heuristic func-
tions, one /;(v) that approximates the length of paths from v to the
destination vertex t, and one h,(v) that approximates the length of
paths from the start vertex to v. The most commonly used potential
function [54, 45] is simply the average of the two:

(4.11)

Note that the start heuristic value is negated; when the start heuristic
is used during the reverse search, it is applied to predecessor vertices.
It can be shown that if /i; and h; are consistent (i.e. satisfy (4.10)), b is
also consistent.

Figure 4.13: Illustration of behavior
of bidirectional heuristic search on a
shortest path problem reproduced from
[67]. Vertices that are start-expanded
are shown in blue, while those that are
destination-expanded are shown in red.
At left, the algorithm performs only
start-side expansions, which approxi-
mates the behavior of a unidirectional
algorithm. At right, the algorithm per-
1 forms distance-balanced expansions
between the two searches. The top row
shows the behavior of the algorithm
with no heuristic potential function.
Start and destination heuristic func-
i1 tions are available, and their effect are
[| [| shown at bottom. The unidirectional
inanns search uses the destination heuristic
hy as its potential function, while the
bidirectional search uses the averaged
potential function (4.11).

Figure 4.13 shows the behavior of the bidirectional heuristic search
algorithm on a path planning problem in an eight-connected grid
world. This example problem is reproduced from [67]. The figure
shows the effect of the combination of bidirectional and heuristic

search.

Figure 4.14 shows the result of conducting a bidirectional search
using this averaged potential function for the example road network
problem. This algorithm is listed as “H-BiDijk” (heuristic bidirec-

. .. ;N . . Figure 4.14: Bidirectional A* search.
tional Dijkstra’s) in the results of Figure 4.16. B

515,588 expansions.

60 CHRISTOPHER M. DELLIN

4.4.2 Heuristic Methods in Incremental Search

Efforts to integrate heuristics into incremental search algorithms
have taken a similar potential function approach. Koenig et. al.
developed Lifelong Planning A* [67], which implicitly applies this
transformation and then applies the DynamicSWSF-FP incremental
algorithm [98] from Section 4.2.4 to solve the dynamic problem. This
approach has resulted in a number of commonly used algorithms

such as D* Lite [66], Field D* [36], and Anytime D* [80]. We consider only optimal algorithms
(with admissible heuristics); for an

However, as discussed in Section 4.2.4, the underlying incremental i !
extension to inflated search, see [1].

algorithm has a stricter requirements: while Dijkstra’s algorithm
requires w > 0, Theorem 11 governing the incremental algorithm
requires w > 0. As a result, even in the case where the potential
function is consistent via (4.10), the transformed weight function wy
will not generally satisfy w;, > 0. This occurs along all edges for
which the weight is identical to the potential function difference —
exactly the expected scenario when the potential function is accurate.

Avoiding the Zero Weight with Sorted Tuples. LPA* solves the zero
weight problem by effectively conducting the incremental search over
a different set of edge weights — instead of the reals w : E — R>?,
each transformed edge weight is instead a member of a product
space

wy : E — RZOxR>?, (4.12)

with the transformation defined as

wy(euy) = [w(e,w) — [b(u) = b(v)]; w(euv)}- (4.13)

Note that the first element of the tuple coincides with the non-
incremental potential function transformation from (4.7). Elements
of the product space are sorted lexicographically; that is, their com-
parison only considers the first component, with the exception that
when the first component is equal, the second component is then
considered. Summing two elements is performed component-wise.

Note that since the we already assert that w > 0 for incremental Note that in order to maintain w;, > 0,

the second element need only be

positive, and could even be constant

therefore w;, > (0,0). (e.g. unity). We keep the value w(e,y)
for consistency with LPA*.

domains, the second component of wy, is everywhere positive, and

Equivalence to Lifelong Planning A*. Our treatment of the transformed
edge weight function w;, and the key function k differs from the
original presentation [67]. Here, we will briefly show that they are
equivalent.

Consider two algorithms conducting a search over a graph: (a)
LPA* and (b) DynamicSWSF-FP with its incremental key (4.6) and
using the transformed edge weight function (4.13). LPA* maintains

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

the two values ¢'(v) and rhs’(v) for each vertex, as well as the key
k' (v) for sorting its priority queue (we use the prime notation for
LPA* values):

) and rhs(v)= min ¢(0) twlew) G)

K (v) = [min(g'(v), rhs'(v)) + b(v); min(g'(v),rhs'(v))]. (4.15)

In contrast, our algorithm (b) builds its distance function d(v) over
the transformed tuple weight function wj, from (4.13). We show the
equivalence of these two approaches via the following invariant:

d(v) = [¢'(v) + b(v) — b(s); §'(v)]. (4.16)

Note that this is trivially true at the start of each algorithm, when
¢'(v) = o0 and d(v) = [o0; 00| for all vertices.

We next derive the complementary equivalence between r(v) and
rhs' (v) for v # s (r(s) = rhs'(s) = 0 trivially).

r(v) = uerlgrlgll(v) d(u) + wyp(eun) (4.17a)
= uefggg‘(v) &' (1) +w(ews) +b(v) = b(s); &' (u) +w(ewn)] (4.17b)
= [rhs'(v) + b(v) — b(s); rhs'(v)] (4.17¢)

As a result, we can write the key k used by our DynamicSWSF-FP
algorithm over the transformed edge weights as follows:

k(v) =min(d(v),r(v)) (4.18a)
=min([g'(v) +b(v) - b(s); ¢'(v)], (4.18b)
[rhs'(v) + b(v) — b(s); rhs'(v)]) (4.18¢)

= [=b(s); 0] 4+ [min(g'(v), rhs'(v)) + b(v); min(g'(v),rhs'(v))]
(4.18d)
=[=b(s);0] + K (v). (4.18e)

This shows that the tuple keys used to sort the priority queues for
the two algorithms are identical, up to the constant [—b(s);0]. There-
fore, both algorithms will select the same inconsistent vertex at each
iteration, and it follows from (4.16) and (4.17c) will make the same
determination w.r.t. over vs. under consistency and set ¢’(v) and d(v)
respectively in order to maintain the invariant (4.16).

This algorithm is listed as “LPA*” in the results of Figure 4.16.

4.4.3 Heuristic IBiD

The potential function transformation approach is applicable to Di-
jkstra’s algorithm (yielding A*), Bidirectional Dijkstra’s algorithm

61

62 CHRISTOPHER M. DELLIN

(yielding H-BiDijk), and DynamicSWSE-FP (yielding LPA*). There-
fore, it is natural to apply the same approach to IBiD, which is both
bidirectional and incremental.

As with the core IBiD algorithm presented in Section 4.3, the
heuristic variant requires w > 0 and s # t. Given consistent heuris-
tics hs and h;, form the averaged potential function b as described
in Section 4.11. This induces a transformed edge weight function wy,
according to (4.13). The Heuristic IBiD algorithm consists of running
IBiD (Algorithm 6) over these transformed edge weights.

Figure 4.15: Comparison of Heuristic
| IBiD parameters (expansion balancers
and potential functions) on a dynamic
grid world pathfinding problem re-
1 O i produced from [67]. Heuristic IBiD
in 1 Eren with only start-side expansions and a
1 I destination-side heuristic (top) proceeds
1 1 identically to Lifelong Planning A*, per-
forming 37 expansions on the original
world (left) followed by 18 expansions
[l over 14 vertices on the chanced world
(right). Heuristic IBiD with distance-
balanced expansions and an average
| potential (bottom) performs 30 expan-
sions on the original world followed by
18 expansions over 15 vertices on the

1
1 O L]] | changed world.
(| L] 8

O
O

[|

O TN
O

O

The behavior of Heuristic IBiD on a dynamic problem is shown in
Figure 4.15. This algorithm is listed as “H-IBiD” (Heuristic IBiD) in
the results of Figure 4.16.

4.5 Experimental Results

We performed an experimental comparison of the various pathfind-
ing algorithms described in this chapter on a set of incremental
problem instances drawn from an approximate road network of
the Northeast USA from the public dataset from the gth DIMACS
Implementation Challenge [27]. The directed graph consists of com-
prises 1,524,453 vertices and 3,868,020 edges. Each edge is annotated
with a transit time. The shortest path problem between a pair of start
and destination locations therefore minimizes the total transit time
between them.

We compared a total of eight algorithms on this problem, con-
sisting of each combination of { unidirectional, bidirectional }, {

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

complete, incremental }, and { uninformed, heuristic informed }. A
complete table of algorithms is given in Table 4.2.

Bdir_Heur Inc Nome Tl name Tl T o algrtns com
Dij Diistra’s algorithin B marked 2 bcrectonal (Be”)
X BiDijk Bidirectional Dijkstra’s algorithm heuristic-informed (“Heur”), and Jor
X A* A* search incremental (“Inc”).
X X H-BiDijk Heuristic bidirectional Dijkstra’s
X DynSWSF DynamicSWSF-FP
X X IBiD Incremental Bidirectional Dijkstra’s
X X LPA* Lifelong Planning A*
X X X H-BiDijk = Heuristic IBiD

Heuristics. For algorithms that use heuristics (A*, H-BiDijk, LPA*,
and H-IBiD), we compute them using 2D Euclidean distance. We
therefore project the input data given in geographic coordinates
onto the 2D plane using the latitude/longitude scale at the midpoint
latitude (41.25°N). This results in a projection error of less than 0.3%.
Because edge weights are transit times, we use the maximum transit
speed over the entire graph as the conversion factor (30.11 m/s), so
that the resulting heuristic is consistent.

For the unidirectional algorithms (A* and LPA¥), the destination
heuristic function h; was used. For the bidirectional algorithms (H-
BiDijk and H-IBiD), the averaged potential function b from (4.11) was
used.

Dynamic Edge Weights. For the dynamic setting, we created instances
on the graph derived from a traffic analogy. Each edge may either be
unblocked, taking its original transit time as its edge weight, or blocked,
taking an infinite edge weight. Between each planning episode, each
edge transitions independently between blocked and unblocked with
some probability. We ran experiments across four problem classes
with different probability parameters, ranging from P1 (infrequent
changes) to P4 (frequent changes), with transition probabilities given
in Table 4.3. The expected steady-state proportion of blocked edges
on the graph follows from

Polock

_— 1
B block + P, unblock (4 9)

Polocked =

and the transition probabilities were chosen so that this expected
proportion is constant across the problem classes at 0.002.

Each problem instance consisted of a start/destination vertex
pair chosen uniformly at random from the vertex set, and a ran-

63

64 CHRISTOPHER M. DELLIN

Table 4.3: Traffic transition parameters

Problem Poiock Punblock Phiocked for each edge of the Northeast USA

P1 0.0001 0.0499 0.002 graph for the four problem classes P1 -
Pg.

P2 0.0002 0.0998 0.002

P3 0.0005 0.2495 0.002

Py 0.0010 0.4990 0.002

domly chosen initial distribution of blocked edges (each edge initially
blocked with the steady-state 0.002 probability). We compared all
eight algorithms against the same set of 1600 problem instances
formed by all combinations of the four different traffic transition
problem classes, 20 different start/destination pairs and 20 different
traffic initial distributions.

Each problem instance consists of ten planning episodes, with
traffic transition probability governed by the parameters in Table 4.3
between each episode. The four non-incremental algorithms were
restarted from scratch for each episode. The four incremental al-
gorithms were notified of the changed edge weights before each
episode.

Discussion of Results. The results of this experiment are shown in
Figure 4.16. The results are primarily partitioned by algorithm.

For each algorithm, the results from the 1600 instances are broken
down as follows. Since the four different problem classes affect only
the edge weight transition probabilities for non-initial (replanning)
episodes, summary statistics are shown separately for only the 400
unique initial episodes, which are common across all problem classes.
The statistics for the replanning episodes are then averaged across the
remaining nine episodes, and are broken down by problem class.

Effect of Incremental Search. The first observation from the data is
that each of the first four non-incremental algorithms show identical
performance between the initial and replanning episodes. This is
expected, because the joint edge weight distribution for each episode
treated individually is identical (edges blocked with independent
probability 0.002), and the non-incremental algorithms address each
episode from scratch.

The performance of the four incremental algorithms on the initial
episodes is identical to that of their non-incremental counterparts.
In contrast, the results largely show significantly improved perfor-
mance on the replanning episodes relative to the initial episodes.
This demonstrates the effectiveness of incremental algorithms. As
expected, as the frequency of edge weight changes decreases (most
infrequent for P1) so that there are fewer changed edge weights be-

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

I
H-BiDijk H
DynSWSE S

IBiD J !

[P1-P4 Initial

LPA* [P4 Replans
1 P3 Replans
[P2 Replans
H-IBiD [P1 Replans
| | | | | | \ \ \
0 1 2 3 4 5 6 7 8 9
Vertex Expansions .10°

tween each episode, the benefits of incremental search are magni-
fied. On the other hand, the results for DynamicSWSF-FP on the P4
problem class (with many changed edge weights) actually shows an
increased number of vertex expansions — this can happen because in-
cremental algorithms can visit a vertex more than once (at most twice
with w > 0).

DynSWSF

I
]

IBiD

H

LPA*

[P4 Replans
1 P3 Replans
[__1P2 Replans

[1P1 Replans
| | I

H-IBiD

%l{

| |
0.2 0.4 0.6 0.8 1
Vertex Expansions (Relative to Initial Episodes)

o

Comparison of Bidirectional and Heuristic Methods. For this problem
domain, it appears that the benefit of adding a destination heuristic

65

Figure 4.16: Expected number of
vertex expansions required to solve a
single-pair shortest path query on a
Northeast USA road network. Four
problems P1-P4 were considered with
different numbers of expected edges
with traffic changes between episodes
(P1: few changes, P4 many changes).
The dataset consists of 400 instances
of 10 episodes each deriving from 20
randomly selected vertex pairs and
20 random traffic seeds. The “Initial”
series captures the first episode for
each problem instance (with identical
behavior between problems P1-P4
because no traffic changes affect the
initial episode). The “Replans” series
capture an average over the remaining
nine episodes. Note that (a) only the
latter four incremental planners see
savings during replanning, and (b)
the initial episode is identical between
each incremental planner and its
corresponding complete cousin.

Figure 4.17: Relative performance
improvement for replanning episodes
relative to initial episodes for each
incremental algorithm on the dynamic
road network problem.

66 CHRISTOPHER M. DELLIN

(A*) is more significant than the benefit of conducting a bidirec-
tional search (BiDijk). However, in both the complete and incremental
settings, combining both techniques outperforms either one individu-
ally.

Benefit of Incremental Search. Figure 4.17 shows the same results for
the replanning episodes of each incremental algorithm normalized to
its initial episode. In other words, it shows the benefit of incremental
search for each algorithm and problem class. In particular, this shows
that not only does the bidirectional and heuristic-informed algorithm
(H-BiDijk) outperform the other non-incremental planners as shown
in Figure 4.16, but also that integrating incremental search (H-IBiD)
yields the largest additional relative speedup. It appears that for

this problem domain, the combination of these three techniques is
particularly effective.

4.6 Available Implementations

Many existing implementations of bidirectional, incremental [2], and
heuristic [79] pathfinding algorithms exist. We provide an implemen-
tation of the algorithms in this chapter for the Boost Graph Library
[108] at the following address:

https://github.com/personalrobotics/lemur/tree/master/pr_bgl

5
Maximizing Utility in Motion Planning

Up to this point, we have considered general optimization problems
on graphs: given an edge weight function w : E — R which is ex-
pensive to evaluate, how can arrive at a minimizing solution path as
quickly as possible? We saw in Chapters 3 that the LazySP algorithm
can take advantage of different edge selectors in order to minimize
the number of such evaluations, and Chapter 4 discussed the IBiD
incremental search algorithm for efficiently solving the intervening
dynamic pathfinding problem.

In this chapter, we will ask a more fundamental question — what
objective should we be optimizing in the first place? Chapter 2 laid
out the functionals Xy,iq and xin: capturing the feasible and opti-
mal motion planning problems, respectively. But as we report in the
introduction, robots must allocate limited resources between plan-
ning motions and subsequently executing them. Existing approaches
for motion planning in such high-dimensional spaces, including
sampling-based, asymptotically optimal and anytime planners, risk
either quickly returning a solution that is expensive to execute, or
spending too much planning effort improving an existing solution.

The primary contribution of this chapter is to imbue lazily-evaluated
sampling-based approaches with a utility function which incorporates
both planning and execution cost in its objective. Reasoning over
utility provides the planner with a means to trade off between these
costs using a single input parameter, as well as a natural termination
condition. Furthermore, treating planning cost explicitly provides a
natural way to accommodate task-specific planning heuristics. The
planner performs well on a set of benchmark tasks, and is particu-
larly amenable to caching and parallelization.

5.1 Motivation and Related Work

Autonomous robots in the real world must carefully allocate limited
resources (e.g. time or energy) between planning motions and execut-

68 CHRISTOPHER M. DELLIN

xﬂ

R .

) planning: 2.9s
O execution: 5.7s
=

.9

=

=}

)

Q

%

£a)
2 Optimal solution .AQ

}

Planning Cost p

planning: 2.4s
execution: 12.4s

ing them. A robot that favors execution risks prematurely committing
to an uneconomical path, whereas one that favors planning risks
unduly delaying execution due to incessant small refinements. This
tradeoff is especially relevant for working with or around humans,
who are simultaneously unaccommodating of long pauses and of
wild and unpredictable motion.

Most planning algorithms pick a side and stick to it.

Randomized algorithms such as the PRM [63] and RRT [74], strive
to find feasible paths while minimizing planning cost, falling in the
A category of the planning vs. execution plot (Figure 5.1, we will
formalize notation in Section 5.2). Techniques such as caching, par-
allelization [53], and lazy evaluation [10] are often used to further
reduce online planning cost.

Optimal algorithms such as FMT* [57] exclusively optimize for
execution cost (A; in Figure 5.1), and often use techniques such as
informed heuristics to improve planning efficiency as a secondary
objective. Graph search approaches [47] can guarantee solution opti-
mality with respect to a chosen discretization, and often incorporate a
parameter (Az) such as inflation [95] or an execution cost bound [118]
that reduces the algorithm’s runtime at the expense of optimality.
However, it can be difficult to set these parameters for a particular
domain.

Anytime algorithms A4 for continuous [61, 41, 48] or discrete [81]
problems come the closest, providing a sequence of solutions with
decreasing execution cost. However, they are best suited for uncertain
planning budgets, and as a consequence of this uncertainty incur
planning cost producing solutions that never get used. It can also be
difficult to decide when to terminate them. We wish to do better.

Figure 5.1: A robot reaching to grab a
book must allocate limited resources
between planning and executing its
motion. Our planner reasons over a
user-defined utility function (top left)
to explicitly trade-off between these
two significant sources of cost. As

its roadmap search (right) discovers
valid edges (), it mediates between
high-cost edges that are fast to find (#)
and low-cost edges that require sig-
nificant planning (#) directly via their
prospective utilities. Because the plan-
ner accepts arbitrary estimators for
planning cost, it can naturally exploit
both caching and geometric structure in
C (bottom left).

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

Expressing the Planning vs. Execution Tradeoff. Our goal is to devise
an algorithm that explicitly reasons over both planning and execution
cost. Our algorithm should behave like an optimal algorithm if ex-
ecution cost is critical, and like a randomized algorithm if planning
cost is critical. Crucially, it should behave like a mix between the two
if both are important to the user.

To enable this, we borrow a concept from the Al community [101],
allowing the user to specify a utility function describing their planning
vs. execution tradeoff (illustrated via isocontours in Figure 5.1). We
describe some examples and theoretical properties of this function
in Section 5.2, but it can be arbitrarily nuanced, or extremely simple,
e.g. a linear function that sums planning and execution cost. We
argue that utility is an essential metric by which to evaluate motion
planners.

Considering this utility function, we make the following observa-
tions: (1) we can update estimates of utility online during planning;
(2) we can estimate execution cost of a path (e.g. path length or en-
ergy) quite accurately.

However, our key insight is that we can estimate the planning cost
in domains where this cost is dominated by the effort of verifying
the validity of edges via collision-checking. This is true for most real-
world robot motion planning problems where 80-95% of the planning
time is dominated by collision-checking.

Lazily Evaluated Marginal Utility Roadmas. When combined, these in-
sights enable a planning approach which reason explicitly over utility
using online estimates. This leads naturally to the Lazily Evaluated
Marginal Utility Roadmaps (LEMUR) planner (Section 5.3). LEMUR
takes as input a parameterized utility function U, and attempts to
find and validate a solution path that maximizes that utility.

LEMUR has several advantages over anytime planners. First, the
user’s utility function provides a natural termination condition — the
planner returns a solution when no alternatives provide a prospective
improvement in utility. Second, the planner does not waste effort
generating intermediate solutions.

The performance of LEMUR is also easier to tune to a particu-
lar problem domain. In particular, the parameter it uses to mediate
between costs is the user’s utility function itself. It is therefore unnec-
essary to tune inflation factors or trajectory optimization budgets to
achieve good performance.

We compare LEMUR to several sampling-based and anytime plan-
ners across a set of motion planning problems in Section 5.4.

LEMUR's ability to accept an arbitrary planning effort model
enables it to be customized to different domains. In Chapter 6, we

69

70 CHRISTOPHER M. DELLIN

discuss such a model specific to problems over a family of C-space
subsets. A prime example of this is multi-step manipulation tasks in
which the C-space changes with each object grasp and placement.
This allows computation to be efficiently cached and reused.

The combination of marginal utility, lazy evaluation, and roadmap
methods work in concert and are adaptable to new domains. Sec-
tion 5.5 concludes the chapter with a discussion of potential exten-
sions and applications of our algorithm.

5.2 Utility in Motion Planning

We consider the optimal motion planning problem as described in
Chapter 2. We consider a cost function x : & — R™ which measures
path quality — in our case, the cost of executing a solution path. Ex-
amples of x include the path’s length or the time or energy required
to execute it. x is commonly treated as part of the problem specifi-
cation; each instance admits a path(s) with optimal execution cost
x*.

A sound motion planner A accepts a problem instance and yields
a valid solution path ¢ with execution cost x[g]. We are also inter-
ested in measuring the planning cost incurred by the algorithm itself
via a real-valued performance metric p. Examples of p include the
number of iterations or collision checks performed, or the amount
of time or energy consumed by the planner. Figure 5.2 provides an
illustration of these two costs on the plane.

In general, a planner endeavoring to reduce the execution cost of
its solution path must incur additional planning cost to do so. While
a wealth of planning approaches are available in the literature, few
attempt to capture this underlying tradeoff directly. We propose to
do so via a utility function. Utility functions were first exploited by
the Best-first Utility-Guided Search (BUGSY) algorithm [101, 14] to
order vertex expansions during a conventional graph search. We
propose to apply a similar insight to motion planners which use lazy
evaluation.

5.2.1 Utility Functions

A utility function U is a scalar-valued function over both p and x
which provides the motion planner with the ufility of returning a so-
lution path with execution cost x calculated after incurring planning
cost p (Figure 5.2). Utility functions are applicable to a wide range

of planning regimes and often emerge readily from the problem do-
main. A utility function also naturally reconciles cost functions p and
x that are in different units (e.g. collision checks and path length). We

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 71

follow the convention that utility is to be maximized (whereas cost is
to be minimized).

> >

p p

(a) A utility function over p, x (b) Maximizing utility with
parameterized or anytime

planners
T T T
Ty

:
4 . :

:

D D py P

(c) First feasible (d) Bounded cost (e) Planning budget

While U may be any function, there are certain properties that we
can expect from any reasonable choice. In particular,

VU < 0. (5.1)

This follows from the following arguments (Figure 5.2(a)). If 0,U
were positive, it would be beneficial for a planner to return a path
with larger execution cost. Similarly, if d,U were positive, it would be
beneficial for a planner to artificially delay returning a given solution
path.

Several common planning regimes can be expressed exactly as
utility functions. For example, requesting a planner to return a so-
lution as quickly as possible irrespective of its execution cost cor-
responds to the first-feasible utility in Figure 5.2(c). Bounded-cost
planners such as Potential Search (PTS) [118] address problems in
which a solution below a prescribed cost xj, is desired as quickly
as possible (Figure 5.2(d)). The converse formulation requests the
lowest-cost path within a fixed planning budget p; (Figure 5.2(e)).

It is instructive to consider how existing types of planners might
be applied if utility is to be maximized. Many planners (A3 in Fig-
ure 5.2(b)) take parameters which profoundly affect both the quality
of their solutions and the planning cost they incur. The range param-
eter of the RRT [74] and the inflation factor in Weighted A* [95] are

Figure 5.2: Contours of a utility func-
tion U(p, x). Also some examples of
simple utility functions relevant to
related work.

72 CHRISTOPHER M. DELLIN

Algorithm 8 Lazily Evaluated Utility-Guided Search Outline
1: foriterationi € 1,2,... do

2: pi < planning cost incurred so far

3 &; < set of paths to consider at iteration i

4 pi:E — RT > additional planning cost estimator
5 £ :8 - RT > execution cost estimator
¢ & =argmaxss, U(Pt pi(6), £(0))

7: return &; if p;(&;) =0

8: evaluate ¢; > incurs requisite planning cost

common examples of this. However, it is difficult to choose the values
for these parameters; they must often be learned empirically in a way
that is specific both to the planner and to the problem instance.
Anytime planners such as Anytime Repairing A* [81] and RRT*
[60] return a low-quality solution quickly, and then continually re-
turn improved solutions as more planning is performed (A4 in Fig-
ure 5.2(b)). Applying an anytime planner to a utility-maximization
problem suffers from two drawbacks. First, an outside process must
enforce an appropriate termination condition. While this may be
straightforward for simple utilities (e.g. from Figures 5.2(c)-5.2(e)),
a nontrivial utility function requires a complex termination model
which must be learned in a problem-specific way. Second, scarce
planning resources are typically allocated on low-quality intermedi-
ate paths which will go unused.

5.2.2 Outline of Lazily Evaluated Utility-Guided Search

We endeavor to marry utility functions with lazy motion planning.
Lazy path evaluation is well-suited to domains with expensive valid-
ity checking, and is a common technique [10, 20]. Here, we provide
the general outline of a class of algorithms which takes as input a
utility function U and selects paths to evaluate based on estimates of
their utility.

The planner maintains estimates p and £ of the planning and
execution costs, respectively, for each of a set of prospective trajec-
tories E. While a prospective path’s execution cost may be easy for
a planner to estimate via commonly used heuristics, incorporating
estimates of the planning cost to be incurred by the algorithm itself
is more difficult. While the planner is running, we can decompose its
planning estimate p for a prospective path § into two components:

p(&) = p+pldl (5-2)

that is, the measured planning cost elapsed p and the estimated
remaining planning cost p.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 73

iﬂgl =
? o—>o
| _DPfinal______ L
&2 e—re
2 o ®
9 — Val
© P3 L —>e
2 — [p2 _
g } Ap P S o—>e
S |lpall- ||P3 o—»>eo
=" |Ip2 + 3
iteration D p

(a) Planning cost estimates (b) Evolution of path utilities

Consider the planner outline in Algorithm 8. At each iteration i,
the planner has incurred p; planning cost so far. It considers a set of
prospective paths Z; (left unspecified). It also has available estimators
for each path’s execution cost £; and its remaining planning cost
pi- Note that these estimators can change between iterations — for
example, a path’s remaining planning estimate becomes o once it is
fully evaluated, and its execution effort becomes oo if it is found to be
infeasible. Estimates for other paths which share segments may also
be updated (Figure 5.3).

Using these estimators, the planner selects among Z; the path ¢;
which maximizes the given utility function U. If no planning cost
remains, it is returned; otherwise, it is evaluated, incurring the req-
uisite planning cost. Note that this algorithm terminates naturally,
and therefore avoids incurring planning cost seeking out low-quality
intermediate solutions.

The outline in Algorithm 8 is able to broadly capture the behav-
ior of a number of well-known planning algorithms. For example,
consider the symmetric bidirectional variant of the common RRT-
Connect algorithm [69]. At each iteration i, the algorithm samples a
configuration ¢; uniformly from C. The candidate path that it then
selects for evaluation (Figure 5.4) is identical to the path which min-
imizes the first-feasible utility function (Figure 5.2(c)) among Z;,
the set of all prospective paths constrained to pass through g;. It is
therefore unsurprising that RRT-Connect typically completes with
remarkably little planning cost (albeit often with poor execution cost).

5.2.3 Linear Combinations and Elapsed Planning Cost

One particularly common class of utility functions consists of the a
linear combinations of p and x:

Ui(p,x) = —wp p — wx x (53)

Figure 5.3: A planner reasoning with

a linear utility function chooses to

first evaluate trajectory ;. After in-
curring planning cost p (less than it
had expected), it finds that it is more
expensive than expected; some of the
planning work has also adjusted the
estimates for nearby trajectory (.
However, the estimated remaining
planning costs p for all other unaffected
trajectories have remained constant.
Therefore, the relative utilities have also
not changed. As such, a planner need
not re-order any trajectories whose
estimated planning cost to go has not
changed.

74 CHRISTOPHER M. DELLIN

Figure 5.4: At each iteration i, the
4 simplified bidirectional RRT-Connect
[69] planner always selects among all
® paths constrained to pass through the
sampled configuration g; that which
minimizes the necessary planning cost
only.

(a) RRT snapshot. (b) Utility

for non-negative wy,, wy. Despite their simplicity, such utilities are
able to capture regimes which span the gamut between minimizing
planning and execution costs. In particular, if w, and wy are cho-
sen to bring their metrics into the same total task units with equal
weight, U; commands the planner to directly minimize the sum of
the two. This is particularly appropriate in regimes where the robot
is to immediately execute the planned path, and total task cost is to
be minimized.

In addition to their applicability, a utility function that is a lin-
ear combination also exhibits a desirable cost-discounting property
which a planner can exploit.

Theorem 13 If the utility function can be written as U(p,x) = —wp p —
f(x), then the path ; selected by Algorithm 8 (line 6) is independent of the
elapsed planning cost p.

Proof of Theorem 13 We have:

¢ = argmax | U(pi+pile], (¢])] (5.4
CEE;

= argmax | U(p[e], #(c]) —wp pi | (5.5)
CEE,;

= argmax | U(pile], %[2])] (5.6)
CEL;

O

In other words, the utilities of all prospective paths &; are dis-
counted the same amount (Figure 5.3(b)).

Because the planner maximizes U; at each iteration, it is therefore
completely characterized by a single parameter:

wp=Ay wy=1-Ay Ay €l0,1] (5.7)

This parameter uniquely describes the relative tradeoff between
minimizing planning and execution cost. It is often inherent in the
problem setting, or easily elicited from users.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 75

5.2.4 Linear Combinations and the Parameter Selection Problem

Consider applying a parameterized planner A(7) to the problem of
maximizing a convex combination utility U;. Such a planner may
take an explicit parameter, such as the inflation factor € in Weighted
A*, or it may be a termination condition for an anytime planner such
as an optimization time budget. The performance of A for different
values of 7 produces a locus on the p, x plane (Figure 5.5(a)). The
utility achieved by any particular planner realization A(#) corre-
sponds to a line (Figure 5.5(b)):

—Ua(Au,m) = Aupaln) + (1=Ay) xa(). (5-8)

Invoking such a planner for utility maximization requires that the
parameter # be set appropriately as a function of Ay;. An ideal 5
schedule would follow the convex hull of all lines in Figure 5.5(b):

na(Au) = arg max Ua(Au, 7). (5.9)
The locus of utility-maximizing planner parameters corresponds to
the lower-left convex hull of A (bolded in Figure 5.5(a)).

Determining a suitable such schedule 74 (A7), that is, the parameter
selection problem, is difficult to solve for many planners across a wide
range of problem domains. Tuning (e.g. setting a shortcutting time
budget) is often required to achieve good utility in practice. One
advantage of the utility-aware planner outlined in Algorithm 8 is that
it operates directly on the problem’s utility function itself.

33“ _U;L
\
A A(nk)
. Amg)
°
\’i(i)
..... \
7‘_> >
Ai p 0)\1)\k 1 /\U

(a) p-vs-x plot. (b) Corresponding utility plotot.

5.3 Marginal Utility on Roadmaps

The Lazily Evaluated Marginal Utility Roadmaps (LEMUR) motion
planner is an implementation of utility-guided search which unifies
lazy evaluation, marginal utility, and roadmap methods. It follows
the general outline from Algorithm 8 and exploits several properties

Figure 5.5: A parameterized planner A
maximizes a linear combination utility
(for some value A;) along the subset
of parameter values which constitute
the lower-left convex hull of the p-
vs-x plot (left). Each realization of
planner A for a particular parameter
value (a point at left) corresponds

to a line at right, which shows the
utility achieved for that realization
over various values of Ay (negative
utility shown, lower is better). Applying
a parameterized planner for utility
maximization requires selecting #
according to Ay; in such a way that the
realized utility approximates the lower
bound across all parameter choices
(right).

76 CHRISTOPHER M. DELLIN

and assumptions that are common in motion planning for articu-
lated robots. The planner considers paths constrained to a roadmap
graph G defined a priori in C, and resembles repeated invocations
of the LazySP algorithm from Chapter 3 on progressively densified
roadmaps. The set of continuous paths & considered by the planner
is therefore restricted to the set of paths I on the roadmap.

5.3.1 Cost Estimates Additive over Edges

Performing lazy evaluations entails repeated searches over roadmap
paths. To make this efficient, we commit to path cost estimators p;(7)
and %;(7r) that are additive over edges:

pi(m) = Y_pile) and £(m) =) %i(e). (5.10)

ecT ecT

Many common performance metrics meet this criteria, including
path length, execution time under velocity limits, and number of
collision checks. These two edge estimators are provided as input to
the planner in the form of an edge cost model M. Utility maximiza-
tion at each iteration 7 is then equivalent to solving a shortest-path
problem over the roadmap with the following edge weight function:

wi(e) = wp pi(e) + wx ;(e). (5.11)

5.3.2 Locality of Estimator Updates

The LEMUR algorithm evaluates a single roadmap edge ¢; at each
iteration i. Most common cost estimate models exhibit update locality:
evaluating an edge does not affect the estimates of other edges on
the roadmap. This allows for two optimizations. First, due to The-
orem 13, the per-iteration edge weight function w; can be stored as

a single scalar value w per edge, with only a single edge weight up-
dated per iteration. Second, an incremental shortest-path algorithm,
as described in detail in Chapter 4, can be used to efficiently search
for candidate paths.

Certain cost estimate models exhibit an approximate form of up-
date locality. For example, the estimates for an edge e, = (v4, vp)
often incorporate the validity of the configurations at its end vertices
v, and v, which are shared with other adjacent roadmap edges. For
example, if evaluating e, finds that v, is invalid, then the estimates %
and p for all edges adjacent to v, may also be updated. However, the
number of edge weights to be updated remains small compared to
the size of the roadmap.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

Algorithm 9 Lazily Evaluated Marginal Utility Roadmaps
1: procedure LEMUR(Gstart, goal, X, M.p, M., Ap)
2 G < graph with V = {gstart, §goal } and E = @

3: w:E— R > mutable edge weight function

4 for iterationi € 1,2,... do

5 m; = argminlen (771, w) > incremental search
ell(G)

6: if 77; is null then

7: Vhew, Enew < new densified roadmap batch

8: G.V & Voew; G.E & Epey

9: w(e) < Ap pi(e) + (1—Ap) %i(e) Ve € Enew

10: continue

11 if 77; is fully evaluated then

12: return 77;

13: e; + select unevaluated edge from 7r;

14: evaluate ¢;

15: %(e;) < x(e;); ple;) <0 > e.g. evaluate fully

16: w(e;) < Apple;) + (1=Ap) 2(e;)

5.3.3 The Algorithm

The LEMUR planner is shown in Algorithm 9. The planning query
consists of the configurations gstart, goal along with the evaluation
function x which determines the true execution cost of an edge (e.g.
oo if invalid). As x is usually expensive to compute, the planner is
provided with an ensemble edge cost model M with two indepen-
dent estimators: £(e) estimating the value of x(e), and p(e) estimat-
ing the planning cost required to compute x(e) itself. The planner is
also given the user’s utility tradeoff A, € [0,1] as a planner parame-
ter.

The algorithm begins with an initial roadmap graph G comprised
of the query vertices and an edge weight function w over the (initially
empty) set of edges. At each iteration i, the roadmap is searched for
a path 71; which maximizes estimated utility according to Aj. This
search uses an incremental search algorithm (our experiments use
the IBiD algorithm from Chapter 4). If no such path exists (i.e. all
paths have infinite weight), the roadmap is expanded with a new
batch of vertices and edges. The algorithm is agnostic to the roadmap
construction method used; our experiments use Halton sequences
with an r-disk connection rule.

If the path 71; has been fully evaluated, then (a) it requires no
additional planning cost, and (b) no prospective path on G has a
larger estimated utility than 7r;. Therefore, the algorithm immediately
terminates and returns 7;.

77

78 CHRISTOPHER M. DELLIN

Algorithm 10 Simple Edge Cost Model M jmpie

1 function pgimple(e) > remaining plan-cost estimator
2: if e is unevaluated then

3 return), c, Peonfig (7)

4 else

5: return 0

6: function Ximpie(e) > exec-cost estimator
7: if e is unevaluated or valid then

8: return ||e||

o: else
10: return co

Otherwise, an edge e; on 77; that has not been fully evaluated is
selected for evaluation. Our experiments simply select the uneval-
uated edge nearest to an end of the path, although other selection
strategies are possible. Once evaluated, the estimates for e; are re-
computed, modifying its edge weight according to (5.11) for future
iterations. For example, if it is fully evaluated, its remaining planning
cost becomes zero.

5.3.4 Ensemble Edge Cost Models

The ensemble edge cost model M which provides the estimators
p(e) and % (e) depends on the implementation of the evaluation
function x(e) and is therefore specific to the the planning domain.
Suppose that the true execution cost x of each edge is either its edge
length if valid, or co otherwise. Further, suppose that determining
its validity requires performing discrete collision checks interpolated
along the edge at some resolution. The cost model Mjmple shown
in Algorithm 10 captures this case. Note that this model uses the
free-space assumption: unevaluated edges are assumed to be valid.

5.3.5 Analysis

LEMUR is an application of marginal utility to lazy roadmap meth-
ods, and therefore it shares a similar structure to Lazy PRM [10]. In
fact, in the case that A, = 0, LEMUR reduces to Lazy PRM (for ap-
propriate choice of the edge selection and evaluation strategy), since
both algorithms will only consider execution cost when choosing
candidate paths.

LEMUR conducts its searches over any progression of succes-
sively densified roadmaps over C. Recent work has demonstrated
that roadmaps constructed via randomized [61] or deterministic [56]
sampling techniques (for appropriate choice of the roadmap param-

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

eters) endow motion planners which conduct systematic searches
thereon with desirable properties such as resolution and probabilistic
completeness. If the estimates p and % are both finite for unevaluated
edges, LEMUR is guaranteed to conduct such a systematic search.

The cost model’s estimators p and & can each be any function.
However, it is often the case that bounds are available for both esti-
mates relative to the true execution cost of the edge x. For example,
both may be proportional to the Euclidean length of the edge (e.g.
the estimated planning cost may be proportional to the number of
interpolated configurations to be checked). Such bounds allow for a
suboptimality bound on the execution cost of the path returned by
LEMUR (Theorem 14).

Theorem 14 (Execution Suboptimality of LEMUR) If the cost model
M satisfies
X(e) < ayx(e)and p(e) < apx(e) (5.12)

for some constants ay and ay, then the execution cost of the path returned
by LEMUR with A, < 1 is within a factor € of the execution-optimal path

. Ay
on G, with € = map + Ky

Proof of Theorem 14 Suppose that LEMUR returns path 7r;. Since
it is fully evaluated, it has weight w(7r;,) = (1—A,)x(71). Now,
consider an execution-optimal path 77* on G, which had w(7*) =
App(7t*) + (1—Ap)%(7r*) at the point the algorithm terminated.
Since 7r; was chosen over 71, we have that w(7rp) < w(7t*). Due to
(5.12), it follows that

(I=Ap)x(my) < Apapx(m™) + (1=Ap)axx (™) (5.13)

Because we have A, < 1, we then have:

A
x(mp) < <1 p/\pap+ax) x(7T*). (5.14)

5.3.6 Suitability for Caching

LEMUR searches a sequence of progressively densified roadmaps

in C. Analysis of the performance of lazy search for asymptotically-
optimal regimes [48] has identified the nearest-neighbor queries
required to construct the roadmap itself as a significant component of
planning cost. We exploit two factors to mitigate this. First, because
LEMUR endeavors to maximize utility (and therefore terminates),

its asymptotic behavior is of less importance. Second, we commit

to roadmaps that are (a) deterministic and (b) independent of the

79

80 CHRISTOPHER M. DELLIN

distribution of obstacles (e.g. r-disk or k-nearest roadmaps). This al-
lows us the option to to amortize the cost of constructing each batch
of the roadmap across all planning queries performed by the robot.
In our experiments, we present timing results with and without the
roadmap cache (the same cache is used across all problem instances).

Beyond the roadmap structure itself, edge validity state can be
persisted across planning queries yielding a multi-query planner that
is similar to the Lazy PRM or Experience graphs [91]. We briefly dis-
cuss how to accommodate a changing configuration space in Chap-
ter 6.

—_
o

|
—_
o

T

—

opt budget (sec)
o
|

opt budget (sec)
(@23
>
S

(=)

[}
[}

(=)
>
<
Ju—
(=)

Ay 1 0 v 1

(a) RRT (Hybrid) (b) BIT* (c) LEMUR

5.4 Experiments

We conducted experiments for a robotic platform armed with a 7
DOF Barrett WAM manipulator [102]. We used the FCL collision
checker [go] with a resolution of 0.01 rad. We considered three single-
query instances in a tabletop manipulation scenario and three single-
query instances from a bookshelf scenario (Figure 5.7). Planners were
evaluated against a range of utility functions trading off between
path length (rad) and planning time (sec), with Ay; = 0.5 correspond-
ing to an equal weighting when executing at 1.0 rad/sec.

We implemented LEMUR as a planner for the Open Motion Plan-
ning Library (OMPL) [119]. We used the 7D Halton sequence to
generate a low-dispersion point set adjusted by an offset drawn uni-
formly from C. Each roadmap batch consists of 10,000 vertices, and
the r-disk connection radius decreased from 2.0 rad at the first batch
in proportion to the Halton dispersion bound. Runtime memory us-
age was reduced by interpolating and allocating within-edge states
lazily during the search. The planning parameter was chosen as
Ap = Ay.

We compared LEMUR against RRT-Connect [69] and Batch In-
formed Trees (BIT*) [41] as implemented in OMPL version 1.1.0
with default parameters. To address maximal-utility problems, RRT-
Connect was augmented with the default OMPL path shortcutter.
For each planner, the optimization budget before termination as a
function of A;; was learned to maximize average utility across the

Figure 5.6: Schedule of parameters

for three of the algorithms compared.
The hybrid RRT-Connect and BIT* are
both anytime planners. The parameter
learned was the algorithm termination
time after the first returned path. The
LEMUR algorithm does not require
tuning; we used A, = Ay in our
experiments.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 81

Execution: 5.50s

Planning: 1.34s Execution: 6.39s

Figure 5.7: Illustration of three trajectories generated by LEMUR on instance 6 from our experiments. The planner was
initialized with the parameters A, = 0,0.5, and 1; the same roadmap was used. By increasing A, the planner prefers
minimizing planning cost at the expense of more costly solution paths.

14 Figure 5.8: Comparison of measured
planning time p and solution execution
cost x for the first step of the HERB
table-clearing task. Results for four pa-
rameterized planners are shown: RRT-
Connect (W), BIT* (H), Lazy ARA* (H),
and LEMUR (H). The LEMUR results
show the effect of adjusting the A,
tradeoff parameter from 0 (lower right)
to 0.99 (upper left). The results for other
planners show the effect of changing
the total optimization time after the first
returned solution. Also shown for refer-
ence are the contours for the Ay = 0.50
utility function (i.e. 1 rad = 1 sec).

82 CHRISTOPHER M. DELLIN

instances (Figure 5.6).

20 |- = - Figure 5.9: Comparison of measured
planning time p and solution exe-
cution cost x for the FG step of the
— workeell task. Results for four param-
15 \ — eterized planners are shown: RRT-
Connect (M), BIT* (H), Lazy ARA* (H),
and LEMUR (H). The LEMUR results
show the effect of adjusting the A,
10 - = tradeoff parameter from 0 (lower right)
to 0.99 (upper left). The results for other
planners show the effect of changing
the total optimization time after the first
5 : ‘ : , ‘ returned solution. Also shown for refer-
0 2 4 6 8 10 ence are the contours for the Ay = 0.50
p (sec) utility function (i.e. 1 rad = 1 sec).

z (rad)

7:
|

We ran 50 trials for each planner, with different random seeds.
The results are shown in Figure D.1. We collected results for versions
of LEMUR with and without nearest neighbor caching, with time
breakdowns for each shown in Figure D.2.

Figure 5.10: Comparison of measured
planning time p and solution execution
cost x for the first step of a CHIMP
valve turning task. Results for four pa-
rameterized planners are shown: RRT-
Connect (H), BIT* (), Lazy ARA* (H),
and LEMUR (H). The LEMUR results
show the effect of adjusting the A,
tradeoff parameter from 0 (lower right)
to 0.99 (upper left). The results for other
planners show the effect of changing
the total optimization time after the first
5 ‘ ‘ ‘ ‘ : : ‘ returned solution. Also shown for refer-
0 20 40 60 80 100 120 140 ence are the contours for the Ay = 0.50
p (sec) utility function (i.e. 1 rad = 1 sec).

The relative performance between the planners varies significantly
between the six instances considered. For example, BIT* performs
very well on some instances (e.g. nos. 2 and 6), whereas it takes more
than 100 seconds on average to discover a path for instance 5. The
latter three (bookshelf) instances appear to pose particular difficulty
for the RRT; the constrained space and cubbies may result in its trees
getting stuck easily.

As expected, loading its roadmap from a cache significantly
speeds up LEMUR (by 4s - 15s on these instances). As shown in Fig-
ure D.2, a large majority of the cached algorithm’s runtime is spent
collision checking. The path produced by LEMUR is independent of
this caching, so their utility curves meet at A;; = 0 (when only so-
lution quality is considered). This condition also corresponds to the

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

behavior of the Lazy PRM.

Across the six motion planning instances, we found that LEMUR
placed consistently among the best performers across the range of
utility functions.

5.5 Discussion

As robots take on more complex and deliberative tasks, it is essential
that they balance their computational and physical efficiency. Utility
functions provide a natural way to represent this inherent tradeoff
between planning and execution in motion planning. The LEMUR
planner relies directly on this utility to guide its search for such a
balance.

LEMUR relies on a domain-specific ensemble cost model to esti-
mate the planning and execution costs of prospective motions. The
parameter(s) of these models, such as the expected cost of a collision
check, are easier to measure than corresponding parameters needed
by other planners.

While LEMUR is agnostic to the class of roadmap used, methods
which use deterministic sampling [73, 56]. have distinct advantages
with regard to caching of collision state within and between planning
episodes and parallel processors. Furthermore, by committing to a
particular set of roadmap instantiations, we can potentially optimize
them offline [103] to exhibit good behavior on a particular robot.

33

6
Planning over Configuration Space Families

To this point, we have considered motion planning problems in
which a path is sought within a fixed valid subset Cgee C C In Chap-
ter 3, we described a lazy search algorithm which is suited to do-
mains in which determining the weight of an edge — perhaps due to
expensive set membership tests — is expensive. Chapter 5 discussed
the concept of utility to motion planning, and showed examples of its
application to single-query motion planning problems.

However, many applications exhibit structure beyond simple bi-
nary belief over configuration validity. In this chapter, we introduce
the family motion planning problem, a generalization of the motion
planning problem to a family of sets over C. We then show how such
a problem over families can be represented as in the utility func-
tion framework, and given as input to the LEMUR motion planner
described in Chapter 5.

This chapter proceeds as follows. Section 6.1 surveys related work.
In Section 6.2, we motivate these the family motion planning problem
from the standpoint of manipulation tasks. Section 6.3 formulates
the problem generally. We describe our approach in Section 6.4,
which details how the family problem can be represented as a utility
model that can be used by LEMUR. The chapter concludes with
experimental results on multi-step manipulation tasks in Section 6.5.

6.1 Related Work

The topic of reusing planning computation between similar motion
planning problems has been extensively studied in the literature. We
include here a broad survey of existing approaches.

Exact Algorithms. Exact planning methods construct explicit obsta-
cles directly in the configuration space. Many such approaches allow
for pre-computation of primitives, such as bitmaps [62] or C-space
primitives for different workspace obstacles [88]. More recently, Lien

86 CHRISTOPHER M. DELLIN

and Lu [78] describe a method to build a PRM around obstacles in

a database, and then reposes them in a new world. As described in
Section 2.3.1, the exact approach is not easily applicable to articulated
robots with complex mappings from workspace to C-space.

Accommodating Dynamic Subsets in Sampling-Based Planning. Strong
recent interest in sampling-based planning has lead to the develop-
ment of a number of approaches to handle environments in which
Ciree changes over time. If a given discretization is asserted a priori,
this problem setting is similar to the dynamic shortest path problem
from Chapter 4; we refer the reader to that chapter for a review of
related work. Many sampling-based approaches attempt to prune
and grow the discretizations itself in response to these changes, such
as the Dynamic RRT [35], the Reconfigurable Random Forest (RRF)
[77], and the Lazy Reconfiguration Forest [43]. However, these ap-
proaches do not reason explicitly about the structure of the configu-
ration space, which we will consider in Section 6.2.

Considering Static and Dynamic Obstacles Separately. Some approaches
do take advantage of such structure through a two-level dichotomy
between the permanent and non-permanent configuration space ob-
stacles that induce Cf,,,. Leven and Hutchinson [75, 76] and similar
work [59] handle changing environments by pre-computing a self-
collision-free roadmap offline, and then pruning it at query time
using a mapping from workspace cells to roadmap edges. Other
methods [55] exploit the dichotomy between static and dynamic parts
of the world online. The family motion planning problem is a gener-
alization of these formulations to more than two C-space subsets.

Task and Motion Planning. The structure in manipulation tasks that
our approach leverages is similar to the conditional reachability graph
which is part of the recent FFRoB heuristic task planning framework
[42]. While this framework does make use of a similar configura-
tion space decomposition for manipulation tasks as described in
Section 6.2, it differs from our approach in two ways. First, it is con-
cerned only with manipulation tasks, and does not consider how the
induced set of motion planning problems can be formulated more
generally (e.g. in Section 6.3). Second, because the framework does
not consider utility, its motion planner is not able to exploit the con-
figuration space structure to the same extent as our approach.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 87

6.2 Motivation: Families in Manipulation Tasks

Motion planning approaches that build graphs in the collision-free
subset of configuration space as described in Chapter 2, e.g. the PRM
[63] and RRT [74], have proven promising for high-dimensional ar-
ticulated robotics problems in unstructured environments. These
approaches devote a large amount of computational effort testing
configurations and paths for collision via the free set indicator func-
tion (Section 2.2.1), and multi-query planners can then reuse the
resulting graph for other queries in the same collision-free subset.

However, for manipulation problems, this subset of the robot’s
configuration space is sensitive to the locations and shapes of both
people and objects in the environment, as well as the robot itself. It
also depends on the shape and pose of any object grasped by the
robot. Consider the table clearing task in Figure 6.1. The robot’s valid
subset Cpee changes each time the object is grasped or released. Over
the course of a planning episode, these changing subsets constitute a
family of related sets over C.

This makes it difficult not only to apply the results of prior plan-
ning computation to the current problem, but also to efficiently con-
sider multiple planned or hypothesized motions, since we must re-
construct our graph from scratch whenever the environment changes.

This is especially the case for multi-step manipulation tasks that must
Figure 6.1: A simple manipulation

task: retrieve the mug from the table,
We use this multi-step manipulation task as a motivating example and drop it in the blue bin. This task
requires plans in three distinct C-space
free subsets.

be planned into the future.

for the family motion planning problem, and dive more deeply next
into the structure of the problem’s composite configuration space. We
will consider problems over other robots and applications later in this
chapter.

6.2.1 The Composite Configuration Space

The configuration of a quasistatic manipulation environment with

multiple movable objects can be represented as a composite configu-

ration space, consisting of the Cartesian product of the individual The composite configuration space is
configuration spaces of the constituent objects. For example, consider also called the joint configuration space.
an environment with a robot R and an object O; each is endowed

with a configuration space:
CR and Co. (6.1)

For example, the robot’s configuration space may be represented as
its joint angles, while the object’s configuration may be SE(3). The
composite space is then defined as

CRO = Cg X Co. (6.2)

88 CHRISTOPHER M. DELLIN

Of course, not all composite configurations will be feasible; some
may correspond to configurations in which the robot, object, or static
environment are intersecting each other (colliding), while others
may denote configurations of the object where it is not at a stable
placement or grasp configuration.

Visualizing the Composite Configuration Space. While the composite
configuration space for any interesting manipulation task is of too
high dimension to effectively visualize in full, we can make an ap-
proximation shown in Figure 6.2. Imagine that this 3D visualization
represents a projection of Crp so that the two horizontal axes x and
y correspond to the robot’s configuration space Cr, while the verti-
cal axis z corresponds to the object’s configuration space Cp. For the
sake of this visualization, we ignore constraints on feasible object
placements.

Figure 6.2: Illustration of a composite
configuration space for a manipulation
task.

Within the composite configuration space are three volumes corre-
sponding to composite configuration space obstacles, shown individ-
ually at the right of Figure 6.2:

¢ First, in blue, is a volume which representing configurations in
which the movable object collides with the static environment.
Note that the obstacle is invariant to the configuration of the robot.

* Second, in green, is a volume in which the robot collides with the
static environment. Similarly, note that this obstacle is invariant to
the configuration of the object.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

e Third, colored by height, is a volume representing composite con-
figurations in which the robot and object are colliding.

The manipulation problem can then be formulated as a motion plan-
ning in this composite configuration space, taking the system from a
starting configuration (e.g. with the robot in its home configuration,
and the mug on the table from Figure 6.1) to a destination configura-
tion(s) (e.g. with the robot returned home, and the mug in the bin).
However, this composite configuration space is also encumbered by
constraints which restrict allowable motion to constraint manifolds.

6.2.2 Transit and Transfer Manifolds

The source of these constraint manifolds within the composite con-
figuration space is the fact that in prehensile manipulation tasks, the
movable object cannot move on its own. In fact, any solution task
alternates between two types of constraints: transit manifolds, in
which the robot’s configuration changes while that of the object re-
mains constant, and transfer manifolds, in which the configuration of
the object moves as a function of the robot’s configuration (i.e. dur-
ing a grasp). (This dichotomy can be extended to multiple robots or
movable objects.) For an in-depth treatment of the structure of these
manifolds in manipulation tasks, we refer the reader to [109].

Transit and Transfer Manifolds in Cro. To address a manipulation
task, then, the robot must move through this composite configura-
tion space Crp while abiding by the underlying transit and transfer
constraint manifolds. Consider the visualization in Figure 6.3, with
manifolds shown as red surfaces. In the first step, the robot must

Figure 6.3: Illustration of a transit
and transfer constraint manifolds in

the composite configuration space
for a manipulation task, along with
projections of each onto the robot’s
configuration space.

89

90 CHRISTOPHER M. DELLIN

transit from its current configuration at left to a grasp configura-
tion at right, while constrained to the transit manifold shown in red.
Next, the second step is constrained to a transfer manifold in which
both the robot and the object move together to an placement loca-
tion. Finally, the third step shows an addition transit away from the
placement location to a desired destination configuration.

Projecting Manifolds onto Cg. Since the full composite configuration
while constrained to a manifold can be expressed as a function of
the robot configuration gr only, it is sufficient to consider eac sub-
problem as the projection of the composite obstacles in Crp onto the
robot’s configuration space Cr. Below each depiction of the mani-
folds in Figure 6.3 lies a visualization of this projection, along with
the projected solution path.

The first and third subfigures correspond to transit subproblems,
in which motion through the composite space is constrained so that
the movable object’s configuration remains constant. The second
subfigure corresponds to a transfer subproblem, in which the motion
of the object directly follows from the motion of the robot.

6.2.3 Planning over a Family of Related Subsets

The depictions of the three projections in Figure 6.3 lends a concrete
picture to the description of changing free subsets depicted in Fig-
ure 6.1. Clearly, when the composite configuration space Crp is pro-
jected onto Cg, each of the three motion planning problems required
by the task induces a different free subset Cgee C Cr.

Importantly however, the free subsets are related. In the visualized
example, the projection of the green composite obstacle is identical
across the three free subsets.

How can we take advantage of this? Consider a roadmap method
addressing the table clearing problem in Figure 6.1. Suppose that a
number of edges have already been evaluated in order to find a valid
path for the first step to grasp the red mug. Once grasped, the active
valid subset Cgee within which the second step must be planned has
changed. However, any edge known to be valid for the previous step
can be validated in the new subset by simply checking the grasped
mug against the robot environment. A similar example in a 2D world
is presented in Figure 6.4.

This example from a simple manipulation task motivates the for-
malization of the family motion planning problem in Section 6.3,
which is more generally applicable than manipulation tasks in partic-
ular. We then develop our intuition from the simple examples in this
section when describing our approach in greater detail in Section 6.4.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

91

o—— (3

q1

q2

(a) A two-part family problem in C, first be-
tween g; and g, through Si», then between g5
and g3 through Sy3. The two free subsets Sy,
and Sj3 are distinct but related.

(b) The free subsets are related via other un-
derlying subsets of C, with S, = A N B and
S;3 = AN C. A planner solving the first part
(from g1 to g2) has found paths in Sy5.

(c) Due to the set relations, a planner solving
the second part (from g5 to g3 in 5»3) can reuse
any segment known to be in Sy, by checking
only for its membership in C.

512 - A T q1 — q2
q € S12 qge A
731 N O o q1 g2 @
B ”””\ I rTo oo oo I q2 — q3 ,"‘\7
] | qc B ! | II /
[[&\\#/
P @ Q '\v?_\)/\ Q2 @:)
Sos B C ST - q2 — g3
q € S23 geC
S SN
o QfE 0} =0

(d) A forklift in a parking lot (g1) must retrieve
an object (g2) and reverse park (q3). This two-part
problem requires plans in distinct collision-free
C-subsets S1; and Sp3.

(e) Sets S1p and Sp3 are subsets of the configu-
ration space of the robot C =
represented as intersections of underlying subsets
A, B, and C as in (b).

SE(2), and can be

(f) After planning a path from ¢, to g, (top), a
planner can reuse a configuration in S, (middle)
by checking only for its membership in subset C,
resulting in plan reuse (bottom).

Figure 6.4: An illustration of a family motion planning problem in a common configuration space C. The problem def-
inition generalizes to an arbitrary number of configuration space subsets and set relations between them. When two
queries in different subsets are solved sequentially, a family motion planner can reuse path segments less expensively.

See Section 6.5 for examples in manipulation.

92 CHRISTOPHER M. DELLIN

6.3 The Family Motion Planning Problem

The family motion planning problem is a generalization of both the
movers’ problem (Section 2) and the multi-query planning problem
[63]. The problem is multi-query in a fixed configuration space C, in
that it accommodates multiple distinct motion planning queries (e.g.
between gstart, Jdest € C). However, unlike existing multi-query formu-
lations in which all queries demand solution paths contained within
a single common subset of C (i.e. the set of collision-free configura-
tions, denoted Cee), the family problem allows for the specification
of a family of multiple such subsets F = {A, B, ... }. Like Cee, each
member of F is a subset of the common configuration space (that
is, S C C V S € F), and each subset S has its own indicator and
planning estimator 15[-] and pg(-) as in Section 2.2.1. For example,
in Fig. 6.4(e), C-subset B consists of configurations free of collision
between the robot and the initial object pose.

The problem supports an arbitrary number of queries ¢/. Each
query u demands a solution path through a single C-subset U € F
(see Fig 6.5):

u: (%turtr Ygoals U) (6.3)

Finally, the family problem includes a list of set relations R be-
tween the C-subsets in F. These can be expressed directly using set
theoretic relations, or equivalently as logical statements on the cor-
responding indicator functions. Common types of such relations
(containment and intersection) are illustrated in Fig. 6.6. Fig. 6.4 gives
an example of intersection relations; an example of containment is a
padded (conservative) robot model.

Together, these four elements (a configuration space C, subsets F
each with endowed indicators, a set of queries U/, and a list of subset
relations R) comprise a family motion planning problem.

Revisiting the Example (as a Family Motion Planning Problem). Con-
sider the diagram from Fig. 6.4. F consists of five C-subsets labeled
A, B, C, S1p, and Sy3, and we have two queries, 17 : (41,42, 512)
and ups : (g2,43,523). R consists of the two relations S, = AN B
and Sy3 = AN C. Suppose a cost model M wherein evaluating the
indicator 14 incurs cost 4, evaluating 15 and 1¢ incurs cost 2, and
evaluating 15,, and 1s,, incurs cost 6. In the manipulation example
in Fig. 6.4(d), this would be the case if each pairwise outlined shape
collision check incurs unit cost.

Suppose a graph structure within S1, has been grown to solve
the first query uq,. During the subsequent solve of query w53, an
existing path segment known to be in S15 can be shown to also be
contained within Sp3 by only evaluating 1¢. In the manipulation ex-

Queries U Subsets of C

ul
v

(a) Multi-query planning

Queries U Subsets of C
ul
-

ug ———(0)

(b) Family motion planning

Figure 6.5: While queries in multi-query
planning reference the same subset of
C, each family query references one of a
number of such sets.

B

®

ACB

(a) Containment relation

A=BnNnC

(b) Intersection relation

Figure 6.6: Types of subset relations.
Each relation can be expressed directly
as set relations w.r.t a set S, or equiv-
alently as logical statements on the
corresponding indicator functions 1g(-).

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 93

ample, reusing an a configuration from the previous search would
require only a check of cost 2, instead of cost 6 for a new configu-
ration. Thus, we might hope that a planner may be biased towards
reusing said path segments in this case.

6.4 Approach: A Utility Model over Family Beliefs

Recall from Chapter 5 that the LEMUR motion planner takes as input
a domain-specific ensemble cost model M to provide it with plan-
ning and execution cost estimates for prospective edges. This allows
it to exploit domain-specific knowledge and structure that may be
present.

We wish to capture the structure of the family motion planning
problem via such an ensemble edge cost model M ,mity. To do so
requires us to implement the remaining planning cost estimator
flfamﬂy(e) as a function of the underly family F of C-subsets and the
intersection/inclusion relations between them. We accomplish this
over the course of a planning episode by reasoning explicitly about
belief over the subset membership of individual configurations and
edges.

6.4.1 Family Beliefs

Consider a family F consisting of n subsets, and consider a configu-
ration ¢ € C on which we may have invoked one or multiple subset
indicator functions. How can we generally represent our knowledge
about the subset membership of 47 We can form a belief space B as
follows

B= H {Unknown, False, True}. (6.4)

SeF

That is, a belief state b € B stores knowledge of subset membership
for each subset S € F. (We will abbreviate the membership beliefs for
each state in (6.4) as U, F, and T respectively.)

Composing a Family Belief Graph. Consider the initial belief state of

a configuration biniy = (U, U,...) for all subsets. How does a belief
state b transition after invoking a particular indicator function? In the
most general case, invoking the i-th indicator 1g, returning r € {F, T}
results in a belief state b’ equal to b but with its i-th component set to
7. (The existing i-th component of b must either be U or already be r
if the indicators are consistent.) This simple transition model induces
a directed family belief graph Gr = (Vr, Er) where Vr = BB and each
edge er € Er represents (S,r), the result of invoking an available
indicator function 1g and having it return the binary result r.

See Section 5.3.4 for the definition of an
ensemble edge cost model.

Recall that for subset S, invoking the
indicator function 1s on configuration
g returns a binary value representing
whether g € S.

ﬂ@SQ,T—»LGZ%

Sy, F N~

— S1,T N
‘U,’liﬁ (T,F)
) N

Figure 6.7: Example family belief
graph for a family of two subsets, S;
and Sy. From the initial belief b;,;; =
(U, U), each transition (S, r) represents
invoking indicator 1g with returned
binary result r.

94 CHRISTOPHER M. DELLIN

For example, consider a family F consisting of two unrelated sub-
sets, S1 and Sp. The family belief graph G illustrated in Figure 6.7
shows all possible belief transitions on the graph.

6.4.2 Subset Relations and the Family Belief Graph

In a family motion planning problem, the family of subsets F is
accompanied by a set of subset relations R. These relations have
implications on the family belief graph Gz. To build the revised
graph, we convert both the belief state b and the subset relations R
into a set of logical propositions.

Beliefs and Subset Relations as Logical Propositions. A logical proposi-
tion is a statement consisting of propositional variables and logical
operators. We will use bolded letters to denote propositional vari-
ables. A set of propositions P can be used as premises as part of an
argument to demonstrate a conclusion; a logical solver can then be
used validate or invalidate the argument. For example, an argument
with these premises and conclusion {(A = B), (—B)} = (—A) can be
shown to be valid.

Any belief state b can be represented as a set of logical proposi-
tions. Consider again the simple family from Figure 6.7 consisting of
subsets S1 and S, (with S; C C). We will introduce the propositional
variable S; as follows: for some query configuration q € C, the propo-
sition S; implies g € S;, whereas —=S; implies g € S;. Therefore, a
belief state b can be converted into a set of propositions P:

Py ={S; Vi|b[i] = TIU{=S;Vi|bli] =F} (6.5)

For example, belief b = (T, F) corresponds to P, = {S1, =S, }, and
belief b = (U, U) corresponds to P, = @.

The set of subset relations R can also be represented as a set of
propositions. In particular, the containment relation A C B (Fig-
ure 6.6a) yields {(A = B)} and the intersection relation A = BN C
(Figure 6.6b) yields {(BAC = A), (A = B), (A = C)}. Converting
each relation in R in this way yields an equivalent set of relational
propositions Pr.

Subset Relations Prune the Family Belief Graph. The relational proposi-
tions Pr together with the belief propositions Py, for each belief state
b given by (6.5) can then be used along with a propositional logic
engine to compute the family belief graph for a particular family
motion planning problem. In particular, consider a given belief state
vertex b € Vr and a proposed out-edge (S,r). Let P, the resulting
additional set of propositions for this edge, be {S} if r = True, or

We keep distinct notation for the
indicator function predicate 15 over C
and the corresponding propositional
variable S; the former is used as a
subroutine to be invoked to determine
subset membership, whereas the
latter is used to represent actual or
hypothesized assignments to the
propositional logic engine.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 95

{—S} otherwise. Then i-th component of the successor belief state b’
is formed by considering the following two propositional arguments:

True if PR UP,UP, = S; is valid
Vi) = False if Pgr UP,UP, = 8, is valid (6.6)
Unknown otherwise.

We show the effect of subset relations R on the family belief graph
for our simple example family with an additional containment re-
lation in Figure 6.8. The additional proposition from Py, namely
that S; = Sy, prunes the original graph in Figure 6.7 by removing
inconsistent belief states and transitions.

We also illustrate the family belief graph for the more complex
family motion planning problem in Figure 6.4. Recall that the family
F consists of five C-subsets, A, B, C, S15, and S,3, and R consists of
the subset relations Sy = AN B and Sy3 = AN C. The family belief
graph is shown in Figure E.1 in Appendix E.

6.4.3 A Family Utility Model

A key input to the LEMUR planner from Chapter 5 is the ensemble
edge cost model M which captures domain-specific estimates of both
the execution cost £ and the remaining planning cost p for each edge
on its roadmap. How can we take advantage of our family belief
graph in order to implement such a model for the family motion
planning problem?

Recall that the formulation of the family motion planning problem
(Section 6.3) includes for each subset indicator function 15 an invo-
cation cost estimate ps. Our key insight is that our ensemble edge
cost model Mmily can (a) maintain for each edge e its current belief
state b, within and between each planning query, and (b) leverage
the family belief graph in order to compute for any current edge an
optimistic optimal sequence of indicator function invocations in order
to demonstrate that the edge ¢ is a member of the query subset S,,.

Beliefs from Configurations to Edges. Paramount in our approach is
the ability to reason over edge beliefs. So far in Section 6.4, we have
developed a family belief graph Gr informed by the set of subset
relations R which allows us to reason about the evolution of our
belief over the subset memberships of a query configuration g € C.
Can we use this same belief graph to reason about edge beliefs as
well?

While this is not generally true for arbitrary subset relations, we
can demonstrate that it is true for the particular relations that we
are considering — namely, containments and intersections. Consider

7T
Sy, T
R
o S5, T S1,F
\i%SmF \
S1,F ﬂ@
\ %
Sy, T
A I
(F,U)}Ss,F—{F.F)
N N

Figure 6.8: Example family belief graph
for a family of two subsets, S; and Sy,
with the subset relation that S; C 5.
Compare this family belief graph to
Figure 6.7 without the relation.

96 CHRISTOPHER M. DELLIN

the following definition for a subset S C C. Consider an edge e €
E which corresponds to a particular trajectory &, : [0,1] — C as
described in Chapter 2. We will define edge set membership as:

eeS < (t)eS VvV telo1]. (6.7)

Consider the containment relation A C B; it can be easily shown by
(6.7) that if e € A, then e € B. A similar statement can be made about
the intersection relation A = BN C. If e € A, then e € BN C and vice
versa.

An example of a set relation for which the edge membership re-
lations do not follow directly from the configuration membership
relations is shown in Figure 6.9. In this example, the subset relation

= C\ B implies thatif § € A, then g ¢ B. However, this is not
true in general for edges. Fortunately, containment and intersection
relations are sufficient for all instances of family motion planning
problems that we consider.

Computing an Optimistic Optimal Belief Policy. Using the invocation
cost estimates fig for each subset S € F, we can create an edge weight
function wp : Ex — R as

wp(e) = ps for e= (S,7). (6.8)

For the current motion planning query in the i-th subset S, we also
identify all belief states b € Vr for which b[i] = True as goal vertices,
and compute the distance function dg, : Vr — R and the correspond-
ing optimal policy over the family belief graph Gr using a reverse
Dijkstra’s search. An example of this policy is shown in Figure 6.10.

The Belief-Informed Family Utility Model. We are now ready to define
the ensemble edge cost utility model Mgy in Algorithm 11. Note
that the implementation of Mfmiy depends on the current query
subset S,,.

Once the optimistic optimal distance function and policy have
been computed, calculating the planning and execution cost estimates
for an edge e entails looking up the its current belief state b, and then
reading the value of the distance function dg, at the corresponding
vertex. The conditionals inside each implementation take advantage
of the fact that beliefs with dg, = oo correspond to certain knowledge
that the edge e is not a member of the query subset S,,.

During each iteration of the LEMUR algorithm over its roadmap,
the planner will find a candidate path according to its A, tradeoff
parameter, and will then select an edge which is not yet fully evalu-
ated (i.e. has pramity > 0). It will then commit to evaluating that edge.
Conducting the LEMUR search with the My edge cost model

A=C\B
Figure 6.9: A subset relation which
does not carry over directly from
configurations to edges.

(T,T
/\1\1:0
5T
S)
1 _ d:0
527 817
527
R \)
d:0
Sg,
SQ,F—N FF

Figure 6.10: Opt1m1st1c optimal behef
graph policy for a family of two sub-
sets, 51 and Sp, with the subset relation
that S; C Sy, and with p; = 1 and

p2 = 10. The query subset is 5;, = Sy;
beliefs for which b[2] = T are goal
vertices (green). The value function d
is shown for each believe state, and in-
feasible beliefs (i.e. with d = oo, which
are already demonstrably not in the
query subset) are shown in green. The
edges on the optimal policy are shown
in bold.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

Algorithm 11 Family Edge Cost Model M amily
1 function pPeamily(e) > remaining plan-cost estimator
2: b, < stored belief state of edge e
if dg (b.) < oo then

return . ds, (be)
else

: function X¢ymiry (e) > exec-cost estimator
b, < stored belief state of edge e
if dg (be) < oo then
10: return 0

3
4
5
6: return 0
7
8
9

11: else
12: return co

requires a modified edge cost determination procedure Xgmiy shown
in Algorithm 12. The purpose of this procedure is to (a) delegate

the edge evaluation to the correct edge subset indicator functions
15[-], and (b) to maintain the correct belief state b, for the edge as the
actual indicator results are returned.

In addition, note also that depending on the particular set rela-
tions R, a single invocation of the procedure Xfamily May Not fully
evaluate the edge — for example, in the belief graph from Figure 6.10,
the optimistic optimal path selects the S; indicator, optimistically
assuming that it will return True, the belief state b, will transition to
(T, T), and the edge will be demonstrated valid. But if the indicator
returns False, the belief state b, instead transitions to the complemen-
tary belief state (F, U) which is at the target of the complementary
edge (S1,F). At this point, the edge is still not fully evaluated, and is
therefore available to LEMUR on a subsequent iteration if the utility
objective demands it.

6.5 Application: Multi-Step Manipulation Tasks

We conducted an empirical test of LEMUR using the family edge cost
model (Algorithm 11) on multi-step manipulation planning problems
on two different robotic platforms. In each case, we compared its
performance with that of the simple edge cost model (Algorithm 10
from Chapter 5). We also include in the comparison the RRT-Connect
algorithm from OMPL.

6.5.1 Table-Clearing with HERB

The first task we considered is the table clearing task from Figure 6.1.
Each condition for LEMUR was conducted over 50 randomly gener-

97

98 CHRISTOPHER M. DELLIN

Algorithm 12 Family Edge Cost Procedure

1: procedure Xgamily(e) > determine exec cost
2: b, + stored belief state of edge ¢

3 ifdg, (b.) < oo then

4 T r < optimal path from b, on Gr
5: foraller € mx do

6: (Soptr ropt) S eF

7 Tact < lsopt [6]

8: if 72t 7# Topt then

9: b, < target(complement(er))
10: break

11 b, < target(er)

12: return %gmily (€)

N

-~ -

(a) Starting Configuration (b) Step 1,in Sap (c) Step 2, in Spc (d) Step 3,in Scp (e) Ending Configuration.

Figure 6.11: A home robot performing
a three-step manipulation task. It must
connection radius schedule with 7 = 1 (see Section 2.4). We varied move from its home configuration to
grasp the cup, transfer it to a drop
location above the bin, and return

(Chapter 5), and selected either the simple edge cost model Mimple home.
or the family edge cost model M mily described above.

ated Halton roadmaps with 10,000 milestones per batch and a 71,g10¢

the A, planning-vs.-execution tradeoff parameter between 0.0 to 0.99

The task consists of 3 steps: the initial transit to the mug (AB), the
transfer to a drop location (BC), and the final transit back to the home
configuration (CD). The family module computed a decomposition of
the full task and discovered 7 relevant C-space subsets over the full
planning problem listed in Table 6.1. An illustration of the subsets is
also shown in Figure 6.11.

Subset Geometry 1 Geometry 2

Subset Defined as

51 RobotMoving RobotMoving + EnvStatic

S 51NS
S RobotMoving MugPlacedTable SAB Sl 2 52
S3 RobotMoving MugPlacedBin BC 1o

Scp 51N S3

Sy GraspedMug RobotMoving + EnvStatic

Table 6.1: Constituent subsets in the
herbbin example problem.

We measured the length of the path returned by each algorithm

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 99

(rad), as well as the total wall clock planning time (s).

30

z (rad)

Figure 6.12: Comparison of measured
planning time p and solution execution

+ cost x for the HERB table-clearing

example. RRT is shown in red B.

1 Results for LEMUR with the simple

edge cost model are shown in blue H,

while the family edge cost model is

shown in green M. The LEMUR results
show the effect of adjusting the A,

20 |- _ tradeoff parameter from 0 (lower right)

6.5.2 Tending a Press Brake with an IRB 4400

The second task we considered is a sheet metal bending task using
an ABB IRB 4400 robot in an industrial workcell. See Figure 6.13 for
an illustration of the task. Each condition for LEMUR was conducted
over 50 randomly generated Halton roadmaps with 10,000 milestones
per batch and a r1og10g connection radius schedule with 7 = 1 (see
Section 2.4). We varied the A, planning-vs.-execution tradeoff param-
eter between 0.0 to 0.99 (Chapter 5), and selected either the simple
edge cost model Mjmple Or the family edge cost model My, de-
scribed above.

The task consists of 8 steps, as described in Figure 6.14. The family
module computed a decomposition of the full task and discovered
17 relevant C-space subsets over the full planning problem listed in
Table 6.2. Note that the motion plans for steps BC and CD are in the
same subset.

to 0.99 (upper left).

Subset Geometry 1 Geometry 2
51 RobotMoving RobotMoving + EnvStatic Subset Defined as
Sy RobotMoving SheetPlacedStart SAB S51NS;
S3 RobotMoving SheetPlacedSettling Sgc S1NS5NSe
Sy RobotMoving SheetPlacedDestination Scp 51N S5N Sq
Ss GraspedTopSide RobotMoving + EnvStatic SEr 51N SsN Sy
Se GraspedTopSide1Flat RobotMoving + EnvStatic Skg 51N 83
Sy GraspedTopSideiBent RobotMoving + EnvStatic Sgu S1NSgN Sy
Sg GraspedBotSide RobotMoving + EnvStatic Siy 51N SgN Sy
Sy GraspedBotSide2Flat ~ RobotMoving + EnvStatic Sia 51N Sy

S10 GraspedBotSide2Bent RobotMoving + EnvStatic

Table 6.2: Constituent subsets in the
workcell example problem.

100 CHRISTOPHER M. DELLIN

We measured the length of the path returned by each algorithm

(rad), as well as the total wall clock planning time (s).

100 |-
= 80 [~
£
8
60 |-
407 | | |

—3—]

6.6 Implementation Details

We provide an implementation for the OpenRAVE [28] virtual kine-
matic planning environment which automatically discovers C-subsets

in manipulation tasks.

p (sec)

20

Figure 6.13: Robot tending a press
brake in an industrial workcell. This
example problem is reproduced from
the Lazy PRM paper [10]. The multi-
step manipulation task requires eight
motion planning problems in seven
different C-subsets. From its initial
configuration (A), the robot moves to
grasp a raw sheet (B) and transfer first
to a settling table (C) and subsequently
to the press brake (D). After the first
bend, the robot receives the partially
worked part (E) and uses a regrasping
fixture (F) to regrasp it on the other
side (G). After its second bend (H) and
(I), the finished part is moved to the
final pallet (J) before the robot returns
to its initial configuration (A). Results
for planning these steps are shown in
Figure 6.14.

Figure 6.14: Comparison of measured
planning time p and solution execution
cost x for the industrial workcell ex-
ample. RRT is shown in red M. Results
for LEMUR with the simple edge cost
model are shown in blue B, while the
family edge cost model is shown in
green M. The LEMUR results show

the effect of adjusting the A, tradeoff
parameter from 0 (lower right) to 0.99
(upper left).

7
Conclusion

This dissertation presents a motion planning approach suited for
multi-step manipulations tasks. Key to the approach are the comple-
mentary ideas of lazy and utility-gquided search, which we integrated
into the LEMUR motion planning algorithm. This approach has
shown promising results on manipulation tasks when compared with
state-of-the-art search-based and sampling-based anytime planners.
This concluding chapter begins by summarizing the dissertation and
the individual algorithmic contributions in Section 7.1. This is fol-
lowed by a discussion in Section 7.2 of a few promising avenues for
future research which build on our results, as well as some lessons
learned in Section 7.3. Finally, we offer some concluding remarks in
Section 7.4.

7.1 Summary and Contributions

This dissertation focuses on motion planning problems which arise
in autonomous manipulation tasks. Such tasks induce continuous,
high dimensional robot configuration spaces in which path validity
checking is particularly expensive due to complex robot kinemat-
ics and workspace geometry. Furthermore, there is an inherent cost
tradeoff between planning a motion and subsequently executing it.
For manipulation tasks in human-scale environments in particular,
whether measured in time or energy, the cost of planning (princi-
pally path validity checking) is comparable to the cost of execution.
Therefore, reasoning over both sources of cost — and their tradeoff —
is paramount.

To address these challenging motion planning problems, this dis-
sertation proposes a collection of algorithms (Figure 7.1) which work
in concert to minimize both planning and execution cost. We first
motivate our focus on roadmap methods for motion planning, and
then consider two central questions concerning the search over those
roadmaps: (a) how should we conduct the optimization, and (b) what

102 CHRISTOPHER M. DELLIN

Figure 7.1: Outline of the algorithms

] z(€): execution cost (Ceree) Gt .
‘ AT o . - developed in this dissertation. LEMUR
N Z(&): execution cost estimate
c y . . . is solves a continuous motion planning
free p(§): planning cost estimate

problem via discretization as a series
| || | of progressively densified roadmaps
LEMUR ¢ x & P (Chapter 2). Since the shortest path
¥ yOv Y problem over the resulting graph in
— characterized by edge costs which are
expensive to evaluate, we exploit lazy
1—-X) z(e) search and edge selectors (Chapter 3)
to minimize planning effort. We also
[develop a novel incremental bidirec-

g
@
g
—~
@
N
Il
>
3>
~
@
-
4
—~—
—
|
>
N
8 &
—~
®
N

\
G 1f West tional search algorithm (Chapter 4) to
' \ accommodate the resulting dynamic
LipeayfEle h Echanged pathfinding problem. LEMUR conducts
Gstart its search guided by a utility function
Qdest DynamicSP Edge Selector —¢ (Chapter 5) which can employ distinct
(e.g. IBiD) (e.g. Alternate) domain-specific planning and execution
cost heuristics. In multi-step manip-
\; Temndbdaie J ulation tasks, one such cost model is

derived from the family motion plan-

ning problem (Chapter 6), which leads
to planner invocations which minimize
combined planning and execution cost.

objective should we optimize?

7.1.1 Motion Planning via Roadmaps

In Chapter 2, we outlined the motion planning problem, as well as a
selection of algorithms designed to solve it. A wide variety of such
algorithms exist, including optimization-based, search-based, and
sampling-based planners. We motivate our focus on sampling-based
roadmap planners based on the following advantages:

* Roadmap methods are well-studied and possess favorable theoreti-
cal properties such as asymptotic optimality.

e It is straightforward to incrementally densify the discretization by
adding new samples to the roadmap.

¢ The cost of constructing a roadmap which is insensitive to the
distribution of obstacles can be amortized across all planning
queries (e.g. loaded from disk and persisted in memory between
queries).

The algorithms presented in this dissertation are agnostic to the
particular roadmap structure used for the discretization. Our ex-
periments were conducted over roadmaps generated via Halton
sequences, with edges between vertices within a connection radius
determined by the critical value 7. For example, the LEMUR motion
planner (Algorithm g in Chapter 5) densifies its roadmap by intro-
ducing new batches of vertices and edges; in our experiments, we

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 103

reduce the connection radius as recommended in [56]. We discuss
future avenues for treating roadmaps in Section 7.2.1.

7.1.2 How to Optimize?

Committing to a particular discretization (e.g. roadmaps) reduces the
continuous motion planning problem to a discrete graph pathfinding
problem. The first central question considered in this dissertation,
then, is how a motion planning objective should be optimized over
such a roadmap graph.

Lazy Pathfinding. Pathfinding for motion planning problems is dis-
tinguished from other shortest-path applications because the primary
component in its edge objective depends on its validity, which expen-
sive to determine for articulated robots. This motivates lazy pathfind-
ing approaches, which decouple the search for candidate solutions
from the process of evaluating each solution for its cost.

The first contribution of this dissertation is a study of the LazySP
algorithm outlined in Chapter 3, which allows for this edge evalua-
tion to be specified arbitrarily by way of an edge selector function. We
show that simple selectors are equivalent to the existing Weighted A*
and Lazy Weighted A* pathfinding algorithms, and we also consider
the efficacy of bidirectional and bisection selectors.

We then introduce novel selectors based on path distributions,
which focus evaluations towards edges which most likely lie on a
shortest path. One such path distribution selector is based on the
partition function over paths on a graph. We develop an incremental
method for We show that these selectors can lead to fewer expected
edge evaluations than their simple alternatives over a set of example
problems. We also motivate why the alternating strategy serves as
a simple proxy for the more complex path distribution selectors for
common cases where no a priori knowledge of the obstacle distribu-
tion exists.

We note that lazy planning over roadmaps accomplishes the same
evaluation focusing behavior exhibited by informed sampling-based
motion planners [40, 41]. LazySP naturally focuses evaluations only
to areas which might improve path cost of the particular query un-
der consideration, but due to the edge selector is not constrained to
evaluate edges only in cost-to-come order.

Dynamic Pathfinding. Conducting our roadmap search over candi-
date paths via lazy pathfinding induces an underlying inner dynamic
shortest path problem. This arises because the decoupled nature of
lazy search is indistinguishable from a search over an unknown or

Contribution: The LazySP algorithm,
which exploits an edge selector to find
paths while minimizing the number of
necessary edge weight evaluations.

Contribution: an incremental method
to maintain the partition function over
paths under changing edge weights.

104 CHRISTOPHER M. DELLIN

changing objective. Each iteration of our lazy search constitutes a
new dynamic planning episode — after our edge selector nominates
particular edges of our roadmap for evaluation and their true costs
are determined, the inner search must accommodate these changes in
order to produce new candidate paths on subsequent iterations.

Existing incremental algorithms for dynamic pathfinding prob-
lems, such as Lifelong Planning A* [67], make use of heuristic po-
tential functions to reduce the subset of the graph that must be con-
sidered when solving each planning episode. During a lazy search,
the strength of this heuristic depends on the relationship between the
true and estimated edge weights (w and wes: in LazySP, respectively)
- and in many cases, a strong lower bound on w, and therefore a
strong heuristic, may not exist. This motivates our study of the dy-
namic problem in Chapter 4.

A common approach to solving pathfinding problems in domains
without a strong heuristic is the notion of bidirectional search. Uni-
fying bidirectional and incremental methods presents a unique chal-
lenge, since the subtle bidirectional termination condition must be
posed in such a way that it remains applicable even under the chang-
ing edge weights which arise in a dynamic problem. This allows us
to formulate the Incremental Bidirectional Dijkstra’s (IBiD) algorithm,

which generalizes the bidirectional Dijkstra’s algorithm [45] in the
same way that the DynamicSWSF-FP algorithm [98] generalizes the
original Dijkstra’s algorithm [29]. We also show how this algorithm
can be adapted in the presence of heuristic potential functions. This
algorithm shows promising results both on road network routing
problems (Chapter 4) as well as inflated lazy search problems from
motion planning.

7.1.3 What to Optimize?

Our treatment of lazy roadmap search deliberatively leaves open

the question of what objective should be optimized. The approach is
applicable to any pathfinding domain in which the edge weight func-
tion w is expensive to evaluate, and where an inexpensive estimate
West May be available. In the case of motion planning for articulated
robots, where planning and execution cost are both important, how
should we instantiate these functions?

Search over Candidate Utility. In Chapter 5, we introduce the notion
of utility, and argue that it is the correct form of the objective in order
to capture the tradeoff between planning and execution costs. Our
conception of utility borrows heavily from the BUGSY algorithm

[14] for conventional graph search. The key insight is that marrying

Contribution: the IBiD algorithm, an
incremental and bidirectional shortest
path algorithm for dynamic graphs.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 105

utility with lazy search allows for the incorporation of planning cost
estimators over concrete candidate paths — and not just over frontier
vertices. This enables many domain-specific planning heuristics to be
represented naturally.

We next show that by committing to (a) a utility function that is
linear in planning and execution cost, and (b) estimators that are
additive over path edges, we can represent our utility optimization as
a lazy shortest path problem. Mediated by the tradeoff parameter A,
the LEMUR algorithm conducts this optimization over a sequence of
progressively densified roadmaps.

We examine a set of manipulation planning tasks using three robot
platforms, and conduct experiments using a planning cost heuristic
which captures the remaining collision checks on each candidate
path. We show that LEMUR exhibits favorable performance when
compared against a set of anytime planners such as RRT-Connect,
BIT*, and Lazy ARA*.

Utility Estimates in Manipulation Planning. Importantly, the utility-
based objective described in Chapter 5 allows arbitrary domain-
specific planning cost estimates to be leveraged. Chapter 6 explores
intelligent heuristics in manipulation tasks by formulating such
multi-step tasks as a family motion planning problem. We show this
representation, in which multi-step tasks are given over a family of
related C-space subsets, allows for a planning cost heuristic which
naturally incentivizes a utility-based planner (such as LEMUR) to
reuse planning computation from prior queries.

7.2 Future Directions

Treating motion planning as a lazy search over roadmaps prompts
an array of promising directions for further work. Improvements in
roadmap discretization, focusing of edge evaluations, better inner
search algorithms, more expressive domain-specific planning and
execution cost heuristics, and probabilistic optimization techniques
might all improve performance over a wide array of planning do-
mains. In this section, we survey a few such promising directions
that arise from our approach.

7.2.1 Improved Roadmaps

One of the fundamental questions in any motion planning approach
is how should the continuous problem be approximated in order to

search for a solution. The approach to motion planning presented in
this dissertation relies fundamentally on the roadmap discretization

Contribution: the LEMUR motion
planning algorithm which conducts
a lazy search guided by path utility
over a set of sequence of densified
roadmaps.

Contribution: the family motion plan-
ning problem a formulation of manip-
ulation planning that yields a natural
planning cost estimate for utility-
guided motion planners.

106 CHRISTOPHER M. DELLIN

method. The approach can therefore benefit from any technique
which improves the efficacy of this discretization.

Better Connection Heuristics. Roadmap methods rely on a connection
rule to determine whether two vertices representing configurations
in the C-space should be connected with an edge — the existence of
such an edge implies that the local planner has high likelihood of
successfully finding a valid path between them. To this end, most
approaches make use of arbitrary thresholds of simple distance func-
tions over C as their decision rules. In our experiments, for example,
we used a simple Euclidean distance rule.

However, for articulated robots (and especially for recurring
tasks in similar environments), it is easy to conceive of more intel-
ligent connection rules. For example, consider a naive execution cost
model in which obstacles are distributed uniformly in the robot’s
workspace. In this case, the likelihood of collision over some edge
length depends on the configuration of the arm itself — configura-
tions in which the Jacobian matrix is large (where changes in the
location of robot geometry are large with respect to changes in con-
figuration) entail higher collision probability. In the case of recurring
motion planning queries for the same robot geometry, it would seem
beneficial to pre-compute a roadmap structure in which the edge
connection rule depends on some similar measure of the robot’s con-
figuration.

7.2.2 Adaptive Roadmap Densification via an Infinite Roadmap Stack

The LEMUR planner effectively conducts its search over a sequence
of progressively densified roadmaps (Figure 77.2). The results pre-
sented in this thesis have used Halton sequences as discussed in
Chapter 2 for their preferable dispersion properties, and form a
roadmap graph using an r-disk connection rule. As discussed in
[56], the shortest path on such a sequence of roadmaps possesses
asymptotic optimality if the connection radius is adjusted appropri-
ately.

Figure 7.2: A stack of progressively
densified roadmaps over a given free
configuration space C.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

Hard batching. Like many existing roadmap-based algorithms

[114, 41], LEMUR implements a hard batching approach to densifica-
tion — a search is conducted fully over each batch of the roadmap in
C until a solution is found. While the specification of LEMUR allows
for this roadmap to be implicitly constructed, the current implemen-
tation constructs the entire batch before proceeding with its search.
Once the search over that roadmap completes without a feasible path
found, the next batch of vertices and edges are added to the graph,
and the newly densified roadmap is searched.

Because the sequence of roadmaps that is searched is insensitive to
the distribution of obstacles, the current implementation of LEMUR
is able to pre-compute a sequence of roadmaps up to a certain level
of discretization, and then load that roadmap structure into memory
directly instead of building it from scratch for each planning query.

There are two shortcomings that arise from this hard batching
approach:

o Uniform Densification: The fact that this roadmap is loaded uni-
formly across the space is certainly a limitation that will become
restrictive in spaces of larger dimension.

e Densification vs. Resolution Completeness: The current LEMUR al-
gorithm only moves to a denser roadmap once no finite paths are
shown to be available on the present roadmap. This may not be
desirable in large spaces — it may make sense to move to a denser
roadmap in the vicinity of a short path before exploring all corners
of the space.

There are a number of promising avenues for a solution to the
problems that arise from uniform densification.. Informed anytime
algorithms [40, 41] restrict densification once an initial path is found
to a subset of the full space that may contain better solutions. This
approach is not directly applicable because LEMUR is not an anytime
algorithm.

Adaptive Roadmap Densification. An alternative strategy is to adopt
an adaptive densification approach under which the search is con-
ducted upon an infinite stack of progressively densified roadmaps.
Consider the roadmap stack depicted in Figure 7.3. Here, as be-
fore, each underlying roadmap is a superset of the one above it. But
now, instead of progressively considering each layer individually
(using batching), consider conducting a single search over the entire
stack. Note that the stack includes additional edges (shown dotted in
the figure) connecting corresponding vertices in two adjacent layers;
using a road network analogy, we call these edges “offramp” edges.

107

108 CHRISTOPHER M. DELLIN

A proposed edge weighting scheme involves two components: (a) . .
an artificial inflation of edge weights by some factor on each layer £ N
according to a schedule (with edges on lower layers inflated more), : /’ . <
and (b) an artificial constant weight assigned to each offramp edge o e
between layers. N ¢ /*:'\.

Consider a search over this infinite stack G between two start and : // o* .& ¢
destination configurations corresponding to distinguished vertices ,. P
on G, and consider an optimal solution path with strong é-clearance. =L ./7"'\..
If the roadmap layers satisfy the appropriate conditions (e.g. con- - °\'3 °® <>.' o e

. . . S

nection radius [61, 56]), and all roadmap edges have nonnegative .
weight, and all “offramp” edges have some constant positive weight
«, then we conjecture that there exists a shortest path p through G of
finite length (which traverses a finite number of layers of G). Further- Figure 7.3: A roadmap stack with

more, we conjecture that the length of p approaches the length of an ‘offramp” edges.

optimal path as « — 0.

We find this representation of the continuous problem compelling
because it naturally integrates the densification problem with the
search problem. One can imagine a unidirectional or bidirectional
search effectively trading off between exploring more widely on a
particular layer and descending to a denser layer in order to traverse
a narrow passage. Descending to a denser layer occurs naturally dur-
ing the search, and denser regions can be sampled on demand only
in areas of the space adjacent to obstacles blocking the path. Further-
more, the computational cost of such densification can be captured as

an additional planning cost component in the LEMUR algorithm, so Opportunity for a more accurate
planning cost estimate: adding a term

. .. . for expected cost of a further roadmap
outweigh the requisite planning cost. densification.

it will commit to a denser layer only when the predicted path savings

7.2.3 Improved Lazy and Dynamic Search

The core of our approach is a lazy search over candidate paths, which
makes use of an inner dynamic shortest path problem in order to
select candidates at each iteration. There are a number of potential
avenues available for making this search more efficient.

Intelligent Selection of Key Edges. In Chapter 3, we presented novel
edge selectors which maintain a distribution over candidate paths in
order to focus edge evaluations towards edges which most likely lie
on a short path. While this showed promising results across a range
of problem instances, maintaining this distribution can incur its own
computational cost (quadratic in the number of vertices in the case of
the Partition selector), and therefore it can be intractable over large
roadmap graphs.

The effect of these selectors is to automatically discover and fo-

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

cus on the parts of the motion planning problem that are most con-
strained. It would be worthwhile to explore ways of more efficiently
maintaining such path distributions for larger graphs. In the case of
a bidirectional evaluation strategy (such as the Alternate selector),

it may be beneficial to attempt to discover online which end of the
problem proves to be the most constrained.

It may also be instructive to investigate the “oracle” selector. Con-
sider that for any graph, there exists some minimal set of edges
which, if evaluated, would probably demonstrate that the best re-
maining candidate is correct. Investigating the distribution of edges
required for such a selector for particular problem instances may
aid in designing new selectors. It also serves as a useful benchmark
against which to compare performance.

Exploring the Interaction between Lazy and Dynamic Search. Lazy
search induces an inner dynamic shortest path problem, as edge
weights are updated and intermediate candidate paths are required.
When LEMUR addresses a problem with A, > 0, so that planning
cost is to be considered in its utility objective, it generally selects
candidates that do not solely minimize execution cost in favor of
candidates that lower remaining planning cost.

Paradoxically, as the A, parameter is increased, the underlying
dynamic search problem becomes more difficult, because its heuristic
is no longer as strong. (A consistent heuristic typically only exists for
the component of the edge weight function derived from the execu-
tion cost component.) It would therefore be beneficial to investigate
schemes whereby the requirement for optimal shortest paths from
the inner dynamic search is relaxed. For example, consider a variant
of the LazySP algorithm in which the candidate path at each itera-
tion only maximizes utility up to a particular suboptimality bound.
One suitable algorithm for this relaxed dynamic search problem is
Truncated Incremental Search [1].

Adjusting the Incremental Balancing Criterion. It is well-known [94]
that using the cardinality of each OPEN list as the decision rule to
balance expansion of the two sides of a conventional bidirectional
search generally outperforms using the distance (key) value itself.
Unfortunately, it is not clear how to adapt this criterion to the in-
cremental search setting, since the size of the queue of inconsistent
vertices is no longer indicative of the density of the graph on the two
sides. Can we dynamically adjust the distance balance criterion so
that the location of the interface between the two trees (represented
as the edge connection queue) approximates this balanced cardinality
criterion?

109

110 CHRISTOPHER M. DELLIN

Modeling and Incorporating Search Cost. The LEMUR planning cost
heuristic allows estimates of remaining planning cost to be incor-
porated into the planner’s utility function. For our experiments in
this dissertation, this planning cost term included a measure of the
expected collision checking cost remaining. However, for larger or
denser graphs, the time to conduct the inner search may become im-
portant to model as well. If such a model exists, the planner could
(for example) use it to determine whether to proceed with a new
search, or whether to terminate immediately with the best path it has
found so far.

7.2.4 Tighter Integration with Collision Validity Checking

The basic motion planning problem described in Chapter 2 considers
arbitrary configuration space obstacles. When most sampling and
search based motion planners test candidate path segments for va-
lidity, they treat validity checking — usually via a geometric collision
checker — as a “black box” operation. Given a test configuration gest,
such a checker considers the environment and the robot’s kinemat-
ics, and returns a boolean answer — True or False. Depending on the
fidelity of the geometric model of the robot and environment, each
check can entail tens, hundreds, or even thousands of microseconds.
There are a number of opportunities for extending LEMUR in order
to better predict and account for the internal mechanisms of these
checkers.

Chapter 6 explored one such opportunity — decomposing the va-
lidity checks performed over multiple steps of a manipulation task
as a family motion planning problem. Doing so allows a planning
cost model to be formulated naturally in terms of different subsets
of C-space, so that a utility-aware planner (such as LEMUR) is incen-
tivized to reuse partial validity information from cached or previous
similar planning episodes. In this section, we discuss other opportu-
nities for characterizing and breaking the black box collision checking
abstraction.

Better Estimates of Expected Validity Checking Cost. The experiments
in this dissertation relied on a simple model for the planning cost
required for each collision check. First, a single averaged duration
per collision check was learned over an array of problems for each
robot platform. Then, during the course of a planning query, the
remaining planning cost required for each candidate path consisted
simply of this duration summed across all remaining configurations
to be checked.

This simple model could be improved in at least two ways:

Opportunity for a more accurate
planning cost estimate: adding a term
for expected search cost.

Opportunity for a more accurate
planning cost estimate: a model for
the different planning cost required in
different parts of the space.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 111

Conventional Motion Planner @ Family Motion Planner

Narrow
Phase

Collision Validity Checker Broad-Phase Checker Narrow-Phase Checker
(a) A motion planner testing simply for membership in Cfee (b) A family motion planner can explicitly reason about the
treats a collision validity checker as a “black box.” Internally, conservative nature of the broad-phase check. This allows it
modern checkers first employ an inexpensive broad-phase to defer many narrow phase checks (often indefinitely) and
check using a simple conservative representation to quickly instead prefer paths that require fewer expensive checks.
identify non-colliding bodies before resorting to an expensive
narrow-phase check. Figure 7.4: Collision validity checking

is a commonly used indicator function.
e First, the planning cost required for a collision check could be The family motion planning formu-

lation allows an intelligent planner

to reach inside the checker’s “black
check depends on the complexity of the workspace obstacles box” and reduce the number of costly
narrow-phase checks. Resulting paths
tend to be cheaper to compute and stay
a planner which incorporates such learning could better adapt to further from obstacles.

learned dynamically during a planning episode. The cost per
and the areas of the configuration space actually explored, and

particular planning queries and manage its search more accurately.

* Second, the planning cost required for a collision check depends
on the area of configuration space itself. For example, checks in
wide open spaces tend to complete much more quickly than those
near obstacle boundaries. A planning cost estimator could build
and maintain a spatial model of this checking cost during the
course of a planning episode, and adjust the predicted remaining
planning costs for candidate paths as a result.

Exploiting Multi-Phase Collision Checkers. Many geometric collision
checkers build a multi-phase hierarchy, both to quickly answer easy
validity queries, and to focus computation to areas where determin-
ing validity requires checking at a finer resolution. One of the most
widely used approaches entails building a simple conservative geo-
metric approximation (e.g. a bounding box), and first checking that
approximation for collision during an initial “broad-phase” check.
Only geometry which fails this check is then subjected for subse-
quent (and more expensive) “narrow-phase” checking. See Figure 7.4
for example of such a multi-phase validity checker.

Most motion planners treat the validity checker as a binary “black
box,” and do not explicitly reason about this underlying multi-phase
process. However, it may be advantageous for the planner to be made
aware of these phases. This allows the planner to effectively identify
configurations for which many (or all) geometric pairs are sufficiently

112 CHRISTOPHER M. DELLIN

far from collision that the more expensive narrow-phase checks need
not be applied. In fact, this structure can be represented simply as a
family motion planning problem. Consider the two subsets of con-
figuration space B C C and N C C which satisfy the inexpensive
broad-phase and expensive narrow-phase checks, respectively. It is
clear that B C N, so that if indicators 1g[-] and 1y][] are available
with the former less expensive than the latter, the planner would
prefer to evaluate the former before resorting to the latter.

We show an illustrative 2D example of this idea in Figure 7.5.
Here, the behavior of LEMUR is shown, for the two extreme values of
the A tradeoff parameter, across three different models of the under-
lying collision checker. In the first model (a) at left, only the narrow-
phase checker is available, which tests directly for collision against
the black obstacle. At middle (b), the collision checker has available
to it a broad-phase check, which first validates the test configuration
against grey conservative approximation; this incurs a planning cost
which is 10x less expensive than the narrow-phase checker. Since this
is unknown to the motion planner, the solution paths are identical,
but this does result in a significant savings in planning cost. At right
(c), LEMUR is told about each checker explicitly, which allows it to
defer many expensive narrow-phase checks indefinitely. The result-
ing paths tend to be more expensive to execute, since they largely
stay free from the conservative approximation, but the planner real-
izes a significant savings in planning cost.

Maximizing Utility in Expectation. The strategy of progressively
densifying the roadmap discretization (including the infinite stack
approach discussed in Section 7.2.2) is commonly used for motion
planning problems. Its purpose is to serve as a proxy for handling
the spatial coherence between C-space obstacles in the scene. For ex-
ample, consider motion planning in an environment with many very
small randomly placed obstacles — in such a scene, it would be diffi-
cult to motivate using a coarse roadmap to confine the search. What
if we handle this more explicitly?

The LEMUR algorithm exploits an optimistic assumption when
considering candidate paths for prospective evaluation: it assumes
all unevaluated edges are collision-free. While this assumption al-
lows the inner loop to process candidates quickly, it requires the hard
batching approach to strike an artificial balance between local and
global exploration. It is worth investigating whether abandoning the
optimistic assumption is worthwhile — a replacement could then rea-
son explicitly about the collision probability across the configuration
space.

We recently proposed a first step in this direction via the Pareto

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 113

S AN A=0

Length: 724.3 Plan Cost: 6740.4

Plan Cost: 2144.7 Length: 724.3 Plan Cost: 2176.0

\

NS N A=1 : >
Length: 804.8 Plan Cost: 4540.7 Length: 804.8 Plan Cost: 1960.6 Length: 911.4 Plan Cost: 1012.4

(a) LEMUR with narrow-phase checking (b) LEMUR with “black-box” broad-phase (c) LEMUR with broad-phase check exposed
only, for A = 0 (top) and A =1 (bottom). check (not exposed to planner). as a distinct testable subset.

Figure 7.5: A simple 2D motion plan-
ning example in which LEMUR has a

Optimal Motion Planner [19]. In this work, we maintain a proba- broad-phase check available. Testing

bilistic model of the probability of collision across the configuration against the bounding box (grey) is 10x
space, which we update incrementally as collision checks are per- less expensive than testing against the
. . . actual obstacle (black). Exposing the
formed against the environment. The planner then uses this model broad-phase check to LEMUR as a dis-
in order to select candidate paths for partial evaluation that minimize tinct subset allows for reduced planning
cost.

some combination of the path’s execution cost and its probability of
collision. We show that this combination is approximately equivalent
to maximizing utility in expectation if each colliding path segment is
assigned a penalty cost.

7.2.5 Tighter Integration with Task Planning

A motion planner is one component in a larger planning system

for an articulated robot performing real-world tasks. For example,
we have solved multi-step motion and manipulation planning tasks
using a hierarchical planning architecture for the CHIMP robot [25].
LEMUR aims to serve as a performant lower-level geometric motion
planner which is cognizant of both the quality of its solutions and
the planning cost it incurs to find it, and we have found that LEMUR
provides improved performance for such tasks.

114 CHRISTOPHER M. DELLIN

Heuristics for Task and Motion Planners. While it can be used effec-
tively in any task planning environment, there are opportunities

for improved system performance by integrating the planner more
tightly with other system components. Recent work has married
symbolic reasoning with geometric planning for tasks with multiple
subtasks as multi-modal planning [49], temporal logic [9], or hierar-
chical or bridged representations and interfaces [15], [46], [113]. In
many cases, these task planners can take as input estimates of solu-
tion quality for prospective geometric groundings of symbolic sub-
tasks. The utility model over candidate paths maintained by LEMUR
could serve as an effective feedback mechanism for these higher-level
task planners.

Many-to-Many Objectives. As a low-level motion planner, LEMUR
has been formulated for solving single-pair (“one-to-one”) motion
planning queries. This can be trivially extended to address “one-to-
any” or “any-to-any” queries, where the start or goal configurations
are extended to multiple candidates expressed as start or goal re-
gions. This can be captured naturally in a shortest-path framework
by extending the graph representation with virtual vertices and edges
connecting to all candidates starts and goals. However, a higher-level
multi-step task planner is often incentivized to explore many can-
didate intermediate configurations, and cultivate prospective paths
through them. One method for expressing these “many-to-many”
queries is by modifying the objective given to the lower-level motion
planner; we explored the comprehensive multi-root objective [24]

to that end. It would be worthwhile to apply this objective to lazy
roadmap motion planners such as LEMUR.

Edge Selectors for Manipulation Graphs. We also highlight that task
planners can be viewed as searching the manipulation graph [109] for
a feasible solution to the task. Each edge in the manipulation graph
comprises a transit or transfer path (or, in more general problem do-
mains, other non-prehensile actions). The computationally intensive
part of solving these graphs is commonly finding feasible geometric
groundings for each edge of this manipulation graph. We contend
that this problem could be solved directly using the LazySP algo-
rithm (Chapter 3. In this formulation, each edge of the task graph
would itself entail an invocation of LEMUR - but each invocation
would share the same underlying roadmap managed as described in
Chapter 6. Edge selectors could then be employed to allocate motion
planning resources only on edges in the manipulation graph most
likely to contribute to a short solution to the task.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

7.3 Lessons Learned

A number of issues and questions arose during the design and im-
plementation of the algorithms in this thesis that may be useful to
researchers that may build on this work.

The Importance of Search. My initial examination of motion planning
begun with a clear perceived separation between search-based and
sampling-based approaches. By focusing on roadmap methods, I
envisioned that the question of how to construct roadmaps over the
configuration space would dominate my investigation. But my explo-
ration of lazy roadmaps resulted in two personal realizations. First,
search-based and sampling-based methods are more similar than
they are usually treated (a connection first identified by LaValle et. al.
[73]). And second, the question of how best to search over roadmaps
is far from a settled question. This motivated by study of both lazy
and dynamic search problems, and lead directly to the development
of LazySP and IBiD, respectively. Indeed, the interaction between
edge selection and search is rich with opportunities for future work.

The Importance of Performance Metrics. Progress in robotics depends
on a delicate interplay between new research ideas and motivating
real-world applications. While novel ideas can often have a direct
benefit on a wide variety of applications, the potential for a particular
applications or examples to drive new research is equally power-
ful. In particular, a performance shortfall of an existing algorithm
often serves not only as a motivation for a new idea, but as a spring-
board for developing that idea in the first place. During my thesis,

I found that committing to a set of benchmark problems, and being
guided by rigorous performance metrics such as path quality and
planning time, allowed me to identify fruitful research areas. It also
lead to many other implementation improvements — such as the pre-
allocated (or “baked”) data structures feature in our implementation
of FCL — which improved performance across all motion planners in
our arsenal.

Fair Comparisons with Non-Determinism. If performance metrics

are to be trusted, it is of paramount importance that planner com-
parisons be fair and repeatable, so that only the factor in question
(e.g. the search or sampling strategy) is varied between experiments.
Not only must all outside factors be held constant, such as colli-

sion checker parameters, resolutions, samplers, roadmaps, etc., but I
found that the most robust way to handle planners which depend on
randomness is to treat the random seed as an additional parameter,

115

116 CHRISTOPHER M. DELLIN

and to commit to ranges of these seeds for testing. Not only does
this allow for a fairer comparison between planners, but it allows
for a direct comparison between revisions of a particular planner’s
implementation, to more easily measure improvement and spot re-
gressions. In research we often don’t have the bandwidth to imple-
ment full unit test coverage, so such ensemble testing must suffice to
maintain the quality of our implementations.

Implementation Details. Writing a performant motion planning im-
plementation, especially one which relies on cached data structures,
requires focus on inner loops, profiling, and iterative development.
Care must be taken so that the roadmap data structure can be loaded
into memory quickly during planner initialization, and so that the
roadmap can be densified efficiently without reallocating large blocks
of the data structure. The core roadmap generation and search code
should be well-tested — the implementation used in this thesis was
developed over several years, and was used for everything from fig-
ure generation to experiments. I also found it useful to rely on com-
mon data formats, such as GraphML [12], to allow interoperability
with other software packages.

7.4 Concluding Remarks

This dissertation explores the integration of two ideas for efficient
motion planning — lazy and utility-guided evaluation. These key ideas
are complementary; while lazy pathfinding serves to decouple the
process of discovering our options from determining their validity,
utility-guided planning gives us the means to select intelligently
between these options for the most promising.

We exploit roadmaps as a way to discretize our continuous plan-
ning problem into a pathfinding problem on a graph. But impor-
tantly, we do not lose sight of our motion planning domain: eval-
uating edge weights is expensive. Not only does this motivate our
approach of lazily determining edge weights, but it opens the door
to intelligent strategies for allocating our precious planning resources
in the right places. We proposed edge selectors as a mechanism for
doing this over the edges of a graph (and we have had fruitful discus-
sions with researchers from other domains such as satellite trajectory
planning which share our problem’s cost structure).

While selectors can capture the problem of resource allocation over
the discrete space, there is also the question of allocating planning
resources between different levels of densification. LEMUR addresses
this question via batching — switching to a progressively better dis-
crete approximation to the continuous problem until a path is found.

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

However, we discussed ways in Section 7.2.2 to represent this more
naturally during the course of the search itself. This also opens the
door to specialized motion planning hardware (e.g. GPUs and FP-
GAs) which can maintain roadmaps efficiently and in parallel (e.g.
[87D).

Importantly, performing lazy search over roadmaps enables the
use of grounded heuristic estimates over concrete prospective motion
path segments. This directly enables our use of utility functions to
guide the planner’s evaluation, which is especially relevant for au-
tonomous robots performing human-scale tasks — performing tasks
with and around people requires robots that are efficient both in
computation and in action, since people are unaccommodating both
of long planning pauses and of wild and inefficient motions. The
expressiveness of our utility function approach, which can take ad-
vantage of any domain-specific planning heuristics available, opens
the doors to many opportunities for getting better performance out of
autonomous robots performing helpful recurring tasks in our day-to-
day lives.

117

A
Appendix: LazySP Proofs and Timing Results

A.1 LazySP Proofs

A.1.1 Theoretical Properties of LazySP

Proof of Theorem 2 Let p* be an optimal path w.r.t. w, with £* =
len(p*, w). Since west(e) < ew(e) and € > 1, it follows that regardless
of which edges are stored in Weyai, Wiazy(e) < €w(e), and therefore
len(p*, wiazy) < €£*. Now, since the inner SHORTESTPATH algorithm
terminated with pret, we know that len(prer, Wiazy) < len(p*, wiazy).
Further, since the algorithm terminated with py., each edge on pyet
has been evaluated; therefore, len(pret, w) = len(pyet, Wiazy). Therefore,
len(pret, w) < € £*. O

Proof of Theorem 1 In this case, the algorithm will evaluate at least
unevaluated edge at each iteration. Since there are a finite number of
edges, eventually the algorithm will terminate. O

A.1.2 A* Equivalence

Proof of Invariant 1 If v is discovered, then it must either be on
OPEN or CLOSED. v can be on CLOSED only after it has been ex-
panded, in which case s would be discovered (which it is not). There-
fore, v must be on OPEN. O

Proof of Invariant 2 Clearly the invariant holds at the beginning of
the algorithm, with only vgare on OPEN. If the invariant were to no
longer hold after some iteration, then there must exist some pair of
discovered vertices v and v" with v on CLOSED and g[v] + w(v,v') <
¢[v']. Since v is on CLOSED, it must have been expanded at some
previous iteration, immediately after which the inequality could not
have held because g[v’] is updated upon expansion of v. Therefore,
the inequality must have newly held after some intervening iteration,
with v remaining on CLOSED. Since the values g are monotonically

120 CHRISTOPHER M. DELLIN

non-increasing and w is fixed, this implies that g[v] must have been
updated (lower). However, if this had happened, then v would have
been removed from CLOSED and placed on OPEN. This contradic-
tion implies that the invariant holds at every iteration. O

*
lazy

Proof of Theorem 3 Consider path py,,, with length £}, yielding
frontier vertex Ugontier Via SELECTEXPAND. Construct a vertex se-
quence s as follows. Initialize s with the vertices on pl*azy from Ugeart to
Utrontier, iNClusive. Let N be the number of consecutive vertices at the
start of s for which f(v) = £, (Note that the first vertex on py,,,

Ustart, must have f(Vgtart) = ¢ so N > 1.) Remove from the start

*
lazy’
of s the first N — 1 vertices. No};e that at most the first vertex on s has
flv) = Kf‘azy, and the last vertex on s must be Ugontier-

Now we show that each vertex in this sequence s, considered by
A* in turn, exists on OPEN with minimal f-value. Iteratively consider

the following procedure for sequence s. Throughout, we know that

*

there must not be any vertex with f(v) < £,

that would imply
that a different path through v;, shorter than /7, exists, in which case
Plazy could not have been chosen.

If the sequence has length > 1, then consider the first two vertices
on s, v, and vy. By construction, f(vs) = £}, and f(vp) # £, In
fact, from above we know that f(v},) > {f, . Therefore, we have that
f(va) < f(vp), therefore and g[v,] + w(va, vp) < g[vp]. By Invariant 2,
v, must be on OPEN, and with f(v,) = ff‘azy, it can therefore be
considered by A*. After it is expanded, f(vy) = £, and we can
repeat the above procedure with the sequence formed by removing
the v, from s.

If instead the sequence has length 1, then it must be exactly
(Vsrontier), With f(Urontier) = l*azy' Since the edge after f(Vgontier) iS
not evaluated, then by Invariant 1, vgontier must be on OPEN, and will

therefore be expanded next. g

Proof of Theorem 4 Given that all vertices in Scandidate D€Sides the
last are re-expansions, they can be expanded with no edge evalua-
tions. Once the last vertex, Ugontier, iS to be expanded by A*, suppose
it has f-value /.

First, we will show that there exists a path with length ¢ w.r.t.
Wiazy Wherein all edges before vgontier have been evaluated, and the
first edge after vgontier has not. Let p, be a shortest path from vgay to
Utrontier CONsisting of only evaluated edges. The length of this p, must
be equal to ¢[VUtrontier); if it were not, there would be some previous
vertex on p, with lower f-value than vgonter, which would necessarily
have been expanded first. Let p;, be the a shortest path from vgontier
t0 Ugoal. The length of p, must be hiazy (Vtrontier) by definition. There-
fore, the path (p,, pp) must have length ¢, and since vgontier iS @ new

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

expansion, the first edge on p, must be unevaluated.

Second, we will show that there does not exist any path shorter
than ¢ w.r.t. wy,,,. Suppose p’ were such a path, with length ¢/ < .
Clearly, vstart would have f-value ¢’ (although it may not be on
OPEN). Consider each pair of vertices (v,,vp) along p’ in turn. In
each case, if v, were either undiscovered, or if g[v,] + w(v,, vy) <
g[vp], then v, would be on OPEN (via Invariants 1 and 2, respec-
tively) with f(v,) = ¢, and would therefore have been expanded
before vgontier- Otherwise, we know that f(v,) = ¢, and we can
continue to the next pair on p’. U

A.1.3 LWA* Equivalence

Proof of Invariant 3 Clearly the invariant holds at the beginning of
the algorithm with only g[vsrt] = 0, since the inequality holds only
for the out-edges of Ugtart, With Ugare on Q. Consider each subsequent
iteration. If a vertex v is popped from Q,, then this may invalidate
the invariant for all successors of v; however, since all out-edges are
immediately added to Q., the invariant must hold. Consider instead
if an edge (v, v') which satisfies the inequality is popped from Q..
Due to the inequality, we know that g[v'] will be recalculated as

g[v'] = glv] + w(v, '), so that the inequality is no longer satisfied
for edge (v, v'). However, reducing the value g[v'] may introduce
satisfied inequalities across subsequent out-edges of v/, but since v’ is
added to Qy, the invariant continues to hold. O

Proof of Theorem 5 In the first component of the equivalence, we
will show that for any path p minimizing wy,,, allowable to LazySP-
Forward, with (v, vy) the first unevaluated edge on p, there exists a
sequence of vertices and edges on Q, and Q, allowable to LWA* such
that edge (v,, vp) is the first to be newly evaluated. Let the length of
p W.r.t. Wiazy be £

We will first show that no vertex on Q, or edge on Q. can have
f(-) < L. Suppose such a vertex v, or edge e with source vertex
v, exists. Then g[v] + h(v) < /¢, and there must be some path p’
consisting of an evaluated segment from vg,y to v of length g[v],
followed a segment from v to v, Of length /1(v). But then this path
should have been chosen by LazySP.

Next, we will show a procedure for generating an allowable se-
quence for LWA*. We will iteratively consider a sequence of path
segments, starting with the segment from vyt to v,, and becoming
progressively shorter at each iteration by removing the first vertex
and edge on the path. We will show that the first vertex on each seg-
ment v has g[v¢] = £ — h(vy). By definition, this is true of the first
such segment, since ¢[vstart] = 0. For each but the last such seg-

121

122 CHRISTOPHER M. DELLIN

ment, consider the first edge, (v 12 vs). If vs has the correct g[-], we
can continue to the next segment immediately. Otherwise, either v
ison Qy or (v s vs) is on Q, by Invariant 3. If the former is true, then
vf can be popped from Q, with f = /, thereby adding (vy, vs) to
Qe- Then, (vf,vs) can be popped from Q. with f = ¢, resulting in
g[vs] = £ — h(vs). We can then move on to the next segment.

At the end of this process, we have the trivial segment (v,), with
Qlva] = € —h(v,). If v, is on Qy, then pop it (with f(v,) = ¢), placing
eap on Qe; otherwise, since e,y is unevaluated, it must already be on
Q.. Since f(ey,) = ¢, we can pop and evaluate it. O

Proof of Theorem 6 Given that all vertices in Scandidate €ntail no edge
evaluations, and all edges therein are re-expansions, they can be
considered with no edge evaluations. Once the last edge ey is to be
expanded by LWA*, suppose it has f-value .

First, we will show that there exists a path with length £ w.r.t. Wi,y
which traverses unevaluated edge exy wherein all edges before v,
have been evaluated. Let py be a shortest path segment from Usgart
to v, consisting of only evaluated edges. The length of p, must be
equal to g[v,]; if it were not, there would be some previous vertex
on py with lower f-value than vy, which would necessarily have
been expanded first. Let p, be the a shortest path from v, to vgoal.
The length of p, must be hi,,y (vy,) by definition. Therefore, the path
(px,exy, py) must have length ¢.

Second, we will show that there does not exist any path shorter
than ¢ w.r.t. wy,,y. Suppose p’ were such a path, with length ¢/ < /,
and with first unevaluated edge e;y. Clearly, vstart has g[vstart] =
0" — h(Vstart). Consider each evaluated edge e/, along p’ in turn. In
each case, if g[v}] # ¢/ — h(v),), then either v;, or e/, would be on Q,
or Q. with f(-) = ¢/, and would therefore be expanded before ey.
Therefore, ¢}, would then be popped from Q. with f(e},) = ¢/, and it
would have been evaluated before ey, with f(ey,) = . O

A.2 LazySP Timing Results

We include an accounting of the cumulative computation time taken
by each component of LazySP for each of the seven selectors for each
problem class (Figure A.1).

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 123
Expand Forward Reverse Alternate Bisect WeightSamp Partition
PartConn
total (ms) 122 £ 0.04 196 £ 006 1.86 £ 0.06 1.20 £0.03 241 £0.06 4807.19 £135.22 15.81 + 0.16
sel-init (ms) - - - - - - 12.49 £ 0.11
online (ms) 122 + 0.04 1.96 + 0.06 1.86 & 0.06 1.20 +0.03 2.41 £0.06 4807.19 +135.22 3.32 + 0.10
search (ms) 048 + 0.01 1.12 £ 003 1.05 + 0.03 0.68 £0.02 1.38 £0.04 0.70 = 0.02 0.68 + 0.02
sel (ms) 0.02 £ 0.00 0.01 £ 000 0.01 £ 0.00 0.01 £0.00 0.03 £0.00 4805.64 +135.18 2.07 £ 0.06
eval (ms) - - - - - - -
eval (edges) 87.10 £ 239 35.86 £ 1.04 34.84 £ 1.04 22.23 +0.60 44.81 *1.11 20.66 = 0.57 20.39 £ 0.56
UnitSquare
total (ms) 091 £ 003 147 £ 006 1.49 £ 006 0.94 +0.03 1.71 £0.04 3864.95 £117.66 15.13 £ 0.14
sel-init (ms) - - - - - - 13.41 £ 0.12
online (ms) 091 = 0.03 147 * 006 1.49 £ 0.06 0.94 £0.03 1.71 +0.04 3864.95 £117.66 1.72 = 0.06
search (ms) 035 + 0.01 079 £ 003 082+ 0.03 o0.51 £0.02 0.92 £0.02 0.75 + 0.02 0.45 + 0.01
sel (ms) 0.01 £ 0.00 0.01 % 000 0.01 %+ 000 0.01 £0.00 0.02 +0.00 3863.49 £117.62 0.87 £ 0.03
eval (ms) - - - - - - _
eval (edges) 69.21 £ 2.55 27.29 £ 1.03 27.69 £ 1.02 17.82 £0.60 32.62 £0.72 1558 £ 0.47 14.08 £ 0.46
ArmPlan (avg)
total (s) 269.82 £ 17.95 5.90 + 046 8.22 * 0.53 5.96 £0.31 7.34 £0.43 3402.21 £172.20 496.57 £ 5.53
sel-init (s) - - - - - - 490.77 £ 5.51
online (s) 269.82 = 17.95 5.90 £ 046 8.22 + 0.53 5.96 £0.31 7.34 £0.43 3402.21 £172.20 5.80 = 0.28
search (s) 0.02 £ 0.00 0.02 % 000 002+ 000 0.02£0.00 0.02 +0.00 0.02 £ 0.00 0.04 £ 0.00
sel (s) 0.00 = 0.00 0.00 % 000 0.00 %+ 0.00 0.00£0.00 0.00 £0.00 3392.76 £171.74 1.54 £ 0.09
eval (s) 269.78 + 17.95 587 £ 045 8.20 + 0.52 5.94 £0.31 7.31 +043 9.39 = o0.57 4.21 + 0.22
eval (edges) 949.05 £ 63.46 63.62 £ 4.15 74.94 £ 5.07 5548 £2.95 68.01 +3.86 56.93 = 3.37 48.07 £ 244
ArmPlan1
total (s) 109.09 £ 14.15 4.81 + 049 14.81 £ 1.45 7.03 £0.63 7.91 £0.70 3375.35 £319.81 496.74 £ 8.22
sel-init (s) - - - - - - 489.49 £ 8.18
online (s) 109.09 + 14.15 4.81 £ 0.49 14.81 *+ 145 7.03 £0.63 7.91 +0.70 3375.35 +£319.81 7.25 + 0.66
search (s) 0.02 £ 0.00 0.02 £ 000 003+ 000 0.02F0.00 0.02 +0.00 0.02 £ 0.00 0.04 £ 0.00
sel (s) 0.00 £ 0.00 0.00* 0.00 0.00* 000 0.00+0.00 0.00 +0.00 3358.82 £318.17 1.61 = 0.16
eval (s) 109.07 £ 14.15 4.78 £ 0.49 14.77 £ 1.44 7.01 £0.63 7.88 *o0.70 16.47 £ 1.68 5.59 £ 0.51
eval (edges) 344.74 £ 39.63 49.72 £ 4.25 9558 £ 9.67 59.44 £5.06 58.90 £4.74 73.72 £ 7.63 50.66 £ 4.43
ArmPlan2
total (s) 166.19 £ 9.29 3.27 £ 0.25 7.36 £ 069 595 £0.52 5.63 £0.45 4758.04 £407.56 495.21 £12.65
sel-init (s) -- - - - - - 489.22 +12.64
online (s) 166.19 £ 9.29 3.27 £ 0.25 7.36 £ 0.69 5.95 F+0.52 5.63 +0.45 4758.04 +407.56 5.99 £ 0.48
search (s) 0.01 £ 0.00 0.01 £ 000 0.02 % 0.00 0.01 £0.00 0.01 £0.00 0.02 = 0.00 0.03 £ 0.00
sel (s) 0.00 £ 0.00 0.00+ 0.00 0.00=* 000 0.00+0.00 0.00+0.00 4750.16 +406.98 2.03 £ 0.22
eval (s) 166.17 £ 9.28 3.26 = 0.25 7.34 £ 069 593 £0.52 5.61 +0.45 7.82 £ o0.61 3.91 + 0.27
eval (edges) 657.02 & 29.24 62.24 £ 6.12 98.54 £10.89 69.96 £6.98 75.88 t7.47 66.24 £ 6.36 62.16 = 6.10
ArmPlan3
total (s) 534.16 & 55.64 9.61 £ 1.33 250 £ 0.23 4.91 £0.56 8.47 +£0.99 2073.23 £198.75 497.76 £10.27
sel-init (s) - - - - - - 493.59 t10.21
online (s) 534.16 + 55.64 9.61 £ 1.33 250 + 0.23 4.91 £0.56 8.47 +0.99 2073.23 £198.75 4.17 + 0.43
search (s) 0.02 £ 0.01 0.02 £ 000 002 % 000 0.02+£0.00 0.02 £0.00 0.03 £ o0.01 0.04 £ 0.00
sel (s) 0.00 £ 0.00 0.00%* 0.00 0.00=% 0.00 0.00£0.00 0.00£0.00 2069.29 £198.53 0.98 £ 0.13
eval (s) 534.10 = 55.63 9.58 £ 1.33 248 * 0.23 4.89 £0.56 8.44 F+0.99 3.90 = o0.31 3.15 = 0.32
eval (edges) 1845.38 £195.57 78.90 £10.36 30.70 £ 3.62 37.04 +4.59 69.26 £7.97 3082 £ 3.60 31.38 + 3.80

Figure A.1: Detailed timing results for each selector. The actual edge weights for the illustrative PartConn and UnitSquare prob-

lems were pre-computed, and therefore their timings are not included. The Partition selector requires initialization of the Z-values
(3.7) for the graph using only the estimated edge weights. Since this is not particular to either the actual edge weights (e.g. from the
obstacle distribution) or the start/goal vertices from a particular instance, this initialization (sel-init) is considered separately. The
online running time (online) is broken into LazySP’s three primary steps: the inner search (search), invoking the edge selector (sel), and

evaluating edges (eval). We also show the number of edges evaluated.

B
Appendix: Incrementally Calculating Partition Func-
tions on Graphs

Problem Definition. Consider a directed graph G = (V, E) endowed

with an edge weight function w : E — R. Between any two vertices

x,y €V, there exist a (potentially infinite) set of paths ny, with Note that we do not restrict considera-
the length of any path given by len : Py, — R as in (3.1). Between tion to only simple paths on G.
each such pair of vertices x,y, one can compute the partition function

denoted Zy,, defined as a sum over all possible paths as follows:

Zyy = Z exp(—pBlen(pxy)), (B.1)

Pxy€Pxy

with B a fixed real-valued parameter (commonly called an inverse
temperature in statistical mechanics). We wish to compute and main-
tain this partition function value between all pairs of vertices x and y
on G.

An Incremental Approach. We propose an incremental method for
calculating Z between all pairs on a graph. We will proceed by ini-
tializing the values Z,, for each pair on a graph with no edges, and
then show how we can update these values as edges are added or
removed.

First, consider the graph with no edges Gy = (V,®). On this
graph, there exists no paths between each pair of vertices x,y with
x # y. On the other hand, for x = y there exists exactly one path
containing no edges (and therefore with length 0). Thus, we can
initialize our values Zy, with:

ny - {) otherns (B.2)

0 otherwise.

Adding Edges. We can next establish the inductive step. Suppose we
compare two directed graphs G and G/, where V/ = Vand E' =

126 CHRISTOPHER M. DELLIN

E U {es}, and with new edge e;; : 4 — b having weight w,;,. For
arbitrary vertices x and y, we can write Z;y as follows:

Z;cy =50 451 45 4 (B.3)

where S is the sum from (B.1) over only the subset of paths that
traverse e,; exactly k times. We note immediately that (0 = Zyy.

Next, we consider the sum S(l), that is, the sum over all paths
which use the new edge e, exactly once. We note that each path
which contributes to this sum consists of three segments: (a) a path
segment from x to a, followed by (b) the new edge e, followed by
(c) a path segment from b to y. Since the sum in question consists
exactly of the sum over all unique paths which follow this template,
we see that we can write S(!) as follows:

s =YY exp (B [len(pua) + wap + len(pyy)|) (B4)

Pxa Py

Note that both py; € Py, and Poy € Phy are over all paths on the
original graph G. We can then rewrite this simply as:

SW = Zyq exp(—Bway) Zyy- (B.5)
We can likewise write $(2) as:
$ = Zya exp(—Bwap) Zpg eXp(—P Wap) Zpy- (B.6)

That is, this sum consists of paths which arrive from x to a through
G, traverse the edge ¢,;, once, then traverse the original G in some
way from b back to 4, traverse the edge ¢, a second time, and then
proceed from b to y. This decomposition allows us to rewrite the
entire sum from (B.3) as:

Ziy = Zoy+ Zya exp(—Bwap) Zoy Y [Zpa exp(—Bwa)]*. (B.7)
k=0

As this is a geometric series, it will converge as long as Z;, <
exp(Bwgp). In this case, we have:

Zya Zy
Z = Zey+ Y . (B.8)
YT exp(Bway) — Zpa
This allows us to accommodate arbitrary edge additions while main- Note that the addition of an undirected

edge between a and b must entail two

taining the correct values Zy, over all pairs of vertices on G. , o
successive applications of (B.8).

Removing Edges. We can establish a similar result in the case that an
existing edge is removed from the graph. Consider the case that you
have a graph G/, with partition function values Z’ between all pairs

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 127

of vertices. You then remove some existing edge e,, with weight w,;,
yielding new graph G. What can we say about the new values Z?
We proceed by applying (B.8) to the edge to be removed e,

72
Zha = Zoa =~ ot ﬁw;j) —7— =0 (B.9)

[exp(Bwab) — Zba] Zpa — exp(B0ap) Zpa = 0 (B.10)
[exp(Bwab) — Zpa] [exp(Bwap) + Zp,| = exp(2tw,p) (B.11)
exp(Bwap) — Zpg = Xp(2ptwis) (B.12)

 exp(Pwa) + Z,
We can then use (B.12) to express Zy, and Z;, in terms of Z}, and

Zy,, respectively:

Zxa Zbﬂ exp(leub) Z/ (B 13)
xa N

=7 — 7y =
" exp(.Bwub) —Zp, w e eXP(IBwab) + ZZm
Zba Zy exp(Bwap)
Zh + =7 — Zb = a 7! (Bl)
Y exp(Bwa) — Zoa Y exp(Bug) + 25, Y

Lastly, we can combine (B.8) and (B.12) to express the desired value
Zyy only in terms of values on G':

{m /} {M /y}

71 exp(ﬂwﬂb)+zijﬂ xa exp(/gwab)+zim b
Zyy = Zx]/ o [exp(2Bwgp) } (B.15)
exp(Bwap)+24,

, 2.7},
Ly =72 —
YT exp(Bwa) + 24,

This allows us to accommodate edge deletions.

(B.16)

C
Appendix: IBiD Proofs

Proof of Theorem 7 Consider any vertex x. If d*(x) = oo, then

by (4.3a) we must have that d(x) = oco. Otherwise, by (4.1), there
exists a path p* of length d*(x); consider this path. The first vertex

on p* is s with d*(s) = 0, and by (4.3), d(s) = d*(s). For each edge
eup on p* with d(u) = d*(u), we will show that d(v) = d*(v). By
definition of the shortest path, d*(u) + w(e,y) = d*(v). Therefore
d(u) +w(ey) = d*(v), and by (4.3d), we have d*(v) > d(v), and by
(4.3a) we have d*(v) = d(v). By induction along the path p*, we have
that d(x) = d*(x). O

Proof of Theorem 8 The proof proceeds as follows. First, if d' =

oo, then no edges can be in tension, and so d = d* everywhere as
shown in Section 4.2.2. Otherwise, suppose that d(x) # d*(x) for
some vertex x with d(x) < d’. By (4.3), it would have to be that
d*(x) < d(x). Consider a true shortest path p from s to x; by (4.3)
such a path exists and has finite length d*(x). By (4.3), we have that
d*(s) = d(s) = 0 (and so s and x must be distinct). Let e, be the first
edge along p such that d*(u) = d(u) but d*(v) < d(v). Since pisa
shortest path, edge e,, must therefore be in tension. Since w > 0, it
must be that d*(u) < d*(x); further, since d*(u) = d(u), d*(x) < d(x),
and d(x) < d’it must be that d(u) < d’. But then edge e,y is in
tension with lower d(u)! This contradiction implies that every vertex
x with d(x) < d’ must have d(x) = d*(x). O

Proof of Theorem 9 For any vertex x with d(x) < k, consider the
following construction of a path from s to x. Initialize the path p <
{x}; note that by Theorem 8, the first vertex v on p has d(v) = d*(v).

At each iteration, terminate construction if v = s. Otherwise, let u*
be the predecessor of v which minimizes d(u) + w(eyy), and prepend
u* to p. By (4.3¢), it follows that d(u*) + w(e};,) < d(v), and since
d(v) = d*(v) and d*(v) < d*(u) + w(e},) by definition of the distance
function, it follows that d(u*) < d*(u*). In combination with (4.3a),
this implies d(u*) = d*(u*), and we can iterate.

130 CHRISTOPHER M. DELLIN

The result of this construction is a path p from s to x on which all
vertices have d(v) = d*(v). Therefore p is a shortest path of length
a*(x). O

Proof of Theorem 10 Note first that since ds (1) < Ds, by Theorem 8,
ds(u) = d}(u), and so there exists a path from s to u of length ds(u).
Similarly, there exists a path from v to t of length d;(v), and as a
result, there exists a path through e}, with length /. (e},).

We will prove that this constitutes a shortest path by contradiction.
Suppose that a different shortest path p’ exists with len(p’) < £e(ef:,).
Then it must also be that len(p’) < Ds + D;. Note that since s # t, p’
contains at least one edge. We will consider two cases.

First, consider the case where len(p’) < Ds, so that di(t) < Ds;.

In this case, the last edge e, on p’ has d}(u') < di(t) < Ds; by
Theorem 8, u’ therefore has ds(u') = d¥(u'). In addition, since D; >
0, t must be t-consistent with d;(t) = 0. Therefore, it follows that
di(u') +wlel,) < ds(u") +wlel,;), which contradicts the supposition.

In the second case with Dy < len(p’), identify on p’ the edge ¢,
adjoining the vertices u’, v’ such that d} (1) < Ds < d¥(¢v'). (Since
D, > 0, this edge will exist.) Since d(u') < Ds, by Theorem 11, 1’ is
therefore s-consistent with ds(u) = d¥(u"). Consider our supposition
that df (u') + w(e),) + d; (v") < Ds + Dy. Since d} (u') + w(e;,,) =
d(v") and Ds < d(v'), it follows that dj (v') < D;. Therefore, by
Theorem 11, v’ is t-consistent with d;(v') = d} (¢v"). As a consequence,
the edge ¢/, must be in Econn. Therefore, d; (1) + w(e),,) + df (v') <
ds(u') +w(e],) + di(v"), which is a contradiction. 0

Proof of Theorem 11 The proof relies upon a path construction from
s to x described by Lemma 1. Lemma 2 then demonstrates that the
length of the path is d(x), and therefore that d(x) can be no less than
d*(x). Finally, Lemma 3 shows that d(x) can be no greater than d*(x).
As a result, the value d(x) is correct, and the path constructed via
Lemma 1 is a shortest path. O

Lemma 1 For any consistent vertex x with d(x) < kyn, there exists a path
p from s to x in which each vertex is consistent and each edge e, satisfies
d(u) +w(ew) = d(v).

Proof of Lemma 1 Construct the path p as follows. Initialize the
path with the single vertex x. Iteratively consider the first vertex

v on the path, which is known to be consistent. In the first case, if
v # s, then there exists a predecessor vertex u and edge e,, with
d(u) + w(eyy) = r(v). Sincew > 0and d(v) = r(v), we have
d(u) < d(v) < d(x). As a consequence, u is consistent; prepend
to the path the vertex 1 and the edge e,y, and iterate. In the second
case, if v = s, then we finish our construction of p. Since the values

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

d(u) decrease monotonically for all inserted vertices, this process will
terminate with a path p beginning at s. U

Lemma 2 Any consistent vertex x with d(x) < ky, has d(x) > d*(x).

Proof of Lemma 2 This follows directly from Lemma 1. Since all
vertices on the path are known consistent, we must have d(s) =

0. Further, since the d-values across each edge in p satisfy d(u) +
w(ewy) = d(v), it follows that d(x) = Y., w(e). Therefore, a path
exists from s to x of length d(x), and so the true distance d*(x) must
be upper-bounded by d(x). O

Lemma 3 Any consistent vertex v with d(x) < ki, has d(x) < d*(x).

Proof of Lemma 3 We demonstrate that d(x) < d*(x) by contra-
diction. Suppose a vertex x exists for which d*(x) < d(x). Then
there must exist a path p’ from s to x of length d*(x), with d*(s) = 0
and d* (u) + w(euy) = d*(v) for each edge in p’; as a consequence,
we must have d*(v) < d(x) for all vertices v on p’. By Lemma 1,
we know that s is consistent, so d(s) = 0. We will show that walk-
ing along each edge e, on p’ starting at s, if d(u) < d*(u), then
d(v) < d*(v).

By definition, we have d(u) + w(eu) > r(v), so that d(u) —d*(u) >
r(v) — d*(v). Therefore, it follows that #(v) < d*(v). Since k(v) <
d*(v), it follows that v is consistent, so d(v) < d*(v). We can replicate
this logic down the path. As a result, it follows that d(x) < d*(x). But
this contradicts our supposition that 4*(x) < d(x), and therefore such
a vertex x cannot exist. 0

Proof of Theorem 12 We will prove this by contradiction. Suppose
that a path p’ exists with len(p’) < min,cr,,,, (ds(1) + w(ewo) + di(v)).
Then it must also be that len(p’) < Ks 4+ K;. We will consider two
cases.

First, consider the case where K; > len(p’), so that Ks > dX(t). In
this case, the last edge e/, on p’ has d}(u') < di(t) < Ks; by Theo-
rem 11, #’ is therefore s-consistent with ds(u’) = di(u'). In addition,
since K; > 0, t must be t-consistent with d;(t) = 0. Therefore, it
follows that d (u') + w(e),) < ds(u’) + w(e],;), which contradicts the
supposition.

In the second case with Ks < len(p’), identify on p’ the edge ¢},
adjoining the vertices u’, v’ such that d} (') < Ks < df(v'). (Since
Ks > 0, this edge will exist.) Since d¥ (u') < K, by Theorem 11, 1’ is
therefore s-consistent with ds(#') = d(u’). Consider our supposition
that di (u') + w(e,,,) + d; (v") < Ks + K;. Since di (u') + w(e,,) =
di(v") and Ks < d(¢'), it follows that df (v') < K;. Therefore, by
Theorem 11, v’ is t-consistent with d;(v') = d} (¢v"). As a consequence,

131

132 CHRISTOPHER M. DELLIN

the edge ¢/, must be in Econn. Therefore, d2 (1) + w(e),,) + df (v') <
ds(u') +w(el,) + di(v'), which is a contradiction. 0

D
Appendix: LEMUR Results

10 0 5 10 15 0 10 20 30 40

T 30 T T 30 T T

| | | |
0 0 0 0 0
0 0.2 0.4 0.6 0.8 1 0O 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0O 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

AU AU AU AU AU AU

Figure D.1: Experimental results across six single-query motion planning instances for a 7-DOF robot arm. Top: ex-
pected planning cost p (in seconds) vs. execution cost x (in radians) for each parameterized planner for various values
of their parameters. Bottom: the mean negative utility —U = Ayp + (1—Ay)x (solid lines) measured for each planner
(lower on plot is better) as the utility parameter Ay; is varied. The 95% confidence interval of the mean is also shown.
Planners used the same parameter schedule across the problems as shown in Figure 5.6. The per-problem maximum
achievable mean utilities (5.9) for each planner are shown as dotted lines. Planners are Bl RRT-Connect with shortcut-
ting, @ BIT*, @8 LEMUR (no roadmap cache), and Bl LEMUR (with roadmap cache).

134 CHRISTOPHER M. DELLIN

—— 171 —— 11 —n I
—— — | — ——
- — | — ——
—— — — —
—— — — 0 —m 0 ———m
] I in] I I (1} m I
—n im| (u} m

—a 1] (u] m-

A— 1 1m] -

T | =1 | | | 0 O | | 0 |
0 2 0 2 4 6 8 0 10 20 0 40

P (sec) P (sec) p (sec) p (sec)

Figure D.2: Time breakdown of LEMUR for each of the six experimental problems across various values of A,. Cumu-
lative time is shown performing the following operations: [roadmap generation, O graph search, [collision checking,

and 0 unaccounted for. The bottom row shows the results of the algorithm over the same set of 50 roadmaps when

reading the cached roadmap from disk to avoid online nearest-neighbor queries.

— 20 20 120 20
15 |- s |- 15 15 [-
10 |- 1o |- \\—10 10 [+ |
! | e B —
5 {5 * 5 5 -
I ! o ! ! Iy ! o ! !
10 0 5 0 5 10 15 0 5 10 0 5 10
P (sec) P (sec) p (sec) p (sec)
T L — 10 — 1 1 T 3° 10

0 0
0 0.2 040608 1 0 0.20.40.60.8

0 0
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

AU

AU

Figure D.3: Summary of p-vs-x and
utility results for each step in the

workcell problem.

0 0
0 0.2040608 1 0 02040608 1 0 0.20.40.60.8

AU

0
0 0.2 04 0.6 08 1

EEEL

EEEL

p (sec)

p (sec)

“EEEEE

5 10

p (sec)

Au
S
—————m
——
———
——
= T
-]

-

]

e S |

0 2 4
p (sec)

Figure D.4: Timing results for each step
in the workcell problem.

E
Appendix: Family Motion Planning

Figure E.1: Family belief graph for the
2D example problem from Figure 6.4

in Chapter 6. The underlying family
consists of five sets: A, B, C, S1p, and
Sp3. Transitions between states are
shown for indicators 14 (H), 15 (H),
and 1¢ (M), with solid lines (/) showing
transitions in which the indicator
returns True, and dashed lines ()
showing transitions in which the
indicator returns False. Also shown

is the distance function and optimal
policy for a query subset S, = Sp3,
with green beliefs as goal states. Bolded
edges (#) represent transitions on an
optimal policy.

List of Figures

1.1

1.2

2.1

2.2

2.3
2.4

2.5

2.6

Outline of the dissertation document. Motivated by recurring ma-
nipulation tasks, we consider two questions: (a) how to optimize a
motion planning objective over a C-space roadmap, and (b) which
objective best captures the task’s planning/execution tradeoff? 11
The three robotic platforms considered in this dissertation. 13

The original mover’s problem entails finding a collision-free path for
a geometric body amongst obstacles, or finding that no path exists.

15

The motion planning problem entails finding a continuous path among
obstacles in an abstract configuration space. 16
Path cost model for the (feasible) motion planning problem. 16

Example dynamical path cost function for the optimal motion plan-
ning problem. Here, the arc length of ¢ using the L, norm cost is used.
A stack of progressively densified roadmaps over a given configu-
ration space C. Each deeper roadmap constitutes a more accurate ap-
proximation to the true continuous problem space. 22

Examples of three roadmap types over the unit square: an axis-aligned
lattice (left), random geometric graph (middle), and Halton graph
with primes (2, 3) (right). All three roadmaps have a connection ra-
dius of 0.3. The latter two roadmaps have 30 vertices. 23

While solving a shortest path query, a shortest path algorithm incurs
computation cost from three sources: examining the structure of the
graph G, evaluating the edge weight function w, and maintaining
internal data structures. 25

16

138 CHRISTOPHER M. DELLIN

3.2

33

34

35

3.6

37

Snapshots of the LazySP algorithm using each edge selector discussed
in this chapter on the same obstacle roadmap graph problem, with
start and goal. At top, the algorithms after evaluating five edges (eval-
uated edges labeled as valid or invalid). At middle, the final set of
evaluated edges. At bottom, for each unique path considered from
left to right, the number of edges on the path that are already eval-
uated, evaluated and valid, evaluated and invalid, and unevaluated.
The total number of edges evaluated is noted in brackets. Note that
the scale on the Expand plot has been adjusted because the selector
evaluates many edges not on the candidate path at each iteration.

30
A* comparison between the static goal heuristic /et (3.3) and the dy-
namic goal heuristic h,,y (3.4) on a simple graph from start S to goal
G. The values of both the edge weight estimate we and the true edge
weight w (for evaluated edges) are shown. Using either goal heuris-
tic, the A* algorithm first expands vertices S and Y, evaluating three
edges in total and leaving X and G on OPEN. After finding that edge
YG has w = 3, the dynamic heuristic value hlazy(X) is updated from
2 to 4. While the A* using the static hest would next expand X, the
A* using the dynamic hy,,, would next expand G and terminate, hav-
ing never evaluated edge XY. 31
Mlustration of the equivalence between A* and LazySP-Expand. Af-
ter evaluating the same set of edges, the next edges to be evaluated
by each algorithm can both be expressed as a surjective mapping onto
a common set of unexpanded frontier vertices. 32
Iustration of maximum edge probability selectors. A distribution
over paths (usually conditioned on the known edge evaluations) in-
duces on each edge e a Bernoulli distribution with parameter p(e)
giving the probability that it belongs to the path. The selector chooses
the edge with the largest such probability. 35
The WeightSamp selector uses the path distribution induced by solv-
ing the shortest path problem on a distribution over possible edge
weight functions Dy,. In this example, samples from Dy, are computed
by drawing samples from Dy, the distribution of obstacles that are
consistent with the known edge evaluations. 36
Examples of the Partition selector’s p(e) edge score function. With
no known obstacles, a high B assigns near-unity score to only edges
on the shortest path; as B decreases and more paths are considered,
edges immediately adjacent to the roots score highest. Since all paths
must pass through the narrow passage, edges within score highly.
For a problem with two a-priori known obstacles (dark gray), the score
first prioritizes evaluations between the two. Upon finding these edges
are blocked, the next edges that are prioritized lie along the top of
the world. 37

3.8

39

4.1

43
44

45

4.6

47

4.8

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

Visualization of the first of three articulated motion planning prob-

lems in which the HERB robot must move its right arm from the start
configuration (pictured) to any of seven grasp configurations for a

mug. Shown is the progression of the Alternate selector on one of

the randomly generated roadmaps; approximately 2% of the 7D roadmap
is shown in gray by projecting onto the space of end-effector posi-

tions. 39

Experimental results for the three problem classes across each of the
seven selectors, E:Expand, F:Forward, R:Reverse, A:Alternate, B:Bisection,
W:WeightSamp, and P:Partition. In addition to the summary table

(a), the plots (b-d) show summary statistics for each problem class.

The means and standard errors in (b-c) are across the 1000 and goo
problem instances, respectively. The means and standard errors in

(d) are for the average across the three constituent problems for each

of the 50 sampled roadmaps. A more detailed table of results is avail-
able in Appendix A. 40

Mlustrations of the three focusing techniques considered on a spa-
tial pathfinding problem. 43

A graph of the Northeast USA from the gth DIMACS Implementa-
tion Challenge comprises 1,524,453 vertices and 3,868,020 directed
edges. A shortest path problem from a start s in New Jersey to a des-
tination ¢ outside Boston will be used as an example. 45

The distance function from the start vertex. 45

Ordering problems. Consider the vertices a — b — ¢, with edges
e,y and ey, both in tension; if ¢y, is relaxed before ey, then ey, will
need to be relaxed a second time. 47

Tensioned edge trust region for w > 0. Contours are of the current
estimate d. Currently tensioned edges are bold and dotted. 47
Dijkstra’s algorithm computes the start distance function d* to solve
the example shortest path problem. Darker vertices have smaller d-
values. The algorithm stops upon reaching the destination vertex ¢
after expanding 1,290,820 vertices. 48

Problem case for pathfinding with distance functions in cases where
invariant (4.3c) does not hold. Here, d satisfied a and c, with edge
esq tensioned, and d' = 0. While the approximation d is sound at x
via Theorem 8 (i.e. d(x) is correct), the path reconstructed from f is
not a shortest path. 48

The bidirectional Dijkatra’s algorithm computes ds around the start
vertex and d; around the destination vertex. Darker vertices have smaller
d-values in their respective regions. The algorithm terminates after
expanding a total of 1,178,200 vertices using distance to balance ex-
pansions. 49

139

140 CHRISTOPHER M. DELLIN

4.9 Simple illustration of a problem case for terminating a bidirectional
search. With a balanced distance criterion, ¢ will be the first vertex
expanded in both directions, but it does not lie on the shortest path. 49

4.10 Initial episode: 1,287,897 expansions. Subsequent episode: 391,122

expansions. 50
4.11 Initial search: 1,181,616 expansions. Replan: 262,422 expansions. 53
4.12 A* search. 532,880 expansions. 56

4.13 lllustration of behavior of bidirectional heuristic search on a short-
est path problem reproduced from [67]. Vertices that are start-expanded
are shown in blue, while those that are destination-expanded are shown
in red. At left, the algorithm performs only start-side expansions, which
approximates the behavior of a unidirectional algorithm. At right,
the algorithm performs distance-balanced expansions between the
two searches. The top row shows the behavior of the algorithm with
no heuristic potential function. Start and destination heuristic func-
tions are available, and their effect are shown at bottom. The unidi-
rectional search uses the destination heuristic /; as its potential func-
tion, while the bidirectional search uses the averaged potential func-
tion (4.11). 59

4.14 Bidirectional A* search. 515,588 expansions. 59

4.15 Comparison of Heuristic IBiD parameters (expansion balancers and
potential functions) on a dynamic grid world pathfinding problem
reproduced from [67]. Heuristic IBiD with only start-side expansions
and a destination-side heuristic (top) proceeds identically to Lifelong
Planning A*, performing 37 expansions on the original world (left)
followed by 18 expansions over 14 vertices on the chanced world (right).
Heuristic IBiD with distance-balanced expansions and an average
potential (bottom) performs 30 expansions on the original world fol-
lowed by 18 expansions over 15 vertices on the changed world. 62

4.16 Expected number of vertex expansions required to solve a single-pair
shortest path query on a Northeast USA road network. Four prob-
lems P1-P4 were considered with different numbers of expected edges
with traffic changes between episodes (P1: few changes, P4 many changes).
The dataset consists of 400 instances of 10 episodes each deriving from
20 randomly selected vertex pairs and 20 random traffic seeds. The
“Initial” series captures the first episode for each problem instance
(with identical behavior between problems P1-P4 because no traf-
fic changes affect the initial episode). The “Replans” series capture
an average over the remaining nine episodes. Note that (a) only the
latter four incremental planners see savings during replanning, and
(b) the initial episode is identical between each incremental planner
and its corresponding complete cousin. 65

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

4.17 Relative performance improvement for replanning episodes relative

5.1

5.2

53

5.4

55

5.6

to initial episodes for each incremental algorithm on the dynamic road
network problem. 65

A robot reaching to grab a book must allocate limited resources be-
tween planning and executing its motion. Our planner reasons over

a user-defined utility function (top left) to explicitly trade-off between
these two significant sources of cost. As its roadmap search discov-
ers valid edges, it mediates between high-cost edges that are fast to
find and low-cost edges that require significant planning directly via
their prospective utilities. Because the planner accepts arbitrary es-
timators for planning cost, it can naturally exploit both caching and

geometric structure in C. 68
Contours of a utility function U(p, x). Also some examples of sim-
ple utility functions relevant to related work. 71

A planner reasoning with a linear utility function chooses to first eval-
uate trajectory §;. After incurring planning cost 7 (less than it had
expected), it finds that it is more expensive than expected; some of
the planning work has also adjusted the estimates for nearby trajec-
tory ¢,. However, the estimated remaining planning costs p for all
other unaffected trajectories have remained constant. Therefore, the
relative utilities have also not changed. As such, a planner need not
re-order any trajectories whose estimated planning cost to go has not
changed. 73

At each iteration 7, the simplified bidirectional RRT-Connect plan-
ner always selects among all paths constrained to pass through the
sampled configuration g; that which minimizes the necessary plan-
ning cost only. 74

A parameterized planner A maximizes a linear combination utility
(for some value Ayy) along the subset of parameter values which con-
stitute the lower-left convex hull of the p-vs-x plot (left). Each real-
ization of planner A for a particular parameter value (a point at left)
corresponds to a line at right, which shows the utility achieved for
that realization over various values of Ay (negative utility shown,
lower is better). Applying a parameterized planner for utility max-
imization requires selecting # according to Ay in such a way that the
realized utility approximates the lower bound across all parameter
choices (right). 75

Schedule of parameters for three of the algorithms compared. The
hybrid RRT-Connect and BIT* are both anytime planners. The pa-
rameter learned was the algorithm termination time after the first
returned path. The LEMUR algorithm does not require tuning; we
used A, = Ay in our experiments. 80

141

142 CHRISTOPHER M. DELLIN

57

5.8

59

Ilustration of three trajectories generated by LEMUR on instance 6
from our experiments. The planner was initialized with the param-
eters A, = 0,0.5, and 1; the same roadmap was used. By increas-

ing A, the planner prefers minimizing planning cost at the expense
of more costly solution paths. 81

Comparison of measured planning time p and solution execution cost
x for the first step of the HERB table-clearing task. Results for four
parameterized planners are shown: RRT-Connect, BIT*, Lazy ARA%,
and LEMUR. The LEMUR results show the effect of adjusting the

Ap tradeoff parameter from 0 to 0.99. The results for other planners
show the effect of changing the total optimization time after the first
returned solution. Also shown for reference are the contours for the
Ay = 0.50 utility function (i.e. 1 rad = 1 sec). 81

Comparison of measured planning time p and solution execution cost
x for the FG step of the workcell task. Results for four parameter-
ized planners are shown: RRT-Connect, BIT*, Lazy ARA*, and LEMUR.
The LEMUR results show the effect of adjusting the A, tradeoff pa-
rameter from 0 to 0.99. The results for other planners show the ef-
fect of changing the total optimization time after the first returned
solution. Also shown for reference are the contours for the Ay; = 0.50
utility function (i.e. 1 rad = 1 sec). 82

5.10 Comparison of measured planning time p and solution execution cost

6.1

6.3

6.4

x for the first step of a CHIMP valve turning task. Results for four
parameterized planners are shown: RRT-Connect, BIT*, Lazy ARA*,
and LEMUR. The LEMUR results show the effect of adjusting the
Ay tradeoff parameter from 0 to 0.99. The results for other planners
show the effect of changing the total optimization time after the first
returned solution. Also shown for reference are the contours for the
Ay = 0.50 utility function (i.e. 1 rad = 1 sec). 82

A simple manipulation task: retrieve the mug from the table, and drop
it in the blue bin. This task requires plans in three distinct C-space
free subsets. 87

lustration of a composite configuration space for a manipulation
task. 88

Iustration of a transit and transfer constraint manifolds in the com-
posite configuration space for a manipulation task, along with pro-
jections of each onto the robot’s configuration space. 89

An illustration of a family motion planning problem in a common
configuration space C. The problem definition generalizes to an ar-
bitrary number of configuration space subsets and set relations be-
tween them. When two queries in different subsets are solved sequen-
tially, a family motion planner can reuse path segments less expen-
sively. See Section 6.5 for examples in manipulation. 91

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS 143

6.5 While queries in multi-query planning reference the same subset of
C, each family query references one of a number of such sets. 92

6.6 Types of subset relations. Each relation can be expressed directly as
set relations w.r.t a set S, or equivalently as logical statements on the
corresponding indicator functions 1g(-). 92

6.7 Example family belief graph for a family of two subsets, S; and S,.
From the initial belief biniy = (U, U), each transition (S,) represents
invoking indicator 15 with returned binary result r. 93

6.8 Example family belief graph for a family of two subsets, S; and Sy,
with the subset relation that S; C S,. Compare this family belief
graph to Figure 6.7 without the relation. 95

6.9 A subset relation which does not carry over directly from configu-
rations to edges. 96

6.10 Optimistic optimal belief graph policy for a family of two subsets,
S1 and Sy, with the subset relation that S; C Sy, and with p; =1
and p, = 10. The query subset is S, = Sy; beliefs for which b[2] =
T are goal vertices (green). The value function d is shown for each
believe state, and infeasible beliefs (i.e. with d = oo, which are al-
ready demonstrably not in the query subset) are shown in green. The
edges on the optimal policy are shown in bold. 96

6.11 A home robot performing a three-step manipulation task. It must
move from its home configuration to grasp the cup, transfer it to a
drop location above the bin, and return home. 98

6.12 Comparison of measured planning time p and solution execution cost
x for the HERB table-clearing example. RRT is shown in red. Results
for LEMUR with the simple edge cost model are shown in blue, while
the family edge cost model is shown in green. The LEMUR results
show the effect of adjusting the A, tradeoff parameter from 0 to 0.99.

99

6.13 Robot tending a press brake in an industrial workcell. This exam-
ple problem is reproduced from the Lazy PRM paper [10]. The multi-
step manipulation task requires eight motion planning problems in
seven different C-subsets. From its initial configuration (A), the robot
moves to grasp a raw sheet (B) and transfer first to a settling table
(C) and subsequently to the press brake (D). After the first bend, the
robot receives the partially worked part (E) and uses a regrasping
fixture (F) to regrasp it on the other side (G). After its second bend
(H) and (I), the finished part is moved to the final pallet (J) before
the robot returns to its initial configuration (A). Results for planning
these steps are shown in Figure 6.14. 100

144 CHRISTOPHER M. DELLIN

6.14 Comparison of measured planning time p and solution execution cost
x for the industrial workcell example. RRT is shown in red. Results
for LEMUR with the simple edge cost model are shown in blue, while
the family edge cost model is shown in green. The LEMUR results
show the effect of adjusting the A, tradeoff parameter from 0 to 0.99.

100

7.1 Outline of the algorithms developed in this dissertation. LEMUR is
solves a continuous motion planning problem via discretization as
a series of progressively densified roadmaps (Chapter 2). Since the
shortest path problem over the resulting graph in characterized by
edge costs which are expensive to evaluate, we exploit lazy search
and edge selectors (Chapter 3) to minimize planning effort. We also
develop a novel incremental bidirectional search algorithm (Chap-
ter 4) to accommodate the resulting dynamic pathfinding problem.
LEMUR conducts its search guided by a utility function (Chapter 5)
which can employ distinct domain-specific planning and execution
cost heuristics. In multi-step manipulation tasks, one such cost model
is derived from the family motion planning problem (Chapter 6), which
leads to planner invocations which minimize combined planning and
execution cost. 102

7.2 A stack of progressively densified roadmaps over a given free con-
figuration space C. 106

7.3 A roadmap stack with “offramp” edges. 108

7.4 Collision validity checking is a commonly used indicator function.
The family motion planning formulation allows an intelligent plan-
ner to reach inside the checker’s “black box” and reduce the num-
ber of costly narrow-phase checks. Resulting paths tend to be cheaper
to compute and stay further from obstacles. 111

7.5 A simple 2D motion planning example in which LEMUR has a broad-
phase check available. Testing against the bounding box (grey) is 10x
less expensive than testing against the actual obstacle (black). Expos-
ing the broad-phase check to LEMUR as a distinct subset allows for
reduced planning cost. 113

A1

D3

D.4

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

Detailed timing results for each selector. The actual edge weights for
the illustrative PartConn and UnitSquare problems were pre-computed,
and therefore their timings are not included. The Partition selector
requires initialization of the Z-values (3.7) for the graph using only

the estimated edge weights. Since this is not particular to either the
actual edge weights (e.g. from the obstacle distribution) or the start/goal
vertices from a particular instance, this initialization (sel-init) is con-
sidered separately. The online running time (online) is broken into
LazySP’s three primary steps: the inner search (search), invoking the
edge selector (sel), and evaluating edges (eval). We also show the num-
ber of edges evaluated. 123

Experimental results across six single-query motion planning instances
for a 7-DOF robot arm. Top: expected planning cost p (in seconds)
vs. execution cost x (in radians) for each parameterized planner for
various values of their parameters. Bottom: the mean negative util-
ity —U = Ayp + (1—Ay)x (solid lines) measured for each plan-
ner (lower on plot is better) as the utility parameter Ay is varied. The
95% confidence interval of the mean is also shown. Planners used
the same parameter schedule across the problems as shown in Fig-
ure 5.6. The per-problem maximum achievable mean utilities (5.9)
for each planner are shown as dotted lines. Planners are RRT-Connect
with shortcutting, BIT*, LEMUR (no roadmap cache), and LEMUR
(with roadmap cache). 133

Time breakdown of LEMUR for each of the six experimental prob-
lems across various values of A,. Cumulative time is shown perform-
ing the following operations: roadmap generation, graph search, col-
lision checking, and unaccounted for. The bottom row shows the re-
sults of the algorithm over the same set of 50 roadmaps when read-
ing the cached roadmap from disk to avoid online nearest-neighbor
queries. 134

Summary of p-vs-x and utility results for each step in the workcell
problem. 134

Timing results for each step in the workcell problem. 134

Family belief graph for the 2D example problem from Figure 6.4 in
Chapter 6. The underlying family consists of five sets: A, B, C, S1»,

and S»3. Transitions between states are shown for indicators 14, 13,
and 1c, with solid lines showing transitions in which the indicator
returns True, and dashed lines showing transitions in which the in-
dicator returns False. Also shown is the distance function and op-
timal policy for a query subset S, = Sy3, with green beliefs as goal
states. Bolded edges represent transitions on an optimal policy. 135

145

List of Tables

1.1

3.1

4.2

43

6.1
6.2

Table of four computational problems and the respective algorithms
developed in this dissertation. 12

Table of roadmap connection radii parameters for various scaling rates
across the different robot platforms considered in this thesis. Radii
presented are for n = 10000 and 7 = 1, and are given in radians. 24

LazySP equivalence results. The A*, LWA*, and BHFFA algorithms
use reopening and the dynamic hy,,y heuristic (3.4). 30

IBiD generalizes both the heuristic-informed bidirectional Dijkstra’s

search [45] and DynamicSWSF-FP [¢8]. There are a great many al-
gorithms that we could place in each cell; we provide only a repre-
sentative choice in each. 44

Table of algorithms compared in the Northeast USA dynamic pathfind-

ing problem. Each algorithm is marked as bidirectional (“Bidir”), heuristic-
informed (“Heur”), and/or incremental (“Inc”). 63

Traffic transition parameters for each edge of the Northeast USA graph

for the four problem classes P1 — P4. 64

Constituent subsets in the herbbin example problem. 98
Constituent subsets in the workcell example problem. 99

F

Bibliography

[1]

[2]

[3]

[4]

[6]

[7]

[9]

S. Aine and M. Likhachev. Truncated incremental search.
Artificial Intelligence, 234(C):49 — 77, May 2016.

D. Alberts, G. Cattaneo, U. Nanni, and C. D. Zaroliagis. A
software library of dynamic graph algorithms. In Proceedings
of Workshop on Algorithms and Experiments (ALEX-98), pages
129136, University of Trento, Trento, Italy, 1998.

O. Arslan and P. Tsiotras. Use of relaxation methods in
sampling-based algorithms for optimal motion planning. In
IEEE International Conference on Robotics and Automation, pages
2421-2428, May 2013.

J. Barraquand and J.-C. Latombe. Robot motion planning: A
distributed representation approach. The International Journal of
Robotics Research, 10(6):628-649, 1991.

M. J. Beckmann, C. B. McGuire, and C. B. Winsten. Studies in
the economics of transportation. Technical Report RM-1488-PR,
RAND Corporation, Santa Monica, CA, USA, May 1955.

R. Bellman. On a routing problem. Quarterly of Applied Mathe-
matics, 16:87-90, 1958.

D. Berenson, S. Srinivasa, D. Ferguson, and J. Kuffner. Manip-
ulation planning on constraint manifolds. In IEEE International
Conference on Robotics and Automation, May 2009.

C. Berge and A. Ghouila-Houri. Programming, Games and Trans-
portation Networks. Methuen, London, NY, USA, 1965.

A. Bhatia, L. Kavraki, and M. Vardi. Sampling-based motion
planning with temporal goals. In IEEE International Conference
on Robotics and Automation, pages 2689—2696, May 2010.

150

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

CHRISTOPHER M. DELLIN

R. Bohlin and E. Kavraki. Path planning using Lazy PRM.
In IEEE International Conference on Robotics and Automation,
volume 1, pages 521-528 vol.1, 2000.

V. Boor, M. H. Overmars, and A. F. van der Stappen. The
gaussian sampling strategy for probabilistic roadmap planners.
In IEEE International Conference on Robotics and Automation,
volume 2, pages 1018-1023 vol.2, 1999.

U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S.
Marshall. GraphML progress report: Structural layer proposal.
In P. Mutzel, M. Jiinger, and S. Leipert, editors, 9th Int. Symp.
Graph Drawing, Vienna, Austria, September 23—26 2001, Revised
Papers, pages 501-512. Springer, Berlin, Heidelberg, Feb. 2002.
Lecture Notes in Computer Science, Volume 2265.

M. S. Branicky, S. M. LaValle, K. Olson, and L. Yang. Determin-
istic vs. probabalistic roadmaps. Unpublished, 2002.

E. Burns, W. Ruml, and M. B. Do. Heuristic search when time
matters. In International Joint Conference on Artificial Intelligence,
volume 47, pages 697—740, 2013.

S. Cambon, R. Alami, and F. Gravot. A hybrid approach to
intricate motion, manipulation and task planning. The Interna-
tional Journal of Robotics Research, 28(1):104—126, 2009.

J. F. Canny. The Complexity of Robot Motion Planning. MIT Press,
Cambridge, MA, USA, 1988.

P. Cheng and S. M. LaValle. Resolution completeness for
sampling-based motion planning with differential constraints.
Unpublished, 2004.

H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Bur-
gard, L. E. Kavraki, and S. Thrun. Principles of Robot Motion:
Theory, Algorithms, and Implementations. MIT Press, Cambridge,
MA, June 2005.

S. Choudhury, C. Dellin, and S. Srinivasa. Pareto-optimal
search over configuration space beliefs for anytime motion
planning. In IEEE International Conference on Intelligent Robots
and Systems, 2016.

B. Cohen, M. Phillips, and M. Likhachev. Planning single-arm
manipulations with n-arm robots. In Proceedings of Robotics:
Science and Systems, Berkeley, USA, July 2014.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

G. B. Dantzig. Linear programming and extensions. Technical
Report R-366-PR, RAND Corporation, Santa Monica, CA, USA,
Aug. 1963.

D. de Champeaux. Bidirectional heuristic search again. J. ACM,
30(1):22-32, Jan. 1983.

D. de Champeaux and L. Sint. An improved bidirectional
heuristic search algorithm. J. ACM, 24(2):177-191, Apr. 1977.

C. Dellin and S. Srinivasa. A general technique for fast compre-
hensive multi-root planning on graphs by coloring vertices and
deferring edges. In IEEE International Conference on Robotics and
Automation, 2015.

C. Dellin, K. Strabala, G. C. Haynes, D. Stager, and S. Srinivasa.
Guided manipulation planning at the DARPA Robotics Chal-
lenge trials. In International Symposium on Experimental Robotics,
June 2014.

C. Demetrescu, D. Eppstein, Z. Galil, and G. F. Italiano. Dy-
namic graph algorithms. In M.]. Atallah and M. Blanton,
editors, Algorithms and Theory of Computation Handbook, pages
9—9. Chapman & Hall/CRC, 2010.

C. Demetrescu, A. V. Goldberg, and D. S. Johnson. 9th DI-
MACS implementation challenge: Shortest paths. http:
//www.dis.uniromal.it/challenge9/, 2006. [Online; accessed
2016-May-22].

R. Diankov. Automated Construction of Robotic Manipulation
Programs. PhD thesis, Robotics Institute, Carnegie Mellon
University, Sept. 2010. CMU-RI-TR-10-29.

E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerishe Mathematik, 1(1):269—271, 1959.

J. E. Doran. Doubletree searching and the graph traverser.
Technical Report EPU-R-22, Department of Machine Intelli-
gence and Perception, University of Edingurgh, Dec. 1966.

J. E. Doran and D. Michie. Experiments with the graph tra-
verser program. Proceedings of the Royal Society of London. Series
A, Mathematical and Physical Sciences, 294(1437):235-259, 1966.

S. E. Dreyfus. An appraisal of some shortest-path algorithms.
Operations Research, 17(3):395-412, 1969.

151

http://www.dis.uniroma1.it/challenge9/
http://www.dis.uniroma1.it/challenge9/

152

[33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

CHRISTOPHER M. DELLIN

D. Eppstein, Z. Galil, and G. Italiano. Dynamic graph algo-
rithms. In Algorithms and Theory of Computation Handbook,
chapter 8. CRC Press, 1999.

B. Faverjon. Obstacle avoidance using an octree in the configu-
ration space of a manipulator. In IEEE International Conference
on Robotics and Automation, volume 1, pages 504-512, Mar. 1984.

D. Ferguson, N. Kalra, and A. Stentz. Replanning with RRTs.
In IEEE International Conference on Robotics and Automation,
pages 1243-1248, May 2006.

D. Ferguson and A. Stentz. Field D*: An Interpolation-Based
Path Planner and Replanner, pages 239 — 253. Springer, Berlin,
Heidelberg, 2007.

L. R. Ford. Network flow theory. Technical Report P-923,
RAND Corporation, Santa Monica, CA, USA, Aug. 1956.

D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully
dynamic output bounded single source shortest path problem.
In Proceedings of the Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ‘96, pages 212—221, Philadelphia, PA,
USA, 1996. Society for Industrial and Applied Mathematics.

D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully
dynamic algorithms for maintaining shortest paths trees. J.
Algorithms, 34(2):251—281, Feb. 2000.

J. Gammell, S. Srinivasa, and T. Barfoot. Informed RRT*: Opti-
mal sampling-based path planning focused via direct sampling
of an admissible ellipsoidal heuristic. In IEEE International Con-
ference on Intelligent Robots and Systems, pages 2997 — 3004, Sept.
2014.

J. Gammell, S. Srinivasa, and T. D. Barfoot. Batch informed
trees (BIT*): Sampling-based optimal planning via the heuris-
tically guided search of implicit random geometric graphs. In
IEEE International Conference on Robotics and Automation, May
2015.

C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling. FFRob: An
efficient heuristic for task and motion planning. In International
Workshop on the Algorithmic Foundations of Robotics, 2014.

R. Gayle, K. Klingler, and P. Xavier. Lazy reconfiguration forest
(LRF) - an approach for motion planning with multiple tasks
in dynamic environments. In IEEE International Conference on
Robotics and Automation, pages 1316-1323, Apr. 2007.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

A. V. Goldberg. Point-to-point shortest path algorithms with
preprocessing. InJ. van Leeuwen, G. E. Italiano, W. van der
Hoek, C. Meinel, H. Sack, and F. Plasil, editors, SOFSEM 2007:
Theory and Practice of Computer Science: 33rd Conference on Cur-
rent Trends in Theory and Practice of Computer Science, Harrachov,
Czech Republic, January 20-26, 2007. Proceedings, pages 88-102.
Springer, Berlin, Heidelberg, 2007.

A. V. Goldberg and R. Werneck. Computing point-to-point
shortest paths from external memory. In SIAM Workshop on
Algorithms Engineering and Experimentation (ALENEX '05), Van-
couver, Canada, 2005.

F. Gravot, S. Cambon, and R. Alami. aSyMov: A planner that
deals with intricate symbolic and geometric problems. In

P. Dario and R. Chatila, editors, The International Symposium
on Robotics Research, volume 15 of Springer Tracts in Advanced
Robotics, pages 100-110. Springer, Berlin, Heidelberg, 2005.

P. Hart, N. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transac-
tions on Systems Science and Cybernetics, 4(2):100-107, July 1968.

K. Hauser. Lazy collision checking in asymptotically-optimal
motion planning. In IEEE International Conference on Robotics
and Automation, pages 2951-2957, May 2015.

K. Hauser and J.-C. Latombe. Multi-modal motion planning
in non-expansive spaces. The International Journal of Robotics
Research, 29(7):897—915, 2010.

M. Helmert. The fast downward planning system. Artificial
Intelligence Research, 2006.

D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in
expansive configuration spaces. In IEEE International Conference
on Robotics and Automation, volume 3, pages 2719—2726 vol.3,

Apr. 1997.

D. Hsu, G. Sanchez-Ante, and Z. Sun. Hybrid PRM sampling
with a cost-sensitive adaptive strategy. In IEEE International
Conference on Robotics and Automation, pages 3874 — 3880, Apr.
2005.

J. Ichnowski and R. Alterovitz. Parallel sampling-based motion
planning with superlinear speedup. In IEEE International
Conference on Intelligent Robots and Systems, pages 1206-1212,
Oct. 2012.

153

154

[54]

—_—

[55

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

CHRISTOPHER M. DELLIN

T. Ikeda, M.-Y. Hsu, H. Imai, S. Nishimura, H. Shimoura,

T. Hashimoto, K. Tenmoku, and K. Mitoh. A fast algorithm
for finding better routes by Al search techniques. In Vehicle
Navigation and Information Systems Conference, 1994. Proceedings.,

1994, pages 291-296, Aug. 1994.

L. Jaillet and T. Siméon. A PRM-based motion planner for
dynamically changing environments. In IEEE International
Conference on Intelligent Robots and Systems, volume 2, pages
1606—1611 vol.2, Sept. 2004.

L. Janson, B. Ichter, and M. Pavone. Deterministic sampling-
based motion planning: Optimality, complexity, and perfor-
mance. The International Symposium on Robotics Research, 2015.

L. Janson, E. Schmerling, A. Clark, and M. Pavone. Fast march-
ing tree: A fast marching sampling-based method for optimal
motion planning in many dimensions. The International Journal
of Robotics Research, 34(7):883—921, 2015.

H. Kaindl and G. Kainz. Bidirectional heuristic search recon-
sidered. J. Artif. Int. Res., 7(1):283-317, Dec. 1997.

M. Kallman and M. Mataric. Motion planning using dynamic
roadmaps. In IEEE International Conference on Robotics and
Automation, volume 5, pages 4399—4404 Vol.5, Apr. 2004.

S. Karaman and E. Frazzoli. Incremental sampling-based
algorithms for optimal motion planning. In Proceedings of
Robotics: Science and Systems, Zaragoza, Spain, June 2010.

S. Karaman and E. Frazzoli. Sampling-based algorithms for
optimal motion planning. The International Journal of Robotics
Research, 30(7):846-894, 2011.

L. Kavraki. Computation of configuration-space obstacles using
the fast fourier transform. IEEE Transactions on Robotics and
Automation, 11:255-261, 1995.

L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars. Prob-
abilistic roadmaps for path planning in high-dimensional con-
figuration spaces. IEEE Transactions on Robotics and Automation,
12(4):566—580, Aug. 1996.

O. Khatib. Real-time obstacle avoidance for manipulators and
mobile robots. The International Journal of Robotics Research,

5(1):90 — 98, 1986.

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

Klein and Subramanian. A fully dynamic approximation
scheme for shortest paths in planar graphs. Algorithmica,

22:235-249, 1998.

S. Koenig and M. Likhachev. D* Lite. In Eighteenth National
Conference on Artificial Intelligence, pages 476 — 483, Menlo Park,
CA, USA, 2002. American Association for Artificial Intelli-
gence.

S. Koenig, M. Likhachev, and D. Furcy. Lifelong planning A*.
Artificial Intelligence, 155(1):93—146, 2004.

R. E. Korf. Depth-first iterative-deepening: An optimal admis-
sible tree search. Artificial Intelligence, 277:97-109, 1985.

J. J. Kuffner and S. M. LaValle. RRT-Connect: An efficient
approach to single-query path planning. In IEEE International
Conference on Robotics and Automation, volume 2, pages 995—
1001, 2000.

S. M. LaValle. Rapidly-exploring random trees: A new tool
for path planning. Technical Report 98-11, Computer Science
Dept., Iowa State University, Oct. 1998.

S. M. LaValle. Planning Algorithms. Cambridge Uni-
versity Press, Cambridge, U.K., 2006. Available at
http:/ /planning.cs.uiuc.edu/.

S. M. LaValle and M. S. Branicky. On the relationship between
classical grid search and probabilistic roadmaps. In Interna-
tional Workshop on the Algorithmic Foundations of Robotics, 2002.

S. M. LaValle, M. S. Branicky, and S. R. Lindemann. On the
relationship between classical grid search and probabilistic
roadmaps. The International Journal of Robotics Research, 23(7-
8):673-692, 2004.

S. M. LaValle and J. J. Kuffner. Randomized kinodynamic
planning. In IEEE International Conference on Robotics and Au-
tomation, volume 1, pages 473—479, 1999.

P. Leven and S. Hutchinson. Toward real-time path planning
in changing environments. In International Workshop on the
Algorithmic Foundations of Robotics, 2000.

P. Leven and S. Hutchinson. A framework for real-time path
planning in changing environments. The International Journal of
Robotics Research, 21(12):999—1030, 2002.

155

156

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

CHRISTOPHER M. DELLIN

T.-Y. Li and Y.-C. Shie. An incremental learning approach
to motion planning with roadmap management. In [EEE
International Conference on Robotics and Automation, volume 4,
pages 3411-3416, 2002.

J.-M. Lien and Y. Lu. Planning motion in environments with
similar obstacles. In Proceedings of Robotics: Science and Systems,
Seattle, USA, June 2009.

M. Likhachev. Search-Based Planning Library (SBPL). https:
//github.com/sbpl/sbpl/, 2008. [Online; accessed 2016-Aug-
10].

M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and
S. Thrun. Anytime search in dynamic graphs. Artificial In-
telligence, 172(14):1613 — 1643, 2008.

M. Likhachev, G. J. Gordon, and S. Thrun. ARA* : Anytime
A* with provable bounds on sub-optimality. In S. Thrun, L. K.
Saul, and B. Scholkopf, editors, Advances in Neural Information
Processing Systems 16, pages 767—774. MIT Press, 2004.

C.-C. Lin and R.-C. Chang. On the dynamic shortest path
problem. |. Inf. Process., 13(4):470-476, Apr. 1991.

T. Lozano-Pérez. Spatial planning: A configuration space
approach. IEEE Transactions on Computers, C-32(2):108-120, Feb.

1983.

T. Lozano-Pérez and M. A. Wesley. An algorithm for planning
collison-free paths among polyhedral obstacles. Communications
of the ACM, 22:560-570, 1979.

M. Luby and P. Ragde. A bidirectional shortest-path algorithm
with good average-case behavior. Algorithmica, 4(1):551-567,
June 1989.

E. F. Moore. The shortest path through a maze. In Proceed-
ings of an International Symposium on the Theory of Switching,
Cambridge, MA, USA, 1959. Harvard University Press.

S. Murray, W. Floyd-Jones, Y. Qi, D. Sorin, and G. Konidaris.
Robot motion planning on a chip. In Proceedings of Robotics:
Science and Systems, Ann Arbor, Michigan, June 2016.

W. S. Newman and M. S. Branicky. Real-time configuration
space transforms for obstacle avoidance. The International
Journal of Robotics Research, 10(6):650—-667, 1991.

https://github.com/sbpl/sbpl/
https://github.com/sbpl/sbpl/

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

T. A.J. Nicholson. Finding the shortest route between two
points in a network. The Computer Journal, 9(3):275-280, 1966.

J. Pan, S. Chitta, and D. Manocha. FCL: A general purpose
library for collision and proximity queries. In IEEE International
Conference on Robotics and Automation, pages 3859-3866, May
2012.

M. Phillips, B. J. Cohen, S. Chitta, and M. Likhachev. E-graphs:
Bootstrapping planning with experience graphs. In Proceedings
of Robotics: Science and Systems, 2012.

M. Pivtoraiko and A. Kelly. Efficient constrained path planning
via search in state lattices. In The 8th International Symposium
on Artificial Intelligence, Robotics and Automation in Space, Sept.
2005.

E. Plaku, L. E. Kavraki, and M. Y. Vardi. Motion planning with
dynamics by a synergistic combination of layers of planning.
IEEE Transactions on Robotics, 26(3):469—482, June 2010.

I. Pohl. Bi-directional and Heuristic Search in Path Problems. PhD
thesis, Stanford University, Stanford, CA, USA, May 1969.
AAT7001588.

I. Pohl. Heuristic search viewed as path finding in a graph.
Artificial Intelligence, 1(34AS4):193 — 204, 1970.

I. Pohl. Bi-directional search. In B. Meltzer and D. Michie, edi-
tors, Machine Intelligence 6, chapter 9, pages 127-140. Edinburgh
University Press, 1971.

S. Quinlan. Real-time modification of collision-free paths. PhD
thesis, Stanford University, Dec. 1994.

G. Ramalingam and T. Reps. An incremental algorithm for a
generalization of the shortest-path problem. Journal of Algo-
rithms, 21(2):267 — 305, 1996.

J. H. Reif. Complexity of the mover’s problem and general-
izations. In Foundations of Computer Science, 1979., 20th Annual
Symposium on, pages 421—427, Oct. 1979.

E. Rimon and D. E. Koditschek. The construction of analytic
diffeomorphisms for exact robot navigation on star worlds.
In IEEE International Conference on Robotics and Automation,
volume 1, pages 21—26, May 1989.

157

158 CHRISTOPHER M. DELLIN

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

W. Ruml and M. B. Do. Best-first utility-guided search. In
International Joint Conference on Artificial Intelligence, pages 2378—
2384, 2007.

K. Salisbury, W. Townsend, B. Ebrman, and D. DiPietro. Pre-
liminary design of a whole-arm manipulation system (WAMS).
In IEEE International Conference on Robotics and Automation,
pages 254—260 vol.1, Apr. 1988.

O. Salzman, D. Shaharabani, P. K. Agarwal, and D. Halperin.
Sparsification of motion-planning roadmaps by edge contrac-
tion. The International Journal of Robotics Research, 33(14):1711—
1725, 2014.

G. Sanchez-Ante and J.-C. Latombe. A single-query bi-
directional probabilistic roadmap planner with lazy collision
checking. In ISRR, pages 403—417, 2001.

J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and

P. Abbeel. Finding locally optimal, collision-free trajectories
with sequential convex optimization. In Proceedings of Robotics:
Science and Systems, Berlin, Germany, June 2013.

J. T. Schwartz and M. Sharir. On the piano movers’ problem:
L. the case of a two-dimensional rigid polygonal body moving
amidst polygonal barriers. Communications on Pure and Applied
Mathematics, 36:345-398, 1983.

A. Shimbel. Structure in communication nets. In Proceedings of
the Symposium on Information Networks (New York, 1954), pages
199—203, Brooklyn, New York, NY, USA, 1955. Polytechnic
Press of the Polytechnic Institute of Brooklyn.

J. G. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph Li-
brary: User Guide and Reference Manual. Addison-Wesley Profes-
sional, 2001.

T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani. Manipu-
lation planning with probabilistic roadmaps. The International
Journal of Robotics Research, 23(7—8):729-746, 2004.

T. Siméon, J.-P. Laumond, and C. Nissoux. Visibility-based
probabilistic roadmaps for motion planning. Journal of Advanced
Robotics, 14(6):477-493, 2000.

P. M. Spira and A. Pan. On finding and updating spanning
trees and shortest paths. SIAM Journal on Computing, 4(3):375—

380, 1975.

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

COMPLETING MANIPULATION TASKS EFFICIENTLY IN COMPLEX ENVIRONMENTS

S. Srinivasa, D. Berenson, M. Cakmak, A. Collet, M. Dogar,

A. Dragan, R. Knepper, T. Niemueller, K. Strabala, M. V.
Weghe, and]. Ziegler. HERB 2.0: Lessons learned from de-
veloping a mobile manipulator for the home. Proceedings of the
IEEE, 100(8):2410-2428, Aug. 2012.

S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and

P. Abbeel. Combined task and motion planning through an
extensible planner-independent interface layer. In IEEE Interna-
tional Conference on Robotics and Automation, pages 639-646, May
2014.

J. A. Starek,]. V. Gomez, E. Schmerling, L. Janson, L. Moreno,
and M. Pavone. An asymptotically-optimal sampling-based
algorithm for bi-directional motion planning. In IEEE In-
ternational Conference on Intelligent Robots and Systems, pages
2072-2078, Sept. 2015.

A. Stentz. Optimal and efficient path planning for partially-
known environments. In IEEE International Conference on
Robotics and Automation, pages 3310-3317, 1994.

A. Stentz. The focussed D* algorithm for real-time replanning.
In In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 1652-4AS1659, 1995.

T. Stentz, H. Herman, A. Kelly, E. Meyhofer, G. C. Haynes,

D. Stager, B. Zajac, J. A. Bagnell, J. Brindza, C. Dellin,

M. George, J. Gonzalez-Mora, S. Hyde, M. Jones, M. Laverne,
M. Likhacheyv, L. Lister, M. Powers, O. Ramos,]. Ray, D. Rice,
J. Scheifflee, R. Sidki, S. Srinivasa, K. Strabala, J.-P. Tardif, J.-
S. Valois, J. M. Vande Weghe, M. Wagner, and C. Wellington.
CHIMP, the CMU Highly Intelligent Mobile Platform. Journal
of Field Robotics, Feb. 2015.

R. Stern, A. Felner, J. van den Berg, R. Puzis, R. Shah, and
K. Goldberg. Potential-based bounded-cost search and anytime
non-parametric A*. Artificial Intelligence, 214:1-25, 2014.

I. A. Sucan, M. Moll, and L. E. Kavraki. The Open Motion Plan-
ning Library. IEEE Robotics & Automation Magazine, 19(4):72-82,
Dec. 2012. http://ompl.kavrakilab.org.

A. G. Sukharev. Optimal strategies of the search for an ex-
tremum. USSR Computational Mathematics and Mathematical
Physics, 11(4):119-137, 1971. Translated from Russian, Zh.
Vychisl. Mat. Mat. Fiz., 11:(4):910-924, 1971.

159

160 CHRISTOPHER M. DELLIN

[121]

[122]

T. Yoshizumi, T. Miura, and T. Ishida. A* with partial expan-
sion for large branching factor problems. In In Proceedings of
AAAI, 2000.

M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingen-
smith, C. Dellin, J. A. Bagnell, and S. Srinivasa. CHOMP:
Covariant hamiltonian optimization for motion planning. The
International Journal of Robotics Research, 32(9—10):1164-1193,
2013.

	Introduction
	Problem Characterization
	Outline of Approach
	Summary of Contributions
	Review of Experimental Platforms and Problem Instances

	Roadmap Methods for Motion Planning
	The Motion Planning Problem
	Motion Planning by Discretizing C-Space
	Obstacle Sensitivity
	Roadmap Classes

	Fast Pathfinding on Graphs via Lazy Evaluation
	The Shortest Path Problem
	Lazy Shortest Path Algorithm
	Edge Equivalence to A* Variants
	Novel Edge Selectors
	Experiments
	Discussion

	Incremental Bidirectional Search
	Problem Definition
	Review of Pathfinding with Distance Functions
	Incremental Bidirectional Search
	Heuristic Search
	Experimental Results
	Available Implementations

	Maximizing Utility in Motion Planning
	Motivation and Related Work
	Utility in Motion Planning
	Marginal Utility on Roadmaps
	Experiments
	Discussion

	Planning over Configuration Space Families
	Related Work
	Motivation: Families in Manipulation Tasks
	The Family Motion Planning Problem
	Approach: A Utility Model over Family Beliefs
	Application: Multi-Step Manipulation Tasks
	Implementation Details

	Conclusion
	Summary and Contributions
	Future Directions
	Lessons Learned
	Concluding Remarks

	Appendix: LazySP Proofs and Timing Results
	LazySP Proofs
	LazySP Timing Results

	Appendix: Incrementally Calculating Partition Functions on Graphs
	Appendix: IBiD Proofs
	Appendix: LEMUR Results
	Appendix: Family Motion Planning
	List of Figures
	List of Tables
	Bibliography

