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Abstract

Super-resolution microscopy techniques, which overcome the diffraction limit of optical microscopy,

are revolutionizing biological research by providing the ability to localize proteins within cells at

nanometer resolution. Super-resolution localization microscopy (SRLM) is one of such techniques.

It achieves nanometer resolution by randomly activating separate fluorophores and computation-

ally determining their locations. While discoveries of cellular structures at nanometer resolution

made recently demonstrated its potential, SRLM still faces several key technological challenges

in image analysis. To overcome these challenges, we developed computational tools for analyzing

and enhancing SRLM images to enable quantitative characterization and dynamic visualization of

cellular processes.

One of the computational tools we developed is an image quality assessment method, which

directly quantifies the accuracy or precision of the geometry or structure of the SRLM image ob-

jects. Another computational tool we developed is an SRLM image segmentation method, which

identifies the boundaries of SRLM image objects by kernel density-based method. We utilize cor-

relative fluorescence and atomic force microscopy images to characterize and validate the accuracy

of the segmentation method. We have also developed a new data aggregation method under a

sliding-window scheme, which improves the temporal resolution to enhance the capability of SRLM

imaging of live cells. Together, these computational image analysis techniques enable fundamen-

tal extensions of SRLM, which will be essential for quantitative analysis and characterization of

dynamic cellular processes.
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Chapter 1

Introduction

A fundamental aim of biology is to understand dynamic cellular processes. Direct observation of

such processes using optical microscopy is the preferred approach owing to its advantages such

as minimal invasiveness. However, resolution of traditional optical microscopy is restricted by the

diffraction of light to ∼200 nm and ∼500 nm in lateral and axial image planes, respectively, whereas

most cellular components are observable only at a scale below 100 nm. For example, folded pro-

teins typically have a size of several nanometers, whereas cytoskeletal filaments range from ∼8 nm

(actin) to ∼25 nm (microtubules) in diameter. Thus, nanometer resolution is essential for imag-

ing how individual components assemble and function within a full cellular system. The advent

of super-resolution microscopy techniques, which break the resolution limit of convention optical

microscope by improving the resolution to ∼20 nm, is revolutionizing biological research with the

ability to localize proteins within cells at nanometer resolution. This ability not only allows us

to reveal the composition and organization of molecular complexes but also to observe intracel-

lular dynamics in real time. Over the past decade, several novel techniques of super-resolution

microscopy have been developed, for example, stimulated emission depletion (STED) [7], structure

illumination microscopy (SIM) [6], as well as super-resolution localization microscopy (SRLM),

such as photo-activated localization microscopy (PALM) [5] and stochastic optical reconstruction

microscopy (STORM) [8]. Although these techniques are relatively new to biological research, ex-

citing discoveries made recently have already demonstrated their capacity to provide a nanoscale

view into ultrastructures. For example, recent studies of actin filaments [9] reveal a striking pe-

riodic structures of actin, spectrin, and adducin within axons of neurons (Figure 1.1A). Another

1
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A

-6s

B

+6s

Figure 1.1: Cellular structure and dynamics revealed by STORM. (A) Periodic structures of actin filament.
(B) Mitochondrial fusion (red arrowhead) and fission (green arrowhead) events captured in a time-lapse. Scale
bars, 500 nm. Adapted from [9,10] with permissions from The American Association for the Advancement
of Science and PNAS.

study [10] demonstrated amazing morphological dynamics of the mitochondrial membrane during

mitochondrial fusion and fission (Figure 1.1B). Other studies also demonstrated the structure of

lysosomes, Golgi apparatus, nuclear pores, and focal adhesion complex [14]. These studies, which

were previously infeasible using traditional optical microscopy, enable new and fundamental insights

into the underlying biology.

In spite of these remarkable successes, SRLM still faces several key technological challenges in

image data analysis. Currently, two fundamental challenges remain to be addressed:

1) Lack of automated computational image analysis tools. Although STORM has enabled new

discoveries of biological structures and dynamics, current research is largely qualitative. SRLM

images differ significantly from conventional fluorescence microscopy images because of fundamental

differences in image formation. Each super-resolution image is reconstructed from a time series of

images of randomly activated fluorophores that are localized at nanometer resolution and appear

as clusters of particles with varying spatial densities. This thus creates a need for robust and
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user-friendly image processing and data mining tools that are optimized specifically for this unique

imaging modality and can provide quantitative measurements and modeling.

2) Lack of adequate temporal resolution. Beyond the static imaging analysis, more insights

into biological functions depend on the ability of observing and perturbing the cellular dynamics.

A fundamental limitation of current STORM imaging is that each STORM image requires a long

acquisition time, which inherently limits its temporal resolution, preventing the observation of

fast-changing dynamic processes in live cells.

As SRLM instruments are just becoming commercially available, biological research labs have

started adopting these new imaging techniques into their study of intra-cellular processes. Cur-

rently, however, few quantitative image analysis techniques have been developed or optimized specif-

ically for SRLM images. Moreover, limited temporal resolution remains the major shortcoming of

using SRLM for observing the cellular dynamic processes from live cells.

In this thesis, we aim to present a new and substantiative departure from the status quo,

namely quantitative image analysis of the SRLM images instead of the current qualitative or manual

quantification analyses, which soon will become intractable especially when attempting to analyze

large amount of samples. The impact of these innovations is that the tools created for improving the

performance of SRLM will be useful for observing sub-cellular dynamics, and in helping biologists

perform quantitative image analysis for a wide variety of biological researches.

1.1 Thesis Contributions and Outline

The main contributions of this thesis are:

1. An image quality assessment method that can quantify SRLM image information to determine

whether the imaging length is sufficient to reveal the structure of imaging objects (Chapter 3,

[15] and [16], in preparation);

2. A kernel density-based image segmentation algorithm that can segment structures from SRLM

images(Chapter 4 and [1]); and

3. A new data aggregation method to facilitate SRLM imaging of live cells with improved tem-

poral resolution to reveal the fast changing cellular dynamics (Chapter 5 and [17]).
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The outline of the thesis is as follows. In Chapter 2, we give background information on super-

resolution localization microscopy, including a literature review of the techniques applied in SRLM.

Next, we present our work on SRLM image quality assessment (Chapter 3) and segmentation

(Chapter 4). For SRLM imaging of live cells, we present a novel scheme of sliding-window data

aggregation to improve temporal resolution (Chapter 5). We conclude in Chapter 6.

1.2 List of Publications

Reviewed journal publications.
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Chapter 2

Background

In this chapter, we present background information on super-resolution localization microscopy.

We describe the limitation of conventional optical microscopy and the principle of super-resolution

localization microscopy and its detailed image formation process.

2.1 Fluorescence Microscopy and Diffraction Limit

Microscopy is perhaps the most important and used technique for biological research due to its

capability of revealing micro-objects that are not observable by naked eye. Optical microscopy,

in particular, due to its inherently non-invasive nature, is the most practical way for observing

biological processes and structures in the field of cell biology. Among a wide spectrum of imaging

modes in optical microscopy, fluorescence microscopy is commonly involved in cell biology research.

The basic function of fluorescence microscopy is to excite the fluorescent markers that are specifically

tagged to the object of interests, and then to direct the emission from markers to the detector to

create signals on a dark background. This leads to high contrast and high signal-to-noise ratio

compared to other modalities of conventional microscopy.

However, a fundamental limitation of conventional optical systems, including fluorescence mi-

croscopy, lies in the restriction of the resolution due to the diffraction in the objective lens. This

resolution limit is defined as the required minimum distance between two ideal point sources in

order to distinguish them from each other. Two values for this diffraction limit have been proposed,

the Abbe and Rayleigh criteria, both related to the point spread function (PSF) [18]. The PSF

5
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Figure 2.1: Point spread function appears as an Airy disk in the image.

represents the intensity distribution of an ideal point source of emission in the image space and

shows as an Airy disk pattern in the spatial domain. In 1873, Ernst Abbe first introduced the Abbe

criterion, rabbe, defined as,

rabbe =
0.5λ

NA
=

0.5λ

n sin(θ)
,

where λ is the wavelength of the light source, NA = n sin(θ) is the numeric aperture of the

microscope, n is the index of refraction of the medium, and θ is the half angle of the aperture of

the objective. The Rayleigh criterion, rrayleigh is defined as the distance where the peak of one PSF

hits the middle of the first ring of the Airy disk,

rrayleigh =
0.61λ

NA
=

0.61λ

n sin(θ)
.

For most applications, the Rayleigh criterion is used to describe the resolution capacity of the used

system.

For a typical high-end system using an oil-immersion objective with a high numerical aperture

and the emission wavelength in the range of the visible light, the diffraction limit is between 200

to 250 nanometers; objects that are smaller than this can not be resolved.
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Figure 2.2: Diffraction limit, the distance between two ideal point sources of light. (A) Abbe criterion.
(B) Rayleigh criterion.

There thus exists a need for a system that is capable of discerning individual molecules, which

would require a resolving power greater by at least an order of magnitude.

2.2 Super-resolution Microscopy

For a long period of time, biological researchers relied on the enhanced far-field imaging system, for

example, confocal microscopy or multi-photon microscopy, to obtain images with better resolution,

higher contrast, and higher signal-to-noise ratio compared to traditional wide-field microscopy.

However, these techniques mainly focused on improvements of the axial resolution for better optical

sectioning of thick specimens, and remained restricted by diffraction limit in lateral resolution.

Alternatively, high-resolution imaging can be achieved with electron microscopy (EM), where

the wavelength of the electron beam is sufficiently small to resolve nanometer-scaled molecular and

even atomic-level objects. The associated photo-damaging power, however, is not acceptable for

biological research, and is thus unsuitable for imaging live samples. The lack of specificity of EM

also limits its application in biological research.

Recently, with the development of super-resolution microscopy techniques, new optical imaging

systems have been designed that overcome the diffraction limit. There are two main categories of

techniques being introduced: the patterned excitation-based and localization-based microscopy. In

the former category, a patterned light illuminates the sample to modulate the emission of fluores-

cence, while in the second category, photo-switchable fluorescent probes are utilized to separate the

emission in time. Here we describe their general principles and representative systems.
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Figure 2.3: The principle of STED. Adapted from [11].

2.2.1 Patterned Excitation-based Microscopy

The idea of patterned excitation is basically to use the controlled excitation to spatially modulate

the fluorescence of a subset of molecules and thus achieve sub-diffraction resolution. The most

common examples are Stimulated Emission Depletion (STED) [7] and (Saturated) Structured Illu-

mination Microscopy ((S)SIM) [6, 19].

The principle of STED is shown in Figure 2.3. It uses two excitations to create a much smaller

size of PSF of fluorescence. It first excites a sample with the normal excitation light and then uses

a second depletion light to force the excited molecules back to the ground state through a process

called stimulated emission. The depletion light is donut-shaped so that only the surrounding

molecules are being depleted, leaving only the molecules in the center emitting fluorescence and

thus greatly reducing the size of the emission. Similarly to the confocal microscopy, STED then

scans through the sample under such process until entire imaging region is imaged. The achieved

resolution in STED is about 30-50 nm in the lateral direction.

SIM, on the other hand, uses a series of sinusoidally striped patterned excitations with different

phase and angle to control the fluorescence emission, as shown in Figure 2.4. By combining these

images of patterned emission, a high-resolution image can be reconstructed computationally. Typ-

ically, SIM can double the spatial resolution and thus a resolution of about 100nm in the lateral

direction can be achieved.

2.2.2 Localization-based Microscopy

The second category of techniques, also called single-molecule localization imaging, uses the photo-

switchable fluorescent probes, whose fluorescent state can be switched from a dark to a illumination
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Figure 2.4: The principle of (S)SIM. (a) The generation of patterned excitation. (b) Interference of
pattered excitation with sample structure to create the Moiré-effect. Adapted from [12].
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state stochastically. Having only single-molecule illuminating fluorescence, these methods localize

the center location of each molecule and then computationally reconstruct a high-resolution image.

In 2006, three groups published similar techniques independently: These techniques have been

termed Stochastic Optical Reconstruction Microscopy (STORM) [8], Photoactivated Localization

Microscopy (PALM) [5], and Fluorescence Photoactivation Localization Microscopy (FPALM) [2].

A resolution of about 20-30nm has been achieved with these techniques.

2.3 Super-resolution Localization Microscopy

In this section, we review the principle and detailed process of SRLM.

2.3.1 General Principle

The idea of SRLM formed basically by combining two techniques: single-molecule localization

and photo-switchable fluorescence. In early 2000s, researchers in the field of single-molecule local-

ization enabled localizing individual sub-diffraction particles with accuracy below the diffraction

limit if their PSFs do not overlap with those of the others [20]. Such techniques were initially

applied in the field of single particle tracking, where the gain in resolution enabled the study of

single protein dynamics. Later, with the discovery and the development of the photo-switchable

fluorescence, single-molecule localization techniques extended their application into sub-diffraction

imaging. Taking the advantage of photo-switchable fluorescence, the emission of each fluorophore

can thus be controlled to allow only a few being imaged at a time. By performing the single-

molecule localization algorithm on each raw image that contains sparsely distributed fluorophores,

localized fluorophores are accumulated and the final super-resolution image is generated.

2.3.2 Fluorescence and Sample Labeling

In fluorescence microscopy, a sample labeled with fluorescent makers is illuminated with light of

a specific wavelength to excite the fluorophores. Fluorophores that receive the energy from the

excitation light are turned into an excited state of higher energy from the ground state. After

excitation, the fluorophore will fall back to the ground state and emit the fluorescence photon with

the corresponding energy difference of the transition. There is a chance that the excited fluorophore
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Figure 2.5: Jablonski diagram of a typical fluorophore showing excitation, fluorescence, triplet transitions.
Adapted from http://micro.magnet.fsu.edu/primer/java/jablonski/lightandcolor/.

will transit into a triplet state, also called the dark-state, because these fluorophores remain dark

until they return to the ground state. Figure 2.5 illustrates this process.

2.3.3 Localization

Single-molecule localization algorithms can be categorized into two types: 1) PSF fitting based

methods, and 2) non-fitting based methods. For PSF fitting based methods, a common practice

is to use Gaussian as the model of PSF and to fit the raw image with this model to localize the

fluorophores [21]. For non-fitting based methods, many different approaches have been proposed,

including radial symmetry matching based, wavelet based, compressed sensing based, etc [14,22,23].

Table 2.1 lists available algorithms and associated softwares.

Theoretical study provided analysis of how good the localization of the molecule can be achieved.

In simple case, the theoretical localization precision is given by the standard error of the mean as

σ =
s√
N
,

where s is the standard deviation, i.e., the width, of the PSF of the emission and N is the number of

detected photons from the molecule. This represents the uncertainty when measuring the position of

a molecule from the image with the detected photons of N . Based on this equation, the localization

precision can be improved by either reducing the width of the PSF of the emission s or increasing
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Reference Software Name

[5] ClearPALM

[24] CSSTORM

[25] DAOSTORM

[26] FPGA Estimator

[27] Gauss2dcirc

[28] GPUgaussMLE

[29] GraspJ

[30] M2LE

[31] Octane

[32] PYME

[33] QuickPALM

[34] RadialSymmetry

[21] RapidSTORM

[35] ThunderSTORM

[36] Wavelet FluoroBrancroft

Table 2.1: Localization software and their references.

the number of detected photons N . Since the s is limited by the diffraction, to localize a molecule

with more precision is to improve N . Existing strategies focused on improving the emission of the

fluorophore or improve the quantum efficiency of the photon detector.

Further studies of localization precision proposed more detailed estimates by taking the detector

pixel size and the background noise into account. Thompson et al. [20] proposed the following

equation,

σ2 =
s2 + a2/12

N
+

8πs4b2

a2N2
,

where a is the pixel size of the detector, b is the background noise, N is the detected photons, and

s is the standard deviation of the PSF. Later Mortensen et al. [37] further proposed to improve the

estimate by adding a factor of 16/9 into the equation and rewrote it as

σ2 =
σa

2

N

(
16

9
+

8πσa
2b2

Na2

)
,

where σa
2 = s2 + a2/12.
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2.3.4 Drift Correction

As SRLM imaging requires a relatively long imaging session, it is inevitable to have sample or

equipment drift caused by temperature changes or external interference. While this also occurred

in conventional microscopy, which could be ignored in some cases when the drift is smaller than the

resolution, it becomes unacceptable for SRLM imaging as a drift of even 10nm would completely

distort the SRLM image.

In practice, two main categories of drift correction approaches have been used to address this

problem: fiducial maker-based and non-fiducial maker-based approaches. For the former approach,

fluorescence beads, quantum dots, and gold particles are commonly used in the preparation of the

sample. As they do not blink nor bleach over the imaging session, they serve as good reference points

when a post-process correction algorithm is applied to correct the drift. In non-fiducial maker-based

approaches, images created by combining small batched raw image frames are compared by running

image alignment algorithms to extract the drift information. Cross-correlation has been commonly

used in this approach [8, 38].

2.3.5 Visualization

Unlike conventional optical microscopy, whose output is essentially the digitalized version of the

light signal, the output of SRLM is a list of estimated locations of fluorophores and their uncer-

tainties. To construct an informative image from this list, a computational method is needed.

By far, the most common visualization approach is to generate a 2D Gaussian kernel with

size equal to the localization precision at each estimated fluorophore location [8] (Figure 2.6A). By

taking the sum of these Gaussian kernels, a SRLM image is reconstructed. This process is essentially

kernel density estimation, which gives a density map of fluorophores. Also, since the Gaussian

kernel size is determined by localization precision, this process allows the precision encoded inside

the image to provide a useful way to assess image quality qualitatively.

Other methods proposed to visualize SRLM data include 2D histogram (Figure 2.6B), quad-

tree-based adaptive histogram (Figure 2.6C), Delaunay triangulation (Figure 2.6D), and its fusion

with histogram [13].
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A

C

B

D

Figure 2.6: Visualization of SRLM data. (A) 2D Gaussian kernel with size equal to the localization
precision at each estimated fluorophore location. (B) 2D histogram with a pre-determined bin size of 10nm.
(C) Quad-tree based visualization. (D) Delaunay triangulation based visualization. Panels C and D are
adapted from [13] with permission from Cambridge University Press.
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2.4 Computational Methods for Localization Microscopy Image

Analysis

With the introduction of SRLM instruments, recent research has started adopting these new image

data to answer biological questions with various computational methods proposed to provide in-

valuable insight into the biological structure and cellular processes. In this section, we review two

major types of analysis: molecular level analysis and intra-cellular structure level analysis [39].

Research in molecular level focused on analyzing the spatial colocalization of different types of

molecules. For example, several studies proposed to use a pair-correlation function (PCF) to address

molecule counting problem and simultaneously analyzing the molecule distribution [40–42]. The

PCF calculates the correlation between the pair-wise distances of all localized fluorophores, which

combines the true spatial correlation function and the self-correlation function caused by multiple

detection of the same fluorophore. By estimating the self-correlation function from the control and

then subtracting it from the experimental measurement, the true fluorophore distribution can thus

be characterized.

SRLM imaging analysis of intra-cellular structure focused on the geometry information and

validation. One common type is cross-section projection analysis. The spatial distribution of the

image data is projected into lower dimension space where statistical analysis methods are applied

for quantification [9, 10, 43, 44]. Other study also proposed to infer structures using generative

models where parametric models of line or circle, for example, were used [45].



Chapter 3

Kernel Density-based Image Quality

Assessment

3.1 Introduction

In SRLM techniques, each super-resolution image is reconstructed from a time series of images of

randomly activated fluorophores. Here we attempt to answer the following fundamental question

regarding the image reconstruction process: how many frames of images are required to reconstruct

a SRLM image of adequate quality so that it faithfully reflects the biological structures under obser-

vation? To address this question, it is essential to have a method that directly and quantitatively

assesses the quality of reconstructed images. Currently, such a method remains lacking. Instead,

a commonly adopted approach is to collect a large number of frames and then assess quality of

reconstructed images through visual inspection. However, this approach does not provide quan-

titative quality assessment, which risks acquiring either too few (not enough information) or too

many (wasting time or even damaging the imaging samples by photo-toxicity) frames than needed

for a given application, and thus the result is sensitive to variations among investigators making

the assessment.

On the other hand, several recent studies have proposed resolution metrics, which reflects

localization uncertainty and fluorophore density. A representative of these methods is Fourier

ring correlation (FRC) [3, 4], which is used to determine the image resolution from the localized

16
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fluorophore data by measuring the level of details of reconstructed images. It does not, however,

directly consider the fact that images of biological structures are structured rather than random

patterns. And the selection of achieved resolution remains arbitrary. Figure 3.1 shows the SRLM

images reconstructed from different imaging lengths and their estimated resolutions by FRC. In

particular, although at 2,000 frames, the resolution of 93nm (Figure 3.1D) is beyond the Rayleigh

limit, the structure of the microtubules is not properly captured, and similarly for mitochondria

(Figure 3.1B). Moreover, we found that the FRC does not give reliable resolution estimates. For

example, in Figure 3.1C, the resolution estimated after 35,000 frames is higher than that at 25,000

frames, suggesting that the FRC suffers from the background noise, which can be the result of

auto-fluorescence or the cross-talk signal from other channels.

In this chapter, we first developed a Gabor filter-based approach to measure the structure

information. We extract this structural information using the orientation histogram with Gabor

filters and perform a statistical test to determine whether information has saturated. To directly

quantify the image quality, we further developed a simple kernel density estimation based technique

to quantify the precision of the reconstructed geometry and structure of individual image objects.

We validated the technique using correlative fluorescence and atomic force microscopy.

3.2 Methods

3.2.1 Gabor Filter-based Structure Information Measure

Problem definition

For SRLM imaging, randomly activated fluorophores from each fluorescent image are first collected.

At a given imaging time t, a high-resolution image It is reconstructed using the detections in all

frames up to time t. The goal of determining imaging length is to extract useful image information

and then determine whether there is significant information change between It and the reconstructed

image at the previous time point It−1; if not, imaging stops.

Structure-based analysis

From SRLM imaging data, we observed that the object morphology information tends to stabilize

after certain imaging time. We hypothesize that by properly measuring the statistics of the contour
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Figure 3.1: SRLM images of microtubules and mitochondria reconstructed from different numbers of
images. (A) Upper row: reconstructed SRLM images of mitochondria. The number of frames used for
reconstruction is shown in yellow text at the lowerleft corner. fs: frames. Lower row: segmented image
objects for images shown in the upper row. Red contours show segmented image objects using all the
images acquired (i.e., maximum imaging length). Cyan contours show segmented image objects within each
reconstructed image. The inset is a magnified view of the yellow rectangular region. (B) Reconstructed
SRLM images of microtubules. Same panel layout and color scheme as in (A). (C-D) Estimated resolutions
in FRC (4) of reconstructed images of mitochondria and microtubules, respectively, at different numbers
of frames, referred to as imaging lengths. Black arrowheads show estimated resolutions in FRC of the
corresponding panels in column two to four of (A-B). Scale bars: 500nm.
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Figure 3.2: Gabor filter-based orientation histogram.

information, we should be able to determine adequate imaging length. In our preliminary exper-

iments, we first tested the histogram of oriented gradients (HOG) features method [46], which is

widely used to characterize local object appearance and morphology within an image. The HOG

features are computed by taking the orientation histograms of the image gradients over dense grids

of the image. Unlike natural images, however, SRLM images are mostly punctate in appearance in

the foreground area (Figure 3.1A, B), and thus, taking the gradient often results in a number of

local random gradient orientations instead of the structural information we aim to extract.

Inspired by the HOG features, we extend the idea of taking the orientation histogram over

gradient image to taking the orientation histogram over the orientation map detected by the Gabor

filters [47],

Gλ,θ,ψ,σ,γ(x′, y′) = exp
(x′2 + γ2y′2

σ2

)
exp
(
i
(

2π
x′

λ
+ ψ

))
,

where x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ. Each filter represents a Gaussian kernel

function modulated by a complex plane wave whose wavelength and orientation are defined by λ

and θ, respectively. The parameter γ specifies the spatial aspect ratio of the Gabor function, where

σ is the standard deviation of the Gaussian kernel; we control it by setting σ = 0.56λ. We use

eight different orientations, θ = k/8π, with k = 0, 1, . . . , 7, and four different scales, λ = 2, 4, 6, 8,

resulting in a filter bank of 32 Gabor filters.

After convolving the image with the Gabor filter bank, the orientation histogram is obtained
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by placing the maximum orientation at each pixel to the orientation bin (Figure 3.2). Specifically,

let Mθ(x, y) be the filter response at orientation θ, then the maximum orientation map θmax(x, y)

is

θmax(x, y) = arg max
θ

(Mθ(x, y)) .

The orientation histogram is then obtained by voting over the entire map θmax(x, y) for each

orientation as

hθ =
∑
x,y

1θ(θmax(x, y)),

where θ = k/8π, k = 0, 1, . . . , 7, and 1θ(θ̃) is the indicator function that is 1 when θ̃ = θ and 0

otherwise.

Statistical imaging length criterion

At each time t, we use a statistical test to determine whether there is additional gain in terms of

image information. For the proposed orientation histogram, given the histogram Ht at time t and

Ht−1 at time t− 1, we use the Kolmogorov–Smirnov (KS) test to determine whether Ht and Ht−1

are from the same distribution; if so, the imaging length is considered as enough. This statistical

test makes histogram-based methods more suitable for setting a global criterion than setting an

arbitrary measure, for example, the distance of HOG features.

3.2.2 Kernel Density-based Geometry Information Measure

In previous section, we proposed a Gabor filter-based method for determining the imaging length.

It is, however, not sufficient to directly quantify the image quality. In this section, we further

develop a kernel density-based method for image quality measurement.

Estimating geometry information by density level sets

SRLM images, unlike other conventional optical microscopy images, are essentially form by clusters

of detected fluorophore locations. In Chapter 4, we proposed to model such image formation as

kernel density estimation. We found kernel density estimation theory developed in statistic field

provides a good mathematical framework in SRLM image analysis. Specifically, suppose that

the fluorescence labels of the imaging object have a certain underlying spatial distribution f , a
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nonparametric density estimate of f̂n based the observed fluorescence label locations X1, . . . , Xn

using a kernel density function K can be defined as

f̂n(X) =
1

n

n∑
i=1

Ki(X,Xi).

A common practice is to choose K as an Gaussian kernel, which is defined as

Ki(X,X
′) =

1

2πh2
exp

(
−||X −X

′||2

2h2

)
,

where h is a bandwidth that controls the kernel size.

In SRLM images, an image object is fluorescently labeled such that the image object region

appears as distribution with higher density. Therefore, finding the imaging object structure, i.e.

boundary, can then be formulated as finding the t-level set of f , L(t) = {f = τ}, where τ ≥ 0.

Here the chose of t defines the threshold of the specific fluorophore density, which separates the

image object region from background region.

Now, given the observed fluorescence label locations X1, . . . , Xn, the plug-in estimator of L(t)

is defined as

L̂n(τ) =
{
X ∈ R2 : f̂n(X) = τ

}
,

SRLM image quality measure as boundary difference

In SRLM, randomly activated fluorophore detections from each raw image frame are first collected.

At a given imaging time t, a SRLM image It is reconstructed using the detections from all frames

up to time t. To estimate the image quality, we determine whether there is significant changes of

boundary between the one estimated from It and the other estimated from It1 at the previous time

point.

To measure the boundary changes, a common practice is to calculate the Hausdorff distance dH

between two boundaries L̂1(τ) and L̂2(τ) by:

dH(L̂1(τ), L̂2(τ)) = max

(
sup

X∈L̂1(τ)

inf
Y ∈L̂2(τ)

d(X,Y ), sup
Y ∈L̂2(τ)

inf
X∈L̂1(τ)

d(X,Y )

)
.

In SRLM, it is very common to have noise detections in the background region. To tolerant
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this, we relax the sup by taking only the 95 percentage points of the distribution of dH as dH95.

Boundary uncertainty measure

Given the observed fluorescence label locations X1, . . . , Xn, we estimate of boundary by estimating

the L(t) using the plug-in estimator L̂n(τ). To understand what the uncertainty of this estimate,

i.e. how well the L̂n(τ) represent the boundary of the underlying spatial distribution f of the

fluorescence labels. We perform a simple bootstrap method [48,49] to estimation the uncertainty.

Specifically, we draw a set of samples X∗1 , . . . , X
∗
n at random with replacement from X1, . . . , Xn

and compute L∗n(τ) from this set of samples. By repeating this process B times, we obtain a set of

boundaries L∗n,1(τ), . . . , L∗n,B(τ). The mean boundary then can be estimated as:

L̄∗n(τ) =
1

B

B∑
b=1

L∗n,b(τ).

And the boundary variation for each L∗n,b(τ) from mean boundary can then be estimated by calcu-

lating the 95% Hausdorff distance:

d∗H95,b = dH95(L
∗
n,b, L̄

∗
n).

Then, the uncertainty is estimated by finding the α percentile of d∗H95,b:

υboot = d∗H95,Bα/2.

SRLM image quality measure as internal density difference

In addition to the boundary changes, we also determine the changes of internal density distribution

dD between the It and It1. This can be done by finding the maximum density difference inside the

estimated boundary. Specifically, given the observed fluorescence label locations X1, . . . , Xn, the

estimated internal density D̂n(τ) is defined as

D̂n(τ) =
{
X ∈ R2 : f̂n(X) ≥ τ

}
.

The changes of internal density distribution thus is defined as
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dD(D̂1(τ), D̂2(τ)) = max
(
D̂1(τ), D̂2(τ)

)
.

Similarly, we relax the max by taking only the 95 percentage points of the distribution dD as dD95

to tolerant the noise.

3.3 Results

We performed experiments on both simulated and real SRLM images of mitochondria and micro-

tubules.

3.3.1 Simulated Data

We simulated the molecule detections that are generated by SRLM imaging from given ground-truth

samples. Two different synthetic sample structures, microtubules and mitochondria (Figure 3.3A,

C), were produced to simulate common scenarios of biological structures. We assume a uniform

fluorophore distribution within the structure, from which the detections of the randomly activated

fluorophores are drawn with a photon count sampled from a geometric distribution. For each

structure, we simulated the SRLM imaging of 200 frames, where in each frame 50 detections inside

the structure area and random noise in the background area are generated (Figure 3.3B, D). This

simulated imaging was divided into 20 steps, at which a high-resolution image is reconstructed by

accumulating the detections starting with the first frame.

At each step, we compare the results with FRC and the structure-based measures as shown in

Figure 3.3G-H. To examine how well the structure reconstructed, we used the segmentation of the

underlying structure as the standard; in other words, the reconstructed image with adequate struc-

ture information should lead to good segmentation. Specifically, we segment each reconstructed

image using active-mask segmentation algorithm and compare the segmentation result to the ground

truth using segmentation metrics of area similarity and boundary error as shown in Figure 3.3I-J

and Q-P. The performance of segmentation increases as more frames are used and saturates when

the image is reconstructed with more than 50 frames.

Our method quantify the image quality by comparing the boundary difference and internal

density difference between each paired steps as described in Section 3.2.2. Figure 3.3I-R summarize
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the quality measures versus imaging lengths. We can see that the quality estimates match well

with the segmentation result compared to the ground truth.

3.3.2 Validation Using Correlative SRLM and AFM Images

To further test the performance of the proposed measure, we developed correlative SRLM and

AFM.

STORM imaging setup

For the STORM imaging, we used a Nikon N-STORM system equipped with a motorized XY stage

and a Nikon perfect focus system. A monolithic laser combiner (Agilend MLC400) was controlled

by the computer. The laser passed through a TIRF system and focused to the back focal plane of

the oil-immersion objective (Nikon APO 100x/1.4). For the excitation, the power of 647nm (Alexa

Fluor 647) laser was 90mW/cm2 measured at the objective. The emission signal from the excited

fluorophores was detected by a EMCCD camera (Andor iXon Ultra 897). The effective camera

pixel size under 100x objective was 156nm. All instrument control and image acquisition were

performed with Nikon NIS-Elements software package.

Atomic force microscopy imaging of immobilized fibronectin fibers

AFM (MFP3D-Bio, Asylum Research) was used to provide the ground truth dimensions of the

Fibronectin (FN) fibers imaged using STORM. After STORM imaging, the FN fibers were rinsed

3x with distilled water and dried in an oven at 37◦C. Once dry, the FN fibers were scanned in

air using AC mode with AC160TS-R3 cantilevers (Olympus Corporation). High-resolution AFM

images were obtained using 2580 points and lines over a scan area of 30 µm x 30 µm. The raw

data from the AFM height signal was then exported into MATLAB for further processing.

STORM and AFM image alignment

For new microscopy development, correlative microscopy has been served as an important tool for

validation. For STORM, this is particularly crucial as STORM image is a reconstruct from clusters

of fluorophore detections that are sparsely distributed in imaging region and thus require a different

microscopy image modality for validation. STORM and AFM images are completely different image
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Figure 3.3: Demonstration of density-based assessment method on simulated data. (A-B) The ground
truth image (A) and a reconstructed SRLM image (B) of a microtubule network. (C-D) The ground truth
image (C) and a reconstructed SRLM image (D) of a group of mitochondria. (E-F) Reconstructed images
from different numbers of images. Green contour: ground truth boundary. Red contour: current mean
boundary. Cyan contour: boundary uncertainty band. Inset at the lower right corner of each image is
a magnified view of the small region enclosed by the yellow rectangle. (G-R) Characterization of quality
of reconstructed images using different metrics, including: (G-H) FRC, (I-J) boundary error compared to
ground truth, (K-L) 95% Hausdorff distances between each pairwise steps (the red and green horizontal lines
represent the 25nm and 100nm), (M-N) boundary uncertainty, (O-P) area similarity compared to ground
truth, (Q-R) 95% density differences between pairwise steps. Left column: microtubule. Right column:
mitochondria. Scale bars, 500nm.
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modalities where STORM image is formed by a cluster of fluorophore detections sparsely distributed

in imaging object region and AFM image is formed by dense grid height measurements of imaging

objects surface. Since the fibronectin fibers are immobilized, we adopted multimodal intensity

based rigid-body image registration method to align these two images. The transformation model

used here only includes spatial translation and rotation. Mattes mutual information metric [50]

with histogram of 100 bins is used as the similarity metric. We implemented this algorithm using

MATLAB image processing toolbox.

Results

Figure 3.4 summarizes the results of the proposed methods validated by correlative SRLM and

AFM images. We can see that the estimates of both boundary and internal density changes

matches well with the segmentation results compared with AFM images, demonstrating that the

proposed method can directly quantify both the geometry information.

3.4 Summary

In this chapter, we presented a kernel density-based approach to directly quantify the image quality

for SRLM. The method uses the density distribution estimated by plug-in estimator to measure the

image quality which represents amount of information in the image. Compared to methods based

entirely on image resolution, our method provides a reliable way of measuring imaging quality.

Because of the incorporation of density estimation of the fluorophores, this method is particularly

well suited to applications that involve subsequent computational image analysis. The proposed

approach does not depend on specific image structure and can thus be used in a broad range of

biological applications of super-resolution imaging.
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Figure 3.4: Demonstration/application of density-based quality assessment on actual experimental data
using correlated SRLM and AFM. (A) Unaligned SRLM (Top-left panel) and AFM (Bottom-left panel)
images of a fibronectin bundle as well as their corresponding images after alignment (Top-right and bottom-
right, respectively). Scale bars: 1 um. (B-F) Characterization of quality of reconstructed images using
different metrics, including FRC (B), boundary error (C), 95% Hausdorff distance between boundaries (D),
area similarity (E), and 95% density difference (F). (I) Reconstructed SRLM images from different numbers
of images. Green: ground-truth provided by AFM. Red: segmentation of reconstructed image. Inset at the
lower right corner of each image is a magnified view of the small region enclosed by the yellow rectangle.
Scale bars: 1 um.



Chapter 4

Kernel Density-based Image

Segmentation

In general, image segmentation is the task of dividing an image into regions of similarity. For bio-

logical images, the main task is to segment the cellular or subcellular structures from background.

However, as noted previously, SRLM images differ significantly from conventional fluorescence mi-

croscopy images because of fundamental differences in image formation. Each SRLM image is

reconstructed from a time series of images of randomly activated fluorophores and represented

by clusters of particles, localized at nanometer resolution, of varying spatial densities. Currently,

however, few quantitative image analysis techniques exist or have been developed or optimized

specifically for SRLM images, which significantly limit accurate and reliable image analysis. This

is especially the case for image segmentation, an essential operation for image analysis and un-

derstanding. In this chapter, we propose to address the problem of SRLM image segmentation by

developing a statistical method based on estimating and smoothing spatial densities of fluorophores

in SRLM images, from which we can derive segmentation algorithm.

4.1 Introduction

Image segmentation is often the first step in quantitative image analysis. Although super-resolution

images provide significantly improved spatial resolution in visualizing cellular structures (Fig. 4.1),

this improvement in SRLM image analysis can only be achieved using reliable and accurate image

28
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Figure 4.1: Comparisons between conventional fluorescence microscopy and STORM images of micro-
tubules and mitochondria. (A, C) Widefield and STORM images of microtubules, respectively; (B, D)
widefield and STORM images of mitochondria, respectively. Scale bars, 500nm.

segmentation tools. In the past decades, there exists a wide variety of classic approaches for

biological image segmentation, including graph cuts [51], active contours [52], level sets [53, 54],

active masks [55]. From our preliminary experiments, these existing methods have difficulties

segmenting objects in SRLM images due to a complete different image formation compared to

conventional microscopy images that these methods were originally designed for.

In conventional epifluorescence or confocal microscopy images, objects can generally be charac-

terized as continuous regions of fluorescence signals. In contrast, objects in SRLM images appear

as clusters of estimated fluorophore locations with different spatial densities. To visualize detected

fluorophores, common approaches are to render each particle as a normalized Gaussian kernel with

the size proportional to the localization precision or to render a spatial histogram with a pre-

specified bin size [13]. Direct segmentation of such images using existing methods is problematic.

As shown for example in Fig. 4.1, SRLM images appear punctate and the edges of image objects

are often poorly defined due to random activation of fluorophores. Essentially, the randomly ac-

tivated fluorophores provide a sampling of the underlying true spatial density distribution of all

fluorophores.

Another commonly encountered issue in SRLM images is sparsely distributed artifacts (par-

ticles) appearing in the background regions, which may result from diffused fluorophores; these
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isolated features need to be properly addressed in image processing to avoid false segmentation.

In general, reliable and accurate segmentation of SRLM images must take into account the unique

properties of such images. An intuitive strategy is to estimate the underlying spatial density ac-

cording to the sampled spatial distribution of the particles and then determine the criterion for

segmenting the density image.

In this chapter, we propose a spatially adaptive density estimation based method for smoothing

and segmenting SRLM images. We propose to estimate local particle density using anisotropic

kernels that adapt to local particle distributions. This kernel based method provides a way to

connect separated particles in an object region as well as to interpolate object boundary without

being misled by the random fluctuations of activated boundary fluorophores.

4.2 Methods

4.2.1 Problem Formulation

To take into account the unique modality of SRLM images, we formulate the image segmentation

problem as identifying high density foreground regions from low density background. We propose

a two-step process for SRLM image segmentation: 1) spatial density distribution estimation and 2)

image segmentation based on thresholding that estimated density distribution. In our preliminary

experiments based on previous work on density estimation [56], we first tested spatial density

estimator using commonly adopted kernel density estimator.

4.2.2 Density Estimation with Histogram

The simplest density estimators are perhaps histograms. A spatial histogram is constructed by

dividing the 2D space into equal sub-tiles as bins and counting the number of points that fall inside

region of each bin. Specifically, suppose that we have a list of n points x1, x2, . . . , xn in the image

region A. Divide A into N bins B1, B2, . . . , BN of size h2. Then the density for each bin is

f̂(Bj) =
1

h2

n∑
i=1

I(xi ∈ Bj).
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4.2.3 Density Estimation with Isotropic Kernels

A commonly used density estimation is the kernel density estimator. The idea is to estimate a

continuous distribution from a finite set of points by placing a kernel centered at each points and

taking the sum of all kernels. Kernel density estimation has been used previously in applications

such as geographical information systems [57].

Specifically, suppose that we have a list of n points x1, x2, . . . , xn, sampled from some unknown

density map f of a spatial area (in our application, the image). A classic 2D spatial kernel density

estimator at location x is

f̂(x) =
1

n

n∑
i=1

Kh(x, xi), (4.1)

where Kh is a symmetric isotropic kernel function. A commonly used kernel function is the Gaussian

kernel, which is defined as

Kh(x, x′) =
1

2πh2
exp

(
−||x− x

′||2

2h2

)
,

where h is a global spherical bandwidth, which can be estimated from the data by minimizing

the L2 risk function using cross-validation [56]. However, in SRLM images, h directly controls the

resolution of the estimated density image as it represents the radius of the point-spread function

of the density image. If the h is too small, the density estimator loses its power to connect the

particles; if h is too large, the resolution degrades. Because the typical range of resolution for

SRLM is 20 ∼ 100 nm, we choose h to be in the range of 10 ∼ 50 nm, i.e. half the resolution.

4.2.4 Density Estimation with Adaptive Anisotropic Kernels

The main limitation of the isotropic kernel appears when it is placed at a location where the support

of the underlying true density is close to one dimensional (for example, on the boundary). Isotropic

kernel cannot properly represents the heterogeneity of the spatial density; it, instead, spreads its

density mass equally along all spatial directions, thus, giving too much emphasis to background

regions and too little along the boundary direction. This motivates us to use adaptive, anisotropic

kernels for density estimation.

The adaptive anisotropic kernel density estimation associates with each point an anisotropic

kernel. This kernel adapts to the local structure of the data points by estimating locally its scale,
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shape, and orientation. Again, the density function as in (4.1) at the location x is a sum of kernels

centered at the surrounding points xi where now each kernel Ki(x, xi) is the locally adaptive

anisotropic Gaussian kernel

Ki(x, xi) =
1

2π|Σi|
exp

(
−1

2
(x− xi)>Σ−1i (x− xi)

)
,

where Σi is a positive definite covariance matrix that defines its configuration (scale, shape, and

orientation).

To place the anisotropic kernel according to the spatial distribution of local data points, for

the kernel located at the point xi, we select its k-nearest neighbors x1, x2, . . . , xk, to estimate the

covariance matrix

Σi =

k∑
j=1

(xi − xj)(xi − xj)>.

Here k must be at least d+ 1 to get the support of Σi, where d = 2 is the spatial dimension. The

size of the anisotropic kernel is controlled by the distance between xk and xi. Choosing a larger

k helps to better estimate the distribution of local points; we must guard against too large a k,

however, to prevent the resolution degradation. We propose to evaluate sensitivity of the density

estimation to k to provide a general suggestion of the choice of k .

Fig. 4.2 demonstrates the qualitative differences between the density estimations using isotropic

kernel and adaptive anisotropic kernel. Estimating from the points sampled from two structures,

the isotropic kernel yields a fair density estimation for both structures but generally spreads out the

regions, making the region much bigger than the distribution of the points. In contrast, the adaptive

anisotropic kernel follows the local distribution of the points and yields a density estimation with

more precise boundaries compared to the one from the isotropic kernel.

4.2.5 Density Threshold Determination

The estimated spatial density distribution provides a way of smoothing the SRLM images. We

now need to determine a criterion to segment the regions with different density statistics. In our

preliminary work, we begin with simple strategy: global thresholding. Assuming two types of

signals: signals of the actual fluorophores and background signals, we can empirically model the

density distribution of the foreground regions obtained by finding the nonzero density bins from the
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Figure 4.2: Isotropic vs adaptive anisotropic kernels. Selected isotropic kernels (A) and adaptive anisotropic
kernels (B) overlapped on the data points sampled from a curvilinear and a big blob structures. Estimated
density images using isotropic kernels (C) and adaptive anisotropic kernels (D).



CHAPTER 4. KERNEL DENSITY-BASED IMAGE SEGMENTATION 34

spatial histogram. The thresholding can then be set by finding the pth percentile of the densities

to find the best segmentation.

From the preliminary results [1], the global thresholding demonstrate the effectiveness of the

adaptive spatial density estimation. However, this method is based on the assumption of the pres-

ence of only two types of density distributions, which may not be always true for real applications.

For example, the spatial distribution of fluorophores may not be the same for all cellular objects,

leading to the need to determine a segmentation criterion that incorporates these factors. We plan

to extend the thresholding to adaptive one determined by local statistical analysis of the estimated

density distribution.

4.3 Results

We performed experiments on both simulated and real SRLM images of mitochondria and micro-

tubules. The segmentation performance of the Chan-Vese active contour (AC) [53], the isotopic

kernel density estimation based segmentation (IKDES), and the proposed adaptive anisotropic ker-

nel density estimation based segmentation (AKDES) algorithms were compared qualitatively and

quantitatively using both simulated and real SRLM images.

4.3.1 Simulated Data

We generated SRLM images of random fluorophore activation from given ground-truth. Two types

of synthetic sample structures, microtubules and mitochondria, were produced to simulate common

biological structures. Assuming a uniform fluorophore density in the object regions, we generated

the detections of the activated fluorophores randomly with two different labeling densities of 1,000

and 2,000 detections in an image region of 2560×2560 nm, and added random artifacts in the

background area with four different signal to artifact ratios of 5, 10, 20, and 40 dB.

Fig. 4.3 shows a qualitative comparison of the three segmentation algorithms. As previously

noted, the AC method performed poorly on SRLM images. It was sensitive to local missing particle

regions inside the object owing to the random fluctuations of the activated fluorophores in SRLM

images. On the other hand, the IKDES method connected the region better but still suffered

from over-segmentation and the false segmentation of the background artifacts. In contrast, the

proposed AKDES method outperformed the other two methods in more precisely following the
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Figure 4.3: Comparison of different image segmentation approaches on simulated images. First column
shoes the ground truth, second column shows the simulated SRLM images with SAR = 20 dB for micro-
tubules and 10 dB for mitochondria, third column shows the Active Contour segmentation results, fourth
column shows the isotropic kernel based segmentation results, and last column shows the proposed adaptive
anisotropic kernel based segmentation results. The segmentation results are shown in random colors and
overlapped on top of the simulated images. Scale bars, 500 nm.

local boundary direction and being robust to fluctuations resulted from the random distribution of

activated fluorophores, and thus provided more accurate segmentation in both sample structures.

We have also tested graph-cut based segmentation methods [58] and found the performance to be

inferior to the proposed method (data not shown).

For quantitative comparison, we used the following segmentation evaluation metrics [59]: area

similarity (AS) [60], which measures the goodness of segmentation compared to the ground truth,

precision (P), which measures the ratio between the number of correctly segmented objects to the

total number of segmented objects, and recall (R), which measures the ratio between the number

of correctly segmented objects to the number of objects in the ground truth. The results are

summarized in Table 4.1. All measures were averaged over all objects and all images. From the

results, both AC and IKDES methods performed poorly because of over-segmentation and false

segmentation. In contrast, our proposed method outperformed the other two by a large margin (10-

fold improvement). The area similarly results also showed that the proposed method can correctly

identify objects in both sample structures.
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Figure 4.4: Real SRLM image segmentation results. (A) Comparison of different image segmentation
approaches. (B) Comparison of segmentation contours in regions corresponding to the boxed regions in A,
where green, blue, and red contours refer to AC, IKDES, and AKDES results, respectively. Scale bars, 500
nm.
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Microtubules Mitochondria

AC IKDES AKDES AC IKDES AKDES

AS 0.64 0.75 0.79 0.90 0.88 0.90

P 0.01 0.02 0.37 0.31 0.44 0.96

R 1.00 1.00 1.00 1.00 1.00 1.00

Table 4.1: Quantitative comparison of segmentation results of simulated data.

4.3.2 Real SRLM data

We further tested and compared these segmentation algorithms on real SRLM images of fluores-

cently labeled microtubules and mitochondria in fixed BS-C-1 cells imaged using a Nikon N-STORM

system. Fig. 4.4 shows segmentation results in a region of ∼4,000×4,000 nm. The AC method

again only captured fragmented clusters of particles while the IKDES method suffered from over-

segmentation and false segmentation of the background artifacts (see Fig. 4.4B). In contrast, our

proposed method captured better the boundary of the objects and was more robust to artifacts.

4.4 Summary

In this chapter, we present a simple density estimation based approach for segmentation of SRLM

images. The proposed method uses an adaptive anisotropic kernel to estimate the underlying

fluorophore density distribution, which can adjust the smoothing kernel according to the local

spatial distribution. An empirically determined threshold is then used to segment the estimated

density image. Experimental results showed that, compared to active contour method that was

sensitive to the random boundary fluctuations and isotropic kernel based method that suffered from

over-segmentation, the proposed method provided more reliable and accurate segmentation.



Chapter 5

Sliding-window Data Aggregation for

Live Cell Imaging

Super resolution localization microscopy (SRLM) techniques such as STORM and PALM overcome

the ∼200nm diffraction limit of conventional light microscopy by randomly activating separate fluo-

rophores over time and computationally aggregating their nanometer resolution detected locations

for image reconstruction. However, a basic limitation of current SRLM approaches for live cell

imaging is their low temporal resolution due to motion blur, which arises if image objects move

during image acquisition of the substantial number of raw images required for constructing the

super-resolution image for a given time point. To overcome this limitation, we propose a sliding-

window data aggregation method, which exploits the temporal correlation between the collected

fluorescence images to achieve significantly higher frame rate and therefore better temporal reso-

lution than current approaches. Specifically, images within a sliding window are aligned so that

locations of detected fluorophores are aggregated to accelerate image reconstruction for higher

temporal resolution. We tested and validated our method using both simulated and real live cell

STORM image data.

5.1 Introduction

While many studies have demonstrated the capacity of SRLM to provide a nanoscale view into fixed

cellular ultrastructures, current SRLM approaches for live cell imaging have only found limited

38
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applications because of their low temporal resolution [61]. This is due to the fact that these

approaches require a large number of raw images to be collected for reconstruction of a single SRLM

image. To construct a SRLM movie (i.e., a sequence of SRLM images), a common practice is to

pre-define a non-overlapped time window and to reconstruct individual SRLM image frame from

those raw image frames of randomly activated fluorophores within each time window. The resulting

SRLM image frame rates are often several folds slower than what conventional light microscopy

can achieve. When imaging the dynamics of cellular structures such as the mitochondria show

in Figure 5.1, longer image acquisition time per SRLM image frame leads to motion blur (see

Figure 5.1A), which arises if image objects move while raw images are acquired for that SRLM

image. On the other hand, to use a shorter image acquisition time is usually not an option because

insufficient number of raw images will lead to poor quality of reconstructed images. This essentially

leads to a trade-off between the spatial and temporal resolution of SRLM [62].

Current research that aims to address this trade-off between spatial and temporal resolution

of the SRLM imaging mainly focuses on two strategies: 1) to use fast switching fluorophores

and high-speed cameras, e.g. [63] and 2) to improve detection algorithms so that fluorophores

of higher density can still be resolved, needing fewer frames for image reconstruction, e.g. [64–

67]. Although these approaches have improved the temporal resolution of SRLM imaging to a

certain degree (to approximately half a second per SRLM image), they all treat each SRLM image

separately (Figure 5.2A) and focus on the reduction for the required acquisition time of each image

without taking into account the fact that the location of fluorophores within consecutive images

are interdependent both spatially and temporally.

In raw images, despite the randomness of photo-activation, the locations of the fluorophores are

not completely random across the entire imaging region because they are samples of different parts

of the same labeled object structures. While at each time step the detections are not sufficient to

reconstruct cellular structures and to properly visualize image objects, the detections across longer

range of time steps are correlated because they are samples of the same image object that is moving.

In this chapter, we exploit the temporal correlation between SRLM images to achieve signif-

icantly higher temporal resolution in live cell imaging using SRLM. Inspired from the concept

of motion compensation used in video compression [68], we propose a data aggregation method.

Specifically, we utilize the spatiotemporal interdependence of the detected fluorophores between

successive raw images to estimate the underlying motion of the moving object. By utilizing a
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Figure 5.1: STORM images of a moving mitochondrion (moving towards right). (A) STORM image
reconstructed from detected fluorophore positions over 40s. (B) A wide-field image before STORM imaging.
(C) A sequence of STORM image frames reconstructed by setting the temporal resolution to one frame
per 4 seconds. (D) Another sequence of STORM image frames reconstructed from the same fluorophore
detections by setting the temporal resolution to one frame per 2 seconds. Scale bar, 500nm.
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sliding-window scheme as shown in Figure 5.2B, the detected fluorophores confined within the

window are aligned according to the estimated motion and combined into an SRLM image of the

actual cellular structure. In this way, SRLM image reconstruction for live cell imaging becomes

less restricted by motion blur so that higher frame rates can be achieved.

5.2 Methods

5.2.1 Problem Definition

Given is a time series of raw images, which can be divided into a set of time steps, ti, i = 1, 2, . . . , T .

The time step size st can be determined according to the fluorophore density. By specifying a data

aggregation time window h, an SRLM image is reconstructed by combining all localized fluorophores

from the consecutive raw images within each time window h. The selection of h must be sufficiently

large to reveal object structure as discussed in Chapter 3. When imaging a moving object, however,

direct data aggregation will introduce motion blur, resulting in incorrect object structure. The goal

here is to estimate the underlying motion of the image object to synthesis and reconstruct each

SRLM image from the referencing frames. These referencing frames may be previous in time or

even from the future.

Specifically, suppose each time step contains K raw images and a list of Ni localized fluorophores

pi,j = [µj , υj ]
>, j = 1, 2, . . . , Ni, where µj and υj represent the spatial location where the fluorophore

is localized. We assume that deformation of the moving objects is negligible within the time window

h, which can be selected by observing the object, and that moving objects are spatially separated

so that each moving object can be processed individually. Under these assumptions, we model the

transformation between consecutive time steps as the rigid-body transformation

Tψi
(p) = Rθip+ [xi, yi]

>,

where p is the variable in the spatial coordinate for the transform, Rθi is the rotation matrix

and ψi = (xi, yi, θi) is the transformation parameter in which xi and yi are the relative spatial

translations and θi is the rotation between the object’s center of mass during the time step from

ti to ti+1. This approach is applicable to deforming image objects as long as the deformation

within the selected sliding window is negligible. By utilizing the image segmentation algorithm



CHAPTER 5. SLIDING-WINDOW DATA AGGREGATION FOR LIVE CELL IMAGING 42

Reconstruction of SRLM images 
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Reconstruction of SRLM images 

Figure 5.2: Comparison of current and proposed image reconstruction strategies. (A) Scheme of cur-
rent non-overlapping window data aggregation method. (B) Scheme of the proposed sliding-window data
aggregation method.
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Figure 5.3: Live SRLM by motion and shape estimation. (A) A moving object within a time window.
(B) A sequence of images of the moving object where at each time step, only a subset of random samples
(dots) from the underlying true shape (blue solid line) is observed, from which the center of mass (red cross)
and the shape (black dashed line) are estimated. (C) Current methods simply sum all time steps together
without taking into account the motion, resulting in incorrect shape with motion blur. (D) The estimated
shape (green colored outline) of the moving object matches well the true shape (blue colored outline) after
the motion parameters xi, yi, θi are estimated and the fluorophores are aligned.
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we developed previously [1], all raw images are firstly divided into several sub-regions containing

single segmented object each. We can repeat the process for each successfully segmented region

and combine the results.

5.2.2 Sliding-window Data Aggregation

For each time step ti, we begin by preprocessing using approximate segmentation on the localized

fluorophores of the moving object. The motion described by a sequence of transformations T̂ψi
is

then estimated and the sliding-window aggregated SRLM images are consequently reconstructed

through the following steps:

1. Estimate the transformation T̂ψi
between each pair of consecutive time steps (ti and ti+1)

by finding the transformation parameters ψi between the segmentation of the localized fluo-

rophores from the two time steps (See Figure 5.3C).

2. Repeat the process for all ti, i = 1, 2, . . . , T .

3. Specify a sliding-window of size h that is sufficient for the reconstructed image to reveal object

structure and a sliding step size s that is sufficient for capturing the object dynamics.

4. Align the fluorophores from the time steps t to t + h, where h is the time window that is

sufficient for the reconstructed image to reveal object structure.

5.2.3 Motion Estimation

Given two subsets of the localized fluorophores of the same moving object from the consecutive time

steps, our goal is to estimate the relative motion, including displacement and rotation, between

them. Based on our non-deformable object assumption, this problem can be reformulated as finding

the rigid transformation between two sets of the localized fluorophores in the consecutive time steps.

While one way would be to apply image registration such as correlation or mutual-information based

methods, we found from our experiments that these approaches performed poorly, likely due to the

sparsity and randomness of the localized fluorophores. We thus propose two simple but more

robust approaches: 1) finding the centroid of the detected fluorophores and the major orientation

using the spatial principle component analysis and 2) finding the center of mass of the detected

fluorophore-covered area and its major orientation. In either approach, we can use the centroid
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and major orientation to estimate the rigid transformation from one set to the other set of the

fluorophores.

5.3 Results

To evaluate the proposed method, we performed experiments on both simulated and real SRLM

images of live mitochondria.

5.3.1 Simulated Data

We generated the simulated data using a sequence of raw images (100,000 frames) of mitochondria

fluorescently labeled using Alexa 488 from fixed BS-C-1 cells imaged using a Nikon N-STORM

microscope. The fluorophores were detected (∼10,000 fluorophores) using the software described

in [65]. A curvilinear motion of a moving distance ∼800nm was generated artificially to simulate

the movement of mitochondria (the black dotted line shown in Figure 5.4A, C). The collected

fluorophores were divided into 25 time steps and the proposed methods were applied to estimate

the motions. To reduce the variability due to the randomness of the fluorophores, we smoothed the

estimated motion using a Gaussian filter with σ = 5. From the results shown in Figure 5.4A-D,

we can see that the error is very small in the beginning steps and gradually increases, likely due

to the degradation of the fluorophore signals, a limitation of the simulated image data. Overall,

however, the error is below 40nm. Next, we chose a sliding window of size 60,000 frames with a

sliding step size of 1,000 frames to reconstruct SRLM images. Figure 5.4E shows the comparison

of sliding-window based reconstructed SRLM images between aligned and unaligned fluorophore

detections with respect to the ground truth after applying the segmentation algorithm described

in [1] for extracting mitochondrial structures. As expected, the aligned one matches well with the

ground truth with the mean boundary error significantly reduced compared with the unaligned one

(See Figure 5.4F). With the sliding step size of 1,000 frames, the proposed method accelerated the

frame rate significantly by thirty-folds (originally 30,000 frames are required to reliably reveal the

structure) to capture the motion (∼8nm, which is smaller than the reconstructed SRLM image

pixel size of 10nm).
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Figure 5.4: Motion estimation from SRLM images of fixed mitochondria with simulated motion. (A, C)
The trajectory and the orientation of the simulated motion shown as black dotted line, the motion estimated
by the centroids of the detected fluorophores (CFM) shown as blue circles, the motion estimated by the
center of mass of the fluorophore-covered area (CAM) shown as red circles, and the motion estimations
after smoothing for both methods (SCFM and SCAM) shown as cyan and purple lines, respectively. (B, D)
The error of the estimated motions for both methods (blue and red lines, respectively) and the ones after
smoothing (cyan and purple line, respectively). (E) The SRLM image frames reconstructed after the detected
fluorophores are aligned (red colored channel) overlapped with the ground truth (green colored channel) on
the left column and the SRLM image frames reconstructed before the detected fluorophores are aligned
(red colored channel) overlapped with the ground truth (green colored channel) on the right column. The
matched area is shown in yellow. (F) The mean boundary error of the segmentation of mitochondria from
SRLM image frames before and after the detected fluorophores are aligned (red and blue lines respectively)
compared to the ground truth.
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Figure 5.5: Result of data aggregated SRLM images reconstructed with aligned fluorophore detections.
The frame rate is 1 frame per second.

5.3.2 Real SRLM Data of Live Cells

We further tested our method on actual SRLM images of mitochondria fluorescently labeled using

MitoTracker Red in live BS-C-1 cells. The SRLM images were collected using a Nikon N-STORM

microscope. Figure 5.5 shows the sliding window aggregated results using aligned fluorophore detec-

tions in a region of ∼800×1280nm. Compared to the existing approaches that use nonoverlapping

aggregation (See Figure 5.1D, the frame rate is 0.5 frame per second), the proposed method reveals

the structure of the mitochondrion with higher frame rate of 1 frame per second, which represents

a doubling of temporal resolution.

5.4 Discussion

With exactly the same data, our proposed method works by interring the underlying hidden motion

information and taking prior knowledge of the motion into account to estimate and synthesis missing

images. The limitation of this method lies to the selection of the time step size and the sliding
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window size. The time step size controls directly to the performance of the motion estimation.

While a larger time step size is desired to yield accurate motion estimation, the assumption of

rigid body transformation, i.e., the object did not deform or even move within this time step,

fundamentally sets a limit of the maximum value of the time step size. The sliding window size, on

the other hand, has to fall inside a similar but less restrict requirement that the object may move

but cannot deform within the sliding window.

Under such requirement, the proposed method shows great potential for following biological

image analyses, for example, object tracking or spatiotemporal distribution characterization.

5.5 Summary

In this chapter, we present a sliding window based data aggregation method for improving the

temporal resolution of SRLM for live cell imaging. By aligning detected fluorophores of different

frames within the sliding window, we aggregate the fluorophore locations to achieve accelerated

image reconstruction while avoiding the motion blur. Experimental results show that our method

significantly reduces the trade-off between spatial and temporal resolution of SRLM imaging. In ad-

dition, the proposed method can be combined with existing strategies such as using faster switching

fluorophores or high-speed cameras for improvement of temporal resolution.



Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this thesis, we have presented a computational toolbox for super-resolution localization mi-

croscopy image analysis including the following three main techniques:

1. An image quality assessment method for SRLM images. The proposed method

presented in Chapter 3 provides a new image quality measure for directly quantifying the

image information to determine whether the imaging length is sufficient to reveal the structure

of imaging objects.

2. A kernel density-based image segmentation algorithm. We presented in Chapter 4

a new image segmentation method specifically designed for SRLM images based on kernel

density estimation. Our results show that the proposed method is capabile of adapting the

kernel to segment structures from images reliably and accurately.

3. A sliding-window based data aggregation method. In Chapter 5, we present a novel

framework of data aggregation to enable SRLM image analysis of live cells with improved

temporal resolution. Our results show that the proposed method can improve the temporal

resolution by 2 folds. The propose method can also be combined with other approaches of

improved fluorophores or equipments to further empower the SRLM imaging.

49
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6.2 Future Works

We have several directions planned for future work. For image analysis of SRLM images, we would

like to expand the proposed segmentation algorithm to work under multiresolution framework,

which could not only greatly improve the run-time speed but also reveal different morphologies of the

structures in different scales. In addition, for precise quantification of the structures, the physical

properties of fluorescence probes must be considered, for example the length of primary/secondary

antibody, which increase the effective size of the probe. We would like to incorporate this into the

density estimation of fluorophore distribution to reveal the underly labeling object. Furthermore,

the proposed methods can be extended to directly work on the raw image data without extra

localization process. Finally, we would also like to expand the proposed SRLM image analysis tool

for developing more functions designed for different cellular structures.
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[15] K.-C. J. Chen, J. Kovačević, and G. Yang, “Structure-based determination of imaging length

for super-resolution localization microscopy,” in Proc. IEEE Int. Symp. Biomed. Imag., Beijing,

Apr. 2014, pp. 991–994.

[16] K.-C. J. Chen, J. M. Szymanski, A. W. Feinberg, J. Kovačević, and G. Yang, “Density-
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