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Abstract
Conventional cryptography is based on algorithms that are mathematically complex and

difficult to solve, such as factoring large numbers. The advent of a quantum computer

would render these schemes useless. As scientists work to develop a quantum computer,

cryptographers are developing new schemes for unconditionally secure cryptography. Quan-

tum key distribution has emerged as one of the potential replacements of classical cryp-

tography. It relies on the fact that measurement of a quantum bit changes the state of the

bit and undetected eavesdropping is impossible. Single polarized photons can be used as

the quantum bits, such that a quantum system would in some ways mirror the classical

communication scheme. The quantum key distribution system would include components

that create, transmit and detect single polarized photons.

The focus of this work is on the development of an efficient single-photon source. This

source is comprised of a single quantum dot inside of a photonic crystal microcavity. To

better understand the physics behind the device, a computational model is developed. The

model uses Finite-Difference Time-Domain methods to analyze the electromagnetic field

distribution in photonic crystal microcavities. It uses an 8-band k · p perturbation theory

to compute the energy band structure of the epitaxially grown quantum dots. We discuss a

method that combines the results of these two calculations for determining the spontaneous

emission lifetime of a quantum dot in bulk material or in a microcavity. The computational

models developed in this thesis are used to identify and characterize microcavities for

potential use in a single-photon source. The computational tools developed are also used

to investigate novel photonic crystal microcavities that incorporate 1D distributed Bragg

reflectors for vertical confinement. It is found that the spontaneous emission enhancement

in the quasi-3D cavities can be significantly greater than in traditional suspended slab

cavities.
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Chapter 1

Introduction

Accurate modeling of a single-photon source is a complex and important problem. A

particularly promising single-photon source is made by placing a quantum dot inside of

a microcavity. Quantum dots have discrete energy levels and are often thought of as

artificial atoms. In small dots, there is only one state in the conduction band for the

electron to occupy and one state in the valence band for the hole to occupy; therefore a

single generation-recombination event can be isolated. The result of the recombination of

one electron with one hole is a single photon. Because there are no photons to induce a

transition, the photon will be emitted spontaneously. The field from an emitted photon

must occupy an allowed electromagnetic mode and in free space there is an infinite number

of modes. A microcavity can be used to tailor the number of modes available to the emitted

photon, providing the necessary control over the photon polarization and direction.

Modeling of a quantum dot in a microcavity may at first appear to be straightforward.

It is tempting to consider the single-photon source as a limiting case of a traditional

semiconductor laser and to apply the extensive laser design tool kit to develop this source.

But lasers and single-photon sources operate on distinctly different principles. Specifically,

lasers rely primarily on stimulated emission and single-photon sources on spontaneous

emission. Another flaw of this approach is that traditional laser modeling ignores individual
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electrons and photons in favor of considering their populations. How a single excited

electron in a quantum dot recombines spontaneously to emit a single photon into the

microcavity cannot be deduced from traditional modeling methods. The quantum dot and

microcavity form a coupled system and their interaction must be taken into account. To

tackle this problem, principles from electromagnetics, solid state physics, and quantum

mechanics must be combined. A complete set of modeling tools to analyze quantum dots

in microcavities has not yet been developed. The primary goal of this thesis is to develop

a tool set to model and optimize such a single-photon source.

Single-photon sources are necessary for implementing quantum key distribution sys-

tems. Quantum-based cryptography is superior to classical cryptography because it re-

mains secure even after a quantum computer is developed. Cryptographers commonly

refer to this as an unconditionally secure system. Classical cryptography methods are only

secure under the assumption that sufficiently long keys can not be cracked with modern

computing resources. While this is certainly true today, many of the cryptography schemes

could be cracked easily with a quantum computer. These cryptography systems are thus

only conditionally secure. In the future, quantum cryptography will be essential for secure

communication.

Quantum cryptography was developed by Bennett and Brassard [1]. It is based on the

laws of quantum mechanics and, according to these laws, any test to determine information

about a non-orthogonal quantum state will perturb that state. A set of quantum states

can be constructed from single photons of various polarizations. Imagine a photon with

polarization axis α that encounters a filter oriented at an angle β with respect to the photon

polarization. If the polarization axis aligns with the filter then the photon will always

pass through. If the axes are perpendicular then the photon will always be absorbed.

When α and β are neither parallel nor perpendicular to one another, the photon behaves

probabilistically. A photon will be transmitted through the filter with probability cos2(α−

β) and will be absorbed with probability sin2(α − β). Placing a filter in the path of
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the photon and monitoring what happens corresponds to making a measurement on a

quantum state (in this case the polarization of the photon). The photons that happen to

pass through the filter are now in a new state with polarization β. All information about

the photon polarization, α, prior to passing through the filter is lost. This is due to the

uncertainty principle which guarantees that measurement of a photon can only reveal one

bit about the polarization.

The state of a single polarized photon can be described by a two dimensional space.

This means that if we choose two orthonormal vectors, say vr1 = (1, 0) and vr2 = (0, 1) we

can express any polarization as a linear combination of these two vectors v = a∗vr1 +b∗vr2.

This is called the rectilinear basis, where vr1 is the horizontal polarization and vr2 is the

vertical polarization. Another basis, called the diagonal basis can also be defined. The two

basis vectors, vd1 = (0.707, 0.707) and vd2 = (−0.707, 0.707), correspond to a polarization

angle of 45◦ and 135◦ respectively. These two bases have a special relationship to one

another. Because they are offset by 45◦, a vector originally prepared in one of the bases

will have equal projections onto the basis vectors of the other basis. As a result, a photon

prepared with polarization along an axis in one basis will behave randomly when subjected

to a measurement in the other basis. This means that the rectilinear and diagonal bases

are conjugates.

To illustrate the quantum key distribution protocol, we will follow the steps that two

people, commonly referred to as Alice and Bob, take to communicate securely. Alice will

choose either the rectilinear or diagonal basis for each single photon she sends to Bob. She

will also choose whether to encode a 1 or a 0, which corresponds to polarization along one

of the unit vectors in the chosen basis. When Bob receives a single photon, he must guess

which basis Alice used and make the corresponding measurement. If he guesses correctly

he knows with certainty if Alice sent a 1 or a 0. If he guesses incorrectly then he has a 50%

chance of measuring either a 1 or a 0 owing to the fact that the two bases are conjugates.

After Alice has sent Bob all of the photons she reveals which basis she used for each single
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photon. Bob will only keep the data points corresponding to photons that he measured in

the correct basis. Using the classical channel, they will check a subset of these data points

to make sure that Bob measured the same value that Alice sent. If their data do not

correlate, then an eavesdropper, commonly called Eve, made measurements on the single

photons before they reached Bob. After Eve’s measurement, the photons are no longer in

their original state. The result of Bob’s measurements on these photons will not match

the polarizations that Alice used, and Eve is detected. If Alice and Bob agree on most of

the data points they compare, they can be sure that the key is secure and use it to encode

future messages. This is referred to as the BB84 protocol for quantum cryptography. The

general setup is outlined in Fig. 1.1.

Figure 1.1: Quantum Key Distribution Setup: Image taken from [2]

Photon transmission through optical fibers has been studied extensively, but creating

and detecting single photons with specific polarizations remains a difficult task. True

single-photon sources are necessary because any multi-photon transmission compromises

the security of the system by allowing Eve to listen in undetected. To counter attacks that

can result from non-ideal single-photon sources, decoy pulses were demonstrated experi-

mentally in [3]. Other groups have proposed changing the BB84 protocol [4] or adjusting

the components used for single photon emission and detection [5, 6, 7]. But the advent of a

perfect single-photon source would eliminate the need for many of these adjustments to the

BB84 protocol. This would greatly simplify the implementation of quantum cryptography

in current networks.
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1.1 Overview of Single-photon Sources

The ideal single-photon source should generate single photons on demand, be electrically

driven, and control the photon polarization. When a single photon is desired a single

electron should recombine with a hole to emit a photon. If the electron and hole are

injected electrically, the device will be more easily integrated into systems and will be less

bulky than an optically driven alternative. This section describes various single-photon

sources that were initially demonstrated in the literature. These single-photon emission

schemes all fall short of the design requirements for a single-photon source that could be

used in a real quantum cryptography system. The following sections will illustrate the

advantages of using a single quantum-dot inside of a photonic-crystal microcavity in order

to meet the design requirements.

Many groups are currently working to develop a single-photon source that can be used

for quantum key distribution. The earliest work demonstrated single photon emission from

single atoms [8] or ions [9] in traps. Single molecules [10] and single quantum dots [11]

also released single photons. Quantum dots are more stable over long periods of time and

have the potential of being incorporated into devices. Atoms, ions, or molecules are more

challenging to isolate and require complex setups that are better suited for laboratory

research than real world applications. The major drawback of all these single-photon

sources is that they are optically pumped. Additional problems include limited speed,

poor photon collection efficiency and no polarization control.

To demonstrate an electrically driven single-photon source, Yuan et al. [12] proposed

a pin diode with a quantum-dot active layer. A metal aperture was used to select only

one dot for emission. The device demonstrated the ability to electrically drive single

photon emitters but did not efficiently couple the photons to the outside. To improve the

directionality of the emitted photons, other groups placed a distributed Bragg reflector

(DBR) below the quantum dot layer using a metal aperture [13] or an oxide aperture [14]
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to select a single quantum dot. Although the collection efficiency was improved, these

devices still do not provide any control over the photon polarization.

1.1.1 The Role of Optical Cavities

In traditional optical devices, such as lasers, the photon polarization is controlled by stim-

ulated emission and the emitted photons have the same polarization and direction as the

inducing photon. Microcavities are used in single-photon sources instead of stimulated

emission to control the properties of the spontaneously emitted photon. In a microcavity,

only certain field profiles are allowed, each corresponding to a particular mode. Unlike free

space where all frequencies have corresponding modes, many frequencies in a cavity will

have no associated mode. For example, in a simple one-dimensional cavity of length d,

the modes exist only at discrete frequencies corresponding to νr = mc/2dn where c is the

speed of light in vacuum, n is the index of refraction of the cavity medium and m = 1, 2, ...

is an integer. Because the polarization of the photon is that of its mode, by controlling

which modes exist in the microcavity one can control the photon polarization.

An optical cavity traps light between reflective surfaces. Reflection occurs at an in-

terface between two materials with different indices of refraction. When light is incident

from a medium of high refractive index to one of lower refractive index, total internal

reflection of the electromagnetic field is possible. For this to occur the incident angle of

the incoming field, θI must be larger than a critical angle θC . This special case is known

as total internal reflection (TIR). Light can also be reflected from a distributed Bragg

reflector (DBR) which is a multilayer stack of materials with alternating refractive indices

as indicated in Fig. 1.2. The thickness of the layers is on the order of the wavelength of

light to be reflected. Reflection from a DBR can be thought of in two different ways. One

way is to consider the sum of the reflections and refractions of a propagating plane wave

at each interface. Another way is to consider the periodicity of the structure. Any wave
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that propagates through the DBR must be periodic. Because of the two different dielectric

materials in the unit cell, all wavelengths will no longer be periodic and those that are not

will be prevented from traveling through the DBR.

Figure 1.2: Distributed Bragg reflector, periodic dielectric structure in one dimension.

The reflectivity of a DBR is not only wavelength dependent but is highly dependent on

the characteristics of the DBR as well. Changes in the number of periods, the indices of

refraction or the material thicknesses will affect the reflectivity profile. Thus with proper

design, it is possible to create a DBR to reflect almost any wavelength range with any

reflectivity. For maximum reflection the thicknesses are typically chosen as a quarter

wavelength, λn/4.

By placing two reflective surfaces parallel to but at some distance from one another,

an optical cavity is formed. Light originating from within the cavity will remain there for

some finite time before leaking out to the surrounding medium. The amount of time the

light is trapped depends on the surface reflectivity, the orientation of the reflecting surfaces,

and the absorption loss in the material separating the mirrors. These simple two-surface

cavities are one-dimensional systems and are constructed by using the principle of either

total internal reflection or distributed Bragg reflection for the mirrors. Figure 1.3 shows

the cavities corresponding to each type of reflection. It is possible to confine light in two or
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even all three dimensions. When the high index material of Fig. 1.3(a) is reduced to a finite

thickness in one (two) additional direction(s), light is confined in two (three) dimensions by

total internal reflection. Using distributed Bragg reflection for two and three dimensional

cavities is not as straightforward.

(a) One dimensional Fabry-Perot cavity (b) One dimensional cavity with DBR mirrors

Figure 1.3: Two types of one dimensional cavities

A DBR is essentially a periodic arrangement of materials of different dielectric constants

in one dimension. To obtain reflectivity in more than one direction requires a two or three

dimensional periodic arrangement of the materials. Some common periodicities for 2D and

3D are shown in Fig. 1.4. Structures with periodic arrangements of dielectric constants

on the order of the wavelength of light in 1, 2 or 3D are referred to as photonic crystals.

Photonic crystals were first introduced by Yablonovitch who proposed that a complete

photonic band gap would exist for a properly designed 3D photonic crystal [15]. The

range of wavelengths which are prohibited from traveling through a periodic structure is

referred to as the band gap. Much of the terminology used to describe photonic crystals is

borrowed from solid state physics. The periodic refractive index is the photon equivalent

of the periodic potential experienced by electrons traveling through a solid state crystal.

To create a two or three dimensional cavity using distributed Bragg reflection, 2D or 3D

photonic crystals are used. A cavity is formed by a defect in the perfect periodic crystal.

Light emitted into a photonic crystal cavity will be confined if the wavelength corresponds
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(a) 2D Photonic Crystal (b) 3D Photonic Crystal [16]

Figure 1.4: 1.4(a) two dimensional photonic crystal, periodic in two dimensions only. 1.4(b)
three dimensional photonic crystal, periodic in all three dimensions.

to a frequency within the photonic band gap of the bulk photonic crystal.

More complicated cavities can be formed by combining both total internal reflection

and distributed Bragg reflection to create quasi-3D cavities. One such cavity is formed by

placing a defect in a 2D photonic crystal slab. This forms a quasi-3D cavity where the

dielectric periodicity confines light in-plane and total internal reflection (TIR) is responsible

for vertical confinement as shown in Fig. 1.5. The cavity modes of a 2D photonic crystal

slab microcavity are more complicated than those of a rectangular cavity because any

defect to the perfect periodic structure forms a microcavity. Slightly decreasing the size of

one hole will pull up a state from the lower band (dielectric band) of the gap. Increasing

the size of one hole will first bring one state down from the upper band (air band). As

the radius is increased further a series of higher order modes will enter the band gap. The

ability to precisely control the number of modes in the cavity as well as the frequencies

at which the modes appear is one of the most remarkable things about photonic crystal

cavities.

The cavity also enhances the rate of spontaneous emission which will lead to faster

emission of a photon. When a microcavity is used in a single-photon source, the op-

erating speed of the device should increase. The spontaneous emission rate is inversely
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Figure 1.5: 2D Photonic Crystal Slab Microcavity

proportional to the spontaneous emission lifetime, τspon, which is a measure of how long an

electron remains in its excited state before spontaneously emitting a photon. The amount

of spontaneous emission enhancement is proportional to the ratio of the density of modes

in the cavity to the density in free space. The density of modes is the number of modes

per unit frequency range. In free space this is given by the following equation

ρo(ω) = 2ω2V

πc3 (1.1)

where ω is frequency, V is volume, and c is the speed of light [17].

For microcavities the density of modes is cavity specific. In photonic crystal microcavi-

ties, the density of modes falls to 0 inside the photonic band gap except at mode frequencies

there the density is represented by a Dirac delta function. At the mode frequencies the

density of modes is higher than in free space and spontaneous emission enhancement oc-

curs. For all other frequencies in the photonic band gap, the photonic crystal microcavity

exhibits spontaneous emission suppression because the density of modes is significantly

reduced from the free space density.

An exact expression for the spontaneous emission enhancement can be derived by taking
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the ratio of the spontaneous transition rate in a cavity to the rate in bulk material. In

bulk material the spontaneous transition rate can be written as

W bulk
if = 4nω3

3~c3 |dfi|
2 (1.2)

where dfi is the transition matrix element and n is the index of refraction of the bulk

material. In a microcavity the transition rate is

W cavity
if = 4

~2∆ω |dfi|
2 (αEmax)2 (1.3)

where α is the normalization factor of the fields given by

α2 = 2π~ωfi∫
ε(r)E2(r)d3r

(1.4)

Derivation of the bulk and cavity spontaneous emission rates can be found in Appendix.1.

Introducing the cavity quality factor Q = ωfi/∆ω and the mode volume [17]

Veff =
∫
ε(r)E2(r)d3r

(ε(r)E2(r))max
(1.5)

and taking the ratio of equations (1.3) and (1.2), one obtains the following equation for

the spontaneous emission enhancement

Fp = 3
4π2

(
λ

n

)3
Q

Vm
(1.6)

This result is commonly referred to as the ’Purcell’ spontaneous emission enhancement

factor. It is the amount of enhancement or suppression of the spontaneous emission rate

due to the modified density of modes in a microcavity.

Purcell noted that the radiation rate for a radio frequency oscillator was modified when
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connected to a resonant circuit. The difference was quantified by equation (1.6). At

radio frequencies, the cavities are quite large and so the effects are difficult to observe. As

microelectronic processing techniques improved, it was possible to make smaller and smaller

cavities and thus to see this effect in a more pronounced way. Small cavities designed for

optical wavelengths are extremely common today. A photonic crystal microcavity, for

example, typically has a cavity diameter of approximately 1µm. Refer to the 2D photonic

crystal of Fig. 1.4(a) and imagine removing one hole. In these structures the Purcell effect

is observed due to the relatively high quality factor and the small mode volume.

1.2 Novel Microcavity Design and Computational Model

Development

Introducing a microcavity as part of a single-photon source would control the photon po-

larization and lead to faster operating speeds. To take advantage of these benefits, several

groups have experimentally demonstrated microcavity single-photon sources. Specifically,

quantum dots in microring resonators [18], micropillar cavities [19] and photonic crystal

cavities [20] have been presented. The major disadvantage of these devices is that they

are optically pumped with a pulsed laser source. There is little chance that an electrical

connection could be made to either the micropillar or the microring resonator without dis-

turbing the optical properties of the cavity. Although making an electrical connection to a

photonic crystal cavity is also challenging, an electrically driven photonic crystal laser [21]

demonstrated that it is possible to electrically pump these structures. This laser, shown

in Fig. 1.6(a), consists of a 2D photonic crystal slab suspended in air with a quantum well

active region. A central conducting post delivered holes to the gain region and a conduct-

ing metal pad circled the photonic crystal to inject electrons into the device. With an

optimized post and cavity design, Park et al. [21] showed that the post did not degrade
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the optical cavity quality. This device was not optimized for single photon emission, but it

represents a significant step toward, demonstrating the feasibility of an electrically driven

microcavity single-photon source.

(a) 2D PC slab laser (b) 2D PC slab single-photon source

Figure 1.6: 1.6(a) The electrically driven single defect 2D photonic crystal laser presented
by Park et.al. [21]. 1.6(b) Proposed quantum dot photonic crystal microcavity single-
photon source.

Although a significant research effort has been devoted to experimental studies of single-

photon sources, not much theoretical work has been presented. The focus of this research

is to address the theoretical side of the problem by modeling a single quantum dot in

a photonic crystal microcavity. The specific device structure, shown in Fig. 1.6(b), is

a modified version of the photonic crystal laser proposed by Park et al. [21]. To achieve

single-photon emission, the quantum well layer would be replaced by a sparse quantum-dot

layer. The quantum dots must be sparse enough that there is a high probability that only

one quantum dot would be located inside of the photonic crystal microcavity, ensuring

single photon operation. Instead of the simple 2D photonic crystal slab microcavity of

Fig. 1.6(a), the microcavity of Fig. 1.6(b) combines a 2D photonic crystal for in-plane

confinement with a distributed Bragg reflector (DBR) for vertical confinement. Whereas

total internal reflection is a naturally occurring phenomenon, the reflection from a DBR

can be almost fully controlled. This additional level of control gives the hybrid-microcavity

an advantage over the photonic crystal slab suspended in air.

The single-photon source of Fig. 1.6(b) could be electrically pumped by controlling
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Figure 1.7: The energy-band diagram of the pin AlGaAs-GaAs heterojunction with (a)
and without (b) the applied voltage pulse. For Vj = V0(Vj = V0 + ∆V ), the Fermi energy
of the n (p) type AlGaAs layer is at least e2/2Cni (e2/2Cni) higher (lower) than the energy
of the quantum-dot electron (hole) subband. Image taken from [22].

the injection of electrons and holes into the quantum dot. One method that has been

demonstrated, is an AlGaAs/GaAs pin device with either a quantum well or quantum

dot located in the intrinsic region [22]. In this structure, the intrinsic region acts as a

barrier to carriers that otherwise would occupy one of the lower discrete energy levels of

the conduction band in the quantum dot. If the voltage across the pin junction V (t) is less

than the built-in potential, Vbi, the carriers can only enter the quantum dot by resonant

tunneling. The conditions for resonant tunneling are given by

Efn − e2/2Cni ≥ Eres,e ≥ Enc − e2/2Cni

Efp + e2/2Cpi ≤ Eres,h ≤ Epv + e2/2Cpi
(1.7)

where Eres,e and Eres,h are the energies of the electron and hole subbands, Enc and Epv

are the energy of the conduction and valence band in the n/p-type AlGaAs, Cni and Cpi

are the capacitances between the dot and the n/p-type AlGaAs, and Efn and Efp are the

Fermi levels in the n/p-type AlGaAs. The Fermi energy of the n-type(p-type) AlGaAs

must be at least e2/2Cni higher(lower) than the energy of the quantum dot electron(hole)

subband for electron(hole) tunneling to occur. This is represented pictorially in Fig. 1.7.
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To inject a single electron-hole pair into the quantum dot the following process will

take place. At an applied voltage, V (t1) = Vo, an electron will tunnel into the quantum

dot. The presence of the electron changes the capacitance and the condition for resonant

tunneling of an electron is no longer satisfied. Additional electrons will not enter the

quantum dot. This is referred to as the Coulomb blockade. The voltage is then changed

to V (t2) = Vo + ∆V . Now a hole will tunnel into the quantum dot and again the Coulomb

blockade prevents additional holes from entering the quantum dot. The electron and

hole will recombine spontaneously to emit a photon. By using this method to pump the

photonic crystal microcavity single-photon source of Fig. 1.6(b), the device will meet all

of the requirements of a single-photon source.

1.3 Overview of this Thesis

A promising single-photon source for quantum cryptography is composed of a single quan-

tum dot inside a photonic crystal microcavity because it can be electrically driven and

emits photons of a designed polarization on demand. A detailed understanding of the

device operation is essential for achieving high performance.

This thesis focuses on using computational modeling techniques to study this single-

photon source and to reach a set of optimal device parameters. There are two key modeling

tools: finite-difference time-domain techniques for modeling the optical properties of the

device, and electronic band structure calculations using k ·p perturbation theory to include

the effects of strain on the energy bands. In Chapter 2, the finite-difference time-domain

techniques are discussed in detail using brief illustrative examples. This chapter also pro-

vides an outline of the theoretical equations used to model the interaction between the

quantum dot and the photonic crystal microcavity which is described by the spontaneous

emission rate. Discussion of k · p perturbation theory and the specifics of the spontaneous

emission lifetime calculation are saved for Chapter 3. Here, the active medium of the de-
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vice, the InAs quantum dot, will be examined in detail. The numerical methods used to

calculate the energy levels and wavefunctions in the quantum dot through k · p perturba-

tion theory will be discussed first. A set of general trends will then be established to assist

in determining the proper quantum dot size during the design process. Here we will also

examine how changes in the quantum dot size change the energy bands and subsequently

the wavelength of the emitted photon. Finally this chapter introduces a method to cal-

culate the actual spontaneous emission lifetime of the system. The theoretical results are

compared to experimentally available data to prove the accuracy of the method.

The following chapters focus on how the computational model is used to design an

optimal single-photon source. Chapter 4 discusses light confinement in three dimensions.

The Chapter begins with an overview of microcavities in 2D photonic cyrstals and dis-

tributed Bragg reflectors. Cavities that consist of a 2D photonic crystal slab suspended in

air will then be compared with cavities that use DBRs for vertical confinement. Studies

of the mode frequencies, mode profiles, cavity quality factors and radiation rates will be

presented. 3D finite-difference time-domain photonic band structure calculations are also

used to compare various quasi-3D cavities. Chapter 5 combines the knowledge of quasi-3D

microcavity design with the quantum dot photon emission trends to analyze an optimal

single-photon source. The Chapter begins with an examination of the cavity modes that

arise in candidate cavities. A summary of the performance will be given including: band

diagrams, mode frequencies and profiles, and key lifetimes. The most promising of the

microcavities will be examined further to investigate the affect of fabrication non-idealities

on the spontaneous emission lifetime. The final chapter of this thesis contains concluding

remarks and suggestions for future investigation.
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Chapter 2

Methodology

2.1 Overview of physical models

The single-photon source introduced in Chapter 1 utilizes a quasi-3D photonic crystal

microcavity to control the emission of a photon from a single quantum dot. The effect of

the microcavity is twofold. First, the number of modes is suppressed so that only a few

modes exist within the photonic bandgap, each having their own corresponding resonant

field distribution. Second, the spontaneous emission lifetime, or the time that the electron

remains excited, is perturbed. When a cavity mode lies at the electron transition frequency

there is an enhancement in the emission and the lifetime becomes shorter. Conversely when

there is no mode at the transition frequency then the electron remains in the excited state

longer than it would in the absence of the cavity. After the photon is emitted from the

quantum dot, it will remain in the cavity for some amount of time. This time is referred to

as the photon lifetime. A long photon lifetime will limit the operating speed of the device

because the photon must leave the cavity before another excitation emission cycle occurs.

In general, it is expected that the hybrid-photonic crystal microcavity will have a higher

quality factor and larger Purcell factor due to the increased confinement in the vertical

direction. As a result, the spontaneous emission lifetime should decrease and the photon
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Figure 2.1: Illustrative view of the relevant components and parameters for a quantum
dot photonic crystal microcavity single photon source. a) A basic single photon emitter.
b) The quantum dot’s parameters are the dot height, size, and composition. c) The 2D
photonic crystal’s parameters are the lattice constant, a, the hole radius, r, and the slab
thickness, t. d) The photonic crystal cavity parameters depend on the geometry of the
defect. Here a single hole is removed and two neighboring holes are perturbed to break the
mode degeneracy.

lifetime increase.

Before fabricating such a complex device, it is imperative that an accurate computa-

tional model be developed to optimize the key parameters. In order to predict how the

device will operate, it is necessary to determine the electron transition frequency, the cav-

ity mode frequencies, the mode profiles, the spontaneous emission lifetime and the photon

lifetime. The device performance depends on several parameters that describe the quan-

tum dot and the microcavity. For example, the dot-size and material system determine the

energy level spacings and subsequently the electron transition frequency. As explained in

Chapter 3, the quantum dot parameters also affect the electron wavefunctions which are
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used to compute the spontaneous emission lifetime. For the photonic crystal, the lattice

constant, a, the hole radius, r, and the slab thickness, t, determine where the photonic

bandgap will lie. The cavity mode frequencies and the mode profiles then depend on

these parameters as well as the type of defect that forms the microcavity. Because the

spontaneous emission lifetime is a function of the density of photon modes available in the

microcavity, this lifetime is also affected by the photonic crystal parameters and the defect.

A summary of the key parameters is shown in Fig. 2.1.

The complete model devised for this thesis is divided into two parts. The first is

for the design of a quantum dot and photonic crystal microcavity to operate at a user

defined frequency. The energy levels and wavefunctions for the quantum dot are found for

a particular dot material and size by using k · p perturbation theory. Then the photonic

crystal and the microcavity are designed using Finite-Difference Time-Domain methods

to ensure that a mode occurs at the quantum dot electron transition frequency. After

this basic microcavity is designed, the DBRs can be added. For the DBRs, the important

parameters are the number of periods for the top and bottom mirror as well as the layer

indices of refraction and thicknesses. The bottom mirror will likely be over 99% reflective

at the operating frequency of the device to prevent photons from traveling back toward

the substrate. Because photons will exit the device from the top, the top DBR will have

a lower reflectivity, likely between 0% and 50%. The second part of the model assesses

how well the device functions by computing the key lifetimes and mode profiles. If the

device does not meet the desired goals, then the microcavity can be redesigned and the

functionality reassessed. A flowchart for the computational model is shown in Fig. 2.2.

It is obvious that some parts of the design process allows for the quantum dot and the

photonic crystal microcavity to be considered separately, however their interaction is a key

advantage of using this structure as a single photon source. Calculation of the spontaneous

emission lifetime of an electron in the quantum dot photonic crystal microcavity system

is thus the main feature of the computational model. Due to the importance of this
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Figure 2.2: Computational Model Flowchart - the left hand side contains the input param-
eters, the middle the design portions of the model and the right hand side has the analysis
tools.

calculation, the details will be discussed in Chapter 3 where the modeling of the quantum

dot will also be covered. The general equations for spontaneous emission rates are discussed

briefly in this Chapter to provide a frame of reference for the radiation rate calculations.

The focus of this Chapter, however, is on the computational modeling methods that are

used for the photonic crystal microcavity. This discussion includes an overview of the

Finite-Difference Time-Domain method which is used in the design and characterization

process.

2.2 Spontaneous Emission Rates in Quantum Dots

Time-dependent perturbation theory is used to determine the transition rates for an atomic

electron in the presence of electromagnetic radiation. Assuming that the Hamiltonian will
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vary harmonically, the key equation that results is Fermi’s golden rule, given by

Wi→f =
∫

Γifρ(Ef )dEf = 2π
~
| 〈Φf | Ĥ ′(t) |Φi〉 |2ρ(Ef )|Ef =Ei+~ω (2.1)

with

Γif = 2π
~
| 〈Φf | Ĥ ′(t) |Φi〉 |2δ(Ef − Ei + ~ω). (2.2)

Here Wi→f is the transition rate from some initial state Φi to some final state Φf , Ef and

Ei are the final and initial energies of the electron respectively, ρ(Ef ) is the density of final

electron states, Ĥ ′(t) is the time varying perturbation that results from the electromagnetic

radiation, and ω is the angular frequency of the electromagnetic field. The difference

between these two equations is that equation (2.2) is the transition rate for one specific

transition and equation (2.1) is the transition rate from an initial state to a continuum of

final states. To obtain equation (2.1), Γif is integrated over the number of final states that

fall within the energy interval Ef → Ef + dEf which is equivalent to ρ(Ef )dEf .

Fermi’s Golden Rule is a general equation used to obtain transition rates for either

absorption or emission of photons. In our case we are concerned with the spontaneous

emission of a photon from a quantum dot in a microcavity. The remainder of this section

will focus on how equation (2.1) must be tailored for this situation. Specifically, the

electron is initially in one of the discrete energy levels of the quantum dot and the field is

in a photonic state with 0 photons. These form a coupled system that can be expressed

as |Φi〉 = |ψi〉 |0〉. After some time, the electron recombines with a hole and a photon is

emitted. The coupled quantum dot/microcavity system is then in state |Φf〉 = |ψf〉 |1〉

with 1 photon. The transition occurs as a result of the time varying Hamiltonian Ĥ ′(t)

which is given by

Ĥ ′(t) = q

2me

~A(~r, t) · ~P , (2.3)

where ~A(~r, t) is the magnetic vector potential of the electromagnetic field, ~P is the mo-
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mentum operator, me is the mass of the electron, q is the charge on the electron and c is

the speed of light. The magnetic vector potential can be thought of classically or quantum

mechanically. Because the classical treatment does not account for spontaneous transi-

tions, the quantum mechanical treatment must be used and the electromagnetic field must

be quantized. Derivation of equation (2.1) and other supplemental information pertinent

to this section are given in Appendix .1.

Quantization of the electromagnetic field results in the following equation for the per-

turbation operator for photon emission

Ĥ ′(t) =
∑
k

∑
λ

√
~

2ωkV ε
q

me

a†λke
−i~k·~r ~ε∗λ · ~Peiωkt (2.4)

where ωk is the angular frequency of the radiation, V is the volume of the field, ~k is the

wavevector of the radiation, ε is the dielectric constant, ε~λ are two polarization unit vectors

in the plane perpendicular to ~k, and a†λk is the quantum mechanical raising operator. Sub-

stituting (2.4) and the initial and final states into (2.2), the equation for the spontaneous

transition rate that results in a photon of wavenumber ~k and polarization λ becomes

Γsponi→f = πq2

m2
eωkV ε

| 〈ψf | e−i
~k·~rε∗λ · ~P |ψi〉 |2δ(Ef − Ei + ~ωk). (2.5)

The dipole approximation is typically used to simplify equation (2.5) and e−i
~k·~r ≈

1± i~k ·~r− 1
2(~k ·~r)2∓ · · · ≈ 1. This approximation is reasonable because the term ~k ·~r and

all higher order terms will be much smaller than 1 owing to the fact that the wavelength

of the radiation is much larger than the size of the quantum dot. To determine the

total spontaneous transition rate, Γsponif must be integrated over the density of final states.

Because the quantum dot has discrete energy levels the density of the final electron states is

a delta function. The spontaneous transition rate will then only depend on the integration

of Γif over the density of the final photonic states. The spontaneous emission rate is given
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by

W spon
i→f =

∫
Γsponif ρC(ω)dω = π

~ε
| − q 〈ψf |~r |ψi〉 |2ρC(ωif ). (2.6)

In this equation
~dfi = −q 〈ψf |~r |ψi〉 (2.7)

is the dipole matrix element and ρC(ωif ) is the photon density of modes in the microcavity

evaluated at the electron transition frequency ωif . Direct solution of the density of photon

modes in a cavity is somewhat tricky as will be discussed in Section 2.3.4. An easier

approach will be taken in Chapter 3, where it will be shown that the rate can be found

from a combination of the spontaneous emission rate in bulk and the FDTD radiation rate

calculations. The FDTD calculations essentially determine the change in radiation rates of

an emitter in a specific cavity geometry relative to the bulk rate. This change in radiation

rate is ultimately a result of a change in the density of photon modes and Eq. 2.6 is still a

valid description of the calculation.

Equation 2.6 can not be solved without first calculating the initial and final wave-

functions, ψi and ψf and subsequently the dipole matrix element, ~dfi. The energy levels

involved in the transition are also required so that the photon frequency can be determined.

These quantities all depend on the quantum dot size, geometry and material system. The

quantum dots proposed for the single-photon source would be grown by molecular beam

epitaxy (MBE) and formed through the Stranski-Krastanov growth process. A likely ma-

terial system for the single-photon source would be GaAs with InAs quantum dots because

the quantum dots can be designed to emit light at the important telecommunications wave-

length of 1.3µm. To form the quantum dots, a few monolayers of InAs are deposited on

top of GaAs. There is a lattice mismatch between these two materials and the layers are

subsequently strained. After the amount of the InAs deposited reaches a critical thickness,

the strain is relaxed by the formation of small islands, or quantum dots. Although the

strain is relaxed from the 2D growth case, a significant amount of strain remains in quan-
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tum dots grown by MBE. This will have a profound impact on the energy levels and the

wavefunctions in the quantum dot and can not be ignored in favor of simplified approaches

that consider only the 3D confinement potential.

The energy levels and wavefunctions are determined through an 8×8 k ·p perturbation

theory at the beginning of the single photon device design process so that the frequency

corresponding to the transition can be used to design the photonic crystal microcavity. By

using 8× 8 k · p perturbation theory, the strain is easily accounted for. The wavefunctions

for the ground state and the excited state are substituted into equation (2.7) to find the

dipole matrix element.

The spontaneous emission lifetime can be found from the spontaneous transition rate

through the simple calculation

τspont = 1
Wi→f

(2.8)

The difficulty in finding τspont then lies in determining the dipole matrix element from

equation (2.7) and the relative radiation rates from the FDTD calculations. Because the

actual energy levels, wavefunctions and dipole matrix element of the quantum dot will be

used to calculate the transition rates, absolute lifetimes will be found for the quantum

dot microcavity system. Most researchers currently just compute the relative change in

lifetimes as a result of a particular microcavity. They are essentially de-coupling the

quantum dot microcavity system for computational ease. To understand how a single-

photon source operates, simple calculations of the Purcell factor do not suffice and models

of the actual lifetimes of the device are needed.
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2.3 Optical simulations: the Finite-Difference Time-

Domain Method

Simulations based on the Finite-Difference Time-Domain (FDTD) method provide valuable

information about the behavior of electromagnetic fields in the presence of various dielectric

structures. These simulations are often used to show field propagation with time as in the

case of mode propagation in a waveguide. The FDTD method is also useful for simulations

of optical cavities where information about the mode frequencies, profile, cavity quality

factor Q, and radiation rate is easily collected. Additionally, it is possible to use the FDTD

method to solve for the band structure of photonic crystals. The following discussion

provides a brief overview of the techniques used in the application of the FDTD method to

these problems. We will begin with a discussion of how Maxwell’s equations are converted

to a form that can be implemented in a computer code.

The FDTD method solves Maxwell’s equations,

5×H = ε
∂E

∂t
(2.9)

5× E = −µ∂H
∂t

(2.10)

directly by approximating the temporal and spatial derivatives with central differences on

a discretized grid. In our simulations we use the method of Yee [1] to discretize the problem

space as shown in Fig. 2.3. Here the electric and magnetic fields are interleaved in space

and time and a leap-frog approach is used to update the fields. Using the method of Yee,

the FDTD equations can be solved for one, two or three dimensional problems based on

the requirements of the simulation. Although 2D and 3D applications are used to obtain

the results in this thesis, we only consider the 3D case here as it is the most general.

Examination of Maxwell’s equations reveals that (2.9) and (2.10) can be separated into
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Figure 2.3: Yee Grid

6 equations describing the time variation of the x, y, and z components of the electric and

magnetic fields. These equations are

∂Hz

∂y
− ∂Hy

∂z
= ε(r)∂Ex

∂t
(2.11)

∂Hx

∂z
− ∂Hz

∂x
= ε(r)∂Ey

∂t
(2.12)

∂Hy

∂x
− ∂Hx

∂y
= ε(r)∂Ez

∂t
(2.13)

∂Ez
∂y
− ∂Ey

∂z
= −µ∂Hx

∂t
(2.14)

∂Ex
∂z
− ∂Ez

∂x
= −µ∂Hy

∂t
(2.15)

∂Ey
∂x
− ∂Ex

∂y
= −µ∂Hz

∂t
(2.16)

Central difference approximations are then used for the spatial and time derivates in
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these equations. The difference approximations for time derivatives of the electric and

magnetic fields are written as

∂E

∂t
= En+1/2 − En−1/2

∆t (2.17)

∂H

∂t
= Hn+1 −Hn

∆t . (2.18)

The spatial derivatives are different for each field component but follow directly from the

Yee grid. As an example we can write

∂Ey
∂x

=
En+1/2
y (i+ 1, j + 1/2, k)− En+1/2

y (i, j + 1/2, k)
∆x (2.19)

∂Hy

∂x
=
Hn
y (i+ 1/2, j, k + 1/2)−Hn

y (i− 1/2, j, k + 1/2)
∆x (2.20)

The variable n is an integer used as a time index and n∆t corresponds to some time in

seconds. The variables i, j, k are integers used to index the fields in the x, y, z direction

respectively so that i∆x corresponds to some distance along the x direction. For most cases

it is convenient to choose ∆x = ∆y = ∆z and that is done here. Applying the central

difference approximations to equations (2.11) to (2.16) we obtain the following equations

that are used to update the electric and magnetic field components

En+1/2
x (i+ 1/2, j, k) = En−1/2

x (i+ 1/2, j, k) + ∆t
ε(r)∆x [Hn

z (i+ 1/2, j + 1/2, k)

−Hn
z (i+ 1/2, j − 1/2, k) +Hn

y (i+ 1/2, j, k − 1/2)−Hn
y (i+ 1/2, j, k + 1/2)]

(2.21)

En+1/2
y (i, j + 1/2, k) = En−1/2

y (i, j + 1/2, k) + ∆t
ε(r)∆x [Hn

x (i, j + 1/2, k + 1/2)

−Hn
x (i, j − 1/2, k + 1/2) +Hn

z (i− 1/2, j + 1/2, k)−Hn
z (i+ 1/2, j + 1/2, k)]

(2.22)

En+1/2
z (i, j, k + 1/2) = En−1/2

z (i, j, k + 1/2) + ∆t
ε(r)∆x [Hn

y (i+ 1/2, j, k + 1/2)

−Hn
y (i− 1/2, j, k + 1/2) +Hn

x (i, j − 1/2, k + 1/2)−Hn
x (i, j + 1/2, k + 1/2)]

(2.23)
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Hn+1
x (i, j + 1/2, k + 1/2) = Hn

x (i, j + 1/2, k + 1/2) + ∆t
µ∆x [En+1/2

y (i, j + 1/2, k + 1)

−En+1/2
y (i, j + 1/2, k) + En+1/2

z (i, j, k + 1/2)− En+1/2
z (i, j + 1, k + 1/2)]

(2.24)
Hn+1
y (i+ 1/2, j, k + 1/2) = Hn

y (i+ 1/2, j, k + 1/2) + ∆t
µ∆x [En+1/2

z (i+ 1, j, k + 1/2)

−En+1/2
z (i, j, k + 1/2) + En+1/2

x (i+ 1/2, j, k)− En+1/2
x (i+ 1/2, j, k + 1)]

(2.25)

Hn+1
z (i+ 1/2, j + 1/2, k) = Hn

z (i+ 1/2, j + 1/2, k) + ∆t
µ∆x [En+1/2

x (i+ 1/2, j + 1, k)

−En+1/2
x (i+ 1/2, j, k) + En+1/2

y (i, j + 1/2, k)− En+1/2
y (i+ 1, j + 1/2, k)]

(2.26)

These equations are easily implemented in a programming language such as C.

Since most interesting situations occur in a medium of inhomogeneous dielectric con-

stant, ε(r), it is necessary that the FDTD method be applicable when the dielectric con-

stant varies across the simulation space. The FDTD method obeys the basic boundary

conditions for electromagnetic fields at the interface of two materials of different dielectric

constants. It is thus valid to set εr at every grid point in the simulation space to correspond

with the structure of interest and then apply the normal FDTD field update equations.

Finite-difference time-domain simulations also require various sources depending on the

application. All of the simulations described in this thesis use a hard source. When a hard

source is used, one of the fields is set to the value of a desired input signal at each time

step. Hard sources can be specified for a single point, a line, or a plane. They typically

have a Gaussian and/or sinusoidal profile. The details of the input excitation required for

each calculation will be discussed below.

2.3.1 The Perfectly Matched Layer

One of the most straightforward applications of the basic FDTD method just described is

the variation of the electromagnetic fields with time. This class of simulations for example

can show light traveling down a waveguide, light reflecting off of the interface between two
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materials of different dielectric constants, or the profile of an optical cavity mode. In all of

these cases it is necessary to simulate an unbounded problem in some finite computational

domain. When the electromagnetic fields reach the outer boundary of the simulation space,

they will be totally reflected. These reflected waves will propagate back into the region

of interest making the results difficult to decipher. One solution is to make the problem

space so large that the fields do not reach the outer boundary during the time of simulation.

Since the field update equations are solved for each grid point at each time step adding

additional grid points to the simulation outside of the structure of interest has a negative

effect on both the computation time and storage. Instead it is wise to use a boundary

condition at the edge of the simulation space that absorbs outgoing waves.

Many absorbing boundary conditions have been proposed, but the most popular method

was introduced by Berenger [2]. The Berenger Perfectly Matched Layer (PML) splits

the electric and magnetic fields into parallel and perpendicular components. By varying

the electric conductivity and the magnetic loss in the split field equations around the

boundary of the problem space, waves propagate into the PML with little reflection and are

attenuated. The advantage of the PML is that it affectively absorbs waves of any frequency

and any incident angle. The major drawback of the Berenger PML is the unnatural field

splitting at the boundaries which requires the use of different field update equations in

these regions. While the Berenger PML is a mathematical model based on a non-physical

medium, if such physical absorbing medium were to exist it must be anisotropic. Sacks

used the idea of this anisotropic material to create the uniaxial PML (UPML) [3]. In these

simulations we implement the UPML because unlike the PML it allows the traditional field

update equations to be computed across the entire problem space. The coefficients used

for the field updates are constant except for in the boundary regions.

To implement the UPML, Maxwell’s equations 2.9 and 2.10 are modified and are shown
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in 2.27 and 2.28.

5×H = jωε


sysz

sx
0 0

0 sxsz

sy
0

0 0 sxsy

sz

E (2.27)

5× E = −jωµ


sysz

sx
0 0

0 sxsz

sy
0

0 0 sxsy

sz

H (2.28)

with

sx = κx + σx

jωε0
, sy = κy + σy

jωε0
, sz = κz + σz

jωε0
(2.29)

Here κi, i = x, y, z, determines the absorption and σi the loss. In the interior of the problem

space κi = 1 and σi = 0 and equations (2.27) and (2.28) reduce to the original Maxwell’s

equations (2.9) and (2.10). The premise of the UPML is that the values for κi and σi vary

slowly at the edge of the UPML and the interior of the problem space. Accordingly, we

use a polynomial grading for these parameters that increases with depth into the UPML

so that

σx(x) = (x/d)mσx,max, κx(x) = 1 + (κx,max − 1)(x/d)m (2.30)

where

σx,max = −(m+ 1) ln[R(0)]
2ηd (2.31)

and m is the degree of the polynomial usually 3 or 4, η is the impedance, d is the thickness

of the UPML, and x is the distance into the UMPL. Typically the UPML is between 10 and

20 computational cells thick. R(0) is the desired reflection error at normal incidence to the

UPML. Through a series of numerical experiments, the optimal value for a d = 10cell layer

UPML is R(0) = e−16. The variable κx,max in equation (2.30) is the maximum attenuation

coefficient which is a number less than or equal to 1. Note that η is taken as the impedance

of free space regardless of the dielectric profile of the problem space. This is necessary to
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maintain field continuity within the UPML but does not require that the dielectric constant

be 1 within the boundary region of the simulation. The dielectric profile is instead specified

by the ε(r) of equation (2.27) and can be separated from the UPML parameters.

Equations (2.27) and (2.28) are difficult to discretize as given. The process is simplified

by introduction of the electric and magnetic flux, D and B, respectively. We define these

variables as

Dx = ε(r) sz

sx
Ex, Dy = ε(r) sx

sy
Ey, Dz = ε(r) sy

sz
Ez (2.32)

Bx = µ sz

sx
Hx, By = µ sx

sy
Hy, Bz = µ sy

sz
Hz (2.33)

The equations for the electric and magnetic fields then become


∂Hz

∂y
− ∂Hy

∂z

∂Hx

∂z
− ∂Hz

∂x

∂Hy

∂x
− ∂Hx

∂y

 = jω


sy 0 0

0 sz 0

0 0 sx




Dx

Dy

Dz

 (2.34)


∂Ez

∂y
− ∂Ey

∂z

∂Ex

∂z
− ∂Ez

∂x

∂Ey

∂x
− ∂Ex

∂y

 = −jω


sy 0 0

0 sz 0

0 0 sx




Bx

By

Bz

 (2.35)

Equations (2.32) through (2.34) form a set of 12 equations that must be discretized and

evolved in time to implement a 3D FDTD algorithm. First the electric fluxes Dx,y,z are

found from the magnetic fields Hx,y,z using equation (2.34). Next the electric fields Ex,y,z

are found from the electric flux by equation (2.32). Then the magnetic fluxes Bx,y,z are

updated from the electric fields using equation (2.35). Finally the magnetic fields are found

from the magnetic flux by equation (2.33). The 12 field update equations are discretized

using the same procedure that was used to obtain equations (2.21) to (2.26) from equations

(2.11) to (2.16). The discretized form of these equations is used in the 3D FDTD code.
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2.3.2 Band Diagrams

The first application of the FDTD method that is used in the single photon source model is

calculation of the band structure of a photonic crystal. In the model, these calculations are

used to design a photonic crystal with a band gap centered around the electron transition

frequency. Although our device is three dimensional, it is possible to use a 2D FDTD

calculation to reduce computation time during the initial stages of the design process.

Here, a finite slab thickness is represented by an effective refractive index. A single unit

cell is discretized in 2 dimensions and is excited by a delta function in space and a wide

frequency content Gaussian pulse in time. Monitor points are scattered throughout the

unit cell to collect the time varying field data. It is important that neither the input

excitation nor the monitor points are located at points of high symmetry as this could

result in undetected modes. Periodic boundary conditions are used to ensure that fields

leaving one side of the unit cell appear immediately on the other side multiplied by the

appropriate phase factor. The boundary conditions for the Ez field are given as an example.

Ez|i=0 = Ez|i=imaxe
j
−→
k ·
−→
L

Ez|j=jmax+1 = Ez|j=1e
−j
−→
k ·
−→
L

(2.36)

where ~L is a real space vector with length a in this case and ~k is a vector in reciprocal

space pointing from the origin to a point along the outside of the irreducible Brillouin zone

(see Fig. 2.4). The variable i is an index along the x direction and j an index along the y

direction. The unit cell spans points 1 to max+ 1.

Photonic band structure calculations are easily illustrated with a square lattice photonic

crystal of dielectric cylinders in air with lattice constant a = 574nm. The real space lattice,

the unit cell, and the reciprocal lattice with the irreducible Brillouin zone are shown in Fig.

2.4. The radius of the rods is r = 0.2a = 114.8nm and the index of refraction is n = 2.9833.

The simulations must be run multiple times. Each time the boundary conditions are
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(a) 2D Square Lattice - Real space (b) 2D Square Lattice - Reciprocal Space

Figure 2.4: The square lattice photonic crystal with lattice constant a. 2.4(a) the real space
lattice with the unit vectors a1 and a2. The shaded region represents the unit cell of the
square lattice. 2.4(b) the reciprocal lattice space. The Brillouin zone is shaded light blue
and is found by taking the perpendicular bisector (green lines) of the lines connecting the
origin and the nearest lattice points (orange lines). The dark blue region is the irreducible
Brillouin zone.

adjusted to correspond to a different k vector. By taking the discrete Fourier transform

(DFT) of the sampled field data it is possible to determine the supported modes for each

k vector. Through a series of simulation runs with ~k tracing the irreducible Brillouin zone

edge, it is possible to construct the band diagram. The FDTD calculated band structure

for the photonic crystal of Fig. 2.4 is shown in Fig. 2.5.

The photonic crystal structure proposed for the single-photon source is a triangular

array of air holes in a dielectric slab sandwiched between two DBRs. In this case, a more

accurate photonic band diagram will be required and a full 3D FDTD simulation must

be implemented. Periodic boundary conditions are still used in the plane of the slab but

UPML boundary conditions are used at the top and bottom of the mesh. To illustrate

how band diagrams for 3D structures are found using the FDTD method, consider the

following case: a triangular array of air holes in a dielectric slab of finite thickness.

Implementation of periodic boundary conditions for a triangular lattice is not as straight-

forward as for the square lattice. In order to make implementation of the boundary condi-
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Figure 2.5: Band diagram for a square lattice photonic crystal. Data points, either dots
or diamonds, were found using the 2D FDTD method. To verify the 2D FDTD implemen-
tation, the bands were also calculated using the MIT Photonic Bands software which is
a planewave expansion program (frequency domain technique). These results, solid lines,
agree well with the 2D FDTD bands.

(a) 2D Triangular Real Space Lattice (b) Boundary Condition Implementation

Figure 2.6: a)The real space triangular lattice with unit vectors a1 and a2. Three possi-
ble unit cells for FDTD band structure calculations are shown. Red is the conventional
rhombus unit cell. Green is a large rectangle resulting in folded bands. Blue is the single
cell that is used in this thesis. b) Pictorial representation of the field mapping for the 2D
triangular lattice photonic crystal with small rectangular single unit cell. Fields A and B
are mapped to A′ and B′.
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tions easier, several unit cells have been used to tile the triangular lattice as shown in Fig.

2.6(a). The most obvious unit cell is a rhombus, but this requires copying field values along

the non-linear sides of the cell [4]. Another proposed method is to use a large rectangular

unit cell, shown in green in Fig. 2.6(a) [5]. This rectangle actually contains two unit cells

and the true band diagram is difficult to separate from the folded version that results.

Umenyi proposed using the unit cell shown in blue in Fig. 2.6(a) [6]. This unit cell has

several advantages over the other two approaches. First, the fields are copied along the

edges of the unit cell and no approximations along a slanted edge are necessary. Second,

the boundary conditions are implemented over a true unit cell so that no bands are folded.

The small rectangle also minimizes the simulation space which leads to less computational

demand. This is particularly important for the 3D simulations. For the triangular lattice

3D FDTD band diagram simulations performed in this thesis, the single rectangular unit

cell is used.

To see how the boundary conditions are implemented, consider first the 2D case as

shown in Fig. 2.6(b). The Bloch boundary conditions along the y axis are implemented in

two parts: first the fields along the bottom left half of the cell are translated by a/2 in x

and
√

3a/2 in y (point A1 is mapped to A1′), then the fields in the second half of the cell

are translated by a/2 in the negative x direction and
√

3a/2 in y (point A2 is mappeded

to A2′). In the x axis the Bloch boundary conditions translate the fields by a (point B1 is

mapped to B1′). The boundary conditions can then be written as

A1′ = A1× e(−i(kx/2+
√

3ky/2)a) (2.37)

A2′ = A2× e(−i(−kx/2+
√

3ky/2)a) (2.38)

B1′ = B1× e(−ikxa) (2.39)

where kx and ky are reciprocal space vectors to some point along the edge of the irreducible
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Brouillon zone. The reciprocal space unit cell and the Brouillon zone are shown in Fig.

2.7(a). For the triangular lattice, the rows of holes are separated from one another by
√

3a/2. In order to have an integer number of cells in both the x and y direction, ∆x and

∆y must be slightly different. To determine ∆y we first set ∆x = a/nx, where nx is the

chosen number of cells in the x direction. Using ∆x we can then determine a ∆y that will

tile the y direction in an integer number of cells ny. This occurs when

∆y = a′/da′/∆xe (2.40)

where a′ =
√

3/2a∆x and de is the "ceil" function, which corresponds to rounding up

to the next integer. The denominator of equation (2.40) is the smallest integer num-

ber of cells that could be used to tile the y direction, ny. ∆y is the absolute dis-

tance between rows, a′, divided by the number of cells in the y direction. For numeri-

cal stability ∆t is automatically adjusted so that ∆t ≤ 1/c
√

1/(∆x)2 + 1/(∆y)2 for 2D

and ∆t ≤ 1/c
√

1/(∆x)2 + 1/(∆y)2 + 1/(∆z)2 = 1/c
√

2/(∆x)2 + 1/(∆y)2 for 3D where

∆x = ∆z.

The 3D triangular unit cell is shown as an inset in Fig. 2.7(b). This structure has

a lattice constant a = 30cells, hole radius r = 0.3a, slab thickness t = 0.4a, and slab

dielectric constant εr = 11.56. The band diagram for this structure is shown in Fig. 2.7(b).

The gray shaded region in Fig. 2.7(b) is the light cone. Mathematically, the light cone is

written as |k| ≤ ω/c. Modes lying below the light cone undergo total internal reflection

when encountering the dielectric slab/air interface. Those that lie above the cone are

lossy as some portion of the fields propagate across the interface and enter the air region

surrounding the slab. The line definied by |k| = ω/c is referred to as the light line. In

Fig. 2.7(b), the solid lines represent the modes that are found using plane-wave expansion

techniques. Specifically, the MIT Photonic Bands software was used in this case. There is

good agreement between the two methods, especially at low frequencies.
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(a) 2D Triangular Reciprocal Space Lattice (b) 2D Triangular Lattice Band Structure found
with 3D FDTD

Figure 2.7: a)The triangular lattice reciprocal space representation with unit vectors b1
and b2. b) Band diagram for the 2D triangular lattice photonic crystal slab. Data points
show results from 3D FDTD methods and lines show the results of planewave expansion
techniques (MIT Photonic Bands software). Inset is the 3D unit cell for the finite slab 2D
photonic crystal.

Figure 2.8: The DFT of the raw field data (blue) and the windowed data (red) at the M
point of the reciprocal lattice unit cell is shown. The peaks in both data sets are practically
co-located. The windowed data has less background ripple leading to better peak detection.
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To determine the band structure using FDTD methods, a Gaussian pulse with wide

frequency content is used to excite both the Ex and Ez fields. As the fields propagate

to the outer boundary in the plane of the slab, they encounter the periodic boundary

conditions. Waves that escape from the slab and travel towards the top and bottom of

the problem space are absorbed by a perfectly matched layer. As in the 2D FDTD band

structure calculations, the simulation is run multiple times (typically 60) with a different

value for (kx, ky) each time. There are several monitor points located in the unit cell to

capture the time varying fields and the peaks of the Fourier transformed field data give

the resonant modes for the particular k vector. The simulations are necessarially run for

a finite period of time. This is numerically equivalent to taking an infinitely long data set

and multiplying it by a rectangular window that is 1 between t = 0−T , T being the length

of the finite simulation. Multiplication in the time domain corresponds to convolution in

the frequency domain, so it is instructive to consider the frequency domain representation

of the rectangular window. The DFT of the rectangular window function has a main lobe

with a series of side lobes whose magnitudes decrease gently with frequency. The first lobe

is only 13dB lower than the main lobe. It is the presence of these pronounced sidelobes

that leads to substantial ripples in the DFT of the raw FDTD field data. To minimize

the effect of these ripples and allow the resonant frequencies to be more easily detected,

it is possible to use other windowing functions that have more desirable frequency domain

representations. One such window is the Blackman window, the first side-lobe of which is

≈ 60dB lower than the main lobe. The time representation of the Blackman window is

f(t) = a0 − a1 cos (2π t

tmax
) + a2 cos (4π t

tmax
) (2.41)

where a0 = (1−α)/2, a1 = 1/2, and a2 = α/2 [7]. For the Blackman window the convention
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is to choose α = 0.16, which gives

f(t) = 0.42− 0.5 cos (2π t

tmax
) + 0.08 cos (4π t

tmax
). (2.42)

As shown in Fig. 2.8, the locations of the peaks remain almost unchanged by use of the

Blackman window. The peaks are much easier to discern especially those that are close

together.

2.3.3 FDTD for Photonic Crystal Microcavity Analysis

Another important application of the FDTD method is the analysis of photonic crystal mi-

crocavities. Introduction of a defect to the photonic crystal will not change the frequencies

of the photonic bandgap, instead certain modes will move into the gap. To determine the

number of modes and their frequencies, the cavity is modeled using 3D FDTD methods

with UPML boundary conditions on all 6 sides of the problem space. The input should be

a short Gaussian pulse or a delta function. Several monitor points are placed at low sym-

metry points in the cavity to record the time varying fields. After a sufficient number of

time steps, the DFT of the recorded fields will have peaks at the cavity mode frequencies.

The main requirement on simulation time is that the frequency bins of the DFT provide

enough resolution to accurately determine the mode frequencies. To determine the field

profiles associated with each mode, the cavity is excited with a pulse of narrow frequency

content centered on the frequency of the mode of interest. In the case of degenerate modes,

it is necessary to use inputs of a particular symmetry to isolate a single mode. The electric

and magnetic field components are recorded in a plane of the problem space to determine

the field profile.

To illustrate this method, the mode frequencies and profiles for the modified single

defect cavity examined by Park et al. [8] will be presented. The photonic crystal slab is

made of InGaAsP and has a lattice constant a = 0.57µm, radius r = 0.35a and a slab
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(a) Park Results (b) 3D FDTD Results (c) Monopole Mode Profile

Figure 2.9: Characterization of a photonic crystal microcavity. 2.9(a)) The number of
modes appearing in the photonic band gap as a function of the inner hole radius. Taken
from [8]. 2.9(b)) Comparison of 3D FDTD results with those of Fig. 2.9(a). Here r’=0.25a
and there are 6 modes. Simulations were run for 34,000 time steps. The green lines denote
the edges of the photonic bandgap. 2.9(c)) The mode profile of the monopole mode which
appears at the normalized frequency 0.3576 = 188.08THz.

thickness t = 0.40a. The index of refraction corresponding to this material system is

n = 3.4. A microcavity was formed by removing the central hole and reducing the radii

of the nearest neighbor holes. Park et al. showed that the number of modes in the cavity

changes as the inner radii of holes varies, see Fig. 2.9(a). When the inner hole radii are

r′ = 0.25a there are 5 modes inside of the photonic bandgap. The results of the 3D FDTD

simulation with r′ = 0.25a are shown in Fig. 2.9(b) and agree well with the frequencies

shown in Fig. 2.9(a). There is an extra mode in Fig. 2.9(b) that may be the result of the

longer runtime that was used to obtain this data. The profile of the monopole mode is

shown in Fig. 2.9(c).

2.3.4 Spontaneous Emission Enhancement

As discussed in Chapter 1, shrinking the size of a high quality optical cavity to the same

order of magnitude as the wavelength of emitted light can have a profound impact on the

emission properties. The spontaneous emission enhancement factor can be found by taking

the ratio of the radiation rate of a dipole in a microcavity to the radiation rate of a dipole

in free space. The radiation rate of a dipole can be simulated using 3D FDTD methods.
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Following the method of Hwang et al. [9], Maxwell’s equations are written as

5 · ε(r)E(r, t) + Pd(r, t) = 0 (2.43)

5 ·H(r, t) = 0 (2.44)

5× E(r, t) = −µ(r) ∂
∂t
H(r, t) (2.45)

5×H(r, t) = ∂

∂t
ε(r)E(r, t) + Pd(r, t) (2.46)

where Pd(r, t) is the polarization from a dipole source and ε(r) and µ(r) are the permittivity

and permeability, respectively. The radiation rate is calculated by integrating the normal

component of the Poynting vector over a closed surface containing the dipole. For our cubic

grid the choice of a cube enclosing the cavity is appropriate for the surface of integration.

The radiation rate is then found by computing

Prad = 1
2

∫ ∫
Re (〈E ×H∗〉 · n̂) dS (2.47)

= ∆x2

2 Re

(∑
y

∑
z

(E ×H∗) · x̂+
∑
x

∑
z

(E ×H∗) · ŷ +
∑
x

∑
y

(E ×H∗) · ẑ
)
(2.48)

This method can be used to determine the spontaneous emission enhancement factors

for the photonic crystal microcavity. These enhancement factors will be used in Chapter 3

to calculate the spontaneous emission lifetimes. For these calculations, 3 sets of radiation

simulations are required to determine the enhancement factors for a x, y, and z-oriented

dipole. Because the spontaneous emission enhancement can also be thought of as the ratio

of the density of modes in a cavity to the density in free space, the density of photon

modes in the microcavity, ρc(ω) can be derived from these FDTD calculations. Direct use

of this density may lead to numerical errors that are minimized by taking the ratio of the

radiation rate in the cavity to the radiation rate in bulk. For this reason, the spontaneous

emission lifetime calculations in Chapter 3 are designed to use the ratio of the radiation
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rates as opposed to the mode density.

(a) Parallel Plate Setup (b) Spontaneous Emission Enhancement

Figure 2.10: a) Pictorial representation of a dipole centered between two parallel metal
plates. The dipole can be oriented perpendicular to the plates (along z) or parallel to
the plates (in the x,y plane). b) Analytic (lines) and FDTD results (data points) of the
spontaneous emission enhancement for a dipole centered between the metal plates.

To ensure that this method is implemented correctly, it is valuable to calculate the

spontaneous emission enhancement factor for a planar microcavity. The planar microcav-

ity consists of two perfectly conducting plates that extend infinitely in the plane. The

separation between them is taken as L and the dipole is located halfway between the two

plates. These simulations are done with 3D FDTD and somewhat thick 20-cell UPML

boundary conditions terminate all 6 sides of the problem space. The setup is shown in Fig.

2.10(a). It is possible to solve this problem analytically to determine the radiation rate for

a dipole positioned normal to the mirrors γz and parallel to the mirrors γρ. These rates

are given as a function of the rate in free space γo in 2.49 and 2.50 [10].

γz = γo

(
3λ
4L

)1 +
[2L/λ]∑
n=1

2
1−

(
nλ

2L

)2
 cos2

(
nπz

L

) (2.49)

γρ = γo

(
3λ
4L

) [2L/λ]∑
n=1

1 +
(
nλ

2L

)2
 sin2

(
nπz

L

)
(2.50)
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The spontaneous emission enhancement factors γz/γo and γρ/γo are plotted in Fig.

2.10(b) (the solid lines) along with the results obtained from the FDTD method just

described (data points). The good agreement between the results verifies that the FDTD

method is a valid way to determine the spontaneous emission enhancement factors.

Photon Lifetime

The photon lifetime, τph, is also calculated with 3D FDTD after the photonic crystal

microcavity has been designed. It is related to the cavity quality factor, Q through the

relationship [11]

τph = Q

2πνo
(2.51)

where νo is the resonant frequency. The cavity quality factor of the mode of interest is

calculated with the FDTD method by discretizing the cavity and implementing a UPML

at all 6 outer boundaries of the problem space. First, the cavity is excited with a Gaussian

pulse excitation centered at the frequency of the mode of interest. The quality factor can

be calculated by monitoring either the energy decay from the cavity or the relative amount

of power leaving the simulation space. When the cavity has a high Q, the energy decay

will be extremely slow and the time required for the energy to reach 0 will be long. In this

case, monitoring the energy decay can be challenging.

Alternatively, by using the relative power leaving the simulation space the calculation

can be performed in a more reasonable amount of time. The equation for the quality factor

in this case is [11]

Q = 2πνo
U(t)
P (t) (2.52)

where U(t) is the energy in the mode and P(t) is the power leaving the simulation space.

There are two main points of caution. The first is that the flux must reach a steady

state before the data is recorded. The second requires that the input Gaussian have a

bandwidth that is neither too narrow nor two wide. A wide Gaussian in frequency would
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result in the injection of power to multiple modes instead of just the desired one. If the

frequency domain Gaussian is too narrow a high Q output may be the spectral width of

the excitation and not the cavity resonance. A key advantage of this approach is that it is

possible to separate the in-plane and out-of-plane quality factors. This provides a better

understanding of where the loss occurs and how the device performace could be improved.

For the single-photon source, the cavity quality factor should, in general, be low. This

leads to shorter photon lifetimes and faster operation of the device. A typical cavity

quality factor for a photonic crystal designed to operate at λ = 1.3µm is around Q = 300.

The corresponding frequency is ν = 230.6THz and the resulting photon lifetime would

be, τphoton = 0.207ps. This lifetime is much smaller than the anticipated spontaneous

emission lifetimes which are expected to fall between 0.1− 5ns. Due to the relatively low

quality factors required for these devices and the straightforward implementation of the

energy decay calculation, this method is primarially used to calculate quality factors in

this thesis.
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Chapter 3

Quantum Dot Modeling and

Spontaneous Emission Lifetimes

One of the most critical lifetimes limiting the operating speed of the single photon source

is the spontaneous emission lifetime. As discussed in Chapter 2, this lifetime depends on

the photon density of modes and on the dipole matrix element through the equation

τspont = 1
Wfi

(3.1)

where

Wfi = π

~ε
|~ελ · ~dfi|2ρphoton(ωfi), (3.2)

~ελ is the polarization of the emitted light and ρphoton(ωfi) is the photon mode density at

the frequency of the emitted photon, ωfi. The matrix element for the electron’s dipole

moment is expressed as

dfi = −q 〈ψf |~r |ψi〉 (3.3)

where ψf and ψi are the final and initial wavefunctions respectively, q is the charge on an

electron, and ~r is the position vector. Derivations of these equations are given in Appendix
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.1.

The aim of this chapter is to discuss a method for calculating the spontaneous emission

lifetime, given in Equation 3.1, for a quantum dot in bulk or in a microcavity. In this case,

the photon mode density will be that of bulk, ρB, or the photonic crystal microcavity,

ρC , at the frequency of the emitted photon. Additionally, ψf becomes the wavefunction

of a hole in the valance band ground state and ψi the wavefunction of an electron in the

conduction band ground state. The photon frequency is related to the transition energy

through

Ei − Ef = ~ωfi. (3.4)

where Ei is the ground state electron energy and Ef is the hole ground state energy. To

solve for the spontaneous emission lifetime, the energy levels and wavefunctions of the

confined states in the quantum dot must be determined.

Using Bloch’s theorem and traditional k·p perturbation theory, calculation of the energy

levels and wavefunctions for bulk III-V direct bandgap materials is fairly straightforward.

The modeling of nanostructures, such as quantum dots, is more complicated due to the

abrupt interfaces between different materials and the loss of discrete translational symme-

try. Fortunately, the main principles of Bloch’s theorem and k · p perturbation theory can

be extended to nanostructures through the envelope-function theory developed by Burt [1].

The situation is further complicated for InAs quantum dots grown on GaAs through the

Stranski-Krastanov growth process, where strain has a significant effect on the conduction

and valance bands. This strain is accounted for through the use of deformation potentials

[2].

To determine the energy levels and wavefunctions in the InAs quantum dots through k·p

perturbation theory, we use the Nextnano++ software [3]. Nextnano++ was developed

as a full 3D nanodevice simulator and has extensive capabilities. This Chapter begins

with a brief overview of the Nextnano++ numerical calculations used for quantum dot
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modeling. Next, the InAs and GaAs material parameters used in our calculations are

discussed. A brief overview of the energy bands, wave functions, and transition matrix

elements for pyramidal InAs quantum dots grown on GaAs is then given with the goal of

identifying quantum dots that emit photons at wavelength λ = 1.3µm. The remainder of

the Chapter is devoted to outlining the proposed method for calculating the spontaneous

emission lifetime.

3.1 Quantum Dot Modeling Using Nextnano++

The calculations performed by the Nextnano++ software are based on Bloch’s theorem,

the k · p perturbation theory, the envelope-function theory, and deformation potentials [4].

Bloch’s theorem states that for a perfectly periodic crystal the eigenfunctions, ψn,k(r), can

be written as a product of a plane wave, exp(ik·r), and a Bloch factor, un,k(r). Substitution

of the eigenfunction, or Bloch function, into the one-body Schrödinger equation gives the

following relation for the Bloch factors

En(k)un,k(r) = H(k)un,k(r) (3.5)

=
[
P̂ 2

2m0
+ V (r)

]
un,k(r) (3.6)

where En(k) are the eigenenergies, P̂ 2/2m0 is the kinetic energy and V (r) is the potential

set up by the atoms in the crystalline lattice. The eigenvalue problem can then be solved

in the reciprocal space for a single unit cell. The result, En(k), is a set of energies that vary

continuously with the reciprocal space vector k and form the electronic band structure of

the solid.

Many well developed techniques exist for calculating the band structure, including

the k · p approximation [5, 6, 7]. The k · p method provides extremely accurate results

but only for particular values of k near a point or points of interest. This method is then
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acceptable only when knowledge of the entire band structure is unnecessary. The electronic

and optical properties of many semiconductors depend only on the electronic states at the

bottom of the conduction band and the top of the valance band. Calculation of the band

structure only around these extrema, by the k · p method, therefore provides the necessary

information about the material.

To obtain the electronic band structure of the quantum dot, Nextnano++ uses k · p

perturbation theory. The eigenequation for an electron moving in a periodic potential,

V (r +R) = V (r), is

HΨ =
(
P̂ 2

2m + V (r)
)

Ψ = EΨ (3.7)

Writing the wavefunction Ψ in Bloch form as Ψ = eik·runk(r) where unk(r + R) = unk(r)

and substituting into (3.7) we obtain

(
P̂ 2

2m + V (r) + ~
m
k · P̂ + ~2k2

2m

)
unk(r) = (H0 +Hkp +Hk2)unk(r) = En(k)unk(r) (3.8)

For any particular choice of k, the eigenfunctions unk(r) form a complete set as long as the

functions’ periodicity matches that of the potential V (r). Choosing the wavefunctions at

k = ko as our basis, it is possible to express the eigenfunctions for any other k as

unk(r) =
∑
n′
cn′n(k − ko)un′ko(r) (3.9)

This is referred to as the ko representation. If we define

Hko =
(
P̂ 2

2m + ~
m
ko · P̂ + ~2k2

o

2m + V (r)
)

(3.10)

then

Hkounko = En(k0)unko (3.11)
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and [
Hk0 + ~

m
(k − k0) · P̂ + ~2

2m
(
k2 − k2

0

)]
unk = En(k)unk (3.12)

which is converted to a matrix eigenvalue equation by the familiar process of multiplication

by u∗nk(r) and integration over the unit cell. The eigenvalue problem is given by

∑
n′

[(
En(k0) + ~2

2m(k2 − k2
0)
)
δnn′ + ~

m
(k − k0) · pnn′

]
cn′n(k − k0) = En(k)cnn(k − k0)

(3.13)

where

pnn′ =
∫
unitcell

u∗nk0(r)P̂ un′k0(r)dr. (3.14)

The off-diagonal terms all come from the k ·p term which is treated as a perturbation when

solving for the eigenvalues. For many semiconductors, only a few of the energy bands are

important and it is possible to create a finite dimensional matrix eigenvalue problem from

equation 3.13. Nextnano++ uses the Löwdin method to divide the bands into two groups

[8]. Bands in group A are near the Fermi energy, interact with one another and have a

drastic effect on the energy levels, while group B contains all of the remaining bands. For

quantum dot calculations, the pertinent bands are the conduction band and the first three

valance bands. These bands are all included in group A when an 8-band k · p model is

used. The finite dimensional k · p Hamiltonian matrix is

Hkp
nn′(k) =

[(
En(k0) + ~2

2m(k2 − k2
0)
)
δnn′ + ~

m
(k − k0) · pnn′

]
+
∑
γ∈B

Hnγ(k)Hγn′(k)
En(k0)− Eγ(k0)

(3.15)

where n and n′ now only run over the 8 bands in group A. The last term in this equation

is due to the renormalization of the interaction matrix that removes the interactions of

states in A and B to the lowest order [8].

To accurately model many materials, the spin-orbit coupling must be accounted for
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when solving the Scrhödinger equation. This is done by adding the term

HSO = ~
4m2c2 (5V × p) · σ (3.16)

to the Hamiltonian, Hkp
nn′ . Here σ is the Pauli spin matrix vector σ = (σ1, σ2, σ3)T . The

additional spin-orbit coupling term, given by

HSO′ = ~
4m2c2 (5V × k) · σ (3.17)

is insignificant because the ~k terms of HSO′ are much smaller than the matrix elements

of p. For this reason, only HSO is added to the Hamiltonian in Nextnano++.

The envelope approximation is used to extend the k · p method to nanostructures, such

as quantum dots. In this approximation, the electron wave functions are written as a

superposition of the Bloch functions, ψnk0(~r), yielding

ψ(~r) =
∑
n

Fn(~r)ψnk0(~r). (3.18)

Here Fn are the envelope functions that are assumed to vary slowly with respect to the

crystal lattice. The envelope functions and the potential that arises from the nanostructure

are then expanded in terms of a Fourier series,

Fn(~r) =
∑
k

cnke
ik·~r (3.19)

Vstruc(~r) =
∑
k

V struc
k eik·~r (3.20)

and the Schrödinger equation including the new potential becomes

(H(k0) + Vstruc(~r))ψ(~r) = Eψ(~r). (3.21)
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Substitution of equations 3.18-3.20 into equation 3.21 gives a matrix eigenvalue problem

of the same form as equation 3.13. The 8-band k · p approximation can then be used to

solve for the coefficients cn′n.

In order to solve the eigenvalue problem, the conduction band minimum and the

valance band maximum must be known at all points in space. These values depend on the

band edges of the bulk semiconductor materials comprising the nanostructure. While the

bandgaps for these different materials are well known, the discontinuities in band energies

at material interfaces is less obvious due to the lack of an absolute energy scale for deter-

mining semiconductor band edges. Van de Walle proposed a method for determining the

proper band alignment at semiconductor interfaces in the presence of strain[2]. Through

a set of deformation potentials and knowledge of the hydrostatic and biaxial strain in the

nanostructure, the band values can be determined. The conduction band energy becomes

Ec = Ec + acεh (3.22)

where ac is the absolute deformation potential for the conduction band and εh = εxx +

εyy + εzz is the hydrostatic strain. For the valance bands, the situation is not as simple.

Here the strain leads to an additional term in the k ·p Hamiltonian matrix that is given by

S(ε) = n


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

+ (l − n)


εxx 0 0

0 εyy 0

0 0 εzz

+m


εyy + εzz 0 0

0 εxx + εzz 0

0 0 εxx + εyy

 .
(3.23)

The parameters l, m, and n are found from the absolute deformation potential for the

valance band, av, and the sheer deformation potentials, b and d, through the following
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Figure 3.1: The piezoelectric charges for a pyramidal quantum dot. The charges lie along
the edges of the pyramids and alternate in sign. This breaks the symmetry of the dot and
leads to a favorable direction for the electron and hole wavefunctions [9].

relationships

l = av + 2b (3.24)

m = av − b (3.25)

n =
√

3d (3.26)

The deformation potentials for InAs and GaAs as well as the other relevant parameters

used in the Nextnano++ calculations are given in Table 3.1 of Sec. 3.2.

Nextnano++ also takes into account the piezoelectric charges that arise from the strain

in quantum dots. When a material is strained, the positive and negative charges can be

displaced from their normal position resulting in microscopic electric dipoles. This leads

to macroscopic charges at the interfaces of the quantum dot. For pyramidal quantum dots,

the charges tend to lie along the edges of the pyramid as shown in Fig. 3.1. The presence

of the piezoelectric charges breaks the symmetry of the dot and drastically changes the

wavefunctions. The piezoelectric charges are incorporated in Nextnano++ through solution
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of the Poisson equation, which is given by

5 · [ε(~r)5 φ(~r)] = −ρ(~r) (3.27)

where ε(~r) is the position dependent dielectric tensor, ρ(~r) is the piezoelectric charge density

and φ(~r) is the electrostatic potential. The piezoelectric charges are found from

ρ(~r) = −5 ·P piezo(~r) (3.28)

where, P piezo(~r) is the piezoelectric polarization and is proportional to the strain tensor

P piezo
i = eijkεjk (3.29)

Although the proportionality constants, eijk, form a third rank tensor with 27 entries, in

the zincblend crystal there is only one non-zero entry, e14. The piezoelectric polarization

can then be written as a function of space,

P piezo(~r) = e14(~r)


2εyz(~r)

2εxz(~r)

2εxy(~r)

 . (3.30)

To account for the band edge shifts and the piezoelectric charges, the strain in the

pyramidal quantum dot must be found at all locations. Away from the dot the strain will

tend toward zero as the crystal lattice retains its bulk geometry. Near the dot, however,

there will be significant strain due to the lattice mismatch of the dot and surrounding

material. There are several ways to solve for the strain in the quantum dot. One method,

developed by Stroleru [10], expands the Eshelby inclusion theory [11] developed for elliptical

dots in isotropic systems to the more practical case of pyramidal and truncated pyramidal
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quantum dots. The method used in Nextnano++ is a strain minimization technique based

on the Euler-Cauchy stress principle and Cauchy’s fundamental postulate [12]. The Cauchy

stress tensor σij can be written in differential form as

5 · σkl(~r) = −Fl = 0 (3.31)

where Fi, the external volume force, is equal to 0 because we are interested only in the

strain from the internal lattice mismatch. Using Hooke’s Law, the stress tensor can be

written in terms of the strain tensor through the relation

σkl = Cklmnεmn (3.32)

where Cklmn are the compliance coefficients. In a strained crystal lattice, the positive and

negative charges are displaced from their rest positions by some distance. It is possible to

write the strain tensor in terms of the displacement, u, as

εkl = 1
2

(
δuk
δxl

+ δul
δxk

)
(3.33)

where l and k refer to two different directions in the coordinate system. For instance if

l = x and k = z, the strain component, εzx would depend on the sum of the deriviative of

the displacement along z with respect to x and the derivative of the displacement along x

with respect to z. Similar to a stretched or compressed spring, charges displaced from their

normal lattice site will increase the potential energy of the system. This elastic energy,

when summed over the volume, is expressed in terms of the strain tensor as

Eelastic = 1
2

∫
V
Cklmnεklεmndr

3. (3.34)

Nextnano++ solves for the strain distribution in the quantum dots that minimizes the
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elastic energy. Once the strain tensors have been determined, they are used to calculate

the strain-dependent components of the Hamiltonian as well as the piezoelectric charging.

This section only briefly outlines the mathematical models for simulating pyramidal

quantum dots using Nextnano++. The capabilities of the Nextnano software are extensive

and the interested reader is referred to the online documentation for Nextnano++ [13] and

Nextnano3 [3].

3.2 Material Parameters

Modeling of nanoscale heterostructures is sensitive to the choice of material parameters.

For the 8× 8 k · p perturbation calculations, there are approximately 20 material param-

eters that must be entered into the database for each material. Some of the parameters,

such as the bulk energy band gaps, have well established values. Other parameters, such

as the deformation potentials, have a range of acceptable values. By entering the ap-

propriate parameters into the database, Nextnano++ is able to replicate the results of

several published papers. The general trends in these papers agree, however each author

uses slightly different quantum dot sizes and parameters which makes direct comparison a

challenge. Still more difficult is the choice of the correct set of parameters that lead to the

most accurate energy level transitions and wavefunctions. The majority of the parameters

used in this thesis are those of Stoleru [10], because they best match experimental results.

As seen in table 3.1, these parameters come from well respected references such as the

Landolt-Börnstein database [14] and are used by several authors.

There are two main differences between these parameters and those used in Ref. [10].

The first is that the piezoelectric charging at the interface of the pyramidal dot and the

background is ignored in Ref. [10] by setting e14 = 0. Consider a quantum dot with base

width, b = 16nm, and height, h = 6nm. See Fig. 3.2 for a schematic representation of

the pyramidal quantum dot. Taking into account the piezoelectric charging increases the
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Figure 3.2: Schematic representation of the pyramidal quantum dot used in the
Nextnano++ simulations. The dot has height, h, and base width, b. The wetting layer
thickness is given by d.

energy transition in this dot from 1.096eV to 1.0964eV, a change of only ≈ 0.04%. As

discussed at the end of Section 3.1, the wavefunctions are affected by the piezoelectric

charging. This changes the transition matrix element and subsequently the spontaneous

emission lifetime. Piezoelectric charging can not be ignored for accurate modeling of the

quantum dot in the single photon source. The other parameter that is neglected by Stoleru

[10] is the shear valence band deformation potential arising from the uniaxial strain along

the (111) direction, d. Compared to the effect of the shear deformation potential resulting

from the biaxial strain, the affect of d is negligible. It is however, still included in our

calculations for completeness.

To verify the validity of the parameters in Table 3.1, the energy bands and energy levels

for a pyramidal InAs quantum dot with base width b = 16nm and height h = 6nm are

shown in Fig. 3.3(a). The transition energy of 1.097eV matches the photoluminescence

peak of a sample with dots of the same size, inset of Fig. 3.3(a), and the theoretical

results of Stoleru [10]. The energy separation between the electron ground state and the

first excited state is 70meV. Similarly the results for a quantum dot with base width

b = 20nm and height h = 6nm are shown in Fig. 3.3(b). Again the energy transition,
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landoltbornstein vandewalle1989band stier1999electronic

Table 3.1: Material Parameters for Nextnano++
Parameter GaAs InAs References
a (Å) 5.6503 6.0553 [10, 14]
Eg (eV) 1.518 0.413 [10, 2, 9, 14]
Eg (eV) 1.424 0.324 [10, 14]
∆0(eV) 0.34 0.38 [10, 2]
E0
v,av (eV) -6.92 -6.747 [10, 2, 9]

m∗e 0.0667m0 0.02226m0 [10, 9]
ac (eV) -8.013 -5.08 [10, 2, 9]
av (eV) 1.16 1.00 [10, 2, 9]
b (eV) -1.7 -1.8 [10, 2, 9]
d (eV) -5.062 -3.6 [2, 9]
Ep (eV) 25.7 22.2 [10, 9, 15]
C11 118.8 83.3 [10, 9, 14]
C12 53.8 45.3 [10, 9, 14]
C44 59.4 39.6 [9, 14]
e14 -0.16 -0.045 [9]
εs 13.18 14.6 [9]
γ1 7.1 19.7 [9, 14]
γ2 2.02 8.4 [9, 14]
γ3 2.91 9.3 [9, 14]
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(a) Electron and Hole Energies 16nm Pyramidal
Quantum Dot

(b) Electron and Hole Energies 20nm Pyramidal
Quantum Dot

Figure 3.3: The electron and hole energy levels for an InAs pyramidal quantum dot, a)
b = 16nm and h = 6nm with transition energy ET = 1.097eV and b) b = 20nm and
h = 6nm with transition energy ET = 1.0407eV. The transition energies closely match the
peak of the photoluminescence spectrum shown as insets [10].

ET = 1.04eV, found using Nextnano++ with the parameters given in Table 3.1 agrees well

with photoluminescence experiments of a real InAs quantum dot sample.

In order to better understand how the material parameters affect the results, the param-

eters of Table 3.1 are varied according to Table 3.2. Figure 3.4 shows how the first electron

and hole energies vary as the material parameters are changed. As expected, neglecting the

piezoelectric charging, data set 2, and shifting the valence band offset, data set 3, do not

significantly affect the energies. Changing the optical matrix parameter, Ep, changes the

8×8 k ·p parameters, L′,M , and N ′, and subsequently the electron and hole energies (data

sets 4-6). L′, M , and N ′, are the Kane parameters and are material dependent constants.

They are related to the Dresselhaus parameters, L, M , and N through

L′ = L+ Ep

Eg

M = M

N ′ = N + Ep

Eg

(3.35)
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Table 3.2: Influence of Variation of Material Parameters
Data Set Parameter Varied Units GaAs InAs

1 reference, table 3.1 − −
2 like 1, but e14 Cm−2 0.16→ 0 0.045→ 0
3 like 2, but E ′v meV − −6.747→ −6.67
4 like 3, but Ep eV 25.7→ 28.8 −
5 like 4, but ac meV − −

ag meV −9.173→ −8.233 −
bv meV −1.7→ −1.824 −
dv meV 0→ −5.062 0→ −3.6

6 like 2, but Ep eV 25.7→ 28.8 −
7 like 2, but av meV 1.16→ 0.22 −

ag meV −9.173→ −8.233 −
bv meV −1.7→ −1.824 −
dv meV 0→ −5.062 0→ −3.6

8 Vurgaftman parameters
9 like 2, but S −0.904→ −0.905 −0.324→ −0.2434
10 like 8, but me m0 − 0.026→ 0.0226
11 Stier parameters

where Eg is the band gap energy. The Dresselhaus parameters can be expressed in terms

of the Luttinger parameters, γ1, γ2 and γ3. Well accepted values for these parameters

are found in the Landolt-Börnstein database [14]. The effect of altering the deformation

potentials is not as significant and results in a 0.1% change in the transtion energy; compare

data set 4 and 5 or 1 and 7. Data set 8 is calculated using parameters recommended by

Vurgaftman [16]. Almost every parameter is shifted somewhat from the values in Table 3.1

above. For this data set, the transition energy is decreased by 1.6% from the value for data

set 1. By changing the electron effective mass, me, for InAs in data set 10 to the value used

in Ref. [10], the transition energy is shifted up from data set 8 by 0.8%. The transition

energy is most signficantly affected by changing the value of S, data set 9, which affects

the k · p parameters. The value of S is dependent on the energy band gap, the electron

mass, the spin orbit splitting parameter, ∆0, and the optical matrix parameter. The final

data set, 11, uses the full set of parameters in Ref. [9] and results in a transtion energy

shift of 1.5% from the reference. Of the parameters that vary among authors, the most
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Figure 3.4: The first electron (top) and hole (bottom) energies for a pyramidal InAs
quantum dot, b = 16nm and h = 6nm, for the various parameters given in Table 3.2. The
transition energy is in the center of the plot. Energies are given with respect to the GaAs
valance band energy far from the dot set to 0eV.

significant ones are the effective masses and those that affect the 8× 8 k · p parameters.

Nextnano++ can also be used to determine the wavefunctions in the quantum dots. In

order to visualize the wavefunctions, |ψ〉, it is useful to plot the probability density isosur-

faces, 〈ψ|ψ〉. Figure 3.5 shows the first 3 electron and hole probability density isosurfaces

for pyramidal quantum dots with 101 facets and base widths b = 13.6nm and b = 20.4nm.

The electron wavefunctions are similar for the two different size dots, and tend to extend

along the [110] direction. When the dots are larger, there is not much difference between

the hole ground state and first excited state wavefunction. They are both concentrated

around the corners of the pyramid base along the [11̄0] direction. In the smaller dots,

the hole wavefunctions still tend to extend along the [11̄0] direction, however the ground

state wavefunction is no longer split into two regions. It is also possible to decompose the
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[a]

[b]

[c]

[d]

Figure 3.5: The ground state and first two excited states for the electron and hole in a
pyramidal InAs quantum dot with base width, a) b = 13.6nm and b) b = 20.4nm. The
decomposition of the c) electron and d) hole ground state wavefunctions into their envelope
components. The proportional contribution of each envelope is given above the dots.

wavefunctions into their basis wavefunctions, |s〉, |px〉, |py〉, |pz〉. The probability density

isosurfaces of each basis function is shown in Fig. 3.5(c) for the electron ground state and

in Fig. 3.5(d) for the hole ground state. Above each function is the integral probability of

the state after summing over both spins. For the electron wavefunction the largest con-

tribution to the ground state is from the |s〉 function. The hole wavefunctions are mostly

comprised of |px〉 and |py〉 functions. All of these wavefunction plots agree well with those

of Stier [9] and confirm that nextnano++ is providing reasonable wavefunctions.
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(a) Electron and Hole Energies in Pyramidal Quan-
tum Dots

(b) Transition Energies Pyramidal Quantum Dots

Figure 3.6: a) The electron and hole energy levels for an InAs pyramidal quantum dot with
h = 6nm and height h = 10nm to h = 30nm. b) Transition energies for these quantum
dots.

3.3 Pyramidal Quantum Dots

Although the exact shape of epitaxially grown quantum dots has been debated, most

researchers now agree that a square based pyramid or truncated pyramid is the most likely

geometry. For this reason and also to compare my results with published work, this Section

examines pyramidal InAs quantum dots grown on GaAs. In the Nextnano++ calculations,

the wetting layer is assumed to be 0.5nm thick. The presence of the wetting layer does not

significantly alter the results because it is essentially a quantum well with electron (hole)

energies above (below) the energy levels in the quantum dot.

As the quantum dot is made larger, the transition energy decreases. Figure 3.6(a) shows

the electron and hole energies for pyramidal quantum dots of fixed height, h = 6nm, and

various base widths. Smaller quantum dots have energies that approach the GaAs band

edges. Larger dots have lower electron (higher hole) energies that are closer to the lower

conduction (higher valence) band level in the quantum dot. Note that only the first three

electron and hole energy levels are shown for the dots and that more energy states may

exist, especially in larger dots. The transition energy for the first electron and hole states,
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(a) Ground State Emission Wavelengths in Large
Pyramidal Quantum Dots

(b) Ground State Emission Wavelengths in Small
Pyramidal Quantum Dots

Figure 3.7: The photon emission wavelength for an electron and hole ground state recom-
bination in a) large and b) small InAs pyramidal quantum dots. a) The target emission
wavelength, λ = 1.3µm is obtained for a dot with h = 6nm and b = 28.6nm. b) The target
emission wavelength, λ = 945.1nm, is obtained for a dot with h = 3nm and b = 9nm.

ET = Ee0 − Eh0, is shown as a function of base width in Figure 3.6(b). For a quantum

dot with base width of b= 28nm, the transition energy is approximately 0.958eV and the

photons emitted from the dot will have a wavelength of λ = 1.294µm. This is close to

the target emission wavelength of λ = 1.3µm. From the figure, a dot of height, h = 6nm,

and base width between b = 28nm and b = 30nm should give the desired emission. Figure

3.7(a) shows the photon wavelength for the ground state transition as a function of the

dot base width. A dot with b = 28.6nm has emission wavelength λ = 1.3005µm. Although

this dot will emit photons at the low-loss wavelength for optical fiber transmission, it has

several excited states for the electron to occupy. The implications will be discussed further

in the next Chapter.

To validate the spontaneous emission calculations through comparison with experimen-

tal results, it will also be necessary to have dots that emit photons with wavelength near

λ = 942.4nm. This corresponds to a transition energy of ET = 1.312eV. In Fig. 3.6(b),

even small quantum dots with b = 10nm and h = 6nm have only a transition energy

ET = 1.2eV. Continuing to decrease the base width of the dots will not result in the tran-
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(a) Electron and Hole Energies in Small Pyramidal
Quantum Dots

(b) Transition Energies Small Pyramidal Quantum
Dots

Figure 3.8: a) The electron and hole energy levels for an InAs pyramidal quantum dot with
h = 3nm and height h = 8.5nm to h = 10nm. b) Transition energies for these quantum
dots.

sition energy required. Instead, the height can be decreased which will result in a smaller

overall InAs volume and higher transition energies. Figure 3.8(a) shows how the electron

and hole energies vary when the dot height is reduced to h = 3nm and the base width is

varied from b = 8.5nm to b = 10nm. The corresponding transition energies are shown in

Fig. 3.8(b) and the photon wavelengths are shown in Fig. 3.7(b). When the quantum dots

have b = 9nm and h = 3nm, the photons emitted have wavelength λ = 945.1nm which

is within 0.2% of the desired wavelength. These quantum dots will be used in the next

Section when the approach for calculating the spontaneous emission lifetimes is outlined.

They may also be important for single photon source applications because unlike the larger

b = 28.6nm dots, only one excited electron state exhists in the dot. The excited electron

states actually lie above the GaAs conduction band edge and a single electron-hole recom-

bination event can be isolated in these emall dots. Such a dot is a valuable candidate for

use in a single-photon source despite the fact that the photon wavelength is shorter than

the target of λ = 1.3µm.

Because the wavefunctions will also be used to calculate the spontaneous emission
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[a]

[b]

[c]

Figure 3.9: The ground state and first two excited states for the holes and electrons in a
pyramidal InAs quantum dot. 3.9(a)-3.9(c) show the wavefunctions for dots with height
h = 6nm and base widths: 3.9(a) b = 14nm, 3.9(b) b = 20nm, 3.9(c) b = 28.6nm.

lifetimes, it is worthwhile to briefly discuss how they are affected for the two sets of quantum

dots presented in this Section. A general dependence of the wavefunctions on quantum dot

size was shown at the end of Sec. 3.2. For these two quantum dots, the facet was fixed to

{101} so that the base width was equal to twice the dot height. The result was two dots

with the same geometry, but different sizes. In the majority of the energy calculations of

this Section, the ratio of the base width to dot height was neither 2 : 1 nor held constant.

The result is pyramids with facets that lie along different planes and a general change in

the dot geometry. Figure 3.9, shows the first few electron and hole wavefunctions for a

variety of dots.

The quantum dots in Fig. 3.9(a)-3.9(c) are all h = 6nm high and have base widths

b = 14nm, b = 20nm and b = 28.6nm. As the base width increases, the hole ground state

wavefunction spreads out along the [11̄0] direction. This is similar to what was observed in

Fig. 3.5 except that the ground state hole wavefunctions for dots with larger base widths

are no longer split into two. The reduced dot height prevents the wavefunction splitting.

Quantum dots with larger base to height ratios should have a larger overlap of the electron

65



[a]

[b]

Figure 3.10: The ground state and first two excited states for the holes and electrons in
a pyramidal InAs quantum dot. 3.10(b) A dot with base width b = 10nm and height
h = 3nm. 3.10(a) Shows the wavefunctions for a dot with base width b = 10nm and height
h = 6nm.

and hole ground state wavefunctions. This affects the transition matrix elements and

subsequently the lifetimes.

For the first and second excited states the hole wavefunctions split along the [11̄0] and

[110] directions respectively. The excited states of the electrons exhibit similar behavior

except that the splitting occurs along the [110] direction for the first excited state and the

[11̄0] direction for the second. A slight spreading of the electron ground state is observed

along the [110] direction as the base width is increased, but the wavefunction stays fairly

localized at the center of the dot even for b = 28.6nm. Again this departure from the

behavior of the wavefunctions in Fig. 3.5 is a result of the smaller dot heights.

As the dot height is reduced from 6nm in Fig. 3.10(a) to 3nm in Fig. 3.10(b) the

wavefunctions fill the quantum dot volume almost completely. There is a significant portion

of the wavefunction near the apex of the pyramid for both the electron and hole ground

state wavefunctions. The hole excited state wavefunctions are no longer split, although

they still spread along the [11̄0] direction for the first state and [110] direction for the

second. Instead of coming together, the electron excited state wavefunctions are not as

well confined to the pyramidal dot.

From the photoluminescence plot in Fig. 3.3 of Sec. 3.3, it is obvious that a real quan-

tum dot sample does not have dots of uniform size. Even an extremely high quality sample
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has some size dispersion. Consider the inset to Fig. 3.3(b), where the full width at half

maximum is FWHM = 32.5meV. The peak transition energy is ET = 1.04eV and the

FWHM spans from E = 1.023eV to E = 1.056eV. According to Fig. 3.6(b), this corre-

sponds to dots with base widths between b = 19nm and b = 21nm. In order to model real

single photon emitters, it is thus necessary to consider the performance of the device as the

quantum dot size is varied over some range. This will be examined in the next Chapter.

Some techniques, such as µPL, may be used during actual fabrication of the device to help

minimize this variation through the location of quantum dots with the desired transition

energy.

3.4 Calculation of the Spontaneous Emission Lifetime

Once the transition energies and wavefunctions are found with Nextnano++, they can

be used to determine the dipole matrix elements which are then used to compute the

spontaneous emission lifetime. The approach illustrated below solves for the lifetimes of

quantum dots either in bulk or in a microcavity. Although we are specifically interested in

photonic crystal microcavities, the method presented here applies to any microcavity that

can be analyzed using FDTD methods. For bulk the spontaneous emission rate is given

by [17]

Wfi = 4nω3

2~c3 |~ελ · ~dfi|
2 = 4nω3

3~c3 |~dfi|
2 (3.36)

where c is the speed of light, n is the index of the bulk, ω is the angular frequency of the

emitted photon, ~ελ is the unit vector denoting polarization, and ~dfi is the dipole matrix

element. The simplification was made by noting that in bulk, there is no preferential

direction for the polarization so that

〈
|dfix|2

〉
=
〈
|dfiy |2

〉
=
〈
|dfiz |2

〉
= (1/3)

〈
|~dfi|2

〉
(3.37)
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and an average over the two polarizations yields
∑
λ

|~ελ · ~dfi|2 = (2/3)|~dfi|2.

To calculate the dipole matrix elements, we begin with the 8 complex spinors used in

the 8× 8 k · p calculations. For each eigenenergy, the complex wavefunctions are found by

taking the weighted sums of the 8 spinors,

ψ(x, y, z) = s1 |s+〉+s2 |s−〉+p1 |px+〉+p2 |px−〉+p3 |py+〉+p4 |py−〉+p5 |pz+〉+p6 |pz−〉

(3.38)

where s1, s2 and p1-p6 are the complex weighing factors and ψ(x, y, z) is the complex

wavefunction. The electron ground state wavefunction is denoted as ψe0(x, y, z) and the

hole ground state is ψh0(x, y, z). These wavefunctions are coarse due to the large step

size used in the 8 × 8 k · p calculations. To produce better results the wavefunctions can

be interpolated to a smaller grid using either linear interpolation or splines. Next the

wavefunctions are normalized by taking

ψe0(x, y, z) = ψe0(x, y, z)√∫
x

∫
y

∫
z
|ψe0(x, y, z)|2 dxdydz

= ψe0(x, y, z)√∑
x

∑
y

∑
z

|ψe0(x, y, z)|2 ∆x∆y∆z

(3.39)

ψh0(x, y, z) = ψh0(x, y, z)√∫
x

∫
y

∫
z
|ψh0(x, y, z)|2 dxdydz

= ψh0(x, y, z)√∑
x

∑
y

∑
z

|ψh0(x, y, z)|2 ∆x∆y∆z
.

(3.40)

The dipole matrix element is found from the wavefunctions through solution of

~dfi = −q 〈ψf |~r |ψi〉 = −q 〈ψh0|~r |ψe0〉 (3.41)

where ψi is the ground state electron wavefunction ψe0, ψf is the ground state hole wave-

function ψh0, and

~r = xx̂+ yŷ + zẑ. (3.42)

By substiting Equation 3.42 into Equation 3.41, the dipole matrix element along the three
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coordinate axis, x, y, and z can be found through the following equations

dif (x) = | − q 〈ψh0| ~x |ψe0〉 |2 = q2
∣∣∣∣∣∑
x

∑
y

∑
z

(xc − x)ψ∗h0ψe0∆x∆y∆z
∣∣∣∣∣
2

(3.43)

dif (y) = | − q 〈ψh0| ~y |ψe0〉 |2 = q2
∣∣∣∣∣∑
x

∑
y

∑
z

(yc − y)ψ∗h0ψe0∆x∆y∆z
∣∣∣∣∣
2

(3.44)

dif (z) = | − q 〈ψh0| ~z |ψe0〉 |2 = q2
∣∣∣∣∣∑
x

∑
y

∑
z

(zc − z)ψ∗h0ψe0∆x∆y∆z
∣∣∣∣∣
2

(3.45)

where xc, yc and zc are the center points of the quantum dot in the x, y, and z directions

respectively.

For a quantum dot in bulk, these values can be directly entered into Equation 3.36 to

determine the bulk transition rate. The main assumption in simplifying this Equation was

that there was no preferred direction for radiation in bulk. In a microcavity this assumption

is no longer valid; each mode will have a distinct polariztion that is determined by its field

distribution. If the quantum dot is emitting into a microcavity, then the transition rate

must be given by

Wfi = 4nω3

2~c3 |~ελ · ~dfi|
2. (3.46)

Instead of writing ~ελ as a typical unit vector, it is possible to express this value as

~ελ = Rxx̂+Ryŷ +Rz ẑ (3.47)

where Rx, Ry, and Rz are weighing factors that denote the strength of a dipole radiating

along the x, y, or z axis respectively. The value of |~ελ · ~dfi|2 then becomes

|~ελ · ~dfi|2 = ~ελ · (2/3)|~dfi|2 = (2/3) (Rxdif (x) +Rydif (y) +Rzdif (z)) . (3.48)

In bulk, Rx = Ry = Rz = 1, because there is no preferential direction for emitted radiation.

69



When the quantum dot is placed in a microcavity, the density of modes and hence the

weighing factors are altered. The weighing factors are found from three separate FDTD

radiation rate calculations each with a dipole oriented along the x, y, or z direction. Details

of these calculations were provided in Sec. 2.3.4. Specifically, the weighing factor is the

ratio of the spontaneous emission rate in the cavity to the rate in bulk at the transition

frequency corresponding the the energy transition in the quantum dot. These weighing

factors signify how well an emitter, the quantum dot, couples to a cavity mode if it is placed

at a particular location in the cavity and is emitting in a particular direction. The factor

of (2/3) that was obtained by approximating |~ελ · ~dfi|2 in bulk, remains in Equation 3.48

because the radiation rates in the cavity calculated by FDTD methods were normalized

by the rates in bulk. Recall that the Purcell factor is the ratio of the radiation rate in a

cavity to the rate in bulk. The weighing factors then are actually the Purcell factor of an

emitter laying along the x, y, or z axis in the cavity.

The spontaneous emission rate for a quantum dot in bulk or in a microcavity can now

be expressed as

Wfi = 4nω3

3c3 |~ελ · ~dfi|
2 = 4nω3

3c3 (Rxdif (x) +Rydif (y) +Rzdif (z)) (3.49)

and the spontaneous emission lifetime is

τspont = 1/Wfi = 3c3

4nω3 (Rxdif (x) +Rydif (y) +Rzdif (z)) . (3.50)

Equation 3.49 is equally valid for a quantum dot in bulk or in a microcavity. Upon

substitution of Rx = Ry = Rz = 1, Equation 3.49 reduces to Equation 3.36. In Appendix

.1, the explicit equations for the spontaneous emission rate in a cavity and in bulk are

found to be

W cavity
i→f = 4

~2∆ω
∣∣∣~dfi∣∣∣2 ∣∣∣α2Emax

∣∣∣2 (3.51)
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(a) Chang Microcavity (b) Chang Band Diagram and s = 0.0a Mode Fre-
quencies

Figure 3.11: a) An SEM image of the microcavity analyzed by Chang [18]. b) The band
diagram and mode frequencies for the L3 microcavity, a = 282.3nm, r = 0.31a, and
s = 0.0a. There are 5 peaks in the mode frequency plot, top and bottom correspond to
the band edges and the 3 in the middle are modes within the band gap.

W bulk
i→f = 4nω3

3~c3

∣∣∣~dfi∣∣∣2 (3.52)

respectively. These equations differ in terms of the prefactor and at first glance it would

appear that Eq. 3.49 above can not be correct for emission into both bulk and a microcavity.

But the weighing factors, Rx, Ry and Rz, in Eq. 3.49 are determined with respect to the

radiation from dipoles in bulk. Therefore, it is correct to begin with the spontaneous

emission rate in bulk and use these weighing factors to determine how the presence of the

microcavity perturbs the emission rates.

To verify this method for calculating the spontaneous emission lifetimes, we compare

our theoretical results with the experiments of Chang [18]. The structure examined is a

photonic crystal microcavity in a 180nm-thick GaAs slab with a single layer of In0.5Ga0.5As

quantum dots at the center. Specifically, the microcavity was formed by removing three

holes in a line, which is commonly referred to as the L3 defect. The photonic crystal has a

lattice constant near a = 284.5nm, with a hole radius, r = 0.31a. Control over the resonant

mode frequency is provided by shifting the nearest neighbor holes, along the defect axis,
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outward by some distance, s = 0.0a to s = 0.15a. Figure 3.11(a) shows an SEM image of

the microcavity [18] and the TE-like photonic band diagram for the bulk photonic crystal

obtained from our 3D FDTD simulator. A photonic band gap exists for the TE-like modes

in the frequency range spanning f = 0.2534−0.3393(a/λ), which closely matches the values

in [18]. The mode frequencies for the L3 cavity with s = 0.0a are shown as an overlay in

Fig. 3.11(b). There are 3 modes within the bandgap.

As shown in Fig. 3.12(a), the mode wavelength increases as the shift, s, is varied. The

shift corresponds to an addition of high index material to the cavity volume resulting in

a lower mode frequency and a longer wavelength. The second mode which is shown, lies

within the same wavelength range as was reported by Chang [18] and also has a matching

field profile. This mode is linearly polarized and the normalized Ey field profile is shown in

Fig. 3.12(b). Chang also used finite-difference time-domain methods to locate the cavity

resonant frequencies and calculate the field distributions. Although our mode frequencies

match the theoretical results of Chang closely, there is some discrepancy between the the-

oretical results and the experimental cavity resonance. This is likely due to imperfections

during the fabrication process that lead to variations in the hole sizes and spacings and

the slab thickness. It is found that reducing the lattice constant to a = 282.3nm leads

to a resonance of the second mode for s = 0.1a at λ = 945.1nm, which is closer to the

experimental results. To compare the theoretical spontaneous emission lifetime with the

experimental results, this adjustment is necessary.

Spontaneous emission calculations were performed using the 3D FDTD simulator. The

results for an x, y, and z dipole are shown in Fig. 3.13 as a function of normalized frequency.

For the x and y dipole, the radiation rate is suppressed within the band gap except at the

resonant mode frequencies. In Fig. 3.13 there are only 2 modes within the band gap,

because the field profile of the third mode has a null at the excitation point for all fields,

Ex,Ey andEz. No energy couples to this mode and it does not appear. At the normalized

frequency f = 0.2987, which corresponds to λ = 945.1nm, the radiation rate from a y
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(a) L3 Microcavity Mode Frequencies (b) L3 Microcavity Mode Profile, s = 0.0a

Figure 3.12: a) The mode frequencies verses the hole shift, s, for the second resonant mode
in the L3 microcavity. b) The normalized Ey field for this mode when s = 0.0a.

Table 3.3: Spontaneous Emission Lifetimes L3 Microcavity, s = 0.1a
Dot b/h λ(nm) dfix dfiy dfiz Rx Ry Rz τspont (ns) experiment (ns)
9nm/3nm 945.1 71.3687 47.3168 56.9332 1 1 1 0.659 0.65(±0.05)
9nm/3nm 945.1 71.3687 47.3168 56.9332 0.05335 7.278 0.7631 0.2955 0.21
9nm/3nm 945.1 71.3687 47.3168 56.9332 0.03859 0.1462 0.7028 2.329 2.52
8nm/3nm 926.4 34.0229 81.1823 67.1978 0.03859 0.1462 0.7028 1.804 2.52

dipole is much larger than 1. This will lead to the reduced spontaneous emission lifetime

for the on-resonance quantum dot. The radiation factors used to calculate the spontaneous

emission lifetimes are shown in Table 3.3. Also given in the Table are the lifetimes and

the transition matrix elements along the x, y, and z directions for the InAs quantum dot

with base width b = 9nm or b = 8nm and height h = 3nm, discussed in Sec. 3.3. Although

the quantum dots in Ref. [18] have a material composition of In0.5Ga0.5As, we make the

simplifying assumption that the dots are purely InAs.

The b = 9nm dot is on resonance with the microcavity mode. In bulk this quantum

dot has a spontaneous emission lifetime of τ0c = 0.659ns, in good agreement with the ex-

perimentally determined τ0e = 0.65ns. When the quantum dot is placed on resonance with

the microcavity, the spontaneous lifetime decreases to τ1e = 0.21ns in the experiments and

to τ1c = 0.2955ns in our calculations. These values correspond to an overall spontaneous
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(a) Radiation Rates of an x, y, z Oriented Dipole (b) Close-up of a) Around Frequency of Interest

Figure 3.13: a) The relative radiation rates for an x, y, or z dipole located at the center of
a L3 microcavity. In the band gap, 0.25− 0.33, there is suppression of the rates for dipoles
oriented along x or y except at cavity mode resonances. b) A zoomed in version of a). The
black lines denote when the spontaneous emission in the cavity is equal to that of bulk.

emission enhancement factor of τ0e/τ1e = 3 for the experiments and τ0c/τ1c = 2.23 for the

calculations. The discrepancy between the spontaneous emission lifetimes most likely re-

sults from an insufficient number of frequency points for the radiation factors. This results

in smaller rate multipliers that lead to longer lifetime values. Another source of error in

the calculations is the relatively small number of photonic crystal periods surrounding the

defect. Fewer periods result in less tightly confined modes and a decrease in the radiation

factors.

Off-resonance, the quantum dot would have a base width, b = 8nm, height, h = 3nm,

and a calculated lifetime of τ2c = 1.804ns. For this quantum dot the photons emitted have

a wavelength of λ = 926.4nm which corresponds to a normalized frequency of f = 0.3047.

The radiation rate multipliers at this frequency are all less than one, because this is a

non-resonant frequency within the 2D photonic band gap. The experimentally observed

lifetime of τ2e = 2.52ns is even longer than the calculated value. Here the discrepancy is

most likely due to insufficient number of photonic periods surrounding the defect.

The third line of Table 3.3 shows the spontaneous emission lifetime if the b = 9nm
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Figure 3.14: The spontaneous emission lifetimes for five different quantum dots in a L3
photonic crystal microcavity verses the photonic crystal lattice constant a. The three
clusters of short lifetimes, denoted by the gray shaded regions, are for quantum dots on
resonance with a cavity mode.

quantum dot is considered to be off-resonance. Since the results of the radiation rate

calculations are relative, the absolute resonant frequency can be adjusted by tuning the

value of the lattice constant, a. Increasing the lattice constant to a = 287.9nm, would shift

the normalized quantum dot emission frequency from f = 0.2987 to f = 0.3047. For this

quantum dot, the spontaneous emission lifetime is τ2c = 2.329ns. Although this is not the

same as looking at the detuning of quantum dots from the resonant frequency in a fixed

cavity, it does provide valuable information about the effects of fabrication errors.

If this concept is extrapolated then the spontaneous emission lifetime can be plotted

as a function of the lattice constant. Figure 3.14 shows this dependence for 5 different

quantum dots with base widths ranging from 8nm to 10nm. The range of base widths

accounts for the non-uniformity of real quantum dot samples which was discussed in Sec.

3.3. In the Figure, the horizontal lines are the bulk radiation rates for each dot and the gray

shaded regions denote the range of lattice constants for which the spontaneous emission
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lifetime is less than in bulk due to coupling between a quantum dot and a cavity mode. If

the lattice constant is tuned between a = 277.5nm and a = 288.5nm, denoted by the right

most gray shaded region, then one by one the quantum dots in the range b = 8−10nm will

be on resonance with the linearly polarized second cavity mode. The spontaneous emission

lifetime is shortest for the dot with base width, b = 8nm, when a = 277.5nm and for the

b = 10nm dot when a = 288.5nm. Consider a quantum dot sample grown for a laser that

has a high density of dots with base widths between b = 8− 10nm. This Figure illustrates

that for a 10nm range of lattice constant there will be dots in the cavity that couple to

the resonant mode and therefore have a short spontaneous emission lifetime. In a single

photon source, there will be just one quantum dot within the cavity. Incorrect choice of the

lattice constant could significantly hinder the device operation. If for example, the lattice

constant is chosen to be a = 277.5nm and the quantum dot inside of the microcavity has

a base width other than b = 8nm the emission will be suppressed and the operating speed

would be slow.

The middle shaded region, a = 258.5−268.7, with short spontaneous emission lifetimes

correspond to the first mode frequency in the L3 cavity. Although these lifetimes are even

shorter than the second mode, they are not linearly polarized and are thus not suitable

for a single photon source. It is interesting to note that for this mode, several quantum

dots have enhanced spontaneous emissions for the same lattice constant. Such overlap

would ease the fabrication precision required for single photon sources. The cluster of

short lifetimes for a = 237.1− 246.5nm, left shaded region, correspond to alignment of the

quantum dot with the photonic band edge frequency.

3.5 Summary

This Chapter outlined a method of modeling the spontaneous emission lifetimes of quantum

dots in bulk and in microcavities. The energy levels and the wavefunctions were obtained
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from Nextnano++ [13]. A list of the parameters used in our calculations is given and the

choices are justified through comparisons with experimental PL data from real quantum dot

samples. Nextnano++ outputs the complex valued spinors which can be used to determine

the complex wavefunctions. From these wavefunctions, the dipole matrix elements along

the principal axis in the quantum dot are found. To calculate the spontaneous emission

rates, these matrix elements are multiplied by weighing factors that represent the favor-

ability of emission into a particular direction. The weighing factors are determined from

3D FDTD calculations that monitor the radiation leaving the problem space when x, y, or

z dipoles radiate into the microcavity. It is found that this method provides spontaneous

emission lifetimes that are in good agreement with experimental data.
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Chapter 4

Quasi-3D Photonic Crystal

Microcavities

In Chapter 1, a quasi-3D photonic crystal microcavity was proposed for use in a single-

photon source. This cavity utilizes the properties of both a 2D photonic crystal slab and

a vertical distributed Bragg reflector (DBR) to enhance the rate of spontaneous emission

while providing polarization control. A logical approach to designing the microcavity

would be to begin with a 2D photonic crystal slab microcavity and to determine the effect

of placing a DBR on either side. Thus, this Chapter begins with a brief discussion of 2D

photonic crystal properties and photonic crystal slab microcavity designs. The effect and

complexity of incorporating DBR mirrors in the single-photon source microcavity will be

highlighted in a later part of the Chapter. As was discussed in Chapter 3, InAs quantum

dots emit photons with wavelengths ranging from approximately λ ≈ 0.920µm (325.9THz)

to λ ≈ 1.3µm (230.6THz). Since photonic crystals are described in normalized frequencies,

i.e (ωa/2πc = a/λ), it is not necessary to know the exact design frequency at this point.

The results presented here can be scaled to the proper frequency later. In fact, the trends

illustrated in this chapter can be scaled for other applications that require a completely

different operating frequency than for the single-photon source.
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(a) Square Lattice of Pillars (b) Square Lattice of Dielectric
Logs

(c) Triangular Lattice of Holes

Figure 4.1: Three different 2D photonic crystal lattices are shown. Dark areas (blue)
correspond to high dielectric material. a) A square lattice of dielectric pillars will have a
TM band gap, b) 2D dielectric logs will have a TE band gap, and c) a triangular lattice
of air holes in a dielectric can have both TE and TM band gaps.

4.1 2D Photonic Crystal Slab Microcavities

An ideal 2D photonic crystal is periodic in two dimensions and homogeneous in the third

dimension. Although these structures do not have 3-dimensional periodicity, they nonethe-

less can exhibit band gaps for fields propagating on axis, with kz = 0. If we assume on-axis

propagation, then the fields can be split into two polarizations. In photonic crystals the

convention is to define transverse electric (TE) modes as those with the electric field in the

plane of the periodicity and the magnetic field normal. Transverse magnetic (TM) modes

then have the magnetic field in the plane and the electric field normal.

Some common examples of 2D photonic crystals are shown in Fig. 4.1. For simplicity,

we will choose air as the low index medium. A properly designed square lattice of dielectric

pillars in air, shown in Fig. 4.1(a), can have a TM band gap. The presence and size of the

band gap depends on the contrast between the dielectric constant of the pillars and that of

the surrounding medium. The filling factor, or the fraction of dielectric material occupying

a unit cell, also plays a role in determining the band structure. The frequency of a mode is

associated with the corresponding electric field density: the larger the field concentration

in the high index material, the lower the frequency of the mode. This follows from the
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Figure 4.2: The band diagram for a 2D triangular lattice of air holes in dielectric slab
with ε = 13.0. The hole radius is r = 0.48a. The data points were obtained with FDTD
methods (Sec. 2.3.2) and the solid lines were obtained with planewave expansion techniques
(MIT Photonic Bands).

electromagnetic variational theorem [1]. A TE band gap is not possible in the square lattice

of pillars because the electric field will always have to penetrate the air region. For the

TE polarization, the field concentration will not vary significantly from the first mode to

second and the variation in the frequencies will not be large enough to form a gap. A TE

band gap can occur in a square lattice of dielectric logs, shown in Fig. 4.1(b). Here the high

dielectric regions are continuous and the low frequency modes can be highly concentrated

there. In order for the next mode to be orthogonal though, a portion of the field must

penetrate the air region. The frequencies of the two bands will then be very different and

a band gap will occur. For this structure, there is no TM band gap.

Consider now the photonic crystal of Fig. 4.1(c). This triangular lattice of air holes

in a dielectric can be thought of as having both isolated pillars and interconnected logs.

When properly designed, it can possess a band gap for both TE and TM polarized fields,

making it particularly interesting. An overlap of the TE and TM band gaps occurs for

air holes of radius r = 0.48a in a dielectric slab with ε = 13, as shown in Fig. 4.2. For
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(a) Effect of Changing Dielectric Constant on Band
Gap

(b) Effect of Changing Hole Radius on Band Gap

Figure 4.3: a) As the dielectric constant of the bulk material is decreased, the TE and
TM band gaps become smaller. For a wide range of semiconductor materials the band gap
should remain. b) As the ratio of the hole radius to the lattice constant is decreased, the
size of the TE and TM band gaps decrease. The TM band gap closes before the TE gap
and the complete 2D gap is eliminated.

this structure the normalized midgap frequency is 0.4719(a/λ). To center the band gap

around our frequency of interest, f = 230.6THz (λ = 1.3µm), the lattice constant must

be a = 613nm and the hole radius r = 294nm. Because the properties of the photonic

crystal can be scaled to any size that can be fabricated, the size of the band gap is given

as a ratio of the frequency range of the gap to the midgap frequency. For this structure

we obtain a band gap of 17.97%.

The size and position of the band gap change as the dielectric constant and r/a ratio

change. Keeping the r/a ratio constant and decreasing the dielectric constant, ε < 13,

increases the band frequencies and decreases the gap size. Increasing the dielectric constant

has the opposite effect and the gap size increases. The effect of the dielectric on the gap

size is illustrated in Fig. 4.3(a). Most semiconductor materials of interest fall within the

range of dielectric constants in Fig. 4.3(a), and they will have a complete band gap when

r = 0.48a. If the dielectric constant is instead held constant at ε = 13 and the hole radius

is decreased, the complete band gap will decrease and eventually disappear, see Fig. 4.3(b).
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(a) 2D Photonic Crystal Slab (b) Slab Waveguide

Figure 4.4: a) A 2D photonic crystal with a triangular lattice of air holes in a high index
slab. b) A slab waveguide with the requirements for a guided mode.

As the holes become smaller, the photonic crystal no longer seems to have both pillars and

logs. Once the TM band gap is closed no complete gap can exist. For a decrease in r/a

from 0.48 to 0.43 the size of the band gap decreases from 17.97% to only 5.63%. Once

r/a = 0.38, the TM band gap has entirely disappeared.

Thus far it has been assumed that the 2D photonic crystal is homogeneous in the

third dimension. While this serves as an illustrative example, it is important to consider

the more realistic case of a finite slab of high index material penetrated by air holes,

Fig. 4.4(a). In this structure, reflections will occur from both distributed Bragg reflection

off of the periodic lattice and total internal reflection at the air-dielectric interface. The

2D photonic crystal slab is essentially a combination of the infinite 2D photonic crystal

and a dielectric slab waveguide. In a slab waveguide, light traveling at certain angles

undergoes total internal reflection at the air-dielectric interface and remains inside the

slab. This angle, shown in Fig. 4.4(b), is refered to as the critical angle and is given by

Θc = sin−1(na/nd) where na, nd are the index of refraction for air and the dielectric,

respectively. The thickness of the slab waveguide will determine the number of modes that

can propagate, with thicknesses less than λ supporting only a single mode. Slab photonic
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Figure 4.5: The band diagram for a 2D triangular lattice of air holes in InGaAsP, dielectric
constant ε = 11.56. The hole radius is r = 0.3a and slab thickness is t = 0.6a. The data
points were obtained with FDTD methods (Sec. 2.3.2). The inset shows the Brillouin zone,
light blue, and the irreducible Brillouin zone, dark blue.

crystals are typically no thicker than a, the lattice constant. Thicker slabs can support

more modes which can fill and close the band gap. Slabs that are thinner than .5a, have

smaller band gaps and may not remain stable during the fabrication process. In this thesis,

only slabs of reasonable thickness, t = 0.5a− 0.9a, are considered.

The thickness of the slab must now be taken into consideration when calculating the

band diagrams, where 3D FDTD methods will be used. Figure 4.5 shows the band diagram

for a t = 0.6a thick InGaAsP slab with ε = 11.56 and r = 0.3a. The slab structure is

symmetric about the z = 0 plane, which allows the modes to be classified as either TE-like

(even) or TM-like (odd). They are, however not strictly TE or TM because there are

no x or y mirror symmetries to allow a full decoupling of the fields. The gray shaded

region in Fig. 4.5 is the light cone. In a three-dimensional structure, the wavevector

has three components. For the 2D photonic crystal, the wavevector is separated into

two main components k|| which refers to the in-plane wavevector (kx, ky) and kz which is

perpendicular to the plane. The band diagram of Fig. 4.5 is actually a projected band
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diagram where kz = 0. If kz is non-zero, then at some point the fields will encounter the

dielectric-air interface. As long as the angle of incidence is larger than the critical angle,

the fields will be totally reflected. The light cone denotes which wavevectors will have a

large enough angle of incidence to prevent the fields from leaking out into the surrounding

air. The boundaries of the light cone are calculated by taking ω/c = |k||| =
√
k2
x + k2

y for

each point along the Brillouin zone (inset of Fig. 4.5).

In Fig. 4.5 there is a band gap for the TE-like modes between 0.2682− 0.3462, but no

gap for the TM-like modes within this frequency range. This is not surprising because even

for the ideal 2D photonic crystal with a higher index contrast, the TM band gap disappears

from the TE gap once r ≤ 0.43a, as shown in Fig. 4.3(b). It is tricky to obtain an overlap

of the TE-like and TM-like band gaps in photonic crystal slabs but at sufficiently large

r/a an overlap occurs [2]. When r/a is large, the logs are very thin and the holes are very

large. Such a photonic crystal is particularly sensitive to fabrication errors and may not

be structurally robust. For these reasons, smaller r/a ratios are typically chosen, like the

one in this example. Even if there was an overlap of the TE and TM-like band gaps, this

would not be considered a complete band gap. In photonic crystal slabs, band gaps exist

only for modes that are guided in the slab waveguide. Once the bands enter the light cone

the guided modes are eliminated and no band gaps can exist.

Although there is no complete band gap in photonic crystal slabs, the size of the TE-like

gap is still important. The size of the band gap changes as the slab thickness is varied, as

illustrated in Fig. 4.6. Here the dielectric slab has ε = 11.56 and r = 0.3a. As the thickness

of the slab is increased the size of the band gap increases and asymptotically approaches

the ideal 2D case. For slab thicknesses greater than 1.1a, the size of the gap is significantly

reduced. This is expected since the guide is now thick enough to support multiple modes

in the vertical direction.

Thus far the discussion has been limited to the band structures of perfectly periodic

photonic crystals and photonic crystal slabs. The presence of defects in photonic crystal
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Figure 4.6: The size of the TE band gap for an InGaAsP slab, dielectric constant ε = 11.56,
is plotted verses the thickness of the slab. The hole radius is fixed to r = 0.3a and the slab
thickness varies from t = 0.3a to t = 1.2a.

(a) X Dipole Mode (b) Y Dipole Mode

Figure 4.7: The mode profile for the a) x-dipole and b) y-dipole, found by taking the
magnitude squared of the electric field across the z-plane at the slab center.
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(a) Dipole Mode Frequencies (b) Dipole Mode Quality Factors

Figure 4.8: a) The degeneracy splitting of the dipole mode by changing r′ (shown in inset).
When r′ 6= r the frequencies of the x-dipole and y-dipole mode do not coincide. b) As the
geometry of the cavity is changed the quality factor of the x and y dipole modes changes.

slabs will lead to localized modes that appear within the band gap. For the single-photon

source, the mode should satisfy the following requirements: appear at 230.6THz, have a

distinct x or y polarization, have a low to moderate quality factor. When a single hole

is removed from the photonic crystal slab, a dipole mode of double degeneracy is formed.

For a slab of GaAs with dielectric constant ε = 12.96, hole radius r = 0.35a, and slab

thickness t = 0.5a, the mode appears at the normalized frequency f = 0.312. The physical

dimensions of the photonic crystal would then be a = 405nm, r = 142nm, and t = 203nm

for operation at our target frequency. Figure 4.7 shows the mode profiles for the x-dipole

and y-dipole.

The degeneracy of the dipole mode can be eliminated if the symmetry of the photonic

crystal is broken [3]. One way to break the symmetry is to vary the size of the inner holes

surrounding the defect as shown in the inset of Fig. 4.8(a). By adjusting the radii of the

two holes that lie along the x̂ direction, see Fig. 4.4(a) for the axis, the frequency of the

x-dipole mode can be adjusted. The y-dipole mode is favored in this geometry because

the perturbation is along x̂ and the fields of the mode lie primarially along ŷ. These new
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geometries will affect the mode frequency and the quality factor. Figure 4.8(a) shows how

the mode frequencies vary as the hole radius is changed. When r′ 6= r, there are two mode

frequencies corresponding to the x-dipole or y-dipole mode. As the defect radius, r′, is made

larger, the y-dipole mode frequency increases only slightly. The x-dipole is more sensative

to the perturbation of the cavity geometry. It is shifted up in frequency and eventually

leaves the band gap. For r′ < r, the frequency of the y-dipole again remains relatively

unchanged. The x-dipole mode is shifted down in frequency towards the dielectric band

edge. When r′ 6= r, the degeneracy is lifted and single mode operation can be achieved

by placing an emitter in the cavity that emits photons of either the x or y dipole mode

frequency.

As discussed in Chapter 1 the spontaneous emission rate of a dipole source is drastically

affected by its surroundings. When a dipole source is placed inside of a photonic crystal

microcavity, its emission can be enhanced or suppressed depending on the oscillation fre-

quency of the dipole and its location in the microcavity [4]. Section 2.3.4 discussed how

FDTD methods can be used to obtain the spontaneous emission enhancement factor. The

same techniques are applied here to study the spontaneous emission of a dipole located

inside of a photonic crystal microcavity.

Consider first, the case of a t = 0.5a thick GaAs slab suspended in air. The index

of refraction is n = 3.6, the hole radius is r = 0.3a and a doubly degenerate dipole

mode is created by removal of a single air hole from the microcavity. Fig. 4.9 shows the

spontaneous emission enhancement as a function of frequency for an Ex-polarized point

dipole located at the center of the photonic crystal microcavity. This particular photonic

crystal structure exhibits a band gap between the normalized frequencies 0.252 − 0.34.

Throughout this frequency range the spontaneous emission is suppressed except at the

resonant mode frequency, 0.2933, where the emission factor is strongly enhanced.

In Fig. 4.10 the spontaneous emission of an Ez-polarized point dipole located at the

center of the cavity is shown. This source does not couple to the TE-like modes which
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Figure 4.9: The spontaneous emission rate for an Ex-polarized dipole centered in a single
defect GaAs slab microcavity. Here the spontaneous emission is normalized to the rate in
a uniform dielectric. This source couples to the TE-like modes of the 2D photonic crystal
slab and enhancement occurs at the resonant frequency.

Figure 4.10: The spontaneous emission rate for an Ez-polarized dipole centered in a single
defect GaAs slab microcavity. Here the spontaneous emission is normalized to the rate in
a uniform dielectric. This mode couples to the TM-like modes of the slab PC structure.
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(a) Ex Electric Field Intensity for Dipole Mode (b) Proportionality of Spontaneous Emission En-
hancement to Electric Field Intensity

Figure 4.11: a) The electric field intensity is plotted along a slice at the center of the
photonic crystal slab. b) The field intensity of a) is sliced along the x = 0 and the y = 0
axis and the magnitude of the intensity is normalized to the spontaneous emission rate at
the x = 1 or y = 1 position respectively. The data points correspond to the spontaneous
emission rates for a dipole located at various points along the axis.

is why there is no peak at the resonant mode frequency of 0.2933. Instead this source

couples to the TM-like modes and has a peak within the TM band gap that lies between

0.4086 − 0.4473. The suppression of emission for frequencies below ≈ 0.25 is due to the

fact that there are no TM-like modes or bands below this frequency.

The spontaneous emission enhancement is affected by the placement of the oscillating

dipole within the microcavity. This dependence arises from the fact that the radiation rate

of the dipole is proportional to the squared amplitude of the electric field [4]. If an Ex-

polarized point dipole source is again placed inside of the slab microcavity and its position

is varied, the spontaneous emission rate should change proportionally to the change in the

magnitude of the electric field. Figure 4.11(a) shows the squared magnitude of the electric

field and Fig. 4.11(b) shows the spontaneous emission enhancement for the resonant mode,

f = 0.2933, as a function of position. The dipole was shifted from the center of the cavity

along the x or y axis and the spontaneous emission enhancement was recorded at several

points, shown as data points in Fig. 4.11(b). Here the solid lines are slices of the squared
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Figure 4.12: The spontaneous emission rate enhancement for an Ex-polarized dipole cen-
tered in a single defect GaAs slab microcavity, r = 0.3a and t = 0.5a, for increasing rows
of photonic crystal around the defect, open circles. The extraction efficiency is also shown
and approaches 1 as the number of holes is increased, closed circles.

magnitude of the electric field along the x or y directions normalized to the spontaneous

emission at the x, y = 1 point. As expected, the spontaneous emission enhancement is

proportional to the electric field. We see that for a dipole shifted along the x-axis, the

spontaneous emission rate slowly decreases. When the dipole is shifted along the y-axis

the rate decreases rapidly and then increases again. The minimum value occurs around

(0, 7), which is where the electric field intensity is a minimum.

The extraction efficiency of the device can be found using the FDTD method as well.

This efficiency is defined as the ratio of the flux through the top and bottom surfaces

of the slab to the total outgoing flux [2]. During the course of the spontaneous emission

calculations, the ẑ component of the Poynting vector is summed over the same surface used

to compute the emitted power. By taking the ratio of these sums, the extraction efficiency

as a function of frequency is obtained. As shown in Fig. 4.12, the extraction efficiency at

the resonant frequency increases as the number of rows surrounding the defect increases.

This is expected because the more holes surrounding the defect, the better the in-plane
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Figure 4.13: The spontaneous emission rate for an Ex-polarized dipole centered in a single
defect GaAs slab microcavity as a function of the slab thickness.

confinement. There should be less leakage through the photonic crystal and more energy

exiting the device through the top or bottom of the slab. The spontaneous emission rate

is only slightly increased, although it also exhibits an asymptotic behavior. While 4 or 5

holes surrounding the defect is adequate to accurately determine the spontaneous emission

rate, accurate calculation of the extraction efficiency requres closer to 6 or 7 rows of holes.

It is worth noting that as expected, the resonant frequency does not change as rows of

holes are added.

When the number of holes surrounding the defect is kept constant and the slab height

is increased, the spontaneous emission enhancement and the extraction efficiency decrease.

This is illustrated in Fig. 4.13 for a GaAs slab with 3 rows of holes surrounding the defect.

As the slab thickness increases, there is a larger volume of high dielectric material for the

electromagnetic fields to occupy. The magnitude of the electric field decreases which leads

to a decrease in the spontaneous emission rate. For thicker slabs, the extraction efficiency

decreases due to the fact that more of the fields satisfy the total internal reflection condition

and remain in the slab.
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(a) DBR (b) DBR Band Diagram

Figure 4.14: a) DBR with the coordinate axis used in this section. b) The band diagram
for a quarter wave stack of GaAs n = 3.6 and oxidized AlGaAs n = 1.544 for propagation
along (0, 0, kz), left, and (0, ky, 0), right. The red dashed line is the light line.

4.2 1D Distributed Bragg Reflection Microcavities

The concept of distributed Bragg reflection was first introduced in Chapter 1. Previously,

only on-axis propagation was considered, (0, 0, kz), where z is the axis of periodicity; see

Fig. 4.14(a). For on-axis propagation it was found that a photonic band gap exists and light

with frequencies in the gap that is incident on the DBR will be completely reflected. When

the incident light is not propagating on axis, then the symmetry is broken and light will be

able to propagate through the crystal. The modes of a quarter-wave DBR made of GaAs,

n = 3.6, and oxidized AlGaAs, n = 1.544, are shown in Fig. 4.14(b). On the left hand

side, the bands are plotted for (0, 0, kz) and on the right they are plotted for (0, ky, 0). For

on-axis propagation the TE (polarization along x direction) and TM (polarization along

the yz plane) modes are degenerate, but this degeneracy is split for off-axis propagation.

Although there is no complete band gap for the DBR, it is possible to achieve omnidi-

rectional reflection [5]. In fact the quarterwave stack of Fig. 4.14(b) can have an omnidi-

rectional gap, as shown in Fig. 4.15. The TE bands are plotted on the left hand side and

the TM are on the right. The green and blue shaded regions correspond to a continuum
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Figure 4.15: The DBR consists of a quarter wave stack of GaAs n = 3.6 and oxidized
AlGaAs n = 1.544. The hatched regions on the left hand side are the continuum of TE
modes for kz = 0 to kz = 0.5 and the right hand side are the TM modes. The red dashed
line is the light line. Above the light line in the yellow cross-hatched region lies the region
of omnidirectional reflectivity.

of modes for kz = 0 to kz = 0.5 and the red dashed line is the light line. Two conditions

must be satisfied for the omnidirectional gap to exist. First, the index contrast between

the two DBR materials must be high enough so that point U is above point L. Second, the

light must be incident from a material with a lower index of refraction than either of the

two materials of the DBR. The yellow hatched region in Fig. 4.15 is the onmidirectional

reflection region. While the presence of an omnidirectional gap is an exciting feature of

the DBR, it will not be useful for the single-photon device because light will originate

from within the high index slab. The second condition for omnidirectional reflectivity will

not be met. The possible advantage of using a DBR in the single-photon source will be

examined in detail in Section 4.4.

Before concluding the discussion of DBRs, the design of single defect DBR microcavities

is presented. For on-axis propagation, altering the thickness of one of the DBR layers

introduces a state within the band gap and light is localized at the defect. The size of the
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Figure 4.16: The DBR is a quarter wave stack of GaAs n = 3.6 and oxidized AlGaAs
n = 1.544. The cavity consists of 4 DBR repetitions on either side of a central GaAs
defect. As the defect is made larger higher order modes are pulled into the band gap from
the air band.

defect layer will determine the mode frequency and profile. To illustrate this, consider the

quarter-wave stack discussed earlier. If one layer of GaAs is increased slightly, then a mode

will appear within the band gap near the air band edge. As the thickness is increased, the

mode will sweep across the gap. When the thickness of the GaAs defect layer is doubled,

the thickness corresponds to half of a wavelength at the center of the band gap. It is

expected that one mode will be supported with a frequency of c̃/λ, where c̃ is the speed of

light in GaAs and λ is the wavelength of the mode. As the thickness is increased further,

the mode moves down into the dielectric band. As the defect is made larger, higher order

modes enter and traverse the band gap one by one. This is illustrated in Fig. 4.16.

4.3 Quasi-3D Photonic Crystal Band Diagrams

The 2D photonic crystal slabs examined in Sec. 4.1 used distributed Bragg reflection for

in-plane confinement and total internal reflection for vertical confinement. Whereas total
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Figure 4.17: Schematic of the bulk quasi-3D photonic crystal. In-plane confinement and
vertical confinement are caused by distributed Bragg reflection off of a 2D photonic crystal
lattice and a vertical DBR, respectively.

internal reflection is completely dependent on the index contrast between the slab and

the surrounding material, distributed Bragg reflection can be engineered by altering not

only the materials but the layer thicknesses and the number of periods. Instead of relying

on total internal reflection it may be benefical to consider using 1D distributed Bragg

reflectors. Before attempting to design microcavities in this quasi-3D photonic crystal,

shown in Figure 4.17, it is beneficial to investigate the band structures of the bulk crystal.

Using 3D FDTD and symmetry approximations, it is possible to account for the DBR

mirrors in the 2D photonic crystal band diagram. Figure 4.18 shows how the number of

periods of the DBR affects the TE bands. The structure simulated here has GaAs slab

thickness, h = 0.5a, and hole radius, r = 0.3a. The DBR is the same one used previously

in this chapter, with alternating layers of GaAs and oxidized AlGaAs designed to be a

quarter wave stack for λ = 1.3µm. With only 4 periods of this DBR, the reflectivity is

greater than 98% for the normalized frequencies 0.2252 − 0.3551(a/λ). Here the lattice

constant for the normalized frequencies is taken as the lattice constant of the 2D photonic
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Figure 4.18: The band diagrams for a quasi-3D photonic crystal microcavity with 4.18(a)
1, 4.18(b) 2, 4.18(c) 3 or 4.18(d) 4 periods of DBR around the slab. The lattice constant
was taken as a = 30, the GaAs layer thickness is ≈ 152.3nm and the oxidized AlGaAs
layer is ≈ 348.2nm thick. The yellow circles overlaid on the band diagrams are the TE
bands for the GaAs slab in air.
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Figure 4.19: 4.19(a)) The on-axis (left) and off-axis (right) band diagrams for the DBR
used to clad the 2D photonic crystal slab. 4.19(b)) The TE band diagram for the quasi-3D
photonic crystal with 4 periods of DBR above and below the slab. The new light line,
drawn as a bold red line, is determined from the DBR band diagram.

crystal and not the DBR to ensure frequency matching. The placement of the bottom

TE band, the dielectric band, remains relatively constant as more periods of the DBR are

added around the slab. This is expected because the dielectric band depends mostly on

the thickness, filling factor, and dielectric constant of the slab and not the surrounding

medium. Also shown in Fig. 4.18 as an overlay, is the band diagram for the GaAs slab

suspended in air. As the periods of the DBR are added around the GaAs slab, these TE

slab bands remain relatively intact but are shifted down slightly in frequency. Additional

bands also begin to appear. By the time 3 periods of the DBR surround the slab, there

are 4 bands within the original 2D photonic crystal band gap. It appears that the band

gap of the 2D photonic crystal is completely eliminated by the DBR mirrors.

When the DBR mirrors are used to provide vertical confinement, the light line as

discussed earlier is no longer relevant. The purpose of the light line in the band diagram

for a 2D photonic crystal of finite slab thickness is to denote which frequency/wavevector

combinations will satisfy the condition of total internal reflection and lead to guided slab

modes. For the case of the DBR mirrors, the condition for reflection at the boundary of

the GaAs slab is no longer dependent on total internal reflection. Instead the condition
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Figure 4.20: a) The TE (left) and TM (right) band diagrams for the DBR used to clad
the 2D photonic crystal slab. b) The TE band diagram for the quasi-3D photonic crystal
with 4 periods of DBR above and below the slab. The states in the 2D photonic crystal
band gap are determined from the TE modes in the DBR band diagram.

for reflection will depend on the dispersion relation given by the lowest bands of the DBR

band diagram for off-axis propagation, ky 6= 0. The dispersion relation for the DBR was

given in Fig. 4.14(b) but is repeated in Fig. 4.19(a) for convenience. This figure shows

the on-axis bands on the left hand side and the off-axis bands on the right. In computing

the band diagram for the DBR, k|| = ky was assumed. This choice is irrelevant due to

the rotational symmetry in the plane perpendicular to the periodicity. To place the new

light line on the 2D photonic crystal band diagram, first the magnitude of the wavevector,

|k| =
√
k2
x + k2

y, must be found at each point along the Brillouin zone. The light line

frequency is then the frequency of the lowest TM band at k = k|| in the right hand side

of Fig. 4.19(a). The frequencies must be renormalized to the lattice constant of the 2D

photonic crystal. Some additional scaling is also required because the air holes penetrate

the DBR layers and reduce the overall effective index of the material. Because this new

light line is generated from the DBR band diagrams, it will be referred to as the DBR light

line. The band diagram for the GaAs slab with 4 periods of the DBR above and below the

slab is shown in Fig. 4.19 with the DBR light line given by the bold red line. All modes

above this line are able to pass through the DBR and are lossy.
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For the quasi-3D band diagrams with 4 periods of the DBR around the GaAs slab, there

are 4 bands that lie in the 2D photonic crystal band gap. Comparison of Fig. 4.20(a) and

Fig. 4.20(b) reveals that the 4 bands are actually the same shape as the first shaded region

on the left hand side of the DBR band diagram. The first and fourth bands appearing in

the quasi-3D band diagram can be reproduced by mapping the TE bands of the DBR onto

the quasi-3D photonic crystal band diagram in a manner similar to that used to determine

the new light line. Using this method, and the same scaling factor, the dark green curves

are found in Fig. 4.20(b). The first line corresponds to the case where (0, ky, 0) and the

fourth to (0, ky, 0.5). These four bands denote a frequency range in the 2D photonic crystal

band gap in which DBR TE modes exist. As opposed to the band diagram in Fig. 4.20(a)

where there is a continuum of modes for kz = 0− 0.5, the modes in the quasi-3D band gap

are discrete. The affect these bands have on the quasi-3D cavity resonances will depend

on the mode profiles and will be investigated in the next section.

Any band gap that would exist in the quasi-3D structure must exist below the new

light line and above the leaky DBR bands. Closer investigation of the band diagram in

Fig. 4.19 reveals a small band gap between 0.3277 − 0.3306. In Section 4.1, an increase

in the hole radius lead to a larger band gap for a 2D suspended slab. Figure 4.21 shows

the quasi-3D photonic crystal band diagrams for a GaAs slab of height h = 0.5a with 4

periods of DBR cladding for radii, r = 0.30a, 0.35a, 0.40a, and 0.45a. As the air hole radius

is increased, the bands move upward in frequency due to the smaller effective index just as

they would without the DBRs. The bands that result from the 2D photonic crystal also

spread apart in frequency, however the overall size of the band gap is limited by the DBR

bands. When r = 0.30a, the 2D photonic crystal band gap lies below the DBR light line.

Increasing the hole radius to r = 0.35a pushes the second TE 2D photonic crystal band up

above the light line. The band gap now appears between the top of the leaky DBR band,

f = 0.3462(a/λ), and the bottom of the DBR light line, f = 0.3556(a/λ). Of the 4 hole

radii in Fig. 4.21, this 3% band gap is the largest. For larger radii, the DBR leaky band
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Figure 4.21: The band diagrams for a quasi-3D photonic crystal microcavity with 4 periods
of DBR around the slab. The hole radius is 4.21(a) 0.30a, 4.21(b) 0.35a, 4.21(c) 0.40a or
4.21(d) 0.45a. The lattice constant was taken as a = 30, the GaAs layer thickness is
≈ 152.3nm and the oxidized AlGaAs layer is ≈ 348.2nm thick.
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and the dielectric band of the 2D photonic crystal are pushed upwards toward the DBR

light line. Eventually, by the time r = 0.45a, the band gap is completely closed.

As the band diagrams reveal, there are additional states in the 2D photonic band gap

caused by the DBR mirrors on the top and bottom of the slab. If one considers only the

projected 1D and 2D band diagrams for the DBR and the 2D photonic crystal slab it would

appear that there is a complete overlab of their band gaps. Although it is tempting to

assume that this will lead to confinement in the quasi-3D microcavity, such an approach is

flawed. Neither the DBR nor the 2D photonic crystal on their own have a complete band

gap, so in both structures there are modes at every frequency that propagate. This is not

always obvious from viewing the projected band diagrams where assumptions are made to

restrict propagation in certain directions. One of the advantages of using the 3D FDTD

method to determine the band diagram is that no assumptions or restrictions are made.

This means that the more complex reflections that occur in the quasi-3D structure can be

accurately simulated and a more realistic band diagram produced. Close attention must

be paid when designing microcavities in these quasi-3D photonic crystals.

4.4 Hybrid Photonic Crystal Microcavities

Consider the microcavities shown in Fig. 4.22. Just as in Sec. 4.1, the in-plane confinement

is due to a defect in a 2D photonic crystal. The various cavities, however, have different

types of vertical confinement. Figure 4.22. b uses total internal reflection for the top mirror

and distributed Bragg reflection for the bottom mirror. The cavities in c and d use DBRs

for both the top and bottom mirrors, but have the 2D photonic crystal penetrating different

numbers of layers. The particular types of mirrors will affect the device performance. For

these devices, the thickness of the slab will also play a key role in determining the operating

characteristics of the microcavity.

Consider first the simple case of a GaAs slab, (ε = 12.96), with a triangular array of
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(a) Plain Slab (b) DBR Below Slab

(c) DBR Clad Slab with Top Holes (d) DBR Clad Slab with Top to Bottom Holes

Figure 4.22: The various quasi-3D microcavities examined in this section. a) A GaAs slab
suspended in air. b) A GaAs slab with a 4-period DBR made of GaAs and oxidized AlGaAs
below. c) A GaAs slab with the 4-period DBR both above and below. Holes penetrate
only the top layers. d) The same structure as c) but now the holes penetrate the entire
structure.

Figure 4.23: The mode frequencies for various configurations of the quasi-3D cavity are
shown. As the DBR layers are added first to the bottom and then to the top, the mode
frequencies decrease slightly.
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air holes, r = 0.3a. A microcavity is made by removing a single hole from the lattice and

a dipole mode is present inside the band gap. As the thickness of the slab is increased,

the band edges and the mode frequency shift to lower frequency as shown in Fig. 4.23.

In thicker slabs the volume of high dielectric material increases and the concentration of

the fields in the air surrounding the slab decreases. This leads to lower mode frequencies.

Figure 4.23 shows the change in mode frequencies when a 4 period GaAs/oxidized AlGaAs

DBR is placed below or above and below the GaAs slab. When a DBR is placed below

the 2D photonic crystal slab, as in Fig. 4.22 b, the resonant mode frequencies of the

microcavity decrease slightly. The oxidized AlGaAs layer has an approximate refractive

index, n = 1.544. Any fields that are not completely confined to the GaAs slab would

spread into this oxidized layer on the bottom and to the air on the top. Because the index

of the oxide is larger than the index of air, the effective dielectric of the structure is slightly

increased and due to the variational theorem, we would expect the frequency of the mode

to decrease. When a DBR is placed above and below the GaAs slab, as in the cavities

of Fig. 4.22 (c) and (d), the mode frequencies are decreased further. The frequencies are

however, unaffected by the depth of the holes. Because the field energy is easily confined

to the high index material in thicker slabs, the mode frequencies for thicker slabs with and

without DBRs do not differ as much.

Although changing the material surrounding the 2D photonic crystal slab does not have

a dramatic effect on the resonant modes, the quality factor is significantly affected. The

quality factor verses GaAs slab thickness for the 4 microcavities of Fig. 4.22 is shown in

Fig. 4.24. For a dielectric slab surrounded by air, the quality factor decreases as the slab

thickness increases. A slight change in Q for increasing slab thickness is expected because

the fields filling the cavity encounter the dielectric interface at different angles for different

slab thicknesses. While the quality factor is only moderately affected by variations in the

slab thickness, it is highly dependent on the mirror types used above and below the slab.

The two structures that are asymmetric, the slab with a DBR bottom mirror and the one
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Figure 4.24: The quality factor for the microcavities of Fig. 4.22. The microcavity is made
of GaAs with r = 0.3a and t = 0.5a. When the microcavity has a DBR for the top or
bottom mirror the structure is a quarter wave reflector with 4 repetitions.

with holes drilled only through the top DBR, see a large decrease in quality factor. The

slab that is encased in a DBR, but has holes penetrating the entire structure, has a quality

factor near that of the slab suspended in air.

When designing a practical device, fabrication limitations must be taken into consid-

eration. Of the 4 microcavities shown in Fig. 4.22, the slab with a DBR below would be

the easiest to fabricate. But as seen in Fig. 4.24 the quality factor is too low. Fig. 4.25

shows that the quality factor can be increased by drilling the holes through the dielectric

slab and into at least one period of the DBR. For these simulations, the slab thickness was

fixed to t = 0.5a because it is a single mode structure and can be fabricated with relative

ease. The improvement in the quality factor can be visualized by looking at the magnitude

of the electric field through a slice along the y-z plane at the cavity center in Fig. 4.26. For

the air holes penetrating only the dielectric slab, the fields couple into the first dielectric

layer of the DBR where they are guided. When the air holes penetrate one or more layers

of the DBR, the field leakage into the DBR slab is reduced and more of the power exits

the device through the top surface.
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Figure 4.25: The quality factor increases as the holes penetrate more layers of the DBR
that lies below the GaAs slab. The microcavity is made of GaAs with r = 0.3a and t = 0.5a
and the DBR below the slab has 4 repetitions.

(a) Electric Field Leakage in Microcavity with
DBR

(b) Reduction of Leaky Fields by Extension of Pe-
riodicity

Figure 4.26: The normalized magnitude of the electric field along a yz slice through the
center of the microcavity. a) Shows the fields for a photonic crystal slab with a DBR placed
below. The electromagnetic fields are coupled to and then guided in the GaAs layers of
the DBR causing significant leakage of energy. b) The fields for the same microcavity as
in a) except that the air holes penetrate 3 layers of the bottom DBR. Here the fields are
better confined to the GaAs slab and the leakage is reduced.
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(a) (b)

Figure 4.27: a) The spontaneous emission rate for the cavities of Fig. 4.22 for 3, 5 or 7
holes. b) The extraction efficiency for the cavities of Fig. 4.22 for 3, 5 or 7 holes.

The spontaneous emission rate is also affected by the presence of DBRs above and/or

below the photonic crystal slab. Figure 4.27 shows the radiation rate and extraction

efficiency for each of the microcavities in Fig. 4.22 b-d as a function of the rows of air holes

surrounding the defect. In each case, an Ex-polarized dipole is placed at the cavity center.

The spontaneous emission rate and extraction efficiency are lower than for the GaAs slab

structure that was investigated in Sec. 4.1. The lowest radiation rate values are found for

the asymmetric structures, which both have a DBR below the slab that is not penetrated

by air holes. For these structures there is significant leakage of energy into the first GaAs

layer of the DBR, as was illustrated in Fig. 4.26. This leakage reduces the magnitude of

the electric field in the microcavity resulting in a lower spontaneous emission rate than for

the dielectric slab. Because the leakage is only moderately affected by an increase in the

extent of the periodic structure, these two cavities exhibit only a slight improvement in

radiation rate as the periodicity of the 2D photonic crystal is increased from 3 to 7 rows

of holes.

When the photonic crystal holes go through both the top and bottom DBR, there is an

improvement in the spontaneous emission rate, however the rates are still much lower than
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for the suspended slab. The DBR mirrors used above and below the GaAs slab are highly

reflective even when only 4 periods are used. If a small number of holes are used to create

the 2D photonic crystal, then the in-plane confinement is much weaker than the vertical

confinement provided by the DBRs. Increasing the number of air holes, should provide

better in-plane confinement and lead to improvement of both the spontaneous emission

rate and the extraction efficiency.

Figure 4.27 shows only a modest improvement in the radiation rates for increasing num-

bers of holes, while the extraction efficiency actually decreases. Recall that the extraction

efficiency is measured as the ratio of the radiation in the |ẑ| direction to the outward radi-

ation. A low extraction efficiency means that most of the energy is not leaving the cavity

in the vertical direction. For each cavity, as the 2D periodicity is increased it is expected

that the fields are not propagating out as far into the 2D photonic crystal. In the case

of the suspended GaAs slab, this is what led to the asymptoticlly increasing extraction

efficiency. Examination of the radiation data for the 3 cavities with the DBRs shows that

there is still a significant portion of energy propagating in-plane for these devices even as

the number of holes is increased. The majority of the |ẑ| radiation is actually collected

from along the sides of the box and not the top and bottom surfaces. Thus increasing the

number of air holes actually decreases the |ẑ| radiation at the sides and subsequently the

extraction efficiency.

The dipole mode is located at a normalized frequency of f = 0.288. Referring to the

band diagram for the quasi-3D photonic crystal with r = 0.3a shown in Fig. 4.18(d), this

frequency lies in the range where there are TE DBR states in the bulk photonic crystal.

Specifically, there are states at the K point and half way between the M and K point.

From the reciprocal space representation of the mode, it is possible to determine which

wavevectors contribute most significanly to the mode profile. This is done by determining

the reciprocal space representation of the mode through a spatial discrete Fourier trans-

form. The magnitude of the wavevector along the Brillouin zone for each field can then be
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Figure 4.28: The magnitude of the wavevector found from the reciprocal space representa-
tion fo the y-dipole mode along the edges of the Brillouin zone. The Ex field has maximums
at the M and K points and the Ey field has a maximum near the K point.

plotted. For TE-like modes, the mode is primarilly composed of Ex and Ey fields and we

can neglect Ez in this analysis. Because the excitiation was a x-oriented source, the mode

has a y-dipole profile. The plot of the magnitude of the Ex and Ey field wavevectors are

shown in Fig. 4.28 for the y-dipole mode at points along the Brillouin zone. Both the Ex

and Ey fields have maximum values near the K point. The bulk quasi-3D crystal also sup-

ports a mode at this location and the fields are allowed to propagate through the crystal.

This is what causes both the lower radiation rate and the poor extraction efficiency for

this mode in comparison to the suspended slab.

Because the cavity with the DBR below the GaAs slab does not have a highly reflective

mirror on the top, it has the highest extraction efficiency of the three cavities. The extrac-

tion efficiency also decreases the least as the number of holes is increased. The cavity with

the holes penetrating the entire structure has the most dramatic decrease in extraction

efficiency to nearly 0 once the number of holes has been increased to 6. The cavity with

the holes only penetrating the top DBR and slab lies somewhere in the middle. All of

the structures have a maximum extraction efficiency for 4 periods of holes. The modest

109



Figure 4.29: The spontaneous emission rate for an Ex-polarized dipole centered in a single
defect GaAs slab microcavity with a DBR as the bottom mirror. The emission and extrac-
tion are plotted for the 2D triangular photonic crystal pattern penetrating between 0 and
4 periods of the DBR.

improvement gained by increasing the number of holes from 3 to 4 is likely due to a slight

increase in the radiation leaving the top of the cavities.

For the microcavity with a DBR below the GaAs slab, there is significant improvement

of the spontaneous emission rate and the extraction efficiency as the periodic pattern of air

holes is etched down through the DBR. The trends are shown in Fig. 4.29 for the case of 3

rows of holes surrounding the defect. When the air holes penetrate one layer of the DBR

there is a sharp rise in the extraction efficiency and the spontaneous emission rate. As the

hole depth is increased, the values increase slightly. This structure comes the closest to

achieving the high spontaneous emission enhancement of the suspended slab. When the

number of holes surrounding the defect is increased, the performance of this structure is

further improved. For 7 rows of holes, the relative radiation rate for the microcavity with

holes drilled through three of the bottom DBR layers is 23.76. The extraction efficiency is

0.6296.

Instead of considering what happens as the 2D photonic crystal is etched further into
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Figure 4.30: The spontaneous emission rate for an Ex-polarized dipole centered in a single
defect GaAs slab microcavity with a DBR as the bottom mirror. The number of top DBR
periods is varied between 0 and 4 and the 2D triangular photonic crystal pattern penetrates
the entire structure.

the bottom DBR, it is also possible to examine the radiation rate and extraction efficiency

for different periods of the top DBR as shown in Fig. 4.30. In this Figure, there are 7

rows of holes surrounding the single defect which are etched the entire way through the

structure. When there are 4 DBR periods above the slab, the structure is the same as

that of Fig. 4.22(d). As the number of top periods is decreased, the reflectivity of the top

mirror is reduced. Because the DBR is highly reflective there is not a significant reduction

in the reflectivity until the number of periods is ≤ 1. At this point the extraction efficiency

begins to increase. Once all of the DBR layers are removed the relative radiation rate is

23.76 and the extraction efficiency is 0.6296. Although this radiation rate is higher than

for any of the other cavities with DBRs, it is still less than for the suspended slab.

The extraction efficiency at first seems to be poor in comparison to the value obtained

for the GaAs slab of 0.9872, however it is actually better. Because the light exiting the top

and bottom of the device are summed, the extraction efficiency out of only the top of the

GaAs slab microcavity is ≈ 0.9872/2 = 0.4936. Placing the DBR below the slab reduces
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Table 4.1: Examination of Extraction Efficiency Calculations
Cavity Type Mode Frequency(a/λ) Total Extraction Efficiency Top Extraction Efficiency
GaAs slab 0.2933 0.9872 0.4548
DBR below 0.2907 0.6546 0.5968

Figure 4.31: The mode frequencies for the quasi-3D cavity as the radii of the two inner holes
along x̂ are varied. Because the perturbation is along x̂ the x-dipole mode is very sensative
to the change in hole radius while the y-dipole frequency remains relatively constant.

the amount of light that exits the device from the bottom. A more accurate method of

calculating the extraction efficiency out of the top of the device is to sum the |ẑ| component

of the Poynting vector over the top half of the problem space only. The ratio of this value

to the total power radiated will provide a more accurate view of the extraction efficiency.

Consider the case of the DBR below with the 2D photonic crystal penetrating 4 periods

of the DBR. The number of holes surrounding the defect is 7 and the data is summarized

in Table 4.1. The microcavity with the DBR mirror below the GaAs slab has a higher top

extraction efficiency than the GaAs slab in air. The cost of course is a lower spontaneous

emission lifetime.

The results presented thus far imply that a mode in the quasi-3D microcavity has lower

a radiation rate and extraction efficiency than the same mode in a suspended slab cavity.

The only exception being a higher top extraction efficiency when the 2D photonic crystal
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Figure 4.32: The radiation rates for the x (green circle) and y (blue square) dipole mode
as a function of the radii of the two inner holes along x̂. The solid line/filled data point are
radiation rates in the quasi-3D cavity and the dashed line/open data point are radiation
rates in the suspended slab. For each mode there are some r′ where the radiation in the
slab is greater than for the quasi-3D cavity.

is etched down into a DBR below the GaAs slab. To substantiate the claim that the

poor performance of the y-dipole mode is due to the fact that the wavevector maximum

corresponds to a TE DBR state, the spontaneous emission rate for the x and y-dipole modes

can be found as the mode frequency is tuned. As discussed in Sec. 4.1, the degenerate dipole

can be split by increasing or decreasing the radii of the nearest neighbor holes along the x̂

direction. This perturbation of the cavity also alters the mode frequencies. Because there

is a quasi-3D band gap in the bulk structure with r = 0.35a we will choose this bulk crystal

as opposed to the r = 0.3a photonic crystal structures that were examine thus far in this

section. The mode frequencies for the quasi-3D cavity of Fig. 4.22(d) are shown in Fig.

4.31 as a function of the perturbed hole radius.

The radiation rate as a function of the perturbed hole radius is shown in Fig. 4.32.

When the hole radii are reduced, the y-dipole frequency asymptotically approaches f =

0.3067(a/λ). Once this frequency is reached, r′ ≤ 0.25a, the radiation rate in the quasi-
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(a) (b)

Figure 4.33: The mode frequencies for the a) y-dipole and b) x-dipole are shown as hor-
izontal lines over the quasi-3D band diagram for the photonic crystal with hole radius,
r = 0.35a. Depending on the mode frequency there will be between one and three TE
DBR states to which the dipole mode can couple. Coupling efficiency depends on the mag-
nitude of the mode wavevector at the TE DBR state locations. Red horizontal lines denote
frequencies where the coupling is good and the spontaneous emission rate is less than in
the slab, while blue horizontal lines denote frequencies where the spontaneous emission
rate is greater than in the slab.

3D cavity is lower than in the suspended slab. There are several TE DBR states for

f = 0.3067(a/λ), including the first band at the K point and the second band about

halfway between M and K. For the y-dipole mode, the maximum wavevector is at the K

point as shown in Fig. 4.28. The mode couples efficently to the DBR yielding a lower

radiation rate. The placement of the y-dipole mode on the r = 0.35a band diagram is the

same as the degenerate dipole mode on the r = 0.3a band diagram discussed previously,

although the specific frequencies and cavity geometry differ. This helps to rule out the

mode degeneracy or the absolute mode frequency as causes of the lower radiation rate.

Instead it substantiates the claim that the lower radiation rate is due to TE DBR modes

at locations of maximum wavevectors.

As the hole radius is increased above r′ > 0.25, the y-dipole mode frequency increases

from f = 0.3072(a/λ) to f = 0.3133(a/λ). At these frequencies there are two TE DBR

states. One is located around half way be between the K and M points and the other is to
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Figure 4.34: The magnitude of the wavevector found from the reciprocal space representa-
tion fo the x-dipole mode along the edges of the Brillouin zone. The Ex and Ey fields have
maximums at the K point.

the right of the K point, see Fig. 4.33(a). The magnitude of the y-dipole wavevectors at

these locations are not maximums and the coupling to leaky DBR modes is not as good.

Because there is less coupling to the DBR modes, the fields in the quasi-3D cavity will be

larger leading to higher radiation rates than in the slab.

The magnitude of the wavevectors for the x-dipole along the Brillouin zone is shown in

Fig. 4.34. Again there is a maximum at the K point, but between M and Γ and K and Γ

the magnitude does not decrease as quickly as for the y-dipole mode. When the perturbed

hole radius is r′ = 0.25a the mode frequency is f = 0.2833. At this frequency there are 3

TE DBR states: one to the left of the M point, one between M and K and another to the

right of the K point, see Fig. 4.33(b). The magnitude of the wavevector is large at all of

these locations and there is coupling to the DBR. As the hole radius is increased, the mode

frequency increases, but there will still be 3 TE DBR states at points where the magnitude

of the wavevector is large. When r′ = 0.35a the TE DBR state is very close to the K point

which is the maximum wavevector location for the x-dipole mode. The mode frequency of

the x-dipole for r′ = 0.4a is f = 0.3287. There is one TE DBR state between the M and
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K points and one point just under the DBR light line to the right of K. Because the states

are located at relatively low wavevector locations, the spontaneous emission rate is higher

in the quasi-3D cavity. A similar situation occurs when r′ = 0.15a. At this point there is

one TE DBR band state near the M point and another near the light line to the left of the

K point.

The presence of the TE DBR states in the quasi-3D band diagram does not necessarially

mean lower radiation rates in these cavities. Instead the radiation rates can actually be

higher as long as the states do not occur at the same locations as significantly contributing

wavevectors of the mode. Design of microcavities in these quasi-3D photonic crystals must

be handeled with care to achieve the advantage of larger spontaneous emission enhance-

ment.
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Chapter 5

Photonic Crystal Microcavity

Single-Photon Emitter

This chapter combines the computational techniques discussed previously to fully char-

acterize an optimal single-photon emitter. As stated in Chapter 1, the source must emit

single polarized photons with as little wait time as possible. This wait time is governed

primarily by the spontaneous emission lifetime and the photon lifetime. For the relatively

low Q microcavities discussed so far, the photon lifetime will be on the order of picoseconds.

The spontaneous emission lifetime of the InAs quantum dots in bulk studied in Chapter 3

was around half a nanosecond, making this the limiting factor for operating speed.

In order to emit single photons with high probability, it is beneficial to work with smaller

quantum dots. These quantum dots have a single bound state for the electron to occupy.

Any recombination in the dot of an electron in the conduction band state with a hole in

the valance band state, then has a single transition energy and the photon can have only

one frequency. If there are more energy levels, the ground state transition is still preferred,

however there would be a finite probability of recombination from the excited states. The

possibility of emissions from these states would degrade the quality of the single photon

source. A major drawback of using smaller quantum dots is that the ground state transition
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energy tends to be larger and the photon wavelength shorter. Designing a quantum dot

with a single bound electron energy level and an emission wavelength of λ = 1.3µm, may

then require the use of a novel materials system. Because photonic systems scale, it is

possible to choose small InAs quantum dots that emit photons of wavelength λ = 0.95µm

to demonstrate the central ideas of this thesis while saving design at λ = 1.3µm for future

work.

To control the polarization of the photon, the quantum dot is placed inside a photonic

crystal microcavity. When designing the microcavity, it is possible to perturb the nearest

neighbor holes to control the resonant frequencies and field profiles. For single-photon

source applications, it is desirable to have a single mode within the photonic band gap.

The most obvious reason is that the quantum dot must couple to one mode that has the

correct polarization while suppressing all other emissions. But the presence of additional

modes also leads to less concentrated field profiles, lower Q and less spontaneous emission

enhancement. This is a result of the fact that the field profiles of all of the resonant modes

must be orthonormal to one another. Even if the photon frequency aligns perfectly with

the desired cavity mode, the performance of a multi-mode cavity will not be as good as a

single mode device.

The single mode requirement puts a constraint on the photonic crystal defect design.

Not only must the mode have a distinct polarization, it should also be the only mode in the

cavity. As we saw in Chapter 4, removal of a single hole creates a degenerate dipole mode

in the band gap. Even as the cavity is further altered, this mode will remain inside of the

band gap although it can shift in frequency. It is possible to push the mode down close

to the dielectric band edge to mitigate its effect and create a nearly single mode cavity. A

true single mode microcavity that does not have a dipole profile is not possible, the best

option is to push the dipole mode towards the edge of the band gap.

Isolating a single mode poses new challenges for the quasi-3D microcavity with DBRs.

Typically higher quality, more stable modes tend to lie near the center of the 2D photonic
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crystal slab band gap. The band gap of the quasi-3D photonic crystal is smaller and lies

towards the higher frequency side of the suspended slab gap. For a mode to lie in the

quasi-3D photonic crystal band gap, it must be pushed up in frequency which generally

means that there is less dielectric for the mode to occupy. If not properly designed, this can

lead to less spontaneous emission enhancement. As was illustrated at the end of Chapter

4, modes that lie in the region where leaky TE DBR bands exist may still have higher

radiation rates and quality factors than in a suspended slab, provided that there is not

efficient coupling of the microcavity mode to the quasi-3D photonic crystal state. Whether

or not the mode has to lie in the quasi-3D band gap will depend on the specific mode.

One additional concern when designing photonic crystal microcavities is the vertical

loss, which tends to dominate the low quality factor in the cavities and also leads to longer

spontaneous emission lifetimes. In order to combat this, researchers have used spatial

frequency domain analysis to determine cavity geometries and modes which will have higher

quality factors [1]. The modes in a photonic crystal microcavity are either pulled down

from the air band or pushed up from the dielectric band and retain the characterizations

of the band edge states from which they originate [2]. Dielectric band edge states tend to

have a less significant portion of the reciprocal space wavevector located within the light

cone and will therefore typically have less vertical loss [3]. Increasing the radius of a single

hole is the most straightforward method of obtaining modes originating from the dielectric

band. This approach is, however, not practical for semiconductor lasers and single photon

sources grown by MBE because it will result in the removal of the active region. Instead,

it is possible to remove a single hole and then grade the hole radii of several periods of

holes around the central defect [1, 4, 5]. Further adjustments to the nearest neighbor holes

to manipulate the mode frequencies and profiles may be more difficult for these cavities.

Adding DBR mirrors to cavities that support modes pulled from the air band can provide

better vertical confinement for any modes that lie within the quasi-3D photonic crystal

band gap without compromising the tunability of the cavity geometry.
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Figure 5.1: The quasi-3D photonic crystal TE band diagram for a photonic crystal with
hole radius, r=0.35a. The corresponding suspended slab band diagram is shown the the
yellow data points.

This chapter begins with an examination of modes which may work for a single-photon

emitter. In order to justify the choice of modes, their field profiles, quality factors and pho-

ton lifetimes are examined. After the possible modes have been identified, the spontaneous

emission lifetimes for small InAs quantum dot emitters in the most promising cavity will be

investigated. Comparisons will be made between a suspended slab cavity and the quasi-3D

geometry. The final section of this chapter accounts for fabrication non-idealities. Specifi-

cally, the spatial and spectral detuning of the quantum dot from the candidate microcavity

will be examined.

5.1 Mode Identification and Cavity Analysis

At the end of Chapter 4, the band diagrams for quasi-3D photonic crystals with GaAs

slab thicknesses of t = 0.5a and 4 periods of highly reflective DBRs were presented. The

DBR mirrors introduce additional bands to the band diagram and reduce the size of the

gap. Designing a microcavity with a resonant mode lying in the band gap is no longer
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Figure 5.2: The photonic crystal microcavity geometry when a single hole is removed and
the hole radii along x̂ are reduced, r′. The 4 holes above/below the defect can also be
varied, r′2.

straightforward; the larger the band gap the less difficult the task. When the hole radius

was set to r = 0.35a, the size of the band gap was maximized. This section focuses on

the identification of candidate microcavities in the photonic crystal that have a mode of

distinct polarization within the quasi-3D photonic band gap. Because the field distribution

does not change when the DBRs are added to the microcavity, it is valid to first simulate

the GaAs slab in air with r = 0.35a and t = 0.5a to obtain general trends for each defect.

These computations typically require less time and therefore fewer resources. After the

appropriate cavity geometries have been identified, one or two simulations can be done

for the full quasi-3D structure. This approach also provides a set of GaAs slab data with

which the quasi-3D cavity results can be compared.

The quasi-3D photonic crystal band diagram is shown in Fig. 5.1 where the GaAs slab

is clad by two highly reflective quarter wave DBRs made of GaAs, n = 3.6 and Al2O3,

n = 1.544. In the Figure, the photonic bands corresponding to the GaAs slab in air

are shown as overlays with yellow circles. The 2D suspended slab has a band gap for

the normalized frequencies 0.2776 − 0.3992 whereas the quasi-3D band gap lies between
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Figure 5.3: a) The normalized field distribution for the y-dipole mode at the slab center
for the photonic crystal quasi-3D microcavity with r′ = 0.25a and r′2 = 0.45a. This mode
lies in the quasi-3D band gap. b) The vector field for the mode at the center of the slab.

0.3462 − 0.3556. This band gap is smaller and the center frequency is shifted upward

compared to the slab structure. As discussed in Chapter 4, removal of a single hole in

the photonic crystal results in a resonance slightly below the center of the band gap. In

this case, the degenerate dipole mode frequency for a single defect cavity is 0.3094, which

does not lie in the band gap of the quasi-3D photonic crystal. It is possible to push the

resonance up in frequency by further perturbing the microcavity.

Previously it was shown that the degeneracy of the x and y dipole could be split by

perturbing the two inner holes that lie along the x̂ direction, see Fig. 5.2. Increasing the

size of the holes pushes the x-dipole up in frequency and eventually out of the band gap.

The frequency could be tuned so that the mode lies in the quasi-3D band gap, but the mode

would have a lower quality factor and less field confinement leading to longer spontaneous

emission lifetimes. For this cavity, the y-dipole is the dominant mode and it will lie at the

normalized frequency, 0.3094. The frequency of the y-dipole can be increased by increasing

the radii of the 4 holes above/below the defect. When the holes along x̂ have a radius of

r′ = 0.25a and the ones above/below the defect have a radius r′2 = 0.45a, then the y-dipole

mode lies at 0.3427, which is in the quasi-3D band gap. The x-dipole mode is now the

dominant mode and remains at 0.3094. Because the y-dipole mode is no longer dominant,
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Figure 5.4: The photonic crystal microcavity geometry when a single hole is removed and
the inner hole radii are reduced. Also, the holes are shifted outward slightly to align the
edges of the holes with those of the bulk crystal. The varied parameters are r′ and the
corresponding shift, s.

it will have a lower Q.

The major issue with the dipole mode is that the polarization does not lie along one

particular axis. Figure 5.3(a) shows the normalized magnitude of the electric field for the y-

dipole mode in the perturbed quasi-3D cavity. The fields of the dipole mode are distributed

almost equally between the Ex and the Ey components as shown in the field vector plot

in Fig. 5.3(b). A directional polarization is desirable for the single photon source, where

photons should be emitted along a particular axis in a chosen basis. The more directional

the field, the higher the probability that the photon will align itself to the axis, leading

to higher efficiency for the quantum key distribution system. Other perturbations of the

microcavity are necessary to achieve different mode profiles that have a more directional

polarization.

One popular photonic crystal cavity is formed when the radii of the nearest neighbor

holes are reduced and the holes are shifted outward slightly. This cavity is shown in Fig.

5.4. Even slightly decreasing the size of the holes, increases the size of the cavity enough
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Figure 5.5: As the holes radii are reduced from the bulk photonic crystal value of r = 0.35a,
the holes are pushed slightly outward enlarging the size of the cavity. Higher order modes
begin to enter and traverse the band gap, denoted by the solid black lines. When r = 0.300a
and r = 0.275a there is a single mode in the quasi-3D band gap, the gray dashed lines.

to pull additional modes from the air band into the band gap. The frequencies of the

modes can then be tuned by further altering the radii as shown in Fig. 5.5. Here, the solid

black lines denote the band edges for the 2D photonic crystal slab in air, while the gray

dashed lines denote the quasi-3D photonic crystal band edges. Comparison of the modes

for the 2D photonic crystal slab, Fig. 5.5(a), and those of the quasi-3D structure, Fig.

5.5(b) reveals that the modes follow the same trends but are slightly reduced in frequency

for the quasi-3D case as expected. When the inner hole radii are set to r′ = 0.325a, there

are 4 modes in the 2D band gap and a set of 3 modes in the quasi-3D band gap. By further

increasing the hole radii, the set of 3 modes is pushed down below the lower band edge and

one by one, higher order modes enter the band gap region. For r′ = 0.3a or r′ = 0.275a

there is a single mode within the quasi-3D band gap which is desirable for a single photon

source.

The profiles of these modes are shown in Fig. 5.6, along with the electric field vectors

at the slab center. The field magnitude is normalized to 1. For r′ = 0.3a, the mode in

the quasi-3D band gap is the monopole mode. When r′ = 0.275a the monopole mode

drops out of the band gap and a second quadrupole mode emerges at 0.3507. The quality
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Figure 5.6: a) The magnitude of the electric field, normalized to 1, for the microcavity with
r = 0.300a. The mode is a monopole mode. b) The quadrupole mode profile corresponding
to the single mode in the quasi-3D band gap for r′ = 0.275a. The vector fields for the c)
monopole mode and d) the quadrupole are also shown.
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Figure 5.7: The photonic crystal microcavity geometry with 3 holes removed. The mode
frequencies will be tuned by either shifting the holes by s along the x̂ direction or elongating
the holes to form ellipses along that direction.

factor of the quadrupole mode is Q = 664, which for a frequency of f = 317.2THz gives

a photon lifetime of τphoton = 0.42ps. For the monopole mode, the cavity quality factor is

Q = 573 and the photon lifetime τphoton = 0.28ps. Examination of the electric field vectors

reveals that neither the monopole mode nor the 2nd quadrupole mode is highly polarized.

Additional modes exist in this cavity, although they have frequencies corresponding to the

leaky TE DBR bands. As was shown in Chapter 4, higher spontaneous emission rates are

still possible in these regions. The hexapole and quadrupole field profiles are also shown

in Fig. 5.6. For both modes, neither the Ex nor the Ey field is preferred. The lowest

lying mode in this cavity is the degenerate dipole mode which has already been ruled out.

None of the modes supported by this cavity geometry are suitable for single-photon source

applications because they do not satisfy the polarization requirement.

Instead of creating a symmetric defect in the cavity, consider the geometry shown in Fig.

5.7. This is the L3 defect that was discussed briefly at the end of Chapter 3. Previously,

the goal was to increase the operating wavelength and thus to decrease the mode frequency

by shifting the holes along the x̂ direction outward from the cavity, so that s is a positive
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Figure 5.8: The mode frequencies in a L3 cavity for various hole shifts s are shown with the
quasi-3D photonic crystal band diagram. Here the negative s denotes a shift of the holes
towards the center of the cavity. The shift increases the frequency of the second mode,
pushing it into the band gap.

number. For the quasi-3D photonic crystal microcavity, the frequency should be increased

and the holes moved inward, making s negative. Figure 5.8 shows how the resonant mode

frequencies in a suspended GaAs slab change as the size of the cavity is decreased along the

x̂ direction. Note that the magnitude of these peaks is arbitrary. For illustrative purposes,

the quasi-3D photonic crystal band diagram is also shown in the figure. Of the 3 cavity

modes, the second one is the most sensitive to the perturbation of the cavity. The first

and third modes are completely unaffected. This was also the case in Chapter 3 when

positive values of s were considered. By shifting the holes inward, the second mode is

pushed up into the quasi-3D photonic crystal band gap when s = −0.1a. Of course the

mode frequencies will decrease slightly when the DBRs are included. To account for this

frequency shift, it is wise to consider a cavity with s < −0.15a so that the second mode

lies in the quasi-3D band gap even when DBRs are added.

When s = −0.15a, the second mode has a normalized frequency of 0.3467. The mode

profile at the center of the slab is shown in Fig. 5.9(a) with the corresponding electric
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Figure 5.9: a) The normalized field distribution for the second mode at the slab center for
the L3 photonic crystal microcavity with s = −0.15a. This mode lies in the quasi-3D band
gap. b) The vector field for the mode at the center of the slab showing polarization along
the ŷ direction.

field vector plot in Fig. 5.9(b). As the mode profile illustrates, the fields extend laterally

along the x̂ direction. The mode is comprised mostly of Ey fields, as shown in the vector

plot where the polarization is along ŷ. From energy decay measurements performed by

calculating the total electric and magnetic field energy in the slab, the quality factor for

this mode is Q = 170. For a mode frequency of f = 317.2THz, this corresponds to a photon

lifetime of τphoton = 0.08ps. Because the perturbation of the cavity affects an additional

period of the photonic crystal and the second resonance is further from the 2D mid gap

frequency, the Q is lower than for the L3 defect with s = 0, Q = 293. Lower Q cavities

are actually desirable for single-photon sources, so the ability to push the highly polarized

mode into the quasi-3D band gap makes the L3 cavity an excellent candidate for use in the

device. When DBRs are added above and below the slab, the resonant mode frequency

drops to 0.3427 which is no longer above the quasi-3D band edge.

Instead of shifting the inner holes along x̂, the holes can be stretched along the axis

to form ellipses. This perturbation keeps the general alignment of the holes constant

which tends to reduce the scattering of the fields. It also eliminates the small side cavities

that form when s is large. The effect on the mode frequency is similar because the ellipse

128



Figure 5.10: The mode frequencies for the 3 modes in a L3 cavity for various hole shifts
s. A negative s corresponds to the holes being pushed in towards the center of the cavity.
Also shown are the corresponding mode frequencies when the inner holes are elongated
along the x̂ axis to form ellipses. The black solid lines are the 2D photonic crystal slab
band edges and the gray dashed lines are the band edges of the quasi-3D photonic crystal.

increases the extent of the low index material into the region of the cavity. In fact, relatively

small shifts or elongations result in nearly identical mode frequencies as illustrated in Fig.

5.10. As the holes are shifted further into the cavity, the corresponding ellipse becomes

larger. The larger volume of low dielectric near the cavity region results in an increase

of the mode frequency relative to that of the shifted hole mode. When the ellipse has a

dimension of 0.44a along the semimajor axis and 0.35a along the semiminor axis, the mode

frequency in a suspended slab is 0.352. This mode has a quality factor, Q = 115, and a

photon lifetime, τphoton = 0.058ps. Placing the DBRs above and below the structure leads

to a mode frequency of 0.3507, which is above the quasi-3D leaky band. For the quasi-

3D cavity, the quality factor, Q = 146, is larger and the photon lifetime slightly longer,

τphoton = 0.073ps.

The electric field components for the GaAs slab and the quasi-3D structure are shown

in Fig. 5.11. Consider first the in-plane fields taken at the slab center. These field patterns

129



[a]

[b]

[c]

[d]

Figure 5.11: a) and c) The Ex, Ey, and Ez fields are shown for the monopole mode at the
slab center for the suspended slab and the quasi-3D microcavity respectively. The black
lines denote the cut plane that is shown in the side views, b) without and d) with DBRs.
For clarity the top views are zoomed in to better illustrate the mode patterns. The side
views show the entire problem space to highlight the vertical propagating fields.
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are similar to one another, and to the fields for the L3 cavity with shifted circular holes,

but the fields are larger in the quasi-3D cavity. Examining the fields along the y axis of

the photonic crystal, the cut plane is illustrated by the black line, the vertical confinement

is also better with the DBRs. There is, however some vertical propagation. The origin of

this leakage can be found by looking at the reciprocal space field profiles in Fig. 5.12. The

plots have been normalized to the magnitude of the in-plane E fields. In the plots of Fig.

5.12, the circle denoted by the white dashed line corresponds to the light cone. A large

magnitude inside of the circle denotes wavevectors that will lead to significant leakage.

When the DBR is placed above and below the slab, the magnitude of the components

within the light cone are reduced. The contribution by the wavevectors lying in the light

cone are not completely eliminated and some leakage is, however, still expected. The higher

field magnitude of the quasi-3D cavity fields should lead to larger spontaneous emission

enhancement and the leakage may actually help to increase the light extraction efficiency

from the device.

Of the cavity geometries discussed in this section, only the L3 cavity has a mode with

a directional polarization. This mode also has lower Q factors and shorter photon lifetimes

than many of the other modes including the monopole and quadrupole mode of the cavity

in Fig. 5.4. Although the main concern is in shortening the spontaneous emission lifetime,

this is nonetheless an advantage. The L3 cavity with elliptical holes along the x̂ axis

is a better geometry than the cavity with shifted circular holes because the mode will

remain well within the quasi-3D band gap once the DBRs are added. Narrowing down the

selection, we see that the L3 cavity with elliptical holes possesses all of the requirements for

the single-photon source. Before making any final conclusions regarding the microcavity,

the spontaneous emission lifetimes of L3 cavities, both with and without DBR mirrors,

must be calculated.
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Figure 5.12: The reciprocal space representation of the Ex and Ey monopole mode fields
are shown for a) the suspended slab and b) the quasi-3D structure. The dashed white circle
is the light cone. Cladding the GaAs slab with highly reflective DBRs slightly decreases
the contribution from wavevectors located inside the light cone.
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Figure 5.13: The radiation rates for a x-, y-, and z- oriented dipole source at the center of
the L3 microcavity are given as a function of frequency. As expected there is good coupling
of the y-dipole input to the cavity mode of interest, at f = 0.352. This sources also couples
to a mode with x-dipole profile at f = 0.2853. An x-oriented input couples to two modes
near f = 0.3 that have y-dipole-like mode profiles. The band gap is denoted by the gray
shaded region and the solid black line at 1 denotes where the radiation in the cavity equals
the radiation in bulk.

5.2 Spontaneous Emission Lifetimes

In experimental work, it is typical to report the spontaneous emission lifetime as extrapo-

lated from time resolved µPL measurements. For theoretical work, it is common to report

the Purcell factor which is a dimensionless assessment of how significantly the cavity will

change the lifetime. The method devised in this thesis and outlined at the end of Chapter

3 calculates the actual spontaneous emission lifetime. It was shown that these calculations

are in good agreement with experimentally measured lifetimes both in bulk and on or off

resonance with a cavity mode. The method will now be used to determine the spontaneous

emission lifetimes when various quantum dots are placed at the center of the L3 cavity.

The spontaneous emission lifetime is given by

τspont = 1/Wfi = 3c3

4nω3 (Rxdif (x) +Rydif (y) +Rzdif (z)) (5.1)
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where, c is the velocity of light in vacuum, n is the index of refraction, ω is the angular

frequency, Ri (i = x, y, z) is the radiation rate for a dipole source oriented along the x̂, ŷ,

and ẑ directions in the microcavity respectively, and dif (i) is the dipole matrix element

along the coordinate axis. Figure 5.13 shows the radiation rates for x-, y- and z- oriented

dipole inputs at the slab cavity center. It is possible to choose other locations within the

cavity for the source point, however to investigate the the minimum possible lifetime, the

dipole must be placed at a maximum of the Ey field.

Throughout the band gap region, denoted by the gray shaded box, the radiation is

suppressed except at cavity mode resonances. As expected, the y-dipole input couples to

the second mode of the L3 cavity which lies at a normalized frequency of f = 0.352. The

radiation rate of the y-dipole input in the cavity to the rate in bulk is 7.036. Because the

Ex and Ez fields of the second mode have a small magnitude at the center of the cavity,

as shown in Fig. 5.11, they do not couple to the resonant mode and the radiation rate is

small for both inputs. The peaks at f = 0.308 and f = .313 both have a y-dipole-like

mode profile and are not degenerate because the L3 cavity has reduced the symmetry of

the defect. Although these modes have higher radiation rates which could lead to shorter

spontaneous emission lifetimes, they were not as polarized as the second mode. Also, their

mode frequencies were unaffected by the shifting or elongation of the holes along x̂ so it

is not possible to push them into the quasi-3D photonic band gap. The peak from the

y-oriented source at f = 0.2853 is due to the mode with a x-dipole profile. All of the

quadrupole fields have a minimum at the cavity center so none of the inputs are coupling

efficiently to the mode. There is a very small peak at f = 0.3587 in the x-dipoles radiation

rate, which corresponds to the quadrupole mode.

When DBR mirrors are added above and below the GaAs slab with the L3 cavity, the

radiation rates change. These rates are shown in Fig. 5.14. The same inputs couple to the

same modes, which are shifted slightly lower in frequency. This agrees with the mode data

presented in the previous section. Now the mode of interest lies at f = 0.3507 and has a
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Figure 5.14: The radiation rates for a x-, y-, and z- oriented dipole source at the center of
the L3 microcavity with DBR mirrors are given as a function of frequency. As expected
there is good coupling of the y-dipole input to the cavity mode of interest, at f = 0.3507.
The 2D photonic crystal band gap is denoted by the gray shaded region and the solid black
line at 1 denotes where the radiation in the cavity equals the radiation in bulk.

Table 5.1: Spontaneous Emission Lifetimes L3 Microcavity with Elliptical Holes
Cavity f (a/λ) Rx Ry Rz dfix dfiy dfiz τspont (ns) τphoton (ps)
slab 0.352 0.0446 7.036 0.6297 71.3687 47.3168 56.9332 0.31 0.058
quasi-3D 0.3507 0.1997 8.91 0.756 71.3687 47.3168 56.9332 0.24 0.073

higher radiation rate of 8.91 for a y-dipole input. This larger radiation rate should lead

to shorter spontaneous emission lifetimes. Note that the quadrupole mode lies above the

band gap of the quasi-3D structure and would not appear in the radiation rate plot even

if the input was placed at field maximum. The gray shaded region in Fig. 5.14 denotes the

2D photonic crystal band gap, although the actual band gap for the quasi-3D structure

lies only between 0.3462 and 0.3556.

A summary of the radiation rates for the x-, y-, and z-oriented dipole inputs for the

mode of interest in the L3 cavity are shown in Table 5.1 for the slab and the quasi-3D

structure. These values can be used to determine the spontaneous emission lifetime of

quantum dots located at the center of the cavity. Focusing on small quantum dots that
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have a single confined electron energy level in the conduction band will limit the InAs

dots to base widths under b = 10nm and dot heights of h = 3nm. Each dot will emit

photons of a particular wavelength and a specific dot must be chosen before proceeding

with the analysis. An InAs quantum dot with b = 9nm and h = 3nm emits photons of

wavelength, λ = 945.1nm or frequency f = 317.2THz. This choice is made so that the

photon lifetimes calculated in Sec. 5.1 remain the same and because these values were

discussed for the L3 slab case in Chapter 3. The spontaneous emission lifetime in bulk for

this dot is τspont = 0.659ns. In order to spectrally align the quantum dot with the cavity

mode resonance, a specific lattice constant must be chosen. For the slab with f = 0.352, the

lattice constant must be a = 332.67nm and for the quasi-3D structure where f = 0.3507,

a = 331.4nm.

Spontaneous emission lifetimes and photon lifetimes for the two cavities are listed in

the last two columns in Table 5.1. The spontaneous emission lifetime of the quantum

dot at the center of the suspended slab structure is τspont = 0.31ns. For the quasi-3D

structure this value decreases to τspont = 0.24ns. The reason for the decrease is primarily

due to the larger radiation rates that result from increased vertical confinement for a mode

in the quasi-3D photonic band gap. By placing DBRs above and below the microcavity,

the spontaneous emission lifetime is decreased by nearly 10%. There is a trade-off in the

photon lifetime, which is slightly longer for the quasi-3D device. Since the photon lifetimes

for both cavities are already significantly shorter than the spontaneous emission lifetime,

the increase will have no real effect on the operating speed of the device. Neglecting the

time to pump the device and considering only the sum of the spontaneous emission lifetime

and the photon lifetime, the slab structure would have an operating speed of 3.2GHz. The

quasi-3D cavity would have a speed of 4.2GHz when operated at the mode of interest.

As was done in Chapter 3 it is possible to consider the somewhat unrealistic situation

of a tunable photonic crystal lattice constant to see how the lifetime for a particular dot

changes as its photon frequency is scanned across the band gap. This provides an estimate
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Figure 5.15: The spontaneous emission lifetime for a b = 10nm, h = 3nm InAs quantum
dot in the L3 cavity fluctuates as the photonic crystal lattice constant is changed. Certain
choices of lattice constant will result in an alignment of a cavity mode frequency and the
photon frequency leading to spontaneous emission lifetimes shorter than in bulk.

of the maximum and minimum spontaneous emission lifetimes for a particular dot in a

cavity without having to do any additional calculations. The more realistic cases of tuning

the quantum dot spectrally and spatially in and out of resonance will be considered in the

next Section. Figure 5.15 illustrates the change in spontaneous emission lifetime for the

InAs quantum dot at the center of the L3 cavity. In the Figure, the spontaneous emission

lifetime for the b = 9nm, h = 3nm quantum dot in bulk is shown as a solid black line. For

both cavities, the emission wavelength will lie in the photonic band gap when the lattice

constant is between about 255 − 360nm. Consequently, the lifetime increases above the

bulk lifetime in this range except when the dot is aligned with the cavity resonance. The

spontaneous emission lifetime decreases when the lattice constant is chosen such that the

resonant mode frequency matches the frequency of the photon emitted from the quantum

dot.

Shown as a dashed blue curve in Fig. 5.15, the lifetimes in the suspended slab tend to be

longer than those in the quasi-3D cavity, shown by the dashed green line. One exception is
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Table 5.2: Extraction Efficiency from L3 Microcavity
Cavity Radiation Rate Total Extraction Efficiency Top Extraction Efficiency
slab 7.03 0.9796 0.4927
quasi-3D 8.91 0.0152 0.003

for off-resonant modes in the quasi-3D band gap, for a = 316− 336nm, where the lifetimes

of the quasi-3D cavity are slightly longer than for the suspended slab. Most likely this is

due to a decrease in the radiation rate for a z-oriented dipole in the quasi-3D gap. The

minimum lifetime of τspont = 0.04ns is obtained in the slab for the lower frequency y-dipole

mode, while the maximum, τspont = 3.13ns, occurs off-resonance. The quasi-3D cavity has

a minimum of τspont = 0.06ns for the higher frequency y-dipole mode and again a maximum

off-resonance of τspont = 2.18ns. Assuming that the photon lifetime will be much shorter

than any of these lifetimes and can be neglected, the operating speed of the device would

change from about 0.4GHz to 20GHz. For most modes, if the lattice constant is off by

more than 0.6%, the quantum dot spontaneous emission lifetime will go from being shorter

than the bulk lifetime to longer.

In addition to the spontaneous emission lifetime, the light extraction efficiency of the

device is also important. For the L3 cavity, the Ey field is dominant and we need only focus

our attention on the extraction efficiency from an Ey-oriented dipole source. When the

number of holes around the defect is 6 or greater, the radiation rate and extraction efficiency

remain relatively constant. The extraction efficiency for the slab and quasi-3D cavity are

summarized in Table 5.2. The extraction efficiency from the slab is much higher than for

the quasi-3D cavity. This is not surprising because the 4 periods of the highly reflective

DBR are around 98% reflective and the vertical confinement is very strong. Although

an extremely high extraction efficiency, around 98%, is possible in the slab structure, the

photons are equally as likely to exit through the bottom of the device as they are at the

top. For an actual practical device, there will be a substrate at some distance below one

side of the device, so photons can only be collected from one side. In Chapter 4 it was noted
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Figure 5.16: The extraction efficiency and radiation rate from an L3 cavity as the reflec-
tivity of the top mirror is reduced.

that a better assesment of the real extraction efficiency of the source could be obtained

by the ratio of the z component of the Poynting vector summed over the top half of the

device divided by the total radiated power. The assumption is made that the photons will

be collected from the top side of the device. When taking this into account, the extraction

efficiency from the top of the slab cavity is reduced by approximately half to 49%. For the

quasi-3D cavity, the extraction efficiency is reduced to less than 0.3%.

Of course, in the quasi-3D cavity with an equal number of DBR periods above and below

the slab the photon will also have no preferential direction. The cavity’s poor extraction

efficiency as well as the directionality of the photon can be improved by reducing the

reflectivity of the top mirror through reduction of the number of DBR periods. Figure 5.16

illustrates how the extraction efficiency and radiation rate are affected by the removal of

layers of the top DBR. The extraction efficiency remains under 1% until the number of

top DBRs is decreased to 2 periods. Then the efficiency begins to increase slowly reaching

the maximum value of 49% when the top DBR is completely removed. Calculation of the

top extraction efficiency yields a value of 49%, and reveals that nearly all of the vertically

radiated fields are collected from the top. The radiation rate decreases when the number

of DBR periods is less than 2 because there is less vertical confinement due to the reduced
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Figure 5.17: The extraction efficiency and radiation rate from an L3 cavity as the number
of bottom mirrors is increased.

reflectivity. Even with no DBR on the top, however, the radiation rate remains slightly

larger than for the slab suspended in air.

In order to improve the extraction efficiency further, more DBR periods can be added

to the bottom of the device. Because the radiation rate was maximized when the number

of top DBRs was chosen to be 2, we will add DBRs below the device to try to improve

the extraction efficiency while maintaining the radiation rate. As DBR layers are added

below, the radiation rate and the extraction efficiency increase, as shown in Fig. 5.17.

The extraction efficiency is still much less than in the slab and and it may be necessary

to completely remove the top DBR to achieve efficient light extraction from this mode.

Eliminating the top DBR mirror entirely, will lower relative radiation rate slightly.

5.3 Fabrication Non-idealities

When semiconductor devices are fabricated, even the best processing techniques will in-

troduce non-idealities to the devices. The effect of fabrication errors is generally more

pronounced for smaller devices and systems requiring high precision, both of which apply

to the single-photon source. This section examines how significant deviations from an ideal

device affect performance. The results of spectral detuning will be examined first, followed
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by spatial variation of the dot position.

In photonic crystal fabrication, e-beam lithography and subsequent reactive-ion etching

result in rough and non-uniform cylindrical air holes. This will affect the resonant mode

frequencies and field patterns in the cavity as well as the bulk band structure. Considering

that most FDTD calculations use a fairly course grid spacing, 20-30 points per lattice

constant, the hole roughness is inherently accounted for during the simulation process. The

holes are, however, generally uniform. To incorporate non-uniformity in the simulation, an

SEM image of a fabricated photonic crystal can be imported and image processed. This

approach is more valid for examining why a device has failed or for accurately modeling a

fabricated device; it is not as applicable to simulating device performance.

For the single photon source, the main concern during the fabrication process is the

alignment of the quantum dot’s photon emission frequency with that of the desired cavity

mode. The two key players here are the epitaxially grown InAs quantum dot and the

fabricated photonic crystal. Because the variance in photonic crystal fabrication is more

complicated to simulate, it is easier to consider how the device performance changes as the

quantum dot emission wavelength is tuned over a reasonable range. This reasonable range

can be deduced from examining photoluminescence data of real samples to determine the

distribution in dot size as was discussed in Chapter 3. To examine the affect of spectral

tuning this method will be employed.

The PL peak of a typical quantum dot sample will have a FWHM of around 30meV [6].

For the b = 9nm and h = 3nm InAs quantum dot examined in the previous section with

a transition energy of 1.312eV this corresponds to transitions between 1.297 − 1.327eV.

Assuming that the dot height remains at 3nm, the base width would vary from around

8.5nm to 9.5nm. The emission wavelength in this range is λ = 938− 953nm. Figure 5.18

summarizes the change in transition energy and normalized frequency as a function of base

width. The lattice constant, a = 332.67nm, used to determine the normalized frequency

is chosen to align the b = 9nm dot emission with the L3 suspended slab cavity mode of
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Figure 5.18: The spontaneous emission lifetime for a b = 10nm, h = 3nm InAs quantum
dot in the L3 cavity fluctuates as the photonic crystal lattice constant is changed. Certain
choices of lattice constant will result in an alignment of a cavity mode frequency and the
photon frequency leading to spontaneous emission lifetimes shorter than in bulk.

interest. In the figure, the data is given for dots with base widths between 8 − 10nm, to

more than compensate for any realistic fabrication non-idealities.

The dots will emit photons that lie in the normalized frequency range from 0.345−0.359.

A close up of the radiation rates in the L3 suspended cavity are shown in Fig. 5.19(a) with

the dark gray area denoting the frequency range. At the edges of the frequency range,

the radiation rates of a y-oriented dipole source are significantly lower than for the peak

frequency of 0.352. The x- and z-oriented dipole radiation rates are relatively constant over

the region. Shown at the right of Fig. 5.19(a), the spontaneous emission lifetime varies with

the dot size. When the y-oriented dipole rate is greater than 1, as will be the case for dots

with b = 8.5 − 9nm, the spontaneous emission lifetime is less than the bulk lifetime. For

the other dots the emission is suppressed and the lifetime longer. The bulk spontaneous

emission lifetime for each dot is shown by the red dashed line in the figure. Somewhat

unexpectedly, the slightly off resonant quantum dot with b = 8.5nm has a shorter lifetime,

τspont = 28.97ns, than the spectrally aligned dot. For this quantum dot the normalized

frequency is approximately f = 0.354 and the y-dipole radiation rate is greater than 1.
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Figure 5.19: The reciprocal space representation of the Ex and Ey monopole mode fields
are shown for a) the suspended slab and b) the quasi-3D structure. The dashed white circle
is the light cone. Cladding the GaAs slab with highly reflective DBRs slightly decreases
the contribution from wavevectors located inside the light cone.
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The larger radiation rate along with the lower bulk lifetime is what leads to the shorter

spontaneous emission lifetime for the b = 8.5nm dot. The relative reduction in lifetime of

47%, however, is still greatest when b = 9nm.

When the quantum dot is placed in the quasi-3D cavity, the normalized frequencies

change slightly because the lattice constant is now a = 331.4nm. The radiation rates in

the frequency range of interest as well as the spontaneous emission lifetime as a function

of dot base width are given in Fig. 5.19(b). Again the emission of the b = 8.5 − 9nm

dots are enhanced, however now the b = 9nm dot has the shortest lifetime. The y-dipole

radiation rate for the b = 8.5nm dot is close to 1 and less than for the suspended slab

cavity, which causes the increase. Comparison of the suspended slab and quasi-3D cavity

results show that the quasi-3D cavity has a slightly larger range of quantum dot base width

where emission enhancement occurs; it is b ≈ 8.25− 9.25nm.

An additional concern during the fabrication process is the spatial location of the

quantum dot inside of the cavity. Positioning of the dot could be aided by a µPL setup that

also has lithography capabilities. Once a quantum dot with the desired emission wavelength

is identified, large fabrication markings can denote where the photonic crystal microcavity

should be located. These markings can be used when performing e-beam lithography to

pattern the photonic crystal. Still, there will be some error in the placement of the dot

inside of the cavity. To investigate the significance of the dot placement, the spontaneous

emission lifetime will be found as a function of space. This calculation is done only for

in-plane or lateral variation of the dot position. Assuming that the device will be grown

by MBE, there should not be any significant vertical variation of the dot placement.

As illustrated by the electric field patterns in Sec. 5.1, each field has its own distribution

inside of the microcavity. In Chapter 4, the radiation rate was shown to vary proportionally

with the magnitude of the field. By putting an x-dipole at the maximum of the Ex field,

a y-dipole at the maximum of the Ey field and a z-dipole at the maximum of the Ez field

it is possible to extrapolate the radiation rate of a dipole placed at any location inside of
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Figure 5.20: Radiation Rate for x, y and z dipoles as a function of normalized frequency.
The dipoles are not co-located, but instead each dipole is placed at the corresponding field
maximum.

the cavity. This is in contrast to all previous results which were obtained by placing the

x-, y-, and z-dipole sources at the same spatial position in the cavity. The rates can not

be accurately extrapolated from the initial, co-located source data because extrapolations

of rates from field minimums leads to significant errors. During the extrapolation process,

the magnitude of the field is normalized to the value at the input location. For minimum

field locations, this leads to division by a small number and numerical instability. In the L3

cavity, for instance, the Ex and Ez fields have minimums at the cavity center. To simulate

the spatial variation of the spontaneous emission lifetime in this cavity, two additional

radiation rate calculations must be performed, one for the x input and one for the z input.

The y-dipole is already chosen at the cavity center and the rates in the cavity can be

directly extrapolated from this result.

Once the radiation rates have been determined at the x, y, and z field maximums,

then the rates can be extrapolated to each position. The rates are found as a function of

frequency and are shown in Fig. 5.20 for the suspended slab (a) and the quasi-3D slab (b).

The field distributions can be found from quality factor calculations where the excitation

frequency is the same as the mode of interest, for the L3 suspended slab f = 0.352(a/λ).

While the fields were initially taken after the mode had reached steady-state and before the
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Figure 5.21: The radiation rate for a (a) x-dipole, (b) y-dipole, (c) z-dipole as its position
is varied in the L3 suspended slab cavity. The radiation rates for the x, y, and z dipoles in
the L3 quasi-3D cavity are shown in (d)-(f), respectively.

input was turned off, this actually introduced a small error because of the typical charging

error that occurs from point sources in FDTD [2]. It was found that the results improved

if the field distributions were taken after the source had been turned off. This minimized,

although not completely eliminated, an abrupt spike in the spontaneous emission lifetime

at the quality factor calculation injection site. It was verified that the general relative field

distribution was not affected by this change and only the maximum value in absolute terms

was affected. Since the fields are normalized, the actual value of the field is inconsequential.

The radiation rate for the x, y and z dipoles are shown as a function of position in

the L3 suspended slab cavity in Fig. 5.21 (a)-(c). As expected these figures resemble the

electric field distributions, and large radiation rates correspond to high electric fields. The

radiation rates for the quasi-3D cavity are nearly identical, the only difference being the

maximum rate, as shown in Fig. 5.21 (d)-(f). Next the spontaneous emission lifetime can

be found for a specific quantum dot by substituting the spatially varying radiation rates
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and the quantum dot axial dipole transition matrix elements into equation 5.1.

To illustrate this method, the spontaneous emission lifetimes for a b = 9nm and h =

3nm InAs quantum dot in the L3 slab and quasi-3D cavity are shown in Fig. 5.22 (a) and

(b), respectively. The axial transition matrix elements for this dot were given in Table 5.1.

In the Figure, the color scale ranges from 0 to the bulk spontaneous emission lifetime of

the dot, τspont = 0.659ns for both structures. This choice is made to highlight the regions

where the spontaneous emission is enhanced while assuming that all regions where the

emission is suppressed are equally undesirable locations for the quantum dot. As a result,

the dark red regions correspond to spontaneous emission lifetimes greater than or equal

to the bulk lifetime. Although the images are zoomed in on the cavity region, outside of

this region all spontaneous emission is suppressed. The lifetime in the photonic crystal air

holes is set to 0, shown as white, because no dots can be present at those locations. To

highlight that shorter lifetimes are possible for a quantum dot placed in the ideal location

of the quasi-3D cavity than of the suspended slab cavity, the scales for both cavities are

the same. From the Figure it also appears that there is a larger area where the quantum

dot’s emission is enhanced if the dot is placed in the quasi-3D cavity. Calculating the area

where the emission is enhanced, and dividing by the total cavity area shows that this is in

fact the case. For the suspended slab cavity, enhancement occurs over approximately 35%

of the cavity area and for the quasi-3D cavity this is increased to 40%.

Figure 5.23 shows the spontaneous emission lifetime along two cut planes of the cavities.

Also shown is a view of the cavity with a solid black line illustrating the location of the

slice. The bulk lifetime is given by the dashed red line so that regions of enhancement

and suppression can be easily identified. Consider first the lifetimes as the dot is shifted

along the x̂ direction in the cavity. Outside of the cavity region, the lifetimes increase

substantially above the bulk value. The emissions from dots not lying in the cavity will

be suppressed enough that a single photon can be isolated. In the cavity region there

are large segments of enhancement with several approximately equally spaced peaks where
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Figure 5.22: The spontaneous emission lifetime as a function of the b = 9nm, h = 3nm
InAs quantum dot location in the L3 (a) suspended slab and (b) quasi-3D cavity. The
lifetimes are given in nanoseconds and the scale ranges from 0 to the bulk spontaneous
emission lifetime. The white regions are the air holes of the photonic crystal where no
emitter can be located.

the emission is suppressed. While the values of the minimum lifetime remains relatively

constant, the maximum lifetimes in the cavities vary. The minimum lifetimes are dominated

by the large radiation rates of the y-dipole and subsequently the Ey field distribution.

Maximum lifetimes, however, occur when the radiation rates for all of the dipoles are low

and depend fundamentally on the Ex, Ey and Ez field values. Since each field has its own

symmetry in the cavity, the maximum lifetimes are expected to vary more with position.

Generally, the spontaneous emission lifetimes in the quasi-3D cavity are shorter than

in the suspended slab cavity. This is easier to see from the plot of the lifetime as the dot

is shifted along the ŷ direction as in Fig. 5.23. The extra dip at approximately cell 146 is

due to a perturbation of the electric field value near the injection site for the quality factor

calculations, and is an artifact of the simulation. As expected, the spontaneous emission

enhancement occurs over a larger range for the quasi-3D cavity than for the suspended

slab.

Although the requirement for directional polarization somewhat limits the maximum

possible spontaneous emission enhancement, precise alignment of a quantum dot with the

second mode of the L3 cavity will allow for faster operating speeds than a dot in bulk.

Adding a DBR above and below the cavity further improves the spontaneous emission

lifetime by about 10%. The quasi-3D cavity also has a larger cavity area over which
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Figure 5.23: The spontaneous emission lifetimes of Fig. 5.22 are shown along 2 cut planes,
(a) x and (b) y. At the top of each plot is image of the cavity with the cut location
denoted by the solid black line. Lifetime of the b = 9nm, h = 3nm InAs quantum dot in
the suspended cavity is given by the solid blue line and the lifetime in the quasi-3D cavity
is denoted by a dot-dash green line.

emission is enhanced, thus relaxing the condition for precise dot placement in the cavity.

Tuning of the quantum dot spectrally in and out of resonance with the second mode of

the L3 cavity is also slightly less sensitive for the quasi-3D structure. The poor extraction

efficiency of the quasi-3D device is improved by adjusting the reflectivity of the mirrors

above and below the GaAs slab. A higher top extraction efficiency than in a suspended

slab is possible when the top DBR is removed and 2 periods are added to the bottom

DBR. Although this reduces the radiation rate of the y oriented dipole slightly, the rate

remains above that of the suspended slab. These advantages as well as the desirable mode

polarization and short photon lifetime, make the single quantum dot in a L3 elliptical-hole

quasi-3D cavity an excellent candidate for a single-photon source.
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Chapter 6

Summary and Recommendation for

Future Work

6.1 General Conclusions

This thesis has developed a computational model for designing and analyzing a single quan-

tum dot inside of a photonic crystal microcavity for use as a single-photon source. Two

main modeling tools are combined: the Finite-Difference Time-Domain method for charac-

terizing the microcavity, and an 8-band k ·p perturbation theory for determining the energy

levels and wavefunctions in the quantum dot. For this research, we have implemented the

Finite-Difference Time-Domain method in C using openMP directives to parallelize the

computationally challenging portions of the code. The 8-band k · p calculations are done

using Nextnano++.

A single-photon source is necessary to implement a quantum key distribution scheme.

Quantum cryptography has emerged as a potential replacement of classical cryptography

systems, which will no longer be secure if a quantum computer is developed. The quantum

key distribution scheme relies on the generation, transmission and detection of single-

polarized photons to establish a secure key that can be used to encode data sent through
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classical channels. Working with single photons is not an easy task. Each portion of the

system is complex and has it’s own unique challenges for practical implementation. In this

thesis, the focus was on the generation of single-photons by investigating the interaction

of a quantum dot with novel photonic crystal microcavities.

The ideal source would emit single polarized photons on demand with as little wait time

as possible. At the beginning of the device design process, an operating frequency must

be chosen. This frequency is used to determine the size of the quantum dot. Changing

the size of the dot changes the energy levels, the transition energy, and the frequency of

the emitted photon. The photonic crystal microcavity must also be designed to have a

mode at the operating frequency. The polarization of the photon is determined by the

microcavity geometry which supports one or a few modes, each having its own distinct

field profile. Using finite-difference time-domain methods, the mode frequencies, mode

profiles and cavity quality factors can all be determined.

To calculate the speed of the device, the model calculates both the spontaneous emission

lifetime and the photon lifetime. The photon lifetime is inversely related to the quality

factor. Because fast operating speed is a design goal, the cavity Q for the single-photon

source should not be too large. For the spontaneous emission lifetime calculation, the

dipole matrix element along each axis of the quantum dot is determined from the complex

wavefunctions of the electron and hole. These results are multiplied by weighing factors

and then summed to determine the new total dipole matrix element for the dot inside

of a microcavity. When the quantum dot is in bulk, the weighing factors are 1 and the

equations reduce to familiar form.

Using this method, both key lifetimes are determined. While this is not particularly

challenging for the photon lifetime, theoretically determined spontaneous emission lifetimes

have previously only been found in terms of relative quantities such as the Purcell factor.

This is acceptable when the microcavities are used for lasers, because many randomly

located and oriented emitters will collectively emit into the cavity. In the single-photon
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source there is a single quantum dot at a particular location in the cavity and exact

calculations of the lifetime make more sense. To validate the spontaneous emission lifetime

calculations developed in this thesis, the results were compared with experimental data and

found to be in good agreement.

In addition to developing the computational model, a novel photonic crystal microcav-

ity is also investigated. The microcavity is formed by combining 2D distributed Bragg

reflection for in-plane confinement while using 1D distributed Bragg reflection for vertical

confinement. The band diagrams for the bulk photonic crystal are found using 3D Finite-

Difference Time-Domain methods. Using a 3D instead of a 2D implementation allows us to

fully determine the effect of the vertical DBRs without making any assumptions regarding

the vertical component of the wavevector. When the DBRs were added above and below

the GaAs slab, there were 4 bands that enter the 2D photonic crystal band gap. These

bands originate from the continuum of TE modes for an unpatterned DBR.

The presence of the TE bands in the 2D photonic crystal band gap did not necessari-

ally lead to lower radiation rates and longer spontaneous emission lifetimes. Instead, the

propagation into the DBR depended on how large the wavevector of the mode was at the

TE state locations. If the magnitude of the wavevectors were small, then the coupling to

the DBR was inefficient and larger radiation rates than in the suspended slab cavity were

observed. Splitting the degenerate dipole mode and tuning the mode frequencies over the

band gap verified this theory.

For a single-photon source, the mode must be highly polarized along a single axis.

Doing so requires creating a defect that is asymmetric. We investigated the second x-

dipole-like mode of an L3 cavity which has a ŷ polarization. By adjusting the inner holes

along the x̂ axis to form elliptical air holes, the mode frequency was pushed up into the

quasi-3D band gap of the photonic crystal. The spontaneous emission lifetime was shorter

for a quantum dot in the quasi-3D microcavity than in the suspended slab. To improve

the extraction efficiency of the quasi-3D device, the top mirror reflectivity was reduced.
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This resulted in a slightly lower radiation rate, but the rate was still higher than in the

suspended slab. Using the quasi-3D cavity in a single photon source has the following

advantages: a shorter spontaneous emission lifetime, faster operating speed, and a higher

top extraction efficiency.

6.2 Recommendation for Future Work

To improve upon the computational model developed in this thesis, more complex quantum

dot modeling could be used. For simplicity, the quantum dots were assumed to be made

purely of InAs. In practice this is not the case and the dots are composed of In1−xGaxAs.

Moreover the In content can vary throughout the dot. A more advanced model would

take these variations into account. Nextnano++ should be capable of accounting for these

situations; however, care must be taken when identifying the material constants that are

used. In Nextnano++, many of the parameters are determined by linear interpolation

between the constants for GaAs and InAs, although it is possible to use other interpolation

schemes. It is recommended that new materials and grading be applied and tested on simple

1D structures before being used for quantum dots whenever possible. Incorporating these

new materials may change the actual values of the energy levels, but the trends should

remain the same.

The quantum dots were also pyramidal in shape. Real dots that are capped by GaAs

tend to have flat tops and investigations using a truncated pyramidal geometry should also

be conducted. Changing the shape will affect both the energy levels and the wavefunctions.

Smaller dots may be more affected by the adjustment in the geometry.

For a single-photon source, the polarization requriement restricts which modes can be

used. Other modes in the L3 microcavity and modes in other microcavity geometries have

even more spontaneous emission enhancement than the ŷ polarized mode in the L3 cavity.

Further investigation of candidate microcavities may produce other more advantageous
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geometries and modes for use in the single-photon source. A mode that has even higher

relative radiation rates and maintains a highly directional polarization is desirable.

The use of quasi-3D photonic crystal microcavities could also be explored for other

applications such as LEDs. Photonic crystals have been proposed for use in LEDs to

help improve the extraction efficiency from the slab membrate. Using a properly designed

DBR below the suspended slab may help to improve the top extraction efficiency of the

devices. The quasi-3D microcavities may also be useful in lasers because they can have

higher quality factors than the suspended slab devices. They also offer the advantage of

higher top extraction efficiency if the bottom mirror is more reflective than the top. The

additional control over spontaneous emission enhancement and suppression in the quasi-3D

microcavity may also be an advantage for thresholdless lasers.
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.1 Transition Rates with Time-Dependent Perturba-

tion Theory

Time-dependent perturbation theory is used to study the interaction between atomic elec-

trons and electromagnetic radiation. The Hamiltonian in this case has two parts, a time-

independent part Ĥ0 and a time-dependent part Ĥ ′(t). The corresponding Schrödinger

equation is

i~
d |Ψ(t)〉
dt

= (Ĥ0 + Ĥ ′(t)) |Ψ(t)〉 (1)

where |Ψ(t)〉 can be expanded in terms of the unperturbed eigenstates |ψn〉 as

|Ψ(t)〉 =
∑
n

cn(t)e−iE
(0)
n t/~ |ψn〉 (2)

It is assumed that solutions for the time-independent Hamiltonian,

i~
d |ψ(t)〉
dt

= Ĥ0 |ψ(t)〉 (3)

can be found by solving the familiar eigenvalue problem

Ĥ0 |ψn〉 = E(0)
n |ψn〉 (4)

where E(0)
n are energy eigenvalues of the unperturbed system and |ψn〉 are eigenstates or

wavefunctions.

If at t = 0 the energy, Ei is measured, then the coefficients must obey

ci(0) = 1 cn(0) = 0. (5)

Because the coefficents, cn(t), are time dependent, a subsequent measurement at time, t,
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may yield a value of Ef . The probability of such an event is |cf (t)|2. This is also the

probability that the system, originally in state i at t = 0, is now in state f after time t.

Solution of the time-dependent Schrödinger equation thus describes how the probability

of finding the system in state |ψn〉 of Ĥ0 evolves due to the perturbation Ĥ ′(t). Before

determining the effect of a specific Ĥ ′(t), the coefficients, cn(t) must be found. It is assumed

that Ĥ ′(t) will be small so that the time dependence of cn(t) can be treated perturbatively.

Traditional perturbation theory can then be used where the parameter λ is introduced to

keep track of the order of smallness of the perturbation.

First, the expansion of |Ψ(t)〉 given by equation (2) is substituted into equation (1) to

obtain

i~
∑
n

[
d

dt
cn(t)− iE(0)

n

~
cn(t)

]
e−iE

(0)
n t/~ |ψn〉 =

∑
n

cn(t)e−iE
(0)
n t/~(Ĥ0 + Ĥ ′(t)) |ψn〉 (6)

Taking the inner product with 〈ψf | eiE
(0)
f
t/~ and using (4) on the right hand side, this

equation becomes

d

dt
cf (t) = − i

~
∑
n

cn(t)ei(E
(0)
f
−E(0)

n )t/~ 〈ψf | Ĥ ′(t) |ψn〉 (7)

Assuming again that the system is initially in an eigenstate of the unperturbed Hamiltonian

|ψi〉 at time t = 0. Then the initial condition can be written concisely as

cn(0) = δni (8)

Now the parameter λ can be inserted into the Hamiltonian and the coefficients cn(t)

can be expanded in a power series in λ. The coefficients are written as

cn(t) = c(0)
n + λc(1)

n + λ2c(2)
n + . . . (9)
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which is substituted into (7) to obtain

d

dt

(
c

(0)
f + λc

(1)
f + λ2c

(2)
f + . . .

)
= − i

~
∑
n

(c(0)
n +λc(1)

n +λ2c(2)
n +. . . )ei(E

(0)
f
−E(0)

n )t/~ 〈ψf |λĤ ′(t) |ψn〉

(10)

Terms of the same order of λ on each side of the equation must be equal. Equating terms

in λ0, leads to
d

dt
c

(0)
f = 0 (11)

because there is no λ0 term on the right hand side of (10). The initial conditions are

satisfied if c(0)
f = δfi and c(k)

n (0) = 0 for k ≥ 1. Equating terms in λ1, results in

d
dt
c

(1)
f (t) = − i

~

∑
n

c(0)
n (t)ei(E

(0)
f
−E(0)

n )t/~ 〈ψf | Ĥ ′(t) |ψn〉

= − i
~e
i(E(0)

f
−E(0)

i )t/~ 〈ψf | Ĥ ′(t) |ψi〉
(12)

Integrating this equation c(1)
f is found to be

c
(1)
f = − i

~

∫ t

0
ei(E

(0)
f
−E(0)

i )t′/~ 〈ψf | Ĥ ′(t′) |ψi〉 dt′ (13)

Using the equations for c(0)
f and c(1)

f , cf (t) can be written to first order as

cf (t) = δfi −
i

~

∫ t

0

(
ei(E

(0)
f
−E(0)

i )t′/~ 〈ψf | Ĥ ′(t′) |ψi〉+ . . .
)
dt′ (14)

To find the probability of the transition from some initial state of the unperturbed

system to a different final state we write

Pif = |cf (t)|2 =
∣∣∣∣δfi − i

~

∫ t

0
ei(E

(0)
f
−E(0)

i )t′/~ 〈ψf | Ĥ ′(t′) |ψi〉 dt′
∣∣∣∣2 (15)
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But the initial and final states must be different so δfi = 0 and the transition rate becomes

Pif = |cf (t)|2 =
∣∣∣∣− i~

∫ t

0
ei(E

(0)
f
−E(0)

i )t′/~ 〈ψf | Ĥ ′(t′) |ψi〉 dt′
∣∣∣∣2 (16)

This is the first order approximation for the probability of the transition.

If the perturbing potential is a harmonic function, Ĥ ′(t′) = νeiωt
′ + ν†e−iωt

′ , as will

later be shown to be the case for electromagnetic radiation, then we can write

Pif (t) =
∣∣∣∣−i~

∫ t

0
〈ψf | νeiωt

′ + ν†e−iωt
′ |ψi〉 eiωfit

′
dt′
∣∣∣∣2 (17)

After evaluating the integral and taking the magnitude, Pif becomes

Pif (t) = 1
~2

|〈ψf | ν |ψi〉|2
∣∣∣∣∣ei(ωfi+ω)t − 1

ωfi + ω

∣∣∣∣∣
2

+
∣∣∣〈ψf | ν† |ψi〉∣∣∣2

∣∣∣∣∣ei(ωfi−ω)t − 1
ωfi − ω

∣∣∣∣∣
2 (18)

To obtain this equation the cross terms were ignored because they will go to 0 as the time

goes to infinity. Using |eiΘ − 1|2 = 4sin2(Θ/2), the equation for the probability becomes

Pif (t) = 4
~2

[
|〈ψf | ν |ψi〉|2

sin2((ωfi + ω)t/2)
(ωfi + ω)2 +

∣∣∣〈ψf | ν† |ψi〉∣∣∣2 sin2((ωfi − ω)t/2)
(ωfi − ω)2

]
(19)

As the time goes to infinity the following relation results

lim
t→∞

sin2(yt)
πy2t

= δ(y) (20)

Using this identity in (19) and multiplying by the necessary factors, the probability of a

transition becomes

Pif (t) = 2πt
~
|〈ψf | ν |ψi〉|2 δ(Ef − Ei + ~ω) + 2πt

~

∣∣∣〈ψf | ν† |ψi〉∣∣∣2 δ(Ef − Ei − ~ω) (21)
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The transition rate is the transition probability per unit time and it can be written as

Γif = dPif (t)
dt

= 2π
~
|〈ψf | ν |ψi〉|2 δ(Ef −Ei +~ω) + 2π

~

∣∣∣〈ψf | ν† |ψi〉∣∣∣2 δ(Ef −Ei−~ω) (22)

The transition rate is then only non-zero when Ef − Ei = ~ω or Ei − Ef = ~ω. These

conditions can not be met simultaneously. The first case corresponds to the final energy

being higher than the initial energy and when acted on by the perturbation, a photon

is absorbed. When the initial energy is higher than the final energy, as in the second

condition, a photon is emitted. The transition rate for photon emission is

Γemissif = 2π
~
|〈ψf | ν |ψi〉|2 δ(Ef − Ei + ~ω) (23)

So far only the general form for the transition rate in a harmonic potential is presented.

The next step is to derive the precise form of the perturbing potential corresponding to an

electromagnetic field and to show that it is of harmonic form. Consider a system in bulk

that obeys the time-independent Schrödinger equation given in equation (3). Introducing

an electric field with potential φ(~r, t) = −
∫
E(r, t)dr will increase the energy of the system

by |q|φ(~r, t) where q is the charge on an electron. The time-independent Schrödinger

equation becomes

i~
d |Ψ(t)〉
dt

= (Ĥ0 − qφ(~r, t)) |Ψ(t)〉 . (24)

In addition to the scalar potential introduced by the presence of the electric field, there is

a corresponding vector potential due to the magnetic field. To account for the magnetic

vector potential ~A(~r, t), equation (24) can be rewritten as

i~
d |Ψ(t)〉
dt

+ qφ(~r, t) |Ψ(t)〉 = (−~
2

2me

~5
2

+ V(~r)) |Ψ(t)〉 (25)
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where the substitution

H0 =
~P 2

2me

+ V(~r) = −~
2

2me

~5
2

+ V(~r) (26)

was made. The energy due to the magnetic vector potential can now be added to the right

hand side of equation (25),

i~
d |Ψ(t)〉
dt

+ qφ(~r, t) |Ψ(t)〉 = ( 1
2me

((−i~~5+ qA) · (−i~~5+ qA)) + V (~r)) |Ψ(t)〉 (27)

= ( 1
2me

(~P 2 + q2A2 + qA · −i~~5− i~~5 · qA) + V(~r)) |Ψ(t)〉

(28)

= (
~P 2

2me

+ q2A2

2me

+ q

2me

A · ~P + q

2me

~P · A+ V(~r)) |Ψ(t)〉 (29)

When electromagnetic radiation with magnetic vector potential ~A(~r, t) and electric

potential φ(~r, t) is applied to an atom the Hamiltonian describing the interaction of the

electron and the radiation is then given by

H = H0 + q2A2

2me

+ q

2me

A · ~P + q

2me

~P · A− qφ(~r, t) (30)

We will assume that there are no electrostatic sources so that φ(~r, t) = 0. It is also valid

to ignore the ~A2 term because it is smaller than the other terms by a factor of q ≈ E−19.

Using the Coulomb gauge, 5 · ~A = 0, the Hamiltonian can be simplified to

H = H0 + q

2me

~A(~r, t) · ~P = H0 + Ĥ ′(t) (31)

which is precisely the form of the Hamiltonian that was assumed when the time-dependent

perturbation theory was developed earlier. The perturbation Hamiltonian in the presence
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of an electromagnetic field is

Ĥ ′(t) = q

2me

~A(~r, t) · ~P . (32)

To determine the spontaneous emission lifetime, the field must be quantized. This

means that the magnetic vector potential must be replaced with an operator. The process

is similar to quantization of a classical harmonic oscillator and the electromagnetic field

will be written in terms of creation and annihilation operators. First, the vector potential

is expanded in a Fourier series

~A(~r, t) = 1√
V

∑
k

2∑
λ=1

[
Aλ,k~ελe

i(~k·~r−ωkt) + A∗λ,k~ε
∗
λe
−i(~k·~r−ωkt)

]
. (33)

The corresponding electric field, found through solution of

E(~r, t) = −∂
~A(~r, t)
∂t

, (34)

can be written as

E = −1√
εV

∑
k

2∑
λ=1

iωk
√
ε
[
Aλ,k~ελe

i(~k·~r−ωkt) − A∗λ,k~ε∗λe−i(
~k·~r−ωkt)

]
. (35)

Similarly, the magnetic field can be found through solution of

H = 1
µ
5× ~A(~r, t) (36)

as

H = 1√
µV

∑
k

2∑
λ=1

iωk
√
ε
[
Aλ,k(~k × ~ελ)ei(

~k·~r−ωkt) − A∗λ,k(~k × ~ε∗λ)e−i(
~k·~r−ωkt)

]
. (37)

Introducing a set of variables, Pλ,k and Qλ,k, Aλ,k and A∗λ,k can be written as a conjugate
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pair,

Aλ,k = 1
2
√
ε
Qλ,k + i

2ω
√
ε
Pλ,k A∗λ,k = 1

2
√
ε
Qλ,k − i

2ω
√
ε
Pλ,k. (38)

Substitution of equation (38) into equations (35) and (37) yield the following equations for

the electric and magnetic field

E = −i√
4εV

∑
k

2∑
λ=1

ωk

[(
Qλ,k + i

ωk
Pλ,k

)
~ελe

i(~k·~r−ωkt) −
(
Qλ,k −

i

ωk
Pλ,k

)
~ε∗λe
−i(~k·~r−ωkt)

]
.

(39)

H = i√
4µV

∑
k

2∑
λ=1

ωk

[(
Qλ,k + i

ωk
Pλ,k

)
(~k × ~ελ)ei(

~k·~r−ωkt) −
(
Qλ,k −

i

ωk
Pλ,k

)
(~k × ~ε∗λ)e−i(

~k·~r−ωkt)
]

(40)

which can be simplified to

E = −1√
4εV

∑
k

2∑
λ=1

[
(iωkQλ,k − Pλ,k)~ελei(

~k·~r−ωkt) − (iωkQλ,k + Pλ,k)~ε∗λe−i(
~k·~r−ωkt)

]
. (41)

H = 1√
4µV

∑
k

2∑
λ=1

[
(iωkQλ,k − Pλ,k) (~k × ~ελ)ei(

~k·~r−ωkt) − (iωkQλ,k + Pλ,k) (~k × ~ε∗λ)e−i(
~k·~r−ωkt)

]
.

(42)

The energy density of the electromagnetic field is

Hr =
∫
d3r

(1
2ε|

~E(~r, t)|2 + 1
2µ|

~H(~r, t)|2
)
. (43)

Substitution of equation (41) and (42) into (43) and simplifying results in an energy density

of

Hr =
∫
d3r

1
4V

∑
k

2∑
λ=1
|iωkQλ,k−Pλ,k|2+|iωkQλ,k+Pλ,k|2 =

∑
k

2∑
λ=1

1
2 |Pλ,k|

2+ω2
k

2 |Qλ,k|2 (44)

where we have used the fact that ελ is normalized to 1 such that, |ελ|2 = ελ · ε∗λ = 1. This

equation has a striking similarity to the Hamiltonian of a harmonic oscillator, which is
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expressed as

Hho = ~p2

2me

+ 1
2ω

2me~x
2 (45)

whereme is the mass of the electron, ~p is the momentum and ~x is the position [1]. Ifme = 1,

~p = Pλ,k, and ~x = Qλ,k, then Equation 44 is just an infinite sum of independent harmonic

oscillators. This analogy allows us to proceed with the quantization of the electromagnetic

fields by determining the appropriate operator representation for Qλ,k and Pλ,k through

the introduction of raising and lowering operators. The procedure is the same as that used

for the harmonic oscillator where the momentum and position operators become

~x =
√

~
2meω

(a† + a) (46)

and

~pho = i

√
~meω

2 (a† − a) (47)

where a† is the raising operator and a is the lowering operator.

The operators, Q̂λ,k and P̂λ,k, will obey the canonical commutation relation given by

[
Q̂λ1,k1 , P̂λ2,k2

]
= i~δλ1λ2δk1k2 (48)

The raising and lowering operators are then defined as

â†λ,k =
√

ωk

2~ Q̂λk − i√
2~ω P̂λk, âλ,k =

√
ωk

2~ Q̂λk + i√
2~ω P̂λk

(49)

Writing Q̂λ,k and P̂λ,k in terms of the raising and lowering operators we have

Q̂λk =
√

~
2ωk

(
â†λ,k + âλ,k

)
, P̂λk = i

√
~ωk

2

(
â†λ,k − âλ,k

)
(50)

Substitution into the Hamiltonian operator for the electromagnetic field, equation (44),
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gives

Ĥr =
∑
k

2∑
λ=1

ω2
k

2
~

2ωk
(a+ a†)2 − 1

2
~ωk

2 (a† − a)2 (51)

=
∑
k

2∑
λ=1

~ωk
4 (aa+ aa† + a†a+ a†a† − (a†a† − a†a− aa† + aa)) (52)

=
∑
k

2∑
λ=1

~ωk
2 (aa† + a†a− a†a+ a†a) (53)

=
∑
k

2∑
λ=1

~ωk
(
a†a+ 1

2

)
(54)

=
∑
k

2∑
λ=1

~ωk
(
N̂ + 1

2

)
(55)

The raising and lowering operators act on the state of the electromagnetic field to either

create or annihilate a photon, respectively. If the electromagnetic field is in a state |nλk〉

the result of the raising and lowering operators are

â†λk |nλk〉 =
√
nλk + 1 |nλk + 1〉 (56)

âλk |nλk〉 = √nλk |nλk − 1〉 (57)

This means that operating on a state of the electromagnetic field with N̂ = a†a gives the

number of photons in that state. The eigenstates of the Hamiltonian of the electromagnetic

field are then given by

|nλ1k1 , nλ2k2 , . . . 〉 =
∏
j

∣∣∣nλjkj

〉
(58)

and the energy eigenvalues are

Er =
∑
k

2∑
λ=1

~ωk
(
nλk + 1

2

)
(59)

The operators corresponding to the Fourier coefficients of the vector potential can be
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found by substituting equation (50) into equation (38). The result is

Âλk =
√

~
2ωkε

âλk Â∗λk =
√

~
2ωkε

â†λk (60)

Substitution of these equations into (33) gives the vector potential operator

~̂A(~r, t) =
∑
k

2∑
λ=1

√
~

2ωkεV
(
~ελâλke

i(~k·~r−ωkt) + ~ε∗λâ
†
λke
−i(~k·~r−ωkt)

)
(61)

Using the expression for Ĥ ′(t) found in equation (32), the perturbing potential from the

quantized electromagnetic field is

Ĥ ′(t) = q

me

~̂A · ~P =
∑
k

2∑
λ=1

√
~

2ωkV ε
q

me

(
âλke

i~k·~r~ελ · ~Pe−iωkt + â†λke
−i~k·~r~ε∗λ · ~Peiωkt

)
(62)

which takes the form of a harmonic potential.

Ĥ ′(t) =
∑
k

2∑
λ=1

(
ν†λke

−iωkt + νλke
iωkt

)
(63)

Recall from equation (23) that the emission rate due to a harmonic perturbation can

be written as

Γemissif = 2π
~
|〈Φf | ν |Φi〉|2 δ(Ef − Ei + ~ω) (64)

The initial and final states can be written as a combination of the electron state and the

electromagnetic field state so that |Φi〉 = |ψi〉 |nλk〉 and |Φf〉 = |ψf〉 |nλk + 1〉. This leads

to

〈Φf | ν |Φi〉 = 〈ψf | 〈nλk + 1|
√

~
2ωkV ε

q

me

e−i
~k·~r~ε∗λk · ~P â

†
λk |nλk〉 |ψi〉 (65)

=
√

~
2ωkV ε

q

me

〈ψf | e−i
~k·~r~ε∗λk · ~P |ψi〉 〈nλk + 1| â†λk |nλk〉 (66)
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Using equation (56) we find

〈Φf | ν |Φi〉 =
√

~
2ωkV ε

q

me

√
nλk + 1 〈ψf | e−i

~k·~r~ε∗λk · ~P |ψi〉 . (67)

Substitution of this result into (64) gives

Γemissif = πq2

m2
eωkV ε

(nλk + 1)
∣∣∣〈ψf | e−i~k·~r~ε∗λk · ~P |ψi〉∣∣∣2 δ(Ef − Ei + ~ωk) (68)

For spontaneous emission, the number of photons is initially 0 so nλk = 0. The spontaneous

emission rate therefore is given by

Γsponif = πq2

m2
eωkV ε

∣∣∣〈ψf | e−i~k·~r~ε∗λk · ~P |ψi〉∣∣∣2 δ(Ef − Ei + ~ωk) (69)

To find approximate solutions for this equation, it is convenient to expand the expo-

nential e−i~k·~r.

e−i
~k·~r = 1± i~k · ~r − 1

2(~k · ~r)2 ∓ . . . (70)

Typically this approximation is used for the case of an atomic electron where the term,
~k · ~r, will be small because the wavelength is much larger than the atom. This is also

applicable to quantum dots which are ≈ 10 − 20nm. In this case the term will be on the

order of kr = 2πd/λ = 2πx10−9/10−6 ≈ 10−3 and e−i
~k·~r ≈ 1. Using this electric dipole

approximation we obtain

〈ψf | e−i
~k·~r~ε∗λk · ~P |ψi〉 = ~ε∗λk · 〈ψf | ~P |ψi〉 (71)

This can be simplified further by using the commutator relationships of the position oper-
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ator and the unperturbed Hamiltonian. Specifically

[
X̂, Ĥ0

]
=
X̂, ~̂P 2

2me

+ ~V (r)
 =

[
X̂,

P̂ 2
X

2me

]
= i~
me

P̂X (72)

which can be generalized to
[
r̂, Ĥ0

]
= i~

me
P̂ . Using this in (71) we obtain

~ε∗λk · 〈ψf | ~P |ψi〉 = ~ε∗λk · 〈ψf |
me

i~
[r̂, Ĥ0] |ψi〉 (73)

= ~ε∗λk · 〈ψf |
me

i~
(r̂Ĥ0 − Ĥ0r̂) |ψi〉 (74)

= me

i~
~ε∗λk · (Ei 〈ψf | r̂ |ψi〉 − Ef 〈ψf | r̂ |ψi〉) (75)

= imeωfi~ε
∗
λk · 〈ψf | r̂ |ψi〉 (76)

with ωfi = (Ef−Ei)/~. Using these approximations the spontaneous emission rate becomes

Γsponif = π

ωV ε
ω2
fi |~ε∗λk · 〈ψf | (−qr̂) |ψi〉|

2 δ(Ef − Ei + ~ω) (77)

= π

ωV ε
ω2
fi

∣∣∣~ε∗λk · ~dfi∣∣∣2 δ(Ef − Ei + ~ω) (78)

where ~dfi = −q 〈ψf | r̂ |ψi〉 is the dipole matrix element. The total transition rate is found

by summing the transition rate (78) over the final photonic states.

W spon
i→f =

∫
Γsponif ρ(ω)dω (79)

=
∫ π

ωV ε
ω2
fi

∣∣∣~ε∗λk · ~dfi∣∣∣2 δ(Ef − Ei + ~ω)ρ(ω)dω (80)

=
∫ π

ωV ε~
ω2
fi

∣∣∣~ε∗λk · ~dfi∣∣∣2 δ(ωif − ω)ρ(ω)dω (81)

= π

ε~
ωfi

∣∣∣~ε∗λk · ~dfi∣∣∣2 ρ(ωif ) (82)

The density of photonic states ρ(ωif ) is dependent on the surrounding environment of the

emitter. For a quantum dot in a photonic crystal microcavity, ρ(ωif ) = ρC(ωif ), which is
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the density of photon modes in the cavity. Solution of equation (82) gives the spontaneous

transition rate.

As an example, consider the spontaneous transition rate into some bulk material with

refractive index, n. The density of modes per unit frequency per unit volume in bulk is

given by

ρb(ω) = 2ω2n3

πc3 (83)

Substitution of equation (83) into (82) then gives

W bulk
i→f = 2n

~c3ω
3
∣∣∣~ε∗λk · ~dfi∣∣∣2 (84)

This expression is valid only for a single polarization, because ~ε∗λk has a specific value

for the chosen k. By summing over the two possible polarizations of the photon, it is

possible to obtain an expression for the transition rate corresponding to any polarization

[2]. Averaging over the polarizations gives

2∑
λ=1

∣∣∣~ε∗λk · ~dfi∣∣∣2 = 2
3
∣∣∣~dfi∣∣∣2 (85)

Substitution of equation (85) into (84) gives

W bulk
i→f = 4nω3

3~c3

∣∣∣~dfi∣∣∣2 (86)

Similarly, we can determine the spontaneous transition rate into a cavity. In a cavity

the density of modes per unit volume is

ρc(ω) = 1
∆ω (87)

The mode is considered to be non-degenerate in this case. Substituting this expression
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directly into equation (82) the transition rate becomes

W cavity
i→f = π

~ε
ωfi

∣∣∣~ε∗λk · ~dfi∣∣∣2 1
∆ω (88)

Rearranging the terms of equation (88), the equation for the transition rate becomes

W cavity
i→f = π

~2∆ω

(
~ωfi
ε

∣∣∣~ε∗λk · ~dfi∣∣∣2
)

(89)

For emission into bulk, we were able to simply average
∣∣∣~ε∗λk · ~dfi∣∣∣2 over the two polarizations.

In the case of emission into a cavity, the value of
∣∣∣~ε∗λk · ~dfi∣∣∣2 will depend on the profile of

the mode with frequency ωfi and we write

2∑
λ=1

~ωfi
ε

∣∣∣~ε∗λk · ~dfi∣∣∣2 = 8
∣∣∣~dfi∣∣∣2 |αEmax|2 (90)

The factor of ~ωfi is necessary for correct dimensions, Emax is the maximum electric field

of the mode, and α is the field normalization factor [3]

α2 = ~ωfi
2
∫
ε(r)E2(r)d3r

(91)

Substituting equation (90) into (89) the transition rate for emission into a microcavity

becomes

W cavity
i→f = 8π

~2∆ω
∣∣∣~dfi∣∣∣2 |αEmax|2 (92)
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