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Abstract

In the first part of this thesis, we demonstrate theory and computations for

finite-energy line defect solutions in an improvement of Ericksen-Leslie liquid crystal

theory. Planar director fields are considered in two and three space dimensions, and

we demonstrate straight as well as loop disclination solutions. The possibility of

static balance of forces in the presence of a disclination and in the absence of flow

and body forces is discussed. The work exploits an implicit conceptual connection

between the Weingarten-Volterra characterization of possible jumps in certain poten-

tial fields and the Stokes-Helmholtz resolution of vector fields. The theoretical basis

of our work is compared and contrasted with the theory of Volterra disclinations in

elasticity. Physical reasoning precluding a gauge-invariant structure for the model is

also presented.

In part II of the thesis, the time-harmonic Schrodinger equation with periodic

potential is considered. We derive the asymptotic form of the scattering wave func-

tion in the periodic space and investigate the possibility of its application as a DtN

non-reflecting boundary condition. Moreover, we study the perfectly matched layer

method for this problem and show that it is a reliable method, which converges

rapidly to the exact solution, as the thickness of the absorbing layer increases. More-

over, we use the tight-binding method to numerically solve the Schrodinger equation

for Graphene sheets, symmetry-adapted Carbon nanotubes and DNA molecules to

demonstrate their electronic behavior in the presence of local defects. The results

for Y-junction Carbon nanotubes depict very interesting properties and confirms the

predictions for their application as new transistors.
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1

Introduction

While liquid crystal theory, especially that of nematics, is by now a well-established

branch of condensed matter physics [43], there is one aspect in which the classical

theory may be considered deficient. Disclination line defects are an integral part

of the physics of liquid crystals - however, there does not exist a classical theory,

whether Oseen-Frank for statics or Ericksen-Leslie in dynamics (which naturally

subsumes the static theory), that predicts bounded energy in a finite body containing

a ±1
2
-strength disclination line. It is perhaps for this reason that it is commonplace

amongst workers in liquid crystal theory to associate a defect only with a singularity,

e.g. the ‘escape’ solution for a +1 strength line defect [22] is often not referred to as

a defect solution.

Director fields with infinite energy are practically problematic from the point of

view of finding solutions - e.g. in statics, energy cannot be minimized in a class of

functions where all competing fields with defects have undefined (infinite) energies.

Practical difficulties remain in dynamics, more so if the goal is to specify dynamics

of defect lines. While for the purpose of static Oseen-Frank theory involving a few

defects one overcomes such problems by excluding from analysis a core region of
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small volume along the defect line where one assumes the theory does not hold and

ascribing a finite energy to it from some unspecified-in-theory nonlinear effects, for

situations where large numbers of defects may be involved, such an approach is

untenable. To quote Ericksen [26] “I am interested in seeing the development of a

mathematically sound theory of defects which might be at rest, or moving. ...serious

difficulties are encountered with some observed kinds of disclinations (line defects).

According to the aforementioned theories [Oseen-Frank, Ericksen-Leslie], these more

violent singularities cause energy integrals, etc., to diverge. In dealing with rather

specific situations, workers have patched up the theory by excluding a tube of small

radius, assigning a finite “core energy” to it. I just do not believe that one can use

such ideas as a basis for developing satisfactory mathematical theory, particularly

for moving defects. Such phenomena are of interest for both nematic and cholesteric

liquid crystals. In the latter, they are associated with the interesting “blue phases”

.....”

In [5] a theory for the dynamics of non-singular line defects has been proposed

as an extension of Ericksen-Leslie [47] theory. The model works with augmented

kinematics involving the director field and an incompatible director distortion field

as a replacement for the director gradient field. The main point of departure is

that the director distortion is not curl-free, in general. The curl of the field has

the kinematic meaning of an areal density of lines carrying a vectorial attribute and

is referred to as the director incompatibility field. For the 1-constant Oseen-Frank

energy approximation, it was shown in [5] that the developed formalism can indeed

predict the outside-core, energy density distribution of Frank’s planar director distri-

butions for line defects with strength given by all integer multiples of 1
2
. Moreover,

all such distributions have finite energy in the whole body (including core). The

core is represented by precisely the region where the director incompatibility field is

non-vanishing. However, it was not shown in that work how to extract a physically

3



realistic continuous director field resembling Frank’s planar defect fields on the whole

body, and neither was it shown as to what form the director distortion tensor might

take within the theory to represent planar distortion fields of disclination line defects.

In this paper we achieve that goal.

The modeling of bounded energy line defects in statics started with the pioneering

work of [22] within classical Oseen-Frank theory. The same question served as moti-

vation for the development of the variable degree of orientation extension of classical

Ericksen Leslie theory in [26]. Within the De-Gennes Q tensor formalism it has been

pursued in [64], [44], [10], [52]. In the dynamic case, representative studies are those

of [35] and [70] within the Q-tensor approach and [49, 50] within the Ericksen-Leslie

approach. In [49, 50] non-singular line-defect solutions appear due to relaxation of

the unit-magnitude constraint on the director field. In contrast, in our work the

demonstrated finite energy defect solutions satisfy the strict unit-vector constraint

on the director field.

The defect solutions we develop here are finite energy analogs of classically ac-

cepted ‘energy-minimizing’ (infinite total energy) singular solutions of Oseen-Zocher-

Frank theory. As is customary in the liquid crystal literature when discussing statics

of defects solutions, we (almost) ignore balance of forces. What we are able to show

in this regard (Section 4) is that static balance of linear momentum is satisfied out-

side the core(s) of disclination(s) in the absence of a body force within our model

(assuming an incompressible fluid). Moreover, when there is a single disclination in

the body, the natural boundary conditions for static force and moment balance repre-

senting no applied forces and couples on the boundary imply that the resultant force

on any surface enveloping the disclination core vanishes. Within the core, we dis-

cuss possibilities afforded by the [5] theory in satisfying balance of linear momentum

without external body forces or flow.

We consider this work to be primarily a characterization of the kinematic aug-
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mentation of the Ericksen-Leslie theory achieved by the [5] model, since results are

not presented regarding the connection of the presented solutions to (quasi)equilibria

(cf. [18]) of the latter.

This paper is organized as follows: in Section 1.1 we provide notation. Section

2 describes the analytical basis of our work; Section 3 describes the finite-element

based numerical scheme employed to compute non-singular defect solutions and the

results. In Section 4 we discuss static balance of forces for the developed solutions,

and Section 5 ends with some concluding remarks. Two appendices provide explicit

solutions that are necessary for discussing our results.

1.1 Notation

A “·” represents the inner product of two vectors, while “:” represents the trace inner

product of two second-order tensors, A : B = AijBij.

In rectangular Cartesian coordinates and corresponding bases and components,

for a vector field A and a scalar field θ we write:

divA = Ai,i

(curlA)i = eijkAk,j

(grad θ)i = θ,i

For a second-order tensor field A, we define

(curlA)im = emjkAik,j.

The following list describes some of the mathematical symbols we use in this

paper:

n : director

E : director distortion tensor

5



Eθ : director distortion vector

β : director incompatibility tensor

βθ : director incompatibility vector

K : defect strength

ν : normal vector

T : Cauchy stress tensor

Λ : couple stress tensor

ψ : free energy per unit mass

p : pressure

θ : angle of the director field

λ : layer field

λ⊥ : incompatible part of λ

grad z : compatible part of λ

6



2

Theory

We consider the static (i.e. director and positional inertia-less) governing equations

of the framework introduced in [5] and demonstrate that there exists finite-energy

states in the model that are solutions corresponding to line defects with planar

director distributions within the Oseen-Frank constitutive assumption.

2.1 Governing equations

Static Balance of Angular Momentum is given by the statement

Λij,j − eijkTjk = 0.

Ericksen’s identity for the theory (i.e. a necessary condition for frame-indifference of

the energy function) is the statement

eijk

(
∂ψ

∂ni
nj +

∂ψ

∂Eir
Ejr − Eri

∂ψ

∂Erj

)
= 0.

Static Balance of Linear Momentum is the statement

Tij,j = 0.

7



For a free-energy density of the form ψ (n,E), the constitutive statements for

the stress and couple stress tensors for the theory [5] read as

Λij = eirsnr
∂ψ

∂Esj

Tij = −pδij − Eri
∂ψ

∂Erj
,

where p is the pressure arising from the constraint of incomressibility. Using these

statements along with the Ericksen identity in angular momentum balance with some

manipulations yields the fundamental governing partial differential equation of our

work:

eirs

[
ns
∂ψ

∂nr
− (Erj − nr,j)

∂ψ

∂Esj
+ nr

(
∂ψ

∂Esj

)

,j

]
= 0. (2.1)

Note the interesting fact that when Erj = nr,j, i.e. there is no director incompatibility

and hence no defects, we have the classical statement of angular momentum balance

in statics [65]. Inasmuch, this term in our theory may be interpreted as giving

one explicit form to Ericksen’s “internal body moments” [26], gI , arising from the

presence of defects in the body.

We record the statement of balance of linear momentum,

− p,i −
(
Eri

∂ψ

∂Erj

)

,j

= 0, (2.2)

to be used later in Section 4.

For the sake of this paper, we consider an ansatz consisting of director distri-

butions parametrizable by a single angle field θ on the body and director distortion

fields of the form

E :=
∂n

∂θ
⊗Eθ, (2.3)
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where Eθ is a vector field with possibly non-vanishing curl. When there are no line

defects, we require Eθ = grad θ so that E = gradn.

Let the core region for a given Eθ field on the body be the set of points on which

βθ := curlEθ 6= 0

and

β := curl(E − gradn) 6= 0.

We refer to an Eθ field as containing an isolated line defect if its βθ field is non zero

only in a cylindrical region that forms a closed loop or extends from one boundary

of the body to another.

The goal now is to construct pairs of (E,n) fields

1. that satisfy (2.1);

2. that produce Frank’s isolated line defect-like energy density fields outside the

core region, while producing bounded energy in finite bodies (including the

core region), when no moments are applied on the boundary of the body;

3. that produce Frank’s wedge disclination-like director distributions except the

core and possibly another region of ‘small’, but non-zero, volume in the body;

4. for which the line integral of Eθ, along any closed contour surrounding the core

of an isolated line defect of strength K, evaluates to 2πK.

2.2 Construction of bounded energy distortion and director solutions

We work with a rectangular Cartesian coordinate system with unit vectors ei, i =

1, 2, 3. θ represents the angle of the director measured counter-clockwise from the

x1-axis in the x1 − x2 plane (looking down the x3-axis). Thus

n = cos θe1 + sin θe2. (2.4)
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For the sake of illustrating the essentials of our approach, we work with the 1-constant

Oseen-Frank energy density approximation

ψ (n,E) =
1

2
κE : E =

1

2
κEijEij =

1

2
κEθ

iE
θ
i (2.5)

and

∂ψ

∂Esj
= κEsj = κ

∂ns
∂θ

Eθ
j . (2.6)

Noting

Erj − nr,j =
∂nr
∂θ

(
Eθ
j − θ,j

)

and (2.5)-(2.6), (2.1) reduces to

eirsnrκ

[
∂ns
∂θ

Eθ
j

]

,j

= 0.

Considering (2.4) and realizing that eirsnr
∂2ns
∂θ2

θ,j = 0, static angular momentum

balance reduces to

eirsnr
∂ns
∂θ

Eθ
j,j = 0

which is satisfied if and only if

divEθ = 0. (2.7)

To fulfill the fourth requirement on the field Eθ, let us now consider a distribution

of βθ := curlEθ in a right-cylinder parallel to x3 such that

∫

A

βθ · e3 dx1dx2 = 2πK, (2.8)

where A is the set of points representing the cross section of the core cylinder. Thus,

in addition to (2.7), we require

curlEθ = βθ. (2.9)
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Finally, to impose the fact that we seek non-trivial solutions for an unloaded body,

we impose vanishing moments on the boundary of the body which, under the current

ansatz is satisfied if

Eθ · ν = 0 (2.10)

on the boundary of the body with normal field ν.

It is straightforward to see that, for a specified field βθ on a simply-connected

domain, (2.7)-(2.9)-(2.10) has a unique solution. In [5], these equations are solved

explicitly for a radially symmetric βθ distribution (see Appendix B), and the outside-

core result shown to be exactly the same as the gradient of the Frank angle field

for straight wedge disclinations. In the general case, (i.e. not necessarily radially-

symmetric βθ field, but still localized in core cylinder distributions) we would now

like to extract the outside-core result into a gradient of a continuous everywhere

scalar angle field θ which will serve to define the n field of the pair (E,n) describing

an isolated defect. Of course, in the process we would like to have Eθ still be the

solution to (2.7)-(2.9)-(2.10) and Eθ = grad θ when βθ = 0.

To perform this extraction, suppose for a moment it is possible to construct a

square-integrable vector field λ such that

curlλ = −βθ (2.11)

on the body, where the βθ field is identical to the one occurring in (2.9). Then a

Stokes-Helmholtz resolution of the field λ can be written as

λ = λ⊥ + grad z

with

curlλ⊥ = curlλ = −βθ (2.12)

div λ⊥ = 0

11



layer 

core 

Figure 2.1: Schematic of cross-section of a 3-d body showing layer and core geometry

and

λ⊥ · ν = 0 on boundary of body,

and because of the uniqueness of solutions to (2.7)-(2.9)-(2.10), Eθ = −λ⊥.

Suppose further now that the field λ is non-vanishing only on a layer-like region

of non-zero volume1 that may be visualized as a terminating fattened 2-d surface

which, moreover, contains as a proper subset the core cylinder on which βθ has

support (Figure 2.1).

Then, as an immediate consequence we have that

−grad z = λ⊥ = −Eθ outside the layer.

Thus, if we were to now declare the potential z as the required angle-field θ, we would

have completed the needed extraction.

1 Cf. [23]; DeWit considers a distributional layer field in the context of disclinations in solids
related to defects in positional order.
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In practice (Section 3), we implement the above idea by defining

Eθ := grad θ − λ (2.13)

and requiring this combination to satisfy (2.7)-(2.9)-(2.10) so that

grad θ − λ = −λ⊥ (2.14)

is enforced by uniqueness implying grad θ = grad z. When accompanied by the re-

quirement that λ = 0 if βθ = 0, the strategy ensures that E = grad θ in the abence

of defects in the body. We note the important fact that the Stokes-Helmholtz decom-

position of an L2 vector field implies that grad z is square-integrable and therefore

grad θ cannot have a non-square-integrable singularity in the body. The set of Defi-

nitions (2.3) and (2.13) constitutes a primary result of this paper.

So, the only question that remains is whether such a layer-field λ satisfying (2.11)

can in fact be constructed. As we show Section 3, it suffices to consider the layer

region as in Figure 2.1, prescribe an appropriate constant vector field (representative

of an interpolation of the required jump in the value of θ, i.e. 2πK, in the direction

transverse to the layer) for the values of λ outside the core in it, and tapering this

interpolated jump to zero over the width of the core. Outside the layer, λ is assigned

to vanish. Since λ represents a transverse ‘gradient’ in the layer whereas in the

core this transverse variation has a gradient in an in-plane direction, it cannot have

vanishing curl in the core. Thus we represent a non-singular, but localized, core of

a line defect.

We now ask the question of the region where β is non-vanishing corresponding

to an isolated wedge disclination. The existence of a differentiable extracted θ field

(which can be arranged as can be seen from the construction in Appendix A) implies

that the β field corresponding to an isolated defect would be non-vanishing at most
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in the layer, since grad θ = Eθ outside the layer and

Erj,k =
∂2nr
∂θ2

θ,kE
θ
j +

∂nr
∂θ

Eθ
j,k. (2.15)

Our use of a layer field may be interpreted as a regularized analog of the pos-

sible terminating discontinuity in the displacement field over a ‘cut’ surface in the

Weingarten-Volterra (WV) process of elastic dislocation theory, adapted to a much

simpler situation than elasticity; thus, the construction shows direct links between

the Stokes-Helmholtz (SH) resolution of a vector field (in this instance, the layer

field) and the Weingarten-Volterra process. In particular, how the ‘curl’ part of SH

encodes, through a smooth field, topological content that can only be represented

by a nasty singularity in the gradient of a discontinuous potential field in the WV

process. And, how the ‘gradient’ part of SH of an appropriately designed vector

field (the layer field) can represent most of the characteristics of the discontinuous

potential field of the WV process away from the discontinuity.

2.3 Does topological defect density determine the director distribu-
tion?

The construction above lays bare an interesting fact. Note that Eθ is uniquely

determined by the defect density field βθ (and balance of moments) but grad θ, and

hence the predicted director distribution, is defined by the compatible part grad z of

λ. An alternative way of seeing this is to substitute

Eθ = grad θ − λ⊥ − grad z

into (2.7)-(2.9)-(2.10) (this idea is not restricted to the 1-constant energy in any

way). Thus, while the energy density distribution, and therefore the couple stress,

can be correctly predicted purely from the knowledge of the defect distribution (in

this static setting), uniquely predicting the director distribution requires additional
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physical input in the presence of defects. In particular, the layer-like λ field con-

sistent with a specified isolated defect density field orients the nonsingular director

distribution of the defect, as is shown in Section 3. To draw an association with

classical potential theory, specifying the surface of discontinuity of a scalar poten-

tial field whose gradient is required to match, except on the discontinuity surface, a

prescribed, smooth, irrotational vector field on a doubly-connected region containing

a toroidal or through-hole eliminates the vast non-uniqueness associated with such

definition of a potential otherwise. The argument also reveals why the classical the-

ory with only the director field as a degree of freedom is necessarily limited in the

context of modeling defects.

It is also interesting to observe that this situation is entirely analogous to the

extension that was required for making a prediction of permanent deformation [1] in

the elastic theory of continuously distributed dislocations [45], [69]. Comparing and

contrasting with prevalent notions in gauge theories, θ and the total displacement

field of plasticity theory are not inconsequential fields to be gauge-transformed away

even when they have no energetic cost through the Lagrangian in the presence of

gauge fields (λ, in this context), but direct physical observables that participate in

understanding energy dissipation, shape changes, and optical response of the body.

Hence, their evolution requires additional physical specification beyond the topolog-

ical defect density field.

2.4 Relationship with disclinations in elasticity theory

Our construction of the λ field draws direct motivation from a standard question of

potential theory related to understanding the allowable jumps of a scalar potential

across a 2-d surface in a multiply-connected domain described by a through-hole in

a 3-d body. For example, consider Figure 2.1 with the layer shrunk to zero thickness

and also the consequent core to a line of puncture through the plane of the paper;
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the core-line represents the through-hole. The 2-d surface is such that a cut along

it renders simply-connected the body with the hole. Additionally, the gradient of

the potential field is required to match a prescribed irrotational vector field on the

simply-connected domain obtained through the cut.

We note here that the question above is much simpler in its details than the

question posed by Weingarten and Volterra related to understanding the jumps of

a displacement (vector) field, when its symmetrized gradient is required to match a

prescribed symmetric tensor field which satisfies the St.-Venant compatibility condi-

tion of linear elasticity theory in the simply-connected domain resulting from a planar

cut of the multiply-connected domain with the hole. Indeed, in this latter case, a

key construction is a skew-symmetric tensor field (infinitesimal rotation) from the

prescribed symmetric tensor field, whose jump across the cut-surfaces (that serve

as parts of the boundary of the simply-connected domain) relates directly to the

disclinations of linear elasticity theory. It should be clear, then, that in the liquid

crystal theory context, even if one chose to discuss the issue of allowable jumps in the

director field context rather than the angle parametrization field, there is no natural

way a relevant symmetric tensor field arises from the director gradient whose unique2

infinitesimal rotation field in a simply-connected domain may then be used to define

the notion of an isolated singular disclination in liquid crystal theory. Given that

the Oseen-Frank and Ericksen-Leslie theories are geometrically exact, the situation

is not very different if a link is attempted between liquid crystal disclinations and

the singular defects that characterize the jumps in finite rotation associated with

an elastic strain field that satisfies the finite strain compatibility conditions in a

multiply-connected domain. Again, the issue crucially hinges on the question being

posed in terms of the basic tensor field being a positive-definite symmetric second

2 Up to a spatially uniform skew-symmetric tensor field.
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order tensor field (the Right-Cauchy-Green tensor field) and there does not seem to

be any natural way in which the director gradient may be considered to generate

such a field. Such an observation is consistent with that made in [42] (Sec. I.E.1,

p. 67): “This explains the interest in reconsidering the continuous theory of defects,

although new concepts have to emerge. The case of mesomorphic phases requires an

extension of the theory of continuous defects for solids to situations where there is

locally only one physical direction (the director), i.e. no local trihedron of directions,

as in the uniaxial nematic N , the SmA, and the columnar D cases.” We believe that

our work provides the natural extension of the theory of continuous defects in solids

to the mesomorphic phases named above.

As a further example of such differences, we note, as mentioned in [42] Sec. IIA

(p. 69, Remark), that the Volterra process is properly defined only for magnitude of

rotation angles less than π. However, as far as wedge disclinations in liquid crystals

are concerned the +1
2

and +3
2

strength defects are entirely different entities - as

shown in Section 3, our theory is able to predict such differences.
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3

Computation of bounded energy distortion and
director solutions

We demonstrate and evaluate the ideas presented in Section 2.2 through explicit

constructions for different kinds of defects. First, we present results for straight

wedge and twist disclinations and compare our results with Frank’s planar model

[30]. Then we take the next step forward and simulate twist disinclination loops.

3.1 Straight disclination

We refer to disclinations with core cylinder along a straight line, as opposed to a

general curve or a closed loop, as straight disclinations. A straight wedge disclination

is one for which the defect line is along the axis of rotation of the director field. In

the case of a twist disclination, the line is perpendicular to the axis of rotation.

3.1.1 Wedge disclination

Although it is uncommon find an isolated wedge disclination in nature due to its

considerable energy cost, it is nevertheless a canonical problem for theoretical tools

and we study such a 2-dimensional line defect [43].
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Consider θ as a function of the coordinates x1 and x2, so that the director field

would be planar. According to (2.8), (2.11) and Stokes’ theorem
∫
βθ3dA = −

∫
curlλ · e3dA = −

∮
λ · dr = 2πK. (3.1)

This criterion indicates that the line integral of the vector field λ over any closed curve

bounding the core is non-vanishing. Inspired by the Weingarten-Volterra process in

elastic dislocation theory and adapting it to the simpler situation at hand as indicated

in Sections 2.2-2.4, we define λ as a vector field with support on a thin layer that

originates from the defect core and extends all the way to the boundary:

λ := −2πK

2r1
e1 for

{
x2 > 0
|x1| < r1.

(3.2)

Here, r1 defines the spatial width of the layer. The derivative of λ with respect to

x2 is zero everywhere, except at the layer boundary at x2 = 0. Consequently, βθ will

be a singular wall-like distribution of finite extent supported on this layer boundary.

However, for reasons indicated in Section 2.2, the total energy of the disclination so

defined would still necessarily be finite.

In agreement with Figure 2.1, we now endow this singular wall with a finite

width1. Thus, the following definition for the layer field is used:

λ1 :=

{ 2πK
2r1

x2 >
r0
2

2πK
2r1

r0+2x2
2r0

|x2| ≤ r0
2

|x1| < r1. (3.3)

Figure 3.1 shows the norm of λ and the resulting βθ field from it, where both fields

have been normalized by K:

λ̃ =
1

K
λ β̃θ =

1

K
βθ.

1 Of course, ideally one would seek such a width as an outcome of the full dynamical model. As
a first step, we show here that isolated disclinations of specified strength with finite-size cores can
be solutions to balance of moments in our model.
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Figure 3.1: Normalized λ field, resulting from (3.3) and the corresponding βθ field.

Note that, as mentioned in section 2.2, the β field may not be as localized as βθ

since

β = curl(E)

βij = ejklEil,k

= ejkl
(∂ni
∂θ

Eθ
l

)
,k

= ejkl
(∂2ni
∂θ2

θ,kE
θ
l +

∂ni
∂θ

Eθ
l,k

)

= ejkl
(∂2ni
∂θ2

θ,k(θ,l − λl) +
∂ni
∂θ

Eθ
l,k

)
,

and noting that ejklE
θ
l,k = βθj and ejklθkθl = 0,

βij = −ejkl
(∂2ni
∂θ2

θ,kλl
)

+
∂ni
∂θ

βθj . (3.4)

One can easily see that while the second term is localized inside the defect core, the

first term is not necessarily zero inside the layer. However, since θ,k decays sharply

from the defect core, the effect of this term vanishes rapidly away from the core.

Figure 3.2 shows this deviation from being a perfectly localized field.
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Figure 3.2: Normalized β. The affects of the first term in (3.4) are more obvious in

the logarithmic plot. The white area in part (b) represents zero for β̃

Equations (2.7), (2.14), and (3.3) yield the director field from the following Pois-

son’s equation

div (grad θ) = div λ. (3.5)

As a close reference point for the numerically computed approximate director

solutions that are generated subsequently, the closed-form solution of (3.5) in an

infinite domain is derived in the Appendix A corresponding to smooth approximating

sequences to the discontinuous layer fields, i.e. (3.2)-(3.3), we consider. We have used

the Galerkin finite element method to solve (3.5).

In order to compare our energy and director field results with those available

in the literature (e.g. [43]), we will consider line wedge disclinations in an infinite

space. To compare the results with Frank’s planar model, we consider the following

equation with Neumann boundary condition:

{
div grad θ = div λ on V
grad θ · ν = grad φ · ν on Γ,

where Γ is the exterior boundary of the finite domain V and φ is the angle of the

director field with the x1 axis in Frank’s solution [30]:
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φ = K tan−1
(x2
x1

)
+ c (3.6)

with c a constant. For the purpose of evaluating the boundary condition for the

domains involved, it suffices to consider grad φ to be given by

K

r2
(−x2e1 + x1e2) (3.7)

(to the neglect of a surface Dirac distribution related to the discontinuity in Frank’s

solution (3.6)). Moreover, one must assign the value of θ at one point in the domain

for uniqueness of solutions. Note that this assignment is tantamount to fixing c in

Frank’s solution. We choose to assign a value θ0 at one point on the right-hand-side

boundary of the layer/strip on which λ has support.

Now, using this Neumann boundary condition, the weak form of (3.5) for use in

the Galerkin finite element method is

∫

V

δθ,i (θ,i − λi) dV −
∫

Γ

δθφ,iνidS = 0. (3.8)

Here δθ is a continuous test function for θ. Bilinear, 4-node, quadrilateral elements

are used for our simulations. Needless to say, the resulting θ will be a continuous

field and we show converged results for the director field with mesh refinement in

Figure 3.14b.

Figure 3.3 shows the result of solving (3.8) for θ, plotted as director fields using

(2.4), for different disclination strengths. In all of these examples, θ0 = π
2
, except

in Figure 3.3d. These director fields are completely analogous to those from Frank’s

solution (3.6), outside the layer.

However, inside the strip, the continuous θ field has to compensate the jump

between the two sides of the layer. As a result, one can see that inside the layer,
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(i) K = −2

Figure 3.3: Computed director fields with wedge disclination at the center for dif-
ferent disclination strengths. Part (c) and (d) have the same disclination strength
but different prescribed values (θ0), which directly affect constant c in Frank’s model
(3.6)
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directors rotate sharply from one side to the other but at no extra energy cost in

the layer beyond what is involved in the standard interpretation of the energy due to

Frank’s solution, i.e. the energy arising from considering the director gradient field

to be (3.7). This is due to compensation by the λ field - more precisely, by the grad z

part of the λ field. Moreover, the topological content of the standard interpretation,

i.e. (3.7), of the singular gradient of Frank’s solution (3.6) is preserved in the Eθ field

and approximately in the gradient of continuous θ field (up to the layer). Within

this setting, even in the case of an integer defect, although there is no apparent

discontinuity between the directors on the left and right side of the layer, there

exists a 2π transition within the layer. In order to have a better understanding of

this compensation, we take a closer look at the case K = 1
2
. Figure 3.4 shows the

rotation of the director field, inside the layer. Note that the rotation of the director

field inside the layer is opposite in sense to its rotation outside of the field.

Figure 3.4: A closer look at the computed director field for K = 1
2
. The colored

strip depicts the layer field, λ. If one makes a clockwise circuit around the defect
core, the rotation of the directors will be clockwise, outside of the layer, while it is
anti-clockwise inside.

Next, we compare the energy density field of our theory to the corresponding one

of Frank’s model. Using (2.5), the energy term for Frank’s planar model will be

ψF (n,E) =
κ

2

K2

r2
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(using the standard interpretation of the gradient). Evidently, the total energy in a

finite body for such an energy density field will not be finite. However, the energy

density of the defects we model is non singular in most cases and definitely integrable

in all cases, so that the total energy will be finite. The energy density of our model

can be calculated from the following expression:

ψ(n,E) =
1

2
κ(θ,i − λi)(θ,i − λi).

Figure 3.5 shows energy contours normalized with respect to K and κ, outside the

defect core:

ψ̃F =
1

κK2
ψF =

1

2r2
ψ̃ =

1

κK2
ψ.

In this Figure, we have also compared the decay of the energy density as it moves

away from the defect core. According to ψF , such decay must follow a 1
r2

trend. The

results from our setting shows good agreement with the analytical results outside the

core, while being nonsingular inside, Figure 3.5.
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Figure 3.5: (a) Normalized energy density contour outside of the defect core and,
(b) The decay of energy density when x2 = 0.

Note that not only is the energy density in our model non-singular at the center,

but Figure 3.5b shows that the energy density profile drops dramatically at the
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center of the defect core. Later, in ?? we will show that the energy level at this

point converges to zero. However, this is not a general rule. In fact the energy

density profile inside the core depends on the distribution of the layer field, λ, and

consequently βθ. For instance, if we cut off the layer field at the center of the defect

core instead of letting it decay linearly, i.e. use (3.2) for the layer field definition, the

energy density will be as in Figure 3.6. Figure 3.6b reveals the fact that although such

sharp cut off in the layer field will cause unsymmetric energy density distribution

inside the defect core, the energy density will still be radially symmetric outside the

core.
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Figure 3.6: (a) Normalized energy density contour when λ sharply ends at the center,
(b) The corresponding energy density profile in cases x2 = 0 (blue, solid line) and
x1 = 0 (red, dashed line).

We also note that even though in this case we have a singular wall-like distribution

of βθ at the core edge that can potentially cause singularities in the energy density

at the sharp corners defining the layer, the total energy for a fixed width of layer will

always converge as long as r1 > 0, i.e. the layer has finite width. This is borne out

in our computations where the total energy corresponding to Figure 3.6 appears to

converge, as shown in Figure 3.7.
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Figure 3.7: Convergence of the normalized total energy, corresponding to the energy
density shown in Figure 3.6 with the increase of the number of elements used in a
fixed domain.

3.1.2 Straight twist disclination

Twist disclinations have the axis of rotation of the director field perpendicular to the

defect line. They are sometimes called perpendicular disclinations.

From the mathematical point of view, we use the same definition for the planar

director field as in equation (2.4). While the n field lies in the x1 − x2 (horizontal)

plane, θ is assumed to be a function of x1 and x3 and it is constant along the x2

direction. The definition of the layer field undergoes similar, appropriate changes.

We define λ as in (3.2), but now in the e3 direction instead of e1 (for direction of λ

and the width of the layer) as shown in Figure 3.8a. We perform a 3-d finite element

computation in this case. The computed energy density concentration is shown in

Figure 3.8b. The distribution of the energy and its decay on the vertical plane is

exactly the same as shown in Figure 3.5 for the straight wedge disclinations, which

is consistent with expectation. Figure 3.8c and Figure 3.8d, respectively, show the

computed and analytical director fields.

3.2 Twist Disclination loops

Disclination loops are more commonly found in nature than curves terminating at

boundaries [39]. In this section we will simulate a twist disinclination loop, using
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Figure 3.8: Straight twist disclination: (a) 3D plot of the layer field, λ, (b) a 3D plot
of different layers of the normalized energy density to illustrate the energy density
distribution in the body, (c) is the computed director field, while (d) is the analytical
one.

our framework.

The director field will be planar, but now the θ field will be a function of x1, x2

and x3. The λ field for a planar twist disclination loop is taken to be a constant field

in a bounded layer as can be seen in Figure 3.9. The bounding cylinder of the layer

over which the constant field decays to zero then forms the disclination loop. Clearly,

the closed loop can be of any shape, but restricted to be planar in this exercise.
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Figure 3.9: An example of λ field for a square-shaped twist disclination loop. The
field vanishes in the white region.

In particular, we have chosen a square-shaped and a circular loop in the horizntal

plane. β and βθ field for the rectangular loop are shown in Figure 3.10. Just like

the 2-dimensional wedge disclination case, the βθ field is non-zero only at the defect

core which appears as a square loop, and β is non-zero inside the loop, where the

layer field is non-zero.

(a)

x
1

x
2

Energy

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−4

−3

−2

−1

0

1

2

3

(b)

Figure 3.10: (a) Normalized βθ for the twist disclination loop and (b) Logarithmic
contour plot of normalized |β|. The white area in part (b) represents zero for |β|.

The director field is a planar vector field with twist axis along the x3 direction.

As shown in Figure 3.11, in any given plane x3 = constant the effect of the loop
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decays rapidly with distance from the loop. Figure 3.11 also clarifies the way in

which the director vectors make a twist as one moves through a circuit enclosing

the core. Note that the director vectors corresponding to the lower part of the λ

field have the opposite direction of the ones on the top, since that is a half-integer

disclination loop (K = 1
2
) and as a result the director field makes a π-radian twist.

We emphasize that while this twist deficit is observable in the (continuous) director

field only on circuits that are ‘closed up to the thickness of the core’, integrating

Eθ on an exactly closed circuit encircling an arm of the disclination loop core would

yield a π-radian twist by design.

(a) Square-shaped loop [Circular loop]

Figure 3.11: Computed director fields of twist disclination loops for K = 1
2
.

Figure 3.12 shows the energy plots of the two disclination loops from different

points of view. Figure 3.12a and Figure 3.12b are the energy density contours at x3 =

0, on the x1 − x2 plane for the square-shaped and circular loop, respectively. Note

that the energy density of the rectangular loop has significantly higher magnitude at

the corners, this being a consequence of the high curvature in the director field at the

corners of the loop. Similar to what we saw in Figure 3.5b, these contour plots show

a drop in magnitude inside the core. This plot also shows smoothness of the energy
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density, even in the vicinity of the defect core. In order to better understand the

pattern of the energy density on this plane, Figure 3.12c and (Figure 3.12d show the

logarithmic scale of the plot. A closer look at these two plots reveals that even for the

rectangular defect core the energy density adopts a radially symmetric patter away

from the core. The observable deviation from this circular texture on the boundary

is due to the zero Neumann boundary condition that we have used for these two

examples. Figure 3.12e and Figure 3.12f show the logarithmic plot of the energy

density on the x1 − x3 plane.

3.3 Convergence of numerical results

One of the main advantages of our model is the possibility of attaining non-singular

results in energy density. In this section we have verified this claim by refining

the mesh in our numerical model to demonstrate convergence even inside the defect

core. Figure 3.13 shows this convergence for the straight wedge disclination. Since

the results for different disclination strength are similar, we have normalized our

energy plots with respect to K.

The energy density results for our model and Frank’s analytical model are the same,

outside the core. Figure 3.14 shows a relative error of less than 1% everywhere for

the energy density, and less than 0.6% for the director field (outside of the layer)

for the half-integer defect. Results for all other disclination strengths show the same

error distribution.

Finally, Figure 3.15 shows the convergence of the energy density in the square-

shaped twist loop model. In this Figure, the energy density profile of the loop

with two different element sizes has been compared on the x1 axis, i.e. on the line

x2 = 0, x3 = 0.
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Figure 3.12: Energy plot of the twist disclination for square-shaped and circular
loops: (a) and (b) are the contours of the normalized energy density, where x3 = 0,
(c) and (d) show the decay of the same contours, in a logarithmic scale. Also, (e) and
(f) are the logarithmic contour plots of the energy density in x1 − x3 plane, where
x2 = 0.
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Figure 3.13: (a) Normalized energy density contour of wedge disclination including
the defect core and (b) The decay of energy density when x2 = 0, for different element
sizes, L.
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Figure 3.14: Comparison of the computed results from the model with Frank’s model:
(a) Relative error of energy for wedge disclination, (b) Relative error of director field
for wedge disclination.
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Figure 3.15: Normalized energy density profile of the twist disclination for the rect-
angular loop in Figure 3.12a, when x2 = 0. The element sizes are L = 0.02 (red,
dashed line) and L = 0.01 (blue, solid line).
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4

Balance of forces

Assuming a single disclination in the body (loop or a core cylinder terminating at

the boundaries of the body), static balance of linear momentum (2.2) is satisfied in

the region of the body excluding the core. This is so since the stress tensor is given

by

Tij = −pδij − κEθ
iE

θ
j

and (2.7) and (2.9) imply, along with the core-support of βθ, that

(Eθ
iE

θ
j ),j = (Eθ

jE
θ
j ),i =

ψ,i
κ
,

and one chooses the indeterminate constraint pressure field in the excluded-core

region of the body as

p = −ψ,

to satisfy (2.2). On the external boundary of the body, recognizing (2.10) one chooses

p = 0. Thus, the resultant force on the surface of the core cylinder (or any other

surface enveloping it) must vanish.

An interesting possibility is afforded by the model [5] in satisfying static balance

of linear momentum everywhere. Note that within the core curlEθ does not vanish
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so that it is not a priori clear that (Eθ
iE

θ
j ),j can be expressed as the gradient of

a scalar field. However, the vanishing of the curl of the field (gradEθ)Eθ along

with the conditions (2.7-2.8-2.9) within the core region may be imposed as a design

constraint on the βθ field. Were solutions to exist to this system for βθ, then one

could proceed to set up the field λ as before with the caveat that now the field curlλ

within the core is not subject only to the mild constraint (2.8) but instead to the

pointwise constraint defined by our calculated βθ field.

Alternatively, the theory also allows the ansatz

E =
2∑

α=1

∂n

∂θα
⊗ [grad θα − λα] , (4.1)

and choosing this affords four more degrees of field degrees of freedom to satisfy

static balance of linear momentum without body forces simultaneously with balance

of angular momentum - presumably even without necessarily requiring the constraint

of incompressibility. Moreover, the solutions generated in this paper would seem

to suggest that these extra degrees of freedom could be invoked only in the core

cylinder, thus conferring an automatic multiple spatial length scale feature to the

theory. Of course, with static balance of linear momentum satisfied everywhere

(including cores), the resultant force of the Ericksen stress tensor (and hence the

energy-momentum tensor of the classical nematic theory [29, 19]) on the bounding

surface enveloping any segment of a core has to vanish without the requirement of

any externally applied body forces or the onset of flow, while the [5] dissipative

dynamical theory provides a driving force for disclination motion not related to the

Ericksen stress or its resultant. This possibility has the potential of reconciling several

different points of view and clarifying an often confusing debate in the liquid crystal

literature (cf. [29, 46, 27]) revolving around the physically meaningful question of

modeling the experimentally observed motion of disclination curves in the presence
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of negligible or no flow.
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5

Concluding Remarks

We have demonstrated the possibility of representing non-singular isolated disclina-

tion fields within a dynamic theory [5] of liquid crystalline media designed to account

for disclination and dislocation defects. The solutions satisfy balance of moments ev-

erywhere in the body, including the core. Balance of forces is satisfied outside the

cores and it appears possible, by going beyond the ansatz (2.3) assumed in this work,

to satisfy force balance everywhere in the body. The fields constructed here may be

considered to be equilibria for the theory when the defect lines are considered to be

externally-pinned (i.e. the defect velocity field, a constitutive quantity, is assumed

to vanish).

Our primary goal has been to demonstrate distinguished pairs of director and (in-

compatible) director distortion fields (n,E) satisfying (2.1) and (2.9) that generate

classically familiar director and energy density fields of disclinations (but not exactly

the same ones). In doing so, we use an intermediary ‘layer’ field which, thankfully, is

not required in the subsequent dynamics of the [5] model once the director and the

director distortion fields have been constructed. However, a fact that gives us pause

is that the director incompatibility tensor field β of these isolated disclinations ap-
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pear to contain some signature of the layer field used to construct them even outside

the region that one would typically like to associate with the core of the disclination,

and whether this is physically realistic or not remains to be seen. Also, the director

fields that we construct have a rapid variation in the layer (without a corresponding

energy cost), and the physical realism of such a distribution should also be testable

in the modeling of situations involving interaction of the director field with flow. Of

course, the analysis presented in Section 2.2 provides the logic to construct a director

and director incompatibility field without the layer-related features discussed above.

To wit, considering the example of the axial wedge disclination of Section 3.1 in an

infinite domain, we define

λs = grad zs +Eθ
r

where

div(grad zs) = div λs

and λs is the distribution obtained in (3.2) by letting r1 → 0. This results in zs

being exactly Frank’s solution (3.6). Additionally, we let Eθ
r be the solution to

divEθ
r = 0

curlEθ
r = βθr ,

(with natural decay requirements at large distances) where βθr is a radially symmetric

core function described in Appendix B with associated solution for Eθ
r . This formula

shows that outside the core, Eθ
r matches the standard interpretation (3.7) of the

gradient of Frank’s solution (3.6). Setting Eθ := grad θ − λs and requiring it to

satisfy the governing equations of our model, i.e. (2.7) and (2.9), a (discontinuous)

solution is certainly θ = zs, with discontinuity supported on the half plane defined

by r1 → 0 in the definition (3.2) of λs. These results imply that outside the core and

away from the half-plane x1 = 0, x2 > 0, Eθ
r matches grad θ. Assuming the validity

39



of (2.15) on the half-plane and noting that the grad θ and Eθ fields are parallel to

e1 on it, it may be concluded that β is non-vanishing only inside the core. With

Eθ defined as in this paragraph, we note that even though grad θ is not a locally

integrable field, this is exactly compensated by grad zs so that the energy density is

formed from the field Eθ
r alone. In this connection, we note the interesting fact that

the classical defect theory works with a director-‘gradient’ field for forces, moments

and energetics that is not strictly a generalized derivative of what it states as the

director field (even outside the core)1. Thus, it would seem that considering the

energy formed from a director distortion field distinct from the director gradient in

the presence of line defects (as we do) is probably a reasonable logical device even

for discussing the classical theory.

This paper has not made any statements about whether the chosen isolated

defect-like director and director distortion fields can actually occur as equilibria of

the overall dynamical model [5] for suitable constitutive assumptions for defect ve-

locities (e.g., a linear kinetic assumption on disclination velocity as a function of

its theoretical driving force). Based on our experience with related work on Field

Dislocation Mechanics [2], [4], [3], we believe this should be possible with the use

of non-convexity in OZF energy (possibly due to a limit on director elasticity), the

system (as opposed to scalar) nature of the defect evolution equations, as well as

from appropriate boundary conditions. In the presence of flow, there are, of course,

other natural means to induce line defects.

There are many natural further steps to explore: solving for more-than-planar

1 The analog of Weingarten’s construction to be utilized here makes it entirely clear why this
must be so - there, one begins with an irrotational field in a doubly-connected 3-d domain with a
through-hole and what may be associated as the ‘closest’ potential field generating the irrotational
field is not defined on the same domain but rather on a simply-connected domain obtained through a
single cut of the doubly-connected domain that renders the latter simply-connected. Unfortunately,
however, these are not procedures that lend themselves to practical nonlinear theory, especially of
the type interpretable by the intelligence level of electronic computers that are essential to probe
the complex dynamics of the theories we have in mind.
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fields of isolated defects, defect solutions for the full 4-constant Oseen-Frank energy,

solutions for disclinations coupled to dislocations in smectics and columnar phases

and on to dynamics with and without flow (without flow and even without director

inertia, the model has dynamics due to defect evolution). While each of these prob-

lems are significant in their own right, we take some satisfaction in the fact that all

of these questions can at least be posed unambiguously within our modeling frame-

work. Finally, an important future task is to make contact with the fine topological

work of Kleman and Friedel [42] and Kamien and co-workers [20].
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II
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6

Introduction

Wave propagation and scattering waves in an infinite or very large domains has many

applications in both science and engineering. Traveling waves in elastodynamics

[13, 9], photonics crystals [62], semiconductors [12] and electromagnetism [56, 21]

are a few examples of the application of wave propagation in infinite space.

In quantum mechanics, this issue has been addressed in numerous studies. [61, 17,

60, 15, 68] used Green’s function to solve the Schrodinger’s equation in a perturbed

medium. This method, although very accurate, is only limited to point defects and

local perturbations. In an other method, [24, 8] truncated the unbounded domain

and proposed a proper artificial boundary condition to not only keep the problem

well-posed, but also avoid spurious reflecting waves, due to the truncation. In this

method the artificial boundary conditions, ABC, may be represented as an exact but

non-local [31] or a local approximate [32] of Dirichlet-to-Neumann (DtN) mapping.

However, the proposed methods so far, are limited to compactly supported potentials

or the bound state wavefunctions, where the wavefunction exponentially vanishes at

infinity.

A very efficient and generic technique for scattering waves is using absorbing lay-
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ers on the boundary of the truncated domain. [14] showed that such layer can be

constructed for Maxwell’s equation in a way that they absorb all incoming energy

without creating any reflecting wave. Such a layer is called Perfectly Matched Layer.

[21] then showed that these absorbing layers can be simply defined by complex coor-

dinate stretching in three dimensions. From an engineering point of view, PML can

be represented as a fictitious material, which absorbs the waves away from the region

of interest, without any influence on the pattern of the scattering waves outside of

the layer. However, PML was originally designed for continuous and homogeneous

spaces and it looses its ”Perfectly Matched” advantage, as soon as the domain is

discretized or the environment is inhomogeneous [48].

Despite that fact that under such circumstances PML will cause reflecting waves,

it can still be used as an absorbing layer. [59] showed that by choosing a smooth

absorption function, one can control the amount of spurious waves with increasing

the width of the layer. Although, there has been a great deal of attention on this

subject in the past decades, there is yet to find a rigorous technique to solve elliptic

equations with periodic coefficients in an infinite domain. In this thesis, we derive the

asymptotic form of the wave functions in a periodic media and study the possibility

of constructing a proper boundary condition for periodic Schrodinger equation with

local perturbations in the potential function. We apply the perfectly matched layer

method in inhomogeneous media and show that the results will converge as the

thickness of the absorbing layer increases.

Moreover, we apply the Green’s function technique to find the exact. Such bound-

ary condition will be highly non-local and (compared to the PML method) too ex-

pensive for practical purposes. However, we show that by applying certain approx-

imations, we can reduce the cost of this boundary condition significantly. Also, for

multi-dimensional domains we propose a technique to reduce the number of boundary

points, for which one needs to apply the non-reflecting boundary condition.
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The outline of the rest of the thesis is as follows. First we will present the for-

mulation of the Schrodinger equation for scattering wavefunction in Section 3. Also,

we study the Perfectly Matched Layer method, as well as the exact non-reflecting

boundary condition for the scattering wave in a periodic media. The tight-binding

formulation and implementation of the boundary conditions are presented in section

4. After that, we have demonstrate our theory with numerous examples of Graphene

sheet, single-walled Carbon nanotubes, Y-junction Carbon nanotubes and kinked

DNA molecules in section 5. At the end we have concluded the thesis in section 6.
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7

Non-reflecting boundary conditions

7.1 Formulation of the model

For a periodic media with local defect, we will consider the time-harmonic Schrodinger

equation,

− 1

2
∇2φ(x) + V (x)φ(x) = Eφ(x) (7.1)

Here, E is the energy of wavefunction φ(x). In such media, one can assume that

the potential can be decomposed into a non-vanishing periodic potential, Vp(x), and

a localized potential, Vd(x) with compact support, which represents the defect or

impurity in crystal:

V (x) = Vp(x) + Vd(x) (7.2)

Further, knowing that far away from the perturbations the wavefunction converges

to the solution of the periodic Schrodinger equation, one can also decompose the

wavefunction

φ(x) = φk(x) + ψ(x) (7.3)
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where ψ(x) and φk(x) represent the scattering wave and the incident Bloch wave,

respectively. Note that φk(x) is the solution to the Schrodinger equation in periodic

media can can be retrieved from Bloch theorem:

− 1

2
∇2φk(x) + Vp(x)φk(x) = Ekφk(x) (7.4)

where EK the the energy corresponds to the wave number k. On the other hand,

the scattering wave ψ(x) is a decaying wave (in d ≥ 2) that vanishes at infinity. As

a result, one can rewrite Eq. (7.1):

− 1

2
∇2 (φk(x) + ψ(x))+(Vp(x) + Vd(x)) (φk(x) + ψ(x)) = E (φk(x) + ψ(x)) (7.5)

Now, subtracting equation (7.4) from this equation, we get

− 1

2
∇2ψ(x) + (Vp(x) + Vd(x))ψ(x) = Eψ(x)− Vd(x)φk(x) + (E − Ek)φk (7.6)

It is noteworthy to mention that even though the scattering wavefunction ψ(x)

is the direct result of the defect potential Vd(x), it is also influenced by the periodic

potential Vp(x). As a result, it is a scattering problem in an unbounded, inhomo-

geneous media and consequently truncating the domain requires especial absorbing

boundary condition, which does not produce any significant reflecting wave.

Also, since both Vd(x) and ψ(x) vanish at infinity, it is easy to see that as x→∞

the only remaining term in equation (7.6) will be (E − Ek)φk, consequently:

E = Ek (7.7)

As a result, the elliptic equation corresponding to the scattering wave, ψ(x) will be:

− 1

2
∇2ψ(x) + (Vp(x) + Vd(x))ψ(x) = Ekψ(x)− Vd(x)φk(x) (7.8)
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Figure 1: The incident wave, �k, and the scattering wave,  , in the truncated computational
domain ⌦c

E = Ek (7)

Note that this means the energy of the scattering wave and the incident wave are the same,
but not necessarily the wave numbers! As a result, the Schrodinger equation corresponding
to the scattering wave,  (x) will be:

�r2 (x) + (Vp(x) + Vd(x)) (x) = Ek (x) � Vd(x)�k(x) (8)

Integrating this equation over the bounded domain, one can obtain the weak-form of the
equation in the following form:

Z

⌦c

r ⇤r +  ⇤(x)
�
Vp(x) + Vd(x) � Ek

�
 (x)dv (9)

�
Z

�c

 ⇤(x)r (x)ds = �
Z

⌦c

 ⇤(x)Vd(x)�k(x)dv

Our goal is to find the proper boundary condition to replace with the surface integral in
equation (9). In section 2 we derive the Perfectly Matched Layer approach for our prob-
lem. Section 3 deals with the asymptotic form of the scattering wave and the approximate
boundary condition. In section 4, we will derive the exact non-reflecting boundary condition.

2 The Perfectly Matched Layer Approach:

Methods depending on the asymptotic far-field solutions provide good results for a restricted
class of exteriors, exteriors that were actually used in deriving the asymptotic solutions, and
are hence ill-suited for exteriors whose far-field behavior is unknown. The PML method,

2

Figure 7.1: The incident wave, φk, and the scattering wave, ψ, in the truncated
computational domain Ωc

This means the energy of the scattering wave and the incident wave is the same,

in all direction of propagation. Since for any direction, there exists a unique wave

number, k, corresponding to the energy Ek (except for the band-gaps), the knowledge

of the scattering wave number will be a significant step forward to find an exact non-

reflecting boundary condition, side we no longer need to sum over all possible wave

lengths as in Engquist and Majda’s well-known boundary condition [25].

Now considering a truncated domain Ωc, which contains the support of potential

Vd(x) (as shown in Figure 7.1), one can write the weak-form of equation (7.8). We

choose the test function as the complex conjugate of ψ, which vanishes at infinity:
∫

Ωc

∇ψ∗∇ψ + ψ∗(x)
(
Vp(x) + Vd(x)− Ek

)
ψ(x)dv (7.9)

−
∫

Γc

ψ∗(x)∇ψ(x) · nds = −
∫

Ωc

ψ∗(x)Vd(x)φk(x)dv

Our goal is to find the proper boundary condition to replace with the surface integral

in equation (7.9). In section 7.4 we derive the Perfectly Matched Layer approach for

our problem. But before that, we need to find the radiation condition at infinity,

which makes the solution of this problem, unique.
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7.2 Asymptotic form of the scattering wavefucntion

Before getting into the implementation of absorbing boundary condition, we demon-

strate the asymptotic form of the wavefunction, resulting from equation (7.8). In

order to achieve uniqueness in any unbounded scattering problem, a radiation con-

dition at infinity is required. For homogeneous spaces, Sommerfeld proposed his

well-known radiation condition in Rd:

lim
r→∞

r(d−1)/2
(∂u
∂r
− ıku(x)

)
= 0 (7.10)

here, u(x) is the scattering wave with wave number k and r = |x|. We will show

that even though the scattering wave in a periodic media will have the same radial

decay as the one in homogeneous space (r
1−d
2 ), it will not have the same radiation

condition as Sommerfeld proposed [63].

Our first approach was using two-scale method in order to homogenize the peri-

odic media. In C.1 we go through this approach in detail. However, as it is mentioned

there the is currently no proof for the choice of our scaling for the periodic poten-

tial. Moreover, the expansion of Green’s function does not help to find this scaling

as it does for electrostatic energy in [53]. As a result, despite the efforts in ?? the

homogenization of Schrodinger equation in periodic media is still an open subject

for us.

So we start by writing equation (7.8) in the integral form, using the Green’s

function of the Helmholtz equation:

ψ(x) = −
∫

y∈Rd
G(x,y)

((
Vd(y) + Vp(y)

)(
ψ(y) + φ(y,k)

))
dy (7.11)

Note that, since the integration is over the entire Rd, we can not use equation (7.11)

to evaluate the form of the solution. However, if one uses the Green’s function
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corresponding to the time-harmonic Schrodinger equation in periodic media:

−∇2G(x,y;Ek) +
(
Vp(x)− Ek

)
G(x,y;Ek) = δ(x− y) (7.12)

Then the former integral form in (7.11) will change into:

ψ(x) = −
∫

y∈Ωc
G(x,y;Ek)Vd(y)

(
ψ(y) + φk(y)

)
dy (7.13)

Here, since the potential function Vd(y) has compact support, we have limit the

integration to the computational domain Ωc. Although the explicit form of such

kernel is not known, Murata derived its asymptotic form for general elliptic operators

with periodic coefficients [57]. Based on their work, the kernel G(x − y;Ek) for

outgoing waves in periodic time-harmonic Schrodinger equation, when |x−y| → ∞,

will be:

G(x− y;Ek) =
φ∗k(y)φk(x)

|x− y|(d−1)/2f(k)
(

1 +O
(
|x− y|−1

))
(7.14)

where φk(x) is the eigenstate of the periodic Schrodinger for wavenumber k and

superscript ∗ indicates complex conjugate. Note that since the energy of φk(x) is

predetermined, this wavenumber can be uniquely calculated. Applying this asymp-

totic form to equation (7.13) and considering the fact that y is bounded to the limits

of integral (Ωc), we can decouple the x and y variables, and derive the asymptotic

form of scattering wave in periodic media in Rd as:

ψ∞(x) =
φk(x)

|x|(d−1)/2 g(k)
(

1 +O
(
|x|−1

))
(7.15)

This can further be used to find the radiation condition analogous to Sommerfeld

radiation condition in homogenous space. For this purpose, one can simply find the

relationship between ψ∞ and its gradient through expression (7.15). As a result, we

can construct a Sommerfeld-like radiation condition for scattering wave in periodic
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media:

lim
r→∞

r(d−1)/2
(
φk(x)

∂ψ

∂r
− ∂φk

∂r
ψ(x)

)
= 0 (7.16)

This radiation condition (7.16) as the first approximation to Dirichlet-to-Neumann

non-reflecting boundary condition. Therefore in this paper, we denote it as radiation

boundary condition:

∇ψ · n =
∇φk · n
φk(x)

ψ(x) (7.17)

However, due to the O
(
|x|−1

)
error, a very large domain would be needed to compen-

sate for the spurious reflections caused by this boundary condition! We will compare

such boundary condition with the other boundary conditions in section (9).

7.3 Exact non-reflecting boundary condition

In order to find the exact absorbing boundary condition, one needs to find either the

exact solution on the boundary or the relation between ψ(x) and its derivative normal

to the boundary, ∇ψ ·n. This can be found through the integral form of the equation

and the Green’s function for periodic Schrodinger’s equation, introduced in section

(7.2). Unfortunately, there is no explicit expression for such function. However, one

can calculate the Green’s function, using the eigenstates of the periodic Schrodinger

equation:

G
(
x,y;E(k0)

)
=
∑

n

∫

BZ

φ∗n(y, κ)φn(x, κ)

En(κ)− En(k0)
dκ (7.18)

where k0 is the wave vector of the incident wave and the integration and sum are over

the first Brillouin Zone and all of the atomic orbitals, respectively. Note that the

integrant is singular around En(κ) = En(k0). We can overcome this singularity and

gain the Green’s function for outgoing waves, by adding a small imaginary number
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to Eκ:

G+
(
x,y;E(k0)

)
= lim

ε→0
G
(
x,y;Ek + ıε

)
=
∑

n

∫

BZ

φ∗n(y, κ)φn(x, κ)

En(κ)− En(k0)− ıε
dκ (7.19)

As the result, the integral form (7.13) will be:

ψ(x) = −
∑

n

∫

BZ

∫

y∈Ωc

φn(x, κ)φ∗n(y, κ)

En(κ)− En(k0)− ıε
Vd(y)

(
ψ(y) + φk(y)

)
dV dκ (7.20)

Consequently, we can use expression (7.20) to calculate the exact Neumann

boundary condition, which is an absolutely non-reflecting boundary condition.

∇ψ(x) ·n = −
∑

n

∫

BZ

∫

y∈Ωc

∇φn(x, κ) · n
En(κ)− En(k0)− ıε

φ∗n(y, κ)Vd(y)
(
ψ(y) + φk(y)

)
dydκ

(7.21)

Note that, this expression is not explicit as it depends on the solution, ψ(y).

However, by implementing the LCAO method, introduced in section 8, the bound-

ary condition converges through a couple of iterations. The main downside of this

boundary condition is, the double integral in the expression (7.21), which makes it

highly nonlocal and computationally expensive. Even if we consider just one atomic

orbital! On the other hand, the singularity and the highly oscillating nature of the

integrant, require a large number of quadrature points for calculating the integral

over κ. The issues related to resolve this problem are addressed in section 8.

7.4 Perfectly Matched Layers for the Schrodinger’s Equation

In this paper, we adopt the complex coordinate stretching approach, originally devel-

oped by [21]. For this method we introduce a narrow absorbing layer in the vicinity of

the truncated computational boundary Γc, as shown in Figure 7.2. Γa is the interface

between the propagating domain and the absorbing layer.
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Figure 7.2: Schematic absorbing layer around the boundary Γc

The basic idea of PML is to absorb the energy of the traveling waves without

causing any reflection, so that when the wave reaches the boundary of the truncated

domain, its reflection, if any, will be insignificant. As a result, one can simply apply

a zero Dirichlet or Neumann boundary condition on Γ . However, as Oskooi [59] and

others pointed out, the Perfectly Matched Layer method fails to be reflectionless in

inhomogenous media. Never the less, we will show that one can reduce the reflection,

introduced by discretization and periodic media, by increasing the thickness of the

absorbing layer.

This absorbing layer can be constructed by stretching the position vector into

a complex plane [21]. This will cause the traveling wave to decay exponentially.

However, since we are fictitiously changing the distance between the atoms, the

potential energy will change as well. As a result, an unwanted reflection between

domains is inevitable. All one can hope for, is to reduce this reflection to a negligible

point, through a smooth stretching. we define this complex stretching in the following
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way:

x̃i = xi + ıσ(x) (7.22)

where, σ is the absorption vector function, which acts like a damping coefficient in

elasto-dynamics. We choose this function in such way that it will let the radial waves

to attenuate exponentially, while it will have no effects on waves that travel parallel

to the boundary. This feature is one of the main differences of the PML method,

compared to adiabatic methods, that decay wave in any direction.

In order to maintain the original form of the equation inside the domain, and

avoid significant spurious reflections, this absorption function must be zero on the

propagation domain. It is conventional to define σ as a smooth function varying from

0 at some point x0 on Γa, to σ0 at x1 on Γc [16, 41]. Oskooi et.al. showed that the

smoother the absorption function the faster the solution converges as the thickness

of the absorbing layer increases. We define the absorption as a real cubic function:

σ(x) = σ0

∫ x

x0
|(t− x0)|2|(x1 − t)|2dt∫ x1

x0
|(t− x0)|2|(x1 − t)|2dt

for x ∈ absobing layer (7.23)

Note that the increase of the width of absorbing layer makes the transition from the

original domain to the absorbing layer smoother. Hence it causes less reflection. As

mentioned earlier, the exponential attenuation, caused by the absorbing layer, makes

the amplitude of the scattering wavefunction negligible. So one can now apply a zero

Dirichlet or Neunamm boundary condition on boundary Γc, without causing any

extra reflection. After applying zero Neumann boundary condition and mapping the

complex stretching back into real coordinate system, the weak-form in equation (7.9)

will be: ∫

Ωc

(
ψ∗,mF

−1
mpψ,nF

−1
np + ψ∗(x)

(
Vp(x) + Vd(x)− Ek

)
ψ(x)

)
Jdv (7.24)

= −
∫

Ωc

ψ∗(x)Vd(x)φk(x)Jdv
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where Fij = x̃i,j and J = det(F ). As we will show in the next section, because of the

discretization and the presence of periodic potential, this so called, Perfectly Matched

Layer will not be perfect anymore. Some, even argue that under such circumstances,

PML is not so different from other adiabatic methods [59]. We will test this claim

for the periodic Schrodinger equation in section 9.

One big difference between the Perfectly Matched Layer and the exact non-

reflecting boundary condition is in the rate of the decay of Vd(x). According to

equation (7.24), the computational domain must contain the compact suport of the

defect potential function, Vd. Otherwise, the scattering term, Vd(x)φk(x), on the

right-hand-side of the equation will change and consequently the results will be dif-

ferent from the exact solution. Note that this is not about the reflection of the

scattering wave from the boundary, but the correct representation of the scatterer.

For the exact non-reflecting boundary condition, however, the defect potential, Vd

does not need to be completely contained in the computational domain, as long as

this potential decays fast enough. In other words, if the defect potential, Vd, asymp-

totically decays as 1/rn, then the integration of y in equation (7.21) is bounded, if

n ≥ d+ 1.

Before closing this chapter, we would like to point out a critical difference be-

tween the PML method and a regular damping method, where one simply adds an

imaginary potential to the Schrodinger equation [37]. As shown in equation (7.24), in

PML we gradually transform the potential and kinetic terms to the complex plane to-

gether, where as in the mentioned damping methods only the potential term changes.

This is the physics behind the non-reflecting absorbing layers in free space. Note that

those damping methods would cause reflection, even in homogenous spaces.
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8

Implementation

8.1 Tight-Binding method for Graphene sheet

8.1.1 Graphene

A single graphene sheet consists of Carbon atoms packed in a two-dimensional hexag-

onal lattice. Figure 8.1 shows that the graphene sheet is generated from the unit cell

by the lattice vectors a1 and a2, which make an angle of π
3
:

a1 =

√
3a

2
x̂1 +

a

2
x̂2 (8.1)

a2 =

√
3a

2
x̂1 −

a

2
x̂2
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Figure 8.1: A single graphene sheet. The lattice vectors a1 and a2 are shown by
arrows.

Knowing the lattice vectors a1 and a2 and the positions of the two carbon atoms

labeled by 1 and 2, Xn, we can construct the whole 2D graphene layer as [71]:

Xn,(ζ1,ζ2) = ζ1a1 + ζ2s2 +Xn, n=1,2 (8.2)

In Tight-Binding method one assumes that the valence electrons are ”tightly bound”

to the atoms and the electronic orbitals are not strongly altered during the bonding

process. TB is arguably the simplest method that we can devise while still claiming

that we are doing quantum mechanics [66].

8.1.2 LCAO

In order to numerically implement the weak-form, presented in (7.9) and (7.24), we

adopt the Linear Combination of Atomic Orbitals method or in short LCAO method

to present the scatter wavefunction, ψ(x) [15, 28]:

ψ(x) =
∑

i

∑

α

aiαΦα(x−Xi) (8.3)

This is the essential idea in Tight-Binding method. Here Φα(x − Xi) is a set of

localized bases to simulate the atomic orbitals, α at each atomic site, Xi. In this

thesis, we have used self-consistent molecular-orbitals for Carbon [67].
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For a periodic system, however, the LCAO expression must satisfy the Bloch

theorem, which states that the type of wavefunction for a particle in a periodically-

repeating environment, like an electron in a crystal is of the following form [54]:

φ(x,k) = eik·xu(x,k) (8.4)

where, k is the wave number and u(x, bf) is a periodic function. Such form can be

conceived by LCAO, through the following summation over localized orbitals, which

is known as Bloch Sum:

Φ(x,k) =
∑

i

2∑

α

cαe
ik·XiΦα(x−Xi) (8.5)

The first sum is over cells, the ith of which is specified by the Bravais lattice vector

Xi, while the second sum is over the set of orbitals α which are assumed to be

centered on each site and participating in the formation of the solid. In case of

Graphene, where there are two atoms pre unit cell (8.5) we are required to introduce

an additional index in (8.5) and an attendant sum over the atoms within the unit

cell.

(0, 0) (
p

3a, 0)

(3
p

3a
2

, 3
2
a)(

p
3a
2

, 3
2
a)

Figure 3: The unit cell of graphene with atomic distance a
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�

The deformation matrix will be:

F =

p
3a
2

p
3a
4

0 3a
4

�
! J =

3
p

3a2
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(34)

On the other hand, the Green’s function is presented as an integrate over the first Brillouin
zone, which looks like a honeycomb for the Graphene sheets:

G(Ek; x, x0) =
X

n

Z

k02BZ

�⇤
nk0(x0)�nk0(x)

Enk0 � Ek

d2k0 (35)

Using symmetry, one can calculate this integral over the triangle �KM in figure (??):
where:

K =
� 4⇡

3
p

3a
, 0
 

M =
� ⇡p

3a
,
⇡

3a

 
(36)

As a result, the Green’s function would be:

G(Ek; xc, x
0) = 12

X

n

Z 1

t=0

Z 1�t

s=0

�⇤
nk0(x0)�nk0(xc)

Enk0 � Ek

Jdsdt (37)

here, x = ⇡
3
p

3a
(3�3t+ s), y = ⇡

3a
(1� t� s) and J = �4

p
3⇡2

27a2 Figure (??) shows an schematic
view of the magnitude of the wavefunction  for a vacancy in graphene sheet:

7

α
β

Figure 8.2: A unit cell of Graphene sheet with Lattice constant
√

3a, and a = 1.42Å.
Each unit cell contains two atoms (The Green nodes are atoms.)
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8.1.3 The Hamiltonian and overlap matrices

The goal of TB is to solve the single-particle Schrodinger equation approximately.

Going back to the Schrodinger equation (7.4) and using (8.5) by taking into account

only the contribution of the orbital π, we consider the LCAO representation

φ(x,k) = cαΦα(x,k) + cβΦβ(x,k) (8.6)

Then the eigenvalue problem corresponding to each wave number k for a single

electron is given by

∑

i

hiαβe
ik·Xickβ = E(k)

∑

i

siαβe
ik·Xickβ (8.7)

where E(k) is the eigenvalue of the wavefunction and hαβ, sαβ are the components

of the Hamiltonian and Overlap matrices, respectively.

hiαβ =

∫

Ω

−1

2
∇2Φ∗α(x−X0)Φβ(x−Xi) + Φ∗α(x−X0)Vp(x)Φβ(x−Xi)dx (8.8)

siαβ =

∫

Ω

Φ∗α(x−X0)Φβ(x−Xi)dx

If Vp was given as an analytic function, then Integrals above are called two-center

integrals when α 6= β and one-center or on-site integrals if α = β. However, another

assumption that is made in TB is to write Vp(x) as a sum of atom-centered potentials

Vγ(x−Xγ), each of which is independent of all the other atoms in the system:

Vp(x) =
∑

γ

Vγ(x−Xγ)

This assumption introduces the three-center integrals for the second term in hiαβ,

where α, β and γ are different. As we saw, the two-center terms are straightforward

because they only depend on the relative positions of the two atoms and independent

of their environment. The three-center terms, however, present another problem,
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since it will be difficult to devise a scheme to parameterize them in terms of atomic

positions. Instead, it is usually assumed that all three-center integrals are zero [66].

In this thesis, the periodic potential, Vp is calculated based on [55].

On the other had, since Φ(x−Xi) are highly localized orbitals, usually only the

nearest neighbors of an atom are to be considered. We have considered 12 nearest

neighbors as show in Figure 8.3.

!
!
!
!
!
!
!
!
!
!
!
!
!

Figure 8.3: The 12 nearest neighbors for the blue atom in a Graphene sheet.

Although this seem to make the calculations very expensive, compared to the

usual three nearest neighbor assumptions, note that one needs to calculate these

integrations only once. That’s the big advantage of TB method. Note that the

number of considered neighboring atoms depend on the atomic orbitals that one

uses in their TB method. For instance in case of Graphene sheet, the convergence

of h11 is shown in Figure 8.4.
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Figure 8.4: Convergence of h11 as the number of the ring of the neighboring atoms
increases.

The dispersion relation between k and the energy of the wavefunction, E in

Graphene sheet is plotted for the first Brillouin zone in figure (Figure 8.5).
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Figure 8.5: The band structure of a monolayer Graphene sheet for the first two
bands.
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8.2 Implementation of exact boundary condition for Graphene

As mentioned in the previous chapter, the exact boundary condition (7.21) is highly

nonlocal. This expression for a 2-dimensional case like Graphene sheet requires an

integration over a confined 2-dimensional area around the scatterer, an integration

over the Brillouin zone, which is shown for the Graphene sheet in Figure 8.6 and a

sum over the two sub lattices for every point x on the boundary of the computational

domain.

Γ K

M

Figure 8.6: First Brillouin zone of graphene with atomic distance a

Moreover, the nature of the integrant in expression (7.18) is highly oscillating

and it has a singularity at E(κ) = E(k0) ( note that |x| is usually large on the

boundaries ). Thus it requires a great deal of integration points to calculate the

Green’s functions accurately.

In order to overcome these computational problems we have gone through the

following steps:

• The Green’s function, proposed in (7.18) is a separable kernel. In other words,

one can write the Green’s function as

G(x,y) =
∑

κ

f(x)g(y)

62



This is a very helpful computational feature, which helps us to calculate and

store the y-integral once for all x points.

• As shown in (7.19) we replace the original Green’s function withG+
(
x,y;E(k0)

)

to avoid the singularity of the integrand. Not only this step does not affect the

accuracy, but also is necessary to extract the Green’s function corresponding

to purely outgoing waves.

• An effective recipe for numerical integration of such highly oscillating function

is Filon’s method [38]. In this method, we simply use the following approxi-

mation:
∫
f(x)eıωxdx ≈

∑

j

∫
cjx

jeıωxdx

• The energy band(s) that include energy E(k0) are dominant in the calculation

of (7.19). For instance in Figure 8.5, if E(k0) belongs to he lower band, we can

neglect the higher band from the integration, unless the energy of the incident

wave is very close to point K (where the two bands join).

After considering these steps, an efficient and close approximation of (7.21) is given

by

∇ψ(x) · n ≈
∫

BZ

∇φn0(x, κ) · n
En0(κ)− En0(k0)− ıε

G(κ)dκ (8.9)

where G(κ) =
∫
y∈Ωc φ

∗
n(y, κ)Vd(y)

(
ψ(y) + φk(y)

)
dy and n0 is the band that Ek0

belongs to. We will show the results of this approximation and its comparison with

PML method in the next chapter.

Despite this the fact that this approximation saves a great deal of computa-

tion efforts, (8.9) is still a nonlocal expression and the two-dimensional nature of

the problem, makes this approximation computationally expensive, compared to the
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PML method. This non locality can be treated, using the Bloch sum introduced in

(8.5).

∇ψ(x)·n ≈
∑

i

∇Φ(x−Xi)·n
∫

BZ

eik·XiG(κ)

En0(κ)− En0(k0)− ıε
dκ =

∑

i

∇Φ(x−Xi)·nCi

(8.10)

where the right hand-side of (8.10) is just a summation over nearest neighbors at

each point x. Vector Ci is as large as the number of atoms on the boundary and

can be calculated once for all of the x point on the boundary. Moreover, one can

significantly reduce the size of vector Ci, by converting the second order PDE (7.8)

into a nonlinear, but first order PDE as follow:

∇ · f + f · f = V (x)− Ek (8.11)

f =
∇ψ
ψ

over Γin

where, f is a replacement for ∇ψ
ψ

. Note that, since (8.11) is a first-order PDE, it

only needs essential boundary condition on Γin and no boundary condition on Γout!

(Figure 8.7)

Figure 8.7: A schematic domain for f
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This phenomenon, helps to find the exact boundary condition on the outer bound-

ary, Γout, just by applying the approximate non-local NRBC on a small region, Γin.

Theoretically, the inner boundary can be any shape and any size, but the smaller it

gets, the longer it take for equation (8.11) to converge.

8.3 Development of symmetry-adapted Tight-Binding method for Car-
bon nanotubes

8.3.1 Structure of single-walled Carbon nanotube

Single-walled Carbon nanotubes (SWCNT) consist of a Graphene sheet, folded on

itself. Such structure provides a couple of important symmetries that we will explain

in this section.

Translational Symmetry

The fundamental property of an infinitely long SWNT is its translational periodicity.

When matching a SWCNT with the corresponding Graphene sheet, the circumfer-

ence of SWCNT corresponds to the width of the Graphene. This width is known

as the chiral vector Ch. When decomposed along the a1 and a2 vectors, the chiral

vector is given by

Ch = ma1 + na2

where, (m,n) is a pair of integers, which conveniently label a SWCNT. For example

Figure 8.8 shows a (3, 3) SWCNT on its unfolded Graphene sheet. The length of

chiral vector, which is π multiplied by the diameter of the SWCNT is easily related

to the m and n:

|Ch| = a
√
m2 + n2 +mn
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Figure 8.8: Unit cell of (3,3) Carbon nanotube. T , Z, and Ch/d are translational,
helical and chiral vectors, respectively. where d = GCD(m,n)

Moreover, one can define the translational vector as a vector starting from one

hexagon and ending at another equivalent one in the direction perpendicular to the

chiral vector, Ch, as shown in Figure 8.8 for the (3, 3) SWCNT. Mathematically, it

can be easily obtained that:

T = t1a1 + t2a2

where

t1 =
2n+m

GCD(2n+m, 2m+ n)
t2 = − 2m+ n

GCD(2n+m, 2m+ n)

The function GCD(i, j) denotes the greatest common divisor of the two integers i

and j. The rectangle area confined by chiral vector Ch and the translational vector T

corresponds the translational unit cell of the SWCNT (see Figure 8.8). The number

of carbon atoms in the translational unit cell, N0, is calculated by dividing this area

by the area of unit cell of graphene.

N0 =
4(m2 + n2 +mn)

GCD(2n+m, 2m+ n)

For instance, (3, 3) SWCNT in Figure 8.8 has 12 atoms in its translational unit cell.

Note that if GCD(2n + m, 2m + n) = 1 the number of atoms per unit cell could

increase dramatically. For example, the translational unit cell of (9, 5) SWCNT has

604 atoms.
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Knowing the translational vector T and the position of the N0 in the translational

cell, Xn, the infinite nanotube structure can be described as:

Xn,ζ = ζT +Xn n = 1, ..., N0

where integer ζ labels the various replicas of the initial translational cell containing

the N0 atoms.

Helical Symmetry

The vectors Ch/d and T define the pure rotational and translational symmetries,

respectively (Figure 8.8). Additionally, SWCNT has helical symmetry described

by the helical vector comprised of both rotational and translational components.

Exploiting this symmetry is central for the proposed work. To describe a SWCNT,

the choice for the screw operation, the vector Z in Figure 8.8, is not unique. We

choose Z in such a way that it has the smallest component in the axial direction of

the SWNT:

Z = v1a1 + v2a2

where

l2v1 − l1v2 = GCD(l1, l2)

0 < t1v2 − t2v1 < N0/GCD(l1, l2)

using this symmetry, one can now redefine the unit cell of SWCNT with only two

atoms for any m and n as in [6]:

Xi,k = X(i1,i2),k = QiX0,k + ci

and we have that

Qi = Q̄i1
1 Q̄

i2
2 , ci =

p=i1−1∑

p=0

Q̄p
1c̄1

That calculations regarding to the rotation matrices Q̄1, Q̄2 and c̄1 can be found in

the appendix of [6].
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8.3.2 Formulation of Tight-Binding for SWCNT

The electronic band structure of carbon nanotubes is usually obtained by zone-

folding of the tight-binding band structure of graphene. In that case the Bloch sum

for nanotubes will be

φ(x,k) =
∑

ζ

∑

α

N0∑

β

cαβe
ik·T ζΦα(x− T ζ)

where T is the translation vector and N0 is the number of atoms in one unit cell

Figure 8.8.

The number of atoms in a unit cell can increase significantly, as the pain of integers

(m,n) increase. However, by using translational, chiral and helical symmetries for

nanotubes, one can reduce the number of atoms per unit cell to two, for any chirality

[71]. The symmetry-adapted Bloch sum in symmetry-adapted nanotubes is given by

φ`(x, k) =
Ns−1∑

ζ1=0

Na−1∑

ζ2=0

∑

α

cαe
i`(θ1ζ1+θ2ζ2)+ikζ1Φα(x, ζ1, ζ2) (8.12)

Here, ` = 0, 1, ..., N0/2 − 1 is the angular number and as before, α runs over all

orbitals and sub-lattices. Using this representation for Bloch waves and considering

only the π orbital, the eigenvalue problem corresponding to the electronic structure

of Carbon nanotube is given by

∑

ζ1,ζ2

hζ1,ζ2ab ei`(θ1ζ1+θ2ζ2)+ikζ1cb = E(k`)
∑

ζ1,ζ2

sζ1,ζ2ab ei`(θ1ζ1+θ2ζ2)+ikζ1cb (8.13)

This set of eigenvalue problem will give us two set of eigenvalues and eigenstates for

every `. As a result, instead of solving an N0×N0 set of matrices, we solve N0/2 set

of 2× 2 equations.
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8.4 Implementation of exact boundary condition for Carbon nan-
otubes

The approximation of expression (??) for symmetry-adapted Carbon nanotube is the

same as what we shown in section (8.2) for 2-dimensional Graphene sheet, except the

fact that it is now a 1-dimensional integration over the k-space. So the approximation

(8.10) will be

∇ψ(x) ·n ≈
∑

ζ1,ζ2

∇Φ(x, ζ1, ζ2) ·n
N0/2−1∑

`=0

∫ π/T

−π/T

cκ`e
ı`(θ1ζ1+θ2ζ2)+ıκζ1g(y, κ)

En0(κ, `)− En0(k0, `0)− ıε
dκ (8.14)

Since Nanotube is a quasi one-dimensional structure, calculation of this expression

will not the computationally expensive. On the other hand, using a first order PDE,

like (8.11) will not help to reduce the computation effort.

8.5 Development of Tight-Binding model for DNA

DNA is a macro-molecule that contains repeated stacks of bases formed by either

Adenine-Thymine (AT) or Cytoine-Guanine (CG) pairs coupled via hydrogen bonds

and held in the double-helix structure by a sugar-phosphate backbone.

We follow the fishbone model, shown in Figure 8.9, has one central conduction

channel in which individual sites represent a basepair; these are interconnected and

further linked to upper and lower sites, representing the backbone, but are not in-

terconnected along the backbone. Every link between sites implies the presence of a

hopping amplitude. The Hamiltonian for the fishbone model HF is given by

HF =
∑

i

∑

q=↑,↓
hi,i+1
bb + hi,ibb + hi,qsb + hi,qss (8.15)

where the subscript b represents base pairs and s represents sugar backbones. Also,the

sum over i covers the atoms along the axis of the molecule, while the sum over q
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belongs to the lower and upper backbones. The distance between each base pair is

assumed to be 0.34nm.

!
!

AT! AT!CG!Base%pairs%

backbone%

backbone%

Figure 8.9: The fishbone model of DNA for equation (8.15)

Considering the model in Figure 8.9, the components of the Hamiltonian matrix

in (8.15) are given by:

hi,i+1
bb =

∫

Ω

1

2
∇Φ∗α(x−Xi) · ∇Φβ(x−Xi+1) + Φ∗α(x−Xi)Vαβ(x)Φβ(x−Xi+1)dx

(8.16)

hi,ibb =

∫

Ω

1

2
∇Φ∗α(x−Xi) · ∇Φα(x−Xi) + Φ∗α(x−Xi)Vαα(x)Φα(x−Xi)dx

hi,qsb =

∫

Ω

1

2
∇Φ∗α(x−Xi) · ∇Φγ(x−Xi) + Φ∗α(x−Xi)Vαγ(x)Φγ(x−Xi)dx

hi,qss =

∫

Ω

1

2
∇Φ∗γ(x−Xi) · ∇Φγ(x−Xi) + Φ∗γ(x−Xi)Vγγ(x)Φγ(x−Xi)dx

where α and β switch between AT and CG base pairs and γ represents the sugar

backbone. For the parameterization of the Hamiltonian matrix we have followed [36].
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9

Results

In this section we implement the PML and exact methods developed in the previous

chapters and on a monolayer Graphene sheet and single-wall Carbon nano-tube. In

these examples we add one or more local defects to the structure as vacancies to study

the scattering waves and the influence of boundary condition on them. Moreover,

we will study the electronic behavior of Y-junction Carbon nano-tubes with different

chiralities.

9.1 Mono-layer Graphene with a single vacancy

For the first example, we consider a monolayer Graphene sheet that is missing one

atom in the center, subjected to an incident Bloch wave φ(x,k) with wavenumber

k = 0.42ex + 0.49ey. Figure 9.1 shows the density field ρ(x) = Φ∗(x)Φ(x), corre-

sponding to the PML method. Note that the point defect at the center of the domain

plays the role of an obstacle for the Bloch wave φ(x,k). Note that the Graphene

may not be at rest after considering the vacancy, however we just merely interested

in studying the behavior of the boundary conditions at this point.
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Figure 9.1: The density function of Graphene with a single defect, subjected to Bloch
wave φk(x) with wavenumber k = 0.42ex + 0.49ey.

As expected from equation (7.15), the norm of the scattering wave, ψ(x)ψ(x),

shown in Figure 9.2 decays as 1/r away from the defect, till it reaches the absorb-

ing layer. From that point it decays exponentially and completely vanishes before

reaching the boundary of the computational domain. As a result, we will not see the

influence of the boundary condition on the scattering wave.
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Figure 9.2: Profile of scattering wave density for a constant x2, compared to 1/r
profile. The effect of absorbing layer can be seen at the both ends.
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In order to evaluate the convergence of the PML method for this example, we

point out the important fact that, the sole purpose of absorbing boundary conditions

like PML, is to be transparent for the outgoing waves. As a result, for an exact

boundary condition, changing the computational domain does not change the results,

as long as the domain contains the defect potential, Vd(x). This fact inspires us to

consider the convergence of the solution of the PML method when we move the

domain, (or from another point of view, the defects inside the domain) as shown in

Figure 9.3. We evaluate the error in the following way:

E =
|ρ(x)− ρ(x′)|2

ρ(x)2

!
!

Γa#

Γc#

Φk#

x#x’#

Figure 9.3: The density of wave function, ρ at point X must not change as the defect
moves.

Running the set of simulations for different layer thicknesses, shows a satisfactory

convergence for the PML method. Figure 9.4 shows this convergence for two differ-

ence incident waves. This investigation, shows that the accuracy of the PML method

improves as the norm of the wavenumber increases. The fact that PML shows good

convergence for higher wave numbers is very important, considering the fact that

most existing non-reflecting boundary conditions rapidly lose their accuracy as the

wavenumber increases, e.g. [25].

73



1.00E-‐13	  

1.00E-‐11	  

1.00E-‐09	  

1.00E-‐07	  

1.00E-‐05	  

1.00E-‐03	  

1.00E-‐01	  

0	   5	   10	   15	   20	   25	   30	   35	  

E	  

L	  (A)	  

PML	  Convergence	  

|k.a|=.62	  

|k.a|=1.86	  

Figure 9.4: Convergence of the results of the PML method, as the thickness of the
layer increases.

Now, we consider the same example and apply the exact DtN boundary condition

we derived in (8.2). Figure 9.5 shows the density of the total wavefunction with the

same incident wave. Note that the application of exact boundary condition was

about 20 times slower than the PML method.
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Figure 9.5: The exact DtN boundary condition applied to a Graphene sheet with
a vacancy at the center of the domain. The incident wave has the wave vector of
k = 0.42ex + 0.49ey.
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Figure 9.6 shows the comparison of the exact and PML method. A very close

match between the results can be seen, which indicates that the PML method does

indeed converge to the exact solution.
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Figure 9.6: The error analysis for PML and exact methods. (a) shows the point-wise
relative error for the wave vector k = 0.42ex + 0.49ey, while (b) shows the maximum
relative error for various wave vectors.
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Before ending this section, we pay attention to a very special case, where the

energy of the incident wave, is very close to fermi level. The electronic behavior

of Graphene at such level is related to Klein paradox. This phenomenon usually

refers to a counterintuitive relativistic process in which an incoming electron starts

penetrating through a potential barrier. In this case, the transmission probability

T depends only weakly on barrier height, approaching perfect transparency for very

high barriers, which is in contrast with conventional, nonrelativistic tunneling [40].

Figure 9.7: The density of the total wavefunction φ(x), for k = (0, 1.71).

In this example, the wavefunction is barely influenced by the defect. Figure 9.7

shows the contour, corresponding to the density of the total wavefunction. This

behavior can be justified, by considering the band structure of Graphene, which is

shown in Figure 8.5. As it can be seen in this figure, the wave can only scatter in

six specific directions, while all the other directions correspond to band-gap. As a
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result, the wavefuction mainly remains in the same direction of the incident wave.

9.2 Single-walled Carbon nanotube with a single vacancy

For the next series of examples, we consider single walled Carbon nanotubes. As

shown the previous chapter, we use the summery groups of this structure to provide

a unit cell with only two atoms. Using these symmetries, it is easy to see that

nanotubes are quasi one-dimensional objects, since the wave vector k decomposes

into a scalar κ that indicates the wavelength along the axis of nanotube, and an

angular index, ` that differentiates the same wavelengths for different but discrete

angles (equation (8.12)). Figure 9.8 shows the band structure, corresponding to an

Armchair Carbon nanotube with the chirality of (5, 5). Note that each pair of bands

correspond to a specific angular index `.

-‐2	  

-‐1	  

0	  

1	  

2	  

3	  

4	  

-‐4	   -‐3	   -‐2	   -‐1	   0	   1	   2	   3	   4	  

Figure 9.8: The band structure corresponding to (5, 5) Armchair Carbon nanotube.
Armchair nanotubes are considered Metallic, since the is no energy gap in their band
structure.

Note that Zigzag nanotubes like this are called Metallic nanotubes, since there is

no band gap in their band structure.

Now, we consider a vacancy in this nanotube and apply PML and exact methods.

Figure 9.9 shows a perfect match for the contour of the scattering waves for these
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two methods. Since the wave scatters in a quasi one-dimensional domain, unlike the

example for the Graphene sheet, the amplitude of the wave does not decay outside

of the defective region.

(a) PML (b) Exact

Figure 9.9: Contour of the scattering waves for (5, 5) Carbon nanotube with incident
wavenumber κ = 0.24 and ` = 0

The comparison between the exact boundary condition and the PML method is

shown in Figure 9.10. The maximum relative error is plotted for different absorption

layers for (5, 5) Carbon nanotube. One can see that by increasing the wavenumber,

the rate of convergence increases.
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Figure 9.10: Maximum relative error for various wave vectors in a (5,5) single-walled
carbon nanotube.

Now, let us consider a (9, 5) Carbon nanotube. Without considering the Objec-

tive Structure, the unit cell of this nanotube would have 302 atoms, however, after

adapting the symmetry of the structure, this number reduces to only 2. Figure 9.11

shows the density of scattering wave for κ = 2.09 after applying the PML method.

Figure 9.11: The density of the scattering wave for κ = 2.09 with PML method.
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Moreover, this type of Carbon nanotube is considered as a semiconductor, since

there exist a considerable energy gap in its band structure (Figure 9.12).
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Figure 9.12: Band structure of (9, 5) Carbon nanotube. The red dashed line indicates
the energy of the defect mode shown in Figure 9.14

After applying a vacancy in the middle of the Carbon nanotube, the contour for

the scattering and total wavefunction are shown in Figure 9.11.
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9.3 Y-junction Carbon nanotube

The mutual interaction of the electron currents in a three branches of the Y-junction

is shown to be the basis for a potentially new logic device [11]. In this section we

investigate some electronic behavior of this type of nanotubes. Figure 9.13 shows a

Y-junction, made out of three (9, 5) Carbon nanotubes.

Figure 9.13: A schematic figure of Y-junction Carbon Nanotube with (9, 5) chirality.

By applying PML method to the ends of this structure we can extract the band

structure of this object, which of course looks almost exactly like that of a (9, 5)

single-walled carbon nanotube. The first contour in Figure 9.14 shows one of the

eigenstates, corresponding to κ = 1.43. This eigenmode is similar to that of Bloch

eigenmodes, which is scattering over the whole domain and never vanishes. Note

that without applying the proper non-reflecting boundary condition (here PML), we

would not be able to gain this result. However, the defect (junction) in this structure

will create some extra modes that belong to the band gap. These modes are called

defect modes (or D-modes). The second contour in Figure 9.14 shows the eigenstate
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of one of these D-modes. Unlike the Bloch modes, the D-modes are localized around

the defect. The energy corresponding to this mode is shown in Figure 9.12.

−20 −10 0 10 20 30 40

−40

−30

−20

−10

0

10

20

30

40

 

x
1

ρ

 

x
2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) κ = 1.43
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Figure 9.14: (9, 5) Carbon nanotube eigenstates corresponding to κ = 1.43 and a
defect mode in (a) and (b), respectively.

In both examples of single-walled and Y-junction Carbon nanotubes, we first in-

vestigated the proper thickness of the absorbing layer. Since we are certain about the

general convergence of the results to that of exact non-reflecting boundary condition

by now, we have considered the convergence of only one point. Figure 9.15 shows

this convergence. As shown here, 10nm is a proper thickness for this example.
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Figure 9.15: The convergence of the density of the wavefunction for one point in the
Y-junction Carbon nanotube, as the thickness of the absorbing layer increases.

One of the interesting properties of Y-junction nanotubes appear after we destroy

the symmetry of the structure. In order to do so, we simply remove one of the atoms

in the lower branch in Figure 9.13. After causing this extra defect, we investigate

the ratio of transmitted wave in the lower and upper branch, when the incident wave

comes from the branch on the right side. Figure 9.16 shows the ratio of the average

wave transmitted to the lower branch.
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Figure 9.16: The ratio of transmitted wave to the lower branch, compared to the
branch on the right-hand-side for a (9, 5) Y-junction Carbon nanotube with a vacancy
in the lower branch.
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The plot shows that for lower wavenumbers, the electron wave almost slips in

half. However, as the wavenumber increases the probability of finding the electron

in the top branch gets higher than the lower branch. Moreover, this effect is more

significant for some singular indices, compared to others. This difference is directly

related to the position of vacancy and by changing the position, the angular index

with the most effects will change. The eigenstates of this example, corresponding to

κ = 0.78 and κ = 2.38 are shown in Figure 9.17
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(a) κ = 0.78
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(b) κ = 2.38

Figure 9.17: (9, 5) Carbon nanotube eigenstates corresponding to κ = 0.78 and
κ = 2.38 in the presence of a vacancy in the lower branch, respectively.

9.4 Kinked DNA

As the final example of this thesis we consider several different V-shaped DNA

molecules. Followed by our TB development in the previous chapter, we now apply

PML method to the ends of a kinked DNA molecule and study the electron scattering

along the axis of the molecule for different kink angles. We consider various angles,
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α, for Figure 9.18:

!
α!

Figure 9.18: Fish-bone model for kinked DNA molecule.

Figure 9.19 shows this result for various angles. As expected, one can see the

concentration of electron density around the defective area. Moreover, as the angle

gets sharper and sharper, the intensity of the electron density in that area increases.

All of these examples have been conducted for incident Bloch wave with κ = 0.64

and E = −3.07eV . Note that gaining these results would not have been possible

without the application of absorbing boundary conditions.
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Figure 9.19: The electron density of V-shaped DNA molecule for κ = 0.64. The
distances are in nanometers.

86



10

Conclusion

The time-harmonic Schrodinger equation for a periodic media with localized defects

was considered. The well-known Sommerfeld radiation condition does not apply to

this problem, since the periodic potential makes it an inhomogeneous space. We

derived a Sommerfeld-like radiation condition for periodic problems. Also, The in-

homogeneous media refrains us from using the non-reflecting boundary conditions,

already known in literature. We derived the exact non-reflecting boundary condi-

tion, using the Green’s function corresponding to the outgoing waves. The result is a

highly non-local expression, which, although exact, is impractical to use. Moreover,

calculation of the Green’s function at each point requires an integration over the

entire k-space. The integrant of this expression is rapidly oscillating and contains at

lease on singularity in it. However, we showed that by using the proper integration

schemes for oscillating functions and reducing the integration domains in the k-space

to the energy bands that carry that specific energy, E(k0), one can use this NtD

boundary condition.

On the other hand we considered the Perfectly Matched Layer method. Even

though the absorbing layers cause some spurious reflections in an inhomogeneous
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media, we showed that by considering a smooth absorption function, as the thickness

of the absorbing layer increases, the PML method converges to the exact results with

a promising rate. This convergence and error analysis proves that PML is not only

reliable, but also the best option in hand for problems with local defects.

Moreover, we applied the PML method to Y-junction Carbon nanotubes and

studied the ratio of transmission in the different branches. The results shows signif-

icant sensitivity to the wavenumber and angular index of the incident wave. Even

though we did not simulate all of the possible incident waves, our results suggest that

one may find a specific incident wave, for which the current only passes through one

branch while the other waves pass through both of the branches. These results, may

offer a chance to numerically explain the phenomenon observed in the experiments

in [11].

Finally, we studied the kinked DNA molecules. even though the fishbone model

that we implemented to develop the corresponding TB method is very simplified,

nevertheless it shows the power of PML method to study the localized defects in

such complicated molecules. The results for V-shapes DNA shows a concentration of

electron density around the curved area, as expected. This concentration intensifies

as the angle of the kink gets sharper and sharper.
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Future Works

The Y-junction Carbon nanotubes that was briefly studies in our results section show

very promising electronic properties that could be a benchmark for new generation

of logic bases that can takeover the binary systems. Our first priority for the con-

tinuation of our studies is to get more in-depth of these structures and explore their

electronic properties in various situations. More specifically, we would like to study

the possibility of quantifying the transmission ratio of the branch that was depicted

in the results section.

Moreover, recently, cup-stacked carbon nanotubes (CSCNTs) have attracted in-

creasing attention as a special and functional nano-sized material in heterogeneous

catalysis, solar cells, etc. From the morphological viewpoint, CSCNTs consist of

many truncated conical graphene layers, different from conventional CNTs made up

of multi-seamless cylinders of hexagonal carbon networks [51]. As one of the future

works along with this thesis, we would like to study the electronic properties of this

type of nano-structures in the presence of defects.

Finally, we would like to note that even though the techniques developed for

applying non-reflection and absorbing boundary conditions are based on Schrodinger
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equation, one can extend these formulations to similar problems, including phonon

and heat transport. The only limitation for applying the non-reflecting boundary

condition is the case where the potential corresponding to the defect is not decaying

fast enough. In that case the integral of y may not be truncated to a bounded

domain, Ωc, as it is done in equation (7.20).

90



Bibliography

[1] A. Acharya, “A Model of Crystal Plasticity Based on the Theory of
Continuously Distributed Dislocations,” Journal of the Mechanics and Physics
of Solids, vol. 49, no. 4, pp. 761 – 784, 2001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0022509600000600.

[2] ——, “New Inroads in an Old Subject: Plasticity, from Around the
Atomic to the Macroscopic Scale,” Journal of the Mechanics and Physics
of Solids, vol. 58, no. 5, pp. 766 – 778, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0022509610000190.

[3] A. Acharya, K. Matthies, and J. Zimmer, “Travelling Wave Solutions for a
Quasilinear Model of Field Dislocation Mechanics,” Journal of the Mechanics
and Physics of Solids, vol. 58, no. 12, pp. 2043–2053, December 2010. [Online].
Available: http://opus.bath.ac.uk/22134/.

[4] A. Acharya and L. Tartar, “On an Equation from the Theory of Field Dislocation
Mechanics.” Bulletin of the Italian Mathematical Union, vol. 9, no. IV, pp. 409–
444, 2011.

[5] A. Acharya and K. Dayal, “Continuum mechanics of line defects in liquid crys-
tals and liquid crystal elastomers,” Quarterly of Applied Mathematics, vol. 72,
no. 1, pp. 33–64, 2014.

[6] A. Aghaei, K. Dayal, and R. S. Elliott, “Symmetry-adapted phonon analysis
of nanotubes,” Journal of the Mechanics and Physics of Solids, vol. 61, pp.
557–578, 2013.

[7] G. Allaire, “Two-scale convergence and homogenization of periodic structures,”
School on homogenization, ICTP, Trieste, 1993.

[8] X. Antoine, C. Besse, and P. Klein, “Absorbing boundary conditions for
the one-dimensional schr&#246;dinger equation with an exterior repulsive
potential,” J. Comput. Phys., vol. 228, no. 2, pp. 312–335, Feb. 2009. [Online].
Available: http://dx.doi.org/10.1016/j.jcp.2008.09.013.

91

http://www.sciencedirect.com/science/article/pii/S0022509600000600
http://www.sciencedirect.com/science/article/pii/S0022509610000190
http://opus.bath.ac.uk/22134/
http://dx.doi.org/10.1016/j.jcp.2008.09.013


[9] D. Baffet, J. Bielak, D. Givoli, T. Hagstrom, and D. Rabinovich, “Long-
time stable high-order absorbing boundary conditions for elastodynamics,”
Computer Methods in Applied Mechanics and Engineering, vol. 241–244, no. 0,
pp. 20 – 37, 2012. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0045782512001557.

[10] J. M. Ball and A. Zarnescu, “Orientable and Non-Orientable Director Fields
for Liquid Crystals,” PAMM, vol. 7, no. 1, pp. 1 050 701–1 050 704, 2007.
[Online]. Available: http://dx.doi.org/10.1002/pamm.200700489.

[11] P. R. Bandaru, C. Daraio, S. Jin, and A. M. Rao, “Novel electrical switching
behaviour and logic in carbon nanotube y-junctions,” Nat Mater, vol. 4, no. 9,
pp. 663–666, 09 2005. [Online]. Available: http://dx.doi.org/10.1038/nmat1450.

[12] G. Bastard, Wave mechanics applied to semiconductor heterostructures,
ser. Monographies de physique. Les Éditions de Physique, 1988. [Online].
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Appendix A

An Explicit solution for θ

An analytic solution for the director field corresponding to λ source fields in 3.5 in an

infinite domain is developed, to serve as motivation for some of our claims in Section

2.2. The source fields are layer-like but do not have compact support on bounded

domains. Consider a δ sequence [34]:

δn(x) =
n√
π
e−(nx)

2

.

So that,
∫∞
−∞ δn(x) = erf(x) = 1, for any n. Also, consider a H sequence, which

converges to the Heaviside step function

Hn(x) =
1

2

(
tan−1(nx) + 1

)
.

Now, one can define λ as

λn(x) = 2πKδn(x1)Hn(x2)e1.

Note that, for any given n,

∮
λn.dr = 2πK

∫

x+1

δn(x1)dx1 = 2πK
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In order to solve (3.5), one can use Green’s function method for an infinite 2D

domain, where the Green’s function is

G(x,x′) =
1

2π
ln(|x− x′|).

Now, the expression for θn in terms of the Green’s function will be

θn =

∫

V ′
G(x,x′)div λn(x′)dV

Integrating by part and considering the fact that the λn field has only the e1 com-

ponent

θn =

∫

∂V ′
G(x,x′)λn(x′) · νdS −

∫

V ′

∂

∂x′1
G(x,x′)λn(x′)dV

= − 1

2π

∫

V ′

x′1 − x1
|x′ − x|2

λn(x′)dV

=
1

2π

∫

x′1

∫

x′2

x1 − x′1
|x′ − x|2

2πkδn(x′1)Hn(x′2)dx
′
2dx

′
1

As a result:

θn =
Kn

2
√
π

∫

x′1

∫

x′2

x1 − x′1
|x′ − x|2

e−(nx
′
1)

2 (
tan−1(nx′2) + 1

)
dx′2dx

′
1 (A.1)

Note that in case of n→∞,

θ∞ =
K

2

∫

x′1

∫

x′2

x1 − x′1
|x′ − x|2

δ∞(x′1)H(x′2)dx
′
2dx

′
1

=
K

2

∫ ∞

x′2=0

x1
x21 + (x2 − x′2)2

dx′2

=
K

2
tan−1

(x2 − x′2
x1

)∣∣∣
∞

x′2=0
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as a result, θn will converge to

θ = K tan−1
(
x2
x1

)
+ c, (A.2)

which is exactly Frank’s solution for planar director fields for straight disclinations

for the 1-constant energy.
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Appendix B

Solution for Eθ
r

We provide the following solution from [5] for completeness. Consider βθr given by

βθr(x1, x2) =

{
ρ(r)e3, r < rc
0, r ≥ rc

; r = (x21 + x22)
1
2 (B.1)

with the stipulation that

2Kπ =

∫ 2π

0

∫ rc

0

ρ(r) dr rdψ ⇒ K =

∫ rc

0

ρ(r) rdr (B.2)

where K is the strength of the disclination and rc is a core radius. Then following

Section 5.2 in [1], we have the solution

For r < rc : Eθ
r1 =

−x2
r2

∫ r

0

ρ(s)s ds, Eθ
r2 =

x1
r2

∫ r

0

ρ(s)s ds

For r ≥ rc : Eθ
r1 = K

−x2
r2

, Eθ
r2 = K

x1
r2
.

(B.3)

It can be checked that this solution indeed satisfies the governing equations for Eθ
r

for any ρ satisfying the given conditions. For the choice

ρ(r) =

{
2K
rc

(
1
r
− 1

rc

)
, r ≤ rc

0, r > rc
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the inside-core solution evaluates to

For r ≤ rc : Eθ
r1 =

−x2
r2

(
2K

rc

[
r − r2

2rc

])
, Eθ

r2 =
x1
r2

(
2K

rc

[
r − r2

2rc

])

while the outside-core distribution remains unchanged.
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Appendix C

two-scale method

C.1 Homogenization of Schrodinger equation in periodic media

Homogenization theory is a powerful tool for understanding the effects of the small-

scale disturbances on the large-scale features in partial differential equations. We use

homogenization theory to derive asymptotic solutions of the Schrodinger equation

with periodic potentials. Following the foot steps of [7] and [58], and rewriting

equation (7.8) as a convergent series according to [33]:

−
(
∇x + ε−1∇y

)2
ψε +

(
ε−2Vp(y) + Vd(x,y)

)
ψε = i

( ∂
∂t

+ ε−2
∂

∂T

)
ψε−Vd(x,y)φk(y)

(C.1)

Note that, we take dT/dt = ε−2. We consider the following ansatz:

ψε(x,y, t, T ) = e−iTEk−itẼ
∞∑

p=0

εpΨp(x,y) (C.2)

Substituting (C.2) into (C.1) and separating the scales of this equation will lead into

a series of equations. For the set of terms with order of ε−2 we have:

−∇2
yΨ0(x,y) + Vp(y)Ψ0(x,y) = EkΨ0(x,y) (C.3)
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We can immediately separate x and y variables, so that the above equation would

follow Bloch’s theorem:

Ψ0(x,y) = f(x)φk(y) (C.4)

the terms with the order of ε−1 form the following equation:

−∇2
yΨ1 − 2∇xf · ∇yφk + Vp(y)Ψ1(x,y) = EkΨ1(x,y) (C.5)

This equation also has a separable solution Ψ1(x,y) = ∇xf(x) · g(y). This leads to:

∇xf ·
{
−∇2

yg − 2∇yφk +
(
Vp(y)− Ek

)
g(y)

}
= 0 (C.6)

Using the Green’s function for Schrodinger’s equation in periodic media, one can find

g(y):

g(y) = −2

∫

Y ′

∫

k′

φ̃k′(y)φk′(y
′)

Ek − Ek′
d3k∇φk(y′)dVy (C.7)

Finally, the terms in macro-scale, i.e. the order of ε0, leads to:

− φk(y)∇2
xf − 2∇2

xf∇y · g −∇2
yΨ2(x,y) +

(
Vp(y)− Ek

)
Ψ2(x,y) (C.8)

+ Vd(x,y)f(x)φk(y) = −Vd(x)φk(y)

Following [58], we consider Ψ2(x,y) = ∇2
xf(x)h(y) to separate the values:

−
{
φk(y)+2∇y ·g+∇2

yh−
(
Vp(y)−Ek

)
h(y)

}
∇2
xf+Vd(x,y)φk(y)f(x) = Ẽφk(y)f(x)

(C.9)

C.2 An attempt to understand the scaling of the potential functions

In order to better understand and justify the scaling of the potential functions in the

previous section, we attempt to study the nonlocal contribution of an energy term,

defined in the following way:

W
[
φ(x,y)

]
=

∫

x∈Ω

∫

y∈B
φ∗(x,y)V (x,y)φ(x,y)dydx (C.10)
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where B is the unit cell. Note that although W may not have a physical significance,

it is mathematically, similar to electrostatic energy [53]. Now, using the integral

representation of φ that we shown in equation (7.11), W is given by

W
[
φ(x,y)

]
=

∫

x,x′∈Ω;x6=x′

∫

y,y′∈B
φ∗(x,y)V (x,y)G(x,y,x′,y′)V (x′,y′)φ(x′,y′)dy′dx′dydx

Considering a three-dimensional case, where G(x,y,x′,y′) = e
ı

(
k|x+εy−x′−εy′|

)

|x+εy−x′−εy′| , one

can rewrite W as

W
[
φ(x,y)

]
=

∫

x,x′∈Ω;x6=x′

∫

y,y′∈B

ρ∗(x′,y′)ρ(x,y)

|x+ εy − x′ − εy′|dy
′dydx′dx (C.11)

where,

ρ(x,y) = eı(k|x+εy−x
′−εy′|)V (x, bfy)φ(x,y)

Now, consider the Taylor expansion of the denominator in (C.11) around x− x′

1

|x+ εy − x′ − εy′| =
1

|x− x′| +
∂

∂|x− x′|
( 1

|x− x′|
)
· ε(y − y′) (C.12)

+ 1/2
∂2

∂|x− x′|2
( 1

|x− x′|
)
ε2 : (y − y′)⊗ (y − y′)

+ 1/6
∂3

∂|x− x′|3
( 1

|x− x′|
)
ε3 : (y − y′)⊗ (y − y′)⊗ (y − y′)+

1/24
∂4

∂|x− x′|4
( 1

|x− x′|
)
ε4 : (y − y′)⊗ (y − y′)⊗ (y − y′)⊗ (y − y′)

+O(ε5)

Now, since according to (C.1) the periodic potential function scales as Vp = Ṽ /ε2,

which means that ρ∗ρ scales as ε−4. As a result, in order for the integral in (C.11) to

be well-behaved, after substituting (C.12) in (C.11), the the first four terms of the

integration must vanish. However, that does is not necessarily true. So, this attempt

to justify the scaling of the periodic potential fails.

106



Even though the attempt for understanding the scaling of the potential functions

by expanding the Green’s function did not work, Allaire et. al. notes that having

both periodic and local potentials of the same order of magnitude implies a strong

mixing of different Bloch band components, while in our case the macroscopic po-

tential vanishes fast enough, as ε tends to 0, so that it does not affect the phase

function but only the amplitude [7].
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