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Abstract

Recent technological advances have witnessed the rapid encroachment of computing systems into our

social spaces. Their acceptance in these social spaces by other occupants, however, might be mostly

contingent on their social appropriateness. Notions of social appropriateness might seem vague but

even people who don’t act on this commonsense knowledge, and accord to social norms, can sometimes

find themselves ostracized from society. It is reflected in behavior that supports a sense of successful

engagement and connection. Such behavior communicates a desire to be accepted and a willingness to

engage, as opposed to inappropriateness that conveys indifference, rejection or even danger.

As social actors, how can systems improve their interactions with us in order to better succeed at

their tasks? Perhaps, more interestingly, how might they even improve our communications with each

other? In this thesis we describe a framework to identify opportunities to design systems that can begin

to act appropriately in social settings, which we call Considerate Systems. It includes a design process

and guidelines, which allows an interaction to be viewed from the perspectives of the user, system and

task. It also includes an architecture that guides the addition of productive social responses to interactive

systems.

We demonstrate the utility of this framework by exploring two types of scenarios that impact social in-

teractions in contrasting ways. Remote interactions (such as on a conference call) suffer from an impinging

of social cues that people rely on while communicating. On the other hand, situated multitasking inter-

actions (such as texting while driving) can easily overwhelm users and detract from their performance.

The framework is applied towards the design of autonomous agents tackling problems endemic to such

scenarios. We evaluate their success with respect to specific scenario goals. We conclude by noting that

while the challenges of instilling computing systems with a sense of appropriateness seem daunting, our

productive use of systems can be enhanced with them.
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Chapter 1

Introduction

People are naturally aware of social situations. As a species, we draw upon a collective consciousness

to interpret and respond to these situations in socially appropriate ways. The fields of comparative psy-

chology and sociobiology inform us that non-human species also use social behaviors to support their

interactions. From ants and bees to wolves and baboons, many species have developed strategies for

social behaviors that support cooperation and survival [16]. Humans in particular have developed lan-

guages, and are excellent at interpreting each others signals. People have an innate ability and desire

to communicate intent verbally and non-verbally, and have a shared behavioral “language” (or common

sense) on how to react to emotional and social input.

Communication is fundamental to the social process. Technologies that enable people to communicate

better are more often than not embraced by society. Paper and the printing press set off an early social

communication revolution. Email drove adoption of the personal computer. Communication through

mobile phones are changing the economic landscape – even in developing countries, and social media

is touted as one of the big successes of the new millennium. Each of these technologies might be seen

as enhancing how we communicate with each other, disrupting practices and procedures already set in

place. When people begin interacting through a new technology, be it smoke signals, writing on paper,

email, phones or social network technology, they develop new shared expectations, and derive social

meaning from when and how it is used [113]. Eventually, a disruptive technology succeeds in becoming

an established communication channel when people develop a shared body of knowledge that can be

seen as an evolutionarily stable strategy for communicating using that technology. For instance, with

paper, writing techniques and etiquettes were developed, and a new shared understanding arose on what

to communicate and expect from a job offer letter, or in the prose of a mystery novel. In the case of

interactive computing systems, people are still grappling with a medium that is varied in communication

1
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pace and dimensions of interactivity.

Computing systems that encourage communication that builds on the letter-writing paradigm that we

are already comfortable with, have grown phenomenally as attested by the success of text messaging and

email. With systems that support communications or interactions at a more natural conversational pace,

success is hard-pressed as these technologies are more prone to “breakdown” [61]. This might be because

the common sense knowledge of this space-time is so deeply embedded in people that any deviation

from the expected social protocol is immediately picked up on. It causes a shift in focus from the task

at hand to the technology at hand. For example, delayed responses on a telephone call (technology) can

detract focus from the topic of conversation (task). The same phenomenon occurs in interactive games,

which is why successful game designers for products like Kinect and Wii try to mask the inherent latency

of these systems. Pace and feedback are just one of the dynamics in social engagement. Status and

societal structure also drive social interactions. For example, smart TV products tout their integration

with Facebook and Twitter, but rather than simply displaying the same information on a bigger screen, a

more desirable feature would be to display information based on the situated context, like the people in

the living room and the relationships between them.

To come to terms with the disruption that newer technologies present, we need to peel back the curtain

of time and peer into the future. There are three trends in particular that become apparent. First, natural

user interface (“NUI”; like pointing, speech, & gaze) technologies are getting better, and might be the

preferred mode of interaction in post-desktop, public or complex scenarios, like driving. This leads us

into our second observation that as such interfaces get better, they will enable technologies to seep deeper

into the fabric of society, making them more situated. Third, attention is a limited human resource. In an

always connected post-desktop world, the strain on attention is only going to become more tenuous. To be

successful in such situated, attention-starved environments, it will be imperative for future technologies

to be aware of the shared practices and social protocol that humans engage in, and respond in ways that

allows it to be perceived as unobtrusively as possible. Evolutionary psychologists argue that engaging in

these behaviors establish trust, foster goodwill, and enable cooperation [73]. To not engage in the same

manner creates breakages and hinders communication. Systems need to embody this common sense

knowledge and act upon it in ways that are respectful of the collective consciousness [41]. Collective

consciousness might be thought of as the shared awareness of a situation between actors in an interaction.

If there is a death in the family, for instance, it is common sense, and the agreed upon protocol, to not crack

a joke. We believe that embodying this common sense knowledge of communication in human-computer

interactions can enhance trust, cooperation and reciprocity.

A way forward towards this goal is to move from a user-centric design approach to a socio-centric
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one, central to which are the notions of embodied interaction and situated knowledge. These refer to

the idea that people’s understanding of the world, themselves, and their actions are strongly influenced

or perhaps even constructed by varying physical and social situations [68]. People are embedded in

a network of social, cultural and organizational meaning, fluid and negotiated between other people

around them. Meaning is derived and constructed from the ground up, unfolding in real time through

our interactions with each other and the system. Along with meaning co-construction, people are also

implicitly, negotiating the rules of engagement. They temper their responses and adapt their behavior

to achieve the most desirable outcome. Computing systems might engage with people in the same way,

being considerate of the web of social actions they are embedded in. Fundamentally, a socio-centric design

approach emphasizes that any action is necessarily both utilitarian and affective, objective and subjective,

and it would be amiss to divorce one from the other.

Affective and social computing have made great progress in allowing computers to recognize emotional

states and social signals [62, 156]. Considerate systems will build on this awareness and anticipate how

to respond to users in socially appropriate ways. Humans are considerate when they are thoughtful of

the other, and this is displayed in their behavior. This thesis will present a functional model of what this

entails for human-computer interactions. Considerateness is a virtue, in that its goal is to create goodwill

while successfully traversing relationships. For considerate systems, this virtue is a functional awareness

of the user’s cognitive and affective state, and the collective consciousness of a group. To succeed at its

communication goals, the system displays this awareness by behaving in socially appropriate ways, i.e.,

by supporting and not disrupting the interactions that it is actively or passively part of.

We define Considerate Systems as,

A system that displays an awareness of the state of the user/s, and their situated social context, by

behaving in ways that support their interactions.

Considerate is shorthand for a shared knowledge that is implicitly negotiated through social actions

and behaviors to improve a communication outcome. A considerate system must model such aspects of

social feedback, in order to act in socially acceptable ways. Our hypothesis is that by being considerate,

situated systems are more effective in achieving their scenario goals. To prove this we start by developing

a framework of what it means for a system to be considerate. We note that the framework is descriptive

rather than prescriptive, and that its relevance and application are context-specific. To evaluate the frame-

work, we wanted to hold it to a standard higher than simply improving human-computer interaction,

which guided the choice of the application scenarios explored in this thesis.
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We started by asking the question: can the automated response from a considerate system change

and improve human behavior? More specifically, can their performance be improved with respect to the

scenario goals? To select scenarios, we consider two ends of a spectrum of real-time communication which

usually impacts human performance. On one end, we have scenarios where communication channel is

restricted and constrained, impinging on the natural flow of social cues people depend on, and expect,

in social intercourse. This is especially true for remote communications. On the other end, are scenarios

where a user is overwhelmed with the amount of information, and is unable to process it sufficiently,

which impacts their performance. Here the constraints are from limitations in human processing. This

usually occurs in situated multitasking scenarios.

For the first scenario, we chose the conference call setting as it presents a communication constrained

domain where we might even improve human-human communication. We ground the framework by

applying it to the design of a mediating agent for this popular collaboration tool, and perform a number

of experiments to validate our hypothesis. For the second scenario, we chose a complex spatiotemporal

and multimodal activity where the consequences of being inconsiderate are more drastic. The distracted

driving setting presents such a domain where the user can get easily overwhelmed, and where the margin

of error is very small; any inconsiderateness on the part of the system gets magnified. In this way, the first

scenario allows us to investigate various facets of system actions, whereas the critical nature of the second

scenario brings the focus more squarely on the timing of its actions.

The main tenet of this thesis is that while today’s systems are incapable of adequately representing

the tacit unit of context [30], and hence cannot fully capture the richness and complexity of situated

interactions, there are techniques we can employ now based on the considerate model to improve system

effectiveness and overall user-experience.
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Related Work

A body of work on social appropriateness leading to Considerate Systems falls under the context aware-

ness and interruption & disruption problem space. As technology got better, our interactions with com-

puters become more situated in post-desktop scenarios. The social aspects of these interaction, or the

shortcomings therein, started becoming more apparent. We review work from both of these areas in more

detail below.

2.1 Interruption & Disruption

An early paper on considerate systems [57] focused on when to communicate, an important but small part

of the commonsense of being considerate. It describes projects like AuraOrb [2], CarCOACH [7], and No-

tification Platform [82], where the focus was on endowing computing systems with an understanding of

the user’s focus of attention, workload and interruptibility [80]. The idea is that part of being considerate

is associating a cost with an interruption and comparing it against the user’s state of interruptibility which

the system assesses. These projects were often successful when the knowledge of when to communicate

could be easily represented, and when reasonable inferences could be made as to the importance of an

interruption and the cognitive load of the user. The use of commonsense knowledge to compare com-

munication streams can reduce the impact of interruptions [6]. Depending on user responses, the system

could regulate its interactions with the user using a blackboard architecture [7], or Bayesian statistics in

order to mitigate social feedback mistakes [82].

Another area of work that is focused on how one might more considerately interrupt or notify a user

is peripheral interaction [10]. The strategy is to minimize the attention required to interact with devices,

so as to make them less obtrusive. Humans are naturally able to perform peripheral activities, like ty-

ing shoelaces while engaged in conversation. The goal of peripheral computing is to design interactions

5
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Figure 2.1: The figure depicts the major blocks needed to build a situated agent that demonstrates social
intelligence in its interactions with users.

that take advantage of these inherent human capabilities. The approach of employing the periphery of

attention in human-computer interaction has been explored under various terms such as calm technol-

ogy [161], ambient information systems [129], and peripheral displays [109]. Such approaches have also

been explored in a number of application domains including the home, office, classroom and car, using a

number of interaction styles, such as tangible interaction, gestures, and wearable devices.

Indeed, systems that capitalize on commonsense knowledge of when and how to communicate can

improve interaction, and can be beneficial across domains. Previously, their widespread adoption might

have been hindered by the fact that most users put up with any (inconsiderate) interaction that would

allow them to solve their problem. Computing systems are now, however, becoming an indispensable

part of our social lives at the individual (smart-phones), small group (smart-televisions) and community

(social networking) levels. The effects of such interruptions or social faux pas are going to be felt more

strongly, especially in social settings (see Figure 2.1). This explains the increased interest in research

towards conferring these systems with basic emotional and social intelligence. These research efforts,

broadly-speaking, fall into two categories — 1) affective and social computing, i.e. being able to sense and

contextualize the social environment the system is embedded in; and 2) intelligence, i.e. being able to plan

and react to the sensed context.
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2.2 Social Sensing & System Behavior

The issue of sensing the social setting can be addressed through three frameworks as was highlighted

by Vinciarelli et al. [156]. The first framework comes from cognitive psychology, and is based on emotion

and affect. The second framework comes from linguistics, and uses vocal prosody and gesture which

are treated as annotations of the basic linguistic information. The third more recent framework is called

Social Signal Processing where the amplitude and frequency of prosodic and gestural activities is used to

understand speaker attitude or intention. The difference between this and the linguistic framework is that

it uses common non-linguistic signals about the social situation, and is different from the affect framework

in that social relation is communicated rather than speaker emotion.

Advanced response behaviors have received more attention in the field of embodied conversation

agents. The focus here has been on endowing these systems with facilities to communicate and respond

through the production of language and associated non-verbal behavior (gaze, facial expression, gesture,

body posture) [18]. A commonly used planning approach is the Do the Right Thing architecture [104]

that provides the ability to transition smoothly from deliberative, planned behavior to opportunistic,

reactive behavior in order to maximize task efficiency while maintaining trust. Similar models have

been successfully used in multiparty dialog systems to regulate turn-taking, and other conversational

dynamics [21]. The authors further identify numerous improvements that can be made to the behavior

models that would better support interaction, which informs some of the work in this thesis.

There has also been an effort towards long-term behavior adaptation through the use of emotion and

memory. Francis et al. describes a reflective architecture for agents where detection of emotional stress

or frustration can trigger re-evaluation of past behavior, which sets new strategies and goals [50]. They

showed that such adaption can extend the range and increase the behavioral sophistication of the agent

without the need for authoring additional hand-crafted behaviors. A vast majority of ubiquitous systems,

however, would be even more distracting with animated embodied agents, but their social response re-

mains as important. Perhaps work that is closest in spirit to the material described in this thesis, posits

the cognitive user interfaces that respond appropriately under uncertainty [167]. However, the focus of

that work is not on the social aspects of interaction.

2.3 Beyond Behavioral Response

In the following chapter, we describe a framework by which systems can be designed to be more consid-

erate of the user and the social setting, thus improving trust and perceived intelligibility of the system.

We identify a number of ways of incorporating commonsense approaches that can be employed without
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the need for complex models and techniques. In particular, we focus on the communication channel that

is enabling the co-construction of meaning in which the actors are involved. This will motivate our design

choices for a Considerate Mediator, which serves as an embodiment of the proposed framework.

We will review more related work with respect to the specific scenarios considered for this thesis in

their corresponding chapters. As mentioned in the introduction, these distinct and pertinent scenarios

are the conference call setting, and the distracted driving scenario. These study realtime interactions that

occur at the opposite ends of the social space spectrum, i.e. remote and situated. In remote social spaces,

the communication channel is restricted and constrained, leading to missing social cues. In situated social

spaces, the unbound nature of the communication among the different social actors can be overwhelming.

The Considerate Mediator will be grounded and evaluated in each of these scenarios as will be described

in chapters 4 & 5, respectively. By examining related work in their specific chapters, we can highlight

how the application of the framework reveals areas for interaction breakdown in prior approaches, and

the potential avenues to address them.



Chapter 3

Considerate Systems: How Systems Respond to

Context

The Computers as Social Actors (CASA) [119] is a well researched and evidence-based paradigm that

suggests that people respond to technologies as social actors, applying the same social rules used during

human-human interactions. People display a tendency to anthropomorphize non-human agent figures,

attributing human characteristics and even personality to these systems [118]. This tendency creates a

dichotomy between perception and reality. People are naturally inclined towards believing that systems

will respond when it is appropriate, but they haven’t and won’t until we explicitly model considerate

behavior and appropriate feedback; this leads to unmet expectations. People are well known for being

terrible at accommodating others that don’t respond appropriately in social circumstances. Still somehow

people are expected to accommodate computers with these shortcomings. They try to ignore the lone

phone ringing in a lecture, or the app notification in the middle of a conversation. It is when they are

cognitively or socially loaded — as when following GPS directions while driving, or performing in front

of an audience — that these shortcomings can lead to communication breakdown or worse. In such

situations the consequences of inconsiderateness can critically impact performance, and even safety. The

indiscretion shown by the system when it pops an email notification, while the laptop is connected to

the projector, can be a cause for frustration and embarrassment, and detract time and attention from the

meeting. It is this interactional friction caused by partially-formed social actors that we want to obviate.

Miscommunication caused by poor modelling of social feedback is a problem that gets magnified when

technologies encroach into the natural interaction space-time, as argued in the introduction. On the one

hand, the potential for technologies that operate in this space-time is tremendous. The intransigence of

human behavior has emerged as the root of most of the world’s biggest challenges, be it in the health,

9
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social or economic spheres. Aggressive driving, drug addiction, excessive water consumption are just a

few examples. There are multitudes of people that are motivated to tackle such problems in their lives.

The multi-billion dollar weight-loss industry is a testament to this. Behavioral psychologists have uncov-

ered numerous cognitive biases that hinder progress. Building on these insights, the behavior research

community has proposed multiple models to effect behavior change, which they have been successfully

demonstrated [49, 63, 101].

A key component in providing the right kinds of triggers or nudges in-situ lies in the choice of how

the feedback is framed. This is where context-aware technology that takes into account place, time and

situation through sensors and virtual sensors (model based interpretation of sensors) can play a big role.

For example, there is evidence showing that imagery techniques at the time of need have been successful

in reducing food cravings for weight management [83]. If people perceive such technologies as annoying,

their potential will likely not be realized. The role that such technologies have to play will be that of bona

fide social actors — “An action is social insofar as its subjective meaning takes account of the behaviors of

others and is thereby oriented in its course [159].” Not only will systems have to be context-aware, they

will also have to modify their action when a potential reaction is not desirable, i.e. they will have to be

consequence-aware.

We use the term Consequence-Aware to represent the risk-reward strategy implicitly used by humans to

achieve their goals, while simultaneously minimizing undesired consequences. It encompasses the various

facets of intelligence we demonstrate including emotional/social intelligence, intuition, and the ability to

learn through interaction. It requires endowing machines with a notion of self, or reflexivity, and a notion

of other, or Theory of Mind. Reflexivity refers to decision-making on the basis of continuous reflection

on the conditions of one’s action [59]. Theory of Mind is the ability to infer another agent’s full range of

mental states (beliefs, desires, intentions, imagination, emotions, etc.) [130]. Building consequence-aware

systems then is a goal, which needs to be broken down and tackled incrementally. We can start making

progress on these fronts by having a model of the user (other), the system (self ), and their shared task goals.

Our approach here is not to be prescriptive but descriptive. These models serve as a framework that can

inform the sensing, reasoning, and action capabilities a consequence-aware agent should be provided

with. As machine learning, knowledge representation and automated reasoning get better, these models

might be fleshed out to allow for semantic formulations of appropriate social action. In the mean time,

models can still serve as a scaffolding to guide the design of commonsense considerate response at the

surface or syntactic level, which we will cover in more detail in section 3.4.
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Figure 3.1: Social Group Models

3.1 User Model: User-centric to Socio-centric

When we consider an interaction with a user, we must acknowledge the different levels at which this

interaction occurs. Humans are stimuli perceiving, emotionally charged, cognitive processing entities.

Their experience is colored by the social situation they are embedded in. By modeling this phenomena in

a user, we can support interactions at these different levels:

• Perceptual (dimming a bright display),

• Pre-cognitive (identifying and reducing stressful external stimuli the user is not consciously aware of

like heat, noise, etc),

• Cognitive (users are easily distracted from the task at hand, and have definite limits on memory and

learning),

• Behavioral (accommodating for user mood/comfort by adjusting conversational agents tone, etc).

To understand the social level, we start with basic models to represent social groups. We might start

with two simple characteristics in particular that might help define the nature of their interactions —

whether the participants are collocated or not (situated vs. remote), and the rate of interaction (realtime

vs. deferred). When participants are collocated their interactions are situated in the physical world, for

example at a golf club where people gather and socialize. When they aren’t collocated, they interact

in virtual domains, such as on Facebook. In both the physically situated and virtual domains, when

interaction is happening at a conversational pace, i.e. the response times are around a second or so, we

say the interaction is happening in real-time. When response times are slight delayed, like during a chat

session, the interaction is happening in near real-time. When responses are delayed longer than this, with

emails for example, we can say that the interaction is being deferred.
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Based on these characteristics we present three types of social group models. The first model shown in

Figure 3.1 (a) represents the interaction between a single user and a system that connects participants who

are remotely located. Interaction here is not necessarily real-time or bidirectional, and includes internet

forums, social networks, etc. The second model in Figure 3.1 (b) represents the interaction between users

and a mediating system such as Skype. Such interactions are necessarily real-time and has at least one

remote participant. This category of interactions includes presentations, conference calls, etc. The third

model in Figure 3.1 (c) represents interactions in which the system and the user are equal participants

and co-collaborators engaged in a task. These are physically situated and real-time, and can include

interactions between the user and computing systems in an automobile, aircraft, or gaming consoles like

Wii and Kinect.

In this work, we are mostly concerned with the realtime (b) remote, and (c) situated models of social

groups. It is in these models, where interactions are occurring in real-time, we are arguing that the social

layer of a user is invoked, even if it is just a single user interaction (like with Siri). Interactions in this space-

time are inherently social. Human expectations at this space-time are so ingrained that any deviation from

what is considered normal behavior might agitate or aggravate users. The uncanny valley is a hypothesis

in the field of aesthetics which holds that when features look and move almost, but not exactly, like natural

beings, it causes a response of revulsion among some observers [115]. We can make the argument that

the uncanny valley hypothesis extends to not just aesthetic features, but also to communication behaviors.

The more human-like the communication becomes, the greater is the shared expectation, and the greater

the potential for communication breakdown.

3.2 System Model: A Communication Paradigm

Earlier we argued that in a social setting, every action is necessarily both utilitarian and affective. It

would be clearer, perhaps, to think of action in a social setting as a communication. Even the simple

act of closing the door can be used to communicate aggression if the door is closed hard, or politeness

if it is closed softly. By taking action (or not), a participant is communicating their mental and affective

states. The communication, for both the sender and the receiver, is happening at the conscious and

subconscious levels, using verbal and non-verbal signals. Social signal processing tries to make sense of

these signals. The modus operandi for considerate systems is to provide the expected feedback to support

these communications — to confirm it, to enhance it, and to reduce its overhead.

For a system to be considerate in a social setting, it needs to be supportive of the communication in

the social group. To support communication, the system should be aware of the different types of com-
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munication (verbal and nonverbal), and the mediums through which people communicate (audio, visual,

touch, etc.). Visual nonverbal communication includes facial expressions, body movements and posture,

gesture and touch, eye contact, and interpersonal space. In audio, nonverbal communication happens us-

ing the intensity, timing and pace of speech, and through the tone, pitch, volume, inflection, and rhythm

in voice. Humans tune these parameters of communication based on the nature of the interaction, for ex-

ample speaking in hushed tones when talking about something very personal and private, or in a library.

Systems need to reciprocate in a similar fashion for successful integration.

Communication can be further be analyzed at the different structural and organizational layers at

which it happens. Here again each level shapes the nature of the interaction and the commonsense rules

entailed. These levels are listed below in order of increasing scope:

• Turn-taking (Dominant vs. Dormant)

• Roles (Sibling vs. Friend)

• Status & Power (Employer vs. Employee)

• Type of meeting (Instructional vs. Collaborative)

• Social Setting (Formal vs. Informal)

Moving on to the actual use of language to communicate, we can differentiate between some of the

strategies humans use to maneuver around and lubricate social interactions [143]. We list some of these

below, and illustrate them with examples on how to embed considerateness into communications in order

to better support interactions:

• Superficial: Social niceties like “thank you”, and “please” acknowledge and celebrate interdepen-

dence, reduce friction in an interaction, and can make requests, confirmation, and successes more

explicit.

• Embellishing: Using intonation and spacing between words in a manner that can improve the users

retention of information.

• Ancillary: A preface or a follow-up to a part of the conversation. Often we find people using

qualifiers to make their communication more easily accepted.

• Multi-modal: Communication can occur across modalities as well, for example, visually displaying

information when the audio modality is being used.
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• Orthogonal: Euphemisms are indirect expressions which replace words and phrases considered harsh

and impolite, e.g. kick the bucket, downsizing.

• Functional: Highlighting the key concepts in the current conversation to provide a quick summary

for a new entrant, or repetition to accommodate for lapses of attention.

3.3 Task Model: Purse System Goals & Minimize Breakdown

Successful use of a tool requires that not only were the goals met, but they were done better or easier

than they would have been otherwise, with breakdowns or interactional friction kept to a minimum. For

example, the goal while driving is to reach a destination. This task can be completed even when some

kinds of breakdown is encountered (getting stressed by strange controls or indicators, having someone

honk at you, being cutoff at an intersection, almost hitting something or someone, getting a police citation,

etc.). We can say, however, that the task is completed more successfully when one minimizes the risk of

such encounters. Therefore, an optimal action by the system is one that maximises desired consequences

(goals), while minimizing undesired ones (breakdown).

The task model aids in this action selection problem by presenting a taxonomy of approaches for

pursuing scenario goals, and minimizing breakdown. Scenario goals refers to situated task goals (such as

ensuring participants get equal stage time in a collaborative meeting), as well as interaction goals (such

as transparency and efficiency). These goals can be pursued using the feedback and feedforward family of

approaches. Feedback is how a system orients itself to the user, giving them some indication of their past

actions. On the other hand, feedforward is when the system orients the user towards a goal, giving them

indications of advisable future actions. Methods to minimize breakdowns fall under the appropriateness

and differential family of approaches. We discuss each of the four approaches as part of the taxonomy

below:

3.3.1 Feedback

Feedback is interesting in that it falls on a spectrum that ranges from the subtle to the overbearing. A sim-

ple greeting can feel considerate, and is a social feedback of acknowledgement. Feedback of noticing that

you are hoarse or sick is a stronger statement of considerateness. Without social feedback, people depend

on a preset audience model to communicate, such as while lecturing to a distance learning class, and often

don’t know if they are being understood. This thesis will use the already constrained human/human com-

munication channel of a conference call to explore computer mediated considerate feedback. For instance,

we show how such social feedback can be used to bring about awareness of the presence of participants
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Table 3.1: Task Model: A taxonomy for pursuing system goals (feedback & feedforward) and minimizing
breakdown (appropriateness & differential) as described in section 3.3. The table lists the various methods
for each type of approach.

Pursue System Goals Minimize Breakdown

Feedback Appropriateness
Social User
Conversational Social
Direct Manipulation Communication
Reinforced

Feedforward Differential
Suggestions Preset Rules
Influence Adaptive
Motivation Preferential
Gamification Priorities

who are still on the line but haven’t contributed in a while. Apart from social feedback, other forms of

feedback available to considerate systems include conversational, direct manipulation and reinforcement

feedback.

Conversational feedback in speech recognition systems can improve user engagement. Feedback such

as “uh huh” and “come again?” delivered at a conversational pace can be reassuring and motivating,

giving users a sense of whether they are being understood or not. Such dynamic feedback that speakers

give each other in a conversation allow them to make fluid adjustments and keep a dialog on-track. Con-

siderate systems should look for opportunities to give such lightweight feedback to support and enhance

interactions. Conversational feedback in speech recognition systems might improve user engagement.

Direct manipulation feedback is about equipping users with tools to provide feedback to other users of

their own accord, and is similar to back-channeling. For example, the ability to indicate to the speaker to

speak louder without having to interrupt them mid-speech on a conference call, is analogous to adjusting

the microphone in the physical world. By enabling such forms of feedback, considerate systems can better

facilitate interactions among users and achieve task goals more efficiently.

Reinforcement feedback is different from the interactional feedback discussed above, as it is more

related to the performance of a user. It is an important feature of educational or motivational systems that

can monitor the actions of the user, and provide positive or negative reinforcement. A simple example

is that of speed radars that flash back the speed of the driver when they are above the speed limit. Such

feedback reinforces positive behavior.
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3.3.2 Feedforward

In behavioral and cognitive science, feedforward is a method of teaching and learning that illustrates or

suggests a behavior or path to a desired goal. Feedforward is different from feedback in that, instead of

describing performance in the past and providing room for reflection, it actually illustrates better action

choices that the user should make in the future. For example, in a collaborative session, feedback would

be in the form of telling a participant that they talked for 80% of the time, whereas feedforward could

take the form of encouraging the user to take turns sharing the floor with others.

Feedforward can also nudge users towards more efficient or productive behavior through persuasive

methods, which include influence, motivation, gamification, etc. Influence can be won by trying to match

the system’s response to the user’s affective state in order to establish a level of trust and comfort. Moti-

vational approaches try to change the attitude and actions of people through the use of descriptive social

norms. For example, having a card in hotel rooms that state that most guests reuse their towels motivates

the guests to do the same [60]. Reward mechanisms, such as gamification, such as the energy flow dia-

gram in a prius have been successfully used to get motorists to drive in a more eco-friendly manner [12].

Recently, such technologies have been focused on behavior changes in health domains through digital

health coaching, which seeks to augment personal care delivered to patients [18].

While feedback and feedforward approaches can be used by the system to guide the social group

towards its goals, when and how a system communicates this can drastically effect user performance. It

was found that delaying reinforcement feedback half a second or more relative to turning performance

in a car maneuver could improve learning [7]. Like we argued above, success in situated and real-time

interactions might depend on considerate response, which is the delicate coupling between goal-oriented

action and its precise parametrization. Approaches to parametrize action so as to minimize breakdown

are discussed next.

3.3.3 Appropriateness

Appropriateness can range from the less obvious commonsense knowledge to more salient societal norms

(such as not spitting on floors inside buildings). Designing considerate responses requires establishing

appropriate statements, actions and reactions to begin with. Thinking about it from the various levels

of the user model and system communication model described above allows us to identify opportunities

that can be used to design systems that begin to do this.

In the user model, we saw examples of supporting interaction at the different layers including percep-

tual, pre-cognitive, cognitive, behavioral and social. A lot of early work on ergonomics stressed human
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performance and efficiency, which brought into focus the perceptual and pre-cognitive layers. For exam-

ple, the eyelid might react on the order of milliseconds, while some responses to warmth, smell etc. can

be dramatically slower. With the increasing use of technology for work, the emphasis shifted to cognitive

performance and efficiency.

At the behavioral level, one aspect of appropriateness comes from the tone the system takes with the

user. Systems can come across as condescending, self-centered and arrogant. One manifestation of this in

how the onus is on the user to understand the operation of the system [52]. The successful system might

have a dynamic model of the experience level of the user and accordingly match its language, tone and

mannerisms. Systems can make straight forward modifications in spoken dialog systems using volume,

pitch, pitch range and speaking rate to change how the system is perceived by the user [117].

At the social level, we can recognize that information might be sensitive and not privy to everyone in

the group. For example, in a distributed meeting scenario, the system can privately remind the speaker of

how much time is left on the call, to get them to reflect and react appropriately, without calling attention

to it in front of the other participants.

Similarly, appropriateness as an approach can be thought of from the different layers at which system

communication is happening. Most critical, perhaps, is the system’s appropriateness at the turn-taking

level, where inappropriate seizing and ceding of the floor greatly impacts the flow of communication.

Turn-taking is negotiated in a number of ways, including through the use of speech intonation and pauses,

gestures, body orientation and eye-gaze. This dynamism makes turn-taking difficult to interpret and

predict. However, as shown in prior work, a receptionist system can act appropriately without having

to intimately understand the social context by analyzing surface characteristics [20]. A mediating system

should take advantage of similar surface interactions and decide when to interject.

Roles and social status of the participants in a group is another area where appropriateness is im-

portant. A user might not want the system to communicate the same information it would to a group of

adults, versus, when a child is in the group. Similarly, while dominance during meetings is not desirable, if

the interaction is between an officer and his subordinate, it might be appropriate. Other opportunities to be

appropriate include ensuring that all participants have the same level of grounding or pre-understanding,

i.e. use of shared vocabulary, knowledge of facts, etc. This might be tackled by highlighting keywords &

phrases that the system has spotted in the past. Designers should be sensitive to the social and cultural

norms as determined by the setting and the type of interaction that is occurring.
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3.3.4 Differential Response

Differential (or adaptive) response is an appreciation of the fact that user preferences and circumstances

change. What might work for a user one time, might not the next time; settings can be too rigid. One

way to be differential in response is to use commonsense knowledge to adapt to the simple differences

that it can reliably classify. Successful systems might accommodate for this by modeling the situation. For

example, even though the phone is in silent mode during a meeting, the user might want a call from their

boss to come through.

Another approach to being adaptive is to learn from past experiences. A system monitoring the effect

of its actions on the environment, can learn to optimize its action choice so as to achieve desired results.

This is an important feature for considerate systems as user preferences can vary significantly in ways

that can’t be encompassed with commonsense knowledge. Intra-user preferences themselves change over

time and can vary based on the situation. For example, as drivers get more familiar with an area, they

might prefer to have less explicit GPS instructions, as compared to when they are new to an area.

In social groups, through differential response a system can be preferential towards certain users

depending on their need and the system goals. For instance, a system could be capable of detecting that

one user needs more support than the others in a group activity, and provide the necessary assistance.

On a conference call this might translate to detecting that a participant is continuously being cut off by

another participant. The system could respond by increasing their volume, and decreasing the volume of

the other participant.

The nature of information being communicated is also highly differential, and can vary from the

frivolous to the critical. In an age where more people are getting fatigued with information overload,

a considerate system should have the ability to prioritize communication based on the situation, and

bandwidth available at the different communication levels. For instance, at the cognitive level, perfor-

mance while dual tasking can be compromised if the demands exceed the bounded human capacity. This

bound varies with age and experience. Inexperienced drivers, for example, require more concentration

while driving. In such a situation, the system could use the user’s own psychophysiological indicators to

determine if they are cognitively loaded before engaging with them [133].

3.4 Towards Considerate Response: An Analytic Approach

Communication relies on a number of signals occurring at different levels from perceptual to social.

These can be supported in a variety of ways depending on the scenario goals. Every action towards

these goals has consequences, both functional and affective. A consequence-aware system would act
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towards achieving intended consequences (goals), all the while minimising undesirable ones (breakdown).

We define considerate response as achieving the scenario/task goal without breakdown, which is an

undesirable shift of focus from the task at hand to the technology at hand:

Considerate Response ) Pursue System Goals + Minimize Breakdown

The point of such a formulation is to reinforce the idea that in social interactions, neither is it desirable

for the system to achieve its scenario goals without considering the social consequences of doing so;

nor does it make sense for the system to abandon its functional goal for fear of upsetting propriety

and relationship. A trade-off must be made. Optimizing such trade-offs requires metrics of social and

functional communication value. An analytical approach is needed, which includes a repeatable process

that can be used to break a problem down to the elements necessary to solve it. For Considerate Systems

these elements are formulated as the following questions, with respect to designing and developing a

Considerate Response:

• How to pursue goals? (improve performance, empower users, etc., using feedforward and feedback

approaches)

• What is the potential for breakdown? (identify sources of distraction, frustration, disengagement,

etc., using the sociocentric user model, and communication-based system model)

• How to minimize breakdown? (parameterizing the agent’s actions using the appropriateness and

differential approaches)

Each of these questions need to be examined separately, systemically, and sufficiently, with proper

consideration given to all alternatives. This is precisely where the user, system and task models developed

earlier in the chapter serve as guidelines in addressing these questions. For instance, in a driving situation,

the scenario goal might be to deliver a text message to the user. However, there is potential for breakdown

at the perceptual level if the text message is visually displayed, or at the cognitive level if the user is

in the middle of a mentally demanding episode. Breakdown might be minimized by using the audio

medium or by delaying the message till the driver is not cognitively loaded. To demonstrate the utility of

the analytical approach towards creating a considerate response, we apply it in two exemplar application

domains, which are discussed in section 3.6.
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Figure 3.2: Architecture for Considerate Systems

3.5 Architecture: Actuation & Gateway Modules

We start with a basic sense-reason-act control loop (marked in black, Figure 3.2), which can be used to

represent any human-computer interaction in a situated environment. The term situated environment

refers to all of the real-world context that is embedded in activities like driving or cooking. The agents

in this situated environment, both human & AI, are stacked together for ease of representation. They

independently sense the environment, and act on it. For convenience, we also include a summing junction,

which takes as input the actions of the agents, and outputs their sum to the environment.

To this loop we add the Considerate Mediator (CM), which as explained earlier serves as an embodi-

ment of the Considerate Systems framework. In essence, the notion of considerate social response, adds to

the traditional sense-reason-act loop, and modifies it into a sense-reason-consider-act loop. Like the other

agents, the CM senses and acts on the environment, but what differentiates it from the other agents is that

it is allowed to a) communicate with the other agents, and b) control the summing junction. Conceptually,

the reason that its allowed these privileges is because its the only agent equipped with the user, system

and task models. We will explore this with an example below.

In the driving situation we saw that how the Considerate Mediator parametrizes the action (audio

or visual) is as important as the timing of the action (based on the cognitive load of the driver). For

this reason, we separate out the timing aspect from action parametrization and represent the Considerate

Mediator as consisting of two modules: actuation and gateway. The actuation module is concerned with

the action selection problem, and the parametrization of the action. When the action is to communicate
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with the other agents, its called an advisory action, because the agent can’t control the other agents; it

can only advise them (for example when it shows help information on a screen). When it acts on the

environment, or effects it by controlling the summing junction, its called assistive. The gateway module is

concerned with the timing of the action, and in gating any information in the environment from reaching

an agent (for example, delaying transmission of video feeds during live broadcasts). This is why a dotted

line has been drawn between the situated environment and the agents.

The purpose of an architecture here is to serve as a tool in the design of considerate response. It allows

us to visually think through a problem and consider alternative strategies for mediating a problem. Let

us do a quick example to highlight this. Imagine a brain-storming session in a conference call setting,

where the participants are represented as agents. Such sessions are more productive when everyone is

contributing equally. When one participant becomes dominant, the lack of visual feedback from other par-

ticipants can prevent the dominant participant from realizing the consequences of their behavior. Adding

a Considerate Mediator to this environment, applies the analytic process to break the problem down, and

inspect it at the different levels of the user, system, and task models.

Once the Considerate Mediator’s considerate response has been determined, the architecture provides

the agent with a few options to achieve the desired outcome: 1) the CM could advise the participant to

share the floor, 2) it could use an assistive action to simply subtract out the dominant participant via the

summing junction (i.e. reduce the volume or mute them), or 3) the CM could for example use the gateway

module to slightly delay the conversation to the dominant participant, so that they feel less empowered

to take the floor. Based on the constraints of the problem, the designer or the system can pick the right

recourse. The point of this example is to demonstrate that the architecture can be used to shed light on

alternative mediation strategies that we might not have considered otherwise.

In the following section, we describe how we plan to evaluate each module.

3.6 Exemplar Applications

Once computers understand speech, vision, emotion and social constructs, it will revolutionize their role

in society. The grand technological promise is that they will become indispensable agents in peoples daily

lives, adding convenience while making people more effective at work. They will enable individuals and

groups to tackle some of the great behavioral challenges facing humankind including health, sustainable

living, and economic progress. We have argued that deeply modelled consequence-aware intelligence

based on relfexivity and Theory of Mind is needed to fully realize this potential. We motivated the

need for considerate systems by articulating the problem, and recognizing that there are parts of it that
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we can tackle now, given the tools at our disposal. This relies on endowing systems with considerate

commonsense behaviors, which can be learned or designed into the system a priori. Towards this end,

this chapter introduced considerate systems, a conceptual framework that includes a design process &

guidelines (user, system, task models), and an architecture.

Our thesis statement is that when systems display considerate behavior, they are more effective. Any

evaluation of this thesis statement requires grounding the framework in specific situations that can be

technically realized today. As discussed earlier, the application of the considerate systems framework is

very context specific. It follows that what it means to be considerate and effective changes with each situa-

tion. The rest of the thesis is split into two parts, each of which investigates a specific realtime scenario that

is prevalent today, and has been previously studied in the literature. The scenarios occupy different ends

of the social-space dimension, i.e. remote and situated. When communication is remote, it usually occurs

over a constrained channel, where there is a reduction of social cues and feedback that people depend

upon. This negatively impacts the natural flow of communications. We explore the conference call setting

as an exemplar application of a remote realtime scenario. Here the considerate response is to support and

augment communication occurring over this impoverished medium. On the other hand when commu-

nication is situated, there are a number of other social actors involved whose actions can overwhelm the

user. We chose a very common, yet complex, multitasking scenario, i.e. distracted driving, as the second

exemplar application. Here a driver can be inappropriately interacting with infotainment and cellphone

devices, which can critically impact their driving performance. In contrast, a considerate system in this

scenario should try to temper and mediate communication with the driver based on perceived task load.

An ideal starting scenario is one in which we get to ask if we can add a considerate agent to an already

overloaded natural communication channel and improve interactions? Given the limitations of an audio

conference call, any inconsiderateness on the part of the agent will be magnified, negatively affecting

the participants on the channel. This undesirable effect would be reflected in quantifiable performance

metrics that can be analyzed. Once this is established, we might ask if a considerate agent can improve

interactions in a complex spatiotemporal activity, where the consequences of being inconsiderate can be

critical. In the driving scenario, a difference of a few milliseconds in reaction times can have far-reaching

effects. With regards to the architecture, the first scenario (conference calls) affords itself to the evaluation

of the actuation module (marked in red; see Figure 3.2), where the different aspects (parameters) of

the actions are explored with regards to abetting communication. On the other hand, because of its

time-critical nature, the second scenario (distracted driving) focuses specifically on mediating the agent’s

actions, which is represented by the gateway module (marked in blue), in order to reduce communication

overload.
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3.6.1 Realtime Remote Interaction: Conference Calls

As the work force becomes more global, we are increasingly embracing technologies that allow us to

collaborate in distributed settings. Because of its prevalence, such distributed meetings have been well

studied, and a number of problems have being identified. Various solution exist to address these issues

but they mostly depend on visual feedback. This means that the participants have to visually focus on

a small part of a screen to become aware of, and interpret, this feedback. This becomes inconvenient

especially when the visual focus is primarily being used for computer tasks such as editing spread sheets

or documents. This is further aggravated by limited screen estate and window clutter.

Given all of these constraints, the most obvious solution then would be to provide audio feedback

instead of visual feedback. The user doesn’t have to shift their focus from the task at hand which creates

breakdown. Audio feedback is however more challenging to get right. It is a constrained medium that is

already being shared among the participants in the call. Despite these challenges, we apply the framework

towards the design of a mediating agent that tackles five problems prevalent in distributed meetings, and

demonstrates measurable success (section 4.5). These include:

• Dominant and dormant participants

• Noisy background environments

• Inability to differentiate between similar sounding participants

• Uncertainty about the presence of participants who have not contributed recently

• Distracting notifications when participants enter or leave the call

We further explore the application of differential response to build a system that can adapt to various

types of users (section 4.6.2). We employ reinforcement learning techniques, and simulate multiple users

based on their:

• Responsiveness to feedforward and feedback

• Ability to self-moderate without any agent action

• Irritability from consecutive agent actions

• Short-term change in a single user’s behavior

3.6.2 Realtime Situated Interaction: Distracted Driving

Another scenario that has become very prevalent are distractions that happen while driving. These include

interactions with other people that are mediated by technology (e.g. text messages), and interactions with



CHAPTER 3. CONSIDERATE SYSTEMS: HOW SYSTEMS RESPOND TO CONTEXT 24

the technology itself (e.g. notifications). As technology gets better the implications of distracted driving

can be dire for road safety. Research has shown that co-located passengers are better than remote partners

at modulating their communications, resulting in safer driving performance. Technology needs to be able

to mimic passenger behavior in gauging the load of the driver at a fine-grained level, in order to determine

if its safe to interrupt or engage with them.

The first study tries to determine if notifications are indeed distracting (section 5.3). We are also

interested in exploring the effect that the modality of the notifications has on performance. This takes

into account appropriateness at the perceptual level of the user. We compare audio notifications with

visual ones, displayed through a heads-up display. While it can be quicker to read a sentence than

listen to it being read, sharp visual detail, i.e. foveal vision, is of primary importance for both driving

and reading tasks. This can lead to conflicting demands on the visual perceptual resource, which can

effect performance. We investigate whether this detriment in performance can be thwarted if this conflict

happens only when the user is under a low cognitive load. For comparative purposes, we perform the

same study for audio notifications.

Next, we train our sights on autonomously mediating notifications. This takes into account appropri-

ateness at the cognitive level of the user. One approach to determine this is based on psychophysiological

metrics. The advantage of this approach is its potential to be applicable in other domains, apart from

driving, like handling heavy machinery or performing surgery, without extensive instrumentation of the

environment. Generally, it would be of valuable importance for any system that interacts with people

in a situated and real-time manner, e.g. spoken dialog systems. For instance, while listening, dialog sys-

tems need to have a certain level of comfort with disfluencies when the speaker is momentarily cognitive

loaded with another task. It should not prompt the driver to repeat themselves, when they have stopped

mid-sentence because the driving task has suddenly occupied their attention. Similarly, while speaking it

should be able to match its pace and timing to the varying attention capacity of the driver. In this part of

the thesis, we focus on developing a fine-grained measure of cognitive load (section 5.4), and demonstrate

its utility in a multitasking driving scenario (section 5.5).

3.6.3 Generalizing the Considerate Mediator

Indeed the demonstration of considerate interfaces improving interactions could be done in many do-

mains. One of the goals of the provided architecture is to guide the addition of the considerate mediator

into any pre-existing scenario. By choosing the conference call and distracted driving scenarios, we aimed

to demonstrate the frameworks success in tackling diametrically opposing problems endemic to the two
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ends of the social-space dimension. We apply the considerate systems framework in each of these sce-

narios, develop systems that embody considerate behavior, and demonstrate their effectiveness through

controlled experiments. A convincing demonstration requires us to show not just the system’s successful

pursuit of scenario goals, but more deeply that the response succeeds in a natural and social setting with

minimal breakdown. The most serious demonstration would come if automated considerate response

itself, abstracted from any domain of discourse could be made to help users; thus, improving not just

human-computer interaction but human-human communication as well.



Chapter 4

Realtime Remote Scenario: Conference Calls

This chapter explores the challenges arising from remote realtime interactions as the first setting in which

the Considerate Mediator is grounded and evaluated. Remote interactions suffer from a reduction of social

cues, which lead to interaction issues that hamper performance. The general approach of the Considerate

Mediator to address problems in such scenarios is to augment the communications by adding social

cues of its own. We chose to study the audio conference call setting in specific. Adding to an already

constrained natural communication channel allows us to highlight the considerate aspect of the system

response. Such situations can easily be made worse without careful consideration of the consequences.

It is possible that use of visual feedback could work, but to get a baseline of people doing the best they

can and improving it, we chose the simplest change to the simplest remote natural collaboration medium:

audio.

Conference calls happen over a very constrained audio medium which presents an opportunity to more

easily delineate the effects of any inconsiderate behavior (breakdown) on the part of an artificial agent.

Conversely, it presents a challenging environment in which an agent might interject itself to achieve

its goals. This work explores how technology can aid audio communication by better accommodating

these social signals, and by creating new ones. The focus is on group communications in a distributed

audio-only conference call where the participants are collaborators in a problem-solving/decision-making

meeting.

To ground and evaluate an agent in this setting we focus on five commonly occurring problems on

conference calls. We make use of the design guidelines (3.4), and the advisory & assistive actions of the

actuation module (3.5) to formulate responses, and demonstrate their effectiveness in addressing these

problems.

26
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4.1 Introduction

Communication is a type of social action [69]. It can be verbal and non-verbal in nature. From a suggestive

glance to an admonishing tone, people rely on all sorts of cues to assess the situation and regulate their

behavior. Particularly while collaborating, people orient themselves and coordinate in creating a shared

reality. They engage in this process to seek understanding, and to be understood. Feedback is pivotal to

this process, and it propels and directs further communications. It helps in creating a shared awareness

and mutual understanding.

When communication is mediated by current technology there is a reduction in these social cues or

feedback. This creates a sense of disengagement and psychological distance. It is interesting to note

that both video and audio-only conferencing suffer from the attenuation of these cues, albeit in different

measures [144]. Hence, we find that the popularity of their use lies on a spectrum depending on the

situation, the participants, the nature of the task, and the social setting. For instance, audio conference

calls are widely used in business meetings [67], whereas desktop videoconferences are more popular in

personal settings [22]. Even so, the reasons for users choice and preference are nuanced and complex,

involving multiple tradeoffs related to intrusion, amplification of inattention, and mobility.

Globalization and technology have brought radical changes to business practices, and meetings in

particular. With increasing frequency, teams are being composed of members from geographically dif-

ferent locations so that they can bring to bear their expertise on pressing problems, without the travel

and associated costs. These distributed teams collaborate by holding meetings on conference calls and

other networking solutions. By the very nature of the distributed setting, a host of technical, organi-

zational and social challenges are introduced into these meetings that have been well documented and

studied [166, 70]. A number of these challenges are associated with the missing or attenuated channels of

non-verbal communication, which affects basic interaction constructs, such as, turn-taking, speaker selec-

tion, interruptions, overlaps and backchannels [66]. While there has been significant work and progress

to preserve social cues in video communications [120], audio-mediated technologies have not received the

same share of attention, and depend largely on visual cues like participant lists to buttress communica-

tions [166].

4.1.1 Why Audio?

Audio conferencing is a popular tool and ranks only behind telephone and email in terms of most of-

ten used collaboration technologies [122]. In this work, we explore how social cues can be restored

on the audio channel, while addressing some of its most often cited drawbacks [150, 144, 166]. These
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drawbacks are predominantly social in nature, and focus on the process of interaction. These include

dominant or dormant participants, extraneous noise, the ability to accurately identify speakers, the notion

of personal space for remote participants, and the issues of awareness about the presence of other collab-

orators. We design different types of audio cues, and experiment with advisory and assistive actions to

better understand how these might support human communication. Our goal is to build a considerate

agent that would know when and how to apply these techniques appropriately. Audio interfaces have

a low bandwidth for natural synchronous communications between multiple people. The difficulty in

improving these communications with an agent further loading this constrained channel should then be

maximally hard, making it an ideal place to demonstrate the utility of an agent being considerate and

appropriate [143].

The reason we chose to provide feedback in audio comes from considering the potential for break-

down at the perceptual and cognitive levels of the user model. Many discussions and meetings involve

documents and physical artifacts that occupy users visual attention. This makes display space tight, and

switching between display views task-intensive. Besides, the visual channel is not the best medium to

convey awareness information because human visual field is limited to the frontal hemisphere, and the

foveal region in particular. This creates inherent limitations in the use of visual displays, wherein the user

must see and attend to the display. Noticing visual changes also gets harder as tasks get more demanding,

or if the display is cluttered.

Using audio minimizes the potential for breakdown since people can perceive multiple audio channels

simultaneously, and do so with considerable ease. In particular, we have the perceptual ability to hone in

on a particular channel while filtering out the rest, commonly referred to as the “cocktail party effect” [5].

Thus, the audio channel can be used as an effective mode of transmitting background information (e.g.,

[54, 29]). In addition, audio can be used for conveying temporal information like whether an activity is

occurring right now, and when actions start and stop. It can also be used to indicate spatial and structural

information, like where the actions are happening, the type of activity and the qualities of the action (e.g.,

[136, 28, 64]).

4.1.2 Advisory & Assistive Actions

In order to explore the idea of pursuing scenario goals by proactively injecting considerate responses on

an audio channel, we built CAMEO (Considerate Audio MEeting Oracle), a multiparty conference call

facilitator. In the following sections, we survey related work and discuss the design goals and features of

CAMEO. We then describe the architecture and implementation details of a testbed system that facilitates
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audio conference calls between two or more people. We demonstrate how this considerate mediator uses

advisory actions to resolve conversational dominance, and disruptive extraneous noise [131]. We then

show that through the use of assistive audio cues, users were more assured, and less distracted about the

presence of other collaborators. In particular, we focus on resolving issues related to speaker identification,

participant presence, and entry & exit announcements [132].

4.2 Related Work

4.2.1 Feedback in Collaborative Settings

In a collaborative setting, teams with constructive interaction styles achieve better performance (e.g., so-

lution quality, solution acceptance, cohesion) than teams with passive/defensive interaction styles [128].

Team interaction styles are a reflection of the aggregate communication traits of the individual mem-

bers. Higher variations in extroversion between team members lead to less constructive and more pas-

sive/defensive interaction styles within teams [11]. Shared leadership is a critical factor that can improve

team performance [26]. This leads to the question: is it possible to influence the group dynamics by en-

couraging extroverted people to share the floor when their dominance is pronounced, without disrupting

meeting flow.

Erickson and Kellogg formulated the concept of social translucence to improve online group interac-

tions [46]. They advocate that the three properties a socially translucent system must possess are visibility,

awareness, and accountability. Visibility and awareness brings about a collective awareness creating an

environment where individuals feel accountable and responsible for resolving problems.

These ideas were employed by Yankelovich et al., in the design of their Meeting Central system to

address the problems with audio conferencing which were documented in a series of studies [166]. They

grouped the problems into three categories: audio, behavior and technical. In their assessment, the top

problems that affected meeting effectiveness were surface communication properties that included too

much extraneous noise (audio), and difficulty in identifying who was speaking (technical). Among the other

reported problems, participants had difficulty knowing who had joined or left the meeting (technical), and

speakers not being close enough to their microphones (behavior). More interestingly, the authors note that

“most audio problems are, in fact, behavioral. They are compounded by the difficulty remote participants have, both

technically and socially, in interrupting to indicate that the problem exist.”

The idea of using feedback to influence group dynamics and behavior in distributed meetings was fur-

ther explored by Kim et al., where they focused primarily on the effects of dominance [95]. Their Meeting

Mediator system computes group interactivity and speaker participation levels, and uses a visualization
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to feed this information back to the participants on their mobile phones. Dominant people had a negative

effect on brainstorming as fewer ideas were generated during these sessions. They also found that dom-

inant people caused more speech overlaps in distributed meetings. Since spoken communications fill the

channel and are so dynamic, the question arises as to how facilitation can be achieved at the turn-taking

level to manage these interrupts or overlaps. A solution is to use virtual meeting facilitators in the form

of embodied agents.

The interfaces discussed so far depend on GUIs and visualizations adding separate and new informa-

tion on a separate communication channel. Graphical interfaces to computers were developed over the

last few decades as a high bandwidth parallel communication channel. A computer interface can change

the look of any part of a screen at any place in a fraction of a second, and the eye can notice millions of

stimuli simultaneously. A keyboard allows directly coded symbols to control the computer, and a mouse

or touch screen allow a person to react to concrete interface items directly. An audio interface has none

of the afore-stated advantages. All information is layered on a low-bandwidth interface and without a

keypad there is no coded input. On top of this, if a computer introduces audio into a conference call it is

competing with the participants. Introducing an agent into an audio environment implies that they must

successfully cohabitate this impoverished interface with the participants. Could a considerate system

actually add and not detract from the audio in a conference calling system?

Given its limitations, we would expect audio feedback to distract or block other communication. How-

ever, work done by Rienks et al. reveal that participants found voice and visual feedback can be equally

efficient [135]. While voice messages were more intrusive than text messages, participants of the meet-

ing appeared to be much more aware of their own behavior when the system provided vocal feedback.

This might be because the feedback is overlaid on the primary communication channel as opposed to a

peripheral device. They also reported that as the users got used to the audio interface they found it less

disruptive.

4.2.2 Auditory Interface Design

There is a rich body of work on the use of audio for user interfaces, which provides the foundation for our

work of supporting social cues in conversation. We briefly review how audio interface design has evolved,

and the sounds and techniques others have used to provide audio feedback and guide user interactions.

We then cover how audio has been used in distributed settings to allow people to coordinate better, and

to increase shared awareness of remote events and activities.

Audio interfaces largely use two types of non-speech cues, namely, earcons and auditory icons. Earcons
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are synthetic tones whose timbre, pitch, and intensity are manipulated, to build up a family of sounds

whose attributes reflect the structure of a hierarchy of information. Since earcons are abstract, they require

training and need to be learned to be effective. Auditory icons are a more focused class of audio cues,

which are carefully designed to support a semantic link with the object they represent, which might make

them easier to associate. Furthermore, sounds can be perceptually mapped to the events they indicate

using symbolic, metaphorical and iconic methods.

Soundtrack [42] was one of the first auditory interfaces to use earcons and synthetic speech. More

recently, Rigas et al. [136] demonstrated the use of earcons to communicate information about the layout

of a building. Four different timbres (piano, organ, horn, and clarinet) were used to communicate the

sections of the building. Floors were communicated by musical notes rising in pitch. A single note

was rhythmically repeated to indicate room number, and combination of timbres was used to indicate

hallways. Users successfully located the rooms but were not able to interpret the different hallways,

suggesting that combination of two timbres created confusion. Early in our work, we experienced how an

overloaded audio dimension could easily be created by assigning multiple tracks of an orchestra to each

participant. We focus on methods that prevent such overloading in a single audio dimension.

SonicFinder [53] was the first interface to incorporate the use of auditory icons. A variety of actions

made sounds in the SonicFinder, including the manipulation of files, folders, and windows. SonicFinder

also made use of dynamic parameterized sounds to indicate temporal and structural activity, like file

transfers producing a continuous filling up sounds, and different files producing different pitched sounds.

In our work, we seek to explore when we can use the intuitive semantic mappings of auditory icons, over

the arbitrary symbolic mapping of earcons.

A number of other works show how audio interfaces can improve interactions. gpsTunes [147] focussed

on using adaptive audio feedback to guide a user to their desired location. As the user gets closer to the

target, the music gets louder followed by a pulsing track to indicate their arrival. Schlienger et al. [142]

evaluated the effects of animation and auditory icons on awareness. They showed that the auditory icons

were commonly used to notify a change, and to focus attention on the right object just before it changed.

AudioFeeds [39] explored how audio can be used to monitor social network activity, and PULSE [112]

evaluated how audio cues can be used to communicate the local social vibes as a user walks around. This

work shows that such indicators might work well and not interfere with a conference call.

Activity Coordination in a Distributed Setting

SoundShark [55] was an auditory interface extension of SharedARK, a multiprocess system that allowed

people to manipulate objects and collaborate virtually. It used auditory icons to indicate user interactions
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and ongoing processes, to help with navigation, and to provide information about other users. Users

could hear each other even if they couldn’t see each other, and this seemed to aid in coordination. This

work motivated the development of ARKola, a simulation of a soft-drink bottling factory [56]. Tempo-

rally complex sounds occupied different parts of the audible frequency spectrum, and the sounds were

designed to be semantically related to the events they represented. Also, instead of playing sounds con-

tinuously, a repetitive stream of sounds were used to allow other sounds to be heard between repetitions.

Gaver et al. observed that the sounds allowed the people to keep track of many ongoing processes, and

facilitated collaboration between partners. Users were able to concentrate on their own tasks while coor-

dinating with their partners about theirs, when sound was providing the background information. We

seek to employ similar techniques to show how we might improve the process of audio communication

itself.

The CSCW community has also paid attention to the use of audio in distributed workspaces. In a

shared drawing environment, Ramloll and Mariani [107] played different sounds for different participants,

and spatialized the sound in the 2D environment to help with location awareness. Participants complained

that the spatial audio was distracting, but it provided them with information about others intentions which

helped them with turn-taking. McGookin and Brewster [111] looked into audio and haptic locating tools

as well, while extending their single user GraphBuilder to a multiuser interface. They found that shared

audio helped in mediating communication, and served as shared reference points, allowing users to refer

to events they couldn’t see. Our work seeks to extend this to situations where the fact of a person’s

presence is crucial to the outcome.

Shared Awareness in a Distributed Setting

The Environmental Audio Reminders (EAR) system [54] transmits short auditory cues to people’s office to

inform them of a variety of events around their building . For example, the sounds of opening and closing

doors are used to indicate that someone else has connected or disconnected from a user’s video feed.

They use stereotypical and unobtrusive sounds to make people aware of events in the workspace without

interrupting normal workspace activities. We follow this approach attempting to discriminate in the more

delicate domain of presence. ShareMon [28] used auditory icons to notify users about background file

sharing events. To indicate the various actions involved, Cohen experimented with three types of sound

mappings. For example, to indicate user login he used knock-knock-knock (iconic), “Kirk to enterprise”

(metaphoric), and Ding-Dong (symbolic). To some degree, all three methods were intuitive and effective

at communicating information, and users found them less disruptive than other modalities, like graphics

and text-to-speech. In our work, we try to understand how these mappings affect users when they are
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used to interject ongoing communication.

For the first several months of mixing in audio to a conversation, our experiments made the conver-

sation more challenging. The OutToLunch system [29] attempted to recreate an atmosphere of “group

awareness”. It gave isolated or dispersed group members the feeling that their coworkers were nearby,

and also a sense of how busy they were, by taking advantage of the human ability to process background

information using sound. Each user had a theme that was mixed in with a seamless loop of solo guitar

music, and would only play when the user was typing on their keyboard. With only six people in the

group, the paper reports that users had no trouble associating a theme with the person it represented. We

attempted to use a similar approach, but when convolved with conversation, the multitrack instrument

sounds overload the channel and can be annoying. Similarly, there has been work in groupware systems

to address the issue of awareness through audio. GroupDesign, a real-time multi-user drawing tool, used

audio echo to represent user action on another users’ interface [15]. In Thunderwire [71], an audio-only

shared media space, the audible click of a microphone being switched on or off served to let participants

know when people were joining or leaving the discussion. In Chalk Sounds [64], Gutwin et al. used the

granular synthesis method to create chalk sounds that were parameterized by the speed and pressure of

an input stylus. Our goal is to extend such awareness without the need for users to break the flow of

conversation by having to ask about who has joined or left the conference call, for instance.

4.3 Considerate Audio MEdiation Oracle (CAMEO)

The term “considerate” refers to the unstated norms and mechanisms of social behavior that people

engage in while communicating with each other [143]. It is analogous to a control system used in any

dynamical system — to obtain a desired result, the output needs to be interpreted and the inputs need

to be regulated accordingly. Similarly, CAMEO interprets the meeting (sensing) and tries to regulate it

through its advisory and assistive actions (Figure 4.1). As a participant, CAMEO becomes a social actor

and should strive to respond in socially appropriate ways.

4.3.1 CAMEO’s Response

Advisory & Assistive Actions

In order to successfully orient itself with the other participants and positively influence the meeting, we

distinguish between CAMEO’s assistive and advisory behavior (Figure 4.1). Advisory actions advises or

instructs the user, in the hope of getting them to monitor themselves and change their behavior. For

instance, people might not realize how loud they sound to others on the phone. But if CAMEO could
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Figure 4.1: The Considerate Systems architecture grounded in the conference call scenario.

hint at this before someone on the line does so, it might save the embarrassment and any disfluencies in

communication. Here the influence is indirect. Assistive, on the other hand, is when CAMEO directly

influences the meeting through its control of the summing junction. For example, when two participants

are speaking over each other, CAMEO can delay or pitch shift one so that the others can make sense of

what is being said.

Adaptive Interaction

We also explore how CAMEO might adapt its actions based on the differential approach in order to

minimize breakdown. While hand-crafted interaction policies can be used, it is not possible to design a

policy for every situation that might arise. Also, not all users will respond to feedback the same way. To

circumvent these issues, we model the agent’s interaction with the user as a Markov decision process and

investigate if an agent can adapt its behavior to different users using reinforcement learning techniques.

4.3.2 CAMEO’s Features

Here we describe how CAMEO uses its advisory and assistive actions to resolve five commonly reported

problems in teleconferencing [166]. Central to the design of these actions is the notion of considerate

response that trades off pursuing system goals with minimizing breakdown.



CHAPTER 4. REALTIME REMOTE SCENARIO: CONFERENCE CALLS 35

Dominance Detection

A Dominator is a type of self-oriented behavioral role that participants can occasionally slip into during

a meeting [74]. Groups dominated by individuals performing these roles are likely to be ineffective [164].

On the other hand, Dominators also drive discussions and can generate consensus [156]. Thus, it seems

that while too much dominance might stifle contributions from the other participants, too little can reduce

consensus and decision making because of a lack of a clear social order [58]. This identifies the potential

for breakdown at the social level of the user model, where simply telling them or showing them that

they are being dominant [156, 37] might not be as effective as encouraging them to use their status more

positively at the appropriate times.

In our system, once CAMEO has detected that someone is dominating the meeting, it uses the advisory

approach to subtly say “turn taking?” on the dominant person’s channel alone. If it is close to the

end of the meeting, it privately mentions how much time is left to encourage them to leave space for

other participants to contribute. With this considerate response, the goal is to make the user reflect on

their behavior and self-correct without publicly interrupting or demeaning them (breakdown). Similarly

if someone is being dormant, CAMEO will say “any thoughts?” to encourage their participation. In

both cases the advisory action has its purpose embedded within it, and aspires to be suggestive and

encouraging.

Extraneous Noise Detection

Sometimes a participant might be in a noisy cafe, or in a moving vehicle. While they might be able to

tune out the extraneous noise sources, it can be a larger distraction for the participants on the other end

of the line. The nature of the meeting or the roles of the different participants can sometimes make it

inconvenient for the others to point this disturbance out. More crucially, it is hard for the participants to

identify exactly whose channel is responsible for introducing the noise. To preempt this CAMEO tries to

detect high levels of extraneous noise uses non-speech audio buffers. It provides advisory feedback to the

offending participant by stating “noisy”. It does this in private in order to not disrupt the communication

already taking place, thus minimizing breakdown by being appropriate at the social level. As with the

dominance feature, the reason that the feedback is so terse is to address the need to economize the agent’s

footprint on a very constrained medium, thus minimizing breakdown at the perceptual level of the user

model.

We chose to use assistive actions for the rest of the features, as these are problems endemic to the
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audio conference call technology. We used Apple’s GarageBand1 software to work with two pre-recorded

ten-minute teleconference calls between five people. These served as the base tracks, which was then

overlaid with earcons and auditory icons. This included instrument sounds2, and nature sounds3. In the

following paragraphs, we summarize the lessons learnt from the broad explorations in the designs of each

of these three features.

Speaker Identification

Conference calls suffer from issues that sometimes involves participants joining and leaving a conversa-

tion, or unwittingly speaking over each other. Most of these issues are caused by missing in-person cues,

which can be disorienting on a multiparty conference call. We tried to obviate this by adding unique

background sounds for each participant in order to create a soundscape around which participants can

orient themselves. For instance, a distant orchestra could play a unique instrument that corresponds to

the participant that has the floor, and ceases playing the instrument when that person cedes the floor.

While these background tracks might be distracting (breakdown), the underlying objective is to augment

the voice signatures of unfamiliar participants and make it easier for the group members to identify each

other.

One of the major reasons people might find video conferencing attractive is because it elevates identify-

ing and distinguishing between speakers to a separate channel with less crosstalk [144, 166]. The question

of identity and presence can get even more muddled when people on the line are not familiar with each

other, or their accents. So we experimented with different audio cues to support speaker identification in

such difficult situations where lack of familiarity and accents could reduce understanding .

We focused on designing earcons that were easy to perceive, remember and discriminate. We initially

experimented with assigning background instrumental tracks to each participant. For example, the bass

track might be assigned to participant one, and the rhythm guitars to participant two. When the partici-

pants spoke, the track assigned to them would start to play in the background. This, however, proved to

be distracting as the instrumental tracks introduced crosstalk on the channel, which caused breakdown at

the perceptual level of the user model.

To reduce crosstalk, we experimented with simple tones instead of tracks, that pulse while the partici-

pant speaks. We were able to achieve good discriminability by using the following timbres: tambourine,

bongos, and vibraphone for the 2nd, 3rd and 4th participants, respectively. For the 1st and 5th participants

we used muted electric bass with tones that were an octave apart.

1 http://www.apple.com/ilife/garageband/
2http://free-loops.com/
3http://www.naturesoundsfor.me/
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Once these qualitative design evaluations were done, the next part of the audio design was to de-

termine the temporal nature of the cues, i.e. when they should play and for how long. The cues were

designed to play at the beginning of every utterance a participant makes while holding the floor. We

found that this worked best when the cues began playing a second into the utterance, as opposed to right

at the beginning of the utterance. This duration was long enough to ensure that a participant was con-

tributing more than just back-channel feedback, like uh-huh. In this way, breakdown at the turn-taking

level of system communication is minimized.

An interesting side effect from designing the audio cues in this manner was that they also seemed to

emphasize a participants hold on the floor, reinforcing personal audio space. These can be thought of as

analogous to people’s use of hand gestures while speaking. Thus, when a speaker is speaking loudly and

at a rapid pace, the cues pulse rapidly too. If the speaker is speaking softly and at a slower rate, the cues

pulse at a slower rate.

The timbre from Garageband are high quality, and occupy a large portion of the soundscape when

mixed-in with the conference call. To push the auditory cues to the background we experimented with a

number of filters and reverb effects. We found that using a high-pass filter, and the “small room” reverb

effect worked most effectively in reducing the footprint of the soundscape, thus minimizing the potential

for breakdown.

Another technique to aid with the identifying speakers is to spatialize them in a 2D environment. We

used stereo panning to place the 5 speakers at the -32, -16, 0, +16, +32 positions on the Garageband’s

Pan Dial. Like in experiments done by Ramloll [107], using stronger panning was actually distracting,

and made the listener want to cock their head to the side where the sound was coming from, like when

someone taps your shoulder.

Next, we describe the process of designing audio cues for the fourth CAMEO feature, i.e. to indicate

presence of other collaborators on the line to a user.

Participant Presence

Feedback is very important for communication. Even the absence of feedback about whether the others on

the line can hear you or not, can be distracting. For instance, without the addition of sidetone users have

a tendency to attend to their displays to know if their call has been dropped or not. This can be disruptive

to the conversation. Sidetone is a form of feedback that is picked up from the mouthpiece and instantly

introduced into the earpiece of the same handset. It gives users the assurance that their signal is being

registered by the phone system, and is therefore now incorporated into most phone devices. Similarly, the

awareness that the other participants are on the line, and are listening is important confirmation which
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reduces uncertainty about the channel continuing to be functional. For example, if Ron is playing music

in the background, or Joe is driving, it becomes immediately obvious when either of them go offline.

We are subconsciously aware of their presence on the line even when they are not speaking. Similarly,

to indicate presence and annotate participants, we have experimented with CAMEO using an assistive

approach to add background tracks like music, tones, or ambient sound during a conversation. There are

various methods to present such information visually [166], but the visual channel is a separate interface

and might even increases the potential for breakdown at the perceptual and cognitive level of the user

model due to its high bandwidth and attention cost as described above.

Initial ideas involved the use of background sounds to create a soundscape around which users could

orient themselves. For example, if Ron is playing music in the background, or Joe is driving, it becomes

immediately obvious when either of them go offline, even if they aren’t talking. Their absence becomes

conspicuous because of the sudden change in the soundscape. To test this idea in our system, we assigned

different instrumental tracks to the participants, similar to the OutToLunch system [29]. The tracks would

play while the user was online, but they overloaded the conversational channel and were, therefore, highly

distracting.

An alternative idea was to employ a roll call, i.e. to periodically announce the presence of the partic-

ipants either by name or auditory icons. Announcing the names of participants would be the easiest to

understand, but people may find it annoying to hear their names being called out periodically. Instead, au-

ditory icons were created by sampling backchannel like participants laugh, and other characteristic sounds.

These were inserted in the channel at periodic intervals when a participant had been silent for a while.

However, they were too subtle and weren’t noticed. We then experimented with recorded ambient envi-

ronmental sounds of someone typing on a keyboard, clicking a mouse, opening and closing a drawer, and

thumbing through papers. These auditory icons were found to be distinct, perceptible, and natural in a

work environment.

The last significant example of a technical communication breakdown described in Yanankovitch’s

work was multiple entry & exit announcements for CAMEO’s Entry/Exit feature, which we consider

below.

Entry & Exit

It can be hard to tell when participants get dropped from or reenter a conference call. Existing conference

call systems can commit considerable time to loudly announcing entry and exit, which can be annoying.

This introduces breakdown at multiple levels, but the most critical is at the perceptual level of the user

model. We used CAMEO’s assistive approach to explore the use of earcons [19], abbrevicons [72], and
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different intonations for entry and exit. The goal is to convey the most information in as small an audio

footprint as possible.

To avail of iconic mapping, we attempted to use the sounds of a door opening and closing to indicate

entry and exit. We initially tried to superimpose the name of the participant with the sounds of the door

opening and closing, but it was hard to discriminate between the sound of the door opening and the door

closing. We obviated this by appending the sounds to the name either at the beginning of the sound or

the end. We usually hear the door open and then see the person enter, so an entrance is announced by the

sound of a door opening followed by the name. On the other hand, when leaving we see a person head

to the door and then hear the door close. So an exit is announced by the name followed by sound of the

door closing.

To make the audio footprint even shorter, we wanted to compare this to more metaphorical mapping

approaches, like using fade and intonations. We modified the TTS in Audacity4 by using the amplitude

fade-in and fade-out effects for entrance and exit, respectively. But this reduced the understandability of

the name. For intonations, we chose to map entrance to a normal intonation, and exit to an upward into-

nation. This was partly due to convenience as Apple’s TTS engine automatically intonates a word when

it is punctuated with a question mark. For instance, “Armstrong?” is automatically intoned upwards and

indicates that a participant named Armstrong has been disconnected from the conference call.

4.4 System Design & Implementation

CAMEO needs to prioritize its actions in order to appropriately communicate with the user. For this

consider phase, conflict resolution is performed by a blackboard system to prioritize and schedule how

CAMEO responds in a meeting. It consists of different knowledge sources (KSs) that update themselves

to the Channelizer and Globalizer blackboards. The Channelizer represents a participant and hence is

local in its scope (P1, P2, ... Pn in Figure 4.2). The issues of an individual participant are resolved here.

The Globalizer represents the meeting. It interprets the different dynamics of the meeting and organizes

CAMEO actions.

4.4.1 Channelizer

CAMEO creates a channelizer object for each participant, which consists of four KSs (speech detection;

inferring participant state; noise detection; and, speech generation):

4http://audacity.sourceforge.net/
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The first KS classifies microphone input audio as speech or non-speech. The audio is sampled at 16kHz

each, with 64 frames generated per period and 2 periods in a buffer. These 8 ms buffers are pushed into

a sliding window that is 30 buffers long. The window step size of one buffer, i.e. there is no overlap. The

KS calculates the average energy level of each window and classifies it as speech and non-speech using a

threshold value.

The second KS determines the ‘Participant State’. A participant can be in one of four states:

• Not Talking: The participant is silent and does not have the floor

• Start Talking: The participant begins to talk and wants the floor

• Still Talking: The participant is still talking, and if he does not have the floor, still wants it

• Stop Talking: The participant is no longer talking, and if he has the floor, relinquishes it

The third KS calculates signal-to-noise ratios which are used to detect extraneous noise, and to deter-

mine if a participant is speaking too loudly or softly. Speech buffers are used to determine signal values,

while non-speech buffers are used to determine noise floor values. This KS establishes a noise floor, and

uses empirically determined thresholds to set the flags for the Extraneous Noise Detector and Volume

Meter features.

The last KS generates speech prompts for flags that have been set by other KSs, which are buffered

in an internal priority queue. These are pushed out to the Globalizer’s global priority queue (Figure 4.2)

based on a reinforcement scheduler that knows how many times the participant has been prompted in the

past and how long it has been since the last prompt.

Since each Channelizer object is participant specific, different user profiles (e.g. CEO, guest speaker,

student, etc.) can be used that contain KSs with different parameters.

4.4.2 Globalizer

The Channelizer can be seen as a knowledge source for the Globalizer, which is where CAMEO behaviors

are negotiated. The Globalizer currently includes six other knowledge sources (dominance estimation;

floor management; non-verbal cues estimation; interruption detector; entry/exit detector; and speech

generation).

The first KS determines each speaker’s dominance by calculating how active each person is relative to

the activity level of the other participants. The Globalizer calculates each participant’s dominance as their
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Figure 4.2: Flow Diagram Representation of CAMEO’s Blackboard System.

contribution to the sum of all participants:

DominancePx = TSLPx/
n

Â
i=1

TSLPi

TSL is the Total Speaking Length of a particular participant. This dominance measure is useful in

resolving conversational conflicts such as interruptions, as well as monitoring how effective CAMEO is in

fostering collaboration across all participants (Figure 4.3).

The second KS manages the meeting floor, which the participants take turns in holding. It translates

a ‘Participant’s State’ into a ‘Floor Action’, to determine which participant is currently holding the floor.

This establishes a model of floor control. The floor can only be taken by another participant when the

floor owner releases it. The four floor actions are:

• No Floor: The participant is not speaking

• Take Floor: The participant starts to speak

• Hold Floor: The participant is still speaking

• Release Floor: The participant is done speaking

This mapping from Participant State to Floor Action gives a detailed picture of turn-taking in the

meeting. It allows the Globalizer to detect and measure non-verbal cues easily in order to identify what

actions CAMEO should take to socially enhance the conversation. For example, when a participant has
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the floor, their background track is activated to annotate their speech for the Speaker Identification and

Presence feature.

The third KS aggregates several audio cues that are non-verbal, and have proven to be effective in

distinguishing a speaker’s social activity during a meeting [91]:

Total Speaking Length (TSL) The amount of time a person speaks over the course of the entire conver-

sation.

Total Speaking Turns (TST) The number of distinct times a person speaks over the course of the entire

conversation.

Total Speaking Turns without Short Utterances (TSTwSU) The number of distinct times a person speaks,

not including any short utterances or affirmations made.

Total Successful Interruptions (TSI) The number of times a person has successfully interrupted another

person. A high TSI is an indication of dominance.

Jayagopi showed that using a combination of these cues to classify conversational dominance yielded

an 88% accuracy on a fairly typical meeting corpus [91], which is why we chose the above metrics in our

evaluation process.

The fourth KS detects and resolves any conversational collisions, or interruptions. Since we have

been experimenting with collaborative problem-solving meetings, CAMEO favors the more dormant par-

ticipants in case of these events. This triggers the Dominance Detector feature, which then checks the

dominance levels from the first KS.

The fifth KS detects entry and exits, which sets flags for the Entry and Exit feature.

Similar to the Channelizer, the last KS generates speech prompts for CAMEO features that have had

their flags set by the other KSs. It then buffers them into the Globalizer’s priority queue. This priority

queue plays the role of the gateway module, and determines when CAMEO communicates the actions

from the different knowledge sources, based on its considerate response goals. It combines messages that

are repeated. It also delays messages based on their importance, the time since the last alert, and the

number of alerts. It can choose to announce messages based on the Floor Action state. For example, for

entry and exit events, it waits for the floor to be empty before making an announcement.

This mechanism allows for different meeting profiles (e.g. instructional, planning, etc.) to be used

because of the adjustable priorities for the different prompts. For example, in a collaborative scenario,

CAMEO will give higher preference to dormant participants, whereas if the system was setup to facilitate

an instructional scenario, CAMEO will give higher preference to the instructor. This flexibility in reasoning
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that the architecture allows us will be useful in adding and testing more considerate features, and meeting

scenarios.

4.4.3 Research Platform

The architectural implementation discussed in this section allows it to be easily extended to support

further research on audio interactions. CAMEO is built on CLAM (C++ Library for Audio and Music), a

framework for audio processing, along with the JACK Audio Connection Kit on Ubuntu Linux. CLAM

was chosen for its robust processing feature set and modular API. JACK is used as the audio server for its

real-time network streaming capabilities. Together they form a considerate systems test bed, which allows

us to build and test features for CAMEO.

Currently CAMEO has a number of actuators. It controls who talks to whom, and can use this to

manipulate floor control. It can change the amplitude and frequency of the input channels, and can mute

or delay them. It can also overlay background sound or introduce reverb and other effects. It can do this

for any combination of the participants. For example, it can introduce a feedback that only participants

two and three can hear, or it can delay speech from participant one, to participant three.

4.5 Experiments

To begin evaluating our considerate agent, we tested the five features separately. Many of the initial

explorations highlight how easy it is to degrade communication in the audio domain.

For resolving dominance, we initially started off with CAMEO prompting users with the message,

“You have been talking for a while. Please give others a turn”. While this seemed acceptable the first

time, every time after that it became less and less tolerable. It was not just that in a meeting participants

have low cognitive bandwidth for a third-party. It was also “nagging”, as one of the participants put it.

Changing the message to “turn-taking?” (a suggestion), allowed users to consider but almost not notice

the agent.

As an example of identifying people with background sound annotation, we tried mapping an instru-

ment track to each person. Besides the music being distracting, it was difficult to remember any mapping

between individual and instrument. Generic background sounds of flowing river, an office setting, and

traffic proved to be too distracting. Less distracting tones like a marimba at different frequencies (C4, E4,

G4), one for each participant proved to be more subtle, and yet, distinctive enough to distinguish.
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4.5.1 Study 1: Dominance & Dormancy

Our study attempts to see if CAMEO can demonstrate that a computer agent can decrease the difference

between dominant and non-dominant people, i.e. to lower the variance in dominance as the meeting

progresses. It also attempts to see if CAMEO can successfully encourage more interactivity, i.e. the turn-

taking will be more balanced, and the speech utterances of all participants will be shorter on average.

Methods

The first set of experiments evaluated the Dominance/Dormancy feature of CAMEO. During turn-taking

conflicts, the agent uses an advisory approach to remind the dominant participant to share the floor by

saying “turn-taking?” on that user’s channel. Similarly if someone is being dormant, the agent will say

“any thoughts?” to encourage their participation.

Participants, Procedures, and Task: We conducted a study with twelve groups of three participants

each. The groups were formed by drawing from a pool of nineteen volunteers. The participants were

students and research scientists (5 females & 14 males) belonging to the same campus, with the youngest

being 21, and oldest 43. The collaborative behavior of people with different partners is dramatically

different. Group interaction styles reflect aggregation of communication traits of its team members [11].

Even though a participant took part in multiple groups, the 12 groups had unique compositions drawing

different dynamics from the 19 participants.

The participants were located in physically different locations with computer terminals that had screen

sharing and control enabled. Each group went through two problem-solving sessions, one with CAMEO

and one without, for a total of twenty-four sessions. The sessions were held back-to-back and were five-

minutes long each. During each session, the participants collaborated on playing Hangman, a multi-step

word revealing puzzle. The duration for solving the puzzles was chosen so as to simulate a slice of an

actual meeting where everyone is an equal collaborator, and higher group extraversion would be beneficial

to the groups performance. The protocol was that the three participants would agree on a letter before

entering it; the last person to agree would input the letter into their terminal.

Study Design: We performed a within-subject experiment comparing how the groups behaved with

and without CAMEO. On half of the groups we ran the control condition first (CAMEO Off), while on the

other half we ran the test condition first (CAMEO On).

Measures: For the purposes of this experiment we measure a participant’s dominance level as a

fraction of their Total Speaking Length (TSL) divided by the TSL of all participants which was also shown

to be a reasonable measure of dominance in [91]. The dominance percentage threshold we use is 40%.
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1 min. End

CAMEO Off 23.07 13.31

CAMEO On 20.87 7.50

Table 4.1: Variance in dominance levels of all participants across all groups one minute into the meeting
and at the end of the meeting.

The prompt is only activated when there is a turn-taking conflict after this threshold has been reached. A

turn-taking conflict is a speech overlap between the dominant user and another user that is longer than

one second. These values were heuristically determined to work well. To compare meetings, we calculate

the variance in dominance between the participants, which measures how spread apart the are. The lower

the variance, the more collaborative a meeting was.

For interactivity we calculate Turn Taking, which is the ratio of the TSTwSU (Total Speaking Turns

without Short Utterances) of the most dominant person to the TSTwSU of the least dominant person.

TSTwSU includes only utterances that were longer than simple feedback like “umm” or “yea”. Turn

Taking gives us a measure of how well the floor is being shared between the participants. A Turn Taking

value of one, implies that the floor was being shared equally.

Results

CAMEO had a strong effect on the dominance levels. As the meeting progressed, dominant participants

began to give more room for the other participants to contribute. Dormant participants began to con-

tribute more as well. To quantify these results, we calculated the variances of the dominance levels of all

participants at the one minute mark and at the end of the meeting, across all groups with CAMEO On

and CAMEO Off (Table 4.1). The table shows that the meetings start with similar variance in dominance

between the participant. At the end of the meeting, there is a bigger and statistically significant drop in

variance with the CAMEO On, than with the CAMEO Off. The standard deviation5 in dominance among

members of a group reduced with statistical significance (N=12, p<0.01, 1-tailed t-test, Figure 4.4).

CAMEO appeared to have a positive effect on interactivity. The most dominant person seemed to be

taking the floor less when CAMEO was facilitating the meeting, but there was not enough experimental

data to show statistical significance (one-tailed paired T-test: p = 0.05. There was no notable difference in

the average speech utterance of the participants (one-tailed paired T-test: p = 0.36; Table 4.2).

5In a three-person meeting, the ideal contribution is 33.3%, which is also always the average. The standard deviation gives a
measure of how close to ideal participant contributions are in each condition. A standard deviation of 0 percentage points (pp)
implies that all the participants contributed equally.
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Figure 4.3: Dominance (%) vs. Number of Utterances during the Dominance Resolution evaluation for one
of the test groups: With CAMEO On, the Speaker 3 becomes less dominant and Speakers 1 and 2 become
less dormant. Also, they contribute more equally, i.e. the number of utterances from each is around the
same, with CAMEO On.
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Figure 4.4: The results of the aural feedback experiment across twelve groups. They demonstrate a
reduction in standard deviation of dominance (pp) among members of a group, when aural feedback was
provided.

4.5.2 Study 2: Extraneous Noise

The second set of experiments attempts to show that CAMEO can reduce the impact of extraneous noise

in a conference call by providing feedback about it. The hypothesis is that an agent can allow a meeting

to run smoother with participants interrupting each other fewer times.
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Turn Taking Avg. Speech Utterance

CAMEO Off 2.51 (0.08) 1.68 (0.53)

CAMEO On 1.84 (0.07) 1.63 (0.23)

Table 4.2: Variance in dominance levels of all participants across all groups one minute into the meeting
and at the end of the meeting.

Methods

Participants, Procedures, Task: We conducted a study of three groups of three participants each. The

groups were formed by drawing from a pool of seven volunteers. They were all male, with the youngest

being 21, and oldest 28. The participants were located in physically different locations with computer

terminals that had screen sharing and control enabled. Each group went through six problem-solving

sessions, three with CAMEO and three without, alternatively, for a total of eighteen sessions. The ses-

sions were held back-to-back and were four-minutes long each. During each session, the participants

collaborated in discussions around solving chess-move puzzles presented on their screen, of the mate-in

one/two/three variety. The game and its duration were chosen so as to simulate a slice of the meeting

where the cognitive load on the participants is high, requiring concentration and memory. The protocol

included that the three participants would agree on a move before executing it; the last person to agree

would move the piece on their terminal. This created a dynamic where a participant would have to guide

the other participants through multiple levels of reasoning, before being able to generate a consensus.

The participants were instructed to respond naturally as they would if the extraneous noise on a

telephone line was too loud, and that if it was disrupting the meeting they should ask for it to be turned

down. At different intervals in the game, a TV program would be played close to one of the terminals to

introduce extraneous noise into the meeting. If the participant on that terminal was prompted to reduce

the volume either by CAMEO or by one of the participants, they would do so by pressing a button on

the provided remote control. After an interval of thirty seconds to a minute, the extraneous noise would

be introduced again. CAMEO prompts on a reinforcement schedule, i.e. subsequent prompts would be

further and further apart, unless a sufficient amount of time had lapsed since the last prompt.

Study Design: We performed a within-subject experiment comparing how the groups behaved with

(experimental condition) and without CAMEO (control condition).

Measures: The experiment measures extraneous noise on the flow of the meeting, as Total Successful

Interruptions (TSI) metric, i.e. the number of times a participant successfully interrupts another. An

interrupt occurs when a participant is speaking and another participant talks over them.



CHAPTER 4. REALTIME REMOTE SCENARIO: CONFERENCE CALLS 48

Results

CAMEO was able to positively impact the flow of the meeting. With CAMEO On, the average number of

times any participant interrupted another in a four minute session was reduced by almost half, and was

shown to be statistically significant (one-tailed paired T-test: p = 0.007, Table 4.3).

CAMEO On CAMEO Off

TSI 7.05 12.44

Table 4.3: Average number of interrupts (TSI) among participants solving chess-puzzles in four-minute
sessions.

In the next section, we formally evaluate a final set of audio designs and protocols that came out of the

preliminary explorations. We conducted three studies that we discuss below for each of the three features.

4.5.3 Study 3: Speaker Identification

The goal of this study is to understand how the addition of audio cues to a conference call can help people

differentiate between different speakers. To highlight difficulties in recognizing people in a conference call

we chose five non-native english speakers (males, 22-28 years old), and had them remotely collaborate on

a sub-arctic airplane crash scenario commonly used in team building exercises. According to the scenario,

the five of them had just survived a plane crash in Northern Canada, and had managed to salvage some

items. Their task was to list the items in order of importance, and to come to an agreement on this order

as a group. The audio from each participant was recorded in separate files, which was then processed in

Audacity. Garageband was used to create three separate versions: a simple downmixed version; one mixed

with the speaker identification earcons discussed in the previous section; and another which arranged the

speakers spatially in a 2D environment. We compare these three and see how well participants do on

each. Our hypothesis was that the participants will do better with the spatialization and earcons aids,

than without any audio cues.

Methods

The speaker identity study asked participants to listen to a segment of a pre-recorded conference call

while answering questions related to the conversation at hand, and speaker contributions.

Participants, Procedures, and Task: Thirty-two people were recruited for the study (8 female, 24

male). Participants were between 20 and 30 years old, and all reported having no hearing impairments.

Participants had the choice to take part in the experiments either remotely or in the lab
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This study had two stages, a training stage and a test stage. During the training stage, the participants

were first asked to listen to the recorded introductions from the five speakers on the recorded conference

call. They were presented with five colored buttons with the number and name of the different speakers.

Upon clicking the button, they would hear a recording of the corresponding speaker saying their name

and a fun fact. The next page allowed the participants to practice speaker tagging. They could click on

the practice button which would cause the program to randomly play a short segment of the recorded

conference call. The participant was asked to identify the speaker in the short segment by clicking on

the speaker’s corresponding button. After every attempt both the right answer and the selected answer

were displayed. The participant could choose to go to the next screen whenever they felt confident of

successfully differentiating between the different speakers. In the test stage, participants listened to a two

minute and thirty second clip of the pre-recorded conference call. As they were listening, questions would

appear about the conversation that had to be answered within five seconds.

Apparatus and Sounds: Participants were provided with Logitech headsets. Remote participants were

requested to find a quiet place and use headsets. They were provided with the address of the server where

the experiment was hosted, and were asked to access it using the Chrome browser.

The earcon audio cues were obtained from Garageband. Speakers one to five were assigned muted

electric base (low tone), tambourine, bongos, vibraphone, and muted electric base (high tone), respectively.

Similarly, for creating a spatial 2D environment, speakers one to five were placed at the -32, -16, 0, +16,

and +32 units on Garageband’s pan knob (2D spatial positioning).

During the training stage when participants were introduced to the five speakers, their corresponding

instrument or spatial location was also displayed, both visually and aurally.

Study Design: We used a between group study, where half the participants answered the questions

with the aid of musical instrument earcons, while the other half used 2D spatialization. For each group

we also included a within-subject condition to compare the test condition (with earcons) to a baseline

(with no earcons). To balance out learning effects, half the participants started with the baseline, while the

other half started with the test condition. Different two-and-a-half minute segments of the pre-recorded

conference call were used in the within-subject study. The first segment had nine questions, while the

second segment had eight questions.

To keep the test conditions same across study participants, and to isolate only the participant’s per-

ception of the audio cues, we used the same pre-recorded tracks in our evaluations. A limitation of this

approach is that the audio cues are evaluated by third-party observers, and not by active participants of

a meeting. We tried to account for this by asking questions that were of a “who said <something related

to conversation>” nature, which is different from asking who just spoke. The aim was two-fold. First, to
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Accuracy
(Overall)

Attempt
Rate

Accuracy
(Attempted)

Response
Time (ms)

Spatial 0.573 0.841 0.691 2187.4
No cues 0.435 0.788 0.570 2663.0

Table 4.4: Accuracy metrics and average response times for speaker identification with and without 2D
spatialization.

Accuracy
(Overall)

Attempt
Rate

Accuracy
(Attempted)

Response
Time (ms)

Earcons 0.538 0.772 0.703 2257.8
No cues 0.386 0.819 0.475 2537.2

Table 4.5: Accuracy metrics and average response times for speaker identification with and without
earcons.

keep the participants engaged in the conversation, and to prevent them from simply matching audio cues

to the speaker. Second, to cognitively load the user (as they might be while participating in a conference

call) so that the distractive effects of audio cues might come to bear on the results.

Results

We present our results below in terms of participants being able to accurately identify the speakers on

a conference call, and their response times. Attempt rate is the fraction of questions users answered in

each condition. For accuracy, we report two metrics: Overall Accuracy, which includes questions that

were not answered, and Attempt Accuracy, which only includes questions that were answered. Together,

these metrics should account for distractions that audio cues might introduce causing participants to take

longer than five seconds to answer a question.

Spatialization vs. No audio cues: Participants ability to identify speakers increased significantly,

with greater than 20% improvement using spatial audio cues. They were able to do this almost half a

second quicker on average when compared to the condition without audio cues (p<0.05, 1-tailed t-test,

Table 4.4). Overall Accuracy: SEM=(0.024, 0.041); Attempted Accuracy: SEM=(0.046, 0.044); Response

Time: SEM=(151.2, 163.7); N=16.

Earcons vs. No audio cues: With earcons, participants were also able to achieve an increase in accuracy

of 30% on average over the condition with no audio cues (p<0.05). Participants also appeared quick

to respond but the difference was not significant (p<0.1, 1-tailed t-test, Table 4.5). Overall Accuracy:

SEM=(0.052, 0.024); Attempted Accuracy: SEM=(0.054, 0.054); Response Time: SEM=(169.0, 111.5); N=16.
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We were able to show that speaker identification improved with the addition of either spatial cues, or

earcons. A between group analysis did not reveal any difference between these two conditions. Further-

more, there was no significant difference in the number of questions that were attempted across the three

conditions from which we might infer that the addition of audio cues was not notably distracting.

4.5.4 Study 4: Participant Presence

The goal of the audio presence study is to investigate whether the addition of audio cues to a conference

call can help reassure people that the other participants are still on the line, and haven’t been discon-

nected. A different segment of the pre-recorded conference call described above was used in this study.

Garageband was used to create two separate versions: a simple downmixed version with no audio cues

added; and one mixed with the auditory icons for audio presence discussed in the previous section.

Methods

Participants were asked to listen to a segment of a pre-recorded conference call while answering some

questions related to the conversation. The participants were also asked to indicate if they thought a

participant had been dropped from the call.

Participants, Procedures, and Task: Twenty people were recruited for the study (4 female, 16 male).

Participants were between 20 and 30 years old, and all reported having no hearing impairments. Partici-

pants had the choice to take part in the experiments either remotely or in the lab

The participant was asked to listen to a five-minute clip of the pre-recorded conference call. As they

were listening, questions would appear about the conversation that had to be answered within ten seconds.

Participants were also instructed to periodically ensure that everyone was online. They could do so by

pressing the “nudge” button which simulated feedback from each participant stating that they were still

there (like a ping test).

Apparatus and Sounds: The apparatus used by the participants is identical to the first study. The cues

in this study were recorded using an iPhone, and processed in Audacity. As motivated in our exploration

experiments above, these include auditory icons of ambient environmental sounds like someone typing

on a keyboard, clicking a mouse, opening and closing a desk drawer, and shuffling through papers. These

cues were then added to the segment of the pre-recorded conference call used for this test.

Study Design: Our working hypothesis was that adding audio cues like keyboard sounds and mouse

clicks acted to reinforce the presence of people who had not spoken in a while, but were still online. In

other words, we wanted to show that like the sidetone, adding audio cues improves awareness about the
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Table 4.6: Average number of nudges, attempt rate, and error rate with and without auditory icons.

# of Nudges Attempt Rate Error Rate

Auditory icons 3.50 0.90 0.33
No audio cues 5.63 0.81 0.35

presence of other collaborators.

We used a between group study, where half the participants were presented with audio cues (test con-

dition), and the other half was not (baseline condition). Participants had to answer eight multiple-choice

questions while listening to the conversation. This was to simulate a real meeting where participants

would be paying attention to the conversation, and not actively tracking the presence of other collabora-

tors. Participants were told that because of some collaborators being in weak signal areas, there was a

high chance that they might accidentally drop off the call. They were asked to virtually “nudge” the other

participants if they suspected that one of them was not present.

Results

We investigate our hypothesis by comparing how often users “nudge” others to check if they are present,

with and without the auditory icons discussed above. We found that the number of nudges was reduced

by 37% in the condition where the auditory icons were used (p<0.05, 2-tailed t-test, Table 4.6). There was

no significant difference in the attempt rate or error rate. # of Nudges: SEM=(0.72, 0.64); N=10.

4.5.5 Study 5: Entry & Exit

The goal of this study is to understand the effects that different conference call entry & exit announcements

have on the participants, and meetings in general. We focus on three kinds of prompts, namely, speech,

iconic and metaphoric. Our hypothesis is that the metaphoric prompts using different intonations will

have the least impact on participants cognitive capability (i.e., their ability to follow game protocol in this

particular study).

Methods

To bring out the effects, we designed and built a memory card game for four people that can be accessed

remotely from the browser. Participants are paired off into two teams that take turns in choosing two

cards from the sixteen that are shown face down on a GUI screen. If the two cards chosen by a team

match, the team wins the turn. The team that matches the most number of pairs, wins the game.
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Participants, Procedures, Task: We recruited 21 participants for this study (4 female, 17 male). Partic-

ipants were between 20 and 30 years old, and collaborated remotely on the game. Six unique groups of

four participants each were tested (some participants repeated).

When the participants join the meeting, the administrator would introduce them to the game, and the

protocol they were to follow. During a team’s turn, both team members are required to select a card.

The selected card is revealed only to its selector. Thus, the first team member to click open a card has to

communicate its content and position, based on which their partner picks the second card. The protocol

specifically requires the team partners to alternate who gets to pick the first card at every turn. The

protocol was designed in this way to encourage discussion.

After a practice round, the administrator would notify the participants that the experiments were going

to begin. They were told that during the experiments, participants would randomly be dropped from the

meeting. If they happened to be dropped from the conference call, they were requested to rejoin as soon

as possible. During the course of such an event, a prompt would play to notify the rest of the participants

that someone had left the conference call, while another prompt would play to indicate that they had

joined back.

Apparatus and Sounds: The apparatus used was identical to the first two studies. Mumble6 was used

to host the conference call. All the participants were requested to download the Mumble client and follow

the instructions that were provided.

A Macintosh Mini was used to run the python script that generated the prompts. The three entry

and exit prompts that were used are speech-based, iconic, and metaphoric (Table 4.7). The prompts are

dynamically created using Apple’s text-to-speech engine, and pre-recorded audio of a door opening and

closing. The Python script was also set up to use the Mumble server’s Ice remote procedure call interface

to arbitrarily disconnect people every thirty seconds.

Study Design: We used a within-subject study where each group played three rounds of the memory

game, one for each of the three conditions. To balance out any learning effects, different sequences of the

conditions were used for each group (Table 4.7).

Results

We wanted to investigate the effect that the different prompts would have on the participants ability to

observe protocol, i.e. team members switching turns to pick the first card. We only take into account turns

where both participants are online. We found that the metaphoric prompts had the lowest error rate at

15% in participants ability to maintain protocol compared to both the iconic and speech prompts (p<0.05,

6http://mumble.sourceforge.net/
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Table 4.7: Entry & Exit prompts using different mappings in each test condition.

Entry & Exit Prompts

Speech
<participant_name> has joined the conference
<participant_name> has left the conference

Iconic
sound of door opening + <participant_name>
<participant_name> + sound of door closing

Metaphoric
<participant_name> (said with normal intonation)
<participant_name> (said with raising intonation)

Table 4.8: Average error rates in following the protocol and game duration across the three conditions.

Error Rate Duration (sec)

Speech 0.29 262.3
Iconic 0.26 258.6
Metaphoric 0.15 222.0

2-tailed t-test, Table 4.8). The iconic prompts affected the participants as badly as the speech prompts did

with error rates larger than 25%. Error Rate: SEM=(0.05, 0.05, 0.05); N=6.

We also wanted to understand how the different prompts affected the game. We hypothesized that the

shorter prompts would create less disruptions allowing the participants to finish the game quicker. There

wasn’t a significant difference in the durations, but the participants do appear to finish the games faster

in the condition with the metaphoric prompts. The average durations are shown in Table 4.8. Duration:

SEM=(34.4, 22.3, 16.3); N=6.

Participant Preferences: During the pilot experiments, participants strongly preferred the speech

prompts to the metaphorical ones, which they found to be ambiguous. They were largely ambivalent

about the iconic prompts. To help disambiguate the prompts in general, we began playing each of them

at the start of their respective test conditions. This practice saw an increase in the number of participants

who preferred the metaphoric prompts as they found it to be less distracting. They remained neutral

with regards to the iconic prompts, although some of them claimed that it was hard to distinguish be-

tween the door opening and closing sounds when the line was noisy. This might explain poor participant

performance under the iconic condition.
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4.6 Adaptive Feedback

Hand-crafted feedback policies can be designed based on psychological insight as we saw in sections 4.3 &

4.5. These can be brittle — different users might react differently, and even an individual user’s response

might change over time, and is dependent on the situation. We therefore use the adaptive method from

the differential family of techniques to minimize breakdown by adapting the agent’s action to the user

and situation. A similar problem for cognitive orthotics was addressed using reinforcement learning

techniques [137].

While the techniques discussed in this section could be used for any of the social problems described

previously, in this thesis we focus on applying these technique towards addressing conversational domi-

nance. Once the agent recognizes the existence of a social problem it attempts to provide feedback based

on its interaction policy. The feedback can be parametrized in a number of ways, including its timing,

frequency, tone, volume, translucence [46], etc.

4.6.1 Learning Algorithm

We use reinforcement learning to improve social feedback policies. The agent will consider the meeting

state based on duration of the meeting, detected social problems, timing and nature of previous feedback,

and user’s mood. It will also consider feedback actions available to the agent including what type of

feedback to give, if any. An agent’s action yields some reward r 2 R(s, a) and leads to a new state

s0 2 S. In some cases, the desired state in meetings (e.g. non-dominant participants) might occur as a

result of several interactions. Such interaction with delayed rewards are well modeled as Markov Decision

Processes (MDP).

Solving a Markov process, however, requires knowledge of the possible state transition probabilities

(interaction model), which is not known in advance. One way to approach the problem is to use a

model-free class of algorithms known as temporal difference methods. In particular, we use the Q-learning

algorithm [158] which is typically easier to implement, where we define Q⇤(s, a) as the expected dis-

counted reinforcement for taking action a in state s, then continuing by choosing actions optimally. The

Q-learning rule is:

Q(s, a) := Q(s, a) + a(r + g max
a0

Q(s0, a0)� Q(s, a)), (4.1)

where a is the learning rate, and g is the discount factor. < s, a, r, s0 > is an experience tuple, as

described above. If each action is executed in each state an infinite number of times on an infinite run and

a is decayed appropriately, the Q values will converge with probability 1 to Q⇤ [158]. The optimal policy

then becomes p⇤(s) = arg maxa Q⇤(s, a).
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Payoff Function

We focus on three binary state features, which are (i) is the participant dominant?, (ii) have they received

feedback?, (iii) are they annoyed?. The agent has a choice of three actions to get a dominant user to reduce

their dominant behavior: No Action, Advisory, Assistive. The agent might provide aural advisory feedback

to the user that they are being dominant. Alternatively the agent might take an assistive action: reducing

the volume of a dominant person, or muting them when they interrupt a less dominant participant. For

meeting flow, it is preferred that the agent chooses (a) no action unless necessary, and (b) advisory over

assistive actions. We therefore give the assistive and advisory actions a cost of -5 and -1, respectively. If

the user gets annoyed with consecutive feedback actions, the agent incurs a cost of -10. If the agent is able

to get a dominant user to change their behavior, without annoying them, it gets a reward of +50.

4.6.2 Evaluation: Simulation Study with an Adaptive Policy

/

The Q-learning algorithm was validated for adapting an agent’s feedback policy for different users by

conducting a set of experiments with a simulated user and environment. In the experiment, an episode

starts in any state where the user is dominant. The episode ends when the user is in the goal state, i.e.

they are not dominant or annoyed. Thus, there is a trade-off when providing feedback between getting

the user to be non-dominant and making sure not to annoy the user. The simulated episodes demonstrate

feasibility of the approach; experiments with real users would be a valuable next step for validating and

possibly improving the feedback policy.

User Model: A model of potential users focused on their responses to the agent: how did they respond

to advisory actions (RAd), how likely they are to get annoyed (Uan), and how well are they able to self-

regulate their behavior without feedback (Usr). We would expect that the optimal policy is to do No

Action when the user is not dominant or when they are annoyed. This was the case in all the optimal

policies that were learnt. Thus, we are left with two states, i.e., (i) SDF̄: user is dominant and has not

gotten any feedback, and (ii) SDF: user is dominant and has received feedback, where the agent learns

different policies.

Results

For the following experiments, an agent is trained using a series of learning experiences. A learning ex-

perience can consist of one or a batch of episodes. During the learning experience the agent uses an

e-greedy explorer to choose an action. An e-greedy explorer chooses a random action with e probability,
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((a)) ((b))

((c))

Figure 4.5: The results of adapting the agent’s feedback policy by modeling a user based on their (a)
responsiveness to feedback, and (b) ability to self-regulate their behavior. (c) shows the results of the
agent’s short-term adaptation at the 25th learning experience to knowledge that a user gets annoyed with
consecutive feedback.. Each figure shows results with (95% confidence interval) error bars averaged over
10 test episodes, for every learning experience. In all cases, the agent learns an optimal policy in under 10
experiences.

and choose an action using the learnt policy with 1-e probability. After each learning experience, the new

policy is tested over 10 test episodes. During these, the agent always chooses an action based on the learnt

policy. The rewards the agent receives over the 10 test episodes is averaged and plotted in Figure 4.5.

Responsiveness to Feedback: Two types of users were simulated with different responsiveness to

advisory feedback, i.e. the probability with which a dominant user will become non-dominant when

they get advisory feedback: RAd = {95%, 35%}. The user always responds to assistive feedback with a

probability of 95%. If the user has been provided feedback, the likelihood of them responding to advisory

feedback drops by 10% in the next attempt. The optimal policy that was learnt was to provide advisory



CHAPTER 4. REALTIME REMOTE SCENARIO: CONFERENCE CALLS 58

actions in SDF̄ and SDF when RAd = 95%, i.e. the agent learns that the user is likely to respond to advisory

feedback. When RAd = 35%, the agent chose assistive actions in both states, because it learns that the

user is unlikely to respond to advisory feedback, and that it has to pursue the less desirable (more costly)

assistive actions. Figure 4.5(a) plots the rewards and the number of actions the agent took as it learnt an

optimal policy for RAd = 95% & RAd = 35%. These results are averaged over 10 test episodes after every

learning experience.

Ability to Self-Regulate: Next, we model a user who is dominant only for short periods of time. In this

case, we include a likelihood that the user becomes non-dominant when the agent takes no action (Usr)

to the existing (RAd = 35% + Uan) user model. The agent was trained for two cases: Usr = {10%, 90%}.

When Usr = 10%, the agent learns the same policy as the RAd = 35% model, since the user does not self-

regulate and needs to receive assistive feedback to become non-dominant. When Usr = 90%, the agent

chooses to do no action in every state because it learns that the user is likely to self-regulate, and does not

need feedback. Figure 4.5(b) plots the rewards earned as the agent learns an optimal policy for Usr = 90%

and Usr = 10%. The higher rewards for Usr = 90% are indicative of the agent choosing no action (no cost),

while the lower rewards for Usr = 10% indicate the agent choosing assistive actions (-5 cost).

Short-term Adaptation to User Annoyance: In this experiment, we also test the agents short-term

adaptation to new information once it has already learnt an optimal policy. We add to an existing user

model (RAd = 35%) the likelihood of them getting annoyed with consecutive feedback (Uan). In state SDF,

the agent should learn to take no action instead of providing assistive feedback. Figure 4.5(c) plots the

results as the agent learns an optimal policy for RAd = 35%. After the 25th learning experience, the user

begins to get annoyed with consecutive feedback (Uan). The plot shows how the agent is punished for

following the optimal policy when this happens, and how it adapts after 3 to 4 learning experiences to

learn a new optimal policy for {RAd = 35%, Uan}.

4.7 Discussion

This chapter explores considerate response in a realtime remote interactions, and shows many ways such

interactions can be improved in domain independent manner. We presented five commonly occurring

problems in conference calls, and described the design and implementation of CAMEO (an instance of

the Considerate Mediator) to address these problems. We examined how the formulation of CAMEO’s

responses were informed by the design process and guidelines, and the architecture. In particular, we

evaluated the advisory and assistive actions of the actuation modules and showed how the agent was

successful in pursuing its goals while minimizing breakdown.
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The results from the first two experiments for Dominance & Dormancy, and Extraneous Noise demon-

strate how CAMEO’s advisory approach can positively influence participant behavior in collaborative

meetings. Being an audio-only solution, it presents a departure from the more complex methods of using

separate modalities, such as, peripheral visual interfaces, to improve conversations. Although we do not

present a comparison between the two, we see the advantages of using audio as two-fold based on the

perceptual, cognitive and social levels of the user model.

At the perceptual level, since audio is orthogonal to the visual information, the users don’t have to

shift focus between multiple windows, displays or peripheral devices. They can remain focused on their

task. It is also presents an advantage if the user is engaged in an activity like driving, where visual focus

is critical.

At the cognitive level, audio feedback is just-in-time and unambiguous in its intent. In the experi-

ments, the participants seemed so engaged in their task that they were not actively conscious of how their

behavior was impacting the meeting. The use of an always-on visualization might make them conscious

of their behavior, serving as an added cognitive. Instead, by prompting them at just the right time we can

reduce this load; but we hold that the use of this more direct approach needs to be socially oriented and

considerate to be successful. The CAMEO feedback tested was subtle enough that most users claimed not

to pay attention to the prompts while engaged in their collaborative tasks. It is here the system makes

its strongest statement, as the results show that the system’s actions still did have a significant impact

on their behavior. This is an important and novel finding that points to the utility of pro-active feedback

approaches in the audio domain that gently nudges users towards desired behaviors.

At the social level, CAMEO’s advisory feedback is private. Communications between a participant

and CAMEO occurs on their audio channel unbeknownst to others, creating a different dynamic com-

pared to when the information is broadcast to all participants [95, 38]. Participants did not appear to be

intentionally dominant, or negligent of extraneous noise. In such cases, a private suggestion is possibly

more considerate than a socially-translucent public notification. The system did not negatively affect per-

formance between the test and control case; the number of words or moves attempted, the number of

wins and loses, and the number of wrong guesses was not distinguishable between the test and control

conditions.

Evaluating the Extraneous Noise feature brought out the most interesting observations. When extra-

neous noise was introduced into a conference call, a participant would invariably ask for it to be reduced.

However, they would be more tolerant to subsequent re-introductions of the extraneous noise, pointing

it out only when the noise was increased to a volume much higher than before. Participants sensitivity

to extraneous noise was also related to how active the discussion was at the time. The more engaged the
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participants were in the discussion, the less the extraneous noise distracted their conversation; they would

simply start to talk louder to counter it. But as they got louder, they also became more aggressive in

trying to get their point across. It has been shown that loud noise elevates a person’s state of arousal [92].

What is remarkable is that most participants stated that they were not affected by the noise, when the data

clearly shows that they were. CAMEO’s prompts about the extraneous noise precluded the noise from

effecting the meeting. Without CAMEO, the number of times people interrupted each other was almost

double.

The results from the next three experiments show that a constricted audio communication channel

can be augmented with assistive social feedback cues, even in highly dynamic environments. In specific,

we empirically showed that these cues allowed users to identify speakers more accurately, increased

awareness about the presence of other collaborators, and improved participant performance. The successes

of automatic considerate feedback with constraints of improving human human communication in the

already overloaded audio channel worked.

To demonstrate the utility of the audio cues, we simulated particularly difficult and stressing situations.

It is hard for the average person to distinguish between five people of the same gender with similar

accents. Keeping track of multiple things while coordinating with others is difficult when there are a lot

of distractions in the environment. For instance, the first time we are introduced to a team that we are

collaborating with, is when our understanding of their speech is most important; but it is also when their

accents and behaviors are most difficult to interpret.

Similarly, in an increasingly mobile and global workforce, a user might be in a noisy environment and

have trouble distinguishing between some of the other collaborators on the conference call. In this case,

the user could choose to add cues to some of the other collaborators, which would play only on their own

channel. The sounds might also act as aids to users who might choose to associate meta-information (like

the person’s location or function) with an audio cue. Likewise, when to use speech, iconic or metaphoric

prompts to announce events might be dependent on the situation. Developing an understanding of how

these cues affect participants, and their applicability in different situations, allows us to build a vocabulary

of actuators that a considerate agent like CAMEO would know when and how to use.

Lastly, we showed how we might implement a differential approach to minimize breakdown using

reinforcement learning techniques. We simulated different types of users and showed how an agent

might adapt its actions to these users, and also how it might adapt to changing preferences of the same

user over time.

The successes of automatic considerate response with constraints of improving human-human com-

munication in the already overloaded audio channel worked. Less constrained communication channels
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could be less challenging; we expect that automated considerate response can be helpful throughout user

interface design.

4.7.1 Future Work

The creation of a considerate mediator was successful at helping communication. Still we started with

the simplest models we could for the experiments. In the future, more complex and deeply modeled

consequence-awareness could be used to more accurately predict and respond to situations when a group

member is negatively affecting a meeting. However, detecting things like the intention of interruptions

and overlaps are not straightforward [154]. The participants could be co-constructing a thought as often

happens, or could be confirming each other through repetition. Interruptions and overlaps in these cases

are not attempts to take the floor, although they might be construed as acts of dominance. Instead, looking

for patterns of repeated acts of dominance might allow CAMEO to infer a state of dominance and respond

more appropriately. A state of dominance could potentially be modeled statistically using a Markov

process or n-gram model. Future work should compare our simulated users to a corpus from real users

for improving the adaptive feedback policy.

For Speaker Identification & Presence, we used the tones of a chord progression. We initially had

them sound at the end of an utterance. In a two-person setting, its effect was to subtly moderate turn-

taking. Participants paused a little longer for the sound to play. The tone provided some sort of affirming

feedback to the speaker that they had been heard. This was not the case when more than two people were

on the line. We then moved the tones to the beginning of each speakers turn. Over a prolonged period

this creates a musical pattern that reflects the group dynamic, and will be studied as a subliminal audio

feedback mechanism.

With every added feature, the timing of each prompt becomes more critical. To experiment with the

timing we implemented separate priority queues for each participant, and a global queue for the whole

meeting. This allows CAMEO to delay messages to a participant, or prioritize them. However, quantifying

and hard-coding ‘too close’ or ‘high priority’ can make the system fragile. Humans are highly sensitive to

the situational and temporal context, as in the case where the participants tolerance to extraneous noise

increased. To be successful in socially orienting themselves, CAMEO and other proactive agents too will

need to display a better awareness of the situational context [68]. For these reasons, in the next chapter

we shift our focus towards the timing of a considerate agent’s actions based on situational context, as

embodied in the gateway module.



Chapter 5

Realtime Situated Scenario: Distracted Driving

In this chapter, we address some of the issues arising from scenarios at the other end of the social space

dimension, i.e. realtime situated interactions. Interactions in such spaces usually happen when the user

is already involved in another primary task involving spatiotemporal skills like driving or cooking. Since

all the co-actors are located in the same physical space, multi-tasking in such an environment can prove

distracting, and even disastrous. In contrast to the approaches discussed in the previous chapter, the

general approach for a considerate mediator here would be to temper and gate communication with the

user/s depending on their skill and perceived task load. In particular, we focus on the distracted driving

scenario, which is the second scenario in which the Considerate Mediator is grounded and evaluated.

As a taxing, yet popular, activity, driving has resulted in a large number of fateful accidents, espe-

cially when drivers inappropriately multitask with the phone and other infotainment devices. Could a

considerate system help people reduce their mistakes when engaged in such dual-task scenarios? For our

purposes, we can think of the these technologies that the driver interacts with as social actors that need

to be mediated by the Considerate Mediator, based on the driver’s workload (situational context). To

demonstrate considerate behavior then, the timing of the Considerate Mediator’s actions becomes critical.

Architecturally, this aspect of the Considerate Mediator is embodied in the gateway module. We illustrate

how the design process & guidelines grounds and informs our implementation of the gateway module in

this specific scenario. We then evaluate its effectiveness by analyzing task performance.

5.1 Introduction

The proliferation of ubiquitous computing platforms like the smartphone is fundamentally changing how

we interact with each other, and how we consume information. Messaging apps are making our com-

munications more asynchronous, concise and directed. They are giving rise to new social etiquettes,
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shaping our expectations of how and when we send messages, and respond to them. Many applications

use these same smartphone communication platforms to interact with their users. Polling each applica-

tion separately to see if there is something that requires action, however, has become cruelly inefficient.

Consequently, these applications have come to rely on notifications to request user interaction.

The effects of notifications have been studied in the office-desktop environment when engaged in

primary tasks like editing or programming. However, little has been done to understand the nature and

effect of mobile notifications in everyday life. Even as we begin to study them, notification strategies

are evolving; wearable devices, like smartwatches and head-mounted displays, are being developed that

aim to focus our attention on notifications while touting seamless integration. Despite their interruptive

nature, notifications might be our only way to keep abreast of time critical requests for our attention.

Thus, their effects in mobile situations needs to be understood if we are to develop effective strategies to

manage people’s attention without subjecting them to undue risk.

The asynchronous nature of notifications afford the user the ability to decide when to take action on

a secondary or new activity. While in some cases immediate action is taken by the user, in other cases

notifications must be ignored depending on the user’s current context. The task of attending to these

notifications, and making a decision on whether to take an action or not, is currently left up to the user.

Prior work typically does not distinguish between noticing, attending and responding to a notification. In

this work, we want to understand the cost that is associated with the attending to a notification, and the

role played by the modality, i.e. audio or visual. The primary task could be any immersive task involving

complex sensorimotor skills, like cooking or even surgery. We present our experiments with ConTRe

(Continues Tracking and Reaction) [105], which requires continuous tracking and episodic reactions in a

driving-like task.

Automotive cockpits have been gaining a lot of attention because of the real impact that driver distrac-

tion can have on road traffic safety. A number of studies have shown how operating mobile devices and

other in-vehicle infotainment systems is critically impacting driving performance and is a major factor in

automotive accidents. Results of testing these effects in simulator studies has been shown to be replicable

in field studies [45]. A broad literature has demonstrated that interacting with telephones and similar sec-

ondary activities in the car can adversely affect the primary driving task. This chapter explores how even

simply attending to tasks that do not require a response might impact performance. Such tasks might be

as simple as attending to notifications, which is the subject of our study.

Distractions from secondary tasks stem from a combination of three sources: manual, visual, and

cognitive [149]. Here we are primarily interested in the cognitive sources of distraction, which occur

when attention is withdrawn from a complex primary task. Many activities like driving have periods of
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low and high information processing. Since disabling notifications during such activities is not a blanket

solution that we can expect users to realistically employ, notification mediation could be used to present

notifications to the user when they aren’t overloaded with the primary activity. One of the goals of this

work is to study the impact of mediation on performance in both the primary ConTRe task and the

secondary notification comprehension task, across both the audio and visual modalities. We report on the

results from this study in section 5.3. The other goal of this work is to actually build a system that can

autonomously mediate notifications based on task load.

5.1.1 Autonomous Mediation

People have finite mental resources and can only process a limited amount of information without degra-

dation of task performance. Despite this being the case, there is an increasing trend towards computers

being proactive and providing information to the user without being prompted. For cognitively challeng-

ing activities like driving, divided attention can have dire consequences. Thus, in order to be minimize

breakdown in this scenario, we have to be appropriate at the cognitive level of the user model (3.1). There

is a need for systems to gauge the load on this mental resource in order to predict or preempt degradation

in task performance, while interacting with a user.

While progress has been made towards gauging this load, we are still a long way off from being able

to measure it at a real-time fine-grained level. In the future, such capabilities might avert human mistakes

in situations of divided attention. For instance, voice interaction might become the most efficient way for

a user to interact with a system, when their manual and visual resources are already occupied. By using

a rapid and fine-grained cognitive load measure, dialog or proactive agents would be able to track the

ebbs and flows of the load being experienced by the user in real-time. This would allow it to preempt

disfluencies and other irregularities in speech, as well as to time its responses and other actions, so as

to prevent overloading the user. In the driving scenario, it has been shown that passengers adapt their

conversation to the driving situation, which leaves the driver with more resources to perform the driving

task when it gets difficult [40, 27]. Interactive agents should aim to emulate such considerate behaviors.

Cognitive load can be gauged by directly modeling the driver via psychophysiological measures, or

by modeling driving context and its effect on the driver, or by jointly modeling both [94]. Compared to

modeling the external driving context, less progress has been made in modeling the driver’s internal state

in order to identify when to interrupt them. One advantage of the internal state approach is the potential

for these models to generalize to other domains. Modeling external context requires specific sensors and

techniques to be considered for each domain separately. Furthermore, a physiological-based approach
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can be tuned for each user individually, as different users might experience external contexts differently.

Recent advances in wearable technologies suggest that monitoring at least a few physiological signals in

everyday life might become a feasible option.

In section 5.4, we evaluate several signals that might be used as part of a psychophysiological approach

to gauging cognitive load. These signals were recorded from users while they participated in the first

study (5.3). We found the most success with the pupil dilation measures, which were used to build

classification models that can detect which tasks the user is engaged in. We present analysis of how the

performance of the model varies with changes in the modality and timing of notifications. We do this

for each user, as well as across all users. In section 5.5, we evaluate the feasibility of using such a model

built on pupil dilation measures to mediate notifications in real time. We demonstrate its effectiveness

by comparing user task performance with and without mediation. In the following sections, we provide

background and discuss related work, before describing the two studies and their results in detail.

5.2 Related Work

We start off by describing work that has studied the interruptive nature of notifications, and how com-

pelling they can be. This is followed by work that investigates the effects of multitasking on task per-

formance, and the associated risks. We primarily focus on describing work where driving was the main

activity. We then present strategies that others have prescribed to mitigate these risks, and help users

better handle task switching, particularly through the use of mediation to manage attention allocation.

Finally, we review work that might allow the system to autonomously mediate notifications to the user.

5.2.1 The Interruptive Nature of Notifications

Iqbal and Bailey [86] define a notification as a visual cue, auditory signal, or haptic alert generated by an

application or service that relays information to a user outside their current focus of attention. A majority

of the research on notifications is focused on information workers in a desktop computing environment.

Its detrimental effects on primary task performance and efficiency have been highlighted through numer-

ous studies [35, 100]. This effect was shown to be more pronounced when the primary task is cognitively

demanding [34]. Interestingly, a study found that while users are aware of the disruptive effects of notifi-

cations, they appreciated the awareness provided by them [90].

Notifications play an even more central role in the mobile domain and are becoming the focal point for

user interaction. In one study, experience-sampling was used to show that receptivity to an interruption

is influenced by content rather than by its time of delivery [47]. Another large-scale study found that
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users attributed the most value to notifications from communication applications [139]. Regardless of

application category, they reported a 50% probability that a user would click on a notification within 30

seconds, which could be indicative of their general capacity to be disruptive. Another study reported a

daily average of 63.5 notifications per user, where muting the phone did not increase response times in

viewing notifications [127].

Social Pressures of Messaging

Such asynchronous communication channels have become essential for young people in particular [13,

146]. When messaging was restricted as part of a user study, the participants not only showed increased

anxiety, but many also did not comply [146]. An increasing number of apps are growing to rely on noti-

fications to draw user attention to new messages or content. Focus groups have uncovered the unspoken

rule of immediacy of response, and the pressure felt by people to carry their personal mobile devices at all

times [79]. Notifications have become pivotal in propping up such social constructs. Prior work validates

our assertion that notifications are too compelling to be ignored, especially in communication settings. To

better frame our study on the potential risks of attending to these notifications, we now describe work

that has examined the negative effects associated with multitasking.

5.2.2 Effects of Multitasking

Repeated task switching during an activity may lead to completion of the primary task with lower accu-

racy and longer duration, in addition to increased anxiety and perceived difficulty of the task [9]. Multiple

studies have shown how cell phone conversations, texting, or interacting with In-Vehicle Information Sys-

tems (IVIS) can be detrimental to driving safety [148, 77, 140, 88, 23]. Drivers engaging in such activities

have been shown to have increased brake reaction time [1, 99], failure in scanning for potential hazards in

the driving environment [151], and to have accidents with higher likelihood [134].

The distribution of cognitive resources when engaged in such multitasking scenarios is not very well

understood. This makes it difficult to assess and predict workload that will be experienced by the user.

Theories have been proposed to model how multiple tasks might compete for the same information

processing resources [163, 8]. One widely used approach that has been shown to fit data from multitask

studies is Wickens’ multiple resource theory. This attempts to characterize the potential interference

between multiple tasks in terms of dimensions of stages (perceptual and cognitive vs. spatial), sensory

modalities (visual vs. auditory), codes (visual vs. spatial), and visual channels (focal vs. ambient) [163].

Performance will deteriorate when demand for one or more tasks along a particular dimension exceeds
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capacity.

Cognitive Sources of Distraction

Among the three sources of distraction, cognitive is the most difficult to asses. Changes in driving per-

formance associated with cognitive distraction have been shown to be qualitatively different from those

associated with visual distraction [3, 45]. As an example, visual distraction has been shown to increase

the variability of lane position, whereas cognitive distraction has been shown to decrease the variability

of lane position [33]. Similarly, distractions attributed to one source can actually be caused by another.

For instance, mandating that cell phone conversations be hands-free while driving has not been found to

improve safety compared to hand-held phone conversations [134, 148]. Studies suggest that it is not the

motor action of holding the phone, but the cognitive demands of multitasking that degrade task perfor-

mance [121]. In particular, it was shown that conversations that include information recall challenges have

the most detrimental effects on driving [89].

Visual Sources of Distraction

Complex sensorimotor tasks like driving heavily requires visual and spatial working memory to scan the

environment, track objects of interests, and judge relative distances to them. A number of studies have

shown that operating a device while driving competes for these same resources, to the detriment of the

primary task performance [76]. Heads-up displays (HUD) have the potential to share visual resources

between the primary and secondary tasks, as information is displayed on transparent surfaces in line with

the environment. These have been investigated in the aviation and automotive domains, and while these

have shown to benefit users in terms of vehicle control and detection of roadway events, these benefits

do not hold under the high workload of unexpected events [75]. Devices like Google Glass (Glass) have

spurred on a renewed interest in the impact these devices have on primary tasks. Studies on driving and

texting via Glass show that while the device served to moderate the distraction as compared to using a

smartphone interface, it did not eliminate it [141, 153].

Driving and Language

Listening and responding to another person while driving a car has been widely studied, and has been

shown to effect driving performance, particularly with remote conversants [98]. Passengers sitting next

to a driver are able to adapt their conversation to the traffic situation, allowing the driver to focus on

driving when it becomes difficult [40, 27]. These findings have motivated research towards building

dialog systems that are situation-aware and interrupt themselves when required [97].
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In the case of driving and notification comprehension, both tasks compete for resources along the

stages dimension. We would expect performance to deteriorate when there is an increased demand for

the shared perceptual resources, i.e. when driving is hard and/or when the notification is difficult to

comprehend. If the notification is visual, both tasks might also compete along the modality and visual

channel dimensions. We would expect performance deterioration to be greater for visual notifications.

5.2.3 Mediating Interruptions & Notifications

Successful dual-task scenarios depend on the availability and requirements of cognitive resources for

the secondary task given resource consumption by the primary task [162]. This presents opportunities

to increase people’s ability to successfully handle interruptions, and prevent expensive errors. McFar-

lane’s seminal work proposed four methods for coordinating interruptions [110], including immediate,

negotiated, mediated and scheduled. Mediation has been widely studied in the desktop computing do-

main [82, 86], but has not been adequately explored in post-desktop, mobile situations.

Bounded Deferral

An example of mediated interruption is to estimate the cost of interrupting a user, and use that in de-

termining when to pass notifications on to them. The bounded deferral technique [81] proposed waiting

till a user was not in a busy state, and was shown to be particularly effective at task or perceptual break-

points [87]. Similarly, results from a mobile study suggest that notifications might be considered more

favorably when delivered between two physical activities [102]. In the driving domain, informative in-

terruption cues were used to signify the arrival and priority of a new notification, in order to allow the

driver to decide whether and when to divert their attention [25].

Shared Context

Another approach is to shape the expectations of the communicating parties by making transparent the

availability of the recipient, which is an example of a negotiated interruption. In an office environment,

it was shown that using low cost sensors such as a microphone, models could be constructed to infer

the interruptibility of an information worker with the same accuracy as humans [48]. In the mobile

domain, an interruption library that used user activity, location, time of day, emotions and engagement,

was shown to result in increased user satisfaction [125]. In the driving domain, numerous studies have

shown that conversations with collocated passengers have less negative impact on driving compared to

those with remote callers [77]. This led to work that demonstrated the positive effects of shared context
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by providing remote callers with the driver’s context via video [106] and through auditory messages [88].

In an asynchronous mobile messaging scenario, however, shared context might be perceived as a privacy

concern by its users.

The first part of work presented in this chapter focuses on studying the impact of notifications (per-

ceptual and cognitive) on a driving-like task, and the role that mediation has on diminishing the costs

(breakdown) associated with it. We will also evaluate the users ability to comprehend a notification with

and without mediation. We will conduct this analysis for both audio and visual notifications and compare

the results. In the second part, we train our sights on building a system that can autonomously mediate

notification.

5.2.4 Autonomous Mediation

In cognitive psychology, there is a general consensus that people have limited and measurable cognitive

capacities for performing mental tasks [114]. Furthermore, engaging in one mental task interferes with

the ability to engage in other tasks, and can result in reduced performance on some or all of the tasks

as a consequence [93]. To characterize the demand on these limited resources, psychologists have em-

ployed notions like cognitive load and mental workload, which gains definition through the experimental

methods that are used to measure it [96].

Measuring Cognitive Load

Cognitive load can be assessed using data gathered from three empirical methods: subjective data using

rating scales, performance data using primary and secondary task techniques, and psychophysiological

data from sensors [124]. Self-ratings, being post-hoc and subjective in nature, tend to be inaccurate and

impractical to use when automated and immediate assessment is required. Secondary task techniques

are based on the assumption that performance on a secondary measure reflects the level of cognitive load

imposed by a primary task. A secondary task can be as simple as detecting a visual or auditory signal,

and can be measured in terms of reaction time, accuracy, and error rate. However, in contexts where the

secondary task interferes with the primary task, physiological proxies that can measure gross reaction to

task load are needed to assess cognitive load.

Psychophysiological techniques are based on the assumption that changes in cognitive functioning

cause physiological changes. A consensus paper by Pichora-Fuller provides a great summary of the

various psychophysiological measures that might be useful to monitor cognitive load from effortful lis-

tening [126]. An increase in cortical activity causes a brief, small autonomic nervous response, which
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is reflected in signals such as heart rate (HR) and heart rate variability (HRV) [51, 116, 165], electroen-

cephalogram (EEG) [138, 165], electrocardiogram (ECG) [138], electrodermal activity (EDA) [84, 145],

respiration [116], and heat flux [65], eye movements and blink interval [14, 84, 85, 165] and pupillary

dilations. Our dataset includes most of these signals as well as additional signals that have been shown

to be sensitive to affect like pulse transit time (PTT), facial electromyography (EMG) and skin tempera-

ture [103, 123].

In particular, brain activity as measured through event-related potentials using EEG, or as inferred

from pupillary responses have received more attention recently because of their high sensitivity and

low latency [4, 108, 96]. There has been very little work that correlates these measures with the other

physiological measures, or demonstrates how to effectively align them. Furthermore, to the best of our

knowledge this is the only work that has focused on tracking cognitive load that is rapidly and randomly

changing, since we are interested in teasing out the dynamic nature of instantaneous cognitive load.

Lastly, prior work has typically focused on cognitive load arising in single-task scenarios like document

editing [85], and traffic control management [145]. In contrast, there has more recently been interest in

studying the effect that complex linguistic processing can have on driving using physiological measures

of pupil dilation and skin conductance [36]. We take this further by building models that can estimate

realtime cognitive load in this increasingly common multitasking scenario, i.e. distracted driving.

5.3 Study 1: Effects of Mediating Notifications

Our study had multiple goals, all of which are primarily focused on fleshing out a user, system and task

model that informs our understanding of the distracted driving scenario. First, we wanted to determine

how notifications impacted performance on a driving-like primary task. This relates to the cognitive level

of the user model (3.1). Second, we wanted to establish how mediating them relative to task load could

improve a user’s performance on both the primary and secondary tasks. This relates to understanding the

implications of the appropriateness approach in the task model (3.3). Finally, we wanted to understand

these effects for both audio and visual notifications, in order to inform communication choices in the

system model (3.2). These are formulated in the following research questions:

1. Mediation: How is primary task performance effected when the user is attending to notifications?

Can mediation reduce this impact?

2. Modality: How is primary task performance effected by modality? Does mediation have the same

effect across both audio and visual modes?
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Figure 5.1: Screenshot of the ConTRe (Continuous Tracking and Reaction) Task that displays the yellow
reference cylinder with the traffic light on top, and the blue tracking cylinder beside it.

3. How do both of these conditions, i.e. mediation and modality, effect a user’s ability to comprehend

a notification?

Pilot explorations with a driving simulator, while promising, had a number of limitations. The un-

predictability and complexity of a full driving experience made it difficult to replicate task loads and

added unnecessary dependent variables to data collection. For these reasons we chose instead to use the

established ConTRe (Continuous Tracking and Reaction) task [105], which provides a highly controlled

yet unpredictable task load for the participant. This allows for consistent and replicable analysis.

The study was designed so that the primary ConTRe task would randomly switch between low and

high workloads. This was done to simulate a typical driving scenario where drivers episodically experi-

ence high workload when they are entering/exiting highways, changing lanes, following navigation in-

structions, etc. For the secondary task, participants attended to notifications that were presented to them,

as they performed the primary ConTRe task. Audio notifications were delivered via speakers, while visual

notifications appeared through a Heads Up Display (HUD). The audio notifications were created using

Apple’s text-to-speech engine on OS X Yosemite (Speaking voice: Alex; Speaking rate: Normal). The

HUD used was a Google Glass, which projects the screen at a working distance of 3.5 m, approximately

35�elevated from the primary position of the eye.

5.3.1 Experimental Design

The study was designed as a 2 (Audio/Visual modes) X 2 (Mediated/Non-mediated conditions) repeated

measures within subjects study. This was done to mitigate individual variance in performance for the

primary and secondary tasks. To control for possible effects of order the study was double counterbal-

anced for mode and condition factors. Additionally, there were two baseline conditions which included

performing the ConTRe task in low and high workload settings without notifications.



CHAPTER 5. REALTIME SITUATED SCENARIO: DISTRACTED DRIVING 72

5.3.2 Participants

20 people participated in our study, recruited through a call sent out to students selected randomly from

a graduate engineering school population. There were 10 males and 10 females. The mean age of the

participants was 26.4 years, with a standard deviation of 2.7 years. Participants were rewarded with a $40

gift cards for completing the study.

5.3.3 Apparatus

The Robot Operating System (ROS Hydro) was used to synchronize signals from the different compo-

nents of the experimental setup. This includes data from the simulator, physiological sensors, and the

audio-visual feeds, all of which were being sampled at different frequencies, on separate machines. Each

component publishes messages via ROS Nodes to the server, which synchronizes the data and writes

it to disk. A Logitech camera, a mic, and audio mixer were used to capture audio-visual information.

Participants controlled the simulator using a Logitech G27 Racing Wheel.

5.3.4 Tasks

We elaborate below on the design of the primary ConTRe task and the secondary notification task that

make up the multitasking scenario.

Primary Task: ConTRe

The ConTRe task comes as an add-on for OpenDS, an open-source driving simulator [105]. It is an

abstracted and simplified task that comprises of actions required for normal driving, i.e. operating the

brake and acceleration pedals, as well as using the steering wheel. This focuses the user’s task and

simplifies the recording of tracking behavior. Fine grained measures of performance on the primary task

relative to the secondary task requests can be obtained, which is necessary for our investigation.

Here the car moves with a constant speed on a unidirectional straight road consisting of two lanes. The

simulator shows two cylinders at a constant distance in front of the car: a yellow reference cylinder, and a

blue tracking cylinder. The yellow reference cylinder moves autonomously and unpredictably. The lateral

position of the blue tracking cylinder is controlled by the user through the use of the steering wheel. The

cylinder moves left or right depending on the direction and angular velocity of the steering wheel, i.e

the steering wheel controls the cylinder’s lateral acceleration. Their goal is to track the yellow reference

cylinder, by overlapping it with the user-controlled blue cylinder, as closely as possible. Effectively, this

corresponds to a task where the user has to follow a curvy road. For the low and high task load conditions,
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the lateral speed of the reference cylinder was set to values that were empirically determined to create

low and high workloads for the user, respectively.

Furthermore, there is a traffic light with two colors, placed on top of the yellow reference cylinder. The

top light turns on red, whereas the bottom one turns on green. At any time, neither of the lights or only

one is turned on. The red light requires that the user respond by depressing the brake pedal, while the

green light corresponds to the accelerator pedal. This operates independently of the steering function. As

soon as the user reacts to the light by depressing the correct pedal, the light turns off.

Secondary Task: Notifications

The secondary notification task is based on widely used measures of working memory capacity, which

include operation span and reading span tasks [31]. Working memory has been purported to be involved

in a wide range of complex cognitive behaviors, such as comprehension, reasoning, and problem solving

as it is thought to reflect primarily domain-general, executive attention demands of the task [44]. In this

work we do not aim to measure working memory, but instead want to measure the effect of processing a

notification across the four experimental conditions. Thus, we modify the span tasks for our purposes as

described below.

In each condition, drivers were presented with a series of twenty items, which included ten math

equations and ten sentences taken from widely used span tasks [31] (see Table 5.1). The math equations

and sentences are representative of the symbolic and verbal types of notifications, respectively, that users

typically receive. Using standardized stimuli allows for consistency and replicability. Both types of notifi-

cations were randomly interspersed, so as to prevent the person from getting into a rhythm of expecting

either one. After the subject had read or listened to each item, they verbally indicated if the notification

was true or false. Sentences are true when they are semantically and syntactically correct, while the math

equations are true when they are valid.

After each item, the participant was presented with an isolated letter, which represents something they

had to remember from the notification. After two, three or four items, the simulator was paused, and they

were asked to recall the letters in sequence, which we can liken to responding to a text message or some

other such notification. Recall tasks are already known to have the most detrimental effects on primary

task performance [89]. Pausing the simulator separates the recall effort from the recorded ConTRe task

performance (even today’s drivers are encouraged to stop their car before interacting with any request

from their phone). This focuses the experiment solely on attending to notifications and its resulting effect

on task performance.
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Type Notification

Math 2/2 + 1 = 1

Sentence After yelling at the game, I
knew I would have a tall voice

Table 5.1: Examples of the two types of notifications

5.3.5 Mediation

Mediation was done relative to task load. In the non-mediated (control) condition, notifications were

presented randomly in both the low and high workloads. In the mediated (test) condition, notifications

were presented only during low workload. The bounded deferral technique [81] was used, where the

notifications would be delayed while the driver was in a high workload setting. The notification would

then be delivered a few seconds into the low workload setting. The mediation was conducted by one of the

experimenters who had full view of the simulator and could determine when to deliver the notification.

Modality appropriate changes were made if a notification had been delivered, and the workload changed

from low to high before the driver responded. For the audio mode, the notification could be paused and

continued at the next low workload period, or simply repeated. In the visual mode, the notification could

be hidden till the next low workload period, when it would become visible again.

Before each condition, participants were told if they would be receiving audio or visual notifications.

However, they did not receive any indication as to whether the notifications would be mediated by task

load.

5.3.6 Methodology

Participants arriving at the lab were guided through an informed consent process, followed by an overview

of the study. They were aided through the process of having a number of sensors attached to their body

for the purposes of recording their physiological responses, including heart rate, electrodermal activity,

skin temperature, etc. The participant was then seated in the simulator and shown how notifications

would be delivered on the Glass, and through the speakers.

The participant was then taken through a series of practice runs to get them comfortable with the

primary ConTRe task. When done with the practice, the low benchmark was recorded using the low

workload setting on the simulator. After one minute, they were asked to repeat a series of ten sentences

that were read out to them, one-by-one, while they were still performing the ConTRe task. The same

routine was performed to record the high benchmark using the high workload setting on the simulator.
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This was followed by another set of practice rounds, where the secondary notification task was ex-

plained and demonstrated to the participant. After this, a practice trial was run by combining both the

ConTRe task (with the randomly alternating workloads) and the notifications task. The notification task

included a set of five items, three of which were math equations, with the rest being sentences. This

provided the participants with a sense of what to expect during the actual trials. The practice trials could

be repeated if necessary.

The participants then moved on to the experimental trials. Each participant participated in a total of

four trials, one for each condition. At the end of the four trials, the participant was interviewed about the

disruptivity and effectiveness of audio and visual notifications. The entire study lasted approximately 2

hours per user.

5.3.7 Measures

Quantitative performance data on both primary and secondary tasks were collected. From the ConTRe

task, we collected the following: steering deviation, i.e. the difference in distance between the reference

cylinder and the tracking cylinder; reaction times to respond to the red and green lights, i.e. the amount

of time from when the light went off to when the correct pedal was depressed; and the error rate of

depressing the wrong pedal. These measures were automatically recorded by the simulator.

In the mediated condition, notifications were presented in the low workload section. In the non-

mediated condition, notifications were presented in the low and high workload sections. We would thus

expect the ConTRe performance in the low workload sections to be identical for both conditions. Hence,

we focus our analysis on the performance data from the high workload sections of the mediated and

non-mediated conditions. Steering deviation was being continuously sampled at 570 Hz. To filter out

noise and infrequent occurrences of sudden deviations from the trend. The data was filtered using a

rolling median. The average steering deviation of each user in each condition was then recorded. For

the accelerator and brake reaction tasks, there were an average of 31.5 brake reaction and 31.3 accelerator

reaction data points per user for each condition. Like the steering deviation, the reaction times for both

the brake and accelerator tasks were low-pass filtered using a rolling median. The mean reaction times

were then calculated and recorded for each user in each of the four conditions.

For performance on the secondary notification task, the response times for math and sentences were

computed separately. This is the time from when the notification was presented to the driver, to when

they respond to indicate true or false. As before, the data is filtered using a rolling median. The mean

response times for math and sentences are then recorded for each user in every condition. The errors
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in the responses were also calculated, as well as the error in recalling the sequence of letters that were

presented to the driver after each notification. The sequence could be two, three or four letters long.

At the end of all the trials, participants were interviewed about their preferences regarding the modal-

ity of the notification, and the effect of its disruptivity on their primary task performance. They were also

asked if they perceived any difference between the two audio or the two visual conditions, i.e between the

mediated and non-mediated conditions.

5.3.8 Results

After processing the data as described in the previous section, we arrive at 10 data points per user (one

for each measure) for each of the 2 (Modality) X 2 (Mediation) conditions: Audio Mediated (AM), Audio

Non-mediated (AN), Visual Mediated (VM), Visual Non-mediated (VN). This totals to 40 data points per

user, and a total of 800 data points. Described below are the results from the analysis of these data points,

starting with the primary ConTRe task.

Effects on Primary ConTRe Task

We now review the analysis of the ConTRe performance measures to understand the effects of mediation

and modality on the primary task. These measures include Steering Deviation, Reaction Time for Acceler-

ation and Braking, and Errors in Acceleration and Braking. To perform the analysis we use a multivariate

ANOVA (MANOVA) using all five driving performance measures as dependent variables. As opposed to

running multiple univariate F tests for each dependent variable, MANOVA has the advantage of reducing

the likelihood of a Type I error, and revealing differences not discovered by ANOVA tests [157].

A two-factor repeated measures MANOVA with within-subject factors (Mediation, Modality) showed

a significant effect from Mediation, F(1,19) = 25.46, p < .001, and no significant effect from Modality F(1,19)

= 1.16, p = .29. There was no significant interaction between the two main effects F(1,19) = 1.20, p = .28,

which validates the main effect analysis. This implies that notifications were distracting and negatively

impacted user performance on the ConTRe task. It did not matter if the notifications were audio or visual.

Given the omnibus multivariate F-test revealed a significant effect from Mediation, we further analyze

the effect on the different metrics separately. Since we are also interested in the effect of Modality, we

include its analysis. Thus for each measure, we describe four planned comparisons using paired t-tests:

a) Mediated and Non-mediated Audio (AM-AN), b) Mediated and Non-mediated Visual (VM-VN), c)

Mediated Audio and Visual (AM-VM), and d) Non-mediated Audio and Visual conditions (AN-VN) (see

Figure 5.2 & Table 5.2). To control for Type I errors we use the Bonferroni adjusted alpha levels of .0125
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Figure 5.2: Box plots (superimposed with parallel coordinate plots) of the driving performance measures
for 2 (Modality) X 2 (Mediation) conditions: Audio Mediated (AM), Audio Non-mediated (AN), Visual
Mediated (VM), Visual Non-mediated (VN), along with the pair-wise differences for each of the planned
comparisons (AM-AN, VM-VN, AM-VM, AN-VN).
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Primary Task Measures AM-AN VM-VN AM-VM AN-VN

Steering Deviation (pp) 0.27 (.48) -1.66 (.001) -0.13 (.67) -2.06 (< .001)

Acceleration Reaction Time (ms) -109.75 (.002) -156.13 (< .001) 13.84 (.52) -32.53 (.45)

Brake Reaction Time (ms) -90.71 (.017) -142.05 (.015) -18.49 (.59) -69.83 (.17)

Acceleration Response Error (pp) -3.05 (.06) -1.57 (.34) -0.91 (.59) 0.57(.76)

Brake Response Error (pp) -3.26 (.08) -0.87 (.65) -1.92 (.35) 0.47 (.78)

Table 5.2: Average pair-wise difference for each primary task measure, with p-values from paired t-tests
in parenthesis.

per test (.05/4).

The first two planned comparisons (AM-AN & VM-VN) emphasizes the impact of mediation in the

audio and visual modalities, separately. The next two planned comparisons (AM-VM & AN-VN) contrasts

the audio with the visual modes. In the Mediated comparison no notifications were presented in the

high workload sections as per protocol. Thus, we would expect ConTRe performance to be identical for

the audio and visual modes in the mediated condition as there were no notifications presented to the

participants. On the other hand, in the non-mediated condition, the difference in notification modality

might be borne out on the ConTRe task performance.

Steering Deviation: Comparing the steering deviation for Mediated (M = 18.02 %, SD = 3.27 pp) and

Non-mediated conditions (M = 17.75 %, SD = 3.08 pp) in the Audio mode does not reveal any signifi-

cance, t(19) = 0.71, p = .48, which matches results from previous work that found cognitive load costs are

minimally borne out on steering deviation [77, 24]. In the Visual mode, there was a significant difference

between Mediated (M = 18.15 %, SD = 2.95 pp) and Non-mediated conditions (M = 19.81 %, SD = 2.75

pp), t(19) = -3.84, p = .001 (Figure (a)). This indicates that the Visual mode effects the visual requirements

of the primary task, i.e. tracking the lateral movement of the system-controlled yellow cylinder. This

is consistent with findings in the literature which indicate that tracking will be negatively impacted by

glances away from the road [78].

In the Mediated condition, comparing the Audio and Visual modes showed no significant differences.

As explained before, the Mediated condition is equivalent to driving without any notifications. In the Non-

mediated condition, Audio was significantly less disruptive than the Visual mode t(19) = -0.43, p < 0.001.

Again, this can be attributed to adding a visual source of distraction to a primary task that depends on

visual input.

Reaction Time for Acceleration and Braking: In the Audio mode, the mean reaction time for acceler-

ation was significantly reduced in the Mediated condition (M = 892.2 ms, SD = 176.4 ms) as compared
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to the Non-mediated condition (M = 1001.9 ms, SD = 214.6 ms), t(19) = -3.52, p = .002. The same effect

carried on into the Visual mode with the Mediated condition (M = 878.4 ms, SD = 152.4 ms) being sig-

nificantly less than the Non-mediated condition (M = 1034.5 ms, SD = 214.6 ms), t(19) = -4.81, p < 0.001

(Figure (b)). This is again consistent with findings which indicate that diverting focal attention from the

road will result in longer reaction times [77]. The difference between Audio and Visual was not significant

in the Mediated or Non-mediated condition.

Performing the same analysis for the braking reaction times, the Audio mode showed a near significant

difference between the Mediated (M = 995.6 ms, SD = 216.8 ms) and Non-Mediated means (M = 1086.3 ms,

SD = 238.8 ms), t(19) = -2.59, p = .017. In the Visual mode, the difference was near significant as well with

the Mediated condition (M = 1014.2 ms, SD = 189.1 ms) being lower than the Non-mediated condition (M

= 1156.2 ms, SD = 254.8 ms), t(19) = -2.67, p = .015 (Figure (c)). No difference was found when comparing

the Audio and Visual modalities.

While acceleration and braking test for similar things, the slight increase in reaction times for braking

compared to acceleration might be attributed to the extra time it takes the user to move their foot from

the accelerator pedal (over which it used to hover by default for most users) to the braking pedal. It

is plausible that the act of braking itself introduces a larger manual source of distraction compared to

acceleration.

Errors in Acceleration and Braking: As with the reaction time analysis, we begin by analyzing the

acceleration results. In the Audio mode, there were fewer errors in the Mediated condition (M = 10.64 %,

SD = 8.94 pp) as compared to the Non-mediated condition (M = 13.69 %, SD = 7.24 pp), t(19) = -1.96, p =

0.06, but this did not reach significance. In the Visual mode there was no difference between the Mediated

(M = 11.54 %, SD = 6.27 pp) and Non-mediated conditions (M = 13.11 %, SD = 5.56 pp), t(19) = -0.97, p

= 0.34 (Figure (d)). Again fvor both the Mediated and Non-mediated conditions, no difference was found

between the Audio and Visual modalities.

For the errors in braking responses, there was a slight differences between the Mediated (M = 10.02 %,

SD = 7.37 pp) and Non-mediated conditions (M = 13.26 %, SD = 9.50 pp), t(19) = -0.46, p = 0.08, in the

Audio mode, but this did not reach significance. In the Visual mode, there was no significant difference

between the Mediated (M = 11.91, SD = 7.10 pp) and Non-mediated conditions (M = 12.78, SD = 6.59 pp),

t(19) = -0.46, p = 0.65. No difference was found in the Mediated and Non-mediated conditions across both

modalities. Due to the similarity in the acceleration and braking response, only the acceleration response

errors were plotted.
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Effects on Secondary Notification Task

We now proceed to analyze the main effects of Mediation and Modality on the notification task, whose

measures include, Response Times for Math and Sentences, Response Errors for Math and Sentences, and

Recall. Similar to the primary driving task analysis, we use a multivariate ANOVA (MANOVA) using all

five notification task measures as dependent variables.

A two-factor repeated measures MANOVA using within-subject factors (Mediation, Modality) showed

that all effects were significant at the .05 significance level. The main effect of Mediation yielded an F ratio

of F(1,19) = 5.49, p = .03. The main effect of Modality yielded an F ratio of F(1,19) = 12.81, p = .002. There

was also a significant interaction effect, F(1,19) = 6.90, p = .017. To understand the interaction, we calculate

the simple effects for each of the two levels in the independent variables (Mediation, Modality).

We first analyse the simple effects of Mediation by setting the independent Modality variable to Audio.

A one-way MANOVA with Mediation as the within-subject variable showed no significant effect between

the Mediated and Non-mediated conditions, F(1,19) = 0.03, p = .85. Whereas, setting the independent

Modality variable to Visual, revealed a significant effect, F(1,19) = 7.52, p = .01. This implies that audio

notifications are comprehended equally well under low and high workloads. Visual notifications, on the

other hand, are comprehended differently under low and high workloads.

Next we analyze the simple effects of Modality by setting the independent Mediation variable to

Mediation. A one-way MANOVA with Modality as the within-subject variable showed a highly significant

effect of mediation between Audio and Visual modes F(1,19) = 28.98, p < .001. Setting the independent

variable to Non-mediation did not show a significant effect F(1,19) = 3.84, p = .06. What we might infer from

this analysis is that under low workloads, users comprehend audio and visual notifications differently.

Under high workloads, modality of notifications does not effect comprehension ability.

To understand the direction of the differences, and the impact on the different dependent variables,

we perform four planned comparisons using paired t-tests, similar to the primary task analysis. For

each dependent variable, we describe below comparisons between: a) effect of mediation in the Audio

mode (AM-AN), b) effect of mediation in the Visual mode (VM-VN), c) effect of modality in the Mediated

conditions (AM-VM), d) and the effect of modality in the Non-mediated conditions (AN-VN) (see Figure 5.3

& Table 5.3). To control for Type I errors we use the Bonferroni adjusted alpha levels of .0125 per test

(.05/4).

Response Times for Math and Sentences: We first analyze the reaction times for math. In the Audio

mode, there was no difference in the reaction times between the Mediated (M = 5.69 s, SD = 0.43 s) and

Non-mediated conditions (M = 5.66 s, SD = 0.47 s), t(19) = 0.25, p = .8. In the Visual mode there was a
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Figure 5.3: Box plots (superimposed with parallel coordinate plots) of the driving performance measures
for 2 (Modality) X 2 (Mediation) conditions: Audio Mediated (AM), Audio Non-mediated (AN), Visual
Mediated (VM), Visual Non-mediated (VN), along with the pair-wise differences for each of the planned
comparisons (AM-AN, VM-VN, AM-VM, AN-VN).
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Secondary Task Measures AM-AN VM-VN AM-VM AN-VN

Math Response Time (ms) 0.03 (.80) -0.57 (.02) 2.52 (< .001) 1.92 (< .001)

Sentence Response Time (ms) -0.008 (.95) -0.52 (.04) -0.09 (.75) -0.61 (.07)

Math Response Error (pp) 1.92 (.48) 2.11 (.41) -2.57 (.29) -2.38 (.35)

Sentence Response Error (pp) -4.02 (.27) 0.34 (.93) 12.99 (.002) 17.35 (.001)

Recall Error (pp) 1.05 (.74) -5.76 (.07) -1.29 (.68) -8.10 (.01)

Table 5.3: Average pair-wise difference for each secondary task measure, with p-values from paired t-tests
in parenthesis.

difference between the Mediated (M = 3.17 s, SD = 0.9 s) and Non-mediated conditions (M = 3.74 s, SD =

1.70 s), t(19) = 0.25, p = .02, but it did not reach significance. There was a highly significant difference in

the reaction times between the Audio and Visual modes in both the Mediated and Non-mediated conditions,

p < .001 (Figure (a)).

The differences in reaction times for sentences were less dramatic. In the Audio mode there was no

difference between the Mediated (M = 5.10 s, SD = 0.63 s) and Non-mediated cases (M = 5.11 s, SD = 0.84

s), t(19) = -0.056, p = .95. In the Visual mode, there was a slight difference in the Mediated (M = 5.20 s, SD

= 1.41) and Non-mediated conditions (M = 5.72 s, SD = 1.94 s) , t(19) = -2.16, p = .04. In the Mediated case,

there was no difference between the Audio and Visual conditions, t(19) = -0.31, p = .75. In the Non-mediated

case, there was a slight difference, but it did not reach significance, t(19) = -1.89, p = .07 (Figure (b)).

Errors in Math and Sentences: For errors in math responses, there were no differences between all

four of the planned comparisons, for which reason they were not plotted. (Audio: M = 8.14 %, SD = 8.29

pp; Visual: M = 6.22 %, SD = 8.62 pp; Mediated: M = 10.72 %, SD = 7.59 pp; Non-mediated: M = 8.61 %,

SD = 10.42 pp).

For the errors in sentence responses, there was no significant difference in the Audio and Visual modes

between the Mediated and Non-mediated conditions. In the Mediated condition there was a significant

difference in the Audio (M = 28.69 %, SD = 15.00 pp) and Visual conditions (M = 15.69 %, SD = 10.78 pp),

t(19) = 3.51, p = .002. Similarly, there was a significant difference in the Non-mediated case between the

Audio (M = 32.71 %, SD = 14.59 pp) and Visual conditions (M = 15.35 %, SD = 13.36 pp), t(19) = 3.81, p =

.001 (Figure (c)). From this analysis, we might infer that modality has a significant effect on users’ ability

to comprehend sentences accurately, regardless of mediation. They made fewer errors when sentences

were presented visually, as opposed to aurally.

Errors in Recall: Analyzing the errors in recall revealed no significant difference in the Audio mode

(Mediated: M = 10.45 %, SD = 10.99 pp; Non-mediated: M = 9.40 %, SD = 9.32 pp), t(19) = 0.33, p =
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Physiological Measures Performance Measures

Raw Derivative ConTRe Task (T1) Notification Task (T2)

Electrocardiogram (ECG) Pulse Transit Time (PTT) Steering Deviation Sentence Response Time
Photoplethysmograph (PPG) Inst. Heart Rate (IHR) Acceleration Reaction Time Sentence Accuracy
Impedance Cardiography(ICG) SKT B � SKT A (SKT) Acceleration Accuracy Math Response Time
Respiration Braking Reaction Time Math Accuracy
Electrodermal Activity (EDA) Braking Accuracy Recall Accuracy
Skin Temp. Nose (SKT A)
Skin Temp. Cheek (SKT B)
Electromyography (EMG)
Pupil Dilation
Eye Gaze

Table 5.4: Collection of measures available in the dataset.

.74. There was a slight difference in the Visual mode between the Mediated (M = 11.74 %, SD = 12.65 pp)

and Non-mediated conditions (M = 17.51 %, SD = 13.34 pp), t(19) = -1.92, p = .06, which did not reach

significance. Comparing the Mediated Audio and Visual conditions did not show any difference, t(19) =

-0.41, p = 0.68. There was a significant difference between the Non-mediated Audio and Visual conditions,

t(19) = -2.86, p = .01 (Figure (d)).

Subjective Feedback

After the experiment, the participants were interviewed about their preferences, and for any feedback they

might have. While the data showed that visual notifications can be distracting under high workloads, the

subjective data indicated that this did not bear on the modality preferences of the participants. Some

of the participants who preferred the visual notifications mentioned that they did not find the particular

text-to-speech voice appealing. While others who preferred the audio notifications explained that they

found it cumbersome to periodically avert their gaze from the simulator screen to the heads-up display.

On being asked if they noticed any differences between the two audio trials or the two visual trials, i.e.

between the mediated and non-mediated conditions, none of the participants indicated that they perceived

a difference. They did not find any condition to be less difficult or stressful. This is intriguing because the

data revealed that non-mediated notifications are distracting and impacted performance measures, but

this was not consciously picked up on by the participants.

5.4 Estimating Cognitive Load using Physiological Measures

In this section, we describe the model building process to estimate cognitive load from physiological data

that was collected while users participated in Study 1. A modified version of this model will be used as
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Figure 5.4: Example physiological measures collected during an audio non-mediated experimental con-
dition. Driving workload is represented as a step function (1: High, 0: Low, -1: Pause). Colored regions
delineate when the user was engaged in the primary driving task (T1; white regions), secondary notifica-
tion task (T2; orange regions), or both (T1 & T2; blue regions).

the gateway module (section 3.5), and will be used to autonomously mediate notifications in Study 2.

5.4.1 Physiological Sensors

Physiological signals were captured and recorded using the Biopac’s BioNomadix monitoring devices for

Electrocardiogram (ECG), Photoplethysmograph (PPG), Electromyogram (EMG), respiration, skin tem-

perature, Electrodermal Activity (EDA), and Impedance Cardiography (ICG). Pupil dilation and eye gaze

was captured using Pupil Pro hardware1, which is a head-mounted mobile eye-tracking platform.

Since the hands of the participant were occupied for driving, we placed the PPG and EDA sensors on

the participant’s left toe & instep, respectively [155]. The facial EMG sensor was placed just above their left

eyebrow to measure activation of the corrugator supercilii muscle, which is associated with frowning. Two

skin temperature sensors were placed on the tip of the nose and on the left cheek. The ECG, impedance

cardiography, and respiration sensors were placed in the default positions, i.e., on the chest and neck.

5.4.2 Dataset

The dataset consists of a number of physiological and performance measures which are tabulated in

Table 5.4. We recorded ten psychophysiological signals: EDA, EMG, skin temperatures (nose and cheek),

1http://pupil-labs.com/pupil/
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four signals based on cardio-respiatory activity (ECG, PPG, ICG & respiration), and two based on eye

activity (gaze and pupil dilation). Apart from the eye-based signals which were sampled at 30 Hz, the

rest of the signals were sampled at 2000 Hz.

Three derivative signals were also calculated. Instantaneous heart rate (IHR) was obtained from the

ECG signal using the BioSig library2 which implements Berger’s algorithm [17]. Pulse Transit Time (PTT)

was obtained by calculating the difference in between the ECG R-wave peak time and the PPG peak time,

which is the time it takes for the pulse pressure waveform to propagate through a length of the arterial

tree. Difference in skin temperature (SKT) was also calculated by subtracting the temperature of the nose

from that of the cheek.

The performance measures encompass both the primary driving task and the secondary notification

task. Of interest are the reaction times and accuracies to the red and green light stimuli, and the steer-

ing deviation in tracking the reference cylinder. Also recorded are the performance measures for the

secondary notification task as shown in Table 5.4.

Preprocessing & Labelling

In this exploration, 5 of the 13 psychophysiological signals collected were seen to be the easiest and most

fruitful to analyze for dynamic task load modelling. They include IHR, PTT, SKT, EDA and pupil dilation

(Figure 5.4). These signals were extracted from the collected data and down-sampled to 40 Hz (except

for pupil dilation which remains at its original sampling rate of 30 Hz). Each signal was plotted, and

thresholds were determined to filter out unlikely values (from movement artifacts, etc.). Data for each

user was standardized (zero mean & unit variance), prior to which outliers that were more than three

standard deviations from the average, were filtered out.

Two sets of labels are included in the dataset, a set each for the primary and secondary task. By

syncing with the timestamps from both the task logs, we determined the precise primary and secondary

task conditions that the participant was under for every physiological sample. The primary task labels

denote if the participant is in the low, high, or paused driving workload condition (see Driving Workload

in Figure 5.4). The logs from the secondary task allow us to determine the periods during which a

participant was attending to a notification, i.e. blue regions in Figure 5.4. The orange regions signify the

recall part of the secondary task, when the primary driving task was paused.

2http://biosig.sourceforge.net/
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Feature Extraction

We derived a number of statistical features on the main signal (x[n]), the derivative signal (x[n + 1] �

x[n]), and the percentage change ((x[n + 1]� x[n])/x[n] ⇤ 100). These features include the mean, median,

percentiles (10th, 25th, 75th, 90th), ranges (between min and max, 10th and 90th percentiles, and 25th and

75th percentiles), skewness, and standard deviation.

Features were extracted using a sliding window. To capture temporal properties, windows were over-

lapped, i.e. their step size was smaller than their length. Different window lengths and step sizes were

considered. Specifically, the following pairs of window and step sizes (seconds) were analyzed: (7, 1), (5,

1), (3, 1) and (3, 0.25).

5.4.3 Modelling for Multitasking Scenario

Based on the insights from Wilkin’s multiple resource theory described in the Related Work section,

the loads that the primary and secondary tasks impose on the user are not mutually exclusive. Both

tasks compete for resources along the stages dimension, and along the visual channel dimensions if the

notifications are visual. Hence it would be more prudent for the classifier to make predictions on the load

the user is under for both tasks separately and simultaneously, instead of attempting to make predictions

on some notion of composite or absolute load. Thus, we can view this as a multi-label classification

problem. In this formulation, each window is assigned two labels, where each label is drawn from the

set of labels that corresponds to the primary and secondary tasks. Given the limited data to train the

model on, we reduce our task to a multi-label binary classification problem, and ignore the specific states

of the ConTRe (low/high workloads) and notification (attending/recall) tasks. Essentially, at this stage,

we are simply trying to predict which tasks (T1 and/or T2) the user is engaged in by analyzing the

psychophysiological data.

A sliding window is labelled as T1 if for the duration of a window the participant is only engaged

in the primary ConTRe task. If the ConTRe task is paused, and the participant is engaged in recall, the

window is labelled as T2. If the participant is attending to a notification while performing the ConTRe

task, the window is labelled as both T1 and T2. For simplicity, the transitory unlabelled windows were

discarded. The features of the remaining windows, and their corresponding multi-label assignments

{T1,T2} were fed to a Random Forest classifier, which is an ensemble technique that learns a number of

decision tree classifiers and aggregates their results. Models were built across all users, as well as for each

user separately to account for individual differences in their psychophysiological response. To evaluate

the classifier’s performance, we used leave-one-user-out cross-validation for the population models, and
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Window,
Step (s)

Population Individual

T1_T2 T1 T2 T1_T2 T1 T2

7, 1 0.85 0.90 0.80 0.84 0.89 0.78
5, 1 0.84 0.89 0.78 0.83 0.88 0.78
3, 1 0.81 0.85 0.76 0.81 0.87 0.75

3, 0.25 0.80 0.86 0.75 0.80 0.86 0.74

Table 5.5: ROC AUC Scores for population and individual models built using pupil dilation measures of
different window and step sizes

3-fold cross-validation for the individual user models.

The time it takes to comprehend a notification varies by participant. This creates variation in the

number of driving and notification task labels generated per participant, which in turn results in a varying

baseline accuracy for each user because of the class imbalance problem. Hence, instead of accuracy, we use

the Area Under the Receiver Operating Characteristic Curve (ROC AUC) metric to evaluate the classifier,

as it is insensitive to class imbalance. ROC curves show the trade-offs between higher sensitivity and

higher specificity. Sensitivity refers to the correct detection of a condition or state when it is truly present.

Specificity indicates the correct rejection of a state when it is truly not present. The area under the ROC

curve is a measure of adequacy on both. Curves corresponding to random or chance classification of 50%

would fall close to the diagonal, and result in an ROC AUC score of 0.5 regardless of class imbalance,

while the most successful classifications would have an ROC AUC score close to 1.0.

Being a multi-label classification problem, the classifier outputs two probabilities simultaneously: one

for the probability of the sample belonging to the primary task (T1), and another for the probability that

the sample belongs to the secondary task (T2). We report the macro-averaged ROC AUC scores for the pair

of labels, as a measure of how well the classifier is simultaneously able to predict both labels (T1_T2). We

also report the ROC AUC score for each label, individually, to shed light on how accurately the classifier

is able to identify each task.

5.4.4 Results

Of the five physiological signals analyzed, the pupil dilation measures were the only signal to yield

results that were much better than random. For this reason, we only list and discuss results using the

pupil dilation measures. For the four window and step size combinations considered, mean ROC AUC

scores for the population and individual models are shown in Table 5.5. A larger window size tends to

provide better results, and this trend holds for both the individual and population models. The population

scores are comparable to the average user scores, which tells us that the model based on pupil dilations is
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Condition T1_T2 T1 T2

Non-mediated
Video 0.88 0.90 0.86
Audio 0.90 0.92 0.88

Overall 0.88 0.91 0.86
Mediated

Video 0.82 0.89 0.76
Audio 0.81 0.88 0.74

Overall 0.81 0.89 0.74

Table 5.6: Population-based ROC AUC Scores under different timing and modality conditions.

generalizable.

Table 5.5 also shows ROC AUC scores for predicting each label individually. The scores indicate

that the models are better at identifying when the user is engaged in the primary driving task (T1) as

compared to when the user is engaged in the secondary notification task (T2). This might be because of

the differences in load induced by equation and sentence notifications, and also from the differences in

the notifications being right or wrong. Our model doesn’t account for these yet, but each can potentially

be treated as a different class under a label in the multi-label framework.

We also compared how varying the independent variables of timing and modality impacted the ROC

AUC scores. The results for these experiments are tabulated in Table 5.6. Only the analysis on the 7

second long windows are presented here as similar trends were observed for the other combinations. It is

clear that mediating when notifications were sent had a larger effect than modality on the model’s ability

to identify the secondary task. To explain this, we must remember that in the mediated condition, the

participant is sent notifications when they are in the low driving-workload state. The multiple resource

theory predicts that the cognitive load on the user in this state (low driving-workload + notification) is

similar to the cognitive load they experience when they are in the high driving-workload state. Thus, in

the mediated condition windows where the user is driving with and without notification, i.e. windows

labelled {T1} and {T1,T2}, look similar. In the non-mediated condition, this is not the case, as notifications

are also delivered in the high driving-workload states. This allows the classifier to better identify the

secondary task (T2) in the non-mediated condition.

5.5 Study 2: Autonomous Mediation

In this section, we present the second instantiation of the Considerate Mediator, which autonomously

mediates communication with the driver. This function is primarily handled by the gateway module,
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Figure 5.5: The Considerate Systems architecture grounded in the distracted driving scenario.

which “gates” information to the different agents. (see Figure 5.5). A modified version of the model built

and evaluated in the previous sections served as the core of the gateway module. The model was modified

so as to work with realtime data, and was trained only on data from the non-mediated condition.

The model gets standardized input from the pupil dilation data stream. Moving windows that were 5

seconds long with a step size of 1 were used, as these showed the most promise during pilot experiments.

The model outputs a {T1,T2} classification every second. Since at this preliminary stage, we are only

detecting which tasks the user is engaged in, we make the assumption that if the user is multitasking, i.e

{T1,T2} = {1,1}, then the user is experiencing high load. If the user is only engaged in driving it outputs

{1,0}. Based on the pattern of the classifications streaming out from the model, the mediator decides

whether to delay or resume notifications (see Section 5.5.5 & Table 5.8 for more details).

We evaluate this instantiation of the Considerate Mediator, and the gateway module in particular,

using an experimental setup similar to the one used in the previous study with some modifications to the

design and tasks. These changes are described below.

5.5.1 Design

This study focused on audio notifications only. It was designed as a repeated measures within subject

study with only one independent variable, i.e. non-mediated (control) vs. mediated (test) conditions. To

control for possible effects of order the study was counterbalanced.
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5.5.2 Participants

10 people (all male) participated in our study recruited through a call sent out to students selected ran-

domly from a graduate school population.

5.5.3 Tasks

Since notifications are what the system needs to mediate, they could not be used as the secondary task

(T2) that the classifier detects. We therefore increased task load in a different way by using a manual

transmission-based gear changing task as the secondary task. The tasks were chosen so as to make it

difficult for a user to perform perfectly on the primary and secondary tasks simultaneously.

Primary Task (T1): ConTRe

The primary task remains the same as in the first user study. The participant is engaged in an abstracted

driving task, where they track a yellow cylinder with a steering wheel. The participant also has to

simultaneously respond to red and green lights on the yellow cylinder by depressing the brake and

accelerator pedals, respectively. The ConTRe task was set to alternate between periods of low and high

workloads as described in the first study.

Secondary Task (T2): Gear Change

An LCD screen is placed in front of the simulator such that its contents are easily visible below the yellow

and blue cylinders presented on the simulator screen. Numbers from 1–6 are presented on the LCD

screen, which correspond to the gears on the manual transmission gearbox which is included with the

Logitech G27 Racing Wheel. The user was asked to shift to the right gear when the number changed on

the screen. To create a high task load for the user, the gear number only changed when the ConTRe task

was in its high load setting. The gear number was set to change every 1–3 seconds.

Mediated Task: Notifications

The notification task is a simplified version of the one used in the previous study. To create a continuous

task scenario the pause and recall portion of the previous study was eliminated. In this study, notifications

only consist of audio math and sentence prompts that the user responds to with a true or false.
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5.5.4 Apparatus and Sensors

The apparatus used to conduct, synchronize and record the experiment was the same as before. Only

audio notifications were presented to the user. As pupil dilation was the lone physiological measure of

interest, the Pupil Pro headset was the only physiological sensor worn by the user.

5.5.5 Methodology

Participants were guided through an informed consent process, followed by an overview of the study.

The participant was then seated in the simulator, and was asked to put on the Pupil Pro headset. They

were instructed on how to perform the ConTRe task. Once comfortable with the task, the secondary gear

changing task was introduced. After this the audio math and sentence notifications were demonstrated

to the user. Once the user was familiar with all the tasks, a calibration step was performed to determine

the parameters needed to standardize the data before classification. This step simply required the user

to perform the ConTRe task in its low workload setting for 10 seconds. This was followed by two ex-

perimental trials. These included the test condition in which notifications were autonomously mediated

based on task load, and the control condition in which notifications were randomly presented to the user

regardless of task load.

Notifications were mediated by delaying them if they hadn’t started playing. If they had started

playing, and then the system detected that the task load on the user was high, the notification would cut off

and repeat itself when the load on the user had reduced. A trigger-happy system that cuts off a notification

every time a {1,1} is output by the classifier can be annoying to the user. For better user experience,

notifications were mediated only when certain patterns of classification outputs were observed. Based on

pilot studies, the protocol was set to delay or cut-off notifications anytime a pattern of either [{1,1}, {1,1}]

or [{1,1}, {1,0}, {1,1}] classifications was output by the classifier. The system would then wait for a series of

five {1,0} classifications before resuming delivery of notifications.

5.5.6 Measures

Quantitative performance data on primary, secondary, and mediated tasks were collected. From the pri-

mary ConTRe task, we collected the following: steering deviation, i.e. the difference in distance between

the reference cylinder and the tracking cylinder (sampled at 570 Hz); reaction times to respond to the

red and green lights, i.e. the amount of time from when the light went off to when the correct pedal was

depressed; and the error rate of depressing the wrong pedal. These measures were automatically recorded

by the simulator. An average of 23.8 and 13.7 acceleration stimulus points were presented to each user
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Performance Measures M N p

Primary Contre Task
Steering Deviation (%) 22.0 23.1 .47

Accel Reaction Time (ms) 980 1014 .67
Brake Reaction Time (ms) 1117 1157 .47

Accel Response Error Rate 0.34 0.23 .07
Brake Response Error Rate 0.25 0.32 .05

Secondary Gear Task
Attempts per stimulus 1.15 1.26 .015

Response Error Rate 0.22 0.31 .05

Mediated Notification Task
Math Reaction Time (s) 2.02 2.30 .19
Sent. Reaction Time (s) 2.30 2.53 .32

Math Response Error Rate 0.08 0.08 .82
Sent. Response Error Rate 0.22 0.27 .33

Table 5.7: Mean performance measures of the primary, secondary and mediated tasks from both the
mediated (M) and non-mediated (N) conditions, along with paired t-test two-tailed p-values.

in the mediated and non-mediated conditions, respectively. Similarly, an average of 21.3 and 11.2 brake

stimulus points were presented in the mediated and non-mediated conditions, respectively. Since noti-

fications were being delayed in the mediated condition, these trials were longer that the non-mediated

ones. For each user in each condition, the mean steering deviation, reaction times, and reaction errors

were calculated.

From the secondary gear-changing task, the number of tries the user took to get to the right gear, and

the number of times they didn’t succeed in reaching the right gear were determined. The mean of these

measures for each user in both conditions were then calculated. Per user, an average of 52.2 and 28.3 gear

change requests were made in the mediated and non-mediated conditions, respectively.

For performance on the mediated notification task, the response times for the math and sentence

prompts were computed. This is the time from when the notification was presented to the driver to when

they respond to indicate true or false. The mean response times for notifications are then recorded for each

user in every condition. The errors in the responses and the mean per user was also calculated for each

condition. An average of 7.5 math and sentence prompts each, were presented to users in both conditions.

The outputs from the classifier, which occur every second, were also recorded for the mediated con-

dition. These will be analyzed to shed light on how the classifier’s outputs could inform the system’s

mediation behavior.
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Output Pattern Sensitivity Specificity Accuracy

every H and L 40 72 61
H 90 19 56

HH or HLH 83 42 63
HHH 74 68 71

HHHH 58 82 70

Table 5.8: Evaluation of different output patterns that the Considerate Mediator could be designed to
respond to. The first two rows indicate the overly eager and cautious behaviors, respectively. The next
three rows represent different patterns of classifier output.

5.5.7 Results

Below we report on results from the experiment. We look at mediation effects on each task by collectively

analyzing their corresponding performance measures. Since this presents three sets of comparisons (one

for each task), we use the Bonferroni adjusted alpha levels of .017 per test (.05/3) to control for Type

I errors. To perform the analysis, we perform a multivariate ANOVA (MANOVA) on the performance

measures from each task. As opposed to running multiple univariate F tests on each measure, MANOVA

has the advantage of reducing the likelihood of a Type I error, and revealing differences not discovered by

ANOVA tests [157]. We also analyze the classifier output with respect to task load, in order to shed light

on how a system might mediate notifications more effectively.

Mediation Effects

The analysis of mediation effect on the primary ConTRe task using a repeated measures MANOVA

showed no significant effect, F(5,5)=1.44, p=.35. The means for each of the five primary task measures

in both conditions and the paired t-test two-tailed p-values are listed in Table 5.7.

For the secondary gear-changing task, a repeated measures MANOVA showed a significant effect,

F(2,8)=7.42, p=.015. Further analysis of each of the dependent variables showed a significant difference in

the mean number of tries the user took to get to the right gear between the mediated (M=1.15, SD=0.16)

and non-mediated (M=1.26, SD=0.14) conditions, t(9)=-3.72 , p=.004. There was also a slightly signifi-

cant difference in the failure rates between the mediated (M=0.22, SD=0.05) and non-mediated (M=0.31,

SD=0.13) conditions, t(9)=-2.26 , p=.05. These are listed in Table 5.7.

A repeated measures MANOVA for the mediated notification task revealed no significant effect,

F(4,6)=0.98, p=.48. The means for each of the four notification task measures in both conditions and

the paired t-test two-tailed p-values are also listed in Table 5.7.
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Mediation Performance

Since the classifications are done on a sliding window, we can expect a lag from the onset of high task load

to when the classifier output indicates so. Another reason for the delay in classifications might be that even

though a high load is being imposed on the user, it might take a couple of seconds for them to experience

it as such. To find the average delay, the cross-correlation between the alternating load conditions and

time-shifted classification outputs was determined for multiple time shifts. Across users the average time-

shift at which the cross-correlations were maximum was 4.9 s with a standard deviation of 1.44 s. Thus,

to simplify our analysis going forward, we first account for this lag by shifting the classification outputs

by 4.9 s, so that the input and output are more directly correlated. We represent a {1,0} classifier output as

L and a {1,1} classifier output as H. The goal of this analysis is to get a sense of how well the classifier was

detecting high load situations across users in the study, and how the system’s mediation behavior could

potentially be improved.

By being overly eager or overly cautious, a system can display two extremes in how it uses the classifier

outputs to inform its mediation behavior. The eager system for example reacts immediately to every

change in task load L and H being output by the classifier by playing or pausing a notification. We would

expect the system to have high specificity, as it immediately changes its behavior based on classifier

output. The cautious system also stops notifications immediately when high task load is sensed H, but

continues to do so even if an H is followed by Ls for a specified period of time. Thus it displays low

specificity. Under the cautious behavior, a single H occurring during a high load section is considered as

a true positive (correct classification). Conversely, a single H during a low load section is a false positive

(incorrect classification). The system’s sensitivity, specificity and accuracy are calculated by aggregating

the true and false positives over the trials from all users. Results for the overly eager and cautious

behaviors are shown in Table 5.8, along with a few intermediate behaviors which we describe next.

To trade-off between sensitivity and specificity, the system could be designed to mediate notifications

only if it sees a particular pattern of classifier outputs. As described above, if a pattern occurs during a

high load section it is marked as a true positive, and if it occurs during a low load section it is marked as

a false positive. A few example patterns were evaluated, and their results are listed in Table 5.8. These

include patterns such as [H,H] or [H,L,H] which reduces the sensitivity of the system to the classifier

outputs, making it less cautious. This was also the pattern that was actually used by the system in

the autonomous mediation study. We can reduce system sensitivity even further by having the system

mediate notifications only when it sees [H,H,H] from the classifier. Table 5.8 also lists evaluation results

when [H,H,H,H] is the pattern that the system responds to. In this way we get a sense of how the system’s
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mediation behavior would have changed if the protocol was set to respond to different patterns of classifier

outputs.

5.6 Discussion

This chapter explores considerate response and how it can improve human performance when the interac-

tion is realtime and situated. Specifically, we investigate a dual-tasking scenario where the primary activ-

ity is a multimodal spatiotemporal task that resembles driving. The Considerate Mediator was grounded

and evaluated in this scenario, and was tasked with improving user’s task performance. We started by

taking the aid of the user, system and task models to formulate research questions for the first study.

After identifying potential for breakdown at the cognitive level of the user, we proceeded to implement

the gateway module in order to minimize it. At its core, the gateway module uses a model trained on

physiological measures to estimate cognitive load. Then based on the model’s output, and informed by

the appropriateness approach, the mediator decides whether to delay or resume delivery of notifications

to the driver.

The dual-task studies in this chapter consisted of a primary driving-like tracking and reaction task,

and a secondary notification-based cognitive task. ConTRe was used as the primary task as it focuses

on core driving skills and removes learnable contextual cues. This improves data and repeatability of

experiment. Similarly, prompts frequently employed in complex span task experiments serve as the no-

tifications presented to a participant. These represent the symbolic and verbal nature of notifications

commonly received by people on their smartphones.

The first study was focused on investigating the effects of attending to symbolic and verbal notifica-

tions. The timing and modality of the notifications were treated as independent variables to understand

their effects on cognitive load. By mediating the notifications based on the task load, we wanted to

understand its effects on both the primary sensorimotor task, and the secondary notification task. The

experimental results revealed that notifications are indeed distracting and impacts primary task perfor-

mance. This effect was significant for both aurally and visually presented notifications. Furthermore, the

visual modality did allow users to perform better on the secondary notification task when the notifications

were being mediated, i.e. when the notifications were being presented only during low workload.

The analysis of the different measures for the primary ConTRe task performance (Table 5.2) showed

that acceleration and braking response times were the most effected by the increased cognitive load of

having to process notifications. The braking response times appeared to be longer than the acceleration

response times possibly due to the added manual source of distraction in moving the foot to the brake
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pedal (we noticed that users hovered their foot over the accelerator pedal by default). The added visual

source of distraction from visual notifications was borne out on the steering deviation measure during

high task workloads. This effect on steering deviation was absent when the notifications were presented

in audio. With regards to the acceleration and braking response errors, mediation had a slight but in-

significant positive effect in the audio mode, but no effect in the visual mode. It might be the case that

even with mediation, there is a competition for visual resources in the visual mode.

From the analysis of the performance measures in the secondary notification task (Table 5.3), it is

clear that users respond faster to visual notifications when they involved the symbolic cognitive task of

considering an equation. This effect did not hold for comprehending sentences, which might be more

representative of communication notifications. Perhaps reading sentences while driving required more

glances than reading an equation. If so, the result indicates that people were self-mediating by making

trade-offs between performing the ConTRe task and comprehending sentences. With regards to accuracies

in responses, the number of math errors were consistent across all the conditions. Users were, however,

making more errors in comprehending sentences when they were presented aurally compared to visually.

It could be that iconic visual memory is less susceptible to disruption than serial audio memory. The

condition with non-mediated visual notifications presented the most difficulty to drivers in which to

recall a sequence of letters.

The post experiment debriefing revealed that preferences for modality was not based on its impact

on task performance but rather the comfort level of the participants with the modality. Furthermore,

none of the participants realized that notifications in two out of the four trials were being mediated. We

might infer from these findings that users were not reflexively aware of the extra load being introduced

by the secondary task and its impact on their performance, which can have dangerous implications in

real life situations. As designers then, we must rely on data and user performance, not preferences in the

successful design of cognitively challenging systems.

In this way, these findings informs the socio-centric user model, communication-based system model,

and the task model when designing solutions for such scenarios. There is a clear potential for breakdown

at the perceptual and cognitive level of the user. Despite the number of studies highlighting the increased

risks associated with visual distractions, recent advances in augmented reality (e.g. Navdy3, Microsoft

HoloLens4) have further kindled interests in the applications of such display-based technologies. While

such advances make these devices more practical and seamless to use, it might not necessarily lead to

lower distraction. The eye’s fovea only sees the central one to three degrees of the visual field. It is

3https://www.navdy.com/
4 http://www.microsoft.com/microsoft-hololens/en-us
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difficult for people to simultaneously focus on two visual stimuli especially if the information contained

in both is orthogonal to each other. For these reasons, the rest of the work described in this chapter

focused on the potential breakdown at the cognitive level.

A dataset of 13 psychophysiological signals was collected and used to build models that can estimate

cognitive load. These signals include ECG, PPG, ICG, Respiration, EDA, nose & cheek skin temperatures

and the differences between them, EMG, pupil dilation, eye gaze, PTT and IHR (listed in Table 5.4).

These were collected during a dual-task user study that subjected a participant to a series of alternating

low and high task loads. The study was designed in this way to mimic the fluctuating loads people

experience while driving in the real world. The goal was to capture these fluctuations as reflected in

the participants physiological responses. The dual-task scenario can be cast as a multi-label learning

problem of the primary and secondary tasks. The approach succeeded at building classification models

that distinguish whether the user is engaged in the primary task, the secondary task, or both. The pupil

dilation measure gave the most promising results. The model was built using statistical features derived

from measurements of pupil dilation, which were fed to a random forest classifier. The model worked for

each user and across all the participants, and was used as the core of the gateway module for the second

study.

In the second study, we evaluated the gateway module’s ability to mediate notifications to users in

real-time. The setup from the first study was altered to include a manual gear changing task instead

of the notification itself. Pupil dilation data was streamed to the classifier which output a multi-label

classification every second. In the test condition, the system would inhibit notifications if it believed that

the user was simultaneously engaged in two tasks. In the control condition, notifications were delivered

randomly. The effects of mediation were determined by analyzing the performance measures for each

task. Mediation allowed users to reach the right gear (their secondary task) with less errors, and fewer

number of attempts per gear change request. Notice that the gear-shifting task uses different perceptual

and cognitive skills than the verbal notification task, which is what the model was trained on. Our model

transferred and performed well on this stressing activity based on mechanical performance.

The system’s mediation performance was evaluated using cross-correlation measures between the user

task loads and time-shifted classifier outputs. We can interpret the results as there being an average lag of

4.9 s between the onset of high task load for the user, and when the system mediated notifications to them.

System mediation behavior was also analyzed based on how it responds to different patterns of outputs

from the classifier. The trade-off between the system’s sensitivity and specificity was demonstrated for

these different patterns.
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5.6.1 Future Work

Future work includes building towards consequence-aware systems that can autonomously mediate noti-

fications relative to not only workload, but also skill in the primary activity, and other information from

unexpected obstacles. Progress is being made towards implementing such systems [168, 152, 43]. We

might also estimate the cognitive load that a particular notification would induce, based on the sender

and content. This takes into account the social level of the user model. These estimates could then feed an

overall cost measure that determines if, when, and how, to engage with the user without aggravating the

risks associated with distracted driving. Many challenges remain in assessing the role that a mediating

system should take, and in the design of its corresponding actions. Furthermore, it is of deep concern

that users could not be depended on to choose the condition that reduced performance. We should more

deeply explore how to give designers guidance to make systems that keep users from attending to stimuli

when it will be detrimental to performance or even dangerous. Conversely, work could be focused on

giving users an intuition on situations where their performance is improved or degraded in such situated

interactions.

There are a number of more directly relevant directions that future work can take. First, our data

analysis did not include moving windows over transitions from low to high workloads and back. We

are optimistic that temporal models could be used to detect these transitions, reducing the lag in load

detection. Second, improved measures of the load experienced by the users (ground truth) can be obtained

by using a composite measure of the different task performance metrics. Reaction times can serve as more

reliable proxies for cognitive load than externally imposed task load settings. Third, with more data we

can make fine-grained estimations about user load within each task (for example, T1 = 0, 1, 2, 3, etc., based

on difficulty of the primary spatiotemporal task). Fourth, we should explore which physiological signals

are more indicative of stress, and which are better suited for estimating cognitive load. Stress is likely to

arise when failure at a task is coupled with feelings of lack of control, in situations where participants are

evaluated by others [32]. We might hypothesize that stress is an affect. It ebbs and flows at a slower pace

than cognitive load, which being reflective of the stages of mental processing, fluctuates more rapidly.

To show that pupil dilation measures can be robust we used an inexpensive off-the-shelf measuring

technique. Prior work reports use of expensive eye-trackers with higher sampling rates for pupilometric

measurements. Our study succeeded with a consumer webcam (Microsoft LifeCam HD-6000) that has a

sampling rate of only 30 Hz. Even when tested outdoors in a car during the day, with no special attempt

to control for ambient luminescence (apart from the initial calibration step), the system showed promising

results in estimating task load through pupil dilation measures. More work could be done to refine the
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setup and understand the trade-offs between the fidelity of the equipment, environmental setup, and the

robustness of results.



Chapter 6

Discussion

This work responds to calls for a paradigm shift [68] in the way human-system interactions are designed,

brought about by the dovetailing trends of ubiquitous computing, and context- and socially-aware com-

puting. With the increasing pervasiveness of such systems, it has become apparent that while highly

utilitarian, their lack of social grace often makes them a source of frustration and embarrassment. As

these systems have grown integral to everyday life, becoming more usable with fewer steps per action,

their inability to change their behavior to reflect the social situation has prevented ubiquitous systems

from achieving Weiser’s vision of a vanishing technology [160].

A common sense knowledge of how to react in social situations is key to creating socially intelligent

systems. There is a need for a social layer that acts on this social knowledge in order to determine how

the system responds to context. We need to add to the traditional sense-reason-act cycle, and modify it

so as to become sense-reason-consider-act. This thesis introduces Considerate Systems as a framework of

approaches that addresses these needs. It introduces a design process, guidelines, and an architecture,

which structures the application of common sense knowledge to social interactions. It motivates the need

to design future systems with such knowledge so that they can respond in socially appropriate ways,

building trust and improving collaborations. It shows how social appropriateness lies in the trade-off

between pursuing system goals and minimizing interaction breakdown. To address this trade-off the

thesis introduces the design process which is a repeatable set of steps that allow the problem to be broken

down into its more solvable elemental parts.

This analytical approach consist of asking the following three questions. First, how to pursue goals?

Here goals can be specific to the scenario, like improving human performance, or more generally refer to

the social aspects of interaction like increasing user engagement, trust, etc. Second, what is the potential

for breakdown? What are the different areas where an interaction might suffer, when acting on the
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approaches derived from answering the first question. Here we might want to think about how a specific

action might detract from the task-at-hand, and shift the focus to anywhere else that interactional friction

might be encountered. This can include how the system’s communication is impacting the user (eg. audio

vs. visual), whether any social norms are not being adhered to (such as content being shown to children),

a lack of feedback indicating system state, etc. Thirdly, how to minimize breakdown? Once the potential

areas of breakdown have been identified, alternative actions need to be considered that minimize the

breakdown, while still being capable of achieving the scenario goals.

The questions put forth by the design process are answered with the help of guidelines in the form of

user, system and task models. The user model refers to the “other”. It breaks down the user into their

different attributes, including perceptual, pre-cognitive, cognitive, behavioral, and social. It also models

different types of social groups based on social space (situated vs. remote), and rate of interaction (deferred

vs. realtime). While these exist on a spectrum, we can think of them more generally as existing in four

coarsely-defined quadrants: deferred remote, deferred situated, realtime remote and realtime situated.

Of these the realtime interactions are of greater interest since they bear more resemblance to natural

human communication, which implies there exists a greater potential for breakdown in such scenarios

since we are so attuned to them. For this reason, the two exemplar applications explored in this thesis are

representative of interactions in realtime deferred and realtime situated.

The system model refers to its “self”. The main idea here is that every action a social agent makes is

a communication, and must be parametrized appropriately. For example, while leaving a meeting room,

banging the room shut can indicate aggression or disapproval, whereas the opposite is communicated

if the door is gently closed. Thus the system model breaks down the different level at which the com-

munication occurs from the lowest level of verbal and non-verbal interaction, all the way to roles of the

different participants. It also delineates the different forms of communication strategies used by humans

to maneuver and lubricate interactions, from the superficial to the functional. Systems must consider the

implications of each action, and appropriately choose and parametrize it.

The task model presents a taxonomy of approaches for both pursuing goals, and minimizing break-

down. Approaches for pursuing goals include feedback and feedforward techniques. Very simply, feed-

back can be thought of as focused on the past and present, while feedforward is more focused on the

future. Feedback gives an indication to the user about their past performance, and the current state of

the system. It orients the user to the system. On the other hand, feedforward gives an indication about

a preferable future action. It orients the user towards a goal. While driving, a speed gun with a display

can simply give the user feedback about how fast they are going. On the other hand, a blinking display

with a message to slow down can be seen as feedforward approach, as it gives a clear indication of future



CHAPTER 6. DISCUSSION 102

action to the user. Sections 3.3.1 & 3.3.2 dvelve into these approaches in a lot more detail. Similarly, the

taxonomy in the task model provides approaches for minimizing breakdown that include appropriateness

and differential response. Appropriateness considers the interaction from the perspective of the user and

system, breaking down the different levels at which these occur. These attempt to provide the maximum

coverage in terms of identifying potential areas of breakdown. Differential response refers to the idea that

an agent might minimize breakdown by adapting its actions to different types of users, and even to a

single user over time. It could also try to prioritize its actions based on situational context, and learn from

its past experience.

The architecture illustrates how a considerate agent can be added to an interaction scenario. It affords

the considerate agent with the ability to a) control whether the actions of the other agents are summed

into the environment, and b) act on each of the other agents. Actions of the former type are categorized

as assistive actions, while the latter are advisory. None of the other agents have these capabilities, since

from a theoretic point of view, the considerate agents is the only one with a social layer (which includes

the user, system and task models), and thus, the only one that should be allowed the to interact with the

other agents, individually. The other agents have a restriction that they can only act on the environment.

Practically speaking, the reason to depict the interjection of the considerate agent in this manner is to

provide the system designer with multiple interaction options and strategies. For example, the dominance

problem on conference calls can be tackled by acting on the dominant participant and advising them to

share the floor (advisory), or by muting an intransigent dominant participant (assistive).

The whole aim of the framework is to guide the design of a considerate agent in order to improve

social interaction. Critically, the framework is descriptive, and not prescriptive. It guides the application

of human intuition in a structured manner, and cannot of its own accord prescribe an optimal action.

Instead, it allows the problem to be broken down and viewed from multiple perspectives of the user,

system and task. Thus, in order to demonstrate its utility, the framework had to be grounded in a

couple of exemplar applications, and evaluated with respect to goals specific to these chosen scenarios.

Scenarios were chosen based on two types of social group interactions that are of interest, i.e. realtime

remote and realtime situated. The nature of their social spaces present contrasting problems. Remote

interactions occur over communication channels that are bandwidth limited, which impacts the natural

flow of interaction and introduces breakdown. On the other hand, in situated interactions the user usually

resorts to multitasking, which in many cases can be overwhelming leading to breakdown as well.

Conference calls were chosen as the scenario representative of realtime remote interactions, since it

would force the agent to occupy the same channel as the participants. To successfully achieve its scn-

eario goals on an already overloaded medium, the agent would necessarily have to be considerate. Any
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inappropriate action would immediately be felt by the particpants, and would lead to breakdown. For

realtime situated interactions, the distracted driving scenario was chosen, since it is a complex multimodal

& spatiotemporal activity that a lot of users routinely engage in. A breakdown here could have drastic

consequences, yet the margin for error, or any inconsiderateness on the part of the agent, is really small.

The first set of evaluations were conducted by grounding the framework, as embodied by the Con-

siderate Mediator, in the conference call setting. The conference call serves as an ideal starting point to

demonstrate how a considerate agent can achieve its scenario goals, and even improve human-human

communication, in spite of operating on and sharing the same constrained audio medium as the other

participants on the conference call. By identifying and addressing five commonly cited problems, we were

able to evaluate different aspects of the agent’s actions as depicted in the architecture using the actuation

module. These took the form of advisory and assistive actions, and demonstrated the effectiveness of

simple triggers and carefully crafted responses in addressing these problems.

The application of the three questions from the design process to prior solutions revealed that it might

be more considerate for the agent to respond on the audio medium than the visual medium. Specifically,

potential for breakdown were identified at the user’s perceptual and cognitive levels. This is primarily

because visual communication requires the user to shift focus to another modality, and interpret the infor-

mation. Audio being just-in-time can be more effective, as it is perceived more easily and unambiguous

in its intent if designed correctly. Breakdown was also identified at the social level since the visualizations

are not private, and can be a cause of embarassment. In contrast, in our solution audio was delivered only

to the offending participant.

Once the potential for breakdown has been identified, they can be minimized by appropriately param-

eterizing the system actions based on the system model of communication. As such, the design solutions

emphasize how a considerate response might balances the pursuit of various system goals with the need

to minimize interaction breakdown. For example, in conference calls, developing a language of short,

unobtrusive non-judgemental responses was pivotal to its success in that constrained medium. So was

building a blackboard system to prioritize and arbitrate between knowledge sources, and to schedule

timely responses. The scheduling aims to reduce interruptions through awareness of total message vol-

ume and message repletion. With regards to the problems of dominance and extraneous noise, the system

encourages the offending users to check themselves. By engaging with them in a considerate manner,

the system is eliciting a similar considerate response. This is the give-and-take in communication; a com-

mon sense knowledge of how actions can beget desired reactions, and is part of the larger social contract

implicit in any interaction.

We further demonstrated how short audio cues like earcons and auditory icons can appropriately as-
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sist interactions by stymieing the disorienting effects of technology mediated communications. We show

that earcons can improve accuracy on speaker identification, and is comparable to 2D spatialization of

speakers. Auditory icons, like keyboard typing and mouse clicking, can act to reassure participants about

the presence of others on the line. We also showed that using metaphorical prompts (intonations) to an-

nounce events like entry and exit of participants reduces errors when compared to speech prompts. Lastly,

we demonstrated how we might reduce breakdown by using a differential adaptive approach, where the

agent learns different optimal actions for different types of users and situations using reinforcement learn-

ing techniques.

In this way, chapter 4 explores the application of the framework to the conference call scenario, which

are representative of realtime remote interactions. Solutions were designed for numerous problems based

on the insights of the design process & guidelines. These design solutions were evaluated and shown

to improve human communication in a series of experiments. Similarly, chapter 5 tackles contrasting

problems in a realtime situated scenario, where the user is involved in a complex multitasking activity,

similar to distracted driving. The second scenario allows the application of the framework to a broader

multi-modal domain with potentially far-reaching consequences when a system is inconsiderate. Here the

focus is on mediating the timing of the agent’s actions based on the user’s cognitive load, as depicted in

the architecture using the gateway module.

Specifically, we investigated a scenario where a user is attending to notifications while performing a

driving-like task. Notifications have become widely used for their short communication footprint. As

computing devices become ubiquitous and proactive, we have come to depend on these to receive infor-

mation and communicate with the world. Notifications, due to their efficiency and perceived safety, have

become the primary mode of interaction with the user. Prior research has shown, however, that interacting

with these devices, i.e. noticing, attending and responding to messages can be disruptive, and can even

have safety implications for tasks such as driving. To improve upon this, the distracted driving scenario

was chosen as the second exemplar application in which to evaluate considerate systems.

Just as before, we applied the three questions from the design process to this scenario. The second

questions about the potential for breakdown revealed a knowledge gap about the effect of notifications

at the cognitive level of the user. While prior research had shown interacting (noticing, attending, & re-

sponding) with other devices while driving can be highly distracting, we didn’t know if simply attending

to notifications suffered from similar drawbacks. As a follow up question at the perceptual level of the

user, did the modality of the notification make any difference? Would it be safer to perceive and interpret

audio notifications as opposed to visual notifications, or vice-versa? The first set of experiments explic-

itly set out to address this knowledge gap. What we learnt was that notifications were distracting and
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effected performance on the primary driving-like task. This was regardless of whether the notifications

were presented visually or aurally to the user.

To minimize the breakdown from attending to notifications, they would have to be paused or delayed

to the user depending on their workload. We developed a technology that can know when its appropri-

ate to engage the user based on their physiological measures. Specifically, we used the pupil dilations

measures with a Random Forest classification model to identify low and high task loads. In a second set

of experiments, we set out to find out if such a system could work autonomously, mediating notification

delivery in realtime. We showed that the system was indeed capable of autonomously mediating notifica-

tions, which successfully resulted in improving participant task performance. We also made available the

data used to build the models. Cognitive load assessment is a rich area for exploration, and we hope to

inspire other researchers to use the data set to further evaluate models of dynamic task load estimation.

By enabling computers to interact appropriately and considerately, we can pave the way for future social

computing scenarios

The two scenarios sit at opposite ends of the realtime communication spectrum. One suffers from a

reduction of communication cues, while in the other a user can easily be overwhelmed with too much

communication. We grounded the Considerate Systems framework in both scenarios and demonstrated

its utility by designing autonomous agents that respond appropriately to problems that commonly arise

in such interactions. We were successfully able to improve agent interactions with other participants in

these social spaces, and indeed, human-human communication as well. Considerate Systems provides the

scaffolding for a more deeply modelled consequence-aware system that would autonomously make the

optimal trade-off between pursuing scenario goals and minimizing breakdown.



Chapter 7

Conclusion

Society is likely to witness an increasing number of computing systems that make a foray into situated

social settings. The reality is that the more interactive these systems are, the greater is the need for them

to follow the social contracts of interaction. Like humans, these systems will have to make space for those

they are interacting with. They will have to introduce themselves and be available if and when others

recognize them. They will have to keep an account of whether their point was made, and realize when

further attempts to make their point might be unnecessary or even counter productive. They will have to

support the conversations that the people they are around with are engaged in.

If social intelligence plays a big part in how we interact, then this is an area in which technology

products are found wanting. If endowing systems with social intelligence is the next logical phase, then

considerate systems is a first step towards that goal. Considerate systems is a call to go beyond build-

ing more efficient and simple to use systems, to systems that can support and adapt their behaviors to

the environment. Considerate system stresses on situational awareness and appropriate response to the

situation. This work attempts to do much simpler, and less critical tasks; only attending to the nature

of when and how to introduce a communication successfully. This can be based on a tractable common

sense knowledge for different application spaces onto which we can tack on more computational units for

deeper understanding and affect, and more nuanced behaviors. Social intelligence is a full spectrum that

systems might one day occupy as dictated by their goals and duties. This work focuses on ensuring that

computing systems are not off this spectrum to begin with.

In specific, we looked at two scenarios that might be improved with considerate responses. The

first was related to remote interactions mediated through technology. The telephone created a huge

industry that was based on the value of people communicating through audio. Moore’s law and the

internet have allowed us to venture out into much more complex and exciting domains of multi-modal
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interaction, not just with other people but also with computing technologies. However, we find that

in a lot of scenarios the addition of the visual mode does not decrease the social disorientation that

plagues mediated communication. In fact, it can be distracting, and adds to display clutter. We see the

work described in the first exemplar application as a step towards understanding the utility of audio-

based considerate responses in supporting and buttressing this narrow and impoverished communication

channel. While this work builds a vocabulary of effectors to improve teleconference meetings, we look

forward to the opportunities afforded by developing an understanding of how to accommodate system

feedback in variety of other social situations.

The second scenario was representative of situated multitasking activities like distracted driving. In

particular, we explored the impact of attending to notifications, which have become the primary way

that different apps on the phone request the attention of the user. Given the recent advances in speech

recognition and augmented reality, we are likely to see the delivery of notifications being pushed on to

these interfaces. The added convenience and ease of interpretability that these interfaces afford, however,

comes at the cost of an increased potential for breakdown. For example, a lot of work has been put into

speech recognition systems, and indeed, today these are incredibly fast and accurate. However, speech-

based interactive systems are brittle in that these systems don’t follow the same dictates that people do

while communicating. A large part of human communication is the social coordination that guide and

lubricate interactions. In this part of thesis, we focused on empowering interactive systems to be able to

request the user’s attention only when they are not experiencing a high taskload. With the proliferation

of phones and tablets, more and more interactive systems are being used in situated social settings. The

imperative now is for technology that celebrates situational awareness, and appropriateness.

Intelligent interfaces can focus on various aspects of knowledge, including context and models for

user, task, and system. Affective computing focuses on recognizing and modifying system understanding

of users based on their affective stance. We present yet another paradigm that allows a system to socially

orient itself towards the goals and intentions of the user, and aims to be considerate in its stance. In

specific, we challenged ourselves to create an intelligent system which assists human collaboration using

the same communication channel and modality as humans do. We demonstrate the valuable influence an

agent can have in such settings through better crafting of social cues and responses. We show how careful

choice of its syntax — its sound and placement (like long utterances), semantics — its direct and indirect

relationship to the conversational channel (such as adding a speech response on top of a conversational

channel), and timing — mediating them with respect to the user’s cognitive load, can deeply affect its goal

of supporting social interactions.

The choices of how and when a considerate agent should intrude on a communication channel is
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shown here to be delicate but tractable. We are excited about the possibility in the utility of such consid-

erate agents across other interactive scenarios that would benefit from a system’s ability to regulate and

coordinate social feedback. As it weaves itself into the very fabric of society, the imperative now is for

technology that celebrates situational awareness, and appropriateness.
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Appendix A

Experimental Data from Studies in the

Conference Call Scenario

A.1 Study 1: Dominance & Dormancy

A.1.1 Participation levels to determine Standard Deviation in Dominance

Groups Participation (CAMEO Off) Participation (CAMEO On)

5 42.0758194 36.7541297

28.7644938 27.7736118

29.1596868 35.4722585

6 35.2274111 33.3561342

40.9770615 33.8943993

24.6779378 33.5251536

7 21.3153711 33.4618275

17.7235051 23.3898172

63.6924732 42.6348951

8 13.6590682 16.9312394

33.659227 46.1226551

54.7416955 37.6310772

9 44.1148713 44.1226754
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19.3802693 25.4979405

36.5048594 30.3793841

10 42.6165945 42.8097547

22.6736819 28.0060176

34.7097236 29.1842277

11 63.2685838 37.2505489

14.9810243 28.7283333

21.7503919 34.0211178

12 66.0792808 44.2533369

5.0061333 12.0069928

28.9145859 43.7396703

13 39.7407123 25.2382584

29.5377886 38.6431974

30.7214991 36.1185442

14 37.0776458 32.8678936

30.3882871 34.1922102

32.5340671 32.9398962

15 38.9464277 38.9464277

29.5529016 26.9444879

31.5006707 34.1090844

16 40.0553528 27.7228573

31.2838228 43.1465163

28.6608244 29.1306264

Table A.1: Participation levels at the end of the meeting.

A.1.2 Turn-taking data of the dominant and dormant participants
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Groups
Number of Turns (CAMEO Off) Number of Turns (CAMEO On)

Dominant Participant Dormant Participant Dominant Participant Dormant Participant

5 32 30 36 26

6 40 22 78 57

7 40 9 34 21

8 40 21 35 14

9 44 20 41 26

10 46 18 40 25

11 43 21 36 26

12 61 8 37 9

13 41 35 44 22

14 36 27 42 36

15 41 23 39 24

16 45 21 35 20

Table A.2: Number of turns taken by dominant and dormant participants in mediated and non-mediated

conditions.

A.1.3 Average Length of Speech Utterance per Participant

Group CAMEO Off CAMEO On

5 1.4601730435 1.6126699167

1.8865346667 2.07261204

1.5852599444 2.01538645

6 1.3181882093 1.090337931

1.3353733333 1.2579406389

0.8654460909 1.5495380769

7 1.2590192623 1.0620502162
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1.696012 1.3702885714

0.687984375 1.180051375

8 1.1689001316 1.1019778537

1.1449716286 1.0887297273

1.3848330976 1.4283608182

9 1.2990301622 1.8322096923

1.6592486296 1.9013393333

1.0504900571 1.9367678333

10 1.4277788611 1.6321280938

2.5217231739 1.8786823333

2.118471 1.8660294359

11 0.8862198222 2.0560085

1.5927601818 1.4174236286

1.8301184286 1.5944842414

12 1.80261775 1.9256482571

2.6841216129 2.0186416538

1.9221749 1.9191896667

13 1.898636275 0.6996083718

2.7437769394 1.1045073478

2.4760962273 0.9471964035

14 1.3875359412 1.7702884333

2.2599755 1.8436378571

1.973694525 2.0258871176

15 1.1307661429 1.8174295714

1.5552076154 1.6954029714

2.418607675 2.0691918571

16 1.6785370682 1.5422339756
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1.9667005 1.9977020385

2.2199369024 2.6904660882

Table A.3: Average length of speech utterance per participant in mediated and non-mediated conditions.

A.2 Study 2: Extraneous Noise

Groups CAMEO Off CAMEO On

1 26.5 11

2 20.5 6

3 12.5 16.5

4 9.5 5.5

5 8.5 3

6 3 10.5

7 8.5 2.5

8 11 4.5

9 12 4

Table A.4: Average No. of Interrupts (TSI) in mediated and non-mediated conditions.

A.3 Study 3: Speaker Identification

ID Order Effect
Attempt

Rate

Response

Time (ms)

Accuracy

(Overall)

RT for Accurate

Responses

Accuracy

(Attempted)

420 0 0 0.88889 2167.5 0.33333 2093.33333 0.375

420 1 1 0.875 1291.42857 0.25 1505 0.28571

422 0 1 0.77778 2621.42857 0.66667 2430 0.85714

422 1 0 0.875 3805.71429 0.875 3805.71429 1

433 0 2 0.77778 1682.85714 0.77778 1682.85714 1
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433 1 0 0.75 3178.33333 0.125 2260 0.16667

472 0 0 0.77778 2585.71429 0.66667 2850 0.85714

472 1 2 0.75 1966.66667 0.375 2260 0.5

474 0 1 0.77778 1937.14286 0.77778 1937.14286 1

474 1 0 0.5 3202.5 0.5 3202.5 1

482 0 0 0.77778 2321.42857 0.33333 1750 0.42857

482 1 2 0.875 1468.57143 0.375 1670 0.42857

485 0 0 0.88889 2538.75 0.55556 2156 0.625

485 1 1 0.875 1684.28571 0.75 1420 0.85714

486 0 1 0.88889 1627.5 0.77778 1538.57143 0.875

486 1 0 0.875 2000 0.25 1125 0.28571

488 0 0 0.55556 2554 0.22222 2130 0.4

488 1 1 0.875 2004.28571 0.5 1565 0.57143

489 0 0 0.66667 1971.66667 0.22222 1385 0.33333

489 1 1 0.875 1902.85714 0.875 1902.85714 1

492 0 2 0.77778 2330 0.33333 1926.66667 0.42857

492 1 0 0.75 2508.33333 0.25 1755 0.33333

503 0 1 0.55556 2008 0.55556 2008 1

503 1 0 0.5 3705 0.375 4440 0.75

508 0 1 0.77778 2474.28571 0.33333 2510 0.42857

508 1 0 0.875 3231.42857 0.25 3395 0.28571

509 0 2 0.66667 2166.66667 0.66667 2166.66667 1

509 1 0 1 2563.75 0.375 2333.33333 0.375

510 0 1 0.77778 2685.71429 0.44444 2445 0.57143

510 1 0 1 2943.75 0.5 2315 0.5

586 0 0 0.66667 3133.33333 0.33333 3090 0.5

586 1 2 1 3010 0.625 2810 0.625
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618 0 0 0.77778 3441.42857 0.33333 3766.66667 0.42857

618 1 1 0.875 3260 0.625 2910 0.71429

619 0 0 0.77778 2188.57143 0.55556 2208 0.71429

619 1 1 1 1505 0.375 2086.66667 0.375

625 0 2 0.66667 1753.33333 0.66667 1753.33333 1

625 1 0 0.875 2502.85714 0.75 2753.33333 0.85714

628 0 0 0.77778 2578.57143 0.55556 2106 0.71429

628 1 2 1 2447.5 0.75 2385 0.75

629 0 0 0.66667 2133.33333 0.55556 1858 0.83333

629 1 2 0.875 2550 0.5 2075 0.57143

634 0 0 0.88889 2821.25 0.44444 3257.5 0.5

634 1 1 0.875 2474.28571 0.375 2010 0.42857

640 0 0 0.77778 2118.57143 0.22222 1635 0.28571

640 1 2 0.875 4092.85714 0.625 4070 0.71429

641 0 0 0.88889 1853.75 0.77778 1831.42857 0.875

641 1 2 1 1758.75 0.75 1506.66667 0.75

643 0 2 0.66667 2723.33333 0.44444 2325 0.66667

643 1 0 0.875 3051.42857 0.25 3770 0.28571

645 0 2 0.44444 2357.5 0.11111 1900 0.25

645 1 0 0.875 2624.28571 0.375 2843.33333 0.42857

647 0 2 0.22222 1255 0.22222 1255 1

647 1 0 0.875 2902.85714 0.125 2510 0.14286

649 0 2 0.88889 2195 0.88889 2195 1

649 1 0 1 1632.5 0.375 1173.33333 0.375

651 0 0 0.77778 2905.71429 0.11111 2260 0.14286

651 1 2 0.875 2367.14286 0.5 1882.5 0.57143

654 0 0 0.66667 1880 0.66667 1880 1
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654 1 1 0.875 3282.85714 0.75 3158.33333 0.85714

660 0 1 0.88889 2610 0.55556 2768 0.625

660 1 0 1 2042.5 0.5 1950 0.5

663 0 1 0.88889 1628.75 0.55556 1804 0.625

663 1 0 0.875 2114.28571 0.375 2760 0.42857

Table A.5: Data from the speaker identity experiments where effect 0 is No cues, 1 is Earcons, and 2 is

Spatial.

A.4 Study 4: Participant Presence

ID Effect
Attempt

Rate

Response

Time (ms)

1-Error Rate

(Overall)

RT for Accurate

Responses

1-Error Rate

(Attempted)
# of Nudges

420 0 1 2826.25 0.875 2800 0.875 8

472 0 0.5 4897.5 0.5 4897.5 1 9

482 0 0.75 5678.33333 0.75 5678.33333 1 6

485 0 0.625 5266 0.375 4096.66667 0.6 5

488 0 0.875 6791.42857 0.625 6406 0.71429 4

489 0 0.75 5020 0.5 3950 0.66667 2

586 0 0.75 5900 0.375 5103.33333 0.5 7

618 0 0.875 6667.14286 0.5 5330 0.57143 5

619 0 1 3800 0.875 3767.14286 0.875 5

628 0 0.875 6700 0.625 6418 0.71429 5

492 1 0.375 5853.33333 0.375 5853.33333 1 2

508 1 1 5905 0.625 5880 0.625 1

509 1 1 5223.75 0.875 5540 0.875 7

510 1 1 5326.25 0.75 4720 0.75 2

625 1 1 5202.5 0.75 4223.33333 0.75 4
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643 1 1 4456.25 0.875 4337.14286 0.875 5

647 1 0.75 6976.66667 0.5 6517.5 0.66667 0

649 1 0.875 4485.71429 0.625 4422 0.71429 5

660 1 1 4901.25 0.875 5062.85714 0.875 6

663 1 1 4106.25 0.5 3387.5 0.5 3

Table A.6: Data from the participant presence experiments where effect 0 is No cues, 1 is Auditory Icons.

A.5 Study 5: Entry & Exit

Group
Error Rate Duration (seconds)

Metaphoric Iconic Speech Metaphoric Iconic Speech

1 0 0.2835 0.3395 292989 286719 332027

2 0.146 0.167 0.238 208814 296148 395716

3 0.2055 0.2085 0.3125 205899 257794 188931

4 0.2055 0.2085 0.4165 173751 271429 198398

5 0.1665 0.4655 0.25 234171 150757 203678

6 0.2085 0.25 0.167 216589 289043 255300

Table A.7: Error rate and duration for each of the six groups using the three different prompts for entry

& exit.



Appendix B

Experimental Data from Studies in the

Distracted Driving Scenario

B.1 Study 1: Effects of Mediating Notifications

B.1.1 Data from ConTRe Task

Subject
Audio/

Visual

Standard

Deviation

Brake Reaction

Time (ms)

Acceleration

Reaction (ms)

Brake Reaction

Error

Acceleration

Error

1 AudioMod 1.4511821342 1182.76470588 1135.07692308 0.2666666667 0.25

2 AudioMod 1.0238665181 772.571428571 660.12 0.1388888889 0.0357142857

3 AudioMod 1.8897391021 1222.31818182 1081.66666667 0.1944444444 0.1785714286

4 AudioMod 1.3226975036 814.291666667 800.214285714 0.0909090909 0.0322580645

5 AudioMod 1.781444261 1656.4375 1150.39285714 0.0869565217 0.22

6 AudioMod 1.4993014922 763.8 644.7 0.0294117647 0.0384615385

7 AudioMod 1.4423256719 857.551724138 821.80952381 0.0571428571 0.0384615385

8 AudioMod 1.7641391553 828.291666667 756.074074074 0 0.0294117647

9 AudioMod 1.4566532772 886.25 856.826086957 0.1612903226 0.0384615385

10 AudioMod 1.6114816936 1165.96666667 969.428571429 0.1428571429 0.1944444444

11 AudioMod 1.1863999539 1043.08695652 925.125 0.0606060606 0.1428571429

12 AudioMod 1.7554178946 1287.68 1340.56 0.2162162162 0.3095238095

136
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13 AudioMod 1.5423629827 925.863636364 798.46875 0.1818181818 0.075

14 AudioMod 1.3496804516 846.36 755.461538462 0.0333333333 0.0588235294

15 AudioMod 1.0983820256 954 790.291666667 0.0454545455 0.2

16 AudioMod 1.6154774128 886.916666667 745 0.0625 0.125

17 AudioMod 0.9554438489 899.5 814.318181818 0.04 0.04

18 AudioMod 1.3262895663 983.263157895 910.1 0.0454545455 0.0526315789

19 AudioMod 1.1916753253 908.862068966 909.96 0.0303030303 0.0689655172

20 AudioMod 1.570997844 1027.65625 979.04 0.1162790698 0

1 Audio 1.5212426331 1330.4 1070.25 0.3870967742 0.24

2 Audio 1.1102107734 1208.27272727 980.875 0.0666666667 0.125

3 Audio 1.6946414007 1362.45 1511.95652174 0.1714285714 0.1944444444

4 Audio 1.2763878074 944.076923077 818.434782609 0.1052631579 0.0384615385

5 Audio 1.651925845 1481.65 1162.60714286 0.1034482759 0.1621621622

6 Audio 1.2559917544 865.192307692 739.464285714 0.0333333333 0.0625

7 Audio 1.2139015633 853.058823529 860.681818182 0.0869565217 0.1333333333

8 Audio 1.952901484 937.772727273 848.566666667 0.0689655172 0.0571428571

9 Audio 1.6279639885 970.384615385 950.764705882 0.1764705882 0.1739130435

10 Audio 1.5873123625 1324.5 1271.95833333 0.2352941176 0.2619047619

11 Audio 1.1318620566 916.961538462 872.129032258 0.125 0.0540540541

12 Audio 1.6081422695 1658.0952381 1529.34782609 0.2727272727 0.2631578947

13 Audio 1.403193115 906.035714286 998.142857143 0.0625 0.0416666667

14 Audio 1.418785528 953.681818182 883.476190476 0.0689655172 0.2

15 Audio 1.1445622865 873.058823529 894.12 0.0434782609 0.15625

16 Audio 1.4597633445 798.954545455 987.681818182 0.0666666667 0.0740740741

17 Audio 0.9557555724 1050.08 929.653846154 0.1 0.0967741935

18 Audio 1.4676014533 1133.91666667 991.25 0.1632653061 0.1363636364

19 Audio 1.2904457382 1172.40909091 851.1875 0.2727272727 0.1818181818
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20 Audio 1.6321863725 986.666666667 887.133333333 0.0416666667 0.0857142857

1 VideoMod 1.3913965495 1031.36842105 835 0.1851851852 0.21875

2 VideoMod 1.0502168898 841.210526316 621.227272727 0.0689655172 0.0740740741

3 VideoMod 1.6533312217 1573.55 1053.33333333 0.0967741935 0.1363636364

4 VideoMod 1.3727250356 868.52 731.526315789 0.09375 0.04

5 VideoMod 1.7463734056 1319.0625 1190.86666667 0.1739130435 0.1428571429

6 VideoMod 1.4235847272 947.772727273 708 0.1333333333 0.0606060606

7 VideoMod 1.4122849152 974.260869565 915.714285714 0.1212121212 0.1081081081

8 VideoMod 1.8621151595 961.181818182 833.25 0.037037037 0.1142857143

9 VideoMod 1.5037657304 797.913043478 786.545454545 0.0740740741 0.1724137931

10 VideoMod 1.603339105 1281.05 955.958333333 0.0882352941 0.2558139535

11 VideoMod 1.2659869218 1042.14285714 923 0.15625 0.1612903226

12 VideoMod 1.5204208385 1071.28571429 1177.26923077 0.2954545455 0.2105263158

13 VideoMod 1.5006637446 874.826086957 904.28 0 0.0909090909

14 VideoMod 1.4610855177 892.548387097 775.476190476 0.1 0.1153846154

15 VideoMod 1.0661170886 888.533333333 779.230769231 0.0285714286 0.0333333333

16 VideoMod 1.7684265985 844.454545455 756.692307692 0.1379310345 0.0333333333

17 VideoMod 1.0697182574 928.833333333 737.047619048 0.05 0.064516129

18 VideoMod 1.3703503754 1071.27586207 988.461538462 0.225 0.09375

19 VideoMod 1.265391329 1012 885.368421053 0.1515151515 0.0833333333

20 VideoMod 1.7423306533 1061.47619048 1009.4516129 0.1666666667 0.1

1 Video 1.6444107318 1317.42857143 1011.21052632 0.3157894737 0.1923076923

2 Video 1.1550426449 873.055555556 779.4 0.12 0.064516129

3 Video 1.8501121755 1093 1115.46153846 0.0975609756 0.0571428571

4 Video 1.5564705831 968.541666667 969.291666667 0.1034482759 0.1470588235

5 Video 1.8595952977 1283.78947368 1188.25 0.0882352941 0.1428571429

6 Video 1.586144493 830.476190476 750.857142857 0.1153846154 0.0384615385
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7 Video 1.3402476616 984.730769231 986.105263158 0.0967741935 0.0869565217

8 Video 2.0359583383 1005.34615385 837.137931034 0.0344827586 0.1142857143

9 Video 1.5306646262 979.125 869.454545455 0.15625 0.1935483871

10 Video 1.5165911096 1787.5 1563.12 0.1666666667 0.1142857143

11 Video 1.2098539603 1058.91304348 1238.3125 0.037037037 0.1463414634

12 Video 1.7201890133 1514.39130435 1425.29166667 0.1666666667 0.243902439

13 Video 1.6543133572 1037.95833333 935.789473684 0.15625 0.12

14 Video 1.615126402 813.703703704 864.769230769 0.1212121212 0.0967741935

15 Video 1.5082666431 1264.82608696 1036.19047619 0.027027027 0.1590909091

16 Video 1.7463498664 1053.20833333 786.157894737 0.1818181818 0.1851851852

17 Video 1.3047748718 1241.15384615 936 0.1515151515 0.2

18 Video 1.766131072 1556.47619048 1219.3 0.0714285714 0.0740740741

19 Video 1.501829318 1313.79166667 1121.6 0.1714285714 0.08

20 Video 1.6015787036 1146.80952381 1056.63636364 0.1785714286 0.1666666667

Table B.1: ConTRe task data from the four conditions: Audio (Audio Non-mediated), AudioMod (Audio

Mediated), Video (Video Non-mediated), VideoMod (Video Mediated).

B.1.2 Data from Notification Task

Subject
Audio /

Visual

Reaction

Time (Math)

Reaction Time

(Sentence)

Error Rate

(Math)

Error Rate

(Sentence)

1 AudioMod 5.7019907832 5.2478926778 0.2 0.4

2 AudioMod 5.5405372514 4.4169798791 0.1818181818 0.3

3 AudioMod 5.3970229626 5.6313282251 0.1 0.1

4 AudioMod 5.6589490771 4.4727829993 0.1 0.1

5 AudioMod 5.4568078518 5.6451279521 0.2 0.3333333333

6 AudioMod 5.7081659635 4.6622024945 0 0.3333333333

7 AudioMod 4.9711539149 4.3499810994 0.1 0.3
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8 AudioMod 5.8388615052 4.8897589313 0.125 0.3636363636

9 AudioMod 5.924964428 5.6242388487 0 0.2

10 AudioMod 5.8630656174 5.4016769197 0.1111111111 0.3636363636

11 AudioMod 7.1431007683 6.9738765061 0.2 0.3

12 AudioMod 5.6325371563 5.541215539 0 0.4

13 AudioMod 5.8010458052 5.5141074657 0.2 0.4

14 AudioMod 5.7259614766 5.4420283437 0 0.4

15 AudioMod 5.0329642826 4.4099560082 0 0

16 AudioMod 5.7504706042 4.9706407388 0 0.1

17 AudioMod 5.7018084824 4.8410172463 0 0.4444444444

18 AudioMod 5.3677459359 4.7433187366 0 0.5

19 AudioMod 5.8203627041 4.480168581 0.1111111111 0

20 AudioMod 5.9251427353 4.8778435588 0 0.4

1 AudioNM 5.3968499005 5.3854973018 0 0.3

2 AudioNM 5.9446468651 5.4780345559 0.2 0.3

3 AudioNM 5.9549836516 5.4560293811 0.2 0.4444444444

4 AudioNM 5.9438004792 4.8615251269 0 0.1111111111

5 AudioNM 5.3259600699 4.7988225818 0.1 0.4

6 AudioNM 5.8743652701 4.7357371875 0 0.4444444444

7 AudioNM 5.2516106069 4.8690893054 0 0.3

8 AudioNM 5.8481152398 5.3684134483 0.2222222222 0.5555555556

9 AudioNM 4.9951997399 5.0561698377 0 0.2

10 AudioNM 5.9680173993 5.2300658822 0 0.3

11 AudioNM 5.9582250118 7.5759177208 0 0.2

12 AudioNM 5.8251827955 4.9018543959 0.1 0.3

13 AudioNM 5.4798121154 5.1738757193 0 0.2

14 AudioNM 7.1304964679 6.0910159946 0.2222222222 0.6
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15 AudioNM 5.2159764767 2.9059560001 0.1 0.2

16 AudioNM 5.6188116074 4.8732170037 0.1 0.4444444444

17 AudioNM 5.3998786211 4.9179095541 0 0.2222222222

18 AudioNM 5.1128691265 5.4062746252 0 0.5555555556

19 AudioNM 5.7749826014 4.2122828066 0 0.1

20 AudioNM 5.3176507609 4.9915161398 0 0.3636363636

1 VideoMod 3.9531989396 7.4748719931 0 0.125

2 VideoMod 2.2080575228 4.067910254 0.2 0

3 VideoMod 4.8069654703 7.3201039859 0.1111111111 0

4 VideoMod 2.1478071809 3.200376451 0.1 0.3

5 VideoMod 3.127810657 4.3366403878 0.2 0.1

6 VideoMod 2.8621507287 6.1321108103 0.1111111111 0.2

7 VideoMod 3.1981952786 7.3242675198 0.1 0.2

8 VideoMod 3.1922250688 4.3282051086 0.2 0.125

9 VideoMod 2.8470870853 3.7821141183 0.2 0.1

10 VideoMod 4.1048350036 5.4651913984 0.1 0.1111111111

11 VideoMod 5.6357429326 7.1903679901 0 0

12 VideoMod 4.077978462 4.449793458 0 0.3

13 VideoMod 2.4073200822 4.6859592795 0.1 0.2

14 VideoMod 2.7417564733 5.9818443571 0.1111111111 0.2222222222

15 VideoMod 3.0070787966 3.6041173637 0.2 0.2

16 VideoMod 2.3231785595 4.4838755429 0 0.3

17 VideoMod 2.7649746963 3.8393175006 0.1111111111 0.3333333333

18 VideoMod 2.4107781947 5.8223432473 0.1 0.2222222222

19 VideoMod 2.7140773833 3.9268876314 0.2 0

20 VideoMod 2.9371337295 6.6048783362 0 0.1

1 VideoNM 4.1836922169 8.1970176399 0.2 0.1111111111
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2 VideoNM 2.4010912691 4.2555702073 0.1111111111 0.3333333333

3 VideoNM 8.8638701779 8.8150692284 0 0

4 VideoNM 2.5289766192 3.2840780616 0.1 0.1

5 VideoNM 3.0988641679 4.5599242747 0 0.1

6 VideoNM 3.6858965159 6.7505235076 0.1 0.1

7 VideoNM 2.882289052 5.7296707928 0 0

8 VideoNM 2.6968722343 5.0606741224 0.2 0.1111111111

9 VideoNM 2.7058425844 4.0352784097 0 0.2

10 VideoNM 4.7358460161 5.9181072116 0.1 0.6

11 VideoNM 7.0129975213 10.9199741483 0 0.1

12 VideoNM 5.4090407917 5.5285354985 0.1111111111 0.1818181818

13 VideoNM 2.2380903363 4.8916951418 0.1 0

14 VideoNM 3.7312432826 7.3067227006 0.2 0.2

15 VideoNM 3.3029765189 3.3890904784 0.4 0.2

16 VideoNM 2.2418531477 3.7750235285 0 0.2222222222

17 VideoNM 4.4991134107 4.8797482252 0 0.1

18 VideoNM 2.378046751 6.8649666309 0 0.1

19 VideoNM 3.0401661694 4.7899465263 0.1 0.2

20 VideoNM 3.32596609 5.5840014049 0 0.1111111111

Table B.2: Notification task data from the four conditions: AudioNM (Audio Non-mediated), AudioMod

(Audio Mediated), VideoNM (Video Non-mediated), VideoMod (Video Mediated).
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B.2 Study 2: Autonomous Mediation

B.2.1 Data from ConTRe Task

Subject Condition
Standard

Deviation

Brake Reaction

Time (ms)

Acceleration

Time (ms)

Brake Reaction

Error

Acceleration

Error

1 mod 1.5983015292 1129 891.625 0.4375 0.6086956522

2 mod 1.7986503786 1091.09090909 929 0.347826087 0.5

3 mod 1.6517306956 1014.83333333 945.5 0.32 0.2

4 mod 1.9902689902 958.454545455 956.75 0.0833333333 0.2142857143

5 mod 2.3311196228 1279.5 1313 0.2173913043 0.4

6 mod 1.6849686924 978.964285714 966.866666667 0.2142857143 0.358490566

7 mod 1.6188201724 1395.5 823.2 0.2105263158 0.2916666667

8 mod 1.6999987201 1121.90909091 930.411764706 0.25 0.1739130435

9 mod 1.5190768744 975.083333333 1150 0.2 0.3076923077

10 mod 1.7464233614 1232.5 897.75 0.2222222222 0.3571428571

1 nomod 2.7323290972 1278.16666667 1122 0.4210526316 0.4814814815

2 nomod 1.9024890479 1182.66666667 1093.63636364 0.4166666667 0.2777777778

3 nomod 1.7937432646 1252.2 1022.6 0.4166666667 0.3333333333

4 nomod 1.8785179103 1005 897.571428571 0.1 0

5 nomod 2.303854198 1283.33333333 918 0.2666666667 0.25

6 nomod 1.5876695425 919.1 885.555555556 0.2307692308 0.1538461538

7 nomod 1.6213054711 1138.5 1241 0.25 0.125

8 nomod 1.5731600219 1203 1008.5 0.2 0.3846153846

9 nomod 1.5678215912 1250.6 875.2 0.4 0.1

10 nomod 1.5794303491 1059 1076.57142857 0.5 0.2666666667

Table B.3: Performance measures from ConTRe task in mediated (mod) and non-mediated (nomod) con-

ditions.
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B.2.2 Data from Gear Task

Subject Condition Gear Error
Gear Reaction

Time (ms)

Attempts per

Stimulus

1 mod 0.2592592593 1715.806 1.1111111111

2 mod 0.2608695652 1984.981 1.5217391304

3 mod 0.2 1541.911 0.96

4 mod 0.1714285714 1683.096 1.0571428571

5 mod 0.3454545455 2304.18 1.2727272727

6 mod 0.1666666667 1391.065 1.0263157895

7 mod 0.2 1662.242 1.2909090909

8 mod 0.2075471698 1794.316 1.1886792453

9 mod 0.1875 1570.67 1.125

10 mod 0.2307692308 1478.136 1

1 nomod 0.3913043478 2242.619 1.1304347826

2 nomod 0.1515151515 1614.126 1.4848484849

3 nomod 0.3448275862 1599.459 1

4 nomod 0.2692307692 2046.396 1.3076923077

5 nomod 0.5384615385 2839.786 1.3076923077

6 nomod 0.1481481481 1716.691 1.1481481482

7 nomod 0.4166666667 2151.453 1.4583333333

8 nomod 0.3333333333 1819.045 1.2916666667

9 nomod 0.375 3739.159 1.2916666667

10 nomod 0.125 1431.797 1.1666666667

Table B.4: Performance measures from Gear task in mediated (mod) and non-mediated (nomod) condi-

tions.

B.2.3 Data from Notification Task
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Subject
Audio /

Visual

Reaction

Time (Math)

Reaction Time

(Sentence)

Error Rate

(Math)

Error Rate

(Sentence)

1 mod 2.0859898333 2.8675846667 0.1428571429 0.25

2 mod 2.064628 2.86213675 0 0

3 mod 2.39392 1.998408125 0 0.125

4 mod 2.5980553333 2.5287975 0.1428571429 0.75

5 mod 2.271704 2.8880668571 0 0.4285714286

6 mod 1.51829775 0.9836214286 0 0

7 mod 1.78940225 1.6568951667 0.125 0.2857142857

8 mod 1.770502 1.7968588571 0 0.1428571429

9 mod 1.9629821667 2.2058257143 0.2857142857 0.25

10 mod 1.8247683333 3.2708181667 0.125 0

1 nomod 3.455937375 3.2730698571 0.1 0.1111111111

2 nomod 2.7246321429 2.6996473333 0 0.2857142857

3 nomod 2.34962025 2.7326051429 0.125 0

4 nomod 2.1614406667 2.4656405 0.125 0.7142857143

5 nomod 2.665781625 2.7533925714 0 0.4285714286

6 nomod 0.9671201667 2.3275672857 0.1428571429 0.25

7 nomod 2.8893778571 2.005823 0.1428571429 0.25

8 nomod 2.1625045714 2.344791625 0 0.25

9 nomod 1.8362196667 2.6262912 0.125 0.4285714286

10 nomod 1.8281672857 2.0529583333 0 0

Table B.5: Notification task data from mediated (mod) and non-mediated (nomod) conditions.
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