
Carnegie Mellon University

CARNEGIE INSTITUTE OF TECHNOLOGY

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

 FOR THE DEGREE OF Doctor of Philosophy

TITLE Constructing a Complete and Accurate As-Built BIM

 Based on an As-Designed BIM and Progressive Laser Scans

PRESENTED BY Te Gao

ACCEPTED BY THE DEPARTMENTS OF

 Civil and Environmental Engineering

 Burcu Akinci February 7, 2014

 CO-ADVISOR, MAJOR PROFESSOR DATE

 Semiha Ergan February 7, 2014

 CO-ADVISOR, MAJOR PROFESSOR DATE

 James H. Garrett February 7, 2014

 CO-ADVISOR, MAJOR PROFESSOR DATE

 David A. Dzombak February 10, 2014

 DEPARTMENT HEAD DATE

APPROVED BY THE COLLEGE COUNCIL

 Vijayakumar Bhagavatula February 19, 2014

 DEAN DATE

Constructing a Complete and Accurate As-built BIM based on an As-

Designed BIM and Progressive Laser Scans

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Department of Civil & Environmental Engineering

Te Gao

B.S., Civil Engineering, Zhejiang University

M.S., Civil and Environmental Engineering, Carnegie Mellon University

Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

January, 2014

 ii

© Copyright by Te Gao 2014

All Rights Reserved

 iii

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my academic advisors, Dr. Burcu

Akinci, Dr. James H. Garrett, Jr. and Dr. Semiha Ergan for their continuous help

and support at all stages of my research. First, I would like to thank Dr. Burcu

Akinci, who thought me how to work towards a research question from scratch and

showed me the beauty and pleasure of doing research. I benefit a lot from her

scientific advice and knowledge. Second, I would like to thank Dr. James Garrett for

his guidance, patience, and insightful suggestions. I also want to express my respect

to him for being my role model as a research and mentor with integrity, creative

thinking and enthusiasm. Third, I am thankful for all the time, creative idea and

efforts Dr. Semiha Ergan provide for this thesis and her mentorship and

encouragements.

My sincerest appreciation goes to my Ph.D. committee members, Dr. Daniel Huber

and Dr. Matteo Pozzi for devoting their time and expertise in this thesis. I am

grateful for their constructive feedback and insightful comments. I would also like to

thank Dr. Lucio Soibelman for his help and guidance at the early stage of my

research.

I am grateful for working with the former and current Mosaic team members. This

team has been a source of friendships as well as constructive criticisms and

collaboration. In addition, I would like to acknowledge the financial support from

Glodon Software Company, China and National Institute of Standards and

Technology (NITS), which make my PhD work possible.

 iv

Lastly, I would like to thank my parents and my younger sister for all their love,

support and encouragement. And most importantly, I would like to thank my

fiancée, Xiaofei Wang, who is also my lifetime best friend. She always has faith in

me and has supported me during my good and bad times. I dedicate this thesis to my

family, my beloved fiancée for their constant support and unconditional love.

 v

ABSTRACT

In the current practice, changes that occurred in the construction or renovation phase

are not frequently captured and updated to as-built documentations. As a

semantically rich digital representation, a building information model (BIM) can be

used as an information repository to store and deliver as-built information. Since a

building might not be constructed exactly as its design specifies, discrepancies might

exist between BIMs created based on design information and actual building

conditions. It is important to keep information stored in a BIM accurate and

complete so that it servers as a reliable data source throughout the service life of a

facility.

Point cloud data captured by laser scans is capable of providing accurate 3D

depiction of building conditions. Hence, point cloud data can be used as the

reference to update the information contained in an as-designed BIM. There are two

main challenges associated with the update process. First, in order to recognize the

differences between a point cloud and an as-designed BIM, segments captured by the

point cloud need to be matched to building components modeled in the BIM.

However, a building component might have different shapes, dimensions, and

locations in a point cloud as compared to how it is modeled in an as-designed BIM.

The discrepancies between a point cloud and an as-designed BIM increase the

complexity of matching the two data sets together.

Second, occlusions and construction progress prevent a laser scan performed at a

single point in time from capturing a complete set of geometric information

associated with a building. While it is possible to retrieve more geometric

 vi

information by combining point clouds captured at different points in time, the large

file size of a combined point cloud make it difficult to process and store. Hence,

there is a need for an approach to achieve the balance between the richness of the

information provided by a combined point cloud and the file size of it.

In order to address the above two challenges, this research aims to develop a

framework that supports the update process by matching information from a point

cloud to a BIM and leveraging point clouds captured at different times to provide a

more complete and accurate reference. To develop such a framework, this research

developed the following research objectives:

(1) Identifying a general set of features that can be applied to recognize

correspondences between a point cloud and a BIM.

(2) Developing matching approaches that match point cloud segments to BIM

components based on different types of features.

(3) Conducting an experimental analysis to evaluate the performances of the

developed matching approaches and effectiveness of the features used by these

approaches.

(4) Developing an approach that selects and combines point clouds captured at

different times in order to reduce the file size of combined point cloud while

maintaining the completeness of geometric information.

 vii

Table of Content

CHAPTER 1. INTRODUCTION ... 2	

1.1 Vision .. 6	

1.2 Research Questions ... 9	

1.3 Scope and High Level Assumptions ... 12	

1.4 Dissertation Organization .. 13	

CHAPTER 2. IDENTIFICATION OF FEATURES TO BE USED FOR

MATCHING POINT CLOUDS TO BIMS .. 15	

2.1 Background research studies .. 18	

2.1.1. Research studies in relation to point cloud processing 18	

2.1.2. Product representation and data exchange standards for building information

models ... 20	

2.1.3. Point cloud and 3D object recognition approaches ... 24	

2.2 Research Method And Findings: Features To Be Used For Matching Point Clouds

To BIMs ... 30	

2.2.1. Features of point clouds that can be applied for the matching process 32	

2.2.2. Features of objects represented in BIMs ... 35	

2.3 Validation .. 39	

2.4 Conclusions .. 42	

CHAPTER 3. EVALUATION OF DIFFERENT FEATURES FOR MATCHING

POINT CLOUDS TO BUILDING INFORMATION MODELS 44	

3.1 Background Research Studies .. 46	

3.2 Feature Based Matching Approaches ... 50	

3.2.1 2D overlap area matching approach ... 51	

3.2.2 Spatial relationship based graph-matching approach ... 54	

3.2.3. Distribution-based 3D shape matching approach ... 55	

3.2.4 Distribution-based 2D shape matching approach .. 59	

3.3 Experiment Setup ... 60	

3.3.1 Experiment setting ... 60	

3.3.2. Tuning the matching approaches ... 63	

3.4 Experiment Results ... 67	

3.5 Combination Of Different Features To Improve Matching Results 73	

 viii

3.5.1. Re-aligning point cloud and BIM based on 3D shape feature 73	

3.5.2. Filtering the matching results generated by the 2D overlap area by the result of

matching approach using 3D shape features .. 74	

3.6 Validation .. 76	

3.7 Conclusions .. 78	

CHAPTER 4. AN APPROACH FOR LEVERAGING PROGRESSIVE LASER

SCANS ... 79	

4.1 Related Research Studies .. 80	

4.1.1. Evaluation of the quality and quantity of information captured by a point cloud

data ... 80	

4.1.2. Comparing two point clouds and identifying the differences 83	

4.1.3. Next-best-view planning problem .. 84	

4.2 Motivating Case Study: an Analysis of Completeness of Geometric Information in

Progressively Captured Point Clouds ... 85	

4.3. An Approach to Evaluate Information Contained in Progressively Captured Point

Clouds and Select Point Clouds to Be Combined ... 93	

4.3.1. Content assessment module for quantifying the information contained in a point

cloud ... 93	

4.3.2. Content improvement module: Assessing the information gain by combining

additional point clouds ... 100	

4.4. Validation .. 103	

4.5 Conclusion .. 107	

CHAPTER 5 CONCLUSION AND FUTURE WORK 109	

5.1 Contributions ... 109	

5.2 Practical Implication .. 113	

5.3 Future Research Directions .. 115	

Appendix A: Matching Results for the Four Matching Approaches 118	

Appendix B. Codes for implementing the four matching approaches 129	

Appendix C. Codes for the discrepancy simulation algorithm 143	

REFERENCES ... 155	

 ix

List of Figures
Figure 1. Envisioned framework for updating a BIM based on point cloud data 8	

Figure 2. Shape discrepancies between ductworks modeled in the BIM and the same

ductworks shown in the point cloud ... 16	

Figure 3. Different components with similar shapes and dimensions 17	

Figure 4. Distribution of reviewed papers in different fields of applications 32	

Figure 5 (b). Count the number of research studies associated with each BIM related

feature .. 42	

Figure 6. Examples of different types of discrepancies .. 45	

Figure 7. Classifications of features required by the four matching approaches 51	

Figure 8. 2D projection of the registered point cloud and BIM 53	

Figure 9. Graph constructed from the point cloud and the BIM 55	

Figure 10. A flowchart depicting the distribution-based 3D shape matching approach

 ... 58	

Figure 11 As-designed BIM and the corresponding point cloud 61	

Figure 12. Example set of models with different discrepancies for the experiment ... 63	

Figure 13. Tradeoff of the precision and recall when threshold is changing 65	

Figure 14. Visualization of a matching matrix ... 68	

Figure 15. Mapping results for the four mapping approach in a case where there is a

slight (2”) difference in the length of a component between a point cloud and a
BIM .. 69	

Figure 16. Matches identified by the 2D overlap area matching approach for one
example case ... 70	

Figure 17. The matches identified by the 2D and 3D shape matching approaches or
one example case .. 71	

Figure 18. The process of 3D shape plus 2D overlap area matching approach 74	

Figure 19. Validation data set includes different ductworks and different types of

discrepancies applied to all three sets of ductworks ... 77	

Figure 20. Project site layout and the scan locations .. 86	

Figure 21. The testbed for the motivation case study: ductworks captured by the

point cloud data .. 87	

Figure 22. Targets shown in a point cloud ... 88	

Figure 23 Status of geometric properties captured by individual point clouds (P1,

P2…P6) and the combination of them ... 89	

Figure 24. Screenshots of the point clouds captured at different times 91	

Figure 25. The flowchart of content assessment module ... 94	

Figure 26(b) Ductworks captured by a point cloud and the coverage image, where

the red cells indicate that the cells contain the points associated with the target
surface. ... 97	

Figure 27 (a). Processing time and point cloud density vs. grid size 98	

Figure 28 Point cloud data captured at different points in time and their occlusion

images for duct segments ... 100	

Figure 29. Flowchart of the content improvement module 101	

Figure 30. Dissimilarity ratio by adding P2 to P1 ... 102	

 x

Figure 31. The four different building components targeted by the validation 105	

 xi

List of Tables

Table 1. Previous research studies on point cloud and 3D object recognition 27	

Table 2. Features of point clouds to support mapping point clouds to BIMs 33	

Table 3. A list of features associated with BIMs for matching point clouds to BIMs 36	

Table 4. The definitions and optimal values for the thresholds 67	

Table 5. Results of matching process for the four matching approaches for testing

and training data set .. 72	

Table 6. The precision and recall comparison for 2D overlap & 3D shape approaches

with the combination of the two approaches .. 76	

Table 7. Matching results for the validation dataset ... 77	

Table 8 The resulting subset of point clouds to be registered following the three

approaches .. 105	

Table 9. Comparison of the developed approach (approach 3) with respect to other

baseline approaches ... 107	

 2

CHAPTER 1. INTRODUCTION

For every construction or renovation project, it is expected that the general

contractor of the project will hand over the as-built documentations to the owner or

the facility management team at the end of the project. In the current practice, the as-

built information is provided in paper-based documents, such as drawings and

equipment lists, which are hard to update and maintain during the service life of a

facility (Dickinson et al. 2009; East and Brodt 2007; Fallon and Palmer 2007; Pettee

2005). One of the main challenges for the handover process is to ensure that captured

building information is complete and reflects as-built conditions (Dickinson et al.

2009; East and Brodt 2007; Pettee 2005). A report published by NIST in 2004

pointed out that $4.8 billion was spent every year just to verify that the captured

building information describes accurate building conditions (NIST 2004).

As a digital representation that captures and exchanges building information between

different stakeholders, a building information model (BIM) can be used as an

information repository to store and deliver as-built information. Currently, BIMs are

usually created based on design information in the design or construction phases

(called as as-designed BIMs). Such as-designed BIMs might not be able to reflect the

as-built conditions of a building, since a building does not always get constructed

exactly as it is specified at the design phase. Changes and updates are likely to

happen during the construction phase (Tang et al. 2010, Goedert et al. 2008(O'Brien

1998; Rowland Jr 1981; Terwiesch and Loch 1999). Extensive surveys are needed to

capture as-built building conditions so as to remove differences between an as-

 3

designed BIM and the as-built conditions that need to be delivered (Dickinson et al.

2009; Tang et al. 2010).

It is important to keep the information captured in a BIM complete (i.e., all building

components and their associated geometric information are captured in the BIM)

and accurate (i.e., geometric information contained in the BIM reflects the as-built

conditions). Laser scanning technology is able to capture accurate geometric data in

the form of a point cloud and depict as-built spatial condition of buildings. Hence,

point clouds captured by laser scans can be used as a reference to update an as-

designed BIM into an as-built BIM (i.e., a BIM that captures the as-built condition of

a building). However, there are two main challenges associated with the process of

updating an as-designed BIM using point cloud data.

(1) Matching segments in point clouds to BIM components under discrepancy conditions

Unlike a BIM, which contains both geometric and semantic information, a point

cloud is a collection of 3D points without any semantic information (e.g., which

building component that a point belongs to). Therefore, to support the updating

process, segments captured by a point cloud need to be matched to components

modeled in an as-designed BIM in order to compare the information contained in the

as-designed BIM with the as-built geometric data captured by the point cloud.

Typically, matches between a point cloud and a BIM can be identified based on the

features associated with segments extracted from the point cloud and components

modeled in the BIM. For example, if segment Pi of a point cloud is located at the

 4

same position where component Bj is modeled in a BIM, it is possible that Pi and Bj

are referring to the same component and should be matched together.

However, due to changes that occur during the construction phase, a building

component might have different shapes, dimensions, and be located at different

positions in a point cloud as compared to how it is modeled in an as-designed BIM.

These discrepancies could impact the matching process and generate incorrect

matches between a point cloud and an as-designed BIM.

Some features of point clouds and BIMs might remain similar under a given

discrepancy condition, and hence these features can be used to correctly match point

cloud segments to BIM components. Currently, there is a limited understanding of

what features could be used to match a point cloud to a BIM and how these features

would perform under different discrepancies. Therefore, this is a need to identify a

general set of features that can be used to support the matching process and evaluate

their performances in terms of how well those features are able to identify correct

matches between a point cloud and a BIM.

(2) Leveraging point clouds captured at different times to provide accurate and complete

geometric information

Point cloud data collected at a single point in time typically is not capable of

providing all the geometric information required for updating an as-designed BIM

due to the following reasons: (a) a construction scene is periodically occluded by

temporary work, machinery, laborers, materials, (b) permanent building components

might be hidden behind the finished surfaces (e.g., ductwork that are hidden behind

 5

ceiling tiles) and (c) some building components are not installed/constructed at the

time of scanning.

Scanning a building at discrete points in time during its construction process (called

as progressive scanning in this thesis) and combining these scans together could

provide more geometric information for updating a BIM. However, combining point

clouds together could result in a file with huge size that is difficult to process and

store, given that each point cloud often contains millions of data points and its size

could range between a few hundred megabytes to a few gigabytes depending on the

scanning range and resolution (Bentley 2012; Song and Feng 2009). There is a trade-

off between retrieving more geometric information by combining all of captured

point clouds and reducing the file size by only combining a subset of point clouds. To

address this challenge, there is a need for an approach that evaluates geometric

information contained in a point cloud data and supports the selection of point

clouds.

 6

1.1 Vision

To address the two challenges stated in the previous section, I have envisioned a

framework that matches point clouds to components modeled in an as-designed BIM

and leverage geometric information contained in the progressively captured point

clouds to support the BIM update. The envisioned framework is shown in Figure 1.

The framework is composed of three main processes:

(1) Matching point cloud segments to BIM components

This process matches the segments from a point cloud to components modeled in an

as-designed BIM. Based on the identified matches, construction professionals are

able to identify the differences between an as-designed BIM and the as-built

information captured by point clouds so as to update the model accordingly. In this

research, the following research tasks have been accomplished in order to support

this process: (a) identifying a general set of features that can be used to match point

cloud segments to BIM components, (b) developing matching approaches that reason

with and combine different types of features to identify matches between point cloud

segments and BIM components, and (c) evaluating the matching results that are

identified by different features and under various discrepancy conditions. These three

research tasks are discussed in details in Chapter 2 and 3.

(2) Leveraging point clouds captured at different points in time

This process evaluates the geometric information contained in a set of progressively

captured point clouds and assesses the information gained by combining two point

 7

clouds together. Based on unique data sets that each point cloud brings, this process

combines point clouds collected at different points in time in order to ensure the

completeness of the captured geometric information while reducing the file size that

caused by merging point clouds with repetitive information. In this research, the

following research tasks have been accomplished in order to implement this process:

(a) comparing the completeness of geometric information contained in progressively

captured point clouds with point clouds captured at a single point in time, and (b)

developing an approach that evaluates the geometric information of a target building

component captured by point cloud data and assesses additional information gained

by point cloud combination. These two research tasks are discussed in details in

Chapter 4.

(3) Updating BIM to represent as-built condition:

According to the matches identified between point cloud segments and BIM

components, this process identifies the discrepancies between the two data sets and

updates the BIM to represent the as-built conditions. The output of this process is an

up-to-date as-built BIM, which contain both visible (e.g., wall, ceiling, floor that are

shown in the point cloud) and invisible (e.g., air duct, water pipe that are hidden

behind the finished surfaces) components with accurate 3D geometries. The as-built

BIM can be then delivered to building owners or facility management teams as a part

of the as-built handover documents. In this thesis, I mainly focus on the first and

second process in support of this third process.

 8

Figure 1. Envisioned framework for updating a BIM based on point cloud data

 9

1.2 Research Questions

This section discusses three research questions aiming to address the challenges

associated with the process of updating an as-designed BIM based on point cloud

data.

Research Question 1: What features can be used to match point clouds to BIMs?

It is challenging to match a point cloud to a BIM when there are discrepancies

between the real-world components and the components modeled in the BIM. A

general set of features can potentially help in identifying correspondences between

these two data sets, and thus serve as the foundation for matching approaches.

In addressing this research question, I reviewed previous research studies in relation

to: (1) 3D shape matching and retrieval, (2) product modeling and BIM standard, (3)

building model reconstruction based on point cloud data, (4) object detection and

recognition in construction sites for progress monitoring and equipment control, (5)

3D scene annotation for urban modeling, and (6) indoor point cloud recognition for

mobile robot navigation. Building on these research studies, I identified a general set

of features that can be used to match point clouds to BIMs, and I classified these

features into different groups. The coverage of the identified features is validated to

ensure that the feature list identified in this research covers the majority of the

features that can be potentially used for the matching process.

 10

Research Question 2: How well, in terms of precision and recall, do different

features perform in identifying matches between a segmented point cloud and a

BIM under different discrepancies?

Matches between a point cloud and a BIM can be identified based on features shared

by these two data sets. However, there is a limited understanding of how different

features perform in the matching process under different discrepancy conditions.

Hence, there is a need to evaluate the performance of different features in terms of

how well they are able to identify correct matches between a point cloud and a BIM.

Building on the features identified in research question 1, I developed a set of

matching approaches that combine and reason with different types of features. I then

evaluated the performance of the features based on the precision and recall of the

matching results.

Research Question 3: How well do the progressive point clouds improve the

accuracy and completeness of an as-built BIM?

Combining point clouds that are progressively captured in construction could

provide more geometric information for the BIM update. However, the combination

of point clouds could also result in a dataset with large file sizes. However, as

discussed previously, there is a trade-off between having a completely registered

point clouds to provide more geometric information and having a registered point

cloud with less number of point clouds to reduce the file size and processing time.

 11

 In relation to this research question, I developed an approach to evaluate the

information contained in a point cloud so as to support the decision about which

point clouds should be combined together in order to increase the completeness of

geometric information with less file size. The developed approach consists of two

modules: (a) content assessment module, which quantifies the geometric information

contained in each point cloud for updating target building components in a BIM, and

(b) content improvement module, which calculates the information gained by adding

new point cloud to the initial data set. Two metrics are used in this approach: (a)

coverage ratio, which is used to evaluate the information captured by a point cloud,

and (b) dissimilarity ratio, which assesses the additional information generated by

adding a point cloud to the initial data set. The effectiveness of this approach is

validated using point clouds captured during a construction project.

 12

1.3 Scope and High Level Assumptions

This section describes the scope and high-level assumptions for my PhD research.

1.3.1. Assumptions

The point cloud data is segmented by the state-to-art segmentation

approaches and the geometric primitives (e.g., lines, planes, cylinder, cube,

etc.) are fitted to the point clouds.

1.3.2. Scope

a. This research focuses on updating an as-designed BIM to improve the

accuracy and completeness of its geometric information. The semantic

information (e.g., object ID, type, material) contained in an as-designed BIM

is not the focus on this research study.

b. This research focuses on matching point clouds to BIMs and leveraging point

clouds captured during construction to provide more geometric information.

The actual modification and update of as-designed BIMs are not within the

scope of this research.

 13

1.4 Dissertation Organization

This dissertation consists of five chapters including Introduction and Conclusions.

Chapter 1 provides an overview of the research problems and vision, and describes

the three research questions addressed in this thesis. Chapter 5 highlights the research

contributions, practical implications and future research directions. The remaining

three chapters focus on three specific research contributions.

Chapter 2: Identification of Features to Be Used for Matching Point Clouds to

BIMs

Chapter 2 presents the findings of the research study conducted to identify a general

set of features associated with point cloud data and BIM, which can be potentially

used to support the matching between these two data sets.

Chapter 3: Evaluation of Features for Matching Point Clouds to Building

Information Models

Chapter 3 introduces six feature-based matching approaches developed based on

prior work to match a point cloud to a BIM. It then presents the results of a set of

experiments conducted to evaluate the performance of different features in matching

point clouds to BIMs under various discrepancy conditions. In addition, this chapter

provides a discussion on how the combination of different features could improve the

matching results.

 14

Chapter 4: An Approach for Leveraging Progressive Laser Scans to Improve

Completeness

Chapter 4 describes an experimental analysis conducted to evaluate the completeness

of geometric information contained in point clouds captured at a single point in time

versus the combined data set that is composed of point clouds captured at different

times. It then introduces an approach developed to select and combine progressively

captured point cloud so as to provide more complete geometric information with less

file size.

 15

CHAPTER 2. IDENTIFICATION OF FEATURES TO BE USED

FOR MATCHING POINT CLOUDS TO BIMS

Matching a point clouds to a BIM is an important step in the updating process. This

step associates the segments captured by the point cloud to components modeled in

the BIM, so that the difference between the design information stored in the BIM

and the as-built conditions captured by the point cloud can be recognized. One way

of identifying the matches between a point cloud and a BIM is to reason with

features associated with these two data sets. In this thesis, I defined a feature as a

geometric primitive or a geometric property that have distinct characteristics.

Features can be used to identify the correspondences between a point cloud and a

BIM. For example, if segment Pi of a point cloud is located at the same location

where component Bj is modeled in a BIM, then it is possible that Pi and Bj

correspond to each other. However, there are two challenges associated with

matching a point cloud to a BIM.

First, building components might have different shapes, dimensions, orientations and

positions in a point cloud as compared to how they are modeled in an as-designed

BIM. These discrepancies could impact the performance of matching approaches and

generate incorrect matches between a point cloud and a BIM. For instance, as shown

in Figure 1, the highlighted air ducts were modeled as L-shape rectangular elbows in

the as-designed BIM, whereas they were manufactured as curve-shaped elbows,

shape of which was captured within the point cloud data. Due to such shape

discrepancies, matching approaches based solely on shape related features (e.g.,

 16

dimension, volume, surface area) would not be able to identify the correct matches of

the highlighted air ducts.

Figure 2(a) Ductworks
modeled in the BIM

Figure 2 (b) Ductworks
captured by the point cloud

Figure 1. Shape discrepancies between ductworks modeled in the BIM and the same

ductworks shown in the point cloud

Second, in a construction project some building components might have the same

shape, orientation and dimension (e.g., a collection of columns, beams, and duct

segments). For example, as seen in Figure 2, air ducts A and B were manufactured in

the same shape and size, but were installed at two different locations. Matching

approaches that are based solely on shape-related features would not be able to

distinguish air duct A from air duct B, even though they are two different building

components. Hence, it is important to identify features that are able to distinguish

building components with the same 3D geometry so as to eliminate mismatches.

 17

Figure 2. Different components with similar shapes and dimensions

Some feature of point clouds and BIMs might remain constant under a given

discrepancy situation. These features have the potential to be used in the matching

approaches and reduce the impacts of the given discrepancy situation. For example,

the highlighted air ducts shown in Figure 1 have different shapes in the point cloud

and the BIM due to the shape discrepancies however they are located at the same

position in the corresponding data sets. In this case, a matching approach based on

location features might be robust to the shape discrepancies and is able to identify the

correct matches for the highlighted air ducts. Development of a robust matching

approach would require a comprehensive understanding of the features of point

clouds and BIMs. This chapter provides the findings of a research conducted to

identify features that can be potentially applied in the matching process. The

identified features could serve as a foundation to develop matching approaches that

 18

utilize and combine different feature to correctly match point cloud segments to

components in a BIM under the presence of discrepancies.

2.1 Background research studies

An extensive literature review has been done in multiple domains, such as computer

vision, robotic, and civil engineering, where point clouds and laser scanners are used.

The research studies that were investigated in this research can be grouped into three

categories: (1) point cloud processing (e.g., point cloud segmentation, feature

extraction), (2) data standards for building information models and product

modeling approaches, and (3) point cloud and 3D object recognition approaches.

These studies were examined in details in order to generate a synthesized list of

features that can be used to match a point cloud to a BIM. An overview of research

studies that were examined is provided below.

2.1.1. Research studies in relation to point cloud processing

Features associated with point clouds have been used to support various point cloud

processing tasks, including point cloud segmentation, point cloud feature extraction,

and surface reconstruction from point clouds. A synthesis of the findings from these

studies suggests that the features of point clouds can be grouped under three

categories: local features, semi-local features and global features.

Local features are referred to as the features associated with each individual point in a

point cloud. Such features include 3D coordinates, surface normal, point intensity

and color of a point (Schnabel et al. 2007; Tang et al. 2010; Tangelder and Veltkamp

 19

2004). Semi-local features are referred to as the features calculated from points within a

region (Huber et al. 2004; Johnson and Hebert 1999; Tang et al. 2010). Examples of

semi-local features are spin-image, point density, and the maximum height of the

points within a neighborhood (Johnson and Hebert 1999, Huber et al. 2004). Global

features are referred to as the features calculated by taking the entire point cloud into

consideration. Examples of global features include histogram of pairwise distance of

random points and the distribution of point density (Körtgen et al. 2003; Mahmoudi

and Sapiro 2009; Tangelder and Veltkamp 2004). The semi-local and global features can

be used as descriptors to describe the shape of objects captured by a point cloud

(Frome et al. 2004; Huber et al. 2004; Tang et al. 2010; Tangelder and Veltkamp

2004). The local features are less sensitive to noise and clutters shown in the scene, but

they have lower discriminative power when comparing to global features (Tangelder

and Veltkamp 2004). The semi-local features are evaluated as having the similar

discriminative power as compared to global features, and they are robust to noises and

clutters, which is similar to local features (Johnson 1997).

A point cloud is a collection of points and contains no semantic information. Using

segmentation or clustering approaches, points can be grouped and assigned into

higher level geometric primitives, such as planer patches, spheres, cylinders, cones

and torus (Huang and Brenner 2011; Rabbani et al. 2006; Roggero 2002; Schnabel et

al. 2007; Schnabel et al. 2008). Random Sampling Consensus Algorithm (RANSAC)

fits a parameterized mathematical model to a point cloud by iteratively selecting the

model parameters that best fit to the data set (Fischler and Bolles 1981). RANSAC

approach is capable of extracting geometric primitives, such as planes, spheres,

 20

cylinders from a point cloud (Schnabel et al. 2007; Schnabel et al. 2008). The

geometric primitives fitted to a point cloud form a concise and abstract

representation for a point cloud. A large amount of research studies have used

geometric primitives fitted to a point cloud as important features to support different

point cloud processing activities, such as model reconstruction and object recognition

from point clouds (Duan et al. 2010; Golovinskiy et al. 2009; Huang and Brenner

2011).

The prior research studies in relation to point cloud processing provide a point of

departure to identify a general list of features associated with point clouds. This

feature list will be further evaluated to identify what features can be potentially used

to match a point cloud to a BIM.

2.1.2. Product representation and data exchange standards for building

information models

A BIM is a digital representation of a facility’s life cycle information and contains

both physical and functional information of that facility. Since a point cloud only

contains geometric information, most of non-geometric information stored in BIMs,

such as functionality (e.g., usage, air flow rate for ductworks), material and cost

cannot help in establishing the matches between point clouds and BIMs. Therefore,

in this research, non-geometric information of a BIM was not considered. In this

research, I mainly focus on shape (i.e., features related to the size and shape of a

building component) and spatial (i.e., features related to the location of a building

components) related features associated with 3D objects modeled in a BIM.

 21

3D geometry of building components are represented in a BIM using different

representation techniques (BuildingSMART 2012; buildingSMART 2012; Eastman

1999). Boundary representation (B-rep for short) represents a surface model as a

collection of faces, which are connected by edges and vertices (Campbell and Flynn

2001; Zhang and Lu 2004). Features defined by B-rep include edges, vertices, faces

and their connectivity. Constructive solid geometry (CSG for short) represents a solid

model by overlapping geometric primitives (e.g., sphere, cuboids, cylinders) together

using Boolean operators. Boolean operators include union, intersection and

difference (Eastman 1999; Requicha 1980; Tang et al. 2010). The features defined in

CSG are geometric primitives, such as sphere, cuboids, cylinders and blocks. Sweep

representation is another presentation technique that forms a 3D shape by sweeping

a geometric primitive along a path (i.e., a principle axis) (Eastman 1999; Requicha

1980). The features defined by sweep representation are the geometric primitives

(e.g., planer surfaces, cylinder, etc.) and the path, along which a geometric primitive

is swept to form a 3D shape. Additional features can be derived from the 3D shapes

of building components represented in a BIM. Such features include volume, area,

geometric ratios (e.g., the number of facets, surface area to volume, etc.), and

dimensions of a bounding box fitted to an object or a group of objects (Cybenko et al.

1997; Iyer et al. 2005; Tangelder and Veltkamp 2004; Zhang and Chen 2001).

Extensive literature review within the AEC/FM domain suggests that spatial

information representation in a BIM can be divided into three categories (Borrmann

and Beetz 2010; Borrmann and Rank 2009; Clementini and Di Felice 1996;

Schneider and Behr 2006). These three categories of features are: (a) topology related

 22

features, which define the relative position and connectivity between an object with

respect to a reference (e.g., disjoint, touch, equals, covers, overlap), (b) orientation

related features, which define the relative orientation of an object with respect to a

reference (e.g., parallel, orthogonal) and (c) distance related features, which define the

relative distance from an object to a reference.

Various data standards have been developed to represent construction project data

and facility information. Examples of those data standards include Industry

Foundation Classes (IFC), Construction Operation Building Information Exchange

(COBIE), and ISO 15926 (i.e., standard for project data integration, sharing, and

exchange between systems. Among those data standards, IFC standard is the most

well known open data model specification standard that enables sharing and

exchanging of information contained in BIMs among different systems

(buildingSMART 2012). The IFC4 standard defines more than 700 classes to

describe the information, such as dimension, location, material, functionality and

spatial relationships associated with building components (buildingSMART 2012).

In this research, I used IFC standard as the reference to identify features associated

with BIM, for two reasons: (1) as compared to COBIE, IFC standard contains more

classes and attributes in relation to the 3D geometry of a building component, and

(2) ISO 15926 targets on the heavy construction in oil and gas industry whereas IFC

standard targets on buildings, which is well aligned with the scope of this research.

In the IFC standard, the IfcProductRepresentation class defines both shape and spatial

representation of a building component. An instance of the IfcProductRepresentation

 23

class is composed of one or more instances defined by the IfcShapeModel class. The

IfcShapeModel class defines the concept of a geometrical and/or topological

representation for 3D shape of a building object. The IfcShapeModel class has two

subclasses: (a) IfcShapeRepresentation class, which represents the geometric features of

a product; and (b) IfcTopologyRepresentation class, which represents the connectivity of

a product or components within the product. Various subtypes are defined for the

IfcShapeRepresentation class, which include curve2D (i.e., two dimensional curves),

geometricSet (e.g., points, curves and surfaces), surfaceModel (i.e., face based or

shell based surface models) and solidModel. Similarly, the subtypes of

IfcTopologyRepresentation class include vertex (i.e., a corner where two or more than

two lines intersect), edge (i.e., a line segment that connects two faces), and face (i.e.,

an surface of a 3D shape). In addition, IfcAxis2Placement3D class explicitly defines the

location and orientation of an object modeled in a BIM in the 3D space.

Additional features associated with a building information model have been defined

from the computer-aided design, cost estimation and construction management

perspectives. Within the computer-aided architectural or mechanical design domain,

features are defined as generic shapes that carry engineering or design configurations

(Anderson and Chang 1990; Salomons et al. 1993; Van Leeuwen and Wagter 1997).

Examples of such features include form features that represent the form, shape and

topology of design entities, and physical features that describe the physical qualities

of design entities (Anderson and Chang 1990; Salomons et al. 1993). In order to

support cost estimation and construction management, features are defined to

describe the design information that is important for cost estimators or construction

 24

manager. Examples of these features include: component feature, which is referring

to the components existed in building product model and intersection features, which

describe the intersection of two features, such as openings and turns (Nepal et al.

2009; Staub-French et al. 2003). The features defined by these research studies

contain both semantic and geometric information. However, since these features are

mainly designed to support applications such as computer-aided design, cost

estimation and construction management, they cannot be directly used to support the

matching between point clouds and BIMs.

The research studies in relation to product representation and BIM standards provide

a point of departure for identifying a general set of features associated with BIMs.

These features will be further evaluated to identify which features can potentially be

used to match a point cloud to a BIM.

2.1.3. Point cloud and 3D object recognition approaches

A large amount of approaches within the computer vision, remote sensing and

robotics domains have been developed to recognize objects from point cloud data or

classify 3D objects contained in a 3D model into different classes (Bustos et al. 2007;

Frome et al. 2004; Golovinskiy et al. 2009; Pu and Vosselman 2006). These

approaches have been used to support various applications including, but not limited

to: (a) 3D shape matching and retrieval (Belongie et al. 2002; Körtgen et al. 2003),

(b) building model reconstruction from point cloud data (Adan and Huber 2011;

Brenner 2005), (c) 3D scene annotation for urban modeling (Douillard et al. 2011;

Golovinskiy and Funkhouser 2009), (d) indoor point cloud recognition for mobile

 25

robot navigation (Rusu et al. 2008; Koppula et al. 2011), and (e) construction site

object detection for progress monitoring and equipment control (Bosche and Haas

2008; Kurtan et al. 2011). Although not all of these approaches are directly targeting

on the problem of matching point clouds to BIMs, they certainly provide some useful

insights in terms of: (a) what features can be used to describe objects contained in a

point cloud or objects modeled in a BIM, (b) how different features of point clouds

and BIMs help for the object recognition, and (c) what features are shared by point

clouds and BIMs so that they can be applied to match the two data sets together.

Based on the characteristics of features used by the object recognition approaches, I

divided these approaches into two different groups: (a) object recognition approaches

based on spatial information, and (b) object recognition approaches based on shape

representation. Brief descriptions and a synthesis of these studies are provided below

and the findings of the literature review on these studies are summarized in Table 1.

(a) Object recognition approaches based on spatial information

Object recognition approaches based on spatial information classify objects extracted

from point cloud data into different classes. The classification is made based on

spatial related information gained from heuristics or design models (e.g., BIM, floor

plan, 3D design model), which are severed as references reflecting the nature of

collected point clouds. The spatial related features include relative distance, angles,

positions and connectives between objects captured by a point cloud or components

in a design model.

 26

The approaches that reason with relative locations and distances between 3D objects

can be called as spatial proximity-based object recognition approaches. Within this

group, Bosche (2008 and 2009) assumed that the BIM is exactly the same as the

point cloud. Hence, points within a point cloud can be matched to the building

components modeled in a BIM according to the relative location between the points

to the objects modeled in the BIM. This approach matches the components from the

design model to the point cloud, which provides the capability of automatically

recognizing 3D design model objects from a point cloud. Golovinskiy et al. (2009)

focused on urban environment modeling and recognized objects (e.g., cars, traffic

lights) captured by a point cloud based on their relative location to the reference

objects (e.g., cars are more likely to be parked along a street, etc.). Koppula et al.

(2011) used the relative distance and angles between different segments extracted

from a point cloud to improve the performance of object recognition from the 3D

point cloud data. Features used in these approaches are summarized in Table 1.

 27

Table 1. Previous research studies on point cloud and 3D object recognition

Approach
Features of point clouds and 3D models

applied for object recognition
References

Object recognition approaches using spatial information

Spatial
relationship-
based object
recognition

(1) Relative angles, orientations and locations
between segments (e.g., planes, surfaces)
extracted from a point cloud: orthogonal,
parallel, adjacent, coplanar, above and below;
(2) connectivity between different segments

(Adan and Huber 2011; Duan et al.
2010; Eich et al. 2010; Elberink
and Vosselman 2009; Huber et al.
2011; Koppula et al. 2011; Nüchter
and Hertzberg 2008; Nuchter et al.
2003; Pangercic et al. 2012; Pu and
Vosselman 2009; Schnabel et al.
2008; Verma et al. 2006; Xiong et
al. 2013)

Spatial
proximity-
based object
recognition

(1) Spatial features associated with segments
or point clusters extracted from a point cloud:
position of centroid, surface normal and (2)
relative distance between 3D points to 3D
objects modeled in the BIM

(Anand et al. 2013; Bosché 2009;
Bosche and Haas 2008; Bosche and
Haas 2008; Golovinskiy and
Funkhouser 2009; Golovinskiy et
al. 2009; Koppula et al. 2011; Pu
and Vosselman 2006; Pu and
Vosselman 2009; Rusu et al. 2008;
Rusu et al. 2009; Son and Kim
2010; Triebel et al. 2006)

Object recognition approaches using shape information

Regional
feature-based
object
recognition

Features associated with a point or points
within a neighborhood region: (1) spin-image
of a point, a descriptive image that encodes
the properties of the surface fitted to the point
cluster in an object-centered coordinates; (2)
principal component analysis (PCA) feature:
the magnitude of the linearness, surfaceness,
and scatterness of a cluster of points

(Anguelov et al. 2005; Chen and
Bhanu 2007; Chua and Jarvis
1997; Douillard et al. 2010; Frome
et al. 2004; Johnson and Hebert
1999; Lai and Fox 2010)

Entity feature-
based object
recognition
approaches

(1) Geometric features associated with
segments fitted to a point cloud: orientation
(i.e., surface normal and direction of principle
axis), area, volume, point density, and height,
(2) geometric feature associated with
bounding boxes fitted to point clouds: size,
height, width, and fractional occupancy (i.e.,
the ratio of the volume of the object to the
volume of the box)

(Gilsinn et al. 2005; Golovinskiy et
al. 2009; Mozos et al. 2005;
Nüchter and Hertzberg 2008;
Okorn et al. 2010; Paquet et al.
2000; Pu and Vosselman 2006; Pu
and Vosselman 2009; Rusu et al.
2009; Teizer et al. 2007; Truong et
al. 2012)

Distribution
feature-based
object
recognition

(1) Shape distribution: probability
distribution of the pairwise distances/angles
between random points; (2) shape context: the
relative distribution of points relative to all
other points on the shape

(Belongie et al. 2001; Belongie et
al. 2002; Ip et al. 2002; Körtgen et
al. 2003; Mahmoudi and Sapiro
2009; Osada et al. 2001; Osada et
al. 2002; Valero et al. 2011)

View-based
object
recognition

Features associated with 2D slices obtained
by cutting 3D objects or projecting 3D objects
in a 2D plane

(Chen et al. 2003; Funkhouser and
Kazhdan 2004; Funkhouser et al.
2003; Jiantao et al. 2004; Nüchter
and Hertzberg 2008)

 28

Approaches that reason with the relative orientation and connectivity between 3D

objects can be called as spatial relationship-based object recognition approaches.

Examples of the spatial relationships include “two walls are parallel to each other”,

“the floor surface is bounded by walls”, and so on (Cantzler et al. 2002; Duan et al.

2009; Golovinskiy et al. 2009; Nüchter and Hertzberg 2008; Xiong and Huber 2010).

For instance, Xiong and Huber (2010) developed a method to classify planar patches

extracted from a point cloud into walls, floors, ceilings and clutters by reasoning with

the relationships about the extracted patches, such as orthogonal, parallel, adjacent,

and coplanar. Cantzler et al. (2002) and Fisher (2003) developed a semantic net

representation to encode spatial relationships between different building components.

In the semantic net representation, each node represents a specific type of building

components and each edge represents a spatial relationship between adjacent

building components. This semantic net is then used to facilitate the object

recognition task.

(b) Object recognition approaches based on shape information

There is a sizable amount of research studies that focus on shape matching and

retrieval. They identify the correspondences between two shapes so as to calculate

the similarities between two shapes. Some of these approaches have been extended to

support the object recognition task. With shape similarities being calculated,

algorithms are able to recognize objects from a database or cluttered 3D images,

which are similar to the objects shown in the training data or directly inputted by

users.

 29

Object recognition approaches based on shape information first define a set of

descriptors to depict the shapes of objects shown in point clouds or 3D models.

Second, they calculate the descriptors for both training and testing data (the training

and testing data is a set of 3D objects) and define a similarity metric to measure

similarities between two different descriptors. Finally, objects captured in the testing

data are matched to the objects in the training data that have the closest descriptors

(Frome et al. 2004; Huber et al. 2004; Tang et al. 2010; Tangelder and Veltkamp

2004).

The descriptors are usually defined based on shape-related features, and are used to

identify the correspondences between 3D shapes captured by two different point

clouds or 3D models. For instance, a shape descriptor, named shape context, was

developed for measuring similarity between different shapes (Belongie et al. 2001,

2002). The shape context is calculated by taking a set of points sampled from the

contours of an object, and measuring the distribution of distances from each point to

all the other points on the contours. Osada et al. (2002) created a descriptor named

shape distribution to describe a 3D shape. The approach represents the descriptor of

a 3D shape as a probability distribution of properties extracted from a 3D shape.

Examples of such properties include the distribution of distances between two

random points located on 3D surfaces, and angles between two random points

picked on 3D surfaces (Ip et al. 2002; Mahmoudi and Sapiro 2009; Osada et al.

2002).

Depending on the characteristics of features used in object recognition approaches

based on shape information, these approaches can be further divided into four

 30

groups: (1) regional feature-based object recognition approaches, which use the shape

related features derived from points and a group of points in a region; (2) entity

feature-based object recognition approaches, which fit geometric primitives to the

point cloud data and reason with the features derived from these geometric

primitives; (3) distribution feature-based object recognition approaches, which

describe a 3D shape using a probability distribution of geometric properties, and (4)

view-based object recognition approaches, which utilize 2D projections of a 3D

model or a point cloud as features. The list of features utilized in the approaches

under these four categories can be found in Table 1.

The research studies in relation to 3D point cloud object recognition approaches

provide a point of departure for a list of features that can be applied to distinguish

objects shown in a point cloud or in a BIM. The same features shared by the point

cloud and the BIM have the potential to be used to recognize the correspondences

and identify the matches between the two data sets.

2.2 Research Method And Findings: Features To Be Used For Matching Point

Clouds To BIMs

As detailed in section 2.1, a general set of features associated with point clouds and

BIMs were identified by investigating research studies in relation to point cloud

processing, product representation, and data standards for building information

models. I then further investigate point cloud and 3D object recognition approaches

in order to identify the features that can be potentially used for matching the two

data sets together. In total, 80 papers were reviewed in the following fields: (1) 3D

 31

shape matching and retrieval, (2) product modeling and BIM standard, (3) building

model reconstruction based on point cloud data, (4) object detection and recognition

in construction sites for progress monitoring and equipment control, (5) 3D scene

annotation for urban modeling, and (6) indoor point cloud recognition for mobile

robot navigation. The field of 3D shape matching and retrieval provides the general

knowledge on what features can be used to describe 3D shapes. The product

modeling and BIM standard shows how the shape and spatial related features are

defined in a BIM, and provide general categorizations to classify the BIM-related

features. The rest of the fields of applications have one thing in common, even

though they target different applications; they all try to detect and recognize

components from point cloud either based on design information or the knowledge

about building configurations. Hence, these fields of applications provide a set of

features that are shared by point clouds and design/designed-based model, which

can be applied to support identifying matches between point clouds and BIMs.

The distribution of papers within these fields is shown in Figure 3. The features

identified in this research studies are provided in the following two sections: features

associated with point clouds and features associated with components modeled in

BIMs.

 32

Figure 3. Distribution of reviewed papers in different fields of applications

2.2.1. Features of point clouds that can be applied for the matching process

In total, I have identified 29 features of point clouds that can be applied for the

matching process. These features are grouped under three categories: (a) point level

features, which refer to the features associated with each individual point or a cluster

of points. Examples of point level features include point position, surface normal and

point intensity; (b) entity level features, which are the features associated with

geometric primitives fitted to a point cloud. Examples of entity level features include

planer patches fitted to a point cloud and their orientations; and (c) global features,

which refer to the features that are derived from a set of geometric primitives or

segments. A feature can either be a basic feature, which refers to primitives with

distinct geometric or topological patterns or a derived feature, which refers to a feature

that is derived from a basic feature. For instance, a point is a basic feature, from

which a point coordinate and a surface normal can be derived. Table 2 shows the

0
5

10
15
20

3D shape
matching and

retrieval

Product modeling
and BIM standard

Building model
reconstruction

3D scene
annotation for

urban modeling

Object
recognition for
mobile robot

Construction site
object detection
and recognition

Paper Number

 33

features of point clouds that can be used to support the matching between point

clouds and BIMs.

Table 2. Features of point clouds to support mapping point clouds to BIMs

Category
Basic

Features
Derived
Features

Definition Reference

Point
level

features
Point

Point
position

3D coordinates (x, y, z) of a
point

(Adan and Huber 2011; Adan
et al. 2011; Anand et al. 2013;
Bosché 2009; Bosche and Haas
2008; Bosche and Haas 2008;
Choi et al. 2009; Gong and
Caldas 2008; Ip et al. 2002;
Rusu et al. 2009; Rusu et al.
2010; Rusu et al. 2008; Rusu et
al. 2009; Xiong et al. 2013)

Surface
normal

The vector that is
perpendicular to a tangent
plane fitted to a point

(Adan and Huber 2011; Adan
et al. 2011; Ben Hmida et al.
2011; Cantzler et al. 2002)

Color RGB value of the point
(Koppula et al. 2011; Pangercic
et al. 2012; Posner et al. 2009;
Posner et al. 2008)

Relative
distance

Distance between two selected
points

(Belongie et al. 2001; Belongie
et al. 2002; Cantzler et al. 2002;
Iyer et al. 2005)

Relative
angle

Angle between two selected
points

(Ip et al. 2002)

Gradient
The scope of a line connecting
two selected points

(Nuchter et al. 2003) (Nüchter
and Hertzberg 2008)

Entity
level

features

Cluster of
points

segmented
from a
point
cloud

Spin-image

A descriptive image that
encodes the properties of a
surface fitted to a selected
point cluster in an object-
centered coordinates

(Bimbo and Pala 2006;
Douillard et al. 2011; Frome et
al. 2004; Johnson 1997;
Johnson and Hebert 1999; Lai
and Fox 2010)

Maximum
height
difference

The maximum height
difference of the points within
a given point cluster

(Golovinskiy and Funkhouser
2009; Golovinskiy et al. 2009;
Nüchter and Hertzberg 2008;
Okorn et al. 2010)

Standard
deviation of
the heights

The standard deviation for the
z coordinates of points within
a selected point cluster in a
given coordinate system

(Golovinskiy and Funkhouser
2009; Golovinskiy et al. 2009)

PCA feature

The magnitude of the
linearness (the likelihood of
points locating in a line),
surfaceness (the likelihood of
points locating at a surface),
and scatterness (the likelihood
of points being scattered)

(Douillard et al. 2010; Koppula
et al. 2011)

Point
density

Number of points per square
feet within a point cluster

(Douillard et al. 2010; Koppula
et al. 2011; Okorn et al. 2010)

Shape
distribution

The distribution of pairwise
distances/angles between
random points

(Ip et al. 2002; Mahmoudi and
Sapiro 2009; Osada et al. 2001;
Osada et al. 2002)

Shape The distribution of a point (Belongie et al. 2001; Belongie

 34

context relative to all other points in a
given point cluster

et al. 2002; Körtgen et al. 2003)

Geometric
primitives
fitted to a

point
cloud

Position

The position of the centroid of
a geometric primitive or a
reference point on a given
geometric primitive

(Anand et al. 2013; Eich et al.
2010; Koppula et al. 2011;
Posner et al. 2009; Pu and
Vosselman 2006; Pu and
Vosselman 2009)

Area
The area of a surface fitted to
a point cloud

(Eich et al. 2010; Nüchter and
Hertzberg 2008; Xiong and
Huber 2010)

Volume

The volume of geometric
primitives (e.g., sphere,
cylinder, cone) fitted to a point
cloud

(Golovinskiy and Funkhouser
2009; Golovinskiy et al. 2009;
Schnabel et al. 2008)

Principle
direction

The orientation of the
principle axis derived from a
geometric primitive

(Koppula et al. 2011)

Surface
normal

The orientation of the vector
perpendicular to the surface of
a geometric primitive

(Adan and Huber 2011; Adan
et al. 2011; Anand et al. 2013;
Ben Hmida et al. 2011; Cantzler
et al. 2002; Hofman and Jarvis
2000; Huber et al. 2011; Huber
et al. 2011; Huber et al. 2010;
Koppula et al. 2011; Nüchter
and Hertzberg 2008; Posner et
al. 2009; Posner et al. 2008; Pu
and Vosselman 2006; Pu and
Vosselman 2009; Xiong et al.
2013)

Dimension Length, width, and height of
geometric primitives Xiong et al. 2013

2D contours
2D boundary of a geometric
primitive fitted to a point
cloud

(Elberink and Vosselman 2009;
Jiantao et al. 2004; Okorn et al.
2010; Rusu et al. 2010; Rusu et
al. 2008)

2D
projection

The projection of a geometric
primitive on a given plane

(Elberink and Vosselman 2009;
Okorn et al. 2010)

Bounding
box

Position
The position of the centroid or
reference point in a bounding
box

(Anand et al. 2013)

Volume The volume of the bounding
box

(Paquet et al. 2000)

Dimension
Length, width and height of
the bounding box

(Paquet et al. 2000)

Fractional
occupancy

The ratio of the volume of an
object to the volume of the
corresponding bounding box

(Anand et al. 2013; Truong et
al. 2012)

Global
feature

Cluster of
points or

Geometric
primitives

Relative
distance

The relative distance between
two clusters of points or two
geometric primitives

(Anand et al. 2013; Elberink
and Vosselman 2009;
Golovinskiy and Funkhouser
2009; Golovinskiy et al. 2009;
Koppula et al. 2011; Rusu et al.
2009; Rusu et al. 2010; Rusu et
al. 2008; Rusu et al. 2009)

Relative
angles

The relative angles and
orientation between two
clusters of points or two
geometric primitives

(Anand et al. 2013; Cantzler et
al. 2002; Elberink and
Vosselman 2009; Golovinskiy
and Funkhouser 2009;

 35

Golovinskiy et al. 2009;
Koppula et al. 2011; Rusu et al.
2009; Rusu et al. 2010; Rusu et
al. 2008; Rusu et al. 2009)

Spatial
relationship

How an object is located in
relation to other objects (e.g.,
orthogonal, parallel, adjacent,
coplanar, disjoint, touch,
equals, covers, overlap)

(Adan and Huber 2011; Adan
et al. 2011; Cantzler et al. 2002;
Hofman and Jarvis 2000; Huber
et al. 2011; Huber et al. 2011;
Huber et al. 2010; Nüchter et al.
2003; Verma et al. 2006)

Topological
relationship

The connectivity between
cluster of points or geometric
primitives fitted to a point
cloud

(Adan and Huber 2011;
Hofman and Jarvis 2000;
Nüchter et al. 2003; Pu and
Vosselman 2006; Pu and
Vosselman 2009; Schnabel et al.
2008; Triebel et al. 2006)

2.2.2. Features of objects represented in BIMs

The features of BIMs that can be used for the matching process are grouped under

two categories: (a) shape features, which are features related to the geometry, shape

and size of an object modeled in a BIM, and (b) spatial features, which are features in

relation to the position and orientation of an object in the BIM. In addition to the

categorization given above, the features of BIMs can be also categorized as: (a) basic

features, which refer to the geometric elements that form the 3D representation of a

BIM and (b) derived features, which are the features derived from the basic elements.

Table 3 provides a list of features associated with 3D objects modeled in BIMs.

 36

Table 3. A list of features associated with BIMs for matching point clouds to BIMs

Category
Basic

Features
Derived
Features

Definition Reference

Shape
features

Geometric
set:
vertex,
edge and
face

Position
The position of a vertex or
position of the referencing
points on an edge or a face

(Brenner 2005;
BuildingSMART 2012)

Dimension
The length, width and height
of an edge or a face

(BuildingSMART 2012; Pu and
Vosselman 2006; Pu and
Vosselman 2009)

Surface
normal

A vector that is perpendicular
to the tangent plane fitted at a
vertex

((Biasotti et al. 2003; Bosché
2009; Bosche and Haas 2008;
Bosche and Haas 2008; Hilaga
et al. 2001; Pu and Vosselman
2006; Pu and Vosselman 2009;
Xiong et al. 2013)

Shape
context,

The distances between the
reference point and the points
selected on edges or surfaces

(Belongie et al. 2001; Belongie
et al. 2002; Bimbo and Pala
2006; Iyer et al. 2005)

Shape
distribution

The distribution of pairwise
distances/angles between
points subsampled from a
face.

(Bimbo and Pala 2006; Ip et al.
2002; Iyer et al. 2005; Osada et
al. 2001; Osada et al. 2002)

Surface
model and
solid
model

Position
The position of the referencing
point of a surface model or a
solid model

(Bosché 2009; Bosche and Haas
2008; Bosche and Haas 2008;
BuildingSMART 2012)

Orientation
Orientation of the principle
axis extracted from a 3D
model

(BuildingSMART 2012)

Volume The volume of a solid model
(Bimbo and Pala 2006; Liu et
al. 2007)

Dimension
Example of which includes
length, width, height, and
depth

(BuildingSMART 2012; Gong
and Caldas 2008)

The number
of faces

The number of faces belonging
to a surface model

(Bimbo and Pala 2006)

Area to
volume ratio

The ratio of the surface area of
a model over the volume of
the model

(Bimbo and Pala 2006)

2D
projection

2D shape obtained by
projecting a 3D model into a
2D plane

(Bimbo and Pala 2006; Bustos
et al. 2007; Chen et al. 2003;
Funkhouser and Kazhdan 2004;
Funkhouser et al. 2003; Jiantao
et al. 2004; Min et al. 2002;
Vosselman and Dijkman 2001)

Cross
section

The surface obtained by
making a straight cut through
a surface model

(Bustos et al. 2007; Funkhouser
and Kazhdan 2004; Funkhouser
et al. 2003; Jiantao et al. 2004;
Min et al. 2002)

Bounding
box fitted
to the
model

Dimension
Length, width, height of the
bounding box

(Novotni and Klein 2003;
Paquet et al. 2000; Truong et al.
2012)

Volume
The volume of the bounding
box

(Novotni and Klein 2003;
Truong et al. 2012)

Fractional
occupancy

The ratio of the volume of an
object to the volume of the
corresponding bounding box

(Novotni and Klein 2003;
Truong et al. 2012)

 37

Position
The position of the centroid or
reference point in a bounding
box

(Truong et al. 2012)

Spatial
features

Geometric
set,
surface
model,
solid
model

Relative
distance

The distances from the
centroid of a 3D object to the
centroid of the others

(Anand et al. 2013; Biasotti et
al. 2003; Borrmann and Beetz
2010; Borrmann and Rank
2009; BuildingSMART 2012;
Chao et al. 2011; Eich et al.
2010; Koppula et al. 2011)

Relative
angle

The angle between surface
normal fitted at the centroid or
reference points of 3D objects

(Anand et al. 2013; Biasotti et
al. 2003; Borrmann and Beetz
2010; Borrmann and Rank
2009; BuildingSMART 2012;
Chao et al. 2011)

Spatial
relationships

Defines how an object is
located in the space in relation
to the other objects
(orthogonal, parallel, adjacent,
coplanar, disjoint, touch,
equals, covers, overlap)

(Adan and Huber 2011; Adan
et al. 2011; Beetz et al. 2006;
Borrmann and Beetz 2010;
Borrmann and Rank 2009;
BuildingSMART 2012; Chao et
al. 2011; Cruz 2007; Duan et al.
2009; Duan et al. 2010; Eich et
al. 2010; Pangercic et al. 2012)

Topological
relationships

The connectivity and
aggregation relationships
between 3D objects.

(Beetz et al. 2006; Borrmann
and Beetz 2010; Borrmann and
Rank 2009; BuildingSMART
2012; Duan et al. 2009; Duan et
al. 2010; Eich et al. 2010; Iyer
et al. 2005; Pangercic et al.
2012; Schnabel et al. 2008)

As shown in Table 2 and Table 3, the identified features of point clouds and BIMs

are either shape-related or spatial-related. Shape-related features describe the

geometry, shape and size of objects captured by a BIM or a point cloud. Spatial-

related features describe the position and orientation of objects captured by a BIM or

a point cloud and their relative position, distance, angles and relationships with other

objects in the scene. Shape-related features are sensitive to shape discrepancies, and

might not be able to identify the correct matches between a point cloud and a BIM

when shape discrepancies exist. On the contrary, spatial-related features are more

robust to the shape discrepancies, but are more likely to be impacted by location

discrepancies.

 38

Spatial-related features are most frequently used in the applications of building

model reconstruction, 3D scene annotation for urban modeling, object recognition

for mobile robot navigation, and construction site object recognition. These

applications use the spatial-related information (e.g., connectivity, relative location

and angles between different objects) derived from the 3D scene for object

recognition. The limitation of the spatial-related features is their lack of

discriminative power to distinguish objects with the similar spatial patterns. The

shape-related features are frequently used in the applications of 3D shape matching

and retrieval. The shape-related features describe 3D shapes captured by a point

cloud or modeled in a BIM. Among the shape-related features, the shape distribution

measures the global geometric properties of an object in the 3D space and simplifies

problem of comparing 3D shapes to the problem of comparing probability

distributions.

Point-level features are the most fundamental features associated with a point cloud.

The position of a point and the surface normal derived from the point are the most

frequently used features in the review research studies. It is because that these two

features provide the basis to derive other features, such as point density, orientation

of a point cluster, relative angles between different segments extracted from a point

cloud and so on. However, point-level features themself do not have enough

discriminative power to describe an entire object captured by a point cloud. On the

contrary, objects are modeled in a BIM at the component level. As a result,

geometric information formatted in a point cloud is at a different level of detail as

compared to the information represented in a BIM. In order to remove the

 39

differences of levels of detail between point clouds and BIMs, points need to be

aggregated into higher-level entities, such as clusters of points, segments and

geometric primitives, using point cloud segmentation and clustering techniques.

While points can be aggregated into higher-level entities, a building component

modeled in the BIM can also be decomposed into different geometric primitives

(e.g., faces, vertices and edges) or different 2D views (e.g., cross section, principle

axis and 2D projection). By sampling the BIM surfaces, BIM components can be

decomposed into a collection of points. The matches between a point cloud and the

points sampled from the BIM surfaces can be made at the point-level. Features

generated through aggregation of point clouds or decomposition of BIMs allows

comparison between the two data sets is made at the same level of detail.

2.3 Validation

In this chapter, I validated the coverage of the identified features in terms of whether

the feature list identified in this research covers the majority of features that can be

used to identify matches between point clouds and BIMs. I have reviewed research

studies from different domains, such as computer vision, robotic, construction, and

remote sensing, in order to ensure that the features identified in this chapter are not

biased or limited to a specific field.

I then applied cross-validation technique to evaluate the coverage of the features

identified in this chapter. Cross-validation is a technique to estimate the generality of

a statistical model by dividing the data into two sets: training set and testing set

(Kohavi 1995; Refaeilzadeh et al. 2009). Cross-validation validates whether the

 40

performance of a classifier or a prediction model that learned from a given training

set is generalized to the testing set. In this chapter, I extended the cross-validation

technique to validate the coverage of the identified features and prove that that the

features identified in this chapter are not biased to one specific field of research

studies. I randomly divided the 80 papers reviewed in this research into two sets:

training set and testing set. The training set included 60 papers, and the remaining

papers were used for the testing purpose. I then evaluated the distribution of the

features within the testing and training set and counted the number of unique

features that are not covered by the training set but are provided by the testing set.

The results are provided in Figure 4.

In Figure 4, the numbers under training and testing columns represent the total

number of papers that mention a given feature in the training and testing sets,

respectively. As seen in Figure 4, features identified from the testing and training sets

show a similar distribution among different the reviewed papers. In other words, if a

feature was widely referred in the papers that were within the training set, it was also

widely referred in the papers that were in the testing set. For example, within the

point cloud related research studies, “point position” and “surface normal of

geometric primitives fitted to a point cloud” have been identified as the two most

frequently used features in the reviewed research studies. “Spatial” and “topological”

relationships have been widely referred both in the training and the testing sets. It

was observed that only one additional feature – ‘standard deviation of heights for

points within a point cluster’ was identified in the testing set but not shown in the

training set. Given the total number of features identified in this research (50 features

 41

in both domains), having only one such feature showed that this research has

covered the majority of features that can be used to support the matching between

point clouds and BIMs from diverse research studies.

Figure 4 (a). Count the number of research studies associated with each point cloud

related features

 42

Figure 4 (b). Count the number of research studies associated with each BIM related

feature

2.4 Conclusions

In this research, I built on the previous research studies in relation to point cloud

feature extraction, product representation, data standards for building information

models and point cloud and 3D object recognition, and identified a list of features

that can be applied to match point clouds to BIMs. I identified 21 features associated

with BIMs and 29 features of point clouds. The identified feature could be served as

 43

the foundation to develop matching algorithms that match point clouds to BIMs

under different discrepancy conditions. However, there is still a limit understanding

on how these features would perform under different discrepancy conditions. Hence,

in the next Chapter, I evaluate the performance of the features for matching point

clouds to BIMs.

 44

CHAPTER 3. EVALUATION OF DIFFERENT FEATURES FOR

MATCHING POINT CLOUDS TO BUILDING INFORMATION

MODELS

The matches between segments extracted from point cloud data and components

modeled in BIMs integrate accurate geometric information provided by point cloud

data with semantic information contained in BIMs, which supports the identification

of possible deviations between the two data sets. As discussed in Chapter 1, the

actual shape and location of a component can be different from the design, due to

changes occurred in the construction and the different levels of detail that a

component modeled in a BIM versus how it is constructed on site.

There can be different types of discrepancies between point cloud data and an as-

designed BIM, as seen in Figure 5: (a) Shape discrepancy: a component’s shape is

different than the shape specified in the as-designed BIM; (b) Location discrepancy: a

component’s location is different that the location specified in the as-designed BIM;

(c) Dimension discrepancy: a component’s dimensions are different than what is

specified in the as-designed BIM; (d) Content discrepancy: a component modeled in

the as-designed BIM does not exist in point cloud, and vice versa; and (e)

Composition discrepancy: multiple components are used to build a single component

that is modeled in the as-designed BIM or vice versa.

 45

Figure 5. Examples of different types of discrepancies

While these categories are not mutually exclusive, they challenge the matching

process and could mislead the matching. A matching approach based on a single

type of feature might not always be able to identify all correct matches between point

clouds and BIMs. Chapter 2 introduces a list of features that can be applied to match

point cloud data to BIMs. Building on this feature list, I first developed four

matching approaches that reason with different type of features. Second, I conducted

an experimental analysis that evaluates the performance of the four matching

approaches under different types of discrepancy situations. Third, I developed two

matching approaches that combine different types of features and I analyzed how

 46

those combined approaches could improve the matching results under different

discrepancy conditions.

3.1 Background Research Studies

Many approaches have been developed in the computer vision, robotic navigation

and remote sensing domains to recognize objects from point cloud data or classify

3D objects into different categories (Bustos et al. 2007; Frome et al. 2004;

Golovinskiy et al. 2009; Mahmoudi and Sapiro 2009; Pu and Vosselman 2006).

Based on the features utilized, different object recognition approaches can be

grouped into two categories: (a) spatial-based object recognition approaches, which

recognize objects from point cloud data based on their relative location, distance and

relationship with the other objects shown in the scene, and (b) shape-based object

recognition approaches, which recognize objects from point clouds based on their

shape-related features, such as dimension, shape, volume and size.

3.1.1. Spatial-based object recognition approaches

The spatial-based object recognition approaches take point cloud data as the input,

and classify points or geometric primitives extracted from the point cloud into

different classes. The classification is made according to the spatial-related features,

such as connectivity, relative distances and angles between different objects, derived

from point cloud data, and the heuristics or design models (e.g., BIM, floor plan, 3D

design model) that reflect the nature of the collected point clouds. (Adan and Huber

2011; Duan et al. 2010; Eich et al. 2010; Elberink and Vosselman 2009; Huber et al.

2011; Koppula et al. 2011; Nüchter and Hertzberg 2008; Nuchter et al. 2003;

 47

Pangercic et al. 2012; Pu and Vosselman 2009; Schnabel et al. 2008; Verma et al.

2006; Xiong et al. 2013).

Based on the spatial-related features and prior work in this area, I implemented two

matching approaches: (a) 2D overlap area matching approach and (b) spatial

relationship based graph-matching approach. The 2D overlap area matching

approach measures the relative distances between a segment extracted from a point

cloud and a component modeled in a BIM based on the overlap area of their 2D

projections. The spatial relationship-based graph matching approach utilizes a graph

to encode the spatial relationships (i.e., connectivity) between different components

in a BIM and segments extracted from a point cloud, and it matches the point cloud

to the BIM based on a graph-matching algorithm. The 2D overlap area matching

approach simplifies 3D objects into a collection of 2D projections. The features

associated with 2D objects are faster to compute than the 3D features (Chen et al.

2003; Jiantao et al. 2004; Wang et al. 2003). On the contrary, the spatial relationship

based graph-matching approach requires high computational power, since the graph-

matching problem is a well-known NP-complete problem, which cannot be solved in

polynomial time (Caetano et al. 2009; Conte et al. 2004; Hofman and Jarvis 2000;

Zaslavskiy et al. 2009). Despite the high computation power required by graph

matching algorithms, the nature of a graph structure makes it suitable to represent

the spatial relationships contained in a point cloud or a BIM. Graph matching

algorithms are capable of fully utilizing the spatial relationships to increase the

matching accuracy (Chao et al. 2011; Hofman and Jarvis 2000; Van Treeck and

Rank 2004).

 48

3.1.2 Shape-based object recognition approaches

The shape-based object recognition approaches recognize objects from point cloud

data by reasoning with their sizes, shapes, dimensions, and other shape-related

features. These approaches can be further categorized into four: (1) region-based

object recognition, (2) primitive-based object recognition, (3) distribution-based

object recognition and (4) view-based object recognition.

Region-based object recognition approaches reason with regional geometric-related

features derived from a point and its neighboring points, such as point density,

surface normal and spin image (Chen and Bhanu 2007; Frome et al. 2004; Johnson

1997; Johnson and Hebert 1999; Lai and Fox 2010). Johnson and Huber (1999)

defined a descriptor named spin-image to encode the properties of local surfaces

fitted to a point’s neighborhood. Chen and Bhanu (2007) developed a local surface

descriptor, which is calculated based on the angles between the surface normal of a

reference point to the points in its neighborhood. The regional geometric-related

features are less sensitive to noise and clutters shown in the scene (Bimbo and Pala

2006; Tangelder and Veltkamp 2004).

The primitive-based object recognition approaches reason with the geometric

properties associated with segments (e.g., planes, planer surfaces) or clusters

extracted from point cloud data. The geometric properties include orientation (i.e.,

surface normal of a planar surface or direction of the principle axis), area, volume,

dimension and so on (Gilsinn et al. 2005; Golovinskiy et al. 2009; Huber et al. 2011;

Paquet et al. 2000; Rusu et al. 2009).

 49

The distribution-based object recognition approaches represent and compare 3D

shapes captured by a point cloud or a 3D model using probability distributions of

certain geometric properties (Belongie et al. 2001; Belongie et al. 2002; Ip et al. 2002;

Mahmoudi and Sapiro 2009; Tang et al. 2010). Belongie et al. (2001, 2002) defined a

shape descriptor named shape context to measure the similarity between different 3D

shapes. For every point on a 3D shape, the shape context captures the logarithmic

distribution of the distances between a specific point to all other points. Osada et al.

(2002) represented a 3D shape as a shape distribution sampled from the properties

measured on a 3D object. The properties include distances or angles between a pair

of points randomly selected on the surfaces of a 3D object. The advantages of using

the shape distribution as a descriptor is that it takes the entire 3D object into

consideration, which makes the approach robust to small geometrical distortion and

noises in a scene (Osada et al. 2002). In addition, comparing to the other geometric-

related features, such as volume, surface area and dimension, shape distribution is

more descriptive and is able to distinguish components that have the same volume or

surface areas and yet completely different shapes.

The view-based object recognition approaches decompose a 3D object into a series of

2D projections at different angles or cross-sections along different directions (Chen et

al. 2003; Funkhouser et al. 2003; Jiantao et al. 2004; Nüchter and Hertzberg 2008).

Chen et al. (2003) developed a view-based approach that matches similar 3D shapes

based on visual similarity of their 2D projections at different angles. Funkhouser et

al. (2003) designed a web-based 3D shape search engine, which allows users to

search for 3D shapes that match the 2D sketch they inputted. Jiantao et al. (2004)

 50

represented a 3D shape as a series of cross-sections generated along a given direction.

The view-based object recognition approaches simplify the problem of 3D shape

matching into measuring the similarity between 2D shapes.

Since the distribution-based features have several advantages over other shape-

related features, I selected the shape distribution as the feature to be used to match

point cloud data to a BIM. I developed two matching approaches: (a) distribution-

based 3D shape matching approach and (b) distribution-based 2D shape matching

approach, which is built upon the combination of shape distribution and 2D

projections of 3D objects.

3.2 Feature Based Matching Approaches

Built on the previous research studies, I developed four matching approaches: (a) 2D

overlap area matching approach, (b) spatial relationship based graph-matching

approach, (c) distribution-based 2D shape matching approach, and (d) distribution-

based 3D shape matching approach. These four matching approaches reason with

different types of features that have different characteristics. Testing the performance

of these approaches would be able to help us to understand which features contribute

more to the matching process under which discrepancy conditions.

 51

Figure 6. Classifications of features required by the four matching approaches

The four matching approaches take a BIM and a segmented point cloud as input and

identify possible matches between segments in the point cloud and components in

the BIM. The raw point clouds are pre-segmented using the state-to-art segmentation

approaches (i.e., RANSAC and region growing approach). Since the focus of the

research described in this thesis is to evaluate how well different features support the

matching process, I assumed that the input point clouds have been segmented using

RANSAC and region growing approach (Roggero 2002; Schnabel et al. 2007) Each

matching approach is detailed in the following sections.

3.2.1 2D overlap area matching approach

Reasoning with the spatial proximity between point cloud data and a BIM helps to

identify matches between the two data sets. The 2D overlap area matching approach

first aligns a point cloud and a BIM into the same coordinate system. Second, it

projects the aligned point cloud and BIM into a 2D plane and calculates the ratio of

 52

the overlapping area between the segments extracted from a point cloud and the

components modeled in a BIM. The 2D plane is selected based on the type and

location of building components. For a building, orthogonal projection is a common

way to project 3D components into the 2D space (Okorn et al. 2010; Pu and

Vosselman 2009). As seen Figure 7, dotted lines represent orthogonal projection of

segments from a point cloud and solid lines represent orthogonal projection of

components modeled in a BIM. Component B2 in the BIM is spatially overlapped

with three segments of the point cloud.

This matching approach is based on the logic that if segment Pi in the point cloud

overlaps with component Bj in the BIM, then it is likely that Pi and Bj are the same

component and should be matched together. If segment Pi is spatially overlapped

with multiple components (e.g., B1, B2, B3…Bn), then the 2D overlap area matching

approach compares calculated overlap ratios to a pre-defined threshold in order to

determine the final matches. The equation to determine the matches between a point

cloud and a BIM is shown in Equation 1. Since information represented in a point

cloud is accurate and reflects the as-built condition, I use segments captured by the

point cloud as the target objects, and match these segments to building components

modeled in the BIM. As the result, the area of orthogonal projection of segments

captured by a point cloud is used as the denominator in Equation 1.

 53

Assuming Pi is overlapped with Bj:

 OverlapRatio P!,B! =
Overlap surface area P!,B!

Surface area P!
 Equation 1

P! is matched to B! when OverlapRatio P!,B! ≥ threshold α

where 𝛼 is the threshold for minimum overlap area ratio for the two matched

components. Threshold 𝛼 is ranging from 0 to 1. As seen in Figure 7, if I set the

threshold as 36% (the value is chosen just for demonstration purpose), then

component B2 is matched to segment P2. The two matches (B2, P1) and (B2, P3) are

eliminated from the matching candidate list since their overlap ratio is smaller than

the pre-defined threshold. If more than one component exceed the determined

threshold, these components are all considered as the mapping candidates.

Figure 7. 2D projection of the registered point cloud and BIM

 54

3.2.2 Spatial relationship based graph-matching approach

The spatial relationships of segments captured by a point cloud and components

modeled in a BIM play an important role in the applications, such as 3D shape

matching and point cloud object recognition (Biasotti et al. 2003; Tangelder and

Veltkamp 2004). The spatial relationships can be extracted and represented as

graphs. A graph G = (V, E) is composed of edges (E) and vertices (V). Vertices, in

this approach, represent a set of segments extracted from a point cloud or a set of

components modeled in a BIM. Edges represent connectivity (i.e., one edge

represents one connectivity) and relative distance between two vertices. The relative

distance between two vertices is calculated as the Euclidean distance between the

centroids of the two components, to which the vertices correspond.

Once graphs are generated using both data sets (i.e., the BIM and the point cloud),

vertices of these two graphs are matched to each other using a graph-matching

algorithm. Given two graphs 𝐺! = 𝑉! 𝐸! 𝑎𝑛𝑑 𝐺! = 𝑉! 𝐸! , a graph-matching

algorithm aims to find matches M: 𝑣! → 𝑣! ,where 𝑣! ∈ 𝑉! 𝑎𝑛𝑑 𝑣! ∈ 𝑉!. I selected the

factorized graph matching (FGM) approach to match two graphs together. The

reasons to utilize the FGM approach are that: (a) it reduces the demand for the

computational power by converting affinity matrix K (the matrix that encodes the

pair-wise similarity between vertices and edges) into two smaller matrices, vertex

affinity matrix Kp and edge affinity matrix Kq; (b) it produces better matching

accuracy (e.g., Zhou and De la Torre 2012); and (c) it is more robust to noise.

 55

The first step of the spatial relationship based graph-matching approach is to convert

point clouds and BIMs into graphs. As shown in Figure 8, the approach assigns the

centroids of the segments/components extracted from the point cloud and the BIM

as vertices, and creates edges to link adjacent vertices together. The output of this

step is two graphs, one represents the spatial relationships amongst point cloud

segments and the other represents the spatial relationships amongst the components

in a BIM. In the next step, the approach applies the Factorized Graph Matching

(FGM) algorithm to match vertices from one graph to the other. The two types of

features that FGM algorithm uses are: (a) relative distances between connecting

vertices, and (b) connectivity of vertices.

Figure 8. Graph constructed from the point cloud and the BIM

3.2.3. Distribution-based 3D shape matching approach

Segments from a point cloud can be matched to components modeled in a BIM

based on their shape similarities. The idea behind this approach is that if a segment

captured by a point cloud has similar shape as the component modeled in a BIM,

then it is likely that these two objects can be matched to each other. This approach

 56

uses the 3D shape distribution (i.e., probability distribution of the geometric

properties sampled from segments in point cloud data and components modeled in a

BIM) as the feature, and calculates the shape similarity between the components

modeled in a BIM and segments extracted from a point cloud.

Figure 9 shows the flow chart for the distribution-based 3D shape matching

approach. The approach takes a point cloud and an as-designed BIM as inputs. It

first calculates the 3D shape distribution for the point cloud segments and BIM

components. For component 𝐵! modeled in a BIM, the approach measures the

Euclidean distance between two random points on the surfaces of 𝐵!. For segment 𝑃!

captured by a point cloud, the approach randomly picks two points within the point

cloud segment, and measures the Euclidean distance between the two selected

points. The measured distance is called as D2 distance in Osada et al. 2002. In the

following paragraphs, I will refer to the distance between two randomly points

sampled from the surface of components in a BIM or point cloud segments as D2

distance. The above step is iterated for k times (k = sample size). Generally, higher

the k is, the more accurate the shape distribution is for describing the shape of a 3D

object. But in the meantime, more computational power is required to calculate and

process the shape distribution. In this research, I set k as 100,000 to balance the

accuracy of the shape distribution with the computation power. After kth iteration,

the approach generates a k ×(m+ n) matrix, represented as M. Each column of the

matrix M refers to the probability distribution of D2 distances selected from a

segment/component.

 57

In order to compute the similarity between two shape distributions, each shape

distribution is represented as a histogram. To create a histogram for the shape

distribution (i.e., a column in matrix M), I extract the maximum value of D2

distances and divide the space (0 ~ maximum value of D2 distances) into b intervals

with fixed width. For each interval, I then count how many points in a column of

matrix M are within the interval. The number of points is equal to the height of the

interval. The differences between two histograms are then calculated using L2 normal

distance. L2 normal distance is calculated using equation 2 below (Cha 2007):

 𝐿! 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑃! − 𝑄! !!
!!! Equation 2

where d is 𝐿! 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, b is the total number of intervals, 𝑃! and 𝑄! are the

number of samples within the interval i.

 58

Figure 9. A flowchart depicting the distribution-based 3D shape matching approach

Assuming there are n components in a BIM and m segments extracted from a point

cloud, based on L2 norm distance, I constructed a m×n 3D shape dissimilarity

matrix, represented as D:

 𝐷 =
𝑑!! … 𝑑!!
… … …
𝑑!! … 𝑑!"

 Equation 3

𝑑!" is the L2 normal distance between the probability distribution of 𝑃! and 𝐵!. It

represents the 3D shape dissimilarity between 𝑃! and 𝐵!.

 59

I then transformed the dissimilarity matrix D so that each element in the matrix can

be compared at the same scale of 0 to 1. The transformation is shown as follows:

𝐷 =
𝑑!! … 𝑑!!
… … …
𝑑!! … 𝑑!"

!"#$%&'()* 𝑑!! … 𝑑!!

… … …
𝑑!! … 𝑑!"

×

!
!!!!

!!!…
!
!!"!

!!!

 Equation 4

According to the matrix, 𝑃! is matched to 𝐵! when 𝑑!" < α, where α = [0:1] and is the

threshold that defines the maximum shape dissimilarity between the two matched

components.

3.2.4 Distribution-based 2D shape matching approach

This approach leverages the idea that the shape-related information associated with

2D views of a 3D object can be used as a descriptor to describe this object (Jiantao et

al. 2004). The approach first projects a point cloud and a BIM into a 2D plane. The

selection of the 2D plane is made depending on the type and location of building

components. Second, the approach extracts the contours of objects from the 2D

projection, and matches the two objects from two data sources based on their

similarities in the 2D shape.

The similarity between two 2D shapes are measured based on the probability

distribution of D2 distances. The pairwise distance of random points on the 2D

contours are calculated for k times (k = sample size, representing the number of D2

distances calculated from a 2D contour), and are used to create a histogram that

represents the distribution of these k distances. Similar to the distribution-based 3D

shape matching approach, the dissimilarity between two histograms is calculated

 60

using L2 norm distance. The output of distribution-based 2D shape matching

approach is a 2D shape dissimilarity matrix, represented as D’ = [𝑑′!"], where 𝑑′!" is

the L2 norm distance between component i in a BIM and segment j in a point cloud.

3.3 Experiment Setup

This section discusses an experimental analysis that compares four different

matching approaches described in the previous section in terms of how well they

identify the correct matches between a point cloud and a BIM. The following

sections discuss the details of the experiment including evaluation metrics, testbed,

and tuning matching approaches.

3.3.1 Experiment setting

The performances of the four matching approaches are compared in an experimental

setup in terms of how well they can identify the correct matches between point cloud

and a BIM. Two metrics, precision and recall are used to compare the performance

of matching approaches.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = !"##$%&'(!"#$%!&!#" !"#$!!"
!"#$% !"#$%!&!#" !"#$!!"

 Equation 5

 𝑅𝑒𝑐𝑎𝑙𝑙 = !"##$%&'(!"#$%!&!#" !"#$!!"
!"#$% !"##$!% !"#$!!"

 Equation 6

The testbed used in this experiment is a research lab that has gone through a

renovation process including the installation of a new mechanical system. I collected

point cloud data during the renovation process, which depicts the as-is condition of

 61

the research lab. I also created an as-designed BIM based on design drawings. In this

experiment, I mainly focused on the ductworks that were newly installed in the

research lab during the renovation process. The reason I targeted on the ductworks is

that I observed different types of discrepancies occurred during the construction of

the ductworks. Hence, it would be realistic to simulate different types of

discrepancies into the corresponding data set and provide a good testbed for

evaluating the performance of matching approaches under different discrepancy

conditions. Figure 10 shows the point cloud and the as-designed BIM used in the

experiment. The point cloud has been segmented using RANSAC and edge detection

techniques. The segments of a point cloud are labeled as (P1, P2 … P8). The

ductworks modeled in the as-designed BIM are labeled as (B1, B2… B8).

Figure 10 As-designed BIM and the corresponding point cloud

In order to evaluate the performance of different matching approaches under

different types of discrepancies, I developed a simulation algorithm that runs on the

testbed data and utilize a widely used building information modeling tool as the

platform to randomly generate different types of discrepancies into a given set of

components. The simulation algorithm is running as an add-on to the modeling tool,

 62

and it takes a BIM as the input. For each building component modeled in the BIM,

the algorithm randomly changes the dimension (e.g., length, height and width) and

shape of the component. For a group of components that are connected to each other,

the algorithm randomly changes the location and the connectivity of these

components as well. To simulate composition discrepancy (i.e., the topological

change), the algorithm combines multiple components together or divides one

component into several new components. I determined the ranges of values for

discrepancies to be used during the simulation (e.g., length, width, height, distance)

so that they are close to real world scenarios. For instance, while changing the

location of the ductworks, they cannot be moved to other rooms or installed on the

floors.

As seen in Figure 11, the selected ductworks installed in the renovated space is used

as the baseline model and then different types of discrepancies are introduced to the

baseline model to generate different versions of the model with deviations different

than what is captured in the point cloud. Using the simulation algorithm, I generated

39 models, which covered different types of discrepancies, including shape,

dimension, location, and composition discrepancies as compared to the baseline

model. In total, the testbed included 40 pairs of point cloud (the point cloud remain

the same) and the corresponding BIM (each pair is called as one scenario) for the

experiments. Among the 40 scenarios, 30% of them have shape discrepancies, 65%

have dimension discrepancies, 75% have location discrepancies and 10% of them

have composition discrepancies.

 63

Figure 11. Example set of models with different discrepancies for the experiment

3.3.2. Tuning the matching approaches

The three matching approaches (i.e., 2D overlap area matching, distribution based

2D shape matching and distribution based 3D shape matching) need to set up a value

for the threshold in order to perform the matching task. The value of the threshold

could impact the result of these three matching approaches. In order to determine the

near-optimal value for the thresholds required by these matching approaches, the

 64

testbed data were randomly divided into a training set (25 scenarios) and a testing set

(15 scenarios). The proportion chosen for the training set is 62.5% and the proportion

for the testing set is 37.5%. The choice of 62.5 to 37.5 proportion is to ensure that

there were sufficient training data to determine the near-optimal value of the

thresholds, but not too much training data that might cause the over-fitting. In this

research, I used F1 measure to choose the near-optimal value of the thresholds. The

F1 measure (also called as F1 score) is a measure of the accuracy for a test. It

considers both precision and recall and is calculated as Equation 7 (Hripcsak and

Rothschild 2005; Huang et al. 2005).

Equation 7:

F =
(1+ β!)×precision×recall
(β!×precision)+ recall

where β is the balance between precision and recall. In this research, precision and

recall are evenly weighted. Hence, β = 1. The best F1 measure has the value as 1

and the worse F1 measure has a value as 0.

Figure 12 shows the change of precision and recall for the three matching approaches

when the thresholds are changing from 0 to 1. For each matching approach, four

different curves are shown in Figure 12, which are: (1) precision vs. threshold, (2)

recall vs. threshold, (3) F1 measure vs. threshold and (4) summation of precision and

recall vs. threshold. As shown in Figure 12, the value of threshold significantly

impacts the performance of the matching approaches. In this experiment setting,

same weights are assigned to the precision and recall, and the near-optimal threshold

 65

value has been determined as the value that is able to generate the highest F1

measure.

 (a) 2D overlap area mapping approach (b) 2D shape mapping approach

(c) 3D shape mapping approach

Figure 12. Tradeoff of the precision and recall when threshold is changing

The near optimal values for the thresholds of the three matching approaches are

shown in Table 4. For the 2D overlap area matching approach, the threshold

controls how sensitive the approach responses to location displacements. When the

threshold is equal to 1, the overlap ratio between two matched components needs to

be 100%. In the real world, a component might not be constructed at the exact

location specified by the as-designed BIM. Hence, there is a need to reduce the value

of the threshold in order to add the tolerance for location displacements. As seen in

 66

Figure 12(a), with the increase of the threshold for the 2D overlap area ratio, recall

reduces and precision first grows and then declines. The decline of the precision

happens when the threshold for the 2D overlap area ratio is greater than the size of

components. In that case, the 2D overlap area matching approach cannot extract any

matches between the point cloud and the BIM since no overlap ratio can meet the

threshold.

The values of the thresholds for the distribution-based 2D and 3D shape matching

approaches control the minimum level of shape similarity required for two matched

components. As seen in Figure 12(b) and (c), when the values of thresholds for 2D

and 3D shape are equal to 0, the approaches are extremely sensitive to shape and

dimension discrepancies and two components need to be identical to each other in

order to be matched together. When the values of thresholds for 2D and 3D shape

are equal to 1, the two approaches are not sensitive to shape and dimension

discrepancies at all, and two components can be matched even though their shapes

are completely different. As shown in Figure 12(b) and (c), with the increase of the

thresholds, the recall values of the two approaches increase while the precision

values reduce.

 67

Table 4. The definitions and optimal values for the thresholds
Matching
approach

Definition Trend
Near-optimal

value

2D
overlap

Pi matches to Bj when
OverlapRatio Pi,Bj
≥ threshold 𝛼!

When 𝛼 increases, two
matched components need to
have more overlapping area

0.01 (the overlap
ratio = 1%)

2D shape
Pi matches to Bj when

distribution distance Pi,Bj
< threshold 𝛼!

When 𝛼 increases, the
approach is less sensitive to
the 2D shape differences

0.03 (the
difference of shape
distribution = 3%)

3D shape
Pi matches to Bj when

distribution distance Pi,Bj
< threshold 𝛼!

When 𝛼 increases, the
approach is less sensitive to
the 3D shape differences

0.05 (the
difference of shape
distribution = 5%)

3.4 Experiment Results

After tuning the matching approaches, I evaluated the performance of the four

matching approaches using the testing data. The testing data is composed of 15

scenarios with different types of discrepancies. For every scenario, the output of each

matching approach is a matching matrix M = [m!"], where i indicates the segments in

a point cloud (P!,P!… P!), and j indicates the components modeled in a BIM

(B!,B!… B!). As shown in equation 8, mij can be 0 or 1. When mij is equal to 1,

segment Pi from the point cloud is matched to component Bj modeled in the BIM.

The matching results for the four different matching approaches are summarized in

Table 5.

 mij= 1
 0

Pi matches Bj
 Pi and Bj are not the same component

 Equation 8

The matching matrix is visualized by a binary image, as shown in Figure 13. The

binary image is divided into n×m grids, n = the number of segments in the point

 68

cloud and m = the number of components modeled in the BIM. If 𝑔𝑟𝑖𝑑!" is filled in

black, then Pi is mapped to Bj. The x-axis in the binary image shows the segments

extracted from a point cloud (labeled as “original”) and the y-axis shows the

components modeled in a BIM (labeled as “target”).

Figure 13. Visualization of a matching matrix

Appendix A shows the matching results of the four matching approaches. The results

are presented in a table, where each row corresponds to one specific scenario (i.e., a

pair of point cloud and BIM). Let’s take one scenario as an example. In the given

scenario, there are no shape and dimension discrepancies between the point cloud

and the simulated BIM. A small location displacement has been added into the

simulated BIM. Figure 14 shows the results of the four matching approaches. Spatial

relationship-based graph matching approach achieved 100% precision and recall,

since the connectivity among components remains the same in the point cloud and

the BIM. 3D shape based matching approach was able to identify all the correct

matches between the point cloud and the BIM but it also incorrectly matched point

cloud segment 𝑃! to BIM component 𝐵! . 2D shape based matching approach

achieved 100% recall and 80% precision. It generated two incorrect matches 𝑃! ↔ 𝐵!

Matching matrix Visualization

 69

and 𝑃! ↔ 𝐵!. As seen in Figure 14, component P2 and P4 are both modeled and

constructed as rectangle ductworks. They have the same width and height but

slightly different length (2” difference). Due to the similar shape and dimension, the

2D and 3D shape based matching approaches have difficulty to distinguish these two

components from the point cloud and the BIM. The 2D overlap area matching

approach had 100% recall and 66.67% precision. The incorrect matches generated by

the 2D overlap area mapping approach are caused by the location displacement.

Figure 14. Mapping results for the four mapping approach in a case where there is a

slight (2”) difference in the length of a component between a point cloud and a BIM

 70

The 2D overlap area matching approach is sensitive to location displacements. One

matching result of the 2D overlap area matching approach is shown in Figure 15.

Components that have the overlapping 2D surface area are matched together.

However, due to the location, shape, and dimension discrepancies, one segment in

the point cloud might be spatially overlapped with multiple components in the BIM.

Hence, the approach identifies a set of matching candidates, and further analysis is

required in order to eliminate the incorrect candidates, so as to increase the precision

of the approach.

Figure 15. Matches identified by the 2D overlap area matching approach for one

example case

The performance of the distribution-based 2D and 3D shape matching approaches

are not impacted by the location displacements. Figure 16 describes how shape and

dimension discrepancies could impact the 2D and 3D shape matching results. The

red arrows represent the matches identified by both 2D and 3D shape matching

approaches, the blue arrows represent the matches solely identified by 3D shape

 71

matching approach, and the black arrows represent the matches solely identified by

2D shape matching approach. Since 2D and 3D shape matching approaches both

target on shape related features, they showed the similar performance in the

experiment. The arrows labeled as “X” indicate incorrect matches identified by the

two matching approaches. The incorrect matches are caused by the shape

discrepancies between the point cloud and the BIM.

Figure 16. The matches identified by the 2D and 3D shape matching approaches or

one example case

Spatial relationship based graph-matching approach is able to identify the correct

matches regardless of shape, dimension and location discrepancies. However, in

scenarios where composition discrepancies exist, the precision and recall of the

spatial relationship-based graph matching approach will reduce.

 72

Table 5. Results of matching process for the four matching approaches for testing
and training data set

Approach
Training Testing

Precision Recall Precision Recall
2D shape 0.89 0.46 0.80 0.54

2D overlap 0.27 0.34 0.36 0.44
3D shape 0.68 0.53 0.76 0.59

Spatial relationship based 1 0.82 1 0.89

In summary, a single matching approach that is solely based on one type of feature

does not identify all correct matches in all cases. For the cases within which the

connectivity of building components remain the same in a point cloud and a BIM,

the spatial relationship based graph matching approach has the best performance

since it is robust to shape, dimension and location discrepancies. The shape based

matching approaches are robust to location and composition discrepancies.

However, under circumstances when multiple components are designed and

modeled with same shape or a building component is not manufactured or

constructed as design specifies, the shape based matching approaches might perform

worse than the spatial relationship and 2D overlap area based matching approaches.

Taking the entire training and testing data into consideration, the 2D overlap area

matching approach has the worst performance (i.e., low precision and low recall). It

is because this approach is sensitive to location displacements caused by shape,

location, and dimension discrepancies. There is no absolute answer in terms of

which is the best feature to match point clouds to BIMs, since all the features tested

in this research are sensitive to certain types of discrepancies and are robust to others.

It is possible to combine different types of features to improve matching results. The

 73

next section describes two approaches that I developed to combine different types of

features for matching.

3.5 Combination Of Different Features To Improve Matching Results

In this section, I combined the spatial and shape related features together using two

approaches: (1) re-aligning point cloud and BIM based on 3D shape distribution to

reduce the impacts of location discrepancies on the area approach and (2) filtering

the matching candidates generated by the 2D overlap area matching approach using

3D shape distribution feature (called as 3D filter in the following paragraphs).

3.5.1. Re-aligning point cloud and BIM based on 3D shape feature

To reduce the negative impacts of location discrepancies on the performance of 2D

overlap area matching approach, I developed an approach that combines the 2D

overlap area with 3D shape features. The details of this approach are provided in

Figure 17. This approach first applies 3D shape matching approach to identify the

correspondences between a point cloud and a BIM. Second, it chooses one

component in the BIM and selects the point cloud with highest similarity as the

reference and re-aligns the point cloud and the BIM together in order to remove the

location displacements. After the point cloud and the BIM are aligned together, the

2D overlap area matching approach is then applied to identify matches between the

two data sets.

 74

Figure 17. The process of 3D shape plus 2D overlap area matching approach

3.5.2. Filtering the matching results generated by the 2D overlap area by the result

of matching approach using 3D shape features

As discussed in the previous section, the location discrepancy can be reduced by re-

aligning the point cloud with the BIM according to the correspondences identified by

3D shape feature. However, even after the re-alignment, one segment from the point

cloud might still be overlapped with multiple components modeled in the BIM due

to the dimension and shape discrepancies. The matching candidates obtained by the

2D overlap area matching approach can be further filtered based on the 3D shape

features.

After running 2D overlap area matching approach, one segment in the point cloud is

matched to multiple components in the BIM. In order to eliminate the incorrect

matches, for each segment Pi in the point cloud, the shape filter first extracts all the

matching candidates (Bi … Bj) that are associated with this segment. If the segment Pi

 75

has more than one matching candidate, the shape filter then calculate the shape

distribution for each of the matching candidates. Third, the shape filter selects the

matching candidate that has the most similar shape distribution as segment Pi, and

matches them together. By using the 3D shape filter, I can filter out the incorrect

matches so as to increase the precision of the matching approach. However, the

shape filter could also eliminate the correct matches when the same components are

modeled and constructed in different shapes and dimensions. Table 6 shows the

matching results by combining features together. The combination of different types

of features together is capable of identifying more correct matches as compared to

when these features are used separately. The precision of the 2D overlap area

matching approach after re-alignment based on 3D shape feature approach is much

higher than the precision of the 2D overlap area matching approach, since the re-

alignment reduces the location discrepancy. But, the precision of the approach is still

lower than the precision of the 3D shape matching approach. The reason is that the

performance of the 2D overlap area matching approach is bounded by its sensitivity

to location displacements caused by shape and dimension discrepancies. Adding a

shape filter is similar to adding a constraint on the 2D overlap area matching

approach, which specifies the maximum tolerance for the shape differences between

two matched components. As a result, the shape filter could filter out incorrect

matches and improve the precision. However, it also increases the sensitivity to the

shape discrepancies, which could reduce the recall.

 76

Table 6. The precision and recall comparison for 2D overlap & 3D shape approaches
with the combination of the two approaches
Matching approaches Precision Recall

2D overlap alone 0.36 0.44
3D shape alone 0.76 0.49
Re-aligning point cloud and BIM using 3D shape feature 0.66 0.78
Filtering 2D overlap matching results with 3D shape features 0.71 0.67

3.6 Validation

To evaluate that the performances of the matching approaches developed in this

research can be generalized to different configuration of mechanical components and

different types of discrepancies, I used three different sections of ductworks (see

Figure 18) as the validation dataset. The three sections of ductworks contain

mechanical components with different shapes, dimensions and spatial relationships

in order to make ensure that the results are not biased to a specific scenario.

The developed simulation algorithm has been used to simulate different types of

discrepancies (i.e., dimension, location, shape and composition discrepancies) into

the validation dataset. The validation dataset contains 60 pairs of point clouds and

BIMs. 40 pairs were used as the training and 20 pairs were used as the testing set.

The thresholds for the matching approaches are determined using the training data.

In this validation, the threshold of 2D overlap area matching approach is 6%, the

threshold of 2D shape matching approach is 3% and the threshold of 3D shape

matching approach is 5%.

 77

Figure 18. Validation data set includes different ductworks and different types of

discrepancies applied to all three sets of ductworks

The matching results gained from the validation dataset are shown in Table 7. The

performances of different matching approaches on the validation dataset show

similar patterns as in the experimental dataset.

Table 7. Matching results for the validation dataset
Approaches Precision Recall

2D overlap area 0.35 0.31
2D shape 0.45 0.57
3D shape 0.3 0.59

Spatial relationship 0.89 1
Re-alignment using 3D shape feature 0.79 0.46

3D shape filter 0.41 0.64

 78

3.7 Conclusions

Matches between point cloud and a BIM can be identified based on different types of

features associated with these two data sets. In this chapter, I implemented six

matching approaches that reason with and combine different types of features to

identify matches between segments in a point cloud and components modeled in a

BIM. The performance of a matching approach is impacted by various factors, such

as discrepancies existing between point cloud and a BIM, and the features used in the

matching approach. I conducted an experimental analysis that evaluates the

performance of the developed matching approaches. The experimental analysis

reveals that different features are robust to different types of discrepancies and the

combination of features could improve the matching results. The object-level

matches identified from the matching process associate the design information

contained in an as-designed BIM to the actual geometric information captured by

point clouds. The matches will allow construction professionals to identify the

discrepancies between an as-designed BIM and the as-built condition so as to update

the as-designed BIM and remove such discrepancies.

 79

CHAPTER 4. AN APPROACH FOR LEVERAGING

PROGRESSIVE LASER SCANS

Point cloud data captured by laser scans play an important role in the process of BIM

update by providing accurate geometric information that depicts the as-built building

conditions. However, point cloud data collected at a given point in time typically is

not able to provide all the geometric information required for creating/updating a

BIM, due to three major reasons. First, temporary work, machinery, laborers, and

material periodically occlude a construction scene. Similarly, permanent building

components occlude other building components and hinder capturing of complete

view of the components within the range of the laser scanner. Examples of such

instances include ductwork being hidden behind ceiling tiles or wall rough-ins being

hidden behind walls. Second, building components might not be

installed/constructed at the time of scanning. Third, when a building component is

under construction, a laser scan performed at a single point in time might not be able

to capture the final form of the component. In current practice, laser scanning is

typically done before and/or after construction to capture as-built condition of

construction projects (Liu et al.). However, due to the reasons given in the previous

paragraph, not all of the geometric information for all building components can be

captured.

With the goal of achieving accurate and comprehensive geometric information about

all components being installed during construction, Chapter 4 presents an approach

developed to evaluate the information contained in a point cloud so as to support the

 80

decision of which subset of point clouds should be registered together in order to

provide a complete set of geometric properties for building components with less

storage size and processing time. The developed approach evaluates the geometric

information associated with surfaces of building components that are shown in a

point cloud data and assesses the additional geometric information generated by

combining more point clouds together. While doing this assessment, the approach

utilizes two metrics: (a) coverage ratio, which is used to evaluate the quantity of

captured geometric information per component per point cloud, and (b) dissimilarity

ratio, which identifies the additional information that can be generated by adding a

point cloud to another point cloud.

4.1 Related Research Studies

The research work presented in this chapter builds on the previous research studies in

relation to (1) evaluation of the quality and quantity of information captured by point

cloud data, and (2) point cloud comparison approaches.

4.1.1. Evaluation of the quality and quantity of information captured by a point

cloud data

The studies that evaluate the quality and quantity of information captured by point

cloud data can be grouped into two: (a) Approaches that assess the accuracy of point

cloud data by comparing the measurements on the real physical objects to the

measurements taken in the point cloud data, and (b) Approaches that compare the

point cloud data to other reference data, such as building information models.

 81

The first group of research studies focuses on assessing the accuracy of geometric

information captured by point clouds. To support the assessment, these research

studies conducted measurements on the real physical objects and compared the

measurements to the measurements taken from objects captured in point clouds

(Boehler et al. 2003; Boehnen and Flynn 2005; Fröhlich and Mettenleiter 2004;

Golparvar-Fard et al. 2011). Such accuracy analysis is used to support different

engineering applications, including (a) identifying the factors (e.g., resolution and

range of laser scanners, reflectivity of scanning surface, etc.) that could impact the

accuracy of captured point cloud data (Boehler et al. 2003; Boehnen and Flynn 2005;

Clark and Robson 2004; Fröhlich and Mettenleiter 2004; Kersten et al. 2005;

Mechelke et al. 2007; Tang et al. 2009), and (b) evaluating the accuracy of point

cloud data captured by laser scanners and assessing the applicability of using laser

scans to support a specific task (e.g., 3D survey, quality control, surface flatness

detection, etc.) (Golparvar-Fard et al. 2011; Park et al. 2007; Tang et al. 2010).

Such studies are well aligned with the work presented in this research in terms of

assessing the quality of geometric information captured by laser scanners. However,

one drawback of the approaches in this group is that such studies do not evaluate the

completeness of data provided by a point cloud (i.e., how many building components

and their associated geometric information can be provided by a point cloud to

support the update of a BIM). The research presented in this thesis differs from these

previous studies with respect to quantifying the geometric information captured by a

point cloud.

 82

The second group of research studies formulated a deviation-based approach in order

to identify the differences between point cloud data with a reference model, such as

building information model (Akinci et al. 2006; Anil et al. 2011; Bosché et al. ; Oude

Elberink and Vosselman 2011; Tang et al. 2011; Tang et al. 2010). The patterns of

deviations can be used to indicate the quality of a point cloud data and how much

information is captured by the point cloud data, assuming that the reference models

represent the correct information. Synthesis of the studies in this field suggests that

three major concepts can be used to characterize the information contained in a point

cloud (Tang et al. 2010, Anil et al. 2011(Oude Elberink and Vosselman 2011). These

are: (1) the point density, which defines the number of points within in a unit area,

(2) the uncertainty, which refers to the standard deviation of the shortest distance

between points and the surfaces fitted to the points, and (3) the occlusion, which

defines the regions of the object surface that have no corresponding points in the

point cloud. The point density determines the level of detail of the geometric

information that a point cloud is able to provide for a given object. A high-density

point cloud is capable of providing geometric information with greater details. The

uncertainty is used to define the reliability of the measurements taken in a certain

region within a point cloud. The uncertainty could be caused by noise in the data,

edge losses (i.e., the mixed-pixels at the edge of two surfaces), low reflectivity of a

surface, and irregularities of surfaces (Tang et al. 2009). Among these three concepts,

the occlusion is capable of providing the information regarding which parts of a

building surface is occluded in a point cloud. Hence, the research presented in this

 83

thesis extends the concept of occlusion to evaluate the completeness of the geometric

information captured by point cloud data.

4.1.2. Comparing two point clouds and identifying the differences

Multiple point clouds can be combined together using the technique called

registration. There are different registration approaches, which can be grouped into

two classes: coarse registration and fine registration (Salvi et al. 2007) The coarse

registration methods align a set of point clouds using the correspondences among

these data sources. For instance, the corresponding points can be manually selected

from the point clouds, and the methods will align the set of point clouds in order to

minimize the distances between the selected corresponding point clouds. As the

result, whether or not the selected point pairs are equivalent to each other will

determine the accuracy of the final alignment. To improve the accuracy of the coarse

registration approaches, targets (e.g., labels, markers, etc.) have been placed in the

scene during the scanning process. The equivalent targets shown in different point

clouds are used as the correspondences to guide the registration process.

The fine registration takes the entire point cloud into consideration (Chen and

Medioni 1992; Rabbani et al. 2007; Salvi et al. 2007). Iterative closest point (ICP) is a

well-known fine registration algorithm. ICP algorithm iteratively adjusts the

alignment of a set of point clouds until the distances between points in one point

cloud and their closet points in the others are minimized (Mitra et al. 2004; Sharp et

al. 2002). The ICP algorithm is fully automated and no points need to be pre-selected

for the registration purpose. But its performance could be impacted by the

 84

deformation existed in the point clouds (i.e., the appearances of building components

are changing in different point clouds). On the contrary, the registration based on the

equivalent targets is not influenced by the deformation between different point

clouds. In this research, targets were present in the scene when laser scans were

progressively performed during the renovation process. Hence, point clouds captured

in this study are registered together using the equivalent target-based approach.

4.1.3. Next-best-view planning problem

The next-best-view (NBV) problem is a well-known problem in the computer vision

domain. The NPV problem is to find minimum number of viewpoints, where a range

sensor is placed, to scan all the surfaces of an object (Connolly 1985; Maver and

Bajcsy 1993; Pito 1996). Various next-best-view (NPV) planning approaches have

been developed in the computer vision domain to address the NPV problem. These

approaches are usually composed of two parts: (a) a method to represent and

determine the visibility of an object surface from different viewpoints, and (b) a

viewpoint selection algorithm that optimize the coverage of sensors with smallest

number of views (Banta et al. 2000; Maver and Bajcsy 1993; Pito 1999; Scott et al.

2003; Wong et al. 1999). Various approaches have been used to represent the

viewing volume of an object from a given viewpoints. Examples of such approaches

include occupancy grids (or called as voxel grid), octrees and triangle meshes

(Tarabanis et al. 1995). One of the commonly used representation approach is the

occupancy grid, which encodes an object surface using a voxel grid. In a voxel grid,

each voxel can be labeled as occupied (i.e., the voxel is captured by the scanner from

a given viewpoint) or unoccupied. By counting the number of occupied voxels, the

 85

approach is capable of determining the coverage of a range image captured from a

given location and orientation (Banta et al. 2000; Massios and Fisher 1998).

One of the research objectives in research question 3 is to develop an approach that

selects a minimum number of point clouds captured at different times to provide

more geometric information for 3D BIM update. It is similar to the NPV problem as

they all target on finding a subset of point clouds or range images to cover all the

target object surfaces. The difference is that the NPV problem selects range images

different in spatial viewpoints whereas the approach developed in research question 3

select point clouds different in scanning time. Therefore, the NPV planning

approaches provide a starting point for developing an approach to select and

combine point clouds captured at different times. The visibility metrics (i.e.,

occupied/unoccupied) and the occupancy grids proposed in the NPV planning

approaches can be also extended and used in the point cloud selection approach

proposed in research question 3.

4.2 Motivating Case Study: an Analysis of Completeness of Geometric

Information in Progressively Captured Point Clouds

For a detailed analysis of completeness of geometric information contained in

progressive point clouds, I conducted a case study using a renovation project of a

100-year old university campus building. The renovated space was scanned from

multiple locations to capture the interior of the research lab at six different times

during the renovation process that went from May to August 2012. A pulsed time-of-

flight (PTOF) scanner was used in the case study. The progressively captured point

 86

clouds are used to analyze the information provided by combining point clouds

progressively.

Figure 19. Project site layout and the scan locations

In this analysis, I targeted on the point clouds captured at six different times at

location 3. These point clouds are referred to as P1, P2, P3, P4, P5 and P6. To

evaluate the geometric information contained in the progressively captured point

clouds, I selected the ductworks in room 2 as the testbed (as seen in Figure 20), and

analyzed how much information each point cloud is able to provide to update these

ductworks in a BIM. The reason to make this selection is that these ductworks were

progressively installed during the renovation, and as a result point clouds captured at

different times might provide different information regarding these ductworks. To

update a ductwork segment manufactured in a rectangular shape, width, height and

length of the segment need to be measured from the point cloud. The width, height

and length of a ductwork segment are referred to as geometric properties of that

ductwork segment. The analysis included 22 duct segments and their 66 geometric

 87

properties (i.e., width, height and length) that were measured in all of the six point

clouds.

Figure 20. The testbed for the motivation case study: ductworks captured by the

point cloud data

A geometric property can have three statuses in a point cloud:

• Occluded: Occlusions block the view of a geometric property, which prevent

getting measurements from the point cloud for that property.

• Not installed: The target geometric property cannot be measured, as the

corresponding component had not been installed when the point cloud was

captured.

• Measurable: The target geometric property can be measured from the point

cloud.

 88

In order to evaluate the information added by the combination of point clouds

captured at different times, the point clouds were progressively registered and

analyzed for the status of the same 66 geometric properties shown in the registered

point clouds. Targets were present in the scene when laser scans were progressively

performed during the renovation process. A screenshot of targets presented in a point

cloud is shown in Figure 21. The targets were used to register and combine point

clouds captured at different times together. In total, five registered point cloud sets

were generated, labeled as “P1+P2”, “P1 to P3”, “P1 to P4”, “P1 to P5”, and “P1 to

P6”.

Figure 21. Targets shown in a point cloud

Figure 22 shows the status of geometric properties captured in the point clouds

captured at a single point in time (i.e., P1, P2, etc.) as well as the progressively

registered point clouds. In Figure 22, each row represents a ductwork segment in the

testbed. The blue, gray and black boxes represent whether a corresponding geometric

property is measurable, not installed or occluded in the point cloud, respectively.

 89

Figure 22 Status of geometric properties captured by individual point clouds (P1,

P2…P6) and the combination of them

As shown in Figure 22, none of the six progressively captured point clouds is capable

of solely capturing all the geometric properties for all these segments. The

screenshots for the six point clouds captured at different times are shown in Figure

23. Combing Figure 22 with Figure 23, it can be found that no ductwork segments

were installed by the time P1 was captured, and thus all the 66 geometric properties

are gray- hence have “not installed” status in P1. 42% of the geometric properties

 90

were “not installed” in P2. By the time P3 was captured, all the ductworks in Room

2 were installed (i.e., no segments with not-installed status). Occlusions shown in the

scene could prevent a point cloud from capturing a complete view of target

components and their associated geometric properties. In P3, 11% of the geometric

properties were “occluded”. 23% of the geometric properties captured by P4 were

“occluded” and 14% of the geometric properties captured by P5 were “occluded”. By

the time P6 was captured, ceiling tiles and lighting fixtures were installed. They

occluded most of the ductworks from laser scans. As a result, the percentage of

“occluded” geometric properties jumped to 67% in P6.

 91

P1 P2

P3 P4

P5 P6

Figure 23. Screenshots of the point clouds captured at different times

As evident from the figure, it was possible to extract more geometric properties from

the merged point clouds than the point clouds captured at a single point in time. In

the combined point clouds “P1 to P3”, “P1 to P4”, “P1 to P5” and “P1 to P6”, 96%

of the geometric properties were “measureable” and 4% of them were “occluded”.

The occluded geometric properties in the combined point clouds (shown as black

boxes in Figure 22) were either “occluded” or “not installed” in all of the six

progressively captured point clouds. As seen in Figure 22, combining P1 to P3

 92

provided the same number of geometric properties as compared to combining all six

point clouds together. Adding P4, P5 and P6 into the registered point cloud did not

increase the number of “measurable” geometric properties. It shows that combining

more point clouds does not always mean that the registered point clouds would

provide more geometric properties in relation to the target components.

In addition, as observed from Figure 22 and Figure 23, the occlusions are randomly

distributed in the six point clouds. However, as renovation process progresses, it is

likely that the probability of having the same occlusions occurring at exactly the

same locations will decrease. Some of the geometric properties were “occluded” or

“not installed” in some of the point clouds but they could be measured from the

other point clouds. As a result, when multiple point clouds captured in different

times are combined together, it is possible to retrieve geometric properties that were

occluded or not installed in some of the point clouds. However, the growth of the

geometric information provided by a combined point cloud is not proportional to the

number of point clouds that are combined together. Adding more point clouds is

likely to increase the size of the final data set though it might not always add more

geometric information. Considering large file size of a point cloud, combining

multiple point clouds together would generate a combined point cloud that requests a

large storage space. For instance, six point clouds were collected at different points in

time in the motivating case study, and the average size of a point cloud is around

320MB. Combining these six point clouds together generates a 2GB point cloud. It

would be a challenge to store, process and edit the combined point cloud if more

point clouds are combined together (de Haan 2009; Ravada et al. 2010; Song and

 93

Feng 2009). Therefore, having a pre-selected set of point clouds could reduce the size

of final point cloud data and also potentially improve the usage for the final point

cloud data. In order to support the decision on which point clouds to be registered,

there is a need to develop an approach to evaluate the information contained in each

point cloud and assess the information gain when adding registering more point

clouds. The next section provides the details of an approach developed for this

purpose.

4.3. An Approach to Evaluate Information Contained in Progressively Captured

Point Clouds and Select Point Clouds to Be Combined

The developed approach is composed of two modules: (a) content assessment

module, which quantifies the geometric information contained in each point cloud

for updating/modeling target building components in a BIM, and (b) content

improvement module, which calculates the information gained by adding new point

cloud data to an initial baseline point cloud.

4.3.1. Content assessment module for quantifying the information contained in a

point cloud

Figure 24 shows the flowchart of the content assessment module. The content

assessment module takes two inputs: a set of point clouds captured at different points

in time and a set of target components modeled in the BIM. For specific surfaces

associated with the target components, this module applies a grid-based evaluation

approach to quantify the geometric information provided by a point cloud. The grid-

based approach overlays a grid on the surface of a target component and divides the

 94

target surface into a finite number of cells. The grid-based point cloud evaluation

approach can be divided into two steps: (a) grid construction, which overlays a grid

onto the surfaces of target building components modeled in a BIM, and (b) point

cloud geometric information assessment, which divides a point cloud using the same

grid generated in Step 1 and evaluate how much information a point cloud can

provide to model/update the targeted components in the BIM.

Figure 24. The flowchart of content assessment module

Step 1: Grid construction:

This step overlay a grid onto the surface of targeted components modeled in a BIM.

 95

The grid divides the surface of target components into a finite number of cells. The

size of a cell is determined according to the size of the surfaces and the level of detail

required by the assessment conducted in the next step. Figure 25 (a) shows a grid that

is generated over the surface of ductworks modeled in a BIM, which divides the

surface into a number of cells.

Step 2: Point cloud geometric information assessment

This step analyzes a point cloud using the same grid generated in Step 1. It first

aligns the point cloud and the BIM into the same coordinate system using the ICP

algorithm, so that the grid can also be aligned with the point cloud. After the grid is

overlaid with the point cloud, each cell in the grid contains a set of points. When a

cell does not contain any points, the geometric information is missing in this cell due

to following reasons: (a) the part of the building surface is occluded, (b) the part of

the building surface is not installed, and (c) due to the reflectivity of the building

surface, no laser beam were reflected and returned to the scanner. Given that, in this

step, a coverage image is created, which uses color-coding to indicate whether, a cell

contains any information related to target surfaces. Figure 25 (b) shows a point cloud

and the coverage image created based on it. The coverage image is used to quantify

the information contained in each grid. For this purpose, a metric has been defined

and used, namely as coverage ratio. The coverage ratio refers to the ratio of a surface

that is clearly presented in a point cloud without any occlusions and is calculated for

each surface fitted in a point cloud, using Equation 9, as shown below.

 96

Equation 9:

Coverage ratio = !"#$%& !" !!""# !""#$%&' !" !"# !"#$!"#$%&'(!" !"#$% !"#$% !" ! !"#$% !"#$%&'
!"!#$!"#$%& !" !"##$!"!#$!%$& !" !"# !"#$!" ! !"#$% !"#$%&'

A low coverage ratio means that a given point cloud cannot provide enough

geometric information to model/update target surfaces and suggests that additional

point clouds need to be added in order to cover the missing portion of the

components for accurate measurements.

Figure 25. Ductworks modeled in a BIM and the grid overlaid on the surfaces of
ductworks (the red box represents each cell in the grid)

Figure 25(b) Ductworks captured by a point cloud and the coverage image, where
the red cells indicate that the cells contain the points associated with the target
surface.

 97

The measure of the coverage ratio also depends on the selection of grid resolution.

The coverage ratio is an estimate of how much geometric information provided by a

point cloud. It is important to balance the grid size. When the grid size is too large,

the coverage ratio might only provide a rough estimate for the geometric information

contained in a point cloud. On the other hand, when the grid size is too small, the

measure of the coverage ratio is sensitive to the noises presented in a point cloud and

takes more time to compute.

To demonstrate the impacts of grid resolution, I conducted a sensitivity analysis

using the example shown in Figure 25. I incrementally changed the grid size from

0.01m to 1m, and calculated the coverage ratio for the example shown in Figure 25.

In addition, I also recorded the calculation time for each of the grid size and

calculated the average number of points belonging to a point cloud within a cell. The

sensitivity analysis is conducted using a computer with 2.4 GHz CPU and 8GB

memory. Figure 26 (a) shows the values of calculation time and average number of

points within a cell when the grid size is changing from 0 to 1. As seen in Figure

26(a), the calculation time increases while the grid size decreases. When the grid size

decreases from 0.1m to 0.01m, the calculation time increases significantly. When the

grid size is equal to 0.01m, the calculation time is about 610 seconds, which is 100

times greater than the calculation time at grid size equal to 0.01m. In the meantime,

the average number of points per cell decreases along with the decrease of the grid

size. Having too many points within a cell could indicate that the grid based

evaluation approach can only provide a rough estimate for the geometric information

contained in a point cloud. Decreasing the grid size would result in a more accurate

 98

estimation for the geometric information contained in a point cloud, but it would

also increase the calculation time significantly. A good selection of the grid size

needs to balance the calculation time and the average number of points per cell.

Figure 26 (b) shows the relationships between the grid size and the coverage ratio.

Shown in Figure 26 (b), dividing a building surface with a large grid size could lead

to an overestimate for the information contained in a point cloud. Considering the

calculation time and the estimation accuracy, in this thesis, I select the grid size as

0.04m, based on which the calculation time is 40 seconds and the average number of

points per cell is 8.

Figure 26 (a). Processing time and point cloud density vs. grid size

0.1	

1	

10	

100	

1000	

10000	

0	

100	

200	

300	

400	

500	

600	

700	

0	

 0.1	

 0.2	

 0.3	

 0.4	

 0.5	

 0.6	

 0.7	

 0.8	

 0.9	

 1	

Av
er

ag
e

nu
m

be
r o

f p
oi

nt
s p

er
 c

el
l)	

C
al

cu
la

tio
n

tim
e

(s
) 	

Grid Size (m)	

Calculation Time	

 Number of points within a cell	

 99

Figure 26 (b) Coverage ratio vs. grid size

The content assessment module calculated the coverage ratio for all the inputted

point clouds. The point cloud with the maximum coverage ratio is the one that is

capable of providing the most complete geometric information for the specific

surfaces of the target components and is marked as the baseline point cloud. To

better demonstrate how the content assessment module works, I used four point

clouds captured at four different times as an example, and selected the ductworks

shown in the point clouds as the target building components. Figure 27 shows four

point clouds captured at different points in time and their coverage images for

ductworks. According to the coverage ratios, P3 has the highest coverage ratio as

67.6 % for the surfaces of ductworks and hence should be used as the baseline point

cloud. The remaining point clouds need to be evaluated in order to determine which

point clouds should be combined with the baseline set. This ties to the second

module, which is the content improvement module.

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
ov

er
ag

e
R

at
io

Grid Size (m)

CoverageRatio

 100

Point cloud Coverage Image and
Coverage Ratio

Point cloud Coverage Image and
Coverage Ratio

P1 P1 – 0% P2 P2 – 48.1%

P3 P3 – 67.6% P4 P4 – 65.4%

Figure 27 Point cloud data captured at different points in time and their occlusion

images for duct segments

4.3.2. Content improvement module: Assessing the information gain by

combining additional point clouds

This module takes the baseline point cloud identified by the content assessment

model as the input, and determines which remaining point clouds should be

combined with the baseline point cloud. The flowchart of this process is shown in

Figure 28.

 101

Figure 28. Flowchart of the content improvement module

Assuming that there are a set of point clouds (P1, P2, P3 … Pn), and P1 is selected as the

baseline point cloud since it has the highest coverage ratio. This module first

compares each of the remaining point clouds to the baseline point cloud, and

assesses how much information can be gained by adding each of the remaining point

clouds into P1 separately. When comparing Pi (1 < 𝑖 ≤ 𝑛) with the baseline point

cloud - P1, the module utilizes the same grid generated in the content assessment

 102

module and overlays the coverage images of P1 and Pi together. The content

improvement module then exams the coverage images and identifies the cells that

are occupied by Pi, but not P1. These cells are referring to the target surface areas that

were shown in Pi, but not captured or occluded by P1. To quantify this additional

geometric information, a metric, named as dissimilarity ratio, has been introduced.

The dissimilarity ratio represents the percentage of information gained by adding the

new point cloud into the baseline point cloud, and is calculated using Equation 10.

Equation 10:

Dissimilarity ratio (𝑃! ,𝑃!) =
number of cells occupied 𝑃! but not 𝑃! on a given surface
total number of cells available on the grid on a given surface

Figure 29 shows the result of the assessment for the same set of ductworks used as an

example in the previous module. The additional information generated by adding P2

into the P1 is shown in the third column.

P1 – baseline point cloud P2 – added point cloud

A coverage image shows
cells occupied by P2 but not
P1. Dissimilarity ratio =
25.96%.

P1 – coverage image P2 – coverage image

Figure 29. Dissimilarity ratio by adding P2 to P1

 103

This assessment is repeated until all the point clouds at hand are compared to the

baseline point cloud, as shown in Figure 28. The point cloud with the maximum

dissimilarity ratio is defined as the one that has the highest information to add to the

baseline point cloud. This point cloud is then registered with the baseline point cloud

and considered as the new baseline point cloud for the next iteration. The model

iteratively combines the remaining point clouds to the baseline point cloud till either

all the point clouds have been registered together or the maximum dissimilarity ratio

is smaller than a threshold, whichever occurs earlier. Users determine the value of

the threshold. If the dissimilarity ratio of a point cloud is smaller than the threshold,

it is not worth adding this point cloud to the baseline point cloud set since the

combination will increase the file size without bringing enough additional geometric

information for the model update/construction. The output of the content

improvement module is a point cloud that is composed by the selected point clouds.

4.4. Validation

I validated the performance of the developed approach in terms of whether the

approach is able to identify the right combination of point clouds in order to get a

more complete set of geometric information with less file size. The performance of

the developed approach has been compared to two other baseline approaches (i.e.,

approach 1 and approach 2). In approach 1, all the point clouds are registered

together. In approach 2, the point clouds are progressively registered, in the order

that they were acquired, until the dissimilarity ratio reaches to a preset threshold,

which is the same threshold used in the developed approach. The approach

developed in this research (i.e., approach 3), however, first uses the coverage ratios to

 104

select the baseline point cloud and then determines which point clouds should be

combined with the baseline point cloud using the dissimilarity ratios. The combined

point clouds generated by the three approaches were compared. Three metrics were

used in the validation, which are: (a) coverage ratio, (b) number of geometric

properties that can be measured in a baseline point cloud, and (c) size of the final

point cloud data.

The validation data includes five point clouds progressively captured during the

renovation of a research lab, labeled as (P1, P2, P3, P4, and P5). I focused on four

different building components, which are (1) surface of ductworks installed in room

2, (2) interior wall surface Wall2-W, (3) interior wall surface Wall2-S, and (4) the

surface of ceiling in the room. A set of screen shots of the components used in the

validation is shown in Figure 30. These four building components are selected to

ensure that the approach developed in this thesis can be generalized to different types

of building components.

 105

Figure 30. The four different building components targeted by the validation

Each approach has been implemented in Matlab and tested using the validation data.

The resulting selections of point clouds to be registered following the three

approaches are shown in Table 8. For the four building components, approach 3,

which is the developed approach, selects the least number of point clouds to be

combined.

Table 8 The resulting subset of point clouds to be registered following the three

approaches

Approach
Component 1:

Ductworks
Component 2:

Wall2-W
Component 3:

Wall2-S
Component 4:

Ceiling
1 P1 to P5 P1 to P5 P1 to P5 P1 to P5
2 P1 to P3 P1 to P4 P1 to P3 P1 to P4
3 P3+P4 P4+P1+P2 P1+P3 P1+P2+P5

 106

The comparison of the metrics used for performance evaluation of these approaches

is provided in Table 9. The coverage ratio increases when additional point clouds are

added into the baseline point cloud and at the same time the rate of growth of the

coverage ratio decreases. The geometric properties remain the same in the combined

point clouds generated by the three approaches. The developed approach (approach

3) achieved the smallest file size in all of the four validation datasets. For the

ductworks, the coverage ratio of the registered point clouds generated by approach 1

is 2.3% higher than the registered point clouds generated by approach 2. However,

the size of the final point cloud generated by approach 1 is 68.5% higher than

approach 2. It shows that when registering all of the point clouds together without

any pre-selection, the increase of file size might overweight the improvement in

relation to the completeness of the geometric information. For the interior surface of

Wall 2-W, the combined point cloud gained by approach 3 is 309.3MB and has

90.8% coverage ratio. Approach 2 added one more point cloud into the registered

point cloud, which increases the coverage ratio by 1.5%, but also increases the file

size by 32.3%. Approach 1 combined all the point clouds together. This approach

increases the coverage ratio by 2% and file size by 66.2%, as compared to the third

approach. I also counted the geometric properties that can be measured from the

point clouds. The geometric properties for the four different types of building

components include length and width of the building surfaces. The measurable

properties remain the same for the four building components and the three

approaches. The result showed that using approach 3 it is possible to reduce the

number of point clouds that need to be registered so as to reduce the file size. As

 107

shown in Table 9, as compared to the other two baseline approaches, I can retrieve

more geometric information (i.e., higher coverage ratio) using the least number of

point clouds (i.e., less file size), which validates the effectiveness of our approach.

Table 9. Comparison of the developed approach (approach 3) with respect to other

baseline approaches

Approach
Component 1:

Ductworks Component 2: Wall2-W Component 3:
Wall2-S

Component 4:
Ceiling

C M S C M S C M S C M S

1 75.7
% 41 514 92.5

% 4 514 94.0
% 4 514 96.5

% 4 514

2 74.0
% 41 304.9 92.1

% 4 409.3 93.9
% 4 304.9 96.5

% 4 409.3

3* 75.0
% 41 204.4 90.8

% 4 309.3 93.7
% 4 199.9 96.5

% 4 309

C: Coverage ratio M: measurable geometric
properties S: file size (MB)

In the validation calculations, the threshold was set as 1% for all the datasets. The

value of threshold could also impact the performance of the developed approach.

When threshold is set as 0, approach 1, 2, and 3 gave the same result, since they all

combines all of the point clouds together. When the threshold gets increased, it

means that the size of the registered point cloud has gained more weight. As a result,

less number of point clouds will be combined together. The impacts of the threshold

on the developed approach and the selection of the optimal threshold will be

addressed in the future work.

4.5 Conclusion

Progressively captured and registered point clouds provide opportunities to capture a

more complete view of the building components over time. A unique challenge of

using registered point clouds is that registering point clouds that contains repetitive

 108

information might increase the difficulty of storing and processing registered point

clouds due to the file size. Instead of registering all the point clouds together, only

combining the point clouds that contain less repetitive geometric information could

effectively reduce the file size of the final dataset and increase the usability of the

data. One of the contributions of this thesis is an approach that evaluates the

information contained in point clouds and supports the decision on which point

clouds should be combined.

 109

CHAPTER 5 CONCLUSION AND FUTURE WORK

This section concludes this thesis with discussions of the contribution, practical

implications and future research directions.

5.1 Contributions

This research has four main contributions: (a) Identification of a general list of

features that can be applied to recognize the correspondences between a point cloud

and a BIM, (b) Formalization of a set of matching approaches that reason with one

or more than one type of features to identify the matches between a point cloud and

a BIM, (c) Identifying the relationships between features and discrepancies and

evaluating how different types of features perform under different discrepancies, and

(d) Formalization of an approach to support the decision on selecting point clouds

for combination.

(1) Identification of a general list of features that can be applied to identify the

correspondences between a point cloud and a BIM

Matching a point cloud to a BIM is one of the most important steps for the process of

updating BIM. By matching a point cloud to a BIM, the accurate geometric

information captured by the point cloud can be linked to the semantic and geometric

information contained in the BIM. The linkages between the two data sets allow

users to identify the differences between the design information represented in an as-

designed BIM and the as-built site condition captured by point clouds so as to update

the as-designed model accordingly. Matches between a point cloud and a BIM can

 110

be identified based on the features associated with these two data sets. Chapter 2 of

this thesis provides a general list of features that can be applied to identify the

correspondences between a point cloud and a BIM. Based on the previous BIM and

point cloud related research studies, I identified 21 features associated with BIMs

and 29 features of point clouds. In the feature list, features are extracted at different

levels of detail (e.g., point to entity, then to global) from point clouds and BIMs.

Hence, these features can serve as a bridge to identify the correspondences between

point clouds and BIMs even though these two data sets are available in different

levels of detail (point clouds are at the point level and BIM are at the object level).

This list of features could serve as the basis for developing matching approaches that

utilize/combine different feature to map point clouds to BIMs.

(2) Formalization of a set of matching approaches that reason with one or more

than one type of features to identify the matches between a point cloud and a BIM

Building on the features identified in Chapter 2, I developed four matching

approaches, which are (a) 2D overlap area matching approach, (b) spatial

relationship based graph-matching approach, (c) distribution-based 2D shape

matching approach, and (d) distribution-based 3D shape matching approach. Each

matching approach is built on one specific type of features associated with point

clouds and BIMs. 	

Based on the experimental analysis conducted in Chapter 3, none of these four

matching approaches are capable of identifying all the correct matches between a

point cloud and a BIM. Each matching approaches is robust to certain types of

 111

discrepancy, but is sensitive to the others. In order to improve the matching result

and reduce the impacts of discrepancies on the matching process, I formalized two

combination approaches that combine multiple types of features together. The

combination approaches are (a) re-aligning point cloud and BIM based on 3D shape

distribution to reduce the impacts of location discrepancies on the area approach and,

(b) filtering the matching candidates generated by the 2D overlap area matching

approach using 3D shape distribution feature (called as 3D filter in the following

paragraphs).

(3) Identifying the relationships between features and discrepancies and

evaluating how different types of features perform under different discrepancies

The performance of a matching approach is impacted by various factors, such as

discrepancies existing between a point cloud and a BIM, the types of building

components, the complexity of the site environment and the features used in the

matching approach. The experimental analysis conducted in Chapter 3 provides a

general knowledge on how different types of features perform when they are used to

match point cloud segments to BIM components under various discrepancy

conditions. The knowledge on how different types of features performance under

different types of discrepancies could be used to guide the future research studies to

understand the behavior of different features towards to different types of

discrepancies, and develop more advanced matching approaches that utilize or

combine different features to eliminate the negative impacts of discrepancies on

matching results.

 112

(4) Formalization of an approach to support the decision on selecting point clouds

for combination

By combining point clouds progressively captured during the construction process, it

is possible to get a more complete set of geometric information for the BIM update.

However, the large file size of the combined point cloud makes it hard to process and

store. Chapter 4 introduces an approach that is developed to pre-select point clouds

collected at different points in time based on unique data sets that each point cloud

brings in order to ensure completeness of the geometric information while reducing

the file size resulted by combining point clouds with repetitive information. The

approach is composed of two modules, which are: (a) content assessment module, it

quantifies the geometric information contained in each point cloud for

updating/modeling target building components in a BIM; and (b) content

improvement module, it calculates the information gained by adding new point

cloud data to an initial baseline point cloud. Based on the validation given in

Chapter 4, the developed approach is effective in identifying the right combination of

point clouds in order to get a more complete set of geometric information.

 113

5.2 Practical Implication

This research can possible has a number of practical implications for information

handover, construction management and facility operation and maintenance.

(1) Supporting the information handover by delivering a complete and accurate as-

built BIM

As a digital representation that captures and exchanges building information between

different stakeholders, building information models (BIMs) can be used as an

information repository to store and deliver as-built information. The framework

developed in this research facilitates the process of updating an as-designed BIM into

an as-built BIM. The updated as-built BIM can be delivered to owners or facility

management teams as a part of information handover document.

(2) Providing foundation for developing advanced matching algorithm to match

point clouds to BIMs

Currently, there is a limited understanding of what features of point clouds and BIMs

can be applied to match these two data sets together, let alone how the features

would performance under different discrepancy conditions. In this research, I

evaluated the performance of different features in terms of how they are able to

identify the correct matches between point cloud segments and BIM components

when different types of discrepancies exist. The result gained from this evaluation

provide the foundation for developing more advanced matching approaches that

 114

utilize or combine different features to eliminate the negative impacts of

discrepancies on matching results.

(3) Supporting the future usage of progressive point clouds

This research validates the value of the using progressive point clouds for the BIM

update, which promotes the idea of progressively scanning a job site in order to

capture more complete geometric information. However, one challenge that prevents

progressive point clouds to be used in construction projects is that it is impossible to

combine all the point clouds together considering the large file size of each point

cloud. Without an approach to evaluate the information provided by point clouds

captured at different times, construction professionals need to manually exam each

point cloud and determine which one to use. The approach developed in this

research allows construction professionals to rapidly evaluate the information

contained in progressive point clouds and selectively combine progressive point

clouds to provide a complete set of geometric information with file size. As a result,

the developed approach makes the future usage of progressive point clouds possible.

 115

5.3 Future Research Directions

The results of this research point to several directions for future work, which are

summarized as follows:

(1) Extending the scope of the research and targeting on different types of building

components

First, the matching experiment conducted in this research mainly targets on the

mechanical components installed in a building. It would be interesting to look at

how the features performance for the other types of building components, such as

walls, windows, doors and so on, and identify what features might be most

applicable for a specific type of building components. Second, it would be

worthwhile to further extend the feature combination approaches in terms of: (a)

combining more features together, and (b) adjusting the way that how different

features are combined together (e.g., identify matches using 3D shape feature first,

and filter the matches based on overlap area space). In addition to 2D overlap area

and 3D matching approaches, I can also include spatial relationships to further

improve the matching results in the future work.

(2) Testing the approaches developed in this research in a large-scale construction

project with more realistic experimental settings

In this research, I used a 4-month renovation project as the testbed to test and

validate the matching approaches and point clouds combination approach developed

in this research. A certain assumptions and simplifications have been made in the

 116

experimental settings. For instance, I assumed that the point cloud inputted into the

matching approaches are segmented and noises and temporary components are

removed from the point cloud. It would be interesting to test the performance of the

approaches developed in this research in a large-scale construction project with more

realistic experimental settings and evaluate how the approaches would response in

these situations.

(5) Automatically selecting features using feature selection technique

In this research, I identified a general list of features associated with point clouds and

BIMs and developed a categorization to classify these features. I then selected

features from each category and evaluate their performances. Future research studies

could apply feature selection techniques to evaluate the features in an automatic

fashion and remove the irrelevant and redundant features from the mapping process.

The objective of selecting features is not to get a minimum set of features, but to

acquire a better understanding on what features are more important and how

features are correlated among each other.

(6) Automatically accomplishing the update process to remove discrepancies

between a point cloud and a BIM

As discussed in Chapter 1.3 vision, this research mainly focuses on leveraging the

progressive point clouds and mapping point clouds to BIMs. The actual update of an

as-designed BIM based on the mapping results is out of the scope and is now up to

modelers to accomplish. The future research studies could formulize a mechanism

 117

that automatically update the BM based on the matches between the BIM and the

point cloud.

(5) Developing an information repository to integrate BIM and point cloud

together

In the current practice, it relies on the manual approach to update a BIM using the

3D authoring tools (e.g., Revit, Sketchup, etc.). This manual practice is time-

consuming and error prone. Therefore, instead of manually updating the as-designed

BIM, the future research studies could target on using the point cloud as the baseline

model and fuse the semantic information contained in the BIM to the point cloud.

In this case, the effects spent in updating the model can be saved, and the point cloud

could be enriched by the semantic information contained in the BIM.

 118

Appendix A: Matching Results for the Four Matching Approaches

This appendix shows the experiment results of the four matching approaches on the experiment described in Chapter 3. The testbed used in this

experiment is a research lab that has gone through a renovation process including the installation of a new mechanical system. In this

experiment, I mainly focused on the ductworks that were newly installed in the research lab during the renovation process. The selected

ductworks installed in the renovated space is used as the baseline model and different types of discrepancies are introduced to the baseline model

to generate different versions of the model with deviations different than what is captured in the point cloud. Using the simulation algorithm, I

generated 39 models, which covered different types of discrepancies, including shape, dimension, location, and composition discrepancies as

compared to the baseline model. In total, the testbed included 40 pairs of point cloud (the point cloud remain the same) and the corresponding

BIM (each pair is called as one scenario) for the experiments. Among the 40 scenarios, 30% of them have shape discrepancies, 65% have

dimension discrepancies, 75% have location discrepancies and 10% of them have composition discrepancies.

Scenario 2D overlap Topology-based 2D shape 3D shape

1

 119

2

.

3

4

5

 120

6

7

8

9

 121

1
0

1
1

1
2

1
3

 122

1
4

1
5

1
6

1
7

 123

1
8

1
9

2
0

2
1

 124

2
2

2
3

2
4

2
5

 125

2
6

2
7

2
8

2
9

 126

3
0

3
1

3
2

3
3

 127

3
4

3
5

3
6

3
7

 128

3
8

3
9

4
0

 129

Appendix B. Codes for implementing the four matching approaches

The four matching approaches are developed using Matlab. This appendix includes

the codes for implementing the four matching approaches and conducting the

experiment. Due to the space limit, I only include the partial codes here. Please refer

to the DVD attached with the thesis for the complete codes.

% This script is used to run the different mapping algorithms and
% collect the results.
% The input variables include: totalSet, trainingSet, testingSet,
density,
% sampleSize, noBin, inputPath, outputPath

%% Gethe inputs from the targeted folders
disp ('Get the inputs');
% define the number of testing data and the number of training data
totalSet = 60; % total number of dataset
trainingSet = 45; % number of training data
testingSet = 15; % number of testing data
density = 400;
sampleSize = 100000;
noBin = 1024;

% define two path:
% path 1 is the reading path
inputPath = 'C:\Users\tgao\Documents\Test 1\';
outputPath = 'C:\Users\tgao\Documents\Test 1\';
% path 2 is the save path

% get the input for the baseline
folderName = 'Baseline';
PCD = getInput(folderName,inputPath);

% add 3D shape mapping
PCD_distance = getInput3D(folderName,inputPath, density,sampleSize);
sizeComponent = size (PCD_distance,1);
PCD_element_inBin = zeros (sizeComponent,noBin);
for j = 1:sizeComponent
 % PCD_element_inBin[componentNo, noBin]
 PCD_element_inBin (j,:) = hist(PCD_distance(j,:),noBin);
end

correctMatching = eye(PCD.NoComponent);

% get the other dataset and perform the matching algorithms
folderName_default = 'Scenario';
src = cell (totalSet,1); % src is used to store all the dataset

for i = 1:totalSet

 130

disp (['get the data set',num2str(i)]);
folderName = [folderName_default,num2str(i)];
src{i} = getInput(folderName,inputPath);

% overlap area matching:
disp ('starting 2D overlap matching');
overlapRatio = calOverlapRatio(PCD.image,src{i}.image);
src{i}.overlapRatio = overlapRatio;
disp ('Finishing 2D overlap matching');

% 2D shape matching:
disp ('starting 2D shape matching');
[difference_norm, difference_no] =
match_2D(PCD.boundary,src{i}.boundary);
src{i}.difference_no_2d = difference_no;
disp ('Finishing 2D shape matching');

% area matching
disp ('starting area matching');
differences = calAreaDifference(PCD.image,src{i}.image);
src{i}.difference_area = differences;
disp ('Finishing area matching');

% graph matching
addpath ('C:\Users\tgao\Documents\MATLAB\Point cloud processing
function\fgm_modified');
asgFgm = graphMatching(PCD, src{1});
end

for i = 1:totalSet
 folderName = [folderName_default,num2str(i)];
 % distance [componentNo, sampleSize]
 src{i}.distance = getInput3D (folderName,inputPath, density,
sampleSize);
 element_inBin = zeros (sizeComponent,noBin);
 for j = 1:sizeComponent
 % element_inBin [componentNo, noBin]
 element_inBin (j,:) = hist(src{i}.distance(j,:),noBin);
 end
 src{i}.element_inBin = element_inBin;
 diff = calHistDifference (PCD_element_inBin,element_inBin);
 src{i}.diff3D = diff;
end

% data analysis
[precision, recall, map, perm, threshold, index] = performAnalysis(
src, correctMatching, trainingSet, testingSet);
% take threshold
map.shape_optimal = cell(1,trainingSet);
map.overlap_optimal = cell(1,trainingSet);
map.area_optimal = cell(1,trainingSet);
map.shape_3D_optimal = cell(1,trainingSet);

%% done the calculation, this step just to output all the requried
figures for the analysis
for i = 1:trainingSet
 map.shape_optimal{1,i} = map.shape_train{index.shape,i};

 131

 out1 = [outputPath,'shape_optimal',num2str(i)];
 outputMappingMatrix(map.shape_optimal{1,i},out1,
precision.shape_optimal(1,i),recall.shape_optimal(1,i));
 map.overlap_optimal{1,i} = map.overlap_train{index.overlap,i};
 out2 = [outputPath,'overlap_optimal',num2str(i)];

outputMappingMatrix(map.overlap_optimal{1,i},out2,precision.overlap_opt
imal(1,i),recall.overlap_optimal(1,i));
 map.area_optimal{1,i} = map.area_train{index.area,i};
 out3 = [outputPath,'area_optimal',num2str(i)];

outputMappingMatrix(map.area_optimal{1,i},out3,precision.area_optimal(1
,i),recall.area_optimal(1,i));
 map.shape_3D_optimal{1,i} = map.shape_3D_train{index.shape_3D,i};
 out4 = [outputPath,'shape_3D_optimal',num2str(i)];

outputMappingMatrix(map.shape_3D_optimal{1,i},out4,precision.shape_3D_o
ptimal(1,i),recall.shape_3D_optimal(1,i));
end

for i = 1:testingSet
 out1 = [outputPath,'shape_test',num2str(i)];
 outputMappingMatrix(map.shape_test{i,1},out1,
precision.shape_test(i,1),recall.shape_test(i,1));
 out2 = [outputPath,'overlap_test',num2str(i)];
 outputMappingMatrix(map.overlap_test{i,1},out2,
precision.overlap_test(i,1),recall.overlap_test(i,1));
 out3 = [outputPath,'area_test',num2str(i)];
 outputMappingMatrix(map.area_test{i,1},out3,
precision.area_test(i,1),recall.area_test(i,1));
 out4 = [outputPath,'shape_3D_test',num2str(i)];
 outputMappingMatrix(map.shape_3D_test{i,1},out4,
precision.shape_3D_test(i,1),recall.shape_3D_test(i,1));
end

%% draw the intersection and union figure
precision.union = zeros (testingSet,1);
recall.union = zeros (testingSet,1);
for i = 1:testingSet
 out1 = [outputPath, num2str(i)];
 map.union{1,i}=outputOrAnd (map.overlap_test{i,1},
map.area_test{i,1}, map.shape_test{i,1},
map.shape_3D_test{i,1},out1,correctMatching);
 [precision.union(i,1),recall.union(i,1)] = calRecallPrecision
(map.union{1,i},correctMatching);
end

%% try the new combination approach
move = cell (totalSet,1);
for i = 1:totalSet
 move{i} = shape_overlap(src{i}, PCD ,12);
 savePath = [outputPath,'shiftedImage',num2str(i)];
 imwrite (move{i}.completeImage,[savePath,'.jpg']);
end

% find the threshold that generates maximum results
threshold_value = (0.01:0.01:1);

 132

iter = length (threshold_value);
for j = 1:trainingSet
 for i = 1:iter
 set = perm (j);

[recall.overlap_shape_train(i,j),precision.overlap_shape_train(i,j),map
.overlap_shape_train{i,j}] = overlap_Analysis(move.overlapRatio,
correctMatching, threshold_value(i));
 end
end
[threshold.overlap_shape,index.overlap_shape_optimal,precision.overlap_
shape_optimal,recall.overlap_shape_optimal] = findThreshold
(recall.overlap_shape_train,precision.overlap_shape_train,threshold_val
ue);
for a = 1:testingSet
 current = trainingSet+a;
 set = perm(current);
 [recall.overlap_shape_test(a),
precision.overlap_shape_test(a),map.overlap_shape_test{a}] =
overlap_Analysis(move(Ullrich et al.).overlapRatio, correctMatching,
threshold.overlap_shape);
end

for i = 1:trainingSet
 map.overlap_shape_optimal{1,i} =
map.overlap_shape_train{index.overlap_shape_optimal,i};
 out5 = [outputPath,'shape_overlap_optimal',num2str(i)];

outputMappingMatrix(map.overlap_shape_optimal{1,i},out5,precision.overl
ap_shape_optimal(1,i),recall.overlap_shape_optimal(1,i));
end

for i = 1:testingSet
 out5 = [outputPath,'shape_overlap_test',num2str(i)];
 outputMappingMatrix(map.overlap_shape_test{1,i},out5,
precision.overlap_shape_test(1,i),recall.overlap_shape_test(1,i));
end

%% further filter out the mapping candidate get from the overlap_shape
for a = 1:testingSet
 current = trainingSet+a;
 set = perm(current);
 map.filter{a} =
shape_overlap_filter(map.overlap_shape_test{1,a},src(Ullrich et al.));
 [precision.filter(a),recall.filter(a)] = calRecallPrecision(
map.filter{a},correctMatching);

 out6 = [outputPath,'shape_overlap_test_filter',num2str(a)];
 outputMappingMatrix(map.filter{a},out6,
precision.filter(a),recall.filter(a));
end

%% draw the union figure for the total five approaches
precision.union_total = zeros (testingSet,1);
recall.union_total = zeros (testingSet,1);
map.union_total = cell(1,testingSet);

 133

for i = 1:testingSet
 savePath = [outputPath,'union_total',num2str(i)];
 h = figure;
 out1 = [outputPath,'total', num2str(i)];
 map.union_total{1,i} = map.union{1,i}+map.overlap_shape_test{1,i};
 map.union_total{1,i} = map.union_total{1,i}>0;
 [nb,np] = size (map.union_total{1,i});
 for k = 1:nb
 for j = 1:np
 if (map.union_total{1,k}(k,j) ==1)
 rectangle ('Position',[k-1,j-
1,1,1],'FaceColor','black','EdgeColor','red');
 end
 end
 end
 [precision.union_total(i,1),recall.union_total(i,1)] =
calRecallPrecision(map.union_total{1,i},correctMatching);
 grid on
 axis([0 nb 0 np]);
 xlabel ('original','FontSize', 25);
 ylabel ('target','FontSize', 25);
 title (['union_total: precision =
',num2str(precision.union_total(i,1)),' recall =
',num2str(recall.union_total(i,1))],'FontSize', 22);
 saveas(h,[savePath,'-union'],'png');
 close(h);
end

% This script is used for two purpose:
% (1) Get the optimal threshold
% (2) Calculate the precision and recall for the four matching
approaches
%
%Input: src {i}, i = number of component in one scenario
% src.overlapRatio, src.difference_no_2d, src.difference_area,
% src.diff3D
%
%output: precision, recall, map and the order of perm
% precision.test(testingcase, 1), prcision.train(1,trainingcase)
%
% Map => x original, y target

function [precision, recall, map , perm, threshold, index] =
performAnalysis(src, correctMatching, trainingSet, testingSet)

% Determine the thresholds for different mapping algorithms
threshold_value = (0.01:0.005:1); % the vector that store the possible
value of threshold
iter = length (threshold_value);

% four variables - precision, recall and result for storing the results
of mapping
% algorithm
precision.overlap_train = zeros (iter,trainingSet);
recall.overlap_train = zeros (iter,trainingSet);

 134

map.overlap_train = cell (iter,trainingSet);

precision.shape_train = zeros (iter,trainingSet);
recall.shape_train = zeros (iter,trainingSet);
map.shape_train = cell (iter,trainingSet);

precision.area_train = zeros (iter,trainingSet);
recall.area_train = zeros (iter,trainingSet);
map.area_train = cell (iter,trainingSet);

precision.shape_3D_train = zeros (iter,trainingSet);
recall.shape_3D_train = zeros (iter,trainingSet);
map.shape_3D_train = cell (iter,trainingSet);

% testing and training dataset should be ranomly generated
totoalSet = trainingSet+testingSet;
perm = randperm(totoalSet);

for j = 1:trainingSet
 for i = 1:iter
 % get the precision and recall for 2D overlap
 set = perm(j);

[recall.overlap_train(i,j),precision.overlap_train(i,j),map.overlap_tra
in{i,j}] = overlap_Analysis(src(Ullrich et al.).overlapRatio,
correctMatching, threshold_value(i));

[recall.shape_train(i,j),precision.shape_train(i,j),map.shape_train{i,j
}] = mapping_Analysis(src(Ullrich et al.).difference_no_2d,
correctMatching, threshold_value(i));

[recall.area_train(i,j),precision.area_train(i,j),map.area_train{i,j}]
= mapping_Analysis(src(Ullrich et al.).difference_area,correctMatching,
threshold_value(i));

[recall.shape_3D_train(i,j),precision.shape_3D_train(i,j),map.shape_3D_
train{i,j}] = mapping_Analysis(src(Ullrich et al.).diff3D,
correctMatching, threshold_value(i));
 end
end

disp ('find the optimal threhsold');
% find the maximum threshold
[threshold.overlap,index.overlap,precision.overlap_optimal,recall.overl
ap_optimal] = findThreshold
(recall.overlap_train,precision.overlap_train,threshold_value);
[threshold.shape,index.shape,precision.shape_optimal,recall.shape_optim
al] = findThreshold (recall.shape_train,
precision.shape_train,threshold_value);
[threshold.area,index.area,precision.area_optimal,recall.area_optimal]
= findThreshold
(recall.area_train,precision.area_train,threshold_value);
[threshold.shape_3D,index.shape_3D,precision.shape_3D_optimal,recall.sh
ape_3D_optimal] = findThreshold
(recall.shape_3D_train,precision.shape_3D_train,threshold_value);

%% testing cases

 135

disp ('start with the test cases');
precision.area_test = zeros (testingSet,1);
recall.area_test = zeros (testingSet,1);
map.area_test = cell (testingSet,1);

precision.shape_test = zeros (testingSet,1);
recall.shape_test = zeros (testingSet,1);
map.shape_test = cell (testingSet,1);

precision.overlap_test = zeros (testingSet,1);
recall.overlap_test = zeros (testingSet,1);
map.overlap_test = cell (testingSet,1);

precision.shape_3D_test = zeros (testingSet,1);
recall.shape_3D_test = zeros (testingSet,1);
map.shape_3D_test = cell (testingSet,1);

for a = 1:testingSet
 current = trainingSet+a;
 set = perm(current);
 [recall.overlap_test(a),
precision.overlap_test(a),map.overlap_test{a}] =
overlap_Analysis(src(Ullrich et al.).overlapRatio, correctMatching,
threshold.overlap);
 [recall.shape_test(a), precision.shape_test(a),map.shape_test{a}] =
mapping_Analysis(src(Ullrich et al.).difference_no_2d, correctMatching,
threshold.shape);
 [recall.area_test(a), precision.area_test(a),map.area_test{a}] =
mapping_Analysis(src(Ullrich et al.).difference_area, correctMatching,
threshold.area);
 [recall.shape_3D_test(a),
precision.shape_3D_test(a),map.shape_3D_test{a}] =
mapping_Analysis(src(Ullrich et al.).diff3D, correctMatching,
threshold.shape_3D);
end
disp ('finish testing');
end

%% this function take recall, precision and the corresponding threshold
value and try to
% find the optimal value for the threshold

function [value, i, precision_train, recall_train] =
findThreshold(recall,precision,threshold)
%recall_sum = sum (recall,2);
recall_mean = mean(recall,2);
precision_mean = mean(precision,2);
F = (2.*precision_mean.*recall_mean)./(recall_mean+precision_mean);

%precision_sum = sum (precision,2);
[~,i] = max(F);
value = threshold(i);
precision_train = precision(i,:);
recall_train = recall (i,:);
end

 136

% This function calculates the preision and recall for a scenario
% Input: difference - (i.j) the difference between component i in
original
% pcd and component j in target pcd
% correctMapping - the ground truth
% threshold
% output: recall, precision and final mapping result

function [recall,precision,result] = mapping_Analysis(difference,
correctMapping, threshold)
%% Perform the data analysis
d_work = difference;
summary = sum (d_work);
[a, b] = size (difference);
summary = repmat (summary,[a,1]);
d_work = d_work./summary;
map = d_work <= threshold;
template = (1:a);
template = repmat (template', [1,b]);
result = template.*map;
% get the precision
% get the recall
temp = correctMapping.*map;
correct = sum(sum(temp));
allMapping = sum(sum(map));
allCorrect = sum(sum(correctMapping));
if (allMapping == 0)
 precision = 0;
else
 precision= correct/allMapping;
end
if (allCorrect ==0)
 recall = 0;
else
 recall= correct/allCorrect;
end
end

% 2D shape matching
% input:
% boundary_BIM(i,1): 2D boundary extracted from BIM, i - no of
component
% boundary_PCD(j,1): 2D boundary extracted from PCD, j - no of
component
% option: 'normlization' or 'non_normalization'
% output:
% dif_no (i,j): i - no of BIM component, j - no of PCD component

function [dif_norm,dif_no] = match_2D(boundary_BIM,boundary_PCD)
%% define the prarameters
sampleSize = 10000;
binSize = 1024;
nb = length (boundary_BIM);

 137

np = length (boundary_PCD);
distance_BIM = zeros (nb,sampleSize);
for i = 1:nb
 boundary = boundary_BIM{i};
 index = size (boundary,1);
 r1 = randi(index,[sampleSize,1]);
 r2 = randi(index,[sampleSize,1]);
 for j = 1:sampleSize
 distance_BIM (i,j)= sqrt((boundary (r1(j),1) -
boundary(r2(j),1))^2+(boundary (r1(j),2) - boundary(r2(j),2))^2);
 end
end
distance_PCD = zeros (np,sampleSize);
for i = 1: np
 boundary = boundary_PCD{i};
 index = size (boundary,1);
 r1 = randi(index,[sampleSize,1]);
 r2 = randi(index,[sampleSize,1]);
 for j = 1:sampleSize
 distance_PCD (i,j)= sqrt((boundary (r1(j),1) -
boundary(r2(j),1))^2+(boundary (r1(j),2) - boundary(r2(j),2))^2);
 end
end
%% No normalization
% create a cell to store all the distance
distance = [distance_BIM;distance_PCD];
distance = num2cell (distance,2);
[t,element_inBin,X] = nhist (distance,'samebins','minbins', 1000);
%Compare N
difference = zeros (nb,np);
for i=1:nb
 a = element_inBin{i};
 for j = 1:np
 b = element_inBin{nb+j};
 difference (i,j) = sum(sum(abs(a - b)));
 end
end
%[Y,I] = min (difference');
dif_no = difference;
%% Normlization
bin_no = 1000;
element_inBin_new = zeros (np+nb,bin_no);
for i = 1:np+nb
 element_inBin_new (i,:) = hist(distance{i,1},bin_no);
end
difference_new = zeros (nb,np);
for i=1:nb
 a = element_inBin_new(i,:);
 for j = 1:np
 b = element_inBin_new(nb(1)+j,:);
 difference_new (i,j) = sum(sum(abs(a - b)));
 end
end
%[Y_new,I_new] = min (difference_new');
dif_norm = difference_new;
 end

 138

% The function is used to calculate the 2D overlap ratio between two
components
% Input: b, the boundary of 2D BIM component
% p, the boundary of 2D projected points
% output: overlapRatio (BIM, Point cloud)

function overlapRatio = calOverlapRatio(b,p)
nb = size (b,1);
np = size (p,1);
overlapRatio = zeros (nb,np);
for i = 1:nb
 for j = 1:np
 areaB = sum(sum(b{i}));
 overlap = b{i}.*p{j};
 overlapArea = sum(sum(overlap));
 overlapRatio(i,j) = overlapArea/areaB;
 end
end
end

% This function return the 3D shape distance matrix for a scenario
(component n)
% input: foldername - the name of the folder
% inputPath - the path where the folder is saved
% density - the density of trnasformed point cloud
% sampleSize - the number of pairs of pairwise distance
% output: distance (i,j), i = component i, j = pairewise distance j

function distance = getInput3D(folderName, inputPath, density,
sampleSize)
files = dir(fullfile(inputPath ,folderName,'*.stl'));
filePath = [inputPath,folderName,'\'];
NoComponent = length(files);

num = zeros(NoComponent,1);
for i = 1:NoComponent
 num (i) = sscanf (files(i).name,'ComponentNo%d.stl#');
end
[~, index] = sort(num); % index the correct index of components

% distance metrix: d[i ,j] - i is the no of component, j is the sample
size
distance = zeros (NoComponent, sampleSize);
for i = 1:NoComponent
 stlAddress = [filePath,files(i).name];
 [F, V, ~] = rndread(stlAddress);
 % samplePoints[i,1], i is the sample size
 samplePoints = sampleMesh(F,V,density);
 % determine the samping rate
 % calculate pairwise distanc
 distance(i,:) = cal_pairwiseDistance(samplePoints, sampleSize)';
end

 139

end

% this function take two inputs: points and sample
% output the distance metrix
function [distance] = cal_pairwiseDistance(points, sample)
pointSize = length (points);
picks = 1+round((pointSize-1)*rand(2*sample,1));
count = 1;
distance = zeros (sample,1);
for i = 1:2:2*sample
 id1 = picks (i,1);
 id2 = picks (i+1,1);
 x1 = points(id1,1);
 y1 = points(id1,2);
 z1 = points(id1,3);
 x2 = points(id2,1);
 y2 = points(id2,2);
 z2 = points(id2,3);
 d = sqrt ((x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2);
 distance (count,1) = d;
 count = count+1;
end

%This function is used to perform the shape + overlap filter

function [map_filter] = shape_overlap_filter(map, src)
[nb,np] = size (map);
map_filter = zeros (nb,np);
for i = 1:nb
 [~,index] = find (map(i,:)>0);
 p = length(index);
 if (p~=0)
 difference = src.diff3D(i,index);
 [~,match] = min(difference);
 map_filter(i,index(match)) = 1;
 end
end

% for each scenario, this function get the mapping matrix and output
the mapping image

function [] = outputMappingMatrix(map, titleName, precision, recall)
%CREATEMETRIC Summary of this function goes here
% Detailed explanation goes here
standard = map > 0;
[nb,np] = size (standard);
h = figure;
for i = 1:nb
 for j = 1:np
 if (standard(i,j)==1)
 rectangle ('Position',[i-1,j-
1,1,1],'FaceColor','black','EdgeColor','yellow');
 end

 140

 if (i==j)
 rectangle ('Position',[i-1,j-1,1,1],'EdgeColor','r');
 end
 end
end
grid on
axis([0 nb 0 np]);
xlabel ('original','FontSize', 25);
ylabel ('target','FontSize', 25);
title (['precision = ',num2str(precision),' recall =
',num2str(recall)],'FontSize', 25);
%print('-dpng','-r100',titleName);
saveas(h,titleName,'png')
close(h);

% Perform the graph matching for the point cloud
% Extended from the research done by Feng Zhou
% Te Gao

clear variables;
addPath;
prSet(5); % set the promption level
%% Get the image and pick up the points for the nodes
% create a very simple UI for interact with the system
global footpath;
imgPath = sprintf ('%s/BIM_BIM/',footpath);
choice = menu ('Please select the option','load file','determine
nodes','simulate the location discrepancy');
if (choice ==1)
 [FileName,PathName] = uigetfile('*.mat','Select the MATLAB code
file');
 Path = [PathName, FileName];
 if (exist(Path,'file') == 0)
 fprintf ('The file is not existed');
 else
 load (Path);
 loadPath = FileName;
 fprintf ('use the pre-saved file.\n');
 end
end

if (choice ==2)
 %BIM_Path = [imgPath,'ori_BIM.jpg'];
 %PCD_Path = [imgPath,'new_PCD.jpg'];
 BIM_Path = [imgPath,'BIM.png'];
 PCD_Path = [imgPath,'PCD.png'];
 BIM = imread (BIM_Path);
 PCD = imread (PCD_Path);
 figure ('name','Select nodes from BIM');
 imshow (BIM);
 [xBIM yBIM] = ginput;
 hold on
 scatter (xBIM,yBIM,100,'fill');
 hold off
 figure ('name','Select nodes from point cloud')
 imshow (PCD);

 141

 [xPCD yPCD] = ginput;
 hold on
 scatter (xPCD,yPCD,100,'fill');
 hold off
 xTs = {[xBIM,yBIM]',[xPCD,yPCD]'};
 prompt = {'Save the file, Y/N?','Enter the file path for save'};
 dig_title = ('Input');
 num_lines = 1;
 answer = inputdlg(prompt, dig_title,num_lines);
 if (answer{1} =='Y')
 save (answer{2},'xTs');
 loadPath = answer{2};
 end
 fprintf ('The file has been saved.\n');
end

if (choice ==3)
 [FileName,PathName] = uigetfile('*.mat','Select the MATLAB code
file');
 Path = [PathName, FileName];
 if (exist(Path,'file') == 0)
 fprintf ('The file is not existed');
 else
 load (Path);
 loadPath = FileName;
 fprintf ('use the pre-saved file.\n');
 end
 %% simulate the discrepancy
 BIM = xTs{1};
 PCD = xTs{2};
 displacement = (1:3:1000);
 PCD(2,2) = PCD(2,2)- displacement(100);
 xTs{2} = PCD;
end

%% read src
nb = size (xTs{1},2);
np = size (xTs{2},2);
tag = 'pointCloud'; pFs = [1 2]; nIn = [nb nb];
% the important field in wsSrc is point coordinate
% in my case, 2X13 is enough
% wsSrc = pcdAsgSrc(tag, pFs, nIn,loadPath,'svL',1);
wsSrc = simAsgSrc(tag, pFs, nIn,xTs,'svL',1);
% asgT the attribute to save the final output?
asgT = wsSrc.asgT;

%% read feature
% define two parameters and store them in a structure
parG = st('link', 'predefine');
parF = st('smp', 'n', 'nBinT', 4, 'nBinR', 3);
% obtain features: two important files - gphs, and fs
wsFeat = pcdAsgFeat(wsSrc, parG, parF, 'svL', 1);
[gphs Fs] = stFld(wsFeat, 'gphs','Fs');

ns = cellDim(wsSrc.Pts, 2);

%% affinity

 142

% need to re-defined the affinity
parKnl = st('alg', 'cmum');
[KP, KQ] = conKnlGphPQ(gphs, parKnl);
K = conKnlGphK(KP, KQ, gphs);

%% parameter
pars = gmPar(1);

%% SM
asgSm = gm(K, ns, asgT, pars{3}{:});

%% FGM
% here is the actual implementation of fgm algorithm
% need to define KP, KQ
% don't warry about Fs
asgFgm = fgm(KP, KQ, gphs, asgT, pars{3}{1});

%% show correpsondence matrix
asgs = {asgT, asgSm, asgFgm};
algs = {'Truth', 'SM', 'FGM'};
rows = 1; cols = 3;
Ax = iniAx(1, rows, cols, [250 * rows, 250 * cols]);
shAsgX(asgs, Ax, algs);
%%-------the above code is able to work
%% show correspondence result
%rows = 2; cols = 1;
%Ax = iniAx(2, rows, cols, [400 * rows, 900 * cols]);
parCor = st('mkSiz', 7, 'cls', {'y', 'b', 'g'});

%shAsgImg(Fs, gphs, asgSm, asgT, parCor, 'ax', Ax{1});
%title(sprintf('SM : acc %.2f, obj %.2f', asgSm.acc, asgSm.obj));
shAsgImg(Fs, gphs, asgFgm, asgT, parCor);
title(sprintf('FGM: acc %.2f, obj %.2f', asgFgm.acc, asgFgm.obj));

 143

Appendix C. Codes for the discrepancy simulation algorithm

The simulation algorithm developed in this research runs as an add-on to a widely

used building information modeling tool. The algorithm is developed using C#.

	

using	
 System;	

using	
 System.Collections.Generic;	

using	
 System.Linq;	

using	
 System.Text;	

using	
 System.IO;	

using	
 STL_Export;	

	

using	
 Autodesk.Revit.UI;	

using	
 Autodesk.Revit.DB;	

using	
 Autodesk.Revit.Attributes;	

using	
 Autodesk.Revit.UI.Selection;	

using	
 Autodesk.Revit.DB.Mechanical;	

using	
 Autodesk.Revit.ApplicationServices;	

	

//	
 define	
 a	
 technique	
 to	
 store	
 the	
 discrepancy	
 for	
 correction	
 analysis:	
 	

//	
 each	
 element	
 -­‐	
 1	
 =	
 length	
 discrepancy;	
 2	
 =	
 location	
 discrepancy;	
 3	
 =	
 width	

discrepancy,	
 4	
 =	
 height	
 discrepancy	

namespace	
 Test	

{	

	
 	
 	
 	
 [TransactionAttribute(TransactionMode.Manual)]	

	
 	
 	
 	
 public	
 class	
 DiscrepancyIntroduction	
 :	
 IExternalCommand	

	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 //	
 define	
 the	
 two	
 main	
 variables	
 that	
 will	
 be	
 used	
 thoughout	
 different	

functions	

	
 	
 	
 	
 	
 	
 	
 	
 Document	
 document;	

	
 	
 	
 	
 	
 	
 	
 	
 Application	
 app;	

	
 	
 	
 	
 	
 	
 	
 	
 string	
 record	
 =	
 "";	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 Result	
 Execute(ExternalCommandData	
 commandData,	
 ref	
 string	
 message,	

ElementSet	
 elements)	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 UIDocument	
 doc	
 =	
 commandData.Application.ActiveUIDocument;	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 assign	
 values	
 to	
 document	
 and	
 app	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 document	
 =	
 doc.Document;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 app	
 =	
 document.Application;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 try	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /**************************The	
 Discrepancy	

Creation*******************************/	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 iterate	
 for	
 100	
 times	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 we	
 also	
 need	
 to	
 define	
 a	
 variable	
 to	
 store	
 the	
 simulation	

result	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ElementSet	
 set	
 =	
 new	
 ElementSet();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 set	
 =	
 GetAllModelElements();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Random	
 random	
 =	
 new	
 Random();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //string	
 savePath	
 =	

"C:\\Users\\tgao\\Desktop\\SimulationResult_5\\Baseline";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 string	
 savePath	
 =	

"C:\\Users\\tgao\\Desktop\\SimulationResult_5\\Senario4";	

 144

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 DirectoryInfo	
 di	
 =	
 Directory.CreateDirectory(savePath);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Transaction	
 trans	
 =	
 new	
 Transaction(document);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 trans.Start("baseline");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 exportImg(savePath	
 +	
 "\\complete");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //TaskDialog.Show("Revit",	
 "The	
 complete	
 figure	
 is	
 exported");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 trans.Commit();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 exportImgs(set,	
 savePath,	
 trans);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 trans.Start("unhide");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 document.ActiveView.Unhide(set);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 trans.Commit();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 var	
 ductTypeCollector1	
 =	
 new	
 FilteredElementCollector(document);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ductTypeCollector1.WherePasses(new	

ElementClassFilter(typeof(Duct)));	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 IList<Element>	
 ducts	
 =	
 ductTypeCollector1.ToElements();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 record	
 =	
 "Baseline"+"\n";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 record	
 =	
 outputInfo(ducts,	
 record);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 give	
 a	
 number	
 for	
 the	
 dimension	
 simulatoin	
 as	
 well,	
 when	
 i	
 is	

greater	
 than	
 30	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 whenDimensionChange	
 =	
 45;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 (int	
 i	
 =	
 1;	
 i	
 <=	
 0;	
 i++)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //Step	
 1:	
 change	
 the	
 dimension	
 of	
 the	
 ducts	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //String	
 info	
 =	
 "Get	
 all	
 the	
 ducts";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //TaskDialog.Show("Revit",	
 info);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //ShowElementList(ducts,	
 "show	
 element	
 type");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 flag	
 =	
 0;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //trans.Start("change");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 foreach	
 (Element	
 e	
 in	
 ducts)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Duct	
 duct	
 =	
 (Duct)e;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 flag	
 =	
 random.Next(0,	
 2);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (flag	
 ==	
 0)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 TaskDialog.Show("Whether	
 to	
 change	
 the	
 component	
 or	

not	
 ",	
 duct.Name	
 +	
 "No!");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //do	
 nothing	

	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 else	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //change	
 the	
 profile	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //trans.Start();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ModifyElementLengthWithAttach(e,	
 trans);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //trans.Commit();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (i	
 >	
 whenDimensionChange)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 flag_Width	
 =	
 random.Next(0,3);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (flag_Width	
 ==	
 1)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 double	
 change	
 =	
 0.75	
 +	
 random.NextDouble();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ModifyElementWidth(e,	
 change,trans);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 flag_Height	
 =	
 random.Next(0,	
 3);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (flag_Height	
 ==	
 1)	

 145

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 double	
 change	
 =	
 0.75	
 +	
 random.NextDouble();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ModifyElementHeight(e,	
 change,	
 trans);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 step	
 2:	
 move	
 the	
 ducts	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 flag	
 =	
 random.Next(0,	
 2);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (flag	
 ==	
 0)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //TaskDialog.Show("Warning",	
 "no	
 movement");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //do	
 nothing	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 else	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //trans.Start();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 trans.Start("change");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 generateLocationDiscrepancy();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 trans.Commit();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //trans.Commit();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 step	
 3:	
 output	
 the	
 model:	
 	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 savePath	
 =	

"C:\\Users\\tgao\\Desktop\\SimulationResult_4\\Scenario"	
 +	
 i;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 di	
 =	
 Directory.CreateDirectory(savePath);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 trans.Start("export");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 exportImg(savePath	
 +	
 "\\complete");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 trans.Commit();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //TaskDialog.Show("Revit",	
 "The	
 complete	
 figure	
 is	
 exported");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 set	
 =	
 GetAllModelElements();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 exportImgs(set,savePath,trans);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 trans.Start("unhide");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 document.ActiveView.Unhide(set);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 trans.Commit();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 record	
 +=	
 "scenario"	
 +	
 i.ToString()	
 +	
 "\n";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 record	
 =	
 outputInfo(ducts,	
 record);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 System.IO.File.WriteAllText(@"C:\Users\tgao\Documents\test.txt",	

record);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 catch	
 (Exception	
 e)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 message	
 =	
 e.Message;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 Result.Failed;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 Result.Succeeded;	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 void	
 exportImgs(ElementSet	
 allComponents,string	
 path,	
 Transaction	

tran)	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 Step	
 4:	
 add	
 the	
 visibility	
 control	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //Transaction	
 tran1	
 =	
 new	
 Transaction(document);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 i	
 =	
 1;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 foreach	
 (Element	
 elem	
 in	
 allComponents)	

 146

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 tran.Start();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 document.ActiveView.Hide(allComponents);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 tran.Commit();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ElementSet	
 unhide	
 =	
 new	
 ElementSet();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 string	
 temPath	
 =	
 "";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 string	
 temPathStl	
 =	
 "";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (elem.Name.Equals("Experiment"))	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 tran.Start();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 unhide.Insert(elem);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 document.ActiveView.Unhide(unhide);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 tran.Commit();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 temPath	
 =	
 path	
 +	
 "\\ComponentNo"	
 +	
 i	
 +	
 ".png";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 temPathStl	
 =	
 path	
 +"\\ComponentNo"	
 +	
 i	
 +	
 ".stl";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 tran.Start();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 exportImg(temPath);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 export_Stl(temPathStl);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 tran.Commit();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 i++;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 void	
 export_Stl(string	
 fileName)	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 DataGenerator	
 STL_Generator	
 =	
 new	
 DataGenerator(app,	
 document,	

document.ActiveView);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 SaveFormat	
 saveFormat	
 =	
 SaveFormat.ASCII;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ElementsExportRange	
 exportRange;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 exportRange	
 =	
 ElementsExportRange.OnlyVisibleOnes;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ExportSettings	
 aSetting	
 =	
 new	
 ExportSettings(saveFormat,	
 exportRange);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 DataGenerator.GeneratorStatus	
 succeed	
 =	

STL_Generator.SaveSTLFile(fileName,	
 aSetting);	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 string	
 outputInfo(ICollection<Element>	
 ducts,	
 string	
 s)	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 foreach	
 (Element	
 elem	
 in	
 ducts)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 +=	
 elem.Id.ToString()	
 +	
 ",";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 string	
 width	
 =	
 elem.get_Parameter("Width").AsValueString();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 string	
 height	
 =	
 elem.get_Parameter("Height").AsValueString();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 string	
 length	
 =	
 elem.get_Parameter("Length").AsValueString();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 +=	
 width	
 +	
 ",";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 +=	
 length	
 +	
 ",";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 +=	
 height	
 +	
 ",";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 location	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Duct	
 duct	
 =	
 (Duct)elem;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 LocationCurve	
 ductCurve	
 =	
 (LocationCurve)duct.Location;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 XYZ	
 pt1	
 =	
 ductCurve.Curve.get_EndPoint(0);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 XYZ	
 pt2	
 =	
 ductCurve.Curve.get_EndPoint(1);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 +=	
 pt1.X	
 +	
 ","	
 +	
 pt1.Y	
 +	
 ","	
 +	
 pt1.Z	
 +	
 ",";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 +=	
 pt2.X	
 +	
 ","	
 +	
 pt2.Y	
 +	
 ","	
 +	
 pt2.Z	
 +	
 "\n";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

 147

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 s;	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 void	
 exportImg(string	
 path)	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ImageExportOptions	
 m_exportOptions	
 =	
 new	
 ImageExportOptions();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 m_exportOptions.ExportRange	
 =	
 ExportRange.VisibleRegionOfCurrentView;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 m_exportOptions.ZoomType	
 =	
 ZoomFitType.FitToPage;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 m_exportOptions.FilePath	
 =	
 path;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 m_exportOptions.PixelSize	
 =	
 4000;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 document.ExportImage(m_exportOptions);	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 void	
 generateLocationDiscrepancy()	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ICollection<ElementId>	
 allComponents	
 =	
 GetAllModelElementIds();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Random	
 random	
 =	
 new	
 Random();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Double	
 X	
 =	
 -­‐3	
 +	
 6	
 *	
 random.NextDouble();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Double	
 Y	
 =	
 -­‐3	
 +	
 6	
 *	
 random.NextDouble();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Double	
 Z	
 =	
 -­‐3	
 +	
 6	
 *	
 random.NextDouble();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 XYZ	
 direction	
 =	
 new	
 XYZ(X,Y,Z);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ElementTransformUtils.MoveElements(document,	
 allComponents,	

direction);	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 void	
 ShowElementList(IList<Element>	
 elems,	
 string	
 header)	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 string	
 s	
 =	
 "	
 -­‐	
 Class	
 -­‐	
 Category	
 -­‐	
 Name	
 (or	
 Family:	
 Type	
 Name)	
 -­‐	
 Id	
 -­‐	

\r\n";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 foreach	
 (Element	
 e	
 in	
 elems)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 +=	
 ElementToString(e);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 TaskDialog.Show(header	
 +	
 "("	
 +	
 elems.Count.ToString()	
 +	
 "):",	
 s);	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 //	
 Helper	
 function:	
 summarize	
 an	
 element	
 information	
 as	
 a	
 line	
 of	
 text,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 //	
 which	
 is	
 composed	
 of:	
 class,	
 category,	
 name	
 and	
 id.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 //	
 name	
 will	
 be	
 "Family:	
 Type"	
 if	
 a	
 given	
 element	
 is	
 ElementType.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 //	
 Intended	
 for	
 quick	
 viewing	
 of	
 list	
 of	
 element,	
 for	
 example.	
 	

	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 string	
 ElementToString(Element	
 e)	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (e	
 ==	
 null)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 "none";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 string	
 name	
 =	
 "";	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (e	
 is	
 ElementType)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Parameter	
 param	
 =	
 e.get_Parameter(

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 BuiltInParameter.SYMBOL_FAMILY_AND_TYPE_NAMES_PARAM);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (param	
 !=	
 null)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 name	
 =	
 param.AsString();	

 148

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 else	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 name	
 =	
 e.Name;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 e.GetType().Name	
 +	
 ";	
 "	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 e.Category.Name	
 +	
 ";	
 "	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 name	
 +	
 ";	
 "	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 +	
 e.Id.IntegerValue.ToString()	
 +	
 "\r\n";	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 void	
 outputElementInfo(Element	
 e)	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 string	
 s	
 =	
 "";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 +=	
 s;	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 //	
 get	
 the	
 selected	
 element	
 parameters	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 void	
 showBasicElementInfo(Element	
 elem)	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 string	
 s	
 =	
 "You	
 Picked:"	
 +	
 "\n";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 +=	
 "	
 Class	
 name	
 =	
 "	
 +	
 elem.GetType().Name	
 +	
 "\n";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 +=	
 "	
 Category	
 =	
 "	
 +	
 elem.Category.Name	
 +	
 "\n";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 +=	
 "	
 Element	
 id	
 =	
 "	
 +	
 elem.Id.ToString()	
 +	
 "\n"	
 +	
 "\n";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 and,	
 check	
 its	
 type	
 info.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ElementId	
 elemTypeId	
 =	
 elem.GetTypeId();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ElementType	
 elemType	
 =	
 (ElementType)document.get_Element(elemTypeId);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 +=	
 "Its	
 ElementType:"	
 +	
 "\n";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 +=	
 "	
 Class	
 name	
 =	
 "	
 +	
 elemType.GetType().Name	
 +	
 "\n";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 +=	
 "	
 Category	
 =	
 "	
 +	
 elemType.Category.Name	
 +	
 "\n";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 +=	
 "	
 Element	
 type	
 id	
 =	
 "	
 +	
 elemType.Id.ToString()	
 +	
 "\n";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 TaskDialog.Show("Basic	
 Element	
 Info",	
 s);	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 void	
 ShowParameters(Element	
 elem,	
 string	
 header)	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ParameterSet	
 paramSet	
 =	
 elem.Parameters;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 string	
 s	
 =	
 string.Empty;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 foreach	
 (Parameter	
 param	
 in	
 paramSet)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 string	
 name	
 =	
 param.Definition.Name;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 string	
 val	
 =	
 ParameterToString(param);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 +=	
 name	
 +	
 "	
 =	
 "	
 +	
 val	
 +	
 "\n";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 TaskDialog.Show(header,	
 s);	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 ElementSet	
 GetExportedElements()	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //get	
 ducts	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ElementSet	
 set	
 =	
 new	
 ElementSet();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ElementSet	
 elems	
 =	
 app.Create.NewElementSet();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 var	
 ductTypeCollector1	
 =	
 new	
 FilteredElementCollector(document);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ductTypeCollector1.WherePasses(new	
 ElementClassFilter(typeof(Duct)));	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ICollection<Element>	
 ducts	
 =	
 ductTypeCollector1.ToElements();	

 149

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 foreach	
 (Element	
 a	
 in	
 ducts)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 set.Insert(a);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //get	
 duct	
 fittings	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ElementClassFilter	
 familyInstanceFilter	
 =	
 new	

ElementClassFilter(typeof(FamilyInstance));	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ElementCategoryFilter	
 ductFittingCategoryFilter	
 =	
 new	

ElementCategoryFilter(BuiltInCategory.OST_DuctFitting);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 LogicalAndFilter	
 ductFittingInstancesFilter	
 =	
 new	

LogicalAndFilter(familyInstanceFilter,	
 ductFittingCategoryFilter);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 FilteredElementCollector	
 collector	
 =	
 new	

FilteredElementCollector(document);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ICollection<Element>	
 ductfittings	
 =	

collector.WherePasses(ductFittingInstancesFilter).ToElements();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 foreach	
 (Element	
 a	
 in	
 ductfittings)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (a.GetType().Equals("Experiment"))	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 set.Insert(a);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //TaskDialog.Show("duct	
 no",	
 set.Size.ToString());	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 set;	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 //	
 The	
 function	
 is	
 used	
 to	
 get	
 all	
 the	
 model	
 Element	
 -­‐>	
 for	
 the	
 moving	

function	
 	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 ICollection<ElementId>	
 GetAllModelElementIds()	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //get	
 ducts	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ElementSet	
 elems	
 =	
 app.Create.NewElementSet();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 var	
 ductTypeCollector1	
 =	
 new	
 FilteredElementCollector(document);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ductTypeCollector1.WherePasses(new	
 ElementClassFilter(typeof(Duct)));	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ICollection<ElementId>	
 ducts	
 =	
 ductTypeCollector1.ToElementIds();	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //get	
 duct	
 fittings	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ElementClassFilter	
 familyInstanceFilter	
 =	
 new	

ElementClassFilter(typeof(FamilyInstance));	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ElementCategoryFilter	
 ductFittingCategoryFilter	
 =	
 new	

ElementCategoryFilter(BuiltInCategory.OST_DuctFitting);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 LogicalAndFilter	
 ductFittingInstancesFilter	
 =	
 new	

LogicalAndFilter(familyInstanceFilter,	
 ductFittingCategoryFilter);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 FilteredElementCollector	
 collector	
 =	
 new	

FilteredElementCollector(document);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ICollection<ElementId>	
 ductfittings	
 =	

collector.WherePasses(ductFittingInstancesFilter).ToElementIds();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 foreach	
 (ElementId	
 a	
 in	
 ductfittings)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ducts.Add(a);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //TaskDialog.Show("duct	
 no",	
 ducts.Count.ToString());	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 ducts;	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	

	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 ElementSet	
 GetAllModelElements()	

 150

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //get	
 ducts	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ElementSet	
 set	
 =	
 new	
 ElementSet();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ElementSet	
 elems	
 =	
 app.Create.NewElementSet();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 var	
 ductTypeCollector1	
 =	
 new	
 FilteredElementCollector(document);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ductTypeCollector1.WherePasses(new	
 ElementClassFilter(typeof(Duct)));	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ICollection<Element>	
 ducts	
 =	
 ductTypeCollector1.ToElements();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 foreach	
 (Element	
 a	
 in	
 ducts)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 set.Insert(a);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //get	
 duct	
 fittings	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ElementClassFilter	
 familyInstanceFilter	
 =	
 new	

ElementClassFilter(typeof(FamilyInstance));	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ElementCategoryFilter	
 ductFittingCategoryFilter	
 =	
 new	

ElementCategoryFilter(BuiltInCategory.OST_DuctFitting);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 LogicalAndFilter	
 ductFittingInstancesFilter	
 =	
 new	

LogicalAndFilter(familyInstanceFilter,	
 ductFittingCategoryFilter);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 FilteredElementCollector	
 collector	
 =	
 new	

FilteredElementCollector(document);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ICollection<Element>	
 ductfittings	
 =	

collector.WherePasses(ductFittingInstancesFilter).ToElements();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 foreach	
 (Element	
 a	
 in	
 ductfittings)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 set.Insert(a);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //TaskDialog.Show("duct	
 no",	
 set.Size.ToString());	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 set;	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 static	
 string	
 ParameterToString(Parameter	
 param)	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 string	
 val	
 =	
 "none";	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (param	
 ==	
 null)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 val;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 to	
 get	
 to	
 the	
 parameter	
 value,	
 we	
 need	
 to	
 pause	
 it	
 depending	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 on	
 its	
 strage	
 type	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 switch	
 (param.StorageType)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 case	
 StorageType.Double:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 double	
 dVal	
 =	
 param.AsDouble();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 val	
 =	
 dVal.ToString();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 break;	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 case	
 StorageType.Integer:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 iVal	
 =	
 param.AsInteger();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 val	
 =	
 iVal.ToString();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 break;	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 case	
 StorageType.String:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 string	
 sVal	
 =	
 param.AsString();	

 151

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 val	
 =	
 sVal;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 break;	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 case	
 StorageType.ElementId:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ElementId	
 idVal	
 =	
 param.AsElementId();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 val	
 =	
 idVal.IntegerValue.ToString();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 break;	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 case	
 StorageType.None:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 break;	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 default:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 break;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 return	
 val;	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 void	
 IdentifyElement(Element	
 elem)	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 An	
 instance	
 of	
 a	
 system	
 family	
 has	
 a	
 designated	
 class.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 You	
 can	
 use	
 it	
 identify	
 the	
 type	
 of	
 element.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 e.g.,	
 walls,	
 floors,	
 roofs.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 string	
 s	
 =	
 "";	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (elem	
 is	
 Wall)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 =	
 "Wall";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 else	
 if	
 (elem	
 is	
 Floor)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 =	
 "Floor";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 else	
 if	
 (elem	
 is	
 RoofBase)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 =	
 "Roof";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 else	
 if	
 (elem	
 is	
 Duct)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 =	
 "Duct";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 else	
 if	
 (elem	
 is	
 FamilyInstance)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 An	
 instance	
 of	
 a	
 component	
 family	
 is	
 all	
 FamilyInstance.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 We'll	
 need	
 to	
 further	
 check	
 its	
 category.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 e.g.,	
 Doors,	
 Windows,	
 Furnitures.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (elem.Category.Id.IntegerValue	
 ==	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (int)BuiltInCategory.OST_Doors)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 =	
 "Door";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 else	
 if	
 (elem.Category.Id.IntegerValue	
 ==	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (int)BuiltInCategory.OST_Windows)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 =	
 "Window";	

 152

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 else	
 if	
 (elem.Category.Id.IntegerValue	
 ==	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (int)BuiltInCategory.OST_Furniture)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 =	
 "Furniture";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 else	
 if	
 (elem.Category.Id.IntegerValue	
 ==	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (int)BuiltInCategory.OST_DuctFitting)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 =	
 "Duct	
 Fitting";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 else	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 e.g.	
 Plant	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 =	
 "Component	
 family	
 instance";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 else	
 if	
 (elem	
 is	
 HostObject)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 check	
 the	
 base	
 class.	
 e.g.,	
 CeilingAndFloor.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 =	
 "System	
 family	
 instance";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 else	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 =	
 "Other";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 s	
 =	
 "You	
 have	
 picked:	
 "	
 +	
 s;	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 show	
 it.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 TaskDialog.Show("Identify	
 Element",	
 s);	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 void	
 ModifyElementWidth(Element	
 elem,double	
 n,	
 Transaction	
 trans)	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Parameter	
 param	
 =	
 elem.get_Parameter("Width");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //double	
 currentWidth	
 =	
 param.AsDouble();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (param	
 !=	
 null)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 trans.Start("ModifyWidth");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 param.Set(n);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 trans.Commit();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 void	
 ModifyElementHeight(Element	
 elem,	
 double	
 n,	
 Transaction	
 trans)	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Parameter	
 param	
 =	
 elem.get_Parameter("Height");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (param	
 !=	
 null)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 trans.Start("ModifyHeigh");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 param.Set(n);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 trans.Commit();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

 153

	
 	
 	
 	
 	
 	
 	
 	
 public	
 void	
 ModifyElementLengthWithAttach(Element	
 elem,	
 Transaction	
 trans)	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 try	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 trans.Start("Modify_Length");	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Duct	
 duct	
 =	
 (Duct)elem;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 LocationCurve	
 ductCurve	
 =	
 (LocationCurve)duct.Location;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 XYZ	
 pt1	
 =	
 ductCurve.Curve.get_EndPoint(0);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 XYZ	
 pt2	
 =	
 ductCurve.Curve.get_EndPoint(1);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 double	
 Xdiff	
 =	
 System.Math.Abs(pt1.X	
 -­‐	
 pt2.X);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 double	
 Ydiff	
 =	
 System.Math.Abs(pt1.Y	
 -­‐	
 pt2.Y);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 double	
 Zdiff	
 =	
 System.Math.Abs(pt1.Z	
 -­‐	
 pt2.Z);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //string	
 s	
 =	
 "X	
 difference	
 "	
 +	
 Xdiff	
 +	
 "\n"	
 +	
 "Y	
 difference	
 "	
 +	

Ydiff	
 +	
 "\n"	
 +	
 "Z	
 difference	
 "	
 +	
 Zdiff	
 +	
 "\n";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //TaskDialog.Show("Checking",	
 s);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 double	
 X	
 =	
 0,	
 Y	
 =	
 0,	
 Z	
 =	
 0;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Random	
 random	
 =	
 new	
 Random();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 double	
 change	
 =	
 2*random.NextDouble();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 int	
 flag	
 =	
 random.Next(0,	
 2);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (flag	
 ==	
 0)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 change	
 =	
 change	
 *	
 1;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 else	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 change	
 =	
 change	
 *	
 -­‐1;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (Xdiff	
 >=	
 0.001)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 X	
 =	
 change;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (Ydiff	
 >=	
 0.001)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Y	
 =	
 change;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (Zdiff	
 >=	
 0.001)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Z	
 =	
 change;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 XYZ	
 v	
 =	
 new	
 XYZ(X,	
 Y,	
 Z);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 move(elem,	
 v);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 trans.Commit();	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 catch	
 (Exception	
 e)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 TaskDialog.Show("error",	
 e.Message);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 void	
 ModifyElmentLength(Element	
 elem,	
 double	
 value)	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Duct	
 duct	
 =	
 (Duct)elem;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 LocationCurve	
 ductCurve	
 =	
 (LocationCurve)duct.Location;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 XYZ	
 pt1	
 =	
 ductCurve.Curve.get_EndPoint(0);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 XYZ	
 pt2	
 =	
 ductCurve.Curve.get_EndPoint(1);	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 XYZ	
 newPt1	
 =	
 new	
 XYZ(pt1.X	
 -­‐	
 value,	
 pt1.Y,	
 pt1.Z);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 XYZ	
 newPt2	
 =	
 new	
 XYZ(pt2.X	
 -­‐	
 value,	
 pt2.Y,	
 pt2.Z);	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 create	
 a	
 new	
 line	
 bound.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Line	
 newDuctLine	
 =	
 app.Create.NewLineBound(newPt1,	
 pt2);	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 finally	
 change	
 the	
 curve.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ductCurve.Curve	
 =	
 newDuctLine;	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 message	
 to	
 the	
 user.	
 	

 154

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 String	
 msg	
 =	
 "Location:	
 start	
 point	
 moved	
 "	
 +	
 value	
 +	
 "in	
 X-­‐direction"	

+	
 "\n";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 TaskDialog.Show("Revit	
 Intro	
 Lab",	
 msg);	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 void	
 ModifyDuctfittingLength(Element	
 elem,	
 double	
 value)	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 FamilyInstance	
 d	
 =	
 (FamilyInstance)elem;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 LocationCurve	
 dCurve	
 =	
 (LocationCurve)d.Location;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 XYZ	
 pt1	
 =	
 dCurve.Curve.get_EndPoint(0);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 XYZ	
 pt2	
 =	
 dCurve.Curve.get_EndPoint(1);	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 XYZ	
 newPt1	
 =	
 new	
 XYZ(pt1.X	
 -­‐	
 value,	
 pt1.Y,	
 pt1.Z);	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 XYZ	
 newPt2	
 =	
 new	
 XYZ(pt2.X	
 -­‐	
 value,	
 pt2.Y,	
 pt2.Z);	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 create	
 a	
 new	
 line	
 bound.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Line	
 newDuctLine	
 =	
 app.Create.NewLineBound(newPt1,	
 pt2);	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 finally	
 change	
 the	
 curve.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 dCurve.Curve	
 =	
 newDuctLine;	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 message	
 to	
 the	
 user.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 String	
 msg	
 =	
 "Location:	
 start	
 point	
 moved	
 "	
 +	
 value	
 +	
 "in	
 X-­‐direction"	

+	
 "\n";	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 TaskDialog.Show("Revit	
 Intro	
 Lab",	
 msg);	

	
 	
 	
 	
 	
 	
 	
 	
 }	

	

	

	
 	
 	
 	
 	
 	
 	
 	
 public	
 void	
 move(Element	
 e,	
 XYZ	
 v)	

	
 	
 	
 	
 	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ElementTransformUtils.MoveElement(document,	
 e.Id,	
 v);	

	
 	
 	
 	
 	
 	
 	
 	
 }	

}	

	

	

 155

REFERENCES

Adan, A., and Huber, D. (2011). "3D reconstruction of interior wall surfaces under
occlusion and clutter." Proc., International Conference on 3D Imaging, Modeling,
Processing, Visualization and Transmission (3DIMPVT), IEEE, Hangzhou,
China, 275-281.

Adan, A., Xiong, X., Akinci, B., and Huber, D. (2011). "Automatic creation of
semantically rich 3D building models from laser scanner data." Proc.,
International Symposium on Automation and Robotics in Construction (ISARC),
Seoul, Korea, 342-347.

Akinci, B., Boukamp, F., Gordon, C., Huber, D., Lyons, C., and Park, K. (2006). "A
formalism for utilization of sensor systems and integrated project models for
active construction quality control." Automation in Construction, 15(2), 124-
138.

Anand, A., Koppula, H. S., Joachims, T., and Saxena, A. (2013). "Contextually
guided semantic labeling and search for three-dimensional point clouds." The
International Journal of Robotics Research, 32(1), 19-34.

Anderson, D. C., and Chang, T. C. (1990). "Geometric reasoning in feature-based
design and process planning." Computers & Graphics, 14(2), 225-235.

Anguelov, D., Taskarf, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G., and
Ng, A. (2005). "Discriminative learning of markov random fields for
segmentation of 3d scan data." Proc., IEEE Computer Society Conference on
Computer Vision and Pattern Recognition IEEE, San Diego, CA, 169-176.

Anil, E., Akinci, B., and Huber, D. (2011). "Representation requirements of as-is
building information models generated from laser scanned point cloud data."
Proc., International Symposium on Automation and Robotics in Construction
(ISARC)Seoul, Korea.

Banta, J. E., Wong, L., Dumont, C., and Abidi, M. A. (2000). "A next-best-view
system for autonomous 3-D object reconstruction." Systems, Man and
Cybernetics, Part A: Systems and Humans, IEEE Transactions on, 30(5), 589-598.

Beetz, J., Van Leeuwen, J., and De Vries, B. (2006). "Towards a topological
reasoning service for IFC-based Building Information Models in a Semantic
Web Context." Proc., 11th International Conf. on Computing in Civil and Building
Engineering ICCCBE-XIMontreal, Canada, 3426-3435.

Belongie, S., Malik, J., and Puzicha, J. (2001). "Shape context: A new descriptor for
shape matching and object recognition." Advances in neural information
processing systems, 831-837.

Belongie, S., Malik, J., and Puzicha, J. (2002). "Shape matching and object
recognition using shape contexts." IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(4), 509-522.

Ben Hmida, H., Cruz, C., Nicolle, C., and Boochs, F. (2011). "Toward the
Automatic Generation of a Semantic VRML Model from Unorganized 3D
Point Clouds." Proc., IARIA Conference, Venice/Mestre, Italy, 35-41.

 156

Biasotti, S., Marini, S., Mortara, M., Patane, G., Spagnuolo, M., and Falcidieno, B.
(2003). "3D shape matching through topological structures." Proc., Discrete
Geometry for Computer Imagery, Springer, Berlin Heidelberg, 194-203.

Bimbo, A. D., and Pala, P. (2006). "Content-based retrieval of 3D models." ACM
Transactions on Multimedia Computing, Communications, and Applications
(TOMCCAP) 2(1), 20-43.

Boehler, W., Vicent, M. B., and Marbs, A. (2003). "Investigating laser scanner
accuracy." The International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences, 34(Part 5), 696-701.

Boehnen, C., and Flynn, P. (2005). "Accuracy of 3D scanning technologies in a face
scanning scenario." Proc., Fifth International Conference on 3-D Digital Imaging
and Modeling IEEE, Ottawa, Ontario, Canada, 310-317.

Borrmann, A., and Beetz, J. (2010). "Towards spatial reasoning on building
information models." Proc., 8th European Conference on Product and Process
Modeling (ECPPM), Taylor & Francis Group, Cork, Ireland.

Borrmann, A., and Rank, E. (2009). "Topological analysis of 3D building models
using a spatial query language." Advanced Engineering Informatics, 23(4), 370-
385.

Bosché, F. (2009). "Automated recognition of 3D CAD model objects and
calculation of as-built dimensions for dimensional compliance control in
construction." Adv. Eng. Informatics, 24, 107-118.

Bosché, F., Guillemet, A., Turkan, Y., Haas, C., and Haas, R. "Tracking the Built
Status of MEP Works: Assessing the Value of a Scan-vs-BIM System." Journal
of Computing in Civil Engineering

Bosche, F., and Haas, C. (2008). "Automated retrieval of 3D CAD model objects in
construction range images." Automation in Construction, 17(4), 499-512.

Bosche, F., and Haas, C. T. (2008). "Automated retrieval of project three-
dimensional CAD objects in range point clouds to support automated
dimensional QA/QC." Information Technologies in Construction, 13, 71-85.

Brenner, C. (2005). "Building reconstruction from images and laser scanning."
International Journal of Applied Earth Observation and Geoinformation, 6(3), 187-
198.

BuildingSMART (2012). "IFC2x Edition 3 Technical Corrigendum 1."
<http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/index.htm%3E.
(April 2012).

buildingSMART (2012). "The IFC Specification." <http://www.buildingsmart-
tech.org/specifications%3E. (August, 2012).

Bustos, B., Keim, D., Saupe, D., and Schreck, T. (2007). "Content-based 3D object
retrieval." Computer Graphics and Applications, IEEE, 27(4), 22-27.

Caetano, T. S., McAuley, J. J., Cheng, L., Le, Q. V., and Smola, A. J. (2009).
"Learning graph matching." Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 31(6), 1048-1058.

Campbell, R. J., and Flynn, P. J. (2001). "A survey of free-form object representation
and recognition techniques." Computer Vision and Image Understanding, 81(2),
166-210.

 157

Cantzler, H., Fisher, R. B., and Devy, M. (2002). "Improving architectural 3D
reconstruction by plane and edge constraining." Proc., British Machine Vision
Conference, Citeseer, Cardiff, UK, 43-52.

Cha, S.-H. (2007). "Comprehensive survey on distance/similarity measures between
probability density functions." International Journal of Mathematical Models and
Methods in Applied Science, 1(2), 300-307.

Chao, M. W., Lin, C. H., Chang, C. C., and Lee, T. Y. (2011). "A graph‐based
shape matching scheme for 3D articulated objects." Computer Animation and
Virtual Worlds, 22(2‐3), 295-305.

Chen, D. Y., Tian, X. P., Shen, Y. T., and Ouhyoung, M. (2003). "On visual
similarity based 3D model retrieval." Computer graphics forum, 22(3), 223-232.

Chen, H., and Bhanu, B. (2007). "3D free-form object recognition in range images
using local surface patches." Pattern Recognition Letters, 28(10), 1252-1262.

Chen, Y., and Medioni, G. (1992). "Object modelling by registration of multiple
range images." Image and vision computing, 10(3), 145-155.

Choi, N., Son, H., Kim, C., Kim, C., and Kim, H. (2009). "Rapid 3D object
recognition for automatic project progress monitoring using a stereo vision
system." Proc., The 25th International Symposium on Automation and Robotics in
Construction.

Chua, C. S., and Jarvis, R. (1997). "Point signatures: A new representation for 3d
object recognition." International Journal of Computer Vision, 25(1), 63-85.

Clark, J., and Robson, S. (2004). "Accuracy of measurements made with a Cyrax
2500 laser scanner against surfaces of known colour." Survey Review, 37(294),
626-638.

Clementini, E., and Di Felice, P. (1996). "A model for representing topological
relationships between complex geometric features in spatial databases."
Information sciences, 90(1), 121-136.

Connolly, C. (1985). "The determination of next best views." Proc., IEEE International
Conference on Robotics and Automation, IEEE, St. Louis, Missouri, 432-435.

Conte, D., Foggia, P., Sansone, C., and Vento, M. (2004). "Thirty years of graph
matching in pattern recognition." International journal of pattern recognition and
artificial intelligence, 18(03), 265-298.

Cruz, C. (2007). "Ontology-driven 3D reconstruction of architectural objects."
VISAPP (Special Sessions), 47-54.

Cybenko, G., Bhasin, A., and Cohen, K. D. (1997). "Pattern recognition of 3D CAD
objects: Towards an electronic yellow pages of mechanical parts." International
Journal of Smart Engineering System Design, 1(1), 1-13.

de Haan, G. (2009). "Scalable visualization of massive point clouds." Nederlandse
Commissie voor Geodesie KNAW, 49, 59.

Douillard, B., Fox, D., Ramos, F., and Durrant-Whyte, H. (2011). "Classification
and semantic mapping of urban environments." The International Journal of
Robotics Research, 30(1), 5-32.

Douillard, B., Underwood, J., Vlaskine, V., Quadros, A., and Singh, S. (2010). "A
pipeline for the segmentation and classification of 3D point clouds." Proc., The
International Symposium on Experimental Robotics (ISER)Delhi, India.

 158

Duan, Y., Cruz, C., and Nicolle, C. (2009). "Propose Semantic Formalization for 3D
Reconstruction of Architectural Objects." Proc., 7th ACIS International
Conference on Software Engineering Research, Management and Applications, IEEE,
Haikou, China, 78-85.

Duan, Y., Cruz, C., and Nicolle, C. (2010). "Architectural reconstruction of 3D
building objects through semantic knowledge management." Proc., 11th ACIS
International Conference on Software Engineering Artificial Intelligence Networking
and Parallel/Distributed Computing (SNPD), IEEE, London, United Kingdom,
261-266.

Eastman, C. M. (1999). Building product models: computer environments supporting design
and construction, CRC press, Boca Raton, FL.

Eich, M., Dabrowska, M., and Kirchner, F. (2010). "Semantic labeling:
Classification of 3d entities based on spatial feature descriptors." Proc., IEEE
International Conference on Robotics and Automation, ICRAAnchorage, Alaska.

Elberink, S. O., and Vosselman, G. (2009). "Building reconstruction by target based
graph matching on incomplete laser data: analysis and limitations." Sensors,
9(8), 6101-6118.

Fischler, M. A., and Bolles, R. C. (1981). "Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography." Communications of the ACM, 24(6), 381-395.

Fröhlich, C., and Mettenleiter, M. (2004). "Terrestrial laser scanning—new
perspectives in 3D surveying." International archives of photogrammetry, remote
sensing and spatial information sciences, 36(Part 8), W2.

Frome, A., Huber, D., Kolluri, R., Bülow, T., and Malik, J. (2004). "Recognizing
Objects in Range Data Using Regional Point Descriptors

Computer Vision - ECCV 2004." T. Pajdla, and J. Matas, eds., Springer Berlin /
Heidelberg, 224-237.

Funkhouser, T., and Kazhdan, M. (2004). "Shape-based retrieval and analysis of 3D
models." Proc., ACM SIGGRAPH 2004 Course Notes, ACM, Los Angeles, CA,
USA, 16.

Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., and
Jacobs, D. (2003). "A search engine for 3D models." ACM Transactions on
Graphics (TOG), 22(1), 83-105.

Gilsinn, D., Cheok, G. S., Witzgall, C., and Lytle, A. (2005). Construction object
identification from LADAR scans: an experimental study using I-beams, US
Department of Commerce, Technology Administration, National Institute of
Standards and Technology, Washington DC.

Golovinskiy, A., and Funkhouser, T. (2009). "Min-cut based segmentation of point
clouds." Proc., IEEE 12th International Conference on Computer Vision Workshops
(ICCV Workshops), Ieee, Barcelona, Spain, 39-46.

Golovinskiy, A., Kim, V. G., and Funkhouser, T. (2009). "Shape-based recognition
of 3d point clouds in urban environments." Proc., IEEE 12th International
Conference on Computer Vision, IEEE, Kyoto, Japan, 2154-2161.

Golparvar-Fard, M., Bohn, J., Teizer, J., Savarese, S., and Pena-Mora, F. (2011).
"Evaluation of image-based modeling and laser scanning accuracy for

 159

emerging automated performance monitoring techniques." Automation in
Construction, 20(8), 1143-1155.

Golparvar-Fard, M., Pena-Mora, F., and Savarese, S. (2011). "Monitoring changes
of 3D building elements from unordered photo collections." Proc., 2011 IEEE
International Conference on Computer Vision Workshops, IEEE, Barcelona, Spain,
249-256.

Gong, J., and Caldas, C. H. (2008). "Data processing for real-time construction site
spatial modeling." Automation in Construction, 17(5), 526-535.

Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunii, T. L. (2001). "Topology
matching for fully automatic similarity estimation of 3D shapes." Proc., The
28th annual conference on Computer graphics and interactive techniques, ACM, Los
Angeles, CA, USA, 203-212.

Hofman, I., and Jarvis, R. (2000). "Object Recognition Via Attributed Graph
Matching." Proc., Australasian Conference on Robotics and Automation,
ACRAMelbourne, Australia.

Hripcsak, G., and Rothschild, A. S. (2005). "Agreement, the f-measure, and
reliability in information retrieval." Journal of the American Medical Informatics
Association, 12(3), 296-298.

Huang, H., and Brenner, C. (2011). "Rule-based roof plane detection and
segmentation from laser point clouds." Proc., Joint Urban Remote Sensing Event
(JURSE), IEEE, Munich, Germany, 293-296.

Huang, Y. J., Powers, R., and Montelione, G. T. (2005). "Protein NMR recall,
precision, and F-measure scores (RPF scores): structure quality assessment
measures based on information retrieval statistics." Journal of the American
Chemical Society, 127(6), 1665-1674.

Huber, D., Akinci, B., Oliver, A., Anil, E., Okorn, B. E., and Xiong, X. (2011).
"Methods for automatically modeling and representing As-built Building
Information Models." Proc., The NSF CMMI Research Innovation Conference,
Atlanta, GA.

Huber, D., Akinci, B., Tang, P., Adan, A., Okorn, B., and Xiong, X. (2010). "Using
laser scanners for modeling and analysis in architecture, engineering, and
construction." Proc., 44th Annual Conference on Information Sciences and Systems
(CISS), IEEE, Princeton, New Jersey, USA, 1-6.

Huber, D., Kapuria, A., Donamukkala, R., and Hebert, M. (2004). "Parts-based 3d
object classification." Proc., IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, IEEE, Washington, DC 2004 II-82-II-89 Vol.
82.

Ip, C. Y., Lapadat, D., Sieger, L., and Regli, W. C. (2002). "Using shape
distributions to compare solid models." Proc., The seventh ACM symposium on
Solid modeling and applications, ACM, Saarbrücken, Germany, 273-280.

Iyer, N., Jayanti, S., Lou, K., Kalyanaraman, Y., and Ramani, K. (2005). "Three-
dimensional shape searching: state-of-the-art review and future trends."
Computer-Aided Design, 37(5), 509-530.

Jiantao, P., Yi, L., Guyu, X., Hongbin, Z., Weibin, L., and Uehara, Y. (2004). "3D
model retrieval based on 2D slice similarity measurements." Proc., 2nd

 160

International Symposium on 3D Data Processing, Visualization and Transmission,
IEEE, Thessaloniki, Greece, 95-101.

Johnson, A. E. (1997). "Spin-images: A representation for 3-D surface matching."
PhD thesis, Carnegie Mellon University.

Johnson, A. E., and Hebert, M. (1999). "Using spin images for efficient object
recognition in cluttered 3D scenes." IEEE Transactions on Pattern Analysis and
Machine Intelligence, 21(5), 433-449.

Kersten, T. P., Sternberg, H., and Mechelke, K. (2005). "Investigations into the
accuracy behaviour of the terrestrial laser scanning system Mensi GS100."
Proc., Conference in Optical 3D Measurement TechniquesVienna, Austria, 122-131.

Kohavi, R. (1995). "A study of cross-validation and bootstrap for accuracy
estimation and model selection." Proc., International Joint Conference on Artifical
Intelligence (IJCAI)Montreal, Quebec, Canada, 1137-1145.

Koppula, H. S., Anand, A., Joachims, T., and Saxena, A. (2011). "Semantic labeling
of 3d point clouds for indoor scenes." Proc., Advances in Neural Information
Processing SystemsGranada, Spain, 244-252.

Körtgen, M., Park, G. J., Novotni, M., and Klein, R. (2003). "3D shape matching
with 3D shape contexts." Proc., The 7th central European seminar on computer
graphics, Citeseer, Budmerice, Slovakia, 5-17.

Lai, K., and Fox, D. (2010). "Object Recognition in 3D Point Clouds Using Web
Data and Domain Adaptation." The International Journal of Robotics Research,
29(8), 1019-1037.

Liu, X., Eybpoosh, M., and Akinci, B. "Developing As-Built Building Information
Model Using Construction Process History Captured by a Laser Scanner and
a Camera." Construction Research Congress 2012West Lafayette, Indiana, 1232-
1241.

Liu, Y., Zhang, D., Lu, G., and Ma, W. Y. (2007). "A survey of content-based image
retrieval with high-level semantics." Pattern Recognition, 40(1), 262-282.

Mahmoudi, M., and Sapiro, G. (2009). "Three-dimensional point cloud recognition
via distributions of geometric distances." Graphical Models, 71(1), 22-31.

Massios, N. A., and Fisher, R. B. (1998). "A best next view selection algorithm
incorporating a quality criterion." Proc., British Machine Vision Conference
Southampton, UK, 1-10.

Maver, J., and Bajcsy, R. (1993). "Occlusions as a guide for planning the next view."
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 15(5), 417-433.

Mechelke, K., Kersten, T. P., and Lindstaedt, M. (2007). "Comparative
investigations into the accuracy behaviour of the new generation of terrestrial
laser scanning systems." Proc., Optical 3-D Measurement Techniques VIII Gruen
and Kahmen, Zurich, 319-327.

Min, P., Chen, J., and Funkhouser, T. (2002). "A 2D sketch interface for a 3D model
search engine." Proc., ACM SIGGRAPH 2002 conference abstracts and applications,
ACM, San Antonio, Texas, USA, 138-138.

Mitra, N. J., Gelfand, N., Pottmann, H., and Guibas, L. (2004). "Registration of
point cloud data from a geometric optimization perspective." Proc., 2004
Eurographics/ACM SIGGRAPH symposium on Geometry processing, ACM, Nice,
France, 22-31.

 161

Mozos, O. M., Stachniss, C., and Burgard, W. (2005). "Supervised learning of places
from range data using adaboost." Proc., IEEE International Conference on
Robotics and Automation, ICRA, IEEE, Barcelona, France, 1730-1735.

Nepal, M. P., Zhang, J., Webster, A., Staub-French, S., Pottinger, R., and
Lawrence, M. (2009). "Querying IFC-based building information models to
support construction management functions." Proc., Construction Research
Congress “Building a Sustainable Future"Seattle, Washington, 506-515.

Novotni, M., and Klein, R. (2003). "3D Zernike descriptors for content based shape
retrieval." Proc., Proceedings of the eighth ACM symposium on Solid modeling and
applications, ACM, Seattle, Washington, USA, 216-225.

Nüchter, A., and Hertzberg, J. (2008). "Towards semantic maps for mobile robots."
Robotics and Autonomous Systems, 56(11), 915-926.

Nuchter, A., Surmann, H., and Hertzberg, J. (2003). "Automatic model refinement
for 3D reconstruction with mobile robots." Proc., Fourth International Conference
on 3-D Digital Imaging and Modeling, IEEE, Banff, Canada, 394-401.

Nüchter, A., Surmann, H., Lingemann, K., and Hertzberg, J. (2003). "Semantic
Scene Analysis of Scanned 3D Indoor Environments." Proc., Semantic Scene
Analysis of Scanned 3D Indoor EnvironmentsMunich, DE, 215-221.

Okorn, B., Xiong, X., Akinci, B., and Huber, D. (2010). "Toward automated
modeling of floor plans." Proc., The Symposium on 3D Data Processing,
Visualization and TransmissionParis, France.

Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. (2001). "Matching 3D
models with shape distributions." Proc., SMI 2001 International Conference on
Shape Modeling and Applications IEEE, Genoa, Italy, 154-166.

Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. (2002). "Shape
distributions." ACM Transactions on Graphics (TOG), 21(4), 807-832.

Oude Elberink, S., and Vosselman, G. (2011). "Quality analysis on 3D building
models reconstructed from airborne laser scanning data." ISPRS Journal of
Photogrammetry and Remote Sensing, 66(2), 157-165.

Pangercic, D., Pitzer, B., Tenorth, M., and Beetz, M. (2012). "Semantic object maps
for robotic housework-representation, acquisition and use." Proc., 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
IEEE, Vilamoura, Algarve, Portugal, 4644-4651.

Paquet, E., Rioux, M., Murching, A., Naveen, T., and Tabatabai, A. (2000).
"Description of shape information for 2-D and 3-D objects." Signal Processing:
Image Communication, 16(1), 103-122.

Park, H., Lee, H., Adeli, H., and Lee, I. (2007). "A new approach for health
monitoring of structures: terrestrial laser scanning." Computer‐Aided Civil and
Infrastructure Engineering, 22(1), 19-30.

Pito, R. (1996). "A sensor-based solution to the “next best view” problem." Proc.,
13th International Conference on Pattern Recognition, IEEE, Vienna, Austria, 941-
945.

Pito, R. (1999). "A solution to the next best view problem for automated surface
acquisition." Pattern Analysis and Machine Intelligence, IEEE Transactions on,
21(10), 1016-1030.

 162

Posner, I., Cummins, M., and Newman, P. (2009). "A generative framework for fast
urban labeling using spatial and temporal context." Autonomous Robots, 26(2-
3), 153-170.

Posner, I., Schroeter, D., and Newman, P. (2008). "Using scene similarity for place
labelling." Proc., Experimental Robotics, Springer, Berlin Heidelberg, 85-98.

Pu, S., and Vosselman, G. (2006). "Automatic extraction of building features from
terrestrial laser scanning." International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences, 36(5), 25-27.

Pu, S., and Vosselman, G. (2009). "Knowledge based reconstruction of building
models from terrestrial laser scanning data." ISPRS journal of Photogrammetry
and Remote Sensing, 64(6), 575-584.

Rabbani, T., Dijkman, S., van den Heuvel, F., and Vosselman, G. (2007). "An
integrated approach for modelling and global registration of point clouds."
ISPRS journal of Photogrammetry and Remote Sensing, 61(6), 355-370.

Rabbani, T., van Den Heuvel, F., and Vosselmann, G. (2006). "Segmentation of
point clouds using smoothness constraint." International Archives of
Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(5), 248-253.

Ravada, S., Horhammer, M., Kazar, B. M., and Spatial, O. (2010). "Point Cloud:
Storage, Loading, and Visualization."
<http://www.cigi.illinois.edu/cybergis/docs/Kazar_Position_Paper.pdf%3E
. (2013).

Refaeilzadeh, P., Tang, L., and Liu, H. (2009). "Cross-validation." Encyclopedia of
Database Systems, Springer, 532-538.

Requicha, A. G. (1980). "Representations for rigid solids: Theory, methods, and
systems." ACM Computing Surveys (CSUR), 12(4), 437-464.

Roggero, M. (2002). "Object segmentation with region growing and principal
component analysis." The International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 34(3/A), 289-294.

Rusu, R. B., Blodow, N., and Beetz, M. (2009). "Fast point feature histograms (fpfh)
for 3d registration." Proc., IEEE International Conference on Robotics and
Automation (ICRA'09) IEEE, Anchorage, USA, 3212-3217.

Rusu, R. B., Bradski, G., Thibaux, R., and Hsu, J. (2010). "Fast 3d recognition and
pose using the viewpoint feature histogram." Proc., IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), IEEE, Taipei, Taiwan,
2155-2162.

Rusu, R. B., Marton, Z. C., Blodow, N., Dolha, M., and Beetz, M. (2008). "Towards
3D Point cloud based object maps for household environments." Robotics and
Autonomous Systems, 56(11), 927-941.

Rusu, R. B., Marton, Z. C., Blodow, N., Holzbach, A., and Beetz, M. (2009).
"Model-based and learned semantic object labeling in 3D point cloud maps of
kitchen environments." Proc., IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2009, IEEE, St. Louis, MO, USA, 3601-3608.

Salomons, O. W., van Houten, F. J., and Kals, H. (1993). "Review of research in
feature-based design." Journal of Manufacturing Systems, 12(2), 113-132.

 163

Salvi, J., Matabosch, C., Fofi, D., and Forest, J. (2007). "A review of recent range
image registration methods with accuracy evaluation." Image and Vision
Computing, 25(5), 578-596.

Schnabel, R., Wahl, R., and Klein, R. (2007). "Efficient RANSAC for Point‐Cloud
Shape Detection." Computer Graphics Forum, 26, 214-226.

Schnabel, R., Wessel, R., Wahl, R., and Klein, R. (2008). "Shape recognition in 3d
point-clouds." Proc., Conference in Central Europe on Computer Graphics,
Visulization and Computer Vision Citeseer, Bory, Czech Republic.

Schneider, M., and Behr, T. (2006). "Topological relationships between complex
spatial objects." ACM Transactions on Database Systems (TODS), 31(1), 39-81.

Scott, W., Roth, G., and Rivest, J.-F. (2003). "View Planning for Automated 3D
Object Reconstruction Inspection." ACM Computing Surveys, 35(1).

Sharp, G. C., Lee, S. W., and Wehe, D. K. (2002). "ICP registration using invariant
features." Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(1),
90-102.

Son, H., and Kim, C. (2010). "3D structural component recognition and modeling
method using color and 3D data for construction progress monitoring."
Automation in Construction, 19(7), 844-854.

Song, H., and Feng, H.-Y. (2009). "A progressive point cloud simplification
algorithm with preserved sharp edge data." The International Journal of
Advanced Manufacturing Technology, 45(5-6), 583-592.

Staub-French, S., Fischer, M., Kunz, J., and Paulson, B. (2003). "An ontology for
relating features with activities to calculate costs." Journal of Computing in Civil
Engineering, 17(4), 243-254.

Tang, P., Akinci, B., and Huber, D. (2009). "Quantification of edge loss of laser
scanned data at spatial discontinuities." Automation in Construction, 18(8),
1070-1083.

Tang, P., Anil, E. B., Akinci, B., and Huber, D. (2011). "Efficient and effective
quality assessment of as-is building information models and 3D laser-scanned
data." Proc., ASCE International Workshop on Computing in Civil
EngineeringMiami, Florida.

Tang, P., Huber, D., and Akinci, B. (2010). "Characterization of laser scanners and
algorithms for detecting flatness defects on concrete surfaces." Journal of
Computing in Civil Engineering, 25(1), 31-42.

Tang, P., Huber, D., Akinci, B., Lipman, R., and Lytle, A. (2010). "Automatic
reconstruction of as-built building information models from laser-scanned
point clouds: A review of related techniques." Automation in Construction,
19(7), 829-843.

Tangelder, J. W., and Veltkamp, R. C. (2004). "A survey of content based 3D shape
retrieval methods." Proc., The International Conference on Shape Modeling and
Applications, IEEE, Genova, Italy., 145-156.

Tarabanis, K. A., Allen, P. K., and Tsai, R. Y. (1995). "A survey of sensor planning
in computer vision." Robotics and Automation, IEEE Transactions on, 11(1), 86-
104.

Teizer, J., Caldas, C. H., and Haas, C. T. (2007). "Real-time three-dimensional
occupancy grid modeling for the detection and tracking of construction

 164

resources." Journal of Construction Engineering and Management, 133(11), 880-
888.

Triebel, R., Kersting, K., and Burgard, W. (2006). "Robust 3D scan point
classification using associative Markov networks." Proc., IEEE International
Conference on Robotics and Automation, IEEE, Orlando, Florida, USA, 2603-
2608.

Truong, H., Boochs, F., Habed, A., and Voisin, Y. (2012). "A knowledge-based
approach to the automatic algorithm selection for 3D scene annotation."
Proc., 2012 11th International Conference on Information Science, Signal Processing
and their Applications (ISSPA), IEEE, Montreal, QC, Canada, 225-230.

Ullrich, T., Settgast, V., and Fellner, D. W. (2008). "Semantic fitting and
reconstruction." Journal on Computing and Cultural Heritage (JOCCH), 1(2), 12.

Valero, E., Adan, A., Huber, D., and Cerrada, C. (2011). "Detection, modeling, and
classification of moldings for automated reverse engineering of buildings from
3D data." Proc., 28th International Symposium on Automation and Robotics in
ConstructionSeoul, Korea.

Van Leeuwen, J. P., and Wagter, H. (1997). "Architectural design-by-Features."
CAAD futures, Springer, Kluwer, Dordrecht, 97-115.

Van Treeck, C., and Rank, E. (2004). "Analysis of building structure and topology
based on graph theory." Proc., International conference on computing in Civil and
Building engineeringWeimar, German.

Verma, V., Kumar, R., and Hsu, S. (2006). "3d building detection and modeling
from aerial lidar data." Proc., IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, IEEE, New York, NY, USA, 2213-2220.

Vosselman, G., and Dijkman, S. (2001). "3D building model reconstruction from
point clouds and ground plans." International Archives of Photogrammetry Remote
Sensing and Spatial Information Sciences 34(3/W4), 37-44.

Wang, C. C., Wang, Y., and Yuen, M. M. (2003). "Feature based 3D garment
design through 2D sketches." Computer-Aided Design, 35(7), 659-672.

Wong, L., Dumont, C., and Abidi, M. (1999). "Next best view system in a 3D object
modeling task." Proc., 1999 IEEE International Symposium on Computational
Intelligence in Robotics and Automation IEEE, Monterey, CA, 306-311.

Xiong, X., Adan, A., Akinci, B., and Huber, D. (2013). "Automatic creation of
semantically rich 3D building models from laser scanner data." Automation in
Construction, 31, 325-337.

Xiong, X., and Huber, D. (2010). "Using context to create semantic 3D models of
indoor environments." Proc., British Machine Vision Conference (BMVC),
Aberystwyth, UK, 1-11.

Zaslavskiy, M., Bach, F., and Vert, J.-P. (2009). "A path following algorithm for the
graph matching problem." Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 31(12), 2227-2242.

Zhang, C., and Chen, T. (2001). "Indexing and retrieval of 3D models aided by
active learning." Proc., ninth ACM international conference on Multimedia, ACM,
Ottawa, Ontario, Canada, 615-616.

Zhang, D., and Lu, G. (2004). "Review of shape representation and description
techniques." Pattern recognition, 37(1), 1-19.

 165

	Thesis to submit
	Thesis to submit.2
	Thesis to submit_part 4
	Thesis to submit_cut2.4
	Thesis to submit_part 3

