
Carnegie Mellon University 
 

CARNEGIE INSTITUTE OF TECHNOLOGY 

 
 

THESIS 
 

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 
 
 

 FOR THE DEGREE OF Doctor of Philosophy  

 
       
 

 

TITLE        Constructing a Complete and Accurate As-Built BIM   
 
 
        Based on an As-Designed BIM and Progressive Laser Scans    

 
 
PRESENTED BY        Te Gao   
 
 

 
ACCEPTED BY THE DEPARTMENTS OF  

 
 
         Civil and Environmental Engineering   
 
 
        Burcu Akinci               February 7, 2014     

  CO-ADVISOR, MAJOR PROFESSOR   DATE 

 
 
        Semiha Ergan               February 7, 2014     

  CO-ADVISOR, MAJOR PROFESSOR   DATE 

 
 
        James H. Garrett               February 7, 2014     

  CO-ADVISOR, MAJOR PROFESSOR   DATE 

 
 
        David A. Dzombak               February 10, 2014     

  DEPARTMENT HEAD   DATE 

 
 

 
APPROVED BY THE COLLEGE COUNCIL 

 

 
        Vijayakumar Bhagavatula               February 19, 2014     

  DEAN   DATE 
 



 

 

Constructing a Complete and Accurate As-built BIM based on an As-

Designed BIM and Progressive Laser Scans 

 

 

Submitted in partial fulfillment of the requirements for  

the degree of  

Doctor of Philosophy 

in  

Department of Civil & Environmental Engineering 

 

 

Te Gao 

B.S., Civil Engineering, Zhejiang University 

M.S., Civil and Environmental Engineering, Carnegie Mellon University 

 

Carnegie Mellon University 

Pittsburgh, Pennsylvania 15213 

January, 2014 

 



 ii 

 

 

 

 

 

 

 

 

 

© Copyright by Te Gao 2014  

All Rights Reserved 



 iii 

ACKNOWLEDGEMENT 

I would like to express my deepest gratitude to my academic advisors, Dr. Burcu 

Akinci, Dr. James H. Garrett, Jr. and Dr. Semiha Ergan for their continuous help 

and support at all stages of my research. First, I would like to thank Dr. Burcu 

Akinci, who thought me how to work towards a research question from scratch and 

showed me the beauty and pleasure of doing research. I benefit a lot from her 

scientific advice and knowledge. Second, I would like to thank Dr. James Garrett for 

his guidance, patience, and insightful suggestions. I also want to express my respect 

to him for being my role model as a research and mentor with integrity, creative 

thinking and enthusiasm. Third, I am thankful for all the time, creative idea and 

efforts Dr. Semiha Ergan provide for this thesis and her mentorship and 

encouragements.  

My sincerest appreciation goes to my Ph.D. committee members, Dr. Daniel Huber 

and Dr. Matteo Pozzi for devoting their time and expertise in this thesis. I am 

grateful for their constructive feedback and insightful comments. I would also like to 

thank Dr. Lucio Soibelman for his help and guidance at the early stage of my 

research.  

I am grateful for working with the former and current Mosaic team members. This 

team has been a source of friendships as well as constructive criticisms and 

collaboration. In addition, I would like to acknowledge the financial support from 

Glodon Software Company, China and National Institute of Standards and 

Technology (NITS), which make my PhD work possible.  



 iv 

Lastly, I would like to thank my parents and my younger sister for all their love, 

support and encouragement. And most importantly, I would like to thank my 

fiancée, Xiaofei Wang, who is also my lifetime best friend. She always has faith in 

me and has supported me during my good and bad times. I dedicate this thesis to my 

family, my beloved fiancée for their constant support and unconditional love. 

 

 



 v 

ABSTRACT 

In the current practice, changes that occurred in the construction or renovation phase 

are not frequently captured and updated to as-built documentations. As a 

semantically rich digital representation, a building information model (BIM) can be 

used as an information repository to store and deliver as-built information. Since a 

building might not be constructed exactly as its design specifies, discrepancies might 

exist between BIMs created based on design information and actual building 

conditions. It is important to keep information stored in a BIM accurate and 

complete so that it servers as a reliable data source throughout the service life of a 

facility.  

Point cloud data captured by laser scans is capable of providing accurate 3D 

depiction of building conditions. Hence, point cloud data can be used as the 

reference to update the information contained in an as-designed BIM. There are two 

main challenges associated with the update process. First, in order to recognize the 

differences between a point cloud and an as-designed BIM, segments captured by the 

point cloud need to be matched to building components modeled in the BIM. 

However, a building component might have different shapes, dimensions, and 

locations in a point cloud as compared to how it is modeled in an as-designed BIM. 

The discrepancies between a point cloud and an as-designed BIM increase the 

complexity of matching the two data sets together.    

Second, occlusions and construction progress prevent a laser scan performed at a 

single point in time from capturing a complete set of geometric information 

associated with a building. While it is possible to retrieve more geometric 
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information by combining point clouds captured at different points in time, the large 

file size of a combined point cloud make it difficult to process and store.  Hence, 

there is a need for an approach to achieve the balance between the richness of the 

information provided by a combined point cloud and the file size of it.   

In order to address the above two challenges, this research aims to develop a 

framework that supports the update process by matching information from a point 

cloud to a BIM and leveraging point clouds captured at different times to provide a 

more complete and accurate reference. To develop such a framework, this research 

developed the following research objectives:  

(1) Identifying a general set of features that can be applied to recognize 

correspondences between a point cloud and a BIM.  

(2) Developing matching approaches that match point cloud segments to BIM 

components based on different types of features. 

(3) Conducting an experimental analysis to evaluate the performances of the 

developed matching approaches and effectiveness of the features used by these 

approaches.    

(4) Developing an approach that selects and combines point clouds captured at 

different times in order to reduce the file size of combined point cloud while 

maintaining the completeness of geometric information.   

 

 

 



 vii 

Table of Content 

CHAPTER 1. INTRODUCTION ........................................................... 2	  

1.1 Vision ................................................................................................ 6	  
1.2 Research Questions ............................................................................... 9	  
1.3 Scope and High Level Assumptions ......................................................... 12	  
1.4 Dissertation Organization .................................................................... 13	  

CHAPTER 2. IDENTIFICATION OF FEATURES TO BE USED FOR 

MATCHING POINT CLOUDS TO BIMS .............................................. 15	  

2.1 Background research studies .................................................................. 18	  

2.1.1. Research studies in relation to point cloud processing ...................................... 18	  
2.1.2. Product representation and data exchange standards for building information 

models ..................................................................................................................... 20	  
2.1.3. Point cloud and 3D object recognition approaches ........................................... 24	  

2.2 Research Method And Findings: Features To Be Used For Matching Point Clouds 

To BIMs ............................................................................................... 30	  

2.2.1. Features of point clouds that can be applied for the matching process ............... 32	  
2.2.2. Features of objects represented in BIMs ........................................................... 35	  

2.3 Validation ........................................................................................ 39	  
2.4 Conclusions ...................................................................................... 42	  

CHAPTER 3. EVALUATION OF DIFFERENT FEATURES FOR MATCHING 

POINT CLOUDS TO BUILDING INFORMATION MODELS ................... 44	  

3.1 Background Research Studies ................................................................ 46	  
3.2 Feature Based Matching Approaches ....................................................... 50	  

3.2.1 2D overlap area matching approach ................................................................. 51	  
3.2.2 Spatial relationship based graph-matching approach ......................................... 54	  
3.2.3. Distribution-based 3D shape matching approach ............................................. 55	  
3.2.4 Distribution-based 2D shape matching approach .............................................. 59	  

3.3 Experiment Setup ............................................................................... 60	  

3.3.1 Experiment setting ........................................................................................... 60	  
3.3.2. Tuning the matching approaches ..................................................................... 63	  

3.4 Experiment Results ............................................................................. 67	  
3.5 Combination Of Different Features To Improve Matching Results .................. 73	  



 viii 

3.5.1. Re-aligning point cloud and BIM based on 3D shape feature ............................ 73	  
3.5.2. Filtering the matching results generated by the 2D overlap area by the result of 

matching approach using 3D shape features .............................................................. 74	  
3.6 Validation ........................................................................................ 76	  
3.7 Conclusions ...................................................................................... 78	  

CHAPTER 4. AN APPROACH FOR LEVERAGING PROGRESSIVE LASER 

SCANS ........................................................................................... 79	  

4.1 Related Research Studies ...................................................................... 80	  

4.1.1. Evaluation of the quality and quantity of information captured by a point cloud 

data ......................................................................................................................... 80	  
4.1.2. Comparing two point clouds and identifying the differences ............................. 83	  
4.1.3. Next-best-view planning problem .................................................................... 84	  

4.2 Motivating Case Study: an Analysis of Completeness of Geometric Information in 

Progressively Captured Point Clouds ........................................................... 85	  
4.3. An Approach to Evaluate Information Contained in Progressively Captured Point 

Clouds and Select Point Clouds to Be Combined ............................................. 93	  

4.3.1. Content assessment module for quantifying the information contained in a point 

cloud ....................................................................................................................... 93	  
4.3.2. Content improvement module: Assessing the information gain by combining 

additional point clouds ........................................................................................... 100	  
4.4. Validation ...................................................................................... 103	  
4.5 Conclusion ...................................................................................... 107	  

CHAPTER 5 CONCLUSION AND FUTURE WORK ............................. 109	  

5.1 Contributions ................................................................................... 109	  
5.2 Practical Implication .......................................................................... 113	  
5.3 Future Research Directions .................................................................. 115	  

Appendix A: Matching Results for the Four Matching Approaches .............. 118	  

Appendix B. Codes for implementing the four matching approaches ............. 129	  

Appendix C. Codes for the discrepancy simulation algorithm ..................... 143	  

REFERENCES ............................................................................... 155	  



 ix 

 

List of Figures 
Figure 1. Envisioned framework for updating a BIM based on point cloud data ...... 8	  
Figure 2. Shape discrepancies between ductworks modeled in the BIM and the same 

ductworks shown in the point cloud ............................................................... 16	  
Figure 3. Different components with similar shapes and dimensions ...................... 17	  
Figure 4. Distribution of reviewed papers in different fields of applications ............. 32	  
Figure 5 (b). Count the number of research studies associated with each BIM related 

feature .......................................................................................................... 42	  
Figure 6. Examples of different types of discrepancies ............................................ 45	  
Figure 7. Classifications of features required by the four matching approaches ....... 51	  
Figure 8. 2D projection of the registered point cloud and BIM ............................... 53	  
Figure 9. Graph constructed from the point cloud and the BIM ............................. 55	  
Figure 10. A flowchart depicting the distribution-based 3D shape matching approach

 ..................................................................................................................... 58	  
Figure 11 As-designed BIM and the corresponding point cloud .............................. 61	  
Figure 12. Example set of models with different discrepancies for the experiment ... 63	  
Figure 13. Tradeoff of the precision and recall when threshold is changing ............. 65	  
Figure 14. Visualization of a matching matrix ....................................................... 68	  
Figure 15. Mapping results for the four mapping approach in a case where there is a 

slight (2”) difference in the length of a component between a point cloud and a 
BIM .............................................................................................................. 69	  

Figure 16. Matches identified by the 2D overlap area matching approach for one 
example case ................................................................................................. 70	  

Figure 17. The matches identified by the 2D and 3D shape matching approaches or 
one example case .......................................................................................... 71	  

Figure 18. The process of 3D shape plus 2D overlap area matching approach ......... 74	  
Figure 19. Validation data set includes different ductworks and different types of 

discrepancies applied to all three sets of ductworks ......................................... 77	  
Figure 20. Project site layout and the scan locations .............................................. 86	  
Figure 21. The testbed for the motivation case study: ductworks captured by the 

point cloud data ............................................................................................ 87	  
Figure 22. Targets shown in a point cloud ............................................................. 88	  
Figure 23 Status of geometric properties captured by individual point clouds (P1, 

P2…P6) and the combination of them ........................................................... 89	  
Figure 24. Screenshots of the point clouds captured at different times ..................... 91	  
Figure 25. The flowchart of content assessment module ......................................... 94	  
Figure 26(b) Ductworks captured by a point cloud and the coverage image, where 

the red cells indicate that the cells contain the points associated with the target 
surface. ......................................................................................................... 97	  

Figure 27 (a). Processing time and point cloud density vs. grid size ........................ 98	  
Figure 28 Point cloud data captured at different points in time and their occlusion 

images for duct segments ............................................................................. 100	  
Figure 29. Flowchart of the content improvement module ................................... 101	  
Figure 30. Dissimilarity ratio by adding P2 to P1 ................................................. 102	  



 x 

Figure 31. The four different building components targeted by the validation ....... 105	  
 



 xi 

List of Tables 

Table 1. Previous research studies on point cloud and 3D object recognition .......... 27	  
Table 2. Features of point clouds to support mapping point clouds to BIMs ........... 33	  
Table 3. A list of features associated with BIMs for matching point clouds to BIMs 36	  
Table 4. The definitions and optimal values for the thresholds ............................... 67	  
Table 5. Results of matching process for the four matching approaches for testing 

and training data set ...................................................................................... 72	  
Table 6. The precision and recall comparison for 2D overlap & 3D shape approaches 

with the combination of the two approaches .................................................. 76	  
Table 7. Matching results for the validation dataset ............................................... 77	  
Table 8 The resulting subset of point clouds to be registered following the three 

approaches .................................................................................................. 105	  
Table 9. Comparison of the developed approach (approach 3) with respect to other 

baseline approaches ..................................................................................... 107	  
 



 2 

CHAPTER 1. INTRODUCTION 

For every construction or renovation project, it is expected that the general 

contractor of the project will hand over the as-built documentations to the owner or 

the facility management team at the end of the project. In the current practice, the as-

built information is provided in paper-based documents, such as drawings and 

equipment lists, which are hard to update and maintain during the service life of a 

facility (Dickinson et al. 2009; East and Brodt 2007; Fallon and Palmer 2007; Pettee 

2005). One of the main challenges for the handover process is to ensure that captured 

building information is complete and reflects as-built conditions (Dickinson et al. 

2009; East and Brodt 2007; Pettee 2005). A report published by NIST in 2004 

pointed out that $4.8 billion was spent every year just to verify that the captured 

building information describes accurate building conditions (NIST 2004).  

As a digital representation that captures and exchanges building information between 

different stakeholders, a building information model (BIM) can be used as an 

information repository to store and deliver as-built information.  Currently, BIMs are 

usually created based on design information in the design or construction phases 

(called as as-designed BIMs). Such as-designed BIMs might not be able to reflect the 

as-built conditions of a building, since a building does not always get constructed 

exactly as it is specified at the design phase. Changes and updates are likely to 

happen during the construction phase (Tang et al. 2010, Goedert et al. 2008(O'Brien 

1998; Rowland Jr 1981; Terwiesch and Loch 1999). Extensive surveys are needed to 

capture as-built building conditions so as to remove differences between an as-
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designed BIM and the as-built conditions that need to be delivered (Dickinson et al. 

2009; Tang et al. 2010).   

It is important to keep the information captured in a BIM complete (i.e., all building 

components and their associated geometric information are captured in the BIM) 

and accurate (i.e., geometric information contained in the BIM reflects the as-built 

conditions). Laser scanning technology is able to capture accurate geometric data in 

the form of a point cloud and depict as-built spatial condition of buildings. Hence, 

point clouds captured by laser scans can be used as a reference to update an as-

designed BIM into an as-built BIM (i.e., a BIM that captures the as-built condition of 

a building). However, there are two main challenges associated with the process of 

updating an as-designed BIM using point cloud data.  

(1) Matching segments in point clouds to BIM components under discrepancy conditions  

Unlike a BIM, which contains both geometric and semantic information, a point 

cloud is a collection of 3D points without any semantic information (e.g., which 

building component that a point belongs to). Therefore, to support the updating 

process, segments captured by a point cloud need to be matched to components 

modeled in an as-designed BIM in order to compare the information contained in the 

as-designed BIM with the as-built geometric data captured by the point cloud.  

Typically, matches between a point cloud and a BIM can be identified based on the 

features associated with segments extracted from the point cloud and components 

modeled in the BIM. For example, if segment Pi of a point cloud is located at the 
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same position where component Bj is modeled in a BIM, it is possible that Pi and Bj 

are referring to the same component and should be matched together.  

However, due to changes that occur during the construction phase, a building 

component might have different shapes, dimensions, and be located at different 

positions in a point cloud as compared to how it is modeled in an as-designed BIM. 

These discrepancies could impact the matching process and generate incorrect 

matches between a point cloud and an as-designed BIM.  

Some features of point clouds and BIMs might remain similar under a given 

discrepancy condition, and hence these features can be used to correctly match point 

cloud segments to BIM components. Currently, there is a limited understanding of 

what features could be used to match a point cloud to a BIM and how these features 

would perform under different discrepancies. Therefore, this is a need to identify a 

general set of features that can be used to support the matching process and evaluate 

their performances in terms of how well those features are able to identify correct 

matches between a point cloud and a BIM. 

(2) Leveraging point clouds captured at different times to provide accurate and complete 

geometric information  

Point cloud data collected at a single point in time typically is not capable of 

providing all the geometric information required for updating an as-designed BIM 

due to the following reasons: (a) a construction scene is periodically occluded by 

temporary work, machinery, laborers, materials, (b) permanent building components 

might be hidden behind the finished surfaces (e.g., ductwork that are hidden behind 



 5 

ceiling tiles) and (c) some building components are not installed/constructed at the 

time of scanning.  

Scanning a building at discrete points in time during its construction process (called 

as progressive scanning in this thesis) and combining these scans together could 

provide more geometric information for updating a BIM. However, combining point 

clouds together could result in a file with huge size that is difficult to process and 

store, given that each point cloud often contains millions of data points and its size 

could range between a few hundred megabytes to a few gigabytes depending on the 

scanning range and resolution (Bentley 2012; Song and Feng 2009). There is a trade-

off between retrieving more geometric information by combining all of captured 

point clouds and reducing the file size by only combining a subset of point clouds. To 

address this challenge, there is a need for an approach that evaluates geometric 

information contained in a point cloud data and supports the selection of point 

clouds.  
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1.1 Vision 

To address the two challenges stated in the previous section, I have envisioned a 

framework that matches point clouds to components modeled in an as-designed BIM 

and leverage geometric information contained in the progressively captured point 

clouds to support the BIM update. The envisioned framework is shown in Figure 1. 

The framework is composed of three main processes:  

(1) Matching point cloud segments to BIM components 

This process matches the segments from a point cloud to components modeled in an 

as-designed BIM. Based on the identified matches, construction professionals are 

able to identify the differences between an as-designed BIM and the as-built 

information captured by point clouds so as to update the model accordingly. In this 

research, the following research tasks have been accomplished in order to support 

this process: (a) identifying a general set of features that can be used to match point 

cloud segments to BIM components, (b) developing matching approaches that reason 

with and combine different types of features to identify matches between point cloud 

segments and BIM components, and (c) evaluating the matching results that are 

identified by different features and under various discrepancy conditions. These three 

research tasks are discussed in details in Chapter 2 and 3.  

(2) Leveraging point clouds captured at different points in time 

This process evaluates the geometric information contained in a set of progressively 

captured point clouds and assesses the information gained by combining two point 
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clouds together. Based on unique data sets that each point cloud brings, this process 

combines point clouds collected at different points in time in order to ensure the 

completeness of the captured geometric information while reducing the file size that 

caused by merging point clouds with repetitive information. In this research, the 

following research tasks have been accomplished in order to implement this process: 

(a) comparing the completeness of geometric information contained in progressively 

captured point clouds with point clouds captured at a single point in time, and (b) 

developing an approach that evaluates the geometric information of a target building 

component captured by point cloud data and assesses additional information gained 

by point cloud combination. These two research tasks are discussed in details in 

Chapter 4.  

(3) Updating BIM to represent as-built condition:  

According to the matches identified between point cloud segments and BIM 

components, this process identifies the discrepancies between the two data sets and 

updates the BIM to represent the as-built conditions. The output of this process is an 

up-to-date as-built BIM, which contain both visible (e.g., wall, ceiling, floor that are 

shown in the point cloud) and invisible (e.g., air duct, water pipe that are hidden 

behind the finished surfaces) components with accurate 3D geometries. The as-built 

BIM can be then delivered to building owners or facility management teams as a part 

of the as-built handover documents. In this thesis, I mainly focus on the first and 

second process in support of this third process.    
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Figure 1. Envisioned framework for updating a BIM based on point cloud data
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1.2 Research Questions 

This section discusses three research questions aiming to address the challenges 

associated with the process of updating an as-designed BIM based on point cloud 

data.  

Research Question 1: What features can be used to match point clouds to BIMs? 

It is challenging to match a point cloud to a BIM when there are discrepancies 

between the real-world components and the components modeled in the BIM. A 

general set of features can potentially help in identifying correspondences between 

these two data sets, and thus serve as the foundation for matching approaches.  

In addressing this research question, I reviewed previous research studies in relation 

to: (1) 3D shape matching and retrieval, (2) product modeling and BIM standard, (3) 

building model reconstruction based on point cloud data, (4) object detection and 

recognition in construction sites for progress monitoring and equipment control, (5) 

3D scene annotation for urban modeling, and (6) indoor point cloud recognition for 

mobile robot navigation. Building on these research studies, I identified a general set 

of features that can be used to match point clouds to BIMs, and I classified these 

features into different groups. The coverage of the identified features is validated to 

ensure that the feature list identified in this research covers the majority of the 

features that can be potentially used for the matching process.  
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Research Question 2: How well, in terms of precision and recall, do different 

features perform in identifying matches between a segmented point cloud and a 

BIM under different discrepancies?  

Matches between a point cloud and a BIM can be identified based on features shared 

by these two data sets. However, there is a limited understanding of how different 

features perform in the matching process under different discrepancy conditions. 

Hence, there is a need to evaluate the performance of different features in terms of 

how well they are able to identify correct matches between a point cloud and a BIM.  

Building on the features identified in research question 1, I developed a set of 

matching approaches that combine and reason with different types of features. I then 

evaluated the performance of the features based on the precision and recall of the 

matching results.  

Research Question 3: How well do the progressive point clouds improve the 

accuracy and completeness of an as-built BIM?   

Combining point clouds that are progressively captured in construction could 

provide more geometric information for the BIM update. However, the combination 

of point clouds could also result in a dataset with large file sizes. However, as 

discussed previously, there is a trade-off between having a completely registered 

point clouds to provide more geometric information and having a registered point 

cloud with less number of point clouds to reduce the file size and processing time.  
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 In relation to this research question, I developed an approach to evaluate the 

information contained in a point cloud so as to support the decision about which 

point clouds should be combined together in order to increase the completeness of 

geometric information with less file size. The developed approach consists of two 

modules: (a) content assessment module, which quantifies the geometric information 

contained in each point cloud for updating target building components in a BIM, and 

(b) content improvement module, which calculates the information gained by adding 

new point cloud to the initial data set. Two metrics are used in this approach: (a) 

coverage ratio, which is used to evaluate the information captured by a point cloud, 

and (b) dissimilarity ratio, which assesses the additional information generated by 

adding a point cloud to the initial data set. The effectiveness of this approach is 

validated using point clouds captured during a construction project.  
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1.3 Scope and High Level Assumptions  

This section describes the scope and high-level assumptions for my PhD research.  

1.3.1. Assumptions  

The point cloud data is segmented by the state-to-art segmentation 

approaches and the geometric primitives (e.g., lines, planes, cylinder, cube, 

etc.) are fitted to the point clouds.  

1.3.2. Scope 

a. This research focuses on updating an as-designed BIM to improve the 

accuracy and completeness of its geometric information. The semantic 

information (e.g., object ID, type, material) contained in an as-designed BIM 

is not the focus on this research study.  

b. This research focuses on matching point clouds to BIMs and leveraging point 

clouds captured during construction to provide more geometric information. 

The actual modification and update of as-designed BIMs are not within the 

scope of this research.  
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1.4 Dissertation Organization 

This dissertation consists of five chapters including Introduction and Conclusions. 

Chapter 1 provides an overview of the research problems and vision, and describes 

the three research questions addressed in this thesis. Chapter 5 highlights the research 

contributions, practical implications and future research directions. The remaining 

three chapters focus on three specific research contributions. 

Chapter 2: Identification of Features to Be Used for Matching Point Clouds to 

BIMs 

Chapter 2 presents the findings of the research study conducted to identify a general 

set of features associated with point cloud data and BIM, which can be potentially 

used to support the matching between these two data sets.    

Chapter 3: Evaluation of Features for Matching Point Clouds to Building 

Information Models  

Chapter 3 introduces six feature-based matching approaches developed based on 

prior work to match a point cloud to a BIM. It then presents the results of a set of 

experiments conducted to evaluate the performance of different features in matching 

point clouds to BIMs under various discrepancy conditions. In addition, this chapter 

provides a discussion on how the combination of different features could improve the 

matching results. 
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Chapter 4: An Approach for Leveraging Progressive Laser Scans to Improve 

Completeness  

Chapter 4 describes an experimental analysis conducted to evaluate the completeness 

of geometric information contained in point clouds captured at a single point in time 

versus the combined data set that is composed of point clouds captured at different 

times.  It then introduces an approach developed to select and combine progressively 

captured point cloud so as to provide more complete geometric information with less 

file size.  
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CHAPTER 2. IDENTIFICATION OF FEATURES TO BE USED 

FOR MATCHING POINT CLOUDS TO BIMS 

Matching a point clouds to a BIM is an important step in the updating process. This 

step associates the segments captured by the point cloud to components modeled in 

the BIM, so that the difference between the design information stored in the BIM 

and the as-built conditions captured by the point cloud can be recognized. One way 

of identifying the matches between a point cloud and a BIM is to reason with 

features associated with these two data sets. In this thesis, I defined a feature as a 

geometric primitive or a geometric property that have distinct characteristics. 

Features can be used to identify the correspondences between a point cloud and a 

BIM. For example, if segment Pi of a point cloud is located at the same location 

where component Bj is modeled in a BIM, then it is possible that Pi and Bj 

correspond to each other. However, there are two challenges associated with 

matching a point cloud to a BIM. 

First, building components might have different shapes, dimensions, orientations and 

positions in a point cloud as compared to how they are modeled in an as-designed 

BIM. These discrepancies could impact the performance of matching approaches and 

generate incorrect matches between a point cloud and a BIM. For instance, as shown 

in Figure 1, the highlighted air ducts were modeled as L-shape rectangular elbows in 

the as-designed BIM, whereas they were manufactured as curve-shaped elbows, 

shape of which was captured within the point cloud data. Due to such shape 

discrepancies, matching approaches based solely on shape related features (e.g., 
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dimension, volume, surface area) would not be able to identify the correct matches of 

the highlighted air ducts.   

  
Figure 2(a) Ductworks 
modeled in the BIM 

Figure 2 (b) Ductworks 
captured by the point cloud 

Figure 1. Shape discrepancies between ductworks modeled in the BIM and the same 

ductworks shown in the point cloud 

Second, in a construction project some building components might have the same 

shape, orientation and dimension (e.g., a collection of columns, beams, and duct 

segments). For example, as seen in Figure 2, air ducts A and B were manufactured in 

the same shape and size, but were installed at two different locations. Matching 

approaches that are based solely on shape-related features would not be able to 

distinguish air duct A from air duct B, even though they are two different building 

components. Hence, it is important to identify features that are able to distinguish 

building components with the same 3D geometry so as to eliminate mismatches.  
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Figure 2. Different components with similar shapes and dimensions 

Some feature of point clouds and BIMs might remain constant under a given 

discrepancy situation. These features have the potential to be used in the matching 

approaches and reduce the impacts of the given discrepancy situation. For example, 

the highlighted air ducts shown in Figure 1 have different shapes in the point cloud 

and the BIM due to the shape discrepancies however they are located at the same 

position in the corresponding data sets. In this case, a matching approach based on 

location features might be robust to the shape discrepancies and is able to identify the 

correct matches for the highlighted air ducts. Development of a robust matching 

approach would require a comprehensive understanding of the features of point 

clouds and BIMs. This chapter provides the findings of a research conducted to 

identify features that can be potentially applied in the matching process. The 

identified features could serve as a foundation to develop matching approaches that 
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utilize and combine different feature to correctly match point cloud segments to 

components in a BIM under the presence of discrepancies.  

2.1 Background research studies 

An extensive literature review has been done in multiple domains, such as computer 

vision, robotic, and civil engineering, where point clouds and laser scanners are used. 

The research studies that were investigated in this research can be grouped into three 

categories: (1) point cloud processing (e.g., point cloud segmentation, feature 

extraction), (2) data standards for building information models and product 

modeling approaches, and (3) point cloud and 3D object recognition approaches. 

These studies were examined in details in order to generate a synthesized list of 

features that can be used to match a point cloud to a BIM. An overview of research 

studies that were examined is provided below.  

2.1.1. Research studies in relation to point cloud processing 

Features associated with point clouds have been used to support various point cloud 

processing tasks, including point cloud segmentation, point cloud feature extraction, 

and surface reconstruction from point clouds. A synthesis of the findings from these 

studies suggests that the features of point clouds can be grouped under three 

categories: local features, semi-local features and global features.  

Local features are referred to as the features associated with each individual point in a 

point cloud. Such features include 3D coordinates, surface normal, point intensity 

and color of a point (Schnabel et al. 2007; Tang et al. 2010; Tangelder and Veltkamp 
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2004). Semi-local features are referred to as the features calculated from points within a 

region (Huber et al. 2004; Johnson and Hebert 1999; Tang et al. 2010). Examples of 

semi-local features are spin-image, point density, and the maximum height of the 

points within a neighborhood (Johnson and Hebert 1999, Huber et al. 2004). Global 

features are referred to as the features calculated by taking the entire point cloud into 

consideration. Examples of global features include histogram of pairwise distance of 

random points and the distribution of point density (Körtgen et al. 2003; Mahmoudi 

and Sapiro 2009; Tangelder and Veltkamp 2004). The semi-local and global features can 

be used as descriptors to describe the shape of objects captured by a point cloud 

(Frome et al. 2004; Huber et al. 2004; Tang et al. 2010; Tangelder and Veltkamp 

2004). The local features are less sensitive to noise and clutters shown in the scene, but 

they have lower discriminative power when comparing to global features (Tangelder 

and Veltkamp 2004). The semi-local features are evaluated as having the similar 

discriminative power as compared to global features, and they are robust to noises and 

clutters, which is similar to local features (Johnson 1997).     

A point cloud is a collection of points and contains no semantic information. Using 

segmentation or clustering approaches, points can be grouped and assigned into 

higher level geometric primitives, such as planer patches, spheres, cylinders, cones 

and torus (Huang and Brenner 2011; Rabbani et al. 2006; Roggero 2002; Schnabel et 

al. 2007; Schnabel et al. 2008). Random Sampling Consensus Algorithm (RANSAC) 

fits a parameterized mathematical model to a point cloud by iteratively selecting the 

model parameters that best fit to the data set (Fischler and Bolles 1981). RANSAC 

approach is capable of extracting geometric primitives, such as planes, spheres, 
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cylinders from a point cloud (Schnabel et al. 2007; Schnabel et al. 2008). The 

geometric primitives fitted to a point cloud form a concise and abstract 

representation for a point cloud. A large amount of research studies have used 

geometric primitives fitted to a point cloud as important features to support different 

point cloud processing activities, such as model reconstruction and object recognition 

from point clouds (Duan et al. 2010; Golovinskiy et al. 2009; Huang and Brenner 

2011).  

The prior research studies in relation to point cloud processing provide a point of 

departure to identify a general list of features associated with point clouds. This 

feature list will be further evaluated to identify what features can be potentially used 

to match a point cloud to a BIM.   

2.1.2. Product representation and data exchange standards for building 

information models 

A BIM is a digital representation of a facility’s life cycle information and contains 

both physical and functional information of that facility. Since a point cloud only 

contains geometric information, most of non-geometric information stored in BIMs, 

such as functionality (e.g., usage, air flow rate for ductworks), material and cost 

cannot help in establishing the matches between point clouds and BIMs. Therefore, 

in this research, non-geometric information of a BIM was not considered. In this 

research, I mainly focus on shape (i.e., features related to the size and shape of a 

building component) and spatial (i.e., features related to the location of a building 

components) related features associated with 3D objects modeled in a BIM. 
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3D geometry of building components are represented in a BIM using different 

representation techniques (BuildingSMART 2012; buildingSMART 2012; Eastman 

1999). Boundary representation (B-rep for short) represents a surface model as a 

collection of faces, which are connected by edges and vertices (Campbell and Flynn 

2001; Zhang and Lu 2004). Features defined by B-rep include edges, vertices, faces 

and their connectivity. Constructive solid geometry (CSG for short) represents a solid 

model by overlapping geometric primitives (e.g., sphere, cuboids, cylinders) together 

using Boolean operators. Boolean operators include union, intersection and 

difference (Eastman 1999; Requicha 1980; Tang et al. 2010). The features defined in 

CSG are geometric primitives, such as sphere, cuboids, cylinders and blocks. Sweep 

representation is another presentation technique that forms a 3D shape by sweeping 

a geometric primitive along a path (i.e., a principle axis) (Eastman 1999; Requicha 

1980). The features defined by sweep representation are the geometric primitives 

(e.g., planer surfaces, cylinder, etc.) and the path, along which a geometric primitive 

is swept to form a 3D shape. Additional features can be derived from the 3D shapes 

of building components represented in a BIM. Such features include volume, area, 

geometric ratios (e.g., the number of facets, surface area to volume, etc.), and 

dimensions of a bounding box fitted to an object or a group of objects (Cybenko et al. 

1997; Iyer et al. 2005; Tangelder and Veltkamp 2004; Zhang and Chen 2001).  

Extensive literature review within the AEC/FM domain suggests that spatial 

information representation in a BIM can be divided into three categories (Borrmann 

and Beetz 2010; Borrmann and Rank 2009; Clementini and Di Felice 1996; 

Schneider and Behr 2006). These three categories of features are: (a) topology related 
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features, which define the relative position and connectivity between an object with 

respect to a reference  (e.g., disjoint, touch, equals, covers, overlap), (b) orientation 

related features, which define the relative orientation of an object with respect to a 

reference (e.g., parallel, orthogonal) and (c) distance related features, which define the 

relative distance from an object to a reference.  

Various data standards have been developed to represent construction project data 

and facility information. Examples of those data standards include Industry 

Foundation Classes (IFC), Construction Operation Building Information Exchange 

(COBIE), and ISO 15926 (i.e., standard for project data integration, sharing, and 

exchange between systems. Among those data standards, IFC standard is the most 

well known open data model specification standard that enables sharing and 

exchanging of information contained in BIMs among different systems 

(buildingSMART 2012). The IFC4 standard defines more than 700 classes to 

describe the information, such as dimension, location, material, functionality and 

spatial relationships associated with building components (buildingSMART 2012). 

In this research, I used IFC standard as the reference to identify features associated 

with BIM, for two reasons: (1) as compared to COBIE, IFC standard contains more 

classes and attributes in relation to the 3D geometry of a building component, and 

(2) ISO 15926 targets on the heavy construction in oil and gas industry whereas IFC 

standard targets on buildings, which is well aligned with the scope of this research.   

In the IFC standard, the IfcProductRepresentation class defines both shape and spatial 

representation of a building component. An instance of the IfcProductRepresentation 
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class is composed of one or more instances defined by the IfcShapeModel class. The 

IfcShapeModel class defines the concept of a geometrical and/or topological 

representation for 3D shape of a building object. The IfcShapeModel class has two 

subclasses: (a) IfcShapeRepresentation class, which represents the geometric features of 

a product; and (b) IfcTopologyRepresentation class, which represents the connectivity of 

a product or components within the product. Various subtypes are defined for the 

IfcShapeRepresentation class, which include curve2D (i.e., two dimensional curves), 

geometricSet (e.g., points, curves and surfaces), surfaceModel (i.e., face based or 

shell based surface models) and solidModel. Similarly, the subtypes of 

IfcTopologyRepresentation class include vertex  (i.e., a corner where two or more than 

two lines intersect), edge (i.e., a line segment that connects two faces), and face (i.e., 

an surface of a 3D shape). In addition, IfcAxis2Placement3D class explicitly defines the 

location and orientation of an object modeled in a BIM in the 3D space. 

Additional features associated with a building information model have been defined 

from the computer-aided design, cost estimation and construction management 

perspectives. Within the computer-aided architectural or mechanical design domain, 

features are defined as generic shapes that carry engineering or design configurations 

(Anderson and Chang 1990; Salomons et al. 1993; Van Leeuwen and Wagter 1997). 

Examples of such features include form features that represent the form, shape and 

topology of design entities, and physical features that describe the physical qualities 

of design entities (Anderson and Chang 1990; Salomons et al. 1993). In order to 

support cost estimation and construction management, features are defined to 

describe the design information that is important for cost estimators or construction 
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manager. Examples of these features include: component feature, which is referring 

to the components existed in building product model and intersection features, which 

describe the intersection of two features, such as openings and turns (Nepal et al. 

2009; Staub-French et al. 2003). The features defined by these research studies 

contain both semantic and geometric information. However, since these features are 

mainly designed to support applications such as computer-aided design, cost 

estimation and construction management, they cannot be directly used to support the 

matching between point clouds and BIMs.  

The research studies in relation to product representation and BIM standards provide 

a point of departure for identifying a general set of features associated with BIMs. 

These features will be further evaluated to identify which features can potentially be 

used to match a point cloud to a BIM. 

2.1.3. Point cloud and 3D object recognition approaches  

A large amount of approaches within the computer vision, remote sensing and 

robotics domains have been developed to recognize objects from point cloud data or 

classify 3D objects contained in a 3D model into different classes (Bustos et al. 2007; 

Frome et al. 2004; Golovinskiy et al. 2009; Pu and Vosselman 2006). These 

approaches have been used to support various applications including, but not limited 

to: (a) 3D shape matching and retrieval (Belongie et al. 2002; Körtgen et al. 2003), 

(b) building model reconstruction from point cloud data (Adan and Huber 2011; 

Brenner 2005), (c) 3D scene annotation for urban modeling (Douillard et al. 2011; 

Golovinskiy and Funkhouser 2009), (d) indoor point cloud recognition for mobile 
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robot navigation (Rusu et al. 2008; Koppula et al. 2011), and (e) construction site 

object detection for progress monitoring and equipment control (Bosche and Haas 

2008; Kurtan et al. 2011). Although not all of these approaches are directly targeting 

on the problem of matching point clouds to BIMs, they certainly provide some useful 

insights in terms of: (a) what features can be used to describe objects contained in a 

point cloud or objects modeled in a BIM, (b) how different features of point clouds 

and BIMs help for the object recognition, and (c) what features are shared by point 

clouds and BIMs so that they can be applied to match the two data sets together.   

Based on the characteristics of features used by the object recognition approaches, I 

divided these approaches into two different groups: (a) object recognition approaches 

based on spatial information, and (b) object recognition approaches based on shape 

representation. Brief descriptions and a synthesis of these studies are provided below 

and the findings of the literature review on these studies are summarized in Table 1. 

(a) Object recognition approaches based on spatial information 

Object recognition approaches based on spatial information classify objects extracted 

from point cloud data into different classes. The classification is made based on 

spatial related information gained from heuristics or design models (e.g., BIM, floor 

plan, 3D design model), which are severed as references reflecting the nature of 

collected point clouds. The spatial related features include relative distance, angles, 

positions and connectives between objects captured by a point cloud or components 

in a design model.  
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The approaches that reason with relative locations and distances between 3D objects 

can be called as spatial proximity-based object recognition approaches. Within this 

group, Bosche (2008 and 2009) assumed that the BIM is exactly the same as the 

point cloud. Hence, points within a point cloud can be matched to the building 

components modeled in a BIM according to the relative location between the points 

to the objects modeled in the BIM. This approach matches the components from the 

design model to the point cloud, which provides the capability of automatically 

recognizing 3D design model objects from a point cloud. Golovinskiy et al. (2009) 

focused on urban environment modeling and recognized objects (e.g., cars, traffic 

lights) captured by a point cloud based on their relative location to the reference 

objects (e.g., cars are more likely to be parked along a street, etc.). Koppula et al. 

(2011) used the relative distance and angles between different segments extracted 

from a point cloud to improve the performance of object recognition from the 3D 

point cloud data. Features used in these approaches are summarized in Table 1.  
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Table 1. Previous research studies on point cloud and 3D object recognition  

Approach 
Features of point clouds and 3D models 

applied for object recognition 
References 

Object recognition approaches using spatial information 

Spatial 
relationship-
based object 
recognition  

(1) Relative angles, orientations and locations 
between segments (e.g., planes, surfaces) 
extracted from a point cloud: orthogonal, 
parallel, adjacent, coplanar, above and below; 
(2) connectivity between different segments 

(Adan and Huber 2011; Duan et al. 
2010; Eich et al. 2010; Elberink 
and Vosselman 2009; Huber et al. 
2011; Koppula et al. 2011; Nüchter 
and Hertzberg 2008; Nuchter et al. 
2003; Pangercic et al. 2012; Pu and 
Vosselman 2009; Schnabel et al. 
2008; Verma et al. 2006; Xiong et 
al. 2013)  

Spatial 
proximity-
based object 
recognition 

(1) Spatial features associated with segments 
or point clusters extracted from a point cloud: 
position of centroid, surface normal and (2) 
relative distance between 3D points to 3D 
objects modeled in the BIM  

(Anand et al. 2013; Bosché 2009; 
Bosche and Haas 2008; Bosche and 
Haas 2008; Golovinskiy and 
Funkhouser 2009; Golovinskiy et 
al. 2009; Koppula et al. 2011; Pu 
and Vosselman 2006; Pu and 
Vosselman 2009; Rusu et al. 2008; 
Rusu et al. 2009; Son and Kim 
2010; Triebel et al. 2006) 

Object recognition approaches using shape information 

Regional 
feature-based 
object 
recognition 

Features associated with a point or points 
within a neighborhood region: (1) spin-image 
of a point, a descriptive image that encodes 
the properties of the surface fitted to the point 
cluster in an object-centered coordinates; (2) 
principal component analysis (PCA) feature: 
the magnitude of the linearness, surfaceness, 
and scatterness of a cluster of points  

(Anguelov et al. 2005; Chen and 
Bhanu 2007; Chua and Jarvis 
1997; Douillard et al. 2010; Frome 
et al. 2004; Johnson and Hebert 
1999; Lai and Fox 2010) 

Entity feature-
based object 
recognition 
approaches 

(1) Geometric features associated with 
segments fitted to a point cloud: orientation 
(i.e., surface normal and direction of principle 
axis), area, volume, point density, and height, 
(2) geometric feature associated with 
bounding boxes fitted to point clouds: size, 
height, width, and fractional occupancy (i.e., 
the ratio of the volume of the object to the 
volume of the box)  

(Gilsinn et al. 2005; Golovinskiy et 
al. 2009; Mozos et al. 2005; 
Nüchter and Hertzberg 2008; 
Okorn et al. 2010; Paquet et al. 
2000; Pu and Vosselman 2006; Pu 
and Vosselman 2009; Rusu et al. 
2009; Teizer et al. 2007; Truong et 
al. 2012) 

Distribution 
feature-based 
object 
recognition 

(1) Shape distribution: probability 
distribution of the pairwise distances/angles 
between random points; (2) shape context: the 
relative distribution of points relative to all 
other points on the shape 

(Belongie et al. 2001; Belongie et 
al. 2002; Ip et al. 2002; Körtgen et 
al. 2003; Mahmoudi and Sapiro 
2009; Osada et al. 2001; Osada et 
al. 2002; Valero et al. 2011) 

View-based 
object 
recognition 

Features associated with 2D slices obtained 
by cutting 3D objects or projecting 3D objects 
in a 2D plane 

(Chen et al. 2003; Funkhouser and 
Kazhdan 2004; Funkhouser et al. 
2003; Jiantao et al. 2004; Nüchter 
and Hertzberg 2008) 
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Approaches that reason with the relative orientation and connectivity between 3D 

objects can be called as spatial relationship-based object recognition approaches. 

Examples of the spatial relationships include “two walls are parallel to each other”, 

“the floor surface is bounded by walls”, and so on (Cantzler et al. 2002; Duan et al. 

2009; Golovinskiy et al. 2009; Nüchter and Hertzberg 2008; Xiong and Huber 2010). 

For instance, Xiong and Huber (2010) developed a method to classify planar patches 

extracted from a point cloud into walls, floors, ceilings and clutters by reasoning with 

the relationships about the extracted patches, such as orthogonal, parallel, adjacent, 

and coplanar. Cantzler et al. (2002) and Fisher (2003) developed a semantic net 

representation to encode spatial relationships between different building components. 

In the semantic net representation, each node represents a specific type of building 

components and each edge represents a spatial relationship between adjacent 

building components. This semantic net is then used to facilitate the object 

recognition task.  

(b) Object recognition approaches based on shape information 

There is a sizable amount of research studies that focus on shape matching and 

retrieval. They identify the correspondences between two shapes so as to calculate 

the similarities between two shapes. Some of these approaches have been extended to 

support the object recognition task. With shape similarities being calculated, 

algorithms are able to recognize objects from a database or cluttered 3D images, 

which are similar to the objects shown in the training data or directly inputted by 

users.  
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Object recognition approaches based on shape information first define a set of 

descriptors to depict the shapes of objects shown in point clouds or 3D models. 

Second, they calculate the descriptors for both training and testing data (the training 

and testing data is a set of 3D objects) and define a similarity metric to measure 

similarities between two different descriptors. Finally, objects captured in the testing 

data are matched to the objects in the training data that have the closest descriptors 

(Frome et al. 2004; Huber et al. 2004; Tang et al. 2010; Tangelder and Veltkamp 

2004). 

The descriptors are usually defined based on shape-related features, and are used to 

identify the correspondences between 3D shapes captured by two different point 

clouds or 3D models. For instance, a shape descriptor, named shape context, was 

developed for measuring similarity between different shapes (Belongie et al. 2001, 

2002). The shape context is calculated by taking a set of points sampled from the 

contours of an object, and measuring the distribution of distances from each point to 

all the other points on the contours. Osada et al. (2002) created a descriptor named 

shape distribution to describe a 3D shape. The approach represents the descriptor of 

a 3D shape as a probability distribution of properties extracted from a 3D shape. 

Examples of such properties include the distribution of distances between two 

random points located on 3D surfaces, and angles between two random points 

picked on 3D surfaces (Ip et al. 2002; Mahmoudi and Sapiro 2009; Osada et al. 

2002).  

Depending on the characteristics of features used in object recognition approaches 

based on shape information, these approaches can be further divided into four 
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groups: (1) regional feature-based object recognition approaches, which use the shape 

related features derived from points and a group of points in a region; (2) entity 

feature-based object recognition approaches, which fit geometric primitives to the 

point cloud data and reason with the features derived from these geometric 

primitives; (3) distribution feature-based object recognition approaches, which 

describe a 3D shape using a probability distribution of geometric properties, and (4) 

view-based object recognition approaches, which utilize 2D projections of a 3D 

model or a point cloud as features. The list of features utilized in the approaches 

under these four categories can be found in Table 1.   

The research studies in relation to 3D point cloud object recognition approaches 

provide a point of departure for a list of features that can be applied to distinguish 

objects shown in a point cloud or in a BIM. The same features shared by the point 

cloud and the BIM have the potential to be used to recognize the correspondences 

and identify the matches between the two data sets.  

2.2 Research Method And Findings: Features To Be Used For Matching Point 

Clouds To BIMs  

As detailed in section 2.1, a general set of features associated with point clouds and 

BIMs were identified by investigating research studies in relation to point cloud 

processing, product representation, and data standards for building information 

models. I then further investigate point cloud and 3D object recognition approaches 

in order to identify the features that can be potentially used for matching the two 

data sets together. In total, 80 papers were reviewed in the following fields: (1) 3D 
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shape matching and retrieval, (2) product modeling and BIM standard, (3) building 

model reconstruction based on point cloud data, (4) object detection and recognition 

in construction sites for progress monitoring and equipment control, (5) 3D scene 

annotation for urban modeling, and (6) indoor point cloud recognition for mobile 

robot navigation. The field of 3D shape matching and retrieval provides the general 

knowledge on what features can be used to describe 3D shapes. The product 

modeling and BIM standard shows how the shape and spatial related features are 

defined in a BIM, and provide general categorizations to classify the BIM-related 

features. The rest of the fields of applications have one thing in common, even 

though they target different applications; they all try to detect and recognize 

components from point cloud either based on design information or the knowledge 

about building configurations. Hence, these fields of applications provide a set of 

features that are shared by point clouds and design/designed-based model, which 

can be applied to support identifying matches between point clouds and BIMs.      

The distribution of papers within these fields is shown in Figure 3. The features 

identified in this research studies are provided in the following two sections: features 

associated with point clouds and features associated with components modeled in 

BIMs.  
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Figure 3. Distribution of reviewed papers in different fields of applications 
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features of point clouds that can be used to support the matching between point 

clouds and BIMs.  

Table 2. Features of point clouds to support mapping point clouds to BIMs 

Category 
Basic 

Features 
Derived 
Features 

Definition Reference 

Point 
level 

features 
Point  

Point 
position 

3D coordinates (x, y, z) of a 
point 

(Adan and Huber 2011; Adan 
et al. 2011; Anand et al. 2013; 
Bosché 2009; Bosche and Haas 
2008; Bosche and Haas 2008; 
Choi et al. 2009; Gong and 
Caldas 2008; Ip et al. 2002; 
Rusu et al. 2009; Rusu et al. 
2010; Rusu et al. 2008; Rusu et 
al. 2009; Xiong et al. 2013) 

Surface 
normal 

The vector that is 
perpendicular to a tangent 
plane fitted to a point 

(Adan and Huber 2011; Adan 
et al. 2011; Ben Hmida et al. 
2011; Cantzler et al. 2002) 

Color  RGB value of the point  
(Koppula et al. 2011; Pangercic 
et al. 2012; Posner et al. 2009; 
Posner et al. 2008) 

Relative 
distance  

Distance between two selected 
points  

(Belongie et al. 2001; Belongie 
et al. 2002; Cantzler et al. 2002; 
Iyer et al. 2005) 

Relative 
angle  

Angle between two selected 
points 

(Ip et al. 2002) 

Gradient  
The scope of a line connecting 
two selected points 

(Nuchter et al. 2003) (Nüchter 
and Hertzberg 2008) 

Entity 
level 

features 

Cluster of 
points 

segmented 
from a 
point 
cloud 

Spin-image 

A descriptive image that 
encodes the properties of a 
surface fitted to a selected 
point cluster in an object-
centered coordinates 

(Bimbo and Pala 2006; 
Douillard et al. 2011; Frome et 
al. 2004; Johnson 1997; 
Johnson and Hebert 1999; Lai 
and Fox 2010) 

Maximum 
height 
difference  

The maximum height 
difference of the points within 
a given point cluster  

(Golovinskiy and Funkhouser 
2009; Golovinskiy et al. 2009; 
Nüchter and Hertzberg 2008; 
Okorn et al. 2010) 

Standard 
deviation of 
the heights 

The standard deviation for the 
z coordinates of points within 
a selected point cluster in a 
given coordinate system  

(Golovinskiy and Funkhouser 
2009; Golovinskiy et al. 2009) 

PCA feature 

The magnitude of the 
linearness (the likelihood of 
points locating in a line), 
surfaceness (the likelihood of 
points locating at a surface), 
and scatterness (the likelihood 
of points being scattered) 

(Douillard et al. 2010; Koppula 
et al. 2011) 

Point 
density 

Number of points per square 
feet within a point cluster 

(Douillard et al. 2010; Koppula 
et al. 2011; Okorn et al. 2010) 

Shape 
distribution 

The distribution of pairwise 
distances/angles between 
random points 

(Ip et al. 2002; Mahmoudi and 
Sapiro 2009; Osada et al. 2001; 
Osada et al. 2002) 

Shape The distribution of a point (Belongie et al. 2001; Belongie 
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context relative to all other points in a 
given point cluster 

et al. 2002; Körtgen et al. 2003) 

Geometric 
primitives 
fitted to a 

point 
cloud  

Position 
 

The position of the centroid of 
a geometric primitive or a 
reference point on a given 
geometric primitive 

(Anand et al. 2013; Eich et al. 
2010; Koppula et al. 2011; 
Posner et al. 2009; Pu and 
Vosselman 2006; Pu and 
Vosselman 2009) 

Area 
The area of a surface fitted to 
a point cloud 

(Eich et al. 2010; Nüchter and 
Hertzberg 2008; Xiong and 
Huber 2010) 

Volume 

The volume of geometric 
primitives (e.g., sphere, 
cylinder, cone) fitted to a point 
cloud  

(Golovinskiy and Funkhouser 
2009; Golovinskiy et al. 2009; 
Schnabel et al. 2008)      

Principle 
direction 

The orientation of the 
principle axis derived from a 
geometric primitive 

(Koppula et al. 2011) 

Surface 
normal 

The orientation of the vector 
perpendicular to the surface of 
a geometric primitive 

(Adan and Huber 2011; Adan 
et al. 2011; Anand et al. 2013; 
Ben Hmida et al. 2011; Cantzler 
et al. 2002; Hofman and Jarvis 
2000; Huber et al. 2011; Huber 
et al. 2011; Huber et al. 2010; 
Koppula et al. 2011; Nüchter 
and Hertzberg 2008; Posner et 
al. 2009; Posner et al. 2008; Pu 
and Vosselman 2006; Pu and 
Vosselman 2009; Xiong et al. 
2013) 

Dimension Length, width, and height of 
geometric primitives Xiong et al. 2013 

2D contours  
2D boundary of a geometric 
primitive fitted to a point 
cloud 

(Elberink and Vosselman 2009; 
Jiantao et al. 2004; Okorn et al. 
2010; Rusu et al. 2010; Rusu et 
al. 2008) 

2D 
projection 

The projection of a geometric 
primitive on a given plane 

(Elberink and Vosselman 2009; 
Okorn et al. 2010) 

Bounding 
box 

Position  
The position of the centroid or 
reference point in a bounding 
box 

(Anand et al. 2013) 

Volume The volume of the bounding 
box 

(Paquet et al. 2000) 

Dimension 
Length, width and height of 
the bounding box 

(Paquet et al. 2000) 

Fractional 
occupancy 

The ratio of the volume of an 
object to the volume of the 
corresponding bounding box 

(Anand et al. 2013; Truong et 
al. 2012) 

Global 
feature 

Cluster of 
points or 

Geometric 
primitives 

Relative 
distance 

The relative distance between 
two clusters of points or two 
geometric primitives 

(Anand et al. 2013; Elberink 
and Vosselman 2009; 
Golovinskiy and Funkhouser 
2009; Golovinskiy et al. 2009; 
Koppula et al. 2011; Rusu et al. 
2009; Rusu et al. 2010; Rusu et 
al. 2008; Rusu et al. 2009) 

Relative 
angles 

The relative angles and 
orientation between two 
clusters of points or two 
geometric primitives 

(Anand et al. 2013; Cantzler et 
al. 2002; Elberink and 
Vosselman 2009; Golovinskiy 
and Funkhouser 2009; 
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Golovinskiy et al. 2009; 
Koppula et al. 2011; Rusu et al. 
2009; Rusu et al. 2010; Rusu et 
al. 2008; Rusu et al. 2009) 

Spatial 
relationship 

How an object is located in 
relation to other objects (e.g., 
orthogonal, parallel, adjacent, 
coplanar, disjoint, touch, 
equals, covers, overlap) 

(Adan and Huber 2011; Adan 
et al. 2011; Cantzler et al. 2002; 
Hofman and Jarvis 2000; Huber 
et al. 2011; Huber et al. 2011; 
Huber et al. 2010; Nüchter et al. 
2003; Verma et al. 2006) 

Topological 
relationship 

The connectivity between 
cluster of points or geometric 
primitives fitted to a point 
cloud 

(Adan and Huber 2011; 
Hofman and Jarvis 2000; 
Nüchter et al. 2003; Pu and 
Vosselman 2006; Pu and 
Vosselman 2009; Schnabel et al. 
2008; Triebel et al. 2006) 

2.2.2. Features of objects represented in BIMs 

The features of BIMs that can be used for the matching process are grouped under 

two categories: (a) shape features, which are features related to the geometry, shape 

and size of an object modeled in a BIM, and (b) spatial features, which are features in 

relation to the position and orientation of an object in the BIM. In addition to the 

categorization given above, the features of BIMs can be also categorized as: (a) basic 

features, which refer to the geometric elements that form the 3D representation of a 

BIM and (b) derived features, which are the features derived from the basic elements. 

Table 3 provides a list of features associated with 3D objects modeled in BIMs. 

 

 

 

 

 

 

 

 

 



 36 

Table 3. A list of features associated with BIMs for matching point clouds to BIMs 

Category 
Basic 

Features 
Derived 
Features 

Definition Reference 

Shape 
features 

Geometric 
set: 
vertex, 
edge and 
face 

Position 
The position of a vertex or 
position of the referencing 
points on an edge or a face 

(Brenner 2005; 
BuildingSMART 2012) 

Dimension  
The length, width and height 
of an edge or a face 

(BuildingSMART 2012; Pu and 
Vosselman 2006; Pu and 
Vosselman 2009)  

Surface 
normal 

A vector that is perpendicular 
to the tangent plane fitted at a 
vertex  

((Biasotti et al. 2003; Bosché 
2009; Bosche and Haas 2008; 
Bosche and Haas 2008; Hilaga 
et al. 2001; Pu and Vosselman 
2006; Pu and Vosselman 2009; 
Xiong et al. 2013) 

Shape 
context, 

The distances between the 
reference point and the points 
selected on edges or surfaces 

(Belongie et al. 2001; Belongie 
et al. 2002; Bimbo and Pala 
2006; Iyer et al. 2005) 

Shape 
distribution 

The distribution of pairwise 
distances/angles between 
points subsampled from a 
face. 

(Bimbo and Pala 2006; Ip et al. 
2002; Iyer et al. 2005; Osada et 
al. 2001; Osada et al. 2002) 

Surface 
model and 
solid 
model 

Position 
The position of the referencing 
point of a surface model or a 
solid model 

(Bosché 2009; Bosche and Haas 
2008; Bosche and Haas 2008; 
BuildingSMART 2012) 

Orientation 
Orientation of the principle 
axis extracted from a 3D 
model 

(BuildingSMART 2012) 

Volume The volume of a solid model 
(Bimbo and Pala 2006; Liu et 
al. 2007) 

Dimension 
Example of which includes 
length, width, height, and 
depth 

(BuildingSMART 2012; Gong 
and Caldas 2008) 

The number 
of faces  

The number of faces belonging 
to a surface model 

(Bimbo and Pala 2006) 

Area to 
volume ratio 

The ratio of the surface area of 
a model over the volume of 
the model 

(Bimbo and Pala 2006) 

2D 
projection  

2D shape obtained by 
projecting a 3D model into a 
2D plane 

(Bimbo and Pala 2006; Bustos 
et al. 2007; Chen et al. 2003; 
Funkhouser and Kazhdan 2004; 
Funkhouser et al. 2003; Jiantao 
et al. 2004; Min et al. 2002; 
Vosselman and Dijkman 2001) 

Cross 
section  

The surface obtained by 
making a straight cut through 
a surface model 

(Bustos et al. 2007; Funkhouser 
and Kazhdan 2004; Funkhouser 
et al. 2003; Jiantao et al. 2004; 
Min et al. 2002) 

Bounding 
box fitted 
to the 
model 

Dimension  
Length, width, height of the 
bounding box 

(Novotni and Klein 2003; 
Paquet et al. 2000; Truong et al. 
2012) 

Volume 
The volume of the bounding 
box 

(Novotni and Klein 2003; 
Truong et al. 2012) 

Fractional 
occupancy 

The ratio of the volume of an 
object to the volume of the 
corresponding bounding box 

(Novotni and Klein 2003; 
Truong et al. 2012) 
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Position  
The position of the centroid or 
reference point in a bounding 
box 

(Truong et al. 2012) 

Spatial 
features 

Geometric 
set, 
surface 
model, 
solid 
model  

Relative 
distance 

The distances from the 
centroid of a 3D object to the 
centroid of the others 

(Anand et al. 2013; Biasotti et 
al. 2003; Borrmann and Beetz 
2010; Borrmann and Rank 
2009; BuildingSMART 2012; 
Chao et al. 2011; Eich et al. 
2010; Koppula et al. 2011) 

Relative 
angle 

The angle between surface 
normal fitted at the centroid or 
reference points of 3D objects 

(Anand et al. 2013; Biasotti et 
al. 2003; Borrmann and Beetz 
2010; Borrmann and Rank 
2009; BuildingSMART 2012; 
Chao et al. 2011) 

Spatial 
relationships 

Defines how an object is 
located in the space in relation 
to the other objects 
(orthogonal, parallel, adjacent, 
coplanar, disjoint, touch, 
equals, covers, overlap) 

(Adan and Huber 2011; Adan 
et al. 2011; Beetz et al. 2006; 
Borrmann and Beetz 2010; 
Borrmann and Rank 2009; 
BuildingSMART 2012; Chao et 
al. 2011; Cruz 2007; Duan et al. 
2009; Duan et al. 2010; Eich et 
al. 2010; Pangercic et al. 2012) 

Topological 
relationships 

The connectivity and 
aggregation relationships 
between 3D objects. 

(Beetz et al. 2006; Borrmann 
and Beetz 2010; Borrmann and 
Rank 2009; BuildingSMART 
2012; Duan et al. 2009; Duan et 
al. 2010; Eich et al. 2010; Iyer 
et al. 2005; Pangercic et al. 
2012; Schnabel et al. 2008) 

 

As shown in Table 2 and Table 3, the identified features of point clouds and BIMs 

are either shape-related or spatial-related. Shape-related features describe the 

geometry, shape and size of objects captured by a BIM or a point cloud. Spatial-

related features describe the position and orientation of objects captured by a BIM or 

a point cloud and their relative position, distance, angles and relationships with other 

objects in the scene. Shape-related features are sensitive to shape discrepancies, and 

might not be able to identify the correct matches between a point cloud and a BIM 

when shape discrepancies exist. On the contrary, spatial-related features are more 

robust to the shape discrepancies, but are more likely to be impacted by location 

discrepancies.  
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Spatial-related features are most frequently used in the applications of building 

model reconstruction, 3D scene annotation for urban modeling, object recognition 

for mobile robot navigation, and construction site object recognition. These 

applications use the spatial-related information (e.g., connectivity, relative location 

and angles between different objects) derived from the 3D scene for object 

recognition. The limitation of the spatial-related features is their lack of 

discriminative power to distinguish objects with the similar spatial patterns. The 

shape-related features are frequently used in the applications of 3D shape matching 

and retrieval. The shape-related features describe 3D shapes captured by a point 

cloud or modeled in a BIM. Among the shape-related features, the shape distribution 

measures the global geometric properties of an object in the 3D space and simplifies 

problem of comparing 3D shapes to the problem of comparing probability 

distributions.  

Point-level features are the most fundamental features associated with a point cloud. 

The position of a point and the surface normal derived from the point are the most 

frequently used features in the review research studies. It is because that these two 

features provide the basis to derive other features, such as point density, orientation 

of a point cluster, relative angles between different segments extracted from a point 

cloud and so on. However, point-level features themself do not have enough 

discriminative power to describe an entire object captured by a point cloud. On the 

contrary, objects are modeled in a BIM at the component level. As a result, 

geometric information formatted in a point cloud is at a different level of detail as 

compared to the information represented in a BIM. In order to remove the 
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differences of levels of detail between point clouds and BIMs, points need to be 

aggregated into higher-level entities, such as clusters of points, segments and 

geometric primitives, using point cloud segmentation and clustering techniques. 

While points can be aggregated into higher-level entities, a building component 

modeled in the BIM can also be decomposed into different geometric primitives 

(e.g., faces, vertices and edges) or different 2D views (e.g., cross section, principle 

axis and 2D projection). By sampling the BIM surfaces, BIM components can be 

decomposed into a collection of points. The matches between a point cloud and the 

points sampled from the BIM surfaces can be made at the point-level. Features 

generated through aggregation of point clouds or decomposition of BIMs allows 

comparison between the two data sets is made at the same level of detail.  

2.3 Validation  

In this chapter, I validated the coverage of the identified features in terms of whether 

the feature list identified in this research covers the majority of features that can be 

used to identify matches between point clouds and BIMs. I have reviewed research 

studies from different domains, such as computer vision, robotic, construction, and 

remote sensing, in order to ensure that the features identified in this chapter are not 

biased or limited to a specific field.  

I then applied cross-validation technique to evaluate the coverage of the features 

identified in this chapter. Cross-validation is a technique to estimate the generality of 

a statistical model by dividing the data into two sets: training set and testing set 

(Kohavi 1995; Refaeilzadeh et al. 2009). Cross-validation validates whether the 
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performance of a classifier or a prediction model that learned from a given training 

set is generalized to the testing set. In this chapter, I extended the cross-validation 

technique to validate the coverage of the identified features and prove that that the 

features identified in this chapter are not biased to one specific field of research 

studies. I randomly divided the 80 papers reviewed in this research into two sets: 

training set and testing set. The training set included 60 papers, and the remaining 

papers were used for the testing purpose. I then evaluated the distribution of the 

features within the testing and training set and counted the number of unique 

features that are not covered by the training set but are provided by the testing set. 

The results are provided in Figure 4. 

In Figure 4, the numbers under training and testing columns represent the total 

number of papers that mention a given feature in the training and testing sets, 

respectively. As seen in Figure 4, features identified from the testing and training sets 

show a similar distribution among different the reviewed papers. In other words, if a 

feature was widely referred in the papers that were within the training set, it was also 

widely referred in the papers that were in the testing set. For example, within the 

point cloud related research studies, “point position” and “surface normal of 

geometric primitives fitted to a point cloud” have been identified as the two most 

frequently used features in the reviewed research studies. “Spatial” and “topological” 

relationships have been widely referred both in the training and the testing sets. It 

was observed that only one additional feature – ‘standard deviation of heights for 

points within a point cluster’ was identified in the testing set but not shown in the 

training set. Given the total number of features identified in this research (50 features 



 41 

in both domains), having only one such feature showed that this research has 

covered the majority of features that can be used to support the matching between 

point clouds and BIMs from diverse research studies.   

    

Figure 4 (a). Count the number of research studies associated with each point cloud 

related features 
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Figure 4 (b). Count the number of research studies associated with each BIM related 

feature  

2.4 Conclusions  

In this research, I built on the previous research studies in relation to point cloud 

feature extraction, product representation, data standards for building information 

models and point cloud and 3D object recognition, and identified a list of features 

that can be applied to match point clouds to BIMs. I identified 21 features associated 

with BIMs and 29 features of point clouds. The identified feature could be served as 
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the foundation to develop matching algorithms that match point clouds to BIMs 

under different discrepancy conditions. However, there is still a limit understanding 

on how these features would perform under different discrepancy conditions. Hence, 

in the next Chapter, I evaluate the performance of the features for matching point 

clouds to BIMs.   

 



 44 

CHAPTER 3. EVALUATION OF DIFFERENT FEATURES FOR 

MATCHING POINT CLOUDS TO BUILDING INFORMATION 

MODELS 

The matches between segments extracted from point cloud data and components 

modeled in BIMs integrate accurate geometric information provided by point cloud 

data with semantic information contained in BIMs, which supports the identification 

of possible deviations between the two data sets. As discussed in Chapter 1, the 

actual shape and location of a component can be different from the design, due to 

changes occurred in the construction and the different levels of detail that a 

component modeled in a BIM versus how it is constructed on site.  

There can be different types of discrepancies between point cloud data and an as-

designed BIM, as seen in Figure 5: (a) Shape discrepancy: a component’s shape is 

different than the shape specified in the as-designed BIM; (b) Location discrepancy: a 

component’s location is different that the location specified in the as-designed BIM; 

(c) Dimension discrepancy: a component’s dimensions are different than what is 

specified in the as-designed BIM; (d) Content discrepancy: a component modeled in 

the as-designed BIM does not exist in point cloud, and vice versa; and (e) 

Composition discrepancy: multiple components are used to build a single component 

that is modeled in the as-designed BIM or vice versa.  
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Figure 5. Examples of different types of discrepancies 

While these categories are not mutually exclusive, they challenge the matching 

process and could mislead the matching. A matching approach based on a single 

type of feature might not always be able to identify all correct matches between point 

clouds and BIMs. Chapter 2 introduces a list of features that can be applied to match 

point cloud data to BIMs. Building on this feature list, I first developed four 

matching approaches that reason with different type of features. Second, I conducted 

an experimental analysis that evaluates the performance of the four matching 

approaches under different types of discrepancy situations. Third, I developed two 

matching approaches that combine different types of features and I analyzed how 
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those combined approaches could improve the matching results under different 

discrepancy conditions.  

3.1 Background Research Studies  

Many approaches have been developed in the computer vision, robotic navigation 

and remote sensing domains to recognize objects from point cloud data or classify 

3D objects into different categories (Bustos et al. 2007; Frome et al. 2004; 

Golovinskiy et al. 2009; Mahmoudi and Sapiro 2009; Pu and Vosselman 2006). 

Based on the features utilized, different object recognition approaches can be 

grouped into two categories: (a) spatial-based object recognition approaches, which 

recognize objects from point cloud data based on their relative location, distance and 

relationship with the other objects shown in the scene, and (b) shape-based object 

recognition approaches, which recognize objects from point clouds based on their 

shape-related features, such as dimension, shape, volume and size.  

3.1.1. Spatial-based object recognition approaches 

The spatial-based object recognition approaches take point cloud data as the input, 

and classify points or geometric primitives extracted from the point cloud into 

different classes. The classification is made according to the spatial-related features, 

such as connectivity, relative distances and angles between different objects, derived 

from point cloud data, and the heuristics or design models (e.g., BIM, floor plan, 3D 

design model) that reflect the nature of the collected point clouds. (Adan and Huber 

2011; Duan et al. 2010; Eich et al. 2010; Elberink and Vosselman 2009; Huber et al. 

2011; Koppula et al. 2011; Nüchter and Hertzberg 2008; Nuchter et al. 2003; 
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Pangercic et al. 2012; Pu and Vosselman 2009; Schnabel et al. 2008; Verma et al. 

2006; Xiong et al. 2013).   

Based on the spatial-related features and prior work in this area, I implemented two 

matching approaches: (a) 2D overlap area matching approach and (b) spatial 

relationship based graph-matching approach. The 2D overlap area matching 

approach measures the relative distances between a segment extracted from a point 

cloud and a component modeled in a BIM based on the overlap area of their 2D 

projections. The spatial relationship-based graph matching approach utilizes a graph 

to encode the spatial relationships (i.e., connectivity) between different components 

in a BIM and segments extracted from a point cloud, and it matches the point cloud 

to the BIM based on a graph-matching algorithm. The 2D overlap area matching 

approach simplifies 3D objects into a collection of 2D projections. The features 

associated with 2D objects are faster to compute than the 3D features (Chen et al. 

2003; Jiantao et al. 2004; Wang et al. 2003). On the contrary, the spatial relationship 

based graph-matching approach requires high computational power, since the graph-

matching problem is a well-known NP-complete problem, which cannot be solved in 

polynomial time (Caetano et al. 2009; Conte et al. 2004; Hofman and Jarvis 2000; 

Zaslavskiy et al. 2009). Despite the high computation power required by graph 

matching algorithms, the nature of a graph structure makes it suitable to represent 

the spatial relationships contained in a point cloud or a BIM. Graph matching 

algorithms are capable of fully utilizing the spatial relationships to increase the 

matching accuracy (Chao et al. 2011; Hofman and Jarvis 2000; Van Treeck and 

Rank 2004).  
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3.1.2 Shape-based object recognition approaches  

The shape-based object recognition approaches recognize objects from point cloud 

data by reasoning with their sizes, shapes, dimensions, and other shape-related 

features. These approaches can be further categorized into four: (1) region-based 

object recognition, (2) primitive-based object recognition, (3) distribution-based 

object recognition and (4) view-based object recognition. 

Region-based object recognition approaches reason with regional geometric-related 

features derived from a point and its neighboring points, such as point density, 

surface normal and spin image (Chen and Bhanu 2007; Frome et al. 2004; Johnson 

1997; Johnson and Hebert 1999; Lai and Fox 2010). Johnson and Huber (1999) 

defined a descriptor named spin-image to encode the properties of local surfaces 

fitted to a point’s neighborhood. Chen and Bhanu (2007) developed a local surface 

descriptor, which is calculated based on the angles between the surface normal of a 

reference point to the points in its neighborhood. The regional geometric-related 

features are less sensitive to noise and clutters shown in the scene (Bimbo and Pala 

2006; Tangelder and Veltkamp 2004).  

The primitive-based object recognition approaches reason with the geometric 

properties associated with segments (e.g., planes, planer surfaces) or clusters 

extracted from point cloud data. The geometric properties include orientation (i.e., 

surface normal of a planar surface or direction of the principle axis), area, volume, 

dimension and so on (Gilsinn et al. 2005; Golovinskiy et al. 2009; Huber et al. 2011; 

Paquet et al. 2000; Rusu et al. 2009).  
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The distribution-based object recognition approaches represent and compare 3D 

shapes captured by a point cloud or a 3D model using probability distributions of 

certain geometric properties (Belongie et al. 2001; Belongie et al. 2002; Ip et al. 2002; 

Mahmoudi and Sapiro 2009; Tang et al. 2010). Belongie et al. (2001, 2002) defined a 

shape descriptor named shape context to measure the similarity between different 3D 

shapes. For every point on a 3D shape, the shape context captures the logarithmic 

distribution of the distances between a specific point to all other points. Osada et al. 

(2002) represented a 3D shape as a shape distribution sampled from the properties 

measured on a 3D object. The properties include distances or angles between a pair 

of points randomly selected on the surfaces of a 3D object. The advantages of using 

the shape distribution as a descriptor is that it takes the entire 3D object into 

consideration, which makes the approach robust to small geometrical distortion and 

noises in a scene (Osada et al. 2002). In addition, comparing to the other geometric-

related features, such as volume, surface area and dimension, shape distribution is 

more descriptive and is able to distinguish components that have the same volume or 

surface areas and yet completely different shapes.  

The view-based object recognition approaches decompose a 3D object into a series of 

2D projections at different angles or cross-sections along different directions (Chen et 

al. 2003; Funkhouser et al. 2003; Jiantao et al. 2004; Nüchter and Hertzberg 2008). 

Chen et al. (2003) developed a view-based approach that matches similar 3D shapes 

based on visual similarity of their 2D projections at different angles. Funkhouser et 

al. (2003) designed a web-based 3D shape search engine, which allows users to 

search for 3D shapes that match the 2D sketch they inputted. Jiantao et al. (2004) 
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represented a 3D shape as a series of cross-sections generated along a given direction. 

The view-based object recognition approaches simplify the problem of 3D shape 

matching into measuring the similarity between 2D shapes.  

Since the distribution-based features have several advantages over other shape-

related features, I selected the shape distribution as the feature to be used to match 

point cloud data to a BIM. I developed two matching approaches: (a) distribution-

based 3D shape matching approach and (b) distribution-based 2D shape matching 

approach, which is built upon the combination of shape distribution and 2D 

projections of 3D objects.  

3.2 Feature Based Matching Approaches 

Built on the previous research studies, I developed four matching approaches: (a) 2D 

overlap area matching approach, (b) spatial relationship based graph-matching 

approach, (c) distribution-based 2D shape matching approach, and (d) distribution-

based 3D shape matching approach. These four matching approaches reason with 

different types of features that have different characteristics. Testing the performance 

of these approaches would be able to help us to understand which features contribute 

more to the matching process under which discrepancy conditions.   
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Figure 6. Classifications of features required by the four matching approaches 

The four matching approaches take a BIM and a segmented point cloud as input and 

identify possible matches between segments in the point cloud and components in 

the BIM. The raw point clouds are pre-segmented using the state-to-art segmentation 

approaches (i.e., RANSAC and region growing approach). Since the focus of the 

research described in this thesis is to evaluate how well different features support the 

matching process, I assumed that the input point clouds have been segmented using 

RANSAC and region growing approach (Roggero 2002; Schnabel et al. 2007)  Each 

matching approach is detailed in the following sections.  

3.2.1 2D overlap area matching approach   

Reasoning with the spatial proximity between point cloud data and a BIM helps to 

identify matches between the two data sets. The 2D overlap area matching approach 

first aligns a point cloud and a BIM into the same coordinate system. Second, it 

projects the aligned point cloud and BIM into a 2D plane and calculates the ratio of 
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the overlapping area between the segments extracted from a point cloud and the 

components modeled in a BIM. The 2D plane is selected based on the type and 

location of building components. For a building, orthogonal projection is a common 

way to project 3D components into the 2D space (Okorn et al. 2010; Pu and 

Vosselman 2009). As seen Figure 7, dotted lines represent orthogonal projection of 

segments from a point cloud and solid lines represent orthogonal projection of 

components modeled in a BIM. Component B2 in the BIM is spatially overlapped 

with three segments of the point cloud.  

This matching approach is based on the logic that if segment Pi in the point cloud 

overlaps with component Bj in the BIM, then it is likely that Pi and Bj are the same 

component and should be matched together. If segment Pi is spatially overlapped 

with multiple components (e.g., B1, B2, B3…Bn), then the 2D overlap area matching 

approach compares calculated overlap ratios to a pre-defined threshold in order to 

determine the final matches. The equation to determine the matches between a point 

cloud and a BIM is shown in Equation 1. Since information represented in a point 

cloud is accurate and reflects the as-built condition, I use segments captured by the 

point cloud as the target objects, and match these segments to building components 

modeled in the BIM. As the result, the area of orthogonal projection of segments 

captured by a point cloud is used as the denominator in Equation 1.  
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Assuming Pi is overlapped with Bj:  

 OverlapRatio   P!,B! =   
Overlap  surface  area   P!,B!

Surface  area   P!
      Equation 1  

P!  is  matched  to  B!  when  OverlapRatio   P!,B!   ≥ threshold  α   

where 𝛼 is the threshold for minimum overlap area ratio for the two matched 

components. Threshold 𝛼 is ranging from 0 to 1. As seen in Figure 7, if I set the 

threshold as 36% (the value is chosen just for demonstration purpose), then 

component B2 is matched to segment P2. The two matches (B2, P1) and (B2, P3) are 

eliminated from the matching candidate list since their overlap ratio is smaller than 

the pre-defined threshold. If more than one component exceed the determined 

threshold, these components are all considered as the mapping candidates. 

 

Figure 7. 2D projection of the registered point cloud and BIM 
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3.2.2 Spatial relationship based graph-matching approach  

The spatial relationships of segments captured by a point cloud and components 

modeled in a BIM play an important role in the applications, such as 3D shape 

matching and point cloud object recognition (Biasotti et al. 2003; Tangelder and 

Veltkamp 2004). The spatial relationships can be extracted and represented as 

graphs. A graph G = (V, E) is composed of edges (E) and vertices (V). Vertices, in 

this approach, represent a set of segments extracted from a point cloud or a set of 

components modeled in a BIM. Edges represent connectivity (i.e., one edge 

represents one connectivity) and relative distance between two vertices. The relative 

distance between two vertices is calculated as the Euclidean distance between the 

centroids of the two components, to which the vertices correspond.   

Once graphs are generated using both data sets (i.e., the BIM and the point cloud), 

vertices of these two graphs are matched to each other using a graph-matching 

algorithm. Given two graphs 𝐺! = 𝑉!  𝐸!   𝑎𝑛𝑑  𝐺! = 𝑉!  𝐸! , a graph-matching 

algorithm aims to find matches M: 𝑣! → 𝑣! ,where  𝑣!   ∈   𝑉!  𝑎𝑛𝑑  𝑣!   ∈   𝑉!. I selected the 

factorized graph matching (FGM) approach to match two graphs together. The 

reasons to utilize the FGM approach are that: (a) it reduces the demand for the 

computational power by converting affinity matrix K (the matrix that encodes the 

pair-wise similarity between vertices and edges) into two smaller matrices, vertex 

affinity matrix Kp and edge affinity matrix Kq; (b) it produces better matching 

accuracy (e.g., Zhou and De la Torre 2012); and (c) it is more robust to noise.        
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The first step of the spatial relationship based graph-matching approach is to convert 

point clouds and BIMs into graphs. As shown in Figure 8, the approach assigns the 

centroids of the segments/components extracted from the point cloud and the BIM 

as vertices, and creates edges to link adjacent vertices together. The output of this 

step is two graphs, one represents the spatial relationships amongst point cloud 

segments and the other represents the spatial relationships amongst the components 

in a BIM. In the next step, the approach applies the Factorized Graph Matching 

(FGM) algorithm to match vertices from one graph to the other. The two types of 

features that FGM algorithm uses are: (a) relative distances between connecting 

vertices, and (b) connectivity of vertices.  

 

Figure 8. Graph constructed from the point cloud and the BIM 

3.2.3. Distribution-based 3D shape matching approach 

Segments from a point cloud can be matched to components modeled in a BIM 

based on their shape similarities. The idea behind this approach is that if a segment 

captured by a point cloud has similar shape as the component modeled in a BIM, 

then it is likely that these two objects can be matched to each other. This approach 
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uses the 3D shape distribution (i.e., probability distribution of the geometric 

properties sampled from segments in point cloud data and components modeled in a 

BIM) as the feature, and calculates the shape similarity between the components 

modeled in a BIM and segments extracted from a point cloud.   

Figure 9 shows the flow chart for the distribution-based 3D shape matching 

approach. The approach takes a point cloud and an as-designed BIM as inputs. It 

first calculates the 3D shape distribution for the point cloud segments and BIM 

components. For component 𝐵!  modeled in a BIM, the approach measures the 

Euclidean distance between two random points on the surfaces of 𝐵!. For segment 𝑃! 

captured by a point cloud, the approach randomly picks two points within the point 

cloud segment, and measures the Euclidean distance between the two selected 

points. The measured distance is called as D2 distance in Osada et al. 2002. In the 

following paragraphs, I will refer to the distance between two randomly points 

sampled from the surface of components in a BIM or point cloud segments as D2 

distance. The above step is iterated for k times (k = sample size). Generally, higher 

the k is, the more accurate the shape distribution is for describing the shape of a 3D 

object. But in the meantime, more computational power is required to calculate and 

process the shape distribution. In this research, I set k as 100,000 to balance the 

accuracy of the shape distribution with the computation power. After kth iteration, 

the approach generates a k  ×(m+ n) matrix, represented as M. Each column of the 

matrix M refers to the probability distribution of D2 distances selected from a 

segment/component.  
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In order to compute the similarity between two shape distributions, each shape 

distribution is represented as a histogram. To create a histogram for the shape 

distribution (i.e., a column in matrix M), I extract the maximum value of D2 

distances and divide the space (0 ~ maximum value of D2 distances) into b intervals 

with fixed width. For each interval, I then count how many points in a column of 

matrix M are within the interval. The number of points is equal to the height of the 

interval. The differences between two histograms are then calculated using L2 normal 

distance. L2 normal distance is calculated using equation 2 below (Cha 2007):  

   𝐿!  𝑛𝑜𝑟𝑚𝑎𝑙  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒   =    𝑃! − 𝑄! !!
!!!                             Equation 2   

where d is 𝐿!  𝑛𝑜𝑟𝑚𝑎𝑙  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒, b is the total number of intervals, 𝑃! and 𝑄! are the 

number of samples within the interval i.  
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Figure 9. A flowchart depicting the distribution-based 3D shape matching approach 

Assuming there are n components in a BIM and m segments extracted from a point 

cloud, based on L2 norm distance, I constructed a m×n 3D shape dissimilarity 

matrix, represented as D:  

                                                      𝐷 =   
𝑑!! … 𝑑!!
… … …
𝑑!! … 𝑑!"

                                    Equation 3 

𝑑!"    is the L2 normal distance between the probability distribution of 𝑃! and   𝐵!. It 

represents the 3D shape dissimilarity between 𝑃!   and 𝐵!.  



 59 

I then transformed the dissimilarity matrix D so that each element in the matrix can 

be compared at the same scale of 0 to 1. The transformation is shown as follows: 

𝐷 =   
𝑑!! … 𝑑!!
… … …
𝑑!! … 𝑑!"

  
!"#$%&'()* 𝑑!! … 𝑑!!

… … …
𝑑!! … 𝑑!"

×

!
!!!!

!!!…
!
!!"!

!!!

                      Equation 4 

According to the matrix, 𝑃! is matched to 𝐵! when 𝑑!" < α, where α = [0:1] and is the 

threshold that defines the maximum shape dissimilarity between the two matched 

components.  

3.2.4 Distribution-based 2D shape matching approach 

This approach leverages the idea that the shape-related information associated with 

2D views of a 3D object can be used as a descriptor to describe this object (Jiantao et 

al. 2004). The approach first projects a point cloud and a BIM into a 2D plane. The 

selection of the 2D plane is made depending on the type and location of building 

components. Second, the approach extracts the contours of objects from the 2D 

projection, and matches the two objects from two data sources based on their 

similarities in the 2D shape.  

The similarity between two 2D shapes are measured based on the probability 

distribution of D2 distances. The pairwise distance of random points on the 2D 

contours are calculated for k times (k = sample size, representing the number of D2 

distances calculated from a 2D contour), and are used to create a histogram that 

represents the distribution of these k distances. Similar to the distribution-based 3D 

shape matching approach, the dissimilarity between two histograms is calculated 
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using L2 norm distance. The output of distribution-based 2D shape matching 

approach is a 2D shape dissimilarity matrix, represented as D’ = [𝑑′!"], where 𝑑′!" is 

the L2 norm distance between component i in a BIM and segment j in a point cloud.      

3.3 Experiment Setup 

This section discusses an experimental analysis that compares four different 

matching approaches described in the previous section in terms of how well they 

identify the correct matches between a point cloud and a BIM. The following 

sections discuss the details of the experiment including evaluation metrics, testbed, 

and tuning matching approaches.  

3.3.1 Experiment setting 

The performances of the four matching approaches are compared in an experimental 

setup in terms of how well they can identify the correct matches between point cloud 

and a BIM. Two metrics, precision and recall are used to compare the performance 

of matching approaches.  

                               𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =    !"##$%&'(  !"#$%!&!#"  !"#$!!"
!"#$%  !"#$%!&!#"  !"#$!!"

                             Equation 5  

                                𝑅𝑒𝑐𝑎𝑙𝑙 =    !"##$%&'(  !"#$%!&!#"  !"#$!!"
!"#$%  !"##$!%  !"#$!!"

                                  Equation 6 

The testbed used in this experiment is a research lab that has gone through a 

renovation process including the installation of a new mechanical system. I collected 

point cloud data during the renovation process, which depicts the as-is condition of 
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the research lab. I also created an as-designed BIM based on design drawings. In this 

experiment, I mainly focused on the ductworks that were newly installed in the 

research lab during the renovation process. The reason I targeted on the ductworks is 

that I observed different types of discrepancies occurred during the construction of 

the ductworks. Hence, it would be realistic to simulate different types of 

discrepancies into the corresponding data set and provide a good testbed for 

evaluating the performance of matching approaches under different discrepancy 

conditions. Figure 10 shows the point cloud and the as-designed BIM used in the 

experiment. The point cloud has been segmented using RANSAC and edge detection 

techniques. The segments of a point cloud are labeled as (P1, P2 … P8). The 

ductworks modeled in the as-designed BIM are labeled as (B1, B2… B8).  

 

Figure 10 As-designed BIM and the corresponding point cloud 

In order to evaluate the performance of different matching approaches under 

different types of discrepancies, I developed a simulation algorithm that runs on the 

testbed data and utilize a widely used building information modeling tool as the 

platform to randomly generate different types of discrepancies into a given set of 

components. The simulation algorithm is running as an add-on to the modeling tool, 
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and it takes a BIM as the input. For each building component modeled in the BIM, 

the algorithm randomly changes the dimension (e.g., length, height and width) and 

shape of the component. For a group of components that are connected to each other, 

the algorithm randomly changes the location and the connectivity of these 

components as well. To simulate composition discrepancy (i.e., the topological 

change), the algorithm combines multiple components together or divides one 

component into several new components. I determined the ranges of values for 

discrepancies to be used during the simulation (e.g., length, width, height, distance) 

so that they are close to real world scenarios. For instance, while changing the 

location of the ductworks, they cannot be moved to other rooms or installed on the 

floors.     

As seen in Figure 11, the selected ductworks installed in the renovated space is used 

as the baseline model and then different types of discrepancies are introduced to the 

baseline model to generate different versions of the model with deviations different 

than what is captured in the point cloud. Using the simulation algorithm, I generated 

39 models, which covered different types of discrepancies, including shape, 

dimension, location, and composition discrepancies as compared to the baseline 

model. In total, the testbed included 40 pairs of point cloud (the point cloud remain 

the same) and the corresponding BIM (each pair is called as one scenario) for the 

experiments. Among the 40 scenarios, 30% of them have shape discrepancies, 65% 

have dimension discrepancies, 75% have location discrepancies and 10% of them 

have composition discrepancies.  
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Figure 11. Example set of models with different discrepancies for the experiment  

3.3.2. Tuning the matching approaches  

The three matching approaches (i.e., 2D overlap area matching, distribution based 

2D shape matching and distribution based 3D shape matching) need to set up a value 

for the threshold in order to perform the matching task. The value of the threshold 

could impact the result of these three matching approaches. In order to determine the 

near-optimal value for the thresholds required by these matching approaches, the 
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testbed data were randomly divided into a training set (25 scenarios) and a testing set 

(15 scenarios). The proportion chosen for the training set is 62.5% and the proportion 

for the testing set is 37.5%. The choice of 62.5 to 37.5 proportion is to ensure that 

there were sufficient training data to determine the near-optimal value of the 

thresholds, but not too much training data that might cause the over-fitting. In this 

research, I used F1 measure to choose the near-optimal value of the thresholds. The 

F1 measure (also called as F1 score) is a measure of the accuracy for a test. It 

considers both precision and recall and is calculated as Equation 7 (Hripcsak and 

Rothschild 2005; Huang et al. 2005).  

Equation 7:    

F =   
(1+ β!)×precision×recall
(β!×precision)+ recall  

where β is the balance between precision and recall. In this research, precision and 

recall are evenly weighted. Hence, β  = 1. The best F1 measure has the value as 1 

and the worse F1 measure has a value as 0.  

Figure 12 shows the change of precision and recall for the three matching approaches 

when the thresholds are changing from 0 to 1. For each matching approach, four 

different curves are shown in Figure 12, which are: (1) precision vs. threshold, (2) 

recall vs. threshold, (3) F1 measure vs. threshold and (4) summation of precision and 

recall vs. threshold. As shown in Figure 12, the value of threshold significantly 

impacts the performance of the matching approaches. In this experiment setting, 

same weights are assigned to the precision and recall, and the near-optimal threshold 
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value has been determined as the value that is able to generate the highest F1 

measure.  

 (a) 2D overlap area mapping approach  (b) 2D shape mapping approach 

  
(c) 3D shape mapping approach  

 

 

Figure 12. Tradeoff of the precision and recall when threshold is changing 

The near optimal values for the thresholds of the three matching approaches are 

shown in Table 4. For the 2D overlap area matching approach, the threshold 

controls how sensitive the approach responses to location displacements. When the 

threshold is equal to 1, the overlap ratio between two matched components needs to 

be 100%. In the real world, a component might not be constructed at the exact 

location specified by the as-designed BIM. Hence, there is a need to reduce the value 

of the threshold in order to add the tolerance for location displacements. As seen in 
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Figure 12(a), with the increase of the threshold for the 2D overlap area ratio, recall 

reduces and precision first grows and then declines. The decline of the precision 

happens when the threshold for the 2D overlap area ratio is greater than the size of 

components. In that case, the 2D overlap area matching approach cannot extract any 

matches between the point cloud and the BIM since no overlap ratio can meet the 

threshold.  

The values of the thresholds for the distribution-based 2D and 3D shape matching 

approaches control the minimum level of shape similarity required for two matched 

components. As seen in Figure 12(b) and (c), when the values of thresholds for 2D 

and 3D shape are equal to 0, the approaches are extremely sensitive to shape and 

dimension discrepancies and two components need to be identical to each other in 

order to be matched together. When the values of thresholds for 2D and 3D shape 

are equal to 1, the two approaches are not sensitive to shape and dimension 

discrepancies at all, and two components can be matched even though their shapes 

are completely different. As shown in Figure 12(b) and (c), with the increase of the 

thresholds, the recall values of the two approaches increase while the precision 

values reduce.  
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Table 4. The definitions and optimal values for the thresholds 
Matching 
approach 

Definition Trend 
Near-optimal 

value 

2D 
overlap 

Pi  matches  to  Bj    when   
OverlapRatio   Pi,Bj   
≥ threshold  𝛼! 

When 𝛼 increases, two 
matched components need to 
have more overlapping area 

0.01 (the overlap 
ratio = 1%) 

2D shape 
Pi  matches  to  Bj  when     

distribution  distance Pi,Bj
< threshold  𝛼! 

When 𝛼 increases, the 
approach is less sensitive to 
the 2D shape differences 

0.03 (the 
difference of shape 
distribution = 3%) 

3D shape 
Pi  matches  to  Bj  when   

distribution  distance Pi,Bj
< threshold  𝛼! 

When 𝛼 increases, the 
approach is less sensitive to 
the 3D shape differences 

0.05 (the 
difference of shape 
distribution = 5%) 

 

3.4 Experiment Results 

After tuning the matching approaches, I evaluated the performance of the four 

matching approaches using the testing data. The testing data is composed of 15 

scenarios with different types of discrepancies. For every scenario, the output of each 

matching approach is a matching matrix M = [m!"], where i indicates the segments in 

a point cloud (P!,P!…   P!), and j indicates the components modeled in a BIM 

(B!,B!…   B!). As shown in equation 8, mij can be 0 or 1. When mij is equal to 1, 

segment Pi from the point cloud is matched to component Bj modeled in the BIM.  

The matching results for the four different matching approaches are summarized in 

Table 5.  

                mij= 1
 0

Pi matches Bj
 Pi  and Bj are not the same component

                         Equation 8 

The matching matrix is visualized by a binary image, as shown in Figure 13. The 

binary image is divided into n×m grids, n = the number of segments in the point 
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cloud and m = the number of components modeled in the BIM. If 𝑔𝑟𝑖𝑑!"   is filled in 

black, then Pi is mapped to Bj. The x-axis in the binary image shows the segments 

extracted from a point cloud (labeled as “original”) and the y-axis shows the 

components modeled in a BIM (labeled as “target”).   

 

Figure 13. Visualization of a matching matrix 

Appendix A shows the matching results of the four matching approaches. The results 

are presented in a table, where each row corresponds to one specific scenario (i.e., a 

pair of point cloud and BIM). Let’s take one scenario as an example. In the given 

scenario, there are no shape and dimension discrepancies between the point cloud 

and the simulated BIM. A small location displacement has been added into the 

simulated BIM. Figure 14 shows the results of the four matching approaches. Spatial 

relationship-based graph matching approach achieved 100% precision and recall, 

since the connectivity among components remains the same in the point cloud and 

the BIM. 3D shape based matching approach was able to identify all the correct 

matches between the point cloud and the BIM but it also incorrectly matched point 

cloud segment 𝑃!  to BIM component 𝐵! . 2D shape based matching approach 

achieved 100% recall and 80% precision. It generated two incorrect matches 𝑃! ↔ 𝐵! 

Matching matrix Visualization 



 69 

and 𝑃! ↔ 𝐵!. As seen in Figure 14, component P2 and P4 are both modeled and 

constructed as rectangle ductworks. They have the same width and height but 

slightly different length (2” difference). Due to the similar shape and dimension, the 

2D and 3D shape based matching approaches have difficulty to distinguish these two 

components from the point cloud and the BIM. The 2D overlap area matching 

approach had 100% recall and 66.67% precision. The incorrect matches generated by 

the 2D overlap area mapping approach are caused by the location displacement.  

 

Figure 14. Mapping results for the four mapping approach in a case where there is a 

slight (2”) difference in the length of a component between a point cloud and a BIM 
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The 2D overlap area matching approach is sensitive to location displacements. One 

matching result of the 2D overlap area matching approach is shown in Figure 15. 

Components that have the overlapping 2D surface area are matched together. 

However, due to the location, shape, and dimension discrepancies, one segment in 

the point cloud might be spatially overlapped with multiple components in the BIM. 

Hence, the approach identifies a set of matching candidates, and further analysis is 

required in order to eliminate the incorrect candidates, so as to increase the precision 

of the approach.  

 

Figure 15. Matches identified by the 2D overlap area matching approach for one 

example case 

The performance of the distribution-based 2D and 3D shape matching approaches 

are not impacted by the location displacements. Figure 16 describes how shape and 

dimension discrepancies could impact the 2D and 3D shape matching results. The 

red arrows represent the matches identified by both 2D and 3D shape matching 

approaches, the blue arrows represent the matches solely identified by 3D shape 



 71 

matching approach, and the black arrows represent the matches solely identified by 

2D shape matching approach. Since 2D and 3D shape matching approaches both 

target on shape related features, they showed the similar performance in the 

experiment. The arrows labeled as “X” indicate incorrect matches identified by the 

two matching approaches. The incorrect matches are caused by the shape 

discrepancies between the point cloud and the BIM.  

 

Figure 16. The matches identified by the 2D and 3D shape matching approaches or 

one example case 

Spatial relationship based graph-matching approach is able to identify the correct 

matches regardless of shape, dimension and location discrepancies. However, in 

scenarios where composition discrepancies exist, the precision and recall of the 

spatial relationship-based graph matching approach will reduce.  
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Table 5. Results of matching process for the four matching approaches for testing 
and training data set  

Approach 
Training Testing 

Precision Recall Precision Recall 
2D shape  0.89 0.46 0.80 0.54 

2D overlap 0.27 0.34 0.36 0.44 
3D shape 0.68 0.53 0.76 0.59 

Spatial relationship based  1 0.82 1 0.89 

In summary, a single matching approach that is solely based on one type of feature 

does not identify all correct matches in all cases. For the cases within which the 

connectivity of building components remain the same in a point cloud and a BIM, 

the spatial relationship based graph matching approach has the best performance 

since it is robust to shape, dimension and location discrepancies. The shape based 

matching approaches are robust to location and composition discrepancies. 

However, under circumstances when multiple components are designed and 

modeled with same shape or a building component is not manufactured or 

constructed as design specifies, the shape based matching approaches might perform 

worse than the spatial relationship and 2D overlap area based matching approaches. 

Taking the entire training and testing data into consideration, the 2D overlap area 

matching approach has the worst performance (i.e., low precision and low recall). It 

is because this approach is sensitive to location displacements caused by shape, 

location, and dimension discrepancies. There is no absolute answer in terms of 

which is the best feature to match point clouds to BIMs, since all the features tested 

in this research are sensitive to certain types of discrepancies and are robust to others. 

It is possible to combine different types of features to improve matching results. The 



 73 

next section describes two approaches that I developed to combine different types of 

features for matching. 

3.5 Combination Of Different Features To Improve Matching Results 

In this section, I combined the spatial and shape related features together using two 

approaches: (1) re-aligning point cloud and BIM based on 3D shape distribution to 

reduce the impacts of location discrepancies on the area approach and (2) filtering 

the matching candidates generated by the 2D overlap area matching approach using 

3D shape distribution feature (called as 3D filter in the following paragraphs).   

3.5.1. Re-aligning point cloud and BIM based on 3D shape feature 

To reduce the negative impacts of location discrepancies on the performance of 2D 

overlap area matching approach, I developed an approach that combines the 2D 

overlap area with 3D shape features. The details of this approach are provided in 

Figure 17. This approach first applies 3D shape matching approach to identify the 

correspondences between a point cloud and a BIM. Second, it chooses one 

component in the BIM and selects the point cloud with highest similarity as the 

reference and re-aligns the point cloud and the BIM together in order to remove the 

location displacements. After the point cloud and the BIM are aligned together, the 

2D overlap area matching approach is then applied to identify matches between the 

two data sets.   
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Figure 17. The process of 3D shape plus 2D overlap area matching approach 

3.5.2. Filtering the matching results generated by the 2D overlap area by the result 

of matching approach using 3D shape features  

As discussed in the previous section, the location discrepancy can be reduced by re-

aligning the point cloud with the BIM according to the correspondences identified by 

3D shape feature. However, even after the re-alignment, one segment from the point 

cloud might still be overlapped with multiple components modeled in the BIM due 

to the dimension and shape discrepancies. The matching candidates obtained by the 

2D overlap area matching approach can be further filtered based on the 3D shape 

features.  

After running 2D overlap area matching approach, one segment in the point cloud is 

matched to multiple components in the BIM. In order to eliminate the incorrect 

matches, for each segment Pi in the point cloud, the shape filter first extracts all the 

matching candidates (Bi … Bj) that are associated with this segment. If the segment Pi 
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has more than one matching candidate, the shape filter then calculate the shape 

distribution for each of the matching candidates. Third, the shape filter selects the 

matching candidate that has the most similar shape distribution as segment Pi, and 

matches them together. By using the 3D shape filter, I can filter out the incorrect 

matches so as to increase the precision of the matching approach. However, the 

shape filter could also eliminate the correct matches when the same components are 

modeled and constructed in different shapes and dimensions. Table 6 shows the 

matching results by combining features together. The combination of different types 

of features together is capable of identifying more correct matches as compared to 

when these features are used separately. The precision of the 2D overlap area 

matching approach after re-alignment based on 3D shape feature approach is much 

higher than the precision of the 2D overlap area matching approach, since the re-

alignment reduces the location discrepancy. But, the precision of the approach is still 

lower than the precision of the 3D shape matching approach. The reason is that the 

performance of the 2D overlap area matching approach is bounded by its sensitivity 

to location displacements caused by shape and dimension discrepancies. Adding a 

shape filter is similar to adding a constraint on the 2D overlap area matching 

approach, which specifies the maximum tolerance for the shape differences between 

two matched components. As a result, the shape filter could filter out incorrect 

matches and improve the precision. However, it also increases the sensitivity to the 

shape discrepancies, which could reduce the recall.   

 



 76 

Table 6. The precision and recall comparison for 2D overlap & 3D shape approaches 
with the combination of the two approaches 
Matching approaches Precision Recall 

2D overlap alone 0.36 0.44 
3D shape alone 0.76 0.49 
Re-aligning point cloud and BIM using 3D shape feature 0.66 0.78 
Filtering 2D overlap matching results with 3D shape features  0.71 0.67 

 

3.6 Validation 

To evaluate that the performances of the matching approaches developed in this 

research can be generalized to different configuration of mechanical components and 

different types of discrepancies, I used three different sections of ductworks (see 

Figure 18) as the validation dataset. The three sections of ductworks contain 

mechanical components with different shapes, dimensions and spatial relationships 

in order to make ensure that the results are not biased to a specific scenario.  

The developed simulation algorithm has been used to simulate different types of 

discrepancies (i.e., dimension, location, shape and composition discrepancies) into 

the validation dataset. The validation dataset contains 60 pairs of point clouds and 

BIMs. 40 pairs were used as the training and 20 pairs were used as the testing set. 

The thresholds for the matching approaches are determined using the training data. 

In this validation, the threshold of 2D overlap area matching approach is 6%, the 

threshold of 2D shape matching approach is 3% and the threshold of 3D shape 

matching approach is 5%.  
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Figure 18. Validation data set includes different ductworks and different types of 

discrepancies applied to all three sets of ductworks 

The matching results gained from the validation dataset are shown in Table 7. The 

performances of different matching approaches on the validation dataset show 

similar patterns as in the experimental dataset.  

Table 7. Matching results for the validation dataset 
Approaches Precision Recall 

2D overlap area 0.35 0.31 
2D shape 0.45 0.57 
3D shape 0.3 0.59 

Spatial relationship 0.89 1 
Re-alignment using 3D shape feature 0.79 0.46 

3D shape filter  0.41 0.64 
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3.7 Conclusions  

Matches between point cloud and a BIM can be identified based on different types of 

features associated with these two data sets. In this chapter, I implemented six 

matching approaches that reason with and combine different types of features to 

identify matches between segments in a point cloud and components modeled in a 

BIM. The performance of a matching approach is impacted by various factors, such 

as discrepancies existing between point cloud and a BIM, and the features used in the 

matching approach. I conducted an experimental analysis that evaluates the 

performance of the developed matching approaches. The experimental analysis 

reveals that different features are robust to different types of discrepancies and the 

combination of features could improve the matching results. The object-level 

matches identified from the matching process associate the design information 

contained in an as-designed BIM to the actual geometric information captured by 

point clouds. The matches will allow construction professionals to identify the 

discrepancies between an as-designed BIM and the as-built condition so as to update 

the as-designed BIM and remove such discrepancies.    
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CHAPTER 4. AN APPROACH FOR LEVERAGING 

PROGRESSIVE LASER SCANS  

Point cloud data captured by laser scans play an important role in the process of BIM 

update by providing accurate geometric information that depicts the as-built building 

conditions. However, point cloud data collected at a given point in time typically is 

not able to provide all the geometric information required for creating/updating a 

BIM, due to three major reasons. First, temporary work, machinery, laborers, and 

material periodically occlude a construction scene. Similarly, permanent building 

components occlude other building components and hinder capturing of complete 

view of the components within the range of the laser scanner. Examples of such 

instances include ductwork being hidden behind ceiling tiles or wall rough-ins being 

hidden behind walls. Second, building components might not be 

installed/constructed at the time of scanning. Third, when a building component is 

under construction, a laser scan performed at a single point in time might not be able 

to capture the final form of the component. In current practice, laser scanning is 

typically done before and/or after construction to capture as-built condition of 

construction projects (Liu et al.). However, due to the reasons given in the previous 

paragraph, not all of the geometric information for all building components can be 

captured.  

With the goal of achieving accurate and comprehensive geometric information about 

all components being installed during construction, Chapter 4 presents an approach 

developed to evaluate the information contained in a point cloud so as to support the 
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decision of which subset of point clouds should be registered together in order to 

provide a complete set of geometric properties for building components with less 

storage size and processing time. The developed approach evaluates the geometric 

information associated with surfaces of building components that are shown in a 

point cloud data and assesses the additional geometric information generated by 

combining more point clouds together. While doing this assessment, the approach 

utilizes two metrics: (a) coverage ratio, which is used to evaluate the quantity of 

captured geometric information per component per point cloud, and (b) dissimilarity 

ratio, which identifies the additional information that can be generated by adding a 

point cloud to another point cloud.  

4.1 Related Research Studies 

The research work presented in this chapter builds on the previous research studies in 

relation to (1) evaluation of the quality and quantity of information captured by point 

cloud data, and (2) point cloud comparison approaches. 

4.1.1. Evaluation of the quality and quantity of information captured by a point 

cloud data  

The studies that evaluate the quality and quantity of information captured by point 

cloud data can be grouped into two: (a) Approaches that assess the accuracy of point 

cloud data by comparing the measurements on the real physical objects to the 

measurements taken in the point cloud data, and (b) Approaches that compare the 

point cloud data to other reference data, such as building information models. 
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The first group of research studies focuses on assessing the accuracy of geometric 

information captured by point clouds. To support the assessment, these research 

studies conducted measurements on the real physical objects and compared the 

measurements to the measurements taken from objects captured in point clouds 

(Boehler et al. 2003; Boehnen and Flynn 2005; Fröhlich and Mettenleiter 2004; 

Golparvar-Fard et al. 2011). Such accuracy analysis is used to support different 

engineering applications, including (a) identifying the factors (e.g., resolution and 

range of laser scanners, reflectivity of scanning surface, etc.) that could impact the 

accuracy of captured point cloud data (Boehler et al. 2003; Boehnen and Flynn 2005; 

Clark and Robson 2004; Fröhlich and Mettenleiter 2004; Kersten et al. 2005; 

Mechelke et al. 2007; Tang et al. 2009), and (b) evaluating the accuracy of point 

cloud data captured by laser scanners and assessing the applicability of using laser 

scans to support a specific task (e.g., 3D survey, quality control, surface flatness 

detection, etc.) (Golparvar-Fard et al. 2011; Park et al. 2007; Tang et al. 2010). 

Such studies are well aligned with the work presented in this research in terms of 

assessing the quality of geometric information captured by laser scanners. However, 

one drawback of the approaches in this group is that such studies do not evaluate the 

completeness of data provided by a point cloud (i.e., how many building components 

and their associated geometric information can be provided by a point cloud to 

support the update of a BIM). The research presented in this thesis differs from these 

previous studies with respect to quantifying the geometric information captured by a 

point cloud.   
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The second group of research studies formulated a deviation-based approach in order 

to identify the differences between point cloud data with a reference model, such as 

building information model (Akinci et al. 2006; Anil et al. 2011; Bosché et al. ; Oude 

Elberink and Vosselman 2011; Tang et al. 2011; Tang et al. 2010). The patterns of 

deviations can be used to indicate the quality of a point cloud data and how much 

information is captured by the point cloud data, assuming that the reference models 

represent the correct information. Synthesis of the studies in this field suggests that 

three major concepts can be used to characterize the information contained in a point 

cloud (Tang et al. 2010, Anil et al. 2011(Oude Elberink and Vosselman 2011). These 

are: (1) the point density, which defines the number of points within in a unit area, 

(2) the uncertainty, which refers to the standard deviation of the shortest distance 

between points and the surfaces fitted to the points, and (3) the occlusion, which 

defines the regions of the object surface that have no corresponding points in the 

point cloud. The point density determines the level of detail of the geometric 

information that a point cloud is able to provide for a given object. A high-density 

point cloud is capable of providing geometric information with greater details. The 

uncertainty is used to define the reliability of the measurements taken in a certain 

region within a point cloud. The uncertainty could be caused by noise in the data, 

edge losses (i.e., the mixed-pixels at the edge of two surfaces), low reflectivity of a 

surface, and irregularities of surfaces (Tang et al. 2009). Among these three concepts, 

the occlusion is capable of providing the information regarding which parts of a 

building surface is occluded in a point cloud. Hence, the research presented in this 
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thesis extends the concept of occlusion to evaluate the completeness of the geometric 

information captured by point cloud data.  

4.1.2. Comparing two point clouds and identifying the differences   

Multiple point clouds can be combined together using the technique called 

registration. There are different registration approaches, which can be grouped into 

two classes: coarse registration and fine registration (Salvi et al. 2007) The coarse 

registration methods align a set of point clouds using the correspondences among 

these data sources. For instance, the corresponding points can be manually selected 

from the point clouds, and the methods will align the set of point clouds in order to 

minimize the distances between the selected corresponding point clouds. As the 

result, whether or not the selected point pairs are equivalent to each other will 

determine the accuracy of the final alignment. To improve the accuracy of the coarse 

registration approaches, targets (e.g., labels, markers, etc.) have been placed in the 

scene during the scanning process. The equivalent targets shown in different point 

clouds are used as the correspondences to guide the registration process.  

The fine registration takes the entire point cloud into consideration (Chen and 

Medioni 1992; Rabbani et al. 2007; Salvi et al. 2007). Iterative closest point (ICP) is a 

well-known fine registration algorithm. ICP algorithm iteratively adjusts the 

alignment of a set of point clouds until the distances between points in one point 

cloud and their closet points in the others are minimized (Mitra et al. 2004; Sharp et 

al. 2002). The ICP algorithm is fully automated and no points need to be pre-selected 

for the registration purpose. But its performance could be impacted by the 
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deformation existed in the point clouds (i.e., the appearances of building components 

are changing in different point clouds). On the contrary, the registration based on the 

equivalent targets is not influenced by the deformation between different point 

clouds. In this research, targets were present in the scene when laser scans were 

progressively performed during the renovation process. Hence, point clouds captured 

in this study are registered together using the equivalent target-based approach. 

4.1.3. Next-best-view planning problem 

The next-best-view (NBV) problem is a well-known problem in the computer vision 

domain. The NPV problem is to find minimum number of viewpoints, where a range 

sensor is placed, to scan all the surfaces of an object (Connolly 1985; Maver and 

Bajcsy 1993; Pito 1996). Various next-best-view (NPV) planning approaches have 

been developed in the computer vision domain to address the NPV problem. These 

approaches are usually composed of two parts: (a) a method to represent and 

determine the visibility of an object surface from different viewpoints, and (b) a 

viewpoint selection algorithm that optimize the coverage of sensors with smallest 

number of views (Banta et al. 2000; Maver and Bajcsy 1993; Pito 1999; Scott et al. 

2003; Wong et al. 1999). Various approaches have been used to represent the 

viewing volume of an object from a given viewpoints. Examples of such approaches 

include occupancy grids (or called as voxel grid), octrees and triangle meshes 

(Tarabanis et al. 1995). One of the commonly used representation approach is the 

occupancy grid, which encodes an object surface using a voxel grid. In a voxel grid, 

each voxel can be labeled as occupied (i.e., the voxel is captured by the scanner from 

a given viewpoint) or unoccupied. By counting the number of occupied voxels, the 
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approach is capable of determining the coverage of a range image captured from a 

given location and orientation (Banta et al. 2000; Massios and Fisher 1998).  

One of the research objectives in research question 3 is to develop an approach that 

selects a minimum number of point clouds captured at different times to provide 

more geometric information for 3D BIM update. It is similar to the NPV problem as 

they all target on finding a subset of point clouds or range images to cover all the 

target object surfaces. The difference is that the NPV problem selects range images 

different in spatial viewpoints whereas the approach developed in research question 3 

select point clouds different in scanning time. Therefore, the NPV planning 

approaches provide a starting point for developing an approach to select and 

combine point clouds captured at different times. The visibility metrics (i.e., 

occupied/unoccupied) and the occupancy grids proposed in the NPV planning 

approaches can be also extended and used in the point cloud selection approach 

proposed in research question 3.  

4.2 Motivating Case Study: an Analysis of Completeness of Geometric 

Information in Progressively Captured Point Clouds  

For a detailed analysis of completeness of geometric information contained in 

progressive point clouds, I conducted a case study using a renovation project of a 

100-year old university campus building. The renovated space was scanned from 

multiple locations to capture the interior of the research lab at six different times 

during the renovation process that went from May to August 2012. A pulsed time-of-

flight (PTOF) scanner was used in the case study. The progressively captured point 
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clouds are used to analyze the information provided by combining point clouds 

progressively.  

  

Figure 19. Project site layout and the scan locations 

In this analysis, I targeted on the point clouds captured at six different times at 

location 3. These point clouds are referred to as P1, P2, P3, P4, P5 and P6. To 

evaluate the geometric information contained in the progressively captured point 

clouds, I selected the ductworks in room 2 as the testbed (as seen in Figure 20), and 

analyzed how much information each point cloud is able to provide to update these 

ductworks in a BIM. The reason to make this selection is that these ductworks were 

progressively installed during the renovation, and as a result point clouds captured at 

different times might provide different information regarding these ductworks. To 

update a ductwork segment manufactured in a rectangular shape, width, height and 

length of the segment need to be measured from the point cloud. The width, height 

and length of a ductwork segment are referred to as geometric properties of that 

ductwork segment. The analysis included 22 duct segments and their 66 geometric 
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properties (i.e., width, height and length) that were measured in all of the six point 

clouds.  

 

Figure 20. The testbed for the motivation case study: ductworks captured by the 

point cloud data 

A geometric property can have three statuses in a point cloud:  

• Occluded: Occlusions block the view of a geometric property, which prevent 

getting measurements from the point cloud for that property. 

• Not installed: The target geometric property cannot be measured, as the 

corresponding component had not been installed when the point cloud was 

captured. 

• Measurable: The target geometric property can be measured from the point 

cloud.  
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In order to evaluate the information added by the combination of point clouds 

captured at different times, the point clouds were progressively registered and 

analyzed for the status of the same 66 geometric properties shown in the registered 

point clouds. Targets were present in the scene when laser scans were progressively 

performed during the renovation process. A screenshot of targets presented in a point 

cloud is shown in Figure 21. The targets were used to register and combine point 

clouds captured at different times together. In total, five registered point cloud sets 

were generated, labeled as “P1+P2”, “P1 to P3”, “P1 to P4”, “P1 to P5”, and “P1 to 

P6”.  

 

Figure 21. Targets shown in a point cloud 

Figure 22 shows the status of geometric properties captured in the point clouds 

captured at a single point in time (i.e., P1, P2, etc.) as well as the progressively 

registered point clouds. In Figure 22, each row represents a ductwork segment in the 

testbed. The blue, gray and black boxes represent whether a corresponding geometric 

property is measurable, not installed or occluded in the point cloud, respectively.  
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Figure 22 Status of geometric properties captured by individual point clouds (P1, 

P2…P6) and the combination of them 

As shown in Figure 22, none of the six progressively captured point clouds is capable 

of solely capturing all the geometric properties for all these segments. The 

screenshots for the six point clouds captured at different times are shown in Figure 

23. Combing Figure 22 with Figure 23, it can be found that no ductwork segments 

were installed by the time P1 was captured, and thus all the 66 geometric properties 

are gray- hence have “not installed” status in P1. 42% of the geometric properties 
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were “not installed” in P2. By the time P3 was captured, all the ductworks in Room 

2 were installed (i.e., no segments with not-installed status). Occlusions shown in the 

scene could prevent a point cloud from capturing a complete view of target 

components and their associated geometric properties. In P3, 11% of the geometric 

properties were “occluded”. 23% of the geometric properties captured by P4 were 

“occluded” and 14% of the geometric properties captured by P5 were “occluded”. By 

the time P6 was captured, ceiling tiles and lighting fixtures were installed. They 

occluded most of the ductworks from laser scans. As a result, the percentage of 

“occluded” geometric properties jumped to 67% in P6.  
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P1 P2 

  
P3 P4 

  
P5 P6 

  
 

Figure 23. Screenshots of the point clouds captured at different times 

As evident from the figure, it was possible to extract more geometric properties from 

the merged point clouds than the point clouds captured at a single point in time. In 

the combined point clouds “P1 to P3”, “P1 to P4”, “P1 to P5” and “P1 to P6”, 96% 

of the geometric properties were “measureable” and 4% of them were “occluded”. 

The occluded geometric properties in the combined point clouds (shown as black 

boxes in Figure 22) were either “occluded” or “not installed” in all of the six 

progressively captured point clouds. As seen in Figure 22, combining P1 to P3 
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provided the same number of geometric properties as compared to combining all six 

point clouds together. Adding P4, P5 and P6 into the registered point cloud did not 

increase the number of “measurable” geometric properties. It shows that combining 

more point clouds does not always mean that the registered point clouds would 

provide more geometric properties in relation to the target components.  

In addition, as observed from Figure 22 and Figure 23, the occlusions are randomly 

distributed in the six point clouds. However, as renovation process progresses, it is 

likely that the probability of having the same occlusions occurring at exactly the 

same locations will decrease. Some of the geometric properties were “occluded” or 

“not installed” in some of the point clouds but they could be measured from the 

other point clouds. As a result, when multiple point clouds captured in different 

times are combined together, it is possible to retrieve geometric properties that were 

occluded or not installed in some of the point clouds. However, the growth of the 

geometric information provided by a combined point cloud is not proportional to the 

number of point clouds that are combined together. Adding more point clouds is 

likely to increase the size of the final data set though it might not always add more 

geometric information. Considering large file size of a point cloud, combining 

multiple point clouds together would generate a combined point cloud that requests a 

large storage space. For instance, six point clouds were collected at different points in 

time in the motivating case study, and the average size of a point cloud is around 

320MB. Combining these six point clouds together generates a 2GB point cloud. It 

would be a challenge to store, process and edit the combined point cloud if more 

point clouds are combined together (de Haan 2009; Ravada et al. 2010; Song and 
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Feng 2009). Therefore, having a pre-selected set of point clouds could reduce the size 

of final point cloud data and also potentially improve the usage for the final point 

cloud data. In order to support the decision on which point clouds to be registered, 

there is a need to develop an approach to evaluate the information contained in each 

point cloud and assess the information gain when adding registering more point 

clouds. The next section provides the details of an approach developed for this 

purpose. 

4.3. An Approach to Evaluate Information Contained in Progressively Captured 

Point Clouds and Select Point Clouds to Be Combined 

The developed approach is composed of two modules: (a) content assessment 

module, which quantifies the geometric information contained in each point cloud 

for updating/modeling target building components in a BIM, and (b) content 

improvement module, which calculates the information gained by adding new point 

cloud data to an initial baseline point cloud.  

4.3.1. Content assessment module for quantifying the information contained in a 

point cloud  

Figure 24 shows the flowchart of the content assessment module. The content 

assessment module takes two inputs: a set of point clouds captured at different points 

in time and a set of target components modeled in the BIM. For specific surfaces 

associated with the target components, this module applies a grid-based evaluation 

approach to quantify the geometric information provided by a point cloud. The grid-

based approach overlays a grid on the surface of a target component and divides the 
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target surface into a finite number of cells. The grid-based point cloud evaluation 

approach can be divided into two steps: (a) grid construction, which overlays a grid 

onto the surfaces of target building components modeled in a BIM, and (b) point 

cloud geometric information assessment, which divides a point cloud using the same 

grid generated in Step 1 and evaluate how much information a point cloud can 

provide to model/update the targeted components in the BIM.  

 

Figure 24. The flowchart of content assessment module 

Step 1: Grid construction:  

This step overlay a grid onto the surface of targeted components modeled in a BIM. 
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The grid divides the surface of target components into a finite number of cells. The 

size of a cell is determined according to the size of the surfaces and the level of detail 

required by the assessment conducted in the next step. Figure 25 (a) shows a grid that 

is generated over the surface of ductworks modeled in a BIM, which divides the 

surface into a number of cells.  

Step 2: Point cloud geometric information assessment 

This step analyzes a point cloud using the same grid generated in Step 1. It first 

aligns the point cloud and the BIM into the same coordinate system using the ICP 

algorithm, so that the grid can also be aligned with the point cloud. After the grid is 

overlaid with the point cloud, each cell in the grid contains a set of points. When a 

cell does not contain any points, the geometric information is missing in this cell due 

to following reasons: (a) the part of the building surface is occluded, (b) the part of 

the building surface is not installed, and (c) due to the reflectivity of the building 

surface, no laser beam were reflected and returned to the scanner. Given that, in this 

step, a coverage image is created, which uses color-coding to indicate whether, a cell 

contains any information related to target surfaces. Figure 25 (b) shows a point cloud 

and the coverage image created based on it. The coverage image is used to quantify 

the information contained in each grid. For this purpose, a metric has been defined 

and used, namely as coverage ratio. The coverage ratio refers to the ratio of a surface 

that is clearly presented in a point cloud without any occlusions and is calculated for 

each surface fitted in a point cloud, using Equation 9, as shown below. 
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Equation 9: 

Coverage  ratio =    !"#$%&  !"  !!""#    !""#$%&'  !"  !"#  !"#$  !"#$%&'(  !"  !"#$%  !"#$%  !"  !  !"#$%  !"#$%&'
!"!#$  !"#$%&  !"  !"##$  !"!#$!%$&  !"  !"#  !"#$  !"  !  !"#$%  !"#$%&'

 

A low coverage ratio means that a given point cloud cannot provide enough 

geometric information to model/update target surfaces and suggests that additional 

point clouds need to be added in order to cover the missing portion of the 

components for accurate measurements.   

 

Figure 25. Ductworks modeled in a BIM and the grid overlaid on the surfaces of 
ductworks (the red box represents each cell in the grid) 

  

Figure 25(b) Ductworks captured by a point cloud and the coverage image, where 
the red cells indicate that the cells contain the points associated with the target 
surface.  
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The measure of the coverage ratio also depends on the selection of grid resolution. 

The coverage ratio is an estimate of how much geometric information provided by a 

point cloud. It is important to balance the grid size. When the grid size is too large, 

the coverage ratio might only provide a rough estimate for the geometric information 

contained in a point cloud. On the other hand, when the grid size is too small, the 

measure of the coverage ratio is sensitive to the noises presented in a point cloud and 

takes more time to compute.  

To demonstrate the impacts of grid resolution, I conducted a sensitivity analysis 

using the example shown in Figure 25. I incrementally changed the grid size from 

0.01m to 1m, and calculated the coverage ratio for the example shown in Figure 25. 

In addition, I also recorded the calculation time for each of the grid size and 

calculated the average number of points belonging to a point cloud within a cell. The 

sensitivity analysis is conducted using a computer with 2.4 GHz CPU and 8GB 

memory. Figure 26 (a) shows the values of calculation time and average number of 

points within a cell when the grid size is changing from 0 to 1. As seen in Figure 

26(a), the calculation time increases while the grid size decreases. When the grid size 

decreases from 0.1m to 0.01m, the calculation time increases significantly. When the 

grid size is equal to 0.01m, the calculation time is about 610 seconds, which is 100 

times greater than the calculation time at grid size equal to 0.01m. In the meantime, 

the average number of points per cell decreases along with the decrease of the grid 

size. Having too many points within a cell could indicate that the grid based 

evaluation approach can only provide a rough estimate for the geometric information 

contained in a point cloud. Decreasing the grid size would result in a more accurate 
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estimation for the geometric information contained in a point cloud, but it would 

also increase the calculation time significantly. A good selection of the grid size 

needs to balance the calculation time and the average number of points per cell. 

Figure 26 (b) shows the relationships between the grid size and the coverage ratio. 

Shown in Figure 26 (b), dividing a building surface with a large grid size could lead 

to an overestimate for the information contained in a point cloud. Considering the 

calculation time and the estimation accuracy, in this thesis, I select the grid size as 

0.04m, based on which the calculation time is 40 seconds and the average number of 

points per cell is 8.  

 

Figure 26 (a). Processing time and point cloud density vs. grid size 
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Figure 26 (b) Coverage ratio vs. grid size 

The content assessment module calculated the coverage ratio for all the inputted 

point clouds. The point cloud with the maximum coverage ratio is the one that is 

capable of providing the most complete geometric information for the specific 

surfaces of the target components and is marked as the baseline point cloud. To 

better demonstrate how the content assessment module works, I used four point 

clouds captured at four different times as an example, and selected the ductworks 

shown in the point clouds as the target building components. Figure 27 shows four 

point clouds captured at different points in time and their coverage images for 

ductworks. According to the coverage ratios, P3 has the highest coverage ratio as 

67.6 % for the surfaces of ductworks and hence should be used as the baseline point 

cloud. The remaining point clouds need to be evaluated in order to determine which 

point clouds should be combined with the baseline set. This ties to the second 

module, which is the content improvement module. 

0.5 

0.6 

0.7 

0.8 

0.9 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

C
ov

er
ag

e 
R

at
io

 

Grid Size (m) 

CoverageRatio 



 100 

Point cloud Coverage Image and 
Coverage Ratio 

Point cloud Coverage Image and 
Coverage Ratio 

P1 P1 – 0% P2 P2 – 48.1% 

    
P3 P3 – 67.6% P4 P4 – 65.4% 

    

Figure 27 Point cloud data captured at different points in time and their occlusion 

images for duct segments 

4.3.2. Content improvement module: Assessing the information gain by 

combining additional point clouds 

This module takes the baseline point cloud identified by the content assessment 

model as the input, and determines which remaining point clouds should be 

combined with the baseline point cloud. The flowchart of this process is shown in 

Figure 28.  
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Figure 28. Flowchart of the content improvement module 

Assuming that there are a set of point clouds (P1, P2, P3 … Pn), and P1 is selected as the 

baseline point cloud since it has the highest coverage ratio. This module first 

compares each of the remaining point clouds to the baseline point cloud, and 

assesses how much information can be gained by adding each of the remaining point 

clouds into P1 separately. When comparing Pi (1 < 𝑖 ≤ 𝑛) with the baseline point 

cloud - P1, the module utilizes the same grid generated in the content assessment 
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module and overlays the coverage images of P1 and Pi together. The content 

improvement module then exams the coverage images and identifies the cells that 

are occupied by Pi, but not P1. These cells are referring to the target surface areas that 

were shown in Pi, but not captured or occluded by P1. To quantify this additional 

geometric information, a metric, named as dissimilarity ratio, has been introduced. 

The dissimilarity ratio represents the percentage of information gained by adding the 

new point cloud into the baseline point cloud, and is calculated using Equation 10.     

Equation 10:  

Dissimilarity  ratio  (𝑃! ,𝑃!) =   
number  of  cells    occupied    𝑃!   but  not    𝑃!   on  a  given  surface
total  number  of  cells  available  on  the  grid  on  a  given  surface

 

Figure 29 shows the result of the assessment for the same set of ductworks used as an 

example in the previous module. The additional information generated by adding P2 

into the P1 is shown in the third column. 

P1 – baseline point cloud P2 – added point cloud 

A coverage image shows 
cells occupied by P2 but not 
P1. Dissimilarity ratio = 
25.96%.  

  
P1 – coverage image P2 – coverage image 

   

Figure 29. Dissimilarity ratio by adding P2 to P1 
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This assessment is repeated until all the point clouds at hand are compared to the 

baseline point cloud, as shown in Figure 28. The point cloud with the maximum 

dissimilarity ratio is defined as the one that has the highest information to add to the 

baseline point cloud. This point cloud is then registered with the baseline point cloud 

and considered as the new baseline point cloud for the next iteration. The model 

iteratively combines the remaining point clouds to the baseline point cloud till either 

all the point clouds have been registered together or the maximum dissimilarity ratio 

is smaller than a threshold, whichever occurs earlier. Users determine the value of 

the threshold. If the dissimilarity ratio of a point cloud is smaller than the threshold, 

it is not worth adding this point cloud to the baseline point cloud set since the 

combination will increase the file size without bringing enough additional geometric 

information for the model update/construction. The output of the content 

improvement module is a point cloud that is composed by the selected point clouds.    

4.4. Validation  

I validated the performance of the developed approach in terms of whether the 

approach is able to identify the right combination of point clouds in order to get a 

more complete set of geometric information with less file size. The performance of 

the developed approach has been compared to two other baseline approaches (i.e., 

approach 1 and approach 2). In approach 1, all the point clouds are registered 

together. In approach 2, the point clouds are progressively registered, in the order 

that they were acquired, until the dissimilarity ratio reaches to a preset threshold, 

which is the same threshold used in the developed approach. The approach 

developed in this research (i.e., approach 3), however, first uses the coverage ratios to 
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select the baseline point cloud and then determines which point clouds should be 

combined with the baseline point cloud using the dissimilarity ratios. The combined 

point clouds generated by the three approaches were compared. Three metrics were 

used in the validation, which are: (a) coverage ratio, (b) number of geometric 

properties that can be measured in a baseline point cloud, and (c) size of the final 

point cloud data. 

The validation data includes five point clouds progressively captured during the 

renovation of a research lab, labeled as (P1, P2, P3, P4, and P5). I focused on four 

different building components, which are (1) surface of ductworks installed in room 

2, (2) interior wall surface Wall2-W, (3) interior wall surface Wall2-S, and (4) the 

surface of ceiling in the room. A set of screen shots of the components used in the 

validation is shown in Figure 30. These four building components are selected to 

ensure that the approach developed in this thesis can be generalized to different types 

of building components.  
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Figure 30. The four different building components targeted by the validation 

Each approach has been implemented in Matlab and tested using the validation data. 

The resulting selections of point clouds to be registered following the three 

approaches are shown in Table 8. For the four building components, approach 3, 

which is the developed approach, selects the least number of point clouds to be 

combined. 

Table 8 The resulting subset of point clouds to be registered following the three 

approaches 

Approach 
Component 1: 

Ductworks 
Component 2:  

Wall2-W 
Component 3:   

Wall2-S 
Component 4:  

Ceiling 
1 P1 to P5 P1 to P5 P1 to P5 P1 to P5 
2 P1 to P3 P1 to P4 P1 to P3 P1 to P4 
3 P3+P4  P4+P1+P2 P1+P3 P1+P2+P5 
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The comparison of the metrics used for performance evaluation of these approaches 

is provided in Table 9. The coverage ratio increases when additional point clouds are 

added into the baseline point cloud and at the same time the rate of growth of the 

coverage ratio decreases. The geometric properties remain the same in the combined 

point clouds generated by the three approaches. The developed approach (approach 

3) achieved the smallest file size in all of the four validation datasets. For the 

ductworks, the coverage ratio of the registered point clouds generated by approach 1 

is 2.3% higher than the registered point clouds generated by approach 2. However, 

the size of the final point cloud generated by approach 1 is 68.5% higher than 

approach 2. It shows that when registering all of the point clouds together without 

any pre-selection, the increase of file size might overweight the improvement in 

relation to the completeness of the geometric information. For the interior surface of 

Wall 2-W, the combined point cloud gained by approach 3 is 309.3MB and has 

90.8% coverage ratio. Approach 2 added one more point cloud into the registered 

point cloud, which increases the coverage ratio by 1.5%, but also increases the file 

size by 32.3%. Approach 1 combined all the point clouds together. This approach 

increases the coverage ratio by 2% and file size by 66.2%, as compared to the third 

approach. I also counted the geometric properties that can be measured from the 

point clouds. The geometric properties for the four different types of building 

components include length and width of the building surfaces. The measurable 

properties remain the same for the four building components and the three 

approaches. The result showed that using approach 3 it is possible to reduce the 

number of point clouds that need to be registered so as to reduce the file size. As 
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shown in Table 9, as compared to the other two baseline approaches, I can retrieve 

more geometric information (i.e., higher coverage ratio) using the least number of 

point clouds (i.e., less file size), which validates the effectiveness of our approach.  

Table 9. Comparison of the developed approach (approach 3) with respect to other 

baseline approaches 

Approach 
Component 1: 

Ductworks Component 2: Wall2-W Component 3:  
Wall2-S 

Component 4: 
Ceiling 

C M S C M S C M S C M S 

1 75.7
% 41 514 92.5

% 4 514 94.0
% 4 514 96.5

% 4 514 

2 74.0
% 41 304.9 92.1

% 4 409.3 93.9
% 4 304.9 96.5

% 4 409.3 

3* 75.0
% 41 204.4 90.8

% 4 309.3 93.7
% 4 199.9 96.5

% 4 309 

C: Coverage ratio M: measurable geometric 
properties S: file size (MB) 

In the validation calculations, the threshold was set as 1% for all the datasets. The 

value of threshold could also impact the performance of the developed approach. 

When threshold is set as 0, approach 1, 2, and 3 gave the same result, since they all 

combines all of the point clouds together. When the threshold gets increased, it 

means that the size of the registered point cloud has gained more weight. As a result, 

less number of point clouds will be combined together. The impacts of the threshold 

on the developed approach and the selection of the optimal threshold will be 

addressed in the future work.    

4.5 Conclusion  

Progressively captured and registered point clouds provide opportunities to capture a 

more complete view of the building components over time. A unique challenge of 

using registered point clouds is that registering point clouds that contains repetitive 
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information might increase the difficulty of storing and processing registered point 

clouds due to the file size. Instead of registering all the point clouds together, only 

combining the point clouds that contain less repetitive geometric information could 

effectively reduce the file size of the final dataset and increase the usability of the 

data. One of the contributions of this thesis is an approach that evaluates the 

information contained in point clouds and supports the decision on which point 

clouds should be combined. 
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CHAPTER 5 CONCLUSION AND FUTURE WORK 

This section concludes this thesis with discussions of the contribution, practical 

implications and future research directions. 

5.1 Contributions  

This research has four main contributions: (a) Identification of a general list of 

features that can be applied to recognize the correspondences between a point cloud 

and a BIM, (b) Formalization of a set of matching approaches that reason with one 

or more than one type of features to identify the matches between a point cloud and 

a BIM, (c) Identifying the relationships between features and discrepancies and 

evaluating how different types of features perform under different discrepancies, and 

(d) Formalization of an approach to support the decision on selecting point clouds 

for combination.   

(1) Identification of a general list of features that can be applied to identify the 

correspondences between a point cloud and a BIM 

Matching a point cloud to a BIM is one of the most important steps for the process of 

updating BIM. By matching a point cloud to a BIM, the accurate geometric 

information captured by the point cloud can be linked to the semantic and geometric 

information contained in the BIM. The linkages between the two data sets allow 

users to identify the differences between the design information represented in an as-

designed BIM and the as-built site condition captured by point clouds so as to update 

the as-designed model accordingly. Matches between a point cloud and a BIM can 
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be identified based on the features associated with these two data sets. Chapter 2 of 

this thesis provides a general list of features that can be applied to identify the 

correspondences between a point cloud and a BIM. Based on the previous BIM and 

point cloud related research studies, I identified 21 features associated with BIMs 

and 29 features of point clouds. In the feature list, features are extracted at different 

levels of detail (e.g., point to entity, then to global) from point clouds and BIMs. 

Hence, these features can serve as a bridge to identify the correspondences between 

point clouds and BIMs even though these two data sets are available in different 

levels of detail (point clouds are at the point level and BIM are at the object level). 

This list of features could serve as the basis for developing matching approaches that 

utilize/combine different feature to map point clouds to BIMs.  

(2) Formalization of a set of matching approaches that reason with one or more 

than one type of features to identify the matches between a point cloud and a BIM 

Building on the features identified in Chapter 2, I developed four matching 

approaches, which are (a) 2D overlap area matching approach, (b) spatial 

relationship based graph-matching approach, (c) distribution-based 2D shape 

matching approach, and (d) distribution-based 3D shape matching approach. Each 

matching approach is built on one specific type of features associated with point 

clouds and BIMs. 	  

Based on the experimental analysis conducted in Chapter 3, none of these four 

matching approaches are capable of identifying all the correct matches between a 

point cloud and a BIM. Each matching approaches is robust to certain types of 
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discrepancy, but is sensitive to the others. In order to improve the matching result 

and reduce the impacts of discrepancies on the matching process, I formalized two 

combination approaches that combine multiple types of features together. The 

combination approaches are (a) re-aligning point cloud and BIM based on 3D shape 

distribution to reduce the impacts of location discrepancies on the area approach and, 

(b) filtering the matching candidates generated by the 2D overlap area matching 

approach using 3D shape distribution feature (called as 3D filter in the following 

paragraphs).   

(3) Identifying the relationships between features and discrepancies and 

evaluating how different types of features perform under different discrepancies 

The performance of a matching approach is impacted by various factors, such as 

discrepancies existing between a point cloud and a BIM, the types of building 

components, the complexity of the site environment and the features used in the 

matching approach. The experimental analysis conducted in Chapter 3 provides a 

general knowledge on how different types of features perform when they are used to 

match point cloud segments to BIM components under various discrepancy 

conditions. The knowledge on how different types of features performance under 

different types of discrepancies could be used to guide the future research studies to 

understand the behavior of different features towards to different types of 

discrepancies, and develop more advanced matching approaches that utilize or 

combine different features to eliminate the negative impacts of discrepancies on 

matching results. 
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(4) Formalization of an approach to support the decision on selecting point clouds 

for combination 

By combining point clouds progressively captured during the construction process, it 

is possible to get a more complete set of geometric information for the BIM update. 

However, the large file size of the combined point cloud makes it hard to process and 

store. Chapter 4 introduces an approach that is developed to pre-select point clouds 

collected at different points in time based on unique data sets that each point cloud 

brings in order to ensure completeness of the geometric information while reducing 

the file size resulted by combining point clouds with repetitive information. The 

approach is composed of two modules, which are: (a) content assessment module, it 

quantifies the geometric information contained in each point cloud for 

updating/modeling target building components in a BIM; and (b) content 

improvement module, it calculates the information gained by adding new point 

cloud data to an initial baseline point cloud. Based on the validation given in 

Chapter 4, the developed approach is effective in identifying the right combination of 

point clouds in order to get a more complete set of geometric information. 
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5.2 Practical Implication 

This research can possible has a number of practical implications for information 

handover, construction management and facility operation and maintenance.  

(1) Supporting the information handover by delivering a complete and accurate as-

built BIM   

As a digital representation that captures and exchanges building information between 

different stakeholders, building information models (BIMs) can be used as an 

information repository to store and deliver as-built information. The framework 

developed in this research facilitates the process of updating an as-designed BIM into 

an as-built BIM. The updated as-built BIM can be delivered to owners or facility 

management teams as a part of information handover document.   

(2) Providing foundation for developing advanced matching algorithm to match 

point clouds to BIMs 

Currently, there is a limited understanding of what features of point clouds and BIMs 

can be applied to match these two data sets together, let alone how the features 

would performance under different discrepancy conditions. In this research, I 

evaluated the performance of different features in terms of how they are able to 

identify the correct matches between point cloud segments and BIM components 

when different types of discrepancies exist. The result gained from this evaluation 

provide the foundation for developing more advanced matching approaches that 
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utilize or combine different features to eliminate the negative impacts of 

discrepancies on matching results. 

(3) Supporting the future usage of progressive point clouds  

This research validates the value of the using progressive point clouds for the BIM 

update, which promotes the idea of progressively scanning a job site in order to 

capture more complete geometric information. However, one challenge that prevents 

progressive point clouds to be used in construction projects is that it is impossible to 

combine all the point clouds together considering the large file size of each point 

cloud. Without an approach to evaluate the information provided by point clouds 

captured at different times, construction professionals need to manually exam each 

point cloud and determine which one to use. The approach developed in this 

research allows construction professionals to rapidly evaluate the information 

contained in progressive point clouds and selectively combine progressive point 

clouds to provide a complete set of geometric information with file size. As a result, 

the developed approach makes the future usage of progressive point clouds possible.  
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5.3 Future Research Directions  

The results of this research point to several directions for future work, which are 

summarized as follows:   

(1) Extending the scope of the research and targeting on different types of building 

components 

First, the matching experiment conducted in this research mainly targets on the 

mechanical components installed in a building. It would be interesting to look at 

how the features performance for the other types of building components, such as 

walls, windows, doors and so on, and identify what features might be most 

applicable for a specific type of building components. Second, it would be 

worthwhile to further extend the feature combination approaches in terms of: (a) 

combining more features together, and (b) adjusting the way that how different 

features are combined together (e.g., identify matches using 3D shape feature first, 

and filter the matches based on overlap area space). In addition to 2D overlap area 

and 3D matching approaches, I can also include spatial relationships to further 

improve the matching results in the future work.  

(2) Testing the approaches developed in this research in a large-scale construction 

project with more realistic experimental settings 

In this research, I used a 4-month renovation project as the testbed to test and 

validate the matching approaches and point clouds combination approach developed 

in this research. A certain assumptions and simplifications have been made in the 
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experimental settings. For instance, I assumed that the point cloud inputted into the 

matching approaches are segmented and noises and temporary components are 

removed from the point cloud. It would be interesting to test the performance of the 

approaches developed in this research in a large-scale construction project with more 

realistic experimental settings and evaluate how the approaches would response in 

these situations.  

(5) Automatically selecting features using feature selection technique  

In this research, I identified a general list of features associated with point clouds and 

BIMs and developed a categorization to classify these features. I then selected 

features from each category and evaluate their performances. Future research studies 

could apply feature selection techniques to evaluate the features in an automatic 

fashion and remove the irrelevant and redundant features from the mapping process. 

The objective of selecting features is not to get a minimum set of features, but to 

acquire a better understanding on what features are more important and how 

features are correlated among each other. 

(6) Automatically accomplishing the update process to remove discrepancies 

between a point cloud and a BIM 

As discussed in Chapter 1.3 vision, this research mainly focuses on leveraging the 

progressive point clouds and mapping point clouds to BIMs. The actual update of an 

as-designed BIM based on the mapping results is out of the scope and is now up to 

modelers to accomplish. The future research studies could formulize a mechanism 
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that automatically update the BM based on the matches between the BIM and the 

point cloud.  

(5) Developing an information repository to integrate BIM and point cloud 

together 

In the current practice, it relies on the manual approach to update a BIM using the 

3D authoring tools (e.g., Revit, Sketchup, etc.). This manual practice is time-

consuming and error prone. Therefore, instead of manually updating the as-designed 

BIM, the future research studies could target on using the point cloud as the baseline 

model and fuse the semantic information contained in the BIM to the point cloud.  

In this case, the effects spent in updating the model can be saved, and the point cloud 

could be enriched by the semantic information contained in the BIM.  
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Appendix A: Matching Results for the Four Matching Approaches 

This appendix shows the experiment results of the four matching approaches on the experiment described in Chapter 3.  The testbed used in this 

experiment is a research lab that has gone through a renovation process including the installation of a new mechanical system. In this 

experiment, I mainly focused on the ductworks that were newly installed in the research lab during the renovation process. The selected 

ductworks installed in the renovated space is used as the baseline model and different types of discrepancies are introduced to the baseline model 

to generate different versions of the model with deviations different than what is captured in the point cloud. Using the simulation algorithm, I 

generated 39 models, which covered different types of discrepancies, including shape, dimension, location, and composition discrepancies as 

compared to the baseline model. In total, the testbed included 40 pairs of point cloud (the point cloud remain the same) and the corresponding 

BIM (each pair is called as one scenario) for the experiments. Among the 40 scenarios, 30% of them have shape discrepancies, 65% have 

dimension discrepancies, 75% have location discrepancies and 10% of them have composition discrepancies.  
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Appendix B. Codes for implementing the four matching approaches  

The four matching approaches are developed using Matlab. This appendix includes 

the codes for implementing the four matching approaches and conducting the 

experiment.  Due to the space limit, I only include the partial codes here. Please refer 

to the DVD attached with the thesis for the complete codes.   

----------------------------------------------------------------------- 
% This script is used to run the different mapping algorithms and  
% collect the results. 
% The input variables include: totalSet, trainingSet, testingSet, 
density, 
% sampleSize, noBin, inputPath, outputPath 
----------------------------------------------------------------------- 
%% Gethe inputs from the targeted folders 
disp ('Get the inputs'); 
% define the number of testing data and the number of training data 
totalSet = 60;  % total number of dataset 
trainingSet = 45;  % number of training data 
testingSet = 15;  % number of testing data 
density = 400;  
sampleSize = 100000; 
noBin = 1024; 
  
% define two path:  
% path 1 is the reading path 
inputPath = 'C:\Users\tgao\Documents\Test 1\'; 
outputPath = 'C:\Users\tgao\Documents\Test 1\'; 
% path 2 is the save path  
  
% get the input for the baseline  
folderName = 'Baseline'; 
PCD = getInput(folderName,inputPath);  
  
% add 3D shape mapping 
PCD_distance = getInput3D(folderName,inputPath, density,sampleSize);  
sizeComponent = size (PCD_distance,1); 
PCD_element_inBin = zeros (sizeComponent,noBin); 
for j = 1:sizeComponent 
    % PCD_element_inBin[componentNo, noBin] 
    PCD_element_inBin (j,:) = hist(PCD_distance(j,:),noBin);  
end 
  
correctMatching = eye(PCD.NoComponent); 
  
% get the other dataset and perform the matching algorithms   
folderName_default = 'Scenario'; 
src = cell (totalSet,1); % src is used to store all the dataset 
  
for i = 1:totalSet 
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disp (['get the data set',num2str(i)]); 
folderName = [folderName_default,num2str(i)]; 
src{i} = getInput(folderName,inputPath); 
  
% overlap area matching: 
disp ('starting 2D overlap matching');  
overlapRatio = calOverlapRatio(PCD.image,src{i}.image); 
src{i}.overlapRatio = overlapRatio; 
disp ('Finishing 2D overlap matching'); 
  
% 2D shape matching: 
disp ('starting 2D shape matching'); 
[difference_norm, difference_no] = 
match_2D(PCD.boundary,src{i}.boundary); 
src{i}.difference_no_2d = difference_no; 
disp ('Finishing 2D shape matching'); 
  
% area matching 
disp ('starting area matching'); 
differences = calAreaDifference(PCD.image,src{i}.image); 
src{i}.difference_area = differences; 
disp ('Finishing area matching'); 
  
% graph matching 
addpath ('C:\Users\tgao\Documents\MATLAB\Point cloud processing 
function\fgm_modified'); 
asgFgm = graphMatching(PCD, src{1}); 
end 
  
for i = 1:totalSet 
    folderName = [folderName_default,num2str(i)]; 
    % distance [componentNo, sampleSize] 
    src{i}.distance = getInput3D (folderName,inputPath, density, 
sampleSize); 
    element_inBin = zeros (sizeComponent,noBin); 
    for j = 1:sizeComponent 
        % element_inBin [componentNo, noBin] 
         element_inBin (j,:) = hist(src{i}.distance(j,:),noBin);  
    end 
    src{i}.element_inBin = element_inBin; 
    diff = calHistDifference (PCD_element_inBin,element_inBin); 
    src{i}.diff3D = diff; 
end 
  
% data analysis  
[precision, recall, map, perm, threshold, index] = performAnalysis( 
src, correctMatching, trainingSet, testingSet); 
% take threshold  
map.shape_optimal = cell(1,trainingSet); 
map.overlap_optimal = cell(1,trainingSet); 
map.area_optimal = cell(1,trainingSet); 
map.shape_3D_optimal = cell(1,trainingSet); 
  
%% done the calculation, this step just to output all the requried 
figures for the analysis 
for i = 1:trainingSet 
    map.shape_optimal{1,i} = map.shape_train{index.shape,i}; 
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    out1 = [outputPath,'shape_optimal',num2str(i)]; 
    outputMappingMatrix(map.shape_optimal{1,i},out1, 
precision.shape_optimal(1,i),recall.shape_optimal(1,i)); 
    map.overlap_optimal{1,i} = map.overlap_train{index.overlap,i}; 
    out2 = [outputPath,'overlap_optimal',num2str(i)]; 
    
outputMappingMatrix(map.overlap_optimal{1,i},out2,precision.overlap_opt
imal(1,i),recall.overlap_optimal(1,i)); 
    map.area_optimal{1,i} = map.area_train{index.area,i}; 
    out3 = [outputPath,'area_optimal',num2str(i)]; 
    
outputMappingMatrix(map.area_optimal{1,i},out3,precision.area_optimal(1
,i),recall.area_optimal(1,i)); 
    map.shape_3D_optimal{1,i} = map.shape_3D_train{index.shape_3D,i}; 
    out4 = [outputPath,'shape_3D_optimal',num2str(i)]; 
    
outputMappingMatrix(map.shape_3D_optimal{1,i},out4,precision.shape_3D_o
ptimal(1,i),recall.shape_3D_optimal(1,i)); 
end  
  
for i = 1:testingSet 
    out1 = [outputPath,'shape_test',num2str(i)]; 
    outputMappingMatrix(map.shape_test{i,1},out1, 
precision.shape_test(i,1),recall.shape_test(i,1)); 
    out2 = [outputPath,'overlap_test',num2str(i)]; 
    outputMappingMatrix(map.overlap_test{i,1},out2, 
precision.overlap_test(i,1),recall.overlap_test(i,1)); 
    out3 = [outputPath,'area_test',num2str(i)]; 
    outputMappingMatrix(map.area_test{i,1},out3, 
precision.area_test(i,1),recall.area_test(i,1)); 
    out4 = [outputPath,'shape_3D_test',num2str(i)]; 
    outputMappingMatrix(map.shape_3D_test{i,1},out4, 
precision.shape_3D_test(i,1),recall.shape_3D_test(i,1)); 
end      
  
%% draw the intersection and union figure  
precision.union = zeros (testingSet,1); 
recall.union = zeros (testingSet,1); 
for i = 1:testingSet 
    out1 = [outputPath, num2str(i)]; 
    map.union{1,i}=outputOrAnd (map.overlap_test{i,1}, 
map.area_test{i,1}, map.shape_test{i,1}, 
map.shape_3D_test{i,1},out1,correctMatching); 
    [precision.union(i,1),recall.union(i,1)] = calRecallPrecision 
(map.union{1,i},correctMatching); 
end    
  
%% try the new combination approach 
move = cell (totalSet,1); 
for i = 1:totalSet  
    move{i} = shape_overlap(src{i}, PCD ,12); 
    savePath = [outputPath,'shiftedImage',num2str(i)]; 
    imwrite (move{i}.completeImage,[savePath,'.jpg']); 
end 
  
% find the threshold that generates maximum results 
threshold_value = (0.01:0.01:1);  
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iter = length (threshold_value); 
for j = 1:trainingSet 
    for i = 1:iter 
        set = perm (j); 
        
[recall.overlap_shape_train(i,j),precision.overlap_shape_train(i,j),map
.overlap_shape_train{i,j}] = overlap_Analysis(move.overlapRatio, 
correctMatching, threshold_value(i)); 
    end 
end  
[threshold.overlap_shape,index.overlap_shape_optimal,precision.overlap_
shape_optimal,recall.overlap_shape_optimal] = findThreshold 
(recall.overlap_shape_train,precision.overlap_shape_train,threshold_val
ue); 
for a = 1:testingSet 
    current = trainingSet+a; 
    set = perm(current); 
    [recall.overlap_shape_test(a), 
precision.overlap_shape_test(a),map.overlap_shape_test{a}] = 
overlap_Analysis(move(Ullrich et al.).overlapRatio, correctMatching, 
threshold.overlap_shape); 
end  
  
for i = 1:trainingSet 
    map.overlap_shape_optimal{1,i} = 
map.overlap_shape_train{index.overlap_shape_optimal,i}; 
    out5 = [outputPath,'shape_overlap_optimal',num2str(i)]; 
    
outputMappingMatrix(map.overlap_shape_optimal{1,i},out5,precision.overl
ap_shape_optimal(1,i),recall.overlap_shape_optimal(1,i)); 
end  
  
for i = 1:testingSet 
    out5 = [outputPath,'shape_overlap_test',num2str(i)]; 
    outputMappingMatrix(map.overlap_shape_test{1,i},out5, 
precision.overlap_shape_test(1,i),recall.overlap_shape_test(1,i)); 
end     
  
%% further filter out the mapping candidate get from the overlap_shape 
for a = 1:testingSet 
    current = trainingSet+a; 
    set = perm(current); 
    map.filter{a} = 
shape_overlap_filter(map.overlap_shape_test{1,a},src(Ullrich et al.)); 
    [ precision.filter(a),recall.filter(a) ] = calRecallPrecision( 
map.filter{a},correctMatching ); 
     
    out6 = [outputPath,'shape_overlap_test_filter',num2str(a)]; 
    outputMappingMatrix(map.filter{a},out6, 
precision.filter(a),recall.filter(a)); 
end    
  
  
%% draw the union figure for the total five approaches 
precision.union_total = zeros (testingSet,1); 
recall.union_total = zeros (testingSet,1); 
map.union_total = cell(1,testingSet); 
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for i = 1:testingSet 
    savePath = [outputPath,'union_total',num2str(i)]; 
    h = figure; 
    out1 = [outputPath,'total', num2str(i)]; 
    map.union_total{1,i} = map.union{1,i}+map.overlap_shape_test{1,i}; 
    map.union_total{1,i} = map.union_total{1,i}>0; 
    [nb,np] = size (map.union_total{1,i}); 
    for k = 1:nb 
        for j = 1:np 
            if (map.union_total{1,k}(k,j) ==1) 
                    rectangle ('Position',[k-1,j-
1,1,1],'FaceColor','black','EdgeColor','red'); 
            end 
        end 
    end 
    [precision.union_total(i,1),recall.union_total(i,1)] = 
calRecallPrecision(map.union_total{1,i},correctMatching); 
    grid on 
    axis([0 nb 0 np]); 
    xlabel ('original','FontSize', 25); 
    ylabel ('target','FontSize', 25); 
    title (['union_total: precision = 
',num2str(precision.union_total(i,1)),' recall = 
',num2str(recall.union_total(i,1))],'FontSize', 22); 
    saveas(h,[savePath,'-union'],'png'); 
    close(h); 
end 
 
----------------------------------------------------------------------- 
% This script is used for two purpose:  
% (1) Get the optimal threshold  
% (2) Calculate the precision and recall for the four matching 
approaches 
% 
%Input:  src {i}, i = number of component in one scenario 
%        src.overlapRatio, src.difference_no_2d, src.difference_area, 
%        src.diff3D 
%         
%output: precision, recall, map and the order of perm 
%        precision.test(testingcase, 1), prcision.train(1,trainingcase) 
% 
% Map => x original, y target  
----------------------------------------------------------------------- 
 
function [ precision, recall, map , perm, threshold, index] = 
performAnalysis( src, correctMatching, trainingSet, testingSet) 
  
% Determine the thresholds for different mapping algorithms 
threshold_value = (0.01:0.005:1); % the vector that store the possible 
value of threshold 
iter = length (threshold_value); 
  
% four variables - precision, recall and result for storing the results 
of mapping 
% algorithm 
precision.overlap_train = zeros (iter,trainingSet); 
recall.overlap_train = zeros (iter,trainingSet); 
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map.overlap_train = cell (iter,trainingSet); 
  
precision.shape_train = zeros (iter,trainingSet); 
recall.shape_train = zeros (iter,trainingSet); 
map.shape_train = cell (iter,trainingSet); 
  
precision.area_train = zeros (iter,trainingSet); 
recall.area_train = zeros (iter,trainingSet); 
map.area_train = cell (iter,trainingSet); 
  
precision.shape_3D_train = zeros (iter,trainingSet); 
recall.shape_3D_train = zeros (iter,trainingSet); 
map.shape_3D_train = cell (iter,trainingSet); 
  
% testing and training dataset should be ranomly generated  
totoalSet = trainingSet+testingSet; 
perm = randperm(totoalSet); 
  
for j = 1:trainingSet 
    for i = 1:iter 
        % get the precision and recall for 2D overlap 
        set = perm(j); 
        
[recall.overlap_train(i,j),precision.overlap_train(i,j),map.overlap_tra
in{i,j}] = overlap_Analysis(src(Ullrich et al.).overlapRatio, 
correctMatching, threshold_value(i)); 
        
[recall.shape_train(i,j),precision.shape_train(i,j),map.shape_train{i,j
}] = mapping_Analysis(src(Ullrich et al.).difference_no_2d, 
correctMatching, threshold_value(i)); 
        
[recall.area_train(i,j),precision.area_train(i,j),map.area_train{i,j}] 
= mapping_Analysis(src(Ullrich et al.).difference_area,correctMatching, 
threshold_value(i)); 
        
[recall.shape_3D_train(i,j),precision.shape_3D_train(i,j),map.shape_3D_
train{i,j}] = mapping_Analysis(src(Ullrich et al.).diff3D, 
correctMatching, threshold_value(i));         
    end 
end 
  
disp ('find the optimal threhsold'); 
% find the maximum threshold 
[threshold.overlap,index.overlap,precision.overlap_optimal,recall.overl
ap_optimal] = findThreshold 
(recall.overlap_train,precision.overlap_train,threshold_value); 
[threshold.shape,index.shape,precision.shape_optimal,recall.shape_optim
al] = findThreshold (recall.shape_train, 
precision.shape_train,threshold_value); 
[threshold.area,index.area,precision.area_optimal,recall.area_optimal] 
= findThreshold 
(recall.area_train,precision.area_train,threshold_value); 
[threshold.shape_3D,index.shape_3D,precision.shape_3D_optimal,recall.sh
ape_3D_optimal] = findThreshold 
(recall.shape_3D_train,precision.shape_3D_train,threshold_value); 
  
%% testing cases 
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disp ('start with the test cases'); 
precision.area_test = zeros (testingSet,1); 
recall.area_test = zeros (testingSet,1); 
map.area_test = cell (testingSet,1); 
  
precision.shape_test = zeros (testingSet,1); 
recall.shape_test = zeros (testingSet,1); 
map.shape_test = cell (testingSet,1); 
  
precision.overlap_test = zeros (testingSet,1); 
recall.overlap_test = zeros (testingSet,1); 
map.overlap_test = cell (testingSet,1); 
  
precision.shape_3D_test = zeros (testingSet,1); 
recall.shape_3D_test = zeros (testingSet,1); 
map.shape_3D_test = cell (testingSet,1); 
  
for a = 1:testingSet 
    current = trainingSet+a; 
    set = perm(current); 
    [recall.overlap_test(a), 
precision.overlap_test(a),map.overlap_test{a}] = 
overlap_Analysis(src(Ullrich et al.).overlapRatio, correctMatching, 
threshold.overlap); 
    [recall.shape_test(a), precision.shape_test(a),map.shape_test{a}] = 
mapping_Analysis(src(Ullrich et al.).difference_no_2d, correctMatching, 
threshold.shape); 
    [recall.area_test(a), precision.area_test(a),map.area_test{a}] = 
mapping_Analysis(src(Ullrich et al.).difference_area, correctMatching, 
threshold.area); 
    [recall.shape_3D_test(a), 
precision.shape_3D_test(a),map.shape_3D_test{a}] = 
mapping_Analysis(src(Ullrich et al.).diff3D, correctMatching, 
threshold.shape_3D); 
end  
disp ('finish testing'); 
end 
  
----------------------------------------------------------------------- 
%% this function take recall, precision and the corresponding threshold 
value and try to  
% find the optimal value for the threshold 
----------------------------------------------------------------------- 
 
function [value, i, precision_train, recall_train] = 
findThreshold(recall,precision,threshold) 
%recall_sum = sum (recall,2); 
recall_mean = mean(recall,2); 
precision_mean = mean(precision,2); 
F = (2.*precision_mean.*recall_mean)./(recall_mean+precision_mean); 
  
%precision_sum = sum (precision,2); 
[~,i] = max(F); 
value = threshold(i); 
precision_train = precision(i,:); 
recall_train = recall (i,:); 
end 
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----------------------------------------------------------------------- 
% This function calculates the preision and recall for a scenario 
% Input: difference - (i.j) the difference between component i in 
original 
% pcd and component j in target pcd  
%        correctMapping - the ground truth  
%        threshold  
% output: recall, precision and final mapping result 
----------------------------------------------------------------------- 
function [recall,precision,result] = mapping_Analysis(difference, 
correctMapping, threshold ) 
%% Perform the data analysis 
d_work = difference; 
summary = sum (d_work); 
[a, b] = size (difference); 
summary = repmat (summary,[a,1]); 
d_work = d_work./summary; 
map = d_work <= threshold;  
template = (1:a); 
template = repmat (template', [1,b]); 
result = template.*map; 
% get the precision 
% get the recall 
temp = correctMapping.*map; 
correct = sum(sum(temp)); 
allMapping = sum(sum(map)); 
allCorrect = sum(sum(correctMapping)); 
if (allMapping == 0) 
    precision  = 0; 
else 
    precision= correct/allMapping; 
end 
if (allCorrect ==0) 
    recall = 0; 
else 
    recall= correct/allCorrect; 
end 
end 
 
 
----------------------------------------------------------------------- 
% 2D shape matching    
% input:  
%   boundary_BIM(i,1): 2D boundary extracted from BIM, i - no of 
component  
%   boundary_PCD(j,1): 2D boundary extracted from PCD, j - no of 
component 
% option: 'normlization' or 'non_normalization' 
% output:  
%   dif_no (i,j): i - no of BIM component, j - no of PCD component 
----------------------------------------------------------------------- 
  
function [dif_norm,dif_no] = match_2D(boundary_BIM,boundary_PCD) 
%% define the prarameters 
sampleSize = 10000; 
binSize = 1024; 
nb = length (boundary_BIM); 
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np = length (boundary_PCD); 
distance_BIM = zeros (nb,sampleSize); 
for i = 1:nb 
    boundary = boundary_BIM{i}; 
    index = size (boundary,1); 
    r1 = randi(index,[sampleSize,1]); 
    r2 = randi(index,[sampleSize,1]); 
    for j = 1:sampleSize 
        distance_BIM (i,j)= sqrt((boundary (r1(j),1) - 
boundary(r2(j),1))^2+(boundary (r1(j),2) - boundary(r2(j),2))^2); 
    end 
end 
distance_PCD = zeros (np,sampleSize); 
for i = 1: np 
    boundary = boundary_PCD{i}; 
    index = size (boundary,1); 
    r1 = randi(index,[sampleSize,1]); 
    r2 = randi(index,[sampleSize,1]); 
    for j = 1:sampleSize 
        distance_PCD (i,j)= sqrt((boundary (r1(j),1) - 
boundary(r2(j),1))^2+(boundary (r1(j),2) - boundary(r2(j),2))^2); 
    end 
end 
%% No normalization 
% create a cell to store all the distance 
distance = [distance_BIM;distance_PCD]; 
distance = num2cell (distance,2); 
[t,element_inBin,X] = nhist (distance,'samebins','minbins', 1000); 
%Compare N 
difference = zeros (nb,np); 
for i=1:nb 
    a = element_inBin{i}; 
    for j = 1:np 
        b = element_inBin{nb+j}; 
        difference (i,j) = sum(sum(abs(a - b))); 
    end 
end 
%[Y,I] = min (difference'); 
dif_no = difference; 
%% Normlization 
bin_no = 1000; 
element_inBin_new = zeros (np+nb,bin_no); 
for i = 1:np+nb 
    element_inBin_new (i,:) = hist(distance{i,1},bin_no); 
end 
difference_new = zeros (nb,np); 
for i=1:nb 
    a = element_inBin_new(i,:); 
    for j = 1:np 
        b = element_inBin_new(nb(1)+j,:); 
        difference_new (i,j) = sum(sum(abs(a - b))); 
    end 
end 
%[Y_new,I_new] = min (difference_new'); 
dif_norm = difference_new; 
 end 
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----------------------------------------------------------------------- 
% The function is used to calculate the 2D overlap ratio between two 
components  
% Input: b, the boundary of 2D BIM component 
%        p, the boundary of 2D projected points 
% output: overlapRatio (BIM, Point cloud) 
----------------------------------------------------------------------- 
  
function overlapRatio = calOverlapRatio(b,p) 
nb = size (b,1); 
np = size (p,1); 
overlapRatio = zeros (nb,np); 
for i = 1:nb 
    for j = 1:np 
        areaB = sum(sum(b{i})); 
        overlap = b{i}.*p{j}; 
        overlapArea = sum(sum(overlap)); 
        overlapRatio(i,j) = overlapArea/areaB;  
    end  
end 
end 
 
 
----------------------------------------------------------------------- 
% This function return the 3D shape distance matrix for a scenario 
(component n) 
% input: foldername - the name of the folder 
%        inputPath - the path where the folder is saved  
%        density - the density of trnasformed point cloud 
%        sampleSize - the number of pairs of pairwise distance 
% output: distance (i,j), i = component i, j = pairewise distance j  
----------------------------------------------------------------------- 
function distance = getInput3D( folderName, inputPath, density, 
sampleSize) 
files = dir(fullfile(inputPath ,folderName,'*.stl')); 
filePath = [inputPath,folderName,'\']; 
NoComponent = length(files); 
  
num = zeros(NoComponent,1); 
for i = 1:NoComponent 
    num (i) = sscanf (files(i).name,'ComponentNo%d.stl#'); 
end  
[~, index] = sort(num); % index the correct index of components 
  
% distance metrix: d[i ,j] - i is the no of component, j is the sample 
size  
distance = zeros (NoComponent, sampleSize); 
for i = 1:NoComponent 
    stlAddress = [filePath,files(i).name]; 
    [F, V, ~] = rndread(stlAddress); 
    % samplePoints[i,1], i is the sample size  
    samplePoints = sampleMesh(F,V,density); 
    % determine the samping rate  
    % calculate pairwise distanc 
    distance(i,:)  = cal_pairwiseDistance(samplePoints, sampleSize)'; 
end  
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end 
 
 
% this function take two inputs: points and sample 
% output the distance metrix 
function [ distance ] = cal_pairwiseDistance( points, sample ) 
pointSize = length (points); 
picks = 1+round((pointSize-1)*rand(2*sample,1)); 
count = 1; 
distance = zeros (sample,1); 
for i = 1:2:2*sample 
    id1 = picks (i,1); 
    id2 = picks (i+1,1); 
    x1 = points(id1,1); 
    y1 = points(id1,2); 
    z1 = points(id1,3); 
    x2 = points(id2,1); 
    y2 = points(id2,2); 
    z2 = points(id2,3); 
    d = sqrt ((x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2); 
    distance (count,1) = d; 
    count = count+1; 
end 
 
----------------------------------------------------------------------- 
%This function is used to perform the shape + overlap filter  
----------------------------------------------------------------------- 
 
function [map_filter] = shape_overlap_filter(map, src) 
[nb,np] = size (map); 
map_filter = zeros (nb,np); 
for i = 1:nb 
    [~,index] = find (map(i,:)>0); 
    p = length(index); 
    if (p~=0) 
        difference = src.diff3D(i,index); 
        [~,match] = min(difference); 
        map_filter(i,index(match)) = 1; 
    end 
end  
  
----------------------------------------------------------------------- 
% for each scenario, this function get the mapping matrix and output 
the mapping image 
----------------------------------------------------------------------- 
function [] = outputMappingMatrix( map, titleName, precision, recall ) 
%CREATEMETRIC Summary of this function goes here 
%   Detailed explanation goes here 
standard = map > 0; 
[nb,np] = size (standard); 
h = figure; 
for i = 1:nb 
    for j = 1:np 
        if (standard(i,j)==1) 
            rectangle ('Position',[i-1,j-
1,1,1],'FaceColor','black','EdgeColor','yellow'); 
        end 
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        if (i==j) 
            rectangle ('Position',[i-1,j-1,1,1],'EdgeColor','r'); 
        end  
    end  
end 
grid on 
axis([0 nb 0 np]); 
xlabel ('original','FontSize', 25); 
ylabel ('target','FontSize', 25); 
title (['precision = ',num2str(precision),' recall = 
',num2str(recall)],'FontSize', 25); 
%print('-dpng','-r100',titleName); 
saveas(h,titleName,'png') 
close(h); 
 
 
----------------------------------------------------------------------- 
% Perform the graph matching for the point cloud 
% Extended from the research done by Feng Zhou 
% Te Gao 
----------------------------------------------------------------------- 
clear variables; 
addPath; 
prSet(5); % set the promption level 
%% Get the image and pick up the points for the nodes 
% create a very simple UI for interact with the system  
global footpath; 
imgPath = sprintf ('%s/BIM_BIM/',footpath); 
choice = menu ('Please select the option','load file','determine 
nodes','simulate the location discrepancy'); 
if (choice ==1) 
    [FileName,PathName] = uigetfile('*.mat','Select the MATLAB code 
file'); 
    Path = [PathName, FileName]; 
    if (exist(Path,'file') == 0) 
        fprintf ('The file is not existed'); 
    else 
        load (Path); 
        loadPath = FileName; 
        fprintf ('use the pre-saved file.\n'); 
    end  
end  
  
if (choice ==2) 
    %BIM_Path = [imgPath,'ori_BIM.jpg']; 
    %PCD_Path = [imgPath,'new_PCD.jpg']; 
    BIM_Path = [imgPath,'BIM.png']; 
    PCD_Path = [imgPath,'PCD.png']; 
    BIM = imread (BIM_Path); 
    PCD = imread (PCD_Path); 
    figure ('name','Select nodes from BIM'); 
    imshow (BIM); 
    [xBIM yBIM] = ginput; 
    hold on  
    scatter (xBIM,yBIM,100,'fill'); 
    hold off  
    figure ('name','Select nodes from point cloud')  
    imshow (PCD); 
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    [xPCD yPCD] = ginput; 
    hold on  
    scatter (xPCD,yPCD,100,'fill'); 
    hold off 
    xTs = {[xBIM,yBIM]',[xPCD,yPCD]'}; 
    prompt = {'Save the file, Y/N?','Enter the file path for save'}; 
    dig_title = ('Input'); 
    num_lines = 1; 
    answer = inputdlg(prompt, dig_title,num_lines); 
    if (answer{1} =='Y' ) 
        save (answer{2},'xTs'); 
        loadPath = answer{2}; 
    end  
    fprintf ('The file has been saved.\n'); 
end 
  
if (choice ==3) 
    [FileName,PathName] = uigetfile('*.mat','Select the MATLAB code 
file'); 
    Path = [PathName, FileName]; 
    if (exist(Path,'file') == 0) 
        fprintf ('The file is not existed'); 
    else 
        load (Path); 
        loadPath = FileName; 
        fprintf ('use the pre-saved file.\n'); 
    end 
    %% simulate the discrepancy 
    BIM = xTs{1}; 
    PCD = xTs{2}; 
    displacement = (1:3:1000); 
    PCD(2,2) = PCD(2,2)- displacement(100);  
    xTs{2} = PCD; 
end 
  
%% read src 
nb = size (xTs{1},2); 
np = size (xTs{2},2); 
tag = 'pointCloud'; pFs = [1 2]; nIn = [nb nb]; 
% the important field in wsSrc is point coordinate 
% in my case, 2X13 is enough 
% wsSrc = pcdAsgSrc(tag, pFs, nIn,loadPath,'svL',1); 
wsSrc = simAsgSrc(tag, pFs, nIn,xTs,'svL',1); 
% asgT the attribute to save the final output? 
asgT = wsSrc.asgT; 
  
%% read feature 
% define two parameters and store them in a structure 
parG = st('link', 'predefine'); 
parF = st('smp', 'n', 'nBinT', 4, 'nBinR', 3); 
% obtain features: two important files - gphs, and fs  
wsFeat = pcdAsgFeat(wsSrc, parG, parF, 'svL', 1); 
[gphs Fs] = stFld(wsFeat, 'gphs','Fs'); 
  
ns = cellDim(wsSrc.Pts, 2); 
  
%% affinity 
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% need to re-defined the affinity 
parKnl = st('alg', 'cmum'); 
[KP, KQ] = conKnlGphPQ(gphs, parKnl); 
K = conKnlGphK(KP, KQ, gphs); 
  
%% parameter 
pars = gmPar(1); 
  
%% SM 
asgSm = gm(K, ns, asgT, pars{3}{:}); 
  
%% FGM 
% here is the actual implementation of fgm algorithm  
% need to define KP, KQ 
% don't warry about Fs 
asgFgm = fgm(KP, KQ, gphs, asgT, pars{3}{1}); 
  
%% show correpsondence matrix 
asgs = {asgT, asgSm, asgFgm}; 
algs = {'Truth', 'SM', 'FGM'}; 
rows = 1; cols = 3; 
Ax = iniAx(1, rows, cols, [250 * rows, 250 * cols]); 
shAsgX(asgs, Ax, algs); 
%%-------the above code is able to work  
%% show correspondence result 
%rows = 2; cols = 1; 
%Ax = iniAx(2, rows, cols, [400 * rows, 900 * cols]); 
parCor = st('mkSiz', 7, 'cls', {'y', 'b', 'g'}); 
  
%shAsgImg(Fs, gphs, asgSm, asgT, parCor, 'ax', Ax{1}); 
%title(sprintf('SM : acc %.2f, obj %.2f', asgSm.acc, asgSm.obj)); 
shAsgImg(Fs, gphs, asgFgm, asgT, parCor); 
title(sprintf('FGM: acc %.2f, obj %.2f', asgFgm.acc, asgFgm.obj)); 
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Appendix C. Codes for the discrepancy simulation algorithm  

The simulation algorithm developed in this research runs as an add-on to a widely 

used building information modeling tool. The algorithm is developed using C#. 

	  
using	  System;	  
using	  System.Collections.Generic;	  
using	  System.Linq;	  
using	  System.Text;	  
using	  System.IO;	  
using	  STL_Export;	  
	  
using	  Autodesk.Revit.UI;	  
using	  Autodesk.Revit.DB;	  
using	  Autodesk.Revit.Attributes;	  
using	  Autodesk.Revit.UI.Selection;	  
using	  Autodesk.Revit.DB.Mechanical;	  
using	  Autodesk.Revit.ApplicationServices;	  
	  
//	  define	  a	  technique	  to	  store	  the	  discrepancy	  for	  correction	  analysis:	  	  
//	  each	  element	  -‐	  1	  =	  length	  discrepancy;	  2	  =	  location	  discrepancy;	  3	  =	  width	  
discrepancy,	  4	  =	  height	  discrepancy	  
namespace	  Test	  
{	  
	  	  	  	  [TransactionAttribute(TransactionMode.Manual)]	  
	  	  	  	  public	  class	  DiscrepancyIntroduction	  :	  IExternalCommand	  
	  	  	  	  {	  
	  	  	  	  	  	  	  	  //	  define	  the	  two	  main	  variables	  that	  will	  be	  used	  thoughout	  different	  
functions	  
	  	  	  	  	  	  	  	  Document	  document;	  
	  	  	  	  	  	  	  	  Application	  app;	  
	  	  	  	  	  	  	  	  string	  record	  =	  "";	  
	  	  	  	  	  	  	  	  public	  Result	  Execute(ExternalCommandData	  commandData,	  ref	  string	  message,	  
ElementSet	  elements)	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  UIDocument	  doc	  =	  commandData.Application.ActiveUIDocument;	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  //	  assign	  values	  to	  document	  and	  app	  
	  	  	  	  	  	  	  	  	  	  	  	  document	  =	  doc.Document;	  
	  	  	  	  	  	  	  	  	  	  	  	  app	  =	  document.Application;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  try	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  /**************************The	  Discrepancy	  
Creation*******************************/	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  iterate	  for	  100	  times	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  we	  also	  need	  to	  define	  a	  variable	  to	  store	  the	  simulation	  
result	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ElementSet	  set	  =	  new	  ElementSet();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  set	  =	  GetAllModelElements();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Random	  random	  =	  new	  Random();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //string	  savePath	  =	  
"C:\\Users\\tgao\\Desktop\\SimulationResult_5\\Baseline";	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  string	  savePath	  =	  
"C:\\Users\\tgao\\Desktop\\SimulationResult_5\\Senario4";	  
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	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  DirectoryInfo	  di	  =	  Directory.CreateDirectory(savePath);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Transaction	  trans	  =	  new	  Transaction(document);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trans.Start("baseline");	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  exportImg(savePath	  +	  "\\complete");	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //TaskDialog.Show("Revit",	  "The	  complete	  figure	  is	  exported");	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trans.Commit();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  exportImgs(set,	  savePath,	  trans);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trans.Start("unhide");	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  document.ActiveView.Unhide(set);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trans.Commit();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  var	  ductTypeCollector1	  =	  new	  FilteredElementCollector(document);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ductTypeCollector1.WherePasses(new	  
ElementClassFilter(typeof(Duct)));	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  IList<Element>	  ducts	  =	  ductTypeCollector1.ToElements();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  record	  =	  "Baseline"+"\n";	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  record	  =	  outputInfo(ducts,	  record);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  give	  a	  number	  for	  the	  dimension	  simulatoin	  as	  well,	  when	  i	  is	  
greater	  than	  30	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  int	  whenDimensionChange	  =	  45;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  for	  (int	  i	  =	  1;	  i	  <=	  0;	  i++)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //Step	  1:	  change	  the	  dimension	  of	  the	  ducts	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //String	  info	  =	  "Get	  all	  the	  ducts";	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //TaskDialog.Show("Revit",	  info);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //ShowElementList(ducts,	  "show	  element	  type");	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  int	  flag	  =	  0;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //trans.Start("change");	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  foreach	  (Element	  e	  in	  ducts)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Duct	  duct	  =	  (Duct)e;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  flag	  =	  random.Next(0,	  2);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (flag	  ==	  0)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  TaskDialog.Show("Whether	  to	  change	  the	  component	  or	  
not	  ",	  duct.Name	  +	  "No!");	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //do	  nothing	  
	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  else	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //change	  the	  profile	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //trans.Start();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ModifyElementLengthWithAttach(e,	  trans);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //trans.Commit();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (i	  >	  whenDimensionChange)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  int	  flag_Width	  =	  random.Next(0,3);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (flag_Width	  ==	  1)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  double	  change	  =	  0.75	  +	  random.NextDouble();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ModifyElementWidth(e,	  change,trans);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  int	  flag_Height	  =	  random.Next(0,	  3);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (flag_Height	  ==	  1)	  
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	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  double	  change	  =	  0.75	  +	  random.NextDouble();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ModifyElementHeight(e,	  change,	  trans);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  step	  2:	  move	  the	  ducts	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  flag	  =	  random.Next(0,	  2);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (flag	  ==	  0)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //TaskDialog.Show("Warning",	  "no	  movement");	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //do	  nothing	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  else	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //trans.Start();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trans.Start("change");	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  generateLocationDiscrepancy();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trans.Commit();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //trans.Commit();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  step	  3:	  output	  the	  model:	  	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  savePath	  =	  
"C:\\Users\\tgao\\Desktop\\SimulationResult_4\\Scenario"	  +	  i;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  di	  =	  Directory.CreateDirectory(savePath);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trans.Start("export");	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  exportImg(savePath	  +	  "\\complete");	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trans.Commit();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //TaskDialog.Show("Revit",	  "The	  complete	  figure	  is	  exported");	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  set	  =	  GetAllModelElements();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  exportImgs(set,savePath,trans);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trans.Start("unhide");	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  document.ActiveView.Unhide(set);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trans.Commit();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  record	  +=	  "scenario"	  +	  i.ToString()	  +	  "\n";	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  record	  =	  outputInfo(ducts,	  record);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  System.IO.File.WriteAllText(@"C:\Users\tgao\Documents\test.txt",	  
record);	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  catch	  (Exception	  e)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  message	  =	  e.Message;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  return	  Result.Failed;	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  return	  Result.Succeeded;	  
	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  public	  void	  exportImgs(ElementSet	  allComponents,string	  path,	  Transaction	  
tran)	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  //	  Step	  4:	  add	  the	  visibility	  control	  
	  	  	  	  	  	  	  	  	  	  	  	  //Transaction	  tran1	  =	  new	  Transaction(document);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  int	  i	  =	  1;	  
	  	  	  	  	  	  	  	  	  	  	  	  foreach	  (Element	  elem	  in	  allComponents)	  
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	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  tran.Start();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  document.ActiveView.Hide(allComponents);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  tran.Commit();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ElementSet	  unhide	  =	  new	  ElementSet();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  string	  temPath	  =	  "";	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  string	  temPathStl	  =	  "";	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (elem.Name.Equals("Experiment"))	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  tran.Start();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  unhide.Insert(elem);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  document.ActiveView.Unhide(unhide);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  tran.Commit();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  temPath	  =	  path	  +	  "\\ComponentNo"	  +	  i	  +	  ".png";	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  temPathStl	  =	  path	  +"\\ComponentNo"	  +	  i	  +	  ".stl";	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  tran.Start();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  exportImg(temPath);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  export_Stl(temPathStl);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  tran.Commit();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  i++;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  public	  void	  export_Stl(string	  fileName)	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  DataGenerator	  STL_Generator	  =	  new	  DataGenerator(app,	  document,	  
document.ActiveView);	  
	  	  	  	  	  	  	  	  	  	  	  	  SaveFormat	  saveFormat	  =	  SaveFormat.ASCII;	  
	  	  	  	  	  	  	  	  	  	  	  	  ElementsExportRange	  exportRange;	  
	  	  	  	  	  	  	  	  	  	  	  	  exportRange	  =	  ElementsExportRange.OnlyVisibleOnes;	  
	  	  	  	  	  	  	  	  	  	  	  	  ExportSettings	  aSetting	  =	  new	  ExportSettings(saveFormat,	  exportRange);	  
	  	  	  	  	  	  	  	  	  	  	  	  DataGenerator.GeneratorStatus	  succeed	  =	  
STL_Generator.SaveSTLFile(fileName,	  aSetting);	  
	  	  	  	  	  	  	  	  }	  
	  
	  
	  	  	  	  	  	  	  	  public	  string	  outputInfo(ICollection<Element>	  ducts,	  string	  s)	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  foreach	  (Element	  elem	  in	  ducts)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s	  +=	  elem.Id.ToString()	  +	  ",";	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  string	  width	  =	  elem.get_Parameter("Width").AsValueString();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  string	  height	  =	  elem.get_Parameter("Height").AsValueString();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  string	  length	  =	  elem.get_Parameter("Length").AsValueString();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s	  +=	  width	  +	  ",";	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s	  +=	  length	  +	  ",";	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s	  +=	  height	  +	  ",";	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  location	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Duct	  duct	  =	  (Duct)elem;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  LocationCurve	  ductCurve	  =	  (LocationCurve)duct.Location;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  XYZ	  pt1	  =	  ductCurve.Curve.get_EndPoint(0);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  XYZ	  pt2	  =	  ductCurve.Curve.get_EndPoint(1);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s	  +=	  pt1.X	  +	  ","	  +	  pt1.Y	  +	  ","	  +	  pt1.Z	  +	  ",";	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s	  +=	  pt2.X	  +	  ","	  +	  pt2.Y	  +	  ","	  +	  pt2.Z	  +	  "\n";	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
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	  	  	  	  	  	  	  	  	  	  	  	  return	  s;	  
	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  public	  void	  exportImg(string	  path)	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  ImageExportOptions	  m_exportOptions	  =	  new	  ImageExportOptions();	  
	  	  	  	  	  	  	  	  	  	  	  	  m_exportOptions.ExportRange	  =	  ExportRange.VisibleRegionOfCurrentView;	  
	  	  	  	  	  	  	  	  	  	  	  	  m_exportOptions.ZoomType	  =	  ZoomFitType.FitToPage;	  
	  	  	  	  	  	  	  	  	  	  	  	  m_exportOptions.FilePath	  =	  path;	  
	  	  	  	  	  	  	  	  	  	  	  	  m_exportOptions.PixelSize	  =	  4000;	  
	  	  	  	  	  	  	  	  	  	  	  	  document.ExportImage(m_exportOptions);	  
	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  public	  void	  generateLocationDiscrepancy()	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  ICollection<ElementId>	  allComponents	  =	  GetAllModelElementIds();	  
	  	  	  	  	  	  	  	  	  	  	  	  Random	  random	  =	  new	  Random();	  
	  	  	  	  	  	  	  	  	  	  	  	  Double	  X	  =	  -‐3	  +	  6	  *	  random.NextDouble();	  
	  	  	  	  	  	  	  	  	  	  	  	  Double	  Y	  =	  -‐3	  +	  6	  *	  random.NextDouble();	  
	  	  	  	  	  	  	  	  	  	  	  	  Double	  Z	  =	  -‐3	  +	  6	  *	  random.NextDouble();	  
	  	  	  	  	  	  	  	  	  	  	  	  XYZ	  direction	  =	  new	  XYZ(X,Y,Z);	  
	  	  	  	  	  	  	  	  	  	  	  	  ElementTransformUtils.MoveElements(document,	  allComponents,	  
direction);	  
	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  public	  void	  ShowElementList(IList<Element>	  elems,	  string	  header)	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  string	  s	  =	  "	  -‐	  Class	  -‐	  Category	  -‐	  Name	  (or	  Family:	  Type	  Name)	  -‐	  Id	  -‐	  
\r\n";	  
	  	  	  	  	  	  	  	  	  	  	  	  foreach	  (Element	  e	  in	  elems)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s	  +=	  ElementToString(e);	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  TaskDialog.Show(header	  +	  "("	  +	  elems.Count.ToString()	  +	  "):",	  s);	  
	  	  	  	  	  	  	  	  }	  
	  
	  
	  	  	  	  	  	  	  	  //	  Helper	  function:	  summarize	  an	  element	  information	  as	  a	  line	  of	  text,	  	  
	  	  	  	  	  	  	  	  //	  which	  is	  composed	  of:	  class,	  category,	  name	  and	  id.	  	  
	  	  	  	  	  	  	  	  //	  name	  will	  be	  "Family:	  Type"	  if	  a	  given	  element	  is	  ElementType.	  	  
	  	  	  	  	  	  	  	  //	  Intended	  for	  quick	  viewing	  of	  list	  of	  element,	  for	  example.	  	  
	  
	  	  	  	  	  	  	  	  public	  string	  ElementToString(Element	  e)	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  if	  (e	  ==	  null)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  return	  "none";	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  string	  name	  =	  "";	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  if	  (e	  is	  ElementType)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Parameter	  param	  =	  e.get_Parameter(	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  BuiltInParameter.SYMBOL_FAMILY_AND_TYPE_NAMES_PARAM);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (param	  !=	  null)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  name	  =	  param.AsString();	  
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	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  else	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  name	  =	  e.Name;	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  return	  e.GetType().Name	  +	  ";	  "	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  +	  e.Category.Name	  +	  ";	  "	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  +	  name	  +	  ";	  "	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  +	  e.Id.IntegerValue.ToString()	  +	  "\r\n";	  
	  	  	  	  	  	  	  	  }	  
	  
	  
	  	  	  	  	  	  	  	  public	  void	  outputElementInfo(Element	  e)	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  string	  s	  =	  "";	  
	  	  	  	  	  	  	  	  	  	  	  	  s	  +=	  s;	  
	  
	  
	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  //	  get	  the	  selected	  element	  parameters	  
	  	  	  	  	  	  	  	  public	  void	  showBasicElementInfo(Element	  elem)	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  string	  s	  =	  "You	  Picked:"	  +	  "\n";	  
	  	  	  	  	  	  	  	  	  	  	  	  s	  +=	  "	  Class	  name	  =	  "	  +	  elem.GetType().Name	  +	  "\n";	  
	  	  	  	  	  	  	  	  	  	  	  	  s	  +=	  "	  Category	  =	  "	  +	  elem.Category.Name	  +	  "\n";	  
	  	  	  	  	  	  	  	  	  	  	  	  s	  +=	  "	  Element	  id	  =	  "	  +	  elem.Id.ToString()	  +	  "\n"	  +	  "\n";	  
	  	  	  	  	  	  	  	  	  	  	  	  //	  and,	  check	  its	  type	  info.	  	  
	  	  	  	  	  	  	  	  	  	  	  	  ElementId	  elemTypeId	  =	  elem.GetTypeId();	  
	  	  	  	  	  	  	  	  	  	  	  	  ElementType	  elemType	  =	  (ElementType)document.get_Element(elemTypeId);	  
	  	  	  	  	  	  	  	  	  	  	  	  s	  +=	  "Its	  ElementType:"	  +	  "\n";	  
	  	  	  	  	  	  	  	  	  	  	  	  s	  +=	  "	  Class	  name	  =	  "	  +	  elemType.GetType().Name	  +	  "\n";	  
	  	  	  	  	  	  	  	  	  	  	  	  s	  +=	  "	  Category	  =	  "	  +	  elemType.Category.Name	  +	  "\n";	  
	  	  	  	  	  	  	  	  	  	  	  	  s	  +=	  "	  Element	  type	  id	  =	  "	  +	  elemType.Id.ToString()	  +	  "\n";	  
	  	  	  	  	  	  	  	  	  	  	  	  TaskDialog.Show("Basic	  Element	  Info",	  s);	  
	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  public	  void	  ShowParameters(Element	  elem,	  string	  header)	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  ParameterSet	  paramSet	  =	  elem.Parameters;	  
	  	  	  	  	  	  	  	  	  	  	  	  string	  s	  =	  string.Empty;	  
	  	  	  	  	  	  	  	  	  	  	  	  foreach	  (Parameter	  param	  in	  paramSet)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  string	  name	  =	  param.Definition.Name;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  string	  val	  =	  ParameterToString(param);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s	  +=	  name	  +	  "	  =	  "	  +	  val	  +	  "\n";	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  TaskDialog.Show(header,	  s);	  
	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  public	  ElementSet	  GetExportedElements()	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  //get	  ducts	  
	  	  	  	  	  	  	  	  	  	  	  	  ElementSet	  set	  =	  new	  ElementSet();	  
	  	  	  	  	  	  	  	  	  	  	  	  ElementSet	  elems	  =	  app.Create.NewElementSet();	  
	  	  	  	  	  	  	  	  	  	  	  	  var	  ductTypeCollector1	  =	  new	  FilteredElementCollector(document);	  
	  	  	  	  	  	  	  	  	  	  	  	  ductTypeCollector1.WherePasses(new	  ElementClassFilter(typeof(Duct)));	  
	  	  	  	  	  	  	  	  	  	  	  	  ICollection<Element>	  ducts	  =	  ductTypeCollector1.ToElements();	  
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	  	  	  	  	  	  	  	  	  	  	  	  foreach	  (Element	  a	  in	  ducts)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  set.Insert(a);	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  //get	  duct	  fittings	  
	  	  	  	  	  	  	  	  	  	  	  	  ElementClassFilter	  familyInstanceFilter	  =	  new	  
ElementClassFilter(typeof(FamilyInstance));	  
	  	  	  	  	  	  	  	  	  	  	  	  ElementCategoryFilter	  ductFittingCategoryFilter	  =	  new	  
ElementCategoryFilter(BuiltInCategory.OST_DuctFitting);	  
	  	  	  	  	  	  	  	  	  	  	  	  LogicalAndFilter	  ductFittingInstancesFilter	  =	  new	  
LogicalAndFilter(familyInstanceFilter,	  ductFittingCategoryFilter);	  
	  	  	  	  	  	  	  	  	  	  	  	  FilteredElementCollector	  collector	  =	  new	  
FilteredElementCollector(document);	  
	  	  	  	  	  	  	  	  	  	  	  	  ICollection<Element>	  ductfittings	  =	  
collector.WherePasses(ductFittingInstancesFilter).ToElements();	  
	  	  	  	  	  	  	  	  	  	  	  	  foreach	  (Element	  a	  in	  ductfittings)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (a.GetType().Equals("Experiment"))	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  set.Insert(a);	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  //TaskDialog.Show("duct	  no",	  set.Size.ToString());	  
	  	  	  	  	  	  	  	  	  	  	  	  return	  set;	  
	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  //	  The	  function	  is	  used	  to	  get	  all	  the	  model	  Element	  -‐>	  for	  the	  moving	  
function	  	  
	  	  	  	  	  	  	  	  public	  ICollection<ElementId>	  GetAllModelElementIds()	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  //get	  ducts	  
	  	  	  	  	  	  	  	  	  	  	  	  ElementSet	  elems	  =	  app.Create.NewElementSet();	  
	  	  	  	  	  	  	  	  	  	  	  	  var	  ductTypeCollector1	  =	  new	  FilteredElementCollector(document);	  
	  	  	  	  	  	  	  	  	  	  	  	  ductTypeCollector1.WherePasses(new	  ElementClassFilter(typeof(Duct)));	  
	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  ICollection<ElementId>	  ducts	  =	  ductTypeCollector1.ToElementIds();	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  //get	  duct	  fittings	  
	  	  	  	  	  	  	  	  	  	  	  	  ElementClassFilter	  familyInstanceFilter	  =	  new	  
ElementClassFilter(typeof(FamilyInstance));	  
	  	  	  	  	  	  	  	  	  	  	  	  ElementCategoryFilter	  ductFittingCategoryFilter	  =	  new	  
ElementCategoryFilter(BuiltInCategory.OST_DuctFitting);	  
	  	  	  	  	  	  	  	  	  	  	  	  LogicalAndFilter	  ductFittingInstancesFilter	  =	  new	  
LogicalAndFilter(familyInstanceFilter,	  ductFittingCategoryFilter);	  
	  	  	  	  	  	  	  	  	  	  	  	  FilteredElementCollector	  collector	  =	  new	  
FilteredElementCollector(document);	  
	  	  	  	  	  	  	  	  	  	  	  	  ICollection<ElementId>	  ductfittings	  =	  
collector.WherePasses(ductFittingInstancesFilter).ToElementIds();	  
	  	  	  	  	  	  	  	  	  	  	  	  foreach	  (ElementId	  a	  in	  ductfittings)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ducts.Add(a);	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  //TaskDialog.Show("duct	  no",	  ducts.Count.ToString());	  
	  	  	  	  	  	  	  	  	  	  	  	  return	  ducts;	  
	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  
	  
	  	  	  	  	  	  	  	  public	  ElementSet	  GetAllModelElements()	  
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	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  //get	  ducts	  
	  	  	  	  	  	  	  	  	  	  	  	  ElementSet	  set	  =	  new	  ElementSet();	  
	  	  	  	  	  	  	  	  	  	  	  	  ElementSet	  elems	  =	  app.Create.NewElementSet();	  
	  	  	  	  	  	  	  	  	  	  	  	  var	  ductTypeCollector1	  =	  new	  FilteredElementCollector(document);	  
	  	  	  	  	  	  	  	  	  	  	  	  ductTypeCollector1.WherePasses(new	  ElementClassFilter(typeof(Duct)));	  
	  	  	  	  	  	  	  	  	  	  	  	  ICollection<Element>	  ducts	  =	  ductTypeCollector1.ToElements();	  
	  	  	  	  	  	  	  	  	  	  	  	  foreach	  (Element	  a	  in	  ducts)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  set.Insert(a);	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  //get	  duct	  fittings	  
	  	  	  	  	  	  	  	  	  	  	  	  ElementClassFilter	  familyInstanceFilter	  =	  new	  
ElementClassFilter(typeof(FamilyInstance));	  
	  	  	  	  	  	  	  	  	  	  	  	  ElementCategoryFilter	  ductFittingCategoryFilter	  =	  new	  
ElementCategoryFilter(BuiltInCategory.OST_DuctFitting);	  
	  	  	  	  	  	  	  	  	  	  	  	  LogicalAndFilter	  ductFittingInstancesFilter	  =	  new	  
LogicalAndFilter(familyInstanceFilter,	  ductFittingCategoryFilter);	  
	  	  	  	  	  	  	  	  	  	  	  	  FilteredElementCollector	  collector	  =	  new	  
FilteredElementCollector(document);	  
	  	  	  	  	  	  	  	  	  	  	  	  ICollection<Element>	  ductfittings	  =	  
collector.WherePasses(ductFittingInstancesFilter).ToElements();	  
	  	  	  	  	  	  	  	  	  	  	  	  foreach	  (Element	  a	  in	  ductfittings)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  set.Insert(a);	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  //TaskDialog.Show("duct	  no",	  set.Size.ToString());	  
	  	  	  	  	  	  	  	  	  	  	  	  return	  set;	  
	  	  	  	  	  	  	  	  }	  
	  
	  
	  	  	  	  	  	  	  	  public	  static	  string	  ParameterToString(Parameter	  param)	  
	  	  	  	  	  	  	  	  {	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  string	  val	  =	  "none";	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  if	  (param	  ==	  null)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  return	  val;	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  //	  to	  get	  to	  the	  parameter	  value,	  we	  need	  to	  pause	  it	  depending	  
	  	  	  	  	  	  	  	  	  	  	  	  //	  on	  its	  strage	  type	  	  
	  	  	  	  	  	  	  	  	  	  	  	  switch	  (param.StorageType)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  case	  StorageType.Double:	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  double	  dVal	  =	  param.AsDouble();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  val	  =	  dVal.ToString();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  break;	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  case	  StorageType.Integer:	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  int	  iVal	  =	  param.AsInteger();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  val	  =	  iVal.ToString();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  break;	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  case	  StorageType.String:	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  string	  sVal	  =	  param.AsString();	  
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	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  val	  =	  sVal;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  break;	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  case	  StorageType.ElementId:	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ElementId	  idVal	  =	  param.AsElementId();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  val	  =	  idVal.IntegerValue.ToString();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  break;	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  case	  StorageType.None:	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  break;	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  default:	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  break;	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  return	  val;	  
	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  public	  void	  IdentifyElement(Element	  elem)	  
	  	  	  	  	  	  	  	  {	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  //	  An	  instance	  of	  a	  system	  family	  has	  a	  designated	  class.	  	  
	  	  	  	  	  	  	  	  	  	  	  	  //	  You	  can	  use	  it	  identify	  the	  type	  of	  element.	  	  
	  	  	  	  	  	  	  	  	  	  	  	  //	  e.g.,	  walls,	  floors,	  roofs.	  	  
	  	  	  	  	  	  	  	  	  	  	  	  //	  	  
	  	  	  	  	  	  	  	  	  	  	  	  string	  s	  =	  "";	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  if	  (elem	  is	  Wall)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s	  =	  "Wall";	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  else	  if	  (elem	  is	  Floor)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s	  =	  "Floor";	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  else	  if	  (elem	  is	  RoofBase)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s	  =	  "Roof";	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  else	  if	  (elem	  is	  Duct)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s	  =	  "Duct";	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  else	  if	  (elem	  is	  FamilyInstance)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  An	  instance	  of	  a	  component	  family	  is	  all	  FamilyInstance.	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  We'll	  need	  to	  further	  check	  its	  category.	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  e.g.,	  Doors,	  Windows,	  Furnitures.	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (elem.Category.Id.IntegerValue	  ==	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (int)BuiltInCategory.OST_Doors)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s	  =	  "Door";	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  else	  if	  (elem.Category.Id.IntegerValue	  ==	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (int)BuiltInCategory.OST_Windows)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s	  =	  "Window";	  
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	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  else	  if	  (elem.Category.Id.IntegerValue	  ==	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (int)BuiltInCategory.OST_Furniture)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s	  =	  "Furniture";	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  else	  if	  (elem.Category.Id.IntegerValue	  ==	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (int)BuiltInCategory.OST_DuctFitting)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s	  =	  "Duct	  Fitting";	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  else	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  e.g.	  Plant	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s	  =	  "Component	  family	  instance";	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  else	  if	  (elem	  is	  HostObject)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  check	  the	  base	  class.	  e.g.,	  CeilingAndFloor.	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s	  =	  "System	  family	  instance";	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  else	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  s	  =	  "Other";	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  s	  =	  "You	  have	  picked:	  "	  +	  s;	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  //	  show	  it.	  	  
	  	  	  	  	  	  	  	  	  	  	  	  TaskDialog.Show("Identify	  Element",	  s);	  
	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  public	  void	  ModifyElementWidth(Element	  elem,double	  n,	  Transaction	  trans)	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  Parameter	  param	  =	  elem.get_Parameter("Width");	  
	  	  	  	  	  	  	  	  	  	  	  	  //double	  currentWidth	  =	  param.AsDouble();	  
	  	  	  	  	  	  	  	  	  	  	  	  if	  (param	  !=	  null)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trans.Start("ModifyWidth");	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  param.Set(n);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trans.Commit();	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  public	  void	  ModifyElementHeight(Element	  elem,	  double	  n,	  Transaction	  trans)	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  Parameter	  param	  =	  elem.get_Parameter("Height");	  
	  	  	  	  	  	  	  	  	  	  	  	  if	  (param	  !=	  null)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trans.Start("ModifyHeigh");	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  param.Set(n);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trans.Commit();	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  }	  
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	  	  	  	  	  	  	  	  public	  void	  ModifyElementLengthWithAttach(Element	  elem,	  Transaction	  trans)	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  try	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trans.Start("Modify_Length");	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Duct	  duct	  =	  (Duct)elem;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  LocationCurve	  ductCurve	  =	  (LocationCurve)duct.Location;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  XYZ	  pt1	  =	  ductCurve.Curve.get_EndPoint(0);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  XYZ	  pt2	  =	  ductCurve.Curve.get_EndPoint(1);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  double	  Xdiff	  =	  System.Math.Abs(pt1.X	  -‐	  pt2.X);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  double	  Ydiff	  =	  System.Math.Abs(pt1.Y	  -‐	  pt2.Y);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  double	  Zdiff	  =	  System.Math.Abs(pt1.Z	  -‐	  pt2.Z);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //string	  s	  =	  "X	  difference	  "	  +	  Xdiff	  +	  "\n"	  +	  "Y	  difference	  "	  +	  
Ydiff	  +	  "\n"	  +	  "Z	  difference	  "	  +	  Zdiff	  +	  "\n";	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //TaskDialog.Show("Checking",	  s);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  double	  X	  =	  0,	  Y	  =	  0,	  Z	  =	  0;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Random	  random	  =	  new	  Random();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  double	  change	  =	  2*random.NextDouble();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  int	  flag	  =	  random.Next(0,	  2);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (flag	  ==	  0)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  change	  =	  change	  *	  1;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  else	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  change	  =	  change	  *	  -‐1;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (Xdiff	  >=	  0.001)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  X	  =	  change;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (Ydiff	  >=	  0.001)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Y	  =	  change;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  if	  (Zdiff	  >=	  0.001)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Z	  =	  change;	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  XYZ	  v	  =	  new	  XYZ(X,	  Y,	  Z);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  move(elem,	  v);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  trans.Commit();	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  	  	  	  catch	  (Exception	  e)	  
	  	  	  	  	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  TaskDialog.Show("error",	  e.Message);	  
	  	  	  	  	  	  	  	  	  	  	  	  }	  
	  	  	  	  	  	  	  	  }	  
	  
	  	  	  	  	  	  	  	  public	  void	  ModifyElmentLength(Element	  elem,	  double	  value)	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  Duct	  duct	  =	  (Duct)elem;	  
	  	  	  	  	  	  	  	  	  	  	  	  LocationCurve	  ductCurve	  =	  (LocationCurve)duct.Location;	  
	  	  	  	  	  	  	  	  	  	  	  	  XYZ	  pt1	  =	  ductCurve.Curve.get_EndPoint(0);	  
	  	  	  	  	  	  	  	  	  	  	  	  XYZ	  pt2	  =	  ductCurve.Curve.get_EndPoint(1);	  
	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  XYZ	  newPt1	  =	  new	  XYZ(pt1.X	  -‐	  value,	  pt1.Y,	  pt1.Z);	  
	  	  	  	  	  	  	  	  	  	  	  	  XYZ	  newPt2	  =	  new	  XYZ(pt2.X	  -‐	  value,	  pt2.Y,	  pt2.Z);	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  //	  create	  a	  new	  line	  bound.	  	  
	  	  	  	  	  	  	  	  	  	  	  	  Line	  newDuctLine	  =	  app.Create.NewLineBound(newPt1,	  pt2);	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  //	  finally	  change	  the	  curve.	  	  
	  	  	  	  	  	  	  	  	  	  	  	  ductCurve.Curve	  =	  newDuctLine;	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  //	  message	  to	  the	  user.	  	  
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	  	  	  	  	  	  	  	  	  	  	  	  String	  msg	  =	  "Location:	  start	  point	  moved	  "	  +	  value	  +	  "in	  X-‐direction"	  
+	  "\n";	  
	  	  	  	  	  	  	  	  	  	  	  	  TaskDialog.Show("Revit	  Intro	  Lab",	  msg);	  
	  	  	  	  	  	  	  	  }	  
	  
	  
	  	  	  	  	  	  	  	  public	  void	  ModifyDuctfittingLength(Element	  elem,	  double	  value)	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  FamilyInstance	  d	  =	  (FamilyInstance)elem;	  
	  	  	  	  	  	  	  	  	  	  	  	  LocationCurve	  dCurve	  =	  (LocationCurve)d.Location;	  
	  	  	  	  	  	  	  	  	  	  	  	  XYZ	  pt1	  =	  dCurve.Curve.get_EndPoint(0);	  
	  	  	  	  	  	  	  	  	  	  	  	  XYZ	  pt2	  =	  dCurve.Curve.get_EndPoint(1);	  
	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  XYZ	  newPt1	  =	  new	  XYZ(pt1.X	  -‐	  value,	  pt1.Y,	  pt1.Z);	  
	  	  	  	  	  	  	  	  	  	  	  	  XYZ	  newPt2	  =	  new	  XYZ(pt2.X	  -‐	  value,	  pt2.Y,	  pt2.Z);	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  //	  create	  a	  new	  line	  bound.	  	  
	  	  	  	  	  	  	  	  	  	  	  	  Line	  newDuctLine	  =	  app.Create.NewLineBound(newPt1,	  pt2);	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  //	  finally	  change	  the	  curve.	  	  
	  	  	  	  	  	  	  	  	  	  	  	  dCurve.Curve	  =	  newDuctLine;	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  //	  message	  to	  the	  user.	  	  
	  	  	  	  	  	  	  	  	  	  	  	  String	  msg	  =	  "Location:	  start	  point	  moved	  "	  +	  value	  +	  "in	  X-‐direction"	  
+	  "\n";	  
	  	  	  	  	  	  	  	  	  	  	  	  TaskDialog.Show("Revit	  Intro	  Lab",	  msg);	  
	  	  	  	  	  	  	  	  }	  
	  
	  
	  	  	  	  	  	  	  	  public	  void	  move(Element	  e,	  XYZ	  v)	  
	  	  	  	  	  	  	  	  {	  
	  	  	  	  	  	  	  	  	  	  	  	  ElementTransformUtils.MoveElement(document,	  e.Id,	  v);	  
	  	  	  	  	  	  	  	  }	  
}	  
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