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Chapter 1

Complex, “Raw” Data and
Causal Discovery

1.1 Introduction

Scientists and policy makers frequently require causal knowledge to solve
the problems that they face1. Economists, rather than merely predict infla-
tion rates, seek to know what effect a change in monetary policy will have
on inflation. Psychiatrists, rather than merely predict that a new patient
suffers from depression, require knowledge of what (and how) pharmaceuti-
cals effectively rid patients of depression. While educators may find it useful
to know how likely it is that a student will fail a course, they are likely to
be more interested in interventions that will keep a student from failing.
Merely predictive questions can be answered by numerous statistical and
algorithmic methods. To make predictions about systems we are not pas-
sively observing but rather changing by intervening, we must move beyond
predictive inference (e.g., relying on “correlations that do not imply causa-
tion”) to learn causal structure and provide causal explanations of scientific
phenomena.

Typically, scientists infer causal structure by performing experiments,
e.g., randomized controlled trials (RCTs). However, RCTs and other exper-
iments are often impossible, unethical, cost-prohibitive, or for some other
reason cannot be carried out. Work over the past 20+ years in philosophy,
computer science, and statistics has been devoted to reliably discovering
causal structure from observed, non-experimental data. Such work gener-
ally assumes appropriate variables have been defined. For example, to learn

1Portions of this chapter appear in Fancsali (2011a) and Fancsali (2012).
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the causes of depression, we presumably have appropriate measurements of
the extent to which a subject is depressed. Without appropriate measured
or observed variables (i.e., without variables at an appropriate level or unit
of analysis), we must first construct them.

Examples are legion in both the sciences and everyday life in which data
do not “cleanly” manifest as variables that support or underwrite causal
explanations and inferences. Such data are thus initially un-suited to the
goal of discovering causal relationships. Consider, for example, “raw” sense-
data with which we are bombarded at every moment. Complex cognitive
processes allow us to quickly process multitudes of visual, auditory, and
tactile sense data such that when instructed to sit down, for example, we
can understand words and the command that has been uttered, distinguish
an object from its surroundings that corresponds to our concept of a chair,
and take action to sit down. Very roughly, our brains have managed to
take fine-grained (sense) data and transform them appropriately (into cor-
responding concepts, natural kinds, objects in our visual field, etc.) so that
we have a modicum of control over our environment and can take appro-
priate actions. These transformations provide an efficient representation of
the world around us, and, more importantly, these representations allow us
to causally navigate and control the world around us. So it goes with the
natural and social sciences; we seek to appropriately transform fine-grained,
“raw” data into variables from which we can learn causal information about
(and acquire causal control over) systems of interest.

1.1.1 Examples

Problems posed by fine-grained, “raw” data for predictive and causal in-
ference vary in degree and scope. We consider several examples, all of
which share the feature that data as collected are at an intuitively “wrong”
level/unit of analysis (or perhaps aggregation) for important scientific, causal
questions:

• Therapists and social scientists often assess levels of subjects’ depres-
sion (or some other mental health/psychiatric condition) with diag-
nostic/survey instruments composed of multiple presumed measures
or indicators (effects) of the underlying condition. Investigators must
decide which measured indicators are appropriate to include in a vari-
able constructed from a survey instrument and what function should
be applied to the measures. In practice, social scientists frequently
construct scales as the sum of positive, integer valued measures of

10



underlying “latent” phenomena, but other transformations could be
appropriate.

• Economists model macroeconomic phenomena like inflation by con-
structing indices (e.g., various forms of the Consumer Price Index)
from prices of “baskets of goods” assessed over disparate geographic
regions. To construct such indices, one must choose which goods and
which geographic regions ought to be considered (i.e., the level or scope
of the index), as well as the aggregate function or transformation that
should be applied to these prices.

• Cognitive neuroscientists construct variables to represent regions of
interest (ROIs) in the brain from thousands of indirect measurements
of neuronal activity. Which voxels (i.e., “volumetric pixels” represent-
ing small regions of neuronal activity) should be included in ROIs?
What are the relevant characteristics of these voxels and how do we
aggregate over them to learn about interactions among ROIs?

• Education researchers frequently work from fine-grained logs generated
by computer-based courseware; they construct variables to represent
aspects of student behavior to predict and explain learning outcomes.
Such logs track many characteristics and features of thousands of in-
dividual student interactions with courseware, making problems of ag-
gregation level and scope as well as appropriate functions with which
to construct aggregate variables difficult (even compared to the exam-
ples above in which investigators at least generally have some notion
of appropriate aggregation functions).

The algorithmic approach we propose is largely inspired by problems
like those from courseware logs (the last example above); given the com-
plexity of these logs and the nature of fine-grained data they track, we have
little domain knowledge to expect that extant methods have constructed
aggregate/student-level variables optimally, especially for purposes of causal
explanation. Thus, the significant focus of this work is to develop methods
suitable for constructing variables that support causal inference (and to ad-
judicate success in doing so) from data sources like education courseware
logs.

1.1.2 Proxies vs. Aggregates

These examples illustrate that sometimes we seek variables to represent
causally relevant, underlying phenomena that are, in principle, not directly
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observable, but for which we only have indicators (i.e., presumed effects of
“latent” phenomena, like depression). From these indicators (e.g., symp-
toms), we hope to construct “proxies” that support causal inferences by
obtaining in the same inferred causal relationships as the underlying phe-
nomena they represent (e.g., we infer that a proxy for depression roughly
stands in the same causal relationships we would infer if depression were
directly observable). Importantly, proxies so constructed do not have any
necessary semantic relationship to the underlying phenomenon of interest.
A well-constructed proxy establishes the extent of a patient’s depression
from her symptoms and will be a good “stand-in” for the unobservable
phenomenon for statistical and causal inference, but we do not think that
the unobservable phenomenon is identical to the proxy. When a psychia-
trist talks about a patient’s depression, she is presumably not talking about
the proxy variable she constructed but rather the actual underlying phe-
nomenon.

In other cases, causally relevant variables and phenomena are aggre-
gates of directly (or indirectly) observable, but fine-grained measures (e.g.,
aggregate brain activity in a ROI that could play an explanatory role for
thought). In contrast to situations in which we seek variables as proxies for
latent phenomena, in many cases in which we seek aggregate constructed
variables, there is a necessary semantic link between constructed aggregates
and the phenomena we seek to represent. For example, activity at an ROI in
the brain really just is the aggregate of neuronal activity (even if indirectly
measured) over a particular region, so there is a clear semantic link between
variables constructed and the phenomenon we seek to represent.

In cases like education courseware logs, we likely face both challenges.
Further, sometimes distinctions between these different situations are ap-
proximate at best; despite differences in the semantic content of constructed
variables (latent variables vs. constructed aggregates), we can methodolog-
ically proceed in a similar fashion across situations. We explore these ideas
further in Chapter 2.

1.1.3 (Fine-grained) Predictions vs. (Aggregate) Causal Ex-
planations

To predict the value or distribution of an outcome or target variable from
passive observation, any set of variables constructed from “raw” data that
underwrite accurate, reliable predictive models generally suffice. Consider,
for example, a credit card company that collects “raw” data about its con-
sumers’ transactions (e.g., location, amount, type of purchase, etc.) and
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puts them to a variety of uses. First, consider predicting which future trans-
actions are likely to be fraudulent. Any set of variables constructed from
characteristics of transactions that helps to successfully identify fraud will
be sufficient to help the company decline appropriate transactions. That
a single transaction is at a distant geographic location compared to the
last transaction, for example, might indicate that a card credit has been
stolen. Second, at a higher-level of aggregation, consider predicting which
consumers are likely to default on their debt so that appropriate steps might
be taken to restructure their debt or provide other advice. Perhaps higher
variability in transaction type (i.e., buying many different kinds of products
on credit) is indicative of a consumers risk for default. Again, any set of
aggregate, consumer-level variables constructed from transaction character-
istics that helps to successfully identify consumers at risk of default provides
important insight to the company.

However, constructed variables suited to the task of prediction need not
be well-suited to causal discovery. The same credit card company may,
for example, seek to understand the impact a change in interest rates they
offer will have on aggregate consumer (credit card) spending. This task
is different than the task of passively determining whether one particular
transaction is likely to be fraudulent or whether a particular consumer is
likely to default. Aggregate causal explanations of consumer behavior are
required to predict the effects of such an intervention (e.g., to predict the
distribution of aggregate consumer spending following an intervention on
a system, like a credit card company changing the interest rate it charges
consumers). Given different goals, we must figure out not only what as-
pects of “raw” data are important (e.g., transaction amount vs. type, etc.)
but also what transformations or functions (e.g., average, variance, etc.)
must be applied to construct variables. For most interesting applications,
optimistically, there are hundreds or thousands of possibilities.

Much research is devoted to dimensionality reduction with feature se-
lection methods (from sets of variables presumably at an appropriate level
of analysis or description) and feature extraction (or “feature engineering”)
from “raw” data for predictive purposes. While some attention has been
paid to dimensionality reduction via feature selection (again, from large sets
of appropriately-aggregated variables) for purposes of causal inference, less
research has been directed at dimensionality reduction involving variable
construction (i.e., feature extraction or “feature engineering”) for explicitly
causal purposes.
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1.1.4 Proposal: Search for Variables that Support Causal
Inference

We propose methods for variable construction that simultaneously search
for constructed variables from “raw” data (i.e., data initially unsuited to
causal explanation) and causal structure over these constructed variables.
Our objective is to discover variables that support inferences about qual-
itative causal structure and strength of causation. We introduce several
notions of “causal predictability” to capture predictive access (i.e., notions
of qualitative and quantitative “strength” of causation) to a target from
its inferred causes. Thus, the goal of search for constructed variables is to
maximize causal predictability.

While we focus on the causal desideratum of constructing variables that
contribute to learning causal structure and strength, there are other possible
(and important) desiderata (e.g., constraints on interpretability, possible in-
terventions, etc.) for constructing variables useful for causal purposes, some
of which might be integrated into search for constructed variables. In the
case study of Chapter 5, we attempt to delimit a search space of inter-
pretable constructed variables, but further work is necessary to determine
how background and expert knowledge can provide constraints for causally
interpretable constructed variables that are targets of conceivable interven-
tions.

Notably, any proposed notion of causal predictability should incorporate
the idea that causal structure is, in general, underdetermined by observa-
tional data. Consider, for example, the causal graph of Figure 1.1. Nodes
represent variables, and directed edges represent direct causal relationships.
Without background knowledge and under generally reasonable assump-
tions, we can infer, from data sampled from this system, that X and Y are
causes of W (we explain how in §1.2), so we find ourselves in a fortunate
position to maximize causal predictability if W is our target variable. How-
ever, if our target variable is Z, we face greater uncertainty with respect to
causal structure, as observational data alone will not generally allow us to
infer whether Y → Z or Z → Y; that is, from non-experimental data, we
cannot distinguish in which direction causal influence “flows.” We develop
an approach to assessing causal predictability that is sensitive to this type
(and other types) of uncertainty.

Further, as problems posed by different types of data vary in degree and
scope, so does the space of constructed variables over which we search. In
some cases, we have a great deal of background and domain knowledge to
delineate and place constraints on a search space of constructed variables.
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X

W

Y

Z

Figure 1.1: Example causal structure: with observational data sampled from
this structure alone we can infer that X and Y are causes of W, but we cannot
determine direction of causal influence between Y and Z. We explain why
in §1.2.

Consider the example above of psychometric “scales” used to produce prox-
ies of underlying latent phenomena like depression. Ideally, survey and
other instruments have been validated (i.e., they measure intended under-
lying phenomena) and are composed of relatively few items, so there is a
relatively small number of possible constructed variables/scales to consider
to find the scale(s) that maximize causal predictability (assuming domain
knowledge provides the function/transformation we should apply to the sur-
vey items). In cases like these, scientists seem to have (at least a modicum
of) success in constructing variables they put to a variety of purposes. How-
ever, it is far from clear exactly how it is that scientists are successful (e.g.,
whether via general principles, heuristics, domain knowledge, intuition, or
some combinations of all of these, etc.).

In other cases like education courseware logs, we have less
background/domain knowledge to delineate the search space for constructed
variables, so we may need to consider a wider range of transformations
of different aspects of underlying “raw” data. In general, computational
approaches are necessary because we will face a large search space (on the
order of at least hundreds or thousands of possible constructions).

We investigate ways to construct causally-interpretable, scientifically
meaningful variables in situations in which causal knowledge is required to
drive strategy and interventions from measurements or observations that are
inappropriate for causal purposes (e.g., because of technological constraints,
because we do not know how best to, or simply did not, measure phenom-
ena at a level of analysis best-suited for causal explanation). To do so, we
provide means by which to assess causal predictability and propose algorith-
mic schemata to discover sets of constructed variables from “raw” data. We
begin by reviewing the framework of probabilistic, graphical causal models
we use in our investigation.
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Figure 1.2: Directed acyclic graph representation of hypothetical causal
relationships among attributes of students enrolled in an online course.

1.2 Graphical Causal Models

1.2.1 Directed Acyclic Graphs and Basic Formalism

Aforementioned research on causal discovery from observational datasets
centers on the causal interpretation of probabilistic graphical models, espe-
cially directed graphs without cycles2 (direct acyclic graphs or DAGs) and
associated probability distributions, called Bayesian networks (Spirtes, et
al. 2000; Pearl 2009). Within this formalism, variables are represented by
nodes in a graph with edges between nodes representing causal relationships
between variables. Consider the DAG in Figure 1.2, modeling qualitative,
hypothetical causal relationships among attributes of students in a hypo-
thetical online course.3

We model relationships between (hypothetical) measures of employ-
ment, size of family (familySize), time obligations not related to a stu-
dent’s education (obligations), time spent studying, motivation, length
of messages in an online discussion forum (messageLength), academic
ability, and final exam scores in a course (final). In this hypothetical
model, student final exam performance has two direct causes: student abil-
ity and studying. Further, the model represents relationships among the
determinants of a student’s studying behavior.

2Feedback cycles (in time) can be modeled within the Bayesian network framework
by, for example, deploying variables indexed by time. Some literature (Richardson 1996a,
1996b; Pearl and Dechter 1996, Lacerda, et al. 2008) focuses on the discovery of cyclic
graphical models, though work on this topic is less developed than the Bayesian net-
work/DAG formalism for causal discovery.

3Several attributes might be particularly salient for non-traditional students to whom
online education and degree programs are appealing. Such an example is motivated by
the nature of data in the case study in Chapter 5.
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1.2.2 The Causal Markov Condition and Causal Faithfulness
Condition

We assume two conditions to connect causal structure encoded by a DAG
and an associated probability distribution to a set of probabilistic (condi-
tional) independence relations: the Causal Markov Condition and the Causal
Faithfulness Condition (Spirtes, et al. 2000).4 The Causal Markov Condi-
tion asserts5 that, assuming there are no unmeasured common causes of
variables we consider, a variable is probabilistically independent of its non-
descendants (non-effects) conditional on its direct causes. The Causal Faith-
fulness Condition provides that all observed probabilistic (in)dependence re-
lations (i.e., those that obtain in the distribution) are entailed by the Causal
Markov Condition applied to the DAG. Conditional independence between
variables, for example, does not occur by accident (e.g., via “canceling out”
settings of parameters), but only because of the lack of a (direct) causal
relationship.

To illustrate how a violation of the Causal Faithfulness Condition might
occur, consider a slight modification to hypothetical causal relations among
three variables from Figure 1.2 in Figure 1.3, in which the association repre-
sented by each arrow is positive or negative. Suppose we posit that increased
familySize has a negative impact on employment; the student is likely to
work less as the size of his or her family increases but that employment
and familySize both contribute to increased non-educational time obliga-
tions. The negative effect of familySize on employment combined with
the positive effect of employment on obligations, given appropriate (per-
haps unlikely) parameter values (representing strength of causal relations),
may exactly “cancel out” the positive effect of familySize on obligations.
Such “canceling out” parameter values could lead us to believe that fam-
ilySize and obligations are independent, despite the fact that there is
a direct causal relationship between the two. This hypothetical judgment
of independence despite a direct causal relation is a violation of the Causal
Faithfulness Condition.

4There is substantial philosophical literature about the Causal Markov Condition and
the Causal Faithfulness Condition (e.g., Sober 2001; Cartwright 1999, 2006; Hoover 2003;
Steel 2005; Hausman and Woodward 1999, 2004). We omit controversy arising in that
literature, as the assumptions are standard in the causal learning framework deployed here
(and to which this work contributes).

5assuming it is possible to represent the underlying causal structure (or data generating
process) as a directed acyclic graph
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Figure 1.3: Hypothetical illustration of causal relationships that could lead
to a violation of the Causal Faithfulness Condition

1.2.3 Constraint-Based Structure Search: Causal Sufficiency
vs. Causal Insufficiency

While a causal Bayesian network implies conditional independencies, this
“graphs → independencies” mapping is many-one: for any particular graph
G, there will typically be other graphs, though not all graphs, that predict
or entail the same (conditional) independencies, and so are observationally
indistinguishable from G. To illustrate: consider the maxim that “corre-
lation does not imply causation.” If verbosity in online message forums
(messageLength) and studying are correlated, this can be explained by
messageLength→ studying, messageLength← studying, or study-
ing and messageLength sharing a common cause (as they do in Figure
1.2, motivation), or a combination of these explanations. Thus, multiple
graphs can imply the same observed correlations and/or independencies.

We can use observational data to learn a set of (observationally indis-
tinguishable) causal structures: namely, exactly the set of possibilities that
could have produced the observed pattern of independencies in the data.
Assuming there are no unmeasured common causes (hereafter, “causal suf-
ficiency”), causal Bayesian network structure learning algorithms, e.g., the
PC algorithm (Spirtes, et al. 2000), under suitable assumptions, will iden-
tify the set of observationally indistinguishable graphs containing the correct
DAG in the large sample limit.

Two rough intuitions illustrate basic principles of search for causal struc-
ture from conditional independence relations. The first concerns so-called
“screening off” relations whereby, to consider a simple three variable ex-
ample, two variables, e.g., messageLength and studying, are correlated
but are independent conditional on a third variable, motivation; this con-
ditional independence tells us that messageLength and studying are
not directly causally related. Assuming causal sufficiency for message-
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Length, studying, and motivation, this conditional independence claim
is explained by three possible causal structures: messageLength → mo-
tivation → studying; messageLength ← motivation ← studying;
or messageLength ← motivation → studying. Lacking background
knowledge, these three DAGs are indistinguishable from observational data.
However, if we assume student motivation to be inherent or at least tempo-
rally prior to a student’s enrollment in a program and behavior in a course,
then we can infer that motivation is a common cause of messageLength
and studying (i.e., messageLength ← motivation → studying).

The second intuition has us consider two independent variables that
share a common effect. Suppose that a student’s level of motivation and
non-educational, time-consuming obligations are independent. We expect
that each of these student attributes share a common effect in the amount of
time a student devotes to study (studying). Unconditionally an instructor
cannot infer anything about a student’s motivation level from the knowl-
edge that a student has many time-consuming obligations outside of the
course in which they are enrolled; the instructor, however, can make infer-
ences about a student’s motivation when the student (honestly) reports to
the instructor how much they study. If we know that a student is studying
a lot while juggling many obligations, we infer something about the stu-
dent’s motivation level, namely that it is high. We can similarly infer from
a student’s report that they are highly motivated and yet are not studying
as much as they would like that they are likely dealing with many outside
obligations. In both cases, when we condition on a common effect two
otherwise independent variables now provide information about each other.

In the DAG of Figure 1.2, this appears as what is called an “unshielded
collider,” where directed edges from motivation and obligations meet
at studying (motivation → studying ← obligations; the “unshielded”
modifier stems from the fact that motivation and obligations are not
adjacent). Assuming (however unlikely) that we omit no common causes,
there are no other graphical structures that explain this constraint on condi-
tional independencies (or dependencies). That is, we can orient “unshielded
colliders” when such circumstances arise as we search over conditional inde-
pendence relations that obtain in a distribution or dataset.

A constraint-based algorithm for causal structure search, assuming causal
sufficiency, like PC systematizes search over (sets of) variables and condi-
tional independence relations judged to obtain among them. PC searches
over graphical objects called patterns (Verma and Pearl 1990) that can con-
tain undirected and directed edges (and represent sets of DAGs). An undi-
rected edge X - Y in a pattern indicates that either X → Y or X ← Y.
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The algorithm proceeds in two “phases”: beginning with a complete undi-
rected graph, in the “adjacency” phase PC iterates over pairs of variables
in the graph, seeking a set of variables (of which neither in the pair un-
der consideration is a member) conditional upon which the pair are judged
independent. If such a set is found, the undirected edge between the two
variables is eliminated from the graph.

The second phase of search is the “orientation” phase in which, first,
unshielded colliders entailed by the data and inferred adjacencies are ori-
ented. Also, since we assume that graphs are acyclic, we can often orient
edges that oriented the opposite way would create a directed cycle. Fur-
ther, having oriented unshielded colliders, we can often orient edges in such
ways that avoid creating unshielded colliders not entailed by the data. The
full set of orientation rules for patterns (and thus for PC) is provided by
Meek (1995). In addition, one can also provide background knowledge (e.g.,
temporal ordering of variables) that the algorithm can use to help orient
edges. The pattern resulting from PC search thus captures causal struc-
ture uncertainty by representing the set of observationally indistinguishable
DAGs compatible with conditional independence constraints present in a
distribution/data set.

So far we have been considering situations in which there are no unob-
served (i.e., latent) common causes of measured variables. However, in most
practical (social) science and policy applications, it is unlikely that we will
deal with causally sufficient sets of measured variables.

We return to the example of hypothetical causal relationships among at-
tributes/variables measured over students enrolled in an online course from
Figure 1.2. Suppose, contrary to the graph of Figure 1.2, that motivation
is an unmeasured, “latent” variable and that employment and obliga-
tions share an unmeasured common cause in addition to their direct causal
connection, the level of responsibility in a student’s job (or possibly how “re-
sponsible” the student is in general). A DAG representation of this scenario
(with latent variables italicized) is provided in Figure 1.4.

To reason about causally insufficient systems (i.e., those with unmea-
sured common causes of measured variables), we use graphical objects called
Partial Ancestral Graphs (PAGs) (Richardson 1996a, 1996b; Spirtes, et al.
2000). To represent further causal structure uncertainty due to causal in-
sufficiency, PAGs can contain one new type of edge mark, an oval (o) (in
addition to “tail” and “arrow” edge marks found on edges in patterns and
DAGs). The FCI algorithm (Spirtes, et al. 2000; Zhang 2008b) infers a PAG
that represents the equivalence class of causal graphs compatible with a set
of conditional independence relations among measured variables allowing for
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Figure 1.4: DAG representation of hypothetical causal relationships among
attributes of students enrolled in an online course, including two unmeasured
or “latent” variables (italicized)

causal insufficiency.
Edges between two variables in a PAG are interpreted in the following

way:

1. X o→ Y: X is either a cause of Y, or X and Y share a latent common
cause in every graph in the equivalence class; in no graph is Y an
ancestor (i.e., cause) of X.

2. X o−o Y: In every graph in the equivalence class, (1) X is a cause of
Y, (2) Y is a cause of X, (3) X and Y share a latent common cause,
or (4) some combination of (1) and (3) or (2) and (3).

3. X ↔ Y: There is a latent common cause of X and Y in every graph in
the equivalence class. Neither X is an ancestor of Y, nor Y an ancestor
of X.

4. X → Y: X is an ancestor (i.e., cause) of Y in every graph in the
equivalence class.6

The last type of edge indicates that it is sometimes possible, even with
latent confounders, to make unambiguous, positive causal inferences. We
assume there is no selection bias throughout this work, and this assumption
excludes X − Y and X o− Y as edge possibilities in a PAG.

6Importantly, according to the ancestral interpretation of PAG edges, X is not neces-
sarily a direct cause of Y given this edge in a PAG. X may only be an indirect cause of Y
despite their adjacency in the PAG.
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Figure 1.5: PAG inferred by FCI algorithm applied to conditional indepen-
dence relationships entailed by hypothetical causal graph in Figure 1.4.

In broad outline, FCI is nearly identical to PC, with both an adjacency
phase and an orientation phase. Some orientation rules are similar to those
used in PC (e.g., a rule that has us avoid the creation of directed cycles),
but others are different.7 We provide a step-by-step trace of the FCI algo-
rithm, including several of its orientation rules, for a particular example, in
the Appendix (§7.2).8 Such an example illustrates patterns of conditional
independence relationships that might obtain among measured variables to
allow, for example, unambiguous edge orientations indicating a causal rela-
tionship between two variables.

Figure 1.5 provides the PAG inferred from conditional independence re-
lationships among measured variables of the example in Figure 1.4. We
see that causal relationships between obligations and studying and studying
and final are unambiguously inferred in this case. Whether, for example,
employment is a cause of obligations (or messageLength a cause of
studying, etc.) or they share a common cause (or both) cannot be re-
solved from observational data alone. We see that relaxing the assumption
of causal sufficiency introduces more uncertainty about causal structure.

1.2.4 Score−Based and Other Search Procedures

Constraint−based algorithms like PC and FCI infer causal structure from
conditional independencies among a set of measured variables (with linear

7Zhang (2008b) provides a complete set of orientation rules for FCI.
8Scheines (2005) also provides clear exposition of parts of the FCI algorithm and the

similarity of causal inference from observational data using algorithms like FCI and one
traditional practice in (social) science using instrumental variables.
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relationships and multi−variate Normal distributions or discrete,
multi−nomial distributions). Rather than explicitly rely on conditional
independence constraints, GES (Greedy Equivalence Search) (Meek 1997;
Chickering 2002) is a score−based method to infer a pattern from data, as-
suming causal sufficiency. Starting with the disconnected pattern, in the
“forward” phase of GES, single edges are added to the pattern until the
BIC score of the resulting model can no longer be improved. At this point,
single edges are removed from the pattern, in the “backward” phase, until
the BIC score can no longer be improved.

Recent work seeks to relax distributional and linearity assumptions. If,
for example, variables are linearly related with non−Gaussian distributions,
other conditions, rather than the presence of patterns of conditional in-
dependence relationships, allow for unambiguous orientations and causal
inferences. The LiNGAM algorithm (Shimizu, et al. 2005, 2006), for ex-
ample, infers DAGs (as we are left with less structure uncertainty than in
linear, Gaussian cases) in causally sufficient systems in such cases based on
Independent Components Analysis (Hyvärinen 2001). Subsequent research
extends these models, providing a score−based method (Hoyer and Hytti-
nen 2009), methods to deal with latent variables (Hoyer, et al. 2006, 2008),
cyclic models (Lacerda, et al. 2008), non−linear models with additive noise
(Hoyer, et al. 2009), and using experiments (Eberhardt 2007) to learn linear
cyclic models with latent variables (Hyttinen, et al. 2012). Alas, this outline
of contemporary algorithmic research is far from exhaustive, but provides
an inkling as to state−of−the−art work in the field.

1.3 Structure of the Dissertation

Our strategy is to develop semi-automated search procedures for constructed
variables from fine-grained data that support causal inference(s) about par-
ticular, fixed target variables of interest. After we consider several in depth
examples of how constructed variables can support causal inference in Chap-
ter 2, we review literature on natural kinds and argue that our approach is
aligned with (perhaps an extension of) a contemporary view of natural kinds
as property clusters that focuses on the importance of causal mechanisms
in the delineation of natural kinds and the role of natural kinds in causal
explanation. In Chapter 3, we illustrate novel quantitative metrics to assess
causal predictability afforded by sets of (constructed) variables. Chapter 4
details results of simulation studies investigating the performance of these
metrics. In Chapter 5, we deploy these methods on data from an intelligent
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tutoring system, Carnegie Learning’s Algebra Cognitive Tutor, to develop
causal models of “gaming the system,” off-task, and other behaviors and
their influence on aggregate student learning. Chapter 6 outlines future
research.
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Chapter 2

Constructing Variables in
Practice

2.1 Introduction: Three Situations

Fundamental questions arise about the nature of causally interpretable vari-
ables we seek to construct from fine-grained, “raw” data. We can distinguish
variable construction problems along at least two dimensions: the degree to
which constructed aggregate variables have (or do not have) a necessary
semantic link to features of interest and the degree to which “raw,” mea-
sured data provide direct access to features of interest. Along these two
dimensions, we provide detailed examples for three situations that obtain in
scientific practice:

• Situation #1: Data are collected as variables that are indirect mea-
sures or indicators of unobservable features of interest. In such cases,
we seek to construct variables that serve as proxies for unobservable
phenomena that have no necessary semantic connection to underlying
phenomena. While the investigator does not have direct access (gener-
ally, in principle) to the phenomenon for which she wishes to construct
a proxy (e.g., depression or relationship satisfaction), she does have rel-
atively direct access to phenomena out of which she constructs a proxy
(e.g., survey responses about frequency of suicidal ideation or verbal
disputes in a relationship).

• Situation #2: Data are collected as variables that directly measure
features of interest but are too “fine-grained” or “low level.” Despite
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having direct access to observable phenomena, we must construct vari-
ables to learn causal relationships of interest (e.g., sea-surface tem-
perature measurements from buoys intended to construct aggregate
ocean/climate indices in global climate modeling). We expect such
aggregate constructed variables to have necessary semantic links to
the phenomena they are constructed to represent.

• Situation #3: Data are collected as variables that are indirect mea-
sures of features of scientific interest and “fine-grained” (e.g., indi-
rect, voxel−level measures of physiological activity, serving as indirect
measures of neuronal activity, used to construct variables represent-
ing brain regions of interest [ROIs] in functional Magnetic Resonance
Imaging [fMRI]). Despite having only indirect measurements of fea-
tures of interest (e.g., neuronal activity), we assume we can still mean-
ingfully impose a semantic connection between aggregate constructed
variables (e.g., those constructed from measures of appropriate physio-
logical activity) and scientific phenomena they are intended to capture
(e.g., brain ROIs).

These situations are neither mutually exclusive nor exhaustive. They
are meant to be roughly illustrative, but, in practice, scientists often find
themselves in all three situations. Other situations might arise, and there
are also likely to be “borderline” cases.

2.1.1 Aggregate Variable Construction vs. Latent Variable
Modeling

Situation #1 describes data as collected frequently in studies of “latent” vari-
ables. For example, data may be collected about subjects’ levels of various
indicators of depression, and some mathematical function of these indicators
may be calculated to serve as a new, proxy variable for depression. When
a scientist makes recommendations about treatment for depression, she is
not referring to the depression proxy variable, but rather the underlying
depression phenomenon (i.e., the latent variable). There are no necessary
semantic relationships between a constructed proxy and a latent variable;
that is, we do not identify a latent variable by such a proxy. The scientist
hopes that the proxy is a good “stand−in” for the latent, having appropriate
statistical connections to the latent variable. Specifically, our focus is that
a constructed proxy stands in approximately the same causal relationships
as the intended latent variable. We explicate this construction problem for
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latent variable modeling and propose one solution in greater detail later in
this chapter, following work of Fancsali (2008).

Situations #2 and #3 present problems of aggregate variable construc-
tion. In these cases, we construct aggregate variables from fine-grained
measured data. One critical contrast between aggregate variable construc-
tion and modeling latent phenomena with proxy variables is that there is a
necessary semantic connection between constructed aggregates and the tar-
get phenomena of interest; we identify phenomena under consideration by
aggregate constructed variables, but we do not identify latent phenomena
by constructed proxies.

Consider an example of Situation #2 from climate phenomena. Local
observations of atmospheric pressure can lead a meteorologist to posit that
a “high-pressure system” is located over a particular geographic area. In-
finitely many possible instantiations of local readings might lead to a similar
supposition of a high-pressure system over a particular region; the feature
of interest for (many) purposes of explanation and inference, the aggregate
“high-pressure system,” supervenes on local measurements of atmospheric
pressure. We identify the high-pressure system by an aggregate function
of a set of relatively fine-grained measurements. The aggregate is not just
a proxy for the high-pressure system; rather, what we mean semantically
by the high-pressure system just is that aggregate. Of primary concern in
this work are scientific and policy situations frequently arising when data
manifest as in Situations #2 and #3.

2.1.2 Direct vs. Indirect Measurements and Aggregation

The distinction between Situation #2 and Situations #3 arises out of the
measurement of fine-grained, “raw” data collected. In some cases, like “high-
pressure systems” and other climate examples we consider, we have direct,
fine−grained measurements or observations. In other cases, we have only
indirect ways of measuring and observing fine−grained, low−level phenom-
ena.

Consider the case of brain imaging studies in cognitive neuroscience.
Brain imaging (e.g., fMRI) data provide indirect access to neuronal activity
(i.e., to correlates of neuronal/brain activity) at small regions of the brain
(i.e., volumetric pixels or voxels) in the form of measurements of Blood
Oxygenation Level Dependent (BOLD) response (Lazar 2008, 14). That is,
BOLD response is generally not an important scientific feature of interest,
but it provides means by which to infer (and thereby indirectly measure)
neuronal activity. However, the level at which we frequently find such activ-
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ity interesting is that of macroscopic regions of interest (ROIs) in the brain,
for example, to study causal relationships and neural connectivity between
different areas of the brain. In such studies, investigators take the ROI con-
structed variable to identify (at least roughly) the anatomical brain ROI;
thus, such constructed variables have an important semantic connection to
the anatomy of the brain, despite only indirect access to fine-grained, neu-
ronal activity provided by BOLD response data. We return to this example
later in this chapter.

Whether measurements are “direct” or “indirect” is in many domains a
question of degree rather than kind. The distinction (if one can or need be
clearly drawn) may be important in some domains for the interpretability of
aggregate constructed variables, but we treat both cases roughly the same
methodologically in what follows.

2.1.3 Aggregation Level

To construct aggregate variables, we must decide a suitable “level” of aggre-
gation. That is, we must decide over which of available “raw” or fine-grained
variables (measurements, indicators, etc.) we will aggregate to construct
higher level variables. For survey data, which items will we retain in con-
structing proxies? Over which atmospheric pressure readings do we define
the “high-pressure” system? Which voxels are relevant to a particular brain
ROI?

2.1.4 Aggregation Function

Further, we must decide the appropriate mathematical function to apply to
“raw” variables to capture salient scientific phenomena. Proxies constructed
from survey data generally are constructed as the sum of numeric, “raw”
responses to survey items. Perhaps high average atmospheric pressure over
a particular geographic reason is appropriate in defining a “high-pressure”
system. In other settings, perhaps variability over fine-grained, “raw” fea-
tures is most important to capture salient behavior or phenomena. Still
in other statistical dimensionality reduction settings, e.g., principal compo-
nents analysis, more complicated functions of “raw” variables/features are
deployed to construct new variables.
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2.1.5 Domain Knowledge, Theory, and Heuristics for Vari-
able Construction

In many scientific domains and application areas, questions of aggregation
level and aggregation function have relatively standard answers based on
background knowledge and established theory. In some cases, e.g., con-
struction of proxy variables from survey data, background knowledge and
theory are combined with heuristics to assist in variable construction. Nev-
ertheless, in many disciplines, we lack sufficient background knowledge and
theory to be confident that aggregate variables constructed are capturing
features of interest well; indeed, in some cases we may have only rough
knowledge of what those features might be. Thus, we seek to develop data-
driven methods to help us work through problems of aggregation level and
aggregation function to find constructed variables that contribute to causal
models and explanations. As data storage becomes less expensive and “big
data” scientific and policy applications proliferate, these problems will only
become more widespread and therefore important.

In the following three sections, we explore examples of real-world scien-
tific applications with varying degrees of background knowledge and domain
theory to inform the construction of variables and the judgment of result-
ing causal models. In the next section, we summarize prior work due to
Fancsali (2008) that studies the combination of background knowledge and
a commonly used heuristic to develop proxy variables from survey data.
This work provides a computational justification for the heuristic that helps
to motivate work on aggregate variable construction developed later in this
dissertation. In two subsequent sections, we consider applications in cli-
mate science and cognitive neuroscience in which aggregate variables are
constructed and consider the quality of resulting causal models. Finally we
motivate data-driven search for aggregate constructed variables from intel-
ligent tutor data and consider some philosophical issues arising out of this
work.

2.2 Psychometric Scales, Survey Data, and Latent
Variable Models

Figure 2.1 illustrates a situation in which an unobserved, latent variable L
has three measured indicators X1, X2, and X3, each of which is a (linear)

29



function of L and an independent noise term.1 Linear structural equations
corresponding to the measured indicators of the underlying latent in this
model are:2

X1 = αL+ ε1
X2 = βL+ ε2
X3 = γL+ ε3

Suppose an investigator constructs a variable to serve as a proxy (often
called a “scale”) for the latent variable from measured indicators. In the
case of Figure 1, the variable L Scale would be constructed as the sum of
the measured indicators, i.e.:

L Scale = X1 +X2 +X3

Consider a concrete example. Therapists seek to diagnose and treat de-
pression while also investigating relationships between depression and other
latent phenomena like satisfaction in a romantic relationship. The therapist
cannot measure a patient’s depression or relationship satisfaction directly,
like she could measure a patient’s height or weight. Rather, therapists mea-
sure indicators or (presumed) effects of these phenomena.

Cramer (2004), for example, studies the effects of depression, support,
and conflict on romantic relationship satisfaction. One unobserved variable,
“relationship satisfaction” (RS), is measured with the Relationship Assess-
ment Scale (Hendrick 1988). The scale, as deployed by Cramer (2004),
consists of seven survey items, answered on a Likert scale of 1 to 5 (greater
valued responses corresponding to greater satisfaction) with respect to the
subject’s current romantic partner:

• s1. How well does s/he meet your needs?

• s2. In general, how satisfied are you with your relationship?

1This section largely summarizes Fancsali (2008) and is relatively autonomous from
the rest of this work. We provide conditions under which multi-item “scales,” constructed
from measured indicators of latent variables, can serve as appropriate proxies for latent
variables in graphical causal models. The reader can skip this section with little impact
for understanding the rest of this work.

2For simplicity, we assume that each indicator is a “pure” measure of L; that is, each
indicator is only a function of the underlying latent and an independent noise term. This
is a common, and important, assumption for such models, but other, more complicated
situations (e.g., when measured indicators are causes of others or are the effects of other
latent variables) can and do occur in practice. We discuss one possible way to deal with
such situations shortly.
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Figure 2.1: Graph depicting causal relationships among a latent variable L
and its three measured indicators X1, X2, and X3.

• s3. How good is your relationship compared to most?

• s4. How often do you wish you hadnt got into this relationship?

• s5. To what extent has your relationship met your original expecta-
tions?

• s6. How much do you care for her/him?

• s7. How many problems are there in your relationship?

A variable RS Scale is constructed from these measured indicators to
serve as a proxy for RS:

RS Scale = s1 + s2 + s3 + s4 + s5 + s6 + s7

Under certain conditions, constructed variables like L Scale or RS Scale
will have appropriate statistical and causal connections to intended latent
variables (e.g., L or RS) and thereby serve as appropriate proxies for these
latent variables. Specifically, such conditions are those under which vari-
ables like L Scale and RS Scale preserve conditional independence rela-
tionships into which L and RS enter, respectively. We explicate these condi-
tions in terms of a heuristic commonly used in psychometrics and elsewhere
for assessing the so−called reliability of a scale and provide a computational
justification of a particular version of this heuristic. We then provide a
data−driven search procedure for multi−item scales (i.e., constructed vari-
ables) based on this heuristic and look at an example with real−world data
collected for the Relationship Assessment Scale.

31



relationshipSatisfaction

employment

−

familySize

+

Figure 2.2: Introducing a latent common cause of employment and fam-
ilySize.

2.2.1 “Screening Off” and Conditional Independence: An
Example

Suppose we augment the causal relations of two variables from our online
education example in Chapter 1 by including a latent common cause of em-
ployment and familySize. Consider satisfaction in a student’s primary
romantic relationship (relationshipSatisfaction) as a cause of both; sup-
pose increased relationship satisfaction causes people to decline over−time
and/or spend less time at work (decreasing hours of employment) while
also tending to increase the size of a person’s family. This is illustrated as
Figure 2.2, with relationshipSatisfaction italicized to indicate that it is
latent.

Suppose we have three presumed, “noisy” effects of relationshipSatisfaction,
(X1, X2, and X3) we measure via a survey instrument. We represent this
scenario graphically in Figure 2.3.

Figures 2.2 and 2.3 imply that familySize and employment are nega-
tively associated. Noting their dependence, a sensible investigator ponders
whether this association arises because they are directly causally related or
because they share a common cause, suspecting that relationshipSatisfaction
is a common cause.

Given direct access to relationshipSatisfaction, we would judge that
employment and familySize are independent conditional on
relationshipSatisfaction. However, we have no such direct access. The in-
vestigator must find a way to “control” for or condition on this unmeasured
construct. In general, measured indicators of latent phenomena do not pre-
serve the conditional independence relations of their unmeasured causes or
parents. For example, conditioning on the three measured indicators (X1,
X2, and X3) is not sufficient for us to judge that employment and fam-
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Figure 2.3: Graph introducing causal relations among
relationshipSatisfaction, three “noisy” measured indicators (inde-
pendent error−terms omitted), and a deterministically constructed scale
(RS Scale).

ilySize are conditionally independent.3 The investigator constructs a proxy
for relationshipSatisfaction from the measured indicators available:

RS Scale = X1 + X2 + X3.

The investigator hopes that when he conditions on his proposed proxy,
RS Scale, familySize and employment will become independent, and
he will have provided evidence that there is a common cause. However,
graphically it is not clear why RS Scale should screen off employment
from familySize. Just as for X1, X2, and X3, the graph does not im-
ply such a “screening off” (i.e., conditional independence) relation. Can
(and under what conditions will) the investigator succeed given a larger
set of measured indicators from which to choose in constructing a scale for
relationshipSatisfaction? How can heuristics and a data-driven procedure
for variable construction help?

2.2.2 Constructed Scale Variables and “Screening Off”

A natural condition under which a variable like RS Scale will preserve
the appropriate “screening off” or conditional independence relationships is

3This follows from a straightforward application of Pearl’s d-separation criteria (Pearl
1988). Else we might demonstrate this via regression on data simulated from such a
model. In the regression model, we regress, for example, familySize on X1, X2, X3, and
employment, and still find that employment is statistically significant, suggesting that
there may be a direct causal relation.
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when it is highly correlated with the underlying phenomenon it is intended
to measure, here relationshipSatisfaction. In a computational setting with
simulated data, we can estimate the degree of correlation necessary between
a scale and an underlying latent for screening off relations to be preserved.
Fancsali (2008) demonstrates that a very high degree of correlation is nec-
essary for the preservation of screening off relations. Only in simulated
situations in which this correlation is roughly 0.9 or greater is it likely that
appropriate conditional independence relations are judged to obtain. That
is, in simulations, scales have appropriate statistical and causal connections
to (and thereby serve as satisfactory proxies for) latent variables when they
are correlated with them at a level of 0.9 or greater.

However, outside a simulated setting we are unable to measure latent
phenomena such that we could estimate the degree of correlation between
a multi-item scale and a latent construct; we must resort to other means.
Here, we turn to what is called the reliability of a scale. A common measure
of reliability turns out suitable, given several important assumptions, for
incorporation in heuristics that we can deploy for data-driven search for
constructed scales. Before exploring the notion of reliability and heuristics
for data-driven variable construction, we briefly explicate these (statistical
and causal) assumptions.

2.2.3 Validity

Validity is fundamental if we are to treat a scale as a proxy for an underlying
“true” latent variable. Items (i.e., “raw” variables like survey items) we take
to be measured indicators of some underlying phenomenon must really be
measures of that phenomenon and not be only measures of something else.
For example, in attempting to measure a latent phenomenon like relationship
satisfaction, we want measured indicators to be genuine measures of such
satisfaction; while indicators may have many causes, a valid measure of
relationship satisfaction counts as at least one of its causes such satisfaction.
By assuming validity, we essentially assume that we are (at least roughly)
measuring the things we intend to measure; raw variables we consider really
are (partly) effects of the phenomena we are investigating. Thus, when we
construct a scale from them we provide a genuine, albeit necessarily indirect,
measure of the underlying phenomenon.

Social science methodology literature, especially in social psychology,
psychometrics, and similar disciplines, provides several different ways of
cashing out notions of validity. For our purposes we are not concerned
with any particular type of validation methodology. We assume that prac-
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titioners deploy accepted data collection methods and well-validated in-
struments, necessarily depending upon background knowledge and domain
theory to do so. To illustrate, when considering measured indicators of
relationshipSatisfaction for inclusion in a scale, we assume that a practi-
tioner includes such indicators (e.g., in their survey instrument) because the
indicators have as at least one plausible cause, relationshipSatisfaction.

2.2.4 Measurement Model Purity

Assuming measured items are valid, we consider causal relations holding
among latent variables and measured indicators available as raw variables.
The “measurement model” is the portion of a latent variable model that
provides causal relationships between latent variables and their measured
indicators. Contrast this with the “structural model” that specifies causal
relationships among latent variables (Spirtes, et al. 2000). Social scientists
frequently assume what is called “local independence,” referring to the idea
that members of a set of measured indicators for a latent variable become
independent of each other after conditioning on the variable they measure.
The source of co-variation or correlation among all of the measured indica-
tors of a latent construct is the latent itself, not causal relations between
measured indicators or measured indicators and other latent constructs.

Notably, a measured indicator we call valid for a particular construct
may have additional constructs of which it is an effect. A “pure” indicator
has only one cause among variables under consideration, and is not the cause
of any other variables under consideration, measured or latent. We rely on
this assumption so that we can assume that correlation among measured
indicators of a latent variable arises because the indicators are effects of
the same underlying latent, not from other potential sources of correlation.
When our purposes are the discovery of causal relationships between latent
variables, with currently available discovery algorithms, this assumption is
necessary. Spirtes, et al. (2000) refer to this assumption as “purity” of a
measurement model.

Whether the assumption of “local independence” is met or the prac-
titioner is working with a pure measurement model might be adjudicated
in several ways. Social scientists usually rely upon some combination of
background knowledge about the measured indicators and the presumed un-
derlying phenomena as well as measures of “goodness-of-fit,” well known to
the factor analysis and structural equation modeling communities. Different
numbers of latent variables (or “factors”) may be posited and appropriate
measured indicators grouped together as effects of these factors, based on
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background knowledge, until a model that fits the data well is found.
However, simply because a certain specified model fits the data does

not eliminate alternatives as plausible possibilities. Silva, et al. (2006) pro-
vide an automated search procedure called BPC (Build Pure Clusters) that
searches over raw variables and, given certain assumptions, returns sets of
“pure” indicators which are effects of only one latent and meet the assump-
tions for measurement model purity. We can assume “local independence”
or measurement model purity, taken as if it were simply an axiom of latent
variable modeling, or we can adopt data-driven procedures to discover sets
of indicators that plausibly satisfy the assumption.

2.2.5 Reliability and Cronbach’s Alpha

Assuming validity and “purity” of a set of measured indicators for a latent
variable, we still need some quantitative measure of the quality (i.e., reliabil-
ity) of a set of indicators that would comprise a proxy constructed variable
like a scale. Here, we roughly link a measure of quality with the correla-
tion between a scale and an underlying latent variable. Since we cannot, in
principle, measure the correlation of a scale with an unobserved variable or
construct, we look to methods deployed by social scientists for similar pur-
poses and their assessment of the reliability of scales composed of multiple
items.

The concern for reliability is essentially that measured indicators “re-
spond” to change in the underlying latent they measure. That is, variation
in the underlying latent leads to variation among its measured indicators
and thus co-variation and correlation among its indicators. Such reliability
is (in one way) manifested by the internal consistency of a set of measured
items for a particular latent variable. The extent to which the indicators
“respond” to change in the underlying latent is affected by two factors: (a)
the strength of the causal relation between latent and indicator, quantified
by a “factor loading” for each indicator, and (b) the level of “noise” or mea-
surement error for each indicator. High levels of factor (a) and low levels
of factor (b) provide us with measured indicators that when composed to-
gether as a constructed variable (scale) provide us with one that can be used
repeatedly across subjects and situations to measure levels of an underlying
latent variable (assuming that the construct or phenomenon is relatively
fixed and not drastically changing). Such measured indicators will also have
a high degree of unconditional inter-item correlation.

In the social science literature, reliability is defined roughly as “the de-
gree to which a measure is consistent or dependable; the degree to which it
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would give you the same result over and over again, assuming the underlying
phenomena is not changing” (Trochim 2005). We focus on an approach to
assessing reliability via the internal consistency of a set of measured indica-
tors of a latent variable. To the extent that measured indicators are highly
responsive to changes in levels of an underlying phenomenon (with relatively
low levels of noise or measurement error), we will have reliable measures of
latent variables via constructed scales.

Fancsali (2008) focused on Cronbach’s alpha (Cronbach 1951), a com-
monly deployed quantitative measure of internal consistency and therefore
reliability. One formulation of Cronbach’s alpha is (Trochim 2005):

α = nraii
1+[(n−1)raii] ,

where n is the number of items in the set of measured indicators un-
der consideration and raii is the average inter-item correlation over pairs of
measured indicators. Thus, if the set of measured indicators comes from,
for example, a survey instrument, alpha is a function of the length of the
instrument and the average inter-item correlation among instrument items.

In models we consider, the average inter-item correlation of a set of indi-
cators, raii, is a function of the factor loading for each indicator as well as the
error term of each indicator, the latter of which we can normalize in terms of
the factor loading of the indicator; this makes the average inter-item corre-
lation depend only on factor loadings. Fancsali (2008), with simulated data,
demonstrated that Cronbach’s alpha taking on a value greater than or equal
to roughly 0.8 is both necessary and sufficient for the correlation of a multi-
item scale and an underlying latent construct to be greater than or equal
to roughly 0.9. Recall that in the same simulation setting, a correlation of
about 0.9 was determined to be necessary for a scale to preserve conditional
independence relations of its intended latent variable. Other assumptions
in the analysis are those considered above with respect to the items that
compose a scale. Thus, given these (perhaps strong) assumptions, a con-
structed scale possessing a value of Cronbach’s alpha greater than or equal
to roughly 0.8 will preserve conditional independence for its intended latent
variable.

The result in Fancsali 2008 is demonstrated for cases in which factor
loadings, quantifying the strength of causal relations between the latent con-
struct and measured indicators, are fixed and equal, an assumption equiv-
alent to what is referred to in the literature as “essential tau-equivalence”
(Miller 1995) and for cases in which factor loadings take on a wide variety
of different values. Thus, a connection is provided between estimates of
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internal consistency and reliability via Cronbach’s alpha and the necessary
level of correlation, found via simulation, to preserve “screening off” and
conditional independencies for causal discovery.

Nunnaly and Bernstein (1994) provide a heuristic that an instrument
(i.e., a set of items comprising a scale) be used when it has an alpha value
greater than or equal to roughly 0.8.4 Fancsali (2008) confirms this, given
the relatively strong but crucial assumptions provided above (and frequently
made in practice), via the novel computational argument outlined above.
This heuristic allows us to deploy scales as constructed proxies for latent
variables that preserve probabilistic (in)dependence relations.

To make this discussion more concrete, consider again the graph in Fig-
ure 2.3, wherein relationshipSatisfaction has a pure measurement model
consisting of indicators X1, X2, and X3. If the calculated value for Cron-
bach’s alpha for RS scale, composed of measured indicators X1, X2, and
X3, is greater than or equal to roughly 0.8, then we will judge that em-
ployment and familySize are independent given RS scale. Since
relationshipSatisfaction is unobservable, this is the best situation we could
hope for to detect a lack of causal connection between employment and
familySize. We move from an estimate of the internal consistency and re-
liability of a set of observed raw variables composing a constructed variable
to a causal conclusion concerning a latent variable as a common cause of
employment and familySize.

2.2.6 Data-Driven Search for Constructed Scale Variables

Having established the virtues of a scale that preserves (probabilistic) con-
ditional independence relations for a latent variable, we now consider proce-
dures for discovering the appropriate indicators or items to include in such
scales. We suggest both an exhaustive search procedure and a “leave-one-
out” procedure. Other heuristic procedures may prove useful. Background
knowledge and domain theory play an important role in meeting the assump-
tions elucidated above. We elaborate upon the deployment of Cronbach’s
alpha as a crucial ingredient (i.e., an objective function) for data-driven
search. We conclude §2.2 with a concrete example of scale construction for
relationshipSatisfaction.

4The appropriate threshold for Cronbach’s alpha is not without some controversy;
several values are suggested in the literature. For example, 0.7 is also often recommended.
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2.2.7 Scale Items and Function: Background Knowledge +
Heuristic Search

As presented, scales are deterministically constructed variables, constrained
to be linear combinations of raw variables (here, measured indicators) with
all coefficients either 0 or 1. Each scale is just the sum of the items we
include in it (e.g., RS Scale = X1 + X2 + X3).5 Standard methodolog-
ical practices thus inform the solution to the problem of the appropriate
mathematical function to construct a scale as a proxy variable; this problem
is analogous to that of “aggregation function” introduced for constructed
aggregate variables in §2.1.4.

To choose items to be included in each scale, the practitioner starts
with some set of candidate indicators/items. The problem the investigator
must solve is analogous to that of aggregation level for constructed variables
introduced in §2.1.3.

The practitioner might deploy a survey with sets of items intended to
measure different latent phenomena; we assume that practitioners deploy
a survey instrument that has been previously validated for the construct
intended. Starting from the set of candidate indicators, we must decide
which to include in the final constructed scale and which to discard. Here,
semantic background knowledge can allow us to eliminate indicators which
are not “pure” as described above or that might have otherwise become
problematic in the data collection process. Survey items can, for example,
be eliminated if there are expected “anchoring” effects, when a subject’s
response to one item might influence responses to other items.

Alternatively, a data-driven method like the BPC algorithm (Silva, et al.
2006) might be deployed on the full set of indicators (for all latent constructs
or phenomena) to provide us with “pure” clusters of indicators; each cluster
would then correspond to a set of candidate indicators for a particular latent
phenomenon.6 Background knowledge, domain theory, and possibly data-
driven methods help us to delimit the space of possible variables from which
to construct proxies while also helping us to insure that assumptions of
validity and measurement model purity (local independence) are plausible.
We now must consider the reliability of scales constructed from subsets of

5We assume that the indicators (raw variables) are all measured on the same scale or
have been normalized in such a way that they are on the same scale.

6Of course, the number of pure clusters found by such an algorithm may not match the
number of latent phenomena for which the practitioner has set out to construct proxies,
so careful thought must be put into the reification of latent variables/phenomena of which
the pure clusters are indicators.
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candidate items for each latent construct to develop a data-driven, heuristic
(proxy) construction search procedure.

2.2.8 Cronbach’s Alpha as a Heuristic

Having a candidate set of indicators for which we find assumptions of valid-
ity and measurement model purity plausible, we need to discover the subset
of indicators that maximizes reliability. Having demonstrated necessary
conditions for a constructed scale to preserve conditional independence re-
lations in terms of (internal consistency) estimates of reliability, we provide
a heuristic (i.e., an objective function to maximize) for construction search
in terms of Cronbach’s alpha.

The objective function is simple: for each candidate set of indicators from
which we can construct a scale, calculate Cronbach’s alpha. Our objective
is to find a subset7 of indicators from the set of candidates that either
maximize Cronbach’s alpha or to find a set by incrementally adding items
that increase the value of Cronbach’s alpha until the set of indicators is of a
desired cardinality. We suggest two search procedures for these objectives.

2.2.9 Two Heuristic-Based Search Procedures

An exhaustive search procedure considers, for each candidate set of indi-
cators (each of which are intended as measures of a particular latent phe-
nomenon), each possible subset (above a minimum cardinality) of indica-
tors and calculates Cronbach’s alpha for that subset. We find the subset
that maximizes the value of Cronbach’s alpha. From the subset that max-
imizes Cronbach’s alpha, we construct a scale as a sum of its members.
This scale should serve as an appropriate proxy for the underlying latent
variable/phenomenon of interest (given that the appropriate assumptions
obtain) and preserve conditional independence relations for that construct.

A less computationally intensive procedure for search involves simple
“leave-one-out” reasoning.8 We start with a set of candidate items meeting
the assumptions laid out earlier in this section. We calculate Cronbach’s

7It is sensible to impose a constraint on the minimum cardinality of the set of indicators
from which we will construct a scale. For example, we might say that a minimum of three
or four indicators for each scale is necessary before we can sensibly reify our scale as a
proxy for an underlying latent variable in an application domain.

8Indeed, the statistical package Minitab, for example, in its “Item Analysis” module
that calculates Cronbach’s alpha for a set of items, provides the results of calculating
Cronbach’s alpha leaving each item in the set out one at a time to suggest ways in which
the internal consistency of the set of items might be increased.
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alpha for the complete set of candidate items, and then we calculate Cron-
bach’s alpha for each set of items that results when we omit one item in
the set at a time. We then select the set that yields the largest value of
Cronbach’s alpha. This process iterates until we reach a minimum cardinal-
ity of the set of items or no item omission increases Cronbach’s alpha. We
might also have a pre-set threshold for Cronbachs alpha that, when reached,
would provide a stopping criteria for the “leave-one-out” process. The re-
sulting subset of candidate items provides us with components from which
to construct a scale.

2.2.10 Example: Relationship Satisfaction Scale

We conclude §2.2 with a real-world example. We consider the construction
of a scale to serve as a proxy for a latent variable intended to capture sat-
isfaction in a romantic relationship (a la relationshipSatisfaction of our
prior example). This illustration uses data from an analysis of the deter-
minants of romantic relationship satisfaction in Cramer 2004 and follows
portions of the (re)analysis of this data in Fancsali 2008.

As noted, Cramer (2004) deploys the Relationship Assessment Scale
(Hendrick 1988) as part of a survey that includes instruments to assess
a total of four latent constructs (including relationship satisfaction). Seven
items, numbered s1 through s7 (provided earlier in this section), in the Re-
lationship Assessment Scale serve as candidates for our scale. Responses to
these seven items are on a Likert scale of 1 to 5.

Cramer analyzes data from 111 student respondents to these questions
and others, providing a structural equation model of the influence of de-
pression, “conflict satisfaction,” and “support satisfaction” on overall sat-
isfaction in a romantic relationship, the latter of which is measured using
the above instrument. Further analysis as to the broader causal model and
other features of this study are explored in depth by Fancsali (2008). We
focus here on the construction of the scale for relationship satisfaction based
on data for the above items.

Our objective is to maximize the value of Cronbach’s alpha using a
“leave-one-out” strategy, so we begin by calculating Cronbach’s alpha for
the items s1 through s7; we find an alpha value of 0.697. This does not
meet our minimum heuristic threshold of 0.8, suggesting data-driven search
for a better scale. We consider the omission of one particular item and find
that omitting s7 leads to the largest increase in the value of Cronbach’s
alpha. Alpha calculated for items s1 through s6 is 0.82. This set of indi-
cators thus meets our threshold of 0.8 and so would be suitable as a set of
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indicators from which to construct a scale. We find, however, that omitting
another item, s4, will lead to a further increase in Cronbach’s alpha. Alpha
calculated for the set {s1, s2, s3, s5, s6} reaches a level of 0.835. Omitting
any single item at this stage does not lead to an increase in the value of Cron-
bach’s alpha. Thus, we might adopt this as a plausible set of indicators from
which to build a scale. Indeed, the reanalysis provided by Fancsali (2008)
proceeded with exactly this set of items as the components of the scale for
Relationship Satisfaction. Deploying this constructed scale with graphical
causal discovery methods suggests plausible alternative causal models that
explain the data as well as (or better than) the published model and lead
to different causal explanation of some of the latent phenomena of interest.
Notably, some features of the published structural equation model are also
supported by this reanalysis.

We have not necessarily maximized the value of Cronbach’s alpha for all
given subsets of the candidate items, but we have found a sensible stopping
point in accordance with one of the heuristic objectives above, retaining
five of the seven candidate items. We thus illustrate combining background
knowledge and a data-driven heuristic within a search procedure to discover
constructed variables fit for our purposes. Here we search for a construction
of a scale that will preserve probabilistic (in)dependence relationships for
the underlying phenomenon for which it is a proxy.

While this example is with respect to a particular scale and latent phe-
nomenon of interest, the over-arching theme is that this sort of procedure
can be followed for any given latent variable or phenomenon we propose to
measure in similar ways. Following a procedure akin to this for other latent
variables makes it more likely that search procedures deployed over such con-
structed variables will reliably infer features of the true latent variable causal
structure. From a combination of background knowledge and the preserva-
tion probabilistic (in)dependence relations by constructed variables, we are
in a better position to treat constructed scales as proxies for latent variables
that are the underlying (social) scientific features we intend to investigate.
Consequently, we are in a better position to make causal inferences about
these latent phenomena and thus to provide better recommendations for
policy and interventions.

2.3 Global Climate Data

We now consider a real-world example of Situation #2, involving coarse
(or macroscopic), directly measureable aggregates over fine-grained (per-
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haps microscopic) measurements in data. In contrast to the case of latent
variables in Situation #1, aggregate features of interest are functions of
these fine-grained measurements and have necessary semantic connection(s)
to these “raw” data, namely that we identify aggregate phenomena by ap-
propriate aggregate constructions, like a “high-pressure system.”

On a larger scale, consider measurements of regional sea surface temper-
atures and atmospheric pressure (e.g., from ocean buoys and other sources)
that are frequently aggregated into indices so that regional climate phenom-
ena can be modeled and correlated with other, distant phenomena; these
correlations are commonly referred to as climate “teleconnections” (Gly-
mour 2007). One well-known “teleconnection” concerns El Niño, character-
ized by unusually warm temperatures at the surface of the equatorial Pacific
Ocean and implicated in a variety of weather and climate phenomena across
the globe (NOAA 2013).9

Data are fine-grained, direct measurements of climate phenomena and,
in many situations, best used to develop explanations of broader, aggregate
phenomena (i.e., Situation #2). Macroscopic structure of climate telecon-
nections and relationships among such indices are relatively simple compared
to any model that attempts to model fundamental physical principles that
drive such macroscopic relationships (Glymour 2007).

Aggregates (indices) are frequently calculated over canonical, climato-
logically relevant geographic regions.10 An alternative strategy is to deploy
data-driven procedures to discover regions over which aggregates or indices
are constructed (e.g., Steinbach, et al. 2003). Notably, data-driven efforts
have not focused on aggregation and index construction to support causal
inference or to preserve “screening off” relationships vital to causal model-
ing and discovery. We compare results of efforts to develop causal models
of global climate teleconnection phenomena from indices constructed both
ways. Unfortunately, deploying new methods developed later in this work
on climate data remains a topic for future research; we develop this example

9We emphasize that El Niño is not a latent phenomenon for which we seek a constructed
variable proxy; rather, we identify El Niño with aggregated measurements of sea surface
temperatures over the appropriate ocean region.

10While we consider an example from climate modeling in which well developed domain
theory provides canonical geographic regions and aggregation functions (though the ques-
tion remains whether optimal), we are not always so fortunate, even within this discipline.
Parker (2011) notes, in a discussion of sources of uncertainty in simulated global climate
models, that “for processes that are believed to influence climate in important ways but
that occur on scales finer than those resolved in today’s models... rough representations
in terms of larger-scale variables must be developed, and it is rarely obvious how this can
best be done” (Parker 2011, pg. 581-582).
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because it is instructive philosophically and to better motivate applications
on which we deploy new methods.

2.3.1 Domain Knowledge vs. Data-Driven (Non-Causal) Cli-
mate Index Construction

We describe two attempts at aggregate variable construction (i.e., index
construction) with climate data and causal modeling with these variables.
In one case, efforts are informed heavily by domain knowledge, and in the
other case data-driven clustering methods are deployed.

Domain Knowledge Climate Index Construction

Glymour (2007) reports results of Chu, et al. (2005) analyzing relationships
between the following climate indices, constructed from well-established do-
main knowledge that provides both relevant aggregation levels (i.e., geo-
graphic regions) and aggregation functions:

• QBO (Quasi Biennial Oscillation): Regular variation of zonal strato-
spheric winds above the equator.

• SOI (Southern Oscillation): Sea level pressure (SLP) anomalies be-
tween Darwin and Tahiti.

• WP (Western Pacific): Low frequency temporal function of the ‘zonal
dipole’ SLP spatial pattern over the North Pacific.

• PDO (Pacific Decadal Oscillation): Leading principal component of
monthly sea surface temperature (SST) anomalies in the North Pacific
Ocean, poleward of 20◦ N.

• AO (Arctic Oscillation): First principal component of SLP poleward
of 20◦ N.

• NAO (North Atlantic Oscillation): Normalized SLP differences be-
tween Ponta Delgada, Azores, and Stykkisholmur, Iceland (Chu, et al.
2005, pg. 4).

From time series11 data for each index, available for hundreds of months,
three lagged series (i.e., three lagged variables) are constructed. For exam-

11Climate index variables “are not functions of features of any particular set of objects,
but rather of features of whatever objects occupy a certain volume of space; and those
objects and the values of their relevant variables are continually changing” (Glymour
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ple, time series data for the Southern Oscillation determine four total vari-
ables:

SOI0 = {s1, s2, ..., s500},
SOI1 = {s2, s3, ..., s501},
SOI2 = {s3, s4, ..., s502},
SOI3 = {s4, s5, ..., s503},

and so on for the other indices. Causal graph search deployed over these vari-
ables results in the graph of Figure 3, reproduced from Chu, et al. 2005.12

Glymour (2007) notes that the graph is what we should expect in the situ-
ation at hand:

Despite the fact that the indices do not determine the microstate
of a region, the indices screen one another off exactly as in a
causal sequence: the southern oscillation is independent of the
Pacific decadal oscillation conditional on the spatially and tem-
porally intermediate Western Pacific measure; WPt is indepen-
dent of SOIt−1 conditional on SOIt and WPt−1. These indepen-
dence relations are exactly what we should expect if the arrows
in the [inferred causal] diagram [see Figure 2.4] represent rel-
atively direct causal inferences and if there are no significant
unobserved common causes of represented variables (Glymour
2007, pg. 340).

Chu, et al. (2005, pg. 16) further report that relationships among PDO,
AO, and NAO are in agreement with expert opinion and that other re-
lationships, if novel, are at the least “not controverted” by such opinion.
That modeling results coincide with expert opinion provides good evidence
that well-established domain theory provides suitable constructed variables
to represent climate phenomena of interest. However, one might consider
other, data-driven ways of constructing indices or aggregates from such data
to provide better results.

2007, pg. 340). That the data for each aggregate climate index form a time series of many
aggregated measurements (i.e., that the aggregate units of analysis are time-stamped
measures over particular geographic regions) is not crucial to ideas about aggregation
from fine-grained data upon which we focus.

12The same results are also reported and discussed by Glymour (2007).
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Figure 2.4: Causal graph for time-series of climate indices reproduced from
Chu, et al. 2005 and Glymour 2007.

Data-Driven (Non-Causal) Climate Index Construction

Chu, et al. (2005) and Glymour (2007) also report attempts to learn causal
structure among climate indices constructed by data-driven clustering meth-
ods. Steinbach, et al. (2003) deploy a shared-nearest neighbor clustering
algorithm and propose hundreds of candidate climate indices based on ag-
gregates of sea surface temperature and sea level pressure measurements.
Notably, such clustering techniques do not attempt to constrain search for
clusters to those that are causally interpretable, those that would preserve
conditional independence relationships, or those that otherwise have char-
acteristics important for causal modeling. Causal structure learning from
these candidate indices does not produce satisfying results:

The time series of these indices do not... generally form robust
structures like those of Figure [2.4]... for which a connection
that occurs between an index at time k and another index at
time k + 1 occurs again at times k + 1 and k + 2, respectively,
and so on. That stability does not happen with most of... [Stein-
bach, et al.’s] climate indices: there is no stable screening off; the
conditional independence relations are unstable and change over
relatively brief times. The automated clusters are functions of
the underlying energies all right, but the wrong functions in the
wrong places (Glymour 2007, pg. 342).
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Glymour provides an over-arching lesson: “[N]ot every way of aggre-
gating to form macroscopic variables will yield screening off relations that
reflect a causal structure; indeed many will not” (Glymour 2007, pg. 342).
For the case of these climate indices, domain knowledge and expert opin-
ion provide “good” ways of forming aggregate constructed variables (e.g.,
appropriate aggregation levels and functions) to represent global climate
phenomena and causal structures that obtain among them. However, we
are able to judge them as “good” exactly because of this domain knowl-
edge and the spatio-temporal nature of such climate systems. That is, in
this case, domain theory provides guidance as to the appropriate qualitative
causal structure we ought to infer from appropriately constructed variables.

2.4 fMRI Data

We now consider an example of Situation #3. We face indirect, “raw”
measures we seek to aggregate to construct variables of scientific interest.
Specifically, we consider data from fMRI studies in cognitive neuroscience.
As noted, such data provide us indirect measures of neuronal activity at
relatively small, three-dimensional segments (i.e., voxels) of the brain from
BOLD response (Lazar 2008). While in some cases, cognitive neuroscientists
and other investigators may be interested in modeling relationships among
individual or small groups of voxels, at other times we seek (causal) expla-
nations of relationships between, or “effective connectivity” (Friston 1994)
of, relatively coarse(r) brain ROIs.

We hypothetically illustrate the case of measuring neuronal activity via
voxel level BOLD response to develop aggregate ROIs in Figure 2.5. Dashed
arrows represent individually insignificant, if present, (causal) relationships
among neuronal activity variables that are not directly observable (NA1
through NA2000 in Figure 2.5). Variables voxel1 through voxel2000
are measured variables for BOLD response at particular volumetric pixels,
providing indirect access toNA1 throughNA2000. Ellipses indicate omitted
variables (and concomitant omitted dashed arrows). Further, it need not
be the case that every neuronal activity variable is (insignificantly) causally
related to every other neuronal activity variable associated with a particular
ROI, but it is likely that such links are relatively “dense.”

Of particular scientific interest in our hypothetical scenario is the causal
link between ROI1 and ROI2. While individual causal relationships among
instances of fine-grained neuronal activity are relatively insignificant, aggre-
gate coarse-grained ROIs can have significant causal dependencies important
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ROI1 ROI2

voxel1 voxel2 voxel1000 voxel1001 voxel1002 voxel2000

NA1 NA2 NA1000 NA2000NA1002NA1001
... ...

Figure 2.5: Hypothetical illustration of indirect measurement of neuronal
activity (NA1 to NA2000, ommitting many) at volumetric pixels (voxel1
to voxel2000, ommitting many) to construct brain ROIs.

to the explanation of mental phenomena and human behavior.
Along these lines, Glymour (2007) argues that aggregation akin to that

deployed for global climate teleconnections is the appropriate way to con-
ceive of mental causation. Thoughts or mental processes are to be conceived
of as the aggregation of a multitude of microscopic physical processes; the
salient level of interest (scientifically and philosophically) to explain mental
phenomena such as how beliefs cause our actions is that of brain ROIs.

Brain activity at a region (indirectly) measured at a particular voxel
and sea-surface temperature (directly) measured at a particular buoy, while
immediately available in data, are not salient features for developing ex-
planations, especially causal explanations, of certain phenomena of interest
(e.g., mental causation and large-scale climate phenomena, respectively).
Specifically, just as temperature or pressure at one particular buoy is insuf-
ficient to causally explain the effects of El Niño, so is activity at a particular
(small group of) neuron(s) insufficient to explain mental phenomena such
as how beliefs cause our actions. Only at higher-levels of aggregation do
collections of individually insignificant causal relationships among micro-
phenomena (or micro-variables) become significant for a variety of instances
of scientific explanation.13

13Sinnott-Armstrong (2005) provides an ethical variation on this theme in the context
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In practice, cognitive neuroscientists supply domain expertise about the
anatomy of the brain relevant to defining ROIs. Ramsey, et al. (2010) deploy
a modified version of the GES algorithm to discover causal relationships that
are plausible given state of the art domain knowledge among canonically
constructed ROIs. On-going work is aimed at improving these algorithms
for use with fMRI data (e.g., Ramsey, et al. 2011). However, data-driven
approaches for inferring better ROIs are wanting, as much is still unknown
about how exactly such regions should be delineated. Indeed, the problem
of inferring ROIs has been cited as a quintessential example of an open
question for researchers in causal discovery from observational data:

In many domains, such as fMRI research, there are thousands
of variables, but the measured variables do not correspond to
functional units of the brain. How is it possible to define new
variables that are functions of the measured variables, but more
useful for causal inference and more meaningful? (Spirtes 2010,
pg. 1659).

Notably, Mumford, et al. (2010) propose a data-driven method for the
discovery of ROIs based on independent components analysis. It is an open
question whether such methods are appropriate to infer better ROIs that
preserve causal (i.e., conditional independence or “screening off”) relation-
ships that obtain in the brain or that are in some other way more meaningful.

In sum, domain knowledge and theory, in the case of discovering effec-
tive connectivity from fMRI, provide us fewer resources (than those available
from climate science) for determining whether we have discovered the “best”
ways of constructing aggregate ROIs (especially if judging constructed ag-
gregate variables based on inferred causal structure among ROIs). While
climate science and cognitive neuroscience practitioners have good ideas
about appropriate aggregation functions and levels, in other domains, we
find ourselves with even less domain knowledge and theory to guide us.

Again, methods we propose to search for constructed aggregate vari-
ables treat direct and indirect fine-grained measurements (Situation #2 and
Situation #3) in data methodologically the same, but differences arise, for

of personal versus aggregate (i.e., institutional, national) responsibility for the effects of
global warming. While Sinnott-Armstrong concludes that at best it is unclear whether
it is morally wrong for an individual to go on a joyride in a gas-guzzling S.U.V. (insofar
as such behavior contributes to or causes global warming), he admits that man-made
global warming is a problem for which governments and large-scale institutions are morally
responsible. Insignificant, individual contributions, in aggregate, produce phenomena for
which governments and international organizations must develop better policy to combat.

49



example, in possible interpretations of resulting causal models (e.g., how
best to consider interventions on aggregate variables that might “close the
loop” from the results of such models). We now introduce data that are
the focus of an in-depth case study in which we deploy methods we develop
in the next two chapters. These complex data exhibit aspects of all three
situations we have considered.

2.5 Education Data: Intelligent Tutor and Course-
ware Logs

2.5.1 Intelligent Tutor Logs

In Chapter 5, we consider data collected from education courseware de-
ployed in courses at the University of Phoenix and in (junior) high schools
nationwide. Our case study centers on search for constructed aggregate vari-
ables from logs of student interactions with intelligent mathematics tutoring
software. Such tutor logs provide fine-grained, transaction-by-transaction
access (over thousands of transactions per student) to variables that are
direct measures of aspects of student interactions like transaction timing
(e.g., time per problem per student), whether transactions are requests for
help (e.g., whether a transaction is a hint request), and a variety of other
transaction characteristics. Other characteristics immediately available in
tutor logs may be interpreted as indirect, fine-grained measures of other
underlying phenomena over which we should construct aggregate variables.
Further, we deploy data-driven “detectors” to indirectly measure (or in-
fer) fine-grained student behaviors like being “off-task” or “gaming the sys-
tem,” behavior associated with students taking advantage of tutor features
to advance through a course without genuinely attempting to master course
material. As such, our case study and search for constructed aggregate vari-
ables depends heavily on well-established domain theory and background
knowledge surrounding these software “detectors.”

However, extant work on such tutor log data either analyzes it at the
transactional (or some other fine-grained) level, seeking, for example, pre-
dictive models of whether particular transactions will be correct, or (in fewer
cases) at a high-level of aggregation (e.g., aggregating over all student trans-
actions in a particular [portion of a] course). We propose that aggregating
over such fine-grained data is appropriate to develop student-level models
of behavior, but that both the appropriate level of aggregation and the
appropriate function to transform fine-grained variables into aggregate con-
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structed variables (i.e., what we have called the aggregation level and ag-
gregation function problems) have not been explored in sufficient depth.

Still other constructed (aggregate) variables we construct from fine-
grained (direct and indirect) measures may be indicators of underlying latent
phenomena (a la Situation #1), and we might deploy methods for scale con-
struction to construct variables. We provide a deeper look into the data
collected by automated intelligent tutoring systems as well as “detectors”
deployed to provide input to search procedures for aggregate constructed
variables in Chapter 5.

2.5.2 Online Courseware Forum Messages

Fancsali (2011a, 2011b) considers data collected from message forums from
an online graduate MBA economics course at the University of Phoenix.
Online message forums were the primary means of communication and in-
teraction between students and between students and course facilitators in
online courses like this over the time period in which these data were col-
lected. Fancsali (2011a) presents difficulties inherent to attempts to con-
struct ad hoc aggregate variables from such data, lacking guidance from
domain theory and background knowledge. From such data, one might seek
insight into relationships between aggregate functions of raw characteristics
of messages (e.g., word and character count, subject line word/character
count, etc.) and learning outcomes in the course; from message-level raw
log data, one can construct student-level variables to represent students’ ag-
gregate messaging behavior. One can then interpret variables out of which
we build aggregate constructed variables as either direct or indirect mea-
sures of messaging behavior. Alternatively, constructed aggregate variables
may be plausible indicators of broader, underlying, latent phenomena (e.g.,
“student engagement”). We do not pursue this work as a case study within
this dissertation, but merely point to it as a particularly vexing problem for
variable construction and causal modeling with education data.

2.5.3 Further Remarks: Judging Constructed Variable “Qual-
ity”

Whether we seek variables to identify aggregate phenomena (Situations #2
and #3) or proxies/instruments for latent phenomena (Situation #1), a
central concern is whether variables are (at least approximately) “correct.”
We ask: How do we judge “goodness” or “quality” of constructed variables
or features like climate indices or an instrument for relationship satisfaction?
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Glymour’s (2007, pg. 342, footnote) remarks regarding the success of
ocean indices constructed from expert/domain knowledge point to one par-
tial answer: constructed variables should enter into screening off relations
that reflect causal structure. In the case of ocean indices, for example, times
series of the indices provide for stable screening off relationships (i.e., causal
connections and screening off relationships persist through time, as Glymour
notes: a causal connection, between one index at k and another at k+1 per-
sists between the two indices at time k+ 1 and k+ 2). Proposed alternative
variables provide for no such stable screening off relations.

Other characteristics of constructed variables might be important; we
suggest the importance of their contribution to (causally) predictive models
of a fixed target variable. The analog of stability of the sort Glymour sug-
gests is important for climate indices will be apparent in some applications
but possibly less obvious for others.

Especially in domains in which we lack significant theory and/or back-
ground knowledge to construct aggregate variables, we suggest that a sensi-
ble strategy to overcome this deficit is to develop data-driven search proce-
dures for sets of aggregate constructed variables. We conjecture that useful
(possibly “correct”) constructed variables exhibit patterns of conditional in-
dependence that allow us to infer causes of a target outcome and to best
predict a target based on (interventions on) inferred causes.

In the following two chapters, we develop methods to adjudicate the
quality of collections of aggregate constructed variables and search for “high
quality” sets of variables based on such ideas. However, what have we dis-
covered if and when we find plausible, useful variables for causal inference?

To partially answer this question, we consider recent literature in the
philosophical tradition of “natural kinds” and suggest that constructed vari-
ables that support causal inference (like canonical climate indices) are can-
didate natural/scientific kinds, worthy of further scientific investigation in
cases in which we have little domain knowledge to (a priori) support their
status as plausible natural/scientific kinds.

2.6 Natural Kinds

We largely follow an explication of natural kinds due to Machery (2005;
2009, Chapter 8), who aimed to establish a formulation of natural kinds
appropriate for psychology. Machery focuses on the import of causal rela-
tionships for natural kinds, synthesizing a great deal of the contemporary
literature on the topic. Further, general features of his account seem to
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broadly apply outside of psychology, so it seems (at least approximately)
appropriate for the study of aggregate behavior in education courseware we
take up in Chapter 5. Finally, state-of-the-art work on behavior in educa-
tion courseware explicitly seeks to model the type of aggregate behavior with
which we are concerned in Chapter 5 alongside student affect and emotion,
topics that necessarily invoke psychological kinds.14

There are two criteria that an account of natural kinds must meet to
be appropriate for psychology: (1) that it apply to psychological kinds, and
(2) that it be “broad, meaning that many classes have to qualify as natural
kinds under this account” (Machery 2009, pg. 231).

2.6.1 Essentialist and Nomological Approaches to Natural
Kinds

One approach to natural kinds that goes at least as far as back as Locke
([1690] 1979) and that is still prominent in contemporary literature (Kripke
[1972] 1980; Putnam 1975) identifies those kinds as natural that possess an
“essence, that is, a set of intrinsic, causally explanatory properties that are
necessary and jointly sufficient for belonging to the kind” (Machery 2009,
pg. 231). Examples of natural kinds by this tradition include chemical kinds
such as lead or that of the identification that “water =H2O” (Putnam 1975).
The essentialist program appears insufficient as an account of psychological
kinds, because psychological kinds (i.e., emotions, desires, etc.) are not
identified by intrinsic properties but rather by their causal roles and thus
relational properties (Machery 2009, pg. 231-232).15

The next approach on Machery’s chopping block is that in which nat-
ural kind terms take part in laws of nature, the “nomological” account of
natural kinds. Laws of nature refer to “generalizations that are tempo-
rally and spatially unrestricted and that support counterfactuals” (Collier
1996; Machery 2009, pg. 232). This account is inappropriate for psycho-
logical kinds, because it is too restrictive and because psychological kinds
only feature in ceteris paribus generalizations (Fodor 1974).16 Noting that

14We discuss contemporary research on student affect and emotion in education course-
ware in Chapter 6.

15Machery resists the idea that we simply include relational properties in the notion
of an “essence,” arguing that such an account “would not distinguish the properties that
determine membership from the causally explanatory properties. However, for some nat-
ural kinds, the properties that determine the membership in these kinds are not identical
to those that causally explain why the members of these kinds have many properties in
common” (Machery 2009, pg. 232).

16If one were to adopt an approach wherein laws of nature include ceteris paribus gen-
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it is a step in the right direction to consider loosening the requirement of
underwriting laws (of nature) to merely underwriting ceteris paribus gener-
alizations, Machery moves on to consider his (and our) preferred account of
natural kinds: a causal account in which natural kinds are a particular type
of property cluster.17

2.6.2 The Causal Notion of Natural Kinds

Machery’s “causal notion of natural kinds” is roughly based on ideas due
to Richard Boyd (1990, 1991, 1999; Griffiths 1997, Chapters 6-7; Machery
2005, 2009):

A class C of entities is a natural kind if and only if there is a large
set of scientifically relevant properties such that C is the maxi-
mal class whose members tend to share these properties because
of some causal mechanism. ... The core idea ... is the follow-
ing. A natural kind is a class about which many generalizations
can be formulated: its members tend to have many properties
in common. These generalizations are not accidental: there is
at least one causal mechanism that explains why its members
tend to have those properties. Finally, this class is not a subset
of a larger class about which the same generalizations can be
formulated (Machery 2009, pg. 232-233).

Boyd’s (1990, 1991, 1999) original account posits that natural kinds are
Homeostatic Property Clusters (HPCs): underlying causal mechanisms re-
sponsible for shared properties within a natural kind are homeostatic. That
is, the “instantiation of a property causes the occurrence of other proper-
ties and is caused by their instantiation” (Machery 2009, pg. 233). Boyd’s
account has become popular18 in the contemporary philosophical literature.
Indeed, Samuels and Ferreira (2010, pg. 222) declare that “philosophers of
science have, in recent years, reached a consensus or as close to consensus
as philosophers ever get according to which natural kinds are Homeostatic
Property Clusters... .”

eralizations (possibly necessarily), one could (possibly) provide an amended nomological
account appropriate for our purposes, but such an inquiry is inappropriate for our present
purposes.

17Again, one might provide some sort of amended nomological causal account of natural
kinds, but we do not pursue this line of thought. We emphasize the causal characteristics
of any account of natural kinds.

18and widely discussed (see, e.g., Hacking 1991; Millikan 1999; Craver 2009; Williams
2011; Magnus 2011)
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Dogs illustrate the paradigmatic example of species19 as a natural kind.
Dogs generally possess a set of properties many of which are explained by
underlying causal mechanisms (examples below) that allow us to make (gen-
erally reliable) inductive inferences about dogs we will encounter in the fu-
ture.

Dogs count as a natural kind, but “white dogs” do not comprise a natu-
ral kind because relevant properties of dogs that are white are shared by all
dogs (i.e., Machery’s account of natural kinds is not vacuous). Machery’s
account also allows for a greater variety of mechanisms and that multiple
mechanisms can explain different properties of a natural kind. For the ex-
ample of species alone, mechanisms can include common descent (e.g., as a
causal mechanism for dogs that explains that their body plan is inherited
from their mother’s species or in bats that explains the structure of their
wings), selective pressures, and social causes (e.g., that the social properties
of dogs likely result from “artificial selection pressures” exerted by humans)
(Hare, et al. 2002; Griffiths 1997; Machery 2009, pg. 234-235). Beyond the
paradigmatic example of species, such an inclusive approach is appropriate
for Machery’s purposes as it allows for a wide range of natural kinds, in-
cluding psychological kinds, but also including natural kinds ranging from
chemical elements to (social) artifacts.20

Both Machery’s account and Boyd’s account are appropriately deemed
“causal accounts” of natural kinds, and much literature devoted to Boyd’s
HPC account focuses on the nature of the underlying causal mechanism(s)
that explain clusters of properties that we use to identify natural kinds.
Millikan (1999), for example, provides an account of Boyd-style HPC kinds
like species, and those frequently of interest to social scientists, like member-
ship in ethnic, social, economic, and other groups, as historical. “Inductions
made from one member of the kind [i.e., a particular species] to another are
grounded because there is a certain historical link between the members of
the kind that causes the members to be like one another” (Millikan 1999, pg.
54-55). Boyd goes on to deny that a historical link among members of an
HPC kind is the crucial aspect for kind membership, arguing that species,

19Significant literature on natural kinds (and on the HPC account of natural kinds)
concerns the problem of “species” in biology. Given the paradigmatic status of species,
any account of natural kinds must count them as natural kinds (Boyd 1999; Millikan 1999;
Magnus 2011; Devitt 2011; Rheins 2011; Crane and Sandler 2011). Literature so directed
generally aims at clarifying the nature of HPC natural kinds (or natural kinds in general)
and demonstrates how a particular account accommodates biological species (presumably
better than a previous account).

20Machery’s example is that of tools in paleoanthropology (Machery 2009, pg. 234).
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for example, “are defined, according to the HPC conception, by those shared
properties [phenotypic characteristics] and by the mechanisms ... which sus-
tain their homeostasis” (Boyd 1999, pg. 81). Importantly, Boyd further
argues that restricting HPC kinds to historical kinds would exclude a va-
riety of non-historical phenomena that Boyd intends to capture under the
wide umbrella as HPC natural kinds, including examples like storm patterns
in meteorology, mineral species in mineralogy, and economic categories like
capitalism in the social sciences.21

Magnus (2011) defends the HPC account of natural kinds, but takes issue
with what he calls the “similarity fetishism” of Boyd’s position,22 the “basic
idea ... that a natural kind is primarily a set of similar things” (Magnus
2011, pg. 863). Instead, Magnus emphasizes the fundamental importance of
underlying (homeostatic23) causal processes for HPC kinds, arguing that the
HPC account is separable from similarity fetishism. Magnus demonstrates
this separation by providing some exotic (perhaps pathological) examples
of recently discovered species, members of which are drastically different
depending upon their sex, arguing that we need not have, for any particular
HPC kind, “a single list of properties which are all typical for members of
the kind” (Magnus 2011). Causally explanatory underlying mechanisms and
processes are what really matter.

We will focus on the importance of causal explanations in the discovery of
natural kinds, as emphasized in this recent work by Magnus, but also present
in early work by Boyd on his account of natural kinds. We are not concerned
in this work to provide an exact characterization of natural kinds or of a

21A broader issue in the recent literature on natural kinds (especially HPC-style kinds)
is the dearth of in-depth deployment for kinds that are not species, e.g., social kinds,
outside of some psychological examples (Griffiths 1997). Most literature treats situations
in which relevant individuals are assumed or already well-known. For the case of capital-
ism, presumably the individuals which qualify to take part of the kind are countries or
economic systems. Williams (2011) discusses this concern for the case of diseases as HPC
kinds. For cases we consider (especially cases of kinds that pick out things like student
behavior in courseware in Chapter 5, but also in examples already illustrated in this chap-
ter), it is perhaps less clear what the relevant individuals even are. Indeed, one might see
the discovery problem as being that of both natural kinds and scientifically appropriate
individuals.

22One notes a hint of what Magnus deems “similarity fetishism” in the formulation of
natural kinds provided by Machery as it involves “a large set of scientifically relevant
properties such that ... members tend to share these properties because of some causal
mechanism” (Machery 2009, pg. 232). Magnus presumably agrees about the importance
of the underlying causal mechanism, but they diverge about the necessity of kind members
sharing a “large set of scientifically relevant properties.”

23though perhaps we need not be so restrictive, following Machery’s account of natural
kinds
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particular formulation of the underlying mechanisms necessary to underwrite
the co-occurrence of relevant property clusters; rather we propose that the
data-driven search for variables that support and underwrite broader causal
inferences provides means of discovering candidate natural kinds from (fine-
grained) observational data not already “carved at (scientific or natural)
joints.” We focus on disciplines where relevant (scientific/natural) kinds are
not well-established or as yet well-known (i.e., paradigmatic examples are
lacking or the “best” way in which to construct appropriate variables is less
developed).

While much of the literature on natural kinds and the HPC account
focuses on how such an account (suitably modified and explicated) can ac-
commodate the paradigmatic example of biological species as natural kinds,
Boyd intended for the account to encompass a multitude of other natural
kinds, extending beyond examples above like storms to social kinds. We
consider Boyd’s example of storms24 briefly.

Considering storms as an HPC kind, we can make inductions about
characteristics of storms25: we can identify them as arising from similar
underlying causal mechanisms or processes and list their common charac-
teristics. Storms also, like other HPC kinds, figure in a variety of broader
causal explanations. Storms, for example, have effects, like making the grass
in a field wet. A common sense causal explanation of the source of wet grass
invokes the presence of a storm (when appropriate). Explanatory practices
frequently involve providing causal explanations. Magnus emphasizes that
“[s]ystems of classification are implicated in both induction and explanation,
and there is no reason to think that induction is always doing the heavy lift-
ing” (Magnus 2011, pg. 867). Magnus argues that an HPC natural kind is
best seen as “an explanatory instrument, rather than a narrowly inductive
one” (ibid, pg. 869) and, as is typically in the literature, briefly discusses how
methodological considerations from biology inform such a view of biologi-
cal species. We similarly emphasize the importance of causal explanations,
for the discovery of candidate natural kinds (and useful scientific variables)
from data.

24Boyd (1999) provides the (relatively vague) example of storms as a natural kind that
the HPC account should accommodate; perhaps a more specific example of some meteoro-
logical phenomenon would be more appropriate (e.g., cumulonimbus clouds, low pressure
systems, etc.). That he provides such a vague example without considering details is symp-
tomatic of the lack of consideration provided for natural kinds other than the paradigmatic
case of species (e.g., social kinds).

25One natural question to ask is that of the means by which we identify storms. What
are the relevant individuals that take part of this natural kind? Do we build the identity
of a “storm” up from fine-grained meteorological data?
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Boyd’s early conception already appreciates the importance of causal
explanation for the demarcation of natural kinds. The strategy we propose
to discover natural kinds qua variables that support causal inference, by
preserving conditional independence relationships and allowing for better
predictions of the effects of interventions, aligns with Boyd’s broad injunc-
tion:

[N]atural kinds reflect a strategy of deferring to nature in the
making of projectability judgments: we define such kinds a pos-
teriori in ways which reflect actual causal structure precisely
because we are unable to identify or specify projectable gen-
eralizations without doing so. ... Kinds useful for induction or
explanation must always ‘cut the world at its joints’ in this sense:
successful induction and explanation always requires that we ac-
commodate our categories to the causal structure of the world
(Boyd 1991, pg. 139).

Our strategy defers to nature by providing a data-driven procedure to
search among “possible cuts” (i.e., possible constructed variables) to find
“nature’s joints.” There are legion possible “joints” in the applications we
attack, so such a data-driven approach is vital.

2.6.3 Craver on Perspective and Levels of Aggregation

Further, in our approach we assume that a fixed target variable has been
provided. From a computational standpoint, this provides one way to define
an objective function for a search procedure but also provides a scientific
and investigative goal. Craver (2009), considering the nature of underlying
mechanistic accounts of HPC kinds, argues that human perspectives (i.e.,
investigative goals, etc.) frequently enter into the project of defining natural
kinds. Since natural kinds are those which allow us to better explain, control,
and predict, a natural question is: what are we trying to explain, control,
and predict?

Craver provides an example relevant to Situation #3, of the hippocam-
pus of the brain. Depending on investigative goals, one might “carve” the
hippocampus at a number of different levels of description (all of which
have important implications for the type of mechanisms underlying pro-
posed HPC kinds). Importantly, one aspect of our search for constructed
variables includes considering a variety of different levels of aggregation to
determine which works best for a particular target variable. From such
considerations, Craver concludes:
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This raises a challenge to defenders of the HPC account either to
find an objective basis for taxonomizing the mechanistic struc-
ture of the world, or to argue that these perspectival intrusions
into the accommodation process do not threaten the realist ob-
jectives that motivate the belief in natural kinds in the first place
(Craver 2009, pg. 591).

We remain agnostic with respect to the exact nature of underlying mech-
anisms (a la Machery’s account of natural kinds), but Craver’s challenge
remains. Perhaps nature is multiply-jointed at various levels of salience for
scientific investigation. This may not be any serious threat to realism about
natural kinds, as interventions in science and policy can have a variety of
grain-sizes (or levels of aggregation). With the sort of approach we propose,
given a particular target we hope to provide objective criteria (based on
statistical criteria and the discovery of variables that support causal infer-
ence) upon which particular “carvings” of nature can be judged better or
worse. Thus, perspectival intrusions need not threaten realistic objectives
that have us seek possible targets for future interventions.

2.7 Toward Discovery: (Candidate) Natural Kinds
and Causal Models

Our approach to discovering variables and thus candidate natural kinds is
to search systematically through sets of constructed variables to find those
that allow us to best infer causes of a particular target and make predictions
for the target from (hypothetical interventions on) those causes. We diverge
from the standard approach of literature on natural kinds by not focusing
on the underlying causal mechanisms that underwrite property clusters but
rather focusing on broader causal structure into which candidate kinds (i.e.,
constructed variables) fit. Providing scientifically meaningful (or useful)
interpretations of constructed variables that result from search remains a
possible difficulty, depending on the application domain and available back-
ground/domain knowledge.

Since causal structure is usually not uniquely determined by observed,
non-experimental data, we develop ways to take such uncertainty into con-
sideration so that we can find variables which (if possible) help mitigate
such uncertainty. Some variables will help mitigate structure uncertainty
better than others, for example those that better preserve particular con-
ditional independence relationships relative to other variables; we propose
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that these variables are more likely to be located at or near “nature’s joints”
(or at least they may point us in their direction). We “defer to nature” and
observed data as Boyd guides us.

Climate indices provide good examples of variables or kinds (or perhaps
individuals) with which scientists can make systematic, reliable predictions
and inferences about global climate phenomena, and they play an impor-
tant explanatory and causal role in such predictions. Indices constructed
from data, as explored above, have been successfully deployed in statistical
and causal models that accord with our best contemporary science by pre-
serving expected screening off relationships (Glymour 2007). Nevertheless,
it remains unclear whether such indices are optimally defined or whether
data-driven discovery procedures may improve them for particular types of
investigative purposes. In some domains, we will have the luxury of well-
developed theory and background/domain expertise to provide guidance as
to the demarcation of variables, kinds, or individuals for study. The state
of the art in other domains provides less guidance.

In the following chapter, we develop several notions of “causal pre-
dictability,” roughly expected causal control we achieve for a particular tar-
get of interest from a set of candidate constructed variables and a causal
model learned from those variables. To do this, we also develop several
means of characterizing (and dealing with) causal structure uncertainty to
determine the extent to which constructed variables support causal infer-
ence (and contribute to expected causal control). In Chapter 4, we provide
the results of simulation studies to motivate an algorithm to discover sets of
constructed variables that support causal inference that we deploy on real
world data in Chapter 5. These sets of constructed variables constitute can-
didate natural/scientific kinds for further study. Real world data in Chapter
5 consists of aforementioned data from educational courseware logs, where
the state of the art provides little guidance as to appropriate, aggregate
variable constructions.
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Chapter 3

Causal Predictability and
Structure Uncertainty

In this chapter, we consider ways to judge the “quality” of sets of con-
structed variables for causal inference about a target variable. We begin
by introducing two quantitative notions of “predictability,” our ability to
predict a target variable from a statistical model. Next, we consider two
ways to specify and estimate statistical models according to the structure
of graphical causal models. Combining notions of predictability with model
specification from causal information, we introduce three types of metrics to
quantify “causal predictability.” We explicate these notions assuming causal
sufficiency and using DAGs, but we seek to focus in practice on situations
in which we do not assume causal sufficiency and learn a PAG. Generally,
PAGs represent many causal explanations that are indistinguishable from
observational data. As such, we combine notions of “causal predictability”
with methods to deal with structure under-determination to provide con-
crete, practical metrics (e.g., in linear regression and structural equation
models) for judging the support for causal inferences underwritten by a set
of constructed variables. After explaining metrics in this chapter, we explore
their efficacy and broader issues of variable construction for predictive and
causal inference via simulation studies in the next chapter.

3.1 Two Notions of Predictability

We consider two ways to quantify the extent to which we can predict a
target variable from a statistical model. Since we often use linear regression
models, we provide a brief review.
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3.1.1 Simple Linear Regression

Wasserman (2004, Chapter 13) provides a standard, concise overview of
the simple linear regression model to investigate the relationship between
a target (or response) variable Y and a single predictor variable X. The
regression function summarizes the relationship we seek to estimate from
data of the form (Y1, X1), ... , (Yn, Xn) with some distribution FX,Y :

r(x) = E(Y |X = x) =
∫
yf(y|x)dy (ibid, pg. 209; Eq. 13.1).

Assuming that r(x) is linear with only one predictor variable (a.k.a. regres-
sor, co-variate) X:

r(x) = β0 + β1x (ibid, pg. 209).

Wasserman then provides the simple linear regression model, assuming that
V (Y |X = x) = σ2 and that V (Y |X = x) does not depend on x:

Yi = β0 + β1Xi + εi (ibid, pg. 210; Eq. 13.2),

where E(εi|Xi) = 0 and V (εi|Xi) = σ2. Let β̂0 and β̂1 be estimates of
parameters β0 and β1 that determine a fitted line,

ˆr(x) = β̂0 + β̂1x (ibid, pg. 210; Eq. 13.3).

Parameters estimated for predictors are important because they quantify
the magnitude of relationships between co-variates and the variable we pre-
dict with the model as well as the individual “contributions” of changes in
the value of co-variates to change in the expected value of Y . From these
parameter estimates, we calculate predicted values for Y as:

Ŷi = ˆr(Xi).

Residual values are calculated as the difference between predicted values
and those that actually obtain in our sample:

ε̂i = Yi − Ŷi = Yi − (β̂0 + β̂1Xi) (ibid, pg. 210; Eq. 13.4).

It is also important to assess the goodness of fit of our estimated linear
model to the data. Residual values help us to do this when we calculate the
residual sum of squares (RSS):

RSS =
∑n

i=1 ε̂i
2.
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Least squares estimate values of β̂0 and β̂1 minimize RSS and the fraction
of variability not explained by predictors in the model.1 The fraction of
variability explained by a regression model is one way we quantify model
fitness.

3.1.2 Notion #1: Fraction of Variability Explained / Good-
ness of Fit

We use these ideas to assess the extent to which we can account for variabil-
ity in a target variable from the predictors included in a model. Roughly, this
provides us with a measure of whether predictors we include in the model
explain substantial sources of variation (arising in principle from causes, ran-
dom noise, and/or measurement error) in our target. To do this in a linear
regression model, we let the total sum of squares TSS =

∑n
i=1 (Yi − Ȳ )2

(where Ȳ is the sample mean) and consider one minus the fraction of the
sample variance of the target not explained by predictor variables in our
model; this is the regression R2 value (Stock and Watson 2003, pg. 174):

R2 = 1− RSS
TSS .

Other goodness of fit criteria for statistical models are widely used, in-
cluding adjusted-R2 values, Akaike Information Criteria (AIC; Akaike 1973),
Bayesian Information Criteria (BIC; Schwarz 1978), and others that bal-
ance the trade-off between the goodness of fit of a predictive model and
its complexity (e.g., number of predictors and corresponding parameters to
estimate). Other measures of predictive accuracy such as area under the
ROC curve (for classification accuracy) or mean squared error are also often
used, depending on the problem being considered.

3.1.3 Notion #2: Effects on Expected Value of Target

In addition to fitting data well and explaining variability in a target, we
consider the effect of changes in the value of predictors or co-variates on the
expected value of a target. In a linear regression model with one predictor,
its parameter estimate corresponds to the change in the expected value of
the target variable given a one unit change in its value; if there is more than
one predictor/co-variate in the model, then parameter estimates for each
predictor correspond to the change in the expected value of the target given

1The derivation of these estimates and the extension of these ideas to the case of
multiple predictor variables (i.e., multi-variate linear regression) is straight forward and
can be found in most statistics textbooks, including Wasserman 2004.
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a one unit change in that predictor variable, holding all other co-variates
fixed.

If, for example, we include both X1 and X2 as co-variates in a linear
regression model for Y and estimate corresponding β̂1 and β̂2 coefficients,
respectively, we say that given a one unit change in the value of X1, β̂1 is
the estimated change in the expected value of Y holding X2 constant. β̂1
is often called the partial effect of a unit change in X1 on Y , holding X2

constant (Stock and Watson 2003, pg. 150). This notion of predictability
allows us to consider the magnitude of change to expect in a target variable
given a change in value to one of its predictors.

Consider a hypothetical example of an early childhood education pro-
gram that is estimated to have a large total effect on elementary school
learning outcomes. Given a host of other causes that increase the variability
in such learning outcomes (over, for example, the population of all school
age children in the United States), we might find that, despite a large esti-
mated total effect (i.e., high β̂), we still only account for a small percentage
of the variability in learning outcomes with the early childhood program
alone (low R2).

Contrast the above with the hypothetical early childhood education case
involving a particular cognitive, verbal, or other task that most school chil-
dren of a particular age in the United States can easily perform. Suppose
investigators observe a particular strategy that is found to have a small ef-
fect on performance of this task among children that demonstrate difficulty
with the task. Despite the relatively low β̂ we hypothetically estimate, we
could still find that estimated models have relatively high R2 values; we ac-
count for a significant portion of the (little) variability in performance of the
task over the population. Hypothetical numerical examples are also easily
concocted in which small total effects are estimated in models with high R2

values because target variables have low variance, and vice versa.
So far we have said nothing about whether predictors or co-variates in

a statistical model are causes of the outcome. If, for example, a predictor
is included in a model that is an effect of (i.e., is caused by) the target, we
predict the value of the target conditioning on such an effect, but if we were
to intervene upon the effect (e.g., by changing its value by one unit), our
predictions are worthless; interventions on a target’s effect cause no change
in the value of the target.

We seek to know, in addition to how well we can predict a target from its
causes, what to expect from interventions on causes of a target. For these
purposes, we consider two ways to specify models according to the structure
of graphical causal models.

64



3.2 Two Notions of Model Specification Based on
Causal Information

Causal information provided by the structure of graphical models can be
used in several ways; we provide two notions of how to specify certain types
of statistical models based on knowledge about causes.

3.2.1 Notion #1: Predictive Models Specified According to
Inferred Causes

A variable’s Markov blanket (Pearl 1988) is the set of variables conditional
on which a variable in independent of all other variables in the network. For
DAG-based models, including Bayesian networks, a target variable’s Markov
blanket is its ideal set of predictors, comprised of its direct causes (parents),
direct effects (children), and other direct causes of its direct effects (other
parents of its children).

Consider, for example, the causal structure of the DAG in Figure 3.1.
The set of parents or direct causes of target variable T is {P1,P2,P3}; T
has one child or effect, C, and C has one other parent or cause, S. Thus,
the Markov blanket of T is the set of variables {P1,P2,P3,C,S}. Further,
T is independent of {G,D,L} conditional on {P1,P2,P3,C,S}.

A variable’s direct causes are a (generally proper) subset of its Markov
blanket, and we might be concerned, under either notion of predictability,
to investigate only the (direct) causes of a target, as we are motivated to
investigate the extent to which we might predict and/or control T using its
causes and discover efficacious intervention to impact T.

First, we consider the specification of a statistical model from only causes
of the target variable. In the case of Figure 3.1, we would specify, for exam-
ple, linear regression models for T with only three predictors or co-variates:
P1, P2, and P3. After estimating such a model, we can ask questions with
respect to the two notions of predictability we have introduced: what frac-
tion of sample variation in T can be explained by its causes? What is the
estimated partial effect for a unit change in each of T’s causes holding its
other causes fixed?

Answering the first question quantifies the extent to which we have suc-
cessfully captured sample variation of T from causes upon which we might
intervene; if the fraction of sample variation explained by causes of T is espe-
cially low, it may suggest that we consider the possibility of including other
causes of T in the model, or that T is subject to large sources of random
variation (i.e., “noise”), or both. Answers to the second question provide
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Figure 3.1: DAG illustrating Markov blanket of T = {P1,P2,P3,C,S}.

66



estimates of direct (i.e., partial, but with a causal connotation) effects on the
expected value of the target if the value of each cause were individually to
change by one unit and other causes are held fixed. However, neither ques-
tion directly addresses the impact hypothetical, ideal interventions have on
a target. For that, we consider a second notion of “causal predictability.”

3.2.2 Notion #2: Predictive Models Specified/Estimated Post-
Intervention

We now consider the idea that we might specify and estimate predictive
models after hypothetical interventions on one (or more) cause(s) of a tar-
get variable. Suppose we parameterized the DAG in Figure 3.1 by making
each variable a linear function of its parents (with each edge in the graph
parameterized by an edge coefficient corresponding to an appropriate re-
gression coefficient) and an independent, normally distributed error term,
following the common approach of structural equation modeling, or SEM
(Bollen 1989).

Assuming each independent error term has mean 0, we estimate such
a model from sample data and calculate its implied covariance matrix.2

At this stage, the sub-matrix of the pre-intervention implied covariance
for the target and its causes can be used to specify a regression model to
answer questions with respect to our first notion of causal predictability;
from data we estimate a regression function that provides r̂({P1,P2,P3}) =
E(T|{P1,P2,P3}). This estimated regression function is used to calculate
predicted values for T conditional on values of variables P1, P2, and P3.

Next, we must consider the effects of hypothetical interventions (possi-
bly more than one simultaneously) on causes of a target. For the causal
structure of the DAG in Figure 3.1, we might consider an ideal (i.e., “sur-
gical”) intervention (Pearl 2009) on P2 that eliminates edges from both P1
and G into P2. Suppose we make the simplifying assumption that the hy-
pothetical intervention sets the distribution of (the error term of) P2 to
a Normal distribution with some mean and variance (later, we assume the
standard Normal distribution: mean = 0 and variance/standard deviation
= 1). Re-estimating the structural equation model given this intervention,
we calculate the post-intervention implied covariance matrix. The relevant
post-intervention sub-matrix can then be used to specify a statistical (e.g.,
linear regression) model, providing a corresponding estimated regression

2Comparing an estimated structural equation model’s implied covariance matrix to the
sample covariance matrix is one way in which to judge the overall “goodness of fit” of a
structural equation model (Bollen 1989).
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function for r̂({P1,P2,P3}) = E(T|do(P1,P2,P3)).3 We can then ask
the same questions we ask about our first notion of causal predictability
(e.g., calculated predicted values of T) in the context of a post-intervention,
estimated statistical model, providing us insight into the effects of hypothet-
ical interventions on our ability to account for variability in a target and the
partial/direct effects of a unit change in value, post-intervention, on causes
of a target.

From these ideas and the idea of total effect (having only considered
partial/direct effects so far), we describe three types of metrics to quantify
these notions of causal predictability.

3.3 Three Types of Metrics for Causal Predictabil-
ity

We consider three broad, but not exhaustive, categories or types of metrics
for causal predictability, combining notions of predictability with different
ways to specify statistical models and/or estimate them based on informa-
tion about causes of a target. Since we learn a causal model over a particular
set of variables, we associate a given measure/metric with the set of variables
from which we learned a causal model. We thus have a basis upon which to
compare a particular set of variables to other sets of variables. We provide
concrete metrics that we use in practice, and suggest several possibilities for
future work, in §3.6.

3.3.1 Näıve Fraction of Variability / Goodness of Fit

The first type of metric for causal predictability combines our first notion
of predictability with our first notion of model specification from causal
information. We consider measures or metrics of the fraction of variability
explained by (or goodness of fit of) a statistical model, calculated from
models specified pre-intervention to include only predictors that are inferred,
direct causes of a target. We call this type of metric one of “näıve” causal
predictability because models are specified according to inferred causes of
a target, but models are specified pre-intervention.4 Thus, we arrive at

3We use Pearl’s (2009) do operator to denote that P1, P2, and P3 have been subjected
to an intervention as opposed to mere conditioning. Spirtes, et al. (2000) would denote
this by E(T||(P1,P2,P3)).

4Despite negative connotations associated with “näıve,” we seek to emphasize that
this is not a notion that invokes intervention, while still reflecting an important aspect
of causal predictability. The notion might just as well be described as the “natural,” or
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an estimate of the sample variability in a target explained by observing its
inferred causes. However, such metrics do not provide information about the
extent to which we can explain sample variability in a target (or estimate
models with good fit) following interventions on inferred causes.5

3.3.2 (Post) Intervention Fraction of Variability / Goodness
of Fit

The second type of metric for causal predictability combines our first no-
tion of predictability with our second notion of model specification based
on causal information. These metrics are calculated from statistical models
specified post-intervention, where such interventions are understood to be
hypothetical (i.e., the product of appropriate re-calculation of implied co-
variance matrices from estimated, manipulated structural equation models,
as explained in §3.2.2).

We suffer from the drawback that we must appropriately set the distribu-
tion of variables upon which we hypothetically intervene. In some applica-
tion domains, we might have background knowledge for reasonable settings
of these distributions, but in other cases we must make relatively arbitrary
simplifying assumptions about manipulated distributions (i.e., setting vari-
ables upon which we intervene to the standard Normal distribution).

3.3.3 Total Effects

The third type of causal predictability metric corresponds to the second
notion of predictability: the estimated change in expected value of a target
from a change in the value of one (or more) of its causes. So far, we have
only discussed partial effects of a change in value of a predictor on a target
(holding all other predictors fixed). If the predictor variable is a cause of
the target, then this partial effect is best described as its direct effect. For
purposes of describing the effects of interventions on a cause of a target, it
is also important to know its total effect, the sum of a cause’s direct and
indirect effects on the target. This value provides us a better estimate of
the impact we have on a target by a particular intervention.

simply “pre-intervention,” fraction of variability or goodness of fit.
5except possibly for the case in which individual interventions set each of a target’s

causes to its distribution in the sample (i.e., when variables are set by intervention to their
“natural” distribution)
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Figure 3.2: Parameterized sub-graph of Figure 3.1 DAG; independent error
terms for each variable are omitted.

Direct, Indirect, and Total Effects in Regression Models and SEMs

Figure 3.2 is a parameterized sub-graph of Figure 3.1 (that omits an inde-
pendent, Normally-distributed error term for each variable) and defines a
linear structural equation model. Consider the structural equation for T:

T = B2P1 +B4P2 +B6P3 + εT.

As we have noted, edge parameters in such a structural equation model
correspond to appropriate regression coefficients. Thus, if we regress T on
{P1,P2,P3}, the ordinary least squares parameter estimate corresponding,
for example, to P2 (call it B̂4) is an unbiased estimate of the true, population
value of the parameter (i.e., the true partial effect) B4. We predict that,
holding P1 and P3 fixed, a unit change in P2 changes the expected value
of T by B̂4. In standard regression parlance, this is the partial effect of P2
on T holding P1 and P3 fixed. Since P2 is also a direct cause of T, it is
appropriate to refer to this as the direct effect of P2 on T; if we hold P1
and P3 fixed while intervening to change P2s value by one unit, we predict
the same change in the expected value of T because we have an unbiased
estimate of the strength of the direct causal link between P2 and T (P2 →
T).
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Inspecting the graph of Figure 3.2, P2 is both a direct and indirect
cause of T; there are two directed paths from P2 to T: one direct (P2 →
T) and one indirect (P2 → P1 → T). Accordingly, an intervention on P2
for which we do not hold other variables fixed (especially P1) will have an
effect beyond the direct effect of P2 on T. Remember that, for additive
parameterizations, the total effect is the sum of direct and indirect effects
of one variable on the other:

total effect = direct effect + indirect effects

For linear models, the total effect corresponds to the sum of the products
of edge coefficients over all directed paths, including a one-edge direct path if
it exists, between two variables. We provide two sample calculations of total
effect (TE) from the structure and edge coefficients/parameters of Figure
3.2.

The direct effect of P2 on T is B4, the edge coefficient for the direct link
between the two variables. To this, we add the product of coefficients along
the other directed path from P2 to T (P2 → P1 → T), B3B2, so:

TE(P2,T) = B4 +B3B2

There are two directed paths from P3 to T that pass through at least
one intermediary variable, so there are two indirect effects to add to the
direct effect of P3 on T, B6:

TE(P3,T) = B6 +B5B4 +B5B3B2

Parameters for each of the edge coefficients in a structural equation
model can be estimated by various means to calculate estimates of total
effects of variables in the model on a target. To estimate the total effect
of a variable X on a target T using a linear regression model, we regress T
on the set of predictors including only X and the parents of X (assuming
we have inferred a DAG causal structure). Assuming we specify the model
from correct causal structure, the least squares parameter estimate for X is
an unbiased estimate of the true total effect of X on T.

Metrics Based on Total Effects

Investigators’ goals inform a variety of metrics based on total effects of vari-
ables. One might develop metrics that consider total effects of multiple,
simultaneous interventions on causes of a target, or alternatively only the

71



total effects of individual interventions on causes of a target. The latter
is appropriate for plausible, constrained situations in which an investigator
seeks to decide upon a single intervention that will be most causally effi-
cacious (i.e., have the greatest “impact” on the target); we focus on these
situations. For other purposes, metrics might be calculated, for example,
according to the minimum or maximum value of the total effect from a single
intervention over a set of causes of target. The metric we deploy involves
considering the maximum (expected) total effect for a single intervention on
a cause of a target, leading us to the variable on which we should intervene
to get the biggest “impact” on a target.

Pre-Intervention vs. Post-Intervention Total Effect

We provide two types of metrics for fraction of variability or goodness-of-
fit, those that are “näıve” (pre-intervention) versus post-intervention, but
we do not bifurcate total effect metrics. Since we restrict ourselves to in-
terventions on a single variable, we need not split total effect metrics into
pre-intervention and post-intervention. Consider, for example, our calcula-
tion of the total effect of P2 on T in Figure 3.2. If we were to intervene
on P2 and “break” (i.e., by “surgical” or ideal intervention) the edges from
G and P3 into P2, there is no change in the total effect of P2 on T. For
multiple, simultaneous interventions, we would have to split these types of
metrics into pre-intervention and post-intervention varieties. For example,
the total effect of P3 on T would change given an intervention on P2 (as
the edge from P3 to its effect P2 would be broken). We do not consider
total effects of multiple simultaneous interventions.

3.4 How to Deploy Metrics to Judge “Quality” of
a Set of Variables

Having explored several types of metrics to assess causal predictability for
a given set of variables, we examine how to deploy specific metrics given
causal structures we infer from data.

3.4.1 Relaxing Causal Sufficiency

So far, we have made reference only to DAGs. If we assume there are no
unmeasured, common causes of measured variables, we generally learn a
pattern from data, representing an equivalence class of DAGs, as causal
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structure is (almost always6) underdetermined by observational data. How-
ever, in realistic (social) scientific and policy settings, generally there are
unmeasured common causes of measured variables. In these cases, we learn
a Partial Ancestral Graph (PAG), perhaps by using the FCI algorithm. This
increases the computational complexity of the problem of considering causal
structures compatible with data. We must combine ways to “count” spe-
cific causal structures represented by a PAG with metrics we propose to
adjudicate sets of variables.

3.4.2 Infer PAG from Set of Measured Variables

In Chapter 1, we introduced the FCI algorithm to learn (aspects of) causal
structure over measured variables allowing for unmeasured common causes.
In general, infinitely many underlying causal structures including latent vari-
ables are compatible with a PAG. Just as patterns represent equivalence
classes of DAGs, PAGs represent equivalence classes of Maximal Ancestral
Graphs (MAGs). Statistical methods for parameter estimation and prin-
ciples of causal reasoning with MAGs have been developed (Spirtes and
Richardson 2002; Zhang 2006, 2008a), but rather than work with the for-
malism of MAGs, we explore assumptions that permit us to consider sets
of DAGs (including those with latent variables) that are compatible with
PAGs. Importantly, while FCI can infer PAG causal models in the presence
of selection bias, in what follows we assume there is no selection bias.

3.4.3 Calculate Metrics As Expectations Over Causal Mod-
els Represented by PAG

Particular DAGs represented by a PAG are likely to count different variables
as causes of the target variable. Thus, they are likely to have different
values for each causal predictability metric. For each set of variables and
corresponding inferred PAG, we can calculate an expected value for each
metric over the set of represented DAGs we choose to consider. The expected
value of a metric M over a set of DAGs D can be calculated as

E(MD|data) =
∑

d∈DM(d|data)P (d)

corresponding to the sum, over a set of represented DAGs (D), of a
metrics value over each DAG d given data (i.e., a model specified according
to d and estimated from data over constructed variables) multiplied by the

6especially for cases of multi-variate linear, Normal distributions
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probability of the particular DAG being the “correct” DAG over a particular
set of measured variables.

This requires the investigator to provide prior probabilities for causal
structures represented by a PAG. For example, the investigator might ex-
pect the true causal structure to have certain characteristics that skew the
distribution of structures represented by a PAG. This is a prime point of
entry for background and domain knowledge in our procedure. In the simu-
lation studies in Chapter 4 and the case study of Chapter 5, we use a uniform
distribution over causal structures represented by PAGs rather than impose
constraints from background knowledge.

This also requires that for each PAG we provide the set of causal struc-
tures D over which we calculate this expectation. In the next section we
consider three “counting” schemes whereby we provide sets of causal graphs
represented by a PAG.

3.5 Counting Schemes for (Super) DAGs Repre-
sented by a PAG

In this section, we present three “counting schemes” for DAGs, as well as
for DAGs we introduce that include latent variables, represented by a PAG,
noting important limitations of each scheme. We explore their practical
import and performance with respect to tracking true values of metrics we
propose in simulation studies in the next chapter. Recall from Chapter 1 that
edges in a PAG represent ancestral causal relationships among measured
variables; there are three types of marks for edge endpoints in PAGs and
four edge possibilities, as we assume there is no selection bias. For a review
of the interpretation of edges in PAGs, see §1.2.3.

3.5.1 Scheme #1: Pattern counting scheme: ignore possible
latent confounders

The simplest possible way to generate a set of DAGs that are represented
by a PAG is to reduce the problem to that of generating the set of DAGs
represented by an inferred pattern, ignoring the possibility of latent con-
founding. For example, there are three DAGs represented by the pattern X
− Y − Z:

1. X→ Y→ Z

2. X← Y← Z
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3. X← Y→ Z

We deploy the PC (or GES) algorithm on data for a set of measured/constructed
variables and a target, rather than FCI. For relatively small numbers of vari-
ables and sparse graphs, it is straightforward to generate the set of DAGs
represented by a pattern7. Given its computational tractability and (per-
haps despite) the relative simplicity of this counting scheme, we consider, in
the next chapter, how model averaging for metrics according to this count-
ing scheme fares in comparison to more computationally intense counting
schemes that “throw out” less information.

3.5.2 Scheme #2: Heuristic PAG counting schema

A variety of heuristics can be developed to generate DAGs represented by a
PAG, iterating over possible orientations of PAG edges. We employ a simple
heuristic that takes a relatively narrow reading of PAG edges to generate
DAGs represented by a PAG. For example, with this heuristic we make no
attempt to account for the possibility that two variables have both a direct
causal relationship and a confounding common cause.

First, we generate the set of all acyclic directed mixed graphs, acyclic
graphs in which both directed and bi-directed edges may occur (Richardson
2003), according to every possible setting of edge marks in a given PAG. We
then eliminate graphs that create unshielded colliders not already present in
the given PAG. To limit our heuristic to DAGs, we drop bi-directed edges
from the acyclic, directed mixed graphs that remain and obtain a set of
DAGs.

Consider the PAG X o−o Y o−o Z. In this PAG Y is a non-collider.
We start by generating the set of all graphs with directed and bi-directed
edges (mixed, directed graphs) according to the six possible ways in which
we can set edge marks in the PAG (allowing only one edge between any pair
of variables):

1. X ↔ Y ↔ Z

2. X ↔ Y → Z

3. X ↔ Y ← Z

4. X → Y ↔ Z

7We return to the problem for generating an appropriate set of DAGs from a pattern
for a large number of variables shortly.
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5. X → Y → Z

6. X → Y ← Z

7. X ← Y ↔ Z

8. X ← Y → Z

9. X ← Y ← Z

Inspecting this set of mixed, directed graphs, we find that graphs (1),
(3), (4), and (6) orient colliders at Y and are thus not represented by the
PAG under consideration. In the five remaining directed mixed graphs we
adopt the heuristic that disallows edges between two variables that share a
common cause (i.e., dropping bi-directed edges). We interpret bi-directed
edges to indicate that two variables share a latent common cause and have
no direct causal link, so we resolve the problem of latent confounding by
dealing with it implicitly, assuming no connection between two confounded
variables. If, for example, X ↔ Y is an edge in a PAG (and thus in every
mixed, directed graph we generate from the PAG), every member of the set of
DAGs we generate will have no edge from X to Y. By this counting scheme,
the following set of DAGs is represented by this PAG (i.e., are those over
which we should average when calculating metrics for causal predictability):

1. X Y → Z

2. X → Y → Z

3. X ← Y Z

4. X ← Y → Z

5. X ← Y ← Z

There are several shortcomings of this “PAG Heuristic.” Notably, if X
→ Y is an edge in a PAG, then X → Y is an edge (i.e., X is a direct cause
of Y) in every DAG we generate. This is not necessarily a correct inference
given the ancestral interpretation of edges in a PAG. We explore the extent
to which this simplification will harm performance of metrics calculated with
this counting scheme in Chapter 4.

Like the iteration of DAGs compatible with a pattern, this heuristic is
not particularly computationally intense given a relatively small number of
variables and sparse PAG connectivity.
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3.5.3 Scheme #3: Exhaustive counting of “Super DAGs”
including possible confounders

For our third counting scheme, we introduce “Super DAGs.” We define
Super DAGs as causal graphs over both measured and latent variables to
provide more realistic representations of causally insufficient systems. We
allow that every pair of measured variables may have one latent variable as
a common cause. This simplifying assumption about the nature of latent
confounding allows us, for small numbers of measured variables, to generate
the set of Super DAGs represented by a PAG. Our third counting scheme
generates the set of “Super DAGs” that are represented by a PAG we infer
over a set of measured or constructed variables. By this counting scheme,
we explicitly account for latent variables, in contrast to how we avoided
accounting for latent confounding directly (if at all) in the previous two
counting schemes. This counting scheme is the most principled of the three
counting schemes we consider.

To illustrate, Figure 3.3 provides the set of nine Super DAGs from which
we can infer the PAG X o−o Y o−o Z. In the limited case of this PAG on
three measured variables, we go from considering five DAGs with the PAG
Heuristic to nine Super DAGs. In practice, with larger numbers of measured
variables, the difference is more substantial.

While Super DAG “counting” provides a principled means of surveying
a large set of causal structures represented by a PAG, exhaustive counting
is computationally expensive and intractable for more than four or five vari-
ables. Simulations in Chapter 4 pursue the exhaustive counting strategy
for four measured variables (involving up to 6 latent variables); we compare
results of model averaging for metrics for causal predictability over exhaus-
tive sets of Super DAGs to averaging over sets of DAGs generated by the
pattern counting scheme and the PAG Heuristic. We introduce these spe-
cific metrics for causal predictability in the following section and consider
several practical problems (and partial solutions), especially for the Super
DAG counting scheme.

3.6 Metrics in Practice

We provide three concrete metrics, each of which corresponds to a particular
notion of causal predictability. Alternative metrics are legion. We consider
one proposed alternative metric from related literature in §3.7.2; future work
should explore alternatives.
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Figure 3.3: Super DAGs represented by PAG X o−o Y o−o Z.
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3.6.1 Maximum Expected Näıve (Pre-Intervention) “Causal
R2”

To capture the notion of näıve or pre-intervention fraction of variability in
practice, we calculate the R2 value for linear regression models specified ac-
cording to each DAG or Super DAG represented by a PAG, each of which
may count different variables as direct causes of the target; for each com-
patible causal graph, we regress the target variable on its (measured) direct
causes in that graph, calculate the model’s R2 value, and call it the model’s
“causal R2” value. We seek the set(s) of variables from which we infer a
PAG that maximizes the expectation of this value, calculated according to
a chosen DAG/Super DAG counting scheme. In the next two chapters,
we consider each DAG/Super DAG generated by a counting scheme to be
equally probable, so the expectation is the average over these graphs.

3.6.2 Maximum Expected (Post-) Intervention “Causal R2”

We capture the notion of intervention fraction of explained variability in
essentially the same way as the näıve notion. However, we specify “post-
intervention” regression models based on the direct causes of the target in
each DAG or Super DAG represented by a PAG. To do this, we make the
simplifying assumption that we simultaneously intervene on each inferred
cause in a compatible causal graph to give it a standard Normal distribu-
tion (mean = 0, standard deviation = 1). We estimate a structural equation
model from data according to the structure of each DAG or Super DAG, pro-
viding us with an implied covariance matrix. We manipulate the estimated,
implied covariance matrix according to our simplifying intervention assump-
tion, and from this manipulated covariance matrix we specify a regression
model for the target with the manipulated, direct causes as predictors. We
seek the set(s) of variables that maximize the expectation of this intervention
causal R2 over the set of DAGs or Super DAGs counted for a PAG. Again,
in the next two chapters, given equally probable DAGs or Super DAGs, the
expectation is the average over these graphs.

3.6.3 Maximum Expected Total Effect

We devise a metric to capture the single variable that we expect to have the
greatest impact on the target were we to intervene and changes its value by
one unit . Over a set of DAGs or Super DAGs represented by a PAG, we
consider the expected total effect of each variable that is a direct cause of
the target in at least one member DAG or Super DAG. The expected value

79



of each variable’s total effect is the sum, over all DAGs or Super DAGs
represented by a PAG (according to a particular counting scheme), of the
product of the variable’s total effect on a target for the DAG or Super DAG
and the probability of that DAG or Super DAG. For a set of (Super) DAGs
D represented by a PAG, for each possible cause Xi of T, we assume we
have estimated an appropriate linear regression or structural equation model
such that:

E(TE(Xi,T)) =
∑

d∈D TEd(Xi,T)P (d)

Having calculated the expected value for each possible cause Xi of T, we
take the variable that maximizes this expected value; the set(s) of variables
in which it appears are adjudicated “best” by this metric.

Since an estimated linear regression or structural equation model is re-
quired to calculate R2 values and total effects TEd for each represented DAG
or Super DAG d, respectively, we turn to practical considerations for calcu-
lating proposed metrics and model averaging over DAGs and Super DAGs
represented by an inferred PAG.

3.7 Counting Schemes and Metrics in Practice

Pattern and heuristic PAG schemes “count” DAGs over measured variables;
without latent variables, estimating a statistical model to calculate any of
our metrics is relatively simple, especially compared to our “Super DAG”
counting scheme. For expected näıve causal R2 and maximum expected to-
tal effect, we need only estimate regression models from data according to
the structure of DAG, as näıve causal R2 is calculated from predicted values
of a regression model with all direct causes in a particular DAG as predic-
tors, while the total effect of a variable X on T is the parameter estimate
(i.e., coefficient) from the regression of T on X and Parents(X) in a DAG.
To calculate intervention causal R2, we first estimate a structural equation
model according to the structure of a DAG. We then manipulate the covari-
ance matrix implied by this estimated SEM such that each direct cause has
been set by an ideal intervention to the standard Normal distribution. Such
calculations are relatively simple, and both regression and structural equa-
tion model estimation are easily carried out with freely available software
(e.g., TETRAD). The Super DAG counting scheme is more complicated.
We consider details for calculating these metrics for each counting scheme
in practice and consider some related work.
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3.7.1 Pattern Scheme

We propose in our first counting scheme to average over DAGs in the equiv-
alence class represented by a pattern, discarding any information we have
about latent confounding. For relatively small numbers of variables and
sparse causal structures, it is straightforward to provide the set of DAGs
represented by a pattern. Assuming linear, multi-variate Normal distribu-
tions, we use linear regression models specified according to the structure of
a DAG to calculate our (näıve) causal R2 metric and total effects for each
possible cause of a target variable. Intervention causal R2 can be calculated
by specifying a linear regression from an appropriately manipulated implied
covariance matrix.

While calculating (causal) R2 values over regressions specified according
to the structure of a DAG is relatively novel as a metric to judge the “qual-
ity” of a variable set in its support for causal inferences, calculating total
(i.e., causal) effects of variables over DAGs represented by a pattern has
been pursued as a means for dimensionality reduction in causally sufficient
systems. We briefly consider this work.

3.7.2 Using Patterns for Dimensionality Reduction in Causally
Sufficient Systems

While we seek to judge the quality of sets of constructed variables in appli-
cation domains without causal sufficiency, Maathuis, et al. (2009) estimate
lower bounds for variables’ total (causal) effects in causally sufficient sys-
tems. They deploy their methods on data from biological systems in which
causal sufficiency is a reasonable assumption and use estimated lower bounds
as a means of dimensionality reduction.

Maathuis, et al. (2009) consider the problem of discovering genes that
have a “knock-down” (intervention) effect on a particular phenotype, in
their case study the production of riboflavin in the bacterium Bacillus sub-
tilis. They consider observational expression data for thousands of genes
over “essentially” the entire genome of this bacterium as co-variates for the
continuous-valued response of riboflavin production.

To find those genes that “score” highest with respect to intervention/causal
effects, they consider causal effects for each co-variate, estimated by linear
regression models specified according to each DAG in a set of DAGs in the
equivalence class represented by a pattern8. Importantly, their algorithm

8Maathuis, et al. refer to patterns as completed partially directed acyclic graphs
(CPDAGs).
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uses local graph information to avoid iterating over the full equivalence class
of DAGs represented by a pattern, but its result contains the correct set of
unique causal/total effect values for each co-variate for the equivalence class.
The algorithm is thus useful when the underlying, unknown causal DAG is
sparse but contains many variables. Co-variates are scored according to the
minimum value in the resulting multi-set of causal effects (i.e., the estimated
lower bound of each co-variate’s causal/total effect). Presumably, genes with
the greatest lower bound on their total effects are those toward which we
should direct attention in future experiments. By considering only those
genes/co-variates above a particular threshold, we reduce dimensionality of
our problem and narrow the space of variables (genes) on which to target
future interventions.

The approach of Maathuis, et al. (2009) to dimensionality reduction is
similar in spirit to our approach to judging the “quality” of sets of variables
for causal inference. They devise feasible algorithms to generate a set of
DAG causal structures indistinguishable from observational data, a “count-
ing scheme” different than those we explore, as we consider every DAG com-
patible with a pattern for graphs with a small number of variables. They also
provide a different type of metric to score individual variables based on lower
bounds for total/causal effects (rather than expected values/averages). This
type of metric might be adopted given the risk/reward profile of a scientific
investigator or policy maker concerned with the problem of constructing
variables to support causal inferences.

Maathuis, et al.’s (2009) application is one in which causal sufficiency is
a reasonable assumption; they consider nearly the entire genome of the bac-
terium in question. It remains unclear that the type of correctness results
they provide are forthcoming (or possible) for causally insufficient systems,
as total effects are frequently not identifiable without simplifying assump-
tions, as we soon discuss. Nevertheless, their ideas can be adapted to our
purposes in future work, and the pragmatic impact of relaxing the causal
sufficiency assumption can be explored via simulation studies. Indeed, we
explore exactly this issue for our counting schemes and metrics in the fol-
lowing chapter.

3.7.3 Comparison of Heuristic PAG and Pattern Counting
Schemes

Our proposed Heuristic PAG counting scheme is similar to the pattern
scheme, but the former implicitly accounts for possible latent confounding
by generating DAGs without edges between variables for PAG mark orien-
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tations that entail that two variables shared an unmeasured common cause.
By accounting for latent confounding, the PAG Heuristic scheme “counts”
more DAGs over which to average than the Pattern scheme. Beyond this,
there are no significant differences in how we handle the calculation of causal
predictability metrics under these two counting schemes.

3.7.4 “Super DAG” counting scheme

If the exhaustive “counting” of DAGs in the equivalence class represented
by a pattern is computationally intractable for patterns defined over large
numbers of variables, the problem of generating Super DAGs compatible
with a particular PAG is even worse. We provide a simplifying assumption
that each pair of variables in a PAG can have only one unique unmeasured
common cause, and yet the exhaustive generation of Super DAGs (and their
estimation) still becomes computationally intractable quickly.

Domain knowledge might provide other plausible assumptions; perhaps,
for example, we place a limit on the total number of unmeasured common
causes there may be in the true, underlying Super DAG generating causal
structure. This will at the very least extend the feasibility of this counting
scheme to somewhat larger sets of measured (or in our case, constructed)
variables. Future work should explore simplifying assumptions under which
iterating over Super DAGs represented by a PAG becomes computationally
tractable for larger numbers of measured or constructed variables while still
achieving good performance in estimating causal predictability metrics. One
might also consider counting Maximal Ancestral Graphs in the equivalence
class represented by a PAG.9

We now illustrate how we estimate statistical models and calculate causal
predictability metrics from Super DAGs in the simulation studies that com-
prise Chapter 4.

Transformation of Super DAG to Directed, Mixed Graph

Starting with a given Super DAG (containing both measured and latent
variables) in the set represented by a given PAG, we seek a simpler graph-
ical object from which we can estimate a statistical model, in our case a
linear structural equation model. We transform the given Super DAG into

9Richardson and Spirtes (2002) provide a method to generate the “canonical DAG” of
a MAG. Future work should consider: (a) iterating over such DAGs from MAGs repre-
sented by a PAG, or (b) another way of “counting” MAGs to calculate metrics for causal
predictability.
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L1 L2

Figure 3.4: A Super DAG that is converted to directed, mixed graph in
Figure 3.5 for SEM estimation

a directed, mixed (acyclic) graph on only measured variables. We elimi-
nate latent variables from a Super DAG by introducing bi-directed edges
between any two variables that share a latent variable as a common cause.
All directed edges linking measured variables in a Super DAG remain in
the mixed, directed graph. We allow that both a directed and bi-directed
edge can simultaneously obtain between a pair of nodes, corresponding to
variable pairs in the given Super DAG that have both a direct causal link
and share an unmeasured common cause. For example, the Super DAG of
Figure 3.4 is converted to the directed, mixed graph of Figure 3.5.

We now consider estimating structural equation models from graphs like
those in Figure 3.5 to carry out our proposed Super DAG counting scheme
in practice.

Estimation of SEMs from directed, mixed graph

From a Super DAG we have obtained a directed, mixed graph without cycles,
possibly having both bi-directed and directed edges between two variables.
Such graphs are common in the framework of structural equation models; bi-
directed edges represent correlated error terms (e.g., due to an unmeasured
common cause). Parameters associated with bi-directed edges represent
error co-variances. Appropriately, we have framed our discussion of causal
predictability metrics in terms of models like SEMs and now have a graph
from which we can specify and estimate a statistical model with standard
techniques. We can then calculate causal predictability metrics from a Super
DAG and model average over an appropriate set represented by a PAG.

Difficulties with SEM estimation

Of course, estimating structural equation models in this way is not without
its hazards. Since we estimate a SEM on data over measured variables, in
many cases Super DAGs represented by a PAG will be converted into di-
rected, mixed graphs that when parameterized for estimation (e.g., Figure

84



X Y Z

Figure 3.5: Directed, mixed graph resulting from Super DAG in Figure 3.4
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Figure 3.6: Parameterized SEM (correlated error terms omitted) specified
from directed, mixed graph of Figure 3.5

3.6) have zero or negative degrees of freedom and are thus unidentifiable.
Rather than simply discard all such unidentifiable parameterized models, in
simulation studies we make a simplifying assumption to achieve identifia-
bility. If any parameter on any directed path from any cause of the target
variable to the target is not identified, then for any two variables that have
both a directed and bi-directed edge between them, we constrain estimation
such that the two parameters are equal. For Figure 3.6, we would estimate
the model with the constraints that B1 = B3 and B2 = B4. This constraint
will make models identifiable, but we still may encounter models for which
we cannot stably estimate parameters due to local optima in estimation.
Also, this constraint is arbitrary; other constraints ought to be explored or
justified by domain knowledge.

Importantly, we only seek to make sure that all parameters/coefficients
along directed paths from direct causes of the target to the target are es-
timable so that we can calculate causal predictability metrics. However,
if one or more parameters along such paths do not have stable estimates,
we discard the SEM and its corresponding Super DAG from consideration.
Thus, generally, we do not (cannot) calculate an expectation, in practice,
over every possible Super DAG represented by PAG.

Using SEMs to Calculate Metrics

After estimating a SEM from data, calculating each of the proposed causal
predictability metrics is straightforward. The total effect of each direct cause
of the target is just the product of estimated coefficients along each directed
path from the direct cause to the target; näıve causal R2 is calculated from
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the un-manipulated, implied covariance matrix of the estimated SEM, and
the intervention causal R2 (for the “standardized” intervention setting every
direct cause by surgical intervention to a standard Normal distribution)
is calculated from simple manipulations of the estimated SEM’s implied
covariance matrix.

3.8 Summary

In this chapter, we introduced broad notions of the extent to which we can
predict a target from a statistical model and tied those notions to different
ways in which statistical models can be specified according to causal models
we can learn from data. Since learning causal models from observational
data generally does not result in a single causal model, we introduced sev-
eral “counting schemes” to deal with structure uncertainty represented by a
PAG. We considered several shortcoming of the different ways in which we
might handle this uncertainty before introducing concrete metrics of causal
predictability calculated as expectations over models represented by PAG
causal structures. We then consider various practical issues that will arise
when deploying these metrics and counting schemes in simulation and with
real-world data. In the following chapter, we pursue simulation studies to
determine the extent to which different ways of “counting” causal structures
represented by a PAG provide accurate estimates of true values of proposed
causal predictability metrics.

We then consider a simulation study incorporating these metrics to adju-
dicate the “best” among sets of constructed variables. Further, we consider
whether sets of variables that maximize causal predictability or expected
causal control are the same that maximize prediction without concern for
causation. An over-arching question for this latter simulation study is: does
(should) our scientific inference goals (i.e., prediction vs. causal control)
inform variable construction, or will the same set(s) of variables do equally
well for each purpose?
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Chapter 4

Causal Predictability,
Structure Uncertainty, and
Variable Construction:
Simulation Studies

In this chapter, we explore, via simulation studies, aspects of causal pre-
dictability metrics and “counting schemes” for causal structures over which
they are calculated. In §4.1 we determine the counting scheme that min-
imizes error for each causal predictability metric when data are generated
from known generating processes. In §4.2, we deploy causal predictability
metrics on problems of variable construction from “raw” data using counting
schemes chosen in §4.1.

These two simulation studies provide evidence for the following conclu-
sions:

• Conclusions #1 through #4 are summarized in Table 4.1. Conclusion
#1, for example, provides the counting scheme (i.e., the PAG Heuris-
tic) that best tracks the variable with maximum total effect when us-
ing the maximum expected total effect (M.E.T.E.) causal predictabil-
ity metric. However, the Pattern counting scheme best tracks the true
value of the total effect of the variable “chosen” by the M.E.T.E. causal
predictability metric (for generating Super DAGs not represented by
the complete PAG), whether or not that variable has the maximum
total effect in the generating model.
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# Causal Predictability
Metric

Maximizing Counting
Scheme

Section

1 M.E.T.E. Variable PAG Heuristic 4.1.3

2 Chosen M.E.T.E. Variable
Total Effect Value

Pattern 4.1.4

3 Average Näıve Causal R2 PAG Heuristic 4.1.5

4 Average Intervention Causal
R2

Super DAG 4.1.6

Table 4.1: Summary of Conclusions #1 through #4

• Conclusion #5: Overall, performance is better for inferred PAGs that
are not complete compared to complete PAGs. In §4.2 and Chapter
5, we resolve to only consider constructed variables over which we
learn PAGs that are not complete (i.e., not maximally qualitatively
uninformative about causal structure).

From Conclusion #5, we establish a baseline criterion for judging con-
structed variables that any set of constructed variables over which we infer
a complete PAG is discarded.

Understanding whether or not we must assume a target variable to be
causally “final” (i.e., last in a temporal ordering or otherwise without ef-
fects among variables under consideration) is important for applying these
methods in practice. The relationship between performance for counting
schemes and whether the target variable has effects in the generating model
is complicated.

• Conclusion #6: For qualitatively tracking the variable with maximum
total effect, performance is far better when the target variable is “final”
(i.e., has zero out-degree) (§4.1.3). Aside from the case of interven-
tion causal R2, when the inferred PAG is not complete, the target
variable’s status as final in the generating model generally improves
performance.1

• Conclusion #7: Complex counting schemes work best when they are
actually needed; performance usually improves as the number of la-

1When we infer a complete PAG, performance is better in cases with positive target
out-degree. However, we resolve to discard sets of constructed variables over which we
infer the complete PAG.
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tent causes of the target variable in the generating model increases.
(Appendix, Chapter 7)

In §4.2, we take up questions of variable construction, using causal pre-
dictability metrics to determine sets of constructed variables that “best”
support causal inference. Three major conclusions are demonstrated in this
section:

• Conclusion #8: Constructed aggregate variables that maximize causal
predictability metrics generally are not the same as the aggregate vari-
ables in the data generating process. (§4.2.3)

• Conclusion #9: Constructed variables that maximize causal predictabil-
ity metrics and those that maximize traditional prediction metrics
(without respect to causal structure) are generally not the same, demon-
strating that causal and predictive inference “come apart” with respect
to variable construction. (§4.2.3)

• Conclusion #10: Inferred causal structures (i.e., inferred PAGs) for
variables that maximize metrics of causal predictability in many cases
do not match the PAG one expects given the structure of the data
generating process. (§4.2.4)

We now turn to presenting data that support these conclusions. Within
each section, we note explicitly where we take evidence and support for each
conclusion to occur.

4.1 Performance of Counting Schemes for Causal
Predictability Metrics

In this section, we consider the extent to which three (Super) DAG counting
schemes allow us to estimate the true value of metrics for causal predictabil-
ity when we learn a PAG from data generated by ground truth Super DAGs.
We match each causal predictability metric with the counting scheme that
minimizes (relevant ways of quantifying) error. In §4.2, we use each causal
predictability metric with its “best” counting scheme in a simulation study
that involves the construction of aggregate variables from “raw” variables.
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4.1.1 Simulation Regime

To generate data from known causal structures, we consider the space of
Super DAGs on four measured variables (X1, X2, X3, and X4) and zero to
six latent variables (L1 through L6), comprised of 35,295 Super DAGs. Our
target variable is always X4. Conditional independence relations among the
four measured variables in 18,639 (52.8%) of these Super DAGs are repre-
sented by the complete PAG on X1, X2, X3, and X4. The complete PAG is
qualitatively maximally uninformative with respect to causal structure, and
we treat these Super DAGs separately in our simulation study. We consider
three strategies, including two different ways of pursuing the Super DAG
counting scheme in cases in which generating Super DAGs are represented
by the complete PAG:

• Simulation Strategy #1: Randomly sample generating Super DAGs
from the set of 16,656 Super DAGs that are not represented by the
complete PAG.

• Simulation Strategy #2: Randomly sample from the set of Super
DAGs represented by the complete PAG and consider a relatively small
subset of Super DAGs represented by the complete PAG when deploy-
ing the Super DAG counting scheme (i.e., a “non-exhaustive” Super
DAG counting scheme).

• Simulation Strategy #3: Randomly sample from the set of Super
DAGs represented by the complete PAG and consider all Super DAGs
represented by the complete PAG when deploying the Super DAG
counting scheme (i.e., an “exhaustive” Super DAG counting scheme).

In the first simulation strategy, we randomly sample 32,000 Super DAGs
from the set of Super DAGs that are not represented by the complete PAG,
treating each Super DAG as equally probable. We then instantiate a linear
structural equation model, “the generating SEM,” specified according to
the structure of the “generating Super DAG,” choosing edge parameters
and error variances randomly.2

We sample data (n=1,000) from the generating SEM and calculate the
true value of each causal predictability metric:

2We roughly use the default settings for randomly instantiating the parameters of a
“standardized” linear SEM found in the TETRAD suite of software with positive edge
coefficients and unit variances for each variable’s error term.
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• Näıve Causal R2: We generate predicted values for X4 based on sam-
pled values of the direct causes of X4 in the generating Super DAG
and their corresponding edge parameters in the generating SEM. We
then calculate the R2 value comparing the predicted values to the true
sampled values of X4.3

• Intervention Causal R2: We manipulate the implied covariance matrix
of the generating SEM such that each direct cause is (ideally) inter-
vened upon, with distribution set as Normal(0,1). We then specify a
regression model for X4 from the sub-matrix of this implied covari-
ance matrix containing only X4 and its direct causes in the generating
Super DAG.

• Maximum Total Effect (on X4): We calculate and store the individual
total effect of X1, X2, and X3 on X4 from the parameters of the
generating SEM, and determine the variable that has the maximum
total effect. We allow that no variable might have a direct causal
relationship with X4 and thus the maximum total effect could be zero.

Next, we deploy the FCI algorithm to learn a PAG over measured vari-
ables in the sampled data. From each inferred PAG, we consider each of
three counting schemes introduced in the previous chapter: the exhaustive
Super DAG counting scheme, the PAG Heuristic counting scheme, and the
Pattern counting scheme. We generate DAGs or Super DAGs represented by
the inferred PAG according to each counting scheme and calculate the aver-
age näıve causal R2, average intervention causal R2, and maximum expected
total effect variable and value for each of the sampled 32,000 generating Su-
per DAGs/SEMs (our instantiation of Simulation Strategy #1). We discard
Super DAGs for which we encounter any estimation problems (e.g., unstable
parameter estimates due to local optima in estimation) for any path from a
direct cause of the target to the target in their estimated linear SEMs. Re-
call that for Super DAGs with an unidentifiable parameter along a directed
path from a cause of X4 to X4, in which a pair of variables have both a
direct causal link and a latent common cause, we constrain parameter esti-
mates for the edge representing the direct causal link and a double-headed
edge between the pair to be equal.

To consider the 18,639 Super DAGs that are represented by the complete
PAG, we pursue the same simulation regime by two different strategies.

3One way to think of the true näıve causal R2 value is as the intervention causal R2

when the intervention is one in which each direct cause of the target is set to its distribution
in the sample.
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With one strategy we randomly sample 18,000 Super DAGs from among the
18,639 represented by the complete PAG, assuming each equally probable,
but we only consider 700 randomly sampled Super DAGs with the “Super
DAG” counting scheme. This is how we instantiate Simulation Strategy #2.

For Simulation Strategy #3, we randomly sample 400 Super DAGs from
among those represented by the complete PAG, again assuming each equally
probable, and we consider all 18,639 Super DAGs represented by the com-
plete PAG in the “Super DAG” counting scheme.

We can then consider the extent to which different counting schemes
approximate the true value of each causal predictability metric, as well as
the extent to which we qualitatively find the (correct) variable with max-
imum total effect for each of these three strategies (and characteristics of
underlying causal structures).

4.1.2 Stratification of Results

There are many possible ways to stratify the characteristics of generating
Super DAGs and the PAGs that represent them. For each causal predictabil-
ity metric, we begin by summarizing results over all sampled generating Su-
per DAGs, and then stratify results by salient features of generating Super
DAGs:

• Out-degree of the target variable in the generating Super DAG: Is the
target variable a cause of other variables under consideration, or is it
causally “last?”

• Number of latent causes of the target; see Appendix (Chapter 7).

Stratifications inform us as to how we might expect counting schemes to
perform for particular causal predictability metrics given domain knowledge
and/or assumptions about the underlying dynamics of systems we are trying
to model.

4.1.3 Maximum Expected Total Effect: Qualitatively Track-
ing Correct Variable

We begin with the simplest result: How often do the counting schemes
coupled with the Maximum Expected Total Effect (M.E.T.E.) metric choose
the “true” variable with maximum total effect (or judge correctly that no
variable has a total effect greater than zero)? This is a rough assessment
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Figure 4.1: Percentage of Simulated Generating Super DAGs for which we
recover the correct variable with Maximum Total Effect using the M.E.T.E.
Causal Predictability Metric by Counting Scheme and Generating Super
DAG structure; Summarizes Table 4.2

of the qualitative “correctness” (or error) of the three counting schemes for
the M.E.T.E. metric.

Results for the three Super DAG simulation strategies are provided in
Figure 4.1 and Table 4.24, as percentages (and counts) of instances in which
there are “matches” between the chosen variable with M.E.T.E. and the true
variable with maximum total effect. Note that, given four choices (X1, X2,
X3, and “No Variable”), the probability of choosing the correct variable by
chance, all other things equal, is 25%.

Overall, the PAG Heuristic counting scheme (narrowly) best tracks the
individual variable with maximum total effect (cf. Conclusion #1). Notably,
its performance in this task is similar to that of the “Super DAG” counting
scheme, despite the greater complexity (and in one case exhaustiveness) of
the latter approach. Further, performance for all counting schemes is better
in cases in which the generating Super DAG is not represented by the com-
plete PAG (support for Conclusion #5); in maximally uninformative cases
(i.e., generating Super DAGs represented by complete PAGs), we perform
poorly (indeed, worse than chance), but it is not clear that considering only
a small subset (700 of 18,639) of Super DAGs represented by the complete
PAG substantially hurts performance.

Figures 4.2-4.4 demonstrate that our ability to discover the correct vari-

4In Table 4.2, the column heading “All Super DAGs?” refers to whether the Super
DAG counting scheme considers all Super DAGs represented by the PAG inferred from
data simulated from the generating Super DAG.
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Simulation Strategy Counting Scheme: Correct
Count (%)

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 32,000 Yes 12,986
(40.57%)

12,998
(40.62%)

11,550
(36.1%)

2 Yes 18,000 No 3,816
(21.2%)

3,878
(21.5%)

3,361
(20.2%)

3 Yes 400 Yes 82 (20.5%) 89 (22.3%) 81
(20.3%)

Table 4.2: Overall Qualitative Match Counts for Maximum Expected Total
Effect (M.E.T.E.) Variable and True Maximum Total Effect Variable.

able with maximum total effect is significantly influenced by whether our
target is causally “final” (i.e., has zero out-degree). When the target has
out-degree zero in the generating causal structure (Table 4.3), we choose the
correct variable in the majority of cases in all simulation strategies. Again,
the performance of the Super DAG and PAG Heuristic counting schemes are
similar (nearly identical) across simulation regimes, and the Pattern count-
ing scheme has roughly the same performance as the Super DAG and PAG
Heuristic schemes in cases in which the generating Super DAG is represented
by the complete PAG.

Contrast these results with those in Table 4.4, wherein the target vari-
able is not causally “final,” in which our only hope of performing (barely)
better than chance are cases of generating Super DAGs not represented by
the complete PAG on which we deploy the Super DAG or PAG Heuristic
counting scheme. Performance is far worse than chance in cases in which
the generating Super DAG is represented by the complete PAG. This indi-
cates the importance of the target’s status as last in the causal ordering of
variables under consideration if we are to choose the variable with maximum
total effect with the M.E.T.E. metric (cf. Conclusion #6).

The Appendix to this chapter (Chapter 7) provides data, for each causal
predictability metric, stratifying generating Super DAG structures according
to the number of latent causes of the target to provide support for Conclusion
#7.

To summarize, the PAG Heuristic minimizes error in identifying the
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Figure 4.2: Qualitative Match Percentages for M.E.T.E. Variable and True
Maximum Total Effect Variable when Generating Super DAG is Not Rep-
resented by Complete PAG by Target Out-Degree

Figure 4.3: Qualitative Match Percentages for M.E.T.E. Variable and True
Maximum Total Effect Variable when Generating Super DAG is Represented
by Complete PAG with Non-Exhaustive Super DAG Counting Scheme by
Target Out-Degree
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Figure 4.4: Qualitative Match Percentages for M.E.T.E. Variable and True
Maximum Total Effect Variable when Generating Super DAG is Represented
by Complete PAG with Exhaustive Super DAG Counting Scheme by Target
Out-Degree

Simulation Strategy Counting Scheme: Correct
Count (%)

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 13,196 Yes 8,075
(61.19%)

8,073
(61.18%)

7,337
(55.6%)

2 Yes 6,003 No 3,240 (54%) 3,279
(54.6%)

3,261
(54.3%)

3 Yes 136 Yes 72 (52.9%) 72 (52.9%) 71
(52.2%)

Table 4.3: Generating Super DAGs with Target (X4) Out-Degree = 0: Qual-
itative Match Counts for M.E.T.E. Variable and True Maximum Total Effect
Variable.
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Simulation Strategy Counting Scheme: Correct
Count (%)

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 18,804 Yes 4,911
(26.1%)

4,925
(26.2%)

4,213
(22.4%)

2 Yes 11,997 No 576 (4.8%) 599 (5%) 370
(3.1%)

3 Yes 264 Yes 10 (3.8%) 17 (6.4%) 10
(3.8%)

Table 4.4: Generating Super DAGs with Target (X4) Out-Degree > 0: Qual-
itative Match Counts for M.E.T.E. Variable and True Maximum Total Effect
Variable.

qualitatively correct variable with maximum total effect using the M.E.T.E.
metric of causal predictability (Conclusion #1). Further, both maximally
uninformative cases (i.e., those of generating Super DAGs represented by
the complete PAG) and cases in which the target variable is not causally
“final” pose a significant problem for identifying the correct variable with
maximum total effect, supporting Conclusion #5 and Conclusion #6.

4.1.4 Maximum Expected Total Effect: Tracking Quantita-
tive Value

Whether or not a counting scheme picks out the variable with maximum
total effect in the underlying generating process, we are concerned that we
track the total effect of whatever variable is determined to have M.E.T.E.
That is, even if a variable has M.E.T.E. that is not the variable with max-
imum total effect in the generating SEM, we might still gain causal access
to the target variable via the M.E.T.E. variable. Thus, we compare the ex-
pected total effect for the M.E.T.E. variable with its true total effect in the
generating SEM. For these simulations, with edge parameters constrained
to be positive, the maximum possible value for any variable’s total effect is
1 while the minimum value is 0.

For quantitative results that follow, we present error/performance in two
ways:
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Figure 4.5: Overall Absolute Error of M.E.T.E. as Mean Percentage of Max-
imum Possible Error (for M.E.T.E. Variable); Summarizes Table 4.5

• Let s = # of generating SEMs for a simulation strategy (or a subset
thereof);
mci = calculated value of a causal predictability metric for generating
SEM i according to a particular counting scheme; and
mti = true value of a causal predictability metric for SEM i.
Absolute Error as Mean Percentage of Maximum Possible Error5 =

1
s

∑s
i=1 ( |mci−mti|

max(1−mti,mti)
∗ 100)

• Mean Squared Error (MSE) for calculated values of a causal pre-
dictability metric compared to their true values in the generating SEM.

Figure 4.5 summarizes Table 4.5, providing overall absolute error as
mean percentage of maximum possible error (mean absolute error percent-
age for short) for inferred M.E.T.E. variables’ values compared to the true
total effects for the M.E.T.E. variables in each of the three simulation strate-
gies. Table 4.6 provides overall mean squared error for inferred M.E.T.E.
variables’ values. Overall, we find that the Pattern counting scheme has
lowest mean squared error in all simulation strategies but is narrowly out-
performed for mean absolute error percentage by the Super DAG counting
scheme for complete PAG simulation strategies. Notably, counting scheme
performance is roughly similar within each simulation strategy for both ways
of quantifying error.

5The first argument of the max function contains 1 as the number from which we
subtract because it is the maximum possible value for the total effect of any given variable;
it is also the maximum possible R2 value for metrics we consider in sections to follow.
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Simulation Strategy Counting Scheme: Absolute
Error of Maximum Expected
Total Effect as Mean % of Max-
imum Possible Error

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 32,000 Yes 25.85% 26.28% 24.50%

2 Yes 18,000 No 34.90% 36.10% 35.63%

3 Yes 400 Yes 34.73% 35.70% 35.08%

Table 4.5: Overall Absolute Error of Maximum Expected Total Effect Vari-
able’s Estimated Value vs. True Value as Mean Percentage of Maximum
Possible Error

Simulation Strategy Counting Scheme: MSE of
Maximum Expected Total Ef-
fect Variable

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 32,000 Yes .0687 .0692 .0621

2 Yes 18,000 No .1020 .1039 .1016

3 Yes 400 Yes .1004 .1038 .0995

Table 4.6: Overall Mean Squared Error of Maximum Expected Total Effect
Variable’s Estimated Value vs. True Value
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Figure 4.6: Absolute Error of M.E.T.E. as Mean Percentage of Maximum
Possible Error (for M.E.T.E. Variable) for Generating Super DAGs Not
Represented by Complete PAG By Target Out-Degree

Figures 4.6, 4.7, and 4.8 compare mean absolute error percentage for each
simulation strategy, respectively, stratified by whether the target variable in
the generating Super DAG has zero or positive out-degree. Un-stratified,
overall error is also provided for comparison.

For generating Super DAGs not represented by the complete PAG, there
is no substantial difference in performance based on the out-degree of the
target, but we see that for both simulation strategies involving generating
Super DAGs represented by the complete PAG performance is substantially
worse when target has out-degree zero. Thus, for generating Super DAGs
represented by the complete PAG the target having out-degree zero makes it
easier to find the correct variable with M.E.T.E., but it is harder to discover
quantitative causal “strength” of the M.E.T.E. variable.

Tables 4.7 and 4.8 provide mean absolute error percentage and mean
squared error, respectively, for each counting scheme for generating Super
DAGs in which the out-degree of the target is zero. As noted, there is a sub-
stantial decrease in relative performance when the generating Super DAG
is represented by the complete PAG vs. non-complete PAG across counting
schemes; however, for generating Super DAGs not represented by the com-
plete PAG we find that performance is marginally better in terms of mean
squared error and slightly worse in terms of mean absolute error percentage
compared to overall performance. The Pattern counting scheme performs
best on generating Super DAGs not represented by the complete PAG, and
best performance is split across error measures between the PAG Heuristic
and Pattern counting schemes for generating Super DAGs represented by
the complete PAG.
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Figure 4.7: Absolute Error of M.E.T.E. as Mean Percentage of Maximum
Possible Error (for M.E.T.E. Variable) for Generating Super DAGs Repre-
sented by the Complete PAG with Non-Exhaustive Super DAG Counting
Scheme By Target Out-Degree

Figure 4.8: Absolute Error of M.E.T.E. as Mean Percentage of Maximum
Possible Error (for M.E.T.E. Variable) for Generating Super DAGs Repre-
sented by the Complete PAG with Exhaustive Super DAG Counting Scheme
By Target Out-Degree
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Simulation Strategy Counting Scheme: Absolute
Error of Maximum Expected
Total Effect as Mean % of Max-
imum Possible Error

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 13,196 Yes 26.62% 27.48% 26.17%

2 Yes 6,003 No 58.90% 52.98% 53.44%

3 Yes 136 Yes 55.37% 51.58% 51.77%

Table 4.7: Generating Super DAGs with Target (X4) Out-Degree = 0: Ab-
solute Error of M.E.T.E. Value as Mean Percentage of Maximum Possible
Error for Chosen Variable

For generating Super DAGs in which the target variable has effects (i.e.,
out-degree greater than zero), the Pattern counting scheme again performs
best with generating Super DAGs not represented by the complete PAG
(cf. Figure 4.6, Tables 4.9 and 4.10). The Super DAG counting scheme
performs best for generating Super DAGs represented by the complete PAG
(cf. Figure 4.7-4.8). Notably, performance for all counting schemes does
not degrade as substantially for generating Super DAGs represented by the
complete PAG compared to those not represented by the complete PAG
when the target has positive out-degree in the generating structure. Indeed,
performance for each class of generating Super DAGs is roughly comparable.

Importantly, our performance is roughly the same (and best) for generat-
ing Super DAGs not represented by the complete PAG, regardless of target
out-degree. When we are in the situation in which inferred, qualitative PAG
causal structure is informative, we are in the best position to infer the value
of the expected total effect of putative causes of the target variable.

So far, these simulations suggest on one hand that for qualitative accu-
racy (with respect to the choice of variable with maximum total effect), we
should use the PAG Heuristic counting scheme. On the other hand, if we are
only concerned for the quantitative accuracy of the estimate of expected total
effect, we should, perhaps surprisingly, deploy the Pattern counting scheme,
essentially disregarding information about latent confounding. However,
similar performance with respect to quantitative accuracy, especially be-
tween the Pattern and PAG Heuristic counting schemes, coupled with its su-
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Simulation Strategy Counting Scheme: MSE of
Maximum Expected Total Ef-
fect Variable

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 13,196 Yes .0552 .0573 .0520

2 Yes 6,003 No .1946 .1603 .1612

3 Yes 136 Yes .1734 .1579 .1540

Table 4.8: Generating Super DAGs with Target (X4) Out-Degree = 0: Mean
Squared Error of M.E.T.E. Variable’s Estimated Value vs. True Value

Simulation Strategy Counting Scheme: Absolute
Error of Maximum Expected
Total Effect as Mean % of Max-
imum Possible Error

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 18,804 Yes 25.30% 25.45% 23.33%

2 Yes 11,997 No 22.89% 27.66% 26.71%

3 Yes 264 Yes 24.10% 27.52% 26.48%

Table 4.9: Generating Super DAGs with Target (X4) Out-Degree > 0: Ab-
solute Error of M.E.T.E. Value as Mean Percentage of Maximum Possible
Error for Chosen Variable
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Simulation Strategy Counting Scheme: MSE of
Maximum Expected Total Ef-
fect Variable

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 18,804 Yes .0783 .0776 .0692

2 Yes 11,997 No .0556 .0756 .0718

3 Yes 264 Yes .0628 .0760 .0714

Table 4.10: Generating Super DAGs with Target (X4) Out-Degree > 0:
Mean Squared Error of M.E.T.E. Variable’s Estimated Value vs. True Value

Figure 4.9: Overall Absolute Error of Average Näıve Causal R2 as Mean
Percentage of Maximum Possible Error; Summarizes Table 4.11.

perior qualitative performance lead us to favor and deploy the PAG Heuristic
counting scheme for the M.E.T.E. causal predictability metric both in §4.2
and the practical case study in Chapter 5.

4.1.5 Näıve Causal R2

We summarize results for the (Average) Näıve Causal R2 causal predictabil-
ity metric for three counting schemes and simulation strategies in the same
way we do for the M.E.T.E. metric. Similar to results for the M.E.T.E.
metric, in Figure 4.9 and Tables 4.11-4.12 we see that the Pattern and PAG
Heuristic counting schemes perform best in tracking the true näıve causal
R2 of the generating SEM.

The Pattern counting scheme performs best regardless of whether the
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Simulation Strategy Counting Scheme: Absolute
Error of Average Näıve Causal
R2 as Mean % of Maximum
Possible Error

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 32,000 Yes 24.09% 23.58% 22.18%

2 Yes 18,000 No 41.50% 35.72% 29.98%

3 Yes 400 Yes 40.26% 35.29% 29.67%

Table 4.11: Overall Error for Average Näıve Causal R2 Value as Mean
Percentage of Maximum Possible Error Given True Näıve Causal R2 Value

Simulation Strategy Counting Scheme: MSE of Av-
erage Näıve Causal R2

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 32,000 Yes .1120 .0573 .0633

2 Yes 18,000 No .1513 .1127 .0985

3 Yes 400 Yes .1479 .1073 .0925

Table 4.12: Overall Mean Squared Error for Average Näıve Causal R2 Value
vs. True Näıve Causal R2 Value
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generating Super DAG is represented by the complete PAG in terms of mean
absolute error percentage, but in terms of mean squared error, the PAG
Heuristic modestly outperforms the Pattern counting scheme for generating
Super DAGs not represented by the complete PAG. Again, performance
degrades for generating Super DAGs represented by the complete PAG, but
all three counting schemes have relatively similar performance for generating
Super DAGs not represented by the complete PAG.

Considering the same stratifications we do for the M.E.T.E. metric, a
pattern similar to the overall, un-stratified result emerges. Either the PAG
Heuristic or Pattern counting scheme always achieves best performance. Fig-
ures 4.10-4.12 and Tables 4.13-4.14 show that the Pattern counting scheme
does modestly better than the other two counting schemes for generating
Super DAGs with zero out-degree for the target variable, but performance
degrades for the Super DAG counting scheme in all cases and for the PAG
Heuristic in both complete PAG generating Super DAG simulation strate-
gies. Perhaps surprisingly, for generating Super DAGs with target out-
degree greater than zero (cf. Figures 4.10-4.12 and Tables 4.15-4.16), per-
formance of the Super DAG counting scheme (in all cases) and PAG Heuris-
tic counting scheme (in most cases) improves compared to the case of zero
out-degree for the target, while the Pattern counting scheme’s performance
degrades.

For the näıve causal R2 metric of causal predictability, we find the as-
sumption that the target variable has no effects is not as important as it is
for our ability to choose the variable with maximum total effect. Notably,
however, these results mirror those we find considering the quality of our
quantitative estimates of the total effect of the M.E.T.E. variable.

The choice of a counting scheme to deploy in practice for this metric de-
pends on investigator expectations, intuitions, and background knowledge;
for generating Super DAGs not represented by the complete PAG, we con-
sider the PAG Heuristic to have a slight advantage over the Pattern counting
scheme. We use the PAG Heuristic in simulations in §4.2 and in the applied
case study in Chapter 5 for the Näıve Causal R2 metric.

4.1.6 Intervention Causal R2

We present results for the (Average) Intervention Causal R2 metric in the
same manner. Both overall and stratified results point to the superiority
of the Super DAG counting scheme for this metric. The Pattern count-
ing scheme is substantially worse than both the PAG Heuristic and Super
DAG counting schemes in nearly all cases; a quick inspection of the overall
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Figure 4.10: Overall Absolute Error of Average Näıve Causal R2 as Mean
Percentage of Maximum Possible Error: Generating Super DAGs Not Rep-
resented by the Complete PAG By Target Out-Degree

Figure 4.11: Overall Absolute Error of Average Näıve Causal R2 as Mean
Percentage of Maximum Possible Error: Generating Super DAGs Repre-
sented by the Complete PAG; Non-Exhaustive Super Counting Scheme; By
Target Out-Degree
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Figure 4.12: Overall Absolute Error of Average Näıve Causal R2 as Mean
Percentage of Maximum Possible Error: Generating Super DAGs Repre-
sented by the Complete PAG; Exhaustive Super Counting Scheme; By Tar-
get Out-Degree

Simulation Strategy Counting Scheme: Absolute
Error of Average Näıve Causal
R2 as Mean % of Maximum
Possible Error

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 13,196 Yes 24.86% 24.55% 19.11%

2 Yes 6,003 No 56.08% 45.47% 28.41%

3 Yes 136 Yes 55.92% 46.14% 28.85%

Table 4.13: Generating Super DAGs with Target (X4) Out-Degree = 0:
Error for Average Näıve Causal R2 Value as Mean Percentage of Maximum
Possible Error Given True Näıve Causal R2 Value

108



Simulation Strategy Counting Scheme: MSE of Av-
erage Näıve Causal R2

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 13,196 Yes .1393 .0528 .0411

2 Yes 6,003 No .2516 .1604 .0641

3 Yes 136 Yes .2564 .1555 .0618

Table 4.14: Generating Super DAGs with Target (X4) Out-Degree = 0:
Mean Squared Error for Average Näıve Causal R2 Value vs. True Näıve
Causal R2 Value

Simulation Strategy Counting Scheme: Absolute
Error of Average Näıve Causal
R2 as Mean % of Maximum
Possible Error

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 18,804 Yes 23.54% 22.89% 24.34%

2 Yes 11,997 No 34.20% 30.85% 30.77%

3 Yes 264 Yes 32.20% 29.71% 30.09%

Table 4.15: Generating Super DAGs with Target (X4) Out-Degree > 0:
Error for Average Näıve Causal R2 Value as Mean Percentage of Maximum
Possible Error Given True Näıve Causal R2 Value
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Simulation Strategy Counting Scheme: MSE of Av-
erage Näıve Causal R2

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 18,804 Yes .0929 .0606 .0789

2 Yes 11,997 No .1011 .0888 .1157

3 Yes 264 Yes .0919 .0825 .1083

Table 4.16: Generating Super DAGs with Target (X4) Out-Degree > 0:
Mean Squared Error for Average Näıve Causal R2 Value vs. True Näıve
Causal R2 Value

results in Figure 4.13 and Tables 4.17-4.18 as well as stratified results in
Figures 4.14-4.16 and Tables 4.19-4.22 make apparent this stark contrast in
performance.

Generally, the PAG Heuristic appears to roughly fall in the middle be-
tween the performance of the Super DAG counting scheme and that of the
Pattern counting scheme. In a case in which the PAG Heuristic out per-
forms the Super DAG counting scheme (i.e., target out-degree = 0 gener-
ating Super DAGs in Tables 4.19 and 4.20, Simulation Strategy #2), we
see that the PAG Heuristic narrowly outperforms the Super DAG counting
scheme. The performance gap between the PAG Heuristic and Super DAG
counting scheme is smallest for generating Super DAGs represented by the
complete PAG with zero target out-degree regardless of whether the Super
DAG counting scheme is exhaustive or not.

From these results, we choose the Super DAG counting scheme to assess
Average Intervention Causal R2 in the simulations of §4.2. However, in §4.2
we only consider search over four variables at a time and disregard sets of
variables from which we infer the complete PAG; this makes the Super DAG
counting scheme feasible. However, in the applied case study of Chapter 5
we will consider larger sets of constructed variables for which the Super DAG
counting scheme as explicated is no longer feasible, so we deploy the next
best counting scheme, the PAG Heuristic.

4.1.7 Methodological/Practical Implications and Limitations

To summarize, in simulations we use to consider variable construction prob-
lems in §4.2, we use the PAG Heuristic counting scheme for the M.E.T.E.
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Figure 4.13: Overall Absolute Error of Maximum Average Intervention
Causal R2 as Mean Percentage of Maximum Possible Error; Summarizes
Table 4.17

Simulation Strategy Counting Scheme: Absolute
Error of Average Intervention
Causal R2 as Mean % of Maxi-
mum Possible Error

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 32,000 Yes 13.20% 20.65% 31.37%

2 Yes 18,000 No 17.20% 28.05% 44.94%

3 Yes 400 Yes 15.97% 27.44% 43.99%

Table 4.17: Overall Error for Average Intervention Causal R2 Value as Mean
Percentage of Maximum Possible Error Given True Intervention Causal R2

Value
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Simulation Strategy Counting Scheme: MSE of Av-
erage Intervention Causal R2

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 32,000 Yes .0192 .0498 .1122

2 Yes 18,000 No .0260 .0757 .1692

3 Yes 400 Yes .0238 .0712 .1621

Table 4.18: Overall Mean Squared Error for Average Intervention Causal
R2 Value vs. True Intervention Causal R2 Value

Simulation Strategy Counting Scheme: Absolute
Error of Average Intervention
Causal R2 as Mean % of Maxi-
mum Possible Error

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 13,196 Yes 15.19% 25.22% 37.29%

2 Yes 6,003 No 22.88% 21.61% 38.63%

3 Yes 136 Yes 20.83% 21.72% 37.84%

Table 4.19: Generating Super DAGs with Target (X4) Out-Degree = 0: Er-
ror for Average Intervention Causal R2 Value as Mean Percentage of Maxi-
mum Possible Error Given True Intervention Causal R2 Value
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Simulation Strategy Counting Scheme: MSE of Av-
erage Intervention Causal R2

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 13,196 Yes .0206 .0563 .1261

2 Yes 6,003 No .0388 .0387 .1025

3 Yes 136 Yes .0363 .0394 .1027

Table 4.20: Generating Super DAGs with Target (X4) Out-Degree = 0:
Mean Squared Error for Average Intervention Causal R2 Value vs. True
Intervention Causal R2 Value

Figure 4.14: Overall Absolute Error of Average Intervention Causal R2 as
Mean Percentage of Maximum Possible Error: Generating Super DAGs Not
Represented by Complete PAG; By Target Out-Degree
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Figure 4.15: Overall Absolute Error of Average Intervention Causal R2 as
Mean Percentage of Maximum Possible Error: Generating Super DAGs Rep-
resented by Complete PAG; Non-Exhaustive Super DAG Counting Scheme;
By Target Out-Degree

Figure 4.16: Overall Absolute Error of Average Intervention Causal R2 as
Mean Percentage of Maximum Possible Error: Generating Super DAGs Rep-
resented by Complete PAG; Exhaustive Super DAG Counting Scheme; By
Target Out-Degree
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Simulation Strategy Counting Scheme: Absolute
Error of Average Intervention
Causal R2 as Mean % of Maxi-
mum Possible Error

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 18,804 Yes 11.79% 17.44% 27.22%

2 Yes 11,997 No 14.36% 31.27% 48.10%

3 Yes 264 Yes 13.46% 30.38% 47.16%

Table 4.21: Generating Super DAGs with Target (X4) Out-Degree > 0: Er-
ror for Average Intervention Causal R2 Value as Mean Percentage of Maxi-
mum Possible Error Given True Intervention Causal R2 Value

Simulation Strategy Counting Scheme: MSE of Av-
erage Intervention Causal R2

# Complete
PAG

# Super
DAGs
Sampled

All
Super
DAGs?

Super DAG PAG
Heuris-
tic

Pattern

1 No 18,804 Yes .0182 .0453 .1024

2 Yes 11,997 No .0196 .0941 .2025

3 Yes 264 Yes .0174 .0875 .1927

Table 4.22: Generating Super DAGs with Target (X4) Out-Degree > 0:
Mean Squared Error for Average Intervention Causal R2 Value vs. True
Intervention Causal R2 Value
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and Näıve Causal R2 metrics and the non-exhaustive Super DAG counting
scheme for the Intervention Causal R2 metric. In the applied case study
of Chapter 5 in which we consider sets of variables with more than four
variables, we use the PAG Heuristic counting scheme for all three metrics,
as it is not computationally feasible to iterate over the set of Super DAGs
represented by a PAG on more than four variables.

Heuristic methods to iterate over appropriate subsets of Super DAGs
represented by a PAG are a subject for future research. Ideally, we can
improve on the performance of the relatively simple PAG Heuristic for all
metrics with a computationally feasible counting scheme. Further, we might
improve on the performance of the Super DAG counting scheme(s) for the
Intervention Causal R2 or find a way to minimally decrease performance
while providing a computationally feasible heuristic to generate sets of Super
DAGs over which to average (i.e., provide a better Super DAG counting
scheme).

Beyond the limitations of the three counting schemes we consider, we
only consider their application to cases with four variables. Both the PAG
Heuristic and Pattern counting scheme can be feasibly applied in cases with
at least several more variables, but it less clear what an appropriate simula-
tion regime would look like to test the performance of the counting schemes
for causally insufficient cases. On four variables, we can consider the en-
tire space of generating Super DAGs with up to six unique latent variables.
As this still involves a simplifying assumption with respect to possible la-
tent variables, future work should consider what simplifying assumptions
are reasonable to consider cases with latent causes of more measured vari-
ables. This would allow for the specification of possible generating causal
structures and to pursue simulations similar to those we have considered so
far.

Despite the limited causal structures these simulations cover, the relative
performance of the counting schemes, especially that of the Pattern and PAG
Heuristic counting schemes for the M.E.T.E. and Näıve Causal R2 metrics, is
noteworthy. Both the Pattern and PAG Heuristic schemes discard significant
(if not all) information about latent confounding; in both cases, only DAGs
(i.e., without latent variables) are generated as causal structures represented
by a PAG. That either counting scheme out performs the more sophisticated
counting of Super DAGs represented by a PAG is an interesting result worthy
of further study. Further, they perform better than the Super DAG counting
scheme in most cases even when there are several latent causes of the target
variable, so their better performance in the aggregate is not due simply to
cases in which the generating causal structure is relatively simple (e.g., in
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terms of the number of unmeasured causes of the target variable of interest).

4.2 “Cloud” Variable Construction Simulations

We now consider situations in which we construct aggregate variables. We
develop a simulation regime in which we construct variables to maximize
each causal predictability metric according to each metric’s “best” counting
scheme (i.e., those counting schemes matched to metrics in §4.1). We be-
gin by describing the basic, underlying causal structure for data generating
processes for simulation, including (hypothetically) “raw” variables and ag-
gregate variables constructed from these raw variables. We simulate data
from models including constructed aggregate variables, but then assume
that we only have access to raw variables from which to construct aggregate
variables that maximize causal predictability metrics.

Results of this simulation help us to understand circumstances under
which variables that support causal inference may be different from variables
that are optimal for predicting a particular target variable or that are present
in the underlying data generating process. Understanding inferred causal
structures over these different sets of variables helps us better understand
how these two investigative goals (i.e., causal vs. purely predictive inference)
can come apart.

4.2.1 Simulation Regime

In our simulations, data generating processes are linear structural equation
models specified according to the basic causal structure of Figure 4.17 (in
most cases augmented or changed in ways we note as we proceed). We
suppose variables X0 through X8 and Y0 through Y2 are “raw” variables;
X0 through X8 are variables with Normal distributions with zero mean and
variance assigned randomly6 for each variable in each simulation instance,
and Y0 through Y2 have Normally distributed error terms with zero mean
and randomly assigned variance in all generating linear structural equation
models.

The model includes aggregate variables, “generating process aggregate
variables”: avg X0X1X2X3X4, avg X5X6X7X8, and
avg Y0Y1Y2, determined7 by raw variables, that are causally efficacious

6from a Uniform(1.0, 3.0) distribution
7In generating structural equation models, we consider a variable with exceedingly

small (or zero) error variance and constructed as the appropriate aggregate function (here,
average = avg) of raw variables to be deterministically constructed.
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(e.g., two aggregate variables are direct causes of T and the only cause
of Y0, Y1, and Y2 is avg X0X1X2X3X4). We call the sets of variables
that determine generating process aggregate variables “generating process X
Cloud #1” ({X0,X1,X2,X3,X4}) and “generating process X Cloud #2”
({X5,X6,X7,X8}). T is a fixed target variable. While aggregate variables
are in the generating causal structure, after generating data from a model,
we assume no knowledge of their constituent raw variables; we consider
simulated data for “raw” variables and T, seeking to construct variables
from raw variables to infer causes of and/or predict T.

More generally, we refer to Figure 4.17 and similar models as “cloud”
causal models, as there are many possible ways in which “raw” variables
might be grouped to construct aggregate variables (the possible groupings
being cloud-like). Assuming we do not know the variables that determine
generating process aggregate variables, we search for a set of three con-
structed aggregate variables. For each set of constructed variables we con-
sider in the search, we learn a PAG and calculate metrics of causal pre-
dictability to judge which set of aggregate constructed variables is “best”
for each metric. We also construct multi-variate linear regression models for
T to calculate the predictive R2 value for each set of constructed variables
so that we can compare sets of variables that maximize causal predictabil-
ity metrics to those that are judged as best predictors (without respect to
causal information).

Searching for constructed variables, we address a variety of questions.
For example, do aggregate constructed variables that maximize metrics of
causal predictability (e.g., M.E.T.E.) and those that maximize overall pre-
dictive accuracy match the generating process aggregate variables? How
does the complexity of the generating causal structure influence the answer
to this question and others we seek to answer? Do specific characteristics,
other than complexity, of the generating structure matter?

Inspecting the structure of Figure 4.17, one notes the peculiarity of con-
structing aggregate variables from “raw” variables that are independent of
each other. In most real world applications such aggregates seem unlikely
to be salient causal features. To pursue questions of complexity of generat-
ing models (i.e., of the complexity or density of raw variable “clouds”), we
consider augmenting the basic generating structure of Figure 4.17 by adding
causal relationships among raw variables that make up what we call the two
“X clouds.” We augment the data generating causal structure by adding
“within cloud” edges (e.g., X0 → X4, X5 → X7, etc.), “inter-cloud” edges
(e.g., X0 → X8, X7 → X2, etc.), or both.

We consider a variety of “within cloud” and “inter-cloud” edge config-
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Figure 4.17: Basic Generating “Cloud” Causal Structure
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Edge Configuration
Shorthand

“Inter-Cloud” Edges

NONE None

X4 → X5 X4 → X5

X5 → X4 X5 → X4

X0 X4 → X5 X0 → X5, X1 → X5, X2 →
X5, X3 → X5, X4 → X5

X5 X8 → X4 X5 → X4, X6 → X4, X7 →
X4, X8 → X4

X0 X4 → X5 X8 X0 → X5, X1 → X6, X2 →
X7, X3 → X8, X4 → X8

X5 X8 → X0 X4 X5 → X0, X6 → X1, X7 →
X2, X8 → X3, X8 → X4

Table 4.23: “Inter-Cloud” Edge Configurations for “X Clouds” in Generat-
ing Process Causal Structure for Simulation Study

urations for generating causal structures from which we simulate data. We
consider instances in which there are zero, two, and four randomly placed
“within cloud” edges in the two generating process “X Clouds,” coupled with
each of seven possible “inter-cloud” edge configurations (see Table 4.23).

We randomly instantiate parameters of a linear structural equation model
ten times for each combination of a number of “within cloud” edges and an
“inter-cloud” edge configuration, for a total of 210 simulated data sets (n =
1,000 for each data set). For each data set, we search over constructed aggre-
gate variables over “X Cloud” raw variables, assuming we know the structure
of the “Y Cloud” so avg Y0Y1Y2 is always a variable in the set under con-
sideration (along with the target variable T). We seek constructed variables
that maximize causal predictability metrics and best support causal infer-
ences about T. We now describe the search space for constructed aggregate
variables.

4.2.2 “Cloud” Search Space

To pursue the search for aggregate constructed variables, we delimit a rel-
atively limited space and exhaustively consider the entire space. For each
simulated data set, we consider every partition of the X Cloud raw variables
{X0,X1, ...,X8} into at least two sets with a minimum cardinality of three
each. In cases in which such partitioning produces three sets with three
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variables each, we drop one set. For simplicity, we only consider the aver-
age function; applying this function to the partitioned sets of raw variables
produces 1,050 sets of two disjoint constructed “X Cloud” variables with at
least three component raw variables. Examples include:

• {X0,X1,X2,X3,X4,X5} and {X6,X7,X8} [a (6, 3) partition]

• {X1,X4,X5,X7,X8} and {X0,X2,X3,X6} [a (5, 4) partition]

• {X0,X4,X7} and {X2,X6,X8} [a (3, 3, 3) partition from which we
omit one set of 3 “raw” variables]

To these sets of two constructed aggregate variables we add avg Y0Y1Y2
and T and learn a PAG. We then calculate causal predictability metrics and
predictive R2 values by estimating linear SEMs over the Super DAGs and
DAGs represented, according to each counting scheme, by each PAG. We
then compare (sets of sets of) constructed variables that maximize particu-
lar causal predictability and predictive metrics to the aggregate generating
process variables and describe the structure of PAGs learned over these
variables. We contrast these causal structures with those expected over
aggregate generating process variables.

4.2.3 Results: Constructed Variable Sets vs. Generating
Process Variables vs. Best “Predictive” Variable Sets

Recall that the three causal predictability metrics were each matched to a
counting scheme in §4.1. For intervention causal R2, we deploy the non-
exhaustive Super DAG counting scheme; for näıve causal R2 and M.E.T.E.,
we deploy the PAG Heuristic counting scheme. We use a shortened name of
causal predictability metrics to indicate the combination of this metric with
its corresponding counting scheme. Specifically, we call the näıve causal
R2 metric “Näıve,” the intervention causal R2 metric “Intervention,” max-
imum expected total effect “METE,” and the best predictive (non-causal)
R2 “Predictive.” Sample size n refers to number of simulation instances,
rather than the sample size of simulated data (which is always 1,000).

The first set of results provide answers to two important questions about
the comparison of variables that maximize causal predictability metrics (i.e.,
those that support causal inference) to generating process variables and
those that are simply best predictors of the target variable. We consider
results first for all 210 simulation-instances, and then we stratify the results
based on characteristics of the generating causal structures from which we
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simulate data, specifically “within cloud” and “inter-cloud” edge configura-
tions for these generating causal structures.

Figure 4.18 provides a stark demonstration that constructed variable sets
that maximize each of the three causal predictability metrics infrequently
match aggregate variables in the underlying data generating process (Con-
clusion #8). Meanwhile, those that maximize predictive R2 without respect
to causal information frequently match (in 69% of 210 simulation-instances)
aggregate generating process variables. Together, these facts further demon-
strate that variables that maximize causal predictability metrics are gener-
ally not the same as those maximize a purely predictive metric, e.g., linear
regression R2 (Conclusion #9). That is, predictive and causal inference can
“come apart” with respect to aggregate variables one might construct for
each inference task.

The pattern obtains regardless of differing levels of complexity in the
“X Clouds” in the generating process (see Figure 4.19-4.20). One notable
exception is the case of intervention causal R2 for two relatively complex
inter-cloud configurations, X5 X8 → X4 and X5 X8 → X0 X4. In both
of these configurations we see a greater percentage of matches, and both
involve all of the “X Cloud #2” variables having direct causal connections
into the “X Cloud #1” variables. Nevertheless, the percentages are relatively
small compared to those of the best predictive aggregate variables matching
generating process variables.

M.E.T.E. variable sets appear to have the least (indeed, a very small)
chance of matching aggregate generating process variables at least partially
because we seek a single variable in a set with maximum expected total
effect. We frequently encounter cases in which the single constructed aggre-
gate variable that has M.E.T.E. is an “omnibus” variable with five or six
raw variable components, including variables from both “X Cloud #1” and
“X Cloud #2” in the generating process. Given the basic generating causal
structure, this can be expected for particular simulated parameterizations
in which avg Y0Y1Y2 does not have M.E.T.E.; we might include variables
from “X Cloud #2” that have a direct effect on T via avg X5X6X7X8 (in
the generating process) and some raw variables from “X Cloud #1” that
have an indirect effect on T via the avg X0X1X2X3X4, Y0, Y1, Y2, and
avg Y0Y1Y2. We would expect that in some cases this would produce a
greater expected total effect than just including variables from “X Cloud
#2.”

However, this does not fully explain why the M.E.T.E. and other causal
predictability metrics almost always lead to variables that do not match
aggregate variables in the generating process. To further explain this non-
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Figure 4.18: Overall Percentage of Instances By (Causal) Predictability Met-
ric with Data Generating Process Variable Match (n = 210)

Figure 4.19: Percentage of Instances with Generating Process Aggregate
Variable Match by “Within Cloud” Edge Configurations (n = 70 simulation-
instances for each configuration)

Figure 4.20: Percentage of Instances with Generating Process Aggregate
Variable Match by “Inter-Cloud” Edge Configurations (n = 30 simulation-
instances for each configuration)
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matching phenomenon, we must consider how constructed aggregate vari-
ables support causal inference (in contrast to aggregate generating process
variables) in learning PAG structures that represent conditional indepen-
dence relationships among variables in our search.

4.2.4 Results: Inferred PAG Causal Structures vs. Gener-
ating Process PAG

Searching for constructed, aggregate variables that maximize causal pre-
dictability metrics calculated over inferred PAGs, we find several “exemplar”
PAGs that occur frequently. We describe the relative frequency with which
these exemplar PAGs occur and show that “generating process isomorphic”
PAGs, those one might expect to infer given the basic generating causal
structure, occur less frequently than might be expected.

We begin by describing the two “generating process” PAGs. For the
basic causal structure of Figure 4.17, using the generating process aggregate
variables (likely) leads to inferring the PAG of Figure 4.21. Because of
the independence of raw X variables, we expect avg X5X6X7X8 to be
independent of avg X0X1X2X3X4 and avg Y0Y1Y2. Further, we expect
avg X0X1X2X3X4 to be independent of T conditional on avg Y0Y1Y2.8

Because avg X5X6X7X8 and avg Y0Y1Y2 are independent but neither
is independent of T, we infer a collider at T, but otherwise we infer no more
edge orientations. If there were inter-cloud edges between raw variables in
generating process X Cloud #1 and X Cloud #2, we would expect to infer
the PAG of Figure 4.22, as avg X0X1X2X3X4 and avg X5X6X7X8 are
no longer independent9, but this allows us to infer no more edge orientations.

We call an inferred PAG a “generating process isomorphic PAG” if it has
the same structure as either Figure 4.21 or Figure 4.22 and constructed ag-
gregate variables are substituted for avg X0X1X2X3X4, avg X5X6X7X8,
or both.10 For example, for a particular instance of the underlying gener-

8Recall from Chapter 1 that the FCI algorithm we use to infer PAGs starts with a
complete PAG (i.e., o−o edges between every pair of variables). These two unconditional
independencies allow FCI to eliminate the following two edges: avg X0X1X2X3X4 o−o
avg X5X6X7X8 and avg X5X6X7X8 o−o avg Y0Y1Y2. FCI eliminates the o−o edge
between avg X0X1X2X3X4 and T based on the conditional independence of those two
variables given avg Y0Y1Y2.

9Note that avg X0X1X2X3X4 and T will still be independent given avg Y0Y1Y2
and avg X5X6X7X8.

10If constructed aggregate variables happen to exactly match generating process vari-
ables and either of these two PAGs is inferred, we also call this an instance of a generating
process isomorphic PAG.
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Tavg Y0Y1Y2avg X0X1X2X3X4

avg X5X6X7X8

Figure 4.21: PAG for Generating Process Aggregate Variables with Inde-
pendent Raw X Variables

Tavg Y0Y1Y2avg X0X1X2X3X4

avg X5X6X7X8

Figure 4.22: PAG for Generating Process Aggregate Variables without In-
dependent Raw X Variables

ating process causal structure, we might infer the same PAG structure as
in Figure 4.22 if we considered constructed variables avg X0X1X2 and
avg X5X6X7. We would say that we inferred a generating process isomor-
phic PAG, but this would be an instance in which we did not find a match
for generating process aggregate variables.

In what follows, we use X Cloud 1 and X Cloud 2 as “wildcard” vari-
ables to stand in for any (contextually appropriate) constructed, aggregate
variables over X raw variables, and Y Cloud stands in for avg Y0Y1Y2.
Specifically we use wildcards when we talk about exemplar PAGs that rep-
resent many possible inferred PAGs (e.g., in Figure 4.21 and 4.22,
avg X0X1X2X3X4 would be replaced by X Cloud 1 and avg X5X6X7X8
by X Cloud 2 in exemplars for generating process isomorphic PAGs). In
general, for PAGs we infer over constructed variables in one simulation in-
stance, there are many possible constructed variables that take on the same
conditional independence relationships (and thus the same PAG structure)
in other simulation instances.

In “generating process isomorphic” PAGs, we find two o→ edges, leaving
us with uncertainty about the status of Y Cloud (i.e., avg Y0Y1Y2) and
X Cloud 2 (i.e., avg X5X6X7X8 in Figures 4.21-4.22) as causes of T. Re-
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call that predictive R2 is calculated without respect to structure uncertainty
in the PAG (i.e., all three variables other than T are included in the predic-
tive R2 regression11). In the majority of simulation instances, constructed
variables that maximize predictive R2 match generating process aggregate
variables, but causal relations among variables that maximize causal pre-
dictability metrics generally are represented by other PAGs that entail less
uncertainty about causal structure.

We describe exemplars (and concrete examples) of these other PAGs
now. Then we provide statistics about the relative frequency with which
instances of these exemplars occur in our simulation results. This provides
a broader picture of how predictive and causal inference can come apart
when constructing aggregate variables to answer particular types of scientific
questions.

Figure 4.23 provides the exemplar for a PAG structure that appears fre-
quently in our simulation results; we call it “Y Structure #1,” noting the
so-called “Y Structure” formed by X Cloud 1, X Cloud 2, Y Cloud,
and T. In this PAG, a collider is oriented at Y Cloud, and there are two
unambiguously oriented edges: Y Cloud → T and X Cloud 2 → T. We
provide a step-by-step explanation of how FCI infers Y Structure #1 in
the Appendix (§7.2)12, but provide three important factors here. First,
X Cloud 1 is independent of T given both Y Cloud and X Cloud 2.
Second, X Cloud 1 is unconditionally independent of X Cloud 2. Third,
X Cloud 2 (however it is constructed) must not be independent of
Y Cloud (in contrast to the generating process isomorphic PAG). This
could happen, in the example of independent raw X variables, by includ-
ing one or more variables from the set {X0,X1,X2,X3,X4} in the set of
components for the X Cloud 2 aggregate constructed variable.

Importantly, this shows that “grouping” raw variables for constructed
aggregate variables in a way that is presumably unintuitive, given the gen-
erating causal structure, allows us to make unambiguous edge orientations
when doing inference with the FCI algorithm. Similar “unintuitive” group-
ings of variables arise for other exemplar PAG causal structures that result
from variables that maximize causal predictability metrics calculated over
such structures. This raises important issues with respect to discussion from

11For larger graphs, we might only include the target’s Markov blanket (i.e., the target’s
parents, children, and other parents of children in the PAG).

12Briefly, Y Cloud → T is inferred by the “away from collider” rule after we have
oriented the collider at Y Cloud, and the X Cloud 2 → T edge is inferred using the
“away from ancestor” and “definite discriminating path” rules. For details about the logic
of these orientations, see §7.2.
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TY CloudX Cloud 1

X Cloud 2

Figure 4.23: Y Structure #1 [Y #1]

TY CloudX Cloud 1

X Cloud 2

Figure 4.24: Y Structure #2 (Bi-Directed Edges) [Y #2]

Chapter 2 about the nature of scientific (natural) kinds and variables con-
structed to achieve particular scientific goals.

While the PAG Heuristic and Pattern counting schemes count Y Cloud
and X Cloud 2 as causes of T in every DAG represented by “Y Structure
#1” PAG, it is important to remember that the interpretation of PAG edges
allows for the possibility that X Cloud 2 is only an indirect cause of T.
That is, we would infer this PAG also, for example, if there were a latent
variable cause of X Cloud 2 and T (with no direct edge between the two),
X Cloud 2 were a cause of Y Cloud, and Y Cloud were a cause of T.
The Super DAG counting strategy includes such a PAG, as it iterates over
all Super DAGs represented by a PAG.

We call the PAG structure in Figure 4.24 Y Structure #2. It is inferred
under the same conditional independence conditions among constructed
variables as Y Structure #1, except that in this case X Cloud 1 is in-
dependent of T given Y Cloud, but the two variables are not independent
given both Y Cloud and X Cloud 2.

We call exemplar PAGs in Figures 4.25 and 4.26 the “X-Y Reversal
Structure” and “Simple Y” Structure, respectively. They both occur rela-
tively infrequently in our simulations, but both share, along with the other
exemplars, the characteristic that they have unambiguously oriented edges
into T.
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X Cloud 2

X Cloud 1 Y Cloud

Figure 4.25: X-Y Reversal Structure [X-Y Reversal]

TY Cloud

X Cloud 2

X Cloud 1

Figure 4.26: Simple Y Structure [Simple Y]

Figure 4.27 provides the frequency (as percentage of simulation instances)
in which each of the exemplar causal PAG causal structures results from the
set(s) of variables that maximize each of the three causal predictability met-
rics. In the Appendix to this chapter, we provide a breakdown, by “within
cloud” and “inter-cloud” edge configurations in the generating process, of
the frequency with which exemplar PAG causal structures result for each
causal predictability metric.

In Figure 4.27, we see that generating process isomorphic PAGs result
for the majority of simulation instances when considering the intervention
causal R2 metric and that Y Structures #1 and #2 are also prevalent for two
causal predictability metrics each. This establishes Conclusion #10: inferred
causal structures (i.e., inferred PAGs) for variables that maximize metrics of
causal predictability in many cases do not match the PAG one might expect
given the structure of the data generating process (i.e., generating process
isomorphic PAGs).

The prevalence of the generating process isomorphic PAG for the inter-
vention causal R2 metric has an interesting explanation that calls for further
investigation. Recall that we have paired this causal predictability metric
with the Super DAG counting scheme for this simulation study. Iterating
over Super DAGs on four variables represented by the PAG structure of
Figure 4.21, for example, results in only one Super DAG (out of 23) in
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Figure 4.27: Percentage of Simulation Instances with Exemplar PAG Struc-
ture(s) by Causal Predictability Metric (n = 210)

which T does not have at least one of avg Y0Y1Y2 or avg X5X6X7X8
(Y Cloud or X Cloud 2) as a direct cause (though also confounded by
a latent variable in some cases). Thus, the generating process isomorphic
PAG, considered according to the computationally expensive Super DAG
counting scheme, is not far removed, using the PAG Heuristic and Pattern
counting schemes, from the other exemplar PAGs in “counting” direct causes
of T in represented causal structure. Future research might shed light on
when PAG causal structures (or particular edges in PAGs) might give rise
to similar Super DAG counting situations.

4.2.5 “Cloud” Simulation Summary and Methodological /
Practical Implications

This “cloud” simulation study establishes the unobvious conclusion that pre-
dictive and causal inference can “come apart” when constructing variables
from raw data. Variables that maximize metrics of causal predictability
need not match aggregate variables in the underlying data generating pro-
cess, and causal structures that give rise to maximum values of our causal
predictability metrics need not match the expected PAG structure over gen-
erating process aggregate variables.

Thus, when scientific questions call for inferring causal structure based
on conditional independence relationships in observational data, if such data
manifest as “raw” variables not well-suited to answer such questions, care
should be taken to consider a variety of alternative, possible constructed

129



variables relying on domain knowledge as well as the type of data-driven
metrics (and modifications thereof) for causal predictability we have intro-
duced. In some cases, it may turn out that variables constructed according
only to their purchase of predictive access to a target variable are those that
also maximize our ability to make causal inferences about the target, but
these simulations demonstrate that this need not always be the case.

Further, these simulations raise interesting questions about the nature of
differences between variables that support causal inference (e.g., help us to
unambiguously orient PAG edges into a target variable) and variables that
provide merely predictive access to the target, leaving greater uncertainty
about causal structure. Recalling the discussion of natural kinds in Chapter
2, the reader may be tempted to interpret our results instrumentally. While
such inferred variables might be useful for causal/statistical modeling, vari-
ables we infer to support causal inference cannot be candidate natural kinds
because they do not match underlying generating process aggregate vari-
ables. However, it is not clear that such an inference is warranted.

While variables that support causal inference do not generally match
aggregate generating process variables, they do reflect important aspects of
the generating causal structure. For example, variables from which we infer
Y Structure #1 are constructed from raw X variables in such a way that
X Cloud 1 and X Cloud 2 are independent, but both are not indepen-
dent of Y Cloud. Inspecting particular simulation instances reveals that
the “groupings” of variables used in such constructions generally reflect the
causal structure of generating processes (i.e., we expect that X Cloud 1
and X Cloud 2 would be independent but both dependent on Y Cloud
given particular “groupings” of raw variables we find).

A priori, it is not clear we should privilege matching the generating
process aggregate variables as the only way to judge having inferred useful
scientific variables and/or natural kinds. Reflecting “true” characteristics
of generating process causal structure might be just as (or more) important
than capturing particular aggregates in the generating process to discover
natural/scientific kinds. Alternatively, an instrumental approach that inter-
prets our results to show that particular scientific questions call for particular
(and different) ways of constructing variables raises important and interest-
ing questions for future research. Indeed, we expect that differing choices
of target phenomena or variables (e.g., at different levels of aggregation or
salience) lead to different variables being appropriate for statistical and/or
causal modeling. In summary, there is room for both realistic, instrumen-
tal, and hybrid interpretations of our results. Without further research in
particular domains and more theoretical/simulation work, it is premature
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to stake a claim as to the best interpretation.

4.3 Chapter Summary

This chapter establishes ten substantive conclusions with respect to our
proposed metrics of causal predictability and the use of those metrics to
construct aggregate variables that support causal inference. We re-state
these conclusions before considering several limitations of the present study
and presenting future possibilities.

Our first four conclusions “match” each causal predictability metric to
the counting scheme that best tracks the relevant “true” value in underlying
generating processes we consider. In §4.1.3, we match the PAG Heuristic
counting scheme to the M.E.T.E. metric in terms of best tracking the vari-
able with maximum total effect. In §4.1.4, we match the Pattern counting
scheme to the M.E.T.E. metric in terms of best tracking the value of the
total effect of the variable chosen by the M.E.T.E. metric. In §4.1.5, we
match the PAG Heuristic counting scheme to the näıve causal R2 metric. In
§4.1.6, we match the Super DAG counting scheme to the intervention causal
R2 metric.

In establishing these four conclusions, we establish our fifth that perfor-
mance is better for inferred PAGs that are not complete (i.e., compared to
complete, maximally qualitatively uninformative PAGs). Thus, we only con-
sider constructed variables over which we learn PAGs that are not complete
in §4.2 and in Chapter 5.

Further, we establish that performance is far better when the target
variable is “final” (i.e., has zero out-degree) for qualitatively tracking the
variable with maximum total effect in §4.1.3. We note that when the in-
ferred PAG is not complete, the status of the target variable as final in the
generating model generally improves performance, except for the case of the
intervention causal R2 metric.

Chapter 7 (this chapter’s appendix) provides evidence for our seventh
conclusion. With increasing numbers of latent causes of the target variable in
the generating model, we generally see improved performance for all metrics;
graphs over which we iterate by counting schemes tend to help us account
for greater complexity in underlying generating models.

In §4.2, we provide evidence for three conclusions about constructed
aggregate variables that support causal inference, judging such support us-
ing causal predictability metrics. In §4.2.3, we provide evidence for two.
First, we find that constructed aggregate variables that maximize causal
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predictability metrics generally are not the same as the aggregate variables
in the data generating process. Second, those variables that maximize causal
predictability metrics also do not match those that maximize traditional pre-
diction metrics, so causal and predictive inference sometimes “come apart”
with respect to variable construction.

Finally, in §4.2.4, we show that inferred PAGs for variables that maxi-
mize metrics of causal predictability in many cases do not match the PAG
expected given the structure of the data generating process.

4.4 Limitations and Future Work

Simulations in this chapter have several important limitations to address in
future work. We briefly review several in this section before returning to
most in Chapter 6.

First, we restrict ourselves in both §4.1 and §4.2 to PAG inference on only
four (in §4.2, constructed) measured variables. We demonstrate in Chapter
5 that the PAG Heuristic counting schemes can be fruitfully deployed over
a few more than four variables, but future work should address this limita-
tion and test the limits of computational feasibility. One important issue
is the problem of appropriately “counting” Super DAGs represented by a
particular PAG. Scientifically reasonable simplifying assumptions (e.g., as
to the number of possible latent variables and their configuration) should
be sought to (possibly) make the problem tractable. Alternatively, Maximal
Ancestral Graphs (MAGs; Richardson and Spirtes 2002) represented by a
PAG might be considered to develop new metrics of causal predictability.
We return to this idea and similar topics in Chapter 6.

In §4.2, we assumed that the target variable is causally “final,” that the
target variable does not have any effects among variables under considera-
tion. In §4.1, we show that generally we do a better job of tracking causal
predictability metrics when this is the case; performance, for most causal
predictability metrics, degrades if the out-degree of the target is positive.
We have run several ad-hoc simulations that indicate that the assumption
is also important for the variable construction simulations of §4.2. If we
alter the basic generating process such that T is a cause of the Y raw vari-
ables, we still tend to infer constructed variables for which we find edges
into the target T from avg Y0Y1Y2. This is unfortunate because it does
not reflect the underlying causal structure of the generating process. On
the other hand, in the majority of cases we simulated we were not lead into
complete error, as we found that, for example, the X Cloud 2 variable (in

132



whatever way it was constructed) had the M.E.T.E., and, of course, the gen-
erating process aggregate variable with maximum total effect in these cases
is avg X5X6X7X8. Future work might shed light on improvement to these
metrics to better handle cases of target variables with positive out-degree.
Moreover, the assumption of target variables that are causally “final,” via
background knowledge and time ordering constraints, is appropriate in a
variety of applied settings (e.g., education where learning outcomes like
post-tests, final exams, and standardized tests all take place after students’
interaction with courseware, behavior in a course, and similar phenomena
that we model as possible causes of learning outcomes).

Finally, among other limitations we consider in Chapter 6, in §4.2 we
only consider one aggregation function (average), and the structure of the
generating process is limited. In real world applications, we expect that
salient aggregate phenomena may depend on a wide variety of functions
or transformations of underlying raw data and that the underlying data
will have possibly many thousands of variables. The present study merely
scratches the surface of addressing important questions about causal mod-
eling and large-scale data that are now common place in natural science,
social science, and policy settings.
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Chapter 5

Case Study: Causal Models
of Gaming the System and
Off Task Behavior in
Intelligent Tutoring Systems

Researchers constructing student-level statistical and causal models from
“raw” log data of education courseware must first construct variables to
represent student-level, aggregate features of interest.1 Rather than rely
solely on investigators’ intuitions and possibly ad-hoc choices, in this chapter
we propose search for constructed variables to represent aggregate student
behavior.

We use causal predictability metrics to simultaneously search for student-
level variables constructed from intelligent tutoring system (ITS) log data
and graphical causal models over those variables. Non-experimental, raw
data are collected from adult learners enrolled in (online and on-campus)
offerings of an algebra course at the University of Phoenix (UoP) to develop
causal explanations of in-course behavior, including “gaming the system”
and “off-task” behavior, much discussed in recent literature, in an ITS. Our
results compare favorably to those we describe for baseline causal models of
gaming the system and off-task behavior. We (qualitatively and quantita-
tively) compare causal models over: (1) variables described in previous stud-
ies (a baseline causal model), (2) previously described variables combined
with a novel student-level, aggregate variable discovered by our method,

1Portions of this chapter appear in Fancsali 2012.
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and (3) only novel variables discovered by our method. In Chapter 6, we
suggest methodological avenues for future research as well as extensions for
the online education and intelligent tutoring systems domains.

5.1 Related Work on Education Courseware and
Intelligent Tutoring Systems

While the novelty of this work arises from the combination of search for
constructed variables and graphical causal models, work in the educational
data mining community has engaged both research programs individually.
For example, recently, variable construction, or “feature engineering,” tech-
niques have been explored for modeling educational data (e.g., Arnold, et al.
2006; Baker, et al. 2008; Baker, et al. 2011; and others), including solutions
to the KDD Cup 2010: Educational Data Mining Challenge (e.g., Pardos
and Heffernan [in press]; Yu, et al. [in press]). Much of the focus of such
work (though not without exception, e.g., Baker, et al. 2008) has been to
develop predictive models for fine-grained target outcomes (e.g., whether a
student will be successful at her next opportunity to practice a particular
skill) rather than aggregate, student-level learning outcomes (e.g., course
final exams or standardized test scores).

Similarly, graphical causal models have also been used to model a va-
riety of educational data (e.g., Scheines, et al. 2005; Shih, et al. 2007;
Rai and Beck 2010, 2011), both from ITSs and other educational course-
ware. Fancsali (2011a, 2011b) explored the roots of the approach adopted
in this work. Generally, extant causal modeling of educational data assumes
a set of aggregate, student-level features constructed from domain knowl-
edge or (possibly data-driven) intuitions. We combine data-driven variable
construction (i.e., “feature engineering”) and algorithmic discovery of causal
models to help explain student behavior in ITSs.

5.2 Cognitive Tutors

Our study focuses on student behavior and interactions, in a UoP algebra
course, with the Carnegie Learning Cognitive Tutor (Ritter, et al. 2007), an
ITS based on the ACT-R theory of cognition (Anderson 1990, 1993). Cog-
nitive Tutor software probabilistically tracks student mastery of basic math
skills using a framework called Bayesian Knowledge Tracing (Corbett and
Anderson 1995). As students progress through course material, fine-grained
logs are generated for thousands of individual interactions per student (e.g.,
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hint requests, errors, whether student errors correspond to “known miscon-
ceptions” that trigger just-in-time feedback, etc.).

We seek to learn about aggregate student behavior in the Cognitive Tutor
from its fine-grained logs. Specifically, we focus on “gaming the system” and
off-task behavior in such environments. Such behavior has been the subject
of a great deal of recent research and literature, but little work has been
devoted to establishing whether relationships between gaming the system,
off-task behavior, and learning outcomes are causal.

5.3 “Gaming the System” and Off-Task Behavior
in Cognitive Tutors

Learners engage in “gaming the system” behavior in intelligent tutors by
taking advantage of tutor properties to advance through course material
without having to genuinely learn course material to provide correct answers
(Baker, et al. 2006). While gaming the system behavior involves engaging
the tutoring system (i.e., exploiting its properties), learners are off-task when
they disengage from the tutoring system and behave in ways unrelated to
learning tasks (Baker 2007). Both types of behavior have been associated
with decreased learning (Baker, et al. 2004b). In general, gaming behavior
falls into two categories (cf. Baker, et al. 2008):

1. “hint-abuse,” when one rapidly proceeds through hints provided by
the tutor, possibly until the “bottomed-out” (i.e., last available) hint
provides the correct answer (Aleven and Koedinger 2000), and

2. systematic/rapid “guessing,” when the student/user quickly enters a
range of possible answers until the correct answer has been provided.

Some gaming is described as “non-harmful” and not associated with
decreased learning (Baker, et al. 2004a, 2008). Much research on gaming
uses the moniker “harmful” in a non-causal way; the term only denotes
association with negative outcomes, without any implication of causation.2

We seek to provide evidence for (or against) a causal relationship between
gaming behavior (as well as off-task behavior) and learning.

2See, for example, discussion of “harmful” gaming the system behavior in Baker, et
al. 2008: “The word ‘harmful’ is used for brevity and simplicity in discussion; there is
still not conclusive evidence as to whether the relationship between harmful gaming and
learning is causal or correlational” (Baker, et al. 2008, pg. 291, footnote).
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With respect to “non-harmful gaming,” one possible explanation for the
lack of association between some gaming behavior and learning is that stu-
dents have already mastered parts of course material (cf. Cocea, et al. 2009).
Other work suggests that behavior that on the surface appears to be gaming
may actually be associated with better learning; students may, for example,
rely on “bottomed-out” hints to provide worked examples upon which they
reflect to improve learning (Shih, et al. 2011).

5.3.1 Software “Detectors”

Several “detectors” of gaming the system and off-task behavior have been
developed (e.g., Baker, et al. 2004a; Baker and de Carvalho 2008; Beck
2005; Walonoski and Heffernan 2006; Johns and Woolf 2006; Beal, et al.
2006). We deploy the gaming detector used in Baker and de Carvalho 2008
and the detector of off-task behavior used in Baker 2007. Both detectors use
Latent Response Models (Maris 1995) applied to a variety of “engineered”
or “distilled” features (Baker, et al. 2008) to code tutor transactions with a
numerical value to which a threshold/step function is applied (values greater
than 0.5 correspond to gaming or off-task behavior) to judge whether a
transaction corresponds to gaming or off-task behavior. We treat output of
such detectors as noisy, “fine-grained” observations of gaming and off-task
behavior; we seek constructed variables to represent aggregate gaming and
off-task behavior over these “fine-grained” observations, as (at least some
of) the causal influence of such behavior on learning is presumably only in
the aggregate.

5.3.2 Prior Work: Aggregate Predictive Models

Recent work (Cocea, et al. 2009) considers whether the influences of gaming
the system and off-task behavior on learning are immediate, aggregate or
both. We focus on their approach to the question of aggregate learning, as
we seek student-level, aggregate causal models.

In Cocea, et al. 2009, linear regression models of aggregate learning are
used to predict post-test scores for several Cognitive Tutor lessons. Variables
are constructed by aggregating individual tutor transactions into steps (or
“learning opportunities”) that correspond to consecutive transactions asso-
ciated with a single skill (VanLehn 2006). As with our gaming detector, the
data in Cocea, et al. 2009 do not distinguish between “harmful” and “non-
harmful” gaming, so they only work with transactions labeled as gamed
or not and off-task or not. Steps are considered gamed if they contain at
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least one transaction that a detector labels gamed, and steps are considered
off-task if they contain at least one transaction a detector labels off-task.

Aggregate variables are constructed for the number of gamed, non-
gamed, off-task, and, in some cases, total steps over particular lessons. Us-
ing these variables and pre-test and post-test scores, they specify regression
models to predict post-test results. For brevity, we omit their regression
models; our primary concern is how they model aggregate gaming and off-
task behavior and their overall conclusions. They report that gaming be-
havior is weakly associated with aggregate poorer learning and that off-task
behavior is strongly associated with aggregate poorer learning (Cocea, et al.
2009, pg. 512).

5.4 Data

We focus on 102 non-traditional, adult learners who enrolled in 2010 in
online and on-campus offerings of an algebra course at the University of
Phoenix. We focus on data from the last module of the algebra curriculum
used for this course. It is comprised of the following Cognitive Tutor Algebra
units:

• Systems of Linear Equations

• Systems of Linear Equations Modeling

• Linear Inequalities

• Graphing Linear Inequalities

• Systems of Linear Inequalities

Our target learning outcomes are students’ final exam scores for the
course, where pre-test results are also available.

5.5 Variable Construction Search Space

The aggregate models of Cocea, et al. 2009 provide variables constructed
over specific lessons of interest (e.g., “Scatterplots,” “Percents”) as counts
of gamed and off-task steps. A plethora of alternative variables can be con-
structed, many of which plausibly represent student behavior in an intelli-
gent tutor. More characteristics of students’ steps (e.g., attributes calculated
by gaming and off-task detectors; other characteristics tracked by Cognitive
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Tutor logs) may provide insights into aggregate behaviors and causes of stu-
dent learning. We consider alternative variable constructions to determine
those that underwrite (better) causal and predictive models of aggregate,
student-level learning. Having decided on a set of characteristics over which
to construct variables, we must consider different levels of aggregation and
aggregation functions.

5.5.1 Aggregation Level

We consider data from a module of an algebra course (broader in scope than
individual lessons in Cocea, et al. 2009), ranging over several units (with
corresponding sections) of material. Further there are 32 skills that students
work to master. It is possible that student behavior in one of these units,
sections, or skills is more important for aggregate student learning than be-
havior over the entire module. Identifying particular areas of course behavior
that are causally related to learning would help direct future interventions
on student behavior or course design.

Such an approach may allow us to pick apart aspects of “harmful” vs.
“non-harmful” (vs. possibly “helpful”) gaming behavior, as differences in
gaming may occur in different parts of a course. Students, for example, may
have previously mastered early material and thus engage in “non-harmful”
gaming early in the course, but as they progress similar behavior may have
a detrimental effect on learning as the student engages new material. We
investigate aggregation levels between individual transactions or steps and
the entire module.

5.5.2 Aggregation Function

Aggregate models in Cocea, et al. 2009 only consider variables as counts of
gamed or off-task steps. Other functions of characteristics of students’ steps
might manifest important aggregate student behaviors. Rather than simply
count a step as gamed or off-task because the detector labels one transaction
within the step as such, “alternative aggregation functions... could be used,
such as average and weighted average” (Cocea, et al. 2009, pg. 513). For
example, one might consider the average number of gamed transactions per
step (within a module, unit, section, or skill) as judged by a gaming detector.
Other aspects of student behavior might be captured by other aggregation
functions, such as the variance of “gamed” transaction (or step) counts. We
consider several functions over a variety of characteristics detailed in §5.7.
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5.6 Baseline Causal Model for UoP Data

We learn a causal model for our data using variables described by Cocea,
et al. 2009. This provides a baseline for causal predictability to compare to
that which we achieve with constructed variables discovered by our method.

We include the following student-level variables in our baseline causal
model:

• Module4 preTestPercentage: percentage score on a pre-test for
the module under consideration

• number steps offtask: count of steps (i.e., “learning opportuni-
ties”) in the module containing at least one off-task transaction

• total number steps: total count of steps through which a student
worked in the module. This varies between students because students
encounter different numbers of problems as the tutor adapts to their
performance and assesses skill mastery.

• number steps gamed: count of steps in the module containing at
least one gamed transaction

• final exam: algebra course final exam score

We apply the FCI algorithm to these variables constructed over collected
data, assuming that pre-test is prior in time to the rest of the variables and
that the final exam comes after all other variables. The PAG from this
search is provided as Figure 5.1. Average causal predictability is assessed
by taking the average näıve causal R2 value achieved over linear regression
models specified according to each DAG compatible with this PAG. In this
case, all compatible DAGs include number steps gamed as a cause of
final exam because of the unambiguously oriented edge between them, so
we infer that the negative association between number steps gamed (i.e.,
gaming behavior) and final exam (our learning outcome) is induced by a
causal relationship between the two. The average näıve causal R2 for this
PAG is 0.5028.

Further, gaming behavior (i.e., number steps gamed) “screens off” all
other variables in our analysis from learning. Off-task behavior is indepen-
dent of all the other variables under consideration, and students with better
pre-test scores tend to have fewer overall steps. Gaming behavior is pos-
itively associated with the total number of steps through which students
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Figure 5.1: Baseline PAG model with variables described in Cocea, et al.
2009; edges are marked +/− according to the sign of parameter values in
an estimated structural equation model.

work, suggesting that students that game the system also have to encounter
more problems and/or skill-practice opportunities to master material.

This baseline model demonstrates a stronger association (due likely to
a causal link) between aggregate gaming behavior and aggregate learning
than that reported in Cocea, et al. 2009.3 We do not find evidence that
there is a link between aggregate off-task behavior and learning. Having
established a baseline level of causal predictability, we now provide details
of our approach to variable construction to underwrite causal discovery.

5.7 Constructed Variables and Search

Many characteristics of students’ transactions and steps are tracked by Cog-
nitive Tutor logs. Further, more characteristics are calculated by “detectors”

3The PAG of Figure 5.1 is different from that reported in Fancsali 2012 because it in-
cludes total number steps rather than number steps not gamed. Regression results
reported by Cocea, et al. 2009 did not lead us to expect that gaming behavior would
“screen off” non-gaming behavior from aggregate learning, but that is the result reported
in Fancsali 2012. Despite small differences between the two models, results that gaming
the system is a cause of decreased learning and that it “screens off” all other variables
from final exam are common to both. Neither model provides evidence for a causal
relationship between off-task behavior and learning.
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as noisy, fine-grained measures from which we infer aggregate behaviors (e.g.,
gaming and off-task behavior). Rather than assume a priori that we know
which characteristics we should use to construct variables to develop success-
ful aggregate causal models, we consider search over variables constructed
from a variety of characteristics. In our analysis, we consider the following
step-level characteristics:

• counts of transactions: overall, correct, wrong, help request (i.e., hint
request), “known bugs”,4 gamed, off-task

• proportions of transactions: correct, wrong, help request, “known
bugs,” gamed, off-task

• transaction time taken

• average gaming and off-task estimate (i.e., average over step transac-
tions of raw inferred values from gaming and off-task detectors)

We also include counts of steps, gamed steps (+ proportions of gamed
steps), and off-task steps (+ proportions of off-task steps), but we must
ask questions such as: proportions relative to what? Over what part of
the course are counts considered? To answer such questions, we construct
aggregate variables by considering candidate solutions to the problems of
aggregation level and aggregation function. We consider aggregating over
the entire module, individual sections, units, and skills from the module,
as well as two clusters of skills.5 For each level of aggregation, we consider
several candidate functions (when appropriate) of step-level characteristics
to determine candidate constructed variables: sum, average, variance, max,
and min.6 For example, consider the variance of the count of help request
transactions per step over steps associated with the “Systems of Linear
Equations” unit; we represent such a constructed variable as:

UNIT systems-of-linear-equations var(count help request)

4“Known bug” transactions are those (tracked by the Cognitive Tutor) in which student
exhibit known misconceptions with respect to course material. Such transactions trigger
“just-in-time” hint responses from the tutor.

5The two skill clusters considered are for those skills that are rapidly learned and those
that are unlikely to be learned; these categories/clusters are used by “feature distillation”
techniques (Baker, et al. 2008) to prepare data for gaming and off-task detectors.

6Future work should provide means of determining whether particular transformations
of constructed variables are appropriate (e.g., taking the logarithm of variables that are
non-Normally distributed to possibly arrive at a constructed variable with a Normal dis-
tribution).
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A general schema for constructed variable names is as follows:

LEVEL level-name function(characteristic),

where LEVEL is the aggregation level (MODULE, UNIT, SECTION,
SKILL, or a SKILL-CLUSTER’s name), level-name is the name of
unit, section, or skill (omitted if aggregation level is skill-cluster or module),
function is the (abbreviation for the) aggregation function, and charac-
teristic provides the step-level characteristic or count of (gamed/off-task)
steps.

By applying various functions to characteristics at different levels of ag-
gregation, we “explode” a space of several hundred constructed variables.7

To reduce this “exploded” set of constructed variables, we adopt a relatively
simple approach to dimensionality reduction based on the maximization of
causal predictability assuming the possible presence of unmeasured common
causes. We first “prune” the “exploded” set down to a smaller, manageable
set. Pruning removes uninformative and/or redundant variables; for highly
correlated pairs of variables, we remove the variable with lower correlation
to the target variable. We rank variables that “survive” based upon their
correlation to the target. In our analysis, we “keep” the top twenty variables.
Starting with a smaller set of top ranked variables, we iteratively, randomly
select an even smaller set of variables for removal and insert other randomly
selected variables from the larger post-pruning set. With each of several
hundred iterations, we apply the FCI algorithm and calculate the value of
causal predictability metrics afforded by the PAG inferred over the set of
constructed variables. Our results describe the sets of constructed variables
(and corresponding PAGs) that maximize each of the causal predictability
metrics.

5.8 Results

Recall that in the last chapter, we resolved to pair each metric for causal
predictability with the best, computationally feasible counting scheme. This
resolution had us use the PAG Heuristic counting scheme for each of the
three causal predictability metrics. We first present an improved, augmented
version of the baseline causal model based on our results. We then specifi-
cally delve into details of results for each causal predictability metric, pre-
senting constructed variables and corresponding PAGs for each. Recall that

7More sophisticated approaches are possible, some of which are considered in Fancsali
2011b. This is also an area for future research.
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our target learning outcome is final exam, the final exam score for the
UoP Algebra course under consideration.

5.8.1 Improving the Baseline Causal Model

One important variable we find by search in the manner we have described
is an aggregate at the level of the entire module:

MODULE sum(count known bugs).

This variable represents a student’s count of “known bug” or “miscon-
ception” transactions in the module. That the Cognitive Tutor tracks many
misconceptions allows it to provide relevant, just-in-time feedback to the
student about errors made. Before considering the full causal model for the
constructed variables we discover, we first explore augmenting the baseline
causal model by including MODULE sum(count known bugs) and us-
ing FCI for structure search with the same background knowledge deployed
to infer the baseline model. The result is the PAG of Figure 5.2.

This augmented causal model provides us with greater causal predictabil-
ity than the baseline model; the average8 näıve causal R2 value is 0.5816. We
here identify a causal relationship between students’ exhibition of miscon-
ceptions and learning. Further, we see that the causal relationship between
gaming the system behavior and learning is mediated by the production
of known misconceptions; the latter is a more proximate cause of learning
in a causal chain. As may be expected, higher pre-test scores are associ-
ated with less off-task behavior, less gaming the system behavior, and fewer
overall steps encountered as students progress through course material, sug-
gesting it takes students less practice (e.g., fewer problems) to achieve skill
mastery.

Variables at finer-grained levels of aggregation (i.e., at levels of individ-
ual skills, section, units, or skill-clusters), however, might help us to infer
causal relationships among these in-course behaviors better.9 We pursue this

8The astute reader notices that in every DAG compatible with the PAG of Figure 5.2,
by the Pattern or PAG Heuristic counting scheme, MODULE sum(count known bug)
is a cause of final exam, so the näıve causal R2 value is constant across all compatible
DAGs. Notably, this would also be the case for Super DAGs represented by the PAG
according to the Super DAG counting scheme; we do not deploy the Super DAG counting
scheme in our case study, however.

9Constructed variables at a finer-grained level of aggregation may also be easier (or
more plausible) targets for conceivable future interventions to help “close the loop” from
observationally inferred causal claims to effective interventions.
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MODULE sum(count known bug)
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number steps gamed
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Figure 5.2: PAG resulting from FCI search over baseline constructed vari-
ables augmented by the module level count of student “known misconcep-
tions” (i.e., “bugs”).
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question by considering the complete results of our search for constructed
variables that maximize causal predictability metrics.

5.8.2 Näıve Causal R2 Search Results

Before describing our results, we provide details of the training and test
regime with which we test the extent to which models over constructed
variables may over-fit the data. With only 102 learners in our sample, we
decided not to “split” the data into a training set and test set based on
members of the sample, but rather to split based on random sampling of
students’ steps. Our training set consists of variables constructed over 80%
of steps randomly sampled over all 102 students. Our test set consists of
those same constructed variables, but computed with the remaining 20% of
steps for each student. We report training and test results for the näıve
causal R2 causal predictability metric, but only training set results for the
other causal predictability metrics.

The PAG causal model, inferred on the training set, over the set of
constructed variables that maximizes average näıve causal R2 is illustrated
in Figure 5.3 (average näıve causal R2 = 0.6107). We assess model over-
fit in two ways. Assuming the PAG structure learned from the training
set, we calculate average causal R2 achieved on the test set by averaging
over regression models specified from compatible DAGs. We set parameters
for these test set regression models in two ways: (1) parameters fixed as
those learned in the regression for each DAG for the training set, and (2)
parameters re-learned for test set data. With fixed parameters, we achieve
average näıve causal R2 = 0.5431 on the test set; re-learning parameters, we
achieve average näıve causal R2 = 0.5504. In either case, over-fitting does
not appear to be a significant problem for our method.

Qualitative causal structure of the resulting model provides details as
to possible causal linkages between actions and behaviors in the tutor and
learning outcomes. We find one other possible direct cause of final exam,

UNIT systems-of-linear-equations avg(pct known bug).

This represents the average percentage of known bug/misconception
transactions per step in the unit on systems of linear equations. The sign
of its association is consistent with that for overall misconceptions, but this
may point to an important unit of the course in which such behavior is
prevalent. On statistical grounds, rather than on the basis of background
knowledge or expert opinion (which were not provided as input to FCI), we
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Figure 5.3: PAG and constructed variables that maximize average näıve
causal R2 using the PAG Heuristic counting scheme

orient MODULE sum(count known bug) as an unambiguous cause of
final exam. This result is consistent with the improved baseline model.

5.8.3 Intervention Causal R2 Search Results

Similar to the PAG model that maximizes average näıve causal R2, we find
MODULE sum(count known bug) to be an unambiguously oriented di-
rect cause of (and negatively associated with) final exam in the PAG
model, inferred without background causal knowledge or expert opinion,
with variables that maximize average intervention causal R2 (Figure 5.4).
Maximum average intervention causal R2 is 0.582.

Interestingly, we find that the average over steps of the average gaming
estimate for transactions per step in a graphing skill, “Calculate Coordinates
of Intersection,” is negatively associated with the following three variables:

• average number of help requests per step for those associated with the
“Find X Any Form” skill,

• maximum number of misconceptions or “known bugs” over steps as-
sociated with the “Calculate Graph Characteristic” skill, and

• total overall exhibition of misconceptions in this module of the course.

On the surface this contrasts with our baseline and augmented baseline
causal models, as we saw that “gaming the system” behavior in the aggregate
is a cause of increased manifestation of “known misconceptions,” and this is
a negative association. One possible explanation is that we have found an
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Figure 5.4: PAG and constructed variables that maximize average interven-
tion causal R2 using the PAG Heuristic counting scheme

example of “non-harmful” gaming; students may, for example, seek worked
examples by reaching “bottomed out” hints (Shih, et al. 2011) in problems
associated with this graphing skill that in turn decrease their reliance on
hint/help requests for “Find X Any Form” and their incidence of manifesting
“known misconceptions” in “Calculate Graph Characteristic.”

5.8.4 Maximum Expected Total Effect Search Results

Our theory of non-harmful gaming is possibly bolstered by maximum ex-
pected total effect (M.E.T.E.) search results, presented in Figure 5.5. We
find that the variable with M.E.T.E. is a variable that tracks the average over
steps of the average gaming the system estimate10 for transactions per step
in a graphing skill, “Calculate Coordinates of Intersection.” Its expected
total effect = 0.626. As in Figure 5.3, we also find that a variable associ-
ated with “known misconception” dealing with systems of linear equations
is a possible cause of final exam. Further, students’ increased production
of hint/help requests in another section on systems of linear equations are
inferred as a cause of decreased learning. This negative association between
increased hint requests and learning is consistent with recent findings (Shih
2011).

10Unfortunately, interpreting this variable is at best tricky. Baker provides a guideline
whereby the gaming the system “estimate,” generated by the latent response model at the
heart of the detector, is used to say whether a particular transaction or step in the tutor
is “gamed” or not, but there is no discussion of practically using the raw gaming estimate
beyond the guideline that transactions with values ≥ 0.5 are judged “gamed.”
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Figure 5.5: PAG and constructed variables that provide maximum expected
total effect using the PAG Heuristic counting scheme

5.8.5 Summary of Results

Our primary contribution establishes that at least one variable, directly
tracked by Cognitive Tutor logs, mediates the likely causal relationship be-
tween “gaming the system” behavior and learning. Our results are thus
consistent with the correlational findings in Cocea, et al. 2009, and they
provide novel evidence for causal relationships using observational data. Fi-
nally, off-task behavior does not seem to be an important predictor of, or
have a causal link to, aggregate learning, indicating that the association
found in Cocea, et al. 2009 is not likely due to off-task behavior causing
decreased learning.

These results raise a number of other questions. Our noted primary
contribution comes from a causal model that integrates a variable found
by a data-driven variable construction procedure with variables constructed
from intuition and domain theory. This is perhaps a virtue. It will be impor-
tant to improve the interpretability of variables in causal models that result
from any data-driven variable construction procedure. Better procedures,
perhaps agglomerating or clustering sections, units, and skills of course ma-
terial, are likely to improve interpretability. We return to this problem in
the next chapter.

Questions remain about how interventions might be directed at pre-
venting “gaming the system” behavior that is harmful to student learning.
Further, the constructed variable set for search can be refined in a number
of ways that would enhance interpretability of our results. It seems likely
that despite our efforts to aggregate over fine-grained logs at the levels of
skills (+ two small clusters thereof), sections, units, and at the module level,
there are likely other important, more interpretable aggregation levels that
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will be fruitful to pursue in future work.
Other important behavior, student affect (Baker, et al. 2012), and dif-

ferent target outcomes might also be integrated into a procedure similar to
the one we outline to develop richer causal models of learning in ITSs. In the
following chapter, we propose several extensions for future research, some of
which are general and methodological and others that are specifically aimed
at developing better causal models of learning in ITSs.
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Chapter 6

Future Directions

In this chapter, we provide a host of future directions for this research pro-
gram. We begin with several broad methodological concerns before briefly
discussing how several other disciplines might benefit from this work. Fi-
nally, we propose several avenues for intelligent tutoring systems research
and education research more generally.

6.1 Improved Counting Schemes

We presented three counting schemes in Chapter 3 that we evaluated in
Chapter 4. We deployed the so-called PAG Heuristic counting scheme in
Chapter 5. Despite the relatively comparable performance of the PAG
Heuristic and Super DAG counting schemes under many circumstances, it
is possible that other schemes may have improved performance with respect
to ground-truth values of causal predictability metrics. We consider several.

6.1.1 MAGs + Canonical DAGs

One way in which the PAG Heuristic counting scheme is heuristic is that
it counts DAGs “represented” by a PAG by a relatively rough interpreta-
tion of PAG edges. Of course, properly interpreted, PAGs do not represent
sets of DAGs. Rather, they represent equivalence classes of Maximal An-
cestral Graphs (MAGs). Spirtes and Richardson (2002) discuss causal and
statistical reasoning with MAGs and also provide a procedure for inferring
a “canonical DAG” from a MAG.

One possible new counting scheme generates the set of MAGs represented
by a PAG and, for each MAG, generates the canonical DAG associated
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with it. We can then calculate causal predictability metrics over this set of
(canonical) DAGs in the same way we do for the PAG Heuristic and Pattern
counting schemes.

6.1.2 Local Algorithm for MAG Iteration

Maathuis, et al. (2009) provide an algorithm to iterate over a subset of
DAGs represented by a pattern. The algorithm uses only local graph infor-
mation, so it is computationally tractable, even on thousands of variables,
for relatively sparse graphs. Such an algorithm might be extended to MAGs
represented by a PAG to (possibly) make the proposal of §6.1.1 feasible even
over large numbers of measured variables.

6.1.3 Graph Priors

We assumed a uniform distribution over DAGs and Super DAGs represented
by a PAG, so the expected value of each causal predictability metric was
just its average value over represented DAGs or Super DAGs. In many do-
mains we have prior knowledge that allows us to place prior distributions
over DAGs or Super DAGs represented by a PAG. Specifically, prior knowl-
edge should at least provide graph characteristics that help to inform prior
distributions for graphs. For example, we may know that some variable X
is not a direct cause of Y because of an intermediary variable Z, so graphs
with a direct edge between X and Y (and/or those without a directed path
from X to Y passing through Z) might be assigned zero (or at least a rela-
tively low) probability. This provides another way in which domain theory
can inform the data-driven procedures we propose.

6.2 Causal Predictability Metrics

A multitude of alternative metrics (and modifications of proposed metrics)
might usefully capture aspects of the extent to which a particular (set of)
variable(s) provides causally predictive access to a target variable. We con-
sider several.

6.2.1 Minimum Total Effect

On several occasions, we noted that Maathuis, et al. (2009) pursue a dimen-
sionality reduction strategy based on inferred patterns over high dimensional
data. They propose to choose variables from a large set of variables based
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on the value of their minimum total (causal) effect; variables with relatively
large values for their minimum total effect over the set of values calculated
from DAGs represented by a pattern are those that should be the focus of
future interventions. The metric we proposed based on total effect had us
take the set of variables with the single variable with maximum expected
total effect, but we might have also considered the set of variables that pro-
vides the single variable with the largest minimum value for the total effect
over DAGs or Super DAGs represented by a PAG. This strategy would seem
to represent a relatively risk averse strategy for choosing sets of constructed
variables.

6.2.2 Maximum Total Effect

The opposite of the minimum total effect causal predictability metric would
have us seek the set of constructed variables containing the single variable
that has the largest single value for the total effect over all DAGs or Super
DAGs represented by a PAG. This represents a “high-risk, high-reward”
strategy to judging sets of constructed variables.

6.2.3 Regression Model BIC Score

Proposed metrics that called for maximizing regression model R2 values do
so without judging whether small increases in (adjusted) R2 are statisti-
cally significant. Raftery (1995) proposes the calculation of an approximate
Bayesian Information Criterion (BIC) score (Schwarz 1978) from a regres-
sion model, suggesting that a difference of 10 in this BIC score is roughly
equivalent to a statistically significant difference in model fit for an appro-
priate statistical test at the α = 0.05 significance level. One could use this
BIC score for regression models specified according to the causal structure
of DAGs or Super DAGs represented by a PAG as an alternative causal
predictability metric.

6.3 Aggregation Functions Other than Average

In Chapter 4, we only considered variables constructed as the average of
hypothetical “raw” variables. Models in Chapter 5 included variables con-
structed according to other functions, e.g., sum, maximum, minimum, and
variance. These functions capture important features of interest for a va-
riety of domains and applications, but whether specific care need be taken
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to construct variables according to these functions remains a question for
future research.

6.4 New Domains

6.4.1 Economics

Many commonly reported economic statistics (e.g., unemployment and in-
flation rates) are generally calculated from fine-grained raw and survey data.
The United States Bureau of Labor Statistics’ Consumer Price Index (CPI),
for example, is calculated according to prices consumers pay for a basket of
a wide variety of goods over disparate economic regions. The CPI “measures
inflation as experienced by consumers in their day-to-day living expenses”
(U.S. Bureau of Labor Statistics 2013). Such (often complex) calculations
are determined by expert knowledge and long-standing convention, but in-
sofar as causal inferences about the impacts of policy on aspects of inflation
(or unemployment rates, etc.) are concerned, data-driven analysis of index
construction is a target for future research.

Similarly, data from the United States Census pose many problems for
construction of variables to represent features of (at least) economic, soci-
ological, and political interest. Raw census data have fine (and irregular)
granularity. Consider the representation of age in census data: “age brack-
ets” are given at levels such as “number of individuals of age 21,” “number
of individuals aged 22 through 24,” (in a particular census “tract” or vot-
ing districts comprised of multiple tracts) and so on. Including similarly
fine-grained measures of other socio-demographic categories, the number of
dimensions quickly becomes large relative to the sample size. Thus, the
data are not immediately amenable to analysis by traditional statistical
techniques. Further, it is not immediately apparent how variables at such
a “fine” level could be meaningfully interpreted in a causal or predictive
model.

We have explored the possibility of identifying predictors and causes of
voting behavior from census data, particularly focusing on data from the
1990 U.S. Decennial Census for voting districts in Allegheny County, Penn-
sylvania, and the outcome of a referendum vote on the 1997 Regional Renais-
sance Initiative. We have made some progress in constructing variables that
provide information about aggregate characteristics of interest, including
age, education, and income levels as possible causes of voting behavior, but
further work on such data (and its causal interpretation) is necessary. We
omit detailed analyses for brevity, merely noting that the problem remains

154



outstanding.

6.4.2 Ophthalmology

An open problem in ophthalmology is to infer predictors and causes of glau-
coma by discovering salient regions of the eye from high-dimensional raw
data. Optical coherence tomography (OCT) provides physicians with ac-
cess to fine-grained, “raw” measures of a variety of ocular characteristics.
Previous predictive modeling work focuses on characteristics of the optic
nerve head (ONH) as well as the retinal nerve fiber layer (RNFL) of the eye
(Burgansky-Eliash et al. 2005; Townsend et al. 2008).

One might also seek to discover (characteristics of) regions of the eye
that cause glaucoma. After identifying key regions of the eye, including
physiological and other factors in models might help determine whether some
factors play greater causal roles (or perhaps mediate causal relationships)
to better understand the disease. Even in the absence of possible direct
interventions, identifying ocular regions and relevant characteristics that
are causes of glaucoma will lead to important advances in early detection
and treatment.

Previous attempts to predict glaucoma with machine learning classifiers
modeled regions of the eye by dividing it into arbitrary regions (e.g., quad-
rants or “clock hours”) (cf. Burgansky-Eliash et al. 2005; Townsend et al.
2008). We might seek to discover less arbitrary, scientifically plausible re-
gions of the eye using data-driven technique like those we have introduced,
improving causal explanations of the disease and our ability to predict and
treat it.

6.5 Refining Intelligent Tutoring System Construc-
tion Space

As noted, some constructed variables we considered in Chapter 5 lacked
straightforward interpretability. Refining the space of constructed variables
will enhance interpretability and allow us to represent a broader range of
semantic features and student behavior. We consider two ways of making
such refinements; many other possible refinements remain.

6.5.1 Skill Clustering

Ritter, et al. (2009) cluster skills from Cognitive Tutor mathematics cur-
ricula based on parameters that the tutor uses to assess student mastery
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of those skills. They find that 23 sets of parameters broadly represent the
space of thousands skills tracked in the curricula. Rather than attempt to
model behavior characteristics over particular skills, as we did in Chapter 5,1

we might pursue a similar clustering strategy to represent student behavior
over swaths of similar skills. We might also group together sections or units
into clusters in a data-driven manner to better (interpretably) represent stu-
dent behavior. In sum, future research should attempt to aggregate student
behavior at broader levels of aggregation than we attempted in Chapter 5.

Such an approach is supported by high levels of inter-correlation among
many behavioral variables representing particular sets of sections and skills;
the pruning procedure we used for analysis in Chapter 5 eliminated highly
correlated constructed variables by “keeping” variables with greater corre-
lation to the target variable when a pair of constructed variables were found
to be highly correlated. Rather than rely on such a procedure, clustering
by skill, section, and/or unit should better capture interpretable behavior
patterns over parts of the mathematics curricula.

6.5.2 Strategic Behavior

Shih (2011) describes clustering techniques based on Hidden Markov Models
to infer instances of strategic behavior (e.g., with respect to hint-seeking and
repeated attempts at particular problem steps) from response data for stu-
dents in intelligent tutoring systems. From instances of strategic behavior,
we can construct aggregate variables as different functions of these behaviors
in tutoring systems (e.g., proportion of time rapidly attempting the same
step of a problem or the variance in such behavior over a set of skills). Such
techniques will provide for a broader range in the semantics of constructed
aggregate variables that may be causes of learning and other outcomes.

6.6 Generalizing Intelligent Tutor Causal Models

The sample of adult learners considered in Chapter 5 is novel for analy-
ses of Cognitive Tutor data; historically these tutors have been deployed in
middle school and high school environments. Data we collected were from
among the first deployments of such tutors for adult learners in a post-
secondary (online and ground-campus) education environment. As such,
inferences about gaming the system and off-task behavior may be limited to

1We considered two simple clusters of skills in the variable construction space in Chap-
ter 5. Here we advocate a more sophisticated clustering of skills.
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this particular population of students. Assuming we have data for appropri-
ate learning outcomes (e.g., final exam scores) we can expand these models
and analyses to large amounts of available data for students in grades 6-12
to get a sense of how well the models (and inferences about behavior based
on them) generalize.

Further, we only consider one module of the Cognitive Tutor Algebra
curriculum, so analyzing data for a broader portion of the curriculum is
necessary. Finding early indicators (and/or causes) of decreased student
learning would help to provide better remediation, either by identifying stu-
dents in need of such remediation, or by actually suggesting specific interven-
tions. We might also consider other curricula (e.g., Cognitive Tutor Algebra
II or Geometry) and other intelligent tutoring systems (e.g., ASSISTments;
Razzaq, et al. 2005).

6.7 Different Intelligent Tutor Targets

We only considered one target in the case study of Chapter 5, a final exam
score for an algebra course at the University of Phoenix. Inferring causes of a
variety of other behavioral targets and learning outcomes may be important
in future education research.

6.7.1 Assistance Score

Noting large correlations among many constructed variables we considered
at the module level of aggregation, we considered whether some module-
level constructed variables might plausibly be indicators of latent variables
as one first step toward the type of refinements of the construction space
we advocate in §6.5. Contrast this attempt to infer indicators of latent
variables with our approach in much of this work to infer aggregate variables
representing (at least roughly) observable behavior.

Toward the goal of possibly discovering “pure” measurement model(s)
(Spirtes, et al. 2000) for latent variables as discussed briefly in Chapter
2, we deploy the Build Pure Clusters (BPC) algorithm (Silva, et al. 2006)
over the set of module-level, aggregate constructed variables defined by the
sum function. The BPC algorithm judges that three variables may provide
a pure measurement model for one latent variable: the module-level sum
of the number of help/hint requests, the sum of incorrect/“wrong” trans-
actions, and the sum of incorrect transactions that correspond to “known
misconceptions” for which the tutor provides just-in-time feedback.
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latent

MODULE sum(count known bug)MODULE sum(count help request)

MODULE sum(count wrong)

Figure 6.1: Graphical representation of pure measurement model for a single
latent variable with three measured indicators.

For these three variables in the data we consider in Chapter 5, Cronbach’s
alpha is 0.97. Recall in Chapter 2 we summarized work (Fancsali 2008)
that showed that, given such a large value of Cronbach’s alpha and a pure
measurement model, we could construct a new variable, by taking the sum
of these indicators, that will preserve conditional independence relationships
into which the underlying latent variable enters.

Figure 6.1 provides a graphical representation with variable latent as a
stand-in for the latent variable that could explain the correlations among
these three module-level, aggregate constructed variables. We posit that the
variable (or scale) constructed as the sum of these three module-level sum
variables is a good proxy for latent. We now consider one way to reify the
variable latent.

The Pittsburgh Science of Learning Center’s DataShop repository
(Koedinger, et al. 2011) defines (i.e., its web application calculates) an “as-
sistance score” over student practice opportunities. The assistance score
is the sum of the number of student incorrect attempts and hint requests
and has been deployed in intelligent tutoring research (cf. Hausmann and
VanLehn 2010). The way we carved the variable construction space in Chap-
ter 5, the total number of incorrect attempts is the sum of the number of
incorrect/“wrong” transactions and the number of “known misconception”
transaction. Thus, what we find in a purely data-driven fashion corresponds
to the DataShop’s assistance score.

While the assistance score has a natural (obvious) interpretation as quan-
tifying the extent to which a student requires assistance in practicing a
particular skill or working through a part of a course, we also provide data-
driven justification that the assistance score would be a good proxy for an
underlying latent variable for something like “assistance required,” or pos-
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sibly “difficulty experienced.” This provides some evidence that carving the
space of constructed variables as we did (i.e., into hints, “wrong” transac-
tion, and “known bug” transactions) may be too fine-grained.2 Using a vari-
able like the assistance score provides a justifiable refinement to the search
space. Future work can explore this insight further, perhaps deploying the
assistance score as a target for causal modeling.

6.7.2 Gaming the System as Target

Having causally linked gaming the system behavior to decreased learning,
another natural target to consider in future models is gaming the system
behavior itself. This will be important to determine possible targets for
future interventions aimed at decreasing such behavior, when it is deemed
harmful. While there may be important behavioral causes of gaming the
system behavior we can discover, another interesting area for future work
will focus on student affect (e.g., boredom, confusion, etc.) as a cause of
harmful gaming the system behavior and student learning.

6.8 Student Affect

Pardos, et al. (2013) point to research on how student affect is associated
with differences in learning (cf. Craig, et al. 2004; Pekrun, et al. 2002;
Rodrigo, et al. 2009). A natural extension of our work is to develop causal
models of student affective states and emotions as causes of behavior and
learning outcomes.

6.8.1 Detectors of Affect

Recent work introduces software detectors of student affect similar to those
we deploy for gaming the system and off-task behavior. Such detectors link
patterns in tutor logs to observations from field trials, using machine learned
classifiers to predict whether students were coded by observers to be bored,
confused, frustrated, or in a state of engaged concentration (Baker, et al.
2012). Such detectors have also been used to predict standardized test scores
(Pardos, et al. 2013). Future work will deploy affect detectors to develop

2Whether or not a “carving” of the space of variables is too fine-grained is also likely to
hinge upon goals for one’s investigation. For example, if an investigator is only interested in
hint-seeking behavior, then it seems appropriate to construct variables that count only hint
requests (or possibly more fine-grained data about hint requests like student progression
through 1st, 2nd, and 3rd hints, and so on).
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causal models of affective states and their relations to gaming the system
behavior, off-task behavior, and student learning outcomes.

6.8.2 Latent Variables vs. Aggregate Behavior Variables

Developing causal models of student affect and learning will have to consider
contrasts between prior work on gaming the system and off-task behavior
detectors and novel affect detectors. While the mechanics of software “de-
tectors” (i.e., fine-grained, features “distilled” from tutor logs from which
detectors infer behavior and affect) are similar, underlying phenomena they
detect are fundamentally different. Gaming the system and off-task behav-
ior are aggregate (if only indirectly measured or inferred) behaviors while
student affective states are explicitly latent variables. As is well known,
special care must be taken in constructing causal models involving latent
variables; we advocated one particular approach in Chapter 2 and briefly
again in §6.7.1. Given appropriate circumstances, we might justifiably con-
struct scale variables as proxies for latent variables that are similar to vari-
ables we construct to represent aggregate behavior, or we might explicitly
model student affect with latent variables in structural equation models.
Determining the appropriate methodological course of action is the subject
of future research.

6.9 Causal Models of Student Affect, Behavior,
and Learning

The over-arching goal of future methodological and educational research we
suggest is to develop integrated causal models of student behavior, affect,
and learning. Such models will provide rich explanations of how student
emotions like boredom and frustration, while working with intelligent tutor-
ing systems, might cause particular types of behavior like gaming the system
(or vice versa) and how both may (or may not) be related to learning out-
comes. Such work necessarily combines all three situations introduced in
Chapter 2 with respect to the types of “raw” data we increasingly face in
real world social science applications. In this way, proposed future work
brings the work of this dissertation “full circle.” We provide one final im-
portant goal for future research, namely that we “close the loop” by putting
research results into experimental (and everyday) practice.
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6.10 Putting Causal Models to Work in Practice:
“Closing the Loop”

We endeavor to explain causes of student learning so that we can improve
systems designed to facilitate student learning. Knowledge of the causes
of learning informs ways in which instructors, administrators, curriculum
developers, and software engineers develop interventions to enhance student
learning. Ideally, we “close the loop” from causal inferences made from ob-
servational data to develop experiments that test whether our inferences are
correct and/or whether we have efficaciously intervened to enhance student
learning. Some work (e.g., Baker 2005, Baker, et al. 2006) seeks to actively
intervene by discouraging gaming the system behavior with an animated
character that reacts to student interactions with a tutor.

Future work might develop interventions that, in addition to impacting
particular student behaviors, will help to manage student affect and emotion
(e.g., alleviate frustration, decrease boredom, etc.), assuming research points
to various affective states as causes of decreased learning or of behavior that
is detrimental to learning.

Another important area for experiments that “close the loop” will be to
identify important sections / units / skills on which to focus curriculum de-
velopment attention. The framework we have developed for thinking about
different aggregation levels for constructed variables (combined with refined
constructed variable search spaces) might help illuminate places in which
faults in course material lead to sub-optimal student outcomes. For exam-
ple, we might find that a particularly flawed portion of problems associated
with a particular set of skills creates a great deal of student frustration.
Data-driven guidance for curriculum improvement is yet another important
area for future research.

6.11 Closing Thoughts

Answers to questions of how to improve student learning generally turn on
matters of causation. This work scratches the surface of key problems vital
to inferring causal relationships from observed, fine-grained, “raw” log data
that is increasingly available from intelligent tutoring systems and other
(educational) systems. Important questions about modeling and interpret-
ing such data, and developing appropriate interventions to enhance learning
(or other outcomes), will provide years of work for education researchers,
computer scientists, and others.
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Beyond education, questions we ask about constructing aggregate vari-
ables from fine-grained data, and especially inferring causes from such data,
will only become more important as various technological innovations pro-
vide for “big data” applications in a plethora of natural and social science
disciplines and public policy settings. We look forward to continuing this
necessary work.
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Chapter 7

Appendix to Chapter 4

7.1 Stratifying Error by Latent Causes of Target
in Generating Super DAG

7.1.1 Maximum Expected Total Effect: Tracking Qualitative
Performance

Table 7.1 provides qualitative counting scheme performance, stratified by the
number of latent causes of X4 in the generating Super DAG, for the sam-
pling strategy of generating Super DAGs not represented by the complete
PAG. We see that the performance of the Super DAG and PAG Heuris-
tic counting schemes are similar (close to identical), with the Super DAG
counting scheme barely outperforming the PAG Heuristic scheme in cases in
which X4 has 2 and 3 latent causes. The reader may find it surprising that
the Pattern counting scheme does not outperform the other two in cases in
which there are no latent causes of X4.

Table 7.2 provides the same information as Table 7.1 for sampling from
generating Super DAGs represented by the complete PAG without an ex-
haustive Super DAG counting scheme, as does Table 7.3 for generating
Super DAGs represented by the complete PAG with an exhaustive Super
DAG counting scheme. The relative performance of each counting scheme
is similar in all three cases: the PAG Heuristic counting scheme in most
cases outperforms (by a small margin) the Super DAG and Pattern count-
ing schemes. Notably, in both simulation strategies for generating Super
DAGs represented by the complete PAG, all three counting schemes per-
form similarly and relatively poorly (regardless of the degree to which the
target is confounded by latent variables) compared to their performance on
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Simulation Strategy
#1: Confounding of
Target in Generating
Super DAG (Incom-
plete PAG)

Counting Scheme: Correct
Count (%)

# Latent
Causes of
X4

# Super
DAGs
Sampled

Super DAG PAG
Heuris-
tic

Pattern

0 6,911 3,404
(49.3%)

3,424
(49.5%)

3,140
(45.4%)

1 14,136 5,391
(38.1%)

5,418
(38.3%)

4,733
(33.5%)

2 9,444 3,265
(34.6%)

3,243
(34.3%)

2,835 (30%)

3 1,509 926 (61.4%) 913 (60.5%) 842 (55.8%)

0-3 32,000 12,986
(40.58%)

12,998
(40.62%)

11,550
(36.1%)

Table 7.1: Qualitative Match Counts for M.E.T.E. Variable and True Max-
imum Total Effect Variable: Generating Super DAGs Not Represented by
Complete PAG, Stratified by Number of Latent Causes of Target (X4).

generating Super DAGs not represented by the complete PAG.

7.1.2 Maximum Expected Total Effect: Tracking Quantita-
tive Value

Table 7.4 provides mean squared error for inferred M.E.T.E. values com-
pared to the true maximum total effect for generating Super DAGs not
represented by the complete PAG. Stratifying generating Super DAGs by
the number of latent variable causes of the target, the results are consistent
with the overall result that the Pattern counting scheme outperforms the
other counting schemes, but each counting scheme has roughly similar per-
formance at each level of stratification. Interestingly, error decreases as the
number of latent variable causes of the target increases, even for the Pattern
counting scheme.1

1We provide one (possibly counter-intuitive) observation that partially explains this
phenomenon. The Pattern counting scheme averages over fewer DAGs when there are
more latent causes of X4 because we are more likely to infer oriented edges (→) at X4 in
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Simulation Strategy
#2: Confounding of
Target in Generating
Super DAG (Com-
plete PAG)

Counting Scheme: Correct
Count (%) (Non-Exhaustive
Super DAG Scheme)

# Latent
Causes of
X4

# Super
DAGs
Sampled

Super DAG PAG
Heuris-
tic

Pattern

0 884 89 (10.1%) 89 (10.1%) 69 (7.8%)

1 5,592 1,568 (28%) 1,542
(27.6%)

1,487
(26.6%)

2 8,010 1,622
(20.3%)

1,691
(21.1%)

1,547
(19.3%)

3 3,514 537 (15.3%) 556 (15.8%) 528 (15%)

0-3 18,000 3,816
(21.2%)

3,878
(21.5%)

3,631
(20.2%)

Table 7.2: Qualitative Match Counts for M.E.T.E. Variable and True Max-
imum Total Effect Variable: Generating Super DAGs Represented by Com-
plete PAG, Non-Exhaustive Super DAG Counting Scheme, Stratified by
Number of Latent Causes of Target (X4)
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Simulation Strategy
#3: Confounding of
Target in Generating
Super DAG (Com-
plete PAG)

Counting Scheme: Correct
Count (%) (Exhaustive Super
DAG Scheme)

# Latent
Causes of
X4

# Super
DAGs
Sampled

Super DAG PAG
Heuris-
tic

Pattern

0 17 2 (11.8%) 1 (5.9%) 2 (11.8%)

1 136 29 (21.3%) 32 (23.5%) 28 (20.6%)

2 171 41 (24%) 43 (25.2%) 40 (23.4%)

3 76 10 (13.2%) 13 (17.1%) 11 (14.5%)

0-3 400 82 (20.5%) 89 (22.3%) 81 (20.3%)

Table 7.3: Qualitative Match Counts for M.E.T.E. Variable and True Max-
imum Total Effect Variable: Generating Super DAGs Represented by Com-
plete PAG, Exhaustive Super DAG Counting Scheme, Stratified by Number
of Latent Causes of Target (X4)

Simulation Strategy
#1

Counting Scheme: MSE of
M.E.T.E. Variable T.E.

# Latent
Causes of
X4

# Super
DAGs
Sampled

Super DAG PAG
Heuris-
tic

Pattern

0 6,911 .0773 .0769 .0700

1 14,136 .0745 .0742 .0660

2 9,444 .0576 .0597 .0538

3 1,509 .0453 .0476 .0419

0-3 32,000 .0687 .0692 .0621

Table 7.4: Mean Squared Error for Maximum Expected Total Effect Vari-
able’s Estimated Total Effect Value vs. True Total Effect: Generating Super
DAGs Not Represented by Complete PAG, Stratified by Number of Latent
Causes of Target (X4)
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Simulation Strategy
#2

Counting Scheme: MSE of
M.E.T.E. Variable T.E.

# Latent
Causes of
X4

# Super
DAGs
Sampled

Super DAG PAG
Heuris-
tic

Pattern

0 884 .0818 .0888 .0832

1 5,592 .1309 .1240 .1224

2 8,010 .0958 .1002 .0971

3 3,514 .0751 .0840 .0832

0-3 18,000 .1020 .1039 .1016

Table 7.5: Mean Squared Error for M.E.T.E. Variable’s Estimated Total
Effect Value vs. True Total Effect: Generating Super DAGs Represented by
Complete PAG, Non-Exhaustive Super DAG Counting Scheme, Stratified
by Number of Latent Causes of Target (X4)

Tables 7.5 and 7.6 demonstrate again that performance degrades for
generating Super DAGs represented by the complete PAG. The Pattern
counting scheme performs best overall in both “complete PAG” cases, but
for individual levels of stratification we see that the Super DAG and, in one
case, PAG Heuristic are sometimes best, while performance across counting
schemes does not substantially differ within each level of stratification. As in
Table 7.4 (i.e., with generating Super DAGs not represented by the complete
PAG), we see that performance is better for generating Super DAGs with
a greater number of latent variable causes of the target. This suggests that
Super DAGs and/or DAGs we consider for each counting scheme (whether
exhaustively or be random sampling for the Super DAG counting scheme)
in the case of the complete PAG lead to a kind of bias toward accounting
for greater confounding of the target variable. When the ground truth is
relatively simple (e.g., zero or one latent causes of the target), performance
is hampered.

corresponding patterns (and o→ edges in PAGs), as opposed to more un-oriented pattern
edges (and o−o PAG edges) when there are zero latent causes of the target. When there
are many latent causes of the target, we end up with more causal information about the
target variable that appears to improve performance.

167



Simulation Strategy
#3

Counting Scheme: MSE of
M.E.T.E. Variable T.E.

# Latent
Causes of
X4

# Super
DAGs
Sampled

Super DAG PAG
Heuris-
tic

Pattern

0 17 .0711 .0645 .0668

1 136 .1093 .1128 .1049

2 171 .1070 .1087 .1058

3 76 .0763 .0855 .0830

0-3 400 .1004 .1038 .0995

Table 7.6: Mean Squared Error for M.E.T.E. Variable’s Estimated Total
Effect Value vs. True Total Effect: Generating Super DAGs Represented
by Complete PAG, Exhaustive Super DAG Counting Scheme, Stratified by
Number of Latent Causes of Target (X4).

7.1.3 Näıve Causal R2

Tables 7.7 through 7.9 provide performance results for mean squared error
of average näıve causal R2 compared to the generating SEMs näıve causal
R2 stratified by the number of latent causes of the target variable in the gen-
erating model. Again, performance generally improves (though not without
exception) as the number of latent variables causes of the target increases,
and the PAG Heuristic and Pattern counting schemes have relatively similar
performance in most cases.

7.1.4 Intervention Causal R2

Consistent with results for the other metrics, the PAG Heuristic and Pat-
tern counting schemes do better than the Super DAG counting scheme in
Tables 7.10-7.12 for generating Super DAGs in which the target has no la-
tent causes. This is plausible, as simpler counting schemes (e.g., the Pattern
counting scheme) should be appropriate in the absence of latent causes of
the target variable. For calculating the Intervention Causal R2 metric, it
appears that introducing just one latent cause of the target is sufficient to
require the use of the Super DAG counting scheme to achieve best perfor-
mance. For the two metrics that do not model ideal interventions on causes
of the target, this is not generally the case, demonstrating a possibly im-
portant difference between the intervention metric and the others. Notably,
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Simulation Strategy
#1

Counting Scheme: MSE of Av-
erage Näıve Causal R2

# Latent
Causes of
X4

# Super
DAGs
Sampled

Super DAG PAG
Heuris-
tic

Pattern

0 6,911 .1269 .0533 .0718

1 14,136 .1431 .0609 .0622

2 9,444 .0663 .0573 .0627

3 1,509 .0393 .0440 .0383

0-3 32,000 .1120 .0573 .0633

Table 7.7: Mean Squared Error for Average Näıve Causal R2 Value vs.
True Näıve Causal R2 Value: Generating Super DAGs Not Represented by
Complete PAG, Stratified by Number of Latent Causes of Target (X4)

Simulation Strategy
#2

Counting Scheme: MSE of Av-
erage Näıve Causal R2

# Latent
Causes of
X4

# Super
DAGs
Sampled

Super DAG PAG
Heuris-
tic

Pattern

0 884 .1687 .1053 .0697

1 5,592 .1805 .1227 .0853

2 8,010 .1419 .1095 .1004

3 3,514 .1217 .1058 .1222

0-3 18,000 .1513 .1127 .0985

Table 7.8: Mean Squared Error for Average Näıve Causal R2 Value vs. True
Näıve Causal R2 Value: Generating Super DAGs Represented by Complete
PAG, Non-Exhaustive Super DAG Counting Scheme, Stratified by Number
of Latent Causes of Target (X4)
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Simulation Strategy
#3

Counting Scheme: MSE of Av-
erage Näıve Causal R2

# Latent
Causes of
X4

# Super
DAGs
Sampled

Super DAG PAG
Heuris-
tic

Pattern

0 17 .1475 .1160 .1062

1 136 .1490 .1078 .0818

2 171 .1599 .1074 .0915

3 76 .1187 .1043 .1108

0-3 400 .1479 .1073 .0925

Table 7.9: Mean Squared Error for Average Näıve Causal R2 Value vs. True
Näıve Causal R2 Value: Generating Super DAGs Represented by Complete
PAG, Exhaustive Super DAG Counting Scheme, Stratified by Number of
Latent Causes of Target (X4)

the Super DAG counting scheme’s performance improves as the number of
latent causes of the target variable increases. However, contrary to results
for other metrics, the performance of the PAG Heuristic and Pattern count-
ing scheme degrades as the number of latent causes of the target variable
increases.

7.2 Inferring a PAG with FCI: An Example

Figure 7.1 provides an example of a “Y Structure #1” PAG with three
constructed variables (avg X2X3X4, avg X5X7X8, and avg Y0Y1Y2)
and target variable T. We explain, step-by-step, how FCI infers this PAG
structure from conditional independence relations among these variables.

FCI begins with the complete PAG, each pair of variables connected by
an o−o edge (Figure 7.2).

Conditional independence relations among these variables are represen-
tative of the independencies among other sets of constructed variables that
allow us to infer the same PAG structure (i.e., Y Structure #1). As such,
avg X2X3X4 corresponds to X Cloud 1; avg X5X7X8 corresponds to
X Cloud 2; and avg Y0Y1Y2 corresponds to Y Cloud 1, as always.
Two (conditional) independence relations obtain among these four variables
(where “X ⊥⊥ Y|Z” reads “X is independent of Y conditional on the vari-
ables in set Z”):
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Simulation Strategy
#1

Counting Scheme: MSE of Av-
erage Intervention Causal R2

# Latent
Causes of
X4

# Super
DAGs
Sampled

Super DAG PAG
Heuris-
tic

Pattern

0 6,911 .0330 .0365 .0323

1 14,136 .0177 .0416 .0927

2 9,444 .0126 .0621 .1669

3 1,509 .0122 .1116 .3178

0-3 32,000 .0192 .0498 .1122

Table 7.10: Mean Squared Error for Average Intervention Causal R2 Value
vs. True Intervention Causal R2 Value: Generating Super DAGs Not Repre-
sented by Complete PAG, Stratified by Number of Latent Causes of Target
(X4)

Simulation Strategy
#2

Counting Scheme: MSE of Av-
erage Intervention Causal R2

# Latent
Causes of
X4

# Super
DAGs
Sampled

Super DAG PAG
Heuris-
tic

Pattern

0 884 .0988 .0343 .0792

1 5,592 .0370 .0563 .1363

2 8,010 .0167 .0814 .1817

3 3,514 .0116 .1038 .2156

0-3 18,000 .0260 .0757 .1692

Table 7.11: Mean Squared Error for Average Intervention Causal R2 Value
vs. True Intervention Causal R2 Value: Generating Super DAGs Repre-
sented by Complete PAG, Non-Exhaustive Super DAG Counting Scheme,
Stratified by Number of Latent Causes of Target (X4)
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Simulation Strategy
#3

Counting Scheme: MSE of Av-
erage Intervention Causal R2

# Latent
Causes of
X4

# Super
DAGs
Sampled

Super DAG PAG
Heuris-
tic

Pattern

0 17 .0777 .0528 .1130

1 136 .0351 .0541 .1330

2 171 .0156 .0808 .1795

3 76 .0102 .0843 .1860

0-3 400 .0238 .0712 .1621

Table 7.12: Mean Squared Error for Average Intervention Causal R2 Value
vs. True Intervention Causal R2 Value: Generating Super DAGs Repre-
sented by Complete PAG, Exhaustive Super DAG Counting Scheme, Strat-
ified by Number of Latent Causes of Target (X4)

Tavg Y0Y1Y2avg X2X3X4

avg X5X7X8

Figure 7.1: Example PAG: We illustrate the inference of this PAG from a
set of conditional independencies among its four measured (of which three
are constructed) variables.

Tavg Y0Y1Y2avg X2X3X4

avg X5X7X8

Figure 7.2: FCI Starting Point (Step #1): Complete PAG
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Tavg Y0Y1Y2avg X2X3X4

avg X5X7X8

Figure 7.3: FCI Step #2: PAG after Adjacency Phase

Tavg Y0Y1Y2avg X2X3X4

avg X5X7X8

Figure 7.4: FCI Step #3: PAG after Unshielded Collider Orientation at
avg Y0Y1Y2

• avg X2X3X4 ⊥⊥ avg X5X7X8

• avg X2X3X4 ⊥⊥ T|{avg Y0Y1Y2,avg X5X7X8}

Because of these two independencies, the adjacency phase of FCI re-
moves two corresponding edges: avg X2X3X4 o−o avg X5X7X8 and
avg X2X3X4 o−o T (Figure 7.3).

Both avg X2X3X4 and avg X5X7X8 are adjacent to avg Y0Y1Y2,
but the two variables are unconditionally independent; FCI’s orientation
phase begins, using the “collider orientation” rule, by orienting an un-
shielded collider at avg Y0Y1Y2 (Figure 7.4), i.e., orienting avg X2X3X4
o→ avg Y0Y1Y2 and avg X5X7X8 o→ avg Y0Y1Y2.

Next, note that if the avg Y0Y1Y2 o−o T edge in Figure 7.4 were
oriented as avg Y0Y1Y2 ←o T, the resulting PAG would imply that
avg X2X3X4 is not independent of T given avg Y0Y1Y2 and
avg X5X7X8, since the collider avg X2X3X4 o→ avg Y0Y1Y2 ←o T
would be active. This is contrary to independencies in our data, so we
infer avg Y0Y1Y2 → T. This is an instance of FCI’s “away from collider”
rule (Figure 7.5). Unshielded colliders are detectable in data at the collider
orientation step, so the “away from collider” rule ensures that FCI does not
orient any unshielded colliders beyond those found at the collider orientation
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Tavg Y0Y1Y2avg X2X3X4

avg X5X7X8

Figure 7.5: FCI Step #4: PAG after application of “Away from Collider”
rule orients avg Y0Y1Y2 → T

Tavg Y0Y1Y2avg X2X3X4

avg X5X7X8

Figure 7.6: FCI Step #5: PAG after application of “Away from Ancestor”
rule orients avg X5X7X8 o→ T

step (i.e., only those compatible with data).
Next, the arrowhead at avg Y0Y1Y2 on the avg X5X7X8 o→ avg Y0Y1Y2

edge in Figure 7.5 means (by the semantics of PAG edges) that avg Y0Y1Y2
is not an ancestor of avg X5X7X8. At the same time, avg Y0Y1Y2 is
an ancestor (or cause) of T. Consider the edge: avg X5X7X8 o−o T. If
this edge were oriented “out of” T, then both T and avg Y0Y1Y2 would
be ancestors of avg X5X7X8. Since we know that avg Y0Y1Y2 is not an
ancestor of avg X5X7X8, we orient the avg X5X7X8 o−o T edge “into”
T. This is an instance of the FCI “away from ancestor” rule (Figure 7.6).

FCI’s final orientation uses the “definite discriminating paths” rule to
orient avg X5X7X8 → T (Figure 7.7). Spirtes, et al. (2000) and Zhang
(2008b) formally describe this rule (as well as the rest of the FCI algorithm,
including other orientation rules2). We consider the logic of this orientation.
Given the PAG of Figure 7.6 and the fact that avg X2X3X4 is independent
of T conditional on the set {avg Y0Y1Y2,avg X5X7X8}, avg X5X7X8
must be a non-collider. Suppose we orient the avg X5X7X8 o→ T edge as
avg X5X7X8↔T. There are two possible ways to orient the avg X5X7X8
o→ avg Y0Y1Y2 edge:

2Zhang (2008b) provides a complete set of orientation rules.
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Tavg Y0Y1Y2avg X2X3X4

avg X5X7X8

Figure 7.7: FCI Step #6: Final Example PAG (Figure 7.1) after application
of “Definite Discriminating Path” rule orients avg X5X7X8 → T

1. avg X5X7X8 ↔ avg Y0Y1Y2 creates a collider at avg X5X7X8.

2. avg X5X7X8 → avg Y0Y1Y2 makes avg X5X7X8 an ancestor of
T, but we have assumed avg X5X7X8 ↔ T, so avg X5X7X8 is
definitely not an ancestor of T.

Since the first possibility is not compatible with data, and the second
possibility violates the semantic of PAGs, the avg X5X7X8 ↔ T orienta-
tion is ruled out as a possibility. Thus, we orient avg X5X7X8 → T. We
now have the final inferred PAG, corresponding to what we call Y Struc-
ture #1 in Chapter 4, over four variables from two observed (conditional)
independence relations.
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